Science.gov

Sample records for based fiber optic

  1. Optical fiber-based photocathode

    NASA Astrophysics Data System (ADS)

    Cǎsǎndruc, Albert; Bücker, Robert; Kassier, Günther; Miller, R. J. Dwayne

    2016-08-01

    We present the design of a back-illuminated photocathode for electron diffraction experiments based on an optical fiber, and experimental characterization of emitted electron bunches. Excitation light is guided through the fiber into the experimental vacuum chamber, eliminating typical alignment difficulties between the emitter metal and the optical trigger and position instabilities, as well as providing reliable control of the laser spot size and profile. The in-vacuum fiber end is polished and coated with a 30 nm gold (Au) layer on top of 3 nm of chromium (Cr), which emits electrons by means of single-photon photoemission when femtosecond pulses in the near ultraviolet (257 nm) are fed into the fiber on the air side. The emission area can be adjusted to any value between a few nanometers (using tapered fibers) and the size of a multi-mode fiber core (100 μm or larger). In this proof-of-principle experiment, two different types of fibers were tested, with emission spot diameters of 50 μm and 100 μm, respectively. The normalized thermal electron beam emittance (TE) was measured by means of the aperture scan technique, and a TE of 4.0 π nm was measured for the smaller spot diameter. Straightforward enhancements to the concept allowed to demonstrate operation in an electric field environment of up to 7 MV/m.

  2. Fiber optic-based biosensor

    NASA Astrophysics Data System (ADS)

    Ligler, Frances S.

    1991-12-01

    The NRL fiber optic biosensor is a device which measures the formation of a fluorescent complex at the surface of an optical fiber. Antibodies and DNA binding proteins provide the mechanism for recognizing an analyze and immobilizing a fluorescent complex on the fiber surface. The fiber optic biosensor is fast, sensitive, and permits analysis of hazardous materials remote from the instrumentation. The fiber optic biosensor is described in terms of the device configuration, chemistry for protein immobilization, and assay development. A lab version is being used for assay development and performance characterization while a portable device is under development. Antibodies coated on the fiber are stable for up to two years of storage prior to use. The fiber optic biosensor was used to measure concentration of toxins in the parts per billion (ng/ml) range in under a minute. Immunoassays for small molecules and whole bacteria are under development. Assays using DNA probes as the detection element can also be used with the fiber optic sensor, which is currently being developed to detect biological warfare agents, explosives, pathogens, and toxic materials which pollute the environment.

  3. Fiber optic-based biosensor

    NASA Technical Reports Server (NTRS)

    Ligler, Frances S.

    1991-01-01

    The NRL fiber optic biosensor is a device which measures the formation of a fluorescent complex at the surface of an optical fiber. Antibodies and DNA binding proteins provide the mechanism for recognizing an analyze and immobilizing a fluorescent complex on the fiber surface. The fiber optic biosensor is fast, sensitive, and permits analysis of hazardous materials remote from the instrumentation. The fiber optic biosensor is described in terms of the device configuration, chemistry for protein immobilization, and assay development. A lab version is being used for assay development and performance characterization while a portable device is under development. Antibodies coated on the fiber are stable for up to two years of storage prior to use. The fiber optic biosensor was used to measure concentration of toxins in the parts per billion (ng/ml) range in under a minute. Immunoassays for small molecules and whole bacteria are under development. Assays using DNA probes as the detection element can also be used with the fiber optic sensor, which is currently being developed to detect biological warfare agents, explosives, pathogens, and toxic materials which pollute the environment.

  4. Fiber optic-based biosensor

    NASA Technical Reports Server (NTRS)

    Ligler, Frances S.

    1991-01-01

    The NRL fiber optic biosensor is a device which measures the formation of a fluorescent complex at the surface of an optical fiber. Antibodies and DNA binding proteins provide the mechanism for recognizing an analyze and immobilizing a fluorescent complex on the fiber surface. The fiber optic biosensor is fast, sensitive, and permits analysis of hazardous materials remote from the instrumentation. The fiber optic biosensor is described in terms of the device configuration, chemistry for protein immobilization, and assay development. A lab version is being used for assay development and performance characterization while a portable device is under development. Antibodies coated on the fiber are stable for up to two years of storage prior to use. The fiber optic biosensor was used to measure concentration of toxins in the parts per billion (ng/ml) range in under a minute. Immunoassays for small molecules and whole bacteria are under development. Assays using DNA probes as the detection element can also be used with the fiber optic sensor, which is currently being developed to detect biological warfare agents, explosives, pathogens, and toxic materials which pollute the environment.

  5. A Space-Based Optical Communication System Utilizing Fiber Optics

    DTIC Science & Technology

    1989-11-09

    free-space optical communication systems are not widely recognized. The current generation of spaceborne optical communication systems relies on the...Preliminary experimental results of our breadboard fiber-based coherent optical communication system are also presented.

  6. Optical sensors based on plastic fibers.

    PubMed

    Bilro, Lúcia; Alberto, Nélia; Pinto, João L; Nogueira, Rogério

    2012-01-01

    The recent advances of polymer technology allowed the introduction of plastic optical fiber in sensor design. The advantages of optical metrology with plastic optical fiber have attracted the attention of the scientific community, as they allow the development of low-cost or cost competitive systems compared with conventional technologies. In this paper, the current state of the art of plastic optical fiber technology will be reviewed, namely its main characteristics and sensing advantages. Several measurement techniques will be described, with a strong focus on interrogation approaches based on intensity variation in transmission and reflection. The potential applications involving structural health monitoring, medicine, environment and the biological and chemical area are also presented.

  7. Optical Sensors Based on Plastic Fibers

    PubMed Central

    Bilro, Lúcia; Alberto, Nélia; Pinto, João L.; Nogueira, Rogério

    2012-01-01

    The recent advances of polymer technology allowed the introduction of plastic optical fiber in sensor design. The advantages of optical metrology with plastic optical fiber have attracted the attention of the scientific community, as they allow the development of low-cost or cost competitive systems compared with conventional technologies. In this paper, the current state of the art of plastic optical fiber technology will be reviewed, namely its main characteristics and sensing advantages. Several measurement techniques will be described, with a strong focus on interrogation approaches based on intensity variation in transmission and reflection. The potential applications involving structural health monitoring, medicine, environment and the biological and chemical area are also presented. PMID:23112707

  8. Indium oxide based fiber optic SPR sensor

    SciTech Connect

    Shukla, Sarika; Sharma, Navneet K.

    2016-05-06

    Surface plasmon resonance based fiber optic sensor using indium oxide layer is presented and theoretically studied. It has been found that with increase in thickness of indium oxide layer beyond 170 nm, the sensitivity of SPR sensor decreases. 170 nm thick indium oxide layer based SPR sensor holds maximum sensitivity.

  9. Optical fiber-based CDMA networks

    NASA Astrophysics Data System (ADS)

    Gameiro, Atilio M. S.

    1996-01-01

    In this communication we consider the use of an optical fiber based fixed infrastructure for code division multiple access (CDMA) mobile networks. In such a scenario, the base stations are linked to the central station through optical fiber using subcarrier multiplexing (SCM) technology. One of the major problems associated with optical SCM is the nonlinearity of the laser diodes (LD). In this communication we model the LD as a memoryless nonlinearity and evaluate the effect of the nonlinearity on the SCM transmission CDMA signals. We find that the behavior departs significantly from what happens in FDMA and depends critically on the nonlinearity of the LD being a compressing or an expanding one. In the former case significant performance degradation may occur whereas for the latter the degradation is usually not dramatic.

  10. Renewable Reagent Fiber Optic Based Ammonia Sensor

    NASA Astrophysics Data System (ADS)

    Berman, Richard J.; Burgess, Lloyd W.

    1990-02-01

    Many fiber optic based chemical sensors have been described which rely on a reagent chemistry fixed at the fiber endface to provide analyte specificity. In such systems, problems involving probe-to-probe reproducibility, reagent photolability and reagent leaching are frequently encountered. As a result, calibration and standardization of these sensors becomes difficult or impossible and thus inhibits their application for long term in situ chemical monitoring. Many of these problems can be addressed and several additional advantages gained by continuously renewing the reagent chemistry. To illustrate this concept, a fiber optic ammonia sensor is described in which the reagent is delivered under direct control to a sensing volume of approximately 400 nanoliters located at the probe tip. Using an acid-base indicator (bromothymol blue) as the reagent, the sample ammonia concentrations are related to modulations in light intensity with a lower limit of detection of 10 ppb. The sensor performance was studied with respect to reagent pH, concentration and reagent delivery rate. Compared with previous fiber optic ammonia sensors, the ability to reproducibly renew the reagent has resulted in improvements with respect to response and return times, probe-to-probe reproducibility, probe lifetime and flexibility of use.

  11. Fiber Optic-Based Refractive Index Sensing at INESC Porto

    PubMed Central

    Jorge, Pedro A. S.; Silva, Susana O.; Gouveia, Carlos; Tafulo, Paula; Coelho, Luis; Caldas, Paulo; Viegas, Diana; Rego, Gaspar; Baptista, José M.; Santos, José L.; Frazão, Orlando

    2012-01-01

    A review of refractive index measurement based on different types of optical fiber sensor configurations and techniques is presented. It addresses the main developments in the area, with particular focus on results obtained at INESC Porto, Portugal. The optical fiber sensing structures studied include those based on Bragg and long period gratings, on micro-interferometers, on plasmonic effects in fibers and on multimode interference in a large spectrum of standard and microstructured optical fibers. PMID:22969405

  12. Establishing a fiber-optic-based optical neural interface.

    PubMed

    Adamantidis, Antoine R; Zhang, Feng; de Lecea, Luis; Deisseroth, Karl

    2014-08-01

    Selective expression of opsins in genetically defined neurons makes it possible to control a subset of neurons without affecting nearby cells and processes in the intact brain, but light must still be delivered to the target brain structure. Light scattering limits the delivery of light from the surface of the brain. For this reason, we have developed a fiber-optic-based optical neural interface (ONI), which allows optical access to any brain structure in freely moving mammals. The ONI system is constructed by modifying the small animal cannula system from PlasticsOne. The system for bilateral stimulation consists of a bilateral cannula guide that has been stereotactically implanted over the target brain region, a screw cap for securing the optical fiber to the animal's head, a fiber guard modified from the internal cannula adapter, and a bare fiber whose length is customized based on the depth of the target region. For unilateral stimulation, a single-fiber system can be constructed using unilateral cannula parts from PlasticsOne. We describe here the preparation of the bilateral ONI system and its use in optical stimulation of the mouse or rat brain. Delivery of opsin-expressing virus and implantation of the ONI may be conducted in the same surgical session; alternatively, with a transgenic animal no opsin virus is delivered during the surgery. Similar procedures are useful for deep or superficial injections (even for neocortical targets, although in some cases surface light-emitting diodes or cortex-apposed fibers can be used for the most superficial cortical targets).

  13. Bridge SHM system based on fiber optical sensing technology

    NASA Astrophysics Data System (ADS)

    Li, Sheng; Fan, Dian; Fu, Jiang-hua; Huang, Xing; Jiang, De-sheng

    2015-09-01

    The latest progress of our lab in recent 10 years on the area of bridge structural health monitoring (SHM) based on optical fiber sensing technology is introduced. Firstly, in the part of sensing technology, optical fiber force test-ring, optical fiber vibration sensor, optical fiber smart cable, optical fiber prestressing loss monitoring method and optical fiber continuous curve mode inspection system are developed, which not only rich the sensor types, but also provides new monitoring means that are needed for the bridge health monitoring system. Secondly, in the optical fiber sensing network and computer system platform, the monitoring system architecture model is designed to effectively meet the integration scale and effect requirement of engineering application, especially the bridge expert system proposed integration of sensing information and informatization manual inspection to realize the mode of multi index intelligence and practical monitoring, diagnosis and evaluation. Finally, the Jingyue bridge monitoring system as the representative, the research on the technology of engineering applications are given.

  14. Fiber optic-based regenerable biosensor

    DOEpatents

    Sepaniak, Michael J.; Vo-Dinh, Tuan

    1993-01-01

    A fiber optic-based regenerable biosensor. The biosensor is particularly suitable for use in microscale work in situ. In one embodiment, the biosensor comprises a reaction chamber disposed adjacent the distal end of a waveguide and adapted to receive therein a quantity of a sample containing an analyte. Leading into the chamber is a plurality of capillary conduits suitable for introducing into the chamber antibodies or other reagents suitable for selective interaction with a predetermined analyte. Following such interaction, the contents of the chamber may be subjected to an incident energy signal for developing fluorescence within the chamber that is detectable via the optical fiber and which is representative of the presence, i.e. concentration, of the selected analyte. Regeneration of the biosensor is accomplished by replacement of the reagents and/or the analyte, or a combination of these, at least in part via one or more of the capillary conduits. The capillary conduits extend from their respective terminal ends that are in fluid communication with the chamber, away from the chamber to respective location(s) remote from the chamber thereby permitting in situ location of the chamber and remote manipulation and/or analysis of the activity with the chamber.

  15. Noninvasive blood pressure measurement scheme based on optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Liu, Xianxuan; Yuan, Xueguang; Zhang, Yangan

    2016-10-01

    Optical fiber sensing has many advantages, such as volume small, light quality, low loss, strong in anti-jamming. Since the invention of the optical fiber sensing technology in 1977, optical fiber sensing technology has been applied in the military, national defense, aerospace, industrial, medical and other fields in recent years, and made a great contribution to parameter measurement in the environment under the limited condition .With the rapid development of computer, network system, the intelligent optical fiber sensing technology, the sensor technology, the combination of computer and communication technology , the detection, diagnosis and analysis can be automatically and efficiently completed. In this work, we proposed a noninvasive blood pressure detection and analysis scheme which uses optical fiber sensor. Optical fiber sensing system mainly includes the light source, optical fiber, optical detector, optical modulator, the signal processing module and so on. wavelength optical signals were led into the optical fiber sensor and the signals reflected by the human body surface were detected. By comparing actual testing data with the data got by traditional way to measure the blood pressure we can establish models for predicting the blood pressure and achieve noninvasive blood pressure measurement by using spectrum analysis technology. Blood pressure measurement method based on optical fiber sensing system is faster and more convenient than traditional way, and it can get accurate analysis results in a shorter period of time than before, so it can efficiently reduce the time cost and manpower cost.

  16. Fiber optic based optical coherence tomography (OCT) for dental applications

    SciTech Connect

    Everett, M. J., LLNL

    1998-06-02

    We have developed a hand-held fiber optic based optical coherence tomography (OCT) system for scanning of the oral cavity We have produced, using this scanning device, in viva cross-sectional images of hard and soft dental tissues in human volunteers Clinically relevant anatomical structures, including the gingival margin, periodontal sulcus, and dento-enamel junction, were visible in all the images The dento-enamel junction and the alveolar bone were identifiable in approximately two thirds of the images These images represent, to our knowledge, the first in viva OCT images of human dental tissue.

  17. Distributed optical fiber dynamic magnetic field sensor based on magnetostriction.

    PubMed

    Masoudi, Ali; Newson, Trevor P

    2014-05-01

    A distributed optical fiber sensor is introduced which is capable of quantifying multiple magnetic fields along a 1 km sensing fiber with a spatial resolution of 1 m. The operation of the proposed sensor is based on measuring the magnetorestrictive induced strain of a nickel wire attached to an optical fiber. The strain coupled to the optical fiber was detected by measuring the strain-induced phase variation between the backscattered Rayleigh light from two segments of the sensing fiber. A magnetic field intensity resolution of 0.3 G over a bandwidth of 50-5000 Hz was demonstrated.

  18. Optical fiber gas sensing system based on FBG filtering

    NASA Astrophysics Data System (ADS)

    Wang, Shutao

    2008-10-01

    An optical fiber gas sensing system based on the law of Beer-Lambert is designed to determine the concentration of gas. This technique relies on the fact that the target gas has a unique, well-defined absorption characteristic within the infrared region of electromagnetic spectrum. The narrow-band filtering characteristic of optical fiber Bragg grating is used to produce the narrow spectrum light signal. An aspheric objective optical fiber collimator is used in the system as an optical fiber gas sensing detector to improve the sensitivity and stability. Experimental results show there is a high measuring sensitivity at 0.01%, and the measuring range goes beyond 5%.

  19. Graphene-based all-fiber-optic temperature sensor

    NASA Astrophysics Data System (ADS)

    Lu, Huihui; Tian, Zhengwen; Jin, Shaoshen; Yu, Jianhui; Liao, Guozhen; Zhang, Jun; Tang, Jieyuan; Luo, Yunhan; Chen, Zhe

    2014-03-01

    A novel all fiber-optic temperature sensor based on graphene film coated on a side polished fiber (SPF) was demonstrated. Significantly enhanced interaction between the propagating light and the graphene film can be achieved via strong evanescent light of the SPF. The experiments shows that the strong interaction results in temperature sensing with a dynamic optical power variation of 11.3dB in SPF. The novel temperature fiber sensor possesses a linear correlation coefficient of 99.4%, a sensitivity of 0.13dB/°C, a precision of better than 0.03°C. Furthermore, the graphene-based all fiber-optic temperature sensor is easy to fabricate, compatible with fiber-optic systems and possesses high potentiality in photonics applications such as all fiber-optic temperature sensing network.

  20. Multipoint fiber-optic-based corrosion sensor

    NASA Astrophysics Data System (ADS)

    Martins-Filho, Joaquim F.; Fontana, Eduardo; Guimarães, J.; Souza Coêlho, I. J.

    2008-04-01

    We present an optical fiber sensor for the corrosion process in metal (Aluminum) using the optical time domain reflectometry (OTDR) technique. Our proposed sensor system consists of several sensor heads connected to a commercial OTDR by a single-mode optical fiber and fiber couplers. Each sensor head consists of an optical fiber having the cleaved end coated with an aluminum film. For laboratory measurements the corrosion action was simulated by controlled etching of the Al film on the sensor head. The OTDR detects the light reflected by each sensor head. As the aluminum is etched the reflection decreases and the etch rate can be obtained from the OTDR traces. We present experimental results for the measurement of the corrosion rate of aluminum films in controlled laboratory conditions and also for the evaluation of the maximum number of sensor heads the system supports. Our proposed sensor system is multipoint, self-referenced, has no moving parts and can detect the corrosion rate for each head several kilometers away from the OTDR. This system may have applications in harsh environments such as in deepwater oil wells, for the evaluation of the corrosion process in the inner wall of the casing pipes.

  1. Optical fiber sensing based on reflection laser spectroscopy.

    PubMed

    Gagliardi, Gianluca; Salza, Mario; Ferraro, Pietro; Chehura, Edmond; Tatam, Ralph P; Gangopadhyay, Tarun K; Ballard, Nicholas; Paz-Soldan, Daniel; Barnes, Jack A; Loock, Hans-Peter; Lam, Timothy T-Y; Chow, Jong H; De Natale, Paolo

    2010-01-01

    An overview on high-resolution and fast interrogation of optical-fiber sensors relying on laser reflection spectroscopy is given. Fiber Bragg-gratings (FBGs) and FBG resonators built in fibers of different types are used for strain, temperature and acceleration measurements using heterodyne-detection and optical frequency-locking techniques. Silica fiber-ring cavities are used for chemical sensing based on evanescent-wave spectroscopy. Various arrangements for signal recovery and noise reduction, as an extension of most typical spectroscopic techniques, are illustrated and results on detection performances are presented.

  2. Enzyme-based fiber optic sensors

    SciTech Connect

    Kulp, T.J.; Camins, I.; Angel, S.M.

    1987-12-01

    Fiber optic chemical sensors capable of detecting glucose and penicillin were developed. Each consists of a polymer membrane that is covalently attached to the tip of a glass optical fiber. The membrane contains the enzyme and a pH-sensitive fluorescent dye (fluorescein). A signal is produced when the enzyme catalyzes the conversion of the analyte (glucose or penicillin) into a product (gluconic or penicilloic acid, respectively) that lowers the microenvironmental pH of the membrane and consequently, lowers the fluorescence intensity of the dye. Each sensor is capable of responding to analyte concentrations in the range of approx.0.1 to 100 mM. The penicillin optrode response time is 40 to 60 s while that for glucose is approx.5 to 12 min. 7 figs.

  3. Fiber-optic applications for space-based rocket engines

    NASA Astrophysics Data System (ADS)

    Sovie, Amy L.; Bewley, Douglas P.; Millis, Marc G.

    1991-09-01

    The use of fiber-optic technology is discussed with respect to the instrumentation systems for space-based rocket engines. Optical fiber technologies are reviewed with specific attention given to the reliability, light weight, small fiber diameter, and operating life of the components in the space environment. An optical system can facilitate the incorporation of an optical health-monitoring system, increase the space available for necessary redundancy, and safe high-bandwidth communications that are immune to the effects of electromagnetic radiation.

  4. Research on optical fiber microphone array based on Sagnac interferometer

    NASA Astrophysics Data System (ADS)

    Wu, Hongyan; Wang, Jian

    2015-05-01

    Extensive attention has been paid to optical fiber microphone because of its especial merits, such as anti-electromagnetic interference, corrosion resistance, high sensitivity, safety and reliability. In the present study, a kind of optical fiber microphone array based on Sagnac interferometer using a broadband source is proposed. On the basis of the high sound quality and wide bandwidth of optical fiber microphones, the acoustic source localization theory is tested and verified in practice. The results prove the possibility of determine the location of acoustic source in a wide range of frequencies accurately. Besides its feasibility, the scientific value and application prospect, such as in battlefield and ultrasonic detection field, are great.

  5. Photoinduced electron transfer based ion sensing within an optical fiber.

    PubMed

    Englich, Florian V; Foo, Tze Cheung; Richardson, Andrew C; Ebendorff-Heidepriem, Heike; Sumby, Christopher J; Monro, Tanya M

    2011-01-01

    We combine suspended-core microstructured optical fibers with the photoinduced electron transfer (PET) effect to demonstrate a new type of fluorescent optical fiber-dip sensing platform for small volume ion detection. A sensor design based on a simple model PET-fluoroionophore system and small core microstructured optical fiber capable of detecting sodium ions is demonstrated. The performance of the dip sensor operating in a high sodium concentration regime (925 ppm Na(+)) and for lower sodium concentration environments (18.4 ppm Na(+)) is explored and future approaches to improving the sensor's signal stability, sensitivity and selectivity are discussed.

  6. Intensity based sensor based on single mode optical fiber patchcords

    NASA Astrophysics Data System (ADS)

    Bayuwati, Dwi; Waluyo, Tomi Budi; Mulyanto, Imam

    2016-11-01

    This paper describes the use of several single mode (SM) fiber patchcords available commercially in the market for intensity based sensor by taking the benefit of bending loss phenomenon. Firtsly, the full transmission spectrum of all fiber patchcords were measured and analyzed to examine its bending properties at a series of wavelength using white light source and optical spectrum analyzer. Bending spectral at various bending diameter using single wavelength light sources were then measured for demonstration.Three good candidates for the intensity based sensor are SM600 fiber patchcord with 970 nm LED, SMF28 fiber patchcord with 1050 nm LED and 780HP fiber patchcord with 1310 nm LED which have noticeable bending sensitive area. Experiments show that the combination of the SMF28with 1050 nm LED has 30 mm measurement range which is the widest; with sensitivity 0.107 dB/mm and resolution 0.5 mm compared with combination of SM600 patchcord and LED 970 nm which has the best sensitivity (0.891 dB/mm) and resolution (0.06 mm) but smaller range measurement (10 mm). Some suitable applications for each fiber patchcord - light source pair have also been discussed.

  7. A new fiber-optic microphone based on waveguide modulator

    NASA Astrophysics Data System (ADS)

    Zhang, Chengmei; Zhen, Shenglai; Zhang, Bo; Ai, Fei; Zhang, Shuangxi; Jiang, Chao; Yu, Benli

    2009-11-01

    A new fiber-optic microphone was demonstrated theoretically and experimentally in this paper. The microphone is based on Mach-Zehnder and Sagnac interferometers, which comprise an amplified spontaneous emission (ASE) light source, a conventional single-mode fiber, a fiber reflector and two 3dB couplers. As two light paths have the same optical length but travel different sequence paths in this hybrid interferometer, the beams in different paths pass through the sensing fiber at different times and the phase signals differ from each other. Utilizing the two light paths interfered and fiber waveguide modulator replaced by piezoelectric ceramic (PZT) modulation, to implement the direct acquiring of weak voice signals. Adoption of the ASE light source and the single-mode fiber as sensing fiber decreases the system cost. The application of the fiber waveguide modulator overcomes the limitation in high frequency and nonlinear effect of PZT modulation, improves the flexibility of the system and the frequency response range. Phase shifts of the two interfered beams, which is caused by the slowly varying environmental parameter, is equal to eliminate the influence from outside effectively. In this system, the signal demodulation circuit based on weak voice signal is simpler than the PGC demodulation circuit. The experimental results of the fiber-optic microphone based on waveguide modulator have been demonstrated that the simple circuit demodulation for the weak voice signal is feasible.

  8. Toxin detection using a fiber-optic-based biosensor

    NASA Astrophysics Data System (ADS)

    Ogert, Robert A.; Shriver-Lake, Lisa C.; Ligler, Frances S.

    1993-05-01

    Using an evanescent wave fiber optic-based biosensor developed at Naval Research Laboratory, ricin toxin can be detected in the low ng/ml range. Sensitivity was established at 1 - 5 ng/ml using a two-step assay. The two-step assay showed enhanced signal levels in comparison to a one-step assay. A two-step assay utilizes a 10 minute incubation of an immobilized affinity purified anti-ricin antibody fiber optic probe in the ricin sample before placement in a solution of fluorophore-labeled goat anti-ricin antibodies. The specific fluorescent signal is obtained by the binding of the fluorophore-labeled antibodies to ricin which is bound by the immobilized antibodies on the fiber optic probe. The toxin can be detected directly from urine and river water using this fiber optic assay.

  9. Adaptive fiber optics collimator based on flexible hinges.

    PubMed

    Zhi, Dong; Ma, Yanxing; Ma, Pengfei; Si, Lei; Wang, Xiaolin; Zhou, Pu

    2014-08-20

    In this manuscript, we present a new design for an adaptive fiber optics collimator (AFOC) based on flexible hinges by using piezoelectric stacks actuators for X-Y displacement. Different from traditional AFOC, the new structure is based on flexible hinges to drive the fiber end cap instead of naked fiber. We fabricated a real AFOC based on flexible hinges, and the end cap's deviation and resonance frequency of the device were measured. Experimental results show that this new AFOC can provide fast control of tip-tilt deviation of the laser beam emitting from the end cap. As a result, the fiber end cap can support much higher power than naked fiber, which makes the new structure ideal for tip-tilt controlling in a high-power fiber laser system.

  10. Optical fiber accelerometer based on MEMS torsional micromirror

    NASA Astrophysics Data System (ADS)

    Zeng, Fanlin; Zhong, Shaolong; Xu, Jing; Wu, Yaming

    2008-03-01

    A novel structure of optical fiber accelerometer based on MEMS torsional micro-mirror is introduced, including MEMS torsional micro-mirror and optical signal detection. The micro-mirror is a non-symmetric one, which means that the torsional bar supporting the micro-mirror is not located in the axis where the center of the micro-mirror locates. The optical signal detection is composed of PIN diode and dual fiber collimator, which is very sensitive to the coupling angle between the input fiber and output fiber. The detection principle is that acceleration is first transformed into torsional angle of the micro-mirror, then, optical insertion loss of the dual fiber collimator caused by the angle can be received by PIN. So under the flow of acceleration to torsional angle to optical signal attenuation to optical power detection, the acceleration is detected. The theory about sensing and optical signal detect of the device are discussed in this paper. The sensitive structure parameters and performance parameters are calculated by MATLAB. To simulate the static and modal analysis, the finite element analysis, ANSYS, is employed. Based on the above calculation, several optimization methods and the final structure parameters are given. The micro-mirror is completed by using silicon-glass bonding and deep reactive ion etching (DRIE). In the experiment, the acceleration is simulated by electrostatic force and the test results show that the static acceleration detection agrees with the theory analysis very well.

  11. Localized surface plasmon resonance based fiber optic sensor with nanoparticles

    NASA Astrophysics Data System (ADS)

    Rani, Mahima; Sharma, Navneet K.; Sajal, Vivek

    2013-04-01

    A localized surface plasmon resonance (LSPR) based fiber optic sensor with a nanoparticle layer coated on the core of the optical fiber has been presented and theoretically analyzed. Nanoparticles of four materials: ITO, Au, Ag and Cu have been considered for the study. The complete analysis of sensitivity of the LSPR based fiber optic sensor with each nanoparticle layer individually for various values of thickness and particle size has been done numerically in order to use these four materials in plasmonic sensing applications. The sensitivity of LSPR based fiber optic sensor increases with the increase in the thickness of nanoparticles layer for all four materials. Also, for a fixed value of thickness of nanoparticles layer, the sensitivity of LSPR based fiber optic sensor further increases as the particle size of nanoparticles increases (up to 20 nm). The optimized values of thickness and particle size of nanoparticles layers for all four materials individually are revealed to be 60 nm and 20 nm respectively. With sensitivity of 6240 nm/RIU, the 60 nm thick ITO nanoparticles layer (with 20 nm particle size) based LSPR sensor has been shown to have better performance than other three material's naoparticles based LSPR sensors.

  12. Fiber optic flow velocity sensor based on an in-fiber integrated Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Yuan, Libo; Yang, Jun; Liu, Zhihai

    2008-04-01

    A novel fiber optic flow velocity sensor based on a twin-core fiber Michelson interferometer has been proposed and demonstrated. The sensor only is a segment of twin-core fiber acting as cylinder cantilever beam. The force exerted on the cylinder by the flow of a fluid with unknown velocity bends the fiber, which corresponding to the shift of the phase of the twin-core in-fiber integrated Michelson interferometer. This twin-core fiber sensing technique could automatically compensate the variation of environmental temperature and pressure due to both arms of the interferometer would be affected equally by such changes.

  13. Fiber-based devices for DWDM optical communication systems

    NASA Astrophysics Data System (ADS)

    Gu, Claire; Xu, Yuan; Liu, Yisi; Pan, Jing-Jong; Zhou, Fengqing; Dong, Liang; He, Henry

    2005-01-01

    Photonic devices with low insertion loss are important in dense wavelength division multiplexing (DWDM) systems. Currently most of these devices, such as variable optical attenuators (VOA), switches, filters, and dispersion compensators, etc., involve bulk (or micro-optic) components that require conversions between fibers and free-space optical elements leading to high insertion loss. Recently, we have proposed, analyzed, and demonstrated several fiber based devices for DWDM optical communication systems. Here we present an in-line fiber VOA, a 2x2 switchable wavelength add/drop filter, and high performance dispersion compensators. The VOA is built with a side-polished fiber covered with a liquid crystal overlay. By varying the orientation of the liquid crystal molecules using an applied electric field, the loss of the device can be controlled. The 2x2 wavelength switch is designed by recording electrically switchable holographic gratings in a layer of holographic polymer dispersed liquid crystal (H-PDLC) sandwiched between two side-polished fibers. The dispersion compensators are based on high precision fiber Bragg gratings (FBG). A unique method for writing FBGs with arbitrary phase and amplitude distributions is demonstrated. All of these devices are analyzed theoretically and demonstrated experimentally. Both theoretical and experimental results will be presented and discussed. These devices are suitable for DWDM optical information transmission and network management.

  14. Ball lens fiber optic sensor based smart handheld microsurgical instrument

    NASA Astrophysics Data System (ADS)

    Song, Cheol; Gehlbach, Peter L.; Kang, Jin U.

    2013-03-01

    During freehand performance of vitreoretinal microsurgery the surgeon must perform precise and stable maneuvers that achieve surgical objectives and avoid surgical risk. Here, we present an improved smart handheld microsurgical tool which is based on a ball lens fiber optic sensor that utilizes common path swept source optical coherence tomography. Improvements include incorporation of a ball lens single mode fiber optic probe that increases the working angle of the tool to greater than 45 degrees; and increases the magnitude of the distance sensing signal through water. Also presented is a cutting function with an improved ergonomic design.

  15. All-optical, thermo-optical path length modulation based on the vanadium-doped fibers.

    PubMed

    Matjasec, Ziga; Campelj, Stanislav; Donlagic, Denis

    2013-05-20

    This paper presents an all-fiber, fully-optically controlled, optical-path length modulator based on highly absorbing optical fiber. The modulator utilizes a high-power 980 nm pump diode and a short section of vanadium-co-doped single mode fiber that is heated through absorption and a non-radiative relaxation process. The achievable path length modulation range primarily depends on the pump's power and the convective heat-transfer coefficient of the surrounding gas, while the time response primarily depends on the heated fiber's diameter. An absolute optical length change in excess of 500 µm and a time-constant as short as 11 ms, were demonstrated experimentally. The all-fiber design allows for an electrically-passive and remote operation of the modulator. The presented modulator could find use within various fiber-optics systems that require optical (remote) path length control or modulation.

  16. Optical fiber accelerometer based on a silicon micromachined cantilever

    NASA Astrophysics Data System (ADS)

    Malki, Abdelrafik; Lecoy, Pierre; Marty, Jeanine; Renouf, Christine; Ferdinand, Pierre

    1995-12-01

    An intensity-modulated fiber-optic accelerometer based on backreflection effects has been manufactured and tested. It uses a multimode fiber placed at a spherical mirror center, and the beam intensity is modulated by a micromachined silicon cantilever. This device has applications as an accelerometer and vibrometer for rotating machines. It exhibits an amplitude linearity of +/-1.2% in the range of 0.1-22 m s-2, a frequency linearity of +/-1% in the

  17. Smart automotive bumper based on a multimode optical fiber

    NASA Astrophysics Data System (ADS)

    Meyrueis, Patrick; Kress, Bernard; Fischer, Sylvain

    2007-09-01

    We are presenting a novel shock sensor device based on multimode optical fiber. This device is an elementary fiber sensor tailored for the transportation industry, and especially the automotive industry, allowing detection of shocks and the measurement of the deformation of surface external of the system. We also show how a plurality for such sensors can be combined in order to detect and characterize the shock in order to trigger an adapted response from the vehicle for added safety.

  18. Novel localized surface plasmon resonance based optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Muri, Harald Ian D. I.; Hjelme, Dag R.

    2016-03-01

    Over the last decade various optical fiber sensing schemes have been proposed based on local surface plasmon resonance (LSPR). LSPR are interacting with the evanescent field from light propagating in the fiber core or by interacting with the light at the fiber end face. Sensor designs utilizing the fiber end face is strongly preferred from a manufacturing point of view. However, the different techniques available to immobilize metallic nanostructures on the fiber end face for LSPR sensing is limited to essentially a monolayer, either by photolithographic structuring of metal film, thermal nucleation of metal film, or by random immobilization of nanoparticles (NP). In this paper, we report on a novel LSPR based optical fiber sensor architecture. The sensor is prepared by immobilizing gold NP's in a hydrogel droplet polymerized on the fiber end face. This design has several advantages over earlier designs. It dramatically increase the number of NP's available for sensing, it offers precise control over the NP density, and the NPs are position in a true 3D aqueous environment. The sensor design is also compatible with low cost manufacturing. The sensor design can measure volumetric changes in a stimuli-responsive hydrogel or measure binding to receptors on the NP surface. It can also be used as a two-parameter sensor by utilizing both effects. We present results from proof-of-concept experiments demonstrating a pH sensor based on LSPR sensing in a poly(acrylamide-co-acrylic acid) hydrogel embedding gold nanoparticles.

  19. Magneto-optical fiber sensor based on magnetic fluid.

    PubMed

    Zu, Peng; Chan, Chi Chiu; Lew, Wen Siang; Jin, Yongxing; Zhang, Yifan; Liew, Hwi Fen; Chen, Li Han; Wong, Wei Chang; Dong, Xinyong

    2012-02-01

    A novel magnetic field fiber sensor based on magnetic fluid is proposed. The sensor is configured as a Sagnac interferometer structure with a magnetic fluid film and a section of polarization maintaining fiber inserted into the fiber loop to produce a sinusoidal interference spectrum for measurement. The output interference spectrum is shifted as the change of the applied magnetic field strength with a sensitivity of 16.7 pm/Oe and a resolution of 0.60 Oe. The output optical power is varied with the change of the applied magnetic field strength with a sensitivity of 0.3998 dB/Oe.

  20. Investigation of Fiber Optics Based Phased Locked Diode Lasers

    NASA Technical Reports Server (NTRS)

    Burke, Paul D.; Gregory, Don A.

    1997-01-01

    Optical power beaming requires a high intensity source and a system to address beam phase and location. A synthetic aperture array of phased locked sources can provide the necessary power levels as well as a means to correct for phase errors. A fiber optic phase modulator with a master oscillator and power amplifier (MOPA) using an injection-locking semiconductor optical amplifier has proven to be effective in correcting phase errors as large as 4pi in an interferometer system. Phase corrections with the piezoelectric fiber stretcher were made from 0 - 10 kHz, with most application oriented corrections requiring only 1 kHz. The amplifier did not lose locked power output while the phase was changed, however its performance was below expectation. Results of this investigation indicate fiber stretchers and amplifiers can be incorporated into a MOPA system to achieve successful earth based power beaming.

  1. A compact nonlinear fiber-based optical autocorrelation peak discriminator.

    PubMed

    Fok, M P; Deng, Y; Prucnal, P R

    2009-06-08

    We experimentally demonstrate a nonlinear fiber-based optical autocorrelation peak discriminator. The approach exploits four-wave mixing in a 37-cm highly-nonlinear bismuth-oxide fiber that provides a passive and compact means for rejecting cross-correlation peaks. The autocorrelation peak discriminator plays an important role in improving the detection of optical CDMA signals. Eye diagrams and bit-error rates are measured at different power ratios. Significant receiver sensitivity improvements are obtained and error-floors are removed. The experimental results show that the autocorrelation peak discriminator works well even when the amplitudes of individual cross-correlation peaks are higher than that of the autocorrelation peak.

  2. Optical Fibers

    NASA Astrophysics Data System (ADS)

    Ghatak, Ajoy; Thyagarajan, K.

    With the development of extremely low-loss optical fibers and their application to communication systems, a revolution has taken fiber glass place during the last 40 years. In 2001, using glass fibers as the transmission medium and lightwaves as carrier wave waves, information was transmitted at a rate more than 1 Tbit/s (which is roughly equivalent to transmission of about 15 million simultaneous telephone conversations) through one hair thin optical fiber. Experimental demonstration of transmission at the rate of 14 Tbit/s over a 160 km long single fiber was demonstrated in 2006, which is equivalent to sending 140 digital high definition movies in 1 s. Very recently record transmission of more than 100 Tbit/s over 165 km single mode fiber has been reported. These can be considered as extremely important technological achievements. In this chapter we will discuss the propagation characteristics of optical fibers with special applications to optical communication systems and also present some of the noncommunication applications such as sensing.

  3. A novel fiber optic concrete sensor based on EFPI

    NASA Astrophysics Data System (ADS)

    Zhang, Wentao; Dai, Jingyun; Sun, Baochen; Du, Yanliang

    2007-07-01

    In this paper, a novel fiber optic concrete sensor based on extrinsic fiber Fabry-Perot interferometer (EFPI) is designed and analyzed. Two fiber ends are inserted into a glass capillary and encapsulated into a cement cylinder to act as the sensor head. In this way, the cement cylinder itself is the sensor head instead of the traditional steel tube, which makes it very convenient to embed the sensor head into the concrete, because the cement consists with the concrete well. Based on the theory of white light interferometry and the theory of elasticity, the wavelength modulation method and the strain transfer are analyzed theoretically. The demodulation system is also introduced in this paper. The experiment being made by our research group is aimed at testing the consistency, stability, reliability and the sensitivity of the fiber optic sensor. The sensor head of the cement cylinder is embedded into a model ferroconcrete beam together with traditional strain gauges. The experiment is carried out using the PEM-500A hydraulic pulsation fatigue test machine after 2 million stress circles. The readout of the fibre optic sensor and the strain gauges is recorded and made a contrast. It can be found from the result that the fibre optic sensors have good stability and reliability, the accuracy for the fibre optic sensor is better than 0.5 micro-strain, which shows that the sensor can meet the demand of the long-term monitoring of large-size concrete structure.

  4. An in-fiber integrated optofluidic device based on an optical fiber with an inner core.

    PubMed

    Yang, Xinghua; Yuan, Tingting; Teng, Pingping; Kong, Depeng; Liu, Chunlan; Li, Entao; Zhao, Enming; Tong, Chengguo; Yuan, Libo

    2014-06-21

    A new kind of optofluidic in-fiber integrated device based on a specially designed hollow optical fiber with an inner core is designed. The inlets and outlets are built by etching the surface of the optical fiber without damaging the inner core. A reaction region between the end of the fiber and a solid point obtained after melting is constructed. By injecting samples into the fiber, the liquids can form steady microflows and react in the region. Simultaneously, the emission from the chemiluminescence reaction can be detected from the remote end of the optical fiber through evanescent field coupling. The concentration of ascorbic acid (AA or vitamin C, Vc) is determined by the emission intensity of the reaction of Vc, H2O2, luminol, and K3Fe(CN)6 in the optical fiber. A linear sensing range of 0.1-3.0 mmol L(-1) for Vc is obtained. The emission intensity can be determined within 2 s at a total flow rate of 150 μL min(-1). Significantly, this work presents information for the in-fiber integrated optofluidic devices without spatial optical coupling.

  5. Generation of femtosecond optical vortex pulse in fiber based on an acoustically induced fiber grating.

    PubMed

    Zhang, Wending; Wei, Keyan; Mao, Dong; Wang, Heng; Gao, Feng; Huang, Ligang; Mei, Ting; Zhao, Jianlin

    2017-02-01

    We proposed a method for generation of a femtosecond optical vortex pulse in a two-mode fiber based on an acoustically induced fiber grating (AIFG) driven by a radio frequency source. Theoretical analysis and experimental results demonstrated that the left- and right-handed circular polarization fundamental modes of the femtosecond optical pulse could be converted to the linearly polarized ±1-order optical vortex modes through the AIFG with the mode conversion efficiency of ∼95%. The off-axial interference experiment and the polarization angle-dependent intensity examination were performed to verify the topological charge and the polarization state of the femtosecond optical vortex, respectively.

  6. Faraday effect based optical fiber current sensor for tokamaks

    SciTech Connect

    Aerssens, M.; Gusarov, A.; Brichard, B.; Massaut, V.; Megret, P.; Wuilpart, M.

    2011-07-01

    Fiber optical current sensor (FOCS) is a technique considered to be compatible with the ITER nuclear environment. FOCS principle is based on the magneto-optic Faraday effect that produces non-reciprocal circular birefringence when a magnetic field is applied in the propagation direction of the light beam. The magnetic field or the electrical current is deduced from the modification of the state of polarization of light. The linear birefringence of the fiber related with non-perfect manufacturing, temperature changes or stress constitute a parasitic effect that reduces the precision and sensitivity of FOCS. A two-pass optical scheme with a Faraday mirror at the end has been proposed to compensate the influence of linear birefringence. In this paper we perform a Stokes analysis of the two-pass optical scheme to highlight the fact that the linear birefringence is not compensated perfectly by the Faraday mirror when non-reciprocal birefringence such as Faraday effect is also present. (authors)

  7. Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end.

    PubMed

    Ortega-Mendoza, J Gabriel; Padilla-Vivanco, Alfonso; Toxqui-Quitl, Carina; Zaca-Morán, Placido; Villegas-Hernández, David; Chávez, Fernando

    2014-10-09

    This paper reports the implementation of an optical fiber sensor to measure the refractive index in aqueous media based on localized surface plasmon resonance (LSPR). We have used a novel technique known as photodeposition to immobilize silver nanoparticles on the optical fiber end. This technique has a simple instrumentation, involves laser light via an optical fiber and silver nanoparticles suspended in an aqueous medium. The optical sensor was assembled using a tungsten lamp as white light, a spectrometer, and an optical fiber with silver nanoparticles. The response of this sensor is such that the LSPR peak wavelength is linearly shifted to longer wavelengths as the refractive index is increased, showing a sensitivity of 67.6 nm/RIU. Experimental results are presented.

  8. Optical Fiber Sensor Based on Localized Surface Plasmon Resonance Using Silver Nanoparticles Photodeposited on the Optical Fiber End

    PubMed Central

    Ortega-Mendoza, J. Gabriel; Padilla-Vivanco, Alfonso; Toxqui-Quitl, Carina; Zaca-Morán, Placido; Villegas-Hernández, David; Chávez, Fernando

    2014-01-01

    This paper reports the implementation of an optical fiber sensor to measure the refractive index in aqueous media based on localized surface plasmon resonance (LSPR). We have used a novel technique known as photodeposition to immobilize silver nanoparticles on the optical fiber end. This technique has a simple instrumentation, involves laser light via an optical fiber and silver nanoparticles suspended in an aqueous medium. The optical sensor was assembled using a tungsten lamp as white light, a spectrometer, and an optical fiber with silver nanoparticles. The response of this sensor is such that the LSPR peak wavelength is linearly shifted to longer wavelengths as the refractive index is increased, showing a sensitivity of 67.6 nm/RIU. Experimental results are presented. PMID:25302813

  9. Radiation Hardened Silica-Based Optical Fibers

    DTIC Science & Technology

    1988-12-01

    Induced absorption occurs when existing defects in the glass form color centers by trapping electrons and holes generated by ionizing radiation. The...drawn fiber from capturing charge carriers and thereby forming color centers is to transform them into benign defects. The latter are defined as defects...which do not form color centers or which form centers that absorb out- side the wavelength range of interest. The passivation process is performed on

  10. Radiation Hardened Silica-Based Optical Fibers.

    DTIC Science & Technology

    1986-10-01

    Induced absorption occurs when existing defects in the glass form color centers by trapping electrons and holes generated by ionizing radiation. Three...I. Defect Passivation One method to prevent defects in as-drawn fiber from capturing carriers and forming color centers is to transform them into...benign defects. The lat- ter are defined as either defects which form color centers that absorb out- side the wavelength range of interest, or

  11. SPR based three channels fiber optic sensor for aqueous environment

    NASA Astrophysics Data System (ADS)

    Verma, Roli; Gupta, Banshi D.

    2014-03-01

    Fabrication and characterization of the surface plasmon resonance (SPR) based three channel fiber optic sensor for multiple parameter sensing have been carried out. Three probes have been prepared on a single fiber by coating silver, gold and copper along with one high index titanium oxide on three unclad well separated portions of the fiber respectively. SPR spectra have been recorded for aqueous sucrose solutions of varying refractive indices. The sensor relies on wavelength interrogation technique. To verify the results, simulations have been carried out using a multilayer model and geometrical optics. The experimental and simulated results have been found to match qualitatively. The present sensor can simultaneously sense multiple parameters/analytes at a single platform.

  12. Bio-chemical sensor based on imperfected plastic optical fiber

    NASA Astrophysics Data System (ADS)

    Babchenko, Anatoly; Chernyak, Valeri; Maryles, Jonathan

    2007-05-01

    In this paper we report results for an intrinsic evanescent field sensor based on not-regular plastic optical fiber with polymer film containing Malachite Green MG +([PhC(C 6H 4NMe II) 3] +) as an absorption reagent, which coats the fiber's imperfected area. A theoretical model was developed which shows that changes of light in such structure result from the attenuation of light in the strait and bent imperfected fiber. In this model, the imperfected area with malachite green polymer film is replaced by a uniform layer with a complex refractive index. The changes in color and absorption characteristics of the polymer film depend on the acidic and basic environmental properties in the sensing area. Additional increase of the evanescent field interaction can be achieved by decrease the bending radius of the fiber with the coated imperfection area at the middle of the bent fiber. An imperfected plastic optical fiber with Malachite Green coating has been presented for the detection of ammonia vapor. The initial results show that depending on the sensing application demands, it is possible to design a high sensitive sensor with a relatively long response time, while when the demands require fast response times the sensor with less sensitivity can be used. In addition, the sensors' sensitivity can be calibrated in real-time by changing the bending radius.

  13. Virtual Instrumentation for a Fiber-Optics-Based Artificial Nerve

    NASA Technical Reports Server (NTRS)

    Lyons, Donald R.; Kyaw, Thet Mon; Griffin, DeVon (Technical Monitor)

    2001-01-01

    A LabView-based computer interface for fiber-optic artificial nerves has been devised as a Masters thesis project. This project involves the use of outputs from wavelength multiplexed optical fiber sensors (artificial nerves), which are capable of producing dense optical data outputs for physical measurements. The potential advantages of using optical fiber sensors for sensory function restoration is the fact that well defined WDM-modulated signals can be transmitted to and from the sensing region allowing networked units to replace low-level nerve functions for persons desirous of "intelligent artificial limbs." Various FO sensors can be designed with high sensitivity and the ability to be interfaced with a wide range of devices including miniature shielded electrical conversion units. Our Virtual Instrument (VI) interface software package was developed using LabView's "Laboratory Virtual Instrument Engineering Workbench" package. The virtual instrument has been configured to arrange and encode the data to develop an intelligent response in the form of encoded digitized signal outputs. The architectural layout of our nervous system is such that different touch stimuli from different artificial fiber-optic nerve points correspond to gratings of a distinct resonant wavelength and physical location along the optical fiber. Thus, when an automated, tunable diode laser sends scans, the wavelength spectrum of the artificial nerve, it triggers responses that are encoded with different touch stimuli by way wavelength shifts in the reflected Bragg resonances. The reflected light is detected and a resulting analog signal is fed into ADC1 board and DAQ card. Finally, the software has been written such that the experimenter is able to set the response range during data acquisition.

  14. Fiber Optic Based Thermometry System for Superconducting RF Cavities

    SciTech Connect

    Kochergin, Vladimir

    2013-05-06

    Thermometry is recognized as the best technique to identify and characterize losses in SRF cavities. The most widely used and reliable apparatus for temperature mapping at cryogenic temperatures is based on carbon resistors (RTDs). The use of this technology on multi-cell cavities is inconvenient due to the very large number of sensors required to obtain sufficient spatial resolution. Recent developments make feasible the use of multiplexible fiber optic sensors for highly distributed temperature measurements. However, sensitivity of multiplexible cryogenic temperature sensors was found extending only to 12K at best and thus was not sufficient for SRF cavity thermometry. During the course of the project the team of MicroXact, JLab and Virginia Tech developed and demonstrated the multiplexible fiber optic sensor with adequate response below 20K. The demonstrated temperature resolution is by at least a factor of 60 better than that of the best multiplexible fiber optic temperature sensors reported to date. The clear path toward at least 10times better temperature resolution is shown. The first to date temperature distribution measurements with ~2.5mm spatial resolution was done with fiber optic sensors at 2K to4K temperatures. The repeatability and accuracy of the sensors were verified only at 183K, but at this temperature both parameters significantly exceeded the state of the art. The results of this work are expected to find a wide range of applications, since the results are enabling the whole new testing capabilities, not accessible before.

  15. New fiber-based approaches for optical biopsy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Weber, Jessie R.; Rivière, Christophe; Proulx, Antoine; Gallant, Pascal; Mermut, Ozzy

    2017-02-01

    Optical biopsy of tissue using fiber optic probes has proven to be a powerful tool for non-invasive and minimally invasive diagnostics. However, there are still many challenges to improving diagnostic value and commercial translation of these techniques. Many fiber-based methods are limited by background noise, which impairs sensitivity and specificity. Aspects of quality control, such as adequacy of the target of interest sampled and validation of optical measurements with histopathology can be problematic. Complexity, cost, and disposability or sterilizability are roadblocks to widespread clinical use. Here, we present new approaches to using fibers for optical biopsy aimed at solving these problems. Specifically, the new concepts are designed with the goals of being simple and disposable, to improve control of light delivery and collection from the sample, and to inherently enable better quality control of the biopsy process. A concept-of-operation aimed at nearly zero impact to the work flow of the biopsy and standard pathology procedures will be outlined. Several concepts for fiber implementations will be presented. A trade-off analysis of the concepts used to select a first implementation for testing will be presented. Preliminary experimental validation in phantoms and tissue samples will be presented for the selected configuration.

  16. Transverse strain measurements using fiber optic grating based sensors

    NASA Technical Reports Server (NTRS)

    Udd, Eric (Inventor)

    1998-01-01

    A system and method to sense the application of transverse stress to an optical fiber which includes a light source that producing a relatively wide spectrum light beam. The light beam is reflected or transmitted off of an optical grating in the core of an optical fiber that is transversely stressed either directly or by the exposure to pressure when the fiber is bifringent so that the optical fiber responds to the pressure to transversely stress its core. When transversely stressed, the optical grating produces a reflection or transmission from the light beam that has two peaks or minimums in its frequency spectrum whose spacing and/or spread are indicative of the forces applied to the fiber. One or more detectors sense the reflection or transmissions from the optical grating to produce an output representative of the applied force. Multiple optical gratings and detectors may be employed to simultaneously measure temperature or the forces at different locations along the fiber.

  17. Fluorescence based fiber optic and planar waveguide biosensors. A review.

    PubMed

    Benito-Peña, Elena; Valdés, Mayra Granda; Glahn-Martínez, Bettina; Moreno-Bondi, Maria C

    2016-11-02

    The application of optical biosensors, specifically those that use optical fibers and planar waveguides, has escalated throughout the years in many fields, including environmental analysis, food safety and clinical diagnosis. Fluorescence is, without doubt, the most popular transducer signal used in these devices because of its higher selectivity and sensitivity, but most of all due to its wide versatility. This paper focuses on the working principles and configurations of fluorescence-based fiber optic and planar waveguide biosensors and will review biological recognition elements, sensing schemes, as well as some major and recent applications, published in the last ten years. The main goal is to provide the reader a general overview of a field that requires the joint collaboration of researchers of many different areas, including chemistry, physics, biology, engineering, and material science.

  18. Study on a fiber optic gradient hydrophone based on interferometer

    NASA Astrophysics Data System (ADS)

    Lv, Wenlei; Pang, Meng; Shi, Qingping; Zhang, Min; Liao, Yanbiao; Yuan, Libo; Kang, Chong

    2008-12-01

    We proposed a kind of fiber-optic gradient hydrophone based on interferometer. Two arms of the interferometer are sensing fibers, each of which can be regard as a scalar pressure sensing element, and then the phase gradient between the two elements is transformed into the light intensity modulated output by the coupler. In this paper, a suit of analytical models for researching the sensor performance are developed. The theoretical and experimental research was carried out to demonstrate this kind of gradient hydrophone's phase sensitivity as the function of the measure frequency and the "8" directivity response.

  19. Fiber optic displacement measurement model based on finite reflective surface

    NASA Astrophysics Data System (ADS)

    Li, Yuhe; Guan, Kaisen; Hu, Zhaohui

    2016-10-01

    We present a fiber optic displacement measurement model based on finite reflective plate. The theoretical model was derived, and simulation analysis of light intensity distribution, reflective plate width, and the distance between fiber probe and reflective plate were conducted in details. The three dimensional received light intensity distribution and the characteristic curve of light intensity were studied as functions of displacement of finite reflective plate. Experiments were carried out to verify the established model. The physical fundamentals and the effect of operating parameters on measuring system performance were revealed in the end.

  20. Current transformer based on optical fiber fluorescent thermometry

    NASA Astrophysics Data System (ADS)

    Jia, Danping; Jia, Ting; He, Liang; Lin, Yingwen

    2008-12-01

    In the paper a review on the potential advantages of optical current transformers points out that it is the technology trend on the development of current transformer. But there are many more difficulties to be resolved, innovative ideas of developing optical current transformers must be strengthened. A high voltage current transformer project based on current thermal effect was introduced, which combined the current thermal effects and the optical fiber thermometry technology. Fiber optic temperature sensor was the earlier and mature product among fiber optic sensors in commercial, current thermal effects technology is more general applied, so the new project has the advantages over other current transformer projects which are now meeting the difficulties hardly to resolve. The relationship between the instantaneous value of measured current and the temperature rise was deduced, and the mathematical model of the current transformer was established. By use of the mathematical model, in theory, the instantaneous value of current can be tracked by the temperature output of sensor accurately, so that it can be used to measure instantaneous value of current. The technical data and features required of the main devices and components can be provided by use of the mathematical model for technical design of the project, simulation method and experiment tests were used to prove the availability.

  1. Fiber optic anemometer based on metal infiltrated microstructured optical fiber inscribed with Bragg grating

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Gao, Shaorui; Liu, Zhengyong; Zhang, A. Ping; Shen, Yonghang; Tam, Hwayaw

    2015-09-01

    An all-fiber optical anemometer with high light-heat conversion efficiency by using an in-house microstructured optical fiber Bragg grating (MOFBG) is presented. Low-molten-temperature BiSnIn alloy was successfully infiltrated into 11- cm length of a six-hole microstructured optical fiber which was inscribed with a fibre Bragg grating (FBG) centered at ~848 nm. Light launched into the MOFBG was strongly absorbed by the metal to generate heat, while the FBG was utilized to monitor temperature change due to surrounding wind speed. The sensitivity of the laser-heated MOFBG anemometer was measured to be ~0.1 nm/(m/s) for wind speed ranged from 0.5 m/s to 2 m/s. The efficiency of the anemometer, defined as effective sensitivity per pump power, is 8.7 nm/(m/s*W).

  2. Bidirectional all-optical switches based on highly nonlinear optical fibers

    NASA Astrophysics Data System (ADS)

    Liu, Wenjun; Yang, Chunyu; Liu, Mengli; Yu, Weitian; Zhang, Yujia; Lei, Ming; Wei, Zhiyi

    2017-05-01

    All-optical switches have become one of the research focuses of nonlinear optics due to their fast switching speed. They have been applied in such fields as ultrafast optics, all-optical communication and all-optical networks. In this paper, based on symbolic computation, bidirectional all-optical switches are presented using analytic two-soliton solutions. Various types of soliton interactions are analyzed through choosing the different parameters of high-order dispersion and nonlinearity. Results indicate that bidirectional all-optical switches can be effectively achieved using highly nonlinear optical fibers.

  3. A load identification sensor based on distributed fiber optic technology

    NASA Astrophysics Data System (ADS)

    Ciminello, M.; Bettini, P.; Ameduri, S.; Nicoli, S.; Concilio, A.; Sala, G.

    2017-04-01

    The manufacturing and the preliminary numerical and experimental testing results of a fiber optic based sensor, able to recognize different load paths, are herein presented. This device is conceived to identify load directions by strain detection along a circumferential geometry. A demonstrator is realized by manufacturing a circular shaped, flexible glass/epoxy laminate hosting the sensible elements. Three loops of optical fiber, laying at different quotes along its thickness, are there integrated. The sensor system is supposed to be bonded on the structural element and then able to follow its deformations under load. The working principle is based on the comparison of the strain paths detected at each fiber optic loop at homologous positions. Rayleigh backscattering optical technology is implemented to measure high spatial resolution strains. A finite element model is used to simulate the sensor behavior and assess its optimal configuration. A preliminary experimental campaign and a numerical correlation are performed to evaluate sensor performance considering in-plane and bending loads.

  4. A micro S-shaped optical fiber temperature sensor based on dislocation fiber splice

    NASA Astrophysics Data System (ADS)

    Yan, Haitao; Li, Pengfei; Zhang, Haojie; Shen, Xiaoyue; Wang, Yongzhen

    2017-09-01

    We fabricated a simple, compact, and stable temperature sensor based on an S-shaped dislocated optical fiber. The dislocation optical fiber has two splice points, and we obtained the optimal parameters based on the theory and our experiment, such as the dislocation amount and length of the dislocation optical fiber. According to the relationship between the temperature and the peak wavelength shift, the temperature of the environment can be obtained. Then, we made this fiber a micro bending as S-shape between the two dislocation points, and the S-shaped micro bending part could release stress with the change in temperature and reduce the effect of stress on the temperature measurement. This structure could solve the problem of sensor distortion caused by the cross response of temperature and stress. We measured the S-shaped dislocation fiber sensor and the dislocation fiber without S-shape under the same environment and conditions, and the S-shaped dislocation fiber had the advantages of the stable reliability and good linearity.

  5. Lab-on-fiber electrophoretic trace mixture separating and detecting an optofluidic device based on a microstructured optical fiber.

    PubMed

    Yang, Xinghua; Guo, Xiaohui; Li, Song; Kong, Depeng; Liu, Zhihai; Yang, Jun; Yuan, Libo

    2016-04-15

    We report an in-fiber integrated electrophoretic trace mixture separating and detecting an optofluidic optical fiber sensor based on a specially designed optical fiber. In this design, rapid in situ separation and simultaneous detection of mixed analytes can be realized under electro-osmotic flow in the microstructured optical fiber. To visually display the in-fiber separating and detecting process, two common fluorescent indicators are adopted as the optofluidic analytes in the optical fiber. Results show that a trace amount of the mixture (0.15 μL) can be completely separated within 3.5 min under a high voltage of 5 kV. Simultaneously, the distributed information of the separated analytes in the optical fiber can be clearly obtained by scanning along the optical fiber using a 355 nm laser. The emission from the analytes can be efficiently coupled into the inner core and guides to the remote end of the optical fiber. In addition, the thin cladding around the inner core in the optical fiber can prevent the fluorescent cross talk between the analytes in this design. Compared to previous optical fiber optofluidic devices, this device first realizes simultaneously separating treatment and the detection of the mixed samples in an optical fiber. Significantly, such an in-fiber integrated separating and detecting optofluidic device can find wide applications in various analysis fields involves mixed samples, such as biology, chemistry, and environment.

  6. Passive endoscopic polarization sensitive optical coherence tomography with completely fiber based optical components

    NASA Astrophysics Data System (ADS)

    Cahill, Lucas; Lee, Anthony M. D.; Pahlevaninezhad, Hamid; Ng, Samson; MacAulay, Calum E.; Poh, Catherine; Lane, Pierre

    2015-03-01

    Polarization Sensitive Optical Coherence Tomography (PSOCT) is a functional extension of Optical Coherence Tomography (OCT) that is sensitive to well-structured, birefringent tissue such as scars, smooth muscle and cartilage. In this work, we present a novel completely fiber based swept source PSOCT system using a fiber-optic rotary pullback catheter. This PSOCT implementation uses only passive optical components and requires no calibration while adding minimal additional cost to a standard structural OCT imaging system. Due to its complete fiber construction, the system can be made compact and robust, while the fiber-optic catheter allows access to most endoscopic imaging sites. The 1.5mm diameter endoscopic probe can capture 100 frames per second at pullback speeds up to 15 mm/s allowing rapid traversal of large imaging fields. We validate the PSOCT system with known birefringent tissues and demonstrate in vivo PSOCT imaging of human oral scar tissue.

  7. Strain-based multicore fiber optic temperature sensor

    NASA Astrophysics Data System (ADS)

    Gökbulut, Belkıs.; Inci, Mehmet Naci

    2017-05-01

    A four-core optical fiber is introduced as a strain based temperature sensor to investigate the phase shift based on the temperature variations. An interferometric fringe pattern is obtained by the coherent waveguides from the four cores. A small piece of a four-core fiber is winded around a solid stainless steel cylinder to form a tight circular loop, which is exposed to a temperature change from 50 °C to 92 °C. Shear strain due to the expansion of the steel rod at this temperature interval causes an optical path length difference between the inner and outer core pairs, resulting a total phase shift of 20.4+/-0.29 rad, which is monitored with a CMOS camera. Using the phase changes, two dimensional shear strain is determined.

  8. Long distance fiber-optic displacement sensor based on fiber collimator

    SciTech Connect

    Shen Wei; Wu Xiaowei; Meng Hongyun; Zhang Guanbin; Huang Xuguang

    2010-12-15

    A simple fiber-optic displacement sensor based on reflective intensity modulated technology is demonstrated using a fiber collimator. The sensing range is over 30 cm, which is over 100 times that of the conventional fiber-optic displacement sensor based on the normal single-mode fiber. The measured data are fitted into linear equation very well and the values of R-square are more than 0.995. The sensitivity of the device achieves 0.426 dB/cm over the range of 5-30 cm. By applying the relative technique, the errors resulted from the fluctuation of light source and influences of environment are effectively eliminated, and the stability for wide range measurement can be improved. The simplicity of the design, high dynamic range, stability and the ease of the fabrication make it suitable for applications in industries.

  9. Polarimetry noise in fiber-based optical coherence tomography instrumentation

    PubMed Central

    Zhang, Ellen Ziyi; Vakoc, Benjamin J.

    2011-01-01

    High noise levels in fiber-based polarization-sensitive optical coherence tomography (PS-OCT) have broadly limited its clinical utility. In this study we investigate contribution of polarization mode dispersion (PMD) to the polarimetry noise. We develop numerical models of the PS-OCT system including PMD and validate these models with empirical data. Using these models, we provide a framework for predicting noise levels, for processing signals to reduce noise, and for designing an optimized system. PMID:21935044

  10. All-optical fiber anemometer based on laser heated fiber Bragg gratings.

    PubMed

    Gao, Shaorui; Zhang, A Ping; Tam, Hwa-Yaw; Cho, L H; Lu, Chao

    2011-05-23

    A fiber-optic anemometer based on fiber Bragg gratings (FBGs) is presented. A short section of cobalt-doped fiber was utilized to make a fiber-based "hot wire" for wind speed measurement. Fiber Bragg gratings (FBGs) were fabricated in the cobalt-doped fiber using 193 nm laser pulses to serve as localized temperature sensors. A miniature all-optical fiber anemometer is constructed by using two FBGs to determine the dynamic thermal equilibrium between the laser heating and air flow cooling through monitoring the FBGs' central wavelengths. It was demonstrated that the sensitivity of the sensor can be adjusted through the power of pump laser or the coating on the FBG. Experimental results reveal that the proposed FBG-based anemometer exhibits very good performance for wind speed measurement. The resolution of the FBG-based anemometer is about 0.012 m/s for wind speed range between 2.0 m/s and 8.0 m/s.

  11. Optical fiber internal-mirror-based fiber in-line Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Gong, H.; Wang, D. N.; Xu, B.; Ni, K.; Liu, H.; Zhao, C. L.

    2016-05-01

    An optical fiber in-line Mach-Zehnder interferometer based on a fiber internal mirror constructed by use of a hollow ellipsoid fabricated by femtosecond laser micromachining and fusion splicing technique is demonstrated. The interface of the hollow ellipsoid surface and air can act as an internal mirror. The device has been used for refractive index, bending and high temperature measurement and simultaneous multiple parameter sensing.

  12. Improved optical axis determination accuracy for fiber-based polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lu, Zenghai; Matcher, Stephen J.

    2013-03-01

    We report on a new calibration technique that permits the accurate extraction of sample Jones matrix and hence fast-axis orientation by using fiber-based polarization-sensitive optical coherence tomography (PS-OCT) that is completely based on non polarization maintaining fiber such as SMF-28. In this technique, two quarter waveplates are used to completely specify the parameters of the system fibers in the sample arm so that the Jones matrix of the sample can be determined directly. The device was validated on measurements of a quarter waveplate and an equine tendon sample by a single-mode fiber-based swept-source PS-OCT system.

  13. Optical biopsy fiber-based fluorescence spectroscopy instrumentation

    NASA Astrophysics Data System (ADS)

    Katz, Alvin; Ganesan, Singaravelu; Yang, Yuanlong; Tang, Gui C.; Budansky, Yury; Celmer, Edward J.; Savage, Howard E.; Schantz, Stimson P.; Alfano, Robert R.

    1996-04-01

    Native fluorescence spectroscopy of biomolecules has emerged as a new modality to the medical community in characterizing the various physiological conditions of tissues. In the past several years, many groups have been working to introduce the spectroscopic methods to diagnose cancer. Researchers have successfully used native fluorescence to distinguish cancerous from normal tissue samples in rat and human tissue. We have developed three generations of instruments, called the CD-scan, CD-ratiometer and CD-map, to allow the medical community to use optics for diagnosing tissue. Using ultraviolet excitation and emission spectral measurements on both normal and cancerous tissue of the breast, gynecology, colon, and aerodigestive tract can be separated. For example, from emission intensities at 340 nm to 440 nm (300 nm excitation), a statistically consistent difference between malignant tissue and normal or benign tissue is observed. In order to utilize optical biopsy techniques in a clinical setting, the CD-scan instrument was developed, which allows for rapid and reliable in-vitro and in-vivo florescence measurements of the aerodigestive tract with high accuracy. The instrumentation employs high sensitivity detection techniques which allows for lamp excitation, small diameter optical fiber probes; the higher spatial resolution afforded by the small diameter probes can increase the ability to detect smaller tumors. The fiber optic probes allow for usage in the aerodigestive tract, cervix and colon. Needle based fiber probes have been developed for in-vivo detection of breast cancer.

  14. Miniature fiber optic sensor based on fluorescence energy transfer

    NASA Astrophysics Data System (ADS)

    Meadows, David L.; Schultz, Jerome S.

    1992-04-01

    Optical fiber biosensors based on fluorescence assays have several distinct advantages when measuring biological analytes such as metabolites, cofactors, toxins, etc. Not only are optical signals immune to electronic interferences, but the polychromatic nature of most fluorochemical assays provides more potentially useful data about the system being studied. One of the most common difficulties normally encountered with optical biosensors is the inability to routinely recalibrate the optical and electronic components of the system throughout the life of the sensor. With this in mind, we present an optical fiber assay system for glucose based on a homogeneous singlet/singlet energy transfer assay along with the electronic instrumentation built to support the sensor system. In the sensor probe, glucose concentrations are indirectly measured from the level of fluorescence quenching caused by the homogeneous competition assay between TRITC labeled concanavalin A (receptor) and FITC labeled Dextran (ligand). The FITC signal is used to indicate glucose concentrations and the TRITC signal is used for internal calibration. Data is also presented on a protein derivatization procedure that was used to prevent aggregation of the receptor protein in solution. Also, a molecular model is described for the singlet/singlet energy transfer interactions that can occur in a model system composed of a monovalent ligand (FITC labeled papain) and a monovalent receptor (TRITC labeled concanavalin A).

  15. Fresnel-reflection-based fiber optic cryogenic temperature sensor

    NASA Astrophysics Data System (ADS)

    Sampath, Umesh; Kim, Dae-gil; Kim, Hyunjin; Song, Minho

    2017-04-01

    In this paper, Fresnel reflection based fiber-optic sensor for the real-time monitoring of cryogenic temperature is presented. The proposed sensor system utilizes a linear thermo-optic coefficient of polymer and Fresnel reflection of the fiber end. Epoxy resin and poly methyl metha acrylate (PMMA) are used as sensor head material. The designed sensor head measures the temperature ranging from -180°C to 25°C with an average sensitivity of 0.039dB/°C for epoxy resin and 0.029dB/°C for PMMA. Experimental results have proven the stability and the effectiveness of the proposed sensor system to measure the applied cryogenic temperatures.

  16. Fiber optic surface plasmon resonance based ethanol sensor

    NASA Astrophysics Data System (ADS)

    Verma, Roli; Gupta, Banshi D.

    2014-03-01

    A design of SPR based fiber optic ethanol biosensor is presented by using enzyme alcohol dehydrogenase and nicotinic acid. The sensing probe is fabricated with the coating of 40 nm thin film of silver metal and immobilization of alcohol dehydrogenase and nicotinic acid by gel entrapment method over unclad core of a multimode optical fiber. The SPR spectra of ethanol samples of concentrations ranging from 0 mM to 10 mM prepared in buffer have been recorded. The sensor works on the spectral interrogation technique and operates in the visible range of the spectrum. The SPR curves are blue shifted with the increasing concentration of ethanol and the sensitivity of the sensor decreases with the increasing concentration of ethanol. The sensor has many advantages such as fast response, stability, small probe size, low cost and can be used for remote/online monitoring.

  17. A novel single fiber optical tweezers based on GIMMF: simulation and experiment

    NASA Astrophysics Data System (ADS)

    Wang, Tong; Tang, Xiaoyun; Zhang, Yaxun; Zhang, Yu; Liu, Zhihai

    2017-04-01

    We propose a novel single fiber optical tweezers based on a graded-index multimode fiber (GIMMF), whose length is arbitrary (when the length is larger than 5mm). The optical fiber tweezers based on GIMMFs can propagate larger light field intensity and trap particles easily. The optical fiber tweezers based on precise length GIMMF had been achieved. In this paper, the optical fiber tweezers applies the GIMMF with arbitrary length, which ensure the fabrication of the optical tweezers based on the GIMMF simple, convenient and repeatability.

  18. Development Of Antibody-Based Fiber-Optic Sensors

    NASA Astrophysics Data System (ADS)

    Tromberg, Bruce J.; Sepaniak, Michael J.; Vo-Dinh, Tuan

    1988-06-01

    The speed and specificity characteristic of immunochemical complex formation has encouraged the development of numerous antibody-based analytical techniques. The scope and versatility of these established methods can be enhanced by combining the principles of conventional immunoassay with laser-based fiber-optic fluorimetry. This merger of spectroscopy and immunochemistry provides the framework for the construction of highly sensitive and selective fiber-optic devices (fluoroimmuno-sensors) capable of in-situ detection of drugs, toxins, and naturally occurring biochemicals. Fluoroimmuno-sensors (FIS) employ an immobilized reagent phase at the sampling terminus of a single quartz optical fiber. Laser excitation of antibody-bound analyte produces a fluorescence signal which is either directly proportional (as in the case of natural fluorophor and "antibody sandwich" assays) or inversely proportional (as in the case of competitive-binding assays) to analyte concentration. Factors which influence analysis time, precision, linearity, and detection limits include the nature (solid or liquid) and amount of the reagent phase, the method of analyte delivery (passive diffusion, convection, etc.), and whether equilibrium or non-equilibrium assays are performed. Data will be presented for optical fibers whose sensing termini utilize: (1) covalently-bound solid antibody reagent phases, and (2) membrane-entrapped liquid antibody reagents. Assays for large-molecular weight proteins (antigens) and small-molecular weight, carcinogenic, polynuclear aromatics (haptens) will be considered. In this manner, the influence of a system's chemical characteristics and measurement requirements on sensor design, and the consequence of various sensor designs on analytical performance will be illustrated.

  19. Melamine sensing based on evanescent field enhanced optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Luo, Ji; Yao, Jun; Wang, Wei-min; Zhuang, Xu-ye; Ma, Wen-ying; Lin, Qiao

    2013-08-01

    Melamine is an insalubrious chemical, and has been frequently added into milk products illegally, to make the products more protein-rich. However, it can cause some various diseases, such as kidney stones and bladder cancer. In this paper, a novel optical fiber sensor with high sensitivity based on absorption of the evanescent field for melamine detection is successfully proposed and developed. Different concentrations of melamine changing from 0 to 10mg/mL have been detected using the micro/nano-sensing fiber decorated with silver nanoparticles cluster layer. As the concentration increases, the sensing fiber's output intensity gradually deceases and the absorption of the analyte becomes large. The concentration changing of 1mg/ml can cause the absorbance varying 0.664 and the limit of the melamine detectable concentration is 1ug/mL. Besides, the coupling properties between silver nanoparticles have also been analyzed by the FDTD method. Overall, this evanescent field enhanced optical fiber sensor has potential to be used in oligo-analyte detection and will promote the development of biomolecular and chemical sensing applications.

  20. [94 km Brillouin distributed optical fiber sensors based on ultra-long fiber ring laser pumping].

    PubMed

    Yuan, Cheng-Xu; Wang, Zi-Nan; Jia, Xin-Hong; Li, Jin; Yan, Xiao-Dong; Cui, An-Bin

    2014-05-01

    A novel optical amplification configuration based on ultra-long fiber laser with a ring cavity was proposed and applied to Brillouin optical time-domain analysis (BOTDA) sensing system, in order to extend the measurement distance significantly. The parameters used in the experiment were optimized, considering the main limitations of the setup, such as depletion, self-phase modulation (SPM) and pump-signal relative intensity noise (RIN) transfer. Through analyzing Brillouin gain spectrum, we demonstrated distributed sensing over 94 km of standard single-mode fiber with 3 meter spatial resolution and strain/temperature accuracy of 28 /1. 4 degree C.

  1. Colorimetric sensor based on two optical fiber couplers

    NASA Astrophysics Data System (ADS)

    Dybko, Artur; Maciejewski, Janusz; Romaniuk, Ryszard S.; Wroblewski, Wojciech

    1994-02-01

    The aim of the paper is to present an idea of a low-cost optical fiber colorimetric pH sensor (with disposable probe). Most of colorimetric sensors consist of two fibers: the illuminating one and one for collecting reflected light. Only one optical fiber is used as a sensing probe in our pH sensor. The end of the fiber is covered by a pH-sensing membrane, which is made of polyvinyl chloride. The colorimetric indicator (bromothymol blue) was immobilized on an ion- exchange resin. The sensing fiber is connected with two optical fiber couplers (type Y). The first coupler guides analytical and reference wavelengths from the light emitting diodes (LED) and the second one transmits light to the photodetector. Only one photodetector is used. Optical signals are filtered electronically because the LEDs are modulated at different frequencies. The results of the measuring tests of the sensor are presented.

  2. Optical fiber sensor for nitroaromatic explosives based on fluorescence quenching

    NASA Astrophysics Data System (ADS)

    Chu, Fenghong

    2010-10-01

    The detection of explosives and related compounds is important in both forensic and environmental applications. In this paper, we report on the preparation of novel plastic optical fiber explosive sensor based on fluorescence quenching. A low priced LED light source and PIN detector were used in this sensor system, a U-shaped plastic optical fiber with high sensitivity act as sensor head. We use amplifying fluorescent polymers (AFP) MEH-PPV as fluorescence indictor. MEHPPV was dip coated on to the surface of the U-shaped plastic optical fiber. For the first time as far as we know we detected the fluorescence lifetime by the phase-fluorometry method to measure the concentration of TNT, which has a merit of immunity to fluctuation of the light source and is more reliable than measuring intensity alone. In the experimental set-up the phase shift between excitation light and fluorescence is calculated by correlation method. Two degree phase difference was measured when the sensor head was exposed to TNT vapor and air in primary experiments.

  3. Microcantilever array instrument based on optical fiber and performance analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Guangping; Wu, Lin; Li, Chao; Wu, Shangquan; Zhang, Qingchuan

    2017-07-01

    We developed a microcantilever array biosensor instrument based on optical readout from a microcantilever array in fluid environment. The microcantilever signals were read out sequentially by laser beams emitted from eight optical fibers. The optical fibers were coupled to lasers, while the other ends of the fibers were embedded in eight V-grooves with 250 μm pitch microfabricated from a Si wafer. Aspherical lens was used to keep the distance between lasers. A programmable logic controller was used to make the system work stably. To make sure that the output of lasers was stable, a temperature controller was set up for each laser. When the deflection signal was collected, lasers used here were set to be on for at least 400 ms in each scanning cycle to get high signal-to-noise ratio deflection curves. A test was performed by changing the temperature of the liquid cell holding a microcantilever array to verify the consistent response of the instrument to the cantilever deflections. The stability and conformance of the instrument were demonstrated by quantitative detection of mercury ions in aqueous solution and comparison detection of clenbuterol by setting test and reference cantilevers. This microcantilever array detection instrument can be applied to highly sensitive detection of chemical and biological molecules in fluid environment.

  4. All-fiber optical isolator based on Faraday rotation in highly terbium-doped fiber

    SciTech Connect

    Sun, L.; Jiang, S.; Zuegel, J. D.; Marciante, J. R.

    2010-01-01

    An all-fiber isolator with 17 dB optical isolation is demonstrated. The fiber Faraday rotator uses 56 wt. % terbium (Tb)-doped silicate fiber, and the fiber polarizers are Corning SP1060 single-polarization fiber. Finally, the effective Verdet constant of the Tb-doped fiber is measured to be -24.5±1.0 rad/(Tm) at 1053 nm, which is 20 times larger than silica fiber and 22% larger than previously reported results.

  5. All-fiber optical isolator based on Faraday rotation in highly terbium-doped fiber.

    PubMed

    Sun, L; Jiang, S; Zuegel, J D; Marciante, J R

    2010-03-01

    An all-fiber isolator with 17 dB optical isolation is demonstrated. The fiber Faraday rotator uses 56 wt. % terbium (Tb)-doped silicate fiber, and the fiber polarizers are Corning SP1060 single-polarization fiber. The effective Verdet constant of the Tb-doped fiber is measured to be -24.5+/-1.0 rad/(Tm) at 1053 nm, which is 20 times larger than silica fiber and 22% larger than previously reported results.

  6. Compact all-fiber Bessel beam generator based on hollow optical fiber combined with a hybrid polymer fiber lens.

    PubMed

    Kim, Jun Ki; Kim, Jongki; Jung, Yongmin; Ha, Woosung; Jeong, Yoon Seop; Lee, Sejin; Tünnermann, Andreas; Oh, K

    2009-10-01

    We report a compact all-fiber Bessel beam generator using hollow optical fiber (HOF) and coreless silica fiber based on a self-assembled polymer lens. A nearly diffraction-free Bessel beam pattern was observed with its focused beam diameter of 20 microm maintained over a propagation distance of 550 microm. The generated Bessel beams were experimentally tested under various structural parameters such as the diameters of the HOF and operating wavelengths. A beam propagation method was applied to simulate the proposed device, which shows good agreement with the experimental observations.

  7. Ultrasensitive detection system for fiber optic-based ultraviolet spectroscopy

    NASA Astrophysics Data System (ADS)

    Klein, Karl-Friedrich; Belz, Mathias; Dress, Peter; Schelle, B.; Boyle, William J. O.; Grattan, Kenneth T. V.; Franke, Hilmar

    1998-03-01

    A fiber optic based deep UV-absorption sensor system is characterized, using fibers for light delivery and a liquid core waveguide (LCW) for analyzing liquids. UN-improved fibers with 500 micrometers core diameter are capable of transmitting light intensities below 230 nm with spectral radiant powers above 500 nW/nm at 214 nm. Their short-term behavior and lifetime in respect to UV-stability have been investigated, using a broadband deuterium lamp. To raise the sensitivity of the total system, the absorption path length has been increased significantly using the lightguiding properties of the LCW consisting of a cylindrical glass tube with a Teflon AF 2400 inner coating of about 50 micrometers thickness. Due to lower refractive index of Teflon in comparison to water, the LCW concept offers significant advantages, especially for long optical pathlengths. However, the basic attenuation of the liquid in dependence on the wavelength as to be taken into account. Results on the use of such a system monitoring concentrations of acetylsalicylic acid, acetone and toluene in water are reported and discussed.

  8. Distributed fiber-optic laser-ultrasound generation based on ghost-mode of tilted fiber Bragg gratings.

    PubMed

    Tian, Jiajun; Zhang, Qi; Han, Ming

    2013-03-11

    Active ultrasonic testing is widely used for medical diagnosis, material characterization and structural health monitoring. Ultrasonic transducer is a key component in active ultrasonic testing. Due to their many advantages such as small size, light weight, and immunity to electromagnetic interference, fiber-optic ultrasonic transducers are particularly attractive for permanent, embedded applications in active ultrasonic testing for structural health monitoring. However, current fiber-optic transducers only allow effective ultrasound generation at a single location of the fiber end. Here we demonstrate a fiber-optic device that can effectively generate ultrasound at multiple, selected locations along a fiber in a controllable manner based on a smart light tapping scheme that only taps out the light of a particular wavelength for laser-ultrasound generation and allow light of longer wavelengths pass by without loss. Such a scheme may also find applications in remote fiber-optic device tuning and quasi-distributed biochemical fiber-optic sensing.

  9. Long-distance fiber-optic point-sensing systems based on random fiber lasers.

    PubMed

    Wang, Z N; Rao, Y J; Wu, H; Li, P Y; Jiang, Y; Jia, X H; Zhang, W L

    2012-07-30

    We find that the random fiber laser (RFL) without point-reflectors is a temperature-insensitive distributed lasing system for the first time. Inspired by such thermal stability, we propose the novel concept of utilizing the RFL to achieve long-distance fiber-optic remote sensing, in which the RFL offers high-fidelity and long-distance transmission for the sensing signal. Two 100 km fiber Bragg grating (FBG) point-sensing schemes based on RFLs are experimentally demonstrated using the first-order and the second-order random lasing, respectively, to verify the concept. Each sensing scheme can achieve >20 dB optical signal-to-noise ratio (OSNR) over 100 km distance. It is found that the second-order random lasing scheme has much better OSNR than that of the first-order random lasing scheme due to enhanced lasing efficiency, by incorporating a 1455 nm FBG into the lasing cavity.

  10. Characterization of the stress and refractive-index distributions in optical fibers and fiber-based devices

    NASA Astrophysics Data System (ADS)

    Hutsel, Michael R.

    2011-07-01

    Optical fiber technology continues to advance rapidly as a result of the increasing demands on communication systems and the expanding use of fiber-based sensing. New optical fiber types and fiber-based communications components are required to permit higher data rates, an increased number of channels, and more flexible installation requirements. Fiber-based sensors are continually being developed for a broad range of sensing applications, including environmental, medical, structural, industrial, and military. As optical fibers and fiber-based devices continue to advance, the need to understand their fundamental physical properties increases. The residual-stress distribution (RSD) and the refractive-index distribution (RID) play fundamental roles in the operation and performance of optical fibers. Custom RIDs are used to tailor the transmission properties of fibers used for long-distance transmission and to enable fiber-based devices such as long-period fiber gratings (LPFGs). The introduction and modification of RSDs enable specialty fibers, such as polarization-maintaining fiber, and contribute to the operation of fiber-based devices. Furthermore, the RSD and the RID are inherently linked through the photoelastic effect. Therefore, both the RSD and the RID need to be characterized because these fundamental properties are coupled and affect the fabrication, operation, and performance of fibers and fiber-based devices. To characterize effectively the physical properties of optical fibers, the RSD and the RID must be measured without perturbing or destroying the optical fiber. Furthermore, the techniques used must not be limited in detecting small variations and asymmetries in all directions through the fiber. Finally, the RSD and the RID must be characterized concurrently without moving the fiber to enable the analysis of the relationship between the RSD and the RID. Although many techniques exist for characterizing the residual stress and the refractive index in

  11. Advances in Optical Fiber-Based Faraday Rotation Diagnostics

    SciTech Connect

    White, A D; McHale, G B; Goerz, D A

    2009-07-27

    In the past two years, we have used optical fiber-based Faraday Rotation Diagnostics (FRDs) to measure pulsed currents on several dozen capacitively driven and explosively driven pulsed power experiments. We have made simplifications to the necessary hardware for quadrature-encoded polarization analysis, including development of an all-fiber analysis scheme. We have developed a numerical model that is useful for predicting and quantifying deviations from the ideal diagnostic response. We have developed a method of analyzing quadrature-encoded FRD data that is simple to perform and offers numerous advantages over several existing methods. When comparison has been possible, we have seen good agreement with our FRDs and other current sensors.

  12. Design of electrode for thermo-optic variable optical attenuator based on side polished fiber

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Zeng, Yingxin

    2008-12-01

    Base on the heat transfer theory, the thermal models of thermooptic variable optical attenuator based on side-polished fiber surrounded by thermooptic polymer with electrode inside were built. The finite element method has been used to compute and analyze thermal distributions of the thermooptic models. The thermal distributions of both the models with single stick electrode or helical electrode were analyzed in three directions. According to the analysis, the helical electrode is a suitable electrode structure for thermooptic variable optical attenuator based on side-polished fiber.

  13. JTAG-based remote configuration of FPGAs over optical fibers

    DOE PAGES

    Deng, B.; Xu, H.; Liu, C.; ...

    2015-01-28

    In this study, a remote FPGA-configuration method based on JTAG extension over optical fibers is presented. The method takes advantage of commercial components and ready-to-use software such as iMPACT and does not require any hardware or software development. The method combines the advantages of the slow remote JTAG configuration and the fast local flash memory configuration. The method has been verified successfully and used in the Demonstrator of Liquid-Argon Trigger Digitization Board (LTDB) for the ATLAS liquid argon calorimeter Phase-I trigger upgrade. All components on the FPGA side are verified to meet the radiation tolerance requirements.

  14. Fiber-Optic Based Compact Gas Leak Detection System

    NASA Technical Reports Server (NTRS)

    deGroot, Wim A.

    1995-01-01

    A propellant leak detection system based on Raman scattering principles is introduced. The proposed system is flexible and versatile as the result of the use of optical fibers. It is shown that multiple species can be monitored simultaneously. In this paper oxygen, nitrogen, carbon monoxide, and hydrogen are detected and monitored. The current detection sensitivity for both hydrogen and carbon monoxide is 1% partial pressure at ambient conditions. The sensitivity for oxygen and nitrogen is 0.5% partial pressure. The response time to changes in species concentration is three minutes. This system can be used to monitor multiple species at several locations.

  15. Analysis of a plastic optical fiber-based displacement sensor.

    PubMed

    Jiménez, Felipe; Arrue, Jon; Aldabaldetreku, Gotzon; Durana, Gaizka; Zubia, Joseba; Ziemann, Olaf; Bunge, Christian-Alexander

    2007-09-01

    An easy-to-manufacture setup for a displacement sensor based on plastic optical fiber (POF) is analyzed, showing computational and experimental results. If the displacement is the consequence of force or pressure applied to the device, this can be used as a force or pressure transducer. Its principle of operation consists of bending a POF section around a flexible cylinder and measuring light attenuation when the whole set is subjected to side pressure. Attenuations are obtained computationally as a function of side deformation for different design parameters. Experimental results with an actually built prototype are also provided.

  16. Fiber optic hydrophone

    DOEpatents

    Kuzmenko, Paul J.; Davis, Donald T.

    1994-01-01

    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optic fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends.

  17. Fiber optic hydrophone

    DOEpatents

    Kuzmenko, P.J.; Davis, D.T.

    1994-05-10

    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer is disclosed. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optical fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends. 2 figures.

  18. Fiber optic coupled optical sensor

    DOEpatents

    Fleming, Kevin J.

    2001-01-01

    A displacement sensor includes a first optical fiber for radiating light to a target, and a second optical fiber for receiving light from the target. The end of the first fiber is adjacent and not axially aligned with the second fiber end. A lens focuses light from the first fiber onto the target and light from the target onto the second fiber.

  19. Graphene-based side-polished optical fiber amplifier.

    PubMed

    Karimi, Mohammad; Ahmadi, Vahid; Ghezelsefloo, Masoud

    2016-12-20

    We demonstrate a novel design for optical fiber amplifiers, utilizing side-polished fibers with a single-layer graphene overlay as the active medium and carrier injection in the graphene layer to provide the required inversion. We study the effects of an electrically induced graphene p-i-n heterojunction in the forward bias regime on optical modes of side-polished fibers and show that gain values of 0.51, 1.81, and 1.79 dB/cm for wavelengths 1064, 1330, and 1550 nm can be obtained for single-mode side-polished fibers. Our results show that in multi-mode side-polished fibers, higher order modes experience higher values of gain, and gain can be increased by increasing polished depth. The proposed system is a tunable wideband optical amplifier that can operate for wavelengths larger than 1000 nm.

  20. Fiber optic spanner

    NASA Astrophysics Data System (ADS)

    Black, Bryan; Mohanty, Samarendra

    2011-10-01

    Rotation is a fundamental function in nano/biotechnology and is being useful in a host of applications such as pumping of fluid flow in microfluidic channels for transport of micro/nano samples. Further, controlled rotation of single cell or microscopic object is useful for tomographic imaging. Though conventional microscope objective based laser spanners (based on transfer of spin or orbital angular momentum) have been used in the past, they are limited by the short working distance of the microscope objective. Here, we demonstrate development of a fiber optic spanner for rotation of microscopic objects using single-mode fiber optics. Fiber-optic trapping and simultaneous rotation of pin-wheel structure around axis perpendicular to fiber-optic axis was achieved using the fiber optic spanner. By adjusting the laser beam power, rotation speed of the trapped object and thus the microfluidic flow could be controlled. Since this method does not require special optical or structural properties of the sample to be rotated, three-dimensional rotation of a spherical cell could also be controlled. Further, using the fiber optic spanner, array of red blood cells could be assembled and actuated to generate vortex motion. Fiber optical trapping and spinning will enable physical and spectroscopic analysis of microscopic objects in solution and also find potential applications in lab- on-a-chip devices.

  1. Optical fiber hydrogen sensor based on polarization-maintaining photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Yang, Yuanhong; Yang, Fuling; Wang, Huan; Diao, Xungang; Liu, Qirong

    2014-05-01

    An intrinsic optical fiber hydrogen sensor based on polarization-maintaining photonic crystal fiber (PM-PCF) Sagnac interferometer was proposed. The facing target sputtering technique with special Pd/Ag plate target structure was developed to deposit Pd/Ag composite film on PM-PCF. The characteristic of Pd/Ag film was measured and analyzed. An experimental setup for hydrogen sensing was built. The wavelength at different hydrogen concentration and the temperature interference were tested. The results showed the sensitivity was higher at low concentration range and good repeatability was obtained within measuring range of 4%. And the temperature affect was weak with special PM-PCF.

  2. Fiber optic monitoring device

    DOEpatents

    Samborsky, James K.

    1993-01-01

    A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information.

  3. Multi-parameter fiber optic sensors based on fiber random grating

    NASA Astrophysics Data System (ADS)

    Xu, Yanping; Zhang, Mingjiang; Lu, Ping; Mihailov, Stephen; Bao, Xiaoyi

    2017-04-01

    Two novel configurations of multi-parameter fiber-optic sensing systems based on the fiber random grating are reported. The fiber random grating is fabricated through femtosecond laser induced refractive index modification over a 10cm standard telecom single mode fiber. In one configuration, the reflective spectrum of the fiber random grating is directly detected and a wavelength-division spectral cross-correlation algorithm is adopted to extract the spectral shifts for simultaneous measurement of temperature, axial strain, and surrounding refractive index. In the other configuration, a random fiber ring laser is constructed by incorporating the random feedback from the random grating. Numerous polarization-dependent spectral filters are formed along the random grating and superimposed to provide multiple lasing lines with high signal-to-noise ratio up to 40dB, which enables a high-fidelity multi-parameter sensing scheme by monitoring the spectral shifts of the lasing lines. Without the need of phase mask for fabrication and with the high physical strength, the random grating based sensors are much simpler and more compact, which could be potentially an excellent alternative for liquid medical sample sensing in biomedical and biochemical applications.

  4. Bridge continuous deformation measurement technology based on fiber optic gyro

    NASA Astrophysics Data System (ADS)

    Gan, Weibing; Hu, Wenbin; Liu, Fang; Tang, Jianguang; Li, Sheng; Yang, Yan

    2016-03-01

    Bridge is an important part of modern transportation systems and deformation is a key index for bridge's safety evaluation. To achieve the long span bridge curve measurement rapidly and timely and accurately locate the bridge maximum deformation, the continuous deformation measurement system (CDMS) based on inertial platform is presented and validated in this paper. Firstly, based on various bridge deformation measurement methods, the method of deformation measurement based on the fiber optic gyro (FOG) is introduced. Secondly, the basic measurement principle based on FOG is presented and the continuous curve trajectory is derived by the formula. Then the measurement accuracy is analyzed in theory and the relevant factors are presented to ensure the measurement accuracy. Finally, the deformation measurement experiments are conducted on a bridge across the Yangtze River. Experimental results show that the presented deformation measurement method is feasible, practical, and reliable; the system can accurately and quickly locate the maximum deformation and has extensive and broad application prospects.

  5. Neural Network-Based Multimode Fiber-Optic Information Transmission

    NASA Astrophysics Data System (ADS)

    Marusarz, Ronald K.; Sayeh, Mohammad R.

    2001-01-01

    A new technique for transmitting information through multimode fiber-optic cables is presented. This technique sends parallel channels through the fiber-optic cable, thereby greatly improving the data transmission rate compared with that of the current technology, which uses serial data transmission through single-mode fiber. An artificial neural network is employed to decipher the transmitted information from the received speckle pattern. Several different preprocessing algorithms are developed, tested, and evaluated. These algorithms employ average region intensity, distributed individual pixel intensity, and maximum mean-square-difference optimal group selection methods. The effect of modal dispersion on the data rate is analyzed. An increased data transmission rate by a factor of 37 over that of single-mode fibers is realized. When implementing our technique, we can increase the channel capacity of a typical multimode fiber by a factor of 6.

  6. Fine-grained hodoscopes based on scintillating optical fibers

    NASA Astrophysics Data System (ADS)

    Borenstein, S. R.; Strand, R. C.

    In order to exploit the high event rates at ISABELLE, it will be necessary to have fast detection with fine spatial resolution. The authors are currently constructing a prototype fine grained hodoscope, the elements of which are scintillating optical fibers. The fibers have been drawn from commercially available plastic scintillator which has been clad with a thin layer of silicone. So far it has been demonstrated with one mm diameter fibers, that with a photodetector at each end, the fibers are more than 99% efficient for lengths of about 60 cm. The readout will be accomplished either with small diameter photomultiplier tubes or avalanche photodiodes used either in the linear or Geiger mode. The program of fiber development and evaluation will be described. The status of the APD as a readout element will be discussed. Finally, an optical encoding readout scheme will be described for events of low multiplicity.

  7. Fine-grained hodoscopes based on scintillating optical fibers

    NASA Astrophysics Data System (ADS)

    Borenstein, S. R.; Strand, R. C.

    In order to exploit the high event rates at ISABELLE, it is necessary to have fast detection with fine spatial resolution. A prototype fine-grained hodoscope, the elements of which are scintillating optical fibers, is currently being constructed. The fibers were drawn from commercially available plastic scintillator which has been clad with a thin layer of silicone. It was demonstrated with one mm diameter fibers that with a photo-detector at each end, the fibers are more than 99% efficient for lengths of about 60 cm. The readout will be accomplished either with small diameter photomultiplier tubes or avalanche photodiodes (APD) used either in the linear or Geiger mode. The program of fiber development and evaluation is described. The status of the APD as a readout element is discussed, and an optical encoding readout scheme is described for events of low multiplicity.

  8. Orientation-dependent fiber-optic accelerometer based on grating inscription over fiber cladding.

    PubMed

    Rong, Qiangzhou; Qiao, Xueguang; Guo, Tuan; Bao, Weijia; Su, Dan; Yang, Hangzhou

    2014-12-01

    An orientation-sensitive fiber-optic accelerometer based on grating inscription over fiber cladding has been demonstrated. The sensor probe comprises a compact structure in which a short section of thin-core fiber (TCF) stub containing a "cladding" fiber Bragg grating (FBG) is spliced to another single-mode fiber (SMF) without any lateral offset. A femtosecond laser side-illumination technique was utilized to ensure that the grating inscription remains close to the core-cladding interface of the TCF. The core mode and the cladding mode of the TCF are coupled at the core-mismatch junction, and two well-defined resonances in reflection appear from the downstream FBG, in which the cladding resonance exhibits a strong polarization and bending dependence due to the asymmetrical distribution of the cladding FBG along the fiber cross section. Strong orientation dependence of the vibration (acceleration) measurement has been achieved by power detection of the cladding resonance. Meanwhile, the unwanted power fluctuations and temperature perturbations can be referenced out by monitoring the fundamental core resonance.

  9. Direct Spectroscopy in Hollow Optical with Fiber-Based Optical Frequency Combs

    DTIC Science & Technology

    2015-07-09

    optically- referenced erbium fiber laser frequency comb is demonstrated. In Section 4 , the comb stability is characterized through comparison with a cw...Performance 3.  DATES COVERED (From - To)      01-06-2011 to 31-05-2015 4 .  TITLE AND SUBTITLE DIRECT SPECTROSCOPY IN HOLLOW OPTICAL WITH FIBER-BASED...corrected (< 1σ) using proper modeling of a shift due to line-shape. To improve portability, a sealed photonic microcell (PMC) is characterized on the

  10. Medical smart textiles based on fiber optic technology: an overview.

    PubMed

    Massaroni, Carlo; Saccomandi, Paola; Schena, Emiliano

    2015-04-13

    The growing interest in the development of smart textiles for medical applications is driven by the aim to increase the mobility of patients who need a continuous monitoring of such physiological parameters. At the same time, the use of fiber optic sensors (FOSs) is gaining large acceptance as an alternative to traditional electrical and mechanical sensors for the monitoring of thermal and mechanical parameters. The potential impact of FOSs is related to their good metrological properties, their small size and their flexibility, as well as to their immunity from electromagnetic field. Their main advantage is the possibility to use textile based on fiber optic in a magnetic resonance imaging environment, where standard electronic sensors cannot be employed. This last feature makes FOSs suitable for monitoring biological parameters (e.g., respiratory and heartbeat monitoring) during magnetic resonance procedures. Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing. In this review we provide an overview of the state-of-the-art of textiles, which use FOSs for monitoring of mechanical parameters of physiological interest. In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages. Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest.

  11. Medical Smart Textiles Based on Fiber Optic Technology: An Overview

    PubMed Central

    Massaroni, Carlo; Saccomandi, Paola; Schena, Emiliano

    2015-01-01

    The growing interest in the development of smart textiles for medical applications is driven by the aim to increase the mobility of patients who need a continuous monitoring of such physiological parameters. At the same time, the use of fiber optic sensors (FOSs) is gaining large acceptance as an alternative to traditional electrical and mechanical sensors for the monitoring of thermal and mechanical parameters. The potential impact of FOSs is related to their good metrological properties, their small size and their flexibility, as well as to their immunity from electromagnetic field. Their main advantage is the possibility to use textile based on fiber optic in a magnetic resonance imaging environment, where standard electronic sensors cannot be employed. This last feature makes FOSs suitable for monitoring biological parameters (e.g., respiratory and heartbeat monitoring) during magnetic resonance procedures. Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing. In this review we provide an overview of the state-of-the-art of textiles, which use FOSs for monitoring of mechanical parameters of physiological interest. In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages. Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest. PMID:25871010

  12. Optical fiber based imaging of bioengineered tissue construct

    NASA Astrophysics Data System (ADS)

    Sapoznik, Etai; Niu, Guoguang; Lu, Peng; Zhou, Yu; Xu, Yong; Soker, Shay

    2016-04-01

    Imaging cells and tissues through opaque and turbid media is challenging and presents a major barrier for monitoring maturation and remodeling of bioengineered tissues. The fiber optics based imaging system described here offers a new approach for fluorescent cell imaging. A micro imaging channel is embedded in a Polycaprolactone (PCL) electrospun scaffold designed for cell seeding, which allows us to use an optical fiber to locally deliver excitation laser close to the fluorescent cells. The emission is detected by an Electron Multiplying Charge Coupled Device (EMCCD) detector and image reconstruction of multiple excitation points is achieved with a working distance of several centimeters. The objective of this study is to assess the effects of system parameters on image reconstruction outcomes. Initial studies using fluorescent beads indicated that scaffold thickness had a small effect on image quality, whereas scaffold composition (collagen content), fluorophore spectra, and the reconstruction window size had a large effect. The results also suggest that a far-red fluorescent emission is preferential when using collagenous scaffolds with a thickness of up to 500 μm. Using these optimized parameters, we were able to image fluorescently labeled cells on a scaffold with a resolution of 15-20 μm, and have also measured muscle progenitor cell differentiation and scaffold surface coverage with endothelial cells. In the future, this imaging platform can be applied to other bioengineered tissues for non-invasive monitoring both in vitro and in vivo.

  13. Optical fiber relative humidity sensor based on FBG incorporated thin-core fiber modal interferometer.

    PubMed

    Gu, Bobo; Yin, Mingjie; Zhang, A Ping; Qian, Jinwen; He, Sailing

    2011-02-28

    A new fiber-optic relative humidity (RH) sensor based on a thin-core fiber modal interferometer (TCFMI) with a fiber Bragg grating (FBG) in between is presented. Poly (N-ethyl-4-vinylpyridinium chloride) (P4VP·HCl) and poly (vinylsulfonic acid, sodium salt) (PVS) are layer-by-layer deposited on the side surface of the sensor for RH sensing. The fabrication of the sensing nanocoating is characterized by using UV-vis absorption spectroscopy, quartz crystal microbalance (QCM) and scanning electron microscopy (SEM). The incorporation of FBG in the middle of TCFMI can compensate the cross sensitivity of the sensor to temperature. The proposed sensor can detect the RH with resolution of 0.78% in a large RH range at different temperatures. A linear, fast and reversible response has been experimentally demonstrated.

  14. Test of optical fiber grating based new-type wavelength standard instrument

    NASA Astrophysics Data System (ADS)

    Li, Jianwei-wei; Xu, Nan; Li, Jian; Zhang, Zhi-xin

    2013-08-01

    In this paper, a kind of special optical fiber bonding high-temperature aging plan is raised. The armored optical fiber technology is applied to guarantee the long-term stability of the optical properties of the standard instrument itself. The temperature compensation encapsulation technology is adopted for optical fiber grating, that is, the wavelength will remain constant under the standard atmosphere pressure and chamber temperature. It becomes the optical fiber grating sensing wavelength standard instrument. The optical fiber grating standard instrument based upon this kind of new-type structure is tested, and the result has its word that the temperature shift of this optical fiber grating standard instrument after encapsulation is less than 0.5pm/℃. Coupled with the simple temperature control, the wavelength accuracy of the optical fiber grating standard instrument will be controlled below ±1pm and its long-term stability will be smaller than 2pm/℃. Differ from F-P standard instrument, this optical fiber grating standard instrument is one without mechanical device and is purely physical. So, it features more reliable performance and is applicable to mass production. The costs of this kind of optical fiber grating standard instrument is under control and will see an important application in the optical fiber grating sensing technology.

  15. Integrated optics for fiber optic sensors

    NASA Technical Reports Server (NTRS)

    Minford, W. J.; Depaula, R. P.

    1991-01-01

    Recent progress achieved in the field of fiber-optic sensor applications is discussed with emphasis placed on LiNbO3-based integrated optics (IO). Particular consideration is given to advanced electromagnetic-field sensors, an integrated laser vibrometer system, and a fiber-optic gyroscope system. It is shown that the multifunction IO chips have enabled high perforamance fiber-optic sensors (e.g., fiber-optic gyros), provided advanced and unique signal processing capabilities and advanced architectures, and have a potential of making fiber-optic sensors at low cost.

  16. Integrated optics for fiber optic sensors

    NASA Technical Reports Server (NTRS)

    Minford, W. J.; Depaula, R. P.

    1991-01-01

    Recent progress achieved in the field of fiber-optic sensor applications is discussed with emphasis placed on LiNbO3-based integrated optics (IO). Particular consideration is given to advanced electromagnetic-field sensors, an integrated laser vibrometer system, and a fiber-optic gyroscope system. It is shown that the multifunction IO chips have enabled high perforamance fiber-optic sensors (e.g., fiber-optic gyros), provided advanced and unique signal processing capabilities and advanced architectures, and have a potential of making fiber-optic sensors at low cost.

  17. Plastic Optical Fiber Displacement Sensor Based on Dual Cycling Bending

    PubMed Central

    Kuang, Jao-Hwa; Chen, Pao-Chuan; Chen, Yung-Chuan

    2010-01-01

    In this study, a high sensitivity and easy fabricated plastic optical fiber (POF) displacement sensor is proposed. A POF specimen subjected to dual cyclic bending is used to improve the sensitivity of the POF displacement sensor. The effects of interval between rollers, relative displacement and number of rollers on the sensitivity of the displacement sensor are analyzed both experimentally and numerically. A good agreement between the experimental measurements and numerical calculations is obtained. The results show that the interval between rollers affects sensitivity most significantly than the other design parameters. Based on the experimental data, a linear equation is derived to estimate the relationship between the power loss and the relative displacement. The difference between the estimated results and the experimental results is found to be less than 8%. The results also show that the proposed POF displacement sensor based on dual cyclic bending can be used to detect displacement accurately. PMID:22163465

  18. Fiber optic sensors based on time-release polymers

    NASA Astrophysics Data System (ADS)

    Barnard, Steven M.; Walt, David R.

    1990-07-01

    Fiber-optic sensors based on a controlled-release polymer provide sustained release of indicating reagents over long periods. This technique allows irreversible chemistries to be used in the design of sensors for continuous measurements. The first reported sensor used 8-hydroxypyrene- 1 ,3,6-trisulfonic acid and sulforhodamine 640 to measure pH continuously for three months in the range of 5.5 to 8.0 with a precision units. The sensor reported in this paper is based on a fluorescence energy transfer immunoassay. The sensor was cycled through different concentrations of antigen continuously for 30 hours. Although the sensor was not optimized, the data indicates the viability of the technique.

  19. Fiber-Optic Surface Temperature Sensor Based on Modal Interference

    PubMed Central

    Musin, Frédéric; Mégret, Patrice; Wuilpart, Marc

    2016-01-01

    Spatially-integrated surface temperature sensing is highly useful when it comes to controlling processes, detecting hazardous conditions or monitoring the health and safety of equipment and people. Fiber-optic sensing based on modal interference has shown great sensitivity to temperature variation, by means of cost-effective image-processing of few-mode interference patterns. New developments in the field of sensor configuration, as described in this paper, include an innovative cooling and heating phase discrimination functionality and more precise measurements, based entirely on the image processing of interference patterns. The proposed technique was applied to the measurement of the integrated surface temperature of a hollow cylinder and compared with a conventional measurement system, consisting of an infrared camera and precision temperature probe. As a result, the optical technique is in line with the reference system. Compared with conventional surface temperature probes, the optical technique has the following advantages: low heat capacity temperature measurement errors, easier spatial deployment, and replacement of multiple angle infrared camera shooting and the continuous monitoring of surfaces that are not visually accessible. PMID:27483271

  20. Fiber-Optic Surface Temperature Sensor Based on Modal Interference.

    PubMed

    Musin, Frédéric; Mégret, Patrice; Wuilpart, Marc

    2016-07-28

    Spatially-integrated surface temperature sensing is highly useful when it comes to controlling processes, detecting hazardous conditions or monitoring the health and safety of equipment and people. Fiber-optic sensing based on modal interference has shown great sensitivity to temperature variation, by means of cost-effective image-processing of few-mode interference patterns. New developments in the field of sensor configuration, as described in this paper, include an innovative cooling and heating phase discrimination functionality and more precise measurements, based entirely on the image processing of interference patterns. The proposed technique was applied to the measurement of the integrated surface temperature of a hollow cylinder and compared with a conventional measurement system, consisting of an infrared camera and precision temperature probe. As a result, the optical technique is in line with the reference system. Compared with conventional surface temperature probes, the optical technique has the following advantages: low heat capacity temperature measurement errors, easier spatial deployment, and replacement of multiple angle infrared camera shooting and the continuous monitoring of surfaces that are not visually accessible.

  1. Multiplexed refractive index-based sensing using optical fiber microcavities

    NASA Astrophysics Data System (ADS)

    Warren-Smith, Stephen C.; André, Ricardo M.; Dellith, Jan; Bartelt, Hartmut

    2016-04-01

    Optical fibers are promising tools for performing biological and biomedical sensing due to their small cross section and potential for multiplexing. In particular, fabricating ultra-small sensing devices is of increasing interest for measuring biological material such as cells. A promising direction is the use of interferometric techniques combined with optical fiber post-processing. In this work we present recent progress in the development of Fabry-Perot micro-cavities written into optical fiber tapers using focused ion beam (FIB) milling. We first demonstrate that FIB milled optical fiber microcavities are sensitive enough to measure polyelectrolyte layer deposition. We then present new results on the fabrication and optical characterization of serially-multiplexed dual cavity micro-sensors. Two cavities were written serially along the fiber with two different cavity lengths, producing a total of four reflecting surfaces and thus six possible interferometric pairs/cavities. By using fast Fourier transform it is possible to obtain de-multiplexed measurements for each cavity. This will be particularly important for bioassays where positive and negative controls are required to be measured within close spatial proximity.

  2. Fiber-Optic Hydrogen Sensors Based upon Chromogenic Materials

    NASA Astrophysics Data System (ADS)

    Pitts, Roland

    2002-03-01

    The development of lightweight, low cost, inherently safe, reliable hydrogen sensors is crucial to the development of an infrastructure for a hydrogen-based economy. Since the involvement of hydrogen in the Hindenburg disaster (May 7, 1937), the public perception is that hydrogen is dangerous to use, store, and handle. It will require extraordinary safety measures to ensure the public that hydrogen leaks can be detected and controlled early. Detection requires sensors to be arrayed in locations where explosive concentrations of hydrogen can accumulate, and mitigation of risk requires a control function associated with detection that can trigger alarms or actuate devices to prevent hydrogen concentrations from reaching the explosive limit. The approach at NREL to meet the needs for hydrogen detection that are anticipated in the transportation sector uses thin films to indicate the presence of hydrogen. The thin films react with hydrogen to produce a change in optical properties that can be sensed with a light beam propagating along a fiber-optic element. Sensitivity of the device is 200 ppm hydrogen in air, with response times less than one second. The sensor response is unique to hydrogen. It is inherently safe, in that no wires are used that could provide an ignition source in a monitored space. Sensor films can be deposited inexpensively on the end of commercial fiber optic cables, either glass or polymer. They are lightweight and resistant to interference from electric and magnetic fields. Arrays of sensors can be operated from a single detection and control point. Primary challenges involve stabilizing the response in real environments, where pollutants and contamination of the thin film surface interfere with response, and extending the lifetime of the sensor to periods of interest in the transportation sector.

  3. Optic axis determination by fiber-based polarization-sensitive swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.

    2011-03-01

    We describe a fiber-based variable-incidence-angle (VIA) polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) system to determine the 3-D optical axis of birefringent biological tissues. Single-plane VIAPS- OCT is also explored which requires measurement of the absolute fast-axis orientation. A state-of-the-art PS-SS-OCT system with some improvements both in hardware and software was used to determine the apparent optical birefringence of equine tendon for a number of different illumination directions. Polar and azimuthal angles of cut equine tendon were produced by VIA method and compared with the nominal values. A quarter waveplate (QWP) and equine tendon were used as test targets to validate the fast-axis measurements using the system. Polar and azimuthal angles of cut equine tendon broadly agreed with the expected values within about 8% of the nominal values. A theoretical and experimental analysis of the effect of the sample arm fiber on determination of optical axis orientation using a proposed definition based on the orientation of the eigenpolarization ellipse experimentally confirms that this algorithm only works correctly for special settings of the sample arm fiber. A proposed algorithm based on the angle between Stokes vectors on the Poincaré sphere is confirmed to work for all settings of the sample arm fiber. A calibration procedure is proposed to remove the sign ambiguity of the measured orientation and was confirmed experimentally by using the QWP.

  4. Fiber-based optical trapping for cell mechanics study and microrheology

    NASA Astrophysics Data System (ADS)

    Ti, Chaoyang; Thomas, Gawain M.; Yu, Xiaokong; Wen, Qi; Tao, Mingjiang; Liu, Yuxiang

    2016-09-01

    In this work, we developed fiber based optical trapping system and explored its applications in biology and physics. We aim to replace objective lenses with optical fibers, both for optical trapping and particle position detection. Compared with objective lens based counterparts, fiber based optical trapping systems are small, low-cost, integratable, independent of objective lenses, and can work in turbid mediums. These advantages make fiber optical trapping systems ideal for applications in tightly confined spaces as well as integration with various microscopy techniques. We demonstrate the applications of fiber optical trapping systems in both single-cell mechanics and microrheology study of asphalt binders. Fiber optical trapping system is being used to study mechanical properties of viscoelastic hydrogel, as an important extra cellular matrix (ECM) material that is used to understand the force propagation on cell membranes on 2D substrates or in 3D compartments. Moreover, the fiber optical trapping system has also been demonstrated to measure the cellular response to the external mechanical stimuli. Direct measurements of cellular traction forces in 3D compartments are underway. In addition, fiber optical trapping systems are used to measure the microscale viscoelastic properties of asphalt binders, in order to improve the fundamental understanding of the relationship between mechanical and chemical properties of asphalt binders. This fundamental understanding could help targeted asphalt recycling and pavement maintenance. Fiber optical trapping systems are versatile and highly potential tools that can find applications in various areas ranging from mechanobiology to complex fluids.

  5. Improved Optical Fiber Chemical Sensors

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1994-01-01

    Calculations, based on exact theory of optical fiber, have shown how to increase optical efficiency sensitivity of active-core, step-index-profile optical-fiber fluorosensor. Calculations result of efforts to improve efficiency of optical-fiber chemical sensor of previous concept described in "Making Optical-Fiber Chemical Sensors More Sensitive" (LAR-14525). Optical fiber chemical detector of enhanced sensitivity made in several configurations. Portion of fluorescence or chemiluminescence generated in core, and launched directly into bound electromagnetic modes that propagate along core to photodetector.

  6. Amylin Detection with a Miniature Optical-Fiber Based Sensor

    NASA Astrophysics Data System (ADS)

    Liu, Zhaowen; Ann, Matsko; Hughes, Adam; Reeves, Mark

    We present results of a biosensor based on shifts in the localized surface plasmon resonance of gold nanoparticles self-assembled on the end of an optical fiber. This system allows for detection of protein expression in low sensing volumes and for scanning in cell cultures and tissue samples. Positive and negative controls were done using biotin/avidin and the BSA/Anti-BSA system. These demonstrate that detection is specific and sensitive to nanomolar levels. Sensing of amylin, an important protein for pancreatic function, was performed with polyclonal and monoclonal antibodies. The measured data demonstrates the difference in sensitivity to the two types of antibodies, and titration experiments establish the sensitivity of the sensor. Further experiments demonstrate that the sensor can be regenerated and then reused.

  7. A film pressure sensor based on optical fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Zhang, Zhichun; Deng, Gang; Dai, Yongbo; Liu, Yanju; Leng, Jinsong

    2010-03-01

    The measurement of pressure is essential for the design and flying controlling of aircraft. In order to measure the surface pressures of the aircraft, the common pressure tube method and Pressure sensitive paint measurement method have their own disadvantages, and are not applicable to all aircraft structures and real time pressure monitoring. In this paper, a novel thin film pressure sensor based on Fiber Bragg Grating (FBG) is proposed, using FBG measuring the tangential strain of the disk sensing film. Theoretical circle strain of the disk sensing film of the pressure sensor under pressure and temperature variation are analyzed, and the linear relationship between FBG center wavelength shift and pressure, temperature variation is gotten. The pressure and temperature calibration experiments prove the theoretical analysis. But the calibration sensing parameters are small than the calculating ones, which is caused by the constraint of optical fibre to the thin sensing film.

  8. Optical fiber interferometric spectrometer

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Li, Baosheng; Liu, Yan; Zhai, Yufeng; Wang, An

    2006-02-01

    We design an optical fiber spectrometer based on optical fiber Mach-Zehnder interferometer. In optical fiber Fourier transform spectrometer spectra information is obtained by Fourier transform of interferogram, which recording intensity change vs. optical path difference. Optical path difference is generated by stretching one fiber arm which wound around fiber stretch drive by high power supply. Information from detector is linear with time rather than with optical path difference. In order to obtain high accuracy wavenumber, reference beam is used to control the optical path difference. Optical path difference is measured by reference laser interference fringe. Interferogram vs. optical path difference is resampled by Brault algorithm with information from reference beam and test beam. In the same condition, one-sided interferogram has higher resolution than that of two-sided interferogram. For one-sided interferogram, zero path difference position must be determined as accurately as possible, small shift will result in phase error. For practical experiment in laboratory, position shift is inevitable, so phase error correction must be considered. Zero order fringe is determined by curve fitting. Spectrum of light source is obtained from one-sided interferogram by Fourier cosine transform. A spectral resolution of about ~3.1 cm -1 is achieved. In practice, higher resolution is needed. This compact equipment will be used in emission spectra and absorption spectra, especially in infrared region.

  9. Reflection based Extraordinary Optical Transmission Fiber Optic Probe for Refractive Index Sensing.

    PubMed

    Lan, Xinwei; Cheng, Baokai; Yang, Qingbo; Huang, Jie; Wang, Hanzheng; Ma, Yinfa; Shi, Honglan; Xiao, Hai

    2014-03-31

    Fiber optic probes for chemical sensing based on the extraordinary optical transmission (EOT) phenomenon are designed and fabricated by perforating subwavelength hole arrays on the gold film coated optical fiber endface. The device exhibits a red shift in response to the surrounding refractive index increases with high sensitivity, enabling a reflection-based refractive index sensor with a compact and simple configuration. By choosing the period of hole arrays, the sensor can be designed to operate in the near infrared telecommunication wavelength range, where the abundant source and detectors are available for easy instrumentation. The new sensor probe is demonstrated for refractive index measurement using refractive index matching fluids. The sensitivity reaches 573 nm/RIU in the 1.333~1.430 refractive index range.

  10. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor); Mattes, Brenton L. (Inventor); Charnetski, Clark J. (Inventor)

    1999-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  11. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor)

    2000-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  12. Fiber optic connector

    DOEpatents

    Rajic, Slobodan; Muhs, Jeffrey D.

    1996-01-01

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled.

  13. Fiber optic connector

    DOEpatents

    Rajic, S.; Muhs, J.D.

    1996-10-22

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded are disclosed. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled. 3 figs.

  14. In-Fiber Magneto-Optic Devices Based on Ultrahigh Verdet Constant Organic Materials and Holey Fibers

    DTIC Science & Technology

    2009-02-02

    2009 2. REPORT TYPE Final Performance Report 3. DATES COVERED (From - To) 12/01/2005 to 11/30/200! 4. TITLE AND SUBTITLE In-Fiber Magneto -Optic...code) (520) 621-4649 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39 18 FINAL REPORT ’In-fiber Magneto -optic Devices Based on Ultrahigh...0094 Grant number # FA9550-06-1-0039 Nasser Peyghambarian, Robert A. Norwood, Andre Persoons 20090324168 In-fiber Magneto -optic Devices Based on

  15. Cholesterol detection using optical fiber sensor based on intensity modulation

    NASA Astrophysics Data System (ADS)

    Budiyanto, Moh; Suhariningsih; Yasin, Moh

    2017-05-01

    The aim of the research is to detect the concentration of cholesterol by using the principle that a laser beam propagation is guided by optical fiber bundle in term of intensity profile through solution with vary concentrations of cholesterol from 0 to 300 ppm. The mechanism of cholesterol concentration detection is the propagation of He-Ne laser beam with wavelength of 632.5 nm through a fiber optic bundle and a solution of cholesterol, then is reflected by a flat mirror and enters receiving fiber. This signal is captured by a silicon detector (SL-818, Newport) in the form of output voltage. The result showed that the output voltage decrease linearly with the increase of concentration of cholesterol with a sensitivity of 0.0004 mV/ppm and the linearity more than 97%.

  16. Switchable multiwavelength erbium doped fiber laser based on a nonlinear optical loop mirror incorporating multiple fiber Bragg gratings.

    PubMed

    Tran, Thi Van Anh; Lee, Kwanil; Lee, Sang Bae; Han, Young-Geun

    2008-02-04

    We propose and experimentally demonstrate a switchable multiwavelength erbium doped fiber laser based on a highly nonlinear dispersion shifted fiber and multiple fiber Bragg gratings. A nonlinear optical loop mirror based on a highly nonlinear dispersion shifted fiber is implemented in the ring laser cavity to stabilize the multiwavelength output at room temperature. Multiple fiber Bragg gratings with the wavelength spacing of 0.8 nm are connected with an arrayed waveguide grating to establish a multichannel filter. The high quality of the multiwavelength output with a high extinction ratio of ~60 dB and high output flatness of ~0.5 dB is realized. The nonlinear polarization rotation based on the nonlinear optical loop mirror can provide the switching performance of the proposed multiwavelength fiber laser. The lasing wavelength can be switched individually by controlling the polarization controller and the cavity loss.

  17. A FrFT based method for measuring chromatic dispersion and SPM in optical fibers

    NASA Astrophysics Data System (ADS)

    Yang, Aiying; Liu, Xiang; Chen, Xiaoyu

    2017-03-01

    A fractional Fourier transformation based method is proposed to blindly estimate the chromatic dispersion and self phase modulation in optical fibers. The experimental results demonstrate that up to 20,000 ps/nm accumulative chromatic dispersion of a fiber link is measured with the error less than 0.8%. If the chromatic dispersion is compensated by multiplying an opposite chromatic dispersion function in frequency domain, the 1st order chirp parameter caused by SPM in an optical fiber communication system can be measured by fractional Fourier transformation based method, i.e. the accumulative SPM of a fiber link can be quantitatively measured. The results of equalizing chromatic dispersion and self phase modulation in an optical fiber communication system demonstrated that the FrFT based method is promising to blindly monitor and equalize the chromatic dispersion and SPM of the fiber link in an optical network with dynamical routing function.

  18. Dual-parameter optical fiber sensor based on concatenated down-taper and multimode fiber

    NASA Astrophysics Data System (ADS)

    Tong, Zhengrong; Luan, Panpan; Cao, Ye; Zhang, Weihua; Su, Jun

    2016-01-01

    A novel dual-parameter optical fiber sensor based on a single-mode fiber (SMF) down-taper and multimode fiber (MMF) is proposed and demonstrated. The sensor structure is formed by cascading a down-taper and MMF through a segment of SMF. The transmission spectrum exhibits response of the interference between core and different cladding modes. Two interference dips can be observed within a certain range of detection. Due to the different wavelength shifts of the selected two dips, simultaneous measurement of temperature and liquid level can be achieved. Experiment results indicate a good linear relation between the wavelength shift and external parameters (temperature and liquid level). The measured temperature sensitivities are 0.02 nm/°C and 0.031 nm/°C, and liquid level sensitivities are 0.022 nm/mm and 0.07 nm/mm, respectively. In addition, the fiber sensor has the advantages of compact size, simple fabrication and cost-effective.

  19. Fully switchable multi-wavelength fiber laser based interrogator system for remote and versatile fiber optic sensors multiplexing structures

    NASA Astrophysics Data System (ADS)

    Bravo Acha, M.; DeMiguel-Soto, V.; Ortigosa, A.; Lopez-Amo, M.

    2014-05-01

    A novel interrogation system for multiple fiber optic sensor technologies and based on a fully-switchable multiwavelength fiber laser (MWFL) is proposed and experimentally demonstrated. The MWFL can generate any wavelength combination with a minimum emission line distance up to 50 GHz fitting the ITU grid specifications. On the other hand, as proof of concept sensor network, two different networks were multiplexed by using a remote powered by light fiber optic switch. They are based on two different sensor technologies. One of them based on PCF intensity sensors and multiplexed by using an 8 port WDM and the other one based on wavelength temperature/strain FBG sensors.

  20. Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide

    NASA Astrophysics Data System (ADS)

    Wang, Youqing; Shen, Changyu; Lou, Weimin; Shentu, Fengying; Zhong, Chuan; Dong, Xinyong; Tong, Limin

    2016-07-01

    A fiber optic relative humidity (RH) sensor based on the tilted fiber Bragg grating (TFBG) coated with graphene oxide (GO) film was presented. Amplitudes of the cladding mode resonances of the TFGB varies with the water sorption and desorption processes of the GO film, because of the strong interactions between the excited backward propagating cladding modes and the GO film. By detecting the transmission intensity changes of the cladding mode resonant dips at the wavelength of 1557 nm, the maximum sensitivity of 0.129 dB/%RH with a linear correlation coefficient of 99% under the RH range of 10-80% was obtained. The Bragg mode of TFBG can be used as power or wavelength references, since it is inherently insensitive to RH changes. In addition, the proposed humidity sensor shows a good performance in repeatability and stability.

  1. A Highly Sensitive Fiber Optic Sensor Based on Two-Core Fiber for Refractive Index Measurement

    PubMed Central

    Guzmán-Sepúlveda, José Rafael; Guzmán-Cabrera, Rafael; Torres-Cisneros, Miguel; Sánchez-Mondragón, José Javier; May-Arrioja, Daniel Alberto

    2013-01-01

    A simple and compact fiber optic sensor based on a two-core fiber is demonstrated for high-performance measurements of refractive indices (RI) of liquids. In order to demonstrate the suitability of the proposed sensor to perform high-sensitivity sensing in a variety of applications, the sensor has been used to measure the RI of binary liquid mixtures. Such measurements can accurately determine the salinity of salt water solutions, and detect the water content of adulterated alcoholic beverages. The largest sensitivity of the RI sensor that has been experimentally demonstrated is 3,119 nm per Refractive Index Units (RIU) for the RI range from 1.3160 to 1.3943. On the other hand, our results suggest that the sensitivity can be enhanced up to 3485.67 nm/RIU approximately for the same RI range. PMID:24152878

  2. Note: automatic laser-to-optical-fiber coupling system based on monitoring of Raman scattering signal.

    PubMed

    Park, Kyoung-Duck; Kim, Yong Hwan; Park, Jin-Ho; Yim, Sang-Youp; Jeong, Mun Seok

    2012-09-01

    We developed an automatic laser-to-optical-fiber coupling (ALOC) system that is based on the difference in the Raman scattering signals of the core and cladding of the optical fiber. This system can be easily applied to all fields of fiber optics since it can perform automatic optical coupling within a few seconds regardless of the core size or the condition of the output end of the optical fiber. The coupling time for a commercial single-mode fiber for a wavelength of 632.8 nm (core diameter: 9 μm, cladding diameter: 125 μm) is ~1.5 s. The ALOC system was successfully applied to single-mode-fiber Raman endoscopy for the measurement of the Raman spectrum of carbon nanotubes.

  3. Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen; Chan, Patrick

    2014-01-01

    The objective of this task is to investigate, develop, and demonstrate a low-cost swept lasing light source for NASA DFRC's fiber optics sensing system (FOSS) to perform structural health monitoring on current and future aerospace vehicles. This is the regular update of the Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems website.

  4. Hybrid Fiber Optics

    SciTech Connect

    Allison, Stephen W; Simpson, John T; Gillies, George

    2010-01-01

    Instruments and devices based on optical fiber were originally simple and passive. That has changed. A variety of devices uses optical fiber for sensing, communications and various optoelectronic functions. This paper discusses the creation of a hybrid optical fiber that incorporates not just the light transmission function but other types of materials and new multiple fiber arrangements. Recent experiences with a fiber draw tower reveal new possibilities for achieving multifunctional devices able to perform diverse instrumentation sensing applications. This is achievable even with feature sizes, when desired, on the nanoscale. For instance, fiber comprised of one or more light guides and one or more electrically conducting wires is feasible. This combination of optical fiber and metal wire may be termed a wiber . The wiber could determine temperature and proximity to surfaces, detect radio-frequency radiation, and provide electrical power. At the same time, a wiber would have the capability to simultaneously transmit light where the light is utilized to sense temperature and proximity and give illumination. There are many possible uses--depending on design and configuration--cutting across many technologies and programs.

  5. Virtual-reality-based educational laboratories in fiber optic engineering

    NASA Astrophysics Data System (ADS)

    Hayes, Dana; Turczynski, Craig; Rice, Jonny; Kozhevnikov, Michael

    2014-07-01

    Researchers and educators have observed great potential in virtual reality (VR) technology as an educational tool due to its ability to engage and spark interest in students, thus providing them with a deeper form of knowledge about a subject. The focus of this project is to develop an interactive VR educational module, Laser Diode Characteristics and Coupling to Fibers, to integrate into a fiber optics laboratory course. The developed module features a virtual laboratory populated with realistic models of optical devices in which students can set up and perform an optical experiment dealing with laser diode characteristics and fiber coupling. The module contains three increasingly complex levels for students to navigate through, with a short built-in quiz after each level to measure the student's understanding of the subject. Seventeen undergraduate students learned fiber coupling concepts using the designed computer simulation in a non-immersive desktop virtual environment (VE) condition. The analysis of students' responses on the updated pre- and post tests show statistically significant improvement of the scores for the post-test as compared to the pre-test. In addition, the students' survey responses suggest that they found the module very useful and engaging. The conducted study clearly demonstrated the feasibility of the proposed instructional technology for engineering education, where both the model of instruction and the enabling technology are equally important, in providing a better learning environment to improve students' conceptual understanding as compared to other instructional approaches.

  6. High performance fiber-based optical coherent detection

    NASA Astrophysics Data System (ADS)

    Chen, Youming

    The sensitivity of signal detection is of major interest for optical high speed communication systems and LIght Detection And Ranging (lidar) systems. Sensitive receivers in fiber-optical networks can reduce transmitter power or amplifier amplification requirements and extend link spans. High receiver sensitivity allows links to be established over long distances in deep space satellite communication systems and large atmospheric attenuation to be overcome in terrestrial free space communications. For lidar systems, the sensitivity of signal detection determines how far and how accurately the lidar can detect the remote objects. Optical receivers employ either coherent or direct detection. In addition to amplitude, coherent detection extracts frequency and phase information from received signals, whereas direct detection extracts the received pulse amplitude only. In theory, coherent detection should yield the highest receiver sensitivity. Another possible technique to improve detection sensitivity is to employ a fiber preamplifier. This technique has been successfully demonstrated in direct detection systems but not in the coherent detection systems. Due to the existence of amplified spontaneous emission (ASE) inside the amplifier, the sensitivity of coherent detection varies with the data rate or pulse rate. For this reason, optically preamplified coherent detection is not used in applications as commonly as optically preamplified direct detection. We investigate the performance of coherent detection employing a fiber amplifier and time-domain-filter. The fiber amplifier is used as the optical preamplifier of the coherent detection system. To reduce the noise induced by the preamplifier to a maximum extent, we investigate the noise properties for both a single pass amplifier and a double pass amplifier. The relative intensity noise and linewidth broadening caused by ASE have been experimentally characterized. The results show that the double pass amplifier has

  7. Tunable and switchable multi-wavelength fiber laser based on semiconductor optical amplifier and twin-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Kim, Bongkyun; Han, Jihee; Chung, Youngjoo

    2012-02-01

    Multi-wavelength fiber lasers have attracted a lot of interest, recently, because of their potential applications in wavelength-division-multiplexing (WDM) systems, optical fiber sensing, and fiber-optics instruments, due to their numerous advantages such as multiple wavelength operation, low cost, and compatibility with the fiber optic systems. Semiconductor optical amplifier (SOA)-based multi-wavelength fiber lasers exhibit stable operation because of the SOA has the property of primarily inhomogeneous broadening and thus can support simultaneous oscillation of multiple lasing wavelengths. In this letter, we propose and experimentally demonstrate a switchable multi-wavelength fiber laser employing a semiconductor optical amplifier and twin-core photonic crystal fiber (TC-PCF) based in-line interferometer comb filter. The fabricated two cores are not symmetric due to the associated fiber fabrication process such as nonuniform heat gradient in furnace and asymmetric microstructure expansion during the gas pressurization which results in different silica strut thickness and core size. The induced asymmetry between two cores considerably alters the linear power transfer, by seriously reducing it. These nominal twin cores form effective two optical paths and associated effective refractive index difference. The in-fiber comb filter is effectively constructed by splicing a section of TC-PCF between two single mode fibers (SMFs). The proposed laser can be designed to operate in stable multi-wavelength lasing states by adjusting the states of the polarization controller (PC). The lasing modes are switched by varying the state of PC and the change is reversible. In addition, we demonstrate a tunable multi-wavelength fiber laser operation by applying temperature changes to TC-PCF in the multi-channel filter.

  8. Fiber Optic Surface Plasmon Resonance-Based Biosensor Technique: Fabrication, Advancement, and Application.

    PubMed

    Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang

    2016-05-03

    Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed.

  9. Fiber optics for controls

    NASA Technical Reports Server (NTRS)

    Seng, Gary T.

    1990-01-01

    The design, development, and testing of a fiber optic integrated propulsion/flight control system for an advanced supersonic dash aircraft (flies at supersonic speeds for short periods of time) is the goal of the joint NASA/DOD Fiber Optic Control System Integration (FOCSI) program. Phase 1 provided a comparison of electronic and optical control systems, identified the status of current optical sensor technology, defined the aircraft sensor/actuator environment, proposed architectures for fully optical control systems, and provided schedules for development. Overall, it was determined that there are sufficient continued efforts to develop such a system. It was also determined that it is feasible to build a fiber optic control system for the development of a data base for this technology, but that further work is necessary in sensors, actuators, and components to develop an optimum design, fully fiber optic integrated control system compatible with advanced aircraft environments. Phase 2 is to design, construct, and ground test a fly by light control system. Its first task is to provide a detailed design of the electro-optic architecture.

  10. Fiber optic monitoring device

    DOEpatents

    Samborsky, J.K.

    1993-10-05

    A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information. 4 figures.

  11. Fiber optic monitoring device

    SciTech Connect

    Samborsky, J.K.

    1992-12-31

    This invention is comprised of a device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information.

  12. Optical fiber load sensor based on a semi-auxetic structure: a proof of concept

    NASA Astrophysics Data System (ADS)

    Schenato, Luca; Pasuto, Alessandro; Galtarossa, Andrea; Palmieri, Luca

    2016-05-01

    In this work a quasi-distributed optical fiber load sensor based on a semi-auxetic structure is presented. By concatenating sections with positive Poisson's ratio to sections with negative one it is possible to precisely encode the distributed load into a strain exerted on a fiber. The sensor is described and a simple proof of concept is built and tested. The fiber is interrogated by means of optical frequency domain reflectometry. The proposed sensor represents just one example of the potential applications of auxetic and semi-auxetic structures and materials in optical fiber sensors development.

  13. Effect of thermally induced strain on optical fiber sensors embedded in cement-based composites

    NASA Astrophysics Data System (ADS)

    Yuan, Li-bo; Zhou, Li-min; Jin, Wei; Lau, K. T.; Poon, Chi-kin

    2003-04-01

    A critical issue in developing a fiber-optic strain gauge is its codependency on temperature and strain. Any changes in the output of the optical fiber sensor due to its own thermal sensitivity and the thermal expansion of the most material will be misinterpreted as a change in shape-induced strain in the structure. This codependence is often referred to as thermally induced apparent strain or simply apparent strain. In this paper, an analytical model was developed to evaluate the thermally induced strain in fiber optic sensors embedded in cement-based composites. The effects of thermal induced strain on embedded optical fiber were measured with a white-light fiber-optic Michelson sensing interferometer for a number of cement-based host materials.

  14. Optical flowmeter using a modal interferometer based on a single nonadiabatic fiber taper.

    PubMed

    Frazão, O; Caldas, P; Araújo, F M; Ferreira, L A; Santos, J L

    2007-07-15

    A novel in-fiber modal interferometer is presented that is based on a nonadiabatic biconical fused taper that couples light between the cladding and the core, combined with the Fresnel reflection at the fiber end. It is observed that the returned light from this fiber structure shows a channeled spectrum similar to that of a two-wave Michelson interferometer. The application of this device as a fiber optic flowmeter sensor is demonstrated.

  15. Intellectual parachute and balloon systems based on fiber optic technologies

    NASA Astrophysics Data System (ADS)

    Nikolaev, Alexander M.; Nikolaev, Pavel M.; Nikolaev, Yuri M.; Morozov, Oleg G.; Zastela, Mikhail Yu.; Morozov, Gennady A.

    2014-04-01

    For any parachute system, it is important to predict the opening forces it will experience in order to make a safe and economic choice of materials to be used. Developed fiber optic sensors on two twisted fibers with the locked ends and variable twisting step have been used for creation of intellectual knots of perspective vehicles, in particular, parachute canopies and slings. We decided to change our measuring procedure from measuring of transmitted power or its Raleigh scattering in different ends of twisted fibers onto Brillouin scattering characterization. For this situation we offered the kind of method of frequency variation to get the information about the frequency shift and Q-factor of the Brillouin scattering in each sensor.

  16. Optical Fiber Communications

    NASA Astrophysics Data System (ADS)

    Singal, T. L.

    2017-01-01

    Preface; Dedication; List of figures; List of tables; Acknowledgements; 1. Introduction; 2. Basics of optical fibers; 3. Optical sources and transmitters; 4. Optical receivers; 5. Optical amplifiers; 6. Dispersion management techniques; 7. WDM concepts and components; 8. Optical measurements; Appendix A. Fiber optic sensors; Appendix B. Radio over fiber; Appendix C. Wireless optics; Appendix D. Model test papers; Appendix E. Abbreviations and acronyms; References; Index.

  17. Fiber optic-based optical coherence tomography (OCT) for dental applications

    NASA Astrophysics Data System (ADS)

    Everett, Matthew J.; Colston, Bill W., Jr.; Da Silva, Luiz B.; Otis, Linda L.

    1998-09-01

    We have developed a hand-held fiber optic based optical coherence tomography (OCT) system for scanning of the oral cavity. We have produced, using this scanning device, in vivo cross-sectional images of hard and soft dental tissues in human volunteers. Clinically relevant anatomical structures, including the gingival margin, periodontal sulcus, and dento- enamel junction, were visible in all the images. The cemento- enamel junction and the alveolar bone were identified in approximately two thirds of the images. These images represent, or our knowledge, the first in vivo OCT images of human dental tissue.

  18. Research on vision-based error detection system for optic fiber winding

    NASA Astrophysics Data System (ADS)

    Lu, Wenchao; Li, Huipeng; Yang, Dewei; Zhang, Min

    2011-11-01

    Optic fiber coils are the hearts of fiber optic gyroscopes (FOGs). To detect the irresistible errors during the process of winding of optical fibers, such as gaps, climbs and partial rises between fibers, when fiber optic winding machines are operated, and to enable fully automated winding, we researched and designed this vision-based error detection system for optic fiber winding, on the basis of digital image collection and process[1]. When a Fiber-optic winding machine is operated, background light is used as illumination system to strength the contrast of images between fibers and background. Then microscope and CCD as imaging system and image collecting system are used to receive the analog images of fibers. After that analog images are shifted into digital imagines, which can be processed and analyzed by computers. Canny edge detection and a contour-tracing algorithm are used as the main image processing method. The distances between the fiber peaks were then measured and compared with the desired values. If these values fall outside of a predetermined tolerance zone, an error is detected and classified either as a gap, climb or rise. we used OpenCV and MATLAB database as basic function library and used VC++6.0 as the platform to show the results. The test results showed that the system was useful, and the edge detection and contour-tracing algorithm were effective, because of the high rate of accuracy. At the same time, the results of error detection are correct.

  19. Design and test of multimode interference based optical fiber temperature sensors

    NASA Astrophysics Data System (ADS)

    Li, Enbang

    2008-12-01

    Fiber-optic temperature sensors offer unique advantages, such as immunity to electromagnetic interferences, stability, repeatability, durability against harsh environments, high sensitivity and resolution, and fast response. Therefore, optical fiber sensors have been widely adopted and applied in various areas for temperature measurements. It has been demonstrated that by using multimode interferences in a segment of multimode fiber, wavelength-encoded fiber optic temperature sensing can be achieved. The advantages of this kind of temperature sensors include the extremely simple structure and the ability for high-temperature measurements. In this work, we investigate the interference of core mode and cladding modes in double cladding fibers. Analysis and simulations are carried out in order to identify the optimal parameters of the temperature sensor. Practical design of the multimode interference based optical fiber temperature sensors is investigated, and sensing probes are fabricated and tested. The design details, temperature measurement experiments, and test results are presented in this paper.

  20. An experimental sonobuoy system based on fiber optic vector hydrophone

    NASA Astrophysics Data System (ADS)

    Liu, Wen; Wang, Jun; Zhu, Jing; Wu, Yanqun; Ma, Lina; Hu, Zhengliang

    2016-10-01

    A sonobuoy system based on a fiber optic vector hydrophone (FOVH) is demonstrated. Phase Generated Carrier- Arctangent (PGC-ATAN) demodulation algorithm was used to acquire real-time underwater acoustic signals. After the optimal design of the laser configuration, the background noise of the FOVH is -104.3dB re rad √ Hz at 1 kHz, with an acceleration sensitivity of 41.5dB re rad/g which allows the system detecting signals at DSS0. The theoretical derivation of FOVH directivity is proposed and the design criterion is discussed. The ratio of the minimum to the maximum amplitude of the FOVH directivity is -35dB by symmetrical structure design of the FOVH. A lake trial shows that the maximum detection range of the sonobuoy system is more than 15km for an acoustic signal of 210dB re μPa, and the bearing of a moving target can be estimated.

  1. Fast fiber-optic tunable filter based on axial compression on a fiber Bragg grating.

    PubMed

    Zu, Wen; Gu, Xijia

    2006-09-01

    We describe the design, fabrication, and performance of a fiber Bragg grating-based tunable optic filter. The filter, driven by two piezostacks, consists of a flexural hinge structure for displacement magnification and a fiber-ferrule assembly for axial compression of the fiber grating. Finite-element analysis was used to design the mechanical structure to achieve the required displacement magnification and the force for grating compression. A passive thermal compensation design was implemented to reduce thermal-induced wavelength drift. A feedback control system with a linear variable differential transformer was employed to control the displacement for accurate wavelength tuning and fine-tuning resolution. This tunable filter has achieved a closed-loop switching time of 17.3 ms, and a passive thermal compensation that reduced the thermal drift of the Bragg wavelength to 1.5 pm/C. The flexural-hinge structure that offers negligible backlash, noise-free motion, no need of lubricants, and no wear ensures its long-term reliability.

  2. Design optical antenna and fiber coupling system based on the vector theory of reflection and refraction.

    PubMed

    Jiang, Ping; Yang, Huajun; Mao, Shengqian

    2015-10-05

    A Cassegrain antenna system and an optical fiber coupling system which consists of a plano-concave lens and a plano-convex lens are designed based on the vector theory of reflection and refraction, so as to improve the transmission performance of the optical antenna and fiber coupling system. Three-dimensional ray tracing simulation are performed and results of the optical aberrations calculation and the experimental test show that the aberrations caused by on-axial defocusing, off-axial defocusing and deflection of receiving antenna can be well corrected by the optical fiber coupling system.

  3. An interferometric vibration sensor based on a four-core optical fiber

    NASA Astrophysics Data System (ADS)

    Gökbulut, Belkıs.; Inci, M. Naci

    2016-04-01

    In this paper, an interferometric fiber optic vibration sensor based on a four-core optical fiber is described. When the light is coupled into the four cores, each core acts as a mutually coherent waveguide with the other ones, which allows obtaining an interference fringe pattern at the far field. Vibrating a section of the four-core optical fiber causes a path difference between the light beams guiding in the separate cores, which results in a shift in the fringe pattern. Such a mechanism allows one to relate the fringe shift to the vibration amplitude and frequency. In this study, a source, which is capable to generate 100 Hz frequency sound waves is attached to the optical fiber to maintain vibration of the section of the fiber. A single slit and a photodetector are used to detect the shifting of the fringe pattern that causes a change in the phase of the guiding light. When a He-Ne laser beam is coupled into the optical fiber, the structured fringe pattern is projected onto the slit behind the photodetector, then a small part of the fringe pattern is analysed. Thus, an interferometric fiber optic vibration sensor based on a four-core optical fiber, which has a simple structure and high sensitivity, is accomplished.

  4. Fiber optic hot-wire flowmeter based on a metallic coated hybrid long period grating/fiber Bragg grating structure.

    PubMed

    Caldas, Paulo; Jorge, Pedro A S; Rego, Gaspar; Frazão, Orlando; Santos, José Luís; Ferreira, Luís Alberto; Araújo, Francisco

    2011-06-10

    In this work an all-optical hot-wire flowmeter based on a silver coated fiber combining a long period grating and a fiber Bragg grating (FBG) structure is proposed. Light from a pump laser at 1480  nm propagating down the fiber is coupled by the long period grating into the fiber cladding and is absorbed by the silver coating deposited on the fiber surface over the Bragg grating structure. This absorption acts like a hot wire raising the fiber temperature locally, which is effectively detected by the FBG resonance shift. The temperature increase depends on the flow speed of the surrounding air, which has the effect of cooling the fiber. It is demonstrated that the Bragg wavelength shift can be related to the flow speed. A flow speed resolution of 0.08  m/s is achieved using this new configuration.

  5. Frequency stabilization for space-based missions using optical fiber interferometry.

    PubMed

    McRae, Terry G; Ngo, Silvie; Shaddock, Daniel A; Hsu, Magnus T L; Gray, Malcolm B

    2013-02-01

    We present measurement results for a laser frequency reference, implemented with an all-optical fiber Michelson interferometer, down to frequencies as low as 1 mHz. Optical fiber is attractive for space-based operations as it is physically robust, small and lightweight. The small free spectral range of fiber interferometers also provides the possibility to prestabilize two lasers on two distant spacecraft and ensures that the beatnote remains within the detector bandwidth. We demonstrate that these fiber interferometers are viable candidates for future laser-based gravity recovery and climate experiment missions requiring a stability of 30 Hz/√Hz over a 10 mHz-1 Hz bandwidth.

  6. Fiber Optics Technology.

    ERIC Educational Resources Information Center

    Burns, William E.

    1986-01-01

    Discusses various applications of fiber optics technology: information systems, industrial robots, medicine, television, transportation, and training. Types of jobs that will be available with fiber optics training (such as electricians and telephone cable installers and splicers) are examined. (CT)

  7. Fiber Optics Instrumentation Development

    NASA Technical Reports Server (NTRS)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  8. Fiber Optics Technology.

    ERIC Educational Resources Information Center

    Burns, William E.

    1986-01-01

    Discusses various applications of fiber optics technology: information systems, industrial robots, medicine, television, transportation, and training. Types of jobs that will be available with fiber optics training (such as electricians and telephone cable installers and splicers) are examined. (CT)

  9. Spatial Frequency Multiplexing of Fiber-Optic Interferometric Refractive Index Sensors Based on Graded-Index Multimode Fibers

    PubMed Central

    Liu, Li; Gong, Yuan; Wu, Yu; Zhao, Tian; Wu, Hui-Juan; Rao, Yun-Jiang

    2012-01-01

    Fiber-optic interferometric sensors based on graded-index multimode fibers have very high refractive-index sensitivity, as we previously demonstrated. In this paper, spatial-frequency multiplexing of this type of fiber-optic refractive index sensors is investigated. It is estimated that multiplexing of more than 10 such sensors is possible. In the multiplexing scheme, one of the sensors is used to investigate the refractive index and temperature responses. The fast Fourier transform (FFT) of the combined reflective spectra is analyzed. The intensity of the FFT spectra is linearly related with the refractive index and is not sensitive to the temperature.

  10. Fiber optic sensors

    NASA Technical Reports Server (NTRS)

    Hesse, J.; Sohler, W.

    1984-01-01

    A survey of the developments in the field of fiber optics sensor technology is presented along with a discussion of the advantages of optical measuring instruments as compared with electronic sensors. The two primary types of fiber optics sensors, specifically those with multiwave fibers and those with monowave fibers, are described. Examples of each major sensor type are presented and discussed. Multiwave detectors include external and internal fiber optics sensors. Among the monowave detectors are Mach-Zender interferometers, Michelson interferometers, Sagnac interferometers (optical gyroscopes), waveguide resonators, and polarimeter sensors. Integrated optical sensors and their application in spectroscopy are briefly discussed.

  11. Study on the intelligent self-healing fiber optic microbend sensors based on the photocurable material

    NASA Astrophysics Data System (ADS)

    Li, Peng; Zhao, Zhimin; Hong, Xiaoqin; Yu, Hongmin

    2008-12-01

    The paper presents a novel fiber optic microbend sensor with intelligent self-healing function, which is based upon the photocurable technology and the mode-coupling theory. In the research, a kind of photocurable material is developed and injected into the flexible hollow-center fiber embodying the sensitive optic fiber. According to the theory of fiber optic microbend sensors, the microbending mechanism causes part of the optical power to be radiated out of the fiber due to the mode-coupling. Especially when the damage of the sensitive optic fiber occurs due to the extremely small bending radius, the radiation power will increase rapidly. We use the radiation power as the curing light to initiate the photopolymerization of the photocurable material surrounding the sensitive optic fiber. The scale and speed of the photochemistry reaction mainly depend on the radiation power and the microbend degree. By this way, the photocurable material can repair the damaged area in real time according to the damaged state. This paper describes the design and performances of the intelligent self-healing fiber optic microbend sensor in detail. The experimental results reveal that the sensor has the excellent sensing property and can adjust its repairing ability according to the damaged degree automatically.

  12. Demonstration of a refractometric sensor based on an optical micro-fiber three-beam interferometer

    NASA Astrophysics Data System (ADS)

    Han, Chunyang; Ding, Hui; Lv, Fangxing

    2014-12-01

    With diameter close to the wavelength of the guided light and high index contrast between the fiber and the surrounding, an optical micro-fiber shows a variety of interesting waveguiding properties, including widely tailorable optical confinement, strong evanescent fields and waveguide dispersion. Among various micro-fiber applications, optical sensing has been attracting increasing research interest due to its possibilities of realizing miniaturized fiber optic sensors with small footprint, high sensitivity, and low optical power consumption. Typical micro-fiber based sensing structures, including Michelson interferometer, Mach-Zenhder interferometer, Fabry-Perot interferometer, micro-fiber ring resonator, have been proposed. The sensitivity of these structures heavily related to the fraction of evanescent field outside micro-fiber. In this paper, we report the first theoretical and experimental study of a new type of refractometric sensor based on micro-fiber three-beam interferometer. Theoretical and experimental analysis reveals that the sensitivity is not only determined by the fraction of evanescent field outside the micro-fiber but also related to the values of interferometric arms. The sensitivity can be enhanced significantly when the effective lengths of the interferometric arms tends to be equal. We argue that this has great potential for increasing the sensitivity of refractive index detection.

  13. Demonstration of a refractometric sensor based on an optical micro-fiber three-beam interferometer.

    PubMed

    Han, Chunyang; Ding, Hui; Lv, Fangxing

    2014-12-16

    With diameter close to the wavelength of the guided light and high index contrast between the fiber and the surrounding, an optical micro-fiber shows a variety of interesting waveguiding properties, including widely tailorable optical confinement, strong evanescent fields and waveguide dispersion. Among various micro-fiber applications, optical sensing has been attracting increasing research interest due to its possibilities of realizing miniaturized fiber optic sensors with small footprint, high sensitivity, and low optical power consumption. Typical micro-fiber based sensing structures, including Michelson interferometer, Mach-Zenhder interferometer, Fabry-Perot interferometer, micro-fiber ring resonator, have been proposed. The sensitivity of these structures heavily related to the fraction of evanescent field outside micro-fiber. In this paper, we report the first theoretical and experimental study of a new type of refractometric sensor based on micro-fiber three-beam interferometer. Theoretical and experimental analysis reveals that the sensitivity is not only determined by the fraction of evanescent field outside the micro-fiber but also related to the values of interferometric arms. The sensitivity can be enhanced significantly when the effective lengths of the interferometric arms tends to be equal. We argue that this has great potential for increasing the sensitivity of refractive index detection.

  14. Two Fiber Optical Fiber Thermometry

    NASA Technical Reports Server (NTRS)

    Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.

    2000-01-01

    An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.

  15. Two Fiber Optical Fiber Thermometry

    NASA Technical Reports Server (NTRS)

    Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.

    2000-01-01

    An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.

  16. Fiber-based femtosecond optical frequency comb stabilized to iodine frequency standard

    NASA Astrophysics Data System (ADS)

    Bagayev, S. N.; Denisov, V. I.; Dychkov, A. S.; Koliada, N. A.; Nyushkov, B. N.; Pivtsov, V. S.; Farnosov, S. A.; Antropov, A. A.

    2017-01-01

    A fiber-based femtosecond optical frequency comb spanning wavelengths from 1 to 2 μm was stabilized precisely to an iodine frequency standard by means of heterodyne optical phase-locked loops. It enables transfer of frequency stability across electromagnetic spectrum and implementation of compact optical clocks with ∼10-15 long-term instability.

  17. Omnidirectional fiber optic tiltmeter

    DOEpatents

    Benjamin, B.C.; Miller, H.M.

    1983-06-30

    A tiltmeter is provided which is useful in detecting very small movements such as earth tides. The device comprises a single optical fiber, and an associated weight affixed thereto, suspended from a support to form a pendulum. A light source, e.g., a light emitting diode, mounted on the support transmits light through the optical fiber to a group of further optical fibers located adjacent to but spaced from the free end of the single optical fiber so that displacement of the single optical fiber with respect to the group will result in a change in the amount of light received by the individual optical fibers of the group. Photodetectors individually connectd to the fibers produce corresponding electrical outputs which are differentially compared and processed to produce a resultant continuous analog output representative of the amount and direction of displacement of the single optical fiber.

  18. Measurements of nonlinear optical fibers

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2003-10-01

    The paper is a tutorial and literature digest of chosen problems connected with specific measurement techniques of nonlinear optical fibers. Such fibers are used more and more frequently in active photonic devices and sources, nonlinear sensors and photonic functional devices. Nonlinear effects in optical fibers are also of concern in optical communications systems. This tutorial bases on (31) report and is supplemented with references digest.

  19. Tunable multiwavelength erbium-doped fiber laser based on nonlinear optical loop mirror and birefringence fiber filter

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Quan, Mingran; Tian, Jiajun; Yao, Yong

    2015-05-01

    A tunable multiwavelength erbium-doped fiber laser (MWEDFL) based on nonlinear optical loop mirror (NOLM) and tunable birefringence fiber filter (BFF) is proposed and demonstrated. By combination of intensity-dependent loss modulation induced by NOLM and pump power adjustment, the proposed laser can achieve independent control over the number of lasing lines, without affecting other important characteristics such as channel spacing and peak location. In addition, the laser allows wavelength tuning with both the peak location and the spectral range of lasing lines controllable. Specifically, the peak location of lasing lines can be controlled to scan the whole spectral range between adjacent channels of comb filter by adjusting the BFF. Moreover, the spectral range of lasing lines can be controlled by adjusting NOLM. This tunable MWEDFL may be useful for fiber-optic communication and fiber-optic sensing.

  20. Optical fiber amplifiers based on PbS/CdS QDs modified by polymers.

    PubMed

    Sun, Xiaolan; Xie, Libin; Zhou, Wei; Pang, Fufei; Wang, Tingyun; Kost, Alan R; An, Zesheng

    2013-04-08

    Optical fiber amplifiers based on PbS/CdS semiconductor quantum dots (QDs) modified by an amphiphilic polymer were demonstrated. Well-defined QDs and an amphiphilic copolymer were first prepared and the amphiphilic copolymer was then used to disperse the QDs into silica sol to allow uniform and reproducible incorporation of QDs into the silica coating of the optical fibers. QD-doped silica sol was deposited on the fusion tapered fiber coupler via dip-coating. A 1550 nm semiconductor light emitting diode as the signal source and a 980 nm laser diode as the pump source were injected into the fiber coupler simultaneously. Through evanescent wave excitation, a signal gain as high as 8 dB was obtained within the wavelength range between 1450 and 1650 nm. In addition, the optical fiber amplifiers based on PbS/CdS QDs showed enhanced thermal stability when compared to amplifiers based on PbS QDs.

  1. Fiber optic communications

    NASA Astrophysics Data System (ADS)

    Palais, J. C.

    A description of fiber optic communications systems and an optics review are provided, taking into account the historical perspective, the basic communications system, the nature of light, advantages of fibers, the applicatins of fiber optic communications, ray theory and applications, lenses, imaging, numerical aperture, and diffraction. Other subjects examined are related to integrated optic waveguides, lightwave fundamentals, optic fiber waveguides, light sources, light detectors, couplers and connectors, distribution systems, modulation, noise and detection, and system design. Attention is given to electromagnetic waves, dispersion, pulse distortion, polarization, integrated optic networks, the step-index fiber, the graded-index fiber, optic fiber cables, light-emitting diodes, laser principles, laser diodes, splices, source coupling, distribution networks, directional couplers, star couplers, switches, analog and digital modulation formats, optic heterodyne receives, thermal and shot noise, error rates, receiver circuit design, and analog and digital system design.

  2. Intraoral fiber-optic-based diagnostic for periodontal disease

    NASA Astrophysics Data System (ADS)

    Colston, Bill W., Jr.; Gutierrez, Dora M.; Everett, Matthew J.; Brown, Steve B.; Langry, Kevin C.; Cox, Weldon R.; Johnson, Paul W.; Roe, Jeffrey N.

    2000-05-01

    The purpose of this initial study was to begin development of a new, objective diagnostic instrument that will allow simultaneous quantitation of multiple proteases within a single periodontal pocket using a chemical fiber optic senor. This approach could potentially be adapted to use specific antibodies and chemiluminescence to detect and quantitate virtually any compound and compare concentrations of different compounds within the same periodontal pocket. The device could also be used to assay secretions in salivary ducts or from a variety of wounds. The applicability is, therefore, not solely limited to dentistry and the device would be important both for clinical diagnostics and as a research too.

  3. Intraoral fiber optic-based diagnostic for periodontal disease

    SciTech Connect

    Johnson, P W; Gutierrez, D M; Everett, M J; Brown, S B; Langry, K C; Colston, B W; Roe, J N

    2000-01-21

    The purpose of this initial study was to begin development of a new, objective diagnostic instrument that will allow simultaneous quantitation of multiple proteases within a single periodontal pocket using a chemical fiber optic sensor. This approach could potentially be adapted to use specific antibodies and chemiluminescence to detect and quantitate virtually any compound and compare concentrations of different compounds within the same periodontal pocket. The device could also be used to assay secretions in salivary ducts or from a variety of wounds. The applicability is, therefore, not solely limited to dentistry and the device would be important both for clinical diagnostics and as a research tool.

  4. Fiber optic based heart-rate and pulse pressure shape monitor

    NASA Astrophysics Data System (ADS)

    Kokkinos, D.; Dehipawala, S.; Holden, T.; Cheung, E.; Musa, M.; Tremberger, G., Jr.; Schneider, P.; Lieberman, D.; Cheung, T.

    2012-01-01

    Macro-bending fiber optic based heart-rate and pulse pressure shape monitors have been fabricated and tested for non-invasive measurement. Study of fiber bending loss and its stability and variations are very important especially for sensor designs based on optical fiber bending. Wavelengths from 1300 nm to 1550 nm have been used with fabrication based on multimode fiber, single mode fiber, and photonic crystal fiber. The smallest studied curvature would demand the use of single mode standard fibers. The collected data series show high quality suitable for random series analysis. Fractal property of optically measured pulse pressure data has been observed to correlate with physical activity. Correlation to EKG signal suggests that the fabricated monitors are capable of measuring the differential time delays at wrist and leg locations. The difference in time delay could be used to formulate a velocity parameter for diagnostics. The pulse shape information collected by the fiber sensor provides additional parameters for the analysis of the fractal nature of the heart. The application to real time measurement of blood vessel stiffness with this optical non-invasive fiber sensor is discussed.

  5. Recent developments in fiber-based optical frequency comb and its applications

    NASA Astrophysics Data System (ADS)

    Xia, Wei; Chen, Xuzong

    2016-04-01

    Fiber-based optical frequency combs, characterized by compact configuration and outstanding optical properties, have been developed into state-of-the-art precision instruments which are no longer used just for optical frequency metrology, but for a number of applications, including optical clocks, attosecond science, exoplanet searches, medical diagnostics, physicochemical processes control and advanced manufacturing. This short perspective presents some of the milestones and highlights in the evolution of fiber-based optical frequency combs and the technical revolution that are brought by them for a wide range of applications. Along the way, both the challenges and opportunities in the future development of the fiber-based optical frequency comb technology have been described as well.

  6. Fiber optical based parametric amplifier in a highly nonlinear fiber (HNLF) by using a ring configuration

    NASA Astrophysics Data System (ADS)

    Ahmad, H.; Awang, N. A.; Harun, S. W.

    2011-07-01

    A four-wave mixing (FWM) effect in a fiber-based optical parametric amplifier (FOPA) is reported. The novelty in the setup used is a ring cavity as opposed to the commonly used method of linear cavity. This reduces the required pump power, P p, for the amplification of the signals and also the generation of the idlers. The achieved gain for signal amplification is about 30 dB with a P p of 25 dBm. It has a flat gain response within range of 22 nm from 1570 nm to 1592 nm, with an average value of 28 dB within the 3 dB region. The average conversion efficiency is approximately -5 dB, with a peak value of -4 dB within the 2 dB region, with a range of 24 nm from 1576 nm to 1600 nm.

  7. Composite cavity based fiber optic Fabry Perot strain sensors demodulated by an unbalanced fiber optic Michelson interferometer with an electrical scanning mirror

    NASA Astrophysics Data System (ADS)

    Zhang, Jianzhong; Yang, Jun; Sun, Weimin; Jin, Wencai; Yuan, Libo; Peng, G. D.

    2008-08-01

    A composite cavity based fiber optic Fabry-Perot strain sensor system, interrogated by a white light source and demodulated by an unbalanced fiber optic Michelson interferometer with an electrical scanning mirror, is proposed and demonstrated. Comparing with the traditional extrinsic fiber optic Fabry-Perot strain sensor, the potential multiplexing capability and the dynamic measurement range are improved simultaneously. At the same time, the measurement stability of the electrical scanning mirror system is improved by the self-referenced signal of the sensor structure.

  8. Universal liquid level sensor employing Fresnel coefficient based discrete fiber optic measurement technique

    NASA Astrophysics Data System (ADS)

    Murshid, Syed H.

    2014-09-01

    A compact and light weight liquid-level-measuring system based on fiber-optics sensor technology is presented as alternative to systems based on float gauges and other conventional level sensors for liquids that pose fire, corrosion and explosion hazards. These Fresnel reflection based fiber-optic sensors are inherently safer because they do not include electrical connections inside fuel/chemical tanks, and they exploit changes in internal reflection of guided electromagnetic modes as a result of contact between the outer surface of optical fiber and a liquid. Discrete changes in light transmission/reflection are used to indicate that liquid has come into contact with a suitably designed fiber optic probe at the output end of the fiber. This endeavor presents a quasi-continuous fiber optic level detection system that measures liquid level to within known increments of depth, by placing the probes of a number of such sensors at known depths in a tank where each probe effectively serves as a level switch. Due to the fiber optic nature of the design, the system can operate from cryogenic applications to boiling fluids. Experimental results for liquid nitrogen and water are presented.

  9. Diamagnetic tellurite glass and fiber based magneto-optical current transducer.

    PubMed

    Chen, Qiuling; Ma, Qiuhua; Wang, Hui; Chen, Qiuping

    2015-10-10

    Diamagnetic TeO2-ZnO-Na2O glasses and fibers were fabricated and characterized for magneto-optical current-sensor applications. Two prototypes based on the obtained glass and fibers were constructed. An analysis of the distribution of the magnetic field flux inside the conductor was performed. Hardware and developed software were constructed for the acquisition of weak output signals induced by a low current. The good sensitivities of the fiber magneto-optical current transducer and the bulk magneto-optical current transducer are due to the high Verdet constant and homemade signal-acquisition hardware.

  10. Experimental demonstration of an all-optical fiber-based Fredkin gate.

    PubMed

    Kostinski, Natalie; Fok, Mable P; Prucnal, Paul R

    2009-09-15

    We propose and report on what we believe to be the first experimental demonstration of an all-optical fiber-based Fredkin gate for reversible digital logic. The simple 3-input/3-output fiber-based nonlinear optical loop mirror architecture requires only minor alignment for full operation. A short nonlinear element, heavily doped GeO(2) fiber (HDF), allows for a more compact design than typical nonlinear fiber gates. The HDF is ideal for studying reversibility, functioning as a noise-limited medium, as compared to the semiconductor optical amplifier, while allowing for cross-phase modulation, a nondissipative optical interaction. We suggest applications for secure communications, based on "cool" computing.

  11. Performance analysis of fiber-based free-space optical communications with coherent detection spatial diversity.

    PubMed

    Li, Kangning; Ma, Jing; Tan, Liying; Yu, Siyuan; Zhai, Chao

    2016-06-10

    The performances of fiber-based free-space optical (FSO) communications over gamma-gamma distributed turbulence are studied for multiple aperture receiver systems. The equal gain combining (EGC) technique is considered as a practical scheme to mitigate the atmospheric turbulence. Bit error rate (BER) performances for binary-phase-shift-keying-modulated coherent detection fiber-based free-space optical communications are derived and analyzed for EGC diversity receptions through an approximation method. To show the net diversity gain of a multiple aperture receiver system, BER performances of EGC are compared with a single monolithic aperture receiver system with the same total aperture area (same average total incident optical power on the aperture surface) for fiber-based free-space optical communications. The analytical results are verified by Monte Carlo simulations. System performances are also compared for EGC diversity coherent FSO communications with or without considering fiber-coupling efficiencies.

  12. Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror

    NASA Astrophysics Data System (ADS)

    Fu, Ling; Jain, Ankur; Xie, Huikai; Cranfield, Charles; Gu, Min

    2006-02-01

    Two-photon fluorescence and second harmonic generation microscopy have enabled functional and morphological in vivo imaging. However, in vivo applications of those techniques to living animals are limited by bulk optics on a bench top. Fortunately, growing functionality of fiber-optic devices and miniaturization of scanning mirrors stimulate the race to develop nonlinear optical endoscopy. In this paper, we report on a prototype of a nonlinear optical endoscope based on a double-clad photonic crystal fiber to improve the detection efficiency and a MEMS mirror to steer the light at the fiber tip. The miniaturized fiber-optic nonlinear microscope is characterized by rat esophagus imaging. Line profiles from the rat tail tendon and esophagus prove the potential of the technology in in vivo applications.

  13. Polarization conversion based on an all-dielectric metasurface for optical fiber applications

    NASA Astrophysics Data System (ADS)

    Liu, Tongming; Yang, Sen; Tang, Donghua; Da, Haixia; Feng, Rui; Zhu, Tongtong; Sun, Fangkui; Ding, Weiqiang

    2017-08-01

    Polarization conversion (PC) in optical fiber is a very important operation in practice. To date, however, PC in fiber is usually achieved by coupling an external bulk element, or using the birefringence results from mechanically squeezing or coiling the fiber. In this paper, we propose a distinct approach for PC in optical fiber by introducing an all-dielectric metasurface in it, which has been proven to be compact, efficient and robust. Based on this approach, nearly perfect PCs from the linear polarization fundamental mode, i.e. {{LP}}01x mode to various other polarization modes, are achieved, including the {{LP}}01y mode, left/right-handed circular polarization mode, and also vector modes with radial and azimuthal polarizations. In addition, the fabrication of this all-dielectric-based metasurface is compatible with semiconductor manufacturing technologies, which makes the PC presented here competitive against traditional ones, and may find potential applications in optical fiber elements and systems.

  14. Fiber optic vibration sensor

    DOEpatents

    Dooley, J.B.; Muhs, J.D.; Tobin, K.W.

    1995-01-10

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity. 2 figures.

  15. Fiber optic vibration sensor

    DOEpatents

    Dooley, Joseph B.; Muhs, Jeffrey D.; Tobin, Kenneth W.

    1995-01-01

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity.

  16. Damage of silica-based optical fibers in laser supported detonation

    NASA Astrophysics Data System (ADS)

    Efremov, V. P.; Fortov, V. E.; Frolov, A. A.

    2015-11-01

    The study of detonation-like mode of laser induced damage propagation is presented. This mode is new investigation object of laser destruction of silica-based optical fibers. The fiber destruction images were obtained in evolution and in static (on saved samples).

  17. Multipoint refractive index and temperature fiber optic sensor based on cascaded no core fiber-fiber Bragg grating structures

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Xu, Shan; Zhao, Junfa; Li, Hongqiang; Bai, Hua; Miao, Changyun

    2017-02-01

    A multipoint fiber optic sensor based on two cascaded multimode interferometer (MMI) and fiber Bragg grating (FBG) structures is proposed and demonstrated for simultaneous measurement of refractive index (RI) and temperature. The MMI is fabricated by splicing a section of no-core fiber (NCF) with two single-mode fibers. The suitable NCF lengths of 19.1 and 38.8 mm are selected by simulations to achieve wavelength division multiplexing. The two MMIs are sensitive to RI and temperature with the maximal RI sensitivities of 429.42228 and 399.20718 nm/RIU in the range of 1.333 to 1.419 and the temperature sensitivities of 10.05 and 10.22 pm/°C in the range of 26.4°C to 100°C, respectively. However, the FBGs are only sensitive to the latter with the sensitivities of 10.4 and 10.73 pm/°C. Therefore, dual-parameter measurement is obtained and cross-sensitivity issue can be solved. The distance between the two sensing heads is up to 12 km, which demonstrates the feasibility of long-distance measurement. During measurement, there is no mutual interference to each sensing head. The experimental results show that the average errors of RI are 7.61×10-4 RIU and 6.81×10-4 RIU and the average errors of temperature are 0.017°C and 0.012°C, respectively. This sensor exhibits the advantages of high RI sensitivity, dual-parameter and long-distance measurement, low cost, and easy and repeatable fabrication.

  18. LSPR based fiber optic sensor for fluoride impurity sensing in potable water

    NASA Astrophysics Data System (ADS)

    Tambe, Abhay; Kumbhaj, S.; Lalla, N. P.; Sen, P.

    2016-10-01

    We have designed localised surface plasmon resonance (LSPR) based fiber optic sensor. Silver nanoparticles are deposited on a few centimetre length of bare core at the middle part of plastic clad silica fiber by means of a simple and low cost laser induced nanoparticle deposition technique. The nanoparticle deposition was confirmed by TEM analysis. The nanoparticle coated fiber is used to design the sensor and the response of sensor was studied to sense fluoride impurity in water.

  19. Optical power 1 × 7 splitter based on multicore fiber technology

    NASA Astrophysics Data System (ADS)

    Pytel, Anna; Napierała, Marek; Szostkiewicz, Łukasz; Ostrowski, Łukasz; Murawski, Michał; Mergo, Paweł; Nasiłowski, Tomasz

    2017-09-01

    Multicore and microstructured fibers open a new door for designing all-fiber telecom components. In this article we propose a design of an optical power splitter based on the phenomenon of power coupling in the tapered splice between a single-core (SMF-28) and a seven core fiber (MCF-7), which was originally developed for spatial division multiplexing telecommunication systems. Comprehensive numerical analysis is presented and backed up with an experimental demonstration.

  20. Switchable dual-wavelength fiber laser based on semiconductor optical amplifier and polarization-maintaining fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Feng, Suchun; Xu, Ou; Lu, Shaohua; Ren, Wenhua; Jian, Shuisheng

    2008-12-01

    Switchable dual-wavelength with orthogonal polarizations fiber laser based on semiconductor optical amplifier (SOA) and polarization-maintaining fiber Bragg grating (PMFBG) at room temperature is proposed. Owing to the polarization dependent loss of the PMFBG, the laser can be designed to operate in stable dual-wavelength or wavelength-switching modes with a wavelength spacing of 0.336 nm at room temperature by adjusting the polarization controller (PC). The amplitude variation in nearly half an hour is less than 0.1 dB for both wavelengths, which is more stable than that of erbium doped fiber (EDF)-based laser with similar configuration.

  1. Characterized Brillouin scattering in silica optical fiber tapers based on Brillouin optical correlation domain analysis.

    PubMed

    Zou, Weiwen; Jiang, Wenning; Chen, Jianping

    2013-03-11

    This paper demonstrates stimulated Brillouin scattering (SBS) characterization in silica optical fiber tapers drawn from commercial single mode optical fibers by hydrogen flame. They have different waist diameters downscaled from 5 μm to 42 μm. The fully-distributed SBS measurement along the fiber tapers is implemented by Brillouin optical correlation domain analysis technique with millimeter spatial resolution. It is found that the Brillouin frequency shift (BFS) in the waist of all fiber tapers is approximately the same (i.e., ~11.17 GHz at 1550 nm). However, the BFS is gradually reduced and the Brillouin gain decreases from the waist to the untapered zone in each fiber taper.

  2. Developments on high temperature fiber optic microphone

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth D., II; Zuckerwar, Allan J.

    1992-01-01

    A fiber optic microphone, based on the principle of the fiber optic lever, features small size, extended bandwidth, and capability to operate at high temperatures. These are requirements for measurements in hypersonic flow. This paper describes the principles of operation of fiber optic sensors, a discussion of the design of a fiber optic microphone, the functional elements and packaging techniques of the optoelectronic circuitry, and the calibration techniques used in the development of the high temperature fiber optic microphone.

  3. Analysis of spectral response of optical switching devices based on chalcogenide bistable fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Scholtz, Lubomír.; Müllerová, Jarmila

    2015-01-01

    Fiber Bragg gratings (FBGs) are novel and promising devices for all-optical switching, ADD/DROP multiplexers, AND gates, switches, all-optical memory elements. Optical switching based on optical Kerr effects induced with high pump laser light incident on the FBGs cause the change of spectral characteristics of grating depending on the incident power. In this paper numerical studies of the nonlinear FBGs are presented. Optical switching based on the optical bistability in nonlinear chalcogenide FBGs is investigated. The spectral response of nonlinear FBGs is discussed from theoretical viewpoint. The simulations are based on the nonlinear coupled mode theory.

  4. Experimental research of optical fiber hydrogen gas sensing system based on palladium-silver alloy

    NASA Astrophysics Data System (ADS)

    Cui, Lu-jun; Zhou, Gao-feng; Li, Zheng-feng; Cao, Yan-long

    2016-11-01

    A novel optical fiber hydrogen sensing system based on palladium (Pd) and sliver (Ag) is proposed. By direct current (DC) magnetron process, Pd/Ag alloy ultra-thin films were deposited on the substrate to eliminate the hydrogen embrittlement of sensor based on pure Pd. Several samples with different thin film thicknesses were fabricated at different substrate temperatures and tested in the optical fiber hydrogen sensor setup. We do a series of experiments for obtaining optimum sputtering parameters, such as optimum sputtering temperature and thickness of Pd/Ag alloy film. The humidity effect and reliability experiment for the optical fiber hydrogen gas sensor are reported in detail. The testing results demonstrate the Pd/Ag alloy is a promising material for optical fiber hydrogen gas sensor.

  5. Surface plasmon resonance based multi-channel and multi-analyte fiber optic sensor

    NASA Astrophysics Data System (ADS)

    Verma, Roli; Srivastava, Sachin K.; Gupta, Banshi D.

    2012-02-01

    Surface plasmon resonance (SPR) based fiber optic sensor has been studied for multichannel and multianalyte sensing. Simulations have been carried out for a fiber optic sensor having two sensing regions coated with silver and gold for multichannel and multianalyte sensing. The simulated results have been obtained for different combinations of refractive indices of the samples around the probes. To support simulations optical fiber SPR probes with two sensing regions coated with silver and gold have been fabricated. SPR spectra for these sensors have been recorded for aqueous sucrose solutions of varying refractive indices. The refractive index of the liquid samples around both the gold and silver coated regions was kept the same to see the potential of SPR based fiber optic multichannel sensing, while it was kept different for studies related to multianalyte sensing. Both the theoretical and experimental results match qualitatively. The SPR resonance wavelengths for gold and silver being different, these sensors can be utilized for both multichannel and multianalyte sensing.

  6. Optical feedback-induced light modulation for fiber-based laser ablation.

    PubMed

    Kang, Hyun Wook

    2014-11-01

    Optical fibers have been used as a minimally invasive tool in various medical fields. However, due to excessive heat accumulation, the distal end of a fiber often suffers from severe melting or devitrification, leading to the eventual fiber failure during laser treatment. In order to minimize thermal damage at the fiber tip, an optical feedback sensor was developed and tested ex vivo. Porcine kidney tissue was used to evaluate the feasibility of optical feedback in terms of signal activation, ablation performance, and light transmission. Testing various signal thresholds demonstrated that 3 V was relatively appropriate to trigger the feedback sensor and to prevent the fiber deterioration during kidney tissue ablation. Based upon the development of temporal signal signatures, full contact mode rapidly activated the optical feedback sensor possibly due to heat accumulation. Modulated light delivery induced by optical feedback diminished ablation efficiency by 30% in comparison with no feedback case. However, long-term transmission results validated that laser ablation assisted with optical feedback was able to almost consistently sustain light delivery to the tissue as well as ablation efficiency. Therefore, an optical feedback sensor can be a feasible tool to protect optical fiber tips by minimizing debris contamination and delaying thermal damage process and to ensure more efficient and safer laser-induced tissue ablation.

  7. Fabrication of Optical Fiber Devices

    NASA Astrophysics Data System (ADS)

    Andres, Miguel V.

    In this paper we present the main research activities of the Laboratorio de Fibras Opticas del Instituto de Ciencia de los Materiales de la Universidad de Valencia. We show some of the main results obtained for devices based on tapered fibers, fiber Bragg gratings, acousto-optic effects and photonic crystal fibers.

  8. Experimental investigation of the thin fiber-optic hydrophone array based on fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Lavrov, Vladimir S.; Plotnikov, Mikhail Y.; Aksarin, Stanislav M.; Efimov, Mikhail E.; Shulepov, Vladimir A.; Kulikov, Andrey V.; Kireenkov, Alexander U.

    2017-03-01

    The paper presents the results of experimental investigations of the fiber optic hydrophone array consisting of six sensors, placed in one thin sensitive cable. Sensors were formed by pairs of Bragg gratings spaced 1.5 m apart and recorded in a birefringent optical fiber with the elliptical stressed coating. To form an extended sensor array the optical fiber was additionally covered with a silicone material RTV655 and protective coatings. Experimental investigations of the array showed that fiber-optic sensors pressure sensitivity increases as the acoustic frequency decreases at average value from -169.4 dB re rad/uPa at 495 Hz to -143.7 dB re rad/uPa at 40 Hz. The minimum detectable pressure was at average value from 53 mPa/√Hz at 495 Hz to 8.3 mPa/√Hz at 40 Hz. The obtained results might be used for developing and producing long thin hydroacoustic arrays for geophysical investigations and other hydroacoustic applications.

  9. Ferrofluid-based optical fiber magnetic field sensor fabricated by femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Song, Yang; Yuan, Lei; Hua, Liwei; Zhang, Qi; Lei, Jincheng; Huang, Jie; Xiao, Hai

    2016-02-01

    Optofluid system has been more and more attractive in optical sensing applications such as chemical and biological analysis as it incorporates the unique features from both integrated optics and microfluidics. In recent years, various optofluid based structures have been investigated in/on an optical fiber platform which is referred to as "lab in/on a fiber". Among those integrated structures, femto-second laser micromaching technique plays an important role due to its high precision fabrication, flexible design, 3D capability, and compatible with other methods. Here we present a ferrofluid based optical fiber magnetic field sensor fabricated by femtosecond (fs) laser irradiation .With the help of fs laser micromaching technique, a micro-reservoir made by capillary tube assembled in a single mode optical fiber could be fabricated. The micro-reservoir functions as a fiber inline Fabry-Perot (FP) cavity which is filled by ferrofluid liquid. The refractive index of the ferrofluid varies as the surrounding magnetic field strength changes, which can be optically probed by the FP interferometer. A fringe visibility of up to 30 dB can be achieved with a detection limit of around 0.4 Gausses. Due to the fabrication, micro-reservoirs can be assembled with optical fiber and distinguished through a microwave-photonic interrogation system. A quasi-distributed magnetic field sensing application has been demonstrated with a high spatial resolution of around 10 cm.

  10. Fiber optic micro accelerometer

    DOEpatents

    Swierkowski, Steve P.

    2005-07-26

    An accelerometer includes a wafer, a proof mass integrated into the wafer, at least one spring member connected to the proof mass, and an optical fiber. A Fabry-Perot cavity is formed by a partially reflective surface on the proof mass and a partially reflective surface on the end of the optical fiber. The two partially reflective surfaces are used to detect movement of the proof mass through the optical fiber, using an optical detection system.

  11. Fiber Optic Coupled Raman Based Detection of Hazardous Liquids Concealed in Commercial Products

    DTIC Science & Technology

    2012-01-01

    Detecting explosives by portable Raman ana- lyzers: a comparison of 785, 976, 1064 ,and 1550 nm (Retina- Safe) laser excitation,” Spectroscopy, pp...agent (CWA) simulant triethyl phosphate (TEP), hydrogen peroxide, and acetone as representative of toxic industrial compounds (TICs). Fiber optic...distribution is unlimited. Fiber Optic Coupled Raman Based Detection of Hazardous Liquids Concealed in Commercial Products The views, opinions and/or

  12. Protective antireflection coatings for optical IR fibers based on silver halogenides

    NASA Astrophysics Data System (ADS)

    Glebov, V. N.; Leonov, Pavel G.; Malyutin, A. M.; Yakunin, Vladimir P.

    2002-04-01

    The polycrystalline optical IR fibers based on silver halogenides AgCl-AgBr exhibiting low losses (0.5 dB/m and less) in the wavelength range from 4.0 to 16.0 micrometers are of interest in technical and medico-biological applications as fiber optic sensing devices and flexible systems for delivery of low-power CO2 and CO lasers radiation.

  13. Optical fibers based on compositions of polymers and liquid crystals for gas detection

    NASA Astrophysics Data System (ADS)

    Shibaev, Petr; Tantillo, Anthony

    Optical fibers based on compositions of methacrylic and vinyl polymers mixed with low molar mass liquid crystals were prepared and studied as promising gas sensors. A range of concentrations producing anisotropic fibers that are mostly sensitive to the vapors of organic solvents was determined. The fibers were prepared by stretching gel-like compositions of polymers and liquid crystals. Mechanical properties of the compositions leading to the most stable fibers were studied. It was found that under certain conditions the fibers develop multilayered structure with anisotropic (mostly liquid crystalline) core. These fibers are very sensitive to changing gaseous atmosphere and to the presence of organic solvent vapors. The sensitivity of different types of fibers to a variety of organic solvents vapors was determined. Some fibers were crosslinked by using hydrogen bonding molecules. The behavior of these optical fibers with respect to the influence of organic vapors with and without hydrogen donor/acceptor moieties was also analyzed. It was shown that hydrogen bonding increases the mechanical strength of the fibers but does not affect substantially their sensitivity to gases. Optical calculations and model discussion accompany the presentation of experimental data.

  14. Optical Fiber Protection

    NASA Technical Reports Server (NTRS)

    1999-01-01

    F&S Inc. developed and commercialized fiber optic and microelectromechanical systems- (MEMS) based instrumentation for harsh environments encountered in the aerospace industry. The NASA SBIR programs have provided F&S the funds and the technology to develop ruggedized coatings and coating techniques that are applied during the optical fiber draw process. The F&S optical fiber fabrication facility and developed coating methods enable F&S to manufacture specialty optical fiber with custom designed refractive index profiles and protective or active coatings. F&S has demonstrated sputtered coatings using metals and ceramics and combinations of each, and has also developed techniques to apply thin coatings of specialized polyimides formulated at NASA Langley Research Center. With these capabilities, F&S has produced cost-effective, reliable instrumentation and sensors capable of withstanding temperatures up to 800? C and continues building commercial sales with corporate partners and private funding. More recently, F&S has adapted the same sensing platforms to provide the rapid detection and identification of chemical and biological agents

  15. Tunable multi-wavelength fiber lasers based on an Opto-VLSI processor and optical amplifiers.

    PubMed

    Xiao, Feng; Alameh, Kamal; Lee, Yong Tak

    2009-12-07

    A multi-wavelength tunable fiber laser based on the use of an Opto-VLSI processor in conjunction with different optical amplifiers is proposed and experimentally demonstrated. The Opto-VLSI processor can simultaneously select any part of the gain spectrum from each optical amplifier into its associated fiber ring, leading to a multiport tunable fiber laser source. We experimentally demonstrate a 3-port tunable fiber laser source, where each output wavelength of each port can independently be tuned within the C-band with a wavelength step of about 0.05 nm. Experimental results demonstrate a laser linewidth as narrow as 0.05 nm and an optical side-mode-suppression-ratio (SMSR) of about 35 dB. The demonstrated three fiber lasers have excellent stability at room temperature and output power uniformity less than 0.5 dB over the whole C-band.

  16. The Fiber Optic Connection.

    ERIC Educational Resources Information Center

    Reese, Susan

    2003-01-01

    Describes the fiber optics programs at the Career and Technical Center in Berlin, Pennsylvania and the Charles S. Monroe Technology Center in Loudoun County, Virginia. Discusses the involvement of the Fiber Optic Association with education, research and development, manufacturing, sales, distribution, installation, and maintenance of fiber optic…

  17. The Fiber Optic Connection.

    ERIC Educational Resources Information Center

    Reese, Susan

    2003-01-01

    Describes the fiber optics programs at the Career and Technical Center in Berlin, Pennsylvania and the Charles S. Monroe Technology Center in Loudoun County, Virginia. Discusses the involvement of the Fiber Optic Association with education, research and development, manufacturing, sales, distribution, installation, and maintenance of fiber optic…

  18. Fiber-optic parametric amplifier and oscillator based on intracavity parametric pump technique.

    PubMed

    Luo, Zhengqian; Zhong, Wen-De; Tang, Ming; Cai, Zhiping; Ye, Chenchun; Xiao, Xiaosheng

    2009-01-15

    A cost-effective fiber optical parametric amplifier (FOPA) based on the laser intracavity pump technique has been proposed and demonstrated experimentally. The parametric process is realized by inserting a 1 km highly nonlinear dispersion-shifted fiber (HNL-DSF) into a fiber ring-laser cavity that consists of a high-power erbium-doped fiber (EDF) amplifier and two highly reflective fiber Bragg gratings. Compared with the conventional parametric pump schemes, the proposed pumping technique is free from a tunable semiconductor laser as the pump source and also the pump phase modulation. When the oscillating power of 530 mW in the EDF laser cavity is achieved to pump the HNL-DSF, a peak parametric gain of 27.5 dB and a net gain over 45 nm are obtained. Moreover, a widely tunable fiber-optic parametric oscillator is further developed using the FOPA as a gain medium.

  19. Huge capacity fiber-optic sensing network based on ultra-weak draw tower gratings

    NASA Astrophysics Data System (ADS)

    Yang, Minghong; Bai, Wei; Guo, Huiyong; Wen, Hongqiao; Yu, Haihu; Jiang, Desheng

    2016-03-01

    This paper reviews the work on huge capacity fiber-optic sensing network based on ultra-weak draw tower gratings developed at the National Engineering Laboratory for Fiber Optic Sensing Technology (NEL-FOST), Wuhan University of Technology, China. A versatile drawing tower grating sensor network based on ultra-weak fiber Bragg gratings (FBGs) is firstly proposed and demonstrated. The sensing network is interrogated with time- and wavelength-division multiplexing method, which is very promising for the large-scale sensing network.

  20. Sensors based on recycled optical fibers destroyed by the catastrophic fuse effect

    NASA Astrophysics Data System (ADS)

    André, Paulo S.; Domingues, M. F.; Antunes, Paulo; Alberto, Nélia; Frias, Ana Rita; Ferreira, R. A. S.

    2014-08-01

    In the last decades the fiber Bragg gratings (FBG) and Fabry-Perot Interferometer (FPI) micro cavities based sensors have become one of the most attractive optical fiber sensing technologies. However, its production requires a significant economical investment. We propose a cost effective solution based on micro cavity generated by the recycling of optical fibers destroyed through the catastrophic fuse effect. This technique considerably reduces the experimental complexity and the production costs. In this paper, the application of these sensors in the monitoring of several parameters, such as refractive index, pressure, strain and temperature is presented.

  1. Fiber optic control system integration

    NASA Technical Reports Server (NTRS)

    Poppel, G. L.; Glasheen, W. M.; Russell, J. C.

    1987-01-01

    A total fiber optic, integrated propulsion/flight control system concept for advanced fighter aircraft is presented. Fiber optic technology pertaining to this system is identified and evaluated for application readiness. A fiber optic sensor vendor survey was completed, and the results are reported. The advantages of centralized/direct architecture are reviewed, and the concept of the protocol branch is explained. Preliminary protocol branch selections are made based on the F-18/F404 application. Concepts for new optical tools are described. Development plans for the optical technology and the described system are included.

  2. Remote optical fiber dosimetry

    NASA Astrophysics Data System (ADS)

    Huston, A. L.; Justus, B. L.; Falkenstein, P. L.; Miller, R. W.; Ning, H.; Altemus, R.

    2001-09-01

    Optical fibers offer a unique capability for remote monitoring of radiation in difficult-to-access and/or hazardous locations. Optical fiber sensors can be located in radiation hazardous areas and optically interrogated from a safe distance. A variety of remote optical fiber radiation dosimetry methods have been developed. All of the methods take advantage of some form of radiation-induced change in the optical properties of materials such as: radiation-induced darkening due to defect formation in glasses, luminescence from native defects or radiation-induced defects, or population of metastable charge trapping centers. Optical attenuation techniques are used to measure radiation-induced darkening in fibers. Luminescence techniques include the direct measurement of scintillation or optical excitation of radiation-induced luminescent defects. Optical fiber radiation dosimeters have also been constructed using charge trapping materials that exhibit thermoluminescence or optically stimulated luminescence (OSL).

  3. Plasmonic Sensors Based on Doubly-Deposited Tapered Optical Fibers

    PubMed Central

    González-Cano, Agustín; Navarrete, María-Cruz; Esteban, Óscar; Díaz-Herrera, Natalia

    2014-01-01

    A review of the surface plasmon resonance (SPR) transducers based on tapered fibers that have been developed in the last years is presented. The devices have proved their good performance (specifically, in terms of sensitivity) and their versatility and they are a very good option to be considered as basis for any kind of chemical and biological sensor. The technology has now reached its maturity and here we summarize some of the characteristics of the devices produced. PMID:24618726

  4. Plasmonic sensors based on doubly-deposited tapered optical fibers.

    PubMed

    González-Cano, Agustín; Navarrete, María-Cruz; Esteban, Óscar; Díaz-Herrera, Natalia

    2014-03-10

    A review of the surface plasmon resonance (SPR) transducers based on tapered fibers that have been developed in the last years is presented. The devices have proved their good performance (specifically, in terms of sensitivity) and their versatility and they are a very good option to be considered as basis for any kind of chemical and biological sensor. The technology has now reached its maturity and here we summarize some of the characteristics of the devices produced.

  5. Fabrication of optical waveguide structures based on PDMS using photoresist fibers

    NASA Astrophysics Data System (ADS)

    Gaso, Peter; Pudiš, Dusan; Martincek, Ivan; Jandura, Daniel

    2014-12-01

    We describe fabrication process of optical waveguide structures such as multi-mode optical splitter and optical waveguide with surface Bragg grating in polydimethylsiloxane (PDMS). Technology based on drawing of thin photoresist fiber with diameter up to 100 μm was developed and optimized. In this way, fibers drawn from photoresist form cores of waveguides in PDMS slab. After removal of the photoresist, created air channels can be filled in with different liquids. We prepared multimode waveguide structures in PDMS composed of two PDMS materials with different refractive indices. Using this technology, also complicated waveguide structures were prepared as optical splitter and surface Bragg grating were prepared in PDMS material.

  6. Fully distributed fiber-optic sensing based on acoustically induced long-period grating

    NASA Astrophysics Data System (ADS)

    Wang, Dorothy Y.; Wang, Yunmiao; Han, Ming; Gong, Jianmin; Wang, Anbo

    2011-05-01

    This paper gives a review of a proposed fully-distributed fiber-optic sensing technique based on a traveling long-period grating (LPG) in a single-mode optical fiber. The LPG is generated by pulsed acoustic waves that propagate along the fiber. Based on this platform, first we demonstrated the fully-distributed temperature measurement in a 2.5m fiber. Then by coating the fiber with functional coatings, we demonstrated fully-distributed biological and chemical sensing. In the biological sensing experiment, immunoglobulin G (IgG) was immobilized onto the fiber surface, and we showed that only specific antigen-antibody binding can introduce a measurable shift in the transmission optical spectrum of the traveling LPG when it passes through the pretreated fiber segment. In the hydrogen sensing experiment, the fiber was coated with a platinum (Pt) catalyst layer, which is heated by the thermal energy released from Pt-assisted combustion of H2 and O2, and the resulted temperature change gives rise to a measurable LPG wavelength shift when the traveling LPG passes through. Hydrogen concentration from 1% to 3.8% was detected in the experiment. This technique may also permit measurement of other quantities by changing the functional coating on the fiber; therefore it is expected to be capable of other fully-distributed sensing applications.

  7. Non-contact photoacoustic imaging using a fiber based interferometer with optical amplification

    PubMed Central

    Hochreiner, Armin; Bauer-Marschallinger, Johannes; Burgholzer, Peter; Jakoby, Bernhard; Berer, Thomas

    2013-01-01

    In photoacoustic imaging the ultrasonic signals are usually detected by contacting transducers. For some applications contact with the tissue should be avoided. As alternatives to contacting transducers interferometric means can be used to acquire photoacoustic signals remotely. In this paper we report on non-contact three and two dimensional photoacoustic imaging using an optical fiber-based Mach-Zehnder interferometer. A detection beam is transmitted through an optical fiber network onto the surface of the specimen. Back reflected light is collected and coupled into the same optical fiber. To achieve a high signal/noise ratio the reflected light is amplified by means of optical amplification with an erbium doped fiber amplifier before demodulation. After data acquisition the initial pressure distribution is reconstructed by a Fourier domain reconstruction algorithm. We present remote photoacoustic imaging of a tissue mimicking phantom and on chicken skin. PMID:24298397

  8. Non-contact photoacoustic imaging using a fiber based interferometer with optical amplification.

    PubMed

    Hochreiner, Armin; Bauer-Marschallinger, Johannes; Burgholzer, Peter; Jakoby, Bernhard; Berer, Thomas

    2013-01-01

    In photoacoustic imaging the ultrasonic signals are usually detected by contacting transducers. For some applications contact with the tissue should be avoided. As alternatives to contacting transducers interferometric means can be used to acquire photoacoustic signals remotely. In this paper we report on non-contact three and two dimensional photoacoustic imaging using an optical fiber-based Mach-Zehnder interferometer. A detection beam is transmitted through an optical fiber network onto the surface of the specimen. Back reflected light is collected and coupled into the same optical fiber. To achieve a high signal/noise ratio the reflected light is amplified by means of optical amplification with an erbium doped fiber amplifier before demodulation. After data acquisition the initial pressure distribution is reconstructed by a Fourier domain reconstruction algorithm. We present remote photoacoustic imaging of a tissue mimicking phantom and on chicken skin.

  9. Distributed beam loss monitor based on the Cherenkov effect in an optical fiber

    NASA Astrophysics Data System (ADS)

    Maltseva, Yu; Emanov, F. A.; Petrenko, A. V.; Prisekin, V. G.

    2015-05-01

    This review discusses a distributed beam loss monitor which is based on the Cherenkov effect in an optical fiber and which has been installed at the VEPP-5 Injection Complex at the Budker Institute of Nuclear Physics. The principle of the device operation consists in detecting the Cherenkov radiation generated in an optical fiber by relativistic charged particles that are produced in an electromagnetic shower when highly relativistic beam particles (electrons or positrons) hit the accelerator vacuum chamber wall. Our experiments used a photomultiplier tube (PMT) to detect the Cherenkov light. Knowing when the PMT signal arrives tells us where the beam loss occurs. Using a 20-m-long optical fiber allowed a detector spatial resolution of 3 m. The way to improve the resolution is to optimize the monitor working conditions and optical fiber and PMT parameters, potentially leading to a resolution of as fine as 0.5 m according to our estimates.

  10. Research Progress on F-P Interference-Based Fiber-Optic Sensors.

    PubMed

    Huang, Yi Wen; Tao, Jin; Huang, Xu Guang

    2016-09-03

    We review our works on Fabry-Perot (F-P) interferometric fiber-optic sensors with various applications. We give a general model of F-P interferometric optical fiber sensors including diffraction loss caused by the beam divergence and the Gouy phase shift. Based on different structures of an F-P cavity formed on the end of a single-mode fiber, the F-P interferometric optical sensor has been extended to measurements of the refractive index (RI) of liquids and solids, temperature as well as small displacement. The RI of liquids and solids can be obtained by monitoring the fringe contrast related to Fresnel reflections, while the ambient temperature and small displacement can be obtained by monitoring the wavelength shift of the interference fringes. The F-P interferometric fiber-optic sensors can be used for many scientific and technological applications.

  11. Research Progress on F-P Interference—Based Fiber-Optic Sensors

    PubMed Central

    Huang, Yi Wen; Tao, Jin; Huang, Xu Guang

    2016-01-01

    We review our works on Fabry-Perot (F-P) interferometric fiber-optic sensors with various applications. We give a general model of F-P interferometric optical fiber sensors including diffraction loss caused by the beam divergence and the Gouy phase shift. Based on different structures of an F-P cavity formed on the end of a single-mode fiber, the F-P interferometric optical sensor has been extended to measurements of the refractive index (RI) of liquids and solids, temperature as well as small displacement. The RI of liquids and solids can be obtained by monitoring the fringe contrast related to Fresnel reflections, while the ambient temperature and small displacement can be obtained by monitoring the wavelength shift of the interference fringes. The F-P interferometric fiber-optic sensors can be used for many scientific and technological applications. PMID:27598173

  12. ZnO nanoparticles based fiber optic gas sensor

    SciTech Connect

    Narasimman, S.; Sivacoumar, R.; Alex, Z. C.; Balakrishnan, L. Meher, S. R.

    2016-05-23

    In this work, ZnO nanoparticles were synthesized by simple aqueous chemical route method. The synthesized ZnO nanoparticles were characterized by X-ray diffraction and scanning electron microscope. The sensitivity of the nanoparticles was studied for different gases like acetone, ammonia and ethanol in terms of variation in spectral light intensity. The XRD and SEM analysis confirms the formation of hexagonal wurtzite structure with the grain size of 11.2 nm. The small cladding region of the optical fiber was replaced with the synthesized nanoparticles. The light spectrum was recorded for different gas concentrations. The synthesized nanoparticles showed high sensitivity towards ammonia in low ppm level and acetone in high ppm level.

  13. ZnO nanoparticles based fiber optic gas sensor

    NASA Astrophysics Data System (ADS)

    Narasimman, S.; Balakrishnan, L.; Meher, S. R.; Sivacoumar, R.; Alex, Z. C.

    2016-05-01

    In this work, ZnO nanoparticles were synthesized by simple aqueous chemical route method. The synthesized ZnO nanoparticles were characterized by X-ray diffraction andscanning electron microscope. The sensitivity of the nanoparticles was studied for different gases like acetone, ammonia andethanol in terms of variation in spectral light intensity. The XRD and SEM analysis confirms the formation of hexagonal wurtzite structure with the grain size of 11.2 nm. The small cladding region of the optical fiber was replaced with the synthesized nanoparticles. The light spectrum was recorded for different gas concentrations. The synthesized nanoparticles showed high sensitivity towards ammonia in low ppm level and acetone in high ppm level.

  14. Optical and electrical characterizations of multifunctional silver phosphate glass and polymer-based optical fibers

    PubMed Central

    Rioux, Maxime; Ledemi, Yannick; Morency, Steeve; de Lima Filho, Elton Soares; Messaddeq, Younès

    2017-01-01

    In recent years, the fabrication of multifunctional fibers has expanded for multiple applications that require the transmission of both light and electricity. Fibers featuring these two properties are usually composed either of a single material that supports the different characteristics or of a combination of different materials. In this work, we fabricated (i) novel single-core step-index optical fibers made of electrically conductive AgI-AgPO3-WO3 glass and (ii) novel multimaterial fibers with different designs made of AgI-AgPO3-WO3 glass and optically transparent polycarbonate and poly (methyl methacrylate) polymers. The multifunctional fibers produced show light transmission over a wide range of wavelengths from 500 to 1000 nm for the single-core fibers and from 400 to 1000 nm for the multimaterial fibers. Furthermore, these fibers showed excellent electrical conductivity with values ranging between 10−3 and 10−1 S·cm−1 at room temperature within the range of AC frequencies from 1 Hz to 1 MHz. Multimodal taper-tipped fibre microprobes were then fabricated and were characterized. This advanced design could provide promising tools for in vivo electrophysiological experiments that require light delivery through an optical core in addition to neuronal activity recording. PMID:28256608

  15. Optical and electrical characterizations of multifunctional silver phosphate glass and polymer-based optical fibers.

    PubMed

    Rioux, Maxime; Ledemi, Yannick; Morency, Steeve; de Lima Filho, Elton Soares; Messaddeq, Younès

    2017-03-03

    In recent years, the fabrication of multifunctional fibers has expanded for multiple applications that require the transmission of both light and electricity. Fibers featuring these two properties are usually composed either of a single material that supports the different characteristics or of a combination of different materials. In this work, we fabricated (i) novel single-core step-index optical fibers made of electrically conductive AgI-AgPO3-WO3 glass and (ii) novel multimaterial fibers with different designs made of AgI-AgPO3-WO3 glass and optically transparent polycarbonate and poly (methyl methacrylate) polymers. The multifunctional fibers produced show light transmission over a wide range of wavelengths from 500 to 1000 nm for the single-core fibers and from 400 to 1000 nm for the multimaterial fibers. Furthermore, these fibers showed excellent electrical conductivity with values ranging between 10(-3) and 10(-1) S·cm(-1) at room temperature within the range of AC frequencies from 1 Hz to 1 MHz. Multimodal taper-tipped fibre microprobes were then fabricated and were characterized. This advanced design could provide promising tools for in vivo electrophysiological experiments that require light delivery through an optical core in addition to neuronal activity recording.

  16. Optical and electrical characterizations of multifunctional silver phosphate glass and polymer-based optical fibers

    NASA Astrophysics Data System (ADS)

    Rioux, Maxime; Ledemi, Yannick; Morency, Steeve; de Lima Filho, Elton Soares; Messaddeq, Younès

    2017-03-01

    In recent years, the fabrication of multifunctional fibers has expanded for multiple applications that require the transmission of both light and electricity. Fibers featuring these two properties are usually composed either of a single material that supports the different characteristics or of a combination of different materials. In this work, we fabricated (i) novel single-core step-index optical fibers made of electrically conductive AgI-AgPO3-WO3 glass and (ii) novel multimaterial fibers with different designs made of AgI-AgPO3-WO3 glass and optically transparent polycarbonate and poly (methyl methacrylate) polymers. The multifunctional fibers produced show light transmission over a wide range of wavelengths from 500 to 1000 nm for the single-core fibers and from 400 to 1000 nm for the multimaterial fibers. Furthermore, these fibers showed excellent electrical conductivity with values ranging between 10‑3 and 10‑1 S·cm‑1 at room temperature within the range of AC frequencies from 1 Hz to 1 MHz. Multimodal taper-tipped fibre microprobes were then fabricated and were characterized. This advanced design could provide promising tools for in vivo electrophysiological experiments that require light delivery through an optical core in addition to neuronal activity recording.

  17. Time-dependent variation of fiber Bragg grating reflectivity in PMMA-based polymer optical fibers.

    PubMed

    Sáez-Rodríguez, D; Nielsen, K; Bang, O; Webb, D J

    2015-04-01

    In this Letter, we investigate the effects of viscoelasticity on both the strength and resonance wavelength of two fiber Bragg gratings (FBGs) inscribed in microstructured polymer optical fiber (mPOF) made of undoped PMMA. Both FBGs were inscribed under a strain of 1% in order to increase the material photosensitivity. After the inscription, the strain was released, and the FBGs spectra were monitored. We initially observed a decrease of the reflection down to zero after which it began to increase. After that, strain tests were carried out to confirm the results, and finally the gratings were monitored for a further 120 days, with a stable reflection response being observed beyond 50 days.

  18. Fiber optic sensor based on reflectivity configurations to detect heart rate

    NASA Astrophysics Data System (ADS)

    Yunianto, M.; Marzuki, A.; Riyatun, R.; Lestari, D.

    2016-11-01

    Research of optical fiber-based heart rate detection sensor has been conducted using the reflection configurationon the thorax motion modified. Optical fiber used in this research was Plastic Optical Fiber (POF) with a diameter of 0.5. Optical fiber system is made with two pieces of fiber, the first fiber is to serve as a transmitter transmitting light from the source to the reflector membrane, the second fiber serves as a receiver. One of the endsfrom the two fibersis pressed and positioned perpendicular of reflector membrane which is placed on the surface of the chest. The sensor works on the principle of intensity changes captured by the receiver fiber when the reflector membrane gets the vibe from the heart. The light source used is in the form of Light Emitting Diode (LED) and Light Dependent Resistor (LDR) as a light sensor. Variations are performed on the reflector membrane diameter. The light intensity received by the detector increases along with the increasing width of the reflector membrane diameter. The results show that this sensor can detect the harmonic peak at a frequency of 1.5 Hz; 7.5 Hz; 10.5 Hz; and 22.5 Hz in a healthy human heart with an average value of Beat Per Minute (BPM) by 78 times, a prototype sensor that is made can work and function properly.

  19. Surface plasmon resonance based fiber optic detection of chlorine utilizing polyvinylpyrolidone supported zinc oxide thin films.

    PubMed

    Tabassum, Rana; Gupta, Banshi D

    2015-03-21

    A highly sensitive chlorine sensor for an aqueous medium is fabricated using an optical fiber surface plasmon resonance (OFSPR) system. An OFSPR-based chlorine sensor is designed with a multilayer-type platform by zinc oxide (ZnO) and polyvinylpyrollidone (PVP) film morphology manipulations. Among all the methodologies of transduction reported in the field of solid state chemical and biochemical sensing, our attention is focused on the Kretschmann configuration optical fiber sensing technique using the mechanism of surface plasmon resonance. The optical fiber surface plasmon resonance (SPR) chlorine sensor is developed using a multimode optical fiber with the PVP-supported ZnO film deposited over a silver-coated unclad core of the fiber. A spectral interrogation mode of operation is used to characterize the sensor. In an Ag/ZnO/PVP multilayer system, the absorption of chlorine in the vicinity of the sensing region is performed by the PVP layer and the zinc oxide layer enhances the shift in resonance wavelength. It is, experimentally, demonstrated that the SPR wavelength shifts nonlinearly towards the red side of the visible region with an increase in the chlorine concentration in an aqueous medium while the sensitivity of the sensor decreases linearly with an increase in the chlorine concentration. As the proposed sensor utilizes an optical fiber, it possesses the additional advantages of fiber such as less signal degradation, less susceptibility to electromagnetic interference, possibility of remote sensing, probe miniaturization, probe re-usability, online monitoring, small size, light weight and low cost.

  20. Hough-transform-based circle detection using an array of multimode optical fibers

    NASA Astrophysics Data System (ADS)

    Li, Yao; Eichmann, George

    1987-02-01

    The generation of an optical Hough transform (OHT) to detect a circle is proposed. The method is based on the use of a 2D multimode step-index optical fiber array. Both the position and radius of a circle can be detected. Some of the OHT performance parameters are also discussed.

  1. Distributed optical fiber sensor based on modulated dual-pulse probe signal

    NASA Astrophysics Data System (ADS)

    Sun, Wenhui; Fang, Gaosheng; Chen, Xinwei; Wu, Pengsheng; Wang, Kai

    2016-01-01

    A distributed fiber sensor based on Rayleigh scattering is described which converts vibration-induced optical phase changes into optical intensity variations by using modulated dual-pulses injected into sensing fiber. Phase generated carrier algorithm is used to permit arctangent operation to demodulate the phase information along the sensing fiber. The demonstrated sensor is capable of probing dynamic acoustic or vibration disturbances over 10km of sensing length with spatial resolution of 6m and large signal to noise ratio. The background noise of our system is estimated about 1×10-3 rad/√Hz.

  2. A loss-based, magnetic field sensor implemented in a ferrofluid infiltrated microstructured polymer optical fiber

    SciTech Connect

    Candiani, A.; Argyros, A.; Leon-Saval, S. G.; Lwin, R.; Selleri, S.; Pissadakis, S.

    2014-03-17

    We report an in-fiber magnetic field sensor based on magneto-driven optical loss effects, while being implemented in a ferrofluid infiltrated microstructured polymer optical fiber. We demonstrate that magnetic field flux changes up to 2000 gauss can be detected when the magnetic field is applied perpendicular to the fiber axis. In addition, the sensor exhibits high polarization sensitivity for the interrogated wavelengths, providing the possibility of both field flux and direction measurements. The underlying physical and guidance mechanisms of this sensing transduction are further investigated using spectrophotometric, light scattering measurements, and numerical simulations, suggesting photonic Hall effect as the dominant physical, transducing mechanism.

  3. Fiber optic laser rod

    DOEpatents

    Erickson, G.F.

    1988-04-13

    A laser rod is formed from a plurality of optical fibers, each forming an individual laser. Synchronization of the individual fiber lasers is obtained by evanescent wave coupling between adjacent optical fiber cores. The fiber cores are dye-doped and spaced at a distance appropriate for evanescent wave coupling at the wavelength of the selected dye. An interstitial material having an index of refraction lower than that of the fiber core provides the optical isolation for effective lasing action while maintaining the cores at the appropriate coupling distance. 2 figs.

  4. Applications research in ultrasonic testing of carbon fiber composite based on an optical fiber F-p sensor

    NASA Astrophysics Data System (ADS)

    Shan, Ning

    2016-10-01

    Carbon fiber composite is widely applied to the field of aerospace engineering because of its excellent performance. But it will be able to form more defects in the process of manufacturing inevitably on account of unique manufacturing process. Meanwhile it has sophisticated structure and services in the bad environment long time. The existence of defects will be able to cause the sharp decline in component's performance when the defect accumulates to a certain degree. So the reliability and safety test demand of carbon fiber composite is higher and higher. Ultrasonic testing technology is the important means used for characteristics of component inspection of composite materials. Ultrasonic information detection uses acoustic transducer generally. It need coupling agent and is higher demand for the surface of sample. It has narrow frequency band and low test precision. The extrinsic type optical fiber F-P interference cavity structure is designed to this problem. Its optical interference model is studied. The initial length of F-P cavity is designed. The realtime online detection system of carbon fiber composite is established based on optical fiber F-P Ultrasound sensing technology. Finally, the testing experiment study is conducted. The results show that the system can realize real-time online detection of carbon fiber composite's defect effectively. It operates simply and realizes easily. It has low cost and is easy to practical engineering.

  5. Sensitivity improvement of optical-fiber temperature sensor with solid cladding material based on multimode interference

    NASA Astrophysics Data System (ADS)

    Fukano, Hideki; Kushida, Yohei; Taue, Shuji

    2015-03-01

    We have developed a simple, high-sensitivity optical-fiber temperature sensor based on multimode interference (MMI). The fabricated MMI structure comprises three segmented fibers: a single-mode fiber (SMF); a large-core multimode fiber (MMF), whose outer surface is coated with a temperature-sensitive material; and another SMF. Fluoroacrylate and silicone rubber are tested as temperature-sensitive cladding materials. The silicone rubber coating exhibits a large shift in interference wavelength with temperature, producing a very fine temperature resolution as low as 0.01 °C.

  6. Strain sensing based on radiative emission-absorption mechanism using dye-doped polymer optical fiber

    NASA Astrophysics Data System (ADS)

    Kamimura, S.; Furukawa, R.

    2017-08-01

    A stress sensor based on a dye-doped polymeric optical fiber is able to detect stress by simple comparison of two luminescence peaks from a pair of energy transfer organic dyes. Coumarin 540A (donor) and Rhodamine 6G (acceptor) were doped in the core and cladding of the fiber, respectively. For various laser wavelengths, the change in the near-field pattern and visible emission spectrum upon variation in the fiber bending diameter was evaluated. From a comparison with a low-numerical-aperture fiber, it is shown that the sensitivity of the sensor is controllable by optimization of the waveguide parameters.

  7. Fiber Optic Feed

    DTIC Science & Technology

    1990-11-06

    Naval Research Laboratory IIK Washington, DC,20375 5000 NRL Memorandum Report 6741 0 N Fiber Optic Feed DENZIL STILWELL, MARK PARENT AND LEw GOLDBERG...SUBTITLE S. FUNDING NUMBERS Fiber Optic Feed 53-0611-A0 6. AUTHOR(S) P. D. Stilwell, M. G. Parent, L. Goldberg 7. PERFORMING ORGANIZATION NAME(S) AND...DISTRIBUTION CODE Approved for public release; distribution unlimited. 13. ABSTRACT (Maximum 200 words) This report details a Fiber Optic Feeding

  8. An Optical Fiber Lateral Displacement Measurement Method and Experiments Based on Reflective Grating Panel

    PubMed Central

    Li, Yuhe; Guan, Kaisen; Hu, Zhaohui; Chen, Yanxiang

    2016-01-01

    An optical fiber sensing method based on a reflective grating panel is demonstrated for lateral displacement measurement. The reflective panel is a homemade grating with a periodic variation of its refractive index, which is used to modulate the reflected light intensity. The system structure and operation principle are illustrated in detail. The intensity calculation and simulation of the optical path are carried out to theoretically analyze the measurement performance. A distinctive fiber optic grating ruler with a special fiber optic measuring probe and reflective grating panel is set up. Experiments with different grating pitches are conducted, and long-distance measurements are executed to accomplish the functions of counting optical signals, subdivision, and discerning direction. Experimental results show that the proposed measurement method can be used to detect lateral displacement, especially for applications in working environments with high temperatures. PMID:27271624

  9. An Optical Fiber Lateral Displacement Measurement Method and Experiments Based on Reflective Grating Panel.

    PubMed

    Li, Yuhe; Guan, Kaisen; Hu, Zhaohui; Chen, Yanxiang

    2016-06-02

    An optical fiber sensing method based on a reflective grating panel is demonstrated for lateral displacement measurement. The reflective panel is a homemade grating with a periodic variation of its refractive index, which is used to modulate the reflected light intensity. The system structure and operation principle are illustrated in detail. The intensity calculation and simulation of the optical path are carried out to theoretically analyze the measurement performance. A distinctive fiber optic grating ruler with a special fiber optic measuring probe and reflective grating panel is set up. Experiments with different grating pitches are conducted, and long-distance measurements are executed to accomplish the functions of counting optical signals, subdivision, and discerning direction. Experimental results show that the proposed measurement method can be used to detect lateral displacement, especially for applications in working environments with high temperatures.

  10. From selenium- to tellurium-based glass optical fibers for infrared spectroscopies.

    PubMed

    Cui, Shuo; Chahal, Radwan; Boussard-Plédel, Catherine; Nazabal, Virginie; Doualan, Jean-Louis; Troles, Johann; Lucas, Jacques; Bureau, Bruno

    2013-05-10

    Chalcogenide glasses are based on sulfur, selenium and tellurium elements, and have been studied for several decades regarding different applications. Among them, selenide glasses exhibit excellent infrared transmission in the 1 to 15 µm region. Due to their good thermo-mechanical properties, these glasses could be easily shaped into optical devices such as lenses and optical fibers. During the past decade of research, selenide glass fibers have been proved to be suitable for infrared sensing in an original spectroscopic method named Fiber Evanescent Wave Spectroscopy (FEWS). FEWS has provided very nice and promising results, for example for medical diagnosis. Then, some sophisticated fibers, also based on selenide glasses, were developed: rare-earth doped fibers and microstructured fibers. In parallel, the study of telluride glasses, which can have transmission up to 28 µm due to its atom heaviness, has been intensified thanks to the DARWIN mission led by the European Space Agency (ESA). The development of telluride glass fiber enables a successful observation of CO₂ absorption band located around 15 µm. In this paper we review recent results obtained in the Glass and Ceramics Laboratory at Rennes on the development of selenide to telluride glass optical fibers, and their use for spectroscopy from the mid to the far infrared ranges.

  11. A simple optical fiber interferometer based breathing sensor

    NASA Astrophysics Data System (ADS)

    Li, Xixi; Liu, Dejun; Kumar, Rahul; Ng, Wai Pang; Fu, Yong-qing; Yuan, Jinhui; Yu, Chongxiu; Wu, Yufeng; Zhou, Guorui; Farrell, Gerald; Semenova, Yuliya; Wu, Qiang

    2017-03-01

    A breathing sensor has been experimentally demonstrated based on a singlemode–multimode–singlemode (SMS) fiber structure which is attached to a thin plastic film in an oxygen mask. By detecting power variations due to the macro bending applied to the SMS section by each inhalation and exhalation process, the breath state can be monitored. The proposed sensor is capable of distinguishing different types of breathing conditions including regular and irregular breath state. The sensor can be used in a strong electric/magnetic field and radioactive testing systems such as magnetic resonance imaging (MRI) systems and computed tomography (CT) examinations where electrical sensors are restricted.

  12. All-fiber-optic temperature sensor based on reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Liao, Guozhen; Jin, Shaoshen; Cao, Dong; Wei, Qingsong; Lu, Huihui; Yu, Jianhui; Cai, Xiang; Tan, Shaozao; Xiao, Yi; Tang, Jieyuan; Luo, Yunhan; Chen, Zhe

    2014-03-01

    We demonstrate a novel all-fiber-optic temperature sensor based on a reduced graphene oxide (rGO) film coated onto a side-polished fiber (SPF). Significantly enhanced interaction between the propagating light and the rGO film can be obtained via strong evanescent field of the SPF. The strong light-graphene interaction results in temperature sensing with a maximum optical power variation of 11.3 dB in the SPF experimentally. The novel temperature fiber sensor has a linear correlation coefficient of 99.4%, a sensitivity of 0.134 dB °C-1, a precision of better than 0.03 °C, and a response speed of better than 0.0228 °C s-1. Such an rGO-based all-fiber-optic temperature sensor is easy to fabricate, is compatible with fiber-optic systems, and possesses high potentiality in photonics applications such as all-fiber-optic temperature sensing networks.

  13. Multi-rate soliton pulse train generator based on novel fiber optic components

    NASA Astrophysics Data System (ADS)

    Sova, Raymond Michael

    As data rates for communication, signal processing, and optical sensing systems increase beyond 50 Gb/sec, ultra-fast optical pulse train generators will play a key role in their development. In this research, an all-fiber optical soliton pulse train generator is developed that operates at discrete rates from 50 to 400 Gb/sec with stable subpicosecond pulses. It is based on the following three novel fiber optic components: (1) all-fiber birefringence filter, (2) dual-wavelength fiber ring laser and (3) fiber-based soliton pulse train generation and compression stage. A multi-segment birefringence comb filter is developed to provide discrete tuning of the free spectral range from 0.8 to 3.2 nm and continuous tuning of the absolute position of the transmission peaks over the entire free spectral range. Two, three and four segment filters are constructed and implemented in Lyot and Lyot-Sagnac filter configurations to demonstrate the tuning properties and provide compound filters for use in the dual-wavelength fiber ring laser. Theoretical transmission functions are derived for two-segment filters. The experimental results are in excellent agreement with theoretical models based on the Jones matrix technique. The dual-wavelength laser consists of a PM amplifier, the tunable birefringence filter and a high-Q filter based on saturable absorber properties of un-pumped Erbium-doped fiber. Tunable compound birefringence filters are designed to operate the dual-wavelength laser over the entire erbium amplifier gain region (1530 to 1565 nm) with discrete tuning of the channel separation from 0.8 to 3.2 nm. Stable tunable dual-wavelength single-longitudinal mode operation is demonstrated and initial laser properties such as dual-relaxation oscillations, laser linewidth, polarization, and multi-wavelength stability are characterized. Induced modulation instability in optical fiber is used to generate pulse trains from the fiber ring laser output signal. Through modeling, the

  14. Optical-fiber vortex-shedding flowmeter based on white-light interference

    NASA Astrophysics Data System (ADS)

    Zhao, Dong; Wu, Hongyan; Jia, Bo; Zhi, Ya'nan

    2009-08-01

    Optical-fiber vortex-shedding flowmeter is prospective in its application in the measurement field not only for the merits up from vortex-shedding flowmeter but also those in optical fiber sensor such as flexibility, strong endurance, anti electromagnetic interference capacity and adaptation in the flammable explosive environment. A new optical-fiber vortex-shedding flowmeter based on white-light interference principle is introduced in this paper. Because of only responding on dynamic disturbance, the all-fiber white-light interferometric flowmeter not only holds the high-sensitivity of interferometric sensors, but also overcomes the instability of the traditional interferometric sensors, which tend to being affected from the external environmental condition such as temperature fluctuation. At last, some experimental curves are presented in this paper.

  15. Gas refractometry based on an all-fiber spatial optical filter.

    PubMed

    Silva, Susana; Coelho, L; André, R M; Frazão, O

    2012-08-15

    A spatial optical filter based on splice misalignment between optical fibers with different diameters is proposed for gas refractometry. The sensing head is formed by a 2 mm long optical fiber with 50 μm diameter that is spliced with a strong misalignment between two single-mode fibers (SMF28) and interrogated in transmission. The misalignment causes a Fabry-Perot behavior along the reduced-size fiber and depending on the lead-out SMF28 position, it is possible to obtain different spectral responses, namely, bandpass or band-rejection filters. It is shown that the spatial filter device is highly sensitive to refractive index changes on a nitrogen environment by means of the gas pressure variation. A maximum sensitivity of -1390 nm/RIU for the bandpass filter was achieved. Both devices have shown similar temperature responses with an average sensitivity of 25.7 pm/°C.

  16. Micro-controller based air pressure monitoring instrumentation system using optical fibers as sensor

    NASA Astrophysics Data System (ADS)

    Hazarika, D.; Pegu, D. S.

    2013-03-01

    This paper describes a micro-controller based instrumentation system to monitor air pressure using optical fiber sensors. The principle of macrobending is used to develop the sensor system. The instrumentation system consists of a laser source, a beam splitter, two multi mode optical fibers, two Light Dependent Resistance (LDR) based timer circuits and a AT89S8252 micro-controller. The beam splitter is used to divide the laser beam into two parts and then these two beams are launched into two multi mode fibers. One of the multi mode fibers is used as the sensor fiber and the other one is used as the reference fiber. The use of the reference fiber is to eliminate the environmental effects while measuring the air pressure magnitude. The laser beams from the sensor and reference fibers are applied to two identical LDR based timer circuits. The LDR based timer circuits are interfaced to a micro-controller through its counter pins. The micro-controller samples the frequencies of the timer circuits using its counter-0 and counter-1 and the counter values are then processed to provide the measure of air pressure magnitude.

  17. In vivo brain temperature measurements based on fiber optic Bragg grating

    NASA Astrophysics Data System (ADS)

    Zibaii, Mohammad I.; Latifi, Hamid; Karami, Fatemeh; Ronaghi, Abdolaziz; Chavoshi Nejad, Sara; Dargahi, Leila

    2017-04-01

    This work reports on the development of an optical fiber sensor based fiber Bragg Grating (FBG) probe for in vivo measurements of brain temperature. The major goal of this work is to demonstrate that the changes in brain temperature induced by drugs is an important reality, which could provide new valuable information on the mechanisms of drug action and open new therapeutic approaches. This probe can be interrogated using a portable optical measurement setup, allowing for measurements to be performed outside of standard optical laboratories.

  18. Optical fiber synaptic sensor

    NASA Astrophysics Data System (ADS)

    Pisarchik, A. N.; Jaimes-Reátegui, R.; Sevilla-Escoboza, R.; García-Lopez, J. H.; Kazantsev, V. B.

    2011-06-01

    Understanding neuron connections is a great challenge, which is needed to solve many important problems in neurobiology and neuroengineering for recreation of brain functions and efficient biorobotics. In particular, a design of an optical synapse capable to communicate with neuron spike sequences would be crucial to improve the functionality of neuromimmetic networks. In this work we propose an optical synaptic sensor based on an erbium-doped fiber laser driven by a FitzHung-Nagumo electronic neuron, to connect with another electronic neuron. Two possible optical synaptic configurations are analyzed for optoelectronic coupling between neurons: laser cavity loss modulation and pump laser modulation. The control parameters of the proposed optical synapse provide additional degrees of flexibility to the neuron connection traditionally controlled only by coupling strengths in artificial networks.

  19. Oxygen gas optrode based on microstructured polymer optical fiber segment

    NASA Astrophysics Data System (ADS)

    Yang, Xinghua; Peng, Lirong; Yuan, Libo; Teng, Pingping; Tian, Fengjun; Li, Le; Luo, Shenzi

    2011-06-01

    In this article, we first propose a novel type of oxygen gas optrode by forming fluorophore doped sensing film in the array microholes with the characteristics of microstructured optical fiber (MOF) segment. Comparing with the conventional O 2 detecting method, this slender shaped optrode shows potential in trace amount of O 2 sensing and online O 2 monitoring. Organical silicate gel or plastified cellulose acetate are chosen as sensing films and tris (4,7-diphenyl-1,10-phenathroline) ruthenium(II) dichloride ([Ru(dpp) 3]Cl 2) or meso-tetraphenylporphyin (TPP) as quenching fluorophores. From the experimental results, we find [Ru(dpp) 3] 2+-Gel-MOF optrode has favorable sensing characteristics, and the Stern-Volmer plots are linear in the full concentration range of O 2 (0-100% v/v). The ratio of I 0/I 100, where I 0 and I 100 respectively represents the fluorescence intensities of the optrode exposed to 100% N 2 and 100% O 2, as a sensitivity of the optrode is 10.8. Simultaneously, the optrode can make a quick response within 50 ms.

  20. Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection.

    PubMed

    Yao, B C; Wu, Y; Yu, C B; He, J R; Rao, Y J; Gong, Y; Fu, F; Chen, Y F; Li, Y R

    2016-03-24

    Fluorescent resonance energy transfer (FRET) with naturally exceptional selectivity is a powerful technique and widely used in chemical and biomedical analysis. However, it is still challenging for conventional FRET to perform as a high sensitivity compact sensor. Here we propose a novel 'FRET on Fiber' concept, in which a partially reduced graphene oxide (prGO) film is deposited on a fiber-optic modal interferometer, acting as both the fluorescent quencher for the FRET and the sensitive cladding for optical phase measurement due to refractive index changes in biochemical detection. The target analytes induced fluorescence recovery with good selectivity and optical phase shift with high sensitivity are measured simultaneously. The functionalized prGO film coated on the fiber-optic interferometer shows high sensitivities for the detections of metal ion, dopamine and single-stranded DNA (ssDNA), with detection limits of 1.2 nM, 1.3 μM and 1 pM, respectively. Such a prGO based 'FRET on fiber' configuration, bridging the FRET and the fiber-optic sensing technology, may serve as a platform for the realization of series of integrated 'FRET on Fiber' sensors for on-line environmental, chemical, and biomedical detection, with excellent compactness, high sensitivity, good selectivity and fast response.

  1. An optical fiber viscometer based on long-period fiber grating technology and capillary tube mechanism.

    PubMed

    Wang, Jian-Neng; Tang, Jaw-Luen

    2010-01-01

    This work addresses the development and assessment of a fiber optical viscometer using a simple and low-cost long-period fiber grating (LPFG) level sensor and a capillary tube mechanism. Previous studies of optical viscosity sensors were conducted by using different optical sensing methods. The proposed optical viscometer consists of an LPFG sensor, a temperature-controlled chamber, and a cone-shaped reservoir where gravitational force could cause fluid to flow through the capillary tube. We focused on the use of LPFGs as level sensors and the wavelength shifts were not used to quantify the viscosity values of asphalt binders. When the LPFG sensor was immersed in the constant volume (100 mL) AC-20 asphalt binder, a wavelength shift was observed and acquired using LabVIEW software and GPIB controller. The time spent between empty and 100 mL was calculated to determine the discharge time. We simultaneously measured the LPFG-induced discharge time and the transmission spectra both in hot air and AC-20 asphalt binder at five different temperatures, 60, 80, 100, 135, and 170 Celsius. An electromechanical rotational viscometer was also used to measure the viscosities, 0.15-213.80 Pa·s, of the same asphalt binder at the above five temperatures. A non-linear regression analysis was performed to convert LPFG-induced discharge time into viscosities. Comparative analysis shows that the LPFG-induced discharge time agreed well with the viscosities obtained from the rotational viscometer.

  2. Research on a new fiber-optic axial pressure sensor of transformer winding based on fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Li, Lianqing; Zhao, Lin; Wang, Jiqiang; Liu, Tongyu

    2017-07-01

    Based on the principle of the fiber Bragg grating, a new type of fiber-optic pressure sensor for axial force measurement of transformer winding is designed, which is designed with the structure of bending plate beam, the optimization of the packaging process, and material of the sensor. Through the calibration experiment to calibrate the sensor, the field test results of the Taikai transformer factory show that the sensitivity of the sensor is 0.133 pm/kPa and the repeatability error is 2.7% FS. The data of the fiber-optic pressure sensor in different positions maintain consistent and repeatable, which can meet the requirement of the real-time monitoring of the axial force of transformer winding.

  3. Hollow-core photonic-crystal-fiber-based optical frequency references

    NASA Astrophysics Data System (ADS)

    Holá, Miroslava; Hrabina, Jan; Mikel, Břetislav; Lazar, Josef; Číp, Ondřej

    2016-12-01

    This research deals with preparation of an optical frequency references based on hollow-core photonic crystal fibers (HC-PCF). This fiber-based type of absorption cells represents a effiecient way how to replace classic bulky and fragile glass made tubes references with low-weight and low-volume optical fibers. This approach allows not only to increase possible interaction length between incident light and absorption media but it also carries a possibility of manufacturing of easy-operable reference which is set up just by plugging-in of optical connectors into the optical setup. We present the results of preparation, manufacturing and filling of a set of fiber-based cells intended for lasers frequency stabilization. The work deals with setting and optimalization of HC-PCF splicing processes, minimalization of optical losses between HC-PCF and SMF fiber transitions and finishing of HC-PCF spliced ends with special care for optimal closing of hollow-core structure needed for avoiding of absorption media leakage.

  4. Fiber-optic refractive index sensor based on surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Hlubina, Petr; Ciprian, Dalibor; Kadulova, Miroslava

    2015-01-01

    A fiber-optic refractive index sensor based on surface plasmon resonance (SPR) in a thin metal film deposited on an unclad core of a multimode fiber is presented. The sensing element of the SPR fiber-optic sensor is a bare core of a step-index optical fiber made of fused silica with a deposited gold film. First, a model of the SPR fiber-optic sensor based on the theory of attenuated total internal reflection is presented. The analysis is carried out in the frame of optics of multilayered media. The sensing scheme uses a wavelength interrogation method and the calculations are performed over a broad spectral range. Second, in a practical realization of the sensor with a double-sided sputtered gold film, a reflection-based sensing scheme to measure the refractive indices of liquids is considered. The refractive index of a liquid is sensed by measuring the position of the dip in the reflected spectral intensity distribution. As an example, the aqueous solutions of ethanol with refractive indices in a range from 1.333 to 1.364 are measured.

  5. Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography

    PubMed Central

    2010-01-01

    We present a new ultra high resolution spectral domain polarization sensitive optical coherence tomography (PS-OCT) system based on polarization maintaining (PM) fibers. The method transfers the principles of our previous bulk optic PS-OCT systems to a fiberized setup. The phase shift between the orthogonal polarization states travelling in the two orthogonal modes of the PM fiber is compensated by software in post processing. Thereby, the main advantage of our bulk optics setups, i.e. the use of only a single input polarization state to simultaneously acquire reflectivity, retardation, optic axis orientation, and Stokes vector, is maintained. The use of a broadband light source of 110 nm bandwidth provides improved depth resolution and smaller speckle size. The latter is important for improved resolution of depolarization imaging. We demonstrate our instrument for high-resolution PS-OCT imaging of the healthy human retina. PMID:20052196

  6. Fiber-optic-based surface plasmon resonance (SPR) sensors for the detection of toxic nerve agents

    NASA Astrophysics Data System (ADS)

    Prakash, Anna M. C.; Kim, Yoon-Chang; Banerji, Soame; Masson, Jean-Francois; Booksh, Karl S.

    2004-03-01

    Analytical instruments capable of detecting nerve agents in battlefield conditions where speed, accuracy and ease of operation are a must in today's military. Fast detection and decontamination of nerve agents in very low concentrations is the primary focus of our research. The method presented here focuses on optimizing polymer stabilized sensing elements on the surface of SPR fiber-optic probes. A number of polymers & polymer supported metal complexes capable of reversibly binding to the species of interest & which have robust operation in hostile environments are incorporated with the fiber optic sensing elements. An optical technique, such as Surface Plasmon Resonance (SPR), better suited to rapid data collection without sample pretreatment is employed. The approach using polymer-based optical fibers with off-the-shelf SPR system components has been tested for the detection of Pinacolyl methylphosphonate (PMP), a simulant for nerve agent Soman. Surface initiated polymeric sensors have higher sensitivity toward detecting PMP than bulk-polymerized sensors.

  7. Fiber-optic based in situ atomic spectroscopy for manufacturing of x-ray optics

    NASA Astrophysics Data System (ADS)

    Atanasoff, George; Metting, Christopher J.; von Bredow, Hasso

    2016-09-01

    The manufacturing of multilayer Laue (MLL) components for X-ray optics by physical vapor deposition (PVD) requires high precision and accuracy that presents a significant process control challenge. Currently, no process control system provides the accuracy, long-term stability and broad capability for adoption in the manufacturing of X-ray optics. In situ atomic absorption spectroscopy is a promising process control solution, capable of monitoring the deposition rate and chemical composition of extremely thin metal silicide films during deposition and overcoming many limitations of the traditional methods. A novel in situ PVD process control system for the manufacturing of high-precision thin films, based on combined atomic absorption/emission spectrometry in the vicinity of the deposited substrate, is described. By monitoring the atomic concentration in the plasma region independently from the film growth on the deposited substrate, the method allows deposition control of extremely thin films, compound thin films and complex multilayer structures. It provides deposition rate and film composition measurements that can be further utilized for dynamic feedback process control. The system comprises a reconfigurable hardware module located outside the deposition chamber with hollow cathode light sources and a fiber-optic-based frame installed inside the deposition chamber. Recent experimental results from in situ monitoring of Al and Si thin films deposited by DC and RF magnetron sputtering at a variety of plasma conditions and monitoring configurations are presented. The results validate the operation of the system in the deposition of compound thin films and provide a path forward for use in manufacturing of X-Ray optics.

  8. Acousto-opto-mechanical theory for polarization maintaining optical fibers in Brillouin based sensing

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoling; Ansari, Farhad; Meng, Dewei; Bao, Tengfei

    2015-01-01

    Change in phase or wavelength for interferometric and fiber Bragg Gratings (FBG) based sensors can be described by strain-optic effects. In Brillouin sensors, strain sensitivity need to be expressed in terms of acousto-opto-mechanical properties of fibers. It is then possible to formulate theoretical relationships that lead to the evaluation of strain sensitivities and establishment of gauge factors for Brillouin based sensors. This article reports on the derivation of generalized relationships describing the strain sensitivity in terms of acousto-optic effects in optical fibers. In particular, the formulations correspond to polarization maintaining fibers at various polarization angles with respect to the slow axis of the fiber. The scope of research encompassed theoretical and experimental studies involving both single mode as well as polarization maintaining optical fibers subjected to strain under isothermal conditions. A high resolution BOTDA was employed in the experiments in order to verify the validity of theoretical relationships between strain and Brillouin frequency shifts for different polarization angles.

  9. Multimode optical fiber

    DOEpatents

    Bigot-Astruc, Marianne; Molin, Denis; Sillard, Pierre

    2014-11-04

    A depressed graded-index multimode optical fiber includes a central core, an inner depressed cladding, a depressed trench, an outer depressed cladding, and an outer cladding. The central core has an alpha-index profile. The depressed claddings limit the impact of leaky modes on optical-fiber performance characteristics (e.g., bandwidth, core size, and/or numerical aperture).

  10. All-fiber optical modulator based on no-core fiber and magnetic fluid as cladding

    NASA Astrophysics Data System (ADS)

    Chen, Yao-Fei; Han, Qun; Liu, Tie-Gen

    2015-01-01

    An all-fiber optical modulator, which is composed of a piece of no-core fiber spliced between two sections of single-mode fibers and uses magnetic fluid (MF) as the cladding of the no-core fiber section, is proposed and investigated experimentally. Due to the tunable refractive index and absorption coefficient of MF, the output intensity can be modulated by controlling an applied magnetic field. The dependences of the modulator’s temporal response on the working wavelength, the magnetic field strength (H), and the MF’s concentration are investigated experimentally. The results are explained qualitatively by the dynamic response process of MF under the action of a magnetic field. The findings are helpful for optimizing this kind of modulator. Project supported by the Natural Science Foundation of Tianjin City, China (Grant No. 13JCYBJC16100), the National Natural Science Foundation of China (Grant No. 61107035), the National Key Scientific Instrument and Equipment Development Project of China (Grant No. 2013YQ03091502), and the National Basic Research Program of China (Grant Nos. 2010CB327802 and 2010CB327806).

  11. Novel multifunctional structures based on redistribution of optical power as basis for fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Šiška, Petr; Skapa, Jan; Vašinek, Vladimír; Kašík, Ivan; Matějec, Vlastimil

    2008-12-01

    Sensors built with the help of optical fibers can measure almost all magnitudes in these days [3]. In our research we design new novel multifunctional structures that afford concurrently utilizing of optical fiber for telecommunications and measurements. These fibers are designed to work on two wavelengths. On telecommunication wavelength of 1550 nm these fibers are operating in single mode regime and on measurement wavelength of 850 nm they are working in quasisingle mode regime. Complicated profiles of refractive indexes provide four LP modes on 850 nm that are supported by fibers and that transmit a significant amount of power. First samples of these hybrid fibers have already been made thanks to grant cooperation with Academy of Science of Czech Republic. These refractive index profiles have to be designed in such way that all supported modes should carry approximate the same amount of optical power. The usage of both wavelength means that the light of communication wavelength must not be affected by the fiber activities at the wavelength of 850nm. The consequence is that only redistribution of optical power among supported modes can be applied. The Fourier and wavelet analysis is used to find out the significant points in the progression of the optical power. There are changes in the Fourier spectra and changes in wavelet coefficients. From the Fourier analysis we can predict the progression; wavelet analysis [2] enables us to find out singularities. It is expected, that every change on the fiber has its own "fingerprint" in the redistribution of the optical power. The main instrument is the coupled mode equations [1] following directly from the wave equations for individual modes. They contain a detailed description of the phase and amplitude of all the modes at any point z along the waveguide. But usually we are not interested in the phases and amplitudes of the individual modes. For the most of practical intentions, it is sufficient to know the average of

  12. Design and analysis of surface plasmon resonance sensor based on high-birefringent microstructured optical fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Nancy Meng Ying; Juan Juan Hu, Dora; Shum, Perry Ping; Wu, Zhifang; Li, Kaiwei; Huang, Tianye; Wei, Lei

    2016-06-01

    Optical fiber based surface plasmon resonance (SPR) sensors are favored by their high sensitivity, compactness, remote and in situ sensing capabilities. Microstructured optical fibers (MOFs) possess microfluidic channels extended along the entire length right next to the fiber core, thereby enabling the infiltrated biochemical analyte to access the evanescent field of guided light. Since SPR can only be excited by the polarization vertical to metal surface, external perturbation could induce the polarization crosstalk in fiber core, thus leading to the instability of sensor output. Therefore for the first time we analyze how the large birefringence suppresses the impact of polarization crosstalk. We propose a high-birefringent MOF based SPR sensor with birefringence larger than 4 × 10-4 as well as easy infiltration of microfluidic analyte, while maintaining sensitivity as high as 3100 nm/RIU.

  13. LPFG based fiber optic sensor for magnetic field measurement

    NASA Astrophysics Data System (ADS)

    Gouveia, Carlos A. J.; Coelho, Luís.; Franco, Marcos A. R.

    2017-04-01

    The design and modelling of a novel magnetic field sensor based on a long period fiber grating coated with a thin film of N doped ZnO is reported. The parameters of both, the grating and the thin film were carefully chosen to operate in the transition mode and near to the dispersion turning point. At this point, an LPFG shows its maximum sensitivity to external refractive index variations. The magnetic field induces variations in the coating refractive index, which changes the effective refractive index of the cladding mode and the consequent spectral response. In this work a sensitivity to the surrounding magnetic field of 2.9 nm/mT is reported with a maximum theoretical resolution of 2 μT.

  14. Fiber optic pressure sensing method based on Sagnac interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Zhuang, Zhi; Chen, Ying; Yang, Yuanhong

    2014-11-01

    Pressure method using polarization-maintaining photonic crystal fiber (PM-PCF) as sensing element based on Sagnac interferometer is proposed to monitor inter layer pressure in especial compact structure. Sensing model is analyzed and test system is set up, which is validated by experiment. The birefringence can be modified by the deformation of PM-PCF under transverse pressure, realizing pressure measurement by detecting the wavelength shift of one specific valley from output of the Sagnac interferometer. The experiment results show that the output interference fringes were shifted linearly with pressure. The dynamic range of 0 kN ~10kN, sensing precision of 2.6%, and pressure sensitivity of 0.4414nm/kN are achieved, and the strain relaxation phenomenon of cushion can be observed obviously. The sensor has better engineering practicability and capability to restrain interference brought up by fluctuation of environment temperature, which temperature sensitivity is -11.8pm/°C.

  15. Measurement of Nonlinear Parameter of an Optical Fiber by Characterizing of Self-phase Modulation based on BOTDA

    NASA Astrophysics Data System (ADS)

    Zhang, Hongying; Zhang, Shaopeng; Yuan, Zhijun; Liu, Ziye; Gao, Wei; Dong, Yongkang

    2016-02-01

    We propose a novel method to measure the nonlinear parameter of an optical fiber by characterizing the evolution of self-phase modulation (SPM) based on Brillouin optical time-domain analysis (BOTDA). The nonlinear parameter of an optical fiber is measured to be 2.03 W-1km-1, which agrees well with previously reported result.

  16. Woven fiber optics.

    PubMed

    Schmidt, A C; Courtney-Pratt, J S; Ross, E A

    1975-02-01

    In this paper we describe how the art of weaving can be applied to fiber optics in order to produce precisely controlled reproducible image guides and image dissectors. As examples of the types of device for which woven fiber optics are applicable, we describe a 3:1 interleaver for use with a cathode-ray tube to produce color images, and a high speed alpha numeric output device. The techniques of weaving fiber optics are discussed in sufficient detail in order to allow for further work. Although, in principle, one might be able to weave glass optical fibers, all the work described here made use of plastic optical fibers 0.25 mm in diameter.

  17. Python fiber optic seal

    SciTech Connect

    Ystesund, K.; Bartberger, J.; Brusseau, C.; Fleming, P.; Insch, K.; Tolk, K.

    1993-08-01

    Sandia National Laboratories has developed a high security fiber optic seal that incorporates tamper resistance features that are not available in commercial fiber optic seals. The Python Seal is a passive fiber optic loop seal designed to give indication of unauthorized entry. The seal includes a fingerprint feature that provides seal identity information in addition to the unique fiber optic pattern created when the seal is installed. The fiber optic cable used for the seal loop is produced with tamper resistant features that increase the difficulty of attacking that component of a seal. A Seal Reader has been developed that will record the seal signature and the fingerprint feature of the seal. A Correlator software program then compares seal images to establish a match or mismatch. SNL is also developing a Polaroid reader to permit hard copies of the seal patterns to be obtained directly from the seal.

  18. Fiber optic attenuator

    NASA Technical Reports Server (NTRS)

    Buzzetti, Mike F. (Inventor)

    1994-01-01

    A fiber optic attenuator of the invention is a mandrel structure through which a bundle of optical fibers is wrapped around in a complete circle. The mandrel structure includes a flexible cylindrical sheath through which the bundle passes. A set screw on the mandrel structure impacts one side of the sheath against two posts on the opposite side of the sheath. By rotating the screw, the sheath is deformed to extend partially between the two posts, bending the fiber optic bundle to a small radius controlled by rotating the set screw. Bending the fiber optic bundle to a small radius causes light in each optical fiber to be lost in the cladding, the amount depending upon the radius about which the bundle is bent.

  19. Connector For Embedded Optical Fiber

    NASA Technical Reports Server (NTRS)

    Wilkerson, Charles; Hiles, Steven; Houghton, J. Richard; Holland, Brent W.

    1994-01-01

    Partly embedded fixture is simpler and sturdier than other types of outlets for optical fibers embedded in solid structures. No need to align coupling prism and lenses. Fixture includes base, tube bent at 45 degree angle, and ceramic ferrule.

  20. Superlattice Microstructured Optical Fiber

    PubMed Central

    Tse, Ming-Leung Vincent; Liu, Zhengyong; Cho, Lok-Hin; Lu, Chao; Wai, Ping-Kong Alex; Tam, Hwa-Yaw

    2014-01-01

    A generic three-stage stack-and-draw method is demonstrated for the fabrication of complex-microstructured optical fibers. We report the fabrication and characterization of a silica superlattice microstructured fiber with more than 800 rhomboidally arranged air-holes. A polarization-maintaining fiber with a birefringence of 8.5 × 10−4 is demonstrated. The birefringent property of the fiber is found to be highly insensitive to external environmental effects, such as pressure. PMID:28788693

  1. Superlattice Microstructured Optical Fiber.

    PubMed

    Tse, Ming-Leung Vincent; Liu, Zhengyong; Cho, Lok-Hin; Lu, Chao; Wai, Ping-Kong Alex; Tam, Hwa-Yaw

    2014-06-16

    A generic three-stage stack-and-draw method is demonstrated for the fabrication of complex-microstructured optical fibers. We report the fabrication and characterization of a silica superlattice microstructured fiber with more than 800 rhomboidally arranged air-holes. A polarization-maintaining fiber with a birefringence of 8.5 × 10(-4) is demonstrated. The birefringent property of the fiber is found to be highly insensitive to external environmental effects, such as pressure.

  2. Development of optical fiber-based respiration sensor for noninvasive respiratory monitoring

    NASA Astrophysics Data System (ADS)

    Yoo, Wook Jae; Jang, Kyoung Won; Seo, Jeong Ki; Heo, Ji Yeon; Moon, Jin Soo; Jun, Jae Hoon; Park, Jang-Yeon; Lee, Bongsoo

    2011-01-01

    In this study, two types of nasal-cavity-attached fiber-optic respiration sensors have been fabricated for noninvasive respiratory monitoring. One is a silver halide optical-fiber-based respiration sensor that can measure the variations of infrared radiation generated by the respiratory airflow from a nasal cavity. The other is a thermochromic-pigment-based fiber-optic respiration sensor that can measure the intensity of reflected light which changes owing to color variations of the temperature-sensing film according to the temperature difference between inspiratory and expiratory air. We have demonstrated the similarities of the respiratory signals using the fiber-optic respiration sensors and the temperature transducer of the BIOPAC® system. In addition, we verified that respiratory signals without the deterioration of the MR image can be obtained using the fiber-optic respiration sensors. It is anticipated that the proposed noninvasive fiberoptic respiration sensors will be highly effective for respiratory monitoring of a patient during MRI procedures.

  3. Tapered splice technique for capillary optical fiber

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoliang; Xiang, Huoxing

    2017-07-01

    We propose a simple but effective technique. It is concerned with a tapered splice technique for capillary optical fiber. In order to contrast, we investigate two kinds of capillary optical fiber. One of the capillary optical fiber has the annular core around the air hole and the other one has the embedded annular core around the inner cladding. We demonstrate the tapered splice technique works for both of the capillary optical fiber in experiment. It is the key to improve the coupling efficiency of the capillary optical fiber. We also build a theoretical model to predict the optical power of the capillary optical fiber and it is confirmed by the experimental results. The method provides an insight of the mode conversion characteristics of capillary optical fiber. It should be used as an easy way to realize the fiber-based in-line components and should be more importantly to explore new possibilities with this kind of fiber.

  4. Flexible biodegradable citrate-based polymeric step-index optical fiber.

    PubMed

    Shan, Dingying; Zhang, Chenji; Kalaba, Surge; Mehta, Nikhil; Kim, Gloria B; Liu, Zhiwen; Yang, Jian

    2017-10-01

    Implanting fiber optical waveguides into tissue or organs for light delivery and collection is among the most effective ways to overcome the issue of tissue turbidity, a long-standing obstacle for biomedical optical technologies. Here, we report a citrate-based material platform with engineerable opto-mechano-biological properties and demonstrate a new type of biodegradable, biocompatible, and low-loss step-index optical fiber for organ-scale light delivery and collection. By leveraging the rich designability and processibility of citrate-based biodegradable polymers, two exemplary biodegradable elastomers with a fine refractive index difference and yet matched mechanical properties and biodegradation profiles were developed. Furthermore, we developed a two-step fabrication method to fabricate flexible and low-loss (0.4 db/cm) optical fibers, and performed systematic characterizations to study optical, spectroscopic, mechanical, and biodegradable properties. In addition, we demonstrated the proof of concept of image transmission through the citrate-based polymeric optical fibers and conducted in vivo deep tissue light delivery and fluorescence sensing in a Sprague-Dawley (SD) rat, laying the groundwork for realizing future implantable devices for long-term implantation where deep-tissue light delivery, sensing and imaging are desired, such as cell, tissue, and scaffold imaging in regenerative medicine and in vivo optogenetic stimulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Refractive-Index-Based Sorting of Colloidal Particles Using a Subwavelength Optical Fiber in a Static Fluid

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Lei, Hongxiang; Li, Baojun

    2013-07-01

    An optical-fiber-based technique is presented for refractive-index-based sorting of colloidal particles in a static fluid. The method employs the different optical scattering forces exerted by a subwavelength optical fiber on colloidal particles with different refractive indices. By launching two counterpropagating laser beams at wavelengths of 808 and 1047 nm into a fiber of 800 nm diameter, the resultant scattering forces acting on polystyrene and SiO2 particles can be in opposite directions, which leads to a countertransport of the particles along the fiber. Experiments are performed using the fiber to sort the particles of 650 nm size.

  6. Utility of an optically-based, micromechanical system for printing collagen fibers

    PubMed Central

    Paten, Jeffrey A.; Tilburey, Graham E.; Molloy, Eileen A.; Zareian, Ramin; Trainor, Christopher V.

    2013-01-01

    Collagen's success as the principal structural element in load-bearing, connective tissue has motivated the development of numerous engineering approaches designed to recapitulate native fibril morphology and strength. It has been shown recently that collagen fibers can be drawn from monomeric solution through a fiber forming buffer (FFB), followed by numerous additional treatments in a complex serial process. However, internal fibril alignment, packing and resultant mechanical behavior of the fibers have not been optimized and remain inferior to native tissue. Further, no system has been developed which permits simultaneous application of molecular crowding, measurement of applied load, and direct observation of polymerization dynamics during fiber printing. The ability to perform well-controlled investigations early in the process of fiber formation, which vary single input parameters (i.e. collagen concentration, crowding agent concentration, draw rate, flow rate, temperature, pH, etc.) should substantially improve fiber morphology and strength. We have thus designed, built, and tested a versatile, in situ, optically-based, micromechanical assay and fiber printing system which permits the correlation of parameter changes with mechanical properties of fibers immediately after deposition into an FFB. We demonstrate the sensitivity of the assay by detecting changes in the fiber mechanics in response to draw rate, collagen type, small changes in the molecular crowding agent concentration and to variations in pH. In addition we found the ability to observe fiber polymerization dynamics leads to intriguing new insights into collagen assembly behavior. PMID:23352045

  7. Magnetostriction measuring device based on an optical fiber sensor with an annular photodiode.

    PubMed

    de Manuel, V; Del Real, R P; Alonso, J; Guerrero, H

    2007-09-01

    A new simple and sensitive dilatometer to measure magnetostriction of ribbons has been developed, based on an optical fiber sensor using an annular photodiode. The optical fiber is used bidirectionally, both for emission and detection of light, simplifying the access to the ribbon under test. The working principle is based on the measurement by reflection of the longitudinal displacement of the ribbon end. For a Vitroperm amorphous ribbon of 100 mm length, 21 microm thickness, and 8.3 mm width, a displacement of 2.571 microm with a maximum uncertainty of 8 nm has been obtained.

  8. Great circle solution to polarization-based quantum communication (QC) in optical fiber

    DOEpatents

    Nordholt, Jane Elizabeth; Peterson, Charles Glen; Newell, Raymond Thorson; Hughes, Richard John

    2016-03-15

    Birefringence in optical fibers is compensated by applying polarization modulation at a receiver. Polarization modulation is applied so that a transmitted optical signal has states of polarization (SOPs) that are equally spaced on the Poincare sphere. Fiber birefringence encountered in propagation between a transmitter and a receiver rotates the great circle on the Poincare sphere that represents the polarization bases used for modulation. By adjusting received polarizations, polarization components of the received optical signal can be directed to corresponding detectors for decoding, regardless of the magnitude and orientation of the fiber birefringence. A transmitter can be configured to transmit in conjugate polarization bases whose SOPs can be represented as equidistant points on a great circle so that the received SOPs are mapped to equidistant points on a great circle and routed to corresponding detectors.

  9. Alcohol sensor based on u-bent hetero-structured fiber optic

    NASA Astrophysics Data System (ADS)

    Patrialova, Sefi N.; Hatta, Agus M.; Sekartedjo, Sekartedjo

    2016-11-01

    A sensor based on a fiber optic hetero-structure to determine the concentration of alcohol has been proposed. The structure of the sensing probe in this research is a singlemode-multimode-singlemode (SMS) which bent into Ushaped and soon called as SMS u-bent. The SMS structure was chosen to get a higher sensitivity. This research utilizes the principle of multimode interference and evanescent field by modifying the cladding with various alcohol concentration. Testing of the sensor's performance has been done by measuring the sensor's power output response to the length of the SMS fiber optic, bending diameter, and alcohol concentration. Based on the experiment result, the ubent SMS fiber optic with 50 mm bending diameter and 63 mm MMF lenght has the highest sensitivity, 3.87 dB/% and the minimum resolution, 0.26 x 10-3 %.

  10. Optical fiber pH sensor based on gold nanoparticles into polymeric coatings

    NASA Astrophysics Data System (ADS)

    Socorro, A. B.; Rivero, Pedro J.; Hernaez, M.; Goicoechea, J.; Matias, I. R.; Arregui, F. J.

    2015-05-01

    A pH optical fiber sensor based on electromagnetic resonances generated in a waveguide-nanocoating interface is presented here. The incorporation of gold nanoparticles (AuNPs) into polymeric thin films has been deeply studied and the deposition of these thin-films onto an optical fiber core has been performed in order to obtain a resonance-based optical fiber device. The presence of both the metal nanoparticles and the polymers in the coating allows the generation of two different electromagnetic resonances: localized surface plasmon resonance (LSPR) and lossy mode resonance (LMR). These phenomena can be simultaneously observed in the transmitted spectrum. The resultant device has shown a high sensitivity to pH changes from pH 4.0 to pH 6.0, with a large dynamical range and a very fast response.

  11. Gaseous ammonia fluorescence probe based on cellulose acetate modified microstructured optical fiber

    NASA Astrophysics Data System (ADS)

    Peng, Lirong; Yang, Xinghua; Yuan, Libo; Wang, Lili; Zhao, Enming; Tian, Fengjun; Liu, Yanxin

    2011-09-01

    In this article, we report a novel fluorescent ammonia gas probe based on microstructured optical fiber (MOF) which is modified with eosin-doped cellulose acetate film. This probe was fabricated by liquid fluxion coating process. Polymer solution doped with eosin was directly inhaled into 18 array holes of MOF and then formed matrix film in them. The sensing properties of the optical fiber sensor to gaseous ammonia at room temperature were investigated. The sensing probe showed different fluorescence intensity at 576 nm to different concentrations of trace ammonia in carrier gas of nitrogen. The response range was 50-400 ppm, with short response time within 500 ms. Furthermore, the response range could be tailored through CTAB co-entrapment process in the sensing film. These test results demonstrated that low cost, simple structured fiber optic sensors for detecting ammonia gas samples could be developed based on MOF.

  12. A wavelength encoded optical fiber sensor based on multimode interference in a coreless silica fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Chenliang; Li, Enbang; Lv, Peng; Wang, Wei

    2008-12-01

    A wavelength encoded optical fiber sensor using a three-segmented fiber structure is proposed. The device consists of a coreless silica fiber (CSF) which is coated with a thin film and spliced between two standard single-mode fibers (SMFs), forming a SMF-CSF-SMF (SCS) structure. When light is transmitted from the SMF into the CSF, the LP01 mode in the SMF is coupled to the LP0n modes, and a multimode interference occurs in the CSF. These modes interact with the thin film, hence the thickness and refractive index of the thin film can affect the modal interference. We analyze the transmission spectra of the SCS structure to obtain the characteristics of the sensor including sensing sensitivity. Numerical simulations are carried out by using the Beam Propagation Method (BPM) to investigate the multimode interference in the SCS. Two different conditions are considered in our studies: 1) changing the refractive index of a fixed-thickness film, and 2) varying the film thickness with certain refractive index. It has been found that the wavelength corresponding to the minimum output power increases 0.33509 nm when the refractive index changes every 0.01 from 1.33 up to 1.40, and 6.760 nm when the thickness enhances form 0 to 1000 nm. The trend of the raise is mostly linear for the former simulation, but gets slower and slower for the latter. The SCS structure can serve as a fiber platform for non-labeling bio-sensing when a bio-film is coated to the CSF.

  13. Fiber optics for controls

    NASA Technical Reports Server (NTRS)

    Seng, Gary T.

    1987-01-01

    The challenge of those involved in control-system hardware development is to accommodate an ever-increasing complexity in aircraft control, while limiting the size and weight of the components and improving system reliability. A technology that displays promise towards this end is the area of fiber optics for controls. The primary advantages of employing optical fibers, passive optical sensors, and optically controlled actuators are weight and volume reduction, immunity from electromagnetic effects, superior bandwidth capabilities, and freedom from short circuits and sparking contacts. Since 1975, NASA Lewis has performed in-house, contract, and grant research in fiber optic sensors, high-temperature electro-optic switches, and fly-by-light control-system architecture. Passive optical sensor development is an essential yet challenging area of work and has therefore received much attention during this period. A major effort to develop fly-by-light control-system technology, known as the Fiber-Optic Control System Integration (FOCSI) program, was initiated in 1985 as a cooperative effort between NASA and DOD. Phase 1 of FOCSI, completed in 1986, was aimed at the design of a fiber-optic integrated propulsion/flight control system. Phase 2, yet to be initiated, will provide subcomponent and system development, and a system engine test. In addition to a summary of the benefits of fiber optics, the FOCSI program, sensor advances, and future directions in the NASA Lewis program will be discussed.

  14. Fiber-optic arc flash sensor based on plastic optical fibers for simultaneous measurements of arc flash event position

    NASA Astrophysics Data System (ADS)

    Jeong, Hoonil; Kim, Youngwoong; Kim, Young Ho; Rho, Byung Sup; Kim, Myoung Jin

    2017-02-01

    We present an arc flash sensor that can trace the arc event position as well as intensity by utilizing conventional plastic optical fibers (POFs). In order to check the possibility as a light-receiving sensor, we experimentally confirm that the externally irradiated flash light can be coupled into the fiber core through the surface of POF without any additional treatment. After the incident light is divided in two optical paths toward opposite directions, they have the different attenuation values determined by the propagation distance. Since the optical transmission loss of a POF is constant regardless of the irradiated energy, the intensity ratio for two signals measured at both fiber ends is given as a function of position. The experimental results show that we can successfully trace the event position from this intensity ratio. In addition, it is possible to define the illuminated energy by comparing the absolute value of the intensity measured from one side. According to the experimental results, the proposed sensor has a relatively fine spatial resolution, ±10 cm, despite having a simple structure.

  15. Fiber optic TV direct

    NASA Technical Reports Server (NTRS)

    Kassak, John E.

    1991-01-01

    The objective of the operational television (OTV) technology was to develop a multiple camera system (up to 256 cameras) for NASA Kennedy installations where camera video, synchronization, control, and status data are transmitted bidirectionally via a single fiber cable at distances in excess of five miles. It is shown that the benefits (such as improved video performance, immunity from electromagnetic interference and radio frequency interference, elimination of repeater stations, and more system configuration flexibility) can be realized if application of the proven fiber optic transmission concept is used. The control system will marry the lens, pan and tilt, and camera control functions into a modular based Local Area Network (LAN) control network. Such a system does not exist commercially at present since the Television Broadcast Industry's current practice is to divorce the positional controls from the camera control system. The application software developed for this system will have direct applicability to similar systems in industry using LAN based control systems.

  16. Bandpass transmission filters based on phase shifted fiber Bragg gratings in microstructured polymer optical fibers

    NASA Astrophysics Data System (ADS)

    Ortega, Beatriz; Min, Rui; Sáez-Rodríguez, David; Mi, Yang; Nielsen, Kristian; Bang, Ole

    2017-05-01

    In this contribution we report on the fabrication of novel bandpass transmission filters based on PS-FBGs in microstructured polymer fibers at telecom wavelengths. The phase mask technique is employed to fabricate several superimposed gratings with slight different periods in order to form Moiré structures with a single or various π phase shifts along the device. Simulations and experimental results are included in order to demonstrate very narrowband transmission filters. Experimental characterization under strain and temperature variations is provided in a non-annealed fiber and time stability of the fabricated devices has been also measured under different pre-strain conditions.

  17. Widely tunable all-fiber optical parametric oscillator based on a photonic crystal fiber pumped by a picosecond ytterbium-doped fiber laser.

    PubMed

    Zhang, Lei; Yang, Sigang; Wang, Xiaojian; Gou, Doudou; Li, Xiangliang; Chen, Hongwei; Chen, Minghua; Xie, Shizhong

    2013-11-15

    We report on a fully fiber-integrated widely tunable optical parametric oscillator based on a photonic crystal fiber pumped by a picosecond ytterbium-doped fiber laser. The output wavelength of the oscillator can be continuously tuned from 898 to 1047 nm and from 1086 to 1277 nm, which is as wide as 340 nm. In particular, a larger Raman gain peak is simultaneously observed when the pump wavelength is far from the zero-dispersion wavelength in the normal-dispersion regime. The bandwidth of the output of the oscillator can be tuned by slightly adjusting the pump power.

  18. Analysis of the design in landslide monitoring system based on fiber optic sensor network

    NASA Astrophysics Data System (ADS)

    Bi, Weihong; Wu, Guoqing; Liu, Feng

    2008-12-01

    This paper holds landslide monitoring system based on fiber optic sensors network. When structural distortion is occurred in landslide area, it will affect the change of fiber bragg grating space, and brings on the offset of the fiber bragg wavelength.The information of the destroyed point is obtained with the demodulated system.It applies annular distribution to mountain body, and establishs homologous fiber optic sensor network which collect all the information to the home site. This technique can provide the managers, policy-makers and experts the real time change of the parameters of the disaster, and the feedback can be given to monitoring station through the monitoring network. Therefore, it will be an important technical support for real time dynamic monitoring.

  19. Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors.

    PubMed

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Soren; Bang, Ole

    2015-12-01

    We demonstrate that the light excitation and capturing efficiency of fluorescence based fiber-optical sensors can be significantly increased by using a CPC (Compound Parabolic Concentrator) tip instead of the standard plane-cut tip. We use Zemax modelling to find the optimum CPC tip profile and fiber length of a polymer optical fiber diabetes sensor for continuous monitoring of glucose levels. We experimentally verify the improved performance of the CPC tipped sensor and the predicted production tolerances. Due to physical size requirements when the sensor has to be inserted into the body a non-optimal fiber length of 35 mm is chosen. For this length an average improvement in efficiency of a factor of 1.7 is experimentally demonstrated and critically compared to the predicted ideal factor of 3 in terms of parameters that should be improved through production optimization.

  20. Infrared fiber optic materials

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1987-01-01

    The development of IR fiber optics for use in astronomical and other space applications is summarized. Candidate materials were sought for use in the 1 to 200 micron and the 200 to 1000 micron wavelength range. Synthesis and optical characterization were carried out on several of these materials in bulk form. And the fabrication of a few materials in single crystal fiber optic form were studied.

  1. A trifurcated fiber-optic-probe-based optical system designed for AGEs measurement

    NASA Astrophysics Data System (ADS)

    Wang, Yikun; Zhang, Long; Zhu, Ling; Liu, Yong; Zhang, Gong; Wang, An

    2011-11-01

    Advanced Glycation End-products (AGEs) are biochemical end-products of non-enzymatic glycation and are formed irreversibly in human serum and skin tissue. AGEs are thought to play an important role in the pathogenesis of diabetes and corresponding complications. All conventional methods for measuring AGEs must take sampling and measure in vitro. These methods are invasive and have the problem of relatively time-consuming. AGEs have fluorescent characteristics. Skin AGEs can be assessed noninvasively by collecting the fluorescence emitted from skin tissue when excited with proper light. However, skin tissue has absorption and scattering effects on fluorescence of AGEs, it is not reliable to evaluate the accumulation of AGEs according the emitted fluorescence but not considering optical properties of skin tissue. In this study, a portable system for detecting AGEs fluorescence and skin reflectance spectrum simultaneously has been developed. The system mainly consists of an ultraviolet light source, a broadband light source, a trifurcated fiber-optic probe, and a compact charge coupled device (CCD) spectrometer. The fiber-optic probe consists of 36 optical fibers which are connected to the ultraviolet light source, 6 optical fibers connected to the broadband light source, and a core fiber connected to the CCD spectrometer. Demonstrative test measurements with the system on skin tissue of 40 healthy subjects have been performed. Using parameters that are calculated from skin reflectance spectrum, the distortion effects caused by skin absorption and scattering can be eliminated, and the integral intensity of corrected fluorescence has a strong correlation with the accumulation of AGEs. The system looks very promising for both laboratory and clinical applications to monitor AGEs related diseases, especially for chronic diabetes and complications.

  2. A trifurcated fiber-optic-probe-based optical system designed for AGEs measurement

    NASA Astrophysics Data System (ADS)

    Wang, Yikun; Zhang, Long; Zhu, Ling; Liu, Yong; Zhang, Gong; Wang, An

    2012-03-01

    Advanced Glycation End-products (AGEs) are biochemical end-products of non-enzymatic glycation and are formed irreversibly in human serum and skin tissue. AGEs are thought to play an important role in the pathogenesis of diabetes and corresponding complications. All conventional methods for measuring AGEs must take sampling and measure in vitro. These methods are invasive and have the problem of relatively time-consuming. AGEs have fluorescent characteristics. Skin AGEs can be assessed noninvasively by collecting the fluorescence emitted from skin tissue when excited with proper light. However, skin tissue has absorption and scattering effects on fluorescence of AGEs, it is not reliable to evaluate the accumulation of AGEs according the emitted fluorescence but not considering optical properties of skin tissue. In this study, a portable system for detecting AGEs fluorescence and skin reflectance spectrum simultaneously has been developed. The system mainly consists of an ultraviolet light source, a broadband light source, a trifurcated fiber-optic probe, and a compact charge coupled device (CCD) spectrometer. The fiber-optic probe consists of 36 optical fibers which are connected to the ultraviolet light source, 6 optical fibers connected to the broadband light source, and a core fiber connected to the CCD spectrometer. Demonstrative test measurements with the system on skin tissue of 40 healthy subjects have been performed. Using parameters that are calculated from skin reflectance spectrum, the distortion effects caused by skin absorption and scattering can be eliminated, and the integral intensity of corrected fluorescence has a strong correlation with the accumulation of AGEs. The system looks very promising for both laboratory and clinical applications to monitor AGEs related diseases, especially for chronic diabetes and complications.

  3. Optical high temperature sensor based on fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Zhang, Bowei

    The aim of this thesis is to fabricate a fiber Bragg grating (FBG) temperature sensor that is capable to measure temperatures in excess of 1100°C. For this purpose, two topics have been studied and investigated during this project. One of them is the development of a high temperature resistant molecular-water induced FBGs; and the other is to investigate the effect of microwave-irradiation on the hydrogen-loaded FBG. The molecular-water induced FBGs are different from the other types of FBG. In these devices the refractive index is modulated by the periodic changes of molecular-water concentration within the grating. The device was developed using thermal annealing technology based on hydrogen-load FBG. Thermal stability of these devices was studied by measuring the grating reflectivity from room temperature to 1000°C. The stability of the device was tested by examining the FBG reflectivity for a period of time at certain temperatures. The results show that these devices are extremely stable at temperatures in excess of 1000°C. The hydroxyl concentration in the grating has been also investigated during this thesis. Based on the knowledge of hydroxyl groups inside FBG, a microwave treatment was designed to increase the hydroxyl concentration in the FBG area. The results show that the molecular-water induced grating, which was fabricated using microwave radiated hydrogen-loaded FBI, are stable at temperatures above 1100°C.

  4. Fiber optic moisture sensor

    DOEpatents

    Kirkham, R.R.

    1984-08-03

    A method and apparatus for sensing moisture changes by utilizing optical fiber technology. One embodiment uses a reflective target at the end of an optical fiber. The reflectance of the target varies with its moisture content and can be detected by a remote unit at the opposite end of the fiber. A second embodiment utilizes changes in light loss along the fiber length. This can be attributed to changes in reflectance of cladding material as a function of its moisture content. It can also be affected by holes or inserts interposed in the cladding material and/or fiber. Changing light levels can also be coupled from one fiber to another in an assembly of fibers as a function of varying moisture content in their overlapping lengths of cladding material.

  5. Optical refractometer based on an asymmetrical twin-core fiber Michelson interferometer.

    PubMed

    Zhou, Ai; Zhang, Yanhui; Li, Guangping; Yang, Jun; Wang, Yuzhuo; Tian, Fengjun; Yuan, Libo

    2011-08-15

    We report and demonstrate an optical refractometer based on a compact fiber Michelson interferometer. The Michelson interferometer is composed of an asymmetrical twin-core fiber containing a central core and a side core. By chemically etching a segment of the twin-core fiber until the side core is exposed, the effective index of the side core in the etched region is sensitive to the environmental refractive index, which leads to a shift of the transmission spectrum of the Michelson interferometer. The experimental results show that such a device has a refractive index resolution of more than 800 nm/refractive index unit in the range of 1.34-1.37.

  6. Optical refractometer based on an asymmetrical twin-core fiber Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Zhou, Ai; Zhang, Yanhui; Li, Guangping; Yang, Jun; Wang, Yuzhuo; Tian, Fengjun; Yuan, Libo

    2011-08-01

    We report and demonstrate an optical refractometer based on a compact fiber Michelson interferometer. The Michelson interferometer is composed of an asymmetrical twin-core fiber containing a central core and a side core. By chemically etching a segment of the twin-core fiber until the side core is exposed, the effective index of the side core in the etched region is sensitive to the environmental refractive index, which leads to a shift of the transmission spectrum of the Michelson interferometer. The experimental results show that such a device has a refractive index resolution of more than 800nm/refractive index unit in the range of 1.34--1.37.

  7. An Optical Fiber Viscometer Based on Long-Period Fiber Grating Technology and Capillary Tube Mechanism

    PubMed Central

    Wang, Jian-Neng; Tang, Jaw-Luen

    2010-01-01

    This work addresses the development and assessment of a fiber optical viscometer using a simple and low-cost long-period fiber grating (LPFG) level sensor and a capillary tube mechanism. Previous studies of optical viscosity sensors were conducted by using different optical sensing methods. The proposed optical viscometer consists of an LPFG sensor, a temperature-controlled chamber, and a cone-shaped reservoir where gravitational force could cause fluid to flow through the capillary tube. We focused on the use of LPFGs as level sensors and the wavelength shifts were not used to quantify the viscosity values of asphalt binders. When the LPFG sensor was immersed in the constant volume (100 mL) AC-20 asphalt binder, a wavelength shift was observed and acquired using LabVIEW software and GPIB controller. The time spent between empty and 100 mL was calculated to determine the discharge time. We simultaneously measured the LPFG-induced discharge time and the transmission spectra both in hot air and AC-20 asphalt binder at five different temperatures, 60, 80, 100, 135, and 170 Celsius. An electromechanical rotational viscometer was also used to measure the viscosities, 0.15–213.80 Pa·s, of the same asphalt binder at the above five temperatures. A non-linear regression analysis was performed to convert LPFG-induced discharge time into viscosities. Comparative analysis shows that the LPFG-induced discharge time agreed well with the viscosities obtained from the rotational viscometer. PMID:22163519

  8. Optical fiber crossbar switch

    NASA Astrophysics Data System (ADS)

    Kilcoyne, Michael K.; Beccue, Stephen M.; Brar, Berinder; Robinson, G.; Pedrotti, Kenneth D.; Haber, William A.

    1990-07-01

    Advances in high performance computers and signal processing systems have led to parallel system architectures. The main limitation in achieving the performance expected of these parallel systems has been the realization of an efficient means to interconnect many processors into a effective parallel system. Electronic interconnections have proved cumbersome, costly and ineffective. The Optical Fiber Crossbar Switch (OFCS) is a compact low power, multi-gigahertz bandwidth multi-channel switch which can be used in large scale computer and telecommunication applications. The switch operates in the optical domain using GaAs semiconductor lasers to transmit wideband multiple channel optical data over fiber optic cables. Recently, a 32 X 32 crossbar switching system was completed and demonstrated. Error free performance was obtained at a data bandwidth of 410 MBPS, using a silicon switch IC. The switch can be completely reconfigured in less than 50 nanoseconds under computer control. The fully populated OFCS has the capability to handle 12.8 gigabits per second (GBPS) of data while switching this data over 32 channels without the loss of a single bit during switching. GaAs IC technology has now progressed to the point that 16 X 16 GaAs based crossbar switch Ics are available which have increased the data bandwidth capability to 2.4 GBPS. The present optical interfaces are integrated GaAs transmitter drivers, GaAs lasers, and integrated GaAs optical receivers with data bandwidths exceeding 2.4 GBPS. A system using all Ill-V switching and optoelectronic components is presently under development for both NASA and DoD programs. The overall system is designed to operate at 1.3 GBPS. It is expected that these systems will find wide application in high capacity computing systems based on parallel microprocessor architecture which require high data bandwidth communication between processors. The OFCS will also have application in commercial optical telecommunication systems

  9. Fiber-optic Solc filter

    SciTech Connect

    Lukash, D.G.; Filippov, V.N.; Nikolaev, V.M.

    1994-04-01

    A novel design of a fiber-optic Solc filter is proposed based on the coupling between polarization modes in an anisotropic single-mode fiber. A theoretical model of the filter is developed that agrees well with experimental results. The Solc filter for the wavelength 640 nm with the transmission bandwidth 45 nm is experimentally demonstrated. 4 refs.

  10. No-core fiber-based highly sensitive optical fiber pH sensor

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Vanita; Pathak, Akhilesh Kumar; Singh, Vinod Kumar

    2017-05-01

    The present work describes the fabrication and characterization of an optical fiber pH sensor using a sol-gel technique. The sensing head configuration is incorporated using a short section of no-core fiber, coated with tetraethyl orthosilicate and spliced at the end of a single mode fiber with a bulge. Different types of indicators (bromophenol blue, cresol red, and chlorophenol red) were used to achieve a wide pH range from 2 to 13. High sensitivities of the fabricated device were found to be 1.02 and -0.93 nm/pH for acidic and alkaline solutions, respectively. From the characterization results, it was noted that there is an impact of ionic strength and an effect of the temperature of liquid on the response characteristic, which is an advantage of the existing device over the other pH sensors. The fabricated sensor exhibited good reflection spectrum, indicating a blueshift in resonance wavelength for alkaline solutions and a redshift for acidic solutions.

  11. Modification of an RBF ANN-Based Temperature Compensation Model of Interferometric Fiber Optical Gyroscopes

    PubMed Central

    Cheng, Jianhua; Qi, Bing; Chen, Daidai; Jr. Landry, René

    2015-01-01

    This paper presents modification of Radial Basis Function Artificial Neural Network (RBF ANN)-based temperature compensation models for Interferometric Fiber Optical Gyroscopes (IFOGs). Based on the mathematical expression of IFOG output, three temperature relevant terms are extracted, which include: (1) temperature of fiber loops; (2) temperature variation of fiber loops; (3) temperature product term of fiber loops. Then, the input-modified RBF ANN-based temperature compensation scheme is established, in which temperature relevant terms are transferred to train the RBF ANN. Experimental temperature tests are conducted and sufficient data are collected and post-processed to form the novel RBF ANN. Finally, we apply the modified RBF ANN based on temperature compensation model in two IFOGs with temperature compensation capabilities. The experimental results show the proposed temperature compensation model could efficiently reduce the influence of environment temperature on the output of IFOG, and exhibit a better temperature compensation performance than conventional scheme without proposed improvements. PMID:25985163

  12. Optical parametric oscillator based on degenerate four-wave mixing in suspended core tellurite microstructured optical fiber.

    PubMed

    Zhang, Lei; Tuan, Tong Hoang; Kawamura, Harutaka; Suzuki, Takenobu; Ohishi, Yasutake

    2015-10-05

    We report on a suspended core tellurite microstructured optical fiber (TMOF) based optical parametric oscillator (OPO). The intracavity gain is provided by the degenerate four-wave mixing (DFWM) occurred in a 1.5-m-long TMOF synchronously pumped by a mode-locked picosecond erbium-doped fiber laser. The oscillated signal can be generated from 1606 nm to 1743.5 nm, and the idler can be emited from 1526.8 nm to 1395 nm by adjusting the pump wavelength from 1565.4 nm to 1551 nm. A total intenal conversion efficiency of -17.2 dB has been achieved.

  13. Fiber-optic based gas sensing in the UV region

    NASA Astrophysics Data System (ADS)

    Eckhardt, H. S.; Graubner, K.; Klein, K.-F.; Sun, T.; Grattan, K. T. V.

    2006-02-01

    The precise analysis of potential hazardous components within gases and the detection of trace gases in exhaled breath for early and non invasive diagnosis of illnesses have a great influence on the well-being of human beings. Besides the existing analysis techniques, which mostly require sample preparation, costly consumables, huge space and skilled personal carrying out the measurement, a measurement system based on optical absorption in the UV wavelength region might offer alternatives to existing techniques. Within this work a feasibility study based on measurements of different test gases at lowest concentrations and requirements for trace gases in exhaled breath in respect to detection limits, signal-to-noise ratio and system drifts were analyzed. A spectral database including over 1000 UV vapor-phase spectra allows the identification of unknown compounds within a mixture, as well as expanding the use of the measurement technique into new areas of application, for example automobile application.

  14. Demodulation of an optical fiber MEMS pressure sensor based on single bandpass microwave photonic filter.

    PubMed

    Wang, Yiping; Ni, Xiaoqi; Wang, Ming; Cui, Yifeng; Shi, Qingyun

    2017-01-23

    In this paper, a demodulation method for optic fiber micro-electromechanical systems (MEMS) extrinsic Fabry-Perot interferometer (EFPI) pressure sensor exploiting microwave photonics filter technique is firstly proposed and experimentally demonstrated. A single bandpass microwave photonic filter (MPF) which mainly consists of a spectrum-sliced light source, a pressurized optical fiber MEMS EFPI, a phase modulator (PM) and a length of dispersion compensating fiber (DCF) is demonstrated. The frequency response of the filter with respect to the pressure is studied. By detecting the resonance frequency shifts of the MPF, the pressure can be determined. The theoretical and experimental results show that the proposed EFPI pressure demodulation method has a higher resolution and higher speed than traditional methods based on optical spectrum analysis. The sensitivity of the sensor is measured to be as high as 86 MHz/MPa in the range of 0-4Mpa. Moreover, the sensitivity can be easily adjusted.

  15. A cantilever based optical fiber acoustic sensor fabricated by femtosecond laser micromachining

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Yuan, Lei; Huang, Jie; Xiao, Hai

    2016-04-01

    In this paper, we present a pure silica micro-cantilever based optical fiber sensor for acoustic wave detection. The cantilever is directly fabricated by fs laser micromachining on an optical fiber tip functioning as an inline Fabry-Perot interferometer (FPI). The applied acoustic wave pressurizes the micro-cantilever beam and the corresponding dynamic signals can be probed by the FPI. The thickness, length, and width of the micro-cantilever beam can be flexibly designed and fabricated so that the sensitivity, frequency response, and the total measurement range can be varied to fit many practical applications. Experimental results will be presented and analyzed. Due to the assembly free fabrication of the fs-laser, multiple micro-cantilever beams could be potentially fabricated in/on a single optical fiber for quasi-distributed acoustic mapping with high spatial resolution.

  16. Fiber-based free-space optical coherent receiver with vibration compensation mechanism.

    PubMed

    Zhang, Ruochi; Wang, Jianmin; Zhao, Guang; Lv, Junyi

    2013-07-29

    We propose a novel fiber-based free-space optical (FSO) coherent receiver for inter-satellite communication. The receiver takes advantage of established fiber-optic components and utilizes the fine-pointing subsystem installed in FSO terminals to minimize the influence of satellite platform vibrations. The received beam is coupled to a single-mode fiber, and the coupling efficiency of the system is investigated both analytically and experimentally. A receiving sensitivity of -38 dBm is obtained at the forward error correction limit with a transmission rate of 22.4 Gbit/s. The proposed receiver is shown to be a promising component for inter-satellite optical communication.

  17. Research of labyrinth seals clearance test system based on optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Qin, Dongxing; Wang, Qimei; Dong, Zheng

    2006-11-01

    When light irradiates to a test part, the change of the position of the test part can make the intensity of the reflecting light alter accordingly, based on this mechanism of reflective light intensity modulation, a new scheme with optical-fiber displacement sensor is put forward to testing the tip clearance of labyrinth seals. By analysis and treatment of the data from calibration test in static condition, the relationship of the optical-fiber displacement sensor's output in static state and the position from the test part to the sensor are obtained, also influence of different environments to the response curves is analyzed. The results of the experiment show that the presented scheme is feasible, and the high measuring accuracy of the optical-fiber sensor can meet the prospective purpose.

  18. Sol gel based fiber optic sensor for blook pH measurement

    SciTech Connect

    Grant, S. A.; Glass, R. S.

    1996-12-19

    This paper describes a fiber-optic pH sensor based upon sol-gel encapsulation of a self-referencing dye, seminaphthorhodamine-1 carboxylate (SNARF-1C). The simple sol-gel fabrication procedure and low coating leachability are ideal for encapsulation and immobilization of dye molecules onto the end of an optical fiber. A miniature bench-top fluorimeter system was developed for use with the optical fiber to obtain pH measurements. Linear and reproducible responses were obtained in human blood in the pH range 6.8 to 8.0, which encompasses the clinically-relevant range. Therefore, this sensor can be considered for in vivo use.

  19. Sealed fiber-optic bundle feedthrough

    DOEpatents

    Tanner, Carol E.

    2002-01-01

    A sealed fiber-optic bundle feedthrough by which a multitude of fiber-optic elements may be passed through an opening or port in a wall or structure separating two environments at different pressures or temperatures while maintaining the desired pressure or temperature in each environment. The feedthrough comprises a rigid sleeve of suitable material, a bundle of individual optical fibers, and a resin-based sealing material that bonds the individual optical fibers to each other and to the rigid sleeve.

  20. Structural health monitoring of composite-based UAVs using simultaneous fiber optic interrogation by static Rayleigh-based distributed sensing and dynamic fiber Bragg grating point sensors

    NASA Astrophysics Data System (ADS)

    Tur, Moshe; Sovran, Ido; Bergman, Arik; Motil, Avi; Shapira, Osher; Ben-Simon, Uri; Kressel, Iddo

    2015-09-01

    Embedded fiber-optic strain sensing networks for airworthy assessment of operational Unmanned Aerial Vehicles (UAVs) are presented. Sensing is based on in-flight fiber Bragg grating technology, as well as on on-ground Rayleigh backscattering distributed strain sensing. While the in-flight instrumentation monitors loads, looking for excessive values, the Rayleigh-based technique is used for high spatial resolution strain distribution along the UAV wings, under prescribed loading. Consistency of measurements over time indicates structural integrity. Simultaneous strain measurements using both distributed Rayleigh and fiber Bragg gratings, on the same fiber, promises to combine high spatial resolution, though practically static measurements with dynamic, though discrete ones.

  1. Inexpensive Wilhelmy balance based in a fiber optic sensor for the study of Langmuir films

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Héctor M.; Castillo, Jimmy A.; Chirinos, José R.; Caetano, Manuel

    2005-04-01

    An inexpensive Wilhelmy balance based on a fiber optic sensor capable of sensitive surface tension measurements has been designed and implemented. The system consists of a leaf spring conforming a cantilever structure and a bifurcated optical fiber acting as a laser beam deflection detector. Operated in a static way, it achieves a force measurement sensitivity of 0.154 V by N and a tension surface resolution of 0.1 mN/m. π-A isotherms of Langmuir films from insoluble amphiphiles 5 hexadecanoylaminofluorescein (fluorescein H-110) in water, were followed as a model system to characterize this instrument.

  2. Fiber optic magnetic field sensor based on the TbDyFe rod

    NASA Astrophysics Data System (ADS)

    Chen, Feifei; Jiang, Yi

    2014-08-01

    We present, and experimentally demonstrate, a fiber optic magnetic field sensor for the measurement of a weak alternating magnetic field, based on a TbDyFe rod. The fiber optic magnetic field sensor is constructed in a Michelson interferometer configuration, and the phase-generated carrier demodulation is used to obtain the time-varying phase shift induced by the applied magnetic field. A high sensitivity of up to 3.6 × 10-2 V μT - 1 (rms) with a resolution of 23 pT/√Hz (rms) at 50 Hz is achieved. Experimental results show that the sensor exhibits excellent linearity and reversibility.

  3. Optical fiber sensor-based detection of partial discharges in power transformers

    NASA Astrophysics Data System (ADS)

    Deng, Jiangdong; Xiao, Hai; Huo, Wei; Luo, Ming; May, Russ; Wang, Anbo; Liu, Yilu

    2001-07-01

    In this paper, a fiber optic acoustic sensor system is designed and tested for on-line detection of the partial discharges inside high voltage power transformers. The fiber optic sensor uses a silica diaphragm and a single mode optical fiber encapsulated in a silica glass tube to form an extrinsic Fabry-Perot interferometer. Test results indicate that the developed fiber optic sensors are capable of detecting the acoustic signals propagating inside the transformer oil with high resolution and high frequency.

  4. Microstructured optical fiber-based micro-cavity sensor for chemical detection

    NASA Astrophysics Data System (ADS)

    Kim, Bongkyun; Ahn, Jin-Chul; Chung, Phil-Sang; Chung, Youngjoo

    2014-02-01

    The studies on microstructured optical fibers (MOF) have drawn considerable interest and played an important role in many applications. MOFs provide unique optical properties and controllable modal properties because of their flexibilities on manipulation of the transmission spectrum and the waveguide dispersion properties. MOFs are especially useful for optical sensing applications because the micro-structured air channels in MOF can host various types of analytes such as liquids, gases, and chemical molecules. Recently, many studies have focused on the development of MOF-based optical sensors for various gases and chemical molecules. We propose a compact, and highly sensitive optical micro-cavity chemical sensor using microstructured fiber. The sensor probe is composed of a hollow optical fiber and end cleaved microstructured fiber with a solid core. The interference spectrum resulting from the reflected light at the silica and air interfaces changes when the micro-cavity is infiltrated with external chemical molecules. This structure enables the direct detection of chemical molecules such as volatile organic compounds (VOCs) without the introduction of any permeable material.

  5. Ultrahigh-resolution fiber-optic image guides derived from microstructured polymer optical fiber preforms.

    PubMed

    Kong, Depeng; Wang, Lili

    2009-08-15

    Ultrahigh-resolution fiber-optic image guides--fused image fiber, faceplate, and taper--were fabricated by using microstructured polymer optical fiber (MPOF) preforms composed of two polymers: polymethylmethacrylate and polystyrene. The pixel diameter in the resultant MPOF-based image guides was as small as 3 microm. The imaging capabilities of these types of fiber-optic elements were demonstrated.

  6. Stable passive optical clock generation in SOA-based fiber lasers.

    PubMed

    Wang, Jing-Yun; Lin, Kuei-Huei; Chen, Hou-Ren

    2015-02-15

    Stable optical pulse trains are obtained from 1.3-μm and 1.5-μm semiconductor optical amplifier (SOA)-based fiber lasers using passive optical technology. The waveforms depend on SOA currents, and the repetition rates can be tuned by varying the relative length of sub-cavities. The output pulse trains of these SOA-based fiber lasers are stable against intracavity polarization adjustment and environmental perturbation. The optical clock generation is explained in terms of mode competition, self-synchronization, and SOA saturation. Without resorting to any active modulation circuits or devices, the technology used here is simple and may find various applications in the future.

  7. Interferometric Fiber Optic Sensors

    PubMed Central

    Lee, Byeong Ha; Kim, Young Ho; Park, Kwan Seob; Eom, Joo Beom; Kim, Myoung Jin; Rho, Byung Sup; Choi, Hae Young

    2012-01-01

    Fiber optic interferometers to sense various physical parameters including temperature, strain, pressure, and refractive index have been widely investigated. They can be categorized into four types: Fabry-Perot, Mach-Zehnder, Michelson, and Sagnac. In this paper, each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields. Some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications. Some of the simple to fabricate but exceedingly effective Fabry-Perot interferometers, implemented in both extrinsic and intrinsic structures, are discussed. Also, a wide variety of Mach-Zehnder and Michelson interferometric sensors based on photonic crystal fibers are introduced along with their remarkable sensing performances. Finally, the simultaneous multi-parameter sensing capability of a pair of long period fiber grating (LPG) is presented in two types of structures; one is the Mach-Zehnder interferometer formed in a double cladding fiber and the other is the highly sensitive Sagnac interferometer cascaded with an LPG pair. PMID:22736961

  8. Interferometric fiber optic sensors.

    PubMed

    Lee, Byeong Ha; Kim, Young Ho; Park, Kwan Seob; Eom, Joo Beom; Kim, Myoung Jin; Rho, Byung Sup; Choi, Hae Young

    2012-01-01

    Fiber optic interferometers to sense various physical parameters including temperature, strain, pressure, and refractive index have been widely investigated. They can be categorized into four types: Fabry-Perot, Mach-Zehnder, Michelson, and Sagnac. In this paper, each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields. Some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications. Some of the simple to fabricate but exceedingly effective Fabry-Perot interferometers, implemented in both extrinsic and intrinsic structures, are discussed. Also, a wide variety of Mach-Zehnder and Michelson interferometric sensors based on photonic crystal fibers are introduced along with their remarkable sensing performances. Finally, the simultaneous multi-parameter sensing capability of a pair of long period fiber grating (LPG) is presented in two types of structures; one is the Mach-Zehnder interferometer formed in a double cladding fiber and the other is the highly sensitive Sagnac interferometer cascaded with an LPG pair.

  9. All-Fiber Optical Magnetic Field Sensor Based on Faraday Rotation

    SciTech Connect

    Sun, L.; Jiang, S.; Marciante, J.R.

    2010-06-18

    An all-fiber optical magnetic field sensor with a sensitivity of 0.49 rad/T is demonstrated. It consists of a fiber Faraday rotator (56-wt.%-terbium–doped silica fiber) and a fiber polarizer (Corning SP1060 fiber).

  10. Long-distance entanglement-based quantum key distribution over optical fiber.

    PubMed

    Honjo, T; Nam, S W; Takesue, H; Zhang, Q; Kamada, H; Nishida, Y; Tadanaga, O; Asobe, M; Baek, B; Hadfield, R; Miki, S; Fujiwara, M; Sasaki, M; Wang, Z; Inoue, K; Yamamoto, Y

    2008-11-10

    We report the first entanglement-based quantum key distribution (QKD) experiment over a 100-km optical fiber. We used superconducting single photon detectors based on NbN nanowires that provide high-speed single photon detection for the 1.5-mum telecom band, an efficient entangled photon pair source that consists of a fiber coupled periodically poled lithium niobate waveguide and ultra low loss filters, and planar lightwave circuit Mach-Zehnder interferometers (MZIs) with ultra stable operation. These characteristics enabled us to perform an entanglement-based QKD experiment over a 100-km optical fiber. In the experiment, which lasted approximately 8 hours, we successfully generated a 16 kbit sifted key with a quantum bit error rate of 6.9 % at a rate of 0.59 bits per second, from which we were able to distill a 3.9 kbit secure key.

  11. Distributed fiber optic interferometric geophone system based on draw tower gratings

    NASA Astrophysics Data System (ADS)

    Xu, Ruquan; Guo, Huiyong; Liang, Lei

    2017-09-01

    A distributed fiber optic interferometric geophone array based on draw tower grating (DTG) array is proposed. The DTG geophone array is made by the DTG array fabricated based on a near-contact exposure through a phase mask during the fiber drawing process. A distributed sensing system with 96 identical DTGs in an equal separation of 20 m and an unbalanced Michelson interferometer for vibration measurement has been experimentally validated compared with a moving-coil geophone. The experimental results indicate that the sensing system can linearly demodulate the phase shift. Compared with the moving coil geophone, the fiber optic sensing system based on DTG has higher signal-to-noise ratio at low frequency.

  12. Fiber optic communication links

    SciTech Connect

    Meyer, R. H.

    1980-01-01

    Fiber optics is a new, emerging technology which offers relief from many of the problems which limited past communications links. Its inherent noise immunity and high bandwidth open the door for new designs with greater capabilities. Being a new technology, certain problems can be encountered in specifying and installing a fiber optic link. A general fiber optic system is discussed with emphasis on the advantages and disadvantages. It is not intended to be technical in nature, but a general discussion. Finally, a general purpose prototype Sandia communications link is presented.

  13. Optical fiber metamagnetics.

    PubMed

    Wang, Xi; Venugopal, Gayatri; Zeng, Jinwei; Chen, Yinnan; Lee, Dong Ho; Litchinitser, Natalia M; Cartwright, Alexander N

    2011-10-10

    To date, magnetic and negative-index metamaterials at optical frequencies were realized on bulk substrates in the form of thin films with thicknesses on the order of, or less than, optical wavelengths. In this work, we design and experimentally demonstrate, for the first time, fiber-coupled magnetic metamaterials integrated on the transverse cross-section of an optical fiber. Such fiber-metamaterials integration may provide fundamentally new solutions for photonic-on-a-chip systems for sensing, subwavelength imaging, image processing, and biomedical applications.

  14. Fiber Optic Microphone

    NASA Technical Reports Server (NTRS)

    Cho, Y. C.; George, Thomas; Norvig, Peter (Technical Monitor)

    1999-01-01

    Research into advanced pressure sensors using fiber-optic technology is aimed at developing compact size microphones. Fiber optic sensors are inherently immune to electromagnetic noise, and are very sensitive, light weight, and highly flexible. In FY 98, NASA researchers successfully designed and assembled a prototype fiber-optic microphone. The sensing technique employed was fiber optic Fabry-Perot interferometry. The sensing head is composed of an optical fiber terminated in a miniature ferrule with a thin, silicon-microfabricated diaphragm mounted on it. The optical fiber is a single mode fiber with a core diameter of 8 micron, with the cleaved end positioned 50 micron from the diaphragm surface. The diaphragm is made up of a 0.2 micron thick silicon nitride membrane whose inner surface is metallized with layers of 30 nm titanium, 30 nm platinum, and 0.2 micron gold for efficient reflection. The active sensing area is approximately 1.5 mm in diameter. The measured differential pressure tolerance of this diaphragm is more than 1 bar, yielding a dynamic range of more than 100 dB.

  15. Fully-distributed fiber-optic high temperature sensing based on stimulated Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Hu, Di; Wang, Dorothy Y.; Wang, Anbo

    2013-06-01

    We proposed a Brillouin optical fiber time domain analysis (BOTDA)-based fully-distributed temperature system as high as 1000°C and spatial resolution to 5 meters. This technique is prominent for high spatial resolution fully distributed high temperature and stress sensing over long distance.

  16. Progressive ladder network topology combining interferometric and intensity fiber-optic-based sensors

    NASA Astrophysics Data System (ADS)

    Ribeiro, A. B. Lobo; Santos, J. L.; Caleya, R. F.

    1995-10-01

    Progressive ladder topology is studied by consideration of its properties of power budget and coupler tailoring. Optimization criteria are addressed for lossless and real systems, and their basic characteristics are compared with other topologies. Numerical results are presented, and an experiment is described for the case in which the network supports interferometric and intensity (with referentiation) fiber-optic-based sensors.

  17. A chip of fiber optical trap

    NASA Astrophysics Data System (ADS)

    Su, Heming; Hu, Huizhu; Zhang, Lei; Ge, Xiaojia; Shen, Yu

    2016-10-01

    A chip of fiber optical trap paves the way to realize the miniaturization and portability of devices based on dual beam optical trap, without loss of stability. We have designed two types of chip of fiber optical trap according to our theoretical simulation. The first one integrates dual beam optical trap with microfluidic chip, called a chip of semi-sealing fiber optical trap. It is generally used in chemical, biological, medical and other high-throughput experiments. The second one is a chip of full-sealing fiber optical trap. It is used to measure precisely the coefficient of viscosity or the Brownian movement of micro-object's in liquid. This paper focuses on the chip of fiber optical trap. We present two types of chips of fiber optical trap and detail their designs, fabrication and validation. The chip of semi-sealing fiber optical trap is integrated with optical fiber and microfluidic chip made of polydimethylsiloxane (PDMS). We have achieved the micro-sized alignment of optical paths and the trapping of micro-sized particles in the chip of semi-sealing fiber optical trap. In addition, it is easy to fabrication and clean. The chip of full-sealing fiber optical trap was based on a cubic micro-cavity made by a rectangular capillary tube and sealed by PDMS. We have achieved micro-sized alignment accuracy, high trapping efficiency and better trapping stability in the chip of full-sealing fiber optical trap as well.

  18. All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber.

    PubMed

    Sun, L; Jiang, S; Marciante, J R

    2010-03-15

    An all-fiber optical magnetic field sensor is demonstrated. It consists of a fiber Faraday rotator and a fiber polarizer. The fiber Faraday rotator uses a 2-cm-long section of 56-wt.%-terbium-doped silicate fiber with a Verdet constant of -24.5 rad/(Tm) at 1053 nm. The fiber polarizer is Corning SP1060 single-polarization fiber. The sensor has a sensitivity of 0.49 rad/T and can measure magnetic fields from 0.02 to 3.2 T.

  19. All-Fiber Optical Magnetic-Field Sensor Based on Faraday Rotation in Highly Terbium-Doped Fiber

    SciTech Connect

    Sun, L.; Jiang, S.; Marciante, J.R.

    2010-03-03

    An all-fiber optical magnetic field sensor is demonstrated. It consists of a fiber Faraday rotator and a fiber polarizer. The fiber Faraday rotator uses a 2-cm-long section of 56-wt.%-terbium–doped silicate fiber with a Verdet constant of –24.5 rad/(Tm) at 1053 nm. The fiber polarizer is Corning SP1060 single-polarization fiber. The sensor has a sensitivity of 0.49 rad/T and can measure magnetic fields from 0.02 to 3.2 T.

  20. Lithium-niobate-based integrated optic chip utilizing digital electrode layout for use in a miniature fiber optic rate sensor

    NASA Astrophysics Data System (ADS)

    Ner, Manjeet S.; Groellmann, Peter; Mutter, Gerhard

    1995-09-01

    This paper describes to the best of our knowledge the first implementation of a lithium niobate based 8 bit electroded integrated optic waveguide fiber optic gyro chip referred here as 'Digi- MIOC' (digital-electroded multifunction integrated optic chip, which has been used in a Sagnac effect exploiting microfiber optic rate sensor ((mu) -FORS) developed by LITEF. The paper highlights various features of a Digi-MIOC, such as design philosophy, fabrication aspects, and test procedures to evaluate static and dynamic characteristics of the electro-optic parameters. When used in closed loop operation, the Digi-MIOC forms the key optical component of a (mu) -FORS to aid the required optical-to-electrical signal processing to give linear output for input rates of rotation. Various test results and features of LITEF's (mu) - FORS, such as small size, large rotation rate measurement potential, low drive power, and high reliabliity are also highlighted.

  1. Broadband mid-infrared fiber optical parametric oscillator based on a three-hole suspended-core chalcogenide fiber.

    PubMed

    Bai, Hangyu; Yang, Xiong; Wei, Yizhen; Gao, Shiming

    2016-01-20

    A mid-infrared fiber optical parametric oscillator is proposed and designed based on a three-hole As(2)S(5) suspended-core fiber (SCF). The eigenmodes of the SCF are depicted and the pump condition for single-mode operation is analyzed. The zero-dispersion wavelength is shifted to 2 μm by tuning the core diameter of the SCF. Using the degenerate four-wave mixing coupled-wave equations, a tuning range of the idler wavelength from 2 to 5 μm and a maximum conversion efficiency of 19% are numerically predicted in a 0.1-m-long SCF pumped by a 2.7 W thulium-doped fiber laser.

  2. Fiber-Optic Refractometer Based on an Etched High-Q π-Phase-Shifted Fiber-Bragg-Grating

    PubMed Central

    Zhang, Qi; Ianno, Natale J.; Han, Ming

    2013-01-01

    We present a compact and highly-sensitive fiber-optic refractometer based on a high-Q π-phase-shifted fiber-Bragg-grating (πFBG) that is chemically etched to the core of the fiber. Due to the π phase-shift, a strong πFBG forms a high-Q optical resonator and the reflection spectrum features an extremely narrow notch that can be used for highly sensitivity refractive index measurement. The etched πFBG demonstrated here has a diameter of ∼9.3 μm and a length of only 7 mm, leading to a refractive index responsivity of 2.9 nm/RIU (RIU: refractive index unit) at an ambient refractive index of 1.318. The reflection spectrum of the etched πFBG features an extremely narrow notch with a linewidth of only 2.1 pm in water centered at ∼1,550 nm, corresponding to a Q-factor of 7.4 × 105, which allows for potentially significantly improved sensitivity over refractometers based on regular fiber Bragg gratings. PMID:23845932

  3. Application of Fiber Optic Instrumentation

    NASA Technical Reports Server (NTRS)

    Richards, William Lance; Parker, Allen R., Jr.; Ko, William L.; Piazza, Anthony; Chan, Patrick

    2012-01-01

    Fiber optic sensing technology has emerged in recent years offering tremendous advantages over conventional aircraft instrumentation systems. The advantages of fiber optic sensors over their conventional counterparts are well established; they are lighter, smaller, and can provide enormous numbers of measurements at a fraction of the total sensor weight. After a brief overview of conventional and fiber-optic sensing technology, this paper presents an overview of the research that has been conducted at NASA Dryden Flight Research Center in recent years to advance this promising new technology. Research and development areas include system and algorithm development, sensor characterization and attachment, and real-time experimentally-derived parameter monitoring for ground- and flight-based applications. The vision of fiber optic smart structure technology is presented and its potential benefits to aerospace vehicles throughout the lifecycle, from preliminary design to final retirement, are presented.

  4. Blood pulse wave velocity and pressure sensing via fiber based and free space based optical sensors

    NASA Astrophysics Data System (ADS)

    Sirkis, Talia; Beiderman, Yevgeny; Agdarov, Sergey; Beiderman, Yafim; Zalevsky, Zeev

    2017-02-01

    Continuous noninvasive measurement of vital bio-signs, such as cardiopulmonary parameters, is an important tool in evaluation of the patient's physiological condition and health monitoring. On the demand of new enabling technologies, some works have been done in continuous monitoring of blood pressure and pulse wave velocity. In this paper, we introduce two techniques for non-contact sensing of vital bio signs. In the first approach the optical sensor is based on single mode in-fibers Mach-Zehnder interferometer (MZI) to detect heartbeat, respiration and pulse wave velocity (PWV). The introduced interferometer is based on a new implanted scheme. It replaces the conventional MZI realized by inserting of discontinuities in the fiber to break the total internal reflection and scatter/collect light. The proposed fiber sensor was successfully incorporated into shirt to produce smart clothing. The measurements obtained from the smart clothing could be obtained in comfortable manner and there is no need to have an initial calibration or a direct contact between the sensor and the skin of the tested individual. In the second concept we show a remote noncontact blood pulse wave velocity and pressure measurement based on tracking the temporal changes of reflected secondary speckle patterns produced in human skin when illuminated by a laser beams. In both concept experimental validation of the proposed schemes is shown and analyzed.

  5. Phosphate-based glass fiber vs. bulk glass: Change in fiber optical response to probe in vitro glass reactivity.

    PubMed

    Massera, J; Ahmed, I; Petit, L; Aallos, V; Hupa, L

    2014-04-01

    This paper investigates the effect of fiber drawing on the thermal and structural properties as well as on the glass reactivity of a phosphate glass in tris(hydroxymethyl)aminomethane-buffered (TRIS) solution and simulated body fluid (SBF). The changes induced in the thermal properties suggest that the fiber drawing process leads to a weakening and probable re-orientation of the POP bonds. Whereas the fiber drawing did not significantly impact the release of P and Ca, an increase in the release of Na into the solution was noticed. This was probably due to small structural reorientations occurring during the fiber drawing process and to a slight diffusion of Na to the fiber surface. Both the powders from the bulk and the glass fibers formed a Ca-P surface layer when immersed in SBF and TRIS. The layer thickness was higher in the calcium and phosphate supersaturated SBF than in TRIS. This paper for the first time presents the in vitro reactivity and optical response of a phosphate-based bioactive glass (PBG) fiber when immersed in SBF. The light intensity remained constant for the first 48h after which a decrease with three distinct slopes was observed: the first decrease between 48 and 200h of immersion could be correlated to the formation of the Ca-P layer at the fiber surface. After this a faster decrease in light transmission was observed from 200 to ~425h in SBF. SEM analysis suggested that after 200h, the surface of the fiber was fully covered by a thin Ca-P layer which is likely to scatter light. For immersion times longer than ~425h, the thickness of the Ca-P layer increased and thus acted as a barrier to the dissolution process limiting further reduction in light transmission. The tracking of light transmission through the PBG fiber allowed monitoring of the fiber dissolution in vitro. These results are essential in developing new bioactive fiber sensors that can be used to monitor bioresponse in situ. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Temperature sensor based on a tapered optical fiber with ALD nanofilm

    NASA Astrophysics Data System (ADS)

    Zhu, Shan; Pang, Fufei; Wen, Jianxiang; Zhao, Ziwen; Wang, Tingyun

    2015-09-01

    A temperature sensor with high sensitivity based on a tapered optical fiber with Al2O3 nanofilm by atomic layer deposition (ALD) technology is presented. Attributed to the high refractive index Al2O3 nanofilm overlay, an asymmetry Fabry-Perot interferometer is formed along the tapered fiber. Based on the ray-optic analysis, the resonant dip in the interference transmission spectrum depends on the phase delay variation induced by the Goos-Hänchen shift at the nanofilm-coating interface. As a result, the interference transmission spectrum shows good sensitivity to the change of surrounding refractive index. In this work, a temperature-sensitive silicone gel is coated around the fiber taper with Al2O3 nanofilm to realize a high sensitivity temperature sensor. The high sensitivity of 2.44 nm/°C is obtained.

  7. Development of a flexible optical fiber based high resolution integrated PET∕MRI system.

    PubMed

    Yamamoto, Seiichi; Watabe, Hiroshi; Kanai, Yasukazu; Watabe, Tadashi; Aoki, Masaaki; Sugiyama, Eiji; Kato, Katsuhiko; Hatazawa, Jun

    2012-11-01

    The simultaneous measurement of PET and magnetic resonance imaging (MRI) is an emerging field for molecular imaging research. Although optical fiber based PET∕MRI systems have advantages on less interference between PET and MRI, there is a drawback in reducing the scintillation light due to the fiber. To reduce the problem, the authors newly developed flexible optical fiber bundle based block detectors and employed them for a high resolution integrated PET∕MRI system. The flexible optical fiber bundle used 0.5 mm diameter, 80 cm long double clad fibers which have dual 12 mm × 24 mm rectangular inputs and a single 24 mm × 24 mm rectangular output. In the input surface, LGSO scintillators of 0.025 mol.% (decay time: ∼31 ns: 0.9 mm × 1.3 mm × 5 mm) and 0.75 mol.% (decay time: ∼46 ns: 0.9 mm × 1.3 mm × 6 mm) were optically coupled in depth direction to form depth-of-interaction detector, arranged in 11 × 13 matrix and optically coupled to the fiber bundle. The two inputs of the bundle are bent for 90°, bound to one, and are optically coupled to a Hamamatsu 1-in. square position sensitive photomultiplier tube. Light loss due to the fiber bundle could be reduced and the performance of the block detectors was improved. Eight optical fiber based block detectors (16 LGSO blocks) were arranged in a 56 mm diameter ring to form a PET system. Spatial resolution and sensitivity were 1.2 mm full-width at half-maximum and 1.2% at the central field-of-view, respectively. Sensitivity change was less than 1% for 2 °C temperature changes. This PET system was integrated with a 0.3 T permanent magnet MRI system which has 17 cm diameter hole at the yoke area for insertion of the PET detector ring. There was no observable interference between PET and MRI. Simultaneous imaging of PET and MRI was successfully performed for small animal studies. The authors confirmed that the developed high resolution PET∕MRI system is promising for molecular

  8. Development of a flexible optical fiber based high resolution integrated PET/MRI system

    SciTech Connect

    Yamamoto, Seiichi; Watabe, Hiroshi; Kanai, Yasukazu; Watabe, Tadashi; Aoki, Masaaki; Sugiyama, Eiji; Kato, Katsuhiko; Hatazawa, Jun

    2012-11-15

    Purpose: The simultaneous measurement of PET and magnetic resonance imaging (MRI) is an emerging field for molecular imaging research. Although optical fiber based PET/MRI systems have advantages on less interference between PET and MRI, there is a drawback in reducing the scintillation light due to the fiber. To reduce the problem, the authors newly developed flexible optical fiber bundle based block detectors and employed them for a high resolution integrated PET/MRI system. Methods: The flexible optical fiber bundle used 0.5 mm diameter, 80 cm long double clad fibers which have dual 12 mm Multiplication-Sign 24 mm rectangular inputs and a single 24 mm Multiplication-Sign 24 mm rectangular output. In the input surface, LGSO scintillators of 0.025 mol.% (decay time: {approx}31 ns: 0.9 mm Multiplication-Sign 1.3 mm Multiplication-Sign 5 mm) and 0.75 mol.% (decay time: {approx}46 ns: 0.9 mm Multiplication-Sign 1.3 mm Multiplication-Sign 6 mm) were optically coupled in depth direction to form depth-of-interaction detector, arranged in 11 Multiplication-Sign 13 matrix and optically coupled to the fiber bundle. The two inputs of the bundle are bent for 90 Degree-Sign , bound to one, and are optically coupled to a Hamamatsu 1-in. square position sensitive photomultiplier tube. Results: Light loss due to the fiber bundle could be reduced and the performance of the block detectors was improved. Eight optical fiber based block detectors (16 LGSO blocks) were arranged in a 56 mm diameter ring to form a PET system. Spatial resolution and sensitivity were 1.2 mm full-width at half-maximum and 1.2% at the central field-of-view, respectively. Sensitivity change was less than 1% for 2 Degree-Sign C temperature changes. This PET system was integrated with a 0.3 T permanent magnet MRI system which has 17 cm diameter hole at the yoke area for insertion of the PET detector ring. There was no observable interference between PET and MRI. Simultaneous imaging of PET and MRI was

  9. Design of a Multicast Optical Packet Switch Based on Fiber Bragg Grating Technology for Future Networks

    NASA Astrophysics Data System (ADS)

    Cheng, Yuh-Jiuh; Yeh, Tzuoh-Chyau; Cheng, Shyr-Yuan

    2011-09-01

    In this paper, a non-blocking multicast optical packet switch based on fiber Bragg grating technology with optical output buffers is proposed. Only the header of optical packets is converted to electronic signals to control the fiber Bragg grating array of input ports and the packet payloads should be transparently destined to their output ports so that the proposed switch can reduce electronic interfaces as well as the bit rate. The modulation and the format of packet payloads may be non-standard where packet payloads could also include different wavelengths for increasing the volume of traffic. The advantage is obvious: the proposed switch could transport various types of traffic. An easily implemented architecture which can provide multicast services is also presented. An optical output buffer is designed to queue the packets if more than one incoming packet should reach to the same destination output port or including any waiting packets in optical output buffer that will be sent to the output port at a time slot. For preserving service-packet sequencing and fairness of routing sequence, a priority scheme and a round-robin algorithm are adopted at the optical output buffer. The fiber Bragg grating arrays for both input ports and output ports are designed for routing incoming packets using optical code division multiple access technology.

  10. Optical fiber magnetometer

    NASA Astrophysics Data System (ADS)

    Scarzello, John F.; Finkel, Jack

    1991-08-01

    An optical fiber magnetometer having omnidirectional capability is disclosed herein for measuring a total magnetic field independent of its physical orientation or the direction of the field or fields. A relatively long optical fiber defining a sensing arm for exposure to a magnetic field is wound in the form of a spheroid (like rubber bands on a golf ball or yarn threads on a baseball) to provide optical lengths of substantially the same total length in every direction through the spheroid winding. The plane of polarization of light transmitted through the optical fiber winding is caused to rotate (Faraday effect) when the fiber or components thereof is exposed parallel to a magnetic field. The extent of plane rotation is determined, inter alia, by the total magnetic field passing through the spheroid winding.

  11. Fiber Optics: No Illusion.

    ERIC Educational Resources Information Center

    American School and University, 1983

    1983-01-01

    A campus computer center at Hofstra University (New York) that holds 70 terminals for student use was first a gymnasium, then a language laboratory. Strands of fiber optics are used for the necessary wiring. (MLF)

  12. Simulating Optical Fibers.

    ERIC Educational Resources Information Center

    Edgar, Dale

    1988-01-01

    Described is a demonstration of Snell's law using a laser beam and an optical fiber. Provided are the set-up method of the demonstration apparatus and some practical suggestions including "index matching" technique using vaseline. (YP)

  13. Fiber Optics: No Illusion.

    ERIC Educational Resources Information Center

    American School and University, 1983

    1983-01-01

    A campus computer center at Hofstra University (New York) that holds 70 terminals for student use was first a gymnasium, then a language laboratory. Strands of fiber optics are used for the necessary wiring. (MLF)

  14. Simulating Optical Fibers.

    ERIC Educational Resources Information Center

    Edgar, Dale

    1988-01-01

    Described is a demonstration of Snell's law using a laser beam and an optical fiber. Provided are the set-up method of the demonstration apparatus and some practical suggestions including "index matching" technique using vaseline. (YP)

  15. Fiber optic macro-bend based sensor for detection of metal loss

    NASA Astrophysics Data System (ADS)

    Li, Weijie; Ho, Siu Chun Michael; Luo, Mingzhang; Huynh, Quyen; Song, Gangbing

    2017-04-01

    Metal loss in metallic structures, often as a result of corrosion, is a severe problem across multiple industries. Catastrophic consequence of structural failure due to such loss of structural metal requires an accurate determination and assessment of corrosion. Widely used electrochemical methods can only suggest the likelihood of the metal loss due to corrosion while failing to provide a quantitative measure of the accumulated amount of corrosion. Due to its unique advantages such as small size, light weight, resistance to electromagnetic interference and corrosion, fiber optic sensing technique has been emerging as a promising alternative for most sensing applications. In this paper, a novel type of ferromagnetic distance-based metal loss sensor is proposed based on the principle of fiber optic macro-bend loss. The proposed sensor is composed of the bended optical fiber, the magnet and a spring. The magnet is connected to the spring and the fiber bend is attached to the spring in such a way that the movement of the magnet will induce a change in bending radius of the optical fiber. Metal loss in the monitored sample increases the distance between the magnet and the metal surface and thereby reducing the magnetic force. A change in magnetic force will lead to the variation in light intensity loss of the fiber optic macro-bend, thus metal loss, such as in the form of corrosion pits, can be detected by the proposed metal loss sensor. The practicality of the proposed distance sensor for metal loss measurement is validated through scanning the fabricated corrosion samples.

  16. A Fiber Optic PD Sensor Using a Balanced Sagnac Interferometer and an EDFA-Based DOP Tunable Fiber Ring Laser

    PubMed Central

    Wang, Lutang; Fang, Nian; Wu, Chunxu; Qin, Haijuan; Huang, Zhaoming

    2014-01-01

    A novel fiber-optic acoustic sensor using an erbium-doped fiber amplifier (EDFA)-based fiber ring laser and a balanced Sagnac interferometer for acoustic sensing of the partial discharge (PD) in power transformers is proposed and demonstrated. As a technical background, an experimental investigation on how the variations of the fiber birefringence affect the sensor performances was carried out, and the results are discussed. The operation principles are described, and the relevant formulas are derived. The analytical results show that an EDFA-based fiber ring laser operating in chaotic mode can provide a degree of polarization (DOP) tunable light beam for effectively suppressing polarization fading noises. The balanced Sagnac interferometer can eliminate command intensity noises and enhance the signal-to-noise ratio (SNR). Furthermore, it inherently operates at the quadrature point of the response curve without any active stabilizations. Several experiments are conducted for evaluating the performances of the sensor system, as well as for investigating the ability of the detection of high-frequency acoustic emission signals. The experimental results demonstrate that the DOP of the laser beam can be continuously tuned from 0.2% to 100%, and the power fluctuation in the whole DOP tuning range is less than 0.05 dBm. A high-frequency response up to 300 kHz is reached, and the high sensing sensitivity for detections of weak corona discharges, as well as partial discharges also is verified. PMID:24824371

  17. A fiber optic PD sensor using a balanced Sagnac interferometer and an EDFA-based DOP tunable fiber ring laser.

    PubMed

    Wang, Lutang; Fang, Nian; Wu, Chunxu; Qin, Haijuan; Huang, Zhaoming

    2014-05-12

    A novel fiber-optic acoustic sensor using an erbium-doped fiber amplifier (EDFA)-based fiber ring laser and a balanced Sagnac interferometer for acoustic sensing of the partial discharge (PD) in power transformers is proposed and demonstrated. As a technical background, an experimental investigation on how the variations of the fiber birefringence affect the sensor performances was carried out, and the results are discussed. The operation principles are described, and the relevant formulas are derived. The analytical results show that an EDFA-based fiber ring laser operating in chaotic mode can provide a degree of polarization (DOP) tunable light beam for effectively suppressing polarization fading noises. The balanced Sagnac interferometer can eliminate command intensity noises and enhance the signal-to-noise ratio (SNR). Furthermore, it inherently operates at the quadrature point of the response curve without any active stabilizations. Several experiments are conducted for evaluating the performances of the sensor system, as well as for investigating the ability of the detection of high-frequency acoustic emission signals. The experimental results demonstrate that the DOP of the laser beam can be continuously tuned from 0.2% to 100%, and the power fluctuation in the whole DOP tuning range is less than 0.05 dBm. A high-frequency response up to 300 kHz is reached, and the high sensing sensitivity for detections of weak corona discharges, as well as partial discharges also is verified.

  18. A distributed optical fiber sensing system for dynamic strain measurement based on artificial reflector

    NASA Astrophysics Data System (ADS)

    Sun, Zhenhong; Shan, Yuanyuan; Li, Yanting; Zhang, Yixin; Zhang, Xuping

    2016-10-01

    Phase sensitive optical time domain reflectometry (Φ-OTDR) has been widely used in many applications for its distributed sensing ability on weak disturbance all along the sensing fiber. However, traditional Φ-OTDR cannot make quantitative measurement on the external disturbance due to the randomly distributed position and reflectivity of scatters within the optical fiber. Recently, some methods have been proposed to realize quantitative measurement of dynamic strain. In these literatures, the fiber with or without FBGs in practice was easily damaged and with difficulty of maintenance. PZT is employed to generate strain event in the fiber. There is a large gap compared with the real detecting environment, which will not reveal the full performance of the sensing system. In this paper, a distributed optical fiber sensing (DOFS) system for dynamic strain measurement based on artificial reflector is proposed and demonstrated experimentally. The fiber under test (FUT) is composed by four 20-meter long single mode optical fiber patch cords (OFPCs), which are cascaded with ferrule contactor/physical contact (FC/PC) connectors via fiber flanges. The fiber facet of FC/PC connector forms an artificial reflector. When the interval between the two reflectors is changed, the phase of the interference signal will also be changed. A symmetric 3×3 coupler with table-look-up scheme is introduced to discriminate the phase change through interference intensity. In our experiment, the center 10m section of the second OFPC is attached to the bottom of an aluminum alloy plate. An ordinary loudspeaker box was located on the top of the aluminum alloy plate. The dynamic strain generated by the loudspeaker box is transmitted from the aluminum alloy plate to the OFPC. Experimental results show that the proposed method has a good frequency response characteristic up to 3.2 kHz and a linear intensity response of R2=0.9986 while the optical probe pulse width and repetition rate were 100ns

  19. Optical Fiber Relative Humidity Sensor Based on a FBG with a Di-Ureasil Coating

    PubMed Central

    Correia, Sandra F. H.; Antunes, Paulo; Pecoraro, Edison; Lima, Patrícia P.; Varum, Humberto; Carlos, Luis D.; Ferreira, Rute A. S.; André, Paulo S.

    2012-01-01

    In this work we proposed a relative humidity (RH) sensor based on a Bragg grating written in an optical fiber, associated with a coating of organo-silica hybrid material prepared by the sol-gel method. The organo-silica-based coating has a strong adhesion to the optical fiber and its expansion is reversibly affected by the change in the RH values (15.0–95.0%) of the surrounding environment, allowing an increased sensitivity (22.2 pm/%RH) and durability due to the presence of a siliceous-based inorganic component. The developed sensor was tested in a real structure health monitoring essay, in which the RH inside two concrete blocks with different porosity values was measured over 1 year. The results demonstrated the potential of the proposed optical sensor in the monitoring of civil engineering structures. PMID:23012521

  20. Study on design and experiment of safe illumination system based on optical fiber guiding light

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Yu, Fei; Yan, Yang

    2016-10-01

    The optical fiber lighting is a new development on fiber application techniques in recent years. On the basic of Fresnel lens and optical fiber coupling models, the coupling device is designed reasonably through optical simulation, and then it verifies the effects of coupling through experiments. According to the experimental data, lens coupling mode and high efficiency optical fiber are chosen. At last, output device is fixed on the optical fiber. Its layout method is confirmed that have reached the requirements of the lighting standard, which provides a great technical support for realizing the large scale safety lighting system in the future.

  1. Fiber optics: A research paper

    NASA Technical Reports Server (NTRS)

    Drone, Melinda M.

    1987-01-01

    Some basic aspects concerning fiber optics are examined. Some history leading up to the development of optical fibers which are now used in the transmission of data in many areas of the world is discussed. Basic theory of the operation of fiber optics is discussed along with methods for improving performance of the optical fiber through much research and design. Splices and connectors are compared and short haul and long haul fiber optic networks are discussed. Fiber optics plays many roles in the commercial world. The use of fiber optics for communication applications is emphasized.

  2. Fiber optics: A research paper

    NASA Astrophysics Data System (ADS)

    Drone, Melinda M.

    1987-08-01

    Some basic aspects concerning fiber optics are examined. Some history leading up to the development of optical fibers which are now used in the transmission of data in many areas of the world is discussed. Basic theory of the operation of fiber optics is discussed along with methods for improving performance of the optical fiber through much research and design. Splices and connectors are compared and short haul and long haul fiber optic networks are discussed. Fiber optics plays many roles in the commercial world. The use of fiber optics for communication applications is emphasized.

  3. Fiber optic hydrogen sensor

    DOEpatents

    Buchanan, B.R.; Prather, W.S.

    1991-01-01

    Apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading, by a single spectrophotometer.

  4. Fiber optic hydrogen sensor

    DOEpatents

    Buchanan, Bruce R.; Prather, William S.

    1992-01-01

    An apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer.

  5. Fiber optic hydrogen sensor

    DOEpatents

    Buchanan, B.R.; Prather, W.S.

    1992-10-06

    An apparatus and method are described for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer. 4 figs.

  6. Uncertainty analysis of BTDM-SFSW based fiber-optic time transfer

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Wu, Guiling; Li, Xinwan; Chen, Jianping

    2017-02-01

    In this paper, the uncertainty of time transfer based on a bidirectional time division multiplexing transmission over a single fiber with the same wavelength (BTDM-SFSW) is investigated via theoretical models and experimental measurements. According to the principle and system architecture, the uncertainty evaluation schemes for BTDM-SFSW based time transfer are presented and the uncertainty sources are identified accordingly. In order to avoid the effect of the temperature-dependent fiber delay, the measured time intervals at two sites are regarded as a whole to obtain an overall uncertainty of time interval measurements. For the uncertainty of time transfer modem calibration, aside from the type A uncertainty obtained under the applied calibration scheme, the system reproducibility against practical operation and the contribution of optical power-dependent receiving delays are also included. A mathematical model considering fiber dispersion, polarization mode dispersion (PMD) and the Sagnac effect is established to evaluate the uncertainty from the fiber link. The characteristics of the uncertainty sources in a long-distance fiber-optic time transfer testbed are then explored in detail. The combined expanded uncertainties with a coverage factor of 2 are calculated and experimentally validated over various non-calibrated fiber extensions.

  7. Fiber optic detector

    SciTech Connect

    Partin, J.K.; Ward, T.E.; Grey, A.E.

    1990-12-31

    This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  8. Fiber optics welder

    DOEpatents

    Higgins, R.W.; Robichaud, R.E.

    A system is described for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45/sup 0/ angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

  9. Fiber optic detector

    NASA Astrophysics Data System (ADS)

    Partin, Judy K.; Ward, Thomas E.; Grey, Alan E.

    1990-04-01

    This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  10. Distributed fiber optic strain sensor based on the Sagnac and Michelson interferometers

    NASA Astrophysics Data System (ADS)

    Udd, Eric

    1996-04-01

    By placing fiber optic gratings in a Sagnac loop a distributed strain sensor may be formed by using the light reflected from the fiber gratings as sources for balanced Michelson and Mach- Zehnder interferometers. In this manner the resulting fiber optic sensor is capable of measuring integrated strain over lengths determined by the fiber grating position, point strain and temperature at the fiber grating locations and localizing and measuring the position of a time varying signal such as an acoustic wave.

  11. A novel down-hole fiber optic sensor based on Fabry-Perot cavity and fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Chen, Shao-hua; Zhang, Peng; Tao, Guo; Zhao, Kun

    2010-11-01

    With the rapid development of fiber optic sensing technology, more and more related monitoring programs begin to play an important role in oil and gas exploration. In the past, down-hole monitoring of temperature and pressure was dependent on pump partner, electronic pressure gauge and the capillary pressure gauge. However, such devices show many disadvantages in stability, reliability, accuracy and so on. In the interest of special anti-corrosion, seals, high temperature, high pressure treatment, and long life, the fiber optic sensor is critically investigated and a new design approach of fiber temperature and pressure sensor based on Fiber Bragg Gratings and Fabry-Perot Cavity is presented, respectively. The temperature and pressure resolution of this sensor can be as high as 0.3°C and 3psi. Meanwhile, the sensor can work under the condition from 0 to 15000psi and from -25 to 300 °C. This paper describes the technical principles, characteristics and field application of the sensor in detail.

  12. High-performance hybrid Raman/fiber Bragg grating fiber-optic sensor based on simplex cyclic pulse coding.

    PubMed

    Taki, M; Zaidi, F; Toccafondo, I; Nannipieri, T; Signorini, A; Faralli, S; Di Pasquale, F

    2013-02-15

    We propose and experimentally demonstrate the use of cyclic pulse coding to improve the performance of hybrid Raman/fiber Bragg grating (FBG) fiber-optic sensors, for simultaneous measurement of distributed static temperature and discrete dynamic strain over the same sensing fiber. Effective noise reduction is achieved in both Raman optical time-domain reflectometry and dynamic interrogation of time-division-multiplexed fiber FBG sensors, enhancing the sensing range resolution and providing real-time point dynamic strain measurement capabilities. The highly integrated sensor scheme employs broadband apodized low-reflectivity FBGs, a single narrowband optical source, and a shared receiver block.

  13. An all-fiber vacuum sensor based on thermo-optics' effect in vanadium-doped fiber

    NASA Astrophysics Data System (ADS)

    Matjasec, Ziga; Donlagic, Denis

    2014-05-01

    This paper introduces an all-optical, fiber-optics vacuum sensor, which takes advantage of the thermo-optic effect within vanadium-co-doped fiber. This sensor utilizes a 980 nm pump-diode and a short section of highly absorbing vanadiumco- doped fiber produced by the flash vaporization process. The 980 nm source operates in pulse mode therefore the vanadium-co-doped fiber is periodically heated and self-cooled. The 980 nm pump-light is fully absorbed within the codoped fiber's core and relaxed as a heat, which changes the fiber's core refractive index. The heat-transfer between the heated fiber and surrounding gas depends on the gas pressure. Further, the doped-fiber is inserted into a Fabry-Perot interferometer which forms, in combination with a DFB laser diode at 1550 nm, a high coherence interferometer for optical path-length measurement. The time constant and absolute modulated optical path of the step response can be directly correlated with the gas pressure. The time constant is independent of the pump-diode's optical power, while the absolute modulated optical path also depends on the pump-diode's output of optical power and should thus be compensated. The vacuum sensor allows for a remote and fully dielectric measurement of the gas pressure and can be used in various industrial applications.

  14. Optical fiber phase discriminator.

    PubMed

    Danielson, B L

    1978-11-15

    Phase discriminators are devices widely used at rf and microwave frequencies to convert phase, or frequency, changes to amplitude changes. They find widespread use in generating audio feedback signals for frequency stabilization of oscillators and in angle demodulation applications. This paper demonstrates that similar devices, with similar functions, can be constructed in the visible region using optical fibers as delay-line elements. The operating principles of an optical-fiber delay-line phase discriminator are discussed. The sensitivity is shown to be proportional to the fiber propagation-delay time. A device working at 0.6328 microm is described and compared with predictions.

  15. Satellites vs. fiber optics based networks and services - Road map to strategic planning

    NASA Astrophysics Data System (ADS)

    Marandi, James H. R.

    An overview of a generic telecommunications network and its components is presented, and the current developments in satellite and fiber optics technologies are discussed with an eye on the trends in industry. A baseline model is proposed, and a cost comparison of fiber- vs satellite-based networks is made. A step-by-step 'road map' to the successful strategic planning of telecommunications services and facilities is presented. This road map provides for optimization of the current and future networks and services through effective utilization of both satellites and fiber optics. The road map is then applied to different segments of the telecommunications industry and market place, to show its effectiveness for the strategic planning of executives of three types: (1) those heading telecommunications manufacturing concerns, (2) those leading communication service companies, and (3) managers of telecommunication/MIS departments of major corporations. Future networking issues, such as developments in integrated-services digital network standards and technologies, are addressed.

  16. A Robust Distributed Multipoint Fiber Optic Gas Sensor System Based on AGC Amplifier Structure

    PubMed Central

    Zhu, Cunguang; Wang, Rende; Tao, Xuechen; Wang, Guangwei; Wang, Pengpeng

    2016-01-01

    A harsh environment-oriented distributed multipoint fiber optic gas sensor system realized by automatic gain control (AGC) technology is proposed. To improve the photoelectric signal reliability, the electronic variable gain can be modified in real time by an AGC closed-loop feedback structure to compensate for optical transmission loss which is caused by the fiber bend loss or other reasons. The deviation of the system based on AGC structure is below 4.02% when photoelectric signal decays due to fiber bending loss for bending radius of 5 mm, which is 20 times lower than the ordinary differential system. In addition, the AGC circuit with the same electric parameters can keep the baseline intensity of signals in different channels of the distributed multipoint sensor system at the same level. This avoids repetitive calibrations and streamlines the installation process. PMID:27483267

  17. An optical fiber-folded distributed temperature sensor based on Raman backscattering

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Sun, XiaoHong; Xue, Qi; Wang, YiLe; Qi, YongLe; Wang, XiShi

    2017-08-01

    A temperature sensor is presented, which is based on optical fiber-folded distributed feedback and Raman backscattering. In the proposed configuration, different locations of optical fiber are put in the same environment to sense the same temperature. The proposed method and traditional method are used to demodulate different temperature fields. By comparing the demodulating results, two main problems have been solved. First, differential attenuation in the traditional method is eliminated between anti-Stokes and Stokes signal when they propagate along the fiber. Second, localized changes in the Stokes are removed, which is caused by other external factors except for the temperature. Furthermore, the detected signal consists of anti-Stokes only, which greatly simplifies the experimental device system. The proposed method has been verified by theoretical simulation to be simple and auto-correct.

  18. Experimental research of optical fiber current sensors based on the Loren magnetic force

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi; Yan, Haitao; Zhao, Xiaoyan; Xie, Jitao; Zhang, Chao; Hao, Hui; Wang, Ming

    2014-12-01

    We propose a simple optical fiber current sensors based on the Lorentz force to measure the current. We use two copper carrying wires, and the two carrying wires are parallel fixed to the insulated coil spring. Then, the two optical fibers are vertically fixed on two copper, respectively. When the current input the wires, Loren magnetic force will be existed between wires. The force causes deformation of the spring and leads to the displacement of the fiber's end faces. So the spectra should be changed. The experimental device is used to measure the current at range for the 1-5 A, the response time is about 0.1 seconds, and resolution sensitivity of the sensor is 10 nm/A. The results show that the device is simple and low costs. It has a potential applied in high current sensing.

  19. Single-mode fiber variable optical attenuator based on a ferrofluid shutter.

    PubMed

    Duduś, Anna; Blue, Robert; Uttamchandani, Deepak

    2015-03-10

    We report on the fabrication and characterization of a single-mode fiber variable optical attenuator (VOA) based on a ferrofluid shutter actuated by a magnetic field created by a low voltage electromagnet. We compare the performance of a VOA using oil-based ferrofluid, with one VOA using water-based 12 ferrofluid, and demonstrate broadband optical attenuation of up to 28 dB with polarization dependent 13 loss of 0.85 dB. Our optofluidic VOA has advantages over MEMS-based VOAs such as simple construction and the absence of mechanical moving parts.

  20. DNA-Aptamer optical biosensors based on a LPG-SPR optical fiber platform for point-of-care diagnostic

    NASA Astrophysics Data System (ADS)

    Coelho, L.; Queirós, R. B.; Santos, J. L.; Martins, M. Cristina L.; Viegas, D.; Jorge, P. A. S.

    2014-03-01

    Surface Plasmon Resonance (SPR) is the base for some of the most sensitive label free optical fiber biosensors. However, most solutions presented to date require the use of fragile fiber optic structure such as adiabatic tapers or side polished fibers. On the other hand, long-period fiber gratings (LPG) present themselves as an interesting solution to attain an evanescent wave refractive index sensor platform while preserving the optical fiber integrity. The combination of these two approaches constitute a powerful platform that can potentially reach the highest sensitivities as it was recently demonstrated by detailed theoretical study [1, 2]. In this work, a LPG-SPR platform is explored in different configurations (metal coating between two LPG - symmetric and asymmetric) operating in the telecom band (around 1550 nm). For this purpose LPGs with period of 396 μm are combined with tailor made metallic thin films. In particular, the sensing regions were coated with 2 nm of chromium to improve the adhesion to the fiber and 16 nm of gold followed by a 100 nm thick layer of TiO2 dielectric material strategically chosen to attain plasmon resonance in the desired wavelength range. The obtained refractometric platforms were then validated as a biosensor. For this purpose the detection of thrombin using an aptamer based probe was used as a model system for protein detection. The surface of the sensing fibers were cleaned with isopropanol and dried with N2 and then the aminated thrombin aptamer (5'-[NH2]- GGTTGGTGTGGTTGG-3') was immobilized by physisorption using Poly-L-Lysine (PLL) as cationic polymer. Preliminary results indicate the viability of the LPFG-SPR-APTAMER as a flexible platforms point of care diagnostic biosensors.

  1. Optical fiber sensors measurement system and special fibers improvement

    NASA Astrophysics Data System (ADS)

    Jelinek, Michal; Hrabina, Jan; Hola, Miroslava; Hucl, Vaclav; Cizek, Martin; Rerucha, Simon; Lazar, Josef; Mikel, Bretislav

    2017-06-01

    We present method for the improvement of the measurement accuracy in the optical frequency spectra measurements based on tunable optical filters. The optical filter was used during the design and realization of the measurement system for the inspection of the fiber Bragg gratings. The system incorporates a reference block for the compensation of environmental influences, an interferometric verification subsystem and a PC - based control software implemented in LabView. The preliminary experimental verification of the measurement principle and the measurement system functionality were carried out on a testing rig with a specially prepared concrete console in the UJV Řež. The presented system is the laboratory version of the special nuclear power plant containment shape deformation measurement system which was installed in the power plant Temelin during last year. On the base of this research we started with preparation other optical fiber sensors to nuclear power plants measurement. These sensors will be based on the microstructured and polarization maintaining optical fibers. We started with development of new methods and techniques of the splicing and shaping optical fibers. We are able to made optical tapers from ultra-short called adiabatic with length around 400 um up to long tapers with length up to 6 millimeters. We developed new techniques of splicing standard Single Mode (SM) and Multimode (MM) optical fibers and splicing of optical fibers with different diameters in the wavelength range from 532 to 1550 nm. Together with development these techniques we prepared other techniques to splicing and shaping special optical fibers like as Polarization-Maintaining (PM) or hollow core Photonic Crystal Fiber (PCF) and theirs cross splicing methods with focus to minimalize backreflection and attenuation. The splicing special optical fibers especially PCF fibers with standard telecommunication and other SM fibers can be done by our developed techniques. Adjustment

  2. Implementing and testing a fiber-optic polarization-based intrusion detection system

    NASA Astrophysics Data System (ADS)

    Hajj, Rasha El; MacDonald, Gregory; Verma, Pramode; Huck, Robert

    2015-09-01

    We describe a layer-1-based intrusion detection system for fiber-optic-based networks. Layer-1-based intrusion detection represents a significant elevation in security as it prohibits an adversary from obtaining information in the first place (no cryptanalysis is possible). We describe the experimental setup of the intrusion detection system, which is based on monitoring the behavior of certain attributes of light both in unperturbed and perturbed optical fiber links. The system was tested with optical fiber links of various lengths and types, under different environmental conditions, and under changes in fiber geometry similar to what is experienced during tapping activity. Comparison of the results for perturbed and unperturbed links has shown that the state of polarization is more sensitive to intrusion activity than the degree of polarization or power of the received light. The testing was conducted in a simulated telecommunication network environment that included both underground and aerial links. The links were monitored for intrusion activity. Attempts to tap the link were easily detected with no apparent degradation in the visual quality of the real-time surveillance video.

  3. Towards development of a fiber optic-based transmission monitoring system

    NASA Astrophysics Data System (ADS)

    Baldwin, Chris S.; Kiddy, Jason S.; Samuel, Paul D.

    2011-06-01

    There is interest in the rotorcraft community to develop health monitoring technologies. Among these technologies is the ability to monitor the transmission planetary gear system. The gearbox environment does not lend itself to traditional sensing technologies due to the harsh environment and crowed space. Traditional vibration-based diagnostics are based on the output from externally mounted sensors, usually accelerometers fixed to the gearbox exterior. This type of system relies on the ability of the vibration signal to travel from the gears through the gearbox housing. These sensors are also susceptible to other interference including electrical magnetic interference (EMI). For these reasons, the development of a fiber optic-based transmission monitoring system represents an appealing alternative to the accelerometer due to their resistance to EMI and other signal corrupting influences. Aither Engineering has been working on integrating the fiber optic sensors into the gearbox environment to measure strain on the ring gear of the planetary gear system. This application utilizes a serial array of wavelength division multiplexed fiber Bragg grating (FBG) sensors. Work in this area has been conducted at both the University of Maryland, College Park and more recently at the NASA Glenn Research Center (NGRC) OH-58 transmission test rig facility. This paper discusses some of the testing results collected from the fiber optic ring gear sensor array. Based on these results, recommendations for system requirements are addressed in terms of the capabilities of the FBG instrumentation.

  4. Fuel level sensor based on polymer optical fiber Bragg gratings for aircraft applications

    NASA Astrophysics Data System (ADS)

    Marques, C. A. F.; Pospori, A.; Sáez-Rodríguez, D.; Nielsen, K.; Bang, O.; Webb, D. J.

    2016-04-01

    Safety in civil aviation is increasingly important due to the increase in flight routes and their more challenging nature. Like other important systems in aircraft, fuel level monitoring is always a technical challenge. The most frequently used level sensors in aircraft fuel systems are based on capacitive, ultrasonic and electric techniques, however they suffer from intrinsic safety concerns in explosive environments combined with issues relating to reliability and maintainability. In the last few years, optical fiber liquid level sensors (OFLLSs) have been reported to be safe and reliable and present many advantages for aircraft fuel measurement. Different OFLLSs have been developed, such as the pressure type, float type, optical radar type, TIR type and side-leaking type. Amongst these, many types of OFLLSs based on fiber gratings have been demonstrated. However, these sensors have not been commercialized because they exhibit some drawbacks: low sensitivity, limited range, long-term instability, or limited resolution. In addition, any sensors that involve direct interaction of the optical field with the fuel (either by launching light into the fuel tank or via the evanescent field of a fiber-guided mode) must be able to cope with the potential build up of contamination - often bacterial - on the optical surface. In this paper, a fuel level sensor based on microstructured polymer optical fiber Bragg gratings (mPOFBGs), including poly (methyl methacrylate) (PMMA) and TOPAS fibers, embedded in diaphragms is investigated in detail. The mPOFBGs are embedded in two different types of diaphragms and their performance is investigated with aviation fuel for the first time, in contrast to our previous works, where water was used. Our new system exhibits a high performance when compared with other previously published in the literature, making it a potentially useful tool for aircraft fuel monitoring.

  5. Polymer optical fiber for large strain measurement based on multimode interference.

    PubMed

    Huang, Jie; Lan, Xinwei; Wang, Hanzheng; Yuan, Lei; Wei, Tao; Gao, Zhan; Xiao, Hai

    2012-10-15

    This Letter reports a polymer optical fiber (POF) based large strain sensor based on the multimode interference (MMI) theory for the application of structural health monitoring. A section of POFs is sandwiched between two silica single mode fibers to construct a single-mode-multimode-single-mode structure that produces a MMI spectrum. The strain sensing mechanism of the device was investigated and experimentally verified. A large dynamic range of 2×10(4) με (2%) and a detection limit of 33 µε have been demonstrated.

  6. Distributed Brillouin optical fiber sensing for dynamic strain with frequency agility based on dual-modulation

    NASA Astrophysics Data System (ADS)

    Ba, Dexin; Zhou, Dengwang; Wang, Benzhang; Yin, Mingjing; Dong, Yongkang; Lu, Zhiwei; Fan, Zhigang

    2017-04-01

    A dynamic distributed Brillouin optical fiber sensing based on dual-modulation is proposed, in which the scanning of the Brillouin gain spectrum (BGS) is implemented by the combination of a single-frequency modulation and a frequency-agility modulation. The frequency of the single-frequency modulation is a little less than the Brillouin frequency shift of the fiber ( 10.8 GHz for silica fiber), while the tuning range of the frequency-agility modulation is required to cover only several-hundred MHz for the scanning of BGS, which can significantly reduce the bandwidth requirement for the arbitrary waveform generator and ultimately reduce the cost of dynamic Brillouin sensors. With a 30-m fiber, a 11.8-Hz strain is measured. The spatial resolution and the sampling rate are 1 m and 200 Hz, respectively.

  7. Multi-parameter optical fiber sensor based on enhanced multimode interference

    NASA Astrophysics Data System (ADS)

    Luo, Yiyang; Xia, Li; Yu, Can; Li, Wei; Sun, Qizhen; Wang, Yuanwu; Liu, Deming

    2015-06-01

    In this paper, a multi-parameter optical fiber sensor based on all-fiber in-line single-mode-multimode-no-core-single-mode (SMNS) structure is proposed and experimentally demonstrated. A section of multimode fiber (MMF) is utilized as the mode coupler to enhance the multimode interference (MMI). A 58.5 mm long no-core fiber (NCF) acts as the sensing head, which is modified by the surrounding medium. The experimental results exhibit that the sensor possesses a water level sensitivity of 215.98 pm/mm by monitoring the wavelength shift at 1586.03 nm, and -0.11 dB/mm of the power attenuation at the wavelength of 1600.05 nm with a measurement range of 58.33 mm. At the same time, the RI sensitivities of 131.71 nm/RIU and the axial strain sensitivity of -1.21 pm/με are also obtained.

  8. SU-E-T-610: Phosphor-Based Fiber Optic Probes for Proton Beam Characterization

    SciTech Connect

    Darafsheh, A; Soldner, A; Liu, H; Kassaee, A; Zhu, T; Finlay, J

    2015-06-15

    Purpose: To investigate feasibility of using fiber optics probes with rare-earth-based phosphor tips for proton beam radiation dosimetry. We designed and fabricated a fiber probe with submillimeter resolution (<0.5 mm3) based on TbF3 phosphors and evaluated its performance for measurement of proton beam including profiles and range. Methods: The fiber optic probe with TbF3 phosphor tip, embedded in tissue-mimicking phantoms was irradiated with double scattering proton beam with energy of 180 MeV. Luminescence spectroscopy was performed by a CCD-coupled spectrograph to analyze the emission spectra of the fiber tip. In order to measure the spatial beam profile and percentage depth dose, we used singular value decomposition method to spectrally separate the phosphors ionoluminescence signal from the background Cerenkov radiation signal. Results: The spectra of the TbF3 fiber probe showed characteristic ionoluminescence emission peaks at 489, 542, 586, and 620 nm. By using singular value decomposition we found the contribution of the ionoluminescence signal to measure the percentage depth dose in phantoms and compared that with measurements performed with ion chamber. We observed quenching effect at the spread out Bragg peak region, manifested as under-responding of the signal, due to the high LET of the beam. However, the beam profiles were not dramatically affected by the quenching effect. Conclusion: We have evaluated the performance of a fiber optic probe with submillimeter resolution for proton beam dosimetry. We demonstrated feasibility of spectral separation of the Cerenkov radiation from the collected signal. Such fiber probes can be used for measurements of proton beams profile and range. The experimental apparatus and spectroscopy method developed in this work provide a robust platform for characterization of proton-irradiated nanophosphor particles for ultralow fluence photodynamic therapy or molecular imaging applications.

  9. Splicing plastic optical fibers

    NASA Astrophysics Data System (ADS)

    Carson, Susan D.; Salazar, Roberto A.

    1991-12-01

    Polymethylmethacrylate (PMMA) plastic optical fiber (500 micrometers diameter, fluoropolymer cladding) has been spliced using a fused silica sleeve and a variety of solvent/PMMA solutions as adhesives. Mechanical splicing using index matching fluid has also been investigated. To ensure good bonding and minimize scattering, fiber ends are polished prior to application of adhesive. Using an LED ((lambda) max approximately 640 nm), losses are routinely less than 1.0 dB/splice, and some adhesive formulations have exhibited losses as low as 0.2 dB/splice. Five-meter fibers with as many as ten splices/fiber have been monitored over a period of several months. No fiber has exhibited an increase in optical loss with time.

  10. Instrumentation of fiber-based functional optical coherence tomographic imaging system

    NASA Astrophysics Data System (ADS)

    Yu, Xiaofeng; Ding, Zhihua; Chen, Yuheng; Huang, Lina; Wu, Lan; Liu, Xu

    2005-01-01

    Optical coherence tomography (OCT) has been developed not only for morphological imaging, but also for functional imaging. By combining Doppler velocimetry with optical sectioning capability of OCT, we developed one branch of functional OCT (F-OCT) termed optical Doppler tomography (ODT). This newly developed fiber-based F-OCT system can provide structural image and Doppler image simultaneously, and is ready for extension to another branch of F-OCT termed as polarization-sensitive OCT (PS-OCT). Measurements of in vivo human skin and fresh milk flowing inside capillary tube are presented to demonstrate the capability of the developed system.

  11. Experimental demonstration of a Fresnel-reflection based optical fiber biosensor coated with polyelectrolyte multilayers

    NASA Astrophysics Data System (ADS)

    Yu, Wenjie; Lang, Tingting

    2014-11-01

    We report that the end facet of an optical fiber can be coated with polyelectrolyte multilayers (PEM) of polycation (diallyldimethyl ammonium chloride) and polyanion (styrenesulfonate sodium salt) (PDDA+PSS)n (n is the number of bilayers), which functions effectively as a Fresnel-reflection based biosensor. The experimental setup includes a broadband light source, a 3dB coupler, and an optical spectrum analyzer. Biotin and streptavidin are deposited onto the multilayers-coated end facet sequentially. The light intensity change due to variation of external refractive index is monitored. When the concentrations of streptavidin changes from 0.1mg/ml to 1mg/ml, a linear relationship between the concentration of streptavidin and the reflected optical power at the wavelength of 1530nm is observed. The sensitivity increases from -1.6262×10-3 dB/ppm to -4.7852 ×10-3 dB/ppm, when the number of PEM increases from 1 to 2. Then we confirm the optimized numbers of bilayers of PEM are 5 through experiment. Selectivity and repeatability of our proposed optical fiber biosensor are verified. When bovine serum albumin (BSA) is added instead of streptavidin, the obtained spectra overlaps with that of biotin's. The final end facet coated with PEM and biotin-streptavidin can be cleaned using microwave vibration or aqua regia. The microwave vibration method is utilized due to security concern. The optical spectra changes back to the initial one of the optical fiber in air. In conclusion, a Fresnel-reflection based optical fiber biosensor with good sensitivity, selectivity and repeatability is proposed. This biosensor has the advantages of simple structure, low cost and reliability.

  12. An all-fiber partial discharge monitoring system based on both intrinsic fiber optic interferometry sensor and fluorescent fiber

    NASA Astrophysics Data System (ADS)

    Yin, Zelin; Zhang, Ruirui; Tong, Jie; Chen, Xi

    2013-12-01

    Partial discharges (PDs) are an electrical phenomenon that occurs within a transformer whenever the voltage stress is sufficient to produce ionization in voids or inclusions within a solid dielectric, at conductor/dielectric interfaces, or in bubbles within liquid dielectrics such as oil; high-frequency transient current discharges will then appear repeatedly and will progressively deteriorate the insulation, ultimately leading to breakdown. Fiber sensor has great potential on the partial discharge detection in high-voltage equipment for its immunity to electromagnetic interference and it can take direct measurement in the high voltage equipment. The energy released in PDs produces a number of effects, resulting in flash, chemical and structural changes and electromagnetic emissions and so on. Acoustic PD detection is based on the mechanical pressure wave emitted from the discharge and fluorescent fiber PD detection is based on the emitted light produced by ionization, excitation and recombination processes during the discharge. Both of the two methods have the shortage of weak anti-interference capacity in the physical environment, like thunder or other sound source. In order to avoid the false report, an all-fiber combined PD detection system of the two methods is developed in this paper. In the system the fluorescent fiber PD sensor is considered as a reference signal, three F-P based PD detection sensors are used to both monitor the PD intensity and calculate the exact position of the discharge source. Considering the wave band of the F-P cavity and the fluorescent probe are quite different, the reflection spectrum of the F-P cavity is in the infrared region, however the fluorescent probe is about 600nm to 700nm, thus the F-P sensor and fluorescent fiber probe can be connected in one fiber and the reflection light can be detected by two different detectors without mutual interference. The all-fiber partial discharge monitoring system not only can detect the PDs

  13. Torsion sensors based on the fiber optic Malus Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Basilio-Sánchez, Gilberto; Hernández-Cordero, Juan

    2004-11-01

    The combination of a Malus and Fabry-Perot interferometers using optic devices has been proven useful to achieve an enhancement in sensitivity to measure changes in circular birefringence. This fiber optic Malus Fabry-Perot interferometer (FOMFPI) allows for the sensitive detection of changes in the polarization of the guided beam due to torsion applied to the fiber, owing to multiple passes of the beam through the sensing area. We present a theoretical analysis based on the Jones calculus showing that it is possible to measure variations in circular birefringence of the fiber upon registering chance in the transmission through this arrangement. The matrix representation developed for the FOMFPI allows for the evaluation of its performance as a function of parameters such as mirror reflectivity, twist rate, and intra-cavity variations. Experimental results using both, bulk optical components and optical fibers, are shown. The dependence of the enhancement factor on the reflectivity of the mirrors is evaluated upon using mirrors with variable reflection coefficient.

  14. Development of a graded index microlens based fiber optical trap and its characterization using principal component analysis

    PubMed Central

    Nylk, J.; Kristensen, M. V. G.; Mazilu, M.; Thayil, A. K.; Mitchell, C. A.; Campbell, E. C.; Powis, S. J.; Gunn-Moore, F. J.; Dholakia, K.

    2015-01-01

    We demonstrate a miniaturized single beam fiber optical trapping probe based on a high numerical aperture graded index (GRIN) micro-objective lens. This enables optical trapping at a distance of 200μm from the probe tip. The fiber trapping probe is characterized experimentally using power spectral density analysis and an original approach based on principal component analysis for accurate particle tracking. Its use for biomedical microscopy is demonstrated through optically mediated immunological synapse formation. PMID:25909032

  15. DFB laser based electrical dynamic interrogation for optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Carvalho, J. P.; Frazão, O.; Baptista, J. M.; Santos, J. L.; Barbero, A. P.

    2012-04-01

    An electrical dynamic interrogation technique previously reported by the authors for long-period grating sensors is now progressed by relying its operation exclusively on the modulation of a DFB Laser. The analysis of the detected first and second harmonic generated by the electrical modulation of the DFB Laser allows generating an optical signal proportional to the LPG spectral shift and resilient to optical power fluctuations along the system. This concept permits attenuating the effect of the 1/f noise of the photodetection, amplification and processing electronics on the sensing head resolution. This technique is employed in a multiplexing sensing scheme that measures refractive index variations.

  16. Silicon fiber optic sensors

    DOEpatents

    Pocha, Michael D.; Swierkowski, Steve P.; Wood, Billy E.

    2007-10-02

    A Fabry-Perot cavity is formed by a partially or wholly reflective surface on the free end of an integrated elongate channel or an integrated bounding wall of a chip of a wafer and a partially reflective surface on the end of the optical fiber. Such a constructed device can be utilized to detect one or more physical parameters, such as, for example, strain, through the optical fiber using an optical detection system to provide measuring accuracies of less than aboutb0.1%.

  17. Microstructured Optical Fiber-based Biosensors: Reversible and Nanoliter-Scale Measurement of Zinc Ions.

    PubMed

    Heng, Sabrina; McDevitt, Christopher A; Kostecki, Roman; Morey, Jacqueline R; Eijkelkamp, Bart A; Ebendorff-Heidepriem, Heike; Monro, Tanya M; Abell, Andrew D

    2016-05-25

    Sensing platforms that allow rapid and efficient detection of metal ions would have applications in disease diagnosis and study, as well as environmental sensing. Here, we report the first microstructured optical fiber-based biosensor for the reversible and nanoliter-scale measurement of metal ions. Specifically, a photoswitchable spiropyran Zn(2+) sensor is incorporated within the microenvironment of a liposome attached to microstructured optical fibers (exposed-core and suspended-core microstructured optical fibers). Both fiber-based platforms retains high selectivity of ion binding associated with a small molecule sensor, while also allowing nanoliter volume sampling and on/off switching. We have demonstrated that multiple measurements can be made on a single sample without the need to change the sensor. The ability of the new sensing platform to sense Zn(2+) in pleural lavage and nasopharynx of mice was compared to that of established ion sensing methodologies such as inductively coupled plasma mass spectrometry (ICP-MS) and a commercially available fluorophore (Fluozin-3), where the optical-fiber-based sensor provides a significant advantage in that it allows the use of nanoliter (nL) sampling when compared to ICP-MS (mL) and FluoZin-3 (μL). This work paves the way to a generic approach for developing surface-based ion sensors using a range of sensor molecules, which can be attached to a surface without the need for its chemical modification and presents an opportunity for the development of new and highly specific ion sensors for real time sensing applications.

  18. Single-step method for fiber-optic probe-based full-range spectral domain optical coherence tomography.

    PubMed

    Min, Eun Jung; Shin, Jun Geun; Lee, Jae Hwi; Yasuno, Yoshiaki; Lee, Byeong Ha

    2013-07-20

    We propose a single-step method appropriated for a fiber-optic probe-based full-range spectral domain optical coherence tomography (OCT). The fiber-optic probe was scanned over a sample with a magnetically driven actuator. In the reference arm, a phase shift of π/2 was applied during two neighbor axial scanning, from which the complex spectral interferogram was directly reconstructed. Since the complex-conjugate-free OCT image is obtained by doing just one Fourier transform on the complex interferogram, obtaining the full-range image is simple in algorithm and effective in computation time. Some full-range images of biological samples created with the proposed method are presented and the processing time is analyzed.

  19. Fiber optic probes for laser light scattering: Ground based evaluation for micgrogravity flight experimentation. Integrated coherent imaging fiber optic systems for laser light scattering and other applications

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans Singh

    1994-01-01

    The research work presented in this report has established a new class of backscatter fiber optics probes for remote dynamic light scattering capability over a range of scattering angles from 94 degrees to 175 degrees. The fiber optic probes provide remote access to scattering systems, and can be utilized in either a noninvasive or invasive configuration. The fiber optics create an interference free data channel to inaccessible and harsh environments. Results from several studies of concentrated suspension, microemulsions, and protein systems are presented. The second part of the report describes the development of a new technology of wavefront processing within the optical fiber, that is, integrated fiber optics. Results have been very encouraging and the technology promises to have significant impact on the development of fiber optic sensors in a variety of fields ranging from environmental monitoring to optical recording, from biomedical sensing to photolithography.

  20. Optical fiber switch

    DOEpatents

    Early, James W.; Lester, Charles S.

    2002-01-01

    Optical fiber switches operated by electrical activation of at least one laser light modulator through which laser light is directed into at least one polarizer are used for the sequential transport of laser light from a single laser into a plurality of optical fibers. In one embodiment of the invention, laser light from a single excitation laser is sequentially transported to a plurality of optical fibers which in turn transport the laser light to separate individual remotely located laser fuel ignitors. The invention can be operated electro-optically with no need for any mechanical or moving parts, or, alternatively, can be operated electro-mechanically. The invention can be used to switch either pulsed or continuous wave laser light.

  1. Optical fiber instrumentation and applications

    NASA Astrophysics Data System (ADS)

    Claus, Richard O.

    1997-11-01

    Optical fiber-based sensor instrumentation has been used extensively for the measurement of physical observables including strain, temperature and chemical changes in smart materials and smart structures, and have been integrated with MEMS devices to provide multi-measurement capability along the length of a fiber link or network. This plenary paper briefly outlines recent developments in such optical fiber sensor instrumentation. Fiber optic sensors are small in size, immune to electromagnetic interference and can be easily integrated with existing optical fiber hardware and components that have been developed primarily for use in the larger telecommunications market. Such sensors can be easily multiplexed, resulting in networks that can be used for the health monitoring of large structures, or the real-time monitoring of structural parameters required for structural analysis and control. This paper briefly describes and compares three current fiber sensor configurations that use Fabry-Perot interferometry and fiber Bragg gratings (FBG) and long-period grating (LPG) elements to monitor strain, temperature and other parameters. Extensive details concerning additional related work and field test results and applications are discussed in the references.

  2. Optical fiber instrumentation and applications

    NASA Astrophysics Data System (ADS)

    Claus, Richard O.

    1997-11-01

    Optical fiber-based sensor instrumentation has been used extensively for the measurement of physical observables including strain, temperature and chemical changes in smart materials and smart structures, and have been integrated with MEMS devices to provide multi-measurement capability along the length of a fiber link or network. This plenary paper briefly outlines recent developments in such optical fiber sensor instrumentation. Fiber optic sensors are small in size, immune to electromagnetic interference and can be easily integrated with existing optical fiber hardware nd components that have been developed primarily for use in the larger telecommunications market. Such sensors can be easily multiplexed, resulting in networks that can be used for the health monitoring of large structures, or the real-time monitoring of structural parameters required for structural analysis and control. This paper briefly describes and compares three current fiber sensor configurations that use Fabry-Perot interferometry and fiber Bragg gratings and long-period grating elements to monitor strain, temperature and other parameters. Extensive details concerning additional related work and field test results and applications are discussed in the references.

  3. Microfabrication of fiber optic scanners

    NASA Astrophysics Data System (ADS)

    Fauver, Mark; Crossman-Bosworth, Janet L.; Seibel, Eric J.

    2002-06-01

    A cantilevered optical fiber is micromachined to function as a miniature resonant opto-mechanical scanner. By driving the base of the cantilevered fiber at a resonance frequency using a piezoelectric actuator, the free end of the cantilever beam becomes a scanned light source. The fiber scanners are designed to achieve wide field-of-view (FOV) and high scan frequency. We employ a non-linearly tapered profile fiber to achieve scan amplitudes of 1 mm at scan frequencies above 20 KHz. Scan angles of over 120 degree(s) (full angle) have been achieved. Higher order modes are also employed for scanning applications that require compactness while maintaining large angular FOV. Etching techniques are used to create the non-linearly tapered sections in single mode optical fiber. Additionally, micro-lenses are fabricated on the tips of the etched fibers, with lens diameters as small as 15 microns. Such lenses are capable of reducing the divergence angle of the emitted light to 5 degree(s) (full angle), with greater reduction expected by employing novel lens shaping techniques. Microfabricated optical fiber scanners have display applications ranging from micro-optical displays to larger panoramic displays. Applications for micro-image acquisition include small barcode readers to medical endoscopes.

  4. Wavelet-Based Processing for Fiber Optic Sensing Systems

    NASA Technical Reports Server (NTRS)

    Hamory, Philip J. (Inventor); Parker, Allen R., Jr. (Inventor)

    2016-01-01

    The present invention is an improved method of processing conglomerate data. The method employs a Triband Wavelet Transform that decomposes and decimates the conglomerate signal to obtain a final result. The invention may be employed to improve performance of Optical Frequency Domain Reflectometry systems.

  5. Optical fiber strain sensor based on sandwiched long-period fiber gratings with a surface bonding layer

    NASA Astrophysics Data System (ADS)

    Chiang, Chia-Chin; Li, Chien-Hsing

    2014-10-01

    An optical fiber strain sensor based on sandwiched long-period fiber gratings (OFSS-SLPFG) with a surface bonding layer is proposed. The proposed OFSS-SLPFG is an etched optical fiber that is sandwiched between two thick photoresists with a periodic structure. To prevent the glue effect in the surface bonding process, where glue flows into the SLPFG structure, reducing the coupling strength, a surface bonding layer (thickness: 16 μm) is used as the base layer on the bottom of the OFSS-SLPFG. The OFSS-SLPFG is, therefore, more effective for use as a strain sensor. When external strain loading is applied, the resonant dip loss of the OFSS-SLPFG is reflected linearly. A bending strain calibration experiment is demonstrated by the four-point bending test. The results show an average linearity (R2) of 0.980, with a sensitivity of 0.00788 dB/με. This phenomenon suggests that the OFSS-SLPFG can be utilized as a sensitive strain transducer.

  6. Optimization and application of reflective LSPR optical fiber biosensors based on silver nanoparticles.

    PubMed

    Chen, Jiangping; Shi, Se; Su, Rongxin; Qi, Wei; Huang, Renliang; Wang, Mengfan; Wang, Libing; He, Zhimin

    2015-05-26

    In this study, we developed a reflective localized surface plasmon resonance (LSPR) optical fiber sensor, based on silver nanoparticles (Ag NPs). To enhance the sensitivity of the LSPR optical sensor, two key parameters were optimized, the length of the sensing area and the coating time of the Ag NPs. A sensing length of 1.5 cm and a 1-h coating time proved to be suitable conditions to produce highly sensitive sensors for biosensing. The optimized sensor has a high refractive index sensitivity of 387 nm/RIU, which is much higher than that of other reported individual silver nanoparticles in solutions. Moreover, the sensor was further modified with antigen to act as a biosensor. Distinctive wavelength shifts were found after each surface modification step. In addition, the reflective LSPR optical fiber sensor has high reproducibility and stability.

  7. Evaluation of optical properties for real photonic crystal fiber based on total variation in wavelet domain

    NASA Astrophysics Data System (ADS)

    Shen, Yan; Wang, Xin; Lou, Shuqin; Lian, Zhenggang; Zhao, Tongtong

    2016-09-01

    An evaluation method based on the total variation model (TV) in wavelet domain is proposed for modeling optical properties of real photonic crystal fibers (PCFs). The TV model in wavelet domain is set up to suppress the noise of the original image effectively and rebuild the cross section images of real PCFs with high accuracy. The optical properties of three PCFs are evaluated, including two kinds of PCFs that supplied from the Crystal Fiber A/S and a homemade side-leakage PCF, by using the combination of the proposed model and finite element method. Numerical results demonstrate that the proposed method can obtain high noise suppression ratio and effectively reduce the noise of cross section images of PCFs, which leads to an accurate evaluation of optical properties of real PCFs. To the best of our knowledge, it is the first time to denoise the cross section images of PCFs with the TV model in the wavelet domain.

  8. Micromachined array tip for multifocus fiber-based optical coherence tomography.

    PubMed

    Yang, Victor X D; Munce, Nigel; Pekar, Julius; Gordon, Maggie L; Lo, Stewart; Marcon, Norman E; Wilson, Brian C; Vitkin, I Alex

    2004-08-01

    High-resolution optical coherence tomography demands a large detector bandwidth and a high numerical aperture for real-time imaging, which is difficult to achieve over a large imaging depth. To resolve these conflicting requirements we propose a novel multifocus fiber-based optical coherence tomography system with a micromachined array tip. We demonstrate the fabrication of a prototype four-channel tip that maintains a 9-14-microm spot diameter with more than 500 microm of imaging depth. Images of a resolution target and a human tooth were obtained with this tip by use of a four-channel cascaded Michelson fiber-optic interferometer, scanned simultaneously at 8 kHz with geometric power distribution across the four channels.

  9. Optical fiber refractometers based on indium tin oxide coatings fabricated by sputtering.

    PubMed

    Lopez, S; del Villar, I; Ruiz Zamarreño, C; Hernaez, M; Arregui, F J; Matias, I R

    2012-01-01

    This Letter presents the fabrication of optical fiber refractometers based on indium tin oxide (ITO) coatings deposited by sputtering with response in the visible region. ITO thin films have been sputtered by means of a rotating mechanism that enables the fabrication of smooth and homogeneous coatings onto the optical fiber core. The ITO coating acts as a resonance supporting layer. This permits us to couple light from the waveguide to the ITO-coating/external medium region at specific wavelength ranges. The device is sensitive to external medium refractive index, which allows its utilization as a refractometer. The sensitivity is dependent on the coating thickness, ranging from 523.21 to 1221 nm/refractive index unit in the explored sensors. The sensor development process is time effective compared to other techniques such as dip coating or layer-by-layer self-assembly, which is interesting in terms of mass production. © 2012 Optical Society of America

  10. Dissemination of optical-comb-based ultra-broadband frequency reference through a fiber network.

    PubMed

    Nagano, Shigeo; Kumagai, Motohiro; Li, Ying; Ido, Tetsuya; Ishii, Shoken; Mizutani, Kohei; Aoki, Makoto; Otsuka, Ryohei; Hanado, Yuko

    2016-08-22

    We disseminated an ultra-broadband optical frequency reference based on a femtosecond (fs)-laser optical comb through a kilometer-scale fiber link. Its spectrum ranged from 1160 nm to 2180 nm without additional fs-laser combs at the end of the link. By employing a fiber-induced phase noise cancellation technique, the linewidth and fractional frequency instability attained for all disseminated comb modes were of order 1 Hz and 10-18 in a 5000 s averaging time. The ultra-broad optical frequency reference, for which absolute frequency is traceable to Japan Standard Time, was applied in the frequency stabilization of an injection-seeded Q-switched 2051 nm pulse laser for a coherent light detection and ranging LIDAR system.

  11. Mechanism analysis on biofouling detection based on optical fiber sensing technique

    NASA Astrophysics Data System (ADS)

    Ma, Huiping; Yuan, Feng; Liu, Yongmeng; Jiang, Xiuzhen

    2010-08-01

    More attention is paid to on-line monitoring of biofouling in industrial water process systems. Based on optical fiber sensing technology, biofouling detection mechanism is put forward in the paper. With biofouling formation, optical characteristics and the relation between light intensity and refractive index studied, schematic diagram of optical fiber self-referencing detecting system and technological flowchart are presented. Immunity to electromagnetic interference and other influencing factors by which the precision is great improved is also remarkable characteristic. Absorption spectrum of fluid medium molecule is measured by infrared spectrum and impurity is analyzed by character fingerprints of different liquid. Other pollutant source can be identified by means of infrared spectrum and arithmetic research of artificial neural networks (ANN) technology. It can be used in other fields such as mining, environment protection, medical treatment and transportation of oil, gas and water.

  12. A novel fiber optic biosensor for nitric oxide determination based on vicinal diaminobenzozcridine fluorescent probe

    NASA Astrophysics Data System (ADS)

    Ding, Liyun; Huang, Lanfen; Huang, Jun; Zhong, Yunming; Fan, Dian

    2010-04-01

    A novel fiber optic biosensor for the determination of nitric oxide based on vicinal diaminobenzozcridine (VDABA) fluorescent probe was designed and fabricated. The reaction conditions between VDABA and NO, which include concentration of VDABA, temperature and pH, were studied in-depth. The sensitivity of VDABA for NO detection under the optimum conditions and its optical properties were also investigated. The fluorescence responses were concentration-dependent and a good linear relationship (R2=0.9863) was observed over the range 1.8×10-6 to 9×10-6 mol/L NO, the regression equation was F = 3.8889[NO] (mol/L)+217.2. Besides, a complex sensitive film embedding VDABA in cellulose acetate (CA) was prepared, and a fiber optic NO biosensor was fabricated using this film. Then the change of fluorescence phase shift of this biosensor was studied preliminarily by means of the lock-in technology.

  13. In-line single-mode fiber variable optical attenuator based on electrically addressable microdroplets

    NASA Astrophysics Data System (ADS)

    Duduś, A.; Blue, R.; Zagnoni, M.; Stewart, G.; Uttamchandani, D.

    2014-07-01

    We report an in-line, fiber optic, broadband variable optical attenuator employing a side-polished, single-mode optical fiber integrated on a digital microfluidics platform. The system is designed to electrically translate a liquid droplet along the polished surface of an optical fiber using electrowetting forces. This fiber optic device has the advantage of no moving mechanical parts and lends itself to miniaturization. A maximum attenuation of 25 dB has been obtained in the wavelength range between 1520 nm and 1560 nm.

  14. A streak camera based fiber optic pulsed polarimetry technique for magnetic sensing to sub-mm resolution.

    PubMed

    Smith, R J; Weber, T E

    2016-11-01

    The technique of fiber optic pulsed polarimetry, which provides a distributed (local) measurement of the magnetic field along an optical fiber, has been improved to the point where, for the first time, photocathode based optical detection of backscatter is possible with sub-mm spatial resolutions. This has been realized through the writing of an array of deterministic fiber Bragg gratings along the fiber, a so-called backscatter-tailored optical fiber, producing a 34 000-fold increase in backscatter levels over Rayleigh. With such high backscatter levels, high repetition rate lasers are now sufficiently bright to allow near continuous field sensing in both space and time with field resolutions as low as 0.005 T and as high as 170 T over a ∼mm interval given available fiber materials.

  15. Electrospun Amplified Fiber Optics

    PubMed Central

    2015-01-01

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm–1). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics. PMID:25710188

  16. Electrospun amplified fiber optics.

    PubMed

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-03-11

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.

  17. High precision long-term stable fiber-based optical synchronization system

    NASA Astrophysics Data System (ADS)

    Li, Yurong; Wang, Xiaochao; Jiang, Youen; Qiao, Zhi; Li, Rao; Fan, Wei

    2016-10-01

    A fiber-based high precision long-term stable time synchronization system for multi-channel laser pulses is presented using fiber pulse stacker combined with high-speed optical-electrical conversion and electronics processing technology. This scheme is used to synchronize two individual lasers including a mode-lock laser and a time shaping pulse laser system. The relative timing jitter between two laser pulses achieved with this system is 970 fs (rms) in five minutes and 3.5 ps (rms) in five hours. The synchronization system is low cost and can work at over several tens of MHz repetition rate.

  18. Optical strain sensor based on FPI micro-cavities produced by the fiber fuse effect

    NASA Astrophysics Data System (ADS)

    Domingues, M. Fátima; Antunes, Paulo; Alberto, Nélia; Frias, Rita; Ferreira, Rute A. S.; André, Paulo

    2014-05-01

    In this work we present a cost effective strain sensor based on micro-cavities produced through the re-use of optical fibers destroyed by the catastrophic fuse effect. The strain sensor estimated sensitivity is 2.22 +/-0.08 pm/μƐ. After the fuse effect, the damaged fiber becomes useless and, consequently, it is an economical solution for sensing proposes, when compared with the cavities produced using other complex methods. Also, the low thermal sensitivity is of great interest in several practical applications, allowing eluding cross-sensitivity with less instrumentation, and consequently less cost.

  19. Micro sized implantable ball lens-based fiber optic probe design

    NASA Astrophysics Data System (ADS)

    Cha, Jaepyeong; Kang, Jin U.

    2014-02-01

    A micro sized implantable ball lens-based fiber optic probe design is described for continuous monitoring of brain activity in freely behaving mice. A prototype uses a 500-micron ball lens and a highly flexible 350-micron-diameter fiber bundle, which are enclosed by a 21G stainless steel sheath. Several types and thickness of brain tissue, consisting of fluorescent probes such as GFP, GCaMP3 calcium indicator, are used to evaluate the performance of the imaging probe. Measured working distance is approximately 400-μm, but is long enough to detect neural activities from cortical and cerebellar tissues of mice brain.

  20. Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection

    NASA Astrophysics Data System (ADS)

    Yao, B. C.; Wu, Y.; Yu, C. B.; He, J. R.; Rao, Y. J.; Gong, Y.; Fu, F.; Chen, Y. F.; Li, Y. R.

    2016-03-01

    Fluorescent resonance energy transfer (FRET) with naturally exceptional selectivity is a powerful technique and widely used in chemical and biomedical analysis. However, it is still challenging for conventional FRET to perform as a high sensitivity compact sensor. Here we propose a novel ‘FRET on Fiber’ concept, in which a partially reduced graphene oxide (prGO) film is deposited on a fiber-optic modal interferometer, acting as both the fluorescent quencher for the FRET and the sensitive cladding for optical phase measurement due to refractive index changes in biochemical detection. The target analytes induced fluorescence recovery with good selectivity and optical phase shift with high sensitivity are measured simultaneously. The functionalized prGO film coated on the fiber-optic interferometer shows high sensitivities for the detections of metal ion, dopamine and single-stranded DNA (ssDNA), with detection limits of 1.2 nM, 1.3 μM and 1 pM, respectively. Such a prGO based ‘FRET on fiber’ configuration, bridging the FRET and the fiber-optic sensing technology, may serve as a platform for the realization of series of integrated ‘FRET on Fiber’ sensors for on-line environmental, chemical, and biomedical detection, with excellent compactness, high sensitivity, good selectivity and fast response

  1. Hydrogen Optical Fiber Sensors

    SciTech Connect

    Lieberman, Robert A.; Beshay, Manal; Cordero, Steven R.

    2008-07-28

    Optically-based hydrogen sensors promise to deliver an added level of safety as hydrogen and fuel cell technologies enter the mainstream. More importantly, they offer reduced power consumption and lower cost, which are desirable for mass production applications such as automobiles and consumer appliances. This program addressed two of the major challenges previously identified in porous optrode-based optical hydrogen sensors: sensitivity to moisture (ambient humidity), and interference from the oxygen in air. Polymer coatings to inhibit moisture and oxygen were developed in conjunction with newer and novel hydrogen sensing chemistries. The results showed that it is possible to achieve sensitive hydrogen detection and rapid response with minimal interference from oxygen and humidity. As a result of this work, a new and more exciting avenue of investigation was developed: the elimination of the porous optrode and deposition of the sensor chemistry directly into the polymer film. Initial results have been promising, and open up a wider range of potential applications from extended optical fiber sensing networks, to simple plastic "stickers" for use around the home and office.

  2. Longitudinally Graded Optical Fibers

    NASA Astrophysics Data System (ADS)

    Evert, Alexander George

    Described herein, for the first time to the best of our knowledge, are optical fibers possessing significant compositional gradations along their length due to longitudinal control of the core glass composition. More specifically, MCVD-derived germanosilicate fibers were fabricated that exhibited a gradient of up to about 0.55 weight percent GeO2 per meter. These gradients are about 1900 times greater than previously reported for fibers possessing longitudinal changes in composition. The refractive index difference is shown to change by about 0.001, representing a numerical aperture change of about 10%, over a fiber length of less than 20 m. The lowest attenuation measured from the present longitudinally-graded fiber (LGF) was 82 dB/km at a wavelength of 1550 nm, though this is shown to result from extrinsic process-induced factors and could be reduced with further optimization. The stimulated Brillouin scattering (SBS) spectrum from the LGF exhibited a 4.4 dB increase in the spectral width, and thus reduction in Brillouin gain, relative to a standard commercial single mode fiber, over a fiber length of only 17 m. Fibers with longitudinally uniform (i.e., not gradient) refractive index profiles but differing chemical compositions among various core layers were also fabricated to determine acoustic effects of the core slug method. The refractive index of the resulting preform varies by about +/- 0.00013 from the average. Upon core drilling, it was found that the core slugs had been drilled off-center from the parent preform, resulting in semi-circular core cross sections that were unable to guide light. As a result, optical analysis could not be conducted. Chemical composition data was obtained, however, and is described herein. A third fiber produced was actively doped with ytterbium (Yb3 ) and fabricated similarly to the previous fibers. The preforms were doped via the solution doping method with a solution of 0.015 M Yb 3 derived from ytterbium chloride

  3. Fiber based optical tweezers for simultaneous in situ force exertion and measurements in a 3D polyacrylamide gel compartment.

    PubMed

    Ti, Chaoyang; Thomas, Gawain M; Ren, Yundong; Zhang, Rui; Wen, Qi; Liu, Yuxiang

    2015-07-01

    Optical tweezers play an important role in biological applications. However, it is difficult for traditional optical tweezers based on objective lenses to work in a three-dimensional (3D) solid far away from the substrate. In this work, we develop a fiber based optical trapping system, namely inclined dual fiber optical tweezers, that can simultaneously apply and measure forces both in water and in a 3D polyacrylamide gel matrix. In addition, we demonstrate in situ, non-invasive characterization of local mechanical properties of polyacrylamide gel by measurements on an embedded bead. The fiber optical tweezers measurements agree well with those of atomic force microscopy (AFM). The inclined dual fiber optical tweezers provide a promising and versatile tool for cell mechanics study in 3D environments.

  4. Fiber based optical tweezers for simultaneous in situ force exertion and measurements in a 3D polyacrylamide gel compartment

    PubMed Central

    Ti, Chaoyang; Thomas, Gawain M; Ren, Yundong; Zhang, Rui; Wen, Qi; Liu, Yuxiang

    2015-01-01

    Optical tweezers play an important role in biological applications. However, it is difficult for traditional optical tweezers based on objective lenses to work in a three-dimensional (3D) solid far away from the substrate. In this work, we develop a fiber based optical trapping system, namely inclined dual fiber optical tweezers, that can simultaneously apply and measure forces both in water and in a 3D polyacrylamide gel matrix. In addition, we demonstrate in situ, non-invasive characterization of local mechanical properties of polyacrylamide gel by measurements on an embedded bead. The fiber optical tweezers measurements agree well with those of atomic force microscopy (AFM). The inclined dual fiber optical tweezers provide a promising and versatile tool for cell mechanics study in 3D environments. PMID:26203364

  5. Optical properties assessment for liquid phantoms using fiber based frequency-modulated light scattering interferometry

    NASA Astrophysics Data System (ADS)

    Mei, Liang; Somesfalean, Gabriel; Svanberg, Sune

    2014-03-01

    Fiber based frequency-modulated light scattering interferometry (FMLSI) is developed for optical properties studies of liquid phantoms, made of Intralipid®. By employing optical frequency modulation on a tunable diode laser, the power spectrum of the heterodyne-detected intensity fluctuations through the dynamic turbid medium is a combination of the time-of-flight distribution and the Doppler power spectrum due to the movement of the scattering particles. The reduced scattering coefficient, absorption coefficient and Brownian diffusion constant are retrieved by employing nonlinear fitting to the power spectrum based on diffusion theory.

  6. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique.

    PubMed

    Khan, Md Rajibur Rahaman; Kang, Shin-Won

    2016-11-09

    In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal's pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R² is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry-Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors.

  7. Optical fiber-based system for continuous measurement of in-bore projectile velocity

    NASA Astrophysics Data System (ADS)

    Wang, Guohua; Sun, Jinglin; Li, Qiang

    2014-08-01

    This paper reports the design of an optical fiber-based velocity measurement system and its application in measuring the in-bore projectile velocity. The measurement principle of the implemented system is based on Doppler effect and heterodyne detection technique. The analysis of the velocity measurement principle deduces the relationship between the projectile velocity and the instantaneous frequency (IF) of the optical fiber-based system output signal. To extract the IF of the fast-changing signal carrying the velocity information, an IF extraction algorithm based on the continuous wavelet transforms is detailed. Besides, the performance of the algorithm is analyzed by performing corresponding simulation. At last, an in-bore projectile velocity measurement experiment with a sniper rifle having a 720 m/s muzzle velocity is performed to verify the feasibility of the optical fiber-based velocity measurement system. Experiment results show that the measured muzzle velocity is 718.61 m/s, and the relative uncertainty of the measured muzzle velocity is approximately 0.021%.

  8. Optical fiber-based system for continuous measurement of in-bore projectile velocity.

    PubMed

    Wang, Guohua; Sun, Jinglin; Li, Qiang

    2014-08-01

    This paper reports the design of an optical fiber-based velocity measurement system and its application in measuring the in-bore projectile velocity. The measurement principle of the implemented system is based on Doppler effect and heterodyne detection technique. The analysis of the velocity measurement principle deduces the relationship between the projectile velocity and the instantaneous frequency (IF) of the optical fiber-based system output signal. To extract the IF of the fast-changing signal carrying the velocity information, an IF extraction algorithm based on the continuous wavelet transforms is detailed. Besides, the performance of the algorithm is analyzed by performing corresponding simulation. At last, an in-bore projectile velocity measurement experiment with a sniper rifle having a 720 m/s muzzle velocity is performed to verify the feasibility of the optical fiber-based velocity measurement system. Experiment results show that the measured muzzle velocity is 718.61 m/s, and the relative uncertainty of the measured muzzle velocity is approximately 0.021%.

  9. Temperature-independent refractometer based on fiber-optic Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Li, Jiacheng; Qiao, Xueguang; Wang, Ruohui; Rong, Qiangzhou; Bao, Weijia; Shao, Zhihua; Yang, Tingting

    2016-04-01

    A miniature fiber-optic refractometer based on Fabry-Perot interferometer (FPI) has been proposed and experimentally demonstrated. The sensing head consists of a short section of photonics crystal fiber (PCF) spliced to a single mode fiber (SMF), in which the end-face of the PCF is etched to remove holey structure with hydrofluoric (HF) acid. A Fabry-Perot interference spectrum is achieved based on the reflections from the fusion splicing interface and the end-face of the core of PCF. The interference fringe is sensitive to the external refractive index (RI) with an intensity-referenced sensitivity of 358.27 dB/RIU ranging from 1.33 to 1.38. The sensor has also been implemented for the concentration measurement of λ-phage DNA solution. In addition, the dip intensity is insensitive to the ambient temperature variation, making it a good candidate for temperature-independent bio-sensing area.

  10. Fiber Optic Microsensor for Receptor-Based Assays

    DTIC Science & Technology

    1988-09-01

    yield B-PE B-phycoerythrin 545 575 2,410,000 0.98 R-PE R-phycoerythrin 565 578 11960,000 0.68 CPC C- phycocyanine 620 650 1,690,000 0.51 A-PC...efficient transfer occurred for unit magnification. Figure 3 shows the optical design. Evaluation of the instrument was done with both A- phycocyanine ...A-PC) and C- phycocyanine (C-PC) filter sets and dyes, the LED being the same for both. The first test was to measure the excitation power delivered

  11. Temperature-insensitive optical fiber refractometer based on multimode interference in two cascaded no-core square fibers.

    PubMed

    Wu, Jixuan; Miao, Yinping; Song, Binbin; Zhang, Kailiang; Lin, Wei; Zhang, Hao; Liu, Bo; Yao, Jianquan

    2014-08-01

    A temperature-insensitive optical fiber refractometer, based on multimode interference in no-core square fibers, has been proposed and experimentally demonstrated. The refractometer is formed by a single-mode fiber sandwiched between two segments of no-core square fibers through cleaving and fusion splicing. The transmission spectra characteristic of refractive index (RI) and environmental temperature have been investigated. Experimental results show that a transmission dip exhibits a redshift as large as about 25 nm when the ambient RI increases from 1.3424 to 1.4334. Within the RI range of 1.4033 to 1.4334, the RI sensitivity reaches 474.8189  nm/RIU. A temperature sensitivity of 0.00639  nm/°C is experimentally acquired between 20°C and 85°C, showing a low temperature cross-sensitivity of about 1.35×10⁻⁵  RIU/°C. The proposed refractometer has several advantages, such as low cost, simple structure, and compact size. Therefore, it is also expected to be employed in chemical and multi-parameter sensing applications.

  12. Widely tunable L-band erbium-doped fiber laser with fiber Bragg gratings based on optical bistability

    NASA Astrophysics Data System (ADS)

    Mao, Qinghe; Lit, John W. Y.

    2003-03-01

    We propose and demonstrate a mechanism to widely tune L-band erbium-doped fiber lasers with ordinary commercial tunable fiber Bragg gratings. The function is based on the dual-wavelength bistability in linear overlapping laser cavities. The laser may be switched between two wavelengths located, respectively, in the short- and long-wavelength regions of the L-band by triggering the pump with a typical switching time of about 11 ms. The two wavelengths can be independently tuned to give the laser a total tuning range of 33 nm and an output dynamic range of 7 dB. Nearly constant output powers with high optical signal-to-noise ratios are achieved across the whole tuning range.

  13. Optical fiber stripper positioning apparatus

    DOEpatents

    Fyfe, Richard W.; Sanchez, Jr., Amadeo

    1990-01-01

    An optical fiber positioning apparatus for an optical fiber stripping device is disclosed which is capable of providing precise axial alignment between an optical fiber to be stripped of its outer jacket and the cutting blades of a stripping device. The apparatus includes a first bore having a width approximately equal to the diameter of an unstripped optical fiber and a counter bore axially aligned with the first bore and dimensioned to precisely receive a portion of the stripping device in axial alignment with notched cutting blades within the stripping device to thereby axially align the notched cutting blades of the stripping device with the axis of the optical fiber to permit the notched cutting blades to sever the jacket on the optical fiber without damaging the cladding on the optical fiber. In a preferred embodiment, the apparatus further includes a fiber stop which permits determination of the length of jacket to be removed from the optical fiber.

  14. Investigation on a fiber optic accelerometer based on FBG-FP interferometer

    NASA Astrophysics Data System (ADS)

    Lin, Chongyu; Luo, Hong; Xiong, Shuidong; Li, Haitao

    2014-12-01

    A fiber optic accelerometer based on fiber Bragg grating Fabry-Perot (FBG-FP) interferometer is presented. The sensor is a FBG-FP cavity which is formed with two weak fiber Bragg gratings (FBGs) in a single-mode fiber. The reflectivity of the two FBGs is 9.42% and 7.74% respectively, and the fiber between them is 10 meters long. An optical demodulation system was set up to analyze the reflected light of FBG-FP cavity. Acceleration signals of different frequencies and intensities were demodulated correctly and stably by the system. Based on analyzing the optical spectrum of weak FBG based FBG-FP cavity, we got the equivalent length of FBG-FP cavity. We used a path-matching Michelson interferometer (MI) to demodulate the acceleration signal. The visibility of the interference fringe we got was 41%~42% while the theory limit was 50%. This indicated that the difference of interferometer's two arms and the equivalent length of FBG-FP cavity were matched well. Phase generated carrier (PGC) technology was used to eliminate phase fading caused by random phase shift and Faraday rotation mirrors (FRMs) were used to eliminate polarization-induced phase fading. The accelerometer used a compliant cylinder design and its' sensitivity and frequency response were analyzed and simulated based on elastic mechanics. Experiment result showed that the accelerometer had a flat frequency response over the frequency range of 31-630Hz. The sensitivity was about 31dB (0dB=1rad/g) with fluctuation less than 1.5dB.

  15. Development of an Optical Fiber-Based MR Compatible Gamma Camera for SPECT/MRI Systems

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Watabe, Tadashi; Kanai, Yasukazu; Watabe, Hiroshi; Hatazawa, Jun

    2015-02-01

    Optical fiber is a promising material for integrated positron emission tomography (PET) and magnetic resonance imaging (MRI) PET/MRI systems. Because its material is plastic, it has no interference between MRI. However, it is unclear whether this material can also be used for a single photon emission tomography (SPECT)/MRI system. For this purpose, we developed an optical fiber-based block detector for a SPECT/MRI system and tested its performance by combining 1.2 ×1.2 ×6 mm Y2SiO5 (YSO) pixels into a 15 ×15 block and was coupled it to an optical fiber image guide that used was 0.5-mm in diameter with 80-cm long double clad fibers. The image guide had 22 ×22 mm rectangular input and an equal size output. The input of the optical fiber-based image guide was bent at 90 degrees, and the output was optically coupled to a 1-in square high quantum efficiency position sensitive photomultiplier tube (HQE-PSPMT). The parallel hole, 7-mm-thick collimator made of tungsten plastic was mounted on a YSO block. The diameter of the collimator holes was 0.8 mm which was positioned one-to-one coupled to the YSO pixels. We evaluated the intrinsic and system performances. We resolved most of the YSO pixels in a two-dimensional histogram for Co-57 gamma photons (122-keV) with an average peak-to-value ratio of 1.5. The energy resolution was 38% full-width at half-maximum (FWHM). The system resolution was 1.7-mm FWHM, 1.5 mm from the collimator surface, and the sensitivity was 0.06%. Images of a Co-57 point source could be successfully obtained inside 0.3 T MRI without serious interference. We conclude that the developed optical fiber-based YSO block detector is promising for SPECT/MRI systems.

  16. Monitoring of patient glucose infusion using a surface plasmon resonance-based fiber optic sensor

    NASA Astrophysics Data System (ADS)

    Wu, Jiangling; Yan, Yurong; Li, Shengqiang; Ding, Xiaojuan; Ding, Shijia; Huang, Yu

    2015-10-01

    A surface plasmon resonance (SPR)-based optic fiber monitoring system was introduced in this paper to monitor patients’ infusion process. The SPR-based fiber optic sensor provides a dramatically enhanced flexibility during the monitoring process. The experimental results showed that the spectral shift of sensor is correlated with glucose concentration and its flowing speed. The presence of fatal air bubbles in a glucose infusion solvent is detectable in real time, so that the consequent medical accident is avoidable. This sensor can simultaneously provide the information of liquid concentration and its flowing velocity, and make a judgment on the presence of air bubbles in solution during infusion. It provides experimental guidance on designing and manufacturing a sensor for on-line clinical monitoring systems in the future.

  17. Great prospects for fiber optics sensors

    NASA Technical Reports Server (NTRS)

    Hansen, T. E.

    1983-01-01

    Fiber optic sensors provide noise immunity and galvanic insulation at the measurement point. Interest in such sensors is increasing for these reasons. In the United States sales are expected to increase from 12 million dollars in 1981 to 180 million in 1991. Interferometric sensors based on single modus fibers deliver extremely high sensitivity, while sensors based on multi-modus fibers are more easily manufactured. The fiber optic sensors which are available today are based on point measurements. Development of fiber optic sensors in Norway is being carried out at the Central institute and has resulted in the development of medical manometers which are now undergoing clinical testing.

  18. Highly Sensitive Temperature Sensors Based on Fiber-Optic PWM and Capacitance Variation Using Thermochromic Sensing Membrane

    PubMed Central

    Khan, Md. Rajibur Rahaman; Kang, Shin-Won

    2016-01-01

    In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM) and an interdigitated capacitor (IDC)-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD) of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R2 ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics) in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system. PMID:27409620

  19. Highly Sensitive Temperature Sensors Based on Fiber-Optic PWM and Capacitance Variation Using Thermochromic Sensing Membrane.

    PubMed

    Khan, Md Rajibur Rahaman; Kang, Shin-Won

    2016-07-09

    In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM) and an interdigitated capacitor (IDC)-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD) of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R² ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics) in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system.

  20. Light-directed functionalization methods for high-resolution optical fiber based biosensors

    NASA Astrophysics Data System (ADS)

    Kahyaoglu, Leyla Nesrin; Madangopal, Rajtarun; Stensberg, Matthew; Rickus, Jenna L.

    2005-05-01

    Recent advances in miniaturization and analyte-sensitive fluorescent indicators make optical fiber biosensors promising alternatives to microelectrodes. Optical sensing offers several advantages over electrochemical methods including increased stability and better spatial control to monitor physiological processes at cellular resolutions. The distal end of an optical fiber can be functionalized with different fluorophore/polymer combinations through mechanical, dip-coating or photopolymerization techniques. Unlike mechanical and dip-coating schemes, photopolymerization can spatially confine the sensing layer in the vicinity of light in a more reproducible and controllable manner. The objective of this study was to fabricate microscale fluorescence lifetime based optrodes using UV-induced photopolymerization. Six commercially available acrylate based monomers were investigated for stable entrapment of the oxygen sensitive porphyrin dye (PtTFPP) dye via photopolymerization at the end of optical fibers. Of these, the acrylate-functionalized alkoxysilane monomer, 3-methacryloxypropyl-trimethoxysilane (tradename Dynasylan MEMO) showed maximal response to changes in oxygen concentration. Dye-doped polymer microtips were grown at the ends 50 μm optical fibers and sensitivity and response time were optimized by varying both the concentration of doped dye and the excitation power used for polymerization. The resulting sensors showed linear response within the physiologically relevant range of oxygen concentrations and fast response times. While applied here to oxygen sensing, the photopolymer formulation and process parameters described are compatible with a wide range of available organic dyes and can be used to pattern arrays of spots, needles or more complex shapes at high spatial resolution.

  1. Design of differential optical absorption spectroscopy long-path telescopes based on fiber optics.

    PubMed

    Merten, André; Tschritter, Jens; Platt, Ulrich

    2011-02-10

    We present a new design principle of telescopes for use in the spectral investigation of the atmosphere and the detection of atmospheric trace gases with the long-path differential optical absorption spectroscopy (DOAS) technique. A combination of emitting and receiving fibers in a single bundle replaces the commonly used coaxial-Newton-type combination of receiving and transmitting telescope. This very simplified setup offers a higher light throughput and simpler adjustment and allows smaller instruments, which are easier to handle and more portable. The higher transmittance was verified by ray-tracing calculations, which result in a theoretical factor threefold improvement in signal intensity compared with the old setup. In practice, due to the easier alignment and higher stability, up to factor of 10 higher signal intensities were found. In addition, the use of a fiber optic light source provides a better spectral characterization of the light source, which results in a lower detection limit for trace gases studied with this instrument. This new design will greatly enhance the usability and the range of applications of active DOAS instruments.

  2. Design of a triangulation based fiber optical distance sensor for application in large rotating machines

    NASA Astrophysics Data System (ADS)

    Willsch, Michael; Villnow, Michael; Bosselmann, Thomas

    2015-09-01

    Commercial distance sensors basing on the triangulation principle are highly accurate and reliable. However due to their contained electronics and optoelectronics they cannot be used in harsh environments such as high temperatures and strong electromagnetic fields. An all fiber optical triangulation sensor principle is presented here which can be used for tip clearance measurements of rotors of large engines such as power generators and turbines.

  3. Passive device based on plastic optical fibers to determine the indices of refraction of liquids.

    PubMed

    Zubia, J; Garitaonaindía, G; Arrúe, J

    2000-02-20

    We have designed and measured a passive device based on plastic optical fibers (POF's) that one can use to determine the indices of refraction of liquids. A complementary software has also been designed to simulate the behavior of the device. We report on the theoretical model developed for the device, its implementation in a simulation software program, and the results of the simulation. A comparison of the experimental and calculated results is also shown and discussed.

  4. Cylindrical PVF2 film based fiber optic phase modulator - Phase shift nonlinearity and frequency response

    NASA Astrophysics Data System (ADS)

    Sudarshanam, V. S.; Claus, Richard O.

    1993-03-01

    A new cylindrical coil configuration for polyvinylidene flouride (PVF2) film based fiber optic phase modulator is studied for the frequency response and nonlinearity of phase shift at the resonance frequency. This configuration, hitherto unapproached for PVF2 film modulators, offers resonance at well defined, controllable and higher frequencies than possible for the flat-strip configuration. Two versions of this configuration are presented that differ strongly in both the resonance frequency and the phase shift nonlinearity coefficient.

  5. Wavelength-swept fiber laser based on acousto-optic tuning method

    NASA Astrophysics Data System (ADS)

    Chen, Ming-hui; Fan, Yun-ping; Zhang, Hao; Tao, Jian-feng; Zheng, Gang

    2016-10-01

    In this study, we have demonstrated a wavelength-swept fiber laser based on an acousto-optic tunable filter(AOTF) as a selective element and a semiconductor optical amplifier(SOA) as a gain medium in an internal fiber ring cavity. The light deriving from one port of the SOA goes through an optical isolator, the AOTF, a fiber coupler and a polarized controller successively, then it goes back to the other port of the SOA to form a ring cavity. The laser output is from another port of the fiber coupler. The laser made by this method is mainly used for swept-source optical coherence tomography(SS-OCT). The application of the SOA provides a sufficiently broad range and can ensure an increased axial resolution of SS-OCT. AOTF offers a wide tuning range, high switching speed and stable operation against vibration for the non-mechanical structure. The proposed wavelength-swept fiber laser ensures a high axial resolution of tomographic images and has a stable laser output. We have discussed the influence of the SOA injection current to the tuning range of the laser. In the SOA injection current of 280 mA, a continuous wavelength tuning range from 1295 to 1370 nm centered at a wavelength of 1330nm is obtained at the sweep rate of 1.06 kHz, and the power of the swept source was 1.14 mW. In addition, for quantitative characterization of the wavelength-swept performance with a AOTF, we have theoretically and experimentally analyzed the influence of the following controllable parameters: injection current, output power and sweeping frequency.

  6. Lithium niobate-based integrated optic chip utilizing digital electrode layout for use in a miniature fiber optic rate sensor

    NASA Astrophysics Data System (ADS)

    Ner, Manjeet S.; Kemmler, Manfred W.; Spahlinger, Guenter

    1996-11-01

    This paper describes to the best of our knowledge the first implementation of a Lithium Niobate based 8 bit electroded integrated optic waveguide fiber optic gyro chip referred here to as 'Digi-MIOC', which has been used in a Sagnac effect exploiting micro fiber optic rate sensor ((mu) -FORS) developed by LITEF. The paper highlights various features of a Digi-MIOC, such as design philosophy, fabrication aspects, and test procedures to evaluate static and dynamic characteristics of the electro-optic parameters. As a consequence of this work, it has been possible for LITEF to cost effectively mass produce Digi-MIOCs. When used in closed loop operation, the Digi-MIOC forms the key optical component of a (mu) -FORS to aid the required optical-to- electrical signal processing to give linear output for input rates of rotation. Various test results and features of LITEF's (mu) -FORS, such as small size, large rotation rate measurement potential, low drive power and high reliability are also highlighted.

  7. Fiber-optical sensor with miniaturized probe head and nanometer accuracy based on spatially modulated low-coherence interferogram analysis.

    PubMed

    Depiereux, Frank; Lehmann, Peter; Pfeifer, Tilo; Schmitt, Robert

    2007-06-10

    Fiber-optical sensors have some crucial advantages compared with rigid optical systems. They allow miniaturization and flexibility of system setups. Nevertheless, optical principles such as low-coherence interferometry can be realized by use of fiber optics. We developed and realized an approach for a fiber-optical sensor, which is based on the analysis of spatially modulated low-coherence interferograms. The system presented consists of three units, a miniaturized sensing probe, a broadband fiber-coupled light source, and an adapted Michelson interferometer, which is used as an optical receiver. Furthermore, the signal processing procedure, which was developed for the interferogram analysis in order to achieve nanometer measurement accuracy, is discussed. A system prototype has been validated thoroughly in different experiments. The results approve the accuracy of the sensor.

  8. All-optical tunable delay line based on wavelength conversion in semiconductor optical amplifiers and fiber dispersion in single-mode fiber

    NASA Astrophysics Data System (ADS)

    Hu, Zhefeng; Sun, Junqiang

    2008-12-01

    We proposed an all-optical tunable delay line based on wavelength conversion in semiconductor optical amplifiers (SOAs), and group-velocity dispersion (GVD) in single-mode fiber (SMF). The system operates in 1.5 μm window, with a nonreturn-to-zero (NRZ) pattern at 10 Gb/s. The maximal time delay up to 2600 ps is obtained. The scheme achieves continuous control of a wide range of delays, nearly no pulse broadening and very little spectral distortion.

  9. Temperature Measurement Using Silica And Fluoride Based Optical Fibers For Biological Applications

    NASA Astrophysics Data System (ADS)

    Sinofsky, Edward; Dumont, Michael G.

    1988-06-01

    We analyze the potential of an optical fiber based remote thermography system. Achievable accuracy, resolution, range, and response time are examined. Experimental results concerning each of these parameters will be presented and compared with theoretical predictions. Results obtained utilizing both silica and fluoride fibers are compared and the benefits and limitations of each are discussed. Two main application areas of this measurement technique are addressed. The use of this technique in the invitro and invivo study of laser induced temperature rise in biological tissue will lead to a better understanding of laser-tissue interaction. Tissue temperature information can be used as a feedback element in a medical laser energy delivery system. Simultaneous laser energy delivery and thernographic sensing through a single fiber will provide "automatic dosing" in many laser coagulative treatments.

  10. One controlling and driving module based on FPGA in optical fiber positioning device

    NASA Astrophysics Data System (ADS)

    Guo, Jun; Gu, Yonggang; Jin, Yi; Zhai, Chao

    2014-07-01

    The previous module on LAMOST (Large Area Multi-Object Fiber Spectroscope Telescope) controls and drives only one fiber positioning unit, resulting in a low integration. Meanwhile, each unit is driven by two motors respectively located on the center revolving shaft and the eccentric revolving shaft. In this case, these positioning units require a mass of power connecting wires that increase flexible connections in excess and decrease the system linearity. To make an improvement, this paper proposes a new module, which occupies small space in compact structure and is able to drive 37 optical fiber positioning units simultaneously. The module design of the controlling part and the driving part are based on FPGA with its strong capabilities of parallel processing, large quantities of I/O resources and low power consumption. With experiments, the new designed module improves the level of system integration, ensures the reliability and reduces the power consumption, which meets all the requirements as expected.

  11. High power passively mode-locked fiber laser based on graphene nanocoated optical taper

    NASA Astrophysics Data System (ADS)

    Mouchel, Paul; Semaan, Georges; Niang, Alioune; Salhi, Mohamed; Le Flohic, Marc; Sanchez, François

    2017-07-01

    We experimentally demonstrate a passively mode-locked Er:Yb doped double-clad fiber laser using a graphene nanocoated optical taper. Averaging 20 μm of clad diameter with a length of 6 mm, such a saturable absorber enables a strong light-graphene interaction owing to the evanescent field of the excited cladding mode. With the highest pump power of 5 W, the 326th harmonic mode locking of soliton bunches with an average output power of 520 mW was obtained in a fiber ring cavity that has a fundamental frequency of 1.67 MHz. This is the highest average output power yet reported in graphene-based passively mode-locked fiber lasers.

  12. Fluorescence pH probe based on microstructured polymer optical fiber.

    PubMed

    Yang, X H; Wang, L L

    2007-12-10

    A kind of optical pH sensor was demonstrated that is based on a pH-sensitive fluorescence dye-doped (eosin) cellulose acetate (CA) thin-film modified microstructured polymer optical fiber (MPOF). It was obtained by directly inhaling an eosin-CA-acetic acid mixed solution into array holes in a MPOF and then removing the solvent (acetic acid). The sensing film showed different fluorescence intensities to different pH solutions in a pH range of 2.5-4.5. Furthermore, the pH response range could be tailored through doping a surfactant, hexadecyl trimethyl ammonium bromide (CTAB), in the sensing film.

  13. Fiber optic fluid detector

    DOEpatents

    Angel, S.M.

    1987-02-27

    Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

  14. Fiber optic fluid detector

    DOEpatents

    Angel, S. Michael

    1989-01-01

    Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.

  15. 1. Novel Dopants in Silica Based Fibers. 2. Applications of Embedded Optical Fiber Sensors in Reinforced Concrete Buildings and Structures

    DTIC Science & Technology

    1990-05-20

    dependent Raman backscattering in the fiber 14 . This is accomplished by filtering out the antistokes signal component from an OTDR signature. A set of...Houston, Texas, paper WA4. 14. Dakin, J. P., et al.,"Distributed Optical Fibre Raman Temperature Sensor using a Semiconductor Light Source and...novel optical fibers for sensor and other opto-electronic applications. This equipment is supplemented by NMR and Raman equipment for bulk

  16. Pressure sensor based on the fiber-optic extrinsic Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Yu, Qingxu; Zhou, Xinlei

    2011-03-01

    Pressure sensors based on fiber-optic extrinsic Fabry-Perot interferometer (EFPI) have been extensively applied in various industrial and biomedical fields. In this paper, some key improvements of EFPI-based pressure sensors such as the controlled thermal bonding technique, diaphragm-based EFPI sensors, and white light interference technology have been reviewed. Recent progress on signal demodulation method and applications of EFPI-based pressure sensors has been introduced. Signal demodulation algorithms based on the cross correlation and mean square error (MSE) estimation have been proposed for retrieving the cavity length of EFPI. Absolute measurement with a resolution of 0.08 nm over large dynamic range has been carried out. For downhole monitoring, an EFPI and a fiber Bragg grating (FBG) cascade multiplexing fiber-optic sensor system has been developed, which can operate in temperature 300 °C with a good long-term stability and extremely low temperature cross-sensitivity. Diaphragm-based EFPI pressure sensors have been successfully used for low pressure and acoustic wave detection. Experimental results show that a sensitivity of 31 mV/Pa in the frequency range of 100 Hz to 12.7 kHz for aeroacoustic wave detection has been obtained.

  17. Enhanced radiation resistant fiber optics

    DOEpatents

    Lyons, P.B.; Looney, L.D.

    1993-11-30

    A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures.

  18. Enhanced radiation resistant fiber optics

    DOEpatents

    Lyons, Peter B.; Looney, Larry D.

    1993-01-01

    A process for producing an optical fiber having enhanced radiation resitance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation.

  19. Optical Fiber-Based In Situ Spectroscopy of Pigmented Single Colonies

    PubMed Central

    Wiggli, M.; Ghosh, R.; Bachofen, R.

    1996-01-01

    We have adapted a commercially available fiber-optic spectroradiometer with diode array detection to record reflection and absorption spectra from single, 1-mm-diameter bacterial colonies. A careful assessment of the performance of the spectroradiometer for this application is reported. In a model study employing colonies from various phototrophic bacteria, we show that the reflectance spectra are reliable within the range of 450 to 820 nm, whereas the transmission spectra yield accurate peak intensities and absorption maxima from 400 to 900 nm. For screening of populations of about 10(sup4) colonies, fiber-optic transmission spectroscopy provides an attractive and inexpensive alternative to present techniques based on charge-coupled device imaging technology. PMID:16535403

  20. Distributed optical fiber-based theoretical and empirical methods monitoring hydraulic engineering subjected to seepage velocity

    NASA Astrophysics Data System (ADS)

    Su, Huaizhi; Tian, Shiguang; Cui, Shusheng; Yang, Meng; Wen, Zhiping; Xie, Wei

    2016-09-01

    In order to systematically investigate the general principle and method of monitoring seepage velocity in the hydraulic engineering, the theoretical analysis and physical experiment were implemented based on distributed fiber-optic temperature sensing (DTS) technology. During the coupling influence analyses between seepage field and temperature field in the embankment dam or dike engineering, a simplified model was constructed to describe the coupling relationship of two fields. Different arrangement schemes of optical fiber and measuring approaches of temperature were applied on the model. The inversion analysis idea was further used. The theoretical method of monitoring seepage velocity in the hydraulic engineering was finally proposed. A new concept, namely the effective thermal conductivity, was proposed referring to the thermal conductivity coefficient in the transient hot-wire method. The influence of heat conduction and seepage could be well reflected by this new concept, which was proved to be a potential approach to develop an empirical method monitoring seepage velocity in the hydraulic engineering.

  1. A self-referencing intensity based polymer optical fiber sensor for liquid detection.

    PubMed

    Montero, David Sánchez; Vázquez, Carmen; Möllers, Ingo; Arrúe, Jon; Jäger, Dieter

    2009-01-01

    A novel self-referencing fiber optic intensity sensor based on bending losses of a partially polished polymer optical fiber (POF) coupler is presented. The coupling ratio (K) depends on the external liquid in which the sensor is immersed. It is possible to distinguish between different liquids and to detect their presence. Experimental results for the most usual liquids found in industry, like water and oil, are given. K value increases up to 10% from the nominal value depending on the liquid. Sensor temperature dependence has also been studied for a range from 25 °C (environmental condition) to 50 °C. Any sector requiring liquid level measurements in flammable atmospheres can benefit from this intrinsically safe technology.

  2. A Self-Referencing Intensity Based Polymer Optical Fiber Sensor for Liquid Detection

    PubMed Central

    Montero, David Sánchez; Vázquez, Carmen; Möllers, Ingo; Arrúe, Jon; Jäger, Dieter

    2009-01-01

    A novel self-referencing fiber optic intensity sensor based on bending losses of a partially polished polymer optical fiber (POF) coupler is presented. The coupling ratio (K) depends on the external liquid in which the sensor is immersed. It is possible to distinguish between different liquids and to detect their presence. Experimental results for the most usual liquids found in industry, like water and oil, are given. K value increases up to 10% from the nominal value depending on the liquid. Sensor temperature dependence has also been studied for a range from 25 °C (environmental condition) to 50 °C. Any sector requiring liquid level measurements in flammable atmospheres can benefit from this intrinsically safe technology. PMID:22454594

  3. A cross-correlation based fiber optic white-light interferometry with wavelet transform denoising

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Jiang, Yi; Ding, Wenhui; Gao, Ran

    2013-09-01

    A fiber optic white-light interferometry based on cross-correlation calculation is presented. The detected white-light spectrum signal of fiber optic extrinsic Fabry-Perot interferometric (EFPI) sensor is firstly decomposed by discrete wavelet transform for denoising before interrogating the cavity length of the EFPI sensor. In measurement experiment, the cross-correlation algorithm with multiple-level calculations is performed both for achieving the high measurement resolution and for improving the efficiency of the measurement. The experimental results show that the variation range of the measurement results was 1.265 nm, and the standard deviation of the measurement results can reach 0.375 nm when an EFPI sensor with cavity length of 1500 μm was interrogated.

  4. Fiber-Optic Sensing Technology

    SciTech Connect

    Milnes, M.; Baylor, L.C.; Bave, S.

    1996-10-24

    This article offers a basic review of fiber-optic sensing technology, or more specifically, fiber-optic sensing technology as applied to the qualitative or quantitative identification of a chemical sample, and how it works,

  5. A reflective fiber-optic refractive index sensor based on multimode interference in a coreless silica fiber

    NASA Astrophysics Data System (ADS)

    Zhou, Xinlei; Chen, Ke; Mao, Xuefeng; peng, Wei; Yu, Qingxu

    2015-04-01

    A reflective fiber-optic refractive index (RI) sensor based on multimode interference (MMI) is presented and investigated in this paper. The sensor is made by splicing a small section of coreless silica fiber (CSF) to the standard single mode fiber (SMF). A wide-angle beam propagation method (WA-BPM) is employed for numerical simulation and design of the proposed RI sensor. Based on the simulation results, a RI sensor with a length of 1.7 cm of CSF is fabricated and experimentally studied. Experimental results show that the characteristic wavelength shift has an approximately linear relationship with the RI of the sample. A sensitivity of 141 nm/RIU (refractive index unit) and a resolution of 2.8×10-5 are obtained in the RI range from 1.33 to 1.38. As the RI value is higher than 1.38, the sensitivity of the sensor increase rapidly as the RI increase and a maximum sensitivity of 1561 nm/RIU can be achieved, corresponding to a resolution of 2.6×10-6. The experimental results fit well with the numerical simulation results.

  6. Reduced Gravity Zblan Optical Fiber

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Workman, Gary L.; Smith, Guy A.

    2000-01-01

    Two optical fiber pullers have been designed for pulling ZBLAN optical fiber in reduced gravity. One fiber puller was designed, built and flown on board NASA's KC135 reduced gravity aircraft. A second fiber puller has been designed for use on board the International Space Station.

  7. Chemistry Research of Optical Fibers.

    DTIC Science & Technology

    1982-09-27

    BROADENING IN OPTICAL FIBERS Herbert B. Rosenstock* Naval Research Laboratory Washington, DC 20375 ABSTRACT A light pulse transmitted through a fiber...Marcatili, Marcuse , and Personick, "Dispersion Properties of Fibers" (Ch. 4 in "Optical Fiber Telecommunications," S. E. Miller and A. C. Chynoweth, eds

  8. Light-in light-out fiber optic digital position encoder based on scales with pseudo-random codes

    NASA Astrophysics Data System (ADS)

    Johnston, James S.; Beales, M. S.; Wells, K. M.

    1992-08-01

    A light-in light-out absolute encoder is described based on a Manchester encoded pseudo- random binary sequence scale. Optical fiber connections of 100 micrometers are employed and 13- bit resolution is demonstrated.

  9. Rayleigh-based distributed temperature sensing and fiber Bragg grating point temperature sensing with a single optical fiber on high electrical potential of 1 MV

    NASA Astrophysics Data System (ADS)

    Ringel, T.; Willsch, M.; Bosselmann, T.

    2017-04-01

    A temperature measurement of a high voltage bushing (HV-Bushing) is presented. An optical fiber with several inscribed Fiber Bragg Gratings (FBGs) was used to measure the temperature at given positions and a Rayleigh-based measurement technique was used to measure the temperature (profile) between the FBGs. The used optical frequencies for the FBG and Rayleigh measurement had to be separated to achieve good results. Voltages of up to 1 MV were applied to the HV-Bushing during the measurement.

  10. A self-referencing intensity-based fiber optic sensor with multipoint sensing characteristics.

    PubMed

    Choi, Sang-Jin; Kim, Young-Chon; Song, Minho; Pan, Jae-Kyung

    2014-07-18

    A self-referencing, intensity-based fiber optic sensor (FOS) is proposed and demonstrated. The theoretical analysis for the proposed design is given, and the validity of the theoretical analysis is confirmed via experiments. We define the measurement parameter, X, and the calibration factor, β, to find the transfer function, , of the intensity-based FOS head. The self-referencing and multipoint sensing characteristics of the proposed system are validated by showing the measured and relative error versus the optical power attenuation of the sensor head for four cases: optical source fluctuation, various remote sensing point distances, fiber Bragg gratings (FBGs) with different characteristics, and multiple sensor heads with cascade and/or parallel forms. The power-budget analysis and limitations of the measurement rates are discussed, and the measurement results of fiber-reinforced plastic (FRP) coupon strain using the proposed FOS are given as an actual measurement. The proposed FOS has several benefits, including a self-referencing characteristic, the flexibility to determine FBGs, and a simple structure in terms of the number of devices and measuring procedure.

  11. A Self-Referencing Intensity-Based Fiber Optic Sensor with Multipoint Sensing Characteristics

    PubMed Central

    Choi, Sang-Jin; Kim, Young-Chon; Song, Minho; Pan, Jae-Kyung

    2014-01-01

    A self-referencing, intensity-based fiber optic sensor (FOS) is proposed and demonstrated. The theoretical analysis for the proposed design is given, and the validity of the theoretical analysis is confirmed via experiments. We define the measurement parameter, X, and the calibration factor, β, to find the transfer function, Hm,n, of the intensity-based FOS head. The self-referencing and multipoint sensing characteristics of the proposed system are validated by showing the measured Hm,n2 and relative error versus the optical power attenuation of the sensor head for four cases: optical source fluctuation, various remote sensing point distances, fiber Bragg gratings (FBGs) with different characteristics, and multiple sensor heads with cascade and/or parallel forms. The power-budget analysis and limitations of the measurement rates are discussed, and the measurement results of fiber-reinforced plastic (FRP) coupon strain using the proposed FOS are given as an actual measurement. The proposed FOS has several benefits, including a self-referencing characteristic, the flexibility to determine FBGs, and a simple structure in terms of the number of devices and measuring procedure. PMID:25046010

  12. Study on the weighing system based on optical fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Wang, Xiaona; Yu, Qingxu; Li, Yefang

    2010-10-01

    The optical fiber sensor based on wavelength demodulation such as fiber Bragg grating(FBG), with merits of immunity to electromagnetic interference, low drift and high precision, has been widely used in many areas, such as structural health monitoring and smart materials, and the wavelength demodulation system was also studied widely. In the paper, a weighing system based on FBG was studied. The optical source is broadband Erbium-doped fiber ring laser with a spectral range of 1500~1600nm and optical power of 2mW; A Fabry-Perot Etalon with orientation precision of 1pm was adopted as real-time wavelength calibration for the swept laser; and multichannel high resolution simultaneous sampling card was used in the system to acquire sensing signals simultaneously, thus high-resolution and real-time calibration of sweep-wavelength can be achieved. The FBG was adhered to a cantilever beam and the Bragg wavelength was demodulated with the system. The weighing system was done after calibrated with standard weight. Experimental results show that the resolution of the weighing system is 0.5 g with a full scale of 2Kg.

  13. A distributed optical fiber sensor for hydrogen detection based on Pd, and Mg alloys

    NASA Astrophysics Data System (ADS)

    Perrotton, C.; Slaman, M.; Javahiraly, N.; Schreuders, H.; Dam, B.; Meyrueis, P.

    2010-04-01

    An optical fiber containing structured hydrogen sensing points, consisting of Palladium and/or Magnesium alloys is proposed and characterized. The sensitive layer is deposited on the outside of a multimode fiber, after removing the optical cladding. The sensor is based on a measurement technique which uses the Surface Plasmon Resonance effect. Compared to previous work which was performed at a single wavelength of 670nm, this study was done in the range of 450 to 900nm. A continuous change in intensity is observed as a function of the hydrogen concentration between 0.5% and 4% H2 in Ar. The response shows that the intensity transmitted can either decrease or increase, depending on the selected wavelength. The response time and the reproducibility of the detectors are also discussed. From our experiments and optical simulations we conclude that Pd covered indicator layers based on Mg alloys, such as Mg-Ti, would be even more advantageous compare to Pd layers thanks to their lower hydrogen equilibrium pressures. We will demonstrate an extended sensitivity range by juxtaposing different materials over a fiber section, having different hydrogen equilibrium pressures.

  14. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Quick, William H. (Inventor); August, Rudolf R. (Inventor); James, Kenneth A. (Inventor); Strahan, Jr., Virgil H. (Inventor); Nichols, Donald K. (Inventor)

    1980-01-01

    An inexpensive, lightweight fiber optic micro-sensor that is suitable for applications which may require remote temperature sensing. The disclosed temperature sensor includes a phosphor material that, after receiving incident light stimulation, is adapted to emit phosphorescent radiation output signals, the amplitude decay rate and wavelength of which are functions of the sensed temperature.

  15. Infrared Fiber Optic Sensors

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Successive years of Small Business Innovation Research (SBIR) contracts from Langley Research Center to Sensiv Inc., a joint venture between Foster-Miller Inc. and Isorad, Ltd., assisted in the creation of remote fiber optic sensing systems. NASA's SBIR interest in infrared, fiber optic sensor technology was geared to monitoring the curing cycles of advanced composite materials. These funds helped in the fabrication of an infrared, fiber optic sensor to track the molecular vibrational characteristics of a composite part while it is being cured. Foster-Miller ingenuity allowed infrared transmitting optical fibers to combine with Fourier Transform Infrared spectroscopy to enable remote sensing. Sensiv probes operate in the mid-infrared range of the spectrum, although modifications to the instrument also permits its use in the near-infrared region. The Sensiv needle-probe is built to be placed in a liquid or powder and analyze the chemicals in the mixture. Other applications of the probe system include food processing control; combustion control in furnaces; and maintenance problem solving.

  16. Acrylic and metal based Y-branch plastic optical fiber splitter with optical NOA63 polymer waveguide taper region

    NASA Astrophysics Data System (ADS)

    Ehsan, Abang Annuar; Shaari, Sahbudin; Rahman, Mohd Kamil Abd.

    2011-01-01

    We proposed a simple low-cost acrylic and metal-based Y-branch plastic optical fiber (POF) splitter which utilizes a low cost optical polymer glue NOA63 as the main waveguiding medium at the waveguide taper region. The device is composed of three sections: an input POF waveguide, a middle waveguide taper region and output POF waveguides. A desktop high speed CNC engraver is utilized to produce the mold inserts used for the optical devices. Short POF fibers are inserted into the engraved slots at the input and output ports. UV curable optical polymer glue NOA63 is injected into the waveguide taper region and cured. The assembling is completed when the top plate is positioned to enclose the device structure and connecting screws are secured. Both POF splitters have an average insertion loss of 7.8 dB, coupling ratio of 55: 45 and 57: 43 for the acrylic and metal-based splitters respectively. The devices have excess loss of 4.82 and 4.73 dB for the acrylic and metal-based splitters respectively.

  17. Reconstruction algorithms for optoacoustic imaging based on fiber optic detectors

    NASA Astrophysics Data System (ADS)

    Lamela, Horacio; Díaz-Tendero, Gonzalo; Gutiérrez, Rebeca; Gallego, Daniel

    2011-06-01

    Optoacoustic Imaging (OAI), a novel hybrid imaging technology, offers high contrast, molecular specificity and excellent resolution to overcome limitations of the current clinical modalities for detection of solid tumors. The exact time-domain reconstruction formula produces images with excellent resolution but poor contrast. Some approximate time-domain filtered back-projection reconstruction algorithms have also been reported to solve this problem. A wavelet transform implementation filtering can be used to sharpen object boundaries while simultaneously preserving high contrast of the reconstructed objects. In this paper, several algorithms, based on Back Projection (BP) techniques, have been suggested to process OA images in conjunction with signal filtering for ultrasonic point detectors and integral detectors. We apply these techniques first directly to a numerical generated sample image and then to the laserdigitalized image of a tissue phantom, obtaining in both cases the best results in resolution and contrast for a waveletbased filter.

  18. Fiber Optics and Library Technology.

    ERIC Educational Resources Information Center

    Koenig, Michael

    1984-01-01

    This article examines fiber optic technology, explains some of the key terminology, and speculates about the way fiber optics will change our world. Applications of fiber optics to library systems in three major areas--linkage of a number of mainframe computers, local area networks, and main trunk communications--are highlighted. (EJS)

  19. Large core fiber optic cleaver

    DOEpatents

    Halpin, J.M.

    1996-03-26

    The present invention relates to a device and method for cleaving optical fibers which yields cleaved optical fiber ends possessing high damage threshold surfaces. The device can be used to cleave optical fibers with core diameters greater than 400 {micro}m. 30 figs.

  20. Aerogel-clad optical fiber

    DOEpatents

    Sprehn, G.A.; Hrubesh, L.W.; Poco, J.F.; Sandler, P.H.

    1997-11-04

    An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency. 4 figs.

  1. Aerogel-clad optical fiber

    DOEpatents

    Sprehn, Gregory A.; Hrubesh, Lawrence W.; Poco, John F.; Sandler, Pamela H.

    1997-01-01

    An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency.

  2. Buying Fiber-Optic Networks.

    ERIC Educational Resources Information Center

    Fickes, Michael

    2003-01-01

    Describes consortia formed by college and university administrators to buy, manage, and maintain their own fiber-optic networks with the goals of cutting costs of leasing fiber-optic cable and planning for the future. Growth capacity is the real advantage of owning fiber-optic systems. (SLD)

  3. Buying Fiber-Optic Networks.

    ERIC Educational Resources Information Center

    Fickes, Michael

    2003-01-01

    Describes consortia formed by college and university administrators to buy, manage, and maintain their own fiber-optic networks with the goals of cutting costs of leasing fiber-optic cable and planning for the future. Growth capacity is the real advantage of owning fiber-optic systems. (SLD)

  4. Large core fiber optic cleaver

    DOEpatents

    Halpin, John M.

    1996-01-01

    The present invention relates to a device and method for cleaving optical fibers which yields cleaved optical fiber ends possessing high damage threshold surfaces. The device can be used to cleave optical fibers with core diameters greater than 400 .mu.m.

  5. Fiber Optics and Library Technology.

    ERIC Educational Resources Information Center

    Koenig, Michael

    1984-01-01

    This article examines fiber optic technology, explains some of the key terminology, and speculates about the way fiber optics will change our world. Applications of fiber optics to library systems in three major areas--linkage of a number of mainframe computers, local area networks, and main trunk communications--are highlighted. (EJS)

  6. Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber.

    PubMed

    Song, Yufeng; Chen, Si; Zhang, Qian; Li, Lei; Zhao, Luming; Zhang, Han; Tang, Dingyuan

    2016-11-14

    We report on the optical saturable absorption of few-layer black phosphorus nanoflakes and demonstrate its application for the generation of vector solitons in an erbium-doped fiber laser. By incorporating the black phosphorus nanoflakes-based saturable absorber (SA) into an all-fiber erbium-doped fiber laser cavity, we are able to obtain passive mode-locking operation with soliton pulses down to ~670 fs. The properties and dynamics of the as-generated vector solitons are experimentally investigated. Our results show that BP nanoflakes could be developed as an effective SA for ultrashort pulse fiber lasers, particularly for the generation of vector soliton pulses in fiber lasers.

  7. Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber

    PubMed Central

    Yu, Jianhui; Jin, Shaoshen; Wei, Qingsong; Zang, Zhigang; Lu, Huihui; He, Xiaoli; Luo, Yunhan; Tang, Jieyuan; Zhang, Jun; Chen, Zhe

    2015-01-01

    In this paper, we report our experimental study on directly coupling a micro/nano fiber (MNOF) ring with a side-polished fiber(SPF). As a result of the study, the behavior of an add-drop filter was observed. The demonstrated add-drop filter explored the wavelength dependence of light coupling between a MNOF ring and a SPF. The characteristics of the filter and its performance dependence on the MNOF ring diameter were investigated experimentally. The investigation resulted in an empirically obtained ring diameter that showed relatively good filter performance. Since light coupling between a (MNOF) and a conventional single mode fiber has remained a challenge in the photonic integration community, the present study may provide an alternative way to couple light between a MNOF device and a conventional single mode fiber based device or system. The hybridization approach that uses a SPF as a platform to integrate a MNOF device may enable the realization of other all-fiber optical hybrid devices. PMID:25578467

  8. Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber

    NASA Astrophysics Data System (ADS)

    Yu, Jianhui; Jin, Shaoshen; Wei, Qingsong; Zang, Zhigang; Lu, Huihui; He, Xiaoli; Luo, Yunhan; Tang, Jieyuan; Zhang, Jun; Chen, Zhe

    2015-01-01

    In this paper, we report our experimental study on directly coupling a micro/nano fiber (MNOF) ring with a side-polished fiber(SPF). As a result of the study, the behavior of an add-drop filter was observed. The demonstrated add-drop filter explored the wavelength dependence of light coupling between a MNOF ring and a SPF. The characteristics of the filter and its performance dependence on the MNOF ring diameter were investigated experimentally. The investigation resulted in an empirically obtained ring diameter that showed relatively good filter performance. Since light coupling between a (MNOF) and a conventional single mode fiber has remained a challenge in the photonic integration community, the present study may provide an alternative way to couple light between a MNOF device and a conventional single mode fiber based device or system. The hybridization approach that uses a SPF as a platform to integrate a MNOF device may enable the realization of other all-fiber optical hybrid devices.

  9. Fiber-based multiple-beam reflection interferometer for single-longitudinal-mode generation in fiber laser based on semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Terentyev, V. S.; Simonov, V. A.; Babin, S. A.

    2017-02-01

    A technique of single-longitudinal-mode selection in a fiber laser by means of a fiber multiple-beam reflection interferometer (FRI) has been experimentally demonstrated for the first time. The laser is based on a semiconductor optical amplifier placed in a linear fiber cavity formed by a fiber Bragg grating (FBG), and the FRI generates at 1529.24 nm with output power of 1 mW in single-frequency regime with a linewidth of about 217 kHz and polarization extinction ratio of  >30 dB. The FRI technique potentially enables fast tuning (within the FBG bandwidth of ~0.9 nm in our case) by varying the base length of the FRI that can be used in a number of practical applications.

  10. [An optical-fiber-sensor-based spectrophotometer for soil non-metallic nutrient determination].

    PubMed

    He, Dong-xian; Hu, Juan-xiu; Lu, Shao-kun; He, Hou-yong

    2012-01-01

    In order to achieve rapid, convenient and efficient soil nutrient determination in soil testing and fertilizer recommendation, a portable optical-fiber-sensor-based spectrophotometer including immersed fiber sensor, flat field holographic concave grating, and diode array detector was developed for soil non-metallic nutrient determination. According to national standard of ultraviolet and visible spectrophotometer with JJG 178-2007, the wavelength accuracy and repeatability, baseline stability, transmittance accuracy and repeatability measured by the prototype instrument were satisfied with the national standard of III level; minimum spectral bandwidth, noise and excursion, and stray light were satisfied with the national standard of IV level. Significant linear relationships with slope of closing to 1 were found between the soil available nutrient contents including soil nitrate nitrogen, ammonia nitrogen, available phosphorus, available sulfur, available boron, and organic matter measured by the prototype instrument compared with that measured by two commercial single-beam-based and dual-beam-based spectrophotometers. No significant differences were revealed from the above comparison data. Therefore, the optical-fiber-sensor-based spectrophotometer can be used for rapid soil non-metallic nutrient determination with a high accuracy.

  11. Theoretical Analysis Of A Sagnac Fiber Optic Interferometer

    NASA Astrophysics Data System (ADS)

    Szustakowski, Mieczyslaw; Jaroszewicz, Leszek R.

    1990-04-01

    The analytical description of a closed optical fiber interferometer system based on Jones calculus is presented. This calculus adapation for the optical fiber elements analysis allows for a uniform description of system built on the basis of a single-mode optical fiber. The analysis of a Sagnac fiber optic interferometer is an example of this method application.

  12. Numerical modeling of mid-infrared fiber optical parametric oscillator based on the degenerated FWM of tellurite photonic crystal fiber.

    PubMed

    Cheng, Huihui; Luo, Zhengqian; Ye, Chenchun; Huang, Yizhong; Liu, Chun; Cai, Zhiping

    2013-01-20

    Mid-infrared fiber optical parametric oscillators (MIR FOPOs) based on the degenerate four-wave mixing (DFWM) of tellurite photonic crystal fibers (PCFs) are proposed and modeled for the first time. Using the DFWM coupled-wave equations, numerical simulations are performed to analyze the effects of tellurite PCFs, single-resonant cavity, and pump source on the MIR FOPO performances. The numerical results show that: (1) although a longer tellurite PCF can decrease the pump threshold of MIR FOPOs to a few watts only, the high conversion-efficiency of MIR idler usually requires a short-length optimum PCF with low loss; (2) compared with the single-pass DFWM configurations of the MIR fiber sources published previously, the stable oscillation of signal light in single-resonant cavity can significantly promote the MIR idler output efficiency. With a suggested tellurite PCF as parametric gain medium, the theoretical prediction indicates that such a MIR FOPO could obtain a wide MIR-tunable range and a high conversion efficiency of more than 10%.

  13. Optical Fiber Temperature and Torsion Sensor Based on Lyot-Sagnac Interferometer.

    PubMed

    Shao, Li-Yang; Zhang, Xinpu; He, Haijun; Zhang, Zhiyong; Zou, Xihua; Luo, Bin; Pan, Wei; Yan, Lianshan

    2016-10-24

    An optical fiber temperature and torsion sensor has been proposed by employing the Lyot-Sagnac interferometer, which was composed by inserting two sections of high-birefringence (HiBi) fiber into the Sagnac loop. The two inserted sections of HiBi fiber have different functions; while one section acts as the temperature sensitive region, the other can be used as reference fiber. The temperature and twist sensor based on the proposed interferometer structure have been experimentally demonstrated. The experimental results show that the envelope of the output spectrum will shift with the temperature evolution. The temperature sensitivity is calculated to be -17.99 nm/°C, which is enlarged over 12 times compared to that of the single Sagnac interferometer. Additionally, the fringe visibility of the spectrum will change due to the fiber twist, and the test results reveal that the fringe visibility and twist angle perfectly conform to a Sine relationship over a 360° twist angle. Consequently, simultaneous torsion and temperature measurement could be realized by detecting the envelope shift and fringe visibility of the spectrum.

  14. Optical Fiber Temperature and Torsion Sensor Based on Lyot-Sagnac Interferometer

    PubMed Central

    Shao, Li-Yang; Zhang, Xinpu; He, Haijun; Zhang, Zhiyong; Zou, Xihua; Luo, Bin; Pan, Wei; Yan, Lianshan

    2016-01-01

    An optical fiber temperature and torsion sensor has been proposed by employing the Lyot-Sagnac interferometer, which was composed by inserting two sections of high-birefringence (HiBi) fiber into the Sagnac loop. The two inserted sections of HiBi fiber have different functions; while one section acts as the temperature sensitive region, the other can be used as reference fiber. The temperature and twist sensor based on the proposed interferometer structure have been experimentally demonstrated. The experimental results show that the envelope of the output spectrum will shift with the temperature evolution. The temperature sensitivity is calculated to be −17.99 nm/°C, which is enlarged over 12 times compared to that of the single Sagnac interferometer. Additionally, the fringe visibility of the spectrum will change due to the fiber twist, and the test results reveal that the fringe visibility and twist angle perfectly conform to a Sine relationship over a 360° twist angle. Consequently, simultaneous torsion and temperature measurement could be realized by detecting the envelope shift and fringe visibility of the spectrum. PMID:27783032

  15. An ameliorative technique for distributed Brillouin-based fiber optics sensing

    NASA Astrophysics Data System (ADS)

    Yang, Xing-hong; Li, Yong-qian; Yang, Zhi; Yoshino, Toshihiko

    2008-12-01

    This paper reports an ameliorative technique for distributed fiber optics sensing based on Brillouin optical time-domain reflectometry (BOTDR) and Brillouin optical-fiber time-domain analysis (BOTDA). Because the electro-optic modulator in BOTDR system has a finite extinction ratio, the pulsed laser always contains a CW component, which is hereafter called leakage. The frequency of the leakage is pv which is the same as that of the pulse, and the frequency of the Stokes wave is sv. The frequency of the acoustic wave bv at each point along the fiber matches the beat frequency of the leakage and the Stokes wave. As a result, when given an appropriate extinction ratio, the leakage will have a biggish effect on the Stokes wave, which is the same as the function between the continuous wave and the Stokes in BOTDA system. The Stokes component in spontaneous Brillouin scattering (SPBS) is amplified by the leakage along the distance when it backs to the laser end, which is the well known stimulated Brillouin scattering (SBS) phenomena. So long as the distance from the point where the SPBS engender to the laser end is long, the intensity of the SBS signal is relatively large owing to the longer amplified interval. In BOTDR system, when setting the extinction ratio at 20dB, using the SBS signal we can achieve a SNR which is approximately 5 dB greater than that of traditional system and the dynamic range performance 3 dB greater. Utilizing this new technique in BOTDR system it also has an ascendency compared with BOTDA system in respect that it access to only one end of the fiber with probe pulse light.

  16. High Precision Temperature Insensitive Strain Sensor Based on Fiber-Optic Delay

    PubMed Central

    Yang, Ning; Su, Jun; Fan, Zhiqiang; Qiu, Qi

    2017-01-01

    A fiber-optic delay based strain sensor with high precision and temperature insensitivity was reported, which works on detecting the delay induced by strain instead of spectrum. In order to analyze the working principle of this sensor, the elastic property of fiber-optic delay was theoretically researched and the elastic coefficient was measured as 3.78 ps/km·με. In this sensor, an extra reference path was introduced to simplify the measurement of delay and resist the cross-effect of environmental temperature. Utilizing an optical fiber stretcher driven by piezoelectric ceramics, the performance of this strain sensor was tested. The experimental results demonstrate that temperature fluctuations contribute little to the strain error and that the calculated strain sensitivity is as high as 4.75 με in the range of 350 με. As a result, this strain sensor is proved to be feasible and practical, which is appropriate for strain measurement in a simple and economical way. Furthermore, on basis of this sensor, the quasi-distributed measurement could be also easily realized by wavelength division multiplexing and wavelength addressing for long-distance structure health and security monitoring. PMID:28468323

  17. Study and design of a liquid level meter based on fiber optic sensing technology

    NASA Astrophysics Data System (ADS)

    Wang, Zhongdong; Wang, Yutian; Hou, Peiguo; Wang, Yanju

    2005-02-01

    At present, many floater-type measurement equipments whose readings are recorded by manpower are still in use in petrol-chemical industries. With regard to their low efficiency, great errors and their improbability in realization in automation management and remote control, in this instance, a new liquid-level meter system using the advanced fiber-optic sensing technology based on the floater-type level meter is developed. In principle, it measures the liquid level of the oil tank by using the principle of force balance, captures and transmits the light signals by means of the fiber-optic sensing technology, adjusts the light signals from continuous impulse signals to the discontinuous by the light-code disc, then converts light impulses into voltage impulses by photoelectric elements. In configuration, it adopts a twin light source and a twin optical-channel, utilizes twin fiber detectors to record the size of the liquid level and judge the direction of the liquid level respectively. Moreover, the measuring system has been tested practically in a chemical plant, the results indicate that the measuring errors are Less than or equal to +/-6mm, relative errors are <2% when its measuring range is within 0 and 1000mm.It is proved that the various indexes of the system satisfies the demand of the industries and the capability is credible.

  18. Gold nano sphere based fiber optic LSPR probe for biosensing measurement

    NASA Astrophysics Data System (ADS)

    Li, Lixia; Liu, Zigeng; Chen, Shimeng; Guang, Jianye; Peng, Wei

    2016-11-01

    We present a localized surface plasmon resonance fiber optic biosensor based on an intensity interrogation mechanism. A layer of gold nano sphere is deposited on a fiber optic sensor probe which works as the sensing element and is immobilized on the sidewall of an unclad optical fiber via two different immobilization methods (amino silane method and layer by layer self-assembly method). Different self-assembly layers were also respectively investigated by using layer by layer self-assembly method to explore the optimum layer number. Experimental results reveal that PDDA/PSS/PAH layer self-assembly method provides the best LSPR response. We obtain a refractive index sensitivity as 6.57RIU-1 in a RI range of 1.3266 1.3730. We also conduct real-time and label free monitoring of Ribonuclease B/Con A biomolecular interaction by using this sensor prototype and demonstrate it can perform qualitative and quantitative detection in real-time biomolecular sensing.

  19. Reagentless chemiluminescence-based fiber optic sensors for regenerative life support in space

    NASA Astrophysics Data System (ADS)

    Atwater, James E.; Akse, James R.; DeHart, Jeffrey; Wheeler, Richard R., Jr.

    1995-04-01

    The initial feasibility demonstration of a reagentless chemiluminescence based fiber optic sensor technology for use in advanced regenerative life support applications in space and planetary outposts is described. The primary constraints for extraterrestrial deployment of any technology are compatibility with microgravity and hypogravity environments; minimal size, weight, and power consumption; and minimal use of expendables due to the great expense and difficulty inherent to resupply logistics. In the current research, we report the integration of solid state flow through modules for the production of aqueous phase reagents into an integrated system for the detection of important analytes by chemiluminescence, with fiber optic light transmission. By minimizing the need for resupply expendables, the use of solid phase modules makes complex chemical detection schemes practical. For the proof of concept, hydrogen peroxide and glucose were chosen as analytes. The reaction is catalyzed by glucose oxidase, an immobilized enzyme. The aqueous phase chemistry required for sensor operation is implemented using solid phase modules which adjust the pH of the influent stream, catalyze the oxidation of analyte, and provide the controlled addition of the luminophore to the flowing aqueous stream. Precise control of the pH has proven essential for the long-term sustained release of the luminophore. Electrocatalysis is achieved using a controlled potential across gold mesh and gold foil electrodes which undergo periodic polarity reversals. The development and initial characterization of performance of the reagentless fiber optic chemiluminescence sensors are presented in this paper.

  20. A compact fiber optics-based heterodyne combined normal and transverse displacement interferometer

    NASA Astrophysics Data System (ADS)

    Zuanetti, Bryan; Wang, Tianxue; Prakash, Vikas

    2017-03-01

    While Photonic Doppler Velocimetry (PDV) has become a common diagnostic tool for the measurement of normal component of particle motion in shock wave experiments, this technique has not yet been modified for the measurement of combined normal and transverse motion, as needed in oblique plate impact experiments. In this paper, we discuss the design and implementation of a compact fiber-optics-based heterodyne combined normal and transverse displacement interferometer. Like the standard PDV, this diagnostic tool is assembled using commercially available telecommunications hardware and uses a 1550 nm wavelength 2 W fiber-coupled laser, an optical focuser, and single mode fibers to transport light to and from the target. Two additional optical probes capture first-order beams diffracted from a reflective grating at the target free-surface and deliver the beams past circulators and a coupler where the signal is combined to form a beat frequency. The combined signal is then digitized and analyzed to determine the transverse component of the particle motion. The maximum normal velocity that can be measured by this system is limited by the equivalent transmission bandwidth (3.795 GHz) of the combined detector, amplifier, and digitizer and is estimated to be ˜2.9 km/s. Sample symmetric oblique plate-impact experiments are performed to demonstrate the capability of this diagnostic tool in the measurement of the combined normal and transverse displacement particle motion.