Science.gov

Sample records for based fiber optic

  1. Optical fiber-based photocathode

    NASA Astrophysics Data System (ADS)

    Cǎsǎndruc, Albert; Bücker, Robert; Kassier, Günther; Miller, R. J. Dwayne

    2016-08-01

    We present the design of a back-illuminated photocathode for electron diffraction experiments based on an optical fiber, and experimental characterization of emitted electron bunches. Excitation light is guided through the fiber into the experimental vacuum chamber, eliminating typical alignment difficulties between the emitter metal and the optical trigger and position instabilities, as well as providing reliable control of the laser spot size and profile. The in-vacuum fiber end is polished and coated with a 30 nm gold (Au) layer on top of 3 nm of chromium (Cr), which emits electrons by means of single-photon photoemission when femtosecond pulses in the near ultraviolet (257 nm) are fed into the fiber on the air side. The emission area can be adjusted to any value between a few nanometers (using tapered fibers) and the size of a multi-mode fiber core (100 μm or larger). In this proof-of-principle experiment, two different types of fibers were tested, with emission spot diameters of 50 μm and 100 μm, respectively. The normalized thermal electron beam emittance (TE) was measured by means of the aperture scan technique, and a TE of 4.0 π nm was measured for the smaller spot diameter. Straightforward enhancements to the concept allowed to demonstrate operation in an electric field environment of up to 7 MV/m.

  2. Fiber optic-based biosensor

    NASA Technical Reports Server (NTRS)

    Ligler, Frances S.

    1991-01-01

    The NRL fiber optic biosensor is a device which measures the formation of a fluorescent complex at the surface of an optical fiber. Antibodies and DNA binding proteins provide the mechanism for recognizing an analyze and immobilizing a fluorescent complex on the fiber surface. The fiber optic biosensor is fast, sensitive, and permits analysis of hazardous materials remote from the instrumentation. The fiber optic biosensor is described in terms of the device configuration, chemistry for protein immobilization, and assay development. A lab version is being used for assay development and performance characterization while a portable device is under development. Antibodies coated on the fiber are stable for up to two years of storage prior to use. The fiber optic biosensor was used to measure concentration of toxins in the parts per billion (ng/ml) range in under a minute. Immunoassays for small molecules and whole bacteria are under development. Assays using DNA probes as the detection element can also be used with the fiber optic sensor, which is currently being developed to detect biological warfare agents, explosives, pathogens, and toxic materials which pollute the environment.

  3. Cryogenic Fiber Optic Sensors Based on Fiber Bragg Gratings

    NASA Astrophysics Data System (ADS)

    Swinehart, P. R.; Maklad, M.; Courts, S. S.

    2008-03-01

    Fiber optic sensing has many favorable characteristics—a single fiber can be used to multiplex multiple sensors along the length of the fiber, fiber optic sensing is immune to electromagnetic noise and is inherently safe for combustible liquids and atmospheres. Previously, fiber optic sensors based on fiber Bragg gratings (FBGs) have been demonstrated for cryogenic use for both temperature and strain sensing, but often little data is supplied as to the reproducibility or unit-to-unit uniformity of these sensors. Lake Shore Cryotronics has manufactured fiber optic cryogenic temperature sensors based on Bragg gratings using novel packaging techniques. The temperature response and reproducibility is reported from 80K to 480K for glass-packaged sensors, and a calibration for a high sensitivity, wide range zinc-packaged sensor is reported.

  4. Fiber optic accelerometer based on clamped beam

    NASA Astrophysics Data System (ADS)

    Zhang, Wentao; Li, Fang

    2013-01-01

    In this paper a fiber optic accelerometer (FOA) based on camped beam is proposed. The clamped beam is used as the elastic element and a mass installed on the clamped beam is used as the inertial element. The accelerometer is based on a fiber optic Michelson interferometer and has a sensing arm and a reference arm. The optical fiber of the sensing arm is wrapped on the clamped beam and the mass, which are both cylinder shaped. The sensitivity of the FOA is analyzed based on the theory of elasticity; the frequency response is analyzed based on the theory of vibration. Experiment is carried out to test the performance of the fiber optic accelerometer. The experiment results show a high sensitivity and a flat frequency response within the low frequency range of 5-250 Hz, which agrees well with the theoretical result.

  5. Optical-fiber-based Mueller optical coherence tomography.

    PubMed

    Jiao, Shuliang; Yu, Wurong; Stoica, George; Wang, Lihong V

    2003-07-15

    An optical-fiber-based multichannel polarization-sensitive Mueller optical coherence tomography (OCT) system was built to acquire the Jones or Mueller matrix of a scattering medium, such as biological tissue. For the first time to our knowledge, fiber-based polarization-sensitive OCT was dynamically calibrated to eliminate the polarization distortion caused by the single-mode optical fiber in the sample arm, thereby overcoming a key technical impediment to the application of optical fibers in this technology. The round-trip Jones matrix of the sampling fiber was acquired from the reflecting surface of the sample for each depth scan (A scan) with our OCT system. A new rigorous algorithm was then used to retrieve the calibrated polarization properties of the sample. This algorithm was validated with experimental data. The skin of a rat was imaged with this fiber-based system.

  6. Optical Sensors Based on Plastic Fibers

    PubMed Central

    Bilro, Lúcia; Alberto, Nélia; Pinto, João L.; Nogueira, Rogério

    2012-01-01

    The recent advances of polymer technology allowed the introduction of plastic optical fiber in sensor design. The advantages of optical metrology with plastic optical fiber have attracted the attention of the scientific community, as they allow the development of low-cost or cost competitive systems compared with conventional technologies. In this paper, the current state of the art of plastic optical fiber technology will be reviewed, namely its main characteristics and sensing advantages. Several measurement techniques will be described, with a strong focus on interrogation approaches based on intensity variation in transmission and reflection. The potential applications involving structural health monitoring, medicine, environment and the biological and chemical area are also presented. PMID:23112707

  7. Fiber Optic-Based Refractive Index Sensing at INESC Porto

    PubMed Central

    Jorge, Pedro A. S.; Silva, Susana O.; Gouveia, Carlos; Tafulo, Paula; Coelho, Luis; Caldas, Paulo; Viegas, Diana; Rego, Gaspar; Baptista, José M.; Santos, José L.; Frazão, Orlando

    2012-01-01

    A review of refractive index measurement based on different types of optical fiber sensor configurations and techniques is presented. It addresses the main developments in the area, with particular focus on results obtained at INESC Porto, Portugal. The optical fiber sensing structures studied include those based on Bragg and long period gratings, on micro-interferometers, on plasmonic effects in fibers and on multimode interference in a large spectrum of standard and microstructured optical fibers. PMID:22969405

  8. Workplace for manufacturing devices based on optical fiber tapers

    NASA Astrophysics Data System (ADS)

    Martan, Tomáš; Honzátko, Pavel; Kaňka, Jiři; Novotný, Karel

    2007-04-01

    Many important optical fiber components are based on tapered optical fibers. A taper made from a single-mode optical fiber can be used, e.g., as a chemical sensor, bio-chemical sensor, or beam expander. A fused pair of tapers can be used as a fiber directional coupler. Fiber tapers can be fabricated in several simple ways. However, a tapering apparatus is required for more sophisticated fabrication of fiber tapers. The paper deals with fabrication and characterization of fiber tapers made from a single-mode optical fiber. A tapering apparatus was built for producing devices based on fiber tapers. The apparatus is universal and enables one to taper optical fibers of different types by a method utilizing stretching a flame-heated section of a silica fiber. Fiber tapers with constant waist length and different waist diameters were fabricated. The transition region of each fiber taper monotonically decreased in diameter along its length from the untapered fiber to the taper waist. The fiber tapers were fabricated with a constant drawing velocity, while the central zone of the original single-mode fiber was heated along a constant length. The spectral transmissions of the manufactured fiber tapers with different parameters were measured by the cut-back method.

  9. Bridge SHM system based on fiber optical sensing technology

    NASA Astrophysics Data System (ADS)

    Li, Sheng; Fan, Dian; Fu, Jiang-hua; Huang, Xing; Jiang, De-sheng

    2015-09-01

    The latest progress of our lab in recent 10 years on the area of bridge structural health monitoring (SHM) based on optical fiber sensing technology is introduced. Firstly, in the part of sensing technology, optical fiber force test-ring, optical fiber vibration sensor, optical fiber smart cable, optical fiber prestressing loss monitoring method and optical fiber continuous curve mode inspection system are developed, which not only rich the sensor types, but also provides new monitoring means that are needed for the bridge health monitoring system. Secondly, in the optical fiber sensing network and computer system platform, the monitoring system architecture model is designed to effectively meet the integration scale and effect requirement of engineering application, especially the bridge expert system proposed integration of sensing information and informatization manual inspection to realize the mode of multi index intelligence and practical monitoring, diagnosis and evaluation. Finally, the Jingyue bridge monitoring system as the representative, the research on the technology of engineering applications are given.

  10. Fiber optic-based regenerable biosensor

    DOEpatents

    Sepaniak, Michael J.; Vo-Dinh, Tuan

    1993-01-01

    A fiber optic-based regenerable biosensor. The biosensor is particularly suitable for use in microscale work in situ. In one embodiment, the biosensor comprises a reaction chamber disposed adjacent the distal end of a waveguide and adapted to receive therein a quantity of a sample containing an analyte. Leading into the chamber is a plurality of capillary conduits suitable for introducing into the chamber antibodies or other reagents suitable for selective interaction with a predetermined analyte. Following such interaction, the contents of the chamber may be subjected to an incident energy signal for developing fluorescence within the chamber that is detectable via the optical fiber and which is representative of the presence, i.e. concentration, of the selected analyte. Regeneration of the biosensor is accomplished by replacement of the reagents and/or the analyte, or a combination of these, at least in part via one or more of the capillary conduits. The capillary conduits extend from their respective terminal ends that are in fluid communication with the chamber, away from the chamber to respective location(s) remote from the chamber thereby permitting in situ location of the chamber and remote manipulation and/or analysis of the activity with the chamber.

  11. Fiber optic based optical coherence tomography (OCT) for dental applications

    SciTech Connect

    Everett, M. J., LLNL

    1998-06-02

    We have developed a hand-held fiber optic based optical coherence tomography (OCT) system for scanning of the oral cavity We have produced, using this scanning device, in viva cross-sectional images of hard and soft dental tissues in human volunteers Clinically relevant anatomical structures, including the gingival margin, periodontal sulcus, and dento-enamel junction, were visible in all the images The dento-enamel junction and the alveolar bone were identifiable in approximately two thirds of the images These images represent, to our knowledge, the first in viva OCT images of human dental tissue.

  12. Regenerable fiber-optic-based immunosensor.

    PubMed

    Bright, F V; Betts, T A; Litwiler, K S

    1990-05-15

    An immunosensor is described that is based on fluorescently labeled F(ab') anti-human serum albumin antibody fragments covalently immobilized to the distal end of a fiber-optic probe. When human serum albumin is present, it is bound to the sensor and shields the fluorescent label from the solvent water, and a significant increase in the label fluorescence results. The sensor can be regenerated by simply immersing the sensing tip in chaotropic media. Under these conditions the antigen-antibody complex is selectively disrupted without adversely affecting the sensor. In the present configuration, the same sensor can be recycled over 50 times before the immunosurface inactivates significantly. With proper storage the sensor can last for up to 4 months.

  13. Enzyme-Based Fiber Optic Sensors

    NASA Astrophysics Data System (ADS)

    Kulp, Thomas J.; Camins, Irene; Angel, Stanley M.

    1988-06-01

    Fiber optic chemical sensors capable of detecting glucose and penicillin were developed. Each consists of a polymer membrane that is covalently attached to the tip of a glass optical fiber. The membrane contains the enzyme and a pH-sensitive fluorescent dye (fluorescein). A signal is produced when the enzyme catalyzes the conversion of the analyte (glucose or penicillin) into a product (gluconic or penicilloic acid, respectively) that lowers the microenvironmental pH of the membrane and, consequently, lowers the fluorescence intensity of the dye. Each sensor is capable of responding to analyte concentrations in the range of ~0.1 to 100 mM. The penicillin optrode response time is 40 to 60 s while that for glucose is ~5 to 12 min.

  14. Enzyme-based fiber optic sensors

    SciTech Connect

    Kulp, T.J.; Camins, I.; Angel, S.M.

    1987-12-01

    Fiber optic chemical sensors capable of detecting glucose and penicillin were developed. Each consists of a polymer membrane that is covalently attached to the tip of a glass optical fiber. The membrane contains the enzyme and a pH-sensitive fluorescent dye (fluorescein). A signal is produced when the enzyme catalyzes the conversion of the analyte (glucose or penicillin) into a product (gluconic or penicilloic acid, respectively) that lowers the microenvironmental pH of the membrane and consequently, lowers the fluorescence intensity of the dye. Each sensor is capable of responding to analyte concentrations in the range of approx.0.1 to 100 mM. The penicillin optrode response time is 40 to 60 s while that for glucose is approx.5 to 12 min. 7 figs.

  15. Novel optical fibers for Brillouin-based distributed sensing

    NASA Astrophysics Data System (ADS)

    Dragic, Peter D.; Ballato, John; Morris, Stephanie; Evert, Alex; Rice, Robert R.; Hawkins, Thomas

    2013-05-01

    Optical fiber sensors utilizing Brillouin scattering rely on the principle that the Brillouin frequency shift is a function of the local temperature or strain. Conventional optical fibers, such as standard telecommunications single-mode fibers, have been successfully used in these applications, and most typically in the time domain, such as with BOTDR. Such conventional fibers however are susceptible simultaneously to both temperature and strain, requiring either at least two fibers or specialized cabling to distinguish the effects of a local stress from those of a local change in temperature. Recently, methods utilizing fibers possessing at least two Brillouin frequency shifts, each with different temperature or strain coefficients have been proposed. However, realizing such fibers is challenging, requiring fibers with regions of very different compositions, all of which must have substantial overlap with the optical field, posing significant manufacturing challenges. We present several new specialty optical fibers based on novel and unconventional fabrication techniques with significant potential for use in distributed fiber sensor systems. First, we describe a class of fibers fabricated from materials whose Brillouin frequency shifts are immune to either temperature or strain, with a demonstration of the former using fiber derived from sapphire crystal, and modeling and measurements predicting the latter. The `Brillouin-athermal' fiber enables the measurement of a local strain, independent of the local temperature. Second, we describe and demonstrate a novel group of longitudinally graded (chirped) fibers enabling easily-implemented frequency-domain systems; affording the potential to simplify and reduce the cost of Brillouin-based distributed sensors.

  16. Single optical tweezers based on elliptical core fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhao, Li; Chen, Yunhao; Liu, Zhihai; Zhang, Yaxun; Zhao, Enming; Yang, Jun; Yuan, Libo

    2016-04-01

    We propose and demonstrate a new single optical tweezers based on an elliptical core fiber, which can realize the trapped yeast cell rotation with a precise and simple control. Due to the elliptical shape of the fiber core, the LP11 mode beam can propagate stably. When we rotate the fiber tip, the LP11 mode beam will also rotate along with the fiber tip, which helps to realize the trapped micro-particle rotation. By using this method, we can easily realize the rotation of the trapped yeast cells, the rotating angle of the yeast cell is same as the elliptical core fiber tip.

  17. In-fiber integrated microfluidic sensor based on optical fiber with suspended core

    NASA Astrophysics Data System (ADS)

    Yuan, Tingting; Yang, Xinghua; Teng, Pingping; Liu, Chunlan; Li, Entao; Zhao, Enming; Yuan, Libo

    2014-05-01

    We report an in-fiber integrated chemiluminiscence sensor based on a kind of hollow optical fiber with a suspended inner core. The path of mircofluid is realized by etching microholes for inlets and outlets on the surface of the optical fiber without damaging the inner core and then constructing a melted point beside the microhole of the outlet. By injecting samples into the fiber, the liquids can be fully mixed and form steady microflows. Simultaneously, the photon emitted from the chemiluminiscence reaction is efficiently coupled into the core and can be detected at the end of the optical fiber.

  18. Research on optical fiber microphone array based on Sagnac interferometer

    NASA Astrophysics Data System (ADS)

    Wu, Hongyan; Wang, Jian

    2015-05-01

    Extensive attention has been paid to optical fiber microphone because of its especial merits, such as anti-electromagnetic interference, corrosion resistance, high sensitivity, safety and reliability. In the present study, a kind of optical fiber microphone array based on Sagnac interferometer using a broadband source is proposed. On the basis of the high sound quality and wide bandwidth of optical fiber microphones, the acoustic source localization theory is tested and verified in practice. The results prove the possibility of determine the location of acoustic source in a wide range of frequencies accurately. Besides its feasibility, the scientific value and application prospect, such as in battlefield and ultrasonic detection field, are great.

  19. Adaptive fiber optics collimator based on flexible hinges.

    PubMed

    Zhi, Dong; Ma, Yanxing; Ma, Pengfei; Si, Lei; Wang, Xiaolin; Zhou, Pu

    2014-08-20

    In this manuscript, we present a new design for an adaptive fiber optics collimator (AFOC) based on flexible hinges by using piezoelectric stacks actuators for X-Y displacement. Different from traditional AFOC, the new structure is based on flexible hinges to drive the fiber end cap instead of naked fiber. We fabricated a real AFOC based on flexible hinges, and the end cap's deviation and resonance frequency of the device were measured. Experimental results show that this new AFOC can provide fast control of tip-tilt deviation of the laser beam emitting from the end cap. As a result, the fiber end cap can support much higher power than naked fiber, which makes the new structure ideal for tip-tilt controlling in a high-power fiber laser system.

  20. Fiber-based devices for DWDM optical communication systems

    NASA Astrophysics Data System (ADS)

    Gu, Claire; Xu, Yuan; Liu, Yisi; Pan, Jing-Jong; Zhou, Fengqing; Dong, Liang; He, Henry

    2005-01-01

    Photonic devices with low insertion loss are important in dense wavelength division multiplexing (DWDM) systems. Currently most of these devices, such as variable optical attenuators (VOA), switches, filters, and dispersion compensators, etc., involve bulk (or micro-optic) components that require conversions between fibers and free-space optical elements leading to high insertion loss. Recently, we have proposed, analyzed, and demonstrated several fiber based devices for DWDM optical communication systems. Here we present an in-line fiber VOA, a 2x2 switchable wavelength add/drop filter, and high performance dispersion compensators. The VOA is built with a side-polished fiber covered with a liquid crystal overlay. By varying the orientation of the liquid crystal molecules using an applied electric field, the loss of the device can be controlled. The 2x2 wavelength switch is designed by recording electrically switchable holographic gratings in a layer of holographic polymer dispersed liquid crystal (H-PDLC) sandwiched between two side-polished fibers. The dispersion compensators are based on high precision fiber Bragg gratings (FBG). A unique method for writing FBGs with arbitrary phase and amplitude distributions is demonstrated. All of these devices are analyzed theoretically and demonstrated experimentally. Both theoretical and experimental results will be presented and discussed. These devices are suitable for DWDM optical information transmission and network management.

  1. Ball Lens Fiber Optic Sensor based Smart Handheld Microsurgical Instrument

    PubMed Central

    Song, Cheol; Gehlbach, Peter L.; Kang, Jin U.

    2013-01-01

    During freehand performance of vitreoretinal microsurgery the surgeon must perform precise and stable maneuvers that achieve surgical objectives and avoid surgical risk. Here, we present an improved smart handheld microsurgical tool which is based on a ball lens fiber optic sensor that utilizes common path swept source optical coherence tomography. Improvements include incorporation of a ball lens single mode fiber optic probe that increases the working angle of the tool to greater than 45 degrees; and increases the magnitude of the distance sensing signal through water. Also presented is a cutting function with an improved ergonomic design. PMID:24224076

  2. Novel localized surface plasmon resonance based optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Muri, Harald Ian D. I.; Hjelme, Dag R.

    2016-03-01

    Over the last decade various optical fiber sensing schemes have been proposed based on local surface plasmon resonance (LSPR). LSPR are interacting with the evanescent field from light propagating in the fiber core or by interacting with the light at the fiber end face. Sensor designs utilizing the fiber end face is strongly preferred from a manufacturing point of view. However, the different techniques available to immobilize metallic nanostructures on the fiber end face for LSPR sensing is limited to essentially a monolayer, either by photolithographic structuring of metal film, thermal nucleation of metal film, or by random immobilization of nanoparticles (NP). In this paper, we report on a novel LSPR based optical fiber sensor architecture. The sensor is prepared by immobilizing gold NP's in a hydrogel droplet polymerized on the fiber end face. This design has several advantages over earlier designs. It dramatically increase the number of NP's available for sensing, it offers precise control over the NP density, and the NPs are position in a true 3D aqueous environment. The sensor design is also compatible with low cost manufacturing. The sensor design can measure volumetric changes in a stimuli-responsive hydrogel or measure binding to receptors on the NP surface. It can also be used as a two-parameter sensor by utilizing both effects. We present results from proof-of-concept experiments demonstrating a pH sensor based on LSPR sensing in a poly(acrylamide-co-acrylic acid) hydrogel embedding gold nanoparticles.

  3. Fiber optic based multisensor to brain neurons in awake animals

    NASA Astrophysics Data System (ADS)

    Shen, Zheng; Lin, Shuzhi

    1995-02-01

    The fibeated broptic-based multisensor was made of quartz optic fiber capillary with an outer diameter of 250 micrometers and an inner diameter of 10 micrometers through two methods: a capillary and the parallel capillary with another piece of optic fiber. There was a thin layer of tungsten membrane (thickness 1 micrometers ) around the outer surface of the optic fiber or capillary. The metal membrane worked as a micro electrode or an electro-osmosis electrode. Nitrogen laser beam and laser-fluorescent pulses were guided in two ways through optic fiber or the wall of the capillary. The advantage of one capillary was its small tip and measurement of different physiological indices in the same site, but the intensity of laser-fluorescent pulses was diminished by electro-osmosis flow; the parallel optic fiber and capillary avoided the shortage, but the device tip was bigger than a capillary. The multisensor was used to inquire into cognitive brain mechanism in awake animals by simultaneous recording of neuron activities (neuron firing), neuron metabolism rate (laser-fluorescent pulses), and biochemical events through microelectrophore in vivo and field effect electro-osmosis analysis at situ. The effects of nitric oxide biosynthesis-related compounds on neuron efficiency of the cortex were investigated by the multisensor.

  4. Fiber-optic remote multisensor system based on an acousto-optic tunable filter (AOTF)

    SciTech Connect

    Moreau, F.; Moreau, S.M.; Hueber, D.M.; Vo-dinh, T.

    1996-10-01

    This paper describes a new fiber-optic multisensor based on an acousto-optic tunable filter (AOTF) and capable of remote sensing using a multioptical fiber array (MOFA). A two-dimensional charge-coupled device (CCD) was used as a detector, and the AOTF was used as a wavelength selector. Unlike a tunable grating or prism-based monochromator, an AOTF has no moving parts, and an AOTF can be rapidly tuned to any wavelength in its operating range within microseconds. The large aperture of the AOTF allows the optical signal from over 100 fiber-optic sensors to be measured simultaneously. These characteristics, combined with their small size, make AOTFs an important new alternative to conventional monochromators, especially for spectral multisensing and imaging. A prototype fiber-optic multisensor system has been developed, and its feasibility for simultaneous detection of molecular luminescence signal via fiber-optic probes is demonstrated. {copyright} {ital 1996} {ital Society for Applied Spectroscopy}

  5. Investigation of Fiber Optics Based Phased Locked Diode Lasers

    NASA Technical Reports Server (NTRS)

    Burke, Paul D.; Gregory, Don A.

    1997-01-01

    Optical power beaming requires a high intensity source and a system to address beam phase and location. A synthetic aperture array of phased locked sources can provide the necessary power levels as well as a means to correct for phase errors. A fiber optic phase modulator with a master oscillator and power amplifier (MOPA) using an injection-locking semiconductor optical amplifier has proven to be effective in correcting phase errors as large as 4pi in an interferometer system. Phase corrections with the piezoelectric fiber stretcher were made from 0 - 10 kHz, with most application oriented corrections requiring only 1 kHz. The amplifier did not lose locked power output while the phase was changed, however its performance was below expectation. Results of this investigation indicate fiber stretchers and amplifiers can be incorporated into a MOPA system to achieve successful earth based power beaming.

  6. Compact, fiber-based, fast-light enhanced optical gyroscope

    NASA Astrophysics Data System (ADS)

    Christensen, Caleb A.; Zavriyev, Anton; Bashkansky, Mark; Beal, A. Craig

    2013-05-01

    It has been proposed that fast-light optical phenomena can increase the sensitivity of a Ring Laser Gyroscope (RLG) of a given size by several orders of magnitude. MagiQ is developing a compact fully-fibered fast light RLG using Stimulated Brillouin Scattering (SBS) in commercial optical fiber. We will discuss our experimental results on SBS pumped lasing in commercial fibers and analyze their implications to the fast light generation. Based on these results, we envision a fast light enhanced Ring Laser Gyroscope (RLG) that will use only a few meters of fiber and require moderate pump power (only a few 100's of mW). We will present the design that is based on proven, commercially available technologies. By using photonic integrated circuits and telecom-grade fiber components, we created a design that is appropriate for mass production in the near term. We eliminated all free-space optical elements (such as atomic vapor cells), in order to enable a compact, high sensitivity RLG stable against environmental disturbances. Results of this effort will have benefits in existing applications of RLGs (such as inertial navigation units, gyrocompasses, and stabilization techniques), and will allow wider use of RLGs in spacecraft, unmanned aerial vehicles or sensors, where the current size and weight of optical gyros are prohibitive.

  7. Optical Fibers

    NASA Astrophysics Data System (ADS)

    Ghatak, Ajoy; Thyagarajan, K.

    With the development of extremely low-loss optical fibers and their application to communication systems, a revolution has taken fiber glass place during the last 40 years. In 2001, using glass fibers as the transmission medium and lightwaves as carrier wave waves, information was transmitted at a rate more than 1 Tbit/s (which is roughly equivalent to transmission of about 15 million simultaneous telephone conversations) through one hair thin optical fiber. Experimental demonstration of transmission at the rate of 14 Tbit/s over a 160 km long single fiber was demonstrated in 2006, which is equivalent to sending 140 digital high definition movies in 1 s. Very recently record transmission of more than 100 Tbit/s over 165 km single mode fiber has been reported. These can be considered as extremely important technological achievements. In this chapter we will discuss the propagation characteristics of optical fibers with special applications to optical communication systems and also present some of the noncommunication applications such as sensing.

  8. Surface plasmon resonance based fiber optic glucose biosensor

    NASA Astrophysics Data System (ADS)

    Srivastava, Sachin K.; Verma, Roli; Gupta, Banshi D.

    2012-02-01

    A surface plasmon resonance (SPR) based fiber optic biosensor has been fabricated and characterized for the detection of blood glucose. Optical fiber sensor was fabricated by first coating a 50 nm thick gold film on the bare core of optical fiber and then immobilizing glucose oxidase (GOx) over it. Aqueous glucose solutions of different concentrations were prepared. To mimic the blood glucose levels, the concentration of glucose solutions were kept equal to that in human blood. The refractive indices of these sample solutions were equal to that of water up to third decimal place. SPR spectra for the sensor were recorded for these glucose solutions. When the glucose comes in contact to glucose oxidase, chemical reactions take place and as a result, the refractive index of the immobilized GOx film changes, giving rise to a shift in the resonance wavelength. Unlike electrochemical sensors, the present sensor is based on optics and can be miniaturized because of optical fiber. The present study provides a different approach for blood glucose sensing and may be commercialized after optimization of certain parameters.

  9. Optical fiber ultrasonic sensor networks based on WDM and TDM

    NASA Astrophysics Data System (ADS)

    Guo, Zhenwu; Li, Weixiang; Liu, Tiegen

    2011-02-01

    An optical fiber sensor network for ultrasonic measurement based on wavelength division multiplexing (WDM) and time division multiplexing (TDM) technology is presented. Each of the sensor probes is an optical fiber extrinsic Fabry-Perot interferometer (EFPI) which is composed of the fiber's end face and the aluminum thin diaphragm. The sensors are arranged in different wavelength domains formed by a wavelength division multiplexer. Each wavelength division multiplexer, with a group of the sensors, is connected to one of the output ports of optical switch to realize TDM. The signal of each sensor is exported sequentially from a tunable narrowband optical filter (TNOF) that queries every sensor though scanning mode. The principle of the phenomenon of phase induced signal fade in interferometric fiber-optic sensors is also analyzed. Nicely, the detection method above implements the operation of anti-phase induced signal fade detection. The system is interrogated by broadband light source. The scanning range of TNOF is full of the bandwidth of the light source. The result of experiment in water show that the sensor sensitivity reaches -162dB(0dB=1rad/μPa), the frequency response range is from 10KHz to 5 MHz. The number of multiplexing sensors based on WDM and TDM reaches to 64.

  10. Faraday effect based optical fiber current sensor for tokamaks

    SciTech Connect

    Aerssens, M.; Gusarov, A.; Brichard, B.; Massaut, V.; Megret, P.; Wuilpart, M.

    2011-07-01

    Fiber optical current sensor (FOCS) is a technique considered to be compatible with the ITER nuclear environment. FOCS principle is based on the magneto-optic Faraday effect that produces non-reciprocal circular birefringence when a magnetic field is applied in the propagation direction of the light beam. The magnetic field or the electrical current is deduced from the modification of the state of polarization of light. The linear birefringence of the fiber related with non-perfect manufacturing, temperature changes or stress constitute a parasitic effect that reduces the precision and sensitivity of FOCS. A two-pass optical scheme with a Faraday mirror at the end has been proposed to compensate the influence of linear birefringence. In this paper we perform a Stokes analysis of the two-pass optical scheme to highlight the fact that the linear birefringence is not compensated perfectly by the Faraday mirror when non-reciprocal birefringence such as Faraday effect is also present. (authors)

  11. Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end.

    PubMed

    Ortega-Mendoza, J Gabriel; Padilla-Vivanco, Alfonso; Toxqui-Quitl, Carina; Zaca-Morán, Placido; Villegas-Hernández, David; Chávez, Fernando

    2014-10-09

    This paper reports the implementation of an optical fiber sensor to measure the refractive index in aqueous media based on localized surface plasmon resonance (LSPR). We have used a novel technique known as photodeposition to immobilize silver nanoparticles on the optical fiber end. This technique has a simple instrumentation, involves laser light via an optical fiber and silver nanoparticles suspended in an aqueous medium. The optical sensor was assembled using a tungsten lamp as white light, a spectrometer, and an optical fiber with silver nanoparticles. The response of this sensor is such that the LSPR peak wavelength is linearly shifted to longer wavelengths as the refractive index is increased, showing a sensitivity of 67.6 nm/RIU. Experimental results are presented.

  12. Optical Fiber Sensor Based on Localized Surface Plasmon Resonance Using Silver Nanoparticles Photodeposited on the Optical Fiber End

    PubMed Central

    Ortega-Mendoza, J. Gabriel; Padilla-Vivanco, Alfonso; Toxqui-Quitl, Carina; Zaca-Morán, Placido; Villegas-Hernández, David; Chávez, Fernando

    2014-01-01

    This paper reports the implementation of an optical fiber sensor to measure the refractive index in aqueous media based on localized surface plasmon resonance (LSPR). We have used a novel technique known as photodeposition to immobilize silver nanoparticles on the optical fiber end. This technique has a simple instrumentation, involves laser light via an optical fiber and silver nanoparticles suspended in an aqueous medium. The optical sensor was assembled using a tungsten lamp as white light, a spectrometer, and an optical fiber with silver nanoparticles. The response of this sensor is such that the LSPR peak wavelength is linearly shifted to longer wavelengths as the refractive index is increased, showing a sensitivity of 67.6 nm/RIU. Experimental results are presented. PMID:25302813

  13. A simple intensity modulation based fiber-optic accelerometer

    NASA Astrophysics Data System (ADS)

    Guozhen, Yao; Yongqian, Li; Zhi, Yang

    2016-05-01

    A fiber-optic accelerometer with simple structure and high performance based on intensity modulation is proposed. Using only a length of single mode fiber compressed by a cantilever, the intensity of reflected light is modulated by the vibration acceleration applied to it. The effects of the fiber location, the dimension parameters of the cantilever on frequency response and sensitivity are investigated. The experimental results demonstrate that the accelerometer has a flat frequency response over a 4700 Hz bandwidth and a sensitivity of 21.24 mV/g with a cantilever dimension of 30 × 8 × 1.6 mm3 and a distance of 5 mm between the fiber location and the suspended cantilever end; the coefficient of determination is better than 0.999. In addition, the effect of temperature and the stability of the sensing system are investigated.

  14. Virtual Instrumentation for a Fiber-Optics-Based Artificial Nerve

    NASA Technical Reports Server (NTRS)

    Lyons, Donald R.; Kyaw, Thet Mon; Griffin, DeVon (Technical Monitor)

    2001-01-01

    A LabView-based computer interface for fiber-optic artificial nerves has been devised as a Masters thesis project. This project involves the use of outputs from wavelength multiplexed optical fiber sensors (artificial nerves), which are capable of producing dense optical data outputs for physical measurements. The potential advantages of using optical fiber sensors for sensory function restoration is the fact that well defined WDM-modulated signals can be transmitted to and from the sensing region allowing networked units to replace low-level nerve functions for persons desirous of "intelligent artificial limbs." Various FO sensors can be designed with high sensitivity and the ability to be interfaced with a wide range of devices including miniature shielded electrical conversion units. Our Virtual Instrument (VI) interface software package was developed using LabView's "Laboratory Virtual Instrument Engineering Workbench" package. The virtual instrument has been configured to arrange and encode the data to develop an intelligent response in the form of encoded digitized signal outputs. The architectural layout of our nervous system is such that different touch stimuli from different artificial fiber-optic nerve points correspond to gratings of a distinct resonant wavelength and physical location along the optical fiber. Thus, when an automated, tunable diode laser sends scans, the wavelength spectrum of the artificial nerve, it triggers responses that are encoded with different touch stimuli by way wavelength shifts in the reflected Bragg resonances. The reflected light is detected and a resulting analog signal is fed into ADC1 board and DAQ card. Finally, the software has been written such that the experimenter is able to set the response range during data acquisition.

  15. Fiber Optic Based Thermometry System for Superconducting RF Cavities

    SciTech Connect

    Kochergin, Vladimir

    2013-05-06

    Thermometry is recognized as the best technique to identify and characterize losses in SRF cavities. The most widely used and reliable apparatus for temperature mapping at cryogenic temperatures is based on carbon resistors (RTDs). The use of this technology on multi-cell cavities is inconvenient due to the very large number of sensors required to obtain sufficient spatial resolution. Recent developments make feasible the use of multiplexible fiber optic sensors for highly distributed temperature measurements. However, sensitivity of multiplexible cryogenic temperature sensors was found extending only to 12K at best and thus was not sufficient for SRF cavity thermometry. During the course of the project the team of MicroXact, JLab and Virginia Tech developed and demonstrated the multiplexible fiber optic sensor with adequate response below 20K. The demonstrated temperature resolution is by at least a factor of 60 better than that of the best multiplexible fiber optic temperature sensors reported to date. The clear path toward at least 10times better temperature resolution is shown. The first to date temperature distribution measurements with ~2.5mm spatial resolution was done with fiber optic sensors at 2K to4K temperatures. The repeatability and accuracy of the sensors were verified only at 183K, but at this temperature both parameters significantly exceeded the state of the art. The results of this work are expected to find a wide range of applications, since the results are enabling the whole new testing capabilities, not accessible before.

  16. Transverse strain measurements using fiber optic grating based sensors

    NASA Technical Reports Server (NTRS)

    Udd, Eric (Inventor)

    1998-01-01

    A system and method to sense the application of transverse stress to an optical fiber which includes a light source that producing a relatively wide spectrum light beam. The light beam is reflected or transmitted off of an optical grating in the core of an optical fiber that is transversely stressed either directly or by the exposure to pressure when the fiber is bifringent so that the optical fiber responds to the pressure to transversely stress its core. When transversely stressed, the optical grating produces a reflection or transmission from the light beam that has two peaks or minimums in its frequency spectrum whose spacing and/or spread are indicative of the forces applied to the fiber. One or more detectors sense the reflection or transmissions from the optical grating to produce an output representative of the applied force. Multiple optical gratings and detectors may be employed to simultaneously measure temperature or the forces at different locations along the fiber.

  17. Fiber optic displacement measurement model based on finite reflective surface

    NASA Astrophysics Data System (ADS)

    Li, Yuhe; Guan, Kaisen; Hu, Zhaohui

    2016-10-01

    We present a fiber optic displacement measurement model based on finite reflective plate. The theoretical model was derived, and simulation analysis of light intensity distribution, reflective plate width, and the distance between fiber probe and reflective plate were conducted in details. The three dimensional received light intensity distribution and the characteristic curve of light intensity were studied as functions of displacement of finite reflective plate. Experiments were carried out to verify the established model. The physical fundamentals and the effect of operating parameters on measuring system performance were revealed in the end.

  18. Fiber optic anemometer based on metal infiltrated microstructured optical fiber inscribed with Bragg grating

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Gao, Shaorui; Liu, Zhengyong; Zhang, A. Ping; Shen, Yonghang; Tam, Hwayaw

    2015-09-01

    An all-fiber optical anemometer with high light-heat conversion efficiency by using an in-house microstructured optical fiber Bragg grating (MOFBG) is presented. Low-molten-temperature BiSnIn alloy was successfully infiltrated into 11- cm length of a six-hole microstructured optical fiber which was inscribed with a fibre Bragg grating (FBG) centered at ~848 nm. Light launched into the MOFBG was strongly absorbed by the metal to generate heat, while the FBG was utilized to monitor temperature change due to surrounding wind speed. The sensitivity of the laser-heated MOFBG anemometer was measured to be ~0.1 nm/(m/s) for wind speed ranged from 0.5 m/s to 2 m/s. The efficiency of the anemometer, defined as effective sensitivity per pump power, is 8.7 nm/(m/s*W).

  19. Long distance fiber-optic displacement sensor based on fiber collimator

    SciTech Connect

    Shen Wei; Wu Xiaowei; Meng Hongyun; Zhang Guanbin; Huang Xuguang

    2010-12-15

    A simple fiber-optic displacement sensor based on reflective intensity modulated technology is demonstrated using a fiber collimator. The sensing range is over 30 cm, which is over 100 times that of the conventional fiber-optic displacement sensor based on the normal single-mode fiber. The measured data are fitted into linear equation very well and the values of R-square are more than 0.995. The sensitivity of the device achieves 0.426 dB/cm over the range of 5-30 cm. By applying the relative technique, the errors resulted from the fluctuation of light source and influences of environment are effectively eliminated, and the stability for wide range measurement can be improved. The simplicity of the design, high dynamic range, stability and the ease of the fabrication make it suitable for applications in industries.

  20. All-optical fiber anemometer based on laser heated fiber Bragg gratings.

    PubMed

    Gao, Shaorui; Zhang, A Ping; Tam, Hwa-Yaw; Cho, L H; Lu, Chao

    2011-05-23

    A fiber-optic anemometer based on fiber Bragg gratings (FBGs) is presented. A short section of cobalt-doped fiber was utilized to make a fiber-based "hot wire" for wind speed measurement. Fiber Bragg gratings (FBGs) were fabricated in the cobalt-doped fiber using 193 nm laser pulses to serve as localized temperature sensors. A miniature all-optical fiber anemometer is constructed by using two FBGs to determine the dynamic thermal equilibrium between the laser heating and air flow cooling through monitoring the FBGs' central wavelengths. It was demonstrated that the sensitivity of the sensor can be adjusted through the power of pump laser or the coating on the FBG. Experimental results reveal that the proposed FBG-based anemometer exhibits very good performance for wind speed measurement. The resolution of the FBG-based anemometer is about 0.012 m/s for wind speed range between 2.0 m/s and 8.0 m/s.

  1. Improved optical axis determination accuracy for fiber-based polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lu, Zenghai; Matcher, Stephen J.

    2013-03-01

    We report on a new calibration technique that permits the accurate extraction of sample Jones matrix and hence fast-axis orientation by using fiber-based polarization-sensitive optical coherence tomography (PS-OCT) that is completely based on non polarization maintaining fiber such as SMF-28. In this technique, two quarter waveplates are used to completely specify the parameters of the system fibers in the sample arm so that the Jones matrix of the sample can be determined directly. The device was validated on measurements of a quarter waveplate and an equine tendon sample by a single-mode fiber-based swept-source PS-OCT system.

  2. Intensity-modulated optical fiber sensors based on chirped-fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Dong, Xinyong

    2011-09-01

    Intensity-modulated fiber Bragg grating (FBG) sensors, compared with normal wavelength-encoding FBG sensors, can reduce the cost of sensor system significantly by using cost-efficient optical power detection devices, instead of expensive wavelength measurement instruments. Chirped-FBG (CFBG) based intensity-modulated sensors show potential applications in various sensing areas due to their many advantages, including inherent independence of temperature, high measurement speed, and low cost, in addition to the merits of all fiber-optic sensors. This paper theoretically studies the sensing principle of CFBG-based intensity-modulated sensors and briefly reviews their recent progress in measurement of displacement, acceleration, and tilt angle.

  3. Optical biopsy fiber-based fluorescence spectroscopy instrumentation

    NASA Astrophysics Data System (ADS)

    Katz, Alvin; Ganesan, Singaravelu; Yang, Yuanlong; Tang, Gui C.; Budansky, Yury; Celmer, Edward J.; Savage, Howard E.; Schantz, Stimson P.; Alfano, Robert R.

    1996-04-01

    Native fluorescence spectroscopy of biomolecules has emerged as a new modality to the medical community in characterizing the various physiological conditions of tissues. In the past several years, many groups have been working to introduce the spectroscopic methods to diagnose cancer. Researchers have successfully used native fluorescence to distinguish cancerous from normal tissue samples in rat and human tissue. We have developed three generations of instruments, called the CD-scan, CD-ratiometer and CD-map, to allow the medical community to use optics for diagnosing tissue. Using ultraviolet excitation and emission spectral measurements on both normal and cancerous tissue of the breast, gynecology, colon, and aerodigestive tract can be separated. For example, from emission intensities at 340 nm to 440 nm (300 nm excitation), a statistically consistent difference between malignant tissue and normal or benign tissue is observed. In order to utilize optical biopsy techniques in a clinical setting, the CD-scan instrument was developed, which allows for rapid and reliable in-vitro and in-vivo florescence measurements of the aerodigestive tract with high accuracy. The instrumentation employs high sensitivity detection techniques which allows for lamp excitation, small diameter optical fiber probes; the higher spatial resolution afforded by the small diameter probes can increase the ability to detect smaller tumors. The fiber optic probes allow for usage in the aerodigestive tract, cervix and colon. Needle based fiber probes have been developed for in-vivo detection of breast cancer.

  4. Optical fiber random grating-based multiparameter sensor.

    PubMed

    Xu, Yanping; Lu, Ping; Gao, Song; Xiang, Dao; Lu, Ping; Mihailov, Stephen; Bao, Xiaoyi

    2015-12-01

    A novel multiparameter fiber-optic sensor based on a femtosecond laser micromachined random grating is proposed and demonstrated to realize simultaneous measurement of temperature, axial strain, and surrounding refractive index. A wavelength-division spectral cross-correlation algorithm is adopted to extract the phase variation induced spectral shift responding to different external disturbances. Sensitivities of 10.32 pm/°C, 1.24 pm/με, and -1520.6  pm/RIU were achieved for temperature, axial strain, and surrounding refractive index, respectively. The fiber random grating without phase mask fabrication and high physical strength is an excellent alternative aiming at simple and compact multifunctional fiber sensors. PMID:26625039

  5. Ultrasensitive vector bending sensor based on multicore optical fiber.

    PubMed

    Villatoro, Joel; Van Newkirk, Amy; Antonio-Lopez, Enrique; Zubia, Joseba; Schülzgen, Axel; Amezcua-Correa, Rodrigo

    2016-02-15

    In this Letter, we demonstrate a compellingly simple directional bending sensor based on multicore optical fibers (MCF). The device operates in reflection mode and consists of a short segment of a three-core MCF that is fusion spliced at the distal end of a standard single mode optical fiber. The asymmetry of our MCF along with the high sensitivity of the supermodes of the MCF make the small bending on the MCF induce drastic changes in the supermodes, their excitation, and, consequently, on the reflected spectrum. Our MCF bending sensor was found to be highly sensitive (4094  pm/deg) to small bending angles. Moreover, it is capable of distinguishing multiple bending orientations. PMID:26872200

  6. Miniature fiber optic sensor based on fluorescence energy transfer

    NASA Astrophysics Data System (ADS)

    Meadows, David L.; Schultz, Jerome S.

    1992-04-01

    Optical fiber biosensors based on fluorescence assays have several distinct advantages when measuring biological analytes such as metabolites, cofactors, toxins, etc. Not only are optical signals immune to electronic interferences, but the polychromatic nature of most fluorochemical assays provides more potentially useful data about the system being studied. One of the most common difficulties normally encountered with optical biosensors is the inability to routinely recalibrate the optical and electronic components of the system throughout the life of the sensor. With this in mind, we present an optical fiber assay system for glucose based on a homogeneous singlet/singlet energy transfer assay along with the electronic instrumentation built to support the sensor system. In the sensor probe, glucose concentrations are indirectly measured from the level of fluorescence quenching caused by the homogeneous competition assay between TRITC labeled concanavalin A (receptor) and FITC labeled Dextran (ligand). The FITC signal is used to indicate glucose concentrations and the TRITC signal is used for internal calibration. Data is also presented on a protein derivatization procedure that was used to prevent aggregation of the receptor protein in solution. Also, a molecular model is described for the singlet/singlet energy transfer interactions that can occur in a model system composed of a monovalent ligand (FITC labeled papain) and a monovalent receptor (TRITC labeled concanavalin A).

  7. Fiber-optic Doppler velocimeter based on a dual-polarization fiber grating laser

    NASA Astrophysics Data System (ADS)

    Kuang, Zeyuang; Cheng, Linghao; Liang, Yizhi; Liang, Hao; Guan, Bai-Ou

    2015-07-01

    A fiber-optic Doppler velocimeter based on a dual-polarization fiber grating laser is demonstrated. The fiber grating laser produces two orthogonally polarized laser outputs with their frequency difference proportional to the intra-cavity birefringence. When the laser outputs are reflected from a moving targets, the laser frequencies will be shifted due to the Doppler effect. It shows that the frequency difference between the beat note of the laser outputs and the beat note of the reflected lasers is proportional to the velocity. The proposed fiber-optic Doppler velocimeter shows a high sensitivity of 0.64 MHz/m/s and is capable of measurement of wide range of velocity.

  8. Melamine sensing based on evanescent field enhanced optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Luo, Ji; Yao, Jun; Wang, Wei-min; Zhuang, Xu-ye; Ma, Wen-ying; Lin, Qiao

    2013-08-01

    Melamine is an insalubrious chemical, and has been frequently added into milk products illegally, to make the products more protein-rich. However, it can cause some various diseases, such as kidney stones and bladder cancer. In this paper, a novel optical fiber sensor with high sensitivity based on absorption of the evanescent field for melamine detection is successfully proposed and developed. Different concentrations of melamine changing from 0 to 10mg/mL have been detected using the micro/nano-sensing fiber decorated with silver nanoparticles cluster layer. As the concentration increases, the sensing fiber's output intensity gradually deceases and the absorption of the analyte becomes large. The concentration changing of 1mg/ml can cause the absorbance varying 0.664 and the limit of the melamine detectable concentration is 1ug/mL. Besides, the coupling properties between silver nanoparticles have also been analyzed by the FDTD method. Overall, this evanescent field enhanced optical fiber sensor has potential to be used in oligo-analyte detection and will promote the development of biomolecular and chemical sensing applications.

  9. Optical fiber sensor for nitroaromatic explosives based on fluorescence quenching

    NASA Astrophysics Data System (ADS)

    Chu, Fenghong

    2010-10-01

    The detection of explosives and related compounds is important in both forensic and environmental applications. In this paper, we report on the preparation of novel plastic optical fiber explosive sensor based on fluorescence quenching. A low priced LED light source and PIN detector were used in this sensor system, a U-shaped plastic optical fiber with high sensitivity act as sensor head. We use amplifying fluorescent polymers (AFP) MEH-PPV as fluorescence indictor. MEHPPV was dip coated on to the surface of the U-shaped plastic optical fiber. For the first time as far as we know we detected the fluorescence lifetime by the phase-fluorometry method to measure the concentration of TNT, which has a merit of immunity to fluctuation of the light source and is more reliable than measuring intensity alone. In the experimental set-up the phase shift between excitation light and fluorescence is calculated by correlation method. Two degree phase difference was measured when the sensor head was exposed to TNT vapor and air in primary experiments.

  10. All-fiber optical isolator based on Faraday rotation in highly terbium-doped fiber

    SciTech Connect

    Sun, L.; Jiang, S.; Zuegel, J. D.; Marciante, J. R.

    2010-01-01

    An all-fiber isolator with 17 dB optical isolation is demonstrated. The fiber Faraday rotator uses 56 wt. % terbium (Tb)-doped silicate fiber, and the fiber polarizers are Corning SP1060 single-polarization fiber. Finally, the effective Verdet constant of the Tb-doped fiber is measured to be -24.5±1.0 rad/(Tm) at 1053 nm, which is 20 times larger than silica fiber and 22% larger than previously reported results.

  11. Portable and modularized fluorometer based on optical fiber

    NASA Astrophysics Data System (ADS)

    Yue, WeiWei; Zhang, Lei; Guo, ZhenYa; Jiang, ShouZhen; Bai, ChengJie

    2015-02-01

    A portable and modularized fluorometer based on optical fiber was proposed in this work. The fluorometer included a light emitter diode (LED) light source module (LSM), a sample cell module (SCM), an optical-electrical converter module (OCM) and a signal process module (SAM). The LEDs in LSM were driven by a constant current source to provide stable exciting light with different wavelength. The OCM included a modularized optical filter and used a photomultiplier tube (PMT) to detect fluorescence signal. The SCM was used to locate sample cuvette and could be connected by optical fibers with the LSM and OCM. Via modularized design, the LSM and OCM could both selected and replaced based on different fluorescence dyes. In order to improve the detecting dynamic range of the fluorometer, the SAM could control the light intensity of LED source in LSM, to control the gain of PMT in OCM, and particularly, four channel signal acquisition circuits with different gain were constructed to collect fluorescence signal simultaneously. Fluorescein isothiocyanate (FITC) was selected as sample to test the fluorometer. The fluorometer has shown a high sensitivity with FITC concentration of 10ng/mL and presented a good linearity from 10 ng/mL to 10 μg/mL.

  12. Characterization of the stress and refractive-index distributions in optical fibers and fiber-based devices

    NASA Astrophysics Data System (ADS)

    Hutsel, Michael R.

    2011-07-01

    Optical fiber technology continues to advance rapidly as a result of the increasing demands on communication systems and the expanding use of fiber-based sensing. New optical fiber types and fiber-based communications components are required to permit higher data rates, an increased number of channels, and more flexible installation requirements. Fiber-based sensors are continually being developed for a broad range of sensing applications, including environmental, medical, structural, industrial, and military. As optical fibers and fiber-based devices continue to advance, the need to understand their fundamental physical properties increases. The residual-stress distribution (RSD) and the refractive-index distribution (RID) play fundamental roles in the operation and performance of optical fibers. Custom RIDs are used to tailor the transmission properties of fibers used for long-distance transmission and to enable fiber-based devices such as long-period fiber gratings (LPFGs). The introduction and modification of RSDs enable specialty fibers, such as polarization-maintaining fiber, and contribute to the operation of fiber-based devices. Furthermore, the RSD and the RID are inherently linked through the photoelastic effect. Therefore, both the RSD and the RID need to be characterized because these fundamental properties are coupled and affect the fabrication, operation, and performance of fibers and fiber-based devices. To characterize effectively the physical properties of optical fibers, the RSD and the RID must be measured without perturbing or destroying the optical fiber. Furthermore, the techniques used must not be limited in detecting small variations and asymmetries in all directions through the fiber. Finally, the RSD and the RID must be characterized concurrently without moving the fiber to enable the analysis of the relationship between the RSD and the RID. Although many techniques exist for characterizing the residual stress and the refractive index in

  13. Advances in Optical Fiber-Based Faraday Rotation Diagnostics

    SciTech Connect

    White, A D; McHale, G B; Goerz, D A

    2009-07-27

    In the past two years, we have used optical fiber-based Faraday Rotation Diagnostics (FRDs) to measure pulsed currents on several dozen capacitively driven and explosively driven pulsed power experiments. We have made simplifications to the necessary hardware for quadrature-encoded polarization analysis, including development of an all-fiber analysis scheme. We have developed a numerical model that is useful for predicting and quantifying deviations from the ideal diagnostic response. We have developed a method of analyzing quadrature-encoded FRD data that is simple to perform and offers numerous advantages over several existing methods. When comparison has been possible, we have seen good agreement with our FRDs and other current sensors.

  14. Distributed fiber-optic laser-ultrasound generation based on ghost-mode of tilted fiber Bragg gratings.

    PubMed

    Tian, Jiajun; Zhang, Qi; Han, Ming

    2013-03-11

    Active ultrasonic testing is widely used for medical diagnosis, material characterization and structural health monitoring. Ultrasonic transducer is a key component in active ultrasonic testing. Due to their many advantages such as small size, light weight, and immunity to electromagnetic interference, fiber-optic ultrasonic transducers are particularly attractive for permanent, embedded applications in active ultrasonic testing for structural health monitoring. However, current fiber-optic transducers only allow effective ultrasound generation at a single location of the fiber end. Here we demonstrate a fiber-optic device that can effectively generate ultrasound at multiple, selected locations along a fiber in a controllable manner based on a smart light tapping scheme that only taps out the light of a particular wavelength for laser-ultrasound generation and allow light of longer wavelengths pass by without loss. Such a scheme may also find applications in remote fiber-optic device tuning and quasi-distributed biochemical fiber-optic sensing.

  15. Biochemical sensing application based on optical fiber evanescent wave sensor

    NASA Astrophysics Data System (ADS)

    Lv, Xiaoyi; Mo, Jiaqing; Xu, Liang; Jia, Zhenhong

    2015-08-01

    We have designed a novel evanescent field fiber optic biosensors with porous silicon dioxide cladding. The pore size of porous silicon dioxide cladding is about 100 nm in diameter. Biological molecules were immobilized to the porous silicon dioxide cladding used APTES and glutaraldehyde. Refractive index of cladding used Bruggemann's effective medium theory. We carried out simulations of changing in light intensity in optical fiber before and after chemical coupling of biomolecules. This novel optical fiber evanescent wave biosensor has a great potential in clinical chemistry for rapid and convenient determination of biological molecule.

  16. Optical Frequency Comb Generation based on Erbium Fiber Lasers

    NASA Astrophysics Data System (ADS)

    Droste, Stefan; Ycas, Gabriel; Washburn, Brian R.; Coddington, Ian; Newbury, Nathan R.

    2016-06-01

    Optical frequency combs have revolutionized optical frequency metrology and are being actively investigated in a number of applications outside of pure optical frequency metrology. For reasons of cost, robustness, performance, and flexibility, the erbium fiber laser frequency comb has emerged as the most commonly used frequency comb system and many different designs of erbium fiber frequency combs have been demonstrated. We review the different approaches taken in the design of erbium fiber frequency combs, including the major building blocks of the underlying mode-locked laser, amplifier, supercontinuum generation and actuators for stabilization of the frequency comb.

  17. Fiber optics structural mechanics and nanotechnology based new generation of fiber coatings

    NASA Astrophysics Data System (ADS)

    Suhir, E.

    2006-02-01

    This paper consists of two parts - review and extension. The review part deals with typical fiber optics structures (bare, single- and dual-coated fibers; fibers experiencing low temperature micro-bending; fibers soldered into ferrules or adhesively bonded into capillaries; role of the non-linear stress-strain relationship, etc.) subjected to thermally induced and/or mechanical loading in bending, tension, compression, or to various combinations of such loadings. The emphasis is on the state-of-the-art in the area of optical fiber coatings and the functional (optical), mechanical and environmental problems that occur in polymer-coated or metallized fibers. The solutions to the examined problems are obtained using analytical methods (predictive models) of structural mechanics. The review is based primarily on the author's research conducted at Bell Laboratories, Murray Hill, NJ, during his eighteen years tenure with this company. The extension part addresses a new generation of optical fiber coatings and deals with the application of a newly developed (by the ERS/Siloptix Co.) nano-particle material (NPM) that is used as an attractive substitute for the existing optical fiber coatings. This NPM-based coating has all the merits of polymer and metal coatings, but is free of their shortcomings. The developed material is an unconventional inhomogeneous "smart" composite material, which is equivalent to a homogeneous material with the following major properties: low Young's modulus, immunity to corrosion, good-to-excellent adhesion to adjacent material(s), non-volatile, stable properties at temperature extremes (from -220°C to +350°C), very long (practically infinite) lifetime, "active" hydrophobicity - the material provides a moisture barrier (to both water and water vapor), and, if necessary, can even "wick" moisture away from the contact surface; ability for "self-healing" and "healing": the NPM is able to restore its own dimensions, when damaged, and is able to

  18. JTAG-based remote configuration of FPGAs over optical fibers

    DOE PAGES

    Deng, B.; Xu, H.; Liu, C.; Chen, J.; Chen, K.; Gong, D.; Guo, D.; Hou, S.; D. Huang; Liu, T.; et al

    2015-01-28

    In this study, a remote FPGA-configuration method based on JTAG extension over optical fibers is presented. The method takes advantage of commercial components and ready-to-use software such as iMPACT and does not require any hardware or software development. The method combines the advantages of the slow remote JTAG configuration and the fast local flash memory configuration. The method has been verified successfully and used in the Demonstrator of Liquid-Argon Trigger Digitization Board (LTDB) for the ATLAS liquid argon calorimeter Phase-I trigger upgrade. All components on the FPGA side are verified to meet the radiation tolerance requirements.

  19. Analysis of a plastic optical fiber-based displacement sensor.

    PubMed

    Jiménez, Felipe; Arrue, Jon; Aldabaldetreku, Gotzon; Durana, Gaizka; Zubia, Joseba; Ziemann, Olaf; Bunge, Christian-Alexander

    2007-09-01

    An easy-to-manufacture setup for a displacement sensor based on plastic optical fiber (POF) is analyzed, showing computational and experimental results. If the displacement is the consequence of force or pressure applied to the device, this can be used as a force or pressure transducer. Its principle of operation consists of bending a POF section around a flexible cylinder and measuring light attenuation when the whole set is subjected to side pressure. Attenuations are obtained computationally as a function of side deformation for different design parameters. Experimental results with an actually built prototype are also provided. PMID:17805359

  20. Fiber-Optic Based Compact Gas Leak Detection System

    NASA Technical Reports Server (NTRS)

    deGroot, Wim A.

    1995-01-01

    A propellant leak detection system based on Raman scattering principles is introduced. The proposed system is flexible and versatile as the result of the use of optical fibers. It is shown that multiple species can be monitored simultaneously. In this paper oxygen, nitrogen, carbon monoxide, and hydrogen are detected and monitored. The current detection sensitivity for both hydrogen and carbon monoxide is 1% partial pressure at ambient conditions. The sensitivity for oxygen and nitrogen is 0.5% partial pressure. The response time to changes in species concentration is three minutes. This system can be used to monitor multiple species at several locations.

  1. Characterization of the stress and refractive-index distributions in optical fibers and fiber-based devices

    NASA Astrophysics Data System (ADS)

    Hutsel, Michael R.

    2011-07-01

    Optical fiber technology continues to advance rapidly as a result of the increasing demands on communication systems and the expanding use of fiber-based sensing. New optical fiber types and fiber-based communications components are required to permit higher data rates, an increased number of channels, and more flexible installation requirements. Fiber-based sensors are continually being developed for a broad range of sensing applications, including environmental, medical, structural, industrial, and military. As optical fibers and fiber-based devices continue to advance, the need to understand their fundamental physical properties increases. The residual-stress distribution (RSD) and the refractive-index distribution (RID) play fundamental roles in the operation and performance of optical fibers. Custom RIDs are used to tailor the transmission properties of fibers used for long-distance transmission and to enable fiber-based devices such as long-period fiber gratings (LPFGs). The introduction and modification of RSDs enable specialty fibers, such as polarization-maintaining fiber, and contribute to the operation of fiber-based devices. Furthermore, the RSD and the RID are inherently linked through the photoelastic effect. Therefore, both the RSD and the RID need to be characterized because these fundamental properties are coupled and affect the fabrication, operation, and performance of fibers and fiber-based devices. To characterize effectively the physical properties of optical fibers, the RSD and the RID must be measured without perturbing or destroying the optical fiber. Furthermore, the techniques used must not be limited in detecting small variations and asymmetries in all directions through the fiber. Finally, the RSD and the RID must be characterized concurrently without moving the fiber to enable the analysis of the relationship between the RSD and the RID. Although many techniques exist for characterizing the residual stress and the refractive index in

  2. Fiber optic hydrophone

    SciTech Connect

    Kuzmenko, Paul J.; Davis, Donald T.

    1994-01-01

    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optic fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends.

  3. Fiber optic hydrophone

    DOEpatents

    Kuzmenko, P.J.; Davis, D.T.

    1994-05-10

    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer is disclosed. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optical fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends. 2 figures.

  4. Spectrally encoded common-path fiber-optic-based parallel optical coherence tomography.

    PubMed

    Lee, Kye-Sung; Hur, Hwan; Sung, Ha-Young; Kim, I Jong; Kim, Geon-Hee

    2016-09-15

    We demonstrate a fiber-optic-based parallel optical coherence tomography (OCT) using spectrally encoded extended illumination with a common-path handheld probe, where the flexibility and robustness of the system are significantly improved, which is critical in the clinical environment. To the best of our knowledge, we present the first parallel OCT based on fiber optics including a fiber coupler with a sensitivity of 94 dB, which is comparable to that of point-scanning OCT. We also investigated the effect of the phase stability of the fiber-based interferometry on the parallel OCT system by comparing the common-path OCT with two-arm OCT. Using the homemade common-path handheld probe based on a Mirau interferometer, the phase stability was 32 times better than that of the two-arm OCT. The axial resolution of the common-path OCT was measured as 5.1±0.3  μm. To demonstrate the in vivo imaging performance of the fiber-optic-based parallel OCT, human skin was imaged. PMID:27628367

  5. Spectrally encoded common-path fiber-optic-based parallel optical coherence tomography.

    PubMed

    Lee, Kye-Sung; Hur, Hwan; Sung, Ha-Young; Kim, I Jong; Kim, Geon-Hee

    2016-09-15

    We demonstrate a fiber-optic-based parallel optical coherence tomography (OCT) using spectrally encoded extended illumination with a common-path handheld probe, where the flexibility and robustness of the system are significantly improved, which is critical in the clinical environment. To the best of our knowledge, we present the first parallel OCT based on fiber optics including a fiber coupler with a sensitivity of 94 dB, which is comparable to that of point-scanning OCT. We also investigated the effect of the phase stability of the fiber-based interferometry on the parallel OCT system by comparing the common-path OCT with two-arm OCT. Using the homemade common-path handheld probe based on a Mirau interferometer, the phase stability was 32 times better than that of the two-arm OCT. The axial resolution of the common-path OCT was measured as 5.1±0.3  μm. To demonstrate the in vivo imaging performance of the fiber-optic-based parallel OCT, human skin was imaged.

  6. Fluorescence-based test of fiber-optic continuity.

    PubMed

    Norwood, D P; Vinches, C; Anderson, J F; Reed, W F

    1997-04-20

    There is considerable interest in the use of lasers and optical fibers for the initiation of pyrotechnics. In this application the need develops for a means of testing the continuity of the initiation fiber before initiation of the pyrotechnic. We present proof of the feasibility of an unambiguous continuity test using the fluorescence returned by the fiber from a fluorescent material in or near the pyrotechnic.

  7. Fiber optic coupled optical sensor

    DOEpatents

    Fleming, Kevin J.

    2001-01-01

    A displacement sensor includes a first optical fiber for radiating light to a target, and a second optical fiber for receiving light from the target. The end of the first fiber is adjacent and not axially aligned with the second fiber end. A lens focuses light from the first fiber onto the target and light from the target onto the second fiber.

  8. Bridge continuous deformation measurement technology based on fiber optic gyro

    NASA Astrophysics Data System (ADS)

    Gan, Weibing; Hu, Wenbin; Liu, Fang; Tang, Jianguang; Li, Sheng; Yang, Yan

    2016-03-01

    Bridge is an important part of modern transportation systems and deformation is a key index for bridge's safety evaluation. To achieve the long span bridge curve measurement rapidly and timely and accurately locate the bridge maximum deformation, the continuous deformation measurement system (CDMS) based on inertial platform is presented and validated in this paper. Firstly, based on various bridge deformation measurement methods, the method of deformation measurement based on the fiber optic gyro (FOG) is introduced. Secondly, the basic measurement principle based on FOG is presented and the continuous curve trajectory is derived by the formula. Then the measurement accuracy is analyzed in theory and the relevant factors are presented to ensure the measurement accuracy. Finally, the deformation measurement experiments are conducted on a bridge across the Yangtze River. Experimental results show that the presented deformation measurement method is feasible, practical, and reliable; the system can accurately and quickly locate the maximum deformation and has extensive and broad application prospects.

  9. Fiber optic monitoring device

    DOEpatents

    Samborsky, James K.

    1993-01-01

    A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information.

  10. Medical smart textiles based on fiber optic technology: an overview.

    PubMed

    Massaroni, Carlo; Saccomandi, Paola; Schena, Emiliano

    2015-04-13

    The growing interest in the development of smart textiles for medical applications is driven by the aim to increase the mobility of patients who need a continuous monitoring of such physiological parameters. At the same time, the use of fiber optic sensors (FOSs) is gaining large acceptance as an alternative to traditional electrical and mechanical sensors for the monitoring of thermal and mechanical parameters. The potential impact of FOSs is related to their good metrological properties, their small size and their flexibility, as well as to their immunity from electromagnetic field. Their main advantage is the possibility to use textile based on fiber optic in a magnetic resonance imaging environment, where standard electronic sensors cannot be employed. This last feature makes FOSs suitable for monitoring biological parameters (e.g., respiratory and heartbeat monitoring) during magnetic resonance procedures. Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing. In this review we provide an overview of the state-of-the-art of textiles, which use FOSs for monitoring of mechanical parameters of physiological interest. In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages. Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest.

  11. Optical fiber based imaging of bioengineered tissue construct

    NASA Astrophysics Data System (ADS)

    Sapoznik, Etai; Niu, Guoguang; Lu, Peng; Zhou, Yu; Xu, Yong; Soker, Shay

    2016-04-01

    Imaging cells and tissues through opaque and turbid media is challenging and presents a major barrier for monitoring maturation and remodeling of bioengineered tissues. The fiber optics based imaging system described here offers a new approach for fluorescent cell imaging. A micro imaging channel is embedded in a Polycaprolactone (PCL) electrospun scaffold designed for cell seeding, which allows us to use an optical fiber to locally deliver excitation laser close to the fluorescent cells. The emission is detected by an Electron Multiplying Charge Coupled Device (EMCCD) detector and image reconstruction of multiple excitation points is achieved with a working distance of several centimeters. The objective of this study is to assess the effects of system parameters on image reconstruction outcomes. Initial studies using fluorescent beads indicated that scaffold thickness had a small effect on image quality, whereas scaffold composition (collagen content), fluorophore spectra, and the reconstruction window size had a large effect. The results also suggest that a far-red fluorescent emission is preferential when using collagenous scaffolds with a thickness of up to 500 μm. Using these optimized parameters, we were able to image fluorescently labeled cells on a scaffold with a resolution of 15-20 μm, and have also measured muscle progenitor cell differentiation and scaffold surface coverage with endothelial cells. In the future, this imaging platform can be applied to other bioengineered tissues for non-invasive monitoring both in vitro and in vivo.

  12. Medical smart textiles based on fiber optic technology: an overview.

    PubMed

    Massaroni, Carlo; Saccomandi, Paola; Schena, Emiliano

    2015-01-01

    The growing interest in the development of smart textiles for medical applications is driven by the aim to increase the mobility of patients who need a continuous monitoring of such physiological parameters. At the same time, the use of fiber optic sensors (FOSs) is gaining large acceptance as an alternative to traditional electrical and mechanical sensors for the monitoring of thermal and mechanical parameters. The potential impact of FOSs is related to their good metrological properties, their small size and their flexibility, as well as to their immunity from electromagnetic field. Their main advantage is the possibility to use textile based on fiber optic in a magnetic resonance imaging environment, where standard electronic sensors cannot be employed. This last feature makes FOSs suitable for monitoring biological parameters (e.g., respiratory and heartbeat monitoring) during magnetic resonance procedures. Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing. In this review we provide an overview of the state-of-the-art of textiles, which use FOSs for monitoring of mechanical parameters of physiological interest. In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages. Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest. PMID:25871010

  13. Medical Smart Textiles Based on Fiber Optic Technology: An Overview

    PubMed Central

    Massaroni, Carlo; Saccomandi, Paola; Schena, Emiliano

    2015-01-01

    The growing interest in the development of smart textiles for medical applications is driven by the aim to increase the mobility of patients who need a continuous monitoring of such physiological parameters. At the same time, the use of fiber optic sensors (FOSs) is gaining large acceptance as an alternative to traditional electrical and mechanical sensors for the monitoring of thermal and mechanical parameters. The potential impact of FOSs is related to their good metrological properties, their small size and their flexibility, as well as to their immunity from electromagnetic field. Their main advantage is the possibility to use textile based on fiber optic in a magnetic resonance imaging environment, where standard electronic sensors cannot be employed. This last feature makes FOSs suitable for monitoring biological parameters (e.g., respiratory and heartbeat monitoring) during magnetic resonance procedures. Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing. In this review we provide an overview of the state-of-the-art of textiles, which use FOSs for monitoring of mechanical parameters of physiological interest. In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages. Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest. PMID:25871010

  14. Fiber-optic coupling based on nonimaging expanded-beam optics.

    PubMed

    Moslehi, B; Ng, J; Kasimoff, I; Jannson, T

    1989-12-01

    We have fabricated and experimentally tested low-cost and mass-producible multimode fiber-optic couplers and connectors based on nonimaging beam-expanding optics and Liouville's theorem. Analysis indicates that a pair coupling loss of -0.25 dB can be achieved. Experimentally, we measured insertion losses as low as -0.38 dB. The beam expanders can be mass produced owing to the use of plastic injection-molding fabrication techniques and packaged in standard connector housings. This design is compatible with the fiber geometry and can yield highly stable coupling owing to its high tolerance for misalignments. PMID:19759673

  15. Plastic Optical Fiber Displacement Sensor Based on Dual Cycling Bending

    PubMed Central

    Kuang, Jao-Hwa; Chen, Pao-Chuan; Chen, Yung-Chuan

    2010-01-01

    In this study, a high sensitivity and easy fabricated plastic optical fiber (POF) displacement sensor is proposed. A POF specimen subjected to dual cyclic bending is used to improve the sensitivity of the POF displacement sensor. The effects of interval between rollers, relative displacement and number of rollers on the sensitivity of the displacement sensor are analyzed both experimentally and numerically. A good agreement between the experimental measurements and numerical calculations is obtained. The results show that the interval between rollers affects sensitivity most significantly than the other design parameters. Based on the experimental data, a linear equation is derived to estimate the relationship between the power loss and the relative displacement. The difference between the estimated results and the experimental results is found to be less than 8%. The results also show that the proposed POF displacement sensor based on dual cyclic bending can be used to detect displacement accurately. PMID:22163465

  16. Fiber-Optic Surface Temperature Sensor Based on Modal Interference.

    PubMed

    Musin, Frédéric; Mégret, Patrice; Wuilpart, Marc

    2016-01-01

    Spatially-integrated surface temperature sensing is highly useful when it comes to controlling processes, detecting hazardous conditions or monitoring the health and safety of equipment and people. Fiber-optic sensing based on modal interference has shown great sensitivity to temperature variation, by means of cost-effective image-processing of few-mode interference patterns. New developments in the field of sensor configuration, as described in this paper, include an innovative cooling and heating phase discrimination functionality and more precise measurements, based entirely on the image processing of interference patterns. The proposed technique was applied to the measurement of the integrated surface temperature of a hollow cylinder and compared with a conventional measurement system, consisting of an infrared camera and precision temperature probe. As a result, the optical technique is in line with the reference system. Compared with conventional surface temperature probes, the optical technique has the following advantages: low heat capacity temperature measurement errors, easier spatial deployment, and replacement of multiple angle infrared camera shooting and the continuous monitoring of surfaces that are not visually accessible. PMID:27483271

  17. Fiber-Optic Surface Temperature Sensor Based on Modal Interference

    PubMed Central

    Musin, Frédéric; Mégret, Patrice; Wuilpart, Marc

    2016-01-01

    Spatially-integrated surface temperature sensing is highly useful when it comes to controlling processes, detecting hazardous conditions or monitoring the health and safety of equipment and people. Fiber-optic sensing based on modal interference has shown great sensitivity to temperature variation, by means of cost-effective image-processing of few-mode interference patterns. New developments in the field of sensor configuration, as described in this paper, include an innovative cooling and heating phase discrimination functionality and more precise measurements, based entirely on the image processing of interference patterns. The proposed technique was applied to the measurement of the integrated surface temperature of a hollow cylinder and compared with a conventional measurement system, consisting of an infrared camera and precision temperature probe. As a result, the optical technique is in line with the reference system. Compared with conventional surface temperature probes, the optical technique has the following advantages: low heat capacity temperature measurement errors, easier spatial deployment, and replacement of multiple angle infrared camera shooting and the continuous monitoring of surfaces that are not visually accessible. PMID:27483271

  18. Twisted optical-fiber-based acousto-optic tunable filter controlled by the flexural acoustic polarization

    NASA Astrophysics Data System (ADS)

    Park, Hyun Chul; Lee, Kwang Jo

    2015-08-01

    The spectral characteristics of twisted fiber-based acousto-optic filters are theoretically investigated. The influences of three types of flexural acoustic polarization states — linear, circular, and elliptical polarizations — on filter spectra are studied under realistic experimental conditions: a fiber length of 5 - 20 cm and a circumferential fiber twist angle of < 12 π. We will analytically show that either a single- or a dual-resonance filter spectrum is achievable depending on the input polarization state of applied acoustic waves and that the spectral position of each resonance peak can be scanned continuously and linearly in the wavelength domain by using the fiber twist. The feasible spectral tuning range of the resonances is calculated to > 80 nm for a twist angle of 12 π. We will describe how the transmission of each resonance peak can also be selectively tuned by adjusting the ellipticity of the input acoustic polarization from linear to circular. The results illustrate that our approach exploiting a combination of the fiber twist and acoustic polarization management offers an excellent route to the spectral shaping of all-fiber acousto-optic devices in that the transmission of multiple resonances, as well as their spectral positions, are readily and individually controllable in a single device configuration. In addition, we also propose a novel cosine apodization method to suppress the undesirable sidelobe spectra occurring between the dual resonance peaks. The technique is based on a cosine modulation of the AO coupling strength along the fiber, which is achieved by using a combination of the fiber's circumferential twist and the linear acoustic polarization. The proposed scheme is useful to minimize the crosstalk occurring between adjacent resonance peaks. We highlight that our approach is directly applicable to matched filtering as robust, adaptable, stable, and versatile optical filters.

  19. Optic axis determination by fiber-based polarization-sensitive swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.

    2011-03-01

    We describe a fiber-based variable-incidence-angle (VIA) polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) system to determine the 3-D optical axis of birefringent biological tissues. Single-plane VIAPS- OCT is also explored which requires measurement of the absolute fast-axis orientation. A state-of-the-art PS-SS-OCT system with some improvements both in hardware and software was used to determine the apparent optical birefringence of equine tendon for a number of different illumination directions. Polar and azimuthal angles of cut equine tendon were produced by VIA method and compared with the nominal values. A quarter waveplate (QWP) and equine tendon were used as test targets to validate the fast-axis measurements using the system. Polar and azimuthal angles of cut equine tendon broadly agreed with the expected values within about 8% of the nominal values. A theoretical and experimental analysis of the effect of the sample arm fiber on determination of optical axis orientation using a proposed definition based on the orientation of the eigenpolarization ellipse experimentally confirms that this algorithm only works correctly for special settings of the sample arm fiber. A proposed algorithm based on the angle between Stokes vectors on the Poincaré sphere is confirmed to work for all settings of the sample arm fiber. A calibration procedure is proposed to remove the sign ambiguity of the measured orientation and was confirmed experimentally by using the QWP.

  20. Amylin Detection with a Miniature Optical-Fiber Based Sensor

    NASA Astrophysics Data System (ADS)

    Liu, Zhaowen; Ann, Matsko; Hughes, Adam; Reeves, Mark

    We present results of a biosensor based on shifts in the localized surface plasmon resonance of gold nanoparticles self-assembled on the end of an optical fiber. This system allows for detection of protein expression in low sensing volumes and for scanning in cell cultures and tissue samples. Positive and negative controls were done using biotin/avidin and the BSA/Anti-BSA system. These demonstrate that detection is specific and sensitive to nanomolar levels. Sensing of amylin, an important protein for pancreatic function, was performed with polyclonal and monoclonal antibodies. The measured data demonstrates the difference in sensitivity to the two types of antibodies, and titration experiments establish the sensitivity of the sensor. Further experiments demonstrate that the sensor can be regenerated and then reused.

  1. A film pressure sensor based on optical fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Zhang, Zhichun; Deng, Gang; Dai, Yongbo; Liu, Yanju; Leng, Jinsong

    2010-03-01

    The measurement of pressure is essential for the design and flying controlling of aircraft. In order to measure the surface pressures of the aircraft, the common pressure tube method and Pressure sensitive paint measurement method have their own disadvantages, and are not applicable to all aircraft structures and real time pressure monitoring. In this paper, a novel thin film pressure sensor based on Fiber Bragg Grating (FBG) is proposed, using FBG measuring the tangential strain of the disk sensing film. Theoretical circle strain of the disk sensing film of the pressure sensor under pressure and temperature variation are analyzed, and the linear relationship between FBG center wavelength shift and pressure, temperature variation is gotten. The pressure and temperature calibration experiments prove the theoretical analysis. But the calibration sensing parameters are small than the calculating ones, which is caused by the constraint of optical fibre to the thin sensing film.

  2. Improved Optical Fiber Chemical Sensors

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1994-01-01

    Calculations, based on exact theory of optical fiber, have shown how to increase optical efficiency sensitivity of active-core, step-index-profile optical-fiber fluorosensor. Calculations result of efforts to improve efficiency of optical-fiber chemical sensor of previous concept described in "Making Optical-Fiber Chemical Sensors More Sensitive" (LAR-14525). Optical fiber chemical detector of enhanced sensitivity made in several configurations. Portion of fluorescence or chemiluminescence generated in core, and launched directly into bound electromagnetic modes that propagate along core to photodetector.

  3. Optical fiber interferometric spectrometer

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Li, Baosheng; Liu, Yan; Zhai, Yufeng; Wang, An

    2006-02-01

    We design an optical fiber spectrometer based on optical fiber Mach-Zehnder interferometer. In optical fiber Fourier transform spectrometer spectra information is obtained by Fourier transform of interferogram, which recording intensity change vs. optical path difference. Optical path difference is generated by stretching one fiber arm which wound around fiber stretch drive by high power supply. Information from detector is linear with time rather than with optical path difference. In order to obtain high accuracy wavenumber, reference beam is used to control the optical path difference. Optical path difference is measured by reference laser interference fringe. Interferogram vs. optical path difference is resampled by Brault algorithm with information from reference beam and test beam. In the same condition, one-sided interferogram has higher resolution than that of two-sided interferogram. For one-sided interferogram, zero path difference position must be determined as accurately as possible, small shift will result in phase error. For practical experiment in laboratory, position shift is inevitable, so phase error correction must be considered. Zero order fringe is determined by curve fitting. Spectrum of light source is obtained from one-sided interferogram by Fourier cosine transform. A spectral resolution of about ~3.1 cm -1 is achieved. In practice, higher resolution is needed. This compact equipment will be used in emission spectra and absorption spectra, especially in infrared region.

  4. Reflection based Extraordinary Optical Transmission Fiber Optic Probe for Refractive Index Sensing.

    PubMed

    Lan, Xinwei; Cheng, Baokai; Yang, Qingbo; Huang, Jie; Wang, Hanzheng; Ma, Yinfa; Shi, Honglan; Xiao, Hai

    2014-03-31

    Fiber optic probes for chemical sensing based on the extraordinary optical transmission (EOT) phenomenon are designed and fabricated by perforating subwavelength hole arrays on the gold film coated optical fiber endface. The device exhibits a red shift in response to the surrounding refractive index increases with high sensitivity, enabling a reflection-based refractive index sensor with a compact and simple configuration. By choosing the period of hole arrays, the sensor can be designed to operate in the near infrared telecommunication wavelength range, where the abundant source and detectors are available for easy instrumentation. The new sensor probe is demonstrated for refractive index measurement using refractive index matching fluids. The sensitivity reaches 573 nm/RIU in the 1.333~1.430 refractive index range.

  5. Highly sensitive fiber-optic torsion sensor based on an ultra-long-period fiber grating

    NASA Astrophysics Data System (ADS)

    Rao, Y. J.; Zhu, T.; Mo, Q. J.

    2006-10-01

    A high sensitivity fiber-optic torsion sensor, which can measure twist rate and determine twist direction simultaneously based on a novel ultra-long-period fiber grating (ULPFG) with a period of up to several millimeters, is proposed and demonstrated. Such an ULPFG is fabricated by using the high-frequency CO 2 Laser pulses exposure technique. The unique torsion characteristics of the ULPFG are simply analyzed by using the mode coupling theory and the birefringence effect. The experimental results show that the high order resonant wavelengths of the ULPFG have higher torsion sensitivities, which is several times higher than that of the normal LPFG. In addition, an intensity-type demodulation approach used to realize real-time torsion measurement is proposed and demonstrated based on the edge filtering effect of the ULPFG.

  6. Photonic crystal-based optical filters for operating in second and third optical fiber windows

    NASA Astrophysics Data System (ADS)

    Zamani, Mehdi

    2016-04-01

    In this paper, the filtering properties of photonic crystals (PCs) to perform narrow-channel transmission-type filters in second and third optical fiber telecommunication windows have been studied. Filtration of these zero dispersion and low-loss windows have simultaneously been established by utilizing of a triple-cavity transmission-type one-dimensional PC that provides perfect transmittances and narrow-channels at corresponding wavelengths. Such PC-based optical filter can be used in wavelength division multiplexing (WDM) optical communications systems.

  7. Ultrafast all-optical NOR gate based on semiconductor optical amplifier and fiber delay interferometer.

    PubMed

    Xu, Jing; Zhang, Xinliang; Liu, Deming; Huang, Dexiu

    2006-10-30

    An ultrafast all-optical logic NOR gate based on a semiconductor optical amplifier (SOA) and a fiber delay interferometer (FDI) is presented. For high-speed input return-to-zero (RZ) signal, nonreturn-to-zero (NRZ) switching windows which satisfy Boolean NOR operation can be formed by properly choosing the delay time and the phase shift of FDI. 40Gb/s NOR operation has been demonstrated successfully with low control optical power. The factors that degrade the NOR operation have been discussed.

  8. Ultrafast all-optical NOR gate based on semiconductor optical amplifier and fiber delay interferometer

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Zhang, Xinliang; Liu, Deming; Huang, Dexiu

    2006-10-01

    An ultrafast all-optical logic NOR gate based on a semiconductor optical amplifier (SOA) and a fiber delay interferometer (FDI) is presented. For high-speed input return-to-zero (RZ) signal, nonreturn-to-zero (NRZ) switching windows which satisfy Boolean NOR operation can be formed by properly choosing the delay time and the phase shift of FDI. 40Gb/s NOR operation has been demonstrated successfully with low control optical power. The factors that degrade the NOR operation have been discussed.

  9. Improved fiber optic sensor for salt concentration based on polymer swelling

    NASA Astrophysics Data System (ADS)

    Bai, Mingqi; Seitz, William R.

    1993-04-01

    An improved design for fiber optic chemical sensors based on polymer swelling is applied to the detection of changes in electrolyte concentration. In this design the polymer sensing element is isolated from the fiber optics by a rubber diaphragm glued to a reflecting piece of aluminum. Changes in polymer size move the diaphragm, changing the intensity of light reflected into an optical fiber. The sensor design allows the user to adjust the distance between the optical fibers and the reflecting surface so that maximum sensitivity can be achieved. The new design is demonstrated using a bead of crosslinked strongly basic anion exchange resin as a sensing element to detect changes in electrolyte concentration.

  10. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor); Mattes, Brenton L. (Inventor); Charnetski, Clark J. (Inventor)

    1999-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  11. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor)

    2000-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  12. Optical heterodyne micro-vibration measurement based on all-fiber acousto-optic frequency shifter.

    PubMed

    Zhang, Wending; Gao, Wei; Huang, Ligang; Mao, Dong; Jiang, Biqiang; Gao, Feng; Yang, Dexing; Zhang, Guoquan; Xu, Jingjun; Zhao, Jianlin

    2015-06-29

    An all-fiber optical heterodyne detection configuration was proposed based on an all-fiber acousto-optic structure, which acted as both frequency shifter and coupler at the same time. The vibration waveform within a frequency range between 1 Hz to 200 kHz of a piezoelectric mirror was measured using this optical heterodyne detection system. The minimal measurable vibration amplitude and resolution are around 6 pm and 1 pm in the region of tens to hundreds of kilohertz, respectively. The configuration has advantages of compact size, high accuracy and non-contact measurement. Moreover, it is of a dynamically adjustable signal-to-noise ratio to adapt different surface with different reflections in the measurement, which will improve the usage efficiency of the light power. PMID:26191765

  13. Switchable multiwavelength erbium doped fiber laser based on a nonlinear optical loop mirror incorporating multiple fiber Bragg gratings.

    PubMed

    Tran, Thi Van Anh; Lee, Kwanil; Lee, Sang Bae; Han, Young-Geun

    2008-02-01

    We propose and experimentally demonstrate a switchable multiwavelength erbium doped fiber laser based on a highly nonlinear dispersion shifted fiber and multiple fiber Bragg gratings. A nonlinear optical loop mirror based on a highly nonlinear dispersion shifted fiber is implemented in the ring laser cavity to stabilize the multiwavelength output at room temperature. Multiple fiber Bragg gratings with the wavelength spacing of 0.8 nm are connected with an arrayed waveguide grating to establish a multichannel filter. The high quality of the multiwavelength output with a high extinction ratio of ~60 dB and high output flatness of ~0.5 dB is realized. The nonlinear polarization rotation based on the nonlinear optical loop mirror can provide the switching performance of the proposed multiwavelength fiber laser. The lasing wavelength can be switched individually by controlling the polarization controller and the cavity loss.

  14. Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide

    NASA Astrophysics Data System (ADS)

    Wang, Youqing; Shen, Changyu; Lou, Weimin; Shentu, Fengying; Zhong, Chuan; Dong, Xinyong; Tong, Limin

    2016-07-01

    A fiber optic relative humidity (RH) sensor based on the tilted fiber Bragg grating (TFBG) coated with graphene oxide (GO) film was presented. Amplitudes of the cladding mode resonances of the TFGB varies with the water sorption and desorption processes of the GO film, because of the strong interactions between the excited backward propagating cladding modes and the GO film. By detecting the transmission intensity changes of the cladding mode resonant dips at the wavelength of 1557 nm, the maximum sensitivity of 0.129 dB/%RH with a linear correlation coefficient of 99% under the RH range of 10-80% was obtained. The Bragg mode of TFBG can be used as power or wavelength references, since it is inherently insensitive to RH changes. In addition, the proposed humidity sensor shows a good performance in repeatability and stability.

  15. A Highly Sensitive Fiber Optic Sensor Based on Two-Core Fiber for Refractive Index Measurement

    PubMed Central

    Guzmán-Sepúlveda, José Rafael; Guzmán-Cabrera, Rafael; Torres-Cisneros, Miguel; Sánchez-Mondragón, José Javier; May-Arrioja, Daniel Alberto

    2013-01-01

    A simple and compact fiber optic sensor based on a two-core fiber is demonstrated for high-performance measurements of refractive indices (RI) of liquids. In order to demonstrate the suitability of the proposed sensor to perform high-sensitivity sensing in a variety of applications, the sensor has been used to measure the RI of binary liquid mixtures. Such measurements can accurately determine the salinity of salt water solutions, and detect the water content of adulterated alcoholic beverages. The largest sensitivity of the RI sensor that has been experimentally demonstrated is 3,119 nm per Refractive Index Units (RIU) for the RI range from 1.3160 to 1.3943. On the other hand, our results suggest that the sensitivity can be enhanced up to 3485.67 nm/RIU approximately for the same RI range. PMID:24152878

  16. Tungsten disulfide (WS2) based all-fiber-optic humidity sensor.

    PubMed

    Luo, Yunhan; Chen, Chaoying; Xia, Kai; Peng, Shuihua; Guan, Heyuan; Tang, Jieyuan; Lu, Huiui; Yu, Jianhui; Zhang, Jun; Xiao, Yi; Chen, Zhe

    2016-04-18

    We demonstrate a novel all-fiber-optic humidity sensor comprised of a WS2 film overlay on a side polished fiber (SPF). This sensor can achieve optical power variation of up to 6 dB in a relative humidity (RH) range of 35%-85%. In particular, this novel humidity fiber sensor has a linear correlation coefficient of 99.39%, sensitivity of 0.1213 dB/%RH, and a humidity resolution of 0.475%RH. Furthermore, this sensor shows good repeatability and reversibility, and fast response to breath stimulus. This WS2 based all-fiber optic humidity sensor is easy to fabricate, is compatible with pre-established fiber optic systems, and holds great potential in photonics applications such as in all-fiber optic humidity sensing networks. PMID:27137326

  17. Tungsten disulfide (WS2) based all-fiber-optic humidity sensor.

    PubMed

    Luo, Yunhan; Chen, Chaoying; Xia, Kai; Peng, Shuihua; Guan, Heyuan; Tang, Jieyuan; Lu, Huiui; Yu, Jianhui; Zhang, Jun; Xiao, Yi; Chen, Zhe

    2016-04-18

    We demonstrate a novel all-fiber-optic humidity sensor comprised of a WS2 film overlay on a side polished fiber (SPF). This sensor can achieve optical power variation of up to 6 dB in a relative humidity (RH) range of 35%-85%. In particular, this novel humidity fiber sensor has a linear correlation coefficient of 99.39%, sensitivity of 0.1213 dB/%RH, and a humidity resolution of 0.475%RH. Furthermore, this sensor shows good repeatability and reversibility, and fast response to breath stimulus. This WS2 based all-fiber optic humidity sensor is easy to fabricate, is compatible with pre-established fiber optic systems, and holds great potential in photonics applications such as in all-fiber optic humidity sensing networks.

  18. Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen; Chan, Patrick

    2014-01-01

    The objective of this task is to investigate, develop, and demonstrate a low-cost swept lasing light source for NASA DFRC's fiber optics sensing system (FOSS) to perform structural health monitoring on current and future aerospace vehicles. This is the regular update of the Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems website.

  19. Virtual-reality-based educational laboratories in fiber optic engineering

    NASA Astrophysics Data System (ADS)

    Hayes, Dana; Turczynski, Craig; Rice, Jonny; Kozhevnikov, Michael

    2014-07-01

    Researchers and educators have observed great potential in virtual reality (VR) technology as an educational tool due to its ability to engage and spark interest in students, thus providing them with a deeper form of knowledge about a subject. The focus of this project is to develop an interactive VR educational module, Laser Diode Characteristics and Coupling to Fibers, to integrate into a fiber optics laboratory course. The developed module features a virtual laboratory populated with realistic models of optical devices in which students can set up and perform an optical experiment dealing with laser diode characteristics and fiber coupling. The module contains three increasingly complex levels for students to navigate through, with a short built-in quiz after each level to measure the student's understanding of the subject. Seventeen undergraduate students learned fiber coupling concepts using the designed computer simulation in a non-immersive desktop virtual environment (VE) condition. The analysis of students' responses on the updated pre- and post tests show statistically significant improvement of the scores for the post-test as compared to the pre-test. In addition, the students' survey responses suggest that they found the module very useful and engaging. The conducted study clearly demonstrated the feasibility of the proposed instructional technology for engineering education, where both the model of instruction and the enabling technology are equally important, in providing a better learning environment to improve students' conceptual understanding as compared to other instructional approaches.

  20. Laser based microstructuring of polymer optical fibers for sensors optimization

    NASA Astrophysics Data System (ADS)

    Athanasekos, Loukas; Vasileiadis, Miltiadis; El Sachat, Alexandros; Vainos, Nikolaos A.; Riziotis, Christos

    2015-03-01

    Microstructuring of Polymer Optical Fibers-POF through surface modification with UV excimer laser radiation has been performed and studied. The laser modified surface cavities on fibers act as material receptors of exact volume allowing highly controllable and repeatable structures. The effect of Laser writing conditions on different etching characteristics of cladding and core materials of the fibres are presented. Ablated structures on the fibres are examined for optimised sensors' response characteristics. As a case study humidity and ammonia sensors are demonstrated by employing sensitive block copolymer materials on suitably micromachined segments of fibres.

  1. Fiber Optic Surface Plasmon Resonance-Based Biosensor Technique: Fabrication, Advancement, and Application.

    PubMed

    Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang

    2016-05-01

    Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed.

  2. Sensing structure based on surface plasmonic resonance in single mode optical fibers chemically etched

    NASA Astrophysics Data System (ADS)

    Coelho, L.; Almeida, J. M.; Santos, J. L.; Ferreira, R. A. S.; André, P. S.; Viegas, D.

    2013-05-01

    Many optical systems based on Surface Plasmon Resonance (SPR) have been developed for work as refractometers, chemical sensors or even for measure the thickness of metal and dielectric thin films. These kinds of systems are usually large, expensive and cannot be used for remote sensing. Optical fiber sensors based on SPR has been widely studied for the last 20 years with several configurations mostly using multimode optical fibers with large cores and plastic claddings. Sensors based on SPR present very high sensitivity to refractive index variations when compared to the traditional refractive index sensors. Here we propose a SPR sensor based in a single mode fiber. The fiber end is chemically etched by emersion in a 48% hydrofluoric acid solution, resulting a single mode fiber with the cladding removed in a small section. A resonance dip around 1580 nm was attained in good agreement with the simulation scenario that takes into account the real characteristics of the fiber.

  3. Optical fiber load sensor based on a semi-auxetic structure: a proof of concept

    NASA Astrophysics Data System (ADS)

    Schenato, Luca; Pasuto, Alessandro; Galtarossa, Andrea; Palmieri, Luca

    2016-05-01

    In this work a quasi-distributed optical fiber load sensor based on a semi-auxetic structure is presented. By concatenating sections with positive Poisson's ratio to sections with negative one it is possible to precisely encode the distributed load into a strain exerted on a fiber. The sensor is described and a simple proof of concept is built and tested. The fiber is interrogated by means of optical frequency domain reflectometry. The proposed sensor represents just one example of the potential applications of auxetic and semi-auxetic structures and materials in optical fiber sensors development.

  4. Optically transparent composites reinforced with plant fiber-based nanofibers

    NASA Astrophysics Data System (ADS)

    Iwamoto, S.; Nakagaito, A. N.; Yano, H.; Nogi, M.

    2005-11-01

    The fibrillation of pulp fiber was attempted by two methods, a high-pressure homogenizer treatment and a grinder treatment. The grinder treatment resulted in the successful fibrillation of wood pulp fibers into nanofibers. The nanofibers demonstrate promising characteristics as reinforcement material for optically transparent composites. Due to the size effect, the nanofiber-reinforced composite retains the transparency of the matrix resin even at high fiber content such as 70 wt %. Since the nanofiber is an aggregate of semi-crystalline extended cellulose chains, its addition also contributes to a significant improvement in the thermal expansion properties of plastics while maintaining its ease of bending. Cellulose nanofibers have tremendous potential as a future resource since they are produced in a sustainable manner by plants, one of the most abundant organic resources on earth.

  5. Intellectual parachute and balloon systems based on fiber optic technologies

    NASA Astrophysics Data System (ADS)

    Nikolaev, Alexander M.; Nikolaev, Pavel M.; Nikolaev, Yuri M.; Morozov, Oleg G.; Zastela, Mikhail Yu.; Morozov, Gennady A.

    2014-04-01

    For any parachute system, it is important to predict the opening forces it will experience in order to make a safe and economic choice of materials to be used. Developed fiber optic sensors on two twisted fibers with the locked ends and variable twisting step have been used for creation of intellectual knots of perspective vehicles, in particular, parachute canopies and slings. We decided to change our measuring procedure from measuring of transmitted power or its Raleigh scattering in different ends of twisted fibers onto Brillouin scattering characterization. For this situation we offered the kind of method of frequency variation to get the information about the frequency shift and Q-factor of the Brillouin scattering in each sensor.

  6. Fiber optics for controls

    NASA Technical Reports Server (NTRS)

    Seng, Gary T.

    1990-01-01

    The design, development, and testing of a fiber optic integrated propulsion/flight control system for an advanced supersonic dash aircraft (flies at supersonic speeds for short periods of time) is the goal of the joint NASA/DOD Fiber Optic Control System Integration (FOCSI) program. Phase 1 provided a comparison of electronic and optical control systems, identified the status of current optical sensor technology, defined the aircraft sensor/actuator environment, proposed architectures for fully optical control systems, and provided schedules for development. Overall, it was determined that there are sufficient continued efforts to develop such a system. It was also determined that it is feasible to build a fiber optic control system for the development of a data base for this technology, but that further work is necessary in sensors, actuators, and components to develop an optimum design, fully fiber optic integrated control system compatible with advanced aircraft environments. Phase 2 is to design, construct, and ground test a fly by light control system. Its first task is to provide a detailed design of the electro-optic architecture.

  7. Fiber optic monitoring device

    DOEpatents

    Samborsky, J.K.

    1993-10-05

    A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information. 4 figures.

  8. Fiber optic-based optical coherence tomography (OCT) for dental applications

    NASA Astrophysics Data System (ADS)

    Everett, Matthew J.; Colston, Bill W., Jr.; Da Silva, Luiz B.; Otis, Linda L.

    1998-09-01

    We have developed a hand-held fiber optic based optical coherence tomography (OCT) system for scanning of the oral cavity. We have produced, using this scanning device, in vivo cross-sectional images of hard and soft dental tissues in human volunteers. Clinically relevant anatomical structures, including the gingival margin, periodontal sulcus, and dento- enamel junction, were visible in all the images. The cemento- enamel junction and the alveolar bone were identified in approximately two thirds of the images. These images represent, or our knowledge, the first in vivo OCT images of human dental tissue.

  9. Fiber laser strain sensor based in the measurement of a Sagnac interferometer optical power spectrum

    NASA Astrophysics Data System (ADS)

    Durán Sánchez, M.; Álvarez Tamayo, R. I.; Pottiez, O.; Kuzin, E. A.; Ibarra-Escamilla, B.; Barcelata Pinzón, A.

    2014-06-01

    In this paper a linear cavity Erbium doped fiber (EDF) laser based in a fiber Bragg grating (FBG) and a fiber optical loop mirror with a high birefringence fiber in the loop (Hi-Bi FOLM) is used as a strain sensor. The Fabry-Perot cavity is formed by the FBG and the Hi-Bi FOLM, used as a measurement system of strain variations produced on the FBG, used as a strain sensor device. Usually, fiber laser sensor experimental setups determine the measured variable magnitude by using of an optical spectrum analyzer (OSA). Hi-Bi FOLM transmission spectrum wavelength displacement by fiber loop temperature variations measurement can be an attractive application exploiting the characteristics of FOLM transmission spectrum behavior due to Hi-Bi fiber loop temperature variations to determine the FBG strain applied through the maximal optical power monitoring by simple use of a photodetector and a temperature meter.

  10. Research on vision-based error detection system for optic fiber winding

    NASA Astrophysics Data System (ADS)

    Lu, Wenchao; Li, Huipeng; Yang, Dewei; Zhang, Min

    2011-11-01

    Optic fiber coils are the hearts of fiber optic gyroscopes (FOGs). To detect the irresistible errors during the process of winding of optical fibers, such as gaps, climbs and partial rises between fibers, when fiber optic winding machines are operated, and to enable fully automated winding, we researched and designed this vision-based error detection system for optic fiber winding, on the basis of digital image collection and process[1]. When a Fiber-optic winding machine is operated, background light is used as illumination system to strength the contrast of images between fibers and background. Then microscope and CCD as imaging system and image collecting system are used to receive the analog images of fibers. After that analog images are shifted into digital imagines, which can be processed and analyzed by computers. Canny edge detection and a contour-tracing algorithm are used as the main image processing method. The distances between the fiber peaks were then measured and compared with the desired values. If these values fall outside of a predetermined tolerance zone, an error is detected and classified either as a gap, climb or rise. we used OpenCV and MATLAB database as basic function library and used VC++6.0 as the platform to show the results. The test results showed that the system was useful, and the edge detection and contour-tracing algorithm were effective, because of the high rate of accuracy. At the same time, the results of error detection are correct.

  11. Design optical antenna and fiber coupling system based on the vector theory of reflection and refraction.

    PubMed

    Jiang, Ping; Yang, Huajun; Mao, Shengqian

    2015-10-01

    A Cassegrain antenna system and an optical fiber coupling system which consists of a plano-concave lens and a plano-convex lens are designed based on the vector theory of reflection and refraction, so as to improve the transmission performance of the optical antenna and fiber coupling system. Three-dimensional ray tracing simulation are performed and results of the optical aberrations calculation and the experimental test show that the aberrations caused by on-axial defocusing, off-axial defocusing and deflection of receiving antenna can be well corrected by the optical fiber coupling system. PMID:26480125

  12. Performance of a single reflective grating-based fiber optic accelerometer

    NASA Astrophysics Data System (ADS)

    Lee, Yeon-Gwan; Kim, Dae-Hyun; Kim, Chun-Gon

    2012-04-01

    This paper presents a single reflective grating-based fiber optic accelerometer that can monitor the low-frequency acceleration of civil engineering structures. A simpler sensor structure was realized by employing a single reflective grating panel and two optical fibers as transceivers rather than the moiré fringe fiber optic accelerometer, which is composed of two gratings and four optical fibers. The simplified layout contributes to resolving the issues of space restraints during installation and complex cabling problems in transmission of fiber optic accelerometers. The measured oscillated displacement and sinusoidal acceleration from the proposed fiber optic sensor demonstrated good agreement with those of a commercial laser displacement sensor and an accelerometer without electromagnetic interference. The developed fiber optic accelerometer can be used in frequency ranges below 4 Hz within a 5% error margin and high sensitivity of 33.33 rad G-1. Furthermore, in comparison with the conventional transmission fiber optic accelerometer design, the proposed scheme's cable design is simplified by 50%.

  13. Fiber optic hot-wire flowmeter based on a metallic coated hybrid long period grating/fiber Bragg grating structure.

    PubMed

    Caldas, Paulo; Jorge, Pedro A S; Rego, Gaspar; Frazão, Orlando; Santos, José Luís; Ferreira, Luís Alberto; Araújo, Francisco

    2011-06-10

    In this work an all-optical hot-wire flowmeter based on a silver coated fiber combining a long period grating and a fiber Bragg grating (FBG) structure is proposed. Light from a pump laser at 1480  nm propagating down the fiber is coupled by the long period grating into the fiber cladding and is absorbed by the silver coating deposited on the fiber surface over the Bragg grating structure. This absorption acts like a hot wire raising the fiber temperature locally, which is effectively detected by the FBG resonance shift. The temperature increase depends on the flow speed of the surrounding air, which has the effect of cooling the fiber. It is demonstrated that the Bragg wavelength shift can be related to the flow speed. A flow speed resolution of 0.08  m/s is achieved using this new configuration. PMID:21673779

  14. Modeling of fiber-optic sensors based on micromechanical vibrations in liquid.

    PubMed

    Prokhorov, A M; Claus, R O; Popov, A L; Tulaikova, T V

    1997-08-01

    Fiber-optic chemical sensors based on optical power absorption or wavelength changes are well known. A new type of sensing element is considered. A micromechanical vibrated fiber-optic tip changes its resonance frequency during its operation. Sensors of this type are simple and convenient and do not require adjustment while in use. They are useful in industry and in medical applications. The action of this sensitive element in a liquid is considered.

  15. Bandwidth-tunable narrowband rectangular optical filter based on stimulated Brillouin scattering in optical fiber.

    PubMed

    Wei, Wei; Yi, Lilin; Jaouën, Yves; Hu, Weisheng

    2014-09-22

    We propose a rectangular optical filter based on stimulated Brillouin scattering (SBS) in optical fiber with bandwidth tuning from 50 MHz to 4 GHz at less than 15-MHz resolution. The rectangular shape of the filter is precisely achieved utilizing digital feedback control of the comb-like pump spectral lines. The passband ripple is suppressed to ~1 dB by mitigating the nonlinearity influences of the comb-like pump lines generated in electrical and optical components and fibers. Moreover a fiber with a single Brillouin peak is employed to further reduce the in-band ripple and the out-of-band SBS gain at the same time. Finally, we analyze the noise performance of the filter at different bandwidth cases and demonstrate the system performance of the proposed filter with 2.1-GHz bandwidth and 19-dB gain by amplifying a 2-GHz orthogonal frequency-division-multiplexing (OFDM) signal with quadrature-phase-shift-keying (QPSK) and 16-quadrature-amplitude-modulation (16-QAM) on each subscriber.

  16. Fiber Optics Instrumentation Development

    NASA Technical Reports Server (NTRS)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  17. Fiber Optics Technology.

    ERIC Educational Resources Information Center

    Burns, William E.

    1986-01-01

    Discusses various applications of fiber optics technology: information systems, industrial robots, medicine, television, transportation, and training. Types of jobs that will be available with fiber optics training (such as electricians and telephone cable installers and splicers) are examined. (CT)

  18. Fiber Optic Calorimetry

    SciTech Connect

    Rudy, C.; Bayliss, S.; Bracken, D.; Bush, J.; Davis, P.

    1997-12-12

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using optical fibers for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processes to allow phase shifts as small as 1 microradian ({micro}rad) to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 radians (rad) of phase shift per milliwatt of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% {sup 240}Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium.

  19. Demonstration of a refractometric sensor based on an optical micro-fiber three-beam interferometer

    PubMed Central

    Han, Chunyang; Ding, Hui; Lv, Fangxing

    2014-01-01

    With diameter close to the wavelength of the guided light and high index contrast between the fiber and the surrounding, an optical micro-fiber shows a variety of interesting waveguiding properties, including widely tailorable optical confinement, strong evanescent fields and waveguide dispersion. Among various micro-fiber applications, optical sensing has been attracting increasing research interest due to its possibilities of realizing miniaturized fiber optic sensors with small footprint, high sensitivity, and low optical power consumption. Typical micro-fiber based sensing structures, including Michelson interferometer, Mach-Zenhder interferometer, Fabry-Perot interferometer, micro-fiber ring resonator, have been proposed. The sensitivity of these structures heavily related to the fraction of evanescent field outside micro-fiber. In this paper, we report the first theoretical and experimental study of a new type of refractometric sensor based on micro-fiber three-beam interferometer. Theoretical and experimental analysis reveals that the sensitivity is not only determined by the fraction of evanescent field outside the micro-fiber but also related to the values of interferometric arms. The sensitivity can be enhanced significantly when the effective lengths of the interferometric arms tends to be equal. We argue that this has great potential for increasing the sensitivity of refractive index detection. PMID:25511687

  20. Fiber optic sensors

    NASA Technical Reports Server (NTRS)

    Hesse, J.; Sohler, W.

    1984-01-01

    A survey of the developments in the field of fiber optics sensor technology is presented along with a discussion of the advantages of optical measuring instruments as compared with electronic sensors. The two primary types of fiber optics sensors, specifically those with multiwave fibers and those with monowave fibers, are described. Examples of each major sensor type are presented and discussed. Multiwave detectors include external and internal fiber optics sensors. Among the monowave detectors are Mach-Zender interferometers, Michelson interferometers, Sagnac interferometers (optical gyroscopes), waveguide resonators, and polarimeter sensors. Integrated optical sensors and their application in spectroscopy are briefly discussed.

  1. Continuous-wave optical fiber based supercontinuum light source

    NASA Astrophysics Data System (ADS)

    Lu, Z. G.; Song, Y.; Liu, J. R.; Zhang, X. P.

    2007-11-01

    We have demonstrated a continuum-wave (CW) supercontinuum (SC) fiber light source with over 1000 nm bandwidth based on a low-cost erbium/ytterbium co-doped double-cladding fiber ring cavity laser. Based on the observation to the SC evolvement, we have experimentally analyzed the detailed contributions of several nonlinear effects within highly nonlinear dispersion-shifted fiber (HNLF). Our experimental results have clearly indicated that four-wave mixing (FWM) and stimulated Raman scattering (SRS) play key roles in CW-pumped SC generation. At the same time, self-phase modulation (SPM) mainly contributes to generate new frequency components near the peaks that appear in the form of the spectra broadening while cross-phase modulation (XPM) enhances the broadening of peaks.

  2. Two Fiber Optical Fiber Thermometry

    NASA Technical Reports Server (NTRS)

    Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.

    2000-01-01

    An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.

  3. Specialty optical fibers: revisited

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2011-10-01

    The paper contains description of chosen aspects of analysis and design of tailored optical fibers. By specialty optical fibers we understand here the fibers which have complex construction and which serve for the functional processing of optical signal rather than long distance transmission. Thus, they are called also instrumentation optical fibers. The following issues are considered: transmission properties, transformation of optical signal, fiber characteristics, fiber susceptibility to external reactions. The technology of tailored optical fibers offers a wider choice of the design tools for the fiber itself, and then various devices made from these fiber, than classical technology of communication optical fibers. The consequence is different fiber properties, nonstandard dimensions and different metrological problems. The price to be paid for wider design possibilities are bigger optical losses of these fibers and weaker mechanical properties, and worse chemical stability. These fibers find their applications outside the field of telecommunications. The applications of instrumentation optical fibers combine other techniques apart from the photonics ones like: electronic, chemical and mechatronic.

  4. Omnidirectional fiber optic tiltmeter

    DOEpatents

    Benjamin, B.C.; Miller, H.M.

    1983-06-30

    A tiltmeter is provided which is useful in detecting very small movements such as earth tides. The device comprises a single optical fiber, and an associated weight affixed thereto, suspended from a support to form a pendulum. A light source, e.g., a light emitting diode, mounted on the support transmits light through the optical fiber to a group of further optical fibers located adjacent to but spaced from the free end of the single optical fiber so that displacement of the single optical fiber with respect to the group will result in a change in the amount of light received by the individual optical fibers of the group. Photodetectors individually connectd to the fibers produce corresponding electrical outputs which are differentially compared and processed to produce a resultant continuous analog output representative of the amount and direction of displacement of the single optical fiber.

  5. Optical fiber sensor based on Bloch surface wave in photonic crystals.

    PubMed

    Tan, Xiao-Jie; Zhu, Xiao-Song

    2016-07-11

    A new optical fiber sensor based on Bloch surface wave was theoretically proposed. An omnidirectional one-dimensional photonic crystal was designed as the multilayer coated on the outer surface of the optical fiber. Taking advantages of the omnidirectional reflection band, there is only surface mode resonance in the transmission spectrum, while guided mode resonance is avoided. The performance of the designed fiber sensor was analyzed theoretically with a ray transmission model. The presented sensor has comparable sensitivity but much higher figure of merit than other fiber sensors. The resolution can reach about 10-6 RIU or even higher. PMID:27410871

  6. Optical fiber amplifiers based on PbS/CdS QDs modified by polymers.

    PubMed

    Sun, Xiaolan; Xie, Libin; Zhou, Wei; Pang, Fufei; Wang, Tingyun; Kost, Alan R; An, Zesheng

    2013-04-01

    Optical fiber amplifiers based on PbS/CdS semiconductor quantum dots (QDs) modified by an amphiphilic polymer were demonstrated. Well-defined QDs and an amphiphilic copolymer were first prepared and the amphiphilic copolymer was then used to disperse the QDs into silica sol to allow uniform and reproducible incorporation of QDs into the silica coating of the optical fibers. QD-doped silica sol was deposited on the fusion tapered fiber coupler via dip-coating. A 1550 nm semiconductor light emitting diode as the signal source and a 980 nm laser diode as the pump source were injected into the fiber coupler simultaneously. Through evanescent wave excitation, a signal gain as high as 8 dB was obtained within the wavelength range between 1450 and 1650 nm. In addition, the optical fiber amplifiers based on PbS/CdS QDs showed enhanced thermal stability when compared to amplifiers based on PbS QDs.

  7. Optical fiber amplifiers based on PbS/CdS QDs modified by polymers.

    PubMed

    Sun, Xiaolan; Xie, Libin; Zhou, Wei; Pang, Fufei; Wang, Tingyun; Kost, Alan R; An, Zesheng

    2013-04-01

    Optical fiber amplifiers based on PbS/CdS semiconductor quantum dots (QDs) modified by an amphiphilic polymer were demonstrated. Well-defined QDs and an amphiphilic copolymer were first prepared and the amphiphilic copolymer was then used to disperse the QDs into silica sol to allow uniform and reproducible incorporation of QDs into the silica coating of the optical fibers. QD-doped silica sol was deposited on the fusion tapered fiber coupler via dip-coating. A 1550 nm semiconductor light emitting diode as the signal source and a 980 nm laser diode as the pump source were injected into the fiber coupler simultaneously. Through evanescent wave excitation, a signal gain as high as 8 dB was obtained within the wavelength range between 1450 and 1650 nm. In addition, the optical fiber amplifiers based on PbS/CdS QDs showed enhanced thermal stability when compared to amplifiers based on PbS QDs. PMID:23571911

  8. Tunable multiwavelength erbium-doped fiber laser based on nonlinear optical loop mirror and birefringence fiber filter

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Quan, Mingran; Tian, Jiajun; Yao, Yong

    2015-05-01

    A tunable multiwavelength erbium-doped fiber laser (MWEDFL) based on nonlinear optical loop mirror (NOLM) and tunable birefringence fiber filter (BFF) is proposed and demonstrated. By combination of intensity-dependent loss modulation induced by NOLM and pump power adjustment, the proposed laser can achieve independent control over the number of lasing lines, without affecting other important characteristics such as channel spacing and peak location. In addition, the laser allows wavelength tuning with both the peak location and the spectral range of lasing lines controllable. Specifically, the peak location of lasing lines can be controlled to scan the whole spectral range between adjacent channels of comb filter by adjusting the BFF. Moreover, the spectral range of lasing lines can be controlled by adjusting NOLM. This tunable MWEDFL may be useful for fiber-optic communication and fiber-optic sensing.

  9. Intraoral fiber optic-based diagnostic for periodontal disease

    SciTech Connect

    Johnson, P W; Gutierrez, D M; Everett, M J; Brown, S B; Langry, K C; Colston, B W; Roe, J N

    2000-01-21

    The purpose of this initial study was to begin development of a new, objective diagnostic instrument that will allow simultaneous quantitation of multiple proteases within a single periodontal pocket using a chemical fiber optic sensor. This approach could potentially be adapted to use specific antibodies and chemiluminescence to detect and quantitate virtually any compound and compare concentrations of different compounds within the same periodontal pocket. The device could also be used to assay secretions in salivary ducts or from a variety of wounds. The applicability is, therefore, not solely limited to dentistry and the device would be important both for clinical diagnostics and as a research tool.

  10. Intraoral fiber-optic-based diagnostic for periodontal disease

    NASA Astrophysics Data System (ADS)

    Colston, Bill W., Jr.; Gutierrez, Dora M.; Everett, Matthew J.; Brown, Steve B.; Langry, Kevin C.; Cox, Weldon R.; Johnson, Paul W.; Roe, Jeffrey N.

    2000-05-01

    The purpose of this initial study was to begin development of a new, objective diagnostic instrument that will allow simultaneous quantitation of multiple proteases within a single periodontal pocket using a chemical fiber optic senor. This approach could potentially be adapted to use specific antibodies and chemiluminescence to detect and quantitate virtually any compound and compare concentrations of different compounds within the same periodontal pocket. The device could also be used to assay secretions in salivary ducts or from a variety of wounds. The applicability is, therefore, not solely limited to dentistry and the device would be important both for clinical diagnostics and as a research too.

  11. Fiber optic based heart-rate and pulse pressure shape monitor

    NASA Astrophysics Data System (ADS)

    Kokkinos, D.; Dehipawala, S.; Holden, T.; Cheung, E.; Musa, M.; Tremberger, G., Jr.; Schneider, P.; Lieberman, D.; Cheung, T.

    2012-01-01

    Macro-bending fiber optic based heart-rate and pulse pressure shape monitors have been fabricated and tested for non-invasive measurement. Study of fiber bending loss and its stability and variations are very important especially for sensor designs based on optical fiber bending. Wavelengths from 1300 nm to 1550 nm have been used with fabrication based on multimode fiber, single mode fiber, and photonic crystal fiber. The smallest studied curvature would demand the use of single mode standard fibers. The collected data series show high quality suitable for random series analysis. Fractal property of optically measured pulse pressure data has been observed to correlate with physical activity. Correlation to EKG signal suggests that the fabricated monitors are capable of measuring the differential time delays at wrist and leg locations. The difference in time delay could be used to formulate a velocity parameter for diagnostics. The pulse shape information collected by the fiber sensor provides additional parameters for the analysis of the fractal nature of the heart. The application to real time measurement of blood vessel stiffness with this optical non-invasive fiber sensor is discussed.

  12. Fiber optical based parametric amplifier in a highly nonlinear fiber (HNLF) by using a ring configuration

    NASA Astrophysics Data System (ADS)

    Ahmad, H.; Awang, N. A.; Harun, S. W.

    2011-07-01

    A four-wave mixing (FWM) effect in a fiber-based optical parametric amplifier (FOPA) is reported. The novelty in the setup used is a ring cavity as opposed to the commonly used method of linear cavity. This reduces the required pump power, P p, for the amplification of the signals and also the generation of the idlers. The achieved gain for signal amplification is about 30 dB with a P p of 25 dBm. It has a flat gain response within range of 22 nm from 1570 nm to 1592 nm, with an average value of 28 dB within the 3 dB region. The average conversion efficiency is approximately -5 dB, with a peak value of -4 dB within the 2 dB region, with a range of 24 nm from 1576 nm to 1600 nm.

  13. Recent developments in fiber-based optical frequency comb and its applications

    NASA Astrophysics Data System (ADS)

    Xia, Wei; Chen, Xuzong

    2016-04-01

    Fiber-based optical frequency combs, characterized by compact configuration and outstanding optical properties, have been developed into state-of-the-art precision instruments which are no longer used just for optical frequency metrology, but for a number of applications, including optical clocks, attosecond science, exoplanet searches, medical diagnostics, physicochemical processes control and advanced manufacturing. This short perspective presents some of the milestones and highlights in the evolution of fiber-based optical frequency combs and the technical revolution that are brought by them for a wide range of applications. Along the way, both the challenges and opportunities in the future development of the fiber-based optical frequency comb technology have been described as well.

  14. Assembly of optical fibers for the connection of polymer-based waveguide

    NASA Astrophysics Data System (ADS)

    Ansel, Yannick; Grau, Daniel; Holzki, Markus; Kraus, Silvio; Neumann, Frank; Reinhard, Carsten; Schmitz, Felix

    2003-03-01

    This paper describes the realization of polymer-based optical structures and the assembly and packaging strategy to connect optical fiber ribbons to the waveguides. For that a low cost fabrication process using the SU-8TM thick photo-resist is presented. This process consists in the deposition of two photo-structurized resist layers filled up with epoxy glue realising the core waveguide. For the assembly, a new modular vacuum gripper was realised and installed on an automatic pick and place assembly robot to mount precisely and efficiently the optical fibers in the optical structures. First results have shown acceptable optical propagation loss for the complete test structure.

  15. Performance analysis of fiber-based free-space optical communications with coherent detection spatial diversity.

    PubMed

    Li, Kangning; Ma, Jing; Tan, Liying; Yu, Siyuan; Zhai, Chao

    2016-06-10

    The performances of fiber-based free-space optical (FSO) communications over gamma-gamma distributed turbulence are studied for multiple aperture receiver systems. The equal gain combining (EGC) technique is considered as a practical scheme to mitigate the atmospheric turbulence. Bit error rate (BER) performances for binary-phase-shift-keying-modulated coherent detection fiber-based free-space optical communications are derived and analyzed for EGC diversity receptions through an approximation method. To show the net diversity gain of a multiple aperture receiver system, BER performances of EGC are compared with a single monolithic aperture receiver system with the same total aperture area (same average total incident optical power on the aperture surface) for fiber-based free-space optical communications. The analytical results are verified by Monte Carlo simulations. System performances are also compared for EGC diversity coherent FSO communications with or without considering fiber-coupling efficiencies. PMID:27409022

  16. Performance analysis of fiber-based free-space optical communications with coherent detection spatial diversity.

    PubMed

    Li, Kangning; Ma, Jing; Tan, Liying; Yu, Siyuan; Zhai, Chao

    2016-06-10

    The performances of fiber-based free-space optical (FSO) communications over gamma-gamma distributed turbulence are studied for multiple aperture receiver systems. The equal gain combining (EGC) technique is considered as a practical scheme to mitigate the atmospheric turbulence. Bit error rate (BER) performances for binary-phase-shift-keying-modulated coherent detection fiber-based free-space optical communications are derived and analyzed for EGC diversity receptions through an approximation method. To show the net diversity gain of a multiple aperture receiver system, BER performances of EGC are compared with a single monolithic aperture receiver system with the same total aperture area (same average total incident optical power on the aperture surface) for fiber-based free-space optical communications. The analytical results are verified by Monte Carlo simulations. System performances are also compared for EGC diversity coherent FSO communications with or without considering fiber-coupling efficiencies.

  17. Inspection of defects in optical fibers based on back-propagation neural networks

    NASA Astrophysics Data System (ADS)

    Liu, Yange; Liu, Wei; Zhang, Yimo

    2001-11-01

    As the application of optical fiber is boasting, higher quality optical fibers are required in some applied fields. Some pinhole defects such as air bubbles, caused during the manufacture of optical fiber, may have severe (or fatal) impacts on precise instruments because of affecting optical fiber's toughness and signal propagating along the fiber. Therefore, it is very important to detecting the defects in optical fibers using an effective, non-touched, on-line and fast method. In this paper, a novel defect-detection method based on back-propagation (BP) neural network is proposed. Methods on preprocessing and extracting feature from the high-dimension source data obtained by the optical device are investigated. A setting threshold operation and a cosine transformation method are proposed being used to filter the background noise from and reduce dimension of the source data respectively. The experimental results exhibit the processing methods are very effective on doing them. Resilient BP method is considered as network training algorithm because of its fast convergence. The experimental results given for training sets and testing sets denote that the method with BP neural network is competent for optical fiber detection.

  18. Fiber optic vibration sensor

    DOEpatents

    Dooley, J.B.; Muhs, J.D.; Tobin, K.W.

    1995-01-10

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity. 2 figures.

  19. Fiber optic vibration sensor

    DOEpatents

    Dooley, Joseph B.; Muhs, Jeffrey D.; Tobin, Kenneth W.

    1995-01-01

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity.

  20. Fiber optic security systems for land- and sea-based applications

    NASA Astrophysics Data System (ADS)

    Crickmore, Roger I.; Nash, Phillip J.; Wooler, John P. F.

    2004-11-01

    QinetiQ have been developing security systems for land and sea applications using interferometric based fiber optic sensors. We have constructed and tested a multi-channel fiber-optic hydrophone seabed array, which is designed for maritime surveillance and harbor security applications. During a recent trial it was deployed in a coastal location for an 8 day period during which it successfully detected and tracked a wide variety of traffic. The array can be interfaced with an open architecture processing system that carries out automatic detection and tracking of targets. For land based applications we have developed a system that uses high sensitivity fiber optic accelerometers and buried fiber optic cable as sensor elements. This uses the same opto-electronic interrogator as the seabed array, so a combined land and sea security system for coastal assets could be monitored using a single interrogator.

  1. Fiber optic calorimetry

    SciTech Connect

    Rudy, C.; Bayliss, S.; Bracken, D.; Bush, J.; Davis, P.

    1998-01-01

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using fiber for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processing to allow phase shifts as small as 1 microradian ({mu}rad) to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 radians (rad) of phase shift per milliwatt of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% {sup 240}Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium.

  2. Fabrication of Optical Fiber Devices

    NASA Astrophysics Data System (ADS)

    Andres, Miguel V.

    In this paper we present the main research activities of the Laboratorio de Fibras Opticas del Instituto de Ciencia de los Materiales de la Universidad de Valencia. We show some of the main results obtained for devices based on tapered fibers, fiber Bragg gratings, acousto-optic effects and photonic crystal fibers.

  3. Ionizing Radiation Detectors Based on Ge-Doped Optical Fibers Inserted in Resonant Cavities

    PubMed Central

    Avino, Saverio; D’Avino, Vittoria; Giorgini, Antonio; Pacelli, Roberto; Liuzzi, Raffaele; Cella, Laura; De Natale, Paolo; Gagliardi, Gianluca

    2015-01-01

    The measurement of ionizing radiation (IR) is a crucial issue in different areas of interest, from environmental safety and industrial monitoring to aerospace and medicine. Optical fiber sensors have recently proven good candidates as radiation dosimeters. Here we investigate the effect of IR on germanosilicate optical fibers. A piece of Ge-doped fiber enclosed between two fiber Bragg gratings (FBGs) is irradiated with gamma radiation generated by a 6 MV medical linear accelerator. With respect to other FBG-based IR dosimeters, here the sensor is only the bare fiber without any special internal structure. A near infrared laser is frequency locked to the cavity modes for high resolution measurement of radiation induced effects on the fiber optical parameters. In particular, we observe a variation of the fiber thermo-optic response with the radiation dose delivered, as expected from the interaction with Ge defect centers, and demonstrate a detection limit of 360 mGy. This method can have an impact in those contexts where low radiation doses have to be measured both in small volumes or over large areas, such as radiation therapy and radiation protection, while bare optical fibers are cheap and disposable. PMID:25686311

  4. Ferrofluid-based optical fiber magnetic field sensor fabricated by femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Song, Yang; Yuan, Lei; Hua, Liwei; Zhang, Qi; Lei, Jincheng; Huang, Jie; Xiao, Hai

    2016-02-01

    Optofluid system has been more and more attractive in optical sensing applications such as chemical and biological analysis as it incorporates the unique features from both integrated optics and microfluidics. In recent years, various optofluid based structures have been investigated in/on an optical fiber platform which is referred to as "lab in/on a fiber". Among those integrated structures, femto-second laser micromaching technique plays an important role due to its high precision fabrication, flexible design, 3D capability, and compatible with other methods. Here we present a ferrofluid based optical fiber magnetic field sensor fabricated by femtosecond (fs) laser irradiation .With the help of fs laser micromaching technique, a micro-reservoir made by capillary tube assembled in a single mode optical fiber could be fabricated. The micro-reservoir functions as a fiber inline Fabry-Perot (FP) cavity which is filled by ferrofluid liquid. The refractive index of the ferrofluid varies as the surrounding magnetic field strength changes, which can be optically probed by the FP interferometer. A fringe visibility of up to 30 dB can be achieved with a detection limit of around 0.4 Gausses. Due to the fabrication, micro-reservoirs can be assembled with optical fiber and distinguished through a microwave-photonic interrogation system. A quasi-distributed magnetic field sensing application has been demonstrated with a high spatial resolution of around 10 cm.

  5. Tunable multi-wavelength fiber lasers based on an Opto-VLSI processor and optical amplifiers.

    PubMed

    Xiao, Feng; Alameh, Kamal; Lee, Yong Tak

    2009-12-01

    A multi-wavelength tunable fiber laser based on the use of an Opto-VLSI processor in conjunction with different optical amplifiers is proposed and experimentally demonstrated. The Opto-VLSI processor can simultaneously select any part of the gain spectrum from each optical amplifier into its associated fiber ring, leading to a multiport tunable fiber laser source. We experimentally demonstrate a 3-port tunable fiber laser source, where each output wavelength of each port can independently be tuned within the C-band with a wavelength step of about 0.05 nm. Experimental results demonstrate a laser linewidth as narrow as 0.05 nm and an optical side-mode-suppression-ratio (SMSR) of about 35 dB. The demonstrated three fiber lasers have excellent stability at room temperature and output power uniformity less than 0.5 dB over the whole C-band.

  6. Inspection technique for cleaved optical fiber ends based on Fabry-Perot resonator

    NASA Astrophysics Data System (ADS)

    Kihara, Mitsuru; Watanabe, Hiroshi; Yajima, Yuichi; Toyonaga, Masanobu

    2011-05-01

    We present a novel inspection technique for cleaved optical fiber ends based on the Fabry-Perot resonator. The technique uses mainly laser diodes, an optical power meter, 3-dB coupler, and XY lateral adjustment stage. It can be achieved more easily than current imaging processing that uses a charge coupled device camera and video monitor. The inspected fiber end is considered failed or successful depending on whether both the measured return losses from the fiber end at two wavelengths are equal to ~14.7 dB. Experimentally obtained fiber end images were in good agreement with scanning electron microscope observation images. Thus, the proposed technique provides a simple and cost-effective way to inspect cleaved optical fiber ends.

  7. Plasmonic sensors based on doubly-deposited tapered optical fibers.

    PubMed

    González-Cano, Agustín; Navarrete, María-Cruz; Esteban, Óscar; Díaz-Herrera, Natalia

    2014-03-10

    A review of the surface plasmon resonance (SPR) transducers based on tapered fibers that have been developed in the last years is presented. The devices have proved their good performance (specifically, in terms of sensitivity) and their versatility and they are a very good option to be considered as basis for any kind of chemical and biological sensor. The technology has now reached its maturity and here we summarize some of the characteristics of the devices produced.

  8. Plasmonic Sensors Based on Doubly-Deposited Tapered Optical Fibers

    PubMed Central

    González-Cano, Agustín; Navarrete, María-Cruz; Esteban, Óscar; Díaz-Herrera, Natalia

    2014-01-01

    A review of the surface plasmon resonance (SPR) transducers based on tapered fibers that have been developed in the last years is presented. The devices have proved their good performance (specifically, in terms of sensitivity) and their versatility and they are a very good option to be considered as basis for any kind of chemical and biological sensor. The technology has now reached its maturity and here we summarize some of the characteristics of the devices produced. PMID:24618726

  9. Fiber optic micro accelerometer

    SciTech Connect

    Swierkowski, Steve P.

    2005-07-26

    An accelerometer includes a wafer, a proof mass integrated into the wafer, at least one spring member connected to the proof mass, and an optical fiber. A Fabry-Perot cavity is formed by a partially reflective surface on the proof mass and a partially reflective surface on the end of the optical fiber. The two partially reflective surfaces are used to detect movement of the proof mass through the optical fiber, using an optical detection system.

  10. Sensors based on recycled optical fibers destroyed by the catastrophic fuse effect

    NASA Astrophysics Data System (ADS)

    André, Paulo S.; Domingues, M. F.; Antunes, Paulo; Alberto, Nélia; Frias, Ana Rita; Ferreira, R. A. S.

    2014-08-01

    In the last decades the fiber Bragg gratings (FBG) and Fabry-Perot Interferometer (FPI) micro cavities based sensors have become one of the most attractive optical fiber sensing technologies. However, its production requires a significant economical investment. We propose a cost effective solution based on micro cavity generated by the recycling of optical fibers destroyed through the catastrophic fuse effect. This technique considerably reduces the experimental complexity and the production costs. In this paper, the application of these sensors in the monitoring of several parameters, such as refractive index, pressure, strain and temperature is presented.

  11. Optical Fiber Protection

    NASA Technical Reports Server (NTRS)

    1999-01-01

    F&S Inc. developed and commercialized fiber optic and microelectromechanical systems- (MEMS) based instrumentation for harsh environments encountered in the aerospace industry. The NASA SBIR programs have provided F&S the funds and the technology to develop ruggedized coatings and coating techniques that are applied during the optical fiber draw process. The F&S optical fiber fabrication facility and developed coating methods enable F&S to manufacture specialty optical fiber with custom designed refractive index profiles and protective or active coatings. F&S has demonstrated sputtered coatings using metals and ceramics and combinations of each, and has also developed techniques to apply thin coatings of specialized polyimides formulated at NASA Langley Research Center. With these capabilities, F&S has produced cost-effective, reliable instrumentation and sensors capable of withstanding temperatures up to 800? C and continues building commercial sales with corporate partners and private funding. More recently, F&S has adapted the same sensing platforms to provide the rapid detection and identification of chemical and biological agents

  12. The Fiber Optic Connection.

    ERIC Educational Resources Information Center

    Reese, Susan

    2003-01-01

    Describes the fiber optics programs at the Career and Technical Center in Berlin, Pennsylvania and the Charles S. Monroe Technology Center in Loudoun County, Virginia. Discusses the involvement of the Fiber Optic Association with education, research and development, manufacturing, sales, distribution, installation, and maintenance of fiber optic…

  13. Fiber optic control system integration

    NASA Technical Reports Server (NTRS)

    Poppel, G. L.; Glasheen, W. M.; Russell, J. C.

    1987-01-01

    A total fiber optic, integrated propulsion/flight control system concept for advanced fighter aircraft is presented. Fiber optic technology pertaining to this system is identified and evaluated for application readiness. A fiber optic sensor vendor survey was completed, and the results are reported. The advantages of centralized/direct architecture are reviewed, and the concept of the protocol branch is explained. Preliminary protocol branch selections are made based on the F-18/F404 application. Concepts for new optical tools are described. Development plans for the optical technology and the described system are included.

  14. Quantum cryptography using optical fibers.

    PubMed

    Franson, J D; Lives, H

    1994-05-10

    Quantum cryptography permits the transmission of secret information whose security is guaranteed by the uncertainty principle. An experimental system for quantum crytography is implemented based on the linear polarization of single photons transmitted by an optical fiber. Polarization-preserving optical fiber and a feedback loop are employed to maintain the state of polarization. Error rates of less than 0.5% are obtained.

  15. ZnO nanoparticles based fiber optic gas sensor

    NASA Astrophysics Data System (ADS)

    Narasimman, S.; Balakrishnan, L.; Meher, S. R.; Sivacoumar, R.; Alex, Z. C.

    2016-05-01

    In this work, ZnO nanoparticles were synthesized by simple aqueous chemical route method. The synthesized ZnO nanoparticles were characterized by X-ray diffraction andscanning electron microscope. The sensitivity of the nanoparticles was studied for different gases like acetone, ammonia andethanol in terms of variation in spectral light intensity. The XRD and SEM analysis confirms the formation of hexagonal wurtzite structure with the grain size of 11.2 nm. The small cladding region of the optical fiber was replaced with the synthesized nanoparticles. The light spectrum was recorded for different gas concentrations. The synthesized nanoparticles showed high sensitivity towards ammonia in low ppm level and acetone in high ppm level.

  16. Alloy 600 corrosion monitor based on fiber optic strain gage

    SciTech Connect

    Berthold, J.W.; Passell, T.O.

    1996-10-01

    There is a real need to measure strain at high temperatures in many applications. For example, in nuclear steam generators that contain Alloy 600 tubing, intergranular attack (IGA) and stress corrosion cracking (SCC) are significant problems. Measuring strain in this tubing might provide an early warning of the onset of IGA/SCC and the rate of SCC progression. This report describes a method to measure the onset of IGA and the progression of SCC that occurs at a crevice on the inside surface of a tube. The measurement is accomplished by monitoring strain on the outside surface of the tube using welded, fiber-optic strain gages. In an actual application of this approach in a power plant, the strain gages must survive temperatures above 600 F for extended periods (months or years) and must provide repeatable measurements.

  17. Research Progress on F-P Interference-Based Fiber-Optic Sensors.

    PubMed

    Huang, Yi Wen; Tao, Jin; Huang, Xu Guang

    2016-01-01

    We review our works on Fabry-Perot (F-P) interferometric fiber-optic sensors with various applications. We give a general model of F-P interferometric optical fiber sensors including diffraction loss caused by the beam divergence and the Gouy phase shift. Based on different structures of an F-P cavity formed on the end of a single-mode fiber, the F-P interferometric optical sensor has been extended to measurements of the refractive index (RI) of liquids and solids, temperature as well as small displacement. The RI of liquids and solids can be obtained by monitoring the fringe contrast related to Fresnel reflections, while the ambient temperature and small displacement can be obtained by monitoring the wavelength shift of the interference fringes. The F-P interferometric fiber-optic sensors can be used for many scientific and technological applications. PMID:27598173

  18. Research Progress on F-P Interference-Based Fiber-Optic Sensors.

    PubMed

    Huang, Yi Wen; Tao, Jin; Huang, Xu Guang

    2016-09-03

    We review our works on Fabry-Perot (F-P) interferometric fiber-optic sensors with various applications. We give a general model of F-P interferometric optical fiber sensors including diffraction loss caused by the beam divergence and the Gouy phase shift. Based on different structures of an F-P cavity formed on the end of a single-mode fiber, the F-P interferometric optical sensor has been extended to measurements of the refractive index (RI) of liquids and solids, temperature as well as small displacement. The RI of liquids and solids can be obtained by monitoring the fringe contrast related to Fresnel reflections, while the ambient temperature and small displacement can be obtained by monitoring the wavelength shift of the interference fringes. The F-P interferometric fiber-optic sensors can be used for many scientific and technological applications.

  19. Distributed beam loss monitor based on the Cherenkov effect in an optical fiber

    NASA Astrophysics Data System (ADS)

    Maltseva, Yu; Emanov, F. A.; Petrenko, A. V.; Prisekin, V. G.

    2015-05-01

    This review discusses a distributed beam loss monitor which is based on the Cherenkov effect in an optical fiber and which has been installed at the VEPP-5 Injection Complex at the Budker Institute of Nuclear Physics. The principle of the device operation consists in detecting the Cherenkov radiation generated in an optical fiber by relativistic charged particles that are produced in an electromagnetic shower when highly relativistic beam particles (electrons or positrons) hit the accelerator vacuum chamber wall. Our experiments used a photomultiplier tube (PMT) to detect the Cherenkov light. Knowing when the PMT signal arrives tells us where the beam loss occurs. Using a 20-m-long optical fiber allowed a detector spatial resolution of 3 m. The way to improve the resolution is to optimize the monitor working conditions and optical fiber and PMT parameters, potentially leading to a resolution of as fine as 0.5 m according to our estimates.

  20. Research Progress on F-P Interference—Based Fiber-Optic Sensors

    PubMed Central

    Huang, Yi Wen; Tao, Jin; Huang, Xu Guang

    2016-01-01

    We review our works on Fabry-Perot (F-P) interferometric fiber-optic sensors with various applications. We give a general model of F-P interferometric optical fiber sensors including diffraction loss caused by the beam divergence and the Gouy phase shift. Based on different structures of an F-P cavity formed on the end of a single-mode fiber, the F-P interferometric optical sensor has been extended to measurements of the refractive index (RI) of liquids and solids, temperature as well as small displacement. The RI of liquids and solids can be obtained by monitoring the fringe contrast related to Fresnel reflections, while the ambient temperature and small displacement can be obtained by monitoring the wavelength shift of the interference fringes. The F-P interferometric fiber-optic sensors can be used for many scientific and technological applications. PMID:27598173

  1. A new optical antennas based on fiber coupling system and aspherical optical system

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Tian, Shaohua

    2013-08-01

    Space Laser communication is a new technology in recent years of optical communications, optical antenna is a communications front receiving system, compose of the optical antenna receiver, optical fiber coupling lenses. Optical antenna to receive as much as possible the signal light from the target of free space, In this paper, 10.6μm wavelength of infrared light for communication wave, we use spherical mirror and aspheric lens combination of the system, Design of large diameter concave mirror to collect more laser energy, After another spherical convex mirror reflection again to aspherical lens, then coupled into the fiber. The aspheric lens can be a good feature to correct aberration, so this design has less transmission loss and high coupling efficiency. Using Zemax software, we setting reasonable energy analysis and image quality evaluation, design spherical mirrors and aspherical refractive lenses optical system, has good optical performance and economy, can be apply on the atmospheric Laser communication the receiving device.

  2. Modal interference fiber optic sensor

    NASA Astrophysics Data System (ADS)

    Kondrat, Marcin; Szustakowski, Mieczyslaw; Gorka, Andrzej; Palka, Norbert; Zyczkowski, Marek; Niznik, Sylwester

    2004-11-01

    Modal Interference Fiber Optic Sensor (MIFOS) for permanent monitoring of the network is presented. A mechanical disturbance of a fiber cable influences on intensity distribution at the end-face of a multimode fiber. Variations in interfering images are analysed by means of a digital processing unit that determines the alarm in case of unauthorized access along the whole length of the fiber. A contrast of an interference pattern and a procedure of fiber optic selection for the sensor are shown. A simple criterion that bases on changes of local maximums positions of the interference patterns is applied. A laboratory arrangement of the sensor and its experimental research are shown.

  3. Annealing of silicon optical fibers

    NASA Astrophysics Data System (ADS)

    Gupta, N.; McMillen, C.; Singh, R.; Podila, R.; Rao, A. M.; Hawkins, T.; Foy, P.; Morris, S.; Rice, R.; Poole, K. F.; Zhu, L.; Ballato, J.

    2011-11-01

    The recent realization of silicon core optical fibers has the potential for novel low insertion loss rack-to-rack optical interconnects and a number of other uses in sensing and biomedical applications. To the best of our knowledge, incoherent light source based rapid photothermal processing (RPP) was used for the first time to anneal glass-clad silicon core optical fibers. X-ray diffraction examination of the silicon core showed a considerable enhancement in the length and amount of single crystallinity post-annealing. Further, shifts in the Raman frequency of the silicon in the optical fiber core that were present in the as-drawn fibers were removed following the RPP treatment. Such results indicate that the RPP treatment increases the local crystallinity and therefore assists in the reduction of the local stresses in the core, leading to more homogenous fibers. The dark current-voltage characteristics of annealed silicon optical fiber diodes showed lower leakage current than the diodes based on as-drawn fibers. Photons in UV and vacuum ultraviolet (VUV) regions play a very important role in improving the bulk and carrier transport properties of RPP-treated silicon optical fibers, and the resultant annealing permits a path forward to in situ enhancement of the structure and properties of these new crystalline core optical fibers.

  4. Surface plasmon resonance based fiber optic detection of chlorine utilizing polyvinylpyrolidone supported zinc oxide thin films.

    PubMed

    Tabassum, Rana; Gupta, Banshi D

    2015-03-21

    A highly sensitive chlorine sensor for an aqueous medium is fabricated using an optical fiber surface plasmon resonance (OFSPR) system. An OFSPR-based chlorine sensor is designed with a multilayer-type platform by zinc oxide (ZnO) and polyvinylpyrollidone (PVP) film morphology manipulations. Among all the methodologies of transduction reported in the field of solid state chemical and biochemical sensing, our attention is focused on the Kretschmann configuration optical fiber sensing technique using the mechanism of surface plasmon resonance. The optical fiber surface plasmon resonance (SPR) chlorine sensor is developed using a multimode optical fiber with the PVP-supported ZnO film deposited over a silver-coated unclad core of the fiber. A spectral interrogation mode of operation is used to characterize the sensor. In an Ag/ZnO/PVP multilayer system, the absorption of chlorine in the vicinity of the sensing region is performed by the PVP layer and the zinc oxide layer enhances the shift in resonance wavelength. It is, experimentally, demonstrated that the SPR wavelength shifts nonlinearly towards the red side of the visible region with an increase in the chlorine concentration in an aqueous medium while the sensitivity of the sensor decreases linearly with an increase in the chlorine concentration. As the proposed sensor utilizes an optical fiber, it possesses the additional advantages of fiber such as less signal degradation, less susceptibility to electromagnetic interference, possibility of remote sensing, probe miniaturization, probe re-usability, online monitoring, small size, light weight and low cost.

  5. A loss-based, magnetic field sensor implemented in a ferrofluid infiltrated microstructured polymer optical fiber

    SciTech Connect

    Candiani, A.; Argyros, A.; Leon-Saval, S. G.; Lwin, R.; Selleri, S.; Pissadakis, S.

    2014-03-17

    We report an in-fiber magnetic field sensor based on magneto-driven optical loss effects, while being implemented in a ferrofluid infiltrated microstructured polymer optical fiber. We demonstrate that magnetic field flux changes up to 2000 gauss can be detected when the magnetic field is applied perpendicular to the fiber axis. In addition, the sensor exhibits high polarization sensitivity for the interrogated wavelengths, providing the possibility of both field flux and direction measurements. The underlying physical and guidance mechanisms of this sensing transduction are further investigated using spectrophotometric, light scattering measurements, and numerical simulations, suggesting photonic Hall effect as the dominant physical, transducing mechanism.

  6. Dispersion-flattened-fiber based optical thresholder for multiple-access-interference suppression in OCDMA system.

    PubMed

    Wang, Xu; Hamanaka, Taro; Wada, Naoya; Kitayama, Ken-Ichi

    2005-07-11

    An optical thresholding technique based on super-continuum generation in dispersion flattened fiber is proposed and experimentally demonstrated to enable data-rate detection in optical code division multiple access networks. The proposed scheme exhibits an excellent discrimination between a desired signal and interference signals with features of pulse reshaping, low insertion loss, polarization independency as well as reasonable operation power.

  7. Doppler effect-based fiber-optic sensor and its application in ultrasonic detection

    NASA Astrophysics Data System (ADS)

    Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Shirai, Takehiro

    2009-06-01

    Based on the Doppler effect of light wave transmission in optical fiber, Doppler effect-based fiber-optic (FOD) sensor possesses outstanding advantages in acquiring vibration/acoustic waves with high sensitivity. Furthermore, when shape of the FOD sensor was properly selected, its sensitivity was bonding direction-independent, namely non-directionality. In this paper, characteristics of the FOD sensor were investigated for the purpose of ultrasonic detection. A piezoelectric wafer was applied as an actuator to excite Lamb waves, a kind of ultrasonic wave, in an aluminum-alloy plate. Features of the ultrasonic wave signals, collected using a number of spiral FOD sensors with various inner diameters and outer diameters, were compared to investigate characteristics of FOD sensor. Amplitude curves of the FOD sensors were hereby obtained for the future applications in ultrasonic acquisition. The results demonstrated that sensitivity of the spiral FOD sensor with longer optical fiber length was higher than that with shorter fiber length.

  8. Fiber optic direct Raman imaging system based on a hollow-core fiber bundle

    NASA Astrophysics Data System (ADS)

    Inoue, S.; Katagiri, T.; Matsuura, Y.

    2015-03-01

    A Raman imaging system which combined a hollow fiber bundle and a direct imaging technique was constructed for high-speed endoscopic Raman imaging. The hollow fiber bundle is fabricated by depositing a silver thin film on the inner surface of pre-drawn glass capillary bundle. It performs as a fiber optic probe which transmits a Raman image with high signal-to-noise ratio because the propagating light is confined into the air core inducing little light scattering. The field of view on the sample is uniformly irradiated by the excitation laser light via the probe. The back-scattered image is collected by the probe and captured directly by an image sensor. A pair of thin film tunable filters is used to select target Raman band. This imaging system enables flexible and high-speed Raman imaging of biological tissues.

  9. Fiber optic laser rod

    DOEpatents

    Erickson, G.F.

    1988-04-13

    A laser rod is formed from a plurality of optical fibers, each forming an individual laser. Synchronization of the individual fiber lasers is obtained by evanescent wave coupling between adjacent optical fiber cores. The fiber cores are dye-doped and spaced at a distance appropriate for evanescent wave coupling at the wavelength of the selected dye. An interstitial material having an index of refraction lower than that of the fiber core provides the optical isolation for effective lasing action while maintaining the cores at the appropriate coupling distance. 2 figs.

  10. An Optical Fiber Lateral Displacement Measurement Method and Experiments Based on Reflective Grating Panel

    PubMed Central

    Li, Yuhe; Guan, Kaisen; Hu, Zhaohui; Chen, Yanxiang

    2016-01-01

    An optical fiber sensing method based on a reflective grating panel is demonstrated for lateral displacement measurement. The reflective panel is a homemade grating with a periodic variation of its refractive index, which is used to modulate the reflected light intensity. The system structure and operation principle are illustrated in detail. The intensity calculation and simulation of the optical path are carried out to theoretically analyze the measurement performance. A distinctive fiber optic grating ruler with a special fiber optic measuring probe and reflective grating panel is set up. Experiments with different grating pitches are conducted, and long-distance measurements are executed to accomplish the functions of counting optical signals, subdivision, and discerning direction. Experimental results show that the proposed measurement method can be used to detect lateral displacement, especially for applications in working environments with high temperatures. PMID:27271624

  11. An Optical Fiber Lateral Displacement Measurement Method and Experiments Based on Reflective Grating Panel.

    PubMed

    Li, Yuhe; Guan, Kaisen; Hu, Zhaohui; Chen, Yanxiang

    2016-01-01

    An optical fiber sensing method based on a reflective grating panel is demonstrated for lateral displacement measurement. The reflective panel is a homemade grating with a periodic variation of its refractive index, which is used to modulate the reflected light intensity. The system structure and operation principle are illustrated in detail. The intensity calculation and simulation of the optical path are carried out to theoretically analyze the measurement performance. A distinctive fiber optic grating ruler with a special fiber optic measuring probe and reflective grating panel is set up. Experiments with different grating pitches are conducted, and long-distance measurements are executed to accomplish the functions of counting optical signals, subdivision, and discerning direction. Experimental results show that the proposed measurement method can be used to detect lateral displacement, especially for applications in working environments with high temperatures. PMID:27271624

  12. Optical fiber tip-based quartz-enhanced photoacoustic sensor for trace gas detection

    NASA Astrophysics Data System (ADS)

    Li, Zhili; Wang, Zhen; Wang, Chao; Ren, Wei

    2016-05-01

    We reported the development of an evanescent-wave quartz-enhanced photoacoustic sensor (EW-QEPAS) using a single-mode optical fiber tip for sensitive gas detection in the extended near-infrared region. It is a spectroscopic technique based on the combination of quartz-enhanced photoacoustic spectroscopy with fiber-optic evanescent-wave absorption to achieve low optical noise, easy optical alignment, and high compactness. Carbon monoxide (CO) detection at 2.3 μm using a fiber-coupled, continuous-wave, distributed-feedback laser was selected for the sensor demonstration. By tapering the optical fiber down to 2.5 μm diameter using the flame-brushing technique, an evanescent field of ~0.6 mW around the fiber tip was absorbed by CO molecules. Besides an excellent linear response ( R 2 = 0.9996) to CO concentrations, the EW-QEPAS sensor achieved a normalized noise-equivalent absorption (NNEA) coefficient of 8.6 × 10-8 cm-1W/√Hz for an incident optical power of 1.8 mW and integration time of 1 s. The sensor detection sensitivity can be further improved by enhancing the evanescent-wave power on the fiber tip.

  13. [The Research on Optic Fiber FBG Corrosion Sensor Based on the Analysis of the Spectral Characteristics].

    PubMed

    Zhang, Jun; Zeng, Jie; Wang, Bo; Wang, Wen-juan; Liang, Da-kai; Liu, Xiao-ying

    2016-03-01

    Aiming at meeting the need of aluminum corrosion monitoring in aerospace field, a pre-load type fiber grating corrosion sensor based on an aluminum thin tube structure is proposed. The corrosion sensor of aluminum alloy structure in-service monitoring mechanism is studied, a theoretical model about the relation of FBG reflection spectral characteristics and aluminum thickness variation is also obtained. Optical fiber grating corrosion monitoring test system based on the capillary structure of aluminum alloy is constructed by acid-base environment. The problem of cross sensitivity of temperature and strain is solved by configuring an optical fiber grating which is not affected by strain and only sensitive to temperature inside the aluminum alloy tube. The results shows that he aluminum tube packaging design not only can sense the effects of corrosion on the mechanical properties, but also can interference shielding effect of corrosion on the tube optical fiber sensing device. With the deepening of the metal tube corrosion and aluminum alloy tube thickness gradually thinning, fiber grating reflective spectrum gradually shift to the short wavelength and the wall thickness and the grating center wavelength offset has a good monotonic relation. These characteristics can provide useful help to further research corrosion online monitoring based on optic fiber sensor. PMID:27400537

  14. Fiber Optic Surface Plasmon Resonance-Based Biosensor Technique: Fabrication, Advancement, and Application.

    PubMed

    Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang

    2016-05-01

    Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed. PMID:27119268

  15. Miniature micro-wire based optical fiber-field access device.

    PubMed

    Pevec, Simon; Donlagic, Denis

    2012-12-01

    This paper presents an optical fiber-field access device suitable for use in different in-line fiber-optics' systems and fiber-based photonics' components. The proposed device utilizes a thin silica micro-wire positioned in-between two lead-in single mode fibers. The thin micro-wire acts as a waveguide that allows for low-loss interconnection between both lead-in fibers, while providing interaction between the guided optical field and the surrounding medium or other photonic structures. The field interaction strength, total loss, and phase matching conditions can be partially controlled by device-design. The presented all-fiber device is miniature in size and utilizes an all-silica construction. It has mechanical properties suitable for handling and packaging without the need for additional mechanical support or reinforcements. The proposed device was produced using a micromachining method that utilizes selective etching of a purposely-produced phosphorus pentoxide-doped optical fiber. This method is simple, compatible with batch processes, and has good high-volume manufacturing potential. PMID:23262732

  16. Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection.

    PubMed

    Yao, B C; Wu, Y; Yu, C B; He, J R; Rao, Y J; Gong, Y; Fu, F; Chen, Y F; Li, Y R

    2016-03-24

    Fluorescent resonance energy transfer (FRET) with naturally exceptional selectivity is a powerful technique and widely used in chemical and biomedical analysis. However, it is still challenging for conventional FRET to perform as a high sensitivity compact sensor. Here we propose a novel 'FRET on Fiber' concept, in which a partially reduced graphene oxide (prGO) film is deposited on a fiber-optic modal interferometer, acting as both the fluorescent quencher for the FRET and the sensitive cladding for optical phase measurement due to refractive index changes in biochemical detection. The target analytes induced fluorescence recovery with good selectivity and optical phase shift with high sensitivity are measured simultaneously. The functionalized prGO film coated on the fiber-optic interferometer shows high sensitivities for the detections of metal ion, dopamine and single-stranded DNA (ssDNA), with detection limits of 1.2 nM, 1.3 μM and 1 pM, respectively. Such a prGO based 'FRET on fiber' configuration, bridging the FRET and the fiber-optic sensing technology, may serve as a platform for the realization of series of integrated 'FRET on Fiber' sensors for on-line environmental, chemical, and biomedical detection, with excellent compactness, high sensitivity, good selectivity and fast response.

  17. Optical waveguide modeling of refractive index mediated pH responses in silica nanocomposite thin film based fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Ohodnicki, P. R.; Wang, C.

    2016-02-01

    Recent experiments have demonstrated a pH-dependent optical transmission of silica based nanocomposite thin film enabled evanescent wave absorption spectroscopy based fiber optic sensors in aqueous solutions. Although the response was observed to linearly correlate with the pH-dependent surface charge density of the silica matrix, the responsible mechanism was not fully clarified. In this manuscript, an optical waveguide model is applied to describe observed responses through a modified effective refractive index of the silica matrix layer as a function of the solution phase pH. The refractive index dependence results from a surface charge dependent ionic adsorption, resulting in concentration of ionic species at charged surfaces. The resultant effective index modification to porous silica is estimated through effective medium theories and applied to an optical waveguide model of a multi-mode fiber optic based sensor response capable of reproducing all experimental observations reported to date.

  18. Optical fiber synaptic sensor

    NASA Astrophysics Data System (ADS)

    Pisarchik, A. N.; Jaimes-Reátegui, R.; Sevilla-Escoboza, R.; García-Lopez, J. H.; Kazantsev, V. B.

    2011-06-01

    Understanding neuron connections is a great challenge, which is needed to solve many important problems in neurobiology and neuroengineering for recreation of brain functions and efficient biorobotics. In particular, a design of an optical synapse capable to communicate with neuron spike sequences would be crucial to improve the functionality of neuromimmetic networks. In this work we propose an optical synaptic sensor based on an erbium-doped fiber laser driven by a FitzHung-Nagumo electronic neuron, to connect with another electronic neuron. Two possible optical synaptic configurations are analyzed for optoelectronic coupling between neurons: laser cavity loss modulation and pump laser modulation. The control parameters of the proposed optical synapse provide additional degrees of flexibility to the neuron connection traditionally controlled only by coupling strengths in artificial networks.

  19. Acousto-opto-mechanical theory for polarization maintaining optical fibers in Brillouin based sensing

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoling; Ansari, Farhad; Meng, Dewei; Bao, Tengfei

    2015-01-01

    Change in phase or wavelength for interferometric and fiber Bragg Gratings (FBG) based sensors can be described by strain-optic effects. In Brillouin sensors, strain sensitivity need to be expressed in terms of acousto-opto-mechanical properties of fibers. It is then possible to formulate theoretical relationships that lead to the evaluation of strain sensitivities and establishment of gauge factors for Brillouin based sensors. This article reports on the derivation of generalized relationships describing the strain sensitivity in terms of acousto-optic effects in optical fibers. In particular, the formulations correspond to polarization maintaining fibers at various polarization angles with respect to the slow axis of the fiber. The scope of research encompassed theoretical and experimental studies involving both single mode as well as polarization maintaining optical fibers subjected to strain under isothermal conditions. A high resolution BOTDA was employed in the experiments in order to verify the validity of theoretical relationships between strain and Brillouin frequency shifts for different polarization angles.

  20. Design and analysis of surface plasmon resonance sensor based on high-birefringent microstructured optical fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Nancy Meng Ying; Juan Juan Hu, Dora; Shum, Perry Ping; Wu, Zhifang; Li, Kaiwei; Huang, Tianye; Wei, Lei

    2016-06-01

    Optical fiber based surface plasmon resonance (SPR) sensors are favored by their high sensitivity, compactness, remote and in situ sensing capabilities. Microstructured optical fibers (MOFs) possess microfluidic channels extended along the entire length right next to the fiber core, thereby enabling the infiltrated biochemical analyte to access the evanescent field of guided light. Since SPR can only be excited by the polarization vertical to metal surface, external perturbation could induce the polarization crosstalk in fiber core, thus leading to the instability of sensor output. Therefore for the first time we analyze how the large birefringence suppresses the impact of polarization crosstalk. We propose a high-birefringent MOF based SPR sensor with birefringence larger than 4 × 10‑4 as well as easy infiltration of microfluidic analyte, while maintaining sensitivity as high as 3100 nm/RIU.

  1. Low cost plastic optical fiber sensor based on surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Muñoz-Berti, Víctor M.; López-Pérez, Ana C.; Alén, Benito; Costa-Krämer, José Luis; García-Martín, Antonio; Lomer, Mauro; López-Higuera, José Miguel

    2010-09-01

    Surface plasmon excitation using a variation of Kretschmann method based on light guiding through an optical fiber has been extensively studied in the literature. But, due to its particularly bad propagation conditions, plastic optical fiber was not taken into account in documented experiments. We propose a low cost sensor using this type of fiber, in which we try to avoid the problems both through careful design and signal processing. First of all we discuss the sample fabrication and measurement in section 2; then the results obtained are discussed in section 3, including the problems faced because of the multimode character of the fiber, for which we propose alternative sample shapes as a mean of reducing them. As a conclusion we propose a roadmap to design a low cost sensor based in the structures studied in this paper.

  2. Multimode optical fiber

    DOEpatents

    Bigot-Astruc, Marianne; Molin, Denis; Sillard, Pierre

    2014-11-04

    A depressed graded-index multimode optical fiber includes a central core, an inner depressed cladding, a depressed trench, an outer depressed cladding, and an outer cladding. The central core has an alpha-index profile. The depressed claddings limit the impact of leaky modes on optical-fiber performance characteristics (e.g., bandwidth, core size, and/or numerical aperture).

  3. Time-dependent variation of fiber Bragg grating reflectivity in PMMA-based polymer optical fibers.

    PubMed

    Sáez-Rodríguez, D; Nielsen, K; Bang, O; Webb, D J

    2015-04-01

    In this Letter, we investigate the effects of viscoelasticity on both the strength and resonance wavelength of two fiber Bragg gratings (FBGs) inscribed in microstructured polymer optical fiber (mPOF) made of undoped PMMA. Both FBGs were inscribed under a strain of 1% in order to increase the material photosensitivity. After the inscription, the strain was released, and the FBGs spectra were monitored. We initially observed a decrease of the reflection down to zero after which it began to increase. After that, strain tests were carried out to confirm the results, and finally the gratings were monitored for a further 120 days, with a stable reflection response being observed beyond 50 days. PMID:25831363

  4. Distributed optical fiber vibration sensor based on spectrum analysis of Polarization-OTDR system.

    PubMed

    Zhang, Ziyi; Bao, Xiaoyi

    2008-07-01

    A fully distributed optical fiber vibration sensor is demonstrated based on spectrum analysis of Polarization-OTDR system. Without performing any data averaging, vibration disturbances up to 5 kHz is successfully demonstrated in a 1km fiber link with 10m spatial resolution. The FFT is performed at each spatial resolution; the relation of the disturbance at each frequency component versus location allows detection of multiple events simultaneously with different and the same frequency components.

  5. Python fiber optic seal

    SciTech Connect

    Ystesund, K.; Bartberger, J.; Brusseau, C.; Fleming, P.; Insch, K.; Tolk, K.

    1993-08-01

    Sandia National Laboratories has developed a high security fiber optic seal that incorporates tamper resistance features that are not available in commercial fiber optic seals. The Python Seal is a passive fiber optic loop seal designed to give indication of unauthorized entry. The seal includes a fingerprint feature that provides seal identity information in addition to the unique fiber optic pattern created when the seal is installed. The fiber optic cable used for the seal loop is produced with tamper resistant features that increase the difficulty of attacking that component of a seal. A Seal Reader has been developed that will record the seal signature and the fingerprint feature of the seal. A Correlator software program then compares seal images to establish a match or mismatch. SNL is also developing a Polaroid reader to permit hard copies of the seal patterns to be obtained directly from the seal.

  6. Fiber optic attenuator

    NASA Technical Reports Server (NTRS)

    Buzzetti, Mike F. (Inventor)

    1994-01-01

    A fiber optic attenuator of the invention is a mandrel structure through which a bundle of optical fibers is wrapped around in a complete circle. The mandrel structure includes a flexible cylindrical sheath through which the bundle passes. A set screw on the mandrel structure impacts one side of the sheath against two posts on the opposite side of the sheath. By rotating the screw, the sheath is deformed to extend partially between the two posts, bending the fiber optic bundle to a small radius controlled by rotating the set screw. Bending the fiber optic bundle to a small radius causes light in each optical fiber to be lost in the cladding, the amount depending upon the radius about which the bundle is bent.

  7. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Morey, W. W.; Glenn, W. H.; Snitzer, E.

    1983-01-01

    A temperature sensor has been developed that utilizes the temperature dependent absorption of a rare earth doped optical fiber. The temperature measurement is localized at a remote position by splicing a short section of the rare earth fiber into a loop of commercial data communication fiber that sends and returns an optical probe signal to the temperature sensitive section of fiber. The optical probe signal is generated from two different wavelength filtered LED sources. A four port fiber optic coupler combines the two separate wavelength signals into the fiber sensing loop. Time multiplexing is used so that each signal wavelength is present at a different time. A reference signal level measurement is also made from the LED sources and a ratio taken with the sensor signal to produce a transmission measurement of the fiber loop. The transmission is affected differently at each wavelength by the rare earth temperature sensitive fiber. The temperature is determined from a ratio of the two transmission measurements. This method eliminates any ambiguity with respect to changes in signal level in the fiber loop such as mating and unmating optical connectors. The temperature range of the sensor is limited to about 800 C by the temperature limit fo the feed fibers.

  8. Great circle solution to polarization-based quantum communication (QC) in optical fiber

    DOEpatents

    Nordholt, Jane Elizabeth; Peterson, Charles Glen; Newell, Raymond Thorson; Hughes, Richard John

    2016-03-15

    Birefringence in optical fibers is compensated by applying polarization modulation at a receiver. Polarization modulation is applied so that a transmitted optical signal has states of polarization (SOPs) that are equally spaced on the Poincare sphere. Fiber birefringence encountered in propagation between a transmitter and a receiver rotates the great circle on the Poincare sphere that represents the polarization bases used for modulation. By adjusting received polarizations, polarization components of the received optical signal can be directed to corresponding detectors for decoding, regardless of the magnitude and orientation of the fiber birefringence. A transmitter can be configured to transmit in conjugate polarization bases whose SOPs can be represented as equidistant points on a great circle so that the received SOPs are mapped to equidistant points on a great circle and routed to corresponding detectors.

  9. Fiber optics for controls

    NASA Astrophysics Data System (ADS)

    Seng, Gary T.

    1987-11-01

    The challenge of those involved in control-system hardware development is to accommodate an ever-increasing complexity in aircraft control, while limiting the size and weight of the components and improving system reliability. A technology that displays promise towards this end is the area of fiber optics for controls. The primary advantages of employing optical fibers, passive optical sensors, and optically controlled actuators are weight and volume reduction, immunity from electromagnetic effects, superior bandwidth capabilities, and freedom from short circuits and sparking contacts. Since 1975, NASA Lewis has performed in-house, contract, and grant research in fiber optic sensors, high-temperature electro-optic switches, and fly-by-light control-system architecture. Passive optical sensor development is an essential yet challenging area of work and has therefore received much attention during this period. A major effort to develop fly-by-light control-system technology, known as the Fiber-Optic Control System Integration (FOCSI) program, was initiated in 1985 as a cooperative effort between NASA and DOD. Phase 1 of FOCSI, completed in 1986, was aimed at the design of a fiber-optic integrated propulsion/flight control system. Phase 2, yet to be initiated, will provide subcomponent and system development, and a system engine test. In addition to a summary of the benefits of fiber optics, the FOCSI program, sensor advances, and future directions in the NASA Lewis program will be discussed.

  10. Fiber optics for controls

    NASA Technical Reports Server (NTRS)

    Seng, Gary T.

    1987-01-01

    The challenge of those involved in control-system hardware development is to accommodate an ever-increasing complexity in aircraft control, while limiting the size and weight of the components and improving system reliability. A technology that displays promise towards this end is the area of fiber optics for controls. The primary advantages of employing optical fibers, passive optical sensors, and optically controlled actuators are weight and volume reduction, immunity from electromagnetic effects, superior bandwidth capabilities, and freedom from short circuits and sparking contacts. Since 1975, NASA Lewis has performed in-house, contract, and grant research in fiber optic sensors, high-temperature electro-optic switches, and fly-by-light control-system architecture. Passive optical sensor development is an essential yet challenging area of work and has therefore received much attention during this period. A major effort to develop fly-by-light control-system technology, known as the Fiber-Optic Control System Integration (FOCSI) program, was initiated in 1985 as a cooperative effort between NASA and DOD. Phase 1 of FOCSI, completed in 1986, was aimed at the design of a fiber-optic integrated propulsion/flight control system. Phase 2, yet to be initiated, will provide subcomponent and system development, and a system engine test. In addition to a summary of the benefits of fiber optics, the FOCSI program, sensor advances, and future directions in the NASA Lewis program will be discussed.

  11. Optical high temperature sensor based on fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Zhang, Bowei

    The aim of this thesis is to fabricate a fiber Bragg grating (FBG) temperature sensor that is capable to measure temperatures in excess of 1100°C. For this purpose, two topics have been studied and investigated during this project. One of them is the development of a high temperature resistant molecular-water induced FBGs; and the other is to investigate the effect of microwave-irradiation on the hydrogen-loaded FBG. The molecular-water induced FBGs are different from the other types of FBG. In these devices the refractive index is modulated by the periodic changes of molecular-water concentration within the grating. The device was developed using thermal annealing technology based on hydrogen-load FBG. Thermal stability of these devices was studied by measuring the grating reflectivity from room temperature to 1000°C. The stability of the device was tested by examining the FBG reflectivity for a period of time at certain temperatures. The results show that these devices are extremely stable at temperatures in excess of 1000°C. The hydroxyl concentration in the grating has been also investigated during this thesis. Based on the knowledge of hydroxyl groups inside FBG, a microwave treatment was designed to increase the hydroxyl concentration in the FBG area. The results show that the molecular-water induced grating, which was fabricated using microwave radiated hydrogen-loaded FBI, are stable at temperatures above 1100°C.

  12. Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors

    PubMed Central

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Soren; Bang, Ole

    2015-01-01

    We demonstrate that the light excitation and capturing efficiency of fluorescence based fiber-optical sensors can be significantly increased by using a CPC (Compound Parabolic Concentrator) tip instead of the standard plane-cut tip. We use Zemax modelling to find the optimum CPC tip profile and fiber length of a polymer optical fiber diabetes sensor for continuous monitoring of glucose levels. We experimentally verify the improved performance of the CPC tipped sensor and the predicted production tolerances. Due to physical size requirements when the sensor has to be inserted into the body a non-optimal fiber length of 35 mm is chosen. For this length an average improvement in efficiency of a factor of 1.7 is experimentally demonstrated and critically compared to the predicted ideal factor of 3 in terms of parameters that should be improved through production optimization. PMID:26713213

  13. Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors.

    PubMed

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Soren; Bang, Ole

    2015-12-01

    We demonstrate that the light excitation and capturing efficiency of fluorescence based fiber-optical sensors can be significantly increased by using a CPC (Compound Parabolic Concentrator) tip instead of the standard plane-cut tip. We use Zemax modelling to find the optimum CPC tip profile and fiber length of a polymer optical fiber diabetes sensor for continuous monitoring of glucose levels. We experimentally verify the improved performance of the CPC tipped sensor and the predicted production tolerances. Due to physical size requirements when the sensor has to be inserted into the body a non-optimal fiber length of 35 mm is chosen. For this length an average improvement in efficiency of a factor of 1.7 is experimentally demonstrated and critically compared to the predicted ideal factor of 3 in terms of parameters that should be improved through production optimization.

  14. Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors.

    PubMed

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Soren; Bang, Ole

    2015-12-01

    We demonstrate that the light excitation and capturing efficiency of fluorescence based fiber-optical sensors can be significantly increased by using a CPC (Compound Parabolic Concentrator) tip instead of the standard plane-cut tip. We use Zemax modelling to find the optimum CPC tip profile and fiber length of a polymer optical fiber diabetes sensor for continuous monitoring of glucose levels. We experimentally verify the improved performance of the CPC tipped sensor and the predicted production tolerances. Due to physical size requirements when the sensor has to be inserted into the body a non-optimal fiber length of 35 mm is chosen. For this length an average improvement in efficiency of a factor of 1.7 is experimentally demonstrated and critically compared to the predicted ideal factor of 3 in terms of parameters that should be improved through production optimization. PMID:26713213

  15. Fiber optic TV direct

    NASA Technical Reports Server (NTRS)

    Kassak, John E.

    1991-01-01

    The objective of the operational television (OTV) technology was to develop a multiple camera system (up to 256 cameras) for NASA Kennedy installations where camera video, synchronization, control, and status data are transmitted bidirectionally via a single fiber cable at distances in excess of five miles. It is shown that the benefits (such as improved video performance, immunity from electromagnetic interference and radio frequency interference, elimination of repeater stations, and more system configuration flexibility) can be realized if application of the proven fiber optic transmission concept is used. The control system will marry the lens, pan and tilt, and camera control functions into a modular based Local Area Network (LAN) control network. Such a system does not exist commercially at present since the Television Broadcast Industry's current practice is to divorce the positional controls from the camera control system. The application software developed for this system will have direct applicability to similar systems in industry using LAN based control systems.

  16. Fiber optic TV direct

    NASA Astrophysics Data System (ADS)

    Kassak, John E.

    1991-12-01

    The objective of the operational television (OTV) technology was to develop a multiple camera system (up to 256 cameras) for NASA Kennedy installations where camera video, synchronization, control, and status data are transmitted bidirectionally via a single fiber cable at distances in excess of five miles. It is shown that the benefits (such as improved video performance, immunity from electromagnetic interference and radio frequency interference, elimination of repeater stations, and more system configuration flexibility) can be realized if application of the proven fiber optic transmission concept is used. The control system will marry the lens, pan and tilt, and camera control functions into a modular based Local Area Network (LAN) control network. Such a system does not exist commercially at present since the Television Broadcast Industry's current practice is to divorce the positional controls from the camera control system. The application software developed for this system will have direct applicability to similar systems in industry using LAN based control systems.

  17. Single-shot, high-resolution, fiber-based phase-diversity photodetection of optical pulses

    NASA Astrophysics Data System (ADS)

    Dorrer, C.; Waxer, L. J.; Kalb, A.; Hill, E. M.; Bromage, J.

    2016-03-01

    Temporally characterizing optical pulses is an important task when building, optimizing, and using optical sources. Direct photodetection with high-bandwidth photodiodes and real-time oscilloscopes is only adequate for optical pulses longer than ~10 ps; diagnostics based on indirect strategies are required to characterize femtosecond and sub-10-ps coherent sources. Most of these diagnostics are based on nonlinear optics and can be difficult to implement for the single-shot characterization of nonrepetitive events. A temporal diagnostic based on phase diversity is demonstrated in the context of picosecond high-energy laser systems, where single-shot pulse measurements are required for system safety and interpretation of experimental results. A plurality of ancillary optical pulses obtained by adding known amounts of chromatic dispersion to the pulse under test are directly measured by photodetection and processed to reconstruct the input pulse shape. This high-sensitivity (~50-pJ) diagnostic is based on a pulse replicator composed of fiber splitters and delay fibers, making it possible to operate with fiber sources and free-space sources after fiber coupling. Experimental data obtained with a high-bandwidth real-time oscilloscope demonstrate accurate characterization of pulses from a high-energy chirped-pulse amplification system, even for pulses shorter than the photodetection impulse response.

  18. A trifurcated fiber-optic-probe-based optical system designed for AGEs measurement

    NASA Astrophysics Data System (ADS)

    Wang, Yikun; Zhang, Long; Zhu, Ling; Liu, Yong; Zhang, Gong; Wang, An

    2012-03-01

    Advanced Glycation End-products (AGEs) are biochemical end-products of non-enzymatic glycation and are formed irreversibly in human serum and skin tissue. AGEs are thought to play an important role in the pathogenesis of diabetes and corresponding complications. All conventional methods for measuring AGEs must take sampling and measure in vitro. These methods are invasive and have the problem of relatively time-consuming. AGEs have fluorescent characteristics. Skin AGEs can be assessed noninvasively by collecting the fluorescence emitted from skin tissue when excited with proper light. However, skin tissue has absorption and scattering effects on fluorescence of AGEs, it is not reliable to evaluate the accumulation of AGEs according the emitted fluorescence but not considering optical properties of skin tissue. In this study, a portable system for detecting AGEs fluorescence and skin reflectance spectrum simultaneously has been developed. The system mainly consists of an ultraviolet light source, a broadband light source, a trifurcated fiber-optic probe, and a compact charge coupled device (CCD) spectrometer. The fiber-optic probe consists of 36 optical fibers which are connected to the ultraviolet light source, 6 optical fibers connected to the broadband light source, and a core fiber connected to the CCD spectrometer. Demonstrative test measurements with the system on skin tissue of 40 healthy subjects have been performed. Using parameters that are calculated from skin reflectance spectrum, the distortion effects caused by skin absorption and scattering can be eliminated, and the integral intensity of corrected fluorescence has a strong correlation with the accumulation of AGEs. The system looks very promising for both laboratory and clinical applications to monitor AGEs related diseases, especially for chronic diabetes and complications.

  19. A trifurcated fiber-optic-probe-based optical system designed for AGEs measurement

    NASA Astrophysics Data System (ADS)

    Wang, Yikun; Zhang, Long; Zhu, Ling; Liu, Yong; Zhang, Gong; Wang, An

    2011-11-01

    Advanced Glycation End-products (AGEs) are biochemical end-products of non-enzymatic glycation and are formed irreversibly in human serum and skin tissue. AGEs are thought to play an important role in the pathogenesis of diabetes and corresponding complications. All conventional methods for measuring AGEs must take sampling and measure in vitro. These methods are invasive and have the problem of relatively time-consuming. AGEs have fluorescent characteristics. Skin AGEs can be assessed noninvasively by collecting the fluorescence emitted from skin tissue when excited with proper light. However, skin tissue has absorption and scattering effects on fluorescence of AGEs, it is not reliable to evaluate the accumulation of AGEs according the emitted fluorescence but not considering optical properties of skin tissue. In this study, a portable system for detecting AGEs fluorescence and skin reflectance spectrum simultaneously has been developed. The system mainly consists of an ultraviolet light source, a broadband light source, a trifurcated fiber-optic probe, and a compact charge coupled device (CCD) spectrometer. The fiber-optic probe consists of 36 optical fibers which are connected to the ultraviolet light source, 6 optical fibers connected to the broadband light source, and a core fiber connected to the CCD spectrometer. Demonstrative test measurements with the system on skin tissue of 40 healthy subjects have been performed. Using parameters that are calculated from skin reflectance spectrum, the distortion effects caused by skin absorption and scattering can be eliminated, and the integral intensity of corrected fluorescence has a strong correlation with the accumulation of AGEs. The system looks very promising for both laboratory and clinical applications to monitor AGEs related diseases, especially for chronic diabetes and complications.

  20. Infrared fiber optic materials

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1987-01-01

    The development of IR fiber optics for use in astronomical and other space applications is summarized. Candidate materials were sought for use in the 1 to 200 micron and the 200 to 1000 micron wavelength range. Synthesis and optical characterization were carried out on several of these materials in bulk form. And the fabrication of a few materials in single crystal fiber optic form were studied.

  1. Silica-optical-fiber-based rare-earth-doped sensors

    NASA Astrophysics Data System (ADS)

    Sun, Tong; Grattan, Kenneth T. V.; Wade, Scott A.; Forsyth, David

    2001-10-01

    This paper reports on work done with a range of silica fibres, doped with several important rare earth ions such as Er, Nd, Yb and Tm, to create a range of novel optical sensors. The approach reported herein is based on monitoring and analysis of the fluorescence decay from such fibres in the time domain as well as in the frequency domain. With these fibres, temperature sensors operating in the range from as low as -200 degree(s)C to beyond 1000 degree(s)C have been constructed. A temperature resolution of the order of a few degrees Celsius has been typically reported from these types of sensors. Fibre of this type has been used in a simple yet effective structural integrity monitoring system (being incorporated successfully into concrete samples) and an optical fire alarm system with potential applications for engine monitoring has been developed. A further recent discovery is a small level of strain sensitivity in such fibres - this has been explored over the region from 0 to 2000(mu) e, showing a level of resolution better than a few tens of microstrain, and sensors based on this effect are discussed and reported on in this work.

  2. Modification of an RBF ANN-Based Temperature Compensation Model of Interferometric Fiber Optical Gyroscopes

    PubMed Central

    Cheng, Jianhua; Qi, Bing; Chen, Daidai; Jr. Landry, René

    2015-01-01

    This paper presents modification of Radial Basis Function Artificial Neural Network (RBF ANN)-based temperature compensation models for Interferometric Fiber Optical Gyroscopes (IFOGs). Based on the mathematical expression of IFOG output, three temperature relevant terms are extracted, which include: (1) temperature of fiber loops; (2) temperature variation of fiber loops; (3) temperature product term of fiber loops. Then, the input-modified RBF ANN-based temperature compensation scheme is established, in which temperature relevant terms are transferred to train the RBF ANN. Experimental temperature tests are conducted and sufficient data are collected and post-processed to form the novel RBF ANN. Finally, we apply the modified RBF ANN based on temperature compensation model in two IFOGs with temperature compensation capabilities. The experimental results show the proposed temperature compensation model could efficiently reduce the influence of environment temperature on the output of IFOG, and exhibit a better temperature compensation performance than conventional scheme without proposed improvements. PMID:25985163

  3. Fiber-optic based gas sensing in the UV region

    NASA Astrophysics Data System (ADS)

    Eckhardt, H. S.; Graubner, K.; Klein, K.-F.; Sun, T.; Grattan, K. T. V.

    2006-02-01

    The precise analysis of potential hazardous components within gases and the detection of trace gases in exhaled breath for early and non invasive diagnosis of illnesses have a great influence on the well-being of human beings. Besides the existing analysis techniques, which mostly require sample preparation, costly consumables, huge space and skilled personal carrying out the measurement, a measurement system based on optical absorption in the UV wavelength region might offer alternatives to existing techniques. Within this work a feasibility study based on measurements of different test gases at lowest concentrations and requirements for trace gases in exhaled breath in respect to detection limits, signal-to-noise ratio and system drifts were analyzed. A spectral database including over 1000 UV vapor-phase spectra allows the identification of unknown compounds within a mixture, as well as expanding the use of the measurement technique into new areas of application, for example automobile application.

  4. Fiber-based free-space optical coherent receiver with vibration compensation mechanism.

    PubMed

    Zhang, Ruochi; Wang, Jianmin; Zhao, Guang; Lv, Junyi

    2013-07-29

    We propose a novel fiber-based free-space optical (FSO) coherent receiver for inter-satellite communication. The receiver takes advantage of established fiber-optic components and utilizes the fine-pointing subsystem installed in FSO terminals to minimize the influence of satellite platform vibrations. The received beam is coupled to a single-mode fiber, and the coupling efficiency of the system is investigated both analytically and experimentally. A receiving sensitivity of -38 dBm is obtained at the forward error correction limit with a transmission rate of 22.4 Gbit/s. The proposed receiver is shown to be a promising component for inter-satellite optical communication.

  5. A novel graphene-based tapered optical fiber sensor for glucose detection

    NASA Astrophysics Data System (ADS)

    Qiu, H. W.; Xu, S. C.; Jiang, S. Z.; Li, Z.; Chen, P. X.; Gao, S. S.; Zhang, C.; Feng, D. J.

    2015-02-01

    In this study, a novel tapered plastic optical fiber sensor based on the single-layer graphene film is demonstrated. A single-layer graphene film was grown on copper foil by chemical vapor deposition (CVD) and transferred to the cone area of the optical fiber by wetting transfer technology. The tapered plastic optical fiber was fabricated with waist diameters of 1 mm and total lengths of 5 cm. In order to increase the stability of the sensor, the taper regions were coated with a single-layer graphene with length of 1.5 cm. By using this platform, the glucose solution as the analyte was measured. The output light intensity and glucose concentration shows a reasonable linear relationship in the range of 1%∼40%

  6. A cantilever based optical fiber acoustic sensor fabricated by femtosecond laser micromachining

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Yuan, Lei; Huang, Jie; Xiao, Hai

    2016-04-01

    In this paper, we present a pure silica micro-cantilever based optical fiber sensor for acoustic wave detection. The cantilever is directly fabricated by fs laser micromachining on an optical fiber tip functioning as an inline Fabry-Perot interferometer (FPI). The applied acoustic wave pressurizes the micro-cantilever beam and the corresponding dynamic signals can be probed by the FPI. The thickness, length, and width of the micro-cantilever beam can be flexibly designed and fabricated so that the sensitivity, frequency response, and the total measurement range can be varied to fit many practical applications. Experimental results will be presented and analyzed. Due to the assembly free fabrication of the fs-laser, multiple micro-cantilever beams could be potentially fabricated in/on a single optical fiber for quasi-distributed acoustic mapping with high spatial resolution.

  7. Optical fiber based sensing system design for the health monitoring of multi-layered pavement structure

    NASA Astrophysics Data System (ADS)

    Liu, Wanqiu; Wang, Huaping; Zhou, Zhi; Li, Shiyu; Ni, Yuanbao; Wang, Geng

    2011-11-01

    This paper introduces an optical fiber based sensing system design for multi-layered pavement structural health monitoring. The co-line and integration design of FBG (Fiber Bragg Gating) sensors and BOTDR (Brillouin Optical Time Domain Reflectometry) sensors will ensure the large scale damage monitoring and local high accurate strain measurement. The function of pavement structure multi-scale shape measurement will provide real time subgrade settlement and rutting information. The sensor packaging methodology and strain transfer problem of the system will also be discussed in this paper. Primary lab tests prove the potential and feasibility of the practical application of the sensing system.

  8. Sealed fiber-optic bundle feedthrough

    SciTech Connect

    Tanner, Carol E.

    2002-01-01

    A sealed fiber-optic bundle feedthrough by which a multitude of fiber-optic elements may be passed through an opening or port in a wall or structure separating two environments at different pressures or temperatures while maintaining the desired pressure or temperature in each environment. The feedthrough comprises a rigid sleeve of suitable material, a bundle of individual optical fibers, and a resin-based sealing material that bonds the individual optical fibers to each other and to the rigid sleeve.

  9. All-Fiber Optical Magnetic Field Sensor Based on Faraday Rotation

    SciTech Connect

    Sun, L.; Jiang, S.; Marciante, J.R.

    2010-06-18

    An all-fiber optical magnetic field sensor with a sensitivity of 0.49 rad/T is demonstrated. It consists of a fiber Faraday rotator (56-wt.%-terbium–doped silica fiber) and a fiber polarizer (Corning SP1060 fiber).

  10. Optical fiber smartphone spectrometer.

    PubMed

    Hossain, Md Arafat; Canning, John; Cook, Kevin; Jamalipour, Abbas

    2016-05-15

    An optical fiber-based smartphone spectrometer incorporating an endoscopic fiber bundle is demonstrated. The endoscope allows transmission of the smartphone camera LED light to a sample, removing complications from varying background illumination. The reflected spectra collected from a surface or interface is dispersed onto the camera CMOS using a reflecting diffraction grating. A spectral resolution as low as δλ∼2.0  nm over a bandwidth of Δλ∼250  nm is obtained using a slit width, ωslit=0.7  mm. The instrument has vast potential in a number of industrial applications including agricultural produce analysis. Spectral analysis of apples shows straightforward measurement of the pigments anthocyanins, carotenoid, and chlorophyll, all of which decrease with increasing storage time. PMID:27176971

  11. Fiber optic communication links

    SciTech Connect

    Meyer, R. H.

    1980-01-01

    Fiber optics is a new, emerging technology which offers relief from many of the problems which limited past communications links. Its inherent noise immunity and high bandwidth open the door for new designs with greater capabilities. Being a new technology, certain problems can be encountered in specifying and installing a fiber optic link. A general fiber optic system is discussed with emphasis on the advantages and disadvantages. It is not intended to be technical in nature, but a general discussion. Finally, a general purpose prototype Sandia communications link is presented.

  12. All-Fiber Optical Magnetic-Field Sensor Based on Faraday Rotation in Highly Terbium-Doped Fiber

    SciTech Connect

    Sun, L.; Jiang, S.; Marciante, J.R.

    2010-03-03

    An all-fiber optical magnetic field sensor is demonstrated. It consists of a fiber Faraday rotator and a fiber polarizer. The fiber Faraday rotator uses a 2-cm-long section of 56-wt.%-terbium–doped silicate fiber with a Verdet constant of –24.5 rad/(Tm) at 1053 nm. The fiber polarizer is Corning SP1060 single-polarization fiber. The sensor has a sensitivity of 0.49 rad/T and can measure magnetic fields from 0.02 to 3.2 T.

  13. All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber.

    PubMed

    Sun, L; Jiang, S; Marciante, J R

    2010-03-15

    An all-fiber optical magnetic field sensor is demonstrated. It consists of a fiber Faraday rotator and a fiber polarizer. The fiber Faraday rotator uses a 2-cm-long section of 56-wt.%-terbium-doped silicate fiber with a Verdet constant of -24.5 rad/(Tm) at 1053 nm. The fiber polarizer is Corning SP1060 single-polarization fiber. The sensor has a sensitivity of 0.49 rad/T and can measure magnetic fields from 0.02 to 3.2 T.

  14. Progressive ladder network topology combining interferometric and intensity fiber-optic-based sensors

    NASA Astrophysics Data System (ADS)

    Ribeiro, A. B. Lobo; Santos, J. L.; Caleya, R. F.

    1995-10-01

    Progressive ladder topology is studied by consideration of its properties of power budget and coupler tailoring. Optimization criteria are addressed for lossless and real systems, and their basic characteristics are compared with other topologies. Numerical results are presented, and an experiment is described for the case in which the network supports interferometric and intensity (with referentiation) fiber-optic-based sensors.

  15. Electron beam diagnostics tool based on Cherenkov radiation in optical fibers

    NASA Astrophysics Data System (ADS)

    Vukolov, A. V.; Novokshonov, A. I.; Potylitsyn, A. P.; Uglov, S. R.

    2016-07-01

    The results of experimental investigations of Cherenkov radiation in optical fibers with 0.6 mm thickness which were used to scan an electron beam of 5.7 MeV energy are presented. Using such a technique for beam profile measurements it is possible to create a compact and reliable device compared to existing systems based on ionization chambers.

  16. Broadband mid-infrared fiber optical parametric oscillator based on a three-hole suspended-core chalcogenide fiber.

    PubMed

    Bai, Hangyu; Yang, Xiong; Wei, Yizhen; Gao, Shiming

    2016-01-20

    A mid-infrared fiber optical parametric oscillator is proposed and designed based on a three-hole As(2)S(5) suspended-core fiber (SCF). The eigenmodes of the SCF are depicted and the pump condition for single-mode operation is analyzed. The zero-dispersion wavelength is shifted to 2 μm by tuning the core diameter of the SCF. Using the degenerate four-wave mixing coupled-wave equations, a tuning range of the idler wavelength from 2 to 5 μm and a maximum conversion efficiency of 19% are numerically predicted in a 0.1-m-long SCF pumped by a 2.7 W thulium-doped fiber laser. PMID:26835926

  17. Fiber Optic Microphone

    NASA Technical Reports Server (NTRS)

    Cho, Y. C.; George, Thomas; Norvig, Peter (Technical Monitor)

    1999-01-01

    Research into advanced pressure sensors using fiber-optic technology is aimed at developing compact size microphones. Fiber optic sensors are inherently immune to electromagnetic noise, and are very sensitive, light weight, and highly flexible. In FY 98, NASA researchers successfully designed and assembled a prototype fiber-optic microphone. The sensing technique employed was fiber optic Fabry-Perot interferometry. The sensing head is composed of an optical fiber terminated in a miniature ferrule with a thin, silicon-microfabricated diaphragm mounted on it. The optical fiber is a single mode fiber with a core diameter of 8 micron, with the cleaved end positioned 50 micron from the diaphragm surface. The diaphragm is made up of a 0.2 micron thick silicon nitride membrane whose inner surface is metallized with layers of 30 nm titanium, 30 nm platinum, and 0.2 micron gold for efficient reflection. The active sensing area is approximately 1.5 mm in diameter. The measured differential pressure tolerance of this diaphragm is more than 1 bar, yielding a dynamic range of more than 100 dB.

  18. Phosphate-based glass fiber vs. bulk glass: Change in fiber optical response to probe in vitro glass reactivity.

    PubMed

    Massera, J; Ahmed, I; Petit, L; Aallos, V; Hupa, L

    2014-04-01

    This paper investigates the effect of fiber drawing on the thermal and structural properties as well as on the glass reactivity of a phosphate glass in tris(hydroxymethyl)aminomethane-buffered (TRIS) solution and simulated body fluid (SBF). The changes induced in the thermal properties suggest that the fiber drawing process leads to a weakening and probable re-orientation of the POP bonds. Whereas the fiber drawing did not significantly impact the release of P and Ca, an increase in the release of Na into the solution was noticed. This was probably due to small structural reorientations occurring during the fiber drawing process and to a slight diffusion of Na to the fiber surface. Both the powders from the bulk and the glass fibers formed a Ca-P surface layer when immersed in SBF and TRIS. The layer thickness was higher in the calcium and phosphate supersaturated SBF than in TRIS. This paper for the first time presents the in vitro reactivity and optical response of a phosphate-based bioactive glass (PBG) fiber when immersed in SBF. The light intensity remained constant for the first 48h after which a decrease with three distinct slopes was observed: the first decrease between 48 and 200h of immersion could be correlated to the formation of the Ca-P layer at the fiber surface. After this a faster decrease in light transmission was observed from 200 to ~425h in SBF. SEM analysis suggested that after 200h, the surface of the fiber was fully covered by a thin Ca-P layer which is likely to scatter light. For immersion times longer than ~425h, the thickness of the Ca-P layer increased and thus acted as a barrier to the dissolution process limiting further reduction in light transmission. The tracking of light transmission through the PBG fiber allowed monitoring of the fiber dissolution in vitro. These results are essential in developing new bioactive fiber sensors that can be used to monitor bioresponse in situ.

  19. Development of a flexible optical fiber based high resolution integrated PET/MRI system

    SciTech Connect

    Yamamoto, Seiichi; Watabe, Hiroshi; Kanai, Yasukazu; Watabe, Tadashi; Aoki, Masaaki; Sugiyama, Eiji; Kato, Katsuhiko; Hatazawa, Jun

    2012-11-15

    Purpose: The simultaneous measurement of PET and magnetic resonance imaging (MRI) is an emerging field for molecular imaging research. Although optical fiber based PET/MRI systems have advantages on less interference between PET and MRI, there is a drawback in reducing the scintillation light due to the fiber. To reduce the problem, the authors newly developed flexible optical fiber bundle based block detectors and employed them for a high resolution integrated PET/MRI system. Methods: The flexible optical fiber bundle used 0.5 mm diameter, 80 cm long double clad fibers which have dual 12 mm Multiplication-Sign 24 mm rectangular inputs and a single 24 mm Multiplication-Sign 24 mm rectangular output. In the input surface, LGSO scintillators of 0.025 mol.% (decay time: {approx}31 ns: 0.9 mm Multiplication-Sign 1.3 mm Multiplication-Sign 5 mm) and 0.75 mol.% (decay time: {approx}46 ns: 0.9 mm Multiplication-Sign 1.3 mm Multiplication-Sign 6 mm) were optically coupled in depth direction to form depth-of-interaction detector, arranged in 11 Multiplication-Sign 13 matrix and optically coupled to the fiber bundle. The two inputs of the bundle are bent for 90 Degree-Sign , bound to one, and are optically coupled to a Hamamatsu 1-in. square position sensitive photomultiplier tube. Results: Light loss due to the fiber bundle could be reduced and the performance of the block detectors was improved. Eight optical fiber based block detectors (16 LGSO blocks) were arranged in a 56 mm diameter ring to form a PET system. Spatial resolution and sensitivity were 1.2 mm full-width at half-maximum and 1.2% at the central field-of-view, respectively. Sensitivity change was less than 1% for 2 Degree-Sign C temperature changes. This PET system was integrated with a 0.3 T permanent magnet MRI system which has 17 cm diameter hole at the yoke area for insertion of the PET detector ring. There was no observable interference between PET and MRI. Simultaneous imaging of PET and MRI was

  20. A Fiber Optic PD Sensor Using a Balanced Sagnac Interferometer and an EDFA-Based DOP Tunable Fiber Ring Laser

    PubMed Central

    Wang, Lutang; Fang, Nian; Wu, Chunxu; Qin, Haijuan; Huang, Zhaoming

    2014-01-01

    A novel fiber-optic acoustic sensor using an erbium-doped fiber amplifier (EDFA)-based fiber ring laser and a balanced Sagnac interferometer for acoustic sensing of the partial discharge (PD) in power transformers is proposed and demonstrated. As a technical background, an experimental investigation on how the variations of the fiber birefringence affect the sensor performances was carried out, and the results are discussed. The operation principles are described, and the relevant formulas are derived. The analytical results show that an EDFA-based fiber ring laser operating in chaotic mode can provide a degree of polarization (DOP) tunable light beam for effectively suppressing polarization fading noises. The balanced Sagnac interferometer can eliminate command intensity noises and enhance the signal-to-noise ratio (SNR). Furthermore, it inherently operates at the quadrature point of the response curve without any active stabilizations. Several experiments are conducted for evaluating the performances of the sensor system, as well as for investigating the ability of the detection of high-frequency acoustic emission signals. The experimental results demonstrate that the DOP of the laser beam can be continuously tuned from 0.2% to 100%, and the power fluctuation in the whole DOP tuning range is less than 0.05 dBm. A high-frequency response up to 300 kHz is reached, and the high sensing sensitivity for detections of weak corona discharges, as well as partial discharges also is verified. PMID:24824371

  1. Application of Fiber Optic Instrumentation

    NASA Technical Reports Server (NTRS)

    Richards, William Lance; Parker, Allen R., Jr.; Ko, William L.; Piazza, Anthony; Chan, Patrick

    2012-01-01

    Fiber optic sensing technology has emerged in recent years offering tremendous advantages over conventional aircraft instrumentation systems. The advantages of fiber optic sensors over their conventional counterparts are well established; they are lighter, smaller, and can provide enormous numbers of measurements at a fraction of the total sensor weight. After a brief overview of conventional and fiber-optic sensing technology, this paper presents an overview of the research that has been conducted at NASA Dryden Flight Research Center in recent years to advance this promising new technology. Research and development areas include system and algorithm development, sensor characterization and attachment, and real-time experimentally-derived parameter monitoring for ground- and flight-based applications. The vision of fiber optic smart structure technology is presented and its potential benefits to aerospace vehicles throughout the lifecycle, from preliminary design to final retirement, are presented.

  2. Design of a Pressure Sensor Based on Optical Fiber Bragg Grating Lateral Deformation

    PubMed Central

    Urban, Frantisek; Kadlec, Jaroslav; Vlach, Radek; Kuchta, Radek

    2010-01-01

    This paper describes steps involved in the design and realization of a new type of pressure sensor based on the optical fiber Bragg grating. A traditional pressure sensor has very limited usage in heavy industrial environments, particularly in explosive or electromagnetically noisy environments. Utilization of optics in these environments eliminates all surrounding influences. An initial motivation for our development was the research, experimental validation, and realization of a complex smart pressure sensor based on the optical principle. The main benefit of this solution consists of increasing sensitivity, resistance to electromagnetic interference, dimensions, and potential increased accuracy. PMID:22163521

  3. Enhancing the sensitivity of poly(methyl methacrylate) based optical fiber Bragg grating temperature sensors.

    PubMed

    Zhang, Wei; Webb, David J; Peng, Gang-Ding

    2015-09-01

    In poly(methyl methacrylate) (PMMA)-based optical fiber gratings (POFBGs), the temperature response is determined by thermal expansion and the thermo-optic effect of the fiber. Because thermal expansion introduces a positive change and the thermo-optic effect introduces a negative change in the Bragg wavelength of the POFBG, they cancel out each other to some extent, leading to reduced and varying temperature sensitivity. By pre-straining a POFBG, the contribution of thermal expansion can be removed, and, consequently, the temperature sensitivity of POFBG can be greatly enhanced. Theoretical analysis also indicates a reduced thermo-optic coefficient of POFBG due to restrained linear expansion that matches experimental results. PMID:26368708

  4. Detection of trinitrotoluene based on SPR in molecularly imprinted polymer on plastic optical fiber

    NASA Astrophysics Data System (ADS)

    Cennamo, N.; Pesavento, M.; D'Agostino, G.; Galatus, R.; Bibbò, Luigi; Zeni, Luigi

    2013-05-01

    In this work an innovative and low cost optical chemical sensor, based on surface plasmon resonance in plastic optical fiber, is presented and experimentally tested for the detection and analysis of trinitrotoluene (TNT). The fabricated optical chemical sensor was realized removing the cladding of a plastic optical fiber along half the circumference, spin coating on the exposed core a buffer of Microposit S1813 photoresist, and finally sputtering a thin gold film. A Molecularly Imprinted Polymer (MIP) film was deposited on the thin gold film for the selective detection of TNT. It has been found that the sensor recognizes trinitrotoluene, since the SPR signal is affected by the presence of TNT in the polymer, while with a slow response kinetics, probably due to the thickness of the polymeric layer.

  5. Optical Fiber Relative Humidity Sensor Based on a FBG with a Di-Ureasil Coating

    PubMed Central

    Correia, Sandra F. H.; Antunes, Paulo; Pecoraro, Edison; Lima, Patrícia P.; Varum, Humberto; Carlos, Luis D.; Ferreira, Rute A. S.; André, Paulo S.

    2012-01-01

    In this work we proposed a relative humidity (RH) sensor based on a Bragg grating written in an optical fiber, associated with a coating of organo-silica hybrid material prepared by the sol-gel method. The organo-silica-based coating has a strong adhesion to the optical fiber and its expansion is reversibly affected by the change in the RH values (15.0–95.0%) of the surrounding environment, allowing an increased sensitivity (22.2 pm/%RH) and durability due to the presence of a siliceous-based inorganic component. The developed sensor was tested in a real structure health monitoring essay, in which the RH inside two concrete blocks with different porosity values was measured over 1 year. The results demonstrated the potential of the proposed optical sensor in the monitoring of civil engineering structures. PMID:23012521

  6. Evaluation of a low-cost optical-fiber-based strain sensor

    NASA Astrophysics Data System (ADS)

    Inder, D. C.; Buckley, M. A.; Liu, Tonguy; Fernando, Gerard F.

    1999-05-01

    With the increasing recognition that optical fiber-based sensor systems are ideal for structural health monitoring, there is a demand for a low-cost sensor. This paper reports on recent progress in the design, manufacture and evaluation of an intensity-based optical fiber strain sensor. The proposed sensor is referred to as the 'profile' sensor and it is made by deforming (tapering) a section of optical fiber using a standard fiber fusion splicer. Up to three profiles were made on a single fiber length and the attenuation during this process was monitored. The sensors were photographed to estimate the dimensions of the profile and then tensile tested by attaching the profile sensor to a micrometer stage. The sensors were strained via the micrometer stage in an incremental manner and the light transmission was monitored during this operation. An increase in the light transmission characteristics was observed during tensile loading. A good correlation was obtained between the experimental results and the predicted values.

  7. Simulating Optical Fibers.

    ERIC Educational Resources Information Center

    Edgar, Dale

    1988-01-01

    Described is a demonstration of Snell's law using a laser beam and an optical fiber. Provided are the set-up method of the demonstration apparatus and some practical suggestions including "index matching" technique using vaseline. (YP)

  8. Fiber Optics: No Illusion.

    ERIC Educational Resources Information Center

    American School and University, 1983

    1983-01-01

    A campus computer center at Hofstra University (New York) that holds 70 terminals for student use was first a gymnasium, then a language laboratory. Strands of fiber optics are used for the necessary wiring. (MLF)

  9. Optical fiber magnetometer

    NASA Astrophysics Data System (ADS)

    Scarzello, John F.; Finkel, Jack

    1991-08-01

    An optical fiber magnetometer having omnidirectional capability is disclosed herein for measuring a total magnetic field independent of its physical orientation or the direction of the field or fields. A relatively long optical fiber defining a sensing arm for exposure to a magnetic field is wound in the form of a spheroid (like rubber bands on a golf ball or yarn threads on a baseball) to provide optical lengths of substantially the same total length in every direction through the spheroid winding. The plane of polarization of light transmitted through the optical fiber winding is caused to rotate (Faraday effect) when the fiber or components thereof is exposed parallel to a magnetic field. The extent of plane rotation is determined, inter alia, by the total magnetic field passing through the spheroid winding.

  10. Fiber optic hydrogen sensor

    DOEpatents

    Buchanan, B.R.; Prather, W.S.

    1991-01-01

    Apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading, by a single spectrophotometer.

  11. Fiber optic hydrogen sensor

    DOEpatents

    Buchanan, Bruce R.; Prather, William S.

    1992-01-01

    An apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer.

  12. Fiber optic hydrogen sensor

    DOEpatents

    Buchanan, B.R.; Prather, W.S.

    1992-10-06

    An apparatus and method are described for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer. 4 figs.

  13. Fiber optics welder

    DOEpatents

    Higgins, R.W.; Robichaud, R.E.

    A system is described for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45/sup 0/ angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

  14. Fiber optic detector

    NASA Astrophysics Data System (ADS)

    Partin, Judy K.; Ward, Thomas E.; Grey, Alan E.

    1990-04-01

    This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  15. Fiber optic detector

    SciTech Connect

    Partin, J.K.; Ward, T.E.; Grey, A.E.

    1990-12-31

    This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  16. Fiber optics: A research paper

    NASA Technical Reports Server (NTRS)

    Drone, Melinda M.

    1987-01-01

    Some basic aspects concerning fiber optics are examined. Some history leading up to the development of optical fibers which are now used in the transmission of data in many areas of the world is discussed. Basic theory of the operation of fiber optics is discussed along with methods for improving performance of the optical fiber through much research and design. Splices and connectors are compared and short haul and long haul fiber optic networks are discussed. Fiber optics plays many roles in the commercial world. The use of fiber optics for communication applications is emphasized.

  17. A Robust Distributed Multipoint Fiber Optic Gas Sensor System Based on AGC Amplifier Structure.

    PubMed

    Zhu, Cunguang; Wang, Rende; Tao, Xuechen; Wang, Guangwei; Wang, Pengpeng

    2016-01-01

    A harsh environment-oriented distributed multipoint fiber optic gas sensor system realized by automatic gain control (AGC) technology is proposed. To improve the photoelectric signal reliability, the electronic variable gain can be modified in real time by an AGC closed-loop feedback structure to compensate for optical transmission loss which is caused by the fiber bend loss or other reasons. The deviation of the system based on AGC structure is below 4.02% when photoelectric signal decays due to fiber bending loss for bending radius of 5 mm, which is 20 times lower than the ordinary differential system. In addition, the AGC circuit with the same electric parameters can keep the baseline intensity of signals in different channels of the distributed multipoint sensor system at the same level. This avoids repetitive calibrations and streamlines the installation process. PMID:27483267

  18. A Robust Distributed Multipoint Fiber Optic Gas Sensor System Based on AGC Amplifier Structure

    PubMed Central

    Zhu, Cunguang; Wang, Rende; Tao, Xuechen; Wang, Guangwei; Wang, Pengpeng

    2016-01-01

    A harsh environment-oriented distributed multipoint fiber optic gas sensor system realized by automatic gain control (AGC) technology is proposed. To improve the photoelectric signal reliability, the electronic variable gain can be modified in real time by an AGC closed-loop feedback structure to compensate for optical transmission loss which is caused by the fiber bend loss or other reasons. The deviation of the system based on AGC structure is below 4.02% when photoelectric signal decays due to fiber bending loss for bending radius of 5 mm, which is 20 times lower than the ordinary differential system. In addition, the AGC circuit with the same electric parameters can keep the baseline intensity of signals in different channels of the distributed multipoint sensor system at the same level. This avoids repetitive calibrations and streamlines the installation process. PMID:27483267

  19. Satellites vs. fiber optics based networks and services - Road map to strategic planning

    NASA Astrophysics Data System (ADS)

    Marandi, James H. R.

    An overview of a generic telecommunications network and its components is presented, and the current developments in satellite and fiber optics technologies are discussed with an eye on the trends in industry. A baseline model is proposed, and a cost comparison of fiber- vs satellite-based networks is made. A step-by-step 'road map' to the successful strategic planning of telecommunications services and facilities is presented. This road map provides for optimization of the current and future networks and services through effective utilization of both satellites and fiber optics. The road map is then applied to different segments of the telecommunications industry and market place, to show its effectiveness for the strategic planning of executives of three types: (1) those heading telecommunications manufacturing concerns, (2) those leading communication service companies, and (3) managers of telecommunication/MIS departments of major corporations. Future networking issues, such as developments in integrated-services digital network standards and technologies, are addressed.

  20. Single-mode fiber variable optical attenuator based on a ferrofluid shutter.

    PubMed

    Duduś, Anna; Blue, Robert; Uttamchandani, Deepak

    2015-03-10

    We report on the fabrication and characterization of a single-mode fiber variable optical attenuator (VOA) based on a ferrofluid shutter actuated by a magnetic field created by a low voltage electromagnet. We compare the performance of a VOA using oil-based ferrofluid, with one VOA using water-based 12 ferrofluid, and demonstrate broadband optical attenuation of up to 28 dB with polarization dependent 13 loss of 0.85 dB. Our optofluidic VOA has advantages over MEMS-based VOAs such as simple construction and the absence of mechanical moving parts. PMID:25968370

  1. Towards development of a fiber optic-based transmission monitoring system

    NASA Astrophysics Data System (ADS)

    Baldwin, Chris S.; Kiddy, Jason S.; Samuel, Paul D.

    2011-06-01

    There is interest in the rotorcraft community to develop health monitoring technologies. Among these technologies is the ability to monitor the transmission planetary gear system. The gearbox environment does not lend itself to traditional sensing technologies due to the harsh environment and crowed space. Traditional vibration-based diagnostics are based on the output from externally mounted sensors, usually accelerometers fixed to the gearbox exterior. This type of system relies on the ability of the vibration signal to travel from the gears through the gearbox housing. These sensors are also susceptible to other interference including electrical magnetic interference (EMI). For these reasons, the development of a fiber optic-based transmission monitoring system represents an appealing alternative to the accelerometer due to their resistance to EMI and other signal corrupting influences. Aither Engineering has been working on integrating the fiber optic sensors into the gearbox environment to measure strain on the ring gear of the planetary gear system. This application utilizes a serial array of wavelength division multiplexed fiber Bragg grating (FBG) sensors. Work in this area has been conducted at both the University of Maryland, College Park and more recently at the NASA Glenn Research Center (NGRC) OH-58 transmission test rig facility. This paper discusses some of the testing results collected from the fiber optic ring gear sensor array. Based on these results, recommendations for system requirements are addressed in terms of the capabilities of the FBG instrumentation.

  2. Implementing and testing a fiber-optic polarization-based intrusion detection system

    NASA Astrophysics Data System (ADS)

    Hajj, Rasha El; MacDonald, Gregory; Verma, Pramode; Huck, Robert

    2015-09-01

    We describe a layer-1-based intrusion detection system for fiber-optic-based networks. Layer-1-based intrusion detection represents a significant elevation in security as it prohibits an adversary from obtaining information in the first place (no cryptanalysis is possible). We describe the experimental setup of the intrusion detection system, which is based on monitoring the behavior of certain attributes of light both in unperturbed and perturbed optical fiber links. The system was tested with optical fiber links of various lengths and types, under different environmental conditions, and under changes in fiber geometry similar to what is experienced during tapping activity. Comparison of the results for perturbed and unperturbed links has shown that the state of polarization is more sensitive to intrusion activity than the degree of polarization or power of the received light. The testing was conducted in a simulated telecommunication network environment that included both underground and aerial links. The links were monitored for intrusion activity. Attempts to tap the link were easily detected with no apparent degradation in the visual quality of the real-time surveillance video.

  3. DNA-Aptamer optical biosensors based on a LPG-SPR optical fiber platform for point-of-care diagnostic

    NASA Astrophysics Data System (ADS)

    Coelho, L.; Queirós, R. B.; Santos, J. L.; Martins, M. Cristina L.; Viegas, D.; Jorge, P. A. S.

    2014-03-01

    Surface Plasmon Resonance (SPR) is the base for some of the most sensitive label free optical fiber biosensors. However, most solutions presented to date require the use of fragile fiber optic structure such as adiabatic tapers or side polished fibers. On the other hand, long-period fiber gratings (LPG) present themselves as an interesting solution to attain an evanescent wave refractive index sensor platform while preserving the optical fiber integrity. The combination of these two approaches constitute a powerful platform that can potentially reach the highest sensitivities as it was recently demonstrated by detailed theoretical study [1, 2]. In this work, a LPG-SPR platform is explored in different configurations (metal coating between two LPG - symmetric and asymmetric) operating in the telecom band (around 1550 nm). For this purpose LPGs with period of 396 μm are combined with tailor made metallic thin films. In particular, the sensing regions were coated with 2 nm of chromium to improve the adhesion to the fiber and 16 nm of gold followed by a 100 nm thick layer of TiO2 dielectric material strategically chosen to attain plasmon resonance in the desired wavelength range. The obtained refractometric platforms were then validated as a biosensor. For this purpose the detection of thrombin using an aptamer based probe was used as a model system for protein detection. The surface of the sensing fibers were cleaned with isopropanol and dried with N2 and then the aminated thrombin aptamer (5'-[NH2]- GGTTGGTGTGGTTGG-3') was immobilized by physisorption using Poly-L-Lysine (PLL) as cationic polymer. Preliminary results indicate the viability of the LPFG-SPR-APTAMER as a flexible platforms point of care diagnostic biosensors.

  4. Fiber-optic sensor-based remote acoustic emission measurement of composites

    NASA Astrophysics Data System (ADS)

    Yu, Fengming; Okabe, Yoji; Wu, Qi; Shigeta, Naoki

    2016-10-01

    Acoustic emission (AE) detection functioning at high temperatures could clarify the damage process in high heat-resistant composites. To achieve the high-temperature AE detection, a remote AE measurement based on a phase-shifted fiber Bragg grating (PS-FBG) sensor with a high sensitivity over a broad bandwidth was proposed. The common optical fibers were made from glass with good heat resistance. Hence, in this method, optical fiber was used as the waveguide to propagate the AE in the composite from a high-temperature environment to the room-temperature environment wherein the PS-FBG was located. Owing to the special AE detection configuration, this method was a new adhesive method for remote measurement (ADRM). The experiment and numerical simulation revealed that the PS-FBG sensor in the ADRM configuration demonstrated accurate remote sensing for the AE signals. This was because of the good waveguide system provided by the thin optical fiber and the sensitivity of the PS-FBG sensor to the axial strain in the core of the fiber. Consequently, the remote measurement utilizing the PS-FBG sensor in the ADRM configuration has a high potential for AE detection in high-temperature conditions.

  5. Fuel level sensor based on polymer optical fiber Bragg gratings for aircraft applications

    NASA Astrophysics Data System (ADS)

    Marques, C. A. F.; Pospori, A.; Sáez-Rodríguez, D.; Nielsen, K.; Bang, O.; Webb, D. J.

    2016-04-01

    Safety in civil aviation is increasingly important due to the increase in flight routes and their more challenging nature. Like other important systems in aircraft, fuel level monitoring is always a technical challenge. The most frequently used level sensors in aircraft fuel systems are based on capacitive, ultrasonic and electric techniques, however they suffer from intrinsic safety concerns in explosive environments combined with issues relating to reliability and maintainability. In the last few years, optical fiber liquid level sensors (OFLLSs) have been reported to be safe and reliable and present many advantages for aircraft fuel measurement. Different OFLLSs have been developed, such as the pressure type, float type, optical radar type, TIR type and side-leaking type. Amongst these, many types of OFLLSs based on fiber gratings have been demonstrated. However, these sensors have not been commercialized because they exhibit some drawbacks: low sensitivity, limited range, long-term instability, or limited resolution. In addition, any sensors that involve direct interaction of the optical field with the fuel (either by launching light into the fuel tank or via the evanescent field of a fiber-guided mode) must be able to cope with the potential build up of contamination - often bacterial - on the optical surface. In this paper, a fuel level sensor based on microstructured polymer optical fiber Bragg gratings (mPOFBGs), including poly (methyl methacrylate) (PMMA) and TOPAS fibers, embedded in diaphragms is investigated in detail. The mPOFBGs are embedded in two different types of diaphragms and their performance is investigated with aviation fuel for the first time, in contrast to our previous works, where water was used. Our new system exhibits a high performance when compared with other previously published in the literature, making it a potentially useful tool for aircraft fuel monitoring.

  6. An all-fiber partial discharge monitoring system based on both intrinsic fiber optic interferometry sensor and fluorescent fiber

    NASA Astrophysics Data System (ADS)

    Yin, Zelin; Zhang, Ruirui; Tong, Jie; Chen, Xi

    2013-12-01

    Partial discharges (PDs) are an electrical phenomenon that occurs within a transformer whenever the voltage stress is sufficient to produce ionization in voids or inclusions within a solid dielectric, at conductor/dielectric interfaces, or in bubbles within liquid dielectrics such as oil; high-frequency transient current discharges will then appear repeatedly and will progressively deteriorate the insulation, ultimately leading to breakdown. Fiber sensor has great potential on the partial discharge detection in high-voltage equipment for its immunity to electromagnetic interference and it can take direct measurement in the high voltage equipment. The energy released in PDs produces a number of effects, resulting in flash, chemical and structural changes and electromagnetic emissions and so on. Acoustic PD detection is based on the mechanical pressure wave emitted from the discharge and fluorescent fiber PD detection is based on the emitted light produced by ionization, excitation and recombination processes during the discharge. Both of the two methods have the shortage of weak anti-interference capacity in the physical environment, like thunder or other sound source. In order to avoid the false report, an all-fiber combined PD detection system of the two methods is developed in this paper. In the system the fluorescent fiber PD sensor is considered as a reference signal, three F-P based PD detection sensors are used to both monitor the PD intensity and calculate the exact position of the discharge source. Considering the wave band of the F-P cavity and the fluorescent probe are quite different, the reflection spectrum of the F-P cavity is in the infrared region, however the fluorescent probe is about 600nm to 700nm, thus the F-P sensor and fluorescent fiber probe can be connected in one fiber and the reflection light can be detected by two different detectors without mutual interference. The all-fiber partial discharge monitoring system not only can detect the PDs

  7. Experimental demonstration of a Fresnel-reflection based optical fiber biosensor coated with polyelectrolyte multilayers

    NASA Astrophysics Data System (ADS)

    Yu, Wenjie; Lang, Tingting

    2014-11-01

    We report that the end facet of an optical fiber can be coated with polyelectrolyte multilayers (PEM) of polycation (diallyldimethyl ammonium chloride) and polyanion (styrenesulfonate sodium salt) (PDDA+PSS)n (n is the number of bilayers), which functions effectively as a Fresnel-reflection based biosensor. The experimental setup includes a broadband light source, a 3dB coupler, and an optical spectrum analyzer. Biotin and streptavidin are deposited onto the multilayers-coated end facet sequentially. The light intensity change due to variation of external refractive index is monitored. When the concentrations of streptavidin changes from 0.1mg/ml to 1mg/ml, a linear relationship between the concentration of streptavidin and the reflected optical power at the wavelength of 1530nm is observed. The sensitivity increases from -1.6262×10-3 dB/ppm to -4.7852 ×10-3 dB/ppm, when the number of PEM increases from 1 to 2. Then we confirm the optimized numbers of bilayers of PEM are 5 through experiment. Selectivity and repeatability of our proposed optical fiber biosensor are verified. When bovine serum albumin (BSA) is added instead of streptavidin, the obtained spectra overlaps with that of biotin's. The final end facet coated with PEM and biotin-streptavidin can be cleaned using microwave vibration or aqua regia. The microwave vibration method is utilized due to security concern. The optical spectra changes back to the initial one of the optical fiber in air. In conclusion, a Fresnel-reflection based optical fiber biosensor with good sensitivity, selectivity and repeatability is proposed. This biosensor has the advantages of simple structure, low cost and reliability.

  8. Development of a graded index microlens based fiber optical trap and its characterization using principal component analysis.

    PubMed

    Nylk, J; Kristensen, M V G; Mazilu, M; Thayil, A K; Mitchell, C A; Campbell, E C; Powis, S J; Gunn-Moore, F J; Dholakia, K

    2015-04-01

    We demonstrate a miniaturized single beam fiber optical trapping probe based on a high numerical aperture graded index (GRIN) micro-objective lens. This enables optical trapping at a distance of 200μm from the probe tip. The fiber trapping probe is characterized experimentally using power spectral density analysis and an original approach based on principal component analysis for accurate particle tracking. Its use for biomedical microscopy is demonstrated through optically mediated immunological synapse formation.

  9. Wavelet-Based Processing for Fiber Optic Sensing Systems

    NASA Technical Reports Server (NTRS)

    Hamory, Philip J. (Inventor); Parker, Allen R., Jr. (Inventor)

    2016-01-01

    The present invention is an improved method of processing conglomerate data. The method employs a Triband Wavelet Transform that decomposes and decimates the conglomerate signal to obtain a final result. The invention may be employed to improve performance of Optical Frequency Domain Reflectometry systems.

  10. Fiber optic probes for laser light scattering: Ground based evaluation for micgrogravity flight experimentation. Integrated coherent imaging fiber optic systems for laser light scattering and other applications

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans Singh

    1994-01-01

    The research work presented in this report has established a new class of backscatter fiber optics probes for remote dynamic light scattering capability over a range of scattering angles from 94 degrees to 175 degrees. The fiber optic probes provide remote access to scattering systems, and can be utilized in either a noninvasive or invasive configuration. The fiber optics create an interference free data channel to inaccessible and harsh environments. Results from several studies of concentrated suspension, microemulsions, and protein systems are presented. The second part of the report describes the development of a new technology of wavefront processing within the optical fiber, that is, integrated fiber optics. Results have been very encouraging and the technology promises to have significant impact on the development of fiber optic sensors in a variety of fields ranging from environmental monitoring to optical recording, from biomedical sensing to photolithography.

  11. Silicon fiber optic sensors

    DOEpatents

    Pocha, Michael D.; Swierkowski, Steve P.; Wood, Billy E.

    2007-10-02

    A Fabry-Perot cavity is formed by a partially or wholly reflective surface on the free end of an integrated elongate channel or an integrated bounding wall of a chip of a wafer and a partially reflective surface on the end of the optical fiber. Such a constructed device can be utilized to detect one or more physical parameters, such as, for example, strain, through the optical fiber using an optical detection system to provide measuring accuracies of less than aboutb0.1%.

  12. Fiber optic microprobes with rare-earth-based phosphor tips for proton beam characterization

    NASA Astrophysics Data System (ADS)

    Darafsheh, Arash; Kassaee, Alireza; Taleei, Reza; Dolney, Derek; Finlay, Jarod C.

    2016-03-01

    We investigated the feasibility of using fiber optics probes with rare-earth-based phosphor tips for proton beam radiation dosimetry. We designed and fabricated a fiber probe with submillimeter resolution based on TbF3 phosphors and evaluated its performance for measurement of proton beams including profiles and range. The fiber optic probe, embedded in tissue-mimicking plastics, was irradiated with a clinical proton beam and the luminescence spectroscopy was performed by a CCD-coupled spectrograph to analyze the emission spectra of the fiber tip. By using a linear fitting algorithm we extracted the contribution of the ionoluminescence signal to obtain the percentage depth dose in phantoms and compared that with measurements performed with a standard ion chamber. We observed a quenching effect in the spread out Bragg peak region, manifested as an under-responding of the signal due to the high linear energy transfer of the beam. However, the beam profiles measurements were not affected by the quenching effect indicating that the fiber probes can be used for high-resolution measurements of proton beams profile.

  13. Radiation effects on optical frequency domain reflectometry fiber-based sensor.

    PubMed

    Rizzolo, S; Marin, E; Cannas, M; Boukenter, A; Ouerdane, Y; Périsse, J; Macé, J-R; Bauer, S; Marcandella, C; Paillet, P; Girard, S

    2015-10-15

    We investigate the radiation effects on germanosilicate optical fiber acting as the sensing element of optical frequency domain reflectometry devices. Thanks to a new setup permitting to control temperature during irradiation, we evaluate the changes induced by 10 keV x rays on their Rayleigh response up to 1 MGy in a temperature range from -40°C up to 75°C. Irradiation at fixed temperature points out that its measure is reliable during both irradiation and the recovery process. Mixed temperature and radiation measurements show that changing irradiation temperature leads to an error in distributed measurements that depends on the calibration procedure. These results demonstrate that Rayleigh-based optical fiber sensors are very promising for integration in harsh environments. PMID:26469566

  14. Evaluation of optical properties for real photonic crystal fiber based on total variation in wavelet domain

    NASA Astrophysics Data System (ADS)

    Shen, Yan; Wang, Xin; Lou, Shuqin; Lian, Zhenggang; Zhao, Tongtong

    2016-09-01

    An evaluation method based on the total variation model (TV) in wavelet domain is proposed for modeling optical properties of real photonic crystal fibers (PCFs). The TV model in wavelet domain is set up to suppress the noise of the original image effectively and rebuild the cross section images of real PCFs with high accuracy. The optical properties of three PCFs are evaluated, including two kinds of PCFs that supplied from the Crystal Fiber A/S and a homemade side-leakage PCF, by using the combination of the proposed model and finite element method. Numerical results demonstrate that the proposed method can obtain high noise suppression ratio and effectively reduce the noise of cross section images of PCFs, which leads to an accurate evaluation of optical properties of real PCFs. To the best of our knowledge, it is the first time to denoise the cross section images of PCFs with the TV model in the wavelet domain.

  15. Dissemination of optical-comb-based ultra-broadband frequency reference through a fiber network.

    PubMed

    Nagano, Shigeo; Kumagai, Motohiro; Li, Ying; Ido, Tetsuya; Ishii, Shoken; Mizutani, Kohei; Aoki, Makoto; Otsuka, Ryohei; Hanado, Yuko

    2016-08-22

    We disseminated an ultra-broadband optical frequency reference based on a femtosecond (fs)-laser optical comb through a kilometer-scale fiber link. Its spectrum ranged from 1160 nm to 2180 nm without additional fs-laser combs at the end of the link. By employing a fiber-induced phase noise cancellation technique, the linewidth and fractional frequency instability attained for all disseminated comb modes were of order 1 Hz and 10-18 in a 5000 s averaging time. The ultra-broad optical frequency reference, for which absolute frequency is traceable to Japan Standard Time, was applied in the frequency stabilization of an injection-seeded Q-switched 2051 nm pulse laser for a coherent light detection and ranging LIDAR system.

  16. Optimization and application of reflective LSPR optical fiber biosensors based on silver nanoparticles.

    PubMed

    Chen, Jiangping; Shi, Se; Su, Rongxin; Qi, Wei; Huang, Renliang; Wang, Mengfan; Wang, Libing; He, Zhimin

    2015-01-01

    In this study, we developed a reflective localized surface plasmon resonance (LSPR) optical fiber sensor, based on silver nanoparticles (Ag NPs). To enhance the sensitivity of the LSPR optical sensor, two key parameters were optimized, the length of the sensing area and the coating time of the Ag NPs. A sensing length of 1.5 cm and a 1-h coating time proved to be suitable conditions to produce highly sensitive sensors for biosensing. The optimized sensor has a high refractive index sensitivity of 387 nm/RIU, which is much higher than that of other reported individual silver nanoparticles in solutions. Moreover, the sensor was further modified with antigen to act as a biosensor. Distinctive wavelength shifts were found after each surface modification step. In addition, the reflective LSPR optical fiber sensor has high reproducibility and stability.

  17. Dissemination of optical-comb-based ultra-broadband frequency reference through a fiber network.

    PubMed

    Nagano, Shigeo; Kumagai, Motohiro; Li, Ying; Ido, Tetsuya; Ishii, Shoken; Mizutani, Kohei; Aoki, Makoto; Otsuka, Ryohei; Hanado, Yuko

    2016-08-22

    We disseminated an ultra-broadband optical frequency reference based on a femtosecond (fs)-laser optical comb through a kilometer-scale fiber link. Its spectrum ranged from 1160 nm to 2180 nm without additional fs-laser combs at the end of the link. By employing a fiber-induced phase noise cancellation technique, the linewidth and fractional frequency instability attained for all disseminated comb modes were of order 1 Hz and 10-18 in a 5000 s averaging time. The ultra-broad optical frequency reference, for which absolute frequency is traceable to Japan Standard Time, was applied in the frequency stabilization of an injection-seeded Q-switched 2051 nm pulse laser for a coherent light detection and ranging LIDAR system. PMID:27557196

  18. Optical fiber sensor for pressure measurement based on elastomeric membrane and macrobending loss

    NASA Astrophysics Data System (ADS)

    Ribeiro, Livia A.; Rosolem, Joao B.; Dini, Danilo C.; Floridia, Claudio; Bezerra, Edson W.; Cezar, Fabio A.; Loichate, Marcelo D.; Durelli, Anderson S.

    2012-04-01

    We propose a fiber optic sensor array based on bend loss assessed by optical time domain reflectometry (OTDR). The sensor mechanism is based on optical fiber bending loss compressed by external pressure. An elastomeric surface is applied to the sensor in order to communicate external pressure to the fiber coil and also, this make sensor able to deal with degradation coming from aggressive environments. The sensing system proposed is able to monitor liquid or gas pressure in different environments, such as water, oil, alcohols, some diluted acids and others, depending only of elastomeric membrane choice. In order to protect the sensor stage against environmental degradation a plastic packaging was chosen. Bend loss measurements is taken concerning the number of fiber loops involved in the sensor, pump signal wavelength and temporal width. This long for the best parameters in the sensor construction. The specific case of the sensor applied to water percolation monitoring from embankment damns is detailed in this paper; for this application the sensor array have a number of at least six stages totally independent each other, in such a way that each stage can be developed to monitor a specific environment. Sensors have shown good performance in field tests, reaching work range from 0.1 to 0.6 atm with 0.05 atm of precision.

  19. A streak camera based fiber optic pulsed polarimetry technique for magnetic sensing to sub-mm resolution

    NASA Astrophysics Data System (ADS)

    Smith, R. J.; Weber, T. E.

    2016-11-01

    The technique of fiber optic pulsed polarimetry, which provides a distributed (local) measurement of the magnetic field along an optical fiber, has been improved to the point where, for the first time, photocathode based optical detection of backscatter is possible with sub-mm spatial resolutions. This has been realized through the writing of an array of deterministic fiber Bragg gratings along the fiber, a so-called backscatter-tailored optical fiber, producing a 34 000-fold increase in backscatter levels over Rayleigh. With such high backscatter levels, high repetition rate lasers are now sufficiently bright to allow near continuous field sensing in both space and time with field resolutions as low as 0.005 T and as high as 170 T over a ˜mm interval given available fiber materials.

  20. Research of difference absorption optical fiber CO gas sensor based on FBG

    NASA Astrophysics Data System (ADS)

    Wang, Yanju; Liu, Zhihua; Kang, Yueyi; Wang, Yutian

    2009-07-01

    Based on analysis of the near infrared spectral absorption of CO molecule and considering factors such as compatibility with the transmission characteristics of silica optical fiber and the price, a kind of allfiber remote sensor utilizing Fiber Bragg Grating(FBG) filters and 1.567μm high power light-emitting diode (LED) was developed for real time absorption measurement. FBG has a low insert loss and can be produced easily compared with dielectric interference filters. Theory and experiment proved that the system has simple construct and high sensibility.

  1. Electrospun amplified fiber optics.

    PubMed

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-03-11

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.

  2. Electrospun Amplified Fiber Optics

    PubMed Central

    2015-01-01

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm–1). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics. PMID:25710188

  3. Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection

    PubMed Central

    Yao, B. C.; Wu, Y.; Yu, C. B.; He, J. R.; Rao, Y. J.; Gong, Y.; Fu, F.; Chen, Y. F.; Li, Y. R.

    2016-01-01

    Fluorescent resonance energy transfer (FRET) with naturally exceptional selectivity is a powerful technique and widely used in chemical and biomedical analysis. However, it is still challenging for conventional FRET to perform as a high sensitivity compact sensor. Here we propose a novel ‘FRET on Fiber’ concept, in which a partially reduced graphene oxide (prGO) film is deposited on a fiber-optic modal interferometer, acting as both the fluorescent quencher for the FRET and the sensitive cladding for optical phase measurement due to refractive index changes in biochemical detection. The target analytes induced fluorescence recovery with good selectivity and optical phase shift with high sensitivity are measured simultaneously. The functionalized prGO film coated on the fiber-optic interferometer shows high sensitivities for the detections of metal ion, dopamine and single-stranded DNA (ssDNA), with detection limits of 1.2 nM, 1.3 μM and 1 pM, respectively. Such a prGO based ‘FRET on fiber’ configuration, bridging the FRET and the fiber-optic sensing technology, may serve as a platform for the realization of series of integrated ‘FRET on Fiber’ sensors for on-line environmental, chemical, and biomedical detection, with excellent compactness, high sensitivity, good selectivity and fast response PMID:27010752

  4. Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection

    NASA Astrophysics Data System (ADS)

    Yao, B. C.; Wu, Y.; Yu, C. B.; He, J. R.; Rao, Y. J.; Gong, Y.; Fu, F.; Chen, Y. F.; Li, Y. R.

    2016-03-01

    Fluorescent resonance energy transfer (FRET) with naturally exceptional selectivity is a powerful technique and widely used in chemical and biomedical analysis. However, it is still challenging for conventional FRET to perform as a high sensitivity compact sensor. Here we propose a novel ‘FRET on Fiber’ concept, in which a partially reduced graphene oxide (prGO) film is deposited on a fiber-optic modal interferometer, acting as both the fluorescent quencher for the FRET and the sensitive cladding for optical phase measurement due to refractive index changes in biochemical detection. The target analytes induced fluorescence recovery with good selectivity and optical phase shift with high sensitivity are measured simultaneously. The functionalized prGO film coated on the fiber-optic interferometer shows high sensitivities for the detections of metal ion, dopamine and single-stranded DNA (ssDNA), with detection limits of 1.2 nM, 1.3 μM and 1 pM, respectively. Such a prGO based ‘FRET on fiber’ configuration, bridging the FRET and the fiber-optic sensing technology, may serve as a platform for the realization of series of integrated ‘FRET on Fiber’ sensors for on-line environmental, chemical, and biomedical detection, with excellent compactness, high sensitivity, good selectivity and fast response

  5. Hydrogen Optical Fiber Sensors

    SciTech Connect

    Lieberman, Robert A.; Beshay, Manal; Cordero, Steven R.

    2008-07-28

    Optically-based hydrogen sensors promise to deliver an added level of safety as hydrogen and fuel cell technologies enter the mainstream. More importantly, they offer reduced power consumption and lower cost, which are desirable for mass production applications such as automobiles and consumer appliances. This program addressed two of the major challenges previously identified in porous optrode-based optical hydrogen sensors: sensitivity to moisture (ambient humidity), and interference from the oxygen in air. Polymer coatings to inhibit moisture and oxygen were developed in conjunction with newer and novel hydrogen sensing chemistries. The results showed that it is possible to achieve sensitive hydrogen detection and rapid response with minimal interference from oxygen and humidity. As a result of this work, a new and more exciting avenue of investigation was developed: the elimination of the porous optrode and deposition of the sensor chemistry directly into the polymer film. Initial results have been promising, and open up a wider range of potential applications from extended optical fiber sensing networks, to simple plastic "stickers" for use around the home and office.

  6. Fiber based optical tweezers for simultaneous in situ force exertion and measurements in a 3D polyacrylamide gel compartment.

    PubMed

    Ti, Chaoyang; Thomas, Gawain M; Ren, Yundong; Zhang, Rui; Wen, Qi; Liu, Yuxiang

    2015-07-01

    Optical tweezers play an important role in biological applications. However, it is difficult for traditional optical tweezers based on objective lenses to work in a three-dimensional (3D) solid far away from the substrate. In this work, we develop a fiber based optical trapping system, namely inclined dual fiber optical tweezers, that can simultaneously apply and measure forces both in water and in a 3D polyacrylamide gel matrix. In addition, we demonstrate in situ, non-invasive characterization of local mechanical properties of polyacrylamide gel by measurements on an embedded bead. The fiber optical tweezers measurements agree well with those of atomic force microscopy (AFM). The inclined dual fiber optical tweezers provide a promising and versatile tool for cell mechanics study in 3D environments.

  7. Fiber based optical tweezers for simultaneous in situ force exertion and measurements in a 3D polyacrylamide gel compartment

    PubMed Central

    Ti, Chaoyang; Thomas, Gawain M; Ren, Yundong; Zhang, Rui; Wen, Qi; Liu, Yuxiang

    2015-01-01

    Optical tweezers play an important role in biological applications. However, it is difficult for traditional optical tweezers based on objective lenses to work in a three-dimensional (3D) solid far away from the substrate. In this work, we develop a fiber based optical trapping system, namely inclined dual fiber optical tweezers, that can simultaneously apply and measure forces both in water and in a 3D polyacrylamide gel matrix. In addition, we demonstrate in situ, non-invasive characterization of local mechanical properties of polyacrylamide gel by measurements on an embedded bead. The fiber optical tweezers measurements agree well with those of atomic force microscopy (AFM). The inclined dual fiber optical tweezers provide a promising and versatile tool for cell mechanics study in 3D environments. PMID:26203364

  8. Optical fiber-based system for continuous measurement of in-bore projectile velocity.

    PubMed

    Wang, Guohua; Sun, Jinglin; Li, Qiang

    2014-08-01

    This paper reports the design of an optical fiber-based velocity measurement system and its application in measuring the in-bore projectile velocity. The measurement principle of the implemented system is based on Doppler effect and heterodyne detection technique. The analysis of the velocity measurement principle deduces the relationship between the projectile velocity and the instantaneous frequency (IF) of the optical fiber-based system output signal. To extract the IF of the fast-changing signal carrying the velocity information, an IF extraction algorithm based on the continuous wavelet transforms is detailed. Besides, the performance of the algorithm is analyzed by performing corresponding simulation. At last, an in-bore projectile velocity measurement experiment with a sniper rifle having a 720 m/s muzzle velocity is performed to verify the feasibility of the optical fiber-based velocity measurement system. Experiment results show that the measured muzzle velocity is 718.61 m/s, and the relative uncertainty of the measured muzzle velocity is approximately 0.021%.

  9. Optical fiber-based system for continuous measurement of in-bore projectile velocity

    NASA Astrophysics Data System (ADS)

    Wang, Guohua; Sun, Jinglin; Li, Qiang

    2014-08-01

    This paper reports the design of an optical fiber-based velocity measurement system and its application in measuring the in-bore projectile velocity. The measurement principle of the implemented system is based on Doppler effect and heterodyne detection technique. The analysis of the velocity measurement principle deduces the relationship between the projectile velocity and the instantaneous frequency (IF) of the optical fiber-based system output signal. To extract the IF of the fast-changing signal carrying the velocity information, an IF extraction algorithm based on the continuous wavelet transforms is detailed. Besides, the performance of the algorithm is analyzed by performing corresponding simulation. At last, an in-bore projectile velocity measurement experiment with a sniper rifle having a 720 m/s muzzle velocity is performed to verify the feasibility of the optical fiber-based velocity measurement system. Experiment results show that the measured muzzle velocity is 718.61 m/s, and the relative uncertainty of the measured muzzle velocity is approximately 0.021%.

  10. Optical fiber-based system for continuous measurement of in-bore projectile velocity.

    PubMed

    Wang, Guohua; Sun, Jinglin; Li, Qiang

    2014-08-01

    This paper reports the design of an optical fiber-based velocity measurement system and its application in measuring the in-bore projectile velocity. The measurement principle of the implemented system is based on Doppler effect and heterodyne detection technique. The analysis of the velocity measurement principle deduces the relationship between the projectile velocity and the instantaneous frequency (IF) of the optical fiber-based system output signal. To extract the IF of the fast-changing signal carrying the velocity information, an IF extraction algorithm based on the continuous wavelet transforms is detailed. Besides, the performance of the algorithm is analyzed by performing corresponding simulation. At last, an in-bore projectile velocity measurement experiment with a sniper rifle having a 720 m/s muzzle velocity is performed to verify the feasibility of the optical fiber-based velocity measurement system. Experiment results show that the measured muzzle velocity is 718.61 m/s, and the relative uncertainty of the measured muzzle velocity is approximately 0.021%. PMID:25173302

  11. Polydimethylsiloxane fibers for optical fiber sensor of displacement

    NASA Astrophysics Data System (ADS)

    Martincek, Ivan; Pudis, Dusan; Gaso, Peter

    2013-09-01

    The paper describes the preparation of polydimethylsiloxane (PDMS) fiber integrated on the conventional optical fibers and their use for optical fiber displacement sensor. PDMS fiber was made of silicone elastomer Sylgard 184 (Dow Corning) by drawing from partially cured silicone. Optical fiber displacement sensor using PDMS fiber is based on the measurement of the local minimum of optical signal in visible spectral range generated by intermodal interference of circularly symmetric modes. Position of the local minimum in spectral range varies by stretching the PDMS fiber of 230 μm in the wavelength range from 688 to 477 nm. In the stretched PDMS fiber is possible to determine the longitudinal displacement with an accuracy of approximately 1 micrometer.

  12. Temperature-independent refractometer based on fiber-optic Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Li, Jiacheng; Qiao, Xueguang; Wang, Ruohui; Rong, Qiangzhou; Bao, Weijia; Shao, Zhihua; Yang, Tingting

    2016-04-01

    A miniature fiber-optic refractometer based on Fabry-Perot interferometer (FPI) has been proposed and experimentally demonstrated. The sensing head consists of a short section of photonics crystal fiber (PCF) spliced to a single mode fiber (SMF), in which the end-face of the PCF is etched to remove holey structure with hydrofluoric (HF) acid. A Fabry-Perot interference spectrum is achieved based on the reflections from the fusion splicing interface and the end-face of the core of PCF. The interference fringe is sensitive to the external refractive index (RI) with an intensity-referenced sensitivity of 358.27 dB/RIU ranging from 1.33 to 1.38. The sensor has also been implemented for the concentration measurement of λ-phage DNA solution. In addition, the dip intensity is insensitive to the ambient temperature variation, making it a good candidate for temperature-independent bio-sensing area.

  13. All-fiber tunable laser based on an acousto-optic tunable filter and a tapered fiber.

    PubMed

    Huang, Ligang; Song, Xiaobo; Chang, Pengfa; Peng, Weihua; Zhang, Wending; Gao, Feng; Bo, Fang; Zhang, Guoquan; Xu, Jingjun

    2016-04-01

    An all-fiber tunable laser was fabricated based on an acousto-optic tunable filter and a tapered fiber. The structure was of a high signal-to-noise ratio, therefore, no extra gain flattening was needed in the laser. In the experiment, the wavelength of the laser could be tuned from 1532.1 nm to 1570.4 nm with a 3-dB bandwidth of about 0.2 nm. Given enough nonlinearity in the laser cavity, it could also generate a sliding-frequency pulse train. The laser gains advantages of fast tuning and agility in pulse generation, and its simple structure is low cost for practical applications. PMID:27137035

  14. Progress in hollow core photonic crystal fiber for atomic vapour based coherent optics

    NASA Astrophysics Data System (ADS)

    Bradley, T. D.; Wang, Y. Y.; Alharbi, M.; Fourcade Dutin, C.; Mangan, B. J.; Wheeler, N. V.; Benabid, F.

    2012-03-01

    We report on progress in different hollow core photonic crystal fiber (HC-PCF) design and fabrication for atomic vapor based applications. We have fabricated a Photonic bandgap (PBG) guiding HC-PCF with a record loss of 107dB/km at 785nm in this class of fiber. A double photonic bandgap (DPBG) guiding HC-PCF with guidance bands centred at 780nm and 1064nm is reported. A 7-cell 3-ring Kagome HC-PCF with hypocycloid core is reported, the optical loss at 780nm has been reduced to 70dB/km which to the best of our knowledge is the lowest optical loss reported at this wavelength using HC-PCF. Details on experimental loading of alkali metal vapours using a far off red detuned laser are reported. This optical loading has been shown to decrease the necessary loading time for Rb into the hollow core of a fiber. The quantity of Rb within the fiber core has been enhanced by a maximum of 14% through this loading procedure.

  15. Monitoring of patient glucose infusion using a surface plasmon resonance-based fiber optic sensor

    NASA Astrophysics Data System (ADS)

    Wu, Jiangling; Yan, Yurong; Li, Shengqiang; Ding, Xiaojuan; Ding, Shijia; Huang, Yu

    2015-10-01

    A surface plasmon resonance (SPR)-based optic fiber monitoring system was introduced in this paper to monitor patients’ infusion process. The SPR-based fiber optic sensor provides a dramatically enhanced flexibility during the monitoring process. The experimental results showed that the spectral shift of sensor is correlated with glucose concentration and its flowing speed. The presence of fatal air bubbles in a glucose infusion solvent is detectable in real time, so that the consequent medical accident is avoidable. This sensor can simultaneously provide the information of liquid concentration and its flowing velocity, and make a judgment on the presence of air bubbles in solution during infusion. It provides experimental guidance on designing and manufacturing a sensor for on-line clinical monitoring systems in the future.

  16. Optical fiber stripper positioning apparatus

    DOEpatents

    Fyfe, Richard W.; Sanchez, Jr., Amadeo

    1990-01-01

    An optical fiber positioning apparatus for an optical fiber stripping device is disclosed which is capable of providing precise axial alignment between an optical fiber to be stripped of its outer jacket and the cutting blades of a stripping device. The apparatus includes a first bore having a width approximately equal to the diameter of an unstripped optical fiber and a counter bore axially aligned with the first bore and dimensioned to precisely receive a portion of the stripping device in axial alignment with notched cutting blades within the stripping device to thereby axially align the notched cutting blades of the stripping device with the axis of the optical fiber to permit the notched cutting blades to sever the jacket on the optical fiber without damaging the cladding on the optical fiber. In a preferred embodiment, the apparatus further includes a fiber stop which permits determination of the length of jacket to be removed from the optical fiber.

  17. Design of differential optical absorption spectroscopy long-path telescopes based on fiber optics.

    PubMed

    Merten, André; Tschritter, Jens; Platt, Ulrich

    2011-02-10

    We present a new design principle of telescopes for use in the spectral investigation of the atmosphere and the detection of atmospheric trace gases with the long-path differential optical absorption spectroscopy (DOAS) technique. A combination of emitting and receiving fibers in a single bundle replaces the commonly used coaxial-Newton-type combination of receiving and transmitting telescope. This very simplified setup offers a higher light throughput and simpler adjustment and allows smaller instruments, which are easier to handle and more portable. The higher transmittance was verified by ray-tracing calculations, which result in a theoretical factor threefold improvement in signal intensity compared with the old setup. In practice, due to the easier alignment and higher stability, up to factor of 10 higher signal intensities were found. In addition, the use of a fiber optic light source provides a better spectral characterization of the light source, which results in a lower detection limit for trace gases studied with this instrument. This new design will greatly enhance the usability and the range of applications of active DOAS instruments.

  18. Design of differential optical absorption spectroscopy long-path telescopes based on fiber optics.

    PubMed

    Merten, André; Tschritter, Jens; Platt, Ulrich

    2011-02-10

    We present a new design principle of telescopes for use in the spectral investigation of the atmosphere and the detection of atmospheric trace gases with the long-path differential optical absorption spectroscopy (DOAS) technique. A combination of emitting and receiving fibers in a single bundle replaces the commonly used coaxial-Newton-type combination of receiving and transmitting telescope. This very simplified setup offers a higher light throughput and simpler adjustment and allows smaller instruments, which are easier to handle and more portable. The higher transmittance was verified by ray-tracing calculations, which result in a theoretical factor threefold improvement in signal intensity compared with the old setup. In practice, due to the easier alignment and higher stability, up to factor of 10 higher signal intensities were found. In addition, the use of a fiber optic light source provides a better spectral characterization of the light source, which results in a lower detection limit for trace gases studied with this instrument. This new design will greatly enhance the usability and the range of applications of active DOAS instruments. PMID:21343997

  19. Fiber optic current probe

    NASA Astrophysics Data System (ADS)

    Wyntjes, G.; Fox, R.

    1984-02-01

    This report documents the results of Phase 1 research into a new type of Fiber Optic Current probe, suitable for high voltage, high current applications. The probe uses a stabilized two frequency HeNe laser to read the magnitude and sign of magnetic field induced circular birefringence in an optical fiber wound around a conductor. Measurements of both alternating and direct currents were demonstrated with a breadboard system. The system was tested at low voltages with currents of up to 4500 amperes peak and with up to 28 turns of optical fiber around the conductor. The response was found to increase linearly with the number of fiber turns. Experimental determinations of the system's frequency response and dynamic range were not possible due to our inability to generate large, fast current transients. The predicted frequency response is 100 kHz with an ability to read transient amplitudes of 300 times the nominal line current. Several single-mode fibers were used to form transducers, and the optimum fiber for further development was identified. The 2-frequency interrogation technique described worked entirely as predicted, and should be applicable to magnetic field measurements in general (i.e., charged particle beams, Tokamaks, antenna patterns, EMP testing, etc.).

  20. Highly Sensitive Temperature Sensors Based on Fiber-Optic PWM and Capacitance Variation Using Thermochromic Sensing Membrane.

    PubMed

    Khan, Md Rajibur Rahaman; Kang, Shin-Won

    2016-07-09

    In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM) and an interdigitated capacitor (IDC)-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD) of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R² ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics) in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system.

  1. Highly Sensitive Temperature Sensors Based on Fiber-Optic PWM and Capacitance Variation Using Thermochromic Sensing Membrane

    PubMed Central

    Khan, Md. Rajibur Rahaman; Kang, Shin-Won

    2016-01-01

    In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM) and an interdigitated capacitor (IDC)-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD) of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R2 ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics) in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system. PMID:27409620

  2. Reflective polarimetric vibration sensor based on temperature-independent FBG in HiBi microstructured optical fiber

    NASA Astrophysics Data System (ADS)

    Chah, Karima; Caucheteur, Christophe; Mégret, Patrice; Sulejmani, Sanne; Geernaert, Thomas; Thienpont, Hugo; Berghmans, Francis; Wuilpart, Marc

    2014-05-01

    Fiber optic sensors outperform traditional sensor technologies in fields such as structural health monitoring, vibration and seismic activity monitoring, intrusion detection, and many other applications. Their key advantages include electromagnetic interference immunity, lightweight, small size, multiplexing capabilities, low power consumption, corrosion and high temperature resistance. To meet the demand of more and more challenging optical sensors a new generation of optical fibers, the so-called microstructured optical fibers (MOFs), has appeared. These fibers are composed of a structure of holes surrounding a solid core, which offers a unique design flexibility to optimize their waveguide properties for specific applications. In particular, the design can be optimized to strongly reduce the cross-sensitivity of a sensor to parasitic physical parameters like temperature variations, as is the case for the sensor presented here. Our sensor is based on a Bragg grating inside a temperature independent highly birefringent MOF with a high transverse strain sensitivity, to evaluate vibrations by a polarimetric measurement of the reflection spectrum. This technique takes advantage of the stress-induced phase shift between the two orthogonally polarized fiber eigenmodes. It consists in coupling linearly polarized light through one arm of an optical coupler (50:50) in the sensing optical fiber in which a highly reflective fiber Bragg grating is inscribed. The reflected signal is analysed through a linear polarizer. The optical fiber is crushed by a mechanical transducer designed to transform the vibration into a mechanical stress transversal to the fiber's axis. The vibration therefore induces a change of the phase modal birefringence that varies in time at the vibration frequency. In this study we show that using standard single-mode fibers to realize the sensor do not provide stable measurements and that using conventional polarization-maintaining fibers lead to a

  3. Great prospects for fiber optics sensors

    NASA Astrophysics Data System (ADS)

    Hansen, T. E.

    1983-10-01

    Fiber optic sensors provide noise immunity and galvanic insulation at the measurement point. Interest in such sensors is increasing for these reasons. In the United States sales are expected to increase from 12 million dollars in 1981 to 180 million in 1991. Interferometric sensors based on single modus fibers deliver extremely high sensitivity, while sensors based on multi-modus fibers are more easily manufactured. The fiber optic sensors which are available today are based on point measurements. Development of fiber optic sensors in Norway is being carried out at the Central institute and has resulted in the development of medical manometers which are now undergoing clinical testing.

  4. Great prospects for fiber optics sensors

    NASA Technical Reports Server (NTRS)

    Hansen, T. E.

    1983-01-01

    Fiber optic sensors provide noise immunity and galvanic insulation at the measurement point. Interest in such sensors is increasing for these reasons. In the United States sales are expected to increase from 12 million dollars in 1981 to 180 million in 1991. Interferometric sensors based on single modus fibers deliver extremely high sensitivity, while sensors based on multi-modus fibers are more easily manufactured. The fiber optic sensors which are available today are based on point measurements. Development of fiber optic sensors in Norway is being carried out at the Central institute and has resulted in the development of medical manometers which are now undergoing clinical testing.

  5. Rotational positioning measurement for the absolute angle based on a hetero-core fiber optics sensor

    NASA Astrophysics Data System (ADS)

    Nishiyama, Michiko; Watanabe, Kazuhiro

    2009-10-01

    We proposed a new approach to measure the rotational angle and describe how the rotational positioning sensor could be devised arranging the hetero-core fiber-optic macro-bending sensors in terms of detecting the absolute rotational angle. The hetero-core fiber optic sensor has many advantages such as ability of macro-bend sensing with optical intensity-based measurement, single-mode transmission basis and independence of temperature fluctuation for external environment. Therefore, it is suitable that the rotational positioning sensor is fabricated with the hetero-core fiber-optic technique. We designed two types of the absolute rotational position sensor modules to convert the absolute rotational angle to the displacement. The result showed that the proposed rotational positioning modules were sufficiently sensitive to the given rotational angle with monotonic loss change characteristics. The hetero-core rotational positioning sensors were successfully perceptive with typical sensitivities approximately 0.77 and 0.71 dB in the rotational angle ranges of 60 - 360 and 60 - 180 degrees. The deviation of the module in the range of 60 - 180 degrees induced 1.74 % that corresponded to 2.13 degrees.

  6. A reflective fiber-optic refractive index sensor based on multimode interference in a coreless silica fiber

    NASA Astrophysics Data System (ADS)

    Zhou, Xinlei; Chen, Ke; Mao, Xuefeng; peng, Wei; Yu, Qingxu

    2015-04-01

    A reflective fiber-optic refractive index (RI) sensor based on multimode interference (MMI) is presented and investigated in this paper. The sensor is made by splicing a small section of coreless silica fiber (CSF) to the standard single mode fiber (SMF). A wide-angle beam propagation method (WA-BPM) is employed for numerical simulation and design of the proposed RI sensor. Based on the simulation results, a RI sensor with a length of 1.7 cm of CSF is fabricated and experimentally studied. Experimental results show that the characteristic wavelength shift has an approximately linear relationship with the RI of the sample. A sensitivity of 141 nm/RIU (refractive index unit) and a resolution of 2.8×10-5 are obtained in the RI range from 1.33 to 1.38. As the RI value is higher than 1.38, the sensitivity of the sensor increase rapidly as the RI increase and a maximum sensitivity of 1561 nm/RIU can be achieved, corresponding to a resolution of 2.6×10-6. The experimental results fit well with the numerical simulation results.

  7. Optical Fiber-Based In Situ Spectroscopy of Pigmented Single Colonies

    PubMed Central

    Wiggli, M.; Ghosh, R.; Bachofen, R.

    1996-01-01

    We have adapted a commercially available fiber-optic spectroradiometer with diode array detection to record reflection and absorption spectra from single, 1-mm-diameter bacterial colonies. A careful assessment of the performance of the spectroradiometer for this application is reported. In a model study employing colonies from various phototrophic bacteria, we show that the reflectance spectra are reliable within the range of 450 to 820 nm, whereas the transmission spectra yield accurate peak intensities and absorption maxima from 400 to 900 nm. For screening of populations of about 10(sup4) colonies, fiber-optic transmission spectroscopy provides an attractive and inexpensive alternative to present techniques based on charge-coupled device imaging technology. PMID:16535403

  8. Fabrication of the Optical Fiber GABA Sensor Based on the NADP+ -Functionalized Quantum Dots.

    PubMed

    Zhao, Fei; Yoo, Jeongha; Kim, Jongsung

    2016-02-01

    A novel quantum dots (QDs)-based optical fiber biosensor has been developed to detect gamma-amino butyric acid (GABA) directly, via QD fluorescence quenching and recovery. QDs were immobilized on the surface of an optical-fiber through the EDC/Sulfo-NHS coupling reaction. The QDs were functionalized by 3-aminophenyl boronic acid and then by NADP+. The fluorescence of the NADP+ -functionalized QDs was quenched by electron transfer from QDs to NADP+. However, by the metabolic conversion of GABA to succinic acid by GABase, NADP+ was reduced to NADPH, which hindered the electron transfer. As a result, the fluorescence of the QDs could recover. The recovery rate of the fluorescence intensity of QDs depended on the concentration of GABA. This shows the possibility of detection of low concentrations of GABA via measurement of the fluorescence intensity.

  9. Distributed optical fiber-based theoretical and empirical methods monitoring hydraulic engineering subjected to seepage velocity

    NASA Astrophysics Data System (ADS)

    Su, Huaizhi; Tian, Shiguang; Cui, Shusheng; Yang, Meng; Wen, Zhiping; Xie, Wei

    2016-09-01

    In order to systematically investigate the general principle and method of monitoring seepage velocity in the hydraulic engineering, the theoretical analysis and physical experiment were implemented based on distributed fiber-optic temperature sensing (DTS) technology. During the coupling influence analyses between seepage field and temperature field in the embankment dam or dike engineering, a simplified model was constructed to describe the coupling relationship of two fields. Different arrangement schemes of optical fiber and measuring approaches of temperature were applied on the model. The inversion analysis idea was further used. The theoretical method of monitoring seepage velocity in the hydraulic engineering was finally proposed. A new concept, namely the effective thermal conductivity, was proposed referring to the thermal conductivity coefficient in the transient hot-wire method. The influence of heat conduction and seepage could be well reflected by this new concept, which was proved to be a potential approach to develop an empirical method monitoring seepage velocity in the hydraulic engineering.

  10. Performance analysis of a micro-scale pulse tube cryocooler based on optical fiber regenerator

    NASA Astrophysics Data System (ADS)

    Jin, T.; Huang, J. L.; Tang, K.; Wu, M. X.

    2013-05-01

    The newly-developed holey optical fiber in photo-communication technology is introduced to the pulse tube cryocooler (PTC), exploring its feasibility as the regenerator. The influences of regenerative materials, as well as the influences of regenerator geometry, frequency, working pressure and input power were analyzed by calculating with a model based on thermoacoustic theory. The results from the simulation demonstrate that compared with the conventional stacked stainless steel screen, the utilization of optical fiber has the potential in increasing the coefficient of performance (COP) of a micro-scale PTC, as large as 0.136 at 80 K. Further calculation shows the influence of working parameters on the performance of a micro-scale PTC with the optimized geometries.

  11. Radio over fiber system carrying OFDM signal based on optical octuple frequency technique

    NASA Astrophysics Data System (ADS)

    Zhou, Hui; Zheng, Zhiwei; Wan, Qiuzhen

    2015-08-01

    We have proposed a scheme of radio over fiber (ROF) system with octuple optical millimeter-wave (mm-wave) generation transmit orthogonal frequency division multiplexing (OFDM) signal based on odd order sidebands suppression technique and filtering. The transmission performance of the optical mm-wave OFDM signal is theoretically investigated and implemented by numerical simulation. The results show that the time shift induced by chromatic dispersion only causes a slight phase rotation for constellation diagram, and a 40 GHz ROF system with a 2.5 Gbit/s signal remain has a good performance after the signal is transmitted over 50 km standard single-mode fiber (SSMF). Then the effects of the Mach-Zehnder modulator (MZM) DC-bias and modulation depth (MD) on the system performance are discussed by simulation, and the optimal performance of the system is obtained.

  12. Fabrication of the Optical Fiber GABA Sensor Based on the NADP+ -Functionalized Quantum Dots.

    PubMed

    Zhao, Fei; Yoo, Jeongha; Kim, Jongsung

    2016-02-01

    A novel quantum dots (QDs)-based optical fiber biosensor has been developed to detect gamma-amino butyric acid (GABA) directly, via QD fluorescence quenching and recovery. QDs were immobilized on the surface of an optical-fiber through the EDC/Sulfo-NHS coupling reaction. The QDs were functionalized by 3-aminophenyl boronic acid and then by NADP+. The fluorescence of the NADP+ -functionalized QDs was quenched by electron transfer from QDs to NADP+. However, by the metabolic conversion of GABA to succinic acid by GABase, NADP+ was reduced to NADPH, which hindered the electron transfer. As a result, the fluorescence of the QDs could recover. The recovery rate of the fluorescence intensity of QDs depended on the concentration of GABA. This shows the possibility of detection of low concentrations of GABA via measurement of the fluorescence intensity. PMID:27433599

  13. A Self-Referencing Intensity Based Polymer Optical Fiber Sensor for Liquid Detection

    PubMed Central

    Montero, David Sánchez; Vázquez, Carmen; Möllers, Ingo; Arrúe, Jon; Jäger, Dieter

    2009-01-01

    A novel self-referencing fiber optic intensity sensor based on bending losses of a partially polished polymer optical fiber (POF) coupler is presented. The coupling ratio (K) depends on the external liquid in which the sensor is immersed. It is possible to distinguish between different liquids and to detect their presence. Experimental results for the most usual liquids found in industry, like water and oil, are given. K value increases up to 10% from the nominal value depending on the liquid. Sensor temperature dependence has also been studied for a range from 25 °C (environmental condition) to 50 °C. Any sector requiring liquid level measurements in flammable atmospheres can benefit from this intrinsically safe technology. PMID:22454594

  14. Fiber optic fluid detector

    DOEpatents

    Angel, S.M.

    1987-02-27

    Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

  15. Fiber optic fluid detector

    DOEpatents

    Angel, S. Michael

    1989-01-01

    Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.

  16. Study on the weighing system based on optical fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Wang, Xiaona; Yu, Qingxu; Li, Yefang

    2010-10-01

    The optical fiber sensor based on wavelength demodulation such as fiber Bragg grating(FBG), with merits of immunity to electromagnetic interference, low drift and high precision, has been widely used in many areas, such as structural health monitoring and smart materials, and the wavelength demodulation system was also studied widely. In the paper, a weighing system based on FBG was studied. The optical source is broadband Erbium-doped fiber ring laser with a spectral range of 1500~1600nm and optical power of 2mW; A Fabry-Perot Etalon with orientation precision of 1pm was adopted as real-time wavelength calibration for the swept laser; and multichannel high resolution simultaneous sampling card was used in the system to acquire sensing signals simultaneously, thus high-resolution and real-time calibration of sweep-wavelength can be achieved. The FBG was adhered to a cantilever beam and the Bragg wavelength was demodulated with the system. The weighing system was done after calibrated with standard weight. Experimental results show that the resolution of the weighing system is 0.5 g with a full scale of 2Kg.

  17. A Self-Referencing Intensity-Based Fiber Optic Sensor with Multipoint Sensing Characteristics

    PubMed Central

    Choi, Sang-Jin; Kim, Young-Chon; Song, Minho; Pan, Jae-Kyung

    2014-01-01

    A self-referencing, intensity-based fiber optic sensor (FOS) is proposed and demonstrated. The theoretical analysis for the proposed design is given, and the validity of the theoretical analysis is confirmed via experiments. We define the measurement parameter, X, and the calibration factor, β, to find the transfer function, Hm,n, of the intensity-based FOS head. The self-referencing and multipoint sensing characteristics of the proposed system are validated by showing the measured Hm,n2 and relative error versus the optical power attenuation of the sensor head for four cases: optical source fluctuation, various remote sensing point distances, fiber Bragg gratings (FBGs) with different characteristics, and multiple sensor heads with cascade and/or parallel forms. The power-budget analysis and limitations of the measurement rates are discussed, and the measurement results of fiber-reinforced plastic (FRP) coupon strain using the proposed FOS are given as an actual measurement. The proposed FOS has several benefits, including a self-referencing characteristic, the flexibility to determine FBGs, and a simple structure in terms of the number of devices and measuring procedure. PMID:25046010

  18. Enhanced radiation resistant fiber optics

    DOEpatents

    Lyons, Peter B.; Looney, Larry D.

    1993-01-01

    A process for producing an optical fiber having enhanced radiation resitance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation.

  19. Enhanced radiation resistant fiber optics

    DOEpatents

    Lyons, P.B.; Looney, L.D.

    1993-11-30

    A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures.

  20. Microwave vector signal transmission over an optical fiber based on IQ modulation and coherent detection.

    PubMed

    Chen, Yang; Shao, Tong; Wen, Aijun; Yao, Jianping

    2014-03-15

    A novel approach to transmitting two vector signals using a single optical carrier based on IQ modulation and coherent detection is proposed and demonstrated. In the proposed system, two quadrature phase-shift keying (QPSK) signals are IQ modulated on an optical carrier with one polarization state using a dual-parallel Mach-Zehnder modulator (DP-MZM). The optical carrier with an orthogonal polarization state is not modulated but transmitted with the modulated optical wave. At the receiver, the two orthogonally polarized light waves are separated and sent to a coherent detector, where the two QPSK signals are separated and demodulated. An experiment is performed. The transmission of two QPSK signals at 2 GHz with a data rate of 1 Gbps is implemented over a 25 km single-mode fiber. The performance of the transmission in terms of error vector magnitude is evaluated.

  1. Fiber-Optic Sensing Technology

    SciTech Connect

    Milnes, M.; Baylor, L.C.; Bave, S.

    1996-10-24

    This article offers a basic review of fiber-optic sensing technology, or more specifically, fiber-optic sensing technology as applied to the qualitative or quantitative identification of a chemical sample, and how it works,

  2. Optical fiber meta-tips

    NASA Astrophysics Data System (ADS)

    Principe, Maria; Micco, Alberto; Crescitelli, Alessio; Castaldi, Giuseppe; Consales, Marco; Esposito, Emanuela; La Ferrara, Vera; Galdi, Vincenzo; Cusano, Andrea

    2016-04-01

    We report on the first example of a "meta-tip" configuration that integrates a metasurface on the tip of an optical fiber. Our proposed design is based on an inverted-Babinet plasmonic metasurface obtained by patterning (via focused ion beam) a thin gold film deposited on the tip of an optical fiber, so as to realize an array of rectangular aperture nanoantennas with spatially modulated sizes. By properly tuning the resonances of the aperture nanoantennas, abrupt variations can be impressed in the field wavefront and polarization. We fabricated and characterized several proof-of-principle prototypes operating an near-infrared wavelengths, and implementing the beam-steering (with various angles) of the cross-polarized component, as well as the excitation of surface waves. Our results pave the way to the integration of the exceptional field-manipulation capabilities enabled by metasurfaces with the versatility and ubiquity of fiber-optics technological platforms.

  3. Fiber Optic Particle Concentration Sensor

    NASA Astrophysics Data System (ADS)

    Boiarski, Anthony A.

    1986-01-01

    A particle concentration sensor would be useful in many industrial process monitoring applications where in situ measurements are required. These applications include determination of butterfat content of milk, percent insolubles in engine oil, and cell concentration in a bioreactor. A fiber optic probe was designed to measure particle concentration by monitoring the scattered light from the particle-light interaction at the end of a fiber-optic-based probe tip. Linear output was obtained from the sensor over a large range of particle loading for a suspension of 1.7 μm polystyrene microspheres in water and E. coli bacteria in a fermenter.

  4. Acrylic and metal based Y-branch plastic optical fiber splitter with optical NOA63 polymer waveguide taper region

    NASA Astrophysics Data System (ADS)

    Ehsan, Abang Annuar; Shaari, Sahbudin; Rahman, Mohd Kamil Abd.

    2011-01-01

    We proposed a simple low-cost acrylic and metal-based Y-branch plastic optical fiber (POF) splitter which utilizes a low cost optical polymer glue NOA63 as the main waveguiding medium at the waveguide taper region. The device is composed of three sections: an input POF waveguide, a middle waveguide taper region and output POF waveguides. A desktop high speed CNC engraver is utilized to produce the mold inserts used for the optical devices. Short POF fibers are inserted into the engraved slots at the input and output ports. UV curable optical polymer glue NOA63 is injected into the waveguide taper region and cured. The assembling is completed when the top plate is positioned to enclose the device structure and connecting screws are secured. Both POF splitters have an average insertion loss of 7.8 dB, coupling ratio of 55: 45 and 57: 43 for the acrylic and metal-based splitters respectively. The devices have excess loss of 4.82 and 4.73 dB for the acrylic and metal-based splitters respectively.

  5. Infrared Fiber Optic Sensors

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Successive years of Small Business Innovation Research (SBIR) contracts from Langley Research Center to Sensiv Inc., a joint venture between Foster-Miller Inc. and Isorad, Ltd., assisted in the creation of remote fiber optic sensing systems. NASA's SBIR interest in infrared, fiber optic sensor technology was geared to monitoring the curing cycles of advanced composite materials. These funds helped in the fabrication of an infrared, fiber optic sensor to track the molecular vibrational characteristics of a composite part while it is being cured. Foster-Miller ingenuity allowed infrared transmitting optical fibers to combine with Fourier Transform Infrared spectroscopy to enable remote sensing. Sensiv probes operate in the mid-infrared range of the spectrum, although modifications to the instrument also permits its use in the near-infrared region. The Sensiv needle-probe is built to be placed in a liquid or powder and analyze the chemicals in the mixture. Other applications of the probe system include food processing control; combustion control in furnaces; and maintenance problem solving.

  6. [An optical-fiber-sensor-based spectrophotometer for soil non-metallic nutrient determination].

    PubMed

    He, Dong-xian; Hu, Juan-xiu; Lu, Shao-kun; He, Hou-yong

    2012-01-01

    In order to achieve rapid, convenient and efficient soil nutrient determination in soil testing and fertilizer recommendation, a portable optical-fiber-sensor-based spectrophotometer including immersed fiber sensor, flat field holographic concave grating, and diode array detector was developed for soil non-metallic nutrient determination. According to national standard of ultraviolet and visible spectrophotometer with JJG 178-2007, the wavelength accuracy and repeatability, baseline stability, transmittance accuracy and repeatability measured by the prototype instrument were satisfied with the national standard of III level; minimum spectral bandwidth, noise and excursion, and stray light were satisfied with the national standard of IV level. Significant linear relationships with slope of closing to 1 were found between the soil available nutrient contents including soil nitrate nitrogen, ammonia nitrogen, available phosphorus, available sulfur, available boron, and organic matter measured by the prototype instrument compared with that measured by two commercial single-beam-based and dual-beam-based spectrophotometers. No significant differences were revealed from the above comparison data. Therefore, the optical-fiber-sensor-based spectrophotometer can be used for rapid soil non-metallic nutrient determination with a high accuracy. PMID:22497162

  7. Intensified charge coupled device-based fiber-optic monitor for rapid remote surface-enhanced Raman scattering sensing

    SciTech Connect

    Alarie, J.P.; Stokes, D.L.; Sutherland, W.S.; Edwards, A.C.; Vo-Dinh, T.

    1992-11-01

    This paper describes the development of an intensified charge coupled device (ICCD)-based fiber-optic monitor for remote Raman and surface-enhanced Raman (SERS) sensing. Both Raman and SERS data were obtained with the use of a fiber-optic probe design incorporating 20-m optical fibers carrying the Raman signal. Spectra were obtained in 5 milliseconds for Raman and 9 ms for SERS. The proposed system could be used for a highly sensitive portable Raman system for rapid and remote chemical sensing. 28 refs., 4 figs., 2 tabs.

  8. On-line process applications development using a fiber optic-based Hewlett-Packard 8452A spectrophotometer

    NASA Astrophysics Data System (ADS)

    Vetter, Hans; Ponstingl, Mike

    1995-01-01

    The introduction of fiber optic accessories for the Hewlett-Packard 8452A diode array spectrophotometer has greatly expanded its utility and, in particular, has enhanced its use as a process application development tool. There is a clear trend toward fiber optic based process photometric analyzers. With the advent of spectroscopy using fiber optics, the stage is set for a logical transition of laboratory developed applications to process implementation. This is particularly true when both the laboratory spectrophotometric and the process photometric analyzers are capable of using the same sensors. This paper presents an example of an application development and its transition to process implementation.

  9. On-line process applications development using a fiber-optic based Hewlett-Packard 8452A spectrophotometer

    SciTech Connect

    Vetter, H.; Ponstingl, M.

    1995-12-31

    The introduction of fiber optic accessories for the Hewlett-Packard 8452A diode array spectrophotometer has greatly expanded its utility and, in particular, has enhanced its use as a process application development tool. There is a clear trend toward fiber optic based process photometric analyzers. With the advent of spectroscopy using fiber optics, the stage is set for a logical transition of laboratory developed applications to process implementation. This is particularly true when both the laboratory spectrophotometric and the process photometric analyzers are capable of using the same sensors. This paper presents an example of an application development and its transition to process implementation.

  10. Research on fiber-optic sensors for methane detection based on Harmonic detection

    NASA Astrophysics Data System (ADS)

    Wang, Shutao; Huang, Liang; Zhou, Zhishuang; Zhu, Zhihui

    2010-10-01

    In this paper, a sylstem of fiber-optic gas sensor based methane absorption spectra is studied. The system have made great improvement and in-depth analysis in methane spectral absorption,a weak optical signal extraction and processing and gas measurement accuracy.The system consists of light source, Photonic Crystal Fiber, air chamber, photoelectric detectors and signal processing components and so on. According to the Lambert-Beer law, spectrum absorption intensity is closely relate with the concentration of the gas. In order to ensure the system at a high resolution and sensitivity,The system used distributed feedback semiconductor laser (DFBLD) as a light source .It bring useful information of the optical signal to PIN Photodetector which then convert the optical signal to electrical signals after optical interacting with the methane gas,then send the electrical signal to lock-in amplifier.the harmonic detection of gas concentration was achieved by the light modulator, And then compared the harmonic component. Finally, the signal expected was produced through the A / D converter digital in the computer.

  11. Investigation on an evanescent wave fiber-optic absorption sensor based on fiber loop cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Meng; Zhang, Weigang; Zhang, Qi; Liu, Yaping; Liu, Bo

    2010-01-01

    An improved ring-down measurement principle for optical waveguides is presented. Fiber loop ring-down spectroscopy allows for measurement of minute optical losses in high-finesse fiber-optic cavities and immunity to the fluctuation of laser source. The evanescent wave absorption losses dependent on the absorption and the refractive index of ambient solution have been theoretically analyzed. The complex refractive index is introduced into our model and extinction coefficient can be calculated accurately through finite element analysis by setting the boundaries of the fiber and the ambient conditions. Using this method, the refractive index of environment can be taken into consideration. Our principle is validated by the highly-sensitive measurement of evanescent wave absorption loss. By chemically processing the surface of sensing segment along an extending ring-down cavity, the concentration of small volume Diethyl Sulphoxide solution where the etched fiber immersed into has been successfully measured and discussed.

  12. Large core fiber optic cleaver

    DOEpatents

    Halpin, J.M.

    1996-03-26

    The present invention relates to a device and method for cleaving optical fibers which yields cleaved optical fiber ends possessing high damage threshold surfaces. The device can be used to cleave optical fibers with core diameters greater than 400 {micro}m. 30 figs.

  13. Buying Fiber-Optic Networks.

    ERIC Educational Resources Information Center

    Fickes, Michael

    2003-01-01

    Describes consortia formed by college and university administrators to buy, manage, and maintain their own fiber-optic networks with the goals of cutting costs of leasing fiber-optic cable and planning for the future. Growth capacity is the real advantage of owning fiber-optic systems. (SLD)

  14. Aerogel-clad optical fiber

    DOEpatents

    Sprehn, Gregory A.; Hrubesh, Lawrence W.; Poco, John F.; Sandler, Pamela H.

    1997-01-01

    An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency.

  15. Aerogel-clad optical fiber

    DOEpatents

    Sprehn, G.A.; Hrubesh, L.W.; Poco, J.F.; Sandler, P.H.

    1997-11-04

    An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency. 4 figs.

  16. Fiber Optics and Library Technology.

    ERIC Educational Resources Information Center

    Koenig, Michael

    1984-01-01

    This article examines fiber optic technology, explains some of the key terminology, and speculates about the way fiber optics will change our world. Applications of fiber optics to library systems in three major areas--linkage of a number of mainframe computers, local area networks, and main trunk communications--are highlighted. (EJS)

  17. Large core fiber optic cleaver

    DOEpatents

    Halpin, John M.

    1996-01-01

    The present invention relates to a device and method for cleaving optical fibers which yields cleaved optical fiber ends possessing high damage threshold surfaces. The device can be used to cleave optical fibers with core diameters greater than 400 .mu.m.

  18. Reagentless chemiluminescence-based fiber optic sensors for regenerative life support in space

    NASA Astrophysics Data System (ADS)

    Atwater, James E.; Akse, James R.; DeHart, Jeffrey; Wheeler, Richard R., Jr.

    1995-04-01

    The initial feasibility demonstration of a reagentless chemiluminescence based fiber optic sensor technology for use in advanced regenerative life support applications in space and planetary outposts is described. The primary constraints for extraterrestrial deployment of any technology are compatibility with microgravity and hypogravity environments; minimal size, weight, and power consumption; and minimal use of expendables due to the great expense and difficulty inherent to resupply logistics. In the current research, we report the integration of solid state flow through modules for the production of aqueous phase reagents into an integrated system for the detection of important analytes by chemiluminescence, with fiber optic light transmission. By minimizing the need for resupply expendables, the use of solid phase modules makes complex chemical detection schemes practical. For the proof of concept, hydrogen peroxide and glucose were chosen as analytes. The reaction is catalyzed by glucose oxidase, an immobilized enzyme. The aqueous phase chemistry required for sensor operation is implemented using solid phase modules which adjust the pH of the influent stream, catalyze the oxidation of analyte, and provide the controlled addition of the luminophore to the flowing aqueous stream. Precise control of the pH has proven essential for the long-term sustained release of the luminophore. Electrocatalysis is achieved using a controlled potential across gold mesh and gold foil electrodes which undergo periodic polarity reversals. The development and initial characterization of performance of the reagentless fiber optic chemiluminescence sensors are presented in this paper.

  19. Study and design of a liquid level meter based on fiber optic sensing technology

    NASA Astrophysics Data System (ADS)

    Wang, Zhongdong; Wang, Yutian; Hou, Peiguo; Wang, Yanju

    2005-02-01

    At present, many floater-type measurement equipments whose readings are recorded by manpower are still in use in petrol-chemical industries. With regard to their low efficiency, great errors and their improbability in realization in automation management and remote control, in this instance, a new liquid-level meter system using the advanced fiber-optic sensing technology based on the floater-type level meter is developed. In principle, it measures the liquid level of the oil tank by using the principle of force balance, captures and transmits the light signals by means of the fiber-optic sensing technology, adjusts the light signals from continuous impulse signals to the discontinuous by the light-code disc, then converts light impulses into voltage impulses by photoelectric elements. In configuration, it adopts a twin light source and a twin optical-channel, utilizes twin fiber detectors to record the size of the liquid level and judge the direction of the liquid level respectively. Moreover, the measuring system has been tested practically in a chemical plant, the results indicate that the measuring errors are Less than or equal to +/-6mm, relative errors are <2% when its measuring range is within 0 and 1000mm.It is proved that the various indexes of the system satisfies the demand of the industries and the capability is credible.

  20. Development of porous glass fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Macedo, P. B.; Barkatt, A.; Feng, X.; Finger, S. M.; Hojaji, H.

    1989-06-01

    Porous glass fiber optic sensors in which the porous sensor tip is an integral part of the fiber optic, have been developed and found to be rugged and reliable, due to their monolithic structure and large interior surface area for attachment of active species. The sensor portion of the fiber is made porous by selective leaching of a specially formulated borosilicate glass fiber, resulting in a strong, monolithic structure where the sensor portion of the fiber remains integrally attached to the rest of the fiber, essentially eliminating losses at the sensor-light pipe interface. The process for constructing porous glass fiber optic sensors involves fiber pulling, phase separation, selective leaching, attachment of the active reagent, and integration with other optical elements. A broad range of sensors based on this technology could be developed by using different active species, such as enzymes and other biochemicals, which could be bonded to the interior surface of the porous glass sensor.

  1. Recent network sensing based on a combination of single mode fiber optics and semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Watanabe, Kazuhiro

    2007-05-01

    This paper describes the overview of the past decade's progress of network sensing supported by the use of single mode fiber optics in which glass fiber material itself exhibits sensing function, comparing with conventional FBG/BOTDR techniques, and newly developed hetero-core techniques. The hetero-core fiber optic sensor has been highlighted in terms of the fabrication process, the sensing mechanism and characteristics, and a road map toward commercialization to the variety of industrial applications.

  2. A curvature based approach using long-gage fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Kliewer, Kaitlyn; Glisic, Branko

    2016-04-01

    Fiber Bragg grating (FBG) sensors offer a significant advantage for structural health monitoring due to their ability to simultaneously monitor both static and dynamic strain while being durable, lightweight, capable of multiplexing, and immune to electro-magnetic interference. Drawing upon the benefits of FBG sensors, this research explores the use of a series of long-gage fiber optic sensors for damage detection of a structure through dynamic strain measurements and curvature analysis. Typically structural monitoring relies upon detecting structural changes through frequency and acceleration based analysis. However, curvature and strain based analysis may be a more reliable means for structural monitoring as they show more sensitivity to damage compared to modal parameters such as displacement mode shapes and natural frequency. Additionally, long gage FBG strain sensors offer a promising alternative to traditional dynamic measurement methods as the curvature can be computed directly from the FBG strain measurements without the need for numerical differentiation. Small scale experimental testing was performed using an aluminum beam instrumented with a series of FBG optical fiber sensors. Dynamic strain measurements were obtained as the aluminum beam was subjected to various loading and support conditions. From this, a novel normalized parameter based on the curvature from the dynamic strain measurements has been identified as a potential damage sensitive feature. Theoretical predictions and experimental data were compared and conclusions carried out. The results demonstrated the potential of the novel normalized parameter to facilitate dynamic monitoring at both the local and global scale, thus allowing assessment of the structures health.

  3. Cross layer optimization for cloud-based radio over optical fiber networks

    NASA Astrophysics Data System (ADS)

    Shao, Sujie; Guo, Shaoyong; Qiu, Xuesong; Yang, Hui; Meng, Luoming

    2016-07-01

    To adapt the 5G communication, the cloud radio access network is a paradigm introduced by operators which aggregates all base stations computational resources into a cloud BBU pool. The interaction between RRH and BBU or resource schedule among BBUs in cloud have become more frequent and complex with the development of system scale and user requirement. It can promote the networking demand among RRHs and BBUs, and force to form elastic optical fiber switching and networking. In such network, multiple stratum resources of radio, optical and BBU processing unit have interweaved with each other. In this paper, we propose a novel multiple stratum optimization (MSO) architecture for cloud-based radio over optical fiber networks (C-RoFN) with software defined networking. Additionally, a global evaluation strategy (GES) is introduced in the proposed architecture. MSO can enhance the responsiveness to end-to-end user demands and globally optimize radio frequency, optical spectrum and BBU processing resources effectively to maximize radio coverage. The feasibility and efficiency of the proposed architecture with GES strategy are experimentally verified on OpenFlow-enabled testbed in terms of resource occupation and path provisioning latency.

  4. High Temperature Optical Fiber Sensor Based on Compact Fattened Long-Period Fiber Gratings

    PubMed Central

    Mata-Chávez, Ruth I.; Martínez-Rios, Alejandro; Estudillo-Ayala, Julián M.; Vargas-Rodríguez, Everardo; Rojas-Laguna, Roberto; Hernández-García, Juan C.; Guzmán-Chávez, Ana D.; Claudio-González, David; Huerta-Mascotte, Eduardo

    2013-01-01

    A compact high temperature fiber sensor where the sensor head consists of a short fattened long period fiber grating (F-LPFG) of at least 2 mm in length and background loss of −5 dBm is reported. On purpose two different F-LPFGs were used to measure temperature variations, taking advantage of their broad spectrum and the slope characteristics of the erbium light source. This approach affected the spectrum gain as the linear band shifting took place. The measured sensitivity of the long period fiber gratings were about 72 pm/°C in a range from 25 to 500 °C. Here, the temperature rate of the experiment was 0.17 °C/s and the temperature response time was within 3 s. Moreover, temperature changes were detected with an InGaAs photodetector, where a sensitivity of 0.05 mV/°C was achieved. PMID:23459386

  5. Optic fiber sensor-based smart bridge cable with functionality of self-sensing

    NASA Astrophysics Data System (ADS)

    He, Jianping; Zhou, Zhi; Jinping, Ou

    2013-02-01

    Bridge cables, characterized by distributed large span, serving in harsh environment and vulnerability to random damage, are the key load-sustaining components of cable-based bridges. To ensure the safety of the bridge structure, it is critical to monitor the loading conditions of these cables under lengthwise random damages. Aiming at obtaining accurate monitoring at the critical points as well as the general information of the cable force distributed along the entire cable, this paper presents a study on cable force monitoring by combining optical fiber Bragg grating (FBG) sensors and Brillouin optical time domain analysis/reflectory (BOTDA/R) sensing technique in one single optical fiber. A smart FRP-OF-FBG rebar based cable was fabricated by protruding a FRP packaged OF-FBG sensor into the bridge cable. And its sensing characteristics, stability under high stress state temperature self-compensation as well as BOTDA/R distributed data improvement by local FBG sensors have been investigated. The results show that FRP-OF-FBG rebar in the smart cable can deform consistantly along with the steel wire and the cable force obtained from the optical fiber sensors agree well with theoretical value with relative error less than ±5%. Besides, the temperature self-compensation method provides a significant cost-effective technique for the FRP-OF-FBG based cables' in situ cable force measurement. And furthermore, potential damages of the bridge cable, e.g. wire breaking and corrosion, can be characterized and symbolized by the discontinuity and fluctuation of the distributed BOTDA data thereafter accuracy improved by local FBG sensors.

  6. High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber

    PubMed Central

    Papadopoulos, Ioannis N.; Farahi, Salma; Moser, Christophe; Psaltis, Demetri

    2013-01-01

    We propose and experimentally demonstrate an ultra-thin rigid endoscope (450 μm diameter) based on a passive multimode optical fiber. We use digital phase conjugation to overcome the modal scrambling of the fiber to tightly focus and scan the laser light at its distal end. By exploiting the maximum number of modes available, sub-micron resolution, high quality fluorescence images of neuronal cells were acquired. The imaging system is evaluated in terms of fluorescence collection efficiency, resolution and field of view. The small diameter of the proposed endoscope, along with its high quality images offer an opportunity for minimally invasive medical endoscopic imaging and diagnosis based on cellular phenotype via direct tissue penetration. PMID:23411747

  7. Multipoint side illuminated absorption based optical fiber sensor for relative humidity

    NASA Astrophysics Data System (ADS)

    Egalon, Claudio O.

    2013-09-01

    A side illuminated optical fiber sensor with three sensing points and an absorption-based indicator in the cladding was demonstrated for the first time. This device is easy to manufacture, uses leaky modes as the signal carrier and can measure RH in air, soil, concrete and other environments. So far, only side illuminated fluorescence sensors have been reported. They were thought, erroneously, to have their entire signal generated by evanescent wave coupling when, in fact, leaky modes also play an important role. This, coupled to the prevailing misconception that leaky modes propagate for very short lengths of fiber, prevented the earlier discovery of this absorption-based configuration. A 25 cm long fiber, with a cladding doped with an absorption dye sensitive to Relative Humidity (RH), was used in this demonstration. The fiber was side illuminated by a broadband LED, a fraction of this light was absorbed by the cladding and the remaining light guided to the fiber tip as low loss leaky modes. A total of three sensors, two with three sensing points and one with two, were calibrated using a low cost photometer. The signal was linear, stable, increased with RH and had resolutions between 0.11% and 0.25% in RH. With 5 mm diameter LEDs, devices with at least two sensing points per centimeter of fiber can be easily fabricated resulting in sensors with a very high density of sensing points. Compared to the prevailing axial illumination approach, the side illuminated sensor was found to be far simpler and inexpensive.

  8. Cost-effective optical coherence tomography spectrometer based on a tilted fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Remund, Stefan; Bossen, Anke; Chen, Xianfeng; Wang, Ling; Adebayo, Adedotun; Zhang, Lin; Považay, Boris; Meier, Christoph

    2014-02-01

    A compact, fiber-based spectrometer for biomedical application utilizing a tilted fiber Bragg grating (TFBG) as integrated dispersive element is demonstrated. Based on a 45° UV-written PS750 TFBG a refractive spectrometer with 2.06 radiant/μm dispersion and a numerical aperture of 0.1 was set up and tested as integrated detector for an optical coherence tomography (OCT) system. Featuring a 23 mm long active region at the fiber the spectrum is projected via a cylindrical lens for vertical beam collimation and focused by an achromatic doublet onto the detector array. Covering 740 nm to 860 nm the spectrometer was optically connected to a broadband white light interferometer and a wide field scan head and electronically to an acquisition and control computer. Tomograms of ophthalmic and dermal samples obtained by the frequency domain OCT-system were obtained achieving 2.84 μm axial and 7.6 μm lateral resolution.

  9. High sensitivity refractive index sensor based on adiabatic tapered optical fiber deposited with nanofilm by ALD.

    PubMed

    Zhu, Shan; Pang, Fufei; Huang, Sujuan; Zou, Fang; Dong, Yanhua; Wang, Tingyun

    2015-06-01

    Atomic layer deposition (ALD) technology is introduced to fabricate a high sensitivity refractive index sensor based on an adiabatic tapered optical fiber. Different thickness of Al2O3 nanofilm is coated around fiber taper precisely and uniformly under different deposition cycles. Attributed to the high refractive index of the Al2O3 nanofilm, an asymmetry Fabry-Perot like interferometer is constructed along the fiber taper. Based on the ray-optic analysis, total internal reflection happens on the nanofilm-surrounding interface. With the ambient refractive index changing, the phase delay induced by the Goos-Hänchen shift is changed. Correspondingly, the transmission resonant spectrum shifts, which can be utilized for realizing high sensitivity sensor. The high sensitivity sensor with 6008 nm/RIU is demonstrated by depositing 3000 layers Al2O3 nanofilm as the ambient refractive index is close to 1.33. This high sensitivity refractive index sensor is expected to have wide applications in biochemical sensors.

  10. High sensitivity refractive index sensor based on adiabatic tapered optical fiber deposited with nanofilm by ALD.

    PubMed

    Zhu, Shan; Pang, Fufei; Huang, Sujuan; Zou, Fang; Dong, Yanhua; Wang, Tingyun

    2015-06-01

    Atomic layer deposition (ALD) technology is introduced to fabricate a high sensitivity refractive index sensor based on an adiabatic tapered optical fiber. Different thickness of Al2O3 nanofilm is coated around fiber taper precisely and uniformly under different deposition cycles. Attributed to the high refractive index of the Al2O3 nanofilm, an asymmetry Fabry-Perot like interferometer is constructed along the fiber taper. Based on the ray-optic analysis, total internal reflection happens on the nanofilm-surrounding interface. With the ambient refractive index changing, the phase delay induced by the Goos-Hänchen shift is changed. Correspondingly, the transmission resonant spectrum shifts, which can be utilized for realizing high sensitivity sensor. The high sensitivity sensor with 6008 nm/RIU is demonstrated by depositing 3000 layers Al2O3 nanofilm as the ambient refractive index is close to 1.33. This high sensitivity refractive index sensor is expected to have wide applications in biochemical sensors. PMID:26072758

  11. Experimental study of liquid refractive index sensing based on a U-shaped optical fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi; Yan, Haitao; Li, Liben; Wang, Ming

    2013-12-01

    A U-shaped optical fiber sensing system designed to measure the refractive index of liquid had been proposed. The sensing mechanism of U-shaped optical fiber was discussed. A general single-mode fiber was bent into U-shaped and partially cladding of U-shaped fiber was corroded by HF acid buffer solution. Powers of different diameters of U-shaped fibers had been measured by many experiments. The results showed that the diameter of U-shaped fiber cladding 40 μm and the diameter of U-shaped was 1 cm were suitable to measure liquid refractive index. Then, this U-shaped optical fiber was immersed in liquid, such as pure water, ethanol, acetone and isopropanol, respectively. The evanescent field of the U-shaped fiber should be modulated by the liquid. The optical signal in the U-shaped fiber was measured with the optical spectrum analyzers(OSA). Finally, the experimental results were analyzed, and the spectra in the air was selected as a reference. The relative intensity was obtained for the different liquid. These results showed that the relative intensity of the liquid had a good linear relationship. This sensing device could accurately demarcate refractive index of liquid. It is simple, low cost, and it can also be applied in measuring the level of liquid.

  12. Single mode tapered fiber-optic interferometer based refractive index sensor and its application to protein sensing.

    PubMed

    Yadav, T K; Narayanaswamy, R; Abu Bakar, M H; Kamil, Y Mustapha; Mahdi, M A

    2014-09-22

    We demonstrate refractive index sensors based on single mode tapered fiber and its application as a biosensor. We utilize this tapered fiber optic biosensor, operating at 1550 nm, for the detection of protein (gelatin) concentration in water. The sensor is based on the spectroscopy of mode coupling based on core modes-fiber cladding modes excited by the fundamental core mode of an optical fiber when it transitions into tapered regions from untapered regions. The changes are determined from the wavelength shift of the transmission spectrum. The proposed fiber sensor has sensitivity of refractive index around 1500 nm/RIU and for protein concentration detection, its highest sensitivity is 2.42141 nm/%W/V. PMID:25321749

  13. Coated fiber tips for optical instrumentation

    NASA Astrophysics Data System (ADS)

    Barton, John B.; Chanda, Sheetal; Locknar, Sarah A.; Carver, Gary E.

    2016-03-01

    Compact optical systems can be fabricated by integrating coatings on fiber tips. Examples include fiber lasers, fiber interferometers, fiber Raman probes, fiber based spectrometers, and anti-reflected endoscopes. These interference filters are applied to exposed tips - either connectorized or cleaved. Coatings can also be immersed within glass by depositing on one tip and connecting to another uncoated tip. This paper addresses a fiber spectrometer for multispectral imaging - useful in several fields including biomedical scanning, flow cytometry, and remote sensing. Our spectrometer integrates serial arrays of reflecting fiber tips, delay lines between these elements, and a single element detector.

  14. Full-duplex radio over fiber link with colorless source-free base station based on single sideband optical mm-wave signal with polarization rotated optical carrier

    NASA Astrophysics Data System (ADS)

    Ma, Jianxin

    2016-07-01

    A full-duplex radio-over fiber (RoF) link scheme based on single sideband (SSB) optical millimeter (mm)-wave signal with polarization-rotated optical carrier is proposed to realize the source-free colorless base station (BS), in which a polarization beam splitter (PBS) is used to abstract part of the optical carrier for conveying the uplink data. Since the optical carrier for the uplink does not bear the downlink signal, no cross-talk from the downlink contaminates the uplink signal. The simulation results demonstrate that both down- and up-links maintain good performance. The mm-wave signal distribution network based on the proposed full duplex fiber link scheme can use the uniform source-free colorless BSs, which makes the access system very simpler.

  15. Flow injection analysis with bioluminescence-based fiber-optic biosensors

    NASA Astrophysics Data System (ADS)

    Blum, Loic J.; Gautier, Sabine; Coulet, Pierre R.

    1991-09-01

    Fiber optic biosensors based on the firefly and the bacterial bioluminescence reactions have been constructed and incorporated in a specially designed flow-cell for the sensitive determination of ATP and NADH, respectively. The bioluminescence enzymes were immobilized on preactivated polyamide membranes which were placed in close contact with the surface on one end of a glass-fiber bundle, the other end being connected to the photomultiplier tube of a luminometer. When using the continuous-flow device with the firefly luciferase or the bacterial system immobilized separately on different membranes, the detection limit for ATP and NADH were 0.25 and 2 pmol, respectively. The versatility of the fiber optic probe has been improved by co-immobilizing the bacterial bioluminescent system and the firefly luciferase on the same support enabling the use of a single sensor for the selective, specific, and alternate determination of these two analytes. Compatible reaction conditions preserving the activity of each co-immobilized enzyme without impairing its stability were found. The selection of the appropriate reaction medium was done using a four port valve. Alternate quantification of ATP and NADH could then be performed in the linear ranges 0.25 pmol - 3 nmol and 5 pmol - 1 nmol, respectively with a RSD of 4.0 - 4.5%.

  16. Fiber optic humidity sensor based on the graphene oxide/PVA composite film

    NASA Astrophysics Data System (ADS)

    Wang, Youqing; Shen, Changyu; Lou, Weimin; Shentu, Fengying

    2016-08-01

    Fiber optic humidity sensor based on an in-fiber Mach-Zehnder interferometer (MZI) coated with graphene oxide (GO)/PVA composite film was investigated. The MZI is constructed of two waist-enlarged tapers. The length between two waist-enlarged tapers is 20 mm. By comparing the experiment results of MZI coated with different GO/PVA composite films, composite film formed by the ratio of 0.3 g PVA mixed with 10 ml GO dispersion shows a better performance of relative humidity sensing. By using the molecular structure model of the composited GO/PVA, the operation mechanism between GO/PVA composite film and water molecules was illustrated. The sensitivity of 0.193 dB/%RH with a linear correlation coefficient of 99.1% and good stability under the relative humidity range of 25-80% was obtained. Temperature effect on the proposed fiber optic humidity sensor was also considered and analyzed. According to the repetitive experimental results, the proposed humidity sensor shows a good repeatability.

  17. Micro Extrinsic Fiber-Optic Fabry-Perot Interferometric Sensor Based on Erbium- and Boron-Doped Fibers

    NASA Astrophysics Data System (ADS)

    Rao, Yun-Jiang; Xu, Bing; Ran, Zeng-Ling; Gong, Yuan

    2010-02-01

    Micro extrinsic Fabry-Perot interferometers (MEFPIs), with cavity lengths of up to ~ 9 μm and maximum fringe contrast of ~ 19 dB, are fabricated by chemically etching Er- and B-doped optical fibers and then splicing the etched fiber to a single-mode fiber, for the first time to the best of our knowledge. The strain and temperature responses of the MEFPI sensors are investigated experimentally. Good linearity and high sensitivity are achieved. Such a type of MEFPI sensor is cost-effective and suitable for mass production, indicating its great potential for a wide range of applications.

  18. Enhanced efficiency of a capillary-based biosensor over an optical fiber biosensor for detecting calpastatin.

    PubMed

    Bratcher, C L; Grant, S A; Vassalli, J T; Lorenzen, C L

    2008-06-15

    A capillary-based optical biosensor has been developed to detect calpastatin, an indicator of meat tenderness. Longissimus muscle samples (n=11) were extracted from beef carcasses at 0 and 48h post-mortem. These samples were assayed for calpastatin by traditional laboratory methods and with a newly developed capillary tube biosensor as well as for Warner-Bratzler shear force (WBSF) and crude protein and the responses were compared. Additionally, the response from the capillary-based biosensor was compared to a previously developed optical fiber biosensor. When the 0 and 48h sampling periods were combined, the capillary tube biosensor was moderately accurate in predicting calpastatin activity (R(2)=0.6058). There was less variation in the 0h capillary tube biosensor compared to the 0h pre-column (P=0.006) and post-column optical fiber biosensors (P=0.047), therefore the capillary tube biosensor is a more precise system of measurement. This research further advances the development of a calpastatin biosensor and makes online assessment one step closer to reality.

  19. Optical Fiber Spectroscopy

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.

    1999-01-01

    This is the final report of work done on NASA Grant NAG-1-443. The work covers the period from July 1, 1992 to December 1, 1998. During this period several distinct but related research studies and work tasks were undertaken. These different subjects are enumerated below with a description of the work done on each of them. The focus of the research was the development of optical fibers for use as distributed temperature and stress sensors. The initial concept was to utilize the utilize the temperature and stress dependence of emission from rare earth and transition metal ions substitutionally doped into crystalline or glass fibers. During the course of investigating this it became clear that fiber Bragg gratings provided a alternative for making the desired measurements and there was a shift of research focus on to include the photo-refractive properties of germano-silicate glasses used for most gratings and to the possibility of developing fiber laser sources for an integrated optical sensor in the research effort. During the course of this work several students from Christopher Newport University and other universities participated in this effort. Their names are listed below. Their participation was an important part of their education.

  20. Adaptive SLM-based compensation of intermodal interference in few-mode optical fibers

    NASA Astrophysics Data System (ADS)

    Lyubopytov, Vladimir S.; Bagmanov, Valeriy K.; Sultanov, Albert K.

    2014-09-01

    Transmission of optical beams with phase front vorticity through relevant distances in optical fibers poses a problem of time-dependent intermodal interference with random complex coefficients. In this paper we propose a method for compensation of interference between LP-modes, propagating through the optical fiber. To implement optical-domain modal filtering, reconfigurable diffractive optical element matched with particular modes is considered. Such an element may be encoded as phase-only hologram by means of SLM. With this approach modes can be separated spatially in the compensating diffractive element far field and handled independently with corresponding complex coefficients. Efficiency of the proposed method is confirmed by computer simulation results.

  1. High Sensitivity Refractometer Based on TiO₂-Coated Adiabatic Tapered Optical Fiber via ALD Technology.

    PubMed

    Zhu, Shan; Pang, Fufei; Huang, Sujuan; Zou, Fang; Guo, Qiang; Wen, Jianxiang; Wang, Tingyun

    2016-08-15

    Atomic layer deposition (ALD) technology is introduced to fabricate a high sensitivity refractometer based on an adiabatic tapered optical fiber. Different thicknesses of titanium dioxide (TiO₂) nanofilm were coated around the tapered fiber precisely and uniformly under different deposition cycles. Attributed to the higher refractive index of the TiO₂ nanofilm compared to that of silica, an asymmetric Fabry-Perot (F-P) resonator could be constructed along the fiber taper. The central wavelength of the F-P resonator could be controlled by adjusting the thickness of the TiO₂ nanofilm. Such a F-P resonator is sensitive to changes in the surrounding refractive index (SRI), which is utilized to realize a high sensitivity refractometer. The refractometer developed by depositing 50.9-nm-thickness TiO₂ on the tapered fiber shows SRI sensitivity as high as 7096 nm/RIU in the SRI range of 1.3373-1.3500. Due to TiO₂'s advantages of high refractive index, lack of toxicity, and good biocompatibility, this refractometer is expected to have wide applications in the biochemical sensing field.

  2. High Sensitivity Refractometer Based on TiO₂-Coated Adiabatic Tapered Optical Fiber via ALD Technology.

    PubMed

    Zhu, Shan; Pang, Fufei; Huang, Sujuan; Zou, Fang; Guo, Qiang; Wen, Jianxiang; Wang, Tingyun

    2016-01-01

    Atomic layer deposition (ALD) technology is introduced to fabricate a high sensitivity refractometer based on an adiabatic tapered optical fiber. Different thicknesses of titanium dioxide (TiO₂) nanofilm were coated around the tapered fiber precisely and uniformly under different deposition cycles. Attributed to the higher refractive index of the TiO₂ nanofilm compared to that of silica, an asymmetric Fabry-Perot (F-P) resonator could be constructed along the fiber taper. The central wavelength of the F-P resonator could be controlled by adjusting the thickness of the TiO₂ nanofilm. Such a F-P resonator is sensitive to changes in the surrounding refractive index (SRI), which is utilized to realize a high sensitivity refractometer. The refractometer developed by depositing 50.9-nm-thickness TiO₂ on the tapered fiber shows SRI sensitivity as high as 7096 nm/RIU in the SRI range of 1.3373-1.3500. Due to TiO₂'s advantages of high refractive index, lack of toxicity, and good biocompatibility, this refractometer is expected to have wide applications in the biochemical sensing field. PMID:27537885

  3. Diaphragm-based extrinsic Fabry-Perot interferometric optical fiber pressure sensor

    NASA Astrophysics Data System (ADS)

    Wang, Qiaoyun; Wang, Wenhua; Jiang, Xinsheng; Yu, Qingxu

    2010-10-01

    A new structure of diaphragm-based extrinsic Fabry-Perot interferometric (EFPI) optical fiber sensor is presented. A double holes silica ferrule with 1.8mm outside diameter is used to align the fiber. The Fabry-Perot (F-P) cavity is formed between the fiber end facet and inner surface of the diaphragm. The diaphragm is attached to the top of ferrule by carbon dioxide (CO2) laser thermal fusion bonding system. One hole of ferrule is used to align the fiber to the diaphragm and the other is used to balance the pressure inside and outside of F-P cavity. The diameter of the sensor head is only 1.8mm. In the pressure measurement, the pressure sensitivity of this sensor is about 25.89nm/KPa and the temperature dependence is approximately 6nm/°C. The sensor has a linear response in the range from 0 to 3KPa. This structure of sensor can eliminate the thermally induced inner pressure changes of F-P cavity. Furthermore, the sensor with the temperature compensate can be used to detect the liquid level. The fabrication of this kind sensor is simple and low cost. And the advantages of this sensor are high sensitivity, immune to electromagnetic interference (EMI) and high temperature resistance.

  4. Multiple damage assessment in composite laminates using a Doppler-effect-based fiber-optic sensor

    NASA Astrophysics Data System (ADS)

    Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Ohsawa, Isamu

    2009-11-01

    In this paper, carbon fiber-reinforced plastic (CFRP) laminates are addressed for the purpose of multiple damage assessment. Doppler-effect-based fiber-optic (FOD) sensors were used to capture guided waves propagating in the CFRP laminates. Characteristics of the fundamental symmetric (S0) and anti-symmetric (A0) Lamb waves in captured guided-wave signals were extracted by taking advantage of linear-phase finite impulse response filter and Hilbert transform, so as to systematically investigate the influence of delaminations on guided-wave propagation. Both dispersive characteristics of multi-mode Lamb waves and features of the Lamb wave-excited fundamental shear horizontal (SH0) guided wave were applied for damage evaluation and multiple damage identification. Results demonstrate that the FOD sensor is effective in multiple damage identification for composite laminates because it is omnidirectional in ultrasonic detection.

  5. A strain sensor based on cladding mode resonance of optical double-cladding fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Pang, Fufei; Guo, Hairun; Chen, Zhenyi; Wang, Tingyun

    2010-11-01

    A strain sensor based on cladding mode resonance of optical double-cladding fiber (DCF) was proposed and experimentally demonstrated. The sensor head was fabricated by splicing a section of DCF into a standard single mode fiber (SMF). Attributed to the thin thickness of the inner cladding, the core mode can be coupled with cladding modes which generatess a strong resonant spectrum at the phase-matching wavelength. When the DCF sensor is applied an axial strain, the refractive index of the DCF decreases due to the photoelastic effect. According to the coupled mode theory, the phase-matching wavelength will shift to a shorter wavelength. By detecting the resonant spectrum variation, the stain sensor can be realized. The strain sensitivity was achieved as -2.87 pm μɛ over 800μɛ measurement range with good repeatability. With the simple configuration and attractive performance, the specialty DCF strain sensor can be explored for wide sensing applications.

  6. Q-switched fiber laser based on an acousto-optic modulator with injection seeding technique.

    PubMed

    Li, Wencai; Liu, Haowei; Zhang, Ji; Long, Hu; Feng, Sujuan; Mao, Qinghe

    2016-06-10

    The operation mechanism and the pulse property of an actively Q-switched erbium-doped fiber laser based on an acousto-optic modulator (AOM) switch with the injection seeding technique are investigated. Our results show that the Q-switched pulses can be locked to oscillate near a fixed frequency higher than that of the seed laser, though the frequency-shift effect of the AOM impedes stable cavity mode oscillations. The operation mechanism of such Q-switch fiber lasers can be explained by the mutual locking-in among the shifted frequency components originated from the injected coherence seed with the help of the gain dynamics of the Q-switch cavity. Moreover, narrow-linewidth Q-switched pulses with different repetition rates can be obtained with different cavity lengths for incredibly stable output pulses without any use of cavity-stabilized techniques. PMID:27409015

  7. Photonic Beamformer Model Based on Analog Fiber-Optic Links’ Components

    NASA Astrophysics Data System (ADS)

    Volkov, V. A.; Gordeev, D. A.; Ivanov, S. I.; Lavrov, A. P.; Saenko, I. I.

    2016-08-01

    The model of photonic beamformer for wideband microwave phased array antenna is investigated. The main features of the photonic beamformer model based on true-time-delay technique, DWDM technology and fiber chromatic dispersion are briefly analyzed. The performance characteristics of the key components of photonic beamformer for phased array antenna in the receive mode are examined. The beamformer model composed of the components available on the market of fiber-optic analog communication links is designed and tentatively investigated. Experimental demonstration of the designed model beamforming features includes actual measurement of 5-element microwave linear array antenna far-field patterns in 6-16 GHz frequency range for antenna pattern steering up to 40°. The results of experimental testing show good accordance with the calculation estimates.

  8. Quasi-distributed and wavelength selective addressing of optical micro-resonators based on long period fiber gratings.

    PubMed

    Farnesi, D; Chiavaioli, F; Baldini, F; Righini, G C; Soria, S; Trono, C; Conti, G Nunzi

    2015-08-10

    A novel all-in-fiber method for coupling light to high-Q silica whispering gallery mode (WGM) optical micro-resonators is presented, which is based on a pair of long period fiber gratings (LPGs) written in the same silica fiber, along with a thick fiber taper (15-18 μm in waist) in between the LPGs. The proposed coupling structure is robust and can be replicated many times along the same fiber simply cascading LPGs with different bands. Typical Q-factors of the order of 10(8) and total coupling efficiency up to 60% were measured collecting the resonances of microspheres or microbubbles at the fiber end. This approach uniquely allows quasi-distributed and wavelength selective addressing of different micro-resonators along the same fiber. PMID:26367967

  9. Fiber Optic Velocity Interferometry

    SciTech Connect

    Neyer, Barry T.

    1988-04-01

    This paper explores the use of a new velocity measurement technique that has several advantages over existing techniques. It uses an optical fiber to carry coherent light to and from a moving target. A Fabry-Perot interferometer, formed by a gradient index lens and the moving target, produces fringes with a frequency proportional to the target velocity. This technique can measure velocities up to 10 km/s, is accurate, portable, and completely noninvasive.

  10. Fiber optic geophysical sensors

    DOEpatents

    Homuth, Emil F.

    1991-01-01

    A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.

  11. Musical instrument pickup based on a laser locked to an optical fiber resonator.

    PubMed

    Avino, Saverio; Barnes, Jack A; Gagliardi, Gianluca; Gu, Xijia; Gutstein, David; Mester, James R; Nicholaou, Costa; Loock, Hans-Peter

    2011-12-01

    A low-noise transducer based on a fiber Fabry-Perot (FFP) cavity was used as a pickup for an acoustic guitar. A distributed feedback (DFB) laser was locked to a 25 MHz-wide resonance of the FFP cavity using the Pound-Drever-Hall method. The correction signal was used as the audio output and was preamplified and sampled at up to 96 kHz. The pickup system is largely immune against optical noise sources, exhibits a flat frequency response from the infrasound region to about 25 kHz, and has a distortion-free audio output range of about 50 dB. PMID:22273897

  12. A uniform, raytracing-based imaging model for rigid and fiber-optic endoscopy.

    PubMed

    Rupp, Stephan; Steckhan, Dirk

    2010-01-01

    Modern techniques for medical diagnosis and therapy make considerable use of endoscopes. Unfortunately, the wide-angle characteristic of endoscopes introduce severe aberrations such as chromatic aberration, geometric distortion or comb-structure to the images. The aberrations hinder or at worst prevent the application of fundamental image processing techniques for an appropriate image analysis. In this paper, we propose a uniform ray-tracing based image model for rigid as well as fiber-optic endoscopes. This model enables an objective assessment of algorithms that rely on the image formation using physically correct and thus valid ground truth data. PMID:21095882

  13. Spectrum zooming in network topology based on a white light fiber optic Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Li, Song; Ferhati, Mokhtar; Yuan, Li-Bo

    2015-07-01

    A bus line network based on white light fiber-optic Mach-Zehnder interferometer is introduced by consideration of multiplexing capacity and coupler tailoring. The network topology which consists of N rungs sensing elements linked by N-1 couplers has been contrasted with three cases. The optimization formula has been used to couple more sensors, and Zoom-FFT has been used to analyze spectrum. After using these two methods, the multiplexing capability of the structure is enhanced evidently and a unambiguous spectrum is acquired.

  14. Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR.

    PubMed

    Wang, Shuai; Fan, Xinyu; Liu, Qingwen; He, Zuyuan

    2015-12-28

    A novel distributed fiber vibration sensing technique based on phase extraction from time-gated digital optical frequency domain reflectometry (TGD-OFDR) which can achieve quantitative vibration measurement with high spatial resolution and long measurement range is proposed. A 90 degree optical hybrid is used to extract phase information. By increasing frequency sweeping speed, the influence of environmental phase disturbance on TGD-OFDR is mitigated significantly, which makes phase extraction in our new scheme more reliable than that in conventional OFDR-based method, leading to the realization of long distance quantitative vibration measurement. By using the proposed technique, a distributed vibration sensor that has a measurement range of 40 km, a spatial resolution of 3.5 m, a measurable vibration frequency up to 600 Hz, and a minimal measurable vibration acceleration of 0.08g is demonstrated.

  15. Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR.

    PubMed

    Wang, Shuai; Fan, Xinyu; Liu, Qingwen; He, Zuyuan

    2015-12-28

    A novel distributed fiber vibration sensing technique based on phase extraction from time-gated digital optical frequency domain reflectometry (TGD-OFDR) which can achieve quantitative vibration measurement with high spatial resolution and long measurement range is proposed. A 90 degree optical hybrid is used to extract phase information. By increasing frequency sweeping speed, the influence of environmental phase disturbance on TGD-OFDR is mitigated significantly, which makes phase extraction in our new scheme more reliable than that in conventional OFDR-based method, leading to the realization of long distance quantitative vibration measurement. By using the proposed technique, a distributed vibration sensor that has a measurement range of 40 km, a spatial resolution of 3.5 m, a measurable vibration frequency up to 600 Hz, and a minimal measurable vibration acceleration of 0.08g is demonstrated. PMID:26831995

  16. Shedding Light on Fiber Optics.

    ERIC Educational Resources Information Center

    Bunch, Robert M.

    1994-01-01

    Explains the principles of fiber optics as a medium for light-wave communication. Current uses of fiber systems on college campuses include voice, video, and local area network applications. A group of seven school districts in Minnesota are linked via fiber-optic cables. Other uses are discussed. (MLF)

  17. Wearable motion capturing with the flexing and turning based on a hetero-core fiber optic stretching sensor

    NASA Astrophysics Data System (ADS)

    Koyama, Y.; Nishiyama, M.; Watanabe, K.

    2011-05-01

    In recent years, motion capturing technologies have been applied to the service of the rehabilitation for the physically challenged people and practicing sports in human daily life. In these application fields, it is important that a measurement system does not prevent human from doing natural activity for unrestricted motion capture in daily-life. The hetero-core optic fiber sensor that we developed is suited for the unconstrained motion capturing because of optical intensity-based measurement with excellent stability and repeatability using single-mode transmission fibers and needless of any compensation. In this paper, we propose the development of wearable sensor enables unconstrained motion capture systems using the hetero-core fiber optic stretching sensor in real time, which satisfy user's requirements of comfort and ubiquitous. The experiments of motion capturing were demonstrated by setting the hetero-core fiber optic stretching sensor on the elbow, the back of the body and the waist. As a result, the hetero-core fiber optic stretching sensor was able to detect the displacement of expansion and contraction in the optical loss by flexion motion of the arm and the trunk motion. The optical loss performance of the hetero-core fiber optic stretching sensor reveals monotonic characteristics with the displacement. The optical loss changes at the full scale of motion were 1.45dB for the motion of anteflexion and 1.99 dB for the motion of turn. The real-time motion capturing was demonstrated by means of the proposed hetero-core fiber optic stretching sensor without restricting natural human behavior.

  18. Vibration sensor based on highly birefringent Bragg gratings written in standard optical fiber by a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Chah, Karima; Bueno, Antonio; Kinet, Damien; Caucheteur, Christophe; Chluda, Cédric; Mégret, Patrice; Wuilpart, Marc

    2014-05-01

    We present a vibration sensor based on highly birefringent fiber Bragg gratings written in standard single mode optical fiber and realized with UV femtosecond pulses. This vibration sensor takes advantage of the stress-induced phase shift between the two orthogonally polarized fiber eigenmodes which induces intensity distribution changes in the two fiber Bragg grating reflection modes. The gratings are inscribed with the femtosecond line by line technique and have a birefringence value of 6 10-4. We demonstrate that theses gratings are temperature birefringence insensitive and ideal for vibration measurements.

  19. Optical fiber Raman-based spectroscopy for oral lesions characterization: a pilot study

    NASA Astrophysics Data System (ADS)

    Carvalho, Luis Felipe C. S.; Neto, Lázaro P. M.; Oliveira, Inajara P.; Rangel, João. Lucas; Ferreira, Isabelle; Kitakawa, Dárcio; Martin, Airton A.

    2016-03-01

    In the clinical daily life various lesions of the oral cavity have shown different aspects, generating an inconclusive or doubtful diagnosis. In general, oral injuries are diagnosed by histopathological analysis from biopsy, which is an invasive procedure and does not gives immediate results. In the other hand, Raman spectroscopy technique it is a real time and minimal invasive analytical tool, with notable diagnostic capability. This study aims to characterize, by optical fiber Raman-based spectroscopy (OFRS), normal, inflammatory, potentially malignant, benign and malign oral lesions. Raman data were collected by a Holospec f / 1.8 spectrograph (Kayser Optical Systems) coupled to an optical fiber, with a 785nm laser line source and a CCD Detector. The data were pre-processed and vector normalized. The average analysis and standard deviation was performed associated with cluster analysis and compared to the histopalogical results. Samples of described oral pathological processes were used in the study. The OFRS was efficient to characterized oral lesions and normal mucosa, in which biochemical information related to vibrational modes of proteins, lipids, nucleic acids and carbohydrates were observed. The technique (OFRS) is able to demonstrate biochemical information concern different types of oral lesions showing that Raman spectroscopy could be useful for an early and minimal invasive diagnosis.

  20. Optical fiber extrinsic Fabry-Perot interferometric (EFPI)-based biosensors

    NASA Astrophysics Data System (ADS)

    Elster, Jennifer L.; Jones, Mark E.; Evans, Mishell K.; Lenahan, Shannon M.; Boyce, Christopher A.; Velander, William H.; VanTassell, Roger

    2000-05-01

    A novel system incorporating optical fiber extrinsic Fabry- Perot interferometric (EFPI)-based sensors for rapid detection of biological targets is presented. With the appropriate configuration, the EFPI senor is able to measure key environmental parameters by monitoring the interferometric fringes resulting from an optical path differences of reflected signals. The optical fiber EFPI sensor has been demonstrated for strain, pressure, and temperature measurements and can be readily modified for refractive index measurements by allowing solutions to flow into an open cavity. The sensor allows for highly sensitive, real-time, refractive index measurements and by applying affinity coatings containing ligands within this cavity, specific binding of target molecules can be accomplished. As target molecules bind to the coating, there is an increased density within the film, causing a measurable refractive index change that correlates to the concentration of detected target molecules. This sensor platform offers enhanced sensing capabilities for clinical diagnostics, pharmaceutical screening, environmental monitoring, food pathogen detection, biological warfare agent detection, and industrial bioprocessing. Promising applications also exist for process monitoring within the food/beverage, petroleum, and chemical industry.

  1. Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array.

    PubMed

    Navruz, Isa; Coskun, Ahmet F; Wong, Justin; Mohammad, Saqib; Tseng, Derek; Nagi, Richie; Phillips, Stephen; Ozcan, Aydogan

    2013-10-21

    We demonstrate a cellphone based contact microscopy platform, termed Contact Scope, which can image highly dense or connected samples in transmission mode. Weighing approximately 76 grams, this portable and compact microscope is installed on the existing camera unit of a cellphone using an opto-mechanical add-on, where planar samples of interest are placed in contact with the top facet of a tapered fiber-optic array. This glass-based tapered fiber array has ~9 fold higher density of fiber optic cables on its top facet compared to the bottom one and is illuminated by an incoherent light source, e.g., a simple light-emitting-diode (LED). The transmitted light pattern through the object is then sampled by this array of fiber optic cables, delivering a transmission image of the sample onto the other side of the taper, with ~3× magnification in each direction. This magnified image of the object, located at the bottom facet of the fiber array, is then projected onto the CMOS image sensor of the cellphone using two lenses. While keeping the sample and the cellphone camera at a fixed position, the fiber-optic array is then manually rotated with discrete angular increments of e.g., 1-2 degrees. At each angular position of the fiber-optic array, contact images are captured using the cellphone camera, creating a sequence of transmission images for the same sample. These multi-frame images are digitally fused together based on a shift-and-add algorithm through a custom-developed Android application running on the smart-phone, providing the final microscopic image of the sample, visualized through the screen of the phone. This final computation step improves the resolution and also removes spatial artefacts that arise due to non-uniform sampling of the transmission intensity at the fiber optic array surface. We validated the performance of this cellphone based Contact Scope by imaging resolution test charts and blood smears.

  2. High-accuracy fiber optical microphone in a DBR fiber laser based on a nanothick silver diaphragm by self-mixing technique.

    PubMed

    Du, Zhengting; Lu, Liang; Zhang, Wenhua; Yang, Bo; Wu, Shuang; Zhao, Yunhe; Xu, Feng; Wang, Zhiping; Gui, Huaqiao; Liu, Jianguo; Yu, Benli

    2013-12-16

    A high-accuracy fiber optical microphone (FOM) is first applied by self-mixing technique in a DBR fiber laser based on a nanothick silver diaphragm. The nanothick silver diaphragm fabricated by the convenient and low cost electroless plating method is functioned as sensing diaphragm due to critically susceptible to the air vibration. Simultaneously, micro-vibration theory model of self-mixing interference fiber optical microphone is deduced based on quasi-analytical method. The dynamic property to frequencies and amplitudes are experimentally carried out to characterize the fabricated FOM and also the reproduced sound of news and music can clearly meet the ear of the people which shows the technique proposed in this paper guarantee steady, high signal-noise ratio operation and outstanding accuracy in the DBR fiber laser which is potential to medical and security applications such as real-time voice reproduction for throat and voiceprint verification. PMID:24514635

  3. High-accuracy fiber optical microphone in a DBR fiber laser based on a nanothick silver diaphragm by self-mixing technique.

    PubMed

    Du, Zhengting; Lu, Liang; Zhang, Wenhua; Yang, Bo; Wu, Shuang; Zhao, Yunhe; Xu, Feng; Wang, Zhiping; Gui, Huaqiao; Liu, Jianguo; Yu, Benli

    2013-12-16

    A high-accuracy fiber optical microphone (FOM) is first applied by self-mixing technique in a DBR fiber laser based on a nanothick silver diaphragm. The nanothick silver diaphragm fabricated by the convenient and low cost electroless plating method is functioned as sensing diaphragm due to critically susceptible to the air vibration. Simultaneously, micro-vibration theory model of self-mixing interference fiber optical microphone is deduced based on quasi-analytical method. The dynamic property to frequencies and amplitudes are experimentally carried out to characterize the fabricated FOM and also the reproduced sound of news and music can clearly meet the ear of the people which shows the technique proposed in this paper guarantee steady, high signal-noise ratio operation and outstanding accuracy in the DBR fiber laser which is potential to medical and security applications such as real-time voice reproduction for throat and voiceprint verification.

  4. Acousto-optic fiber interferometer based on concatenated flexural wave modulation

    NASA Astrophysics Data System (ADS)

    Kang, Shouxin; Zhang, Hao; Liu, Bo; Zhang, Ning; Miao, Yinping

    2015-07-01

    An acousto-optic fiber interferometer has been proposed and experimentally demonstrated by employing two MgF2 sandwiches to implement concatenated flexural acoustic wave modulation onto single-mode optical fibers. The transmission spectrum of the acoustic grating pair has been experimentally investigated. Experimental results indicate that interferometric spectral fringes possess a frequency sensitivity as large as -499.0 nm/MHz due to the Mach-Zehnder interference. Moreover, the applied radio frequency signal voltage for flexural wave generation has a great impact on the transmission spectral properties. The work presented would be of importance for the understanding of the acousto-optic interaction mechanism in concatenated acoustic fiber gratings and is helpful for the design of related acousto-optic fiber devices.

  5. Design of high-accuracy two-axis sun-tracking system based on optical fiber

    NASA Astrophysics Data System (ADS)

    Li, Dan; Zhou, Wang; Li, Ye

    2011-08-01

    This paper mainly introduces the system of sun-tracking control in CPV (Concentrating Photovoltaic), includes new structure design, process circuit and software design. This system includes five photoelectric sensors, five optical fibers, one microcontroller, two-axis motion mechanism and motors etc. Here a center fiber is used to determine whether the sun appears and get a reference illuminance, and other four fibers are symmetrically distributed around the center fiber. The optical fibers lead sunlight energy into photoelectric sensors and their length can be adjusted according to actual case. So that system is flexible and has good anti-jamming. The difference value of optical energy gained by each pair of opposite optical fiber is important measure data processed by MCU. Through the calculate result by a MCU, the system can gain the direction of the sun in real time. In addition, this paper presents processing circuit, software about control process as well as error analyzes. The software also provides a scheme for suiting any weather. This new structure can protect the photoelectric sensor in any case of the weather and environment, because the sensors are deeply put inside the instrument and the light energy is passed by the fibers. More than that, through calculating the difference value of each opposite pair of fiber, controlling the motors and increasing the accuracy of sun-tracking can be realized.

  6. Optical absorption and luminescence in neutron-irradiated, silica-based fibers

    SciTech Connect

    Cooke, D.W.; Farnum, E.H.; Clinard, F.W.

    1995-04-01

    The objectives of this work are to assess the effects of thermal annealing and photobleaching on the optical absorption of neutron-irradiated, silica fibers of the type proposed for use in ITER diagnostics, and to measure x-ray induced luminescence of unirradiated (virgin) and neutron-irradiated fibers.

  7. Hard plastic cladding fiber (HPCF) based optical components for high speed short reach optical communications

    NASA Astrophysics Data System (ADS)

    Kim, Jun Ki; Kim, Dong Uk; Kim, Tae Young; Park, Chang Soo; Oh, Kyunghwan

    2006-09-01

    We developed the primary components applicable to HPCF links for short reach (SR) and very short reach (VSR) data communication systems. We fabricated 4x4 HPCF fused taper splitter, HPCF pigtailed VCSEL and PIN photodiode for high speed short reach communications and characterized back to back transmission performance of the link composed of these components by measuring eye diagrams and jitters. Adapting the fusion-tapering technique for glass optical fiber, we successfully fabricated a 4x4 HPCF fused taper coupler. The HPCF with a core diameter of 200μm and an outer diameter of 230μm had step refractive index of 1.45 and 1.40 for the core and the clad. The optimized fusion length and tapering waist which make minimum insertion loss of about 7dB and uniform output power splitting ratio with less than 0.5dB are 13mm and 150µm, respectively. As a light source for VSR networks, we chose a vertical cavity surface emitting laser (VCSEL) and developed a package with a HPCF pigtail. After positioning VCSEL and HPCF that made a minimum coupling loss, we glued the HPCF inside ceramic ferrule housing. In HPCF-PIN PD packaging, we added a micro polymer lens tip onto the HPCF ends to match the mode field area to the sensitive area of GaAs or InGaAs PIN PD. Coupling between a PIN PD chip and the lensed HPCF was optimized with the radius of curvature of 156µm with a low coupling loss of 0.3dB, which is compatible to conventional MMF-PD packaging. For 1.25 Gbps data rate, the eyes adequate to eye mask in gigabit Ethernet were wide open after all HPCF transmission link and no significant power penalty was observed.

  8. Fiber optic extensometer for concrete deformation measurements

    NASA Astrophysics Data System (ADS)

    Yuan, Libo; Zhou, Li-min; Lau, K. T.; Jin, Wei; Demokan, M. S.

    2002-06-01

    A fiber optic extensometer based on a scanning white light Michelson interferometer is presented. The instrument employs a light emitting diode as the light source and a single mode fiber with predetermined gauge length as the extensometer sensor head. Light to and from the sensor head is transmitted through a single mode lead (i.e., in/out) fiber. The sensor performance is insensitive to the in/out fiber extensions. The fiber optic extensometer was applied to measure the compression and tension of concrete specimens. The measurement results compare well with that from a conventional extensometer.

  9. Fiber optic systems for mobile platforms II

    SciTech Connect

    Lewis, N.E.; Moore, E.L.

    1988-01-01

    This book contains papers presented at the symposium of International Society for Optical Engineering. Topics covered/include: Fiber optic pressure sensor for internal combustion engine; Automotive fiber optic technology: application issues; and Fiber optic guided missile.

  10. Supersonic Flow Field Investigation Using a Fiber-optic based Doppler Global Velocimeter

    NASA Technical Reports Server (NTRS)

    Meyers, James F.; Lee, Joseph W.; Fletcher, Mark T.; Cavone, Angelo A.; AscencionGuerreroViramontes, J.

    2006-01-01

    A three-component fiber-optic based Doppler Global Velocimeter was constructed, evaluated and used to measure shock structures about a low-sonic boom model in a Mach 2 flow. The system was designed to have maximum flexibility in its ability to measure flows with restricted optical access and in various facilities. System layout is described along with techniques developed for production supersonic testing. System evaluation in the Unitary Plan Wind Tunnel showed a common acceptance angle of f4 among the three views with velocity measurement resolutions comparable with free-space systems. Flow field measurements of shock structures above a flat plate with an attached ellipsoid-cylinder store and a low-sonic boom model are presented to demonstrate the capabilities of the system during production testing.

  11. Advanced fiber-optic acoustic sensors

    NASA Astrophysics Data System (ADS)

    Teixeira, João G. V.; Leite, Ivo T.; Silva, Susana; Frazão, Orlando

    2014-09-01

    Acoustic sensing is nowadays a very demanding field which plays an important role in modern society, with applications spanning from structural health monitoring to medical imaging. Fiber-optics can bring many advantages to this field, and fiber-optic acoustic sensors show already performance levels capable of competing with the standard sensors based on piezoelectric transducers. This review presents the recent advances in the field of fiber-optic dynamic strain sensing, particularly for acoustic detection. Three dominant technologies are identified — fiber Bragg gratings, interferometric Mach-Zehnder, and Fabry-Pérot configurations — and their recent developments are summarized.

  12. A simple fiber optic humidity sensor based on water-absorption characteristic of CAB

    NASA Astrophysics Data System (ADS)

    Li, Guang; Xu, Wei; Huang, Xuguang

    2015-02-01

    A simple fiber-optic relative humidity sensor based on cellulose acetate butyrate (CAB) and Fresnel reflection is proposed and investigated theoretically and experimentally. The sensing system is only composed of one light source, three optical couplers, two photo-detectors and two fiber sensing ends. The operation principle is based on relative Fresnel reflection and water-absorption characteristic of the CAB which simultaneously contains hydrophilic and hydrophobic groups. The water absorption process will lead to variation of the CAB's refractive index or permittivity. It has to be noted that the double-channel system can effectively eliminate the intensity fluctuation of the light source and the influence of the environment. In this paper, the relative humidity environments approximately ranging from 10 % to 100% are generated and measured both in the humidification and dehumidification processes, which shows a good repeatability and reveals a very good fitting feature with a high value of R2 above 0.99. It is of reflection type and can be simply extend to be a multi-point-monitoring system. The sensing system is of cost- effective, simple operation and high precision.

  13. An optical fiber Fabry-Perot flow measurement technology based on partial bend structure

    NASA Astrophysics Data System (ADS)

    Yang, Huijia; Jiang, Junfeng; Zhang, Xuezhi; Pan, Yuheng; Zhu, Wanshan; Zhou, Xiang; Liu, Tiegen

    2016-08-01

    An optical fiber Fabry-Perot (F-P) flow measurement technology is presented, which is based on partial bend structure. A 90° partial bend structure is designed to achieve the non-probe flow measurement with a pressure difference. The fluid simulation results of partial bend structure show that the error of the pressure difference is below 0.05 kPa during steady flow. The optical fiber F-P sensor mounted on the elbow with pressure test accuracy of 1% full scale is used to measure the fluid flow. Flow test results show that when the flow varies from 1 m3/h to 6.5 m3/h at ambient temperature of 25 °C, the response time is 1 s and the flow test accuracy is 4.5% of the F-P flow test system, proving that the F-P flow test method based on partial bend structure can be used in fluid flow measurement.

  14. An optical fiber Fabry-Perot flow measurement technology based on partial bend structure.

    PubMed

    Yang, Huijia; Jiang, Junfeng; Zhang, Xuezhi; Pan, Yuheng; Zhu, Wanshan; Zhou, Xiang; Liu, Tiegen

    2016-08-01

    An optical fiber Fabry-Perot (F-P) flow measurement technology is presented, which is based on partial bend structure. A 90° partial bend structure is designed to achieve the non-probe flow measurement with a pressure difference. The fluid simulation results of partial bend structure show that the error of the pressure difference is below 0.05 kPa during steady flow. The optical fiber F-P sensor mounted on the elbow with pressure test accuracy of 1% full scale is used to measure the fluid flow. Flow test results show that when the flow varies from 1 m(3)/h to 6.5 m(3)/h at ambient temperature of 25 °C, the response time is 1 s and the flow test accuracy is 4.5% of the F-P flow test system, proving that the F-P flow test method based on partial bend structure can be used in fluid flow measurement.

  15. An optical fiber Fabry-Perot flow measurement technology based on partial bend structure.

    PubMed

    Yang, Huijia; Jiang, Junfeng; Zhang, Xuezhi; Pan, Yuheng; Zhu, Wanshan; Zhou, Xiang; Liu, Tiegen

    2016-08-01

    An optical fiber Fabry-Perot (F-P) flow measurement technology is presented, which is based on partial bend structure. A 90° partial bend structure is designed to achieve the non-probe flow measurement with a pressure difference. The fluid simulation results of partial bend structure show that the error of the pressure difference is below 0.05 kPa during steady flow. The optical fiber F-P sensor mounted on the elbow with pressure test accuracy of 1% full scale is used to measure the fluid flow. Flow test results show that when the flow varies from 1 m(3)/h to 6.5 m(3)/h at ambient temperature of 25 °C, the response time is 1 s and the flow test accuracy is 4.5% of the F-P flow test system, proving that the F-P flow test method based on partial bend structure can be used in fluid flow measurement. PMID:27587096

  16. Selenium semiconductor core optical fibers

    SciTech Connect

    Tang, G. W.; Qian, Q. Peng, K. L.; Wen, X.; Zhou, G. X.; Sun, M.; Chen, X. D.; Yang, Z. M.

    2015-02-15

    Phosphate glass-clad optical fibers containing selenium (Se) semiconductor core were fabricated using a molten core method. The cores were found to be amorphous as evidenced by X-ray diffraction and corroborated by Micro-Raman spectrum. Elemental analysis across the core/clad interface suggests that there is some diffusion of about 3 wt % oxygen in the core region. Phosphate glass-clad crystalline selenium core optical fibers were obtained by a postdrawing annealing process. A two-cm-long crystalline selenium semiconductor core optical fibers, electrically contacted to external circuitry through the fiber end facets, exhibit a three times change in conductivity between dark and illuminated states. Such crystalline selenium semiconductor core optical fibers have promising utility in optical switch and photoconductivity of optical fiber array.

  17. All-optical switching based on nonradiative effects in doped fibers

    NASA Astrophysics Data System (ADS)

    Davis, Monica Karin

    1999-10-01

    Doped fibers are used for many purposes in fiber-optic communications and fiber sensors. These applications rely on the stimulated electronic transitions of dopant ions to produce a desired effect, such as gain (erbium doped fiber amplifiers and fiber lasers), refractive index modulation (switching) or absorption (fiber attenuators). In most devices it is advantageous to use short doped fiber lengths containing large numbers of dopant ions. However, high dopant concentrations are often accompanied by significant nonradiative decay processes that produce other effects, either beneficial or undesirable. The understanding of these nonradiative processes is critical to most doped fiber devices. In this dissertation we report the first comprehensive study of the effects of nonradiative processes in optically pumped, highly doped fibers. We have developed a new method to measure the size and relative abundance of clusters in rare-earth-doped fibers. This enables us to predict the extent of nonradiative, heat-producing processes in these fibers. We have also developed analytical and numerical models to quantify the dynamic evolution of the temperature profile in the fiber and to predict the thermal phase modulation in the fiber due to this temperature increase. Ours is the first analysis to fully describe the thermal effects created in doped fibers in both the single short pump pulse regime and the continuous pumping regime, as well as in intermediate modes of operation. We have designed methods to determine the presence and extent of nonradiative decay mechanisms and to differentiate them from nonlinear optical effects. We present this analysis and experimental verification of our model using high concentration cobalt- and vanadium- doped fibers. Finally, we have expanded the number of configurations available for all-optical switching by developing both the analysis of the pumped nonlinear directional coupler (PNLDC) and the analysis of the self- terminating Sagnac loop

  18. Yb-doped silica-based laser fibers: correlation of photodarkening kinetics and related optical properties with the glass composition

    NASA Astrophysics Data System (ADS)

    Kirchhof, J.; Unger, S.; Jetschke, S.; Schwuchow, A.; Leich, M.; Reichel, V.

    2009-02-01

    In the last years, photodarkening in ytterbium doped silica based laser fibers turned out to be a critical factor for high power laser action. Several investigations have been carried out in order to characterize the time dependent increase of the fiber loss and to understand and model the complex optical phenomenon. Despite of progress in this field, there is still a lack of data concerning the detailed influence of fiber composition and preparation process parameters as well as concerning the role of atomic defects in the core glass. Here we report on investigations about the photodarkening in dependence on the glass composition of the fiber laser core. By MCVD, fibers with different codopants (additional to the active ytterbium doping) have been prepared in a well-defined manner, regarding process parameters and glass composition, and comprehensively characterized. In addition to the photodarkening measurements, further optical properties have been measured on the fibers and fiber performs, which are related to the photodarkening effect: intensity and spectral behaviour of the Yb3+ absorption and emission in the NIR, cooperative visible fluorescence, UV absorption and UV excited visible emission. The concentration of codopants which are commonly used for active and passive lightguide fibers (aluminium, germanium, phosphorus) was systematically varied and correlated with the optical properties.

  19. Fiber-optic links based on silicon photonics for high-speed readout of trackers

    NASA Astrophysics Data System (ADS)

    Drake, G.; Garcia-Scivres, M.; Paramonov, A.; Stanek, R.; Underwood, D.

    2014-10-01

    We propose to use silicon photonics technology to build radiation-hard fiber-optic links for high-bandwidth readout of tracking detectors. The CMOS integrated silicon photonics was developed by Luxtera and commercialized by Molex. The commercial off-the-shelf (COTS) fiber-optic links feature moderate radiation tolerance insufficient for trackers. A transceiver contains four RX and four TX channels operating at 10 Gbps each. The next generation will likely operate at 25 Gbps per channel. The approach uses a standard CMOS process and single-mode fibers, providing low power consumption and good scalability and reliability.

  20. Fiber optic light sensor.

    PubMed

    Chudyk, Wayne; Flynn, Kyle F

    2015-06-01

    We describe a low-cost fiber optic sensor for measuring photosynthetically active radiation (PAR) in turbulent flow. Existing technology was combined in a novel way for probe development addressing the need for a small but durable instrument for use in flowing water. Optical components including fiber optics and a wide-spectrum light detector were used to separate light collection from electronic detection so that measurements could be completed in either the field or laboratory, in air or underwater. Connection of the detector to Arduino open-source electronics and a portable personal computer (PC) enabled signal processing and allowed data to be stored in a spreadsheet for ease of analysis. Calibration to a commercial cosine-corrected instrument showed suitable agreement with the added benefit that the small sensor face allowed measurements in tight spaces such as close to the streambed or within leafy or filamentous plant growth. Subsequently, we applied the probe in a separate study where over 35 experiments were successfully completed to characterize downward light attenuation in filamentous algae in turbulent flow. PMID:26009160

  1. Fiber optic light sensor.

    PubMed

    Chudyk, Wayne; Flynn, Kyle F

    2015-06-01

    We describe a low-cost fiber optic sensor for measuring photosynthetically active radiation (PAR) in turbulent flow. Existing technology was combined in a novel way for probe development addressing the need for a small but durable instrument for use in flowing water. Optical components including fiber optics and a wide-spectrum light detector were used to separate light collection from electronic detection so that measurements could be completed in either the field or laboratory, in air or underwater. Connection of the detector to Arduino open-source electronics and a portable personal computer (PC) enabled signal processing and allowed data to be stored in a spreadsheet for ease of analysis. Calibration to a commercial cosine-corrected instrument showed suitable agreement with the added benefit that the small sensor face allowed measurements in tight spaces such as close to the streambed or within leafy or filamentous plant growth. Subsequently, we applied the probe in a separate study where over 35 experiments were successfully completed to characterize downward light attenuation in filamentous algae in turbulent flow.

  2. Optics in Microstructured and Photonic Crystal Fibers

    NASA Astrophysics Data System (ADS)

    Knight, J. C.

    2008-10-01

    The development of optical fibers with two-dimensional patterns of air holes running down their length has reinvigorated research in the field of fiber optics. It has greatly—and fundamentally—broadened the range of specialty optical fibers, by demonstrating that optical fibers can be more "special" than previously thought. Fibers with air cores have made it possible to deliver energetic femtosecond-scale optical pulses, transform limited, as solitons, using single-mode fiber. Other fibers with anomalous dispersion at visible wavelengths have spawned a new generation of single-mode optical supercontinuum sources, spanning visible and near-infrared wavelengths and based on compact pump sources. A third example is in the field of fiber lasers, where the use of photonic crystal fiber concepts has led to a new hybrid laser technology, in which the very high numerical aperture available sing air holes have enabled fibers so short they are more naturally held straight than bent. This paper describes some of the basic physics and technology behind these developments, illustrated with some of the impressive demonstrations of the past 18 months.

  3. Full-range spectral domain optical coherence tomography using fiber-based sample scanner as self-phase shifter

    NASA Astrophysics Data System (ADS)

    Min, Eun Jung; Shin, Jun Geun; Lee, Jae Hwi; Lee, Byeong Ha

    2012-06-01

    We propose full-range spectral domain optical coherence tomography equipped with a fiber-based sample scanner, which is used for sample scanning and phase shifting for full-range image at the same time. For a fiber-based sample scanner, since the fiber tip oscillates as a free standing cantilever in general, unintentional phase shift occurs inevitably. The unintentional phase shift was used for eliminating the bothersome complex conjugate ghost image of OCT. In addition, fiber was tilted a few degree to give proper phase shift. In this scheme, moreover, image can be obtained without any physical modification of the scanner. To realize this technique, we constructed the SD-OCT system and fabricated a magnetically actuated single-body lensed fiber scanner due to advantages of simple design, low operating voltage, cost-effectiveness and low insertion loss. The scanner was made of lensed fiber loaded with an iron-based bead and a solenoid which is placed perpendicular to the lensed fiber. When a sinusoidal current is applied into the solenoid, the lensed fiber oscillated due to magnetic force between the iron-based bead and the solenoid. With the suggested full range method, we obtained contrast enhanced full-range SD OCT images of pearl and tooth. This simple and effective method can be applied to any fiber-based scanner and it has great potential as a handheld probe/endoscopic probe in biomedical imaging field.

  4. A packaged, low-cost, robust optical fiber strain sensor based on small cladding fiber sandwiched within periodic polymer grating.

    PubMed

    Chiang, Chia-Chin; Li, Chein-Hsing

    2014-06-01

    In the present study, a novel packaged long-period fiber grating (PLPFG) strain sensor is first presented. The MEMS process was utilized to fabricate the packaged optical fiber strain sensor. The sensor structure consisted of etched optical fiber sandwiched between two layers of thick photoresist SU-8 3050 and then packaged with poly (dimethylsiloxane) (PDMS) polymer material to construct the PLPFG strain sensor. The PDMS packaging material was used to prevent the glue effect, wherein glue flows into the LPFG structure and reduces coupling strength, in the surface bonding process. Because the fiber grating was packaged with PDMS material, it was effectively protected and made robust. The resonance attenuation dip of PLPFG grows when it is loading. This study explored the size effect of the grating period and fiber diameter of PLPFG via tensile testing. The experimental results found that the best strain sensitivity of the PLPFG strain sensor was -0.0342 dB/με, and that an R2 value of 0.963 was reached.

  5. Fiber optic sensing system

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory (Inventor)

    1991-01-01

    A fiber optic interferometer utilizes a low coherence light emitting diode (LED) laser as a light source which is filtered and driven at two RF frequencies, high and low, that are specific to the initial length of the resonator chamber. A displacement of a reflecting mirror changes the length traveled by the nonreferencing signal. The low frequency light undergoes destructive interference which reduces the average intensity of the wave while the high frequency light undergoes constructive interference which increases the average intensity of the wave. The ratio of these two intensity measurements is proportional to the displacement incurred.

  6. Fiber optic geophysical sensors

    DOEpatents

    Homuth, E.F.

    1991-03-19

    A fiber optic geophysical sensor is described in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figures.

  7. [New type distributed optical fiber temperature sensor (DTS) based on Raman scattering and its' application].

    PubMed

    Wang, Jian-Feng; Liu, Hong-Lin; Zhang, Shu-Qin; Yu, Xiang-Dong; Sun, Zhong-Zhou; Jin, Shang-Zhong; Zhang, Zai-Xuan

    2013-04-01

    Basic principles, development trends and applications status of distributed optical fiber Raman temperature sensor (DTS) are introduced. Performance parameters of DTS system include the sensing optical fiber length, temperature measurement uncertainty, spatial resolution and measurement time. These parameters have a certain correlation and it is difficult to improve them at the same time by single technology. So a variety of key techniques such as Raman amplification, pulse coding technique, Raman related dual-wavelength self-correction technique and embedding optical switching technique are researched to improve the performance of the DTS system. A 1 467 nm continuous laser is used as pump laser and the light source of DTS system (1 550 nm pulse laser) is amplified. When the length of sensing optical fiber is 50 km the Raman gain is about 17 dB. Raman gain can partially compensate the transmission loss of optical fiber, so that the sensing length can reach 50 km. In DTS system using pulse coding technique, pulse laser is coded by 211 bits loop encoder and correlation calculation is used to demodulate temperature. The encoded laser signal is related, whereas the noise is not relevant. So that signal-to-noise ratio (SNR) of DTS system can be improved significantly. The experiments are carried out in DTS system with single mode optical fiber and multimode optical fiber respectively. Temperature measurement uncertainty can all reach 1 degrees C. In DTS system using Raman related dual-wavelength self-correction technique, the wavelength difference of the two light sources must be one Raman frequency shift in optical fiber. For example, wavelength of the main laser is 1 550 nm and wavelength of the second laser must be 1 450 nm. Spatial resolution of DTS system is improved to 2 m by using dual-wavelength self-correction technique. Optical switch is embedded in DTS system, so that the temperature measurement channel multiply extended and the total length of the sensing

  8. Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting.

    PubMed

    Shrivastav, Anand M; Usha, Sruthi P; Gupta, Banshi D

    2016-05-15

    A successful approach for the fabrication and characterization of an optical fiber sensor for the detection of profenofos based on surface plasmon resonance (SPR) and molecular imprinting is introduced. Molecular imprinting technology is used for the creation of three dimensional binding sites having complementary shape and size of the specific template molecule over a polymer for the recognition of the same. Binding of template molecule with molecularly imprinted polymer (MIP) layer results in the change in the dielectric nature of the sensing surface (polymer) and is identified by SPR technique. Spectral interrogation method is used for the characterization of the sensing probe. The operating profenofos concentration range of the sensor is from 10(-4) to 10(-1)µg/L. A red shift of 18.7 nm in resonance wavelength is recorded for this profenofos concentration range. The maximum sensitivity of the sensor is 12.7 nm/log (µg/L) at 10(-4)µg/L profenofos concentration. Limit of detection (LOD) of the sensor is found to be 2.5×10(-6)µg/L. Selectivity measurements predict the probe highly selective for the profenofos molecule. Besides high sensitivity due to SPR technique and selectivity due to molecular imprinting, proposed sensor has numerous other advantages like immunity to electromagnetic interference, fast response, low cost and capability of online monitoring and remote sensing of analyte due to the fabrication of the probe on optical fiber.

  9. Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting.

    PubMed

    Shrivastav, Anand M; Usha, Sruthi P; Gupta, Banshi D

    2016-05-15

    A successful approach for the fabrication and characterization of an optical fiber sensor for the detection of profenofos based on surface plasmon resonance (SPR) and molecular imprinting is introduced. Molecular imprinting technology is used for the creation of three dimensional binding sites having complementary shape and size of the specific template molecule over a polymer for the recognition of the same. Binding of template molecule with molecularly imprinted polymer (MIP) layer results in the change in the dielectric nature of the sensing surface (polymer) and is identified by SPR technique. Spectral interrogation method is used for the characterization of the sensing probe. The operating profenofos concentration range of the sensor is from 10(-4) to 10(-1)µg/L. A red shift of 18.7 nm in resonance wavelength is recorded for this profenofos concentration range. The maximum sensitivity of the sensor is 12.7 nm/log (µg/L) at 10(-4)µg/L profenofos concentration. Limit of detection (LOD) of the sensor is found to be 2.5×10(-6)µg/L. Selectivity measurements predict the probe highly selective for the profenofos molecule. Besides high sensitivity due to SPR technique and selectivity due to molecular imprinting, proposed sensor has numerous other advantages like immunity to electromagnetic interference, fast response, low cost and capability of online monitoring and remote sensing of analyte due to the fabrication of the probe on optical fiber. PMID:26706813

  10. A self-mixing based ring-type fiber-optic acoustic sensor

    NASA Astrophysics Data System (ADS)

    Wang, Lutang; Wu, Chunxu; Fang, Nian

    2014-07-01

    A novel, simple fiber-optic acoustic sensor consisting of a self-mixing effect based laser source and a ring-type interferometer is presented. With weak external optical feedbacks, the acoustic wave signals can be detected by measuring the changes of oscillating frequency of the laser diode, induced by the disturbances of sensing fiber, with the ring-type interferometer. The operation principles of the sensor system are explored in-depth and the experimental researches are carried out. The acoustic wave signals produced by various actions, such as by pencil broken, mental pin free falling and PZT are detected for evaluating the sensing performances of the experimental system. The investigation items include the sensitivity as well as frequency responses of the sensor system. An experiment for the detection of corona discharges is carried out, which occur in a high-voltage environment between two parallel copper electrodes, under different humidity levels. The satisfied experimental results are obtained. These experimental results well prove that our proposed sensing system has very high sensitivity and excellent high frequency responses characteristics in the detections of weak, high-frequency acoustic wave signals.

  11. Concept and design of an FBG emulator for a scanning laser-based fiber optic interrogator

    NASA Astrophysics Data System (ADS)

    Kuhenuri, Nader; Putzer, Philipp; Koch, Alexander W.; Obermaier, Johannes; Schweyer, Sebastian; Hurni, Andreas

    2014-06-01

    The Hybrid Sensor Bus is a space-borne temperature monitoring system for telecommunication satellites com­ bining electrical and fiber-optical Fiber Bragg Grating (FBG) sensors. Currently, there is no method available for testing the functionality and robustness of the system without setting up an actual sensor-network implying numerous FBG sensors in which each has to be heated/cooled individually. As a verification method of the mentioned system, FBG reflection based scanning laser interrogator, an FBG­ emulator is implemented to emulate the necessary FBG sensors. It is capable of immediate emulation of any given FBG spectrum, thus, any temperature. The concept provides advantages like emulating different kinds of FBGs with any peak shape, variable Bragg-wavelength λB, maximal-reflectivity τmax, spectral-width and degradation characteristics. Further, it facilitates an efficient evaluation of different interrogator peak-finding algorithms and the capability of emulating up to 10000 sample points per second is achieved. In the present paper, different concepts will be discussed and evaluated yielding to the implementation of a Variable Optical Attenuator (VOA) as the main actuator of the emulator. The actuator choice is further restricted since the emulator has to work with light in unknown polarization state. In order to implement a fast opto-ceramic VOA, issues like temperature dependencies, up to 200 V driving input and capacitive load have to be overcome. Furthermore, a self-calibration procedure mitigates problems like attenuation losses and long-term drift.

  12. A fiber-optic evanescent wave DNA biosensor based on novel molecular beacons.

    PubMed

    Liu, X; Tan, W

    1999-11-15

    We have prepared a novel optical fiber evanescent wave DNA biosensor using a newly developed molecular beacon DNA probe. The molecular beacons (MB) are oligonucleotide probes that become fluorescent upon hybridization with target DNA/RNA molecules. Biotinylated MBs have been designed and immobilized on an optical fiber core surface via biotin-avidin or biotin-streptavidin interactions. The DNA sensor based on a MB does not need labeled analyte or intercalation reagents. It can be used to directly detect, in real-time, target DNA/RNA molecules without using competitive assays. The sensor is rapid, stable, highly selective, and reproducible. We have studied the hybridization kinetics of the immobilized MB by changing the ionic strength of the hybridization solution and target DNA concentration. Our result shows divalent cations play a more important role than monovalent cations in stabilizing the MB stem hybrids and in accelerating the hybridization reaction with target DNA/RNA molecules. The concentration detection limit of the MB evanescent wave biosensor is 1.1 nM. The MB DNA biosensor has been applied to the analysis of specific gamma-actin mRNA sequences amplified by polymerase chain reaction.

  13. Temperature-insensitive polarimetric vibration sensor based on HiBi microstructured optical fiber.

    PubMed

    Chah, Karima; Linze, Nicolas; Caucheteur, Christophe; Mégret, Patrice; Tihon, Pierre; Verlinden, Olivier; Sulejmani, Sanne; Geernaert, Thomas; Berghmans, Francis; Thienpont, Hugo; Wuilpart, Marc

    2012-09-01

    A new type of highly birefringent microstructured optical fiber has been tested for vibration measurements using a polarimetric technique. This technique takes advantage of the stress-induced phase shift between the two orthogonally polarized fiber eigenmodes. Comparison of three different fiber types shows that standard single-mode fibers do not provide stable measurements and that conventional polarization-maintaining fibers lead to a significant cross-sensitivity to temperature. However, for highly birefringent microstructured fibers specifically designed to provide a temperature-independent birefringence, our experiments show repeatable vibration measurements over a frequency range extending from 50 Hz to 1 kHz that are unaffected by temperature variations (up to 120 °C).

  14. Communicating On The Moon Via Fiber Optics

    NASA Technical Reports Server (NTRS)

    Lutes, George F.

    1992-01-01

    Report discusses feasibility of communicating over long distances on Moon via fiber optics. Compares fiber-optic and microwave technologies, concluding fiber optics offer less consumption of power, less weight, less bulk, and lower cost. Present commercial fiber-optic technology appears usable on Moon with minor modifications. Includes tutorial chapter on fiber-optic-communication technology and chapter on efforts to improve technology.

  15. Fiber optic sensors for smart taxiways

    NASA Astrophysics Data System (ADS)

    Janzen, Douglas D.; Fuerstenau, Norbert; Goetze, Wolfgang

    1995-09-01

    Fiber-optic sensors could offer advantages in the field of airport ground traffic monitoring: immunity to electromagnetic interference, installation without costly and time consuming airfield closures, and low loss, low noise optical connection between sensors and signal processing equipment. This paper describes fiber-optic sensors developed for airport taxiway monitoring and the first steps toward their installation in an experimental surface movement guidance and control system at the Braunschweig airport. Initial results obtained with fiber- optic light barriers and vibration sensors are reported. The feasibility of employing interferometric strain gauges for this application will be discussed based on sensor characteristics obtained through measurements of strain in an aircraft structure in flight.

  16. Power system applications of fiber optics

    NASA Technical Reports Server (NTRS)

    Kirkham, H.; Johnston, A.; Lutes, G.; Daud, T.; Hyland, S.

    1984-01-01

    Power system applications of optical systems, primarily using fiber optics, are reviewed. The first section reviews fibers as components of communication systems. The second section deals with fiber sensors for power systems, reviewing the many ways light sources and fibers can be combined to make measurements. Methods of measuring electric field gradient are discussed. Optical data processing is the subject of the third section, which begins by reviewing some widely different examples and concludes by outlining some potential applications in power systems: fault location in transformers, optical switching for light fired thyristors and fault detection based on the inherent symmetry of most power apparatus. The fourth and final section is concerned with using optical fibers to transmit power to electric equipment in a high voltage situation, potentially replacing expensive high voltage low power transformers. JPL has designed small photodiodes specifically for this purpose, and fabricated and tested several samples. This work is described.

  17. Demodulation technique based on diffraction optical elements for fiber Bragg grating sensing system

    NASA Astrophysics Data System (ADS)

    Feng, Zhongwei; Zhang, Li

    2010-11-01

    A new demodulation technique based on diffraction grating is proposed for high speed application. Compared with tunable filter method, the diffraction grating method has the advantages of potential high interrogation speed, high energy efficiency, no sweeping movements, which makes it a competitive interrogation method in certain field such as dynamic strain monitoring. The optical layout is crucial to guarantee the required performance of the interrogator. A structure which consists of two diffraction gratings, a fiber collimator, a reflection mirror, and a detector is adopted in the consideration of spectrum resolution, optical aberration, and geometrical size. The initial parameters for the structure are figured out by the optical path calculation involving the coefficient of the employed optical elements. The optimized procedure is following sequentially in order to minimize the aberration and obtain the pre-defined specifications theoretically. As the central wavelength for the interrogator is 1550nm, the InGaAs linear array sensor is introduced as the photoelectrical detector. Experiment of demodulation for FBG sensing system is carried out to verify the feasibility of this technique. The wavelength resolution for the interrogator is 1pm, and the demodulation speed is about 2kHz.

  18. Fiber Optic Geophysics Sensor Array

    NASA Astrophysics Data System (ADS)

    Grochowski, Lucjan

    1989-01-01

    The distributed optical sensor arrays are analysed in view of specific needs of 3-D seismic explorations methods. There are compared advantages and disadventages of arrays supported by the sensors which are modulated in intensity and phase. In these systems all-fiber optic structures and their compabilities with digital geophysic formats are discussed. It was shown that the arrays based on TDM systems with the intensity modulated sensors are economically and technically the best matched for geophysic systems supported by a large number of the sensors.

  19. Quantitative optical coherence elastography based on fiber-optic probe with integrated Fabry-Perot force sensor

    NASA Astrophysics Data System (ADS)

    Qiu, Yi; Wang, Yahui; Xu, Yiqing; Chandra, Namas; Haorah, James; Hubbi, Basil; Pfister, Bryan J.; Liu, Xuan

    2016-03-01

    Optical coherence tomography (OCT) is a versatile imaging technique and has great potential in tissue characterization for breast cancer diagnosis and surgical guidance. In addition to structural difference, cancerous breast tissue is usually stiffer compared to normal adipose breast tissue. However, previous studies on compression optical coherence elastography (OCE) are qualitative rather than quantitative. It is challenging to identify the cancerous status of tissue based on qualitative OCE results obtained from different measurement sessions or from different patients. Therefore, it is critical to develop technique that integrates structural imaging and force sensing, for quantitative elasticity characterization of breast tissue. In this work, we demonstrate a quantitative OCE (qOCE) microsurgery device which simultaneously quantifies force exerted to tissue and measures the resultant tissue deformation. The qOCE system is based on a spectral domain OCT engine operated at 1300 nm and a probe with an integrated Febry-Perot (FP) interferometric cavity at its distal end. The FP cavity is formed by the cleaved end of the lead-in fiber and the end surface of a GRIN lens which allows light to incident into tissue for structural imaging. The force exerted to tissue is quantified by the change of FP cavity length which is interrogated by a fiber-optic common-paths phase resolved OCT system with sub-nanometer sensitivity. Simultaneously, image of the tissue structure is acquired from photons returned from tissue through the GRIN lens. Tissue deformation is obtained through Doppler analysis. Tissue elasticity can be quantified by comparing the force exerted and tissue deformation.

  20. A high-efficiency fiber-based imaging system for co-registered autofluorescence and optical coherence tomography.

    PubMed

    Pahlevaninezhad, Hamid; Lee, Anthony M D; Shaipanich, Tawimas; Raizada, Rashika; Cahill, Lucas; Hohert, Geoffrey; Yang, Victor X D; Lam, Stephen; MacAulay, Calum; Lane, Pierre

    2014-09-01

    We present a power-efficient fiber-based imaging system capable of co-registered autofluorescence imaging and optical coherence tomography (AF/OCT). The system employs a custom fiber optic rotary joint (FORJ) with an embedded dichroic mirror to efficiently combine the OCT and AF pathways. This three-port wavelength multiplexing FORJ setup has a throughput of more than 83% for collected AF emission, significantly more efficient compared to previously reported fiber-based methods. A custom 900 µm diameter catheter ‒ consisting of a rotating lens assembly, double-clad fiber (DCF), and torque cable in a stationary plastic tube ‒ was fabricated to allow AF/OCT imaging of small airways in vivo. We demonstrate the performance of this system ex vivo in resected porcine airway specimens and in vivo in human on fingers, in the oral cavity, and in peripheral airways.

  1. Optical Fiber Networks for Remote Fiber Optic Sensors

    PubMed Central

    Fernandez-Vallejo, Montserrat; Lopez-Amo, Manuel

    2012-01-01

    This paper presents an overview of optical fiber sensor networks for remote sensing. Firstly, the state of the art of remote fiber sensor systems has been considered. We have summarized the great evolution of these systems in recent years; this progress confirms that fiber-optic remote sensing is a promising technology with a wide field of practical applications. Afterwards, the most representative remote fiber-optic sensor systems are briefly explained, discussing their schemes, challenges, pros and cons. Finally, a synopsis of the main factors to take into consideration in the design of a remote sensor system is gathered. PMID:22666011

  2. Optical fiber networks for remote fiber optic sensors.

    PubMed

    Fernandez-Vallejo, Montserrat; Lopez-Amo, Manuel

    2012-01-01

    This paper presents an overview of optical fiber sensor networks for remote sensing. Firstly, the state of the art of remote fiber sensor systems has been considered. We have summarized the great evolution of these systems in recent years; this progress confirms that fiber-optic remote sensing is a promising technology with a wide field of practical applications. Afterwards, the most representative remote fiber-optic sensor systems are briefly explained, discussing their schemes, challenges, pros and cons. Finally, a synopsis of the main factors to take into consideration in the design of a remote sensor system is gathered. PMID:22666011

  3. Recent advances in the development of holey optical fibers based on sulphide glasses

    NASA Astrophysics Data System (ADS)

    Smektala, F.; Brilland, L.; Chartier, T.; Nguyen, T. N.; Troles, J.; Niu, Y. F.; Danto, S.; Traynor, N.; Jouan, T.

    2006-02-01

    Microstructured optical fibers as new optical objects have been developed in the recent past years, firstly from silica glass and then from other oxide glasses such as tellurite or different heavy cations oxide glasses. However very few results have been reported concerning non-oxide glasses and more particularly chalcogenide glasses. In a photonic crystal fiber the arrangement of air holes along the transverse section of the fiber around a solid glassy core leads to unique optical properties, such as for example broadband single-mode guidance, adjustable dispersion, nonlinear properties. Since the effective modal area is adjustable thanks to geometrical parameters, chalcogenide microstructured fibers with small mode area are of interest for nonlinear components because of the intrinsic non linearity of chalcogenide glasses, several order of magnitude above these of the reference silica glass (100 to 1000 times the non linearity of silica glass). On the other hand, chalcogenide holey fibers with large mode area are of interest for infrared power transmission, in a wavelength range out of reach of silica fibers, and more particularly in the 3-5 μm atmospheric window. The aim of this paper is to present more specifically the recent results that have been achieved in the elaboration, light guidance and characterization of photonic crystal fibers from the sulfide Ge 20Ga 5Sb 10S 65 glass, which presents a large transparency window from 600 nm to 11 μm.

  4. Strain transfer analysis of optical fiber based sensors embedded in an asphalt pavement structure

    NASA Astrophysics Data System (ADS)

    Wang, Huaping; Xiang, Ping

    2016-07-01

    Asphalt pavement is vulnerable to random damage, such as cracking and rutting, which can be proactively identified by distributed optical fiber sensing technology. However, due to the material nature of optical fibers, a bare fiber is apt to be damaged during the construction process of pavements. Thus, a protective layer is needed for this application. Unfortunately, part of the strain of the host material is absorbed by the protective layer when transferring the strain to the sensing fiber. To account for the strain transfer error, in this paper a theoretical analysis of the strain transfer of a three-layered general model has been carried out by introducing Goodman’s hypothesis to describe the interfacial shear stress relationship. The model considers the viscoelastic behavior of the host material and protective layer. The effects of one crack in the host material and the sensing length on strain transfer relationship are been discussed. To validate the effectiveness of the strain transfer analysis, a flexible asphalt-mastic packaged distributed optical fiber sensor was designed and tested in a laboratory environment to monitor the distributed strain and appearance of cracks in an asphalt concrete beam at two different temperatures. The experimental results indicated that the developed strain transfer formula can significantly reduce the strain transfer error, and that the asphalt-mastic packaged optical fiber sensor can successfully monitor the distributed strain and identify local cracks.

  5. Research of optic fiber CO concentration monitoring virtual system based on TDLAS

    NASA Astrophysics Data System (ADS)

    Zhang, Ting-ting; Wei, Yu-bin; Wang, Chang; Liu, Tong-yu

    2011-06-01

    The online monitoring of the Coal Mine inflammable and explosive gases based on optic fiber sensing technologies, is the main research of spontaneous combustion forecasting system of coal goaf area. In use of the LabView's virtual instrument development capability, CO concentration monitoring virtual system has been established based on the tunable diode laser absorption spectroscopy(TDLAS) technology. According to comparison of the results of the virtual simulation system and the actual monitoring system, indicate that the virtual system can reflect the impact of second harmonic by dynamic parameters such as concentration, temperature and pressure truly and accurately, provide theoretical guidance and reference for the overall design of the gas monitoring system.

  6. Principle of Quantum Key Distribution on an Optical Fiber Based on Time Shifts of TB Qubits

    NASA Astrophysics Data System (ADS)

    Zadorin, A. S.; Makhorin, D. A.

    2016-07-01

    The possibility of the physical realization of a quantum key distribution scheme in an optical-fiber communication channel based on time coding of two- and three-level single-photon quantum states is demonstrated. It is proposed to employ shifts of TB qubits (time-bin qubits) as protected code combinations, transmitted over a quantum channel, and for registering individual photons - the corresponding qutrits prepared in unbalanced Mach-Zehnder interferometers. The possibility of enhancing the level of protection of the code combinations as a result of taking into account information about qubit basis states and their statistics is indicated. A computer model of the time coding of TB qubits based on the BB84 protocol is developed, and results of calculations confirming the realizability of the indicated principle are presented.

  7. Analysis of a plasmonic based optical fiber optrode with phase interrogation

    NASA Astrophysics Data System (ADS)

    Moayyed, H.; Leite, I. T.; Coelho, L.; Santos, J. L.; Viegas, D.

    2016-06-01

    Optical fiber optrodes are attractive sensing devices due to their ability to perform point measurement in remote locations. Mostly, they are oriented to biochemical sensing, quite often supported by fluorescent and spectroscopic techniques, but with the refractometric approach considered as well when the objective is of high measurement performance, particularly when the focus is on enhancing the measurand resolution. In this work, we address this subject, proposing and analyzing the characteristics of a fiber optic optrode relying on plasmonic interaction. A linearly tapered optical fiber tip is covered by a double overlay: the inner one-a silver thin film and over it-a dielectric layer, with this combination allowing to achieve, at a specific wavelength range, surface plasmonic resonance (SPR) interaction sensitive to the refractive index of the surrounding medium. Typically, the interrogation of the SPR sensing structures is performed, considering spectroscopic techniques, but in principle, a far better performance can be obtained, considering the reading of the phase of the light at a specific wavelength located within the spectral plasmonic resonance. This is the approach which is studied here in the context of the proposed optical fiber optrode configuration. The analysis performed shows the combination of a silver inner layer with a dielectric titanium oxide layer with tuned thicknesses enables sensitive phase reading and allows the operation of the fiber optic optrode sensor in the third telecommunication wavelength window.

  8. Analysis of a plasmonic based optical fiber optrode with phase interrogation

    NASA Astrophysics Data System (ADS)

    Moayyed, H.; Leite, I. T.; Coelho, L.; Santos, J. L.; Viegas, D.

    2016-09-01

    Optical fiber optrodes are attractive sensing devices due to their ability to perform point measurement in remote locations. Mostly, they are oriented to biochemical sensing, quite often supported by fluorescent and spectroscopic techniques, but with the refractometric approach considered as well when the objective is of high measurement performance, particularly when the focus is on enhancing the measurand resolution. In this work, we address this subject, proposing and analyzing the characteristics of a fiber optic optrode relying on plasmonic interaction. A linearly tapered optical fiber tip is covered by a double overlay: the inner one-a silver thin film and over it-a dielectric layer, with this combination allowing to achieve, at a specific wavelength range, surface plasmonic resonance (SPR) interaction sensitive to the refractive index of the surrounding medium. Typically, the interrogation of the SPR sensing structures is performed, considering spectroscopic techniques, but in principle, a far better performance can be obtained, considering the reading of the phase of the light at a specific wavelength located within the spectral plasmonic resonance. This is the approach which is studied here in the context of the proposed optical fiber optrode configuration. The analysis performed shows the combination of a silver inner layer with a dielectric titanium oxide layer with tuned thicknesses enables sensitive phase reading and allows the operation of the fiber optic optrode sensor in the third telecommunication wavelength window.

  9. Numerical analysis of optical bistability based on Fiber Bragg Grating cavity containing a high nonlinearity doped-fiber

    NASA Astrophysics Data System (ADS)

    Zang, Zhigang

    2012-03-01

    We demonstrate a new optical bistability devise by using two Fiber Bragg Gratings (FBG), in which an erbium-doped fiber (EDF) is inserted to form a nonlinear Fabry-Perot cavity (EDF FBG/F-P). The operation principle of this device is described by the resonant nonlinearity theory combining with the transfer matrix method. The optical bistability behaviors under different parameters are investigated. It shows that EDF FBG/F-P device has an evident merit in reducing the threshold switching power to 7 mW, resulting in a reduction about 6 orders, compared with that of single FBG device. Moreover, the ultra-fast response time about 35 ps is also confirmed.

  10. Optical-Fiber Leak Detector

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Kosten, Susan E.

    1994-01-01

    Proposed optical-fiber sensor detects small changes in pressure in elastomeric O-ring or similar pressure seal, which may indicate deterioration of seal and interpreted as indications of incipient failure. According to concept, length of optical fiber embedded in seal. Light-emitting diode illuminates one end of fiber; photodetector measures intensity of light emerging from other end. Pressure-induced changes in seal bend fiber slightly, altering microbending-induced loss of light from fiber and alter intensity of light at photodetector. Change in intensity approximately proportional to change in pressure.

  11. Blood interference in fiber-optical based fluorescence guided resection of glioma using 5-aminolevulinic acid

    NASA Astrophysics Data System (ADS)

    Haj-Hosseini, Neda; Lowndes, Shannely; Salerud, Göran; Wårdell, Karin

    2011-03-01

    Fluorescence guidance in brain tumor resection is performed intra-operatively where bleeding is included. When using fiber-optical probes, the transmission of light to and from the tissue is totally or partially blocked if a small amount of blood appears in front of the probe. Sometimes even after rinsing with saline, the remnant blood cells on the optical probe head, disturb the measurements. In such a case, the corresponding spectrum cannot be reliably quantified and is therefore discarded. The optimal case would be to calculate and take out the blood effect systematically from the collected signals. However, the first step is to study the pattern of blood interference in the fluorescence spectrum. In this study, a fiber-optical based fluorescence spectroscopy system with a laser excitation light of 405 nm (1.4 J/cm2) was used during fluorescence guided brain tumor resection using 5-aminolevulinic acid (5-ALA). The blood interference pattern in the fluorescence spectrum collected from the brain was studied in two patients. The operation situation was modeled in the laboratory by placing blood drops from the finger tip on the skin of forearm and the data was compared to the brain in vivo measurements. Additionally, a theoretical model was developed to simulate the blood interference pattern on the skin autofluorescence. The blood affects the collected fluorescence intensity and leaves traces of oxy and deoxy-hemoglobin absorption peaks. According to the developed theoretical model, the autofluorescence signal is considered to be totally blocked by an approximately 500 μm thick blood layer.

  12. Multi optical path generator for fiber optic strain sensors multiplexing

    NASA Astrophysics Data System (ADS)

    Luo, Hao; Yuan, Yonggui; Yuan, Libo

    2015-07-01

    A multi optical path generator based on a tunable long Fabry-Perot optical fiber cavity is proposed and demonstrated. It would be used in an optical fiber sensing system which could multiplex a number of fiber sensors with different gauge lengths. Using this optical path generator, we can get a sequence of light beams with different optical paths, which will be coupled to the fiber sensor array in the sensing system. The multi optical path lengths generated by the device are analyzed and discussed. And the relative intensity of the corresponding light beam is calculated. The multiplexing capability caused by the optical path generator is discussed and the experimental results are confirmed this. The system can be used in strain or deformation sensing for smart structure health monitoring.

  13. Diaphragm-free fiber-optic Fabry-Perot interferometer based on tapered hollow silica tube

    NASA Astrophysics Data System (ADS)

    Fang, Guocheng; Jia, Pinggang; Liang, Ting; Tan, Qiulin; Hong, Yingping; Liu, Wenyi; Xiong, Jijun

    2016-07-01

    A miniature fiber-optic Fabry-Perot interferometer fabricated by splicing a diaphragm-free hollow silica tube to a single-mode fiber and fusing the inner core to a taper is presented. The tapered zone forces lights to propagate from the fiber core into the silica tube, and the lights is reflected from the end faces of the optical fiber and the hollow silica tube. The contrast ratio of the interference fringe is determined by the minimum inner diameter of hollow silica tube. The responses of the proposed interferometer to high-temperature, gas refractive index, liquid refractive index and pressure were measured and were found to be linear with sensitivities of 16.26 pm/°C, 610.47 nm/RIU, -122.36 dB/RIU and 1.56 pm/kPa, respectively.

  14. Ultra-thin and flexible endoscopy probe for optical coherence tomography based on stepwise transitional core fiber

    PubMed Central

    Lee, Jangbeom; Chae, Yugyeong; Ahn, Yeh-Chan; Moon, Sucbei

    2015-01-01

    We present an ultra-thin fiber-body endoscopy probe for optical coherence tomography (OCT) which is based on a stepwise transitional core (STC) fiber. In a minimalistic design, our probe was made of spliced specialty fibers that could be directly used for beam probing optics without using a lens. In our probe, the OCT light delivered through a single-mode fiber was efficiently expanded to a large mode field of 24 μm diameter for a low beam divergence. The size of our probe was 85 μm in the probe’s diameter while operated in a 160-μm thick protective tubing. Through theoretical and experimental analyses, our probe was found to exhibit various attractive features in terms of compactness, flexibility and reliability along with its excellent fabrication simplicity. PMID:26137380

  15. Ultra-thin and flexible endoscopy probe for optical coherence tomography based on stepwise transitional core fiber.

    PubMed

    Lee, Jangbeom; Chae, Yugyeong; Ahn, Yeh-Chan; Moon, Sucbei

    2015-05-01

    We present an ultra-thin fiber-body endoscopy probe for optical coherence tomography (OCT) which is based on a stepwise transitional core (STC) fiber. In a minimalistic design, our probe was made of spliced specialty fibers that could be directly used for beam probing optics without using a lens. In our probe, the OCT light delivered through a single-mode fiber was efficiently expanded to a large mode field of 24 μm diameter for a low beam divergence. The size of our probe was 85 μm in the probe's diameter while operated in a 160-μm thick protective tubing. Through theoretical and experimental analyses, our probe was found to exhibit various attractive features in terms of compactness, flexibility and reliability along with its excellent fabrication simplicity.

  16. Improvement of plastic optical fiber microphone based on moisture pattern sensing in devoiced breath

    NASA Astrophysics Data System (ADS)

    Taki, Tomohito; Honma, Satoshi; Morisawa, Masayuki; Muto, Shinzo

    2008-03-01

    Conversation is the most practical and common form in communication. However, people with a verbal handicap feel a difficulty to produce words due to variations in vocal chords. This research leads to develop a new devoiced microphone system based on distinguishes between the moisture patterns for each devoiced breaths, using a plastic optical fiber (POF) moisture sensor. In the experiment, five POF-type moisture sensors with fast response were fabricated by coating swell polymer with a slightly larger refractive index than that of fiber core and were set in front of mouth. When these sensors are exposed into humid air produced by devoiced breath, refractive index in cladding layer decreases by swelling and then the POF sensor heads change to guided type. Based on the above operation principle, the output light intensities from the five sensors set in front of mouth change each other. Using above mentioned output light intensity patterns, discernment of devoiced vowels in Japanese (a,i,u,e,o) was tried by means of DynamicProgramming-Matching (DP-matching) method. As the result, distinction rate over 90% was obtained to Japanese devoiced vowels. Therefore, using this system and a voice synthesizer, development of new microphone for the person with a functional disorder in the vocal chords seems to be possible.

  17. Drastic sensitivity enhancement of temperature sensing based on modal interference in plastic optical fibers

    NASA Astrophysics Data System (ADS)

    Numata, G.; Hayashi, N.; Tabaru, M.; Mizuno, Y.; Nakamura, K.

    2015-09-01

    It has been reported that temperature sensors based on modal interference in perfluorinated graded-index (GI) plastic optical fibers (POFs) show the world's highest temperature sensitivity of +49.8 nm/°C/m at 1300 nm at room temperature, which is over 1800 times the value in silica multimode fibers (MMFs). In this work, we newly find that the temperature sensitivity (absolute value) is significantly enhanced with increasing temperature toward ~70°C, which is close to the glass-transition temperature of the core polymer. When the core diameter is 62.5 μm, the sensitivity at 72 °C at 1300 nm is +202 nm/°C/m, which is approximately 26 times the value obtained at room temperature and even over 7000 times the highest value previously reported using a silica MMF. As the glass-transition temperature of polymers can be generally set to an arbitrary value, this characteristic could be used to develop POF-based temperature sensors with ultra-high sensitivity not only at ~70°C but at arbitrary temperature in future.

  18. Broadening-free SBS-based slow and fast light in optical fibers

    NASA Astrophysics Data System (ADS)

    Schneider, Thomas; Wiatrek, Andrzej

    2013-03-01

    To change the group velocity of optical signals has a lot of possible applications in telecommunications, sensing, nonlinear optics and so on. Especially the exploitation of the effect of stimulated Brillouin scattering (SBS) in optical fibers is of special interest since it just requires standard telecom equipment and low to moderate optical power. However, each delay in one single, low-gain SBS based slow-light system is accompanied by pulse broadening. This is a result of the inherent Kramers-Kronig relations between the gain, the phase-change and the accompanied group velocity. For an ideal flat gain the phase-change is non-ideal, and for an ideal phase-change the gain curve leads to a broadening. Furthermore, if the gain bandwidth is broadened in order to adapt it to the signal, the delay will be reduced. Thus, for one single low-gain slow-light system the broadening can be reduced by several methods but it cannot be zero. Here we will show how a zero-broadening SBS based slow-light system can be achieved by two different methods. The basic idea is a reshaping of the original pulse by an adapted gain in a second stage. This adaptation is achieved by the superposition of two Gaussian gain profiles or by a single saturated gain. As will be shown, these systems show an almost ideal over-all gain and phase function over the bandwidth of the pulses. Thus, SBS based slow-light with a delaybandwidth product of more than 1 bit and zero distortion is possible.

  19. A Transflective Nano-Wire Grid Polarizer Based Fiber-Optic Sensor

    PubMed Central

    Feng, Jing; Zhao, Yun; Lin, Xiao-Wen; Hu, Wei; Xu, Fei; Lu, Yan-Qing

    2011-01-01

    A transflective nano-wire grid polarizer is fabricated on a single mode fiber tip by focused ion beam machining. In contrast to conventional absorptive in-line polarizers, the wire grids reflect TE-mode, while transmitting TM-mode light so that no light power is discarded. A reflection contrast of 13.7 dB and a transmission contrast of 4.9 dB are achieved in the 1,550 nm telecom band using a 200-nm wire grid fiber polarizer. With the help of an optic circulator, the polarization states of both the transmissive and reflective lights in the fiber may be monitored simultaneously. A kind of robust fiber optic sensor is thus proposed that could withstand light power variations. To verify the idea, a fiber pressure sensor with the sensitivity of 0.24 rad/N is demonstrated. The corresponding stress-optic coefficient of the fiber is measured. In addition to pressure sensing, this technology could be applied in detecting any polarization state change induced by magnetic fields, electric currents and so on. PMID:22163751

  20. Optical Fiber Sensors for Advanced Civil Structures

    NASA Astrophysics Data System (ADS)

    de Vries, Marten Johannes Cornelius

    1995-01-01

    The objective of this dissertation is to develop, analyze, and implement optical fiber-based sensors for the nondestructive quantitative evaluation of advanced civil structures. Based on a comparative evaluation of optical fiber sensors that may be used to obtain quantitative information related to physical perturbations in the civil structure, the extrinsic Fabry-Perot interferometric (EFPI) optical fiber sensor is selected as the most attractive sensor. The operation of the EFPI sensor is explained using the Kirchhoff diffraction approach. As is shown in this dissertation, this approach better predicts the signal-to-noise ratio as a function of gap length than methods employed previously. The performance of the optical fiber sensor is demonstrated in three different implementations. In the first implementation, performed with researchers in the Civil Engineering Department at the University of Southern California in Los Angeles, optical fiber sensors were used to obtain quantitative strain information from reinforced concrete interior and exterior column-to-beam connections. The second implementation, performed in cooperation with researchers at the United States Bureau of Mines in Spokane, Washington, used optical fiber sensors to monitor the performance of roof bolts used in mines. The last implementation, performed in cooperation with researchers at the Turner-Fairbanks Federal Highway Administration Research Center in McLean, Virginia, used optical fiber sensors, attached to composite prestressing strands used for reinforcing concrete, to obtain absolute strain information. Multiplexing techniques including time, frequency and wavelength division multiplexing are briefly discussed, whereas the principles of operation of spread spectrum and optical time domain reflectometery (OTDR) are discussed in greater detail. Results demonstrating that spread spectrum and OTDR techniques can be used to multiplex optical fiber sensors are presented. Finally, practical

  1. Fiber-optic technologies in laser-based therapeutics: threads for a cure.

    PubMed

    Wang, Zheng; Chocat, Noémie

    2010-06-01

    In the past decade, novel fiber structures and material compositions have led to the introduction of new diagnostic and therapeutic tools. We review the structure, the material composition and the fabrication processes behind these novel fiber systems. Because of their structural flexibility, their compatibility with endoscopic appliances and their efficiency in laser delivery, these fiber systems have greatly extended the reach of a wide range of surgical lasers in minimally invasive procedures. Much research in novel fiber-optics delivery systems has been focused on the accommodation of higher optical powers and the extension to a broader wavelength range. Until recently, CO2 laser surgery, renowned for its precision and efficiency, was limited to open surgeries by the lack of delivery fibers. Hollow-core photonic bandgap fibers are assessed for their ability to transmit CO2 laser at surgical power level and for their applications in a range of clinical areas. Current fiber-delivery technologies for a number of laser surgery modalities and wavelengths are compared.

  2. Optical fiber inspection system

    DOEpatents

    Moore, F.W.

    1985-04-05

    A remote optical inspection system including an inspection head. The inspection head has a passageway through which pellets or other objects are passed. A window is provided along the passageway through which light is beamed against the objects being inspected. A plurality of lens assemblies are arranged about the window so that reflected light can be gathered and transferred to a plurality of coherent optical fiber light guides. The light guides transfer the light images to a television or other image transducer which converts the optical images into a representative electronic signal. The electronic signal can then be displayed on a signal viewer such as a television monitor for inspection by a person. A staging means can be used to support the objects for viewing through the window. Routing means can be used to direct inspected objects into appropriate exit passages for accepted or rejected objects. The inspected objects are advantageously fed in a singular manner to the staging means and routing means. The inspection system is advantageously used in an enclosure when toxic or hazardous materials are being inspected. 10 figs.

  3. Optical fiber inspection system

    DOEpatents

    Moore, Francis W.

    1987-01-01

    A remote optical inspection system including an inspection head. The inspection head has a passageway through which pellets or other objects are passed. A window is provided along the passageway through which light is beamed against the objects being inspected. A plurality of lens assemblies are arranged about the window so that reflected light can be gathered and transferred to a plurality of coherent optical fiber light guides. The light guides transfer the light images to a television or other image transducer which converts the optical images into a representative electronic signal. The electronic signal can then be displayed on a signal viewer such as a television monitor for inspection by a person. A staging means can be used to support the objects for viewing through the window. Routing means can be used to direct inspected objects into appropriate exit passages for accepted or rejected objects. The inspected objects are advantageously fed in a singular manner to the staging means and routing means. The inspection system is advantageously used in an enclosure when toxic or hazardous materials are being inspected.

  4. Generating 2 micron continuous-wave ytterbium-doped fiber laser-based optical parametric effect

    NASA Astrophysics Data System (ADS)

    Paul, M. C.; Latiff, A. A.; Hisyam, M. B.; Rusdi, M. F. M.; Harun, S. W.

    2016-10-01

    We report an efficient method for generating a 2 micron laser based on an optical parametric oscillator (OPO). It uses a long piece of a newly developed double-clad ytterbium-doped fiber (YDF), which is obtained by doping multi-elements of ZrO2, CeO2 and CaO in a phospho-alumina-silica glass as a gain medium. The efficient 2 micron laser generation is successful due to the presence of partially crystalline Yb-doped ZrO2 nano-particles that serve as a nonlinear material in a linear cavity configuration and high watt-level pump power. Stable self-wavelength double lasing at 2122 nm with an efficiency of 7.15% is successfully recorded. At a maximum pump power of 4.1 W, the output power is about 201 mW.

  5. Compensation method for temperature error of fiber optical gyroscope based on relevance vector machine.

    PubMed

    Wang, Guochen; Wang, Qiuying; Zhao, Bo; Wang, Zhenpeng

    2016-02-10

    Aiming to improve the bias stability of the fiber optical gyroscope (FOG) in an ambient temperature-change environment, a temperature-compensation method based on the relevance vector machine (RVM) under Bayesian framework is proposed and applied. Compared with other temperature models such as quadratic polynomial regression, neural network, and the support vector machine, the proposed RVM method possesses higher accuracy to explain the temperature dependence of the FOG gyro bias. Experimental results indicate that, with the proposed RVM method, the bias stability of an FOG can be apparently reduced in the whole temperature ranging from -40°C to 60°C. Therefore, the proposed method can effectively improve the adaptability of the FOG in a changing temperature environment.

  6. Loop-locked coherent population trapping magnetometer based on a fiber electro-optic modulator.

    PubMed

    Hu, Yong; Feng, Y Y; Xu, Chi; Xue, H B; Sun, Li

    2014-04-01

    We have set up a coherent population trapping (CPT)-based magnetometer prototype with the D1 line of ⁸⁷Rb atoms. The dichromatic light field is derived from a fiber electro-optic modulator (FEOM) connected to an external cavity laser diode. A CPT resonance signal with a 516 Hz linewidth is observed. By feeding back the derivative of the resonance curve to the FEOM with a proportional integral controller, of which the voltage output is directly converted to the measured magnetic field intensity, the resonance peak is locked to the environmental magnetic field. The measurement data we have achieved are well matched with the data measured by a commercial fluxgate magnetometer within 2 nT, and the sensitivity is better than 8 pT/√Hz in a parallel B field. PMID:24787175

  7. Compensation method for temperature error of fiber optical gyroscope based on relevance vector machine.

    PubMed

    Wang, Guochen; Wang, Qiuying; Zhao, Bo; Wang, Zhenpeng

    2016-02-10

    Aiming to improve the bias stability of the fiber optical gyroscope (FOG) in an ambient temperature-change environment, a temperature-compensation method based on the relevance vector machine (RVM) under Bayesian framework is proposed and applied. Compared with other temperature models such as quadratic polynomial regression, neural network, and the support vector machine, the proposed RVM method possesses higher accuracy to explain the temperature dependence of the FOG gyro bias. Experimental results indicate that, with the proposed RVM method, the bias stability of an FOG can be apparently reduced in the whole temperature ranging from -40°C to 60°C. Therefore, the proposed method can effectively improve the adaptability of the FOG in a changing temperature environment. PMID:26906376

  8. Large motion high cycle high speed optical fibers for space based applications.

    SciTech Connect

    Stromberg, Peter G.; Tandon, Rajan; Gibson, Cory S; Reedlunn, Benjamin; Rasberry, Roger David; Rohr, Garth David

    2014-10-01

    Future remote sensing applications will require higher resolution and therefore higher data rates (up to perhaps 100 gigabits per second) while achieving lower mass and cost. A current limitation to the design space is high speed high bandwidth data does not cross movable gimbals because of cabling issues. This requires the detectors to be off gimbal. The ability to get data across the gimbal would open up efficiencies in designs where the detectors and the electronics can be placed anywhere on the system. Fiber optic cables provide light weight high speed high bandwidth connections. Current options are limited to 20,000 cycles as opposed to the 1,000,000 cycles needed for future space based applications. To extend this to the million+ regime, requires a thorough understanding of the failure mechanisms and the materials, proper selection of materials (e.g., glass and jacket material) allowable geometry changes to the cable, radiation hardness, etc.

  9. Characterizing a fiber-based frequency comb with electro-optic modulator.

    PubMed

    Zhang, Wei; Lours, Michel; Fischer, Marc; Holzwarth, Ronald; Santarelli, Giorgio; Coq, Yann

    2012-03-01

    We report on the characterization of a commercial- core fiber-based frequency comb equipped with an intracavity free-space electro-optic modulator (EOM). We investigate the relationship between the noise of the pump diode and the laser relative intensity noise (RIN) and demonstrate the use of a low-noise current supply to substantially reduce the laser RIN. By measuring several critical transfer functions, we evaluate the potential of the EOM for comb repetition rate stabilization. We also evaluate the coupling to other relevant parameters of the comb. From these measurements, we infer the capabilities of the femtosecond laser comb to generate very-low-phase-noise microwave signals when phase-locked to a high-spectral-purity ultra-stable laser. PMID:22481776

  10. Loop-locked coherent population trapping magnetometer based on a fiber electro-optic modulator.

    PubMed

    Hu, Yong; Feng, Y Y; Xu, Chi; Xue, H B; Sun, Li

    2014-04-01

    We have set up a coherent population trapping (CPT)-based magnetometer prototype with the D1 line of ⁸⁷Rb atoms. The dichromatic light field is derived from a fiber electro-optic modulator (FEOM) connected to an external cavity laser diode. A CPT resonance signal with a 516 Hz linewidth is observed. By feeding back the derivative of the resonance curve to the FEOM with a proportional integral controller, of which the voltage output is directly converted to the measured magnetic field intensity, the resonance peak is locked to the environmental magnetic field. The measurement data we have achieved are well matched with the data measured by a commercial fluxgate magnetometer within 2 nT, and the sensitivity is better than 8 pT/√Hz in a parallel B field.

  11. A Sensing Element Based on a Bent and Elongated Grooved Polymer Optical Fiber

    PubMed Central

    Lu, Wei-Hua; Chen, Li-Wen; Xie, Wen-Fu; Chen, Yung-Chuan

    2012-01-01

    An experimental and numerical investigation is performed into the power loss induced in grooved polymer optical fibers (POFs) subjected to combined bending and elongation deformations. The power loss is examined as a function of both the groove depth and the bend radius. An elastic-plastic three-dimensional finite element model is constructed to simulate the deformation in the grooved region of the deformed specimens. The results indicate that the power loss increases significantly with an increasing bending displacement or groove depth. Specifically, the power loss increases to as much as 12% given a groove depth of 1.1 mm and a bending displacement of 10 mm. Based on the experimental results, an empirical expression is formulated to relate the power loss with the bending displacement for a given groove depth. It is shown that the difference between the estimated power loss and the actual power loss is less than 2%. PMID:22969356

  12. Surface plasmon resonance based optical fiber riboflavin sensor by using molecularly imprinted gel

    NASA Astrophysics Data System (ADS)

    Verma, Roli; Gupta, Banshi D.

    2013-05-01

    We report the fabrication and characterization of surface plasmon resonance (SPR) based optical fiber riboflavin/vitamin B2 sensor using combination of colloidal crystal templating and molecularly imprinted gel. The sensor works on spectral interrogation method. The operating range of the sensor lies from 0 μg/ml to 320 μg/ml, the suitable amount of intakes of riboflavin recommended for different age group. The SPR spectra show blue shift with increasing concentration of riboflavin, which is due to the interaction of riboflavin molecule over specific binding sites caused by molecular imprinting. The present sensor has many advantageous features such as fast response, small probe size, low cost and can be used for remote/online monitoring.

  13. Fiber optic sensor and method for making

    DOEpatents

    Vartuli, James Scott; Bousman, Kenneth Sherwood; Deng, Kung-Li; McEvoy, Kevin Paul; Xia, Hua

    2010-05-18

    A fiber optic sensor including a fiber having a modified surface integral with the fiber wherein the modified surface includes an open pore network with optical agents dispersed within the open pores of the open pore network. Methods for preparing the fiber optic sensor are also provided. The fiber optic sensors can withstand high temperatures and harsh environments.

  14. Fiber based optofluidic biosensors

    NASA Astrophysics Data System (ADS)

    Lismont, M.; Vandewalle, N.; Joris, B.; Dreesen, L.

    2014-09-01

    Medicinal diagnosis requires the development of innovative devices allowing the detection of small amounts of biological species. Among the large variety of available biosensors, the ones based on fluorescence phenomenon are really promising. Here, we show a prototype of the basic unit of a multi-sensing biosensor combining optics and microfluidics benefits. This unit makes use of two crossed optical fibers: the first fiber is used to carry small probe molecules droplets and excite fluorescence, while the second one is devoted to target molecules droplets transport and fluorescence detection. Within this scheme, the interaction takes place in each fiber node. The main benefits of this detection setup are the absence of fibers functionalization, the use of microliter volumes of target and probe species, their separation before interaction, and a better detection limit compared to cuvettes setups.

  15. Sensing interrogation technique for fiber-optic interferometer type of sensors based on a single-passband RF filter.

    PubMed

    Chen, Hao; Zhang, Shiwei; Fu, Hongyan; Zhou, Bin; Chen, Nan

    2016-02-01

    In this paper, a sensing interrogation system for fiber-optic interferometer type of sensors by using a single-passband radio-frequency (RF) filter has been proposed and experimentally demonstrated. The fiber-optic interferometer based sensors can give continuous optical sampling, and along with dispersive medium a single-passband RF frequency response can be achieved. The sensing parameter variation on the fiber-optic interferometer type of sensors will affect their free spectrum range, and thus the peak frequency of the RF filter. By tracking the central frequency of the passband the sensing parameter can be demodulated. As a demonstration, in our experiment a fiber Mach-Zehnder interferometer (FMZI) based temperature sensor has been interrogated. By tracking the peak frequency of the passband the temperature variation can be monitored. In our experiment, the sensing responsivity of 10.5 MHz/°C, 20.0 MHz/°C and 41.2 MHz/°C, when the lengths of sensing fiber are 1 m, 2 m and 4 m have been achieved.

  16. A family of fiber-optic based pressure sensors for intracochlear measurements

    NASA Astrophysics Data System (ADS)

    Olson, Elizabeth S.; Nakajima, Hideko H.

    2015-02-01

    Fiber-optic pressure sensors have been developed for measurements of intracochlear pressure. The present family of transducers includes an 81 μm diameter sensor employing a SLED light source and single-mode optic fiber, and LED/multi-mode sensors with 126 and 202 μm diameter. The 126 μm diameter pressure sensor also has been constructed with an electrode adhered to its side, for coincident pressure and voltage measurements. These sensors have been used for quantifying cochlear mechanical impedances, informing our understanding of conductive hearing loss and its remediation, and probing the operation of the cochlear amplifier.

  17. Liquid level sensor based on CMFTIR effect in polymer optical fiber

    NASA Astrophysics Data System (ADS)

    Hou, Yulong; Liu, Wenyi; Zhang, Huixin; Su, Shan; Liu, Jia; Zhang, Yanjun; Liu, Jun; Xiong, Jijun

    2016-09-01

    The macro-bending induced optical fiber cladding modes frustrated total internal reflection effect is used to realize the liquid level probe with a simple structure of single macro-bend polymer optical fiber loop. The test results show that the extinction ratio reaches 1.06 dB. "First bath" phenomenon is not obvious (about 0.8%). The robustness of the sensor is better, and the ability of anti-pollution is stronger compared with the conventional sensors. The process of making this sensing probe is extremely easy, and the cost is very low.

  18. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System.

    PubMed

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Li, Jun; Sigrist, Markus W; Dong, Fengzhong

    2016-01-01

    We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges. PMID:27275822

  19. A Temperature Sensor Based on a Polymer Optical Fiber Macro-Bend

    PubMed Central

    Moraleda, Alberto Tapetado; García, Carmen Vázquez; Zaballa, Joseba Zubia; Arrue, Jon

    2013-01-01

    The design and development of a plastic optical fiber (POF) macrobend temperature sensor is presented. The sensor has a linear response versus temperature at a fixed bend radius, with a sensitivity of 1.92·10−3 (°C)−1. The sensor system used a dummy fiber-optic sensor for reference purposes having a resolution below 0.3 °C. A comprehensive experimental analysis was carried out to provide insight into the effect of different surrounding media on practical macro-bend POF sensor implementation. Experimental results are successfully compared with bend loss calculations. PMID:24077323

  20. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System.

    PubMed

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Li, Jun; Sigrist, Markus W; Dong, Fengzhong

    2016-06-06

    We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges.

  1. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System

    PubMed Central

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Li, Jun; Sigrist, Markus W.; Dong, Fengzhong

    2016-01-01

    We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges. PMID:27275822

  2. Biosensor based on excessively tilted fiber grating in thin-cladding optical fiber for sensitive and selective detection of low glucose concentration.

    PubMed

    Luo, Binbin; Yan, Zhijun; Sun, Zhongyuan; Liu, Yong; Zhao, Mingfu; Zhang, Lin

    2015-12-14

    We report a highly sensitive, high Q-factor, label free and selective glucose sensor by using excessively tilted fiber grating (Ex-TFG) inscribed in the thin-cladding optical fiber (TCOF). Glucose oxidase (GOD) was covalently immobilized on optical fiber surface and the effectiveness of GOD immobilization was investigated by the fluorescence microscopy and highly accurate spectral interrogation method. In contrast to the long period grating (LPG) and optical fiber (OF) surface Plasmon resonance (SPR) based glucose sensors, the Ex-TFG configuration has merits of nearly independent cross sensitivity of the environmental temperature, simple fabrication method (no noble metal deposition or cladding etching) and high detection accuracy (or Q-factor). Our experimental results have shown that Ex-TFG in TCOF based sensor has a reliable and fast detection for the glucose concentration as low as 0.1~2.5mg/ml and a high sensitivity of ~1.514 nm·(mg/ml)⁻¹, which the detection accuracy is ~0.2857 nm⁻¹ at pH 5.2, and the limit of detection (LOD) is 0.013~0.02 mg/ml at the pH range of 5.2~7.4 by using an optical spectrum analyzer with a resolution of 0.02 nm. PMID:26699032

  3. Fiber optic hydrogen sensor

    SciTech Connect

    Butler, M.A.; Sanchez, R.; Dulleck, G.R.

    1996-05-01

    This report covers the development of fiber optic hydrogen and temperature sensors for monitoring dissolved hydrogen gas in transformer oil. The concentration of hydrogen gas is a measure of the corona and spark discharge within the transformer and reflects the state of health of the transformer. Key features of the instrument include use of palladium alloys to enhance hydrogen sensitivity, a microprocessor controlled instrument with RS-232, liquid crystal readout, and 4-20 ma. current loop interfaces. Calibration data for both sensors can be down loaded to the instrument through the RS-232 interface. This project was supported by the Technology Transfer Initiative in collaboration with J. W. Harley, Inc. through the mechanism of a cooperative research and development agreement (CRADA).

  4. Fiber-optic couplers. January 1973-February 1988 (citations from the NTIS data base). Report for January 1973-February 1988

    SciTech Connect

    Not Available

    1988-03-01

    This bibliography contains citations concerning the design, fabrication, analysis, performance evaluation, and applications of fiber-optic couplers. Topics include optical coupling for fiber-optic transmission lines, frequency and wavelength division multiplexing, multiwavelength coupler-decouplers, single mode and multimode couplers, and fiber-optic gyroscope applications. Various types of couplers are examined including waveguide, star, access, duplex, data bus, passive, tee, and holographic. Patented fiber-optic devices using couplers are included. Citations concerning fiber-optic connectors are excluded and examined in a separate bibliography. (Contains 218 citations fully indexed and including a title list.)

  5. Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure

    PubMed Central

    Tang, Yongsheng; Wu, Zhishen

    2016-01-01

    Brillouin scattering-based distributed optical fiber (OF) sensing technique presents advantages for concrete structure monitoring. However, the existence of spatial resolution greatly decreases strain measurement accuracy especially around cracks. Meanwhile, the brittle feature of OF also hinders its further application. In this paper, the distributed OF sensor was firstly proposed as long-gauge sensor to improve strain measurement accuracy. Then, a new type of self-sensing fiber reinforced polymer (FRP) bar was developed by embedding the packaged long-gauge OF sensors into FRP bar, followed by experimental studies on strain sensing, temperature sensing and basic mechanical properties. The results confirmed the superior strain sensing properties, namely satisfied accuracy, repeatability and linearity, as well as excellent mechanical performance. At the same time, the temperature sensing property was not influenced by the long-gauge package, making temperature compensation easy. Furthermore, the bonding performance between self-sensing FRP bar and concrete was investigated to study its influence on the sensing. Lastly, the sensing performance was further verified with static experiments of concrete beam reinforced with the proposed self-sensing FRP bar. Therefore, the self-sensing FRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as reinforcing materials for concrete structures. PMID:26927110

  6. A Miniature Fiber Optic Refractive Index Sensor Built in a MEMS-Based Microchannel

    PubMed Central

    Tian, Ye; Wang, Wenhui; Wu, Nan; Zou, Xiaotian; Guthy, Charles; Wang, Xingwei

    2011-01-01

    A small, highly sensitive, and electromagnetic interference (EMI)-immune refractive index (RI) sensor based on the Fabry-Perot (FP) interferometer is presented. The sensor’s FP cavity was fabricated by aligning two metal-deposited, single-mode optical fiber endfaces inside a microchannel on a silicon chip. The mirrors on the fiber endfaces were made of thermal-deposited metal films, which provided the high finesse necessary to produce a highly sensitive sensor. Microelectromechanical systems (MEMS) fabrication techniques, specifically photolithography and deep dry etching, were used to precisely control the profile and depth of the microchannel on the silicon chip with an accuracy of 2 μm. The RI change within the FP cavity was determined by demodulating the transmission spectrum phase shift. The sensitivity and finesse of the transmission spectrum were controlled by adjusting the cavity length and the thickness of the deposited metal. Our experimental results showed that the sensor’s sensitivity was 665.90 nm/RIU (RI Unit), and the limit of detection was 6 × 10−6 RIU. Using MEMS fabrication techniques to fabricate these sensors could make high yield mass production a real possibility. Multiple sensors could be integrated on a single small silicon chip to simultaneously measure RI, temperature, and biomolecule targets. PMID:22344393

  7. Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure.

    PubMed

    Tang, Yongsheng; Wu, Zhishen

    2016-02-25

    Brillouin scattering-based distributed optical fiber (OF) sensing technique presents advantages for concrete structure monitoring. However, the existence of spatial resolution greatly decreases strain measurement accuracy especially around cracks. Meanwhile, the brittle feature of OF also hinders its further application. In this paper, the distributed OF sensor was firstly proposed as long-gauge sensor to improve strain measurement accuracy. Then, a new type of self-sensing fiber reinforced polymer (FRP) bar was developed by embedding the packaged long-gauge OF sensors into FRP bar, followed by experimental studies on strain sensing, temperature sensing and basic mechanical properties. The results confirmed the superior strain sensing properties, namely satisfied accuracy, repeatability and linearity, as well as excellent mechanical performance. At the same time, the temperature sensing property was not influenced by the long-gauge package, making temperature compensation easy. Furthermore, the bonding performance between self-sensing FRP bar and concrete was investigated to study its influence on the sensing. Lastly, the sensing performance was further verified with static experiments of concrete beam reinforced with the proposed self-sensing FRP bar. Therefore, the self-sensing FRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as reinforcing materials for concrete structures.

  8. Single input state, single-mode fiber-based polarization-sensitive optical frequency domain imaging by eigenpolarization referencing.

    PubMed

    Lippok, Norman; Villiger, Martin; Jun, Changsu; Bouma, Brett E

    2015-05-01

    Fiber-based polarization-sensitive optical frequency domain imaging is more challenging than free-space implementations. Using multiple input states, fiber-based systems provide sample birefringence information with the benefit of a flexible sample arm but come at the cost of increased system and acquisition complexity, and either reduce acquisition speed or require increased acquisition bandwidth. Here we show that with the calibration of a single polarization state, fiber-based configurations can approach the conceptual simplicity of traditional free-space configurations. We remotely control the polarization state of the light incident at the sample using the eigenpolarization states of a wave plate as a reference, and determine the Jones matrix of the output fiber. We demonstrate this method for polarization-sensitive imaging of biological samples. PMID:25927775

  9. Single input state, single-mode fiber-based polarization-sensitive optical frequency domain imaging by eigenpolarization referencing.

    PubMed

    Lippok, Norman; Villiger, Martin; Jun, Changsu; Bouma, Brett E

    2015-05-01

    Fiber-based polarization-sensitive optical frequency domain imaging is more challenging than free-space implementations. Using multiple input states, fiber-based systems provide sample birefringence information with the benefit of a flexible sample arm but come at the cost of increased system and acquisition complexity, and either reduce acquisition speed or require increased acquisition bandwidth. Here we show that with the calibration of a single polarization state, fiber-based configurations can approach the conceptual simplicity of traditional free-space configurations. We remotely control the polarization state of the light incident at the sample using the eigenpolarization states of a wave plate as a reference, and determine the Jones matrix of the output fiber. We demonstrate this method for polarization-sensitive imaging of biological samples.

  10. Optical fiber-based full Mueller polarimeter for endoscopic imaging using a two-wavelength simultaneous measurement method.

    PubMed

    Vizet, Jérémy; Manhas, Sandeep; Tran, Jacqueline; Validire, Pierre; Benali, Abdelali; Garcia-Caurel, Enric; Pierangelo, Angelo; De Martino, Antonello; Pagnoux, Dominique

    2016-07-01

    This paper reports a technique based on spectrally differential measurement for determining the full Mueller matrix of a biological sample through an optical fiber. In this technique, two close wavelengths were used simultaneously, one for characterizing the fiber and the other for characterizing the assembly of fiber and sample. The characteristics of the fiber measured at one wavelength were used to decouple its contribution from the measurement on the assembly of fiber and sample and then to extract sample Mueller matrix at the second wavelength. The proof of concept was experimentally validated by measuring polarimetric parameters of various calibrated optical components through the optical fiber. Then, polarimetric images of histological cuts of human colon tissues were measured, and retardance, diattenuation, and orientation of the main axes of fibrillar regions were displayed. Finally, these images were successfully compared with images obtained by a free space Mueller microscope. As the reported method does not use any moving component, it offers attractive integration possibilities with an endoscopic probe. PMID:26848782

  11. Optical fiber-based full Mueller polarimeter for endoscopic imaging using a two-wavelength simultaneous measurement method

    NASA Astrophysics Data System (ADS)

    Vizet, Jérémy; Manhas, Sandeep; Tran, Jacqueline; Validire, Pierre; Benali, Abdelali; Garcia-Caurel, Enric; Pierangelo, Angelo; Martino, Antonello De; Pagnoux, Dominique

    2016-07-01

    This paper reports a technique based on spectrally differential measurement for determining the full Mueller matrix of a biological sample through an optical fiber. In this technique, two close wavelengths were used simultaneously, one for characterizing the fiber and the other for characterizing the assembly of fiber and sample. The characteristics of the fiber measured at one wavelength were used to decouple its contribution from the measurement on the assembly of fiber and sample and then to extract sample Mueller matrix at the second wavelength. The proof of concept was experimentally validated by measuring polarimetric parameters of various calibrated optical components through the optical fiber. Then, polarimetric images of histological cuts of human colon tissues were measured, and retardance, diattenuation, and orientation of the main axes of fibrillar regions were displayed. Finally, these images were successfully compared with images obtained by a free space Mueller microscope. As the reported method does not use any moving component, it offers attractive integration possibilities with an endoscopic probe.

  12. Orbital angular momentum in optical fibers

    NASA Astrophysics Data System (ADS)

    Bozinovic, Nenad

    Internet data traffic capacity is rapidly reaching limits imposed by nonlinear effects of single mode fibers currently used in optical communications. Having almost exhausted available degrees of freedom to orthogonally multiplex data in optical fibers, researchers are now exploring the possibility of using the spatial dimension of fibers, via multicore and multimode fibers, to address the forthcoming capacity crunch. While multicore fibers require complex manufacturing, conventional multi-mode fibers suffer from mode coupling, caused by random perturbations in fibers and modal (de)multiplexers. Methods that have been developed to address the problem of mode coupling so far, have been dependent on computationally intensive digital signal processing algorithms using adaptive optics feedback or complex multiple-input multiple-output algorithms. Here we study the possibility of using the orbital angular momentum (OAM), or helicity, of light, as a means of increasing capacity of future optical fiber communication links. We first introduce a class of specialty fibers designed to minimize mode coupling and show their potential for OAM mode generation in fibers using numerical analysis. We then experimentally confirm the existence of OAM states in these fibers using methods based on fiber gratings and spatial light modulators. In order to quantify the purity of created OAM states, we developed two methods based on mode-image analysis, showing purity of OAM states to be 90% after 1km in these fibers. Finally, in order to demonstrate data transmission using OAM states, we developed a 4-mode multiplexing and demultiplexing systems based on free-space optics and spatial light modulators. Using simple coherent detection methods, we successfully transmit data at 400Gbit/s using four OAM modes at a single wavelength, over 1.1 km of fiber. Furthermore, we achieve data transmission at 1.6Tbit/s using 10 wavelengths and two OAM modes. Our study indicates that OAM light can exist

  13. Body-monitoring and health supervision by means of optical fiber-based sensing systems in medical textiles.

    PubMed

    Quandt, Brit M; Scherer, Lukas J; Boesel, Luciano F; Wolf, Martin; Bona, Gian-Luca; Rossi, René M

    2015-02-18

    Long-term monitoring with optical fibers has moved into the focus of attention due to the applicability for medical measurements. Within this Review, setups of flexible, unobtrusive body-monitoring systems based on optical fibers and the respective measured vital parameters are in focus. Optical principles are discussed as well as the interaction of light with tissue. Optical fiber-based sensors that are already used in first trials are primarily selected for the section on possible applications. These medical textiles include the supervision of respiration, cardiac output, blood pressure, blood flow and its saturation with hemoglobin as well as oxygen, pressure, shear stress, mobility, gait, temperature, and electrolyte balance. The implementation of these sensor concepts prompts the development of wearable smart textiles. Thus, current sensing techniques and possibilities within photonic textiles are reviewed leading to multiparameter designs. Evaluation of these designs should show the great potential of optical fibers for the introduction into textiles especially due to the benefit of immunity to electromagnetic radiation. Still, further improvement of the signal-to-noise ratio is often necessary to develop a commercial monitoring system.

  14. Body-monitoring and health supervision by means of optical fiber-based sensing systems in medical textiles.

    PubMed

    Quandt, Brit M; Scherer, Lukas J; Boesel, Luciano F; Wolf, Martin; Bona, Gian-Luca; Rossi, René M

    2015-02-18

    Long-term monitoring with optical fibers has moved into the focus of attention due to the applicability for medical measurements. Within this Review, setups of flexible, unobtrusive body-monitoring systems based on optical fibers and the respective measured vital parameters are in focus. Optical principles are discussed as well as the interaction of light with tissue. Optical fiber-based sensors that are already used in first trials are primarily selected for the section on possible applications. These medical textiles include the supervision of respiration, cardiac output, blood pressure, blood flow and its saturation with hemoglobin as well as oxygen, pressure, shear stress, mobility, gait, temperature, and electrolyte balance. The implementation of these sensor concepts prompts the development of wearable smart textiles. Thus, current sensing techniques and possibilities within photonic textiles are reviewed leading to multiparameter designs. Evaluation of these designs should show the great potential of optical fibers for the introduction into textiles especially due to the benefit of immunity to electromagnetic radiation. Still, further improvement of the signal-to-noise ratio is often necessary to develop a commercial monitoring system. PMID:25358557

  15. Ultra Small Integrated Optical Fiber Sensing System

    PubMed Central

    Van Hoe, Bram; Lee, Graham; Bosman, Erwin; Missinne, Jeroen; Kalathimekkad, Sandeep; Maskery, Oliver; Webb, David J.; Sugden, Kate; Van Daele, Peter; Van Steenberge, Geert

    2012-01-01

    This paper introduces a revolutionary way to interrogate optical fiber sensors based on fiber Bragg gratings (FBGs) and to integrate the necessary driving optoelectronic components with the sensor elements. Low-cost optoelectronic chips are used to interrogate the optical fibers, creating a portable dynamic sensing system as an alternative for the traditionally bulky and expensive fiber sensor interrogation units. The possibility to embed these laser and detector chips is demonstrated resulting in an ultra thin flexible optoelectronic package of only 40 μm, provided with an integrated planar fiber pigtail. The result is a fully embedded flexible sensing system with a thickness of only 1 mm, based on a single Vertical-Cavity Surface-Emitting Laser (VCSEL), fiber sensor and photodetector chip. Temperature, strain and electrodynamic shaking tests have been performed on our system, not limited to static read-out measurements but dynamically reconstructing full spectral information datasets.

  16. Fiber optics: a communications revolution

    NASA Astrophysics Data System (ADS)

    Keck, Donald B.

    1992-05-01

    Optical fiber and photonics technology have dramatically impacted the way in which the world handles information. The ability to effectively manage and transport ever-increasing amounts of information, over broadband networks, will directly affect the economic vitality of nations and corporations. This paper profiles the development of commercially viable optical fiber and discusses some of the aspects of becoming a world-class competitor in optical telecommunications.

  17. Resonant fiber optic gyro based on a sinusoidal wave modulation and square wave demodulation technique.

    PubMed

    Wang, Linglan; Yan, Yuchao; Ma, Huilian; Jin, Zhonghe

    2016-04-20

    New developments are made in the resonant fiber optic gyro (RFOG), which is an optical sensor for the measurement of rotation rate. The digital signal processing system based on the phase modulation technique is capable of detecting the weak frequency difference induced by the Sagnac effect and suppressing the reciprocal noise in the circuit, which determines the detection sensitivity of the RFOG. A new technique based on the sinusoidal wave modulation and square wave demodulation is implemented, and the demodulation curve of the system is simulated and measured. Compared with the past technique using sinusoidal modulation and demodulation, it increases the slope of the demodulation curve by a factor of 1.56, improves the spectrum efficiency of the modulated signal, and reduces the occupancy of the field-programmable gate array resource. On the basis of this new phase modulation technique, the loop is successfully locked and achieves a short-term bias stability of 1.08°/h, which is improved by a factor of 1.47. PMID:27140098

  18. Structural diagnostics using optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Surace, Giuseppe; Chiaradia, Agostino

    1997-11-01

    After establishing the basis for assessing the structural implications of introducing a widespread sensor architecture in laminated composite materials in order to precisely identify and locate damage, the paper addresses the problem of structural diagnostics with a discussion of the development of several optical sensors. The research project will first investigate a passive optical fiber impact sensor to be implemented in the matrix of a composite material used in aeronautic and automotive applications. The senor's operating principle is based on the changes in propagation conditions occurring in a fiber subjected to transverse compression: under these circumstances, structural microdistortions produce local energy losses and hence a reduction in the optical power which propagates in the fiber and can be measured at its opposite end. As optical power losses also take place as a result of micro-bending of the optical fiber's longitudinal axis, a preliminary feasibility study will measure power attenuation versus fiber curve radius as the first step in the development of an optical fiber delamination sensor which locates separations between the layers of a composite material, i.e. debonding of sandwich panel core faces. Finally, an active impact sensor will be developed which uses optical fiber's sensitivity to pressure changes to detect the pressure gradient caused by an approaching vehicle or obstacle. The automotive industry will be able to make strategic use of these sensors, for example by installing them on vehicle sides to active the side airbag in the event of impact or collision.

  19. Multipoint dynamically reconfigure adaptive distributed fiber optic acoustic emission sensor (FAESense) system for condition based maintenance

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar; Prohaska, John; Kempen, Connie; Esterkin, Yan; Sun, Sunjian; Krishnaswamy, Sridhar

    2010-09-01

    This paper describes preliminary results obtained under a Navy SBIR contract by Redondo Optics Inc. (ROI), in collaboration with Northwestern University towards the development and demonstration of a next generation, stand-alone and fully integrated, dynamically reconfigurable, adaptive fiber optic acoustic emission sensor (FAESense™) system for the in-situ unattended detection and localization of shock events, impact damage, cracks, voids, and delaminations in new and aging critical infrastructures found in ships, submarines, aircraft, and in next generation weapon systems. ROI's FAESense™ system is based on the integration of proven state-of-the-art technologies: 1) distributed array of in-line fiber Bragg gratings (FBGs) sensors sensitive to strain, vibration, and acoustic emissions, 2) adaptive spectral demodulation of FBG sensor dynamic signals using two-wave mixing interferometry on photorefractive semiconductors, and 3) integration of all the sensor system passive and active optoelectronic components within a 0.5-cm x 1-cm photonic integrated circuit microchip. The adaptive TWM demodulation methodology allows the measurement of dynamic high frequnency acoustic emission events, while compensating for passive quasi-static strain and temperature drifts. It features a compact, low power, environmentally robust 1-inch x 1-inch x 4-inch small form factor (SFF) package with no moving parts. The FAESense™ interrogation system is microprocessor-controlled using high data rate signal processing electronics for the FBG sensors calibration, temperature compensation and the detection and analysis of acoustic emission signals. Its miniaturized package, low power operation, state-of-the-art data communications, and low cost makes it a very attractive solution for a large number of applications in naval and maritime industries, aerospace, civil structures, the oil and chemical industry, and for homeland security applications.

  20. Analysis of surface plasmon resonance based bimetal coated tapered fiber optic sensor with enhanced sensitivity through radially polarized light

    NASA Astrophysics Data System (ADS)

    Goswami, Nabamita; Chauhan, Kamlesh Kumar; Saha, Ardhendu

    2016-11-01

    The presented proposal of surface plasmon resonance (SPR) configuration with tapered fiber structure and radially polarized light beam is a new and different analysis towards the sensitivity enhancement in the field of SPR based fiber optic sensors. Here the taper waist region of optical fiber having diameter around 330 μm is deposited with 40 nm thin Ag layer, 10 nm thin Au layer and the sensing layer with refractive index 1.333-1.353 respectively for achieving the bimetal coated taper fiber optic sensor with SPR configuration. The cylindrical symmetry and special radial field distribution of radially polarized light make its more interesting SPR study and leads to the enhanced excitation of surface plasmon wave. This results 10 times better sensitivity of fiber optic sensor output response as compared to p-polarized light beam with wavelength interrogation technique and 2.307 times better sensitivity with intensity interrogation technique. Also including the temperature effect in proposed taper bimetallic structure, this sensitivity analysis provides an evidence, for exploring a new idea towards the enhanced excitation of SPR which expedites the new avenues in the field of sensor applications with radially polarized light.

  1. Fiber-optic Fabry-Perot sensor based on graded-index multimode fiber: numerical simulations and experiments

    NASA Astrophysics Data System (ADS)

    Gong, Yuan; Zhao, Tian; Rao, Yun-Jiang; Wu, Yu; Guo, Yu

    2011-05-01

    Numerical simulations based on the ray-transfer-matrix (RTM) method is realized for explaining the principle of a graded-index multimode fiber (GI-MMF) based hybrid fiber Fabry-Perot (GI-FFP) sensor. It is verified by the numerical simulations and experimental results that the high fringe contrast of the reflective spectrum of the sensor is due to the periodic focusing effect of the GI-MMF. Experimental results are in good agreement with the theory. A typical GI-FFP sensor is fabricated and its response to the external refractive index is measured with a maximum sensitivity of ~160 dB/RIU.

  2. Photomechanical actuator device based on disperse red 1 doped poly(methyl methacrylate) optical fiber

    NASA Astrophysics Data System (ADS)

    Ye, Xianjun

    The photomechanical effect is the phenomenon involving any mechanical property change of a material induced by light exposure. Photomechanical devices can be built with superior performance over traditional devices and offer versatile control tactics. Previous experiments show that disperse red 1 azobenzene (DR1) doped poly(methyl methacrylate) (PMMA) optical fiber has a fast photomechanical response upon asymmetrical 633nm laser irradiation originating in photoisomerization of the dopants between the cis and trans forms, which causes an elongation of the polymer fiber. In this work, laser light of 355nm wavelength is used to investigate the dynamics of the trans to cis photoisomerization process, which should result in length contraction of the DR1 doped PMMA polymer fiber. A three-point-contact optically-actuated beam controlling tilt mount is made and used as the measurement apparatus to study this process. The photomechanical fiber is observed to elongate upon UV irradiation. Numerical simulations, which take into account the coupled effect between the laser-induced temperature increase and population density change of the dye molecules, show that contraction of the fiber due to direct trans-cis photoisomerization is overwhelmed by elongation due to the photo-thermally-stimulated cis-trans isomerization under high intensity. An ink coated entrance face of the fiber is placed in the measurement tilt mount and is found to exhibit contraction in the fast process under low intensity without sacrificing the good signal to noise ratio enjoyed in the high intensity case.

  3. Based on optical fiber Michelson interferometer for acoustic emission detection experimental research

    NASA Astrophysics Data System (ADS)

    Liang, Yijun; Qu, Dandan; Deng, Hu

    2013-08-01

    A type of Michelson interferometer with two optical fiber loop reflectors acoustic emission sensor is proposed in the article to detect the vibrations produced by ultrasonic waves propagating in a solid body. Two optical fiber loop reflectors are equivalent to the sensing arm and the reference arm instead of traditional Michelson interferometer end reflecter Theoretical analyses indicate that the sensitivity of the system has been remarkably increased because of the decrease of the losses of light energy. The best operating point of optical fiber sensor is fixed by theoretical derivation and simulation of computer, and the signal frequency which is detected by the sensor is the frequency of input signal. PZT (Piezoelectric Ceramic) is powered by signal generator as known ultrasonic source, The Polarization controller is used to make the reflected light interference,The fiber length is changed by adjusting the DC voltage on the PZT with the fiber loop to make the sensor system response that ΔΦ is closed to π/2. the signal basis frequency detected by the sensor is the frequency of the input signal. Then impacts the surface of the marble slab with home-made mechanical acoustic emission source. And detect it. and then the frequency characteristic of acoustic emission signal is obtained by Fourier technique. The experimental results indicate that the system can identify the frequency characteristic of acoustic emission signal, and it can be also used to detect the surface feeble vibration which is generated by ultrasonic waves propagating in material structure.

  4. Research and development of plastic optical fiber based smart transparent concrete

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi; Ou, Ge; Hang, Ying; Chen, Genda; Ou, Jinping

    2009-03-01

    Energy saving and safety evaluation are two key issues for infrastructure. In this paper, the development of a novel smart transparent concrete using plastic optical fiber (POF) and Fiber Bragg Grating (FBG) is discussed, along with its transparent and smart sensing properties. The experimental results show that an optical fiber can be easily combined with concrete and that the POF could provide a steady light transmitting ratio. Moreover, the FBG can be used as a sensing element for strain and temperature. This paper also discusses the mechanical effects of introducing POF into concrete specimens. Because the smart transparent concrete can be regarded as a "green" energy saving construction material and as a smart intrinsic sensor for long-term Structural Health Monitoring (SHM), it is a promising technology for field applications in civil infrastructure.

  5. Ultralong time response of magnetic fluid based on fiber-optic evanescent field.

    PubMed

    Du, Bobo; Yang, Dexing; Bai, Yang; Yuan, Yuan; Xu, Jian; Jiang, Yajun; Wang, Meirong

    2016-07-20

    The ultralong time (a few hours) response properties of magnetic fluid using etched optical fiber are visualized and investigated experimentally. The operating structure is made by injecting magnetic fluid into a capillary tube that contains etched single-mode fiber. An interesting extreme asymmetry is observed, in which the transmitted light intensity after the etched optical fiber cannot reach the final steady value when the external magnetic field is turned on (referred to as the falling process), while it can reach the stable state quickly once the magnetic field is turned off (referred to as the rising process). The relationship between the response times/loss rates of the transmitted light and the strength of the applied magnetic field is obtained. The physical mechanisms of two different processes are discussed qualitatively. PMID:27463909

  6. Optical fiber dispersion characterization study

    NASA Technical Reports Server (NTRS)

    Geeslin, A.; Arriad, A.; Riad, S. M.; Padgett, M. E.

    1979-01-01

    The theory, design, and results of optical fiber pulse dispersion measurements are considered. Both the hardware and software required to perform this type of measurement are described. Hardware includes a thermoelectrically cooled injection laser diode source, an 800 GHz gain bandwidth produce avalanche photodiode and an input mode scrambler. Software for a HP 9825 computer includes fast Fourier transform, inverse Fourier transform, and optimal compensation deconvolution. Test set construction details are also included. Test results include data collected on a 1 Km fiber, a 4 Km fiber, a fused spliced, eight 600 meter length fibers concatenated to form 4.8 Km, and up to nine optical connectors.

  7. Surface Plasmon Resonance-Based Fiber Optic Sensors Utilizing Molecular Imprinting.

    PubMed

    Gupta, Banshi D; Shrivastav, Anand M; Usha, Sruthi P

    2016-01-01

    Molecular imprinting is earning worldwide attention from researchers in the field of sensing and diagnostic applications, due to its properties of inevitable specific affinity for the template molecule. The fabrication of complementary template imprints allows this technique to achieve high selectivity for the analyte to be sensed. Sensors incorporating this technique along with surface plasmon or localized surface plasmon resonance (SPR/LSPR) provide highly sensitive real time detection with quick response times. Unfolding these techniques with optical fiber provide the additional advantages of miniaturized probes with ease of handling, online monitoring and remote sensing. In this review a summary of optical fiber sensors using the combined approaches of molecularly imprinted polymer (MIP) and the SPR/LSPR technique is discussed. An overview of the fundamentals of SPR/LSPR implementation on optical fiber is provided. The review also covers the molecular imprinting technology (MIT) with its elementary study, synthesis procedures and its applications for chemical and biological anlayte detection with different sensing methods. In conclusion, we explore the advantages, challenges and the future perspectives of developing highly sensitive and selective methods for the detection of analytes utilizing MIT with the SPR/LSPR phenomenon on optical fiber platforms. PMID:27589746

  8. Surface Plasmon Resonance-Based Fiber Optic Sensors Utilizing Molecular Imprinting

    PubMed Central

    Gupta, Banshi D.; Shrivastav, Anand M.; Usha, Sruthi P.

    2016-01-01

    Molecular imprinting is earning worldwide attention from researchers in the field of sensing and diagnostic applications, due to its properties of inevitable specific affinity for the template molecule. The fabrication of complementary template imprints allows this technique to achieve high selectivity for the analyte to be sensed. Sensors incorporating this technique along with surface plasmon or localized surface plasmon resonance (SPR/LSPR) provide highly sensitive real time detection with quick response times. Unfolding these techniques with optical fiber provide the additional advantages of miniaturized probes with ease of handling, online monitoring and remote sensing. In this review a summary of optical fiber sensors using the combined approaches of molecularly imprinted polymer (MIP) and the SPR/LSPR technique is discussed. An overview of the fundamentals of SPR/LSPR implementation on optical fiber is provided. The review also covers the molecular imprinting technology (MIT) with its elementary study, synthesis procedures and its applications for chemical and biological anlayte detection with different sensing methods. In conclusion, we explore the advantages, challenges and the future perspectives of developing highly sensitive and selective methods for the detection of analytes utilizing MIT with the SPR/LSPR phenomenon on optical fiber platforms. PMID:27589746

  9. Advanced Fiber Optic-Based Sensing Technology for Unmanned Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen R.; Piazza, Anthony; Ko, William L.; Chan, Patrick; Bakalyar, John

    2011-01-01

    This presentation provides an overview of fiber optic sensing technology development activities performed at NASA Dryden in support of Unmanned Aircraft Systems. Examples of current and previous work are presented in the following categories: algorithm development, system development, instrumentation installation, ground R&D, and flight testing. Examples of current research and development activities are provided.

  10. Concentric core optical fiber with multiple-mode signal transmission

    DOEpatents

    Muhs, J.D.

    1997-05-06

    A concentric core optical fiber provides for the simultaneous but independent transmission of signals over a single optical fiber. The concentric optical fiber is constructed of a single-mode or multimode inner optical fiber defined by a core and a cladding of a lower index of refraction than the core and an outer optical fiber defined by additional cladding concentrically disposed around the cladding and of an index of refraction lower than the first mentioned cladding whereby the latter functions as the core of the outer optical fiber. By employing such an optical fiber construction with a single-mode inner core or optical fiber, highly sensitive interferometric and stable less sensitive amplitude based sensors can be placed along the same length of a concentric core optical fiber. Also, by employing the concentric core optical fiber secure telecommunications can be achieved via the inner optical fiber since an intrusion of the concentric optical fiber will first cause a variation in the light being transmitted through the outer optical fiber and this variation of light being used to trigger a suitable alarm indicative of the intrusion. 3 figs.

  11. Concentric core optical fiber with multiple-mode signal transmission

    DOEpatents

    Muhs, Jeffrey D.

    1997-01-01

    A concentric core optical fiber provides for the simultaneous but independent transmission of signals over a single optical fiber. The concentric optical fiber is constructed of a single-mode or multimode inner optical fiber defined by a core and a cladding of a lower index of refraction than the core and an outer optical fiber defined by additional cladding concentrically disposed around the cladding and of an index of refraction lower than the first mentioned cladding whereby the latter functions as the core of the outer optical fiber. By employing such an optical fiber construction with a single-mode inner core or optical fiber, highly sensitive interferometric and stable less sensitive amplitude based sensors can be placed along the same length of a concentric core optical fiber. Also, by employing the concentric core optical fiber secure telecommunications can be achieved via the inner optical fiber since an intrusion of the concentric optical fiber will first cause a variation in the light being transmitted through the outer optical fiber and this variation of light being used to trigger a suitable alarm indicative of the intrusion.

  12. Critical reviews of fiber-optic communication technology Optical fibers

    NASA Astrophysics Data System (ADS)

    Kapron, F. P.

    The review begins with brief highlights of the history of fiber optics, followed by a discussion of the attributes of shortwave and longwave transmission. This leads to an investigation of various fiber types, short-haul considerations, and then single-mode aspects. Specialty fiber is briefly covered, followed by a survey of several research trends today that will lead to new systems capabilities in the future. No references are given, since hundreds would be necessary to make the list even partially complete.

  13. Thermal lensing in optical fibers.

    PubMed

    Dong, Liang

    2016-08-22

    Average powers from fiber lasers have reached the point that a quantitative understanding of thermal lensing and its impact on transverse mode instability is becoming critical. Although thermal lensing is well known qualitatively, there is a general lack of a simple method for quantitative analysis. In this work, we first conduct a study of thermal lensing in optical fibers based on a perturbation technique. The perturbation technique becomes increasingly inaccurate as thermal lensing gets stronger. It, however, provides a basis for determining a normalization factor to use in a more accurate numerical study. A simple thermal lensing threshold condition is developed. The impact of thermal lensing on transverse mode instability is also studied. PMID:27557260

  14. Distributed nerve gases sensor based on IR absorption in hollow optical fiber

    NASA Astrophysics Data System (ADS)

    Viola, R.; Liberatore, N.; Luciani, D.; Mengali, S.; Pierno, L.

    2010-10-01

    The Nerve gases are persistent gases that appear as very challenging menace in homeland security scenarios, due to the low pressure vapor at ambient temperature, and the very low lethal concentrations. A novel approach to the detection and identification of these very hazardous volatile compounds in large areas such as airports, underground stations, big events arenas, aimed to a high selectivity (Low false alarm probability), has been explored under the SENSEFIB Corporate Project of Finmeccanica S.p.A. The technical demonstrator under development within the Project is presented. It is based on distributed line sensors performing infrared absorption measurements to reveal even trace amounts of target compounds from the retrieval of their spectral fingerprint. The line sensor is essentially constituted by a widely tunable external cavity quantum cascade laser (EC-QCL), coupled to IR thermoelectrically cooled MCT fast detectors by means of a infrared hollow core fibers (HCF). The air is sampled through several micro-holes along the HCF, by means of a micropump, while the infrared radiation travels inside the fiber from the source to the detector, that are optically coupled with the opposite apertures of the HCF. The architecture of the sensor and its principle of operation, in order to cover large areas with a few line sensors instead of with a grid of many point sensors, are illustrated. The sensor is designed to use the HCF as an absorption cell, exploiting long path length and very small volume, (e.g fast response), at the same time. Furthermore the distributed sensor allows to cover large areas and/or not easily accessible locations, like air ducts, with a single line sensor by extending the HCF for several tens of meters. The main components implemented in the sensor are described, in particular: the EC-QCL source to span the spectral range of wavelength between 9.15um and 9.85um; and the hollow core fiber, exhibiting a suitably low optical loss in this spectral

  15. Characterization of the polarization beam splitters based on optical micro/nano-fiber

    NASA Astrophysics Data System (ADS)

    Zhai, Yan-fang; Yu, Jian-hui; Chen, Zhe; Zhang, Jun; Luo, Yun-han

    2011-11-01

    The characteristics of the polarization coupling of two optical micro/nano-fibers (MNFs), which are placed close and parallel each other, were investigated by three dimension full vector beam propagation method (3-D FVBPM). The analytical results of the polarization coupling show that a polarization beam splitter (PBS) device can be constructed based on the coupling of two parallel and close MNFs. In order to optimize the polarization splitting performance of the device, the geometric parameters of the PBS, such as the diameter of optical MNFs and the gap between them were investigated through numerical stimulation. The optimal parameters are diameter of 0.9 μm, gap of 0.5 μm and length of approximately 218 μm respectively. Additionally, fabrication tolerances of each parameter for the polarization splitter PBS were also investigated. In the case of incident wavelength at 1550 nm, and the polarization extinction ratio of both output ports of PBS larger than 15 dB, the fabrication tolerances for bandwidth and overlapping length are 10 nm and , +/-10μm , whereas approximately -3nm~2nm for tolerances in the diameter and gap.

  16. Novel BOD optical fiber biosensor based on co-immobilized microorganisms in ormosils matrix.

    PubMed

    Lin, Ling; Xiao, Lai-Long; Huang, Sha; Zhao, Li; Cui, Jian-Shen; Wang, Xiao-Hui; Chen, Xi

    2006-03-15

    A biochemical oxygen demand (BOD) sensor has been developed, which is based on an immobilized mixed culture of microorganisms combined with a dissolved oxygen (DO) optical fiber. The sensing film for BOD measurement consists of an organically-modified silicate (ORMOSIL) film embedded with tri(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) perchlorate and three kinds of seawater microorganisms immobilized on a polyvinyl alcohol sol-gel matrix. The BOD measurements were carried out in the kinetic mode inside a light-proof cell and with constant temperature. Measurements were taken for 3 min followed by 10 min recovery time in 10 mg/L glucose/glutamate (GGA) BOD standard solution, and the range of determination was from 0.2 to 40 mg/L GGA. The effects of temperature, pH and sodium chloride concentration on the BOD sensing films were studied. BOD values estimated by this optical BOD sensing film correlate well with those determined by the conventional BOD5 method for seawater samples.

  17. Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array.

    PubMed

    Navruz, Isa; Coskun, Ahmet F; Wong, Justin; Mohammad, Saqib; Tseng, Derek; Nagi, Richie; Phillips, Stephen; Ozcan, Aydogan

    2013-10-21

    We demonstrate a cellphone based contact microscopy platform, termed Contact Scope, which can image highly dense or connected samples in transmission mode. Weighing approximately 76 grams, this portable and compact microscope is installed on the existing camera unit of a cellphone using an opto-mechanical add-on, where planar samples of interest are placed in contact with the top facet of a tapered fiber-optic array. This glass-based tapered fiber array has ~9 fold higher density of fiber optic cables on its top facet compared to the bottom one and is illuminated by an incoherent light source, e.g., a simple light-emitting-diode (LED). The transmitted light pattern through the object is then sampled by this array of fiber optic cables, delivering a transmission image of the sample onto the other side of the taper, with ~3× magnification in each direction. This magnified image of the object, located at the bottom facet of the fiber array, is then projected onto the CMOS image sensor of the cellphone using two lenses. While keeping the sample and the cellphone camera at a fixed position, the fiber-optic array is then manually rotated with discrete angular increments of e.g., 1-2 degrees. At each angular position of the fiber-optic array, contact images are captured using the cellphone camera, creating a sequence of transmission images for the same sample. These multi-frame images are digitally fused together based on a shift-and-add algorithm through a custom-developed Android application running on the smart-phone, providing the final microscopic image of the sample, visualized through the screen of the phone. This final computation step improves the resolution and also removes spatial artefacts that arise due to non-uniform sampling of the transmission intensity at the fiber optic array surface. We validated the performance of this cellphone based Contact Scope by imaging resolution test charts and blood smears. PMID:23939637

  18. Optical vortex generation with wavelength tunability based on an acoustically-induced fiber grating.

    PubMed

    Zhang, Wending; Wei, Keyan; Huang, Ligang; Mao, Dong; Jiang, Biqiang; Gao, Feng; Zhang, Guoquan; Mei, Ting; Zhao, Jianlin

    2016-08-22

    We presented a method to actualize the optical vortex generation with wavelength tunability via an acoustically-induced fiber grating (AIFG) driven by a radio frequency source. The circular polarization fundamental mode could be converted to the first-order optical vortex through the AIFG, and its topological charges were verified by the spiral pattern of coaxial interference between the first-order optical vortex and a Gaussian-reference beam. A spectral tuning range from 1540 nm to 1560 nm was demonstrated with a wavelength tunability slope of 4.65 nm/kHz. The mode conversion efficiency was 95% within the whole tuning spectral range. PMID:27557207

  19. Fiber optic multiplex optical transmission system

    NASA Technical Reports Server (NTRS)

    Bell, C. H. (Inventor)

    1977-01-01

    A multiplex optical transmission system which minimizes external interference while simultaneously receiving and transmitting video, digital data, and audio signals is described. Signals are received into subgroup mixers for blocking into respective frequency ranges. The outputs of these mixers are in turn fed to a master mixer which produces a composite electrical signal. An optical transmitter connected to the master mixer converts the composite signal into an optical signal and transmits it over a fiber optic cable to an optical receiver which receives the signal and converts it back to a composite electrical signal. A de-multiplexer is coupled to the output of the receiver for separating the composite signal back into composite video, digital data, and audio signals. A programmable optic patch board is interposed in the fiber optic cables for selectively connecting the optical signals to various receivers and transmitters.

  20. Reducing motion artifacts for long-term clinical NIRS monitoring using collodion-fixed prism-based optical fibers.

    PubMed

    Yücel, Meryem A; Selb, Juliette; Boas, David A; Cash, Sydney S; Cooper, Robert J

    2014-01-15

    As the applications of near-infrared spectroscopy (NIRS) continue to broaden and long-term clinical monitoring becomes more common, minimizing signal artifacts due to patient movement becomes more pressing. This is particularly true in applications where clinically and physiologically interesting events are intrinsically linked to patient movement, as is the case in the study of epileptic seizures. In this study, we apply an approach common in the application of EEG electrodes to the application of specialized NIRS optical fibers. The method provides improved optode-scalp coupling through the use of miniaturized optical fiber tips fixed to the scalp using collodion, a clinical adhesive. We investigate and quantify the performance of this new method in minimizing motion artifacts in healthy subjects, and apply the technique to allow continuous NIRS monitoring throughout epileptic seizures in two epileptic in-patients. Using collodion-fixed fibers reduces the percent signal change of motion artifacts by 90% and increases the SNR by 6 and 3 fold at 690 and 830 nm wavelengths respectively when compared to a standard Velcro-based array of optical fibers. The SNR has also increased by 2 fold during rest conditions without motion with the new probe design because of better light coupling between the fiber and scalp. The change in both HbO and HbR during motion artifacts is found to be statistically lower for the collodion-fixed fiber probe. The collodion-fixed optical fiber approach has also allowed us to obtain good quality NIRS recording of three epileptic seizures in two patients despite excessive motion in each case.

  1. Design of orienting and aiming instrument based on fiber optic gyroscope

    NASA Astrophysics Data System (ADS)

    Zhang, Zhijun; Wang, Limin; Sun, Jiyu

    2007-12-01

    In order to improve the ground viability of missile weapon system, a quick orienting and aiming instrument is cried for the missile launching in modern war. The fiber optic gyroscope (FOG) based on Sagnac effect is a new type of all solid state rotation rate sensor that detects angular changes or angular rates relative to inertial space, which has many fine characteristics compared with traditional mechanical electronic gyro, such as low cost, light weight, long life, high reliability, wide dynamic range, etc. For the need of missile photoelectric aiming facility, It is necessary to design and manufacture a set of orienting and aiming instrument based on single axis FOG, to solve the close quarters aiming of missile launching, to measure the azimuth reference. Based on practical project, the principle of FOG orienting system and laser collimation theodolite aiming system is discussed and studied in this paper. Orienting and aiming system are constructed in the same basement. The influence of platform tilt on the precision of orientation is analyzed. An accelerator is used to compensate deviation caused by base tilt. The aiming precision affected by eccentricity of the encoders for laser collimation theodolite and the FOG orientation system are analyzed. The test results show that the aiming accuracy is 6' in three minutes. It is suitable for missile aiming in short range.

  2. Hermetic optical-fiber iodine frequency standard.

    PubMed

    Light, Philip S; Anstie, James D; Benabid, Fetah; Luiten, Andre N

    2015-06-15

    We have built an optical-frequency standard based on interrogating iodine vapor that has been trapped within the hollow core of a hermetically sealed kagome-lattice photonic crystal fiber. A frequency-doubled Nd:YAG laser locked to a hyperfine component of the P(142)37-0 I2127 transition using modulation transfer spectroscopy shows a frequency stability of 3×10(-11) at 100 s. We discuss the impediments in integrating this all-fiber standard into a fully optical-fiber-based system, and suggest approaches that could improve performance of the frequency standard substantially.

  3. Silica optical fibers: technology update

    NASA Astrophysics Data System (ADS)

    Krohn, David A.; McCann, Brian P.

    1995-05-01

    Silica-core optical fibers have long been the standard delivery medium for medical laser delivery systems. Their high strength, excellent flexibility, and low cost continue to make them the fiber of choice for systems operating from 300 to 2200 nm. An overview of the current fiber constructions available to the industry is reviewed. Silicone-clad fibers, hard- fluoropolymer clad fibers and silica-clad fibers are briefly compared in terms of mechanical and optical properties. The variety of fiber coatings available is also discussed. A significant product development of silica fiber delivery systems has been in side-firing laser delivery systems for Urology. These devices utilize silica-core fibers to project the laser energy at a substantial lateral angle to the conventional delivery system, typically 40 to 100 degrees off axis. Many unique distal tips have been designed to meet the needs of this potentially enormous application. There are three primary technologies employed in side-firing laser delivery systems: reflection off of an attached medium; reflection within an angle-polished fiber through total internal reflection; and reflection from both an angle-polished fiber and an outside medium. Each technology is presented and compared on the basis of operation modality, transmission efficiency, and power-handling performance.

  4. Interaction of high-density and low-density lipoproteins to solid surfaces coated with cholesterol as determined by an optical fiber-based biosensor

    NASA Astrophysics Data System (ADS)

    Singh, Bal R.; Poirier, Michelle A.

    1993-05-01

    In recent years, the use of fiber optics has become an important tool in biomedicine and biotechnology. We are involved in developing and employing a new system which, through the use of fiber optics, may be capable of measuring the content of cholesterol and lipoproteins in blood samples in real time. In the optical fiber-based biosensor, a laser beam having a wavelength of 512 nm (green light) is launched into an optical fiber, which transmits the light to its distal end. An evanescent wave (travelling just outside the fiber core) is used to excite rhodamine-labelled HDL or LDL which become bound to the fiber or to fiber-bound molecules. The fluorescence (red light) is coupled back into the fiber and detected with a photodiode. Preliminary work has involved testing of high density lipoprotein (HDL) binding to a cholesterol-coated fiber and to a bare fiber and low density lipoprotein (LDL) binding to a cholesterol-coated fiber. A significant difference was observed in the binding rate of HDL (5 (mu) g/mL and lower) to a bare fiber as opposed to a cholesterol-coated fiber. The binding rate of HDL (5 (mu) g/mL) to a bare fiber was 7.5 (mu) V/sec and to a cholesterol-coated fiber was 3.5 (mu) V/sec. We have calculated the binding affinity of LDL to a cholesterol- coated fiber as 1.4 (mu) M-1. These preliminary results suggest that the optical fiber-based biosensor can provide a unique and promising approach to the analysis of lipoprotein interaction with solid surfaces and with cholesterol. More importantly, the results suggest that this technique may be used to assess the binding of blood proteins to artificial organs/tissues, and to measure the amount of cholesterol, HDL and LDL in less than a minute.

  5. Research on the optical fiber gas flowmeters based on intermodal interference

    NASA Astrophysics Data System (ADS)

    Zhao, Yong; Hu, Hai-feng; Bi, Dan-juan; Yang, Yang

    2016-07-01

    In this work, a self-heating type optical fiber flowmeter with high sensitivity was proposed. The core-offset fiber structures were employed to couple a part of signal light into the fiber cladding layer, and the other part of light still propagated in the core layer. The intermodal interference between the two parts of light happened when the cladding modes were coupled back into core layer. Meanwhile, the high power laser was also introduced into fiber to heat the silver film coated on the surface of the cladding layer. When the cool gas flow passed, the temperature of the sensor probe decreased due to the heat transfer process. Because of the thermo-optic effect in the fiber, interference spectrum could be shifted when the temperature was changed. The experimental results showed the resolution of the proposed sensor was 2×10-2 m/s in the region of 0-8 m/s. The highest sensitivity could achieve 1537 pm/(m/s).

  6. A novel single fiber optical tweezers based on light-induced thermal effect

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Liu, Zhihai; Liang, Peibo; Zhang, Yaxun; Zhao, Enming; Yang, Jun; Yuan, Libo

    2015-07-01

    We present and demonstrate a novel single fiber optical tweezers which can trap and launch (clean) a target polystyrene (PS) microsphere (diameter~10μm) with independent control by using two wavelengths beams: 980nm and 1480nm. We employ 980nm laser beam to trap the target PS microsphere by molding the fiber tip into a special tapered-shape; and we employ 1480nm laser beam to launch the trapped PS microsphere with a certain velocity by using the thermophoresis force generated from the thermal effect due to the high absorption of the 1480nm laser beams in water. When the launching force is smaller than the trapping force, the PS microsphere will be trapped near the fiber tip, and the launching force will blow away other PS microspheres in the workspace realizing the cleaning function; When the launching force is larger than the trapping force, the trapped PS microsphere will be launched away from the fiber tip with a certain velocity and towards a certain direction, realizing the launching function. This PS microsphere launching and cleaning functions expanded new features of single fiber optical tweezers, providing for the possibility of more practical applications in the micro manipulation research fields.

  7. Temperature Compensation in Determining of Remazol Black B Concentrations Using Plastic Optical Fiber Based Sensor

    PubMed Central

    Chong, Su Sin; Aziz, A.R. Abdul; Harun, Sulaiman W.; Arof, Hamzah

    2014-01-01

    In this study, the construction and test of tapered plastic optical fiber (POF) sensors, based on an intensity modulation approach are described. Tapered fiber sensors with different diameters of 0.65 mm, 0.45 mm, and 0.35 mm, were used to measure various concentrations of Remazol black B (RBB) dye aqueous solutions at room temperature. The concentrations of the RBB solutions were varied from 0 ppm to 70 ppm. In addition, the effect of varying the temperature of the RBB solution was also investigated. In this case, the output of the sensor was measured at four different temperatures of 27 °C, 30 °C, 35 °C, and 40 °C, while its concentration was fixed at 50 ppm and 100 ppm. The experimental results show that the tapered POF with d = 0.45 mm achieves the best performance with a reasonably good sensitivity of 61 × 10−4 and a linearity of more than 99%. It also maintains a sufficient and stable signal when heat was applied to the solution with a linearity of more than 97%. Since the transmitted intensity is dependent on both the concentration and temperature of the analyte, multiple linear regression analysis was performed to combine the two independent variables into a single equation. The resulting equation was then validated experimentally and the best agreement between the calculated and experimental results was achieved by the sensor with d = 0.45 mm, where the minimum discrepancy is less than 5%. The authors conclude that POF-based sensors are suitable for RBB dye concentration sensing and, with refinement in fabrication, better results could be achieved. Their low fabrication cost, simple configuration, accuracy, and high sensitivity would attract many potential applications in chemical and biological sensing. PMID:25166498

  8. Temperature compensation in determining of Remazol black B concentrations using plastic optical fiber based sensor.

    PubMed

    Chong, Su Sin; Aziz, A R Abdul; Harun, Sulaiman W; Arof, Hamzah

    2014-08-27

    In this study, the construction and test of tapered plastic optical fiber (POF) sensors, based on an intensity modulation approach are described. Tapered fiber sensors with different diameters of 0.65 mm, 0.45 mm, and 0.35 mm, were used to measure various concentrations of Remazol black B (RBB) dye aqueous solutions at room temperature. The concentrations of the RBB solutions were varied from 0 ppm to 70 ppm. In addition, the effect of varying the temperature of the RBB solution was also investigated. In this case, the output of the sensor was measured at four different temperatures of 27 °C, 30 °C, 35 °C, and 40 °C, while its concentration was fixed at 50 ppm and 100 ppm. The experimental results show that the tapered POF with d = 0.45 mm achieves the best performance with a reasonably good sensitivity of 61 × 10(-4) and a linearity of more than 99%. It also maintains a sufficient and stable signal when heat was applied to the solution with a linearity of more than 97%. Since the transmitted intensity is dependent on both the concentration and temperature of the analyte, multiple linear regression analysis was performed to combine the two independent variables into a single equation. The resulting equation was then validated experimentally and the best agreement between the calculated and experimental results was achieved by the sensor with d = 0.45 mm, where the minimum discrepancy is less than 5%. The authors conclude that POF-based sensors are suitable for RBB dye concentration sensing and, with refinement in fabrication, better results could be achieved. Their low fabrication cost, simple configuration, accuracy, and high sensitivity would attract many potential applications in chemical and biological sensing.

  9. Compact Optical Fiber 3D Shape Sensor Based on a Pair of Orthogonal Tilted Fiber Bragg Gratings.

    PubMed

    Feng, Dingyi; Zhou, Wenjun; Qiao, Xueguang; Albert, Jacques

    2015-01-01

    In this work, a compact fiber-optic 3D shape sensor consisting of two serially connected 2° tilted fiber Bragg gratings (TFBGs) is proposed, where the orientations of the grating planes of the two TFBGs are orthogonal. The measurement of the reflective transmission spectrum from the pair of TFBGs was implemented by Fresnel reflection of the cleaved fiber end. The two groups of cladding mode resonances in the reflection spectrum respond differentially to bending, which allows for the unique determination of the magnitude and orientation of the bend plane (i.e. with a ± 180 degree uncertainty). Bending responses ranging from -0.33 to + 0.21 dB/m(-1) (depending on orientation) are experimentally demonstrated with bending from 0 to 3.03 m(-1). In the third (axial) direction, the strain is obtained directly by the shift of the TFBG Bragg wavelengths with a sensitivity of 1.06 pm/με. PMID:26617191

  10. Compact Optical Fiber 3D Shape Sensor Based on a Pair of Orthogonal Tilted Fiber Bragg Gratings

    PubMed Central

    Feng, Dingyi; Zhou, Wenjun; Qiao, Xueguang; Albert, Jacques

    2015-01-01

    In this work, a compact fiber-optic 3D shape sensor consisting of two serially connected 2° tilted fiber Bragg gratings (TFBGs) is proposed, where the orientations of the grating planes of the two TFBGs are orthogonal. The measurement of the reflective transmission spectrum from the pair of TFBGs was implemented by Fresnel reflection of the cleaved fiber end. The two groups of cladding mode resonances in the reflection spectrum respond differentially to bending, which allows for the unique determination of the magnitude and orientation of the bend plane (i.e. with a ± 180 degree uncertainty). Bending responses ranging from −0.33 to + 0.21 dB/m−1 (depending on orientation) are experimentally demonstrated with bending from 0 to 3.03 m−1. In the third (axial) direction, the strain is obtained directly by the shift of the TFBG Bragg wavelengths with a sensitivity of 1.06 pm/με. PMID:26617191

  11. Micro-electro-mechanical-system (MEMS)-based fiber optic grating sensor for improving weapon stabilization and fire control

    NASA Astrophysics Data System (ADS)

    Zhang, Sean Z.; Xu, Guoda; Qui, Wei; Lin, Freddie S.; Testa, Robert C.; Mattice, Michael S.

    2000-06-01

    A MEMS-based fiber optic grating sensor (FOGS) for improving weapon stabilization and fire control has been investigated and developed. The technique overwrites two fiber Bragg gratings (FBGs) onto a polarization-preserving optical fiber core. A MEMS diaphragm is fabricated and integrated with the overlaid FBGs to enhance the performance and reliability of the sensor. A simulation model for the MEMS-FOGS was derived, and simulation results concerning load, angle, strain, and temperature were obtained. The fabricated MEMS diaphragm and the overlaid FBGs are packaged together and mounted on a specially designed cantilever beam system. User-friendly software for sensing system design and data analysis has been developed and can be used to control other sensing systems. The combined multifunctional sensitive. The fully developed sensing system is expected to find applications in fire control, weapon stabilization, and other areas where accurately sensing strain and temperature is critical.

  12. pH-based fiber optic biosensors for use in clinical and biotechnological applications

    NASA Astrophysics Data System (ADS)

    Mueller, Cord; Hitzmann, Bernd; Schubert, Florian; Scheper, Thomas

    1995-05-01

    The development of pH-based fiber optic biosensors and their uses in clinical and biotechnological applications are described. Based on a pH-sensitive optode, different biosensors for urea, penicillin, glucose and creatinine were developed. A multichannel modular fluorimeter was used to measure signals from up to three optodes simultaneously. The pH value and the buffer capacity are critical factors for biosensors based on pH probes and influence the biosensor signal. A flow injection analysis (FIA) system is used to eliminate the latter influences. With this integrated system, samples can be analyzed sequentially by the injection of a defined volume of each sample into a continuously flowing buffer stream that transports the samples to the sensors. The complex signal is transformed and analyzed by a computer system. Characteristic features of the FIA peak give information about the buffer capacity in the solution. With the help of intelligent computing (neural networks) it is possible to recognize these features and relate them to the respective buffer capacity to obtain more accurate values. Various applications of these biosensors are discussed. The pH optode is also used to monitor enzymatic reactions in non aqueous solvents. In this case the production of acetic acid can be detected on line.

  13. Characterization of miniature fiber-optic Fabry-Perot interferometric sensors based on hollow silica tube

    NASA Astrophysics Data System (ADS)

    Jia, Pinggang; Fang, Guocheng; Wang, Daihua

    2016-09-01

    A miniature fiber-optic Fabry-Perot interferometer (MOFPI) fabricated by splicing a hollow silica tube (HST) with inner diameter of 4 µm to the end of a single-mode fiber is investigated and experimentally demonstrated. The theoretical relationship between the free spectrum range and the length of HST is verified by fabricating several MOFPIs with different lengths. We characterize the MOFPIs for temperature, liquid refractive index, and strain. Experimental results show that the sensitivities of the temperature, liquid refractive index, and strain are 16.42 pm/°C,-118.56 dB/RIU, and 1.21 pm/µɛ, respectively.

  14. External cavity diode laser based upon an FBG in an integrated optical fiber platform.

    PubMed

    Lynch, Stephen G; Holmes, Christopher; Berry, Sam A; Gates, James C; Jantzen, Alexander; Ferreiro, Teresa I; Smith, Peter G R

    2016-04-18

    An external cavity diode laser is demonstrated using a Bragg grating written into a novel integrated optical fiber platform as the external cavity. The cavity is fabricated using flame-hydrolysis deposition to bond a photosensitive fiber to a silica-on-silicon wafer, and a grating written using direct UV-writing. The laser operates on a single mode at the acetylene P13 line (1532.83 nm) with 9 mW output power. The noise properties of the laser are characterized demonstrating low linewidth operation (< 14 kHz) and superior relative intensity noise characteristics when compared to a commercial tunable external cavity diode laser. PMID:27137276

  15. Diffractive-optics-based beam combination of a phase-locked fiber laser array.

    PubMed

    Cheung, Eric C; Ho, James G; Goodno, Gregory D; Rice, Robert R; Rothenberg, Josh; Thielen, Peter; Weber, Mark; Wickham, Michael

    2008-02-15

    A diffractive optical element (DOE) is used as a beam combiner for an actively phase-locked array of fiber lasers. Use of a DOE eliminates the far-field sidelobes and the accompanying loss of beam quality typically observed in tiled coherent laser arrays. Using this technique, we demonstrated coherent combination of five fiber lasers with 91% efficiency and M2=1.04. Combination efficiency and phase locking is robust even with large amplitude and phase fluctuations on the input laser array elements. Calculations and power handling measurements suggest that this approach can scale to both high channel counts and high powers.

  16. Fiber Optics: A Bright Future.

    ERIC Educational Resources Information Center

    Rice, James, Jr.

    1980-01-01

    Presents an overview of the impact of fiber optics on telecommunications and its application to information processing and library services, including information retrieval, news services, remote transmission of library services, and library networking. (RAA)

  17. Scintillator fiber optic long counter

    DOEpatents

    McCollum, Tom; Spector, Garry B.

    1994-01-01

    A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected.

  18. Mobile fiber optic emission spectrograph

    SciTech Connect

    Spencer, W.A.; Coleman, C.J.; McCarty, J.E.; Beck, R.S.

    1997-05-01

    Technical Assistance Request HLW/DWPF-TAR-970064 asked SRTC to evaluate the use of a fiber optic coupled emission spectrometer. The spectrometer would provide additional ICP analyses in the DWPF laboratory.

  19. Scintillator fiber optic long counter

    DOEpatents

    McCollum, T.; Spector, G.B.

    1994-03-29

    A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected is described. 11 figures.

  20. System for testing optical fibers

    DOEpatents

    Davies, Terence J.; Franks, Larry A.; Nelson, Melvin A.

    1981-01-01

    A system for nondestructively determining the attenuation coefficient, .alpha.(.lambda.), of low-loss optical fiber wave guides. Cerenkov light pulses are generated at a plurality of locations in the fiber by a beam of charged particles. The transit times of selected spectral components and their intensities are utilized to unfold the .alpha.(.lambda.) values over the measured spectrum.