Science.gov

Sample records for based flexible dg

  1. Meeting DG's

    ScienceCinema

    None

    2016-07-12

    Le DG J.Adams commente les 3 thèmes de la réunion: 1.) le prochain DG du Cern (qui sera H.Schopper) 2.) le LEP 3.) les conclusions du comité des finances concernant salaires, allocations etc. Discussion entre le DG J.Adams, Mons.Ullmann, chef du personel et l'auditoire

  2. Optimal placement and sizing of wind / solar based DG sources in distribution system

    NASA Astrophysics Data System (ADS)

    Guan, Wanlin; Guo, Niao; Yu, Chunlai; Chen, Xiaoguang; Yu, Haiyang; Liu, Zhipeng; Cui, Jiapeng

    2017-06-01

    Proper placement and sizing of Distributed Generation (DG) in distribution system can obtain maximum potential benefits. This paper proposes quantum particle swarm algorithm (QPSO) based wind turbine generation unit (WTGU) and photovoltaic (PV) array placement and sizing approach for real power loss reduction and voltage stability improvement of distribution system. Performance modeling of wind and solar generation system are described and classified into PQ\\PQ (V)\\PI type models in power flow. Considering the WTGU and PV based DGs in distribution system is geographical restrictive, the optimal area and DG capacity limits of each bus in the setting area need to be set before optimization, the area optimization method is proposed . The method has been tested on IEEE 33-bus radial distribution systems to demonstrate the performance and effectiveness of the proposed method.

  3. Path Searching Based Fault Automated Recovery Scheme for Distribution Grid with DG

    NASA Astrophysics Data System (ADS)

    Xia, Lin; Qun, Wang; Hui, Xue; Simeng, Zhu

    2016-12-01

    Applying the method of path searching based on distribution network topology in setting software has a good effect, and the path searching method containing DG power source is also applicable to the automatic generation and division of planned islands after the fault. This paper applies path searching algorithm in the automatic division of planned islands after faults: starting from the switch of fault isolation, ending in each power source, and according to the line load that the searching path traverses and the load integrated by important optimized searching path, forming optimized division scheme of planned islands that uses each DG as power source and is balanced to local important load. Finally, COBASE software and distribution network automation software applied are used to illustrate the effectiveness of the realization of such automatic restoration program.

  4. Evaluation of Superimposed Sequence Components of Currents based Islanding Detection Scheme during DG Interconnections

    NASA Astrophysics Data System (ADS)

    Sareen, Karan; Bhalja, Bhavesh R.; Maheshwari, Rudra Prakash

    2016-02-01

    A new islanding detection scheme for distribution network containing different types of distributed generations (DGs) is presented in this paper. The proposed scheme is based on acquiring three phase current samples for full cycle duration of each simulation case of islanding/non-islanding conditions at the point of common coupling (PCC) of the targeted DG. Afterwards, superimposed positive & negative sequence components of current are calculated and continuously compared with pre-determined threshold values. Performance of the proposed scheme has been evaluated on diversified islanding and non-islanding events which were generated by modeling standard IEEE 34-bus system using PSCAD/EMTDC software package. The proposed scheme is capable to detect islanding condition rapidly even for perfect power balance situation for both synchronous and inverter based DGs. Furthermore, it remains stable during non-islanding events such as tripping of multiple DGs and different DG interconnection operating conditions. Therefore, the proposed scheme avoids nuisance tripping during diversified non-islanding events. At the end, comparison of the proposed scheme with the existing scheme clearly indicates its advantage over the existing scheme.

  5. Novel 2DG-based harmine derivatives for targeted cancer therapy

    NASA Astrophysics Data System (ADS)

    Wang, Aqin; Chen, Yuqi; Chen, Wei R.; Gu, Yueqing

    2013-02-01

    Harmine is a beta-carboline alkaloid from the plant Peganum harmala. These alkaloids were stimulated by their promising antitumor activities in the recent years. In this study, we designed and synthesized two harmine derivatives #1and #2 modified at position-9 of harmine with ethyl and phenylpropyl, respectively. To improve the tumor targeting capability, #1' and #2' were synthesized by conjugating 2-amino-2-deoxy-D-glucose (2DG) to the derivatives #1 and #2, respectively. The MTT assays of all these compounds in vitro against L02, HepG2 showed all compounds had low toxicity to normal cells (L02) and significantly enhanced carcinoma cell inhibitory rate compared to harmine. Cytotoxicity against liver cancer cell lines of compound #1' #2' is higher than #1 #2, and even the compound #2' is better than positive drug 5-FU. The compound #2', a novel 2DG-based harmine derivatives, could become a promising drug for targeted cancer therapy and combination therapy with other antitumor drugs.

  6. A Simultaneous Biogeography based Optimal Placement of DG Units and Capacitor Banks in Distribution Systems with Nonlinear Loads

    NASA Astrophysics Data System (ADS)

    Sadeghi, Hassan; Ghaffarzadeh, Navid

    2016-09-01

    This paper uses a new algorithm namely biogeography based optimization (BBO) intended for the simultaneous placement of the distributed generation (DG) units and the capacitor banks in the distribution network. The procedure of optimization has been conducted in the presence of nonlinear loads (a cause of harmonic injection). The purpose of simultaneous optimal placement of the DG and the capacitor is the reduction of active and reactive losses. The difference in the values of loss reduction at different levels of the load have been included in the objective function and the considered objective function includes the constraints of voltage, size and the number of DG units and capacitor banks and the allowable range of the total harmonic distortion (THD) of the total voltage in accordance with the IEEE 519 standards. In this paper the placement has been performed on two load types ie constant and mixed power, moreover the effects of load models on the results and the effects of optimal placement on reduction of the THD levels have also been analyzed. The mentioned cases have been studied on a 33 bus radial distribution system.

  7. Flexible sensors based on nanoparticles.

    PubMed

    Segev-Bar, Meital; Haick, Hossam

    2013-10-22

    Flexible sensors can be envisioned as promising components for smart sensing applications, including consumer electronics, robotics, prosthetics, health care, safety equipment, environmental monitoring, homeland security and space flight. The current review presents a concise, although admittedly nonexhaustive, didactic review of some of the main concepts and approaches related to the use of nanoparticles (NPs) in flexible sensors. The review attempts to pull together different views and terminologies used in the NP-based sensors, mainly those established via electrical transduction approaches, including, but, not confined to: (i) strain-gauges, (ii) flexible multiparametric sensors, and (iii) sensors that are unaffected by mechanical deformation. For each category, the review presents and discusses the common fabrication approaches and state-of-the-art results. The advantages, weak points, and possible routes for future research, highlighting the challenges for NP-based flexible sensors, are presented and discussed as well.

  8. Jacobian-Free Newton-Krylov Discontinuous Galerkin (JFNK-DG) Method and Its Physics-Based Preconditioning for All-Speed Flows

    NASA Astrophysics Data System (ADS)

    Park, Hyeongkae; Nourgaliev, Robert; Knoll, Dana

    2007-11-01

    The Discontinuous Galerkin (DG) method for compressible fluid flows is incorporated into the Jacobian-Free Newton-Krylov (JFNK) framework. Advantages of combining the DG with the JFNK are two-fold: a) enabling robust and efficient high-order-accurate modeling of all-speed flows on unstructured grids, opening the possibility for high-fidelity simulation of nuclear-power-industry-relevant flows; and b) ability to tightly, robustly and high-order-accurately couple with other relevant physics (neutronics, thermal-structural response of solids, etc.). In the present study, we focus on the physics-based preconditioning (PBP) of the Krylov method (GMRES), used as the linear solver in our implicit higher-order-accurate Runge-Kutta (ESDIRK) time discretization scheme; exploiting the compactness of the spatial discretization of the DG family. In particular, we utilize the Implicit Continuous-fluid Eulerian (ICE) method and investigate its efficacy as the PBP within the JFNK-DG method. Using the eigenvalue analysis, it is found that the ICE collapses the complex components of the all eigenvalues of the Jacobian matrix (associated with pressure waves) onto the real axis, and thereby enabling at least an order of magnitude faster simulations in nearly-incompressible/weakly-compressible regimes with a significant storage saving.

  9. Thermal conductivity of diethylene glycol based magnesium-aluminum spinel (MgAl2O4-DG) nanofluids

    NASA Astrophysics Data System (ADS)

    Żyła, Gaweł; Fal, Jacek; Gizowska, Magdalena; Perkowski, Krzysztof

    2016-12-01

    The paper presents the results of measurements of the thermal conductivity of MgAl_2O_4 -DG nanofluids. The dependence of the thermal conductivity on concentration of nanoparticles in various temperatures from 293.15 to 338.15 K with 15 K step was examined. Experimental data was modeled with existing theoretical models describing the effects of the concentration of particles on the thermal conductivity of the suspension. It was presented that thermal conductivity of MgAl_2O_4 -DG nanofluids increases proportional to volume concentration of nanoparticles.

  10. Thermal conductivity of diethylene glycol based magnesium-aluminum spinel (MgAl2O4-DG) nanofluids

    NASA Astrophysics Data System (ADS)

    Żyła, Gaweł; Fal, Jacek; Gizowska, Magdalena; Perkowski, Krzysztof

    2017-06-01

    The paper presents the results of measurements of the thermal conductivity of MgAl_2O_4-DG nanofluids. The dependence of the thermal conductivity on concentration of nanoparticles in various temperatures from 293.15 to 338.15 K with 15 K step was examined. Experimental data was modeled with existing theoretical models describing the effects of the concentration of particles on the thermal conductivity of the suspension. It was presented that thermal conductivity of MgAl_2O_4-DG nanofluids increases proportional to volume concentration of nanoparticles.

  11. Graphene Based Flexible Gas Sensors

    NASA Astrophysics Data System (ADS)

    Yi, Congwen

    Graphene is a novel carbon material with great promise for a range of applications due to its electronic and mechanical properties. Its two-dimensional nature translates to a high sensitivity to surface chemical interactions thereby making it an ideal platform for sensors. Graphene's electronic properties are not degraded due to mechanical flexing or strain (Kim, K. S., et al. nature 07719, 2009) offering another advantage for flexible sensors integrated into numerous systems including fabrics, etc. We have demonstrated a graphene NO2 sensor on a solid substrate (100nm SiO2/heavily doped silicon). Three different methods were used to synthesize graphene and the sensor fabrication process was optimized accordingly. Water is used as a controllable p-type dopant in graphene to study the relationship between doping and graphene's response to NO2 . Experimental results show that interface water between graphene and the supporting SiO2 substrate induces higher p-doping in graphene, leading to a higher sensitivity to NO2, consistent with theoretical predications (Zhang, Y. et al., Nanotechnology 20(2009) 185504). We have also demonstrated a flexible and stretchable graphene-based sensor. Few layer graphene, grown on a Ni substrate, is etched and transferred to a highly stretchable polymer substrate (VHB from 3M) with preloaded stress, followed by metal contact formation to construct a flexible, stretchable sensor. With up to 500% deformation caused by compressive stress, graphene still shows stable electrical response to NO2. Our results suggest that higher compressive stress results in smaller sheet resistance and higher sensitivity to NO2. A possible molecular detection sensor utilizing Surface Enhanced Raman Spectrum (SERS) based on a graphene/gallium nanoparticles platform is also studied. By correlating the enhancement of the graphene Raman modes with metal coverage, we propose that the Ga transfers electrons to the graphene creating local regions of enhanced

  12. Flexible-Wing-Based Micro Air Vehicles

    NASA Technical Reports Server (NTRS)

    Ifju, Peter G.; Jenkins, David A.; Ettinger, Scott; Lian, Yong-Sheng; Shyy, Wei; Waszak, Martin R.

    2002-01-01

    This paper documents the development and evaluation of an original flexible-wing-based Micro Air Vehicle (MAV) technology that reduces adverse effects of gusty wind conditions and unsteady aerodynamics, exhibits desirable flight stability, and enhances structural durability. The flexible wing concept has been demonstrated on aircraft with wingspans ranging from 18 inches to 5 inches. Salient features of the flexible-wing-based MAV, including the vehicle concept, flexible wing design, novel fabrication methods, aerodynamic assessment, and flight data analysis are presented.

  13. Graphene based flexible electrochromic devices

    PubMed Central

    Polat, Emre O.; Balcı, Osman; Kocabas, Coskun

    2014-01-01

    Graphene emerges as a viable material for optoelectronics because of its broad optical response and gate-tunable properties. For practical applications, however, single layer graphene has performance limits due to its small optical absorption defined by fundamental constants. Here, we demonstrated a new class of flexible electrochromic devices using multilayer graphene (MLG) which simultaneously offers all key requirements for practical applications; high-contrast optical modulation over a broad spectrum, good electrical conductivity and mechanical flexibility. Our method relies on electro-modulation of interband transition of MLG via intercalation of ions into the graphene layers. The electrical and optical characterizations reveal the key features of the intercalation process which yields broadband optical modulation up to 55 per cent in the visible and near-infrared. We illustrate the promises of the method by fabricating reflective/transmissive electrochromic devices and multi-pixel display devices. Simplicity of the device architecture and its compatibility with the roll-to-roll fabrication processes, would find wide range of applications including smart windows and display devices. We anticipate that this work provides a significant step in realization of graphene based optoelectronics. PMID:25270391

  14. Graphene based flexible electrochromic devices.

    PubMed

    Polat, Emre O; Balcı, Osman; Kocabas, Coskun

    2014-10-01

    Graphene emerges as a viable material for optoelectronics because of its broad optical response and gate-tunable properties. For practical applications, however, single layer graphene has performance limits due to its small optical absorption defined by fundamental constants. Here, we demonstrated a new class of flexible electrochromic devices using multilayer graphene (MLG) which simultaneously offers all key requirements for practical applications; high-contrast optical modulation over a broad spectrum, good electrical conductivity and mechanical flexibility. Our method relies on electro-modulation of interband transition of MLG via intercalation of ions into the graphene layers. The electrical and optical characterizations reveal the key features of the intercalation process which yields broadband optical modulation up to 55 per cent in the visible and near-infrared. We illustrate the promises of the method by fabricating reflective/transmissive electrochromic devices and multi-pixel display devices. Simplicity of the device architecture and its compatibility with the roll-to-roll fabrication processes, would find wide range of applications including smart windows and display devices. We anticipate that this work provides a significant step in realization of graphene based optoelectronics.

  15. An adaptive spectral/DG method for a reduced phase-space based level set approach to geometrical optics on curved elements

    NASA Astrophysics Data System (ADS)

    Cockburn, Bernardo; Kao, Chiu-Yen; Reitich, Fernando

    2014-02-01

    We present an adaptive spectral/discontinuous Galerkin (DG) method on curved elements to simulate high-frequency wavefronts within a reduced phase-space formulation of geometrical optics. Following recent work, the approach is based on the use of level sets defined by functions satisfying the Liouville equations in reduced phase-space and, in particular, it relies on the smoothness of these functions to represent them by rapidly convergent spectral expansions in the phase variables. The resulting (hyperbolic) system of equations for the coefficients in these expansions are then amenable to a high-order accurate treatment via DG approximations. In the present work, we significantly expand on the applicability and efficiency of the approach by incorporating mechanisms that allow for its use in scattering simulations and for a reduced overall computational cost. With regards to the former we demonstrate that the incorporation of curved elements is necessary to attain any kind of accuracy in calculations that involve scattering off non-flat interfaces. With regards to efficiency, on the other hand, we also show that the level-set formulation allows for a space p-adaptive scheme that under-resolves the level-set functions away from the wavefront without incurring in a loss of accuracy in the approximation of its location. As we show, these improvements enable simulations that are beyond the capabilities of previous implementations of these numerical procedures.

  16. On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations

    NASA Astrophysics Data System (ADS)

    Bassi, F.; Botti, L.; Colombo, A.; Di Pietro, D. A.; Tesini, P.

    2012-01-01

    In this work we show that the flexibility of the discontinuous Galerkin (dG) discretization can be fruitfully exploited to implement numerical solution strategies based on the use of elements with very general shapes. Thanks to the freedom in defining the mesh topology, we propose a new h-adaptive technique based on agglomeration coarsening of a fine mesh. The possibility to enhance the error distribution over the computational domain is investigated on a Poisson problem with the goal of obtaining a mesh independent discretization. The main building block of our dG method consists of defining discrete polynomial spaces directly on physical frame elements. For this purpose we orthonormalize with respect to the L2-product a set of monomials relocated in a specific element frame and we introduce an easy way to reduce the cost related to numerical integration on agglomerated meshes. To complete the dG formulation for second order problems, two extensions of the BR2 scheme to arbitrary polyhedral grids, including an estimate of the stabilization parameter ensuring the coercivity property, are here proposed.

  17. Carbon Nanotube Based Flexible Supercapacitors

    DTIC Science & Technology

    2011-04-01

    NOTES 14. ABSTRACT Electrochemical double layer capacitors are fabricated using carbon nanotube (CNT)/paper flexible electrodes. An extensive...TERMS Carbon nanotube, supercapacitor, electrochemical double layer capacitor 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18...layer capacitors (Supercapacitors) are expected to play a significant role in future hybrid power systems due to their high specific power, cycle

  18. CosmosDG: An hp-adaptive Discontinuous Galerkin Code for Hyper-resolved Relativistic MHD

    NASA Astrophysics Data System (ADS)

    Anninos, Peter; Bryant, Colton; Fragile, P. Chris; Holgado, A. Miguel; Lau, Cheuk; Nemergut, Daniel

    2017-08-01

    We have extended Cosmos++, a multidimensional unstructured adaptive mesh code for solving the covariant Newtonian and general relativistic radiation magnetohydrodynamic (MHD) equations, to accommodate both discrete finite volume and arbitrarily high-order finite element structures. The new finite element implementation, called CosmosDG, is based on a discontinuous Galerkin (DG) formulation, using both entropy-based artificial viscosity and slope limiting procedures for the regularization of shocks. High-order multistage forward Euler and strong-stability preserving Runge-Kutta time integration options complement high-order spatial discretization. We have also added flexibility in the code infrastructure allowing for both adaptive mesh and adaptive basis order refinement to be performed separately or simultaneously in a local (cell-by-cell) manner. We discuss in this report the DG formulation and present tests demonstrating the robustness, accuracy, and convergence of our numerical methods applied to special and general relativistic MHD, although we note that an equivalent capability currently also exists in CosmosDG for Newtonian systems.

  19. The Degradation of dG Phosphoramidites in Solution.

    PubMed

    Hargreaves, John S; Kaiser, Robert; Wolber, Paul K

    2015-01-01

    The reaction of 2'-deoxynucleoside phosphoramidites with water is an important degradation reaction that limits the lifetimes of reagents used for chemical deoxyoligonucleotide synthesis. The hydrolysis of nucleoside phosphoramidites in solution has therefore been investigated. The degree of degradation depends not only on the presence of water but also on the specific nucleoside, 2'-deoxyguanosine (dG) being especially susceptible. Additionally, the nature of the group protecting the exocyclic amine on the nucleoside base strongly influences the rate of hydrolysis. For dG, the degradation is second order in phosphoramidite concentration, indicating autocatalysis of the hydrolysis reaction. Comparison of the degradation rates of dG phosphoramidites with different protecting groups as well as with phosphoramidites containing bases that are structurally similar to dG affords clues to the nature of how dG catalyzes its own destruction and indicates a direct correlation between ease of protecting group removal and propensity to undergo autocatalytic degradation.

  20. Flexible and transparent graphene-based loudspeakers

    NASA Astrophysics Data System (ADS)

    Xu, S. C.; Man, B. Y.; Jiang, S. Z.; Chen, C. S.; Yang, C.; Liu, M.; Gao, X. G.; Sun, Z. C.; Zhang, C.

    2013-04-01

    Flexible and transparent graphene films have been fabricated via chemical vapor deposition method, and an extremely thin and lightweight loudspeaker was obtained by transferring the graphene films on both side of the polyvinylidene fluoride film. Once fed by sound frequency electric field, the graphene-based acoustic actuator could emit loud sounds in a wide frequency range. Such film loudspeakers are transparent, flexible, magnet-free and can be tailored into any shape and size, which have wide potential applications in fabricating new type of transparent and flexible devices.

  1. Flexible Hall sensors based on graphene.

    PubMed

    Wang, Zhenxing; Shaygan, Mehrdad; Otto, Martin; Schall, Daniel; Neumaier, Daniel

    2016-04-14

    The excellent electronic and mechanical properties of graphene provide a perfect basis for high performance flexible electronic and sensor devices. Here, we present the fabrication and characterization of flexible graphene based Hall sensors. The Hall sensors are fabricated on 50 μm thick flexible Kapton foil using large scale graphene grown by chemical vapor deposition technique on copper foil. Voltage and current normalized sensitivities of up to 0.096 V VT(-1) and 79 V AT(-1) were measured, respectively. These values are comparable to the sensitivity of rigid silicon based Hall sensors and are the highest values reported so far for any flexible Hall sensor devices. The sensitivity of the Hall sensor shows no degradation after being bent to a minimum radius of 4 mm, which corresponds to a tensile strain of 0.6%, and after 1000 bending cycles to a radius of 5 mm.

  2. Flexible Hall sensors based on graphene

    NASA Astrophysics Data System (ADS)

    Wang, Zhenxing; Shaygan, Mehrdad; Otto, Martin; Schall, Daniel; Neumaier, Daniel

    2016-03-01

    The excellent electronic and mechanical properties of graphene provide a perfect basis for high performance flexible electronic and sensor devices. Here, we present the fabrication and characterization of flexible graphene based Hall sensors. The Hall sensors are fabricated on 50 μm thick flexible Kapton foil using large scale graphene grown by chemical vapor deposition technique on copper foil. Voltage and current normalized sensitivities of up to 0.096 V VT-1 and 79 V AT-1 were measured, respectively. These values are comparable to the sensitivity of rigid silicon based Hall sensors and are the highest values reported so far for any flexible Hall sensor devices. The sensitivity of the Hall sensor shows no degradation after being bent to a minimum radius of 4 mm, which corresponds to a tensile strain of 0.6%, and after 1000 bending cycles to a radius of 5 mm.

  3. Graphene-Based Flexible and Stretchable Electronics.

    PubMed

    Jang, Houk; Park, Yong Ju; Chen, Xiang; Das, Tanmoy; Kim, Min-Seok; Ahn, Jong-Hyun

    2016-06-01

    Graphene provides outstanding properties that can be integrated into various flexible and stretchable electronic devices in a conventional, scalable fashion. The mechanical, electrical, and optical properties of graphene make it an attractive candidate for applications in electronics, energy-harvesting devices, sensors, and other systems. Recent research progress on graphene-based flexible and stretchable electronics is reviewed here. The production and fabrication methods used for target device applications are first briefly discussed. Then, the various types of flexible and stretchable electronic devices that are enabled by graphene are discussed, including logic devices, energy-harvesting devices, sensors, and bioinspired devices. The results represent important steps in the development of graphene-based electronics that could find applications in the area of flexible and stretchable electronics.

  4. Evaluation of modified dichloran 18% glycerol (DG18) agar for enumerating fungi in wheat flour: a collaborative study.

    PubMed

    Beuchat, L R; Hwang, C A

    1996-04-01

    Dichloran 18% glycerol agar base supplemented with 100 micrograms of chloramphenicol ml-1 (DG18 agar) was compared to DG18 agar supplemented with 100 micrograms of Triton X-301 ml-1 (DG18T) and DG18 agar supplemented with 1 microgram of iprodione [3-(3,5-dichlorophenyl)-N-(1-methyl-ethyl)-2,4-dioxo-1-imidazolidine- carboxamide] ml-1 (DG18I agar) for enumeration of fungi in ten brands of wheat flour. As the flours contained low fungal populations, all were inoculated with two to four strains of xerophilic fungi (Aspergillus candidus, A. penicillioides, Eurotium amstelodami, E. intermedium, E. repens, E. rubrum, E. tonophilum, E. umbrosum and Wallemia sebi), after which counts ranged from 3.87 to 6.37 log10 CFU g-1. Significantly higher populations (p < 0.05) were detected in four flours: three were on DG18T compared to DG18 and DG18I agar. A. candidus had been inoculated into all three flours. E. amstelodami, E. intermedium, E. repens or E. tonophilum had also been inoculated into at least one of the three flours showing significantly higher numbers of CFU on DG18T agar. Analysis of collapsed data from all samples showed that DG18T agar was significantly better than DG18 or DG18I agars at p < 0.10 but not at p < 0.05. Coefficients of variation for reproducibility (among-laboratory variation) were 8.4%, 7.5% and 8.6%, respectively, for DG18, DG18T and DG18I agars. DG18I agar restricted colony development most, especially for Eurotium species. Naturally occurring Penicillium species grew equally well on DG18 and DG18T agars, whereas W. sebi grew well on all three media. DG18T agar was judged to be superior to DG18 and DG18I agars for enumerating fungi in wheat flours.

  5. Flexible Learning Itineraries Based on Conceptual Maps

    ERIC Educational Resources Information Center

    Agudelo, Olga Lucía; Salinas, Jesús

    2015-01-01

    The use of learning itineraries based on conceptual maps is studied in order to propose a more flexible instructional design that strengthens the learning process focused on the student, generating non-linear processes, characterising its elements, setting up relationships between them and shaping a general model with specifications for each…

  6. Flexible Phrase Based Query Handling Algorithms.

    ERIC Educational Resources Information Center

    Wilbur, W. John; Kim, Won

    2001-01-01

    Flexibility in query handling can be important if one types a search engine query that is misspelled, contains terms not in the database, or requires knowledge of a controlled vocabulary. Presents results of experiments that suggest the optimal form of similarity functions that are applicable to the task of phrase based retrieval to find either…

  7. Flexible Phrase Based Query Handling Algorithms.

    ERIC Educational Resources Information Center

    Wilbur, W. John; Kim, Won

    2001-01-01

    Flexibility in query handling can be important if one types a search engine query that is misspelled, contains terms not in the database, or requires knowledge of a controlled vocabulary. Presents results of experiments that suggest the optimal form of similarity functions that are applicable to the task of phrase based retrieval to find either…

  8. MWCNTs based flexible and stretchable strain sensors

    NASA Astrophysics Data System (ADS)

    Khan, Saeed Ahmed; Gao, Min; Zhu, Yuechang; Yan, Zhuocheng; Lin, Yuan

    2017-06-01

    Carbon nanotubes have potential applications in flexible and stretchable devices due to their remarkable electromechanical properties. Flexible and stretchable strain sensors of multi-walled carbon nanotubes (MWCNTs) with aligned or random structures were fabricated on poly-dimethylsiloxane (PDMS) substrate with different techniques. It was observed that the spraycoatedtechniquebased strain sensor fabricated on PDMS substrate showed higher sensitivity higher stretchability, better linearity and excellent longer time stability than the sensor fabricated with other methods presented in this work. The scanning electron microscopy images indicated the spray coating technique can produce a better uniform and compact CNT network, which is the important role affecting the performance of CNT-based flexible strain sensors. Project supported by the National Basic Research Program of China (No. 2015CB351905), the National Natural Science Foundation of China (No. 61306015), the Technology Innovative Research Team of Sichuan Province of China (No.2015TD0005), and “111” Project (No. B13042)

  9. A symmetric Trefftz-DG formulation based on a local boundary element method for the solution of the Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Barucq, H.; Bendali, A.; Fares, M.; Mattesi, V.; Tordeux, S.

    2017-02-01

    A general symmetric Trefftz Discontinuous Galerkin method is built for solving the Helmholtz equation with piecewise constant coefficients. The construction of the corresponding local solutions to the Helmholtz equation is based on a boundary element method. A series of numerical experiments displays an excellent stability of the method relatively to the penalty parameters, and more importantly its outstanding ability to reduce the instabilities known as the "pollution effect" in the literature on numerical simulations of long-range wave propagation.

  10. A multi-dimensional high-order DG-ALE method based on gas-kinetic theory with application to oscillating bodies

    NASA Astrophysics Data System (ADS)

    Ren, Xiaodong; Xu, Kun; Shyy, Wei

    2016-07-01

    This paper presents a multi-dimensional high-order discontinuous Galerkin (DG) method in an arbitrary Lagrangian-Eulerian (ALE) formulation to simulate flows over variable domains with moving and deforming meshes. It is an extension of the gas-kinetic DG method proposed by the authors for static domains (X. Ren et al., 2015 [22]). A moving mesh gas kinetic DG method is proposed for both inviscid and viscous flow computations. A flux integration method across a translating and deforming cell interface has been constructed. Differently from the previous ALE-type gas kinetic method with piecewise constant mesh velocity at each cell interface within each time step, the mesh velocity variation inside a cell and the mesh moving and rotating at a cell interface have been accounted for in the finite element framework. As a result, the current scheme is applicable for any kind of mesh movement, such as translation, rotation, and deformation. The accuracy and robustness of the scheme have been improved significantly in the oscillating airfoil calculations. All computations are conducted in a physical domain rather than in a reference domain, and the basis functions move with the grid movement. Therefore, the numerical scheme can preserve the uniform flow automatically, and satisfy the geometric conservation law (GCL). The numerical accuracy can be maintained even for a largely moving and deforming mesh. Several test cases are presented to demonstrate the performance of the gas-kinetic DG-ALE method.

  11. Flexibility.

    ERIC Educational Resources Information Center

    Humphrey, L. Dennis

    1981-01-01

    Flexibility is an important aspect of all sports and recreational activities. Flexibility can be developed and maintained by stretching exercises. Exercises designed to develop flexibility in ankle joints, knees, hips, and the lower back are presented. (JN)

  12. Flexibility.

    ERIC Educational Resources Information Center

    Humphrey, L. Dennis

    1981-01-01

    Flexibility is an important aspect of all sports and recreational activities. Flexibility can be developed and maintained by stretching exercises. Exercises designed to develop flexibility in ankle joints, knees, hips, and the lower back are presented. (JN)

  13. Fiber-based flexible thermoelectric power generator

    NASA Astrophysics Data System (ADS)

    Yadav, A.; Pipe, K. P.; Shtein, M.

    Flexible thermoelectric power generators fabricated by evaporating thin films on flexible fiber substrates are demonstrated to be feasible candidates for waste heat recovery. An open circuit voltage of 19.6 μV K per thermocouple junction is measured for Ni-Ag thin films, and a maximum power of 2 nW for 7 couples at Δ T = 6.6 K is measured. Heat transfer analysis is used to project performance for several other material systems, with a predicted power output of 1 μW per couple for Bi 2Te 3/Sb 2Te 3-based fiber coatings with a hot junction temperature of 100 °C. Considering the performance of woven thermoelectric cloths or fiber composites, relevant properties and dimensions of individual thermoelectric fibers are optimized.

  14. Base-displaced intercalation of the 2-amino-3-methylimidazo[4,5-f]quinolone N2-dG adduct in the NarI DNA recognition sequence

    PubMed Central

    Stavros, Kallie M.; Hawkins, Edward K.; Rizzo, Carmelo J.; Stone, Michael P.

    2014-01-01

    2-Amino-3-methylimidazo[4,5-f]quinolone (IQ), a heterocyclic amine found in cooked meats, undergoes bioactivation to a nitrenium ion, which alkylates guanines at both the C8-dG and N2-dG positions. The conformation of a site-specific N2-dG-IQ adduct in an oligodeoxynucleotide duplex containing the iterated CG repeat restriction site of the NarI endonuclease has been determined. The IQ moiety intercalates, with the IQ H4a and CH3 protons facing the minor groove, and the IQ H7a, H8a and H9a protons facing the major groove. The adducted dG maintains the anti-conformation about the glycosyl bond. The complementary dC is extruded into the major groove. The duplex maintains its thermal stability, which is attributed to stacking between the IQ moiety and the 5′- and 3′-neighboring base pairs. This conformation is compared to that of the C8-dG-IQ adduct in the same sequence, which also formed a ‘base-displaced intercalated’ conformation. However, the C8-dG-IQ adopted the syn conformation placing the Watson−Crick edge of the modified dG into the major groove. In addition, the C8-dG-IQ adduct was oriented with the IQ CH3 group and H4a and H5a facing the major groove. These differences may lead to differential processing during DNA repair and replication. PMID:24366876

  15. Substructure-based control of flexible structures

    NASA Astrophysics Data System (ADS)

    Babuska, Vit

    The desire to build large space structures has motivated research into the problem of flexible structure control. In general, the controllers for these structures can be designed using a centralized strategy or a decentralized strategy. In the centralized approach, the controller is based on a model of the complete structure. In the decentralized approach, the structure model is decomposed into subsystems for which controllers are designed, and then these subsystem controllers are combined to control the complete structure. The subsystems can be mathematical constructs such as groups of modes, or physical subsystems like substructures. This dissertation examines substructure-based decentralized design of controllers for flexible structures. Three different, but related, topics are discussed in this work. First, a relationship is shown to exist between the substructural controller synthesis (SCS) method of designing active controllers for flexible structures and decentralized control using overlapping information sets. It is shown that, in the case of full-state feedback, the SCS method is a specific case of decentralized control using overlapping subsystems. In the case of dynamic output feedback (e.g., LQG controllers), the SCS method departs from standard decentralized control techniques. The controllers are 'assembled' by extending the concept of substructural assembly to general linear systems. Next, a new design method is proposed which combines the concept of component mode synthesis (CMS) with control theory in a decentralized method for the design of controllers for flexible structures. This method, called the augmented physical component synthesis (APCS) method, creates augmented substructural components. These components are substructures whose boundaries are loaded with some dynamics of the adjacent substructures. This allows global control objectives such as line-of-sight error minimization to be met with a substructure-based design strategy. Finally

  16. Flexible Pedagogies: Employer Engagement and Work-Based Learning. Flexible Pedagogies: Preparing for the Future Series

    ERIC Educational Resources Information Center

    Kettle, Jane

    2013-01-01

    This publication focuses on national and international policy initiatives to develop a better understanding of work-based learners and the types of flexibility that may well enhance their study especially pedagogically. As part of our five-strand research project "Flexible Pedagogies: preparing for the future" it: (1) highlights the…

  17. Flexible Pedagogies: Employer Engagement and Work-Based Learning. Flexible Pedagogies: Preparing for the Future Series

    ERIC Educational Resources Information Center

    Kettle, Jane

    2013-01-01

    This publication focuses on national and international policy initiatives to develop a better understanding of work-based learners and the types of flexibility that may well enhance their study especially pedagogically. As part of our five-strand research project "Flexible Pedagogies: preparing for the future" it: (1) highlights the…

  18. EDITORIAL: Nanotechnology-based flexible electronics Nanotechnology-based flexible electronics

    NASA Astrophysics Data System (ADS)

    Subramanian, Vivek; Lee, Takhee

    2012-08-01

    Research on flexible electronics has grown exponentially over the last decade. Researchers around the globe are developing a wide range of flexible systems, including displays [1, 2], sensors [3-5], RFID tags [6, 7] and other similar devices [8]. Innovations in materials have been key to the increased research success in this field of research in recent years [9]. Transistors, interconnects, memory cells, passive components and other assorted devices all have challenging material demands for flexible electronics to become a reality. Nanomaterials of various kinds have been found to represent a tremendously powerful tool, with nanoparticles [10], nanotubes, nanowires [3, 11] and engineered organic molecules [12, 13] contributing to the realization of high-performance semiconductors, dielectrics and conductors for flexible electronics applications. Nanomaterials offer tunability in terms of performance, solution processability and processing temperature requirements, which makes them very attractive as building blocks for flexible electronic systems. Indeed, such systems represent some of the largest families of commercially produced nanomaterials today, and numerous commercial products based on nanoparticle formulations are widely available. This special issue focuses on the rapidly blossoming field of flexible electronics, with a particular focus on the use of nanotechnology to facilitate flexible electronic materials, processes, devices and systems. Contributions to the issue describe the development of nanomaterials—including nanoparticles, nanotubes, nanowires and carbon-based thin films—for use in conductors, transparent electrodes, semiconductors and dielectrics. The articles feature innovations in nanomanufacturing and novel materials, as well as the application of these technologies to advanced flexible devices and systems. As flexible electronics systems move rapidly towards successful commercial deployment, it is extremely likely that they will exploit

  19. Chemically modified graphene based supercapacitors for flexible and miniature devices

    NASA Astrophysics Data System (ADS)

    Ghosh, Debasis; Kim, Sang Ouk

    2015-09-01

    Rapid progress in the portable and flexible electronic devises has stimulated supercapacitor research towards the design and fabrication of high performance flexible devices. Recent research efforts for flexible supercapacitor electrode materials are highly focusing on graphene and chemically modified graphene owing to the unique properties, including large surface area, high electrical and thermal conductivity, excellent mechanical flexibility, and outstanding chemical stability. This invited review article highlights current status of the flexible electrode material research based on chemically modified graphene for supercapacitor application. A variety of electrode architectures prepared from chemically modified graphene are summarized in terms of their structural dimensions. Novel prototypes for the supercapacitor aiming at flexible miniature devices, i.e. microsupercapacitor with high energy and power density are highlighted. Future challenges relevant to graphene-based flexible supercapacitors are also suggested. [Figure not available: see fulltext.

  20. Flexible Sensory Platform Based on Oxide-based Neuromorphic Transistors

    PubMed Central

    Liu, Ning; Zhu, Li Qiang; Feng, Ping; Wan, Chang Jin; Liu, Yang Hui; Shi, Yi; Wan, Qing

    2015-01-01

    Inspired by the dendritic integration and spiking operation of a biological neuron, flexible oxide-based neuromorphic transistors with multiple input gates are fabricated on flexible plastic substrates for pH sensor applications. When such device is operated in a quasi-static dual-gate synergic sensing mode, it shows a high pH sensitivity of ~105 mV/pH. Our results also demonstrate that single-spike dynamic mode can remarkably improve pH sensitivity and reduce response/recover time and power consumption. Moreover, we find that an appropriate negative bias applied on the sensing gate electrode can further enhance the pH sensitivity and reduce the power consumption. Our flexible neuromorphic transistors provide a new-concept sensory platform for biochemical detection with high sensitivity, rapid response and ultralow power consumption. PMID:26656113

  1. Flexible Sensory Platform Based on Oxide-based Neuromorphic Transistors.

    PubMed

    Liu, Ning; Zhu, Li Qiang; Feng, Ping; Wan, Chang Jin; Liu, Yang Hui; Shi, Yi; Wan, Qing

    2015-12-11

    Inspired by the dendritic integration and spiking operation of a biological neuron, flexible oxide-based neuromorphic transistors with multiple input gates are fabricated on flexible plastic substrates for pH sensor applications. When such device is operated in a quasi-static dual-gate synergic sensing mode, it shows a high pH sensitivity of ~105 mV/pH. Our results also demonstrate that single-spike dynamic mode can remarkably improve pH sensitivity and reduce response/recover time and power consumption. Moreover, we find that an appropriate negative bias applied on the sensing gate electrode can further enhance the pH sensitivity and reduce the power consumption. Our flexible neuromorphic transistors provide a new-concept sensory platform for biochemical detection with high sensitivity, rapid response and ultralow power consumption.

  2. Flexible Sensory Platform Based on Oxide-based Neuromorphic Transistors

    NASA Astrophysics Data System (ADS)

    Liu, Ning; Zhu, Li Qiang; Feng, Ping; Wan, Chang Jin; Liu, Yang Hui; Shi, Yi; Wan, Qing

    2015-12-01

    Inspired by the dendritic integration and spiking operation of a biological neuron, flexible oxide-based neuromorphic transistors with multiple input gates are fabricated on flexible plastic substrates for pH sensor applications. When such device is operated in a quasi-static dual-gate synergic sensing mode, it shows a high pH sensitivity of ~105 mV/pH. Our results also demonstrate that single-spike dynamic mode can remarkably improve pH sensitivity and reduce response/recover time and power consumption. Moreover, we find that an appropriate negative bias applied on the sensing gate electrode can further enhance the pH sensitivity and reduce the power consumption. Our flexible neuromorphic transistors provide a new-concept sensory platform for biochemical detection with high sensitivity, rapid response and ultralow power consumption.

  3. Flexible Photodetectors Based on 1D Inorganic Nanostructures

    PubMed Central

    Lou, Zheng

    2015-01-01

    Flexible photodetectors with excellent flexibility, high mechanical stability and good detectivity, have attracted great research interest in recent years. 1D inorganic nanostructures provide a number of opportunities and capabilities for use in flexible photodetectors as they have unique geometry, good transparency, outstanding mechanical flexibility, and excellent electronic/optoelectronic properties. This article offers a comprehensive review of several types of flexible photodetectors based on 1D nanostructures from the past ten years, including flexible ultraviolet, visible, and infrared photodetectors. High‐performance organic‐inorganic hybrid photodetectors, as well as devices with 1D nanowire (NW) arrays, are also reviewed. Finally, new concepts of flexible photodetectors including piezophototronic, stretchable and self‐powered photodetectors are examined to showcase the future research in this exciting field. PMID:27774404

  4. Wearable tactile sensor based on flexible microfluidics.

    PubMed

    Yeo, Joo Chuan; Yu, Jiahao; Koh, Zhao Ming; Wang, Zhiping; Lim, Chwee Teck

    2016-08-16

    In this work, we develop a liquid-based thin film microfluidic tactile sensor of high flexibility, robustness and sensitivity. The microfluidic elastomeric structure comprises a pressure sensitive region and parallel arcs that interface with screen-printed electrodes. The microfluidic sensor is functionalized with a highly conductive metallic liquid, eutectic gallium indium (eGaIn). Microdeformation on the pressure sensor results in fluid displacement which corresponds to a change in electrical resistance. By emulating parallel electrical circuitry in our microchannel design, we reduced the overall electrical resistance of the sensor, therefore enhancing its device sensitivity. Correspondingly, we report a device workable within a range of 4 to 100 kPa and sensitivity of up to 0.05 kPa(-1). We further demonstrate its robustness in withstanding >2500 repeated loading and unloading cycles. Finally, as a proof of concept, we demonstrate that the sensors may be multiplexed to detect forces at multiple regions of the hand. In particular, our sensors registered unique electronic signatures in object grasping, which could provide better assessment of finger dexterity.

  5. BASE Flexible Array Preliminary Lithospheric Structure Analysis

    NASA Astrophysics Data System (ADS)

    Yeck, W. L.; Sheehan, A. F.; Anderson, M. L.; Siddoway, C. S.; Erslev, E.; Harder, S. H.; Miller, K. C.

    2009-12-01

    The Bighorns Arch Seismic Experiment (BASE) is a Flexible Array experiment integrated with EarthScope. The goal of BASE is to develop a better understanding of how basement-involved foreland arches form and what their link is to plate tectonic processes. To achieve this goal, the crustal structure under the Bighorn Mountain range, Bighorn Basin, and Powder River Basin of northern Wyoming and southern Montana are investigated through the deployment of 35 broadband seismometers, 200 short period seismometers, 1600 “Texan” instruments using active sources and 800 “Texan” instruments monitoring passive sources, together with field structural analysis of brittle structures. The novel combination of these approaches and anticipated simultaneous data inversion will give a detailed structural crustal image of the Bighorn region at all levels of the crust. Four models have been proposed for the formation of the Bighorn foreland arch: subhorizontal detachment within the crust, lithospheric buckling, pure shear lithospheric thickening, and fault blocks defined by lithosphere-penetrating thrust faults. During the summer of 2009, we deployed 35 broadband instruments, which have already recorded several magnitude 7+ teleseismic events. Through P wave receiver function analysis of these 35 stations folded in with many EarthScope Transportable Array stations in the region, we present a preliminary map of the Mohorovicic discontinuity. This crustal map is our first test of how the unique Moho geometries predicted by the four hypothesized models of basement involved arches fit seismic observations for the Bighorn Mountains. In addition, shear-wave splitting analysis for our first few recorded teleseisms helps us determine if strong lithospheric deformation is preserved under the range. These analyses help lead us to our final goal, a complete 4D (3D spatial plus temporal) lithospheric-scale model of arch formation which will advance our understanding of the mechanisms

  6. Highly Sensitive Flexible Magnetic Sensor Based on Anisotropic Magnetoresistance Effect.

    PubMed

    Wang, Zhiguang; Wang, Xinjun; Li, Menghui; Gao, Yuan; Hu, Zhongqiang; Nan, Tianxiang; Liang, Xianfeng; Chen, Huaihao; Yang, Jia; Cash, Syd; Sun, Nian-Xiang

    2016-11-01

    A highly sensitive flexible magnetic sensor based on the anisotropic magnetoresistance effect is fabricated. A limit of detection of 150 nT is observed and excellent deformation stability is achieved after wrapping of the flexible sensor, with bending radii down to 5 mm. The flexible AMR sensor is used to read a magnetic pattern with a thickness of 10 μm that is formed by ferrite magnetic inks.

  7. BASE Flexible Array Preliminary Receiver Function Analysis

    NASA Astrophysics Data System (ADS)

    Yeck, W. L.; Sheehan, A. F.; Schulte-Pelkum, V.; Yang, Z.; Anderson, M. L.; Erslev, E.

    2010-12-01

    We present high-density, high-resolution receiver function (RF) images of the Bighorn Mountains of north central Wyoming, to gain insight into the subsurface seismic structures of the range, as part of the Bighorn Arch Seismic Experiment (BASE). Our data set contains over 220 three component seismic stations in the Bighorns region, in some areas with spacing less than 5 km. BASE is a Flexible Array experiment integrated with Earthscope. In order to investigate the Bighorns, a large-scale deployment of seismic instrumentation was deployed in the summers of 2009 and 2010. This included 38 broadband and 172 short period seismic stations, as well as both passive and active source ‘Texan’ deployments. Stations were placed to both densify the already present Transportable Array network as well as to create 5 linear transects. Station spacing along these transects range from four to ten kilometers, crossing the Bighorn Basin, through the Bighorn Arch, and into the Powder River Basin. The main objective of the BASE project is to better understand the tectonic processes involved in the formation of basement-cored arches. The formation of these structures remains a key unsolved tectonic problem. The Bighorn Mountains are an archetype of basement-involved foreland arches and therefore act as an excellent setting for the investigation of these types of structures. Four main formation models have been proposed for the Bighorns, each with unique crustal structures. Through a complete structural analysis of the range, relying heavily on seismic subsurface imaging, it will be possible to determine which of these models best fit observations. Moho topography is a crucial component in supporting these hypotheses, and should be well resolved with RF imaging. In this study P-S wave RFs are used to image the structures beneath the Bighorn Mountains. We present ideas for modeling and filtering approaches to dampen low velocity sedimentary layer reverberations in the Powder River and

  8. Fabrication of SWCNT based flexible chemiresistor

    SciTech Connect

    Rajput, Mayank Das, S.; Kaur, Rajvinder; Kumar, Anil

    2016-04-13

    Carboxyl (-COOH) functionalized SWCNT chemiresistors have been realized on Kapton substrate patterned with Au microelectrodes by the drop casting of functionalized SWCNT dispersion in DI water. I-V measurements on fabricated chemiresistor showed ohmic behavior at different temperatures (25°C-120°C). The effect of bending on flexible functionalized SWCNT chemiresistor for different diameter has been measured. It has been found that bending at different radius of curvature doesn’t change the ohmic behavior of fabricated chemiresistor. Achieved results are promising for cheap flexible electronic devices.

  9. A new DG nanoscale TFET based on MOSFETs by using source gate electrode: 2D simulation and an analytical potential model

    NASA Astrophysics Data System (ADS)

    Ramezani, Zeinab; Orouji, Ali A.

    2017-08-01

    This paper suggests and investigates a double-gate (DG) MOSFET, which emulates tunnel field effect transistors (M-TFET). We have combined this novel concept into a double-gate MOSFET, which behaves as a tunneling field effect transistor by work function engineering. In the proposed structure, in addition to the main gate, we utilize another gate over the source region with zero applied voltage and a proper work function to convert the source region from N+ to P+. We check the impact obtained by varying the source gate work function and source doping on the device parameters. The simulation results of the M-TFET indicate that it is a suitable case for a switching performance. Also, we present a two-dimensional analytic potential model of the proposed structure by solving the Poisson's equation in x and y directions and by derivatives from the potential profile; thus, the electric field is achieved. To validate our present model, we use the SILVACO ATLAS device simulator. The analytical results have been compared with it.

  10. Flexible transparent conductors based on metal nanowire networks

    DOE PAGES

    Guo, Chuan Fei; Ren, Zhifeng

    2015-04-01

    Few conductors are transparent and flexible. Metals have the best electrical conductivity, but they are opaque and stiff in bulk form. However, metals can be transparent and flexible when they are very thin or properly arranged on the nanoscale. This review focuses on the flexible transparent conductors based on percolating networks of metal. Specifically, we discuss the fabrication, the means to improve the electrical conductivity, the large stretchability and its mechanism, and the applications of these metal networks. We also suggest some criteria for evaluating flexible transparent conductors and propose some new research directions in this emerging field.

  11. Graphene based field effect transistors: Efforts made towards flexible electronics

    NASA Astrophysics Data System (ADS)

    Sharma, Bhupendra K.; Ahn, Jong-Hyun

    2013-11-01

    The integration of flexibility in existing electronics has been realized as a key point for practical application of unusual format electronics that can extend the application limit of biomedical equipments and of course daily routine kind of electronic devices. Graphene showed the great potentiality for flexible format owing to its excellent electronic, mechanical and optical properties. Field effect transistor (FET) is a basic unit for digital and analog electronics thus enormous efforts have been attempted to fabricate the flexible FETs in order to get the high performance. This article reviews the recent development of graphene based FETs including the fabrication and active layers material compatibility in flexible format.

  12. Substructure-based control of flexible structures

    NASA Technical Reports Server (NTRS)

    Babuska, Vit; Craig, Roy R., Jr.

    1993-01-01

    A decentralized procedure is presented for the design of controllers for flexible structures. Spatially significant components are created which approximate the response of a specific part of the complete structure. For each component, the controller and observer gain matrices which are used in a controller for the complete structure. The proposed method is illustrated on a model of NASA Langley's CSI testbed structure.

  13. Flexible hydrogel-based functional composite materials

    DOEpatents

    Song, Jie; Saiz, Eduardo; Bertozzi, Carolyn R; Tomasia, Antoni P

    2013-10-08

    A composite having a flexible hydrogel polymer formed by mixing an organic phase with an inorganic composition, the organic phase selected from the group consisting of a hydrogel monomer, a crosslinker, a radical initiator, and/or a solvent. A polymerization mixture is formed and polymerized into a desired shape and size.

  14. Base-Displaced Intercalated Conformation of the 2-Amino-3-methylimidazo[4,5-f]quinoline N(2)-dG DNA Adduct Positioned at the Nonreiterated G(1) in the NarI Restriction Site.

    PubMed

    Stavros, Kallie M; Hawkins, Edward K; Rizzo, Carmelo J; Stone, Michael P

    2015-07-20

    The conformation of an N(2)-dG adduct arising from the heterocyclic amine 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), a potent food mutagen, was determined in 5'-d(C(1)T(2)C(3)X(4)G(5)C(6)G(7)C(8)C(9)A(10)T(11)C(12))-3':5'-d(G(13)A(14)T(15)G(16)G(17)C(18)G(19)C(20)C(21)G(22)A(23)G(24))-3'; X = N(2)-dG-IQ, in which the modified nucleotide X(4) corresponds to G(1) in the 5'-d(G(1)G(2)CG(3)CC)-3' NarI restriction endonuclease site. Circular dichroism (CD) revealed blue shifts relative to the unmodified duplex, consistent with adduct-induced twisting, and a hypochromic effect for the IQ absorbance in the near UV region. NMR revealed that the N(2)-dG-IQ adduct adopted a base-displaced intercalated conformation in which the modified guanine remained in the anti conformation about the glycosidic bond, the IQ moiety intercalated into the duplex, and the complementary base C(21) was displaced into the major groove. The processing of the N(2)-dG-IQ lesion by hpol η is sequence-dependent; when placed at the reiterated G(3) position, but not at the G(1) position, this lesion exhibits a propensity for frameshift replication [Choi, J. Y., et al. (2006) J. Biol. Chem., 281, 25297-25306]. The structure of the N(2)-dG-IQ adduct at the nonreiterated G(1) position was compared to that of the same adduct placed at the G(3) position [Stavros, K. M., et al. (2014) Nucleic Acids Res., 42, 3450-3463]. CD indicted minimal spectral differences between the G(1) vs G(3) N(2)-dG-IQ adducts. NMR indicated that the N(2)-dG-IQ adduct exhibited similar base-displaced intercalated conformations at both the G(1) and G(3) positions. This result differed as compared to the corresponding C8-dG-IQ adducts placed at the same positions. The C8-dG-IQ adduct adopted a minor groove conformation when placed at position G(1) but a base-displaced intercalated conformation when placed at position G(3) in the NarI sequence. The present studies suggest that differences in lesion bypass by hpol η may be

  15. Flexible control techniques for a lunar base

    NASA Technical Reports Server (NTRS)

    Kraus, Thomas W.

    1992-01-01

    The fundamental elements found in every terrestrial control system can be employed in all lunar applications. These elements include sensors which measure physical properties, controllers which acquire sensor data and calculate a control response, and actuators which apply the control output to the process. The unique characteristics of the lunar environment will certainly require the development of new control system technology. However, weightlessness, harsh atmospheric conditions, temperature extremes, and radiation hazards will most significantly impact the design of sensors and actuators. The controller and associated control algorithms, which are the most complex element of any control system, can be derived in their entirety from existing technology. Lunar process control applications -- ranging from small-scale research projects to full-scale processing plants -- will benefit greatly from the controller advances being developed today. In particular, new software technology aimed at commercial process monitoring and control applications will almost completely eliminate the need for custom programs and the lengthy development and testing cycle they require. The applicability of existing industrial software to lunar applications has other significant advantages in addition to cost and quality. This software is designed to run on standard hardware platforms and takes advantage of existing LAN and telecommunications technology. Further, in order to exploit the existing commercial market, the software is being designed to be implemented by users of all skill levels -- typically users who are familiar with their process, but not necessarily with software or control theory. This means that specialized technical support personnel will not need to be on-hand, and the associated costs are eliminated. Finally, the latest industrial software designed for the commercial market is extremely flexible, in order to fit the requirements of many types of processing

  16. Flexible thermochromic window based on hybridized VO2/graphene.

    PubMed

    Kim, Hyeongkeun; Kim, Yena; Kim, Keun Soo; Jeong, Hu Young; Jang, A-Rang; Han, Seung Ho; Yoon, Dae Ho; Suh, Kwang S; Shin, Hyeon Suk; Kim, TaeYoung; Yang, Woo Seok

    2013-07-23

    Large-scale integration of vanadium dioxide (VO2) on mechanically flexible substrates is critical to the realization of flexible smart window films that can respond to environmental temperatures to modulate light transmittance. Until now, the formation of highly crystalline and stoichiometric VO2 on flexible substrate has not been demonstrated due to the high-temperature condition for VO2 growth. Here, we demonstrate a VO2-based thermochromic film with unprecedented mechanical flexibility by employing graphene as a versatile platform for VO2. The graphene effectively functions as an atomically thin, flexible, yet robust support which enables the formation of stoichiometric VO2 crystals with temperature-driven phase transition characteristics. The graphene-supported VO2 was capable of being transferred to a plastic substrate, forming a new type of flexible thermochromic film. The flexible VO2 films were then integrated into the mock-up house, exhibiting its efficient operation to reduce the in-house temperature under infrared irradiation. These results provide important progress for the fabrication of flexible thermochromic films for energy-saving windows.

  17. Flexible microdevices based on carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Allen, Ashante'; Cannon, Andrew; Lee, Jungchul; King, William P.; Graham, Samuel

    2006-12-01

    This work reports the fabrication and testing of flexible carbon nanotube microdevices made using hot embossing material transfer. Both micro-plasma and photodetector devices were made using as-grown unpurified multi-wall carbon nanotubes printed on PMMA substrates. Optical detectors were fabricated by attaching metal wires and monitoring the resistance as a function of light exposure. The electrical resistance of the nanotubes showed a strong sensitivity to light exposure which was also enhanced by heating the devices. While such processes in MWCNTs are not fully understood, the addition of thermal energy is believed to generate additional free charge carriers in the nanotubes. The plasma-generating microdevices consisted of a thin layer of thermoplastic polymer having the CNT electrode on one side and a metal electrode on the reverse side. The devices were electrically tested under atmospheric conditions with 0.01-1 kV ac and at 2.5 kHz, with the plasma igniting near 0.7 kV. The fabrication of these flexible organic devices demonstrates the ability to pattern useful carbon nanotube microdevices in low-cost thermoplastic polymers.

  18. [Moving Mirror Scanning System Based on the Flexible Hinge Support].

    PubMed

    Xie, Fei; Feng, Fei; Wang, Fu-bei; Wu, Qiong-shui; Zeng, Li-bo

    2015-08-01

    In order to improve moving mirror drive of Fourier transform infrared spectrometer, we design a dynamic scanning system based on flexible hinge support. Using the flexible hinge support way and the voice coil motor drive mode. Specifically, Using right Angle with high accuracy high stability type flexible hinge support mechanism support moving mirror, dynamic mirror can be moved forward and backward driven by voice coil motor reciprocating motion, DSP control system to control the moving mirror at a constant speed. The experimental results show that the designed of moving mirror scanning system has advantages of stability direction, speed stability, superior seismic performance.

  19. Flatness based GPI Control for Flexible Robots

    NASA Astrophysics Data System (ADS)

    Becedas, Jonathan; Feliu, Vicente; Sira-Ramírez, Hebertt

    In this article, a new method to control a flexible robotic arm using a conventional direct current (DC) motor with a gear actuator strongly affected by non-linear friction torque is proposed. This control method does not require friction compensation and hence the estimation of this term because the control scheme is robust with respect to this effect. In addition, the only variables to measure are the motor shaft and tip angular positions. Velocity measurements, which always introduce errors and noises, are not required. The use of filters to estimate velocities and bounded derivatives are not needed. The Generalized Proportional Integral GPI controller is designed using a two-stage design procedure entitling an outer loop, designed under the assumption of no motor dynamics, and subsequently an inner loop which forces the motor response to track the control input position reference trajectory derived in the previous design stage. Velocity measurements, which always introduce errors and noises, are not required. Experimental results are presented.

  20. Biocellulose-based flexible magnetic paper

    NASA Astrophysics Data System (ADS)

    Barud, H. S.; Tercjak, A.; Gutierrez, J.; Viali, W. R.; Nunes, E. S.; Ribeiro, S. J. L.; Jafellici, M.; Nalin, M.; Marques, R. F. C.

    2015-05-01

    Biocellulose or bacterial cellulose (BC) is a biocompatible (nano) material produced with a three-dimensional network structure composed of microfibrils having nanometric diameters obtained by the Gluconacetobacter xylinus bacteria. BC membranes present relatively high porosity, allowing the incorporation or synthesis in situ of inorganic nanoparticles for multifunctional applications and have been used as flexible membranes for incorporation of magnetic nanocomposite. In this work, highly stable superparamagnetic iron oxide nanoparticles (SPION), functionalized with polyethylene glycol (PEG), with an average diameter of 5 nm and a saturation magnetization of 41 emu/g at 300 K were prepared. PEG-Fe2O3 hybrid was dispersed by mixing a pristine BC membrane in a stable aqueous dispersion of PEG-SPION. The PEG chains at PEG-SPION's surface provide a good permeability and strong affinity between the BC chains and SPION through hydrogen-bonding interactions. PEG-SPION also allow the incorporation of higher content of nanoparticles without compromising the mechanical properties of the nanocomposite. Structural and magnetic properties of the composite have been characterized by XRD, SEM, energy-dispersive X-ray spectroscopy (EDX), magnetization, Raman spectroscopy, and magnetic force microscopy.

  1. Toward flexible polymer and paper-based energy storage devices.

    PubMed

    Nyholm, Leif; Nyström, Gustav; Mihranyan, Albert; Strømme, Maria

    2011-09-01

    All-polymer and paper-based energy storage devices have significant inherent advantages in comparison with many currently employed batteries and supercapacitors regarding environmental friendliness, flexibility, cost and versatility. The research within this field is currently undergoing an exciting development as new polymers, composites and paper-based devices are being developed. In this report, we review recent progress concerning the development of flexible energy storage devices based on electronically conducting polymers and cellulose containing composites with particular emphasis on paper-based batteries and supercapacitors. We discuss recent progress in the development of the most commonly used electronically conducting polymers used in flexible device prototypes, the advantages and disadvantages of this type of energy storage devices, as well as the two main approaches used in the manufacturing of paper-based charge storage devices.

  2. Dynamic Rupture Benchmarking of the ADER-DG Method

    NASA Astrophysics Data System (ADS)

    Pelties, C.; Gabriel, A.

    2012-12-01

    We will verify the arbitrary high-order derivative Discontinuous Galerkin (ADER-DG) method in various test cases of the 'SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise' benchmark suite (Harris et al. 2009). The ADER-DG scheme is able to solve the spontaneous rupture problem with high-order accuracy in space and time on three-dimensional unstructured tetrahedral meshes. Strong mesh coarsening or refinement at areas of interest can be applied to keep the computational costs feasible. Moreover, the method does not generate spurious high-frequency contributions in the slip rate spectra and therefore does not require any artificial damping as demonstrated in previous presentations and publications (Pelties et al. 2010 and 2012). We will show that the mentioned features hold also for more advanced setups as e.g. a branching fault system, heterogeneous background stresses and bimaterial faults. The advanced geometrical flexibility combined with an enhanced accuracy will make the ADER-DG method a useful tool to study earthquake dynamics on complex fault systems in realistic rheologies. References: Harris, R.A., M. Barall, R. Archuleta, B. Aagaard, J.-P. Ampuero, H. Bhat, V. Cruz-Atienza, L. Dalguer, P. Dawson, S. Day, B. Duan, E. Dunham, G. Ely, Y. Kaneko, Y. Kase, N. Lapusta, Y. Liu, S. Ma, D. Oglesby, K. Olsen, A. Pitarka, S. Song, and E. Templeton, The SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise, Seismological Research Letters, vol. 80, no. 1, pages 119-126, 2009 Pelties, C., J. de la Puente, and M. Kaeser, Dynamic Rupture Modeling in Three Dimensions on Unstructured Meshes Using a Discontinuous Galerkin Method, AGU 2010 Fall Meeting, abstract #S21C-2068 Pelties, C., J. de la Puente, J.-P. Ampuero, G. Brietzke, and M. Kaeser, Three-Dimensional Dynamic Rupture Simulation with a High-order Discontinuous Galerkin Method on Unstructured Tetrahedral Meshes, JGR. - Solid Earth, VOL. 117, B02309, 2012

  3. Dynamic Rupture Benchmarking of the ADER-DG Method

    NASA Astrophysics Data System (ADS)

    Gabriel, Alice; Pelties, Christian

    2013-04-01

    We will verify the arbitrary high-order derivative Discontinuous Galerkin (ADER-DG) method in various test cases of the 'SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise' benchmark suite (Harris et al. 2009). The ADER-DG scheme is able to solve the spontaneous rupture problem with high-order accuracy in space and time on three-dimensional unstructured tetrahedral meshes. Strong mesh coarsening or refinement at areas of interest can be applied to keep the computational costs feasible. Moreover, the method does not generate spurious high-frequency contributions in the slip rate spectra and therefore does not require any artificial damping as demonstrated in previous presentations and publications (Pelties et al. 2010 and 2012). We will show that the mentioned features hold also for more advanced setups as e.g. a branching fault system, heterogeneous background stresses and bimaterial faults. The advanced geometrical flexibility combined with an enhanced accuracy will make the ADER-DG method a useful tool to study earthquake dynamics on complex fault systems in realistic rheologies. References: Harris, R.A., M. Barall, R. Archuleta, B. Aagaard, J.-P. Ampuero, H. Bhat, V. Cruz-Atienza, L. Dalguer, P. Dawson, S. Day, B. Duan, E. Dunham, G. Ely, Y. Kaneko, Y. Kase, N. Lapusta, Y. Liu, S. Ma, D. Oglesby, K. Olsen, A. Pitarka, S. Song, and E. Templeton, The SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise, Seismological Research Letters, vol. 80, no. 1, pages 119-126, 2009 Pelties, C., J. de la Puente, and M. Kaeser, Dynamic Rupture Modeling in Three Dimensions on Unstructured Meshes Using a Discontinuous Galerkin Method, AGU 2010 Fall Meeting, abstract #S21C-2068 Pelties, C., J. de la Puente, J.-P. Ampuero, G. Brietzke, and M. Kaeser, Three-Dimensional Dynamic Rupture Simulation with a High-order Discontinuous Galerkin Method on Unstructured Tetrahedral Meshes, JGR. - Solid Earth, VOL. 117, B02309, 2012

  4. Patient Posture Monitoring System Based on Flexible Sensors

    PubMed Central

    Cha, Youngsu; Nam, Kihyuk; Kim, Doik

    2017-01-01

    Monitoring patients using vision cameras can cause privacy intrusion problems. In this paper, we propose a patient position monitoring system based on a patient cloth with unobtrusive sensors. We use flexible sensors based on polyvinylidene fluoride, which is a flexible piezoelectric material. The flexible sensors are inserted into parts close to the knee and hip of the loose patient cloth. We measure electrical signals from the sensors caused by the piezoelectric effect when the knee and hip in the cloth are bent. The measured sensor outputs are transferred to a computer via Bluetooth. We use a custom-made program to detect the position of the patient through a rule-based algorithm and the sensor outputs. The detectable postures are based on six human motions in and around a bed. The proposed system can detect the patient positions with a success rate over 88 percent for three patients. PMID:28335385

  5. Paper‐Based Electrodes for Flexible Energy Storage Devices

    PubMed Central

    Yao, Bin; Zhang, Jing; Kou, Tianyi; Song, Yu; Liu, Tianyu

    2017-01-01

    Paper‐based materials are emerging as a new category of advanced electrodes for flexible energy storage devices, including supercapacitors, Li‐ion batteries, Li‐S batteries, Li‐oxygen batteries. This review summarizes recent advances in the synthesis of paper‐based electrodes, including paper‐supported electrodes and paper‐like electrodes. Their structural features, electrochemical performances and implementation as electrodes for flexible energy storage devices including supercapacitors and batteries are highlighted and compared. Finally, we also discuss the challenges and opportunity of paper‐based electrodes and energy storage devices. PMID:28725532

  6. Graphene-based flexible and stretchable thin film transistors

    NASA Astrophysics Data System (ADS)

    Yan, Chao; Cho, Jeong Ho; Ahn, Jong-Hyun

    2012-07-01

    Graphene has been attracting wide attention owing to its superb electronic, thermal and mechanical properties. These properties allow great applications in the next generation of optoelectronics, where flexibility and stretchability are essential. In this context, the recent development of graphene growth/transfer and its applications in field-effect transistors are involved. In particular, we provide a detailed review on the state-of-the-art of graphene-based flexible and stretchable thin film transistors. We address the principles of fabricating high-speed graphene analog transistors and the key issues of producing an array of graphene-based transistors on flexible and stretchable substrates. It provides a platform for future work to focus on understanding and realizing high-performance graphene-based transistors.

  7. Graphene-based flexible and stretchable thin film transistors.

    PubMed

    Yan, Chao; Cho, Jeong Ho; Ahn, Jong-Hyun

    2012-08-21

    Graphene has been attracting wide attention owing to its superb electronic, thermal and mechanical properties. These properties allow great applications in the next generation of optoelectronics, where flexibility and stretchability are essential. In this context, the recent development of graphene growth/transfer and its applications in field-effect transistors are involved. In particular, we provide a detailed review on the state-of-the-art of graphene-based flexible and stretchable thin film transistors. We address the principles of fabricating high-speed graphene analog transistors and the key issues of producing an array of graphene-based transistors on flexible and stretchable substrates. It provides a platform for future work to focus on understanding and realizing high-performance graphene-based transistors.

  8. Adaptive fiber optics collimator based on flexible hinges.

    PubMed

    Zhi, Dong; Ma, Yanxing; Ma, Pengfei; Si, Lei; Wang, Xiaolin; Zhou, Pu

    2014-08-20

    In this manuscript, we present a new design for an adaptive fiber optics collimator (AFOC) based on flexible hinges by using piezoelectric stacks actuators for X-Y displacement. Different from traditional AFOC, the new structure is based on flexible hinges to drive the fiber end cap instead of naked fiber. We fabricated a real AFOC based on flexible hinges, and the end cap's deviation and resonance frequency of the device were measured. Experimental results show that this new AFOC can provide fast control of tip-tilt deviation of the laser beam emitting from the end cap. As a result, the fiber end cap can support much higher power than naked fiber, which makes the new structure ideal for tip-tilt controlling in a high-power fiber laser system.

  9. Carbon nanotube based pressure sensor for flexible electronics

    SciTech Connect

    So, Hye-Mi; Sim, Jin Woo; Kwon, Jinhyeong; Yun, Jongju; Baik, Seunghyun; Chang, Won Seok

    2013-12-15

    Highlights: • The electromechanical change of vertically aligned carbon nanotubes. • Fabrication of CNT field-effect transistor on flexible substrate. • CNT based FET integrated active pressure sensor. • The integrated device yields an increase in the source-drain current under pressure. - Abstract: A pressure sensor was developed based on an arrangement of vertically aligned carbon nanotubes (VACNTs) supported by a polydimethylsiloxane (PDMS) matrix. The VACNTs embedded in the PDMS matrix were structurally flexible and provided repeated sensing operation due to the high elasticities of both the polymer and the carbon nanotubes (CNTs). The conductance increased in the presence of a loading pressure, which compressed the material and induced contact between neighboring CNTs, thereby producing a dense current path and better CNT/metal contacts. To achieve flexible functional electronics, VACNTs based pressure sensor was integrated with field-effect transistor, which is fabricated using sprayed semiconducting carbon nanotubes on plastic substrate.

  10. Graphene-based integrated electrodes for flexible lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Shi, Ying; Wen, Lei; Zhou, Guangmin; Chen, Jing; Pei, Songfeng; Huang, Kun; Cheng, Hui-Ming; Li, Feng

    2015-06-01

    We have prepared flexible free-standing electrodes with anode and cathode active materials deposited on a highly conductive graphene membrane by a two-step filtration method. Compared with conventional electrodes using metal as current collectors, these electrodes have displayed stronger adhesion, superior electrochemical performance, higher energy density, and better flexibility. A full lithium ion battery assembled by adopting these graphene-based electrodes has showed high rate capability and long cyclic life. We have also assembled a thin, lightweight, and flexible lithium ion battery with poly-(dimethyl siloxane) sheets as packaging material to light a red light-emitting diode. This flexible battery can be easily bent without structural failure or performance loss and operated well under a bent state. The fabrication process of these graphene-based integrated electrodes only has two filtration steps; thus it is easy to scale up. These results suggest great potential for these graphene-based flexible batteries in lightweight, bendable, and wearable electronic devices.

  11. Reduced graphene oxide based flexible organic charge trap memory devices

    NASA Astrophysics Data System (ADS)

    Rani, Adila; Song, Ji-Min; Jung Lee, Mi; Lee, Jang-Sik

    2012-12-01

    A nonvolatile organic transistor memory device was developed using layer-by-layer assembly of 3-aminopropyltriethoxysilane (APTES) and solution-processed, reduced graphene oxide (rGO) as the charge trapping layer on flexible substrates. Reduction of graphene oxide and successful adsorption of the rGO on APTES-covered substrates were confirmed. The organic memory devices based on rGO exhibited reliable programmable memory operations, confirmed by program/erase operations, data retention, and endurance properties. These methods can potentially play a significant role in the fabrication of next-generation flexible nonvolatile memory devices based on graphene materials.

  12. Flexible graphene sound device based on laser reduced graphene

    NASA Astrophysics Data System (ADS)

    Tao, Lu-Qi; Sun, Hao; Liu, Ying; Ju, Zhen-Yi; Yang, Yi; Ren, Tian-Ling

    2017-09-01

    Existing thermoacoustic devices are based on a complicated fabrication process, which extremely limits their practical applications. In this paper, we realize a flexible graphene sound device based on laser reduced graphene. The graphene oxide is converted into graphene by a 450 nm laser with a one-step process. The performance of the graphene sound device is affected by the laser power, the scanning speed, and the substrate thickness. The experimental results match well with the theoretical results. Besides, the sound device has the advantages of excellent flexibility, broad frequency spectrum (0-40 kHz), fast fabrication process, and low cost, which will become a promising alternative in the flexible electronic systems in the future.

  13. Flexible and Disposable Sensing Platforms Based on Newspaper.

    PubMed

    Yang, MinHo; Jeong, Soon Woo; Chang, Sung Jin; Kim, Kyung Hoon; Jang, Minjeong; Kim, Chi Hyun; Bae, Nam Ho; Sim, Gap Seop; Kang, Taejoon; Lee, Seok Jae; Choi, Bong Gill; Lee, Kyoung G

    2016-12-28

    The flexible sensing platform is a key component for the development of smart portable devices targeting healthcare, environmental monitoring, point-of-care diagnostics, and personal electronics. Herein, we demonstrate a simple, scalable, and cost-effective strategy for fabrication of a sensing electrode based on a waste newspaper with conformal coating of parylene C (P-paper). Thin polymeric layers over cellulose fibers allow the P-paper to possess improved mechanical and chemical stability, which results in high-performance flexible sensing platforms for the detection of pathogenic E. coli O157:H7 based on DNA hybridization. Moreover, P-paper electrodes have the potential to serve as disposable, flexible sensing platforms for point-of-care testing biosensors.

  14. Flexible Supercapacitors Based on Polyaniline Arrays Coated Graphene Aerogel Electrodes

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Xi, Yunlong; Li, Junzhi; Wei, Guodong; Klyui, N. I.; Han, Wei

    2017-06-01

    Flexible supercapacitors(SCs) made by reduced graphene oxide (rGO)-based aerogel usually suffer from the low energy density, short cycle life and bad flexibility. In this study, a new, synthetic strategy was developed for enhancing the electrochemical performances of rGO aerogel-based supercapacitor via electrodeposition polyaniline arrays on the prepared ultralight rGO aerogel. The novel hybrid composites with coated polyaniline (PANI) arrays growing on the rGO surface can take full advantage of the rich open-pore and excellent conductivity of the crosslinking framework structure of 3D rGO aerogel and high capacitance contribution from the PANI. The obtained hybrid composites exhibit excellent electrochemical performance with a specific capacitance of 432 F g-1 at the current density of 1 A g-1, robust cycling stability to maintain 85% after 10,000 charge/discharge cycles and high energy density of 25 W h kg-1. Furthermore, the flexible all-solid-state supercapacitor have superior flexibility and outstanding stability under different bending states from the straight state to the 90° status. The high-performance flexible all-solid-state SCs together with the lighting tests demonstrate it possible for applications in portable electronics.

  15. Flexible, stretchable electroadhesives based on acrylic elastomers

    NASA Astrophysics Data System (ADS)

    Duduta, Mihai; Wood, Robert J.; Clarke, David R.

    2016-04-01

    Controllable adhesion is a requirement for a wide variety of applications including robotic manipulation, as well as locomotion including walking, crawling and perching. Electroadhesives have several advantages such as reversibility, low power consumption and controllability based on applied voltage. Most demonstrations of electroadhesive devices rely on fairly rigid materials, which cannot be stretched reversibly, as needed in some applications. We have developed a fast and reliable method for building soft, stretchable electroadhesive pads based on acrylic elastomers and electrodes made of carbon nanotubes. The devices produced were tested pre-deformation and in a stretched configuration. The adhesive force was determined to be in the 0.1 - 3.0 N/cm2 range, depending on the adhering surface. The electroadhesive devices were integrated with pre-stretched dielectric elastomer actuators to create a device in which the adhesion force could be tuned by changes in either the applied voltage or total area.

  16. Template-Based Geometric Simulation of Flexible Frameworks

    PubMed Central

    Wells, Stephen A.; Sartbaeva, Asel

    2012-01-01

    Specialised modelling and simulation methods implementing simplified physical models are valuable generators of insight. Template-based geometric simulation is a specialised method for modelling flexible framework structures made up of rigid units. We review the background, development and implementation of the method, and its applications to the study of framework materials such as zeolites and perovskites. The “flexibility window” property of zeolite frameworks is a particularly significant discovery made using geometric simulation. Software implementing geometric simulation of framework materials, “GASP”, is freely available to researchers. PMID:28817055

  17. VCSEL-based flexible opto-fluidic fluorescence sensors

    NASA Astrophysics Data System (ADS)

    Kang, Dongseok; Gai, Boju; Yoon, Jongseung

    2016-03-01

    Flexible opto-fluidic fluorescence sensors based on microscale vertical cavity surface emitting lasers (micro-VCSELs) and silicon photodiodes (Si-PDs) are demonstrated, where arrays of 850 nm micro-VCSELs and thin film Si-PDs are heterogeneously integrated on a polyethylene terephthalate (PET) substrate by transfer printing, in conjunction with elastomeric fluidic channel. Enabled with optical isolation trenches together with wavelength- and angle-selective spectral filters implemented to suppress the absorption of excitation light, the integrated flexible fluorescence sensors exhibited significantly enhanced signal-to-background ratio, resulting in a maximum sensitivity of 5 × 10-5 wt% of infrared-absorbing organic dyes.

  18. Semiconductor-based, large-area, flexible, electronic devices

    DOEpatents

    Goyal, Amit

    2011-03-15

    Novel articles and methods to fabricate the same resulting in flexible, large-area, triaxially textured, single-crystal or single-crystal-like, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  19. Pneumatic squirming robot based on flexible pneumatic actuator

    NASA Astrophysics Data System (ADS)

    Yang, Qinghua; Zhang, Libin; Bao, Guanjun; Ruan, Jian

    2005-12-01

    The design of a kind of pneumatic squirming robot is presented. It is based on the use of flexible pneumatic actuator. The flexible pneumatic actuator was made of caoutchouc. Its working principle is described. The structure, working principle, pneumatic and electrical control system of the pneumatic squirming robot are designed. All of the actuator's driving and squirming parts are composed of pneumatic elements. The vacuum osculums, which act as feet, are connected to the flexible pneumatic actuator. When the vacuum pumps operate, vacuum will be produced in the corresponding osculums, which can adsorb on the contacting surface and orient the robot. The actuator, operating under air pressure, drives the robot. By controlling the vacuum pumps and the actuator, straight and bending squirming of this robot can be obtained.

  20. Flexible electrochromic films based on CVD-graphene electrodes.

    PubMed

    Soo Choi, Dong; Ho Han, Seung; Kim, Hyeongkeun; Hee Kang, So; Kim, Yena; Yang, Cheol-Min; Kim, Tae Young; Ho Yoon, Dae; Seok Yang, Woo

    2014-10-03

    Graphene synthesized via chemical vapor deposition is a notable candidate for flexible large-area transparent electrodes due to its great physical properties and its 2D activated surface area. Electrochromic devices in optical displays, smart windows, etc are suitable applications for graphene when used as a transparent conductive electrode. In this study, various-layer graphene was synthesized via chemical vapor deposition, and inorganic WO(x) was deposited on the layers, which have advantageous columnar structures and W(6+) and W(4+) oxidation states. The characteristics of graphene and WO(x) were verified using optical transmittance, Raman spectroscopy, x-ray photoelectron spectroscopy and scanning electron microscopy. The optimum transparent conductive electrode condition for controlling graphene layers was investigated based on the optical density and cyclic voltammetry. Electrochromic devices were fabricated using a three-layer graphene electrode, which had the best optical density. The graphene in the flexible electrochromic device demonstrated a potential for replacing ITO in flexible electronics.

  1. Centralized, decentralized, and independent control of a flexible manipulator on a flexible base

    NASA Technical Reports Server (NTRS)

    Li, Feiyue; Bainum, Peter M.; Xu, Jianke

    1991-01-01

    The dynamics and control of a flexible manipulator arm with payload mass on a flexible base in space are considered. The controllers are provided by one torquer at the center of the base and one torquer at the connection joint of the robot and the base. The nonlinear dynamics of the system is modeled by applying the finite element method and Lagrangian formula. Three control strategies are considered and compared, i.e., centralized control, decentralized control, and independent control. All these control designs are based on the linear quadratic regulator theory. A mathematical decomposition is used in the decentralization process so that the coupling between the subsystems is weak, while a physical decomposition is used in the independent control design process. For both the decentralized and the independent controls, the stability of the overall linear system is checked before a numerical simulations is initiated. Two numerical examples show that the response of the independent control system are close to those of the centralized control system, while the responses of the decentralized control system are not.

  2. Centralized, decentralized, and independent control of a flexible manipulator on a flexible base

    NASA Astrophysics Data System (ADS)

    Li, Feiyue; Bainum, Peter M.; Xu, Jianke

    1993-03-01

    The dynamics and control of a flexible manipulator arm with payload mass on a flexible base in space are considered. The controllers are provided by one torquer at the center of the base and one torquer at the connection joint of the robot and the base. The nonlinear dynamics of the system is modeled by applying the finite element method and Lagrangian formula. Three control strategies are considered and compared, i.e. centralized control, decentralized control, and independent control. All these control designs are based on the linear quadratic regulator theory. A mathematical decomposition is used in the decentralization process so that the coupling between the subsystems is weak, while a physical decomposition is used in the independent control design process. For both the decentralized and the independent controls, the stability of the overall linear system is checked before a numerical simulation is initiated. Two numerical examples show that the responses of the independent control system are close to those of the centralized control system, while the responses of the decentralized control system are not.

  3. Centralized, decentralized, and independent control of a flexible manipulator on a flexible base

    NASA Technical Reports Server (NTRS)

    Li, Feiyue; Bainum, Peter M.; Xu, Jianke

    1991-01-01

    The dynamics and control of a flexible manipulator arm with payload mass on a flexible base in space are considered. The controllers are provided by one torquer at the center of the base and one torquer at the connection joint of the robot and the base. The nonlinear dynamics of the system is modeled by applying the finite element method and Lagrangian formula. Three control strategies are considered and compared, i.e., centralized control, decentralized control, and independent control. All these control designs are based on the linear quadratic regulator theory. A mathematical decomposition is used in the decentralization process so that the coupling between the subsystems is weak, while a physical decomposition is used in the independent control design process. For both the decentralized and the independent controls, the stability of the overall linear system is checked before a numerical simulations is initiated. Two numerical examples show that the response of the independent control system are close to those of the centralized control system, while the responses of the decentralized control system are not.

  4. Flexible Graphene-Based Wearable Gas and Chemical Sensors.

    PubMed

    Singh, Eric; Meyyappan, M; Nalwa, Hari Singh

    2017-10-11

    Wearable electronics is expected to be one of the most active research areas in the next decade; therefore, nanomaterials possessing high carrier mobility, optical transparency, mechanical robustness and flexibility, lightweight, and environmental stability will be in immense demand. Graphene is one of the nanomaterials that fulfill all these requirements, along with other inherently unique properties and convenience to fabricate into different morphological nanostructures, from atomically thin single layers to nanoribbons. Graphene-based materials have also been investigated in sensor technologies, from chemical sensing to detection of cancer biomarkers. The progress of graphene-based flexible gas and chemical sensors in terms of material preparation, sensor fabrication, and their performance are reviewed here. The article provides a brief introduction to graphene-based materials and their potential applications in flexible and stretchable wearable electronic devices. The role of graphene in fabricating flexible gas sensors for the detection of various hazardous gases, including nitrogen dioxide (NO2), ammonia (NH3), hydrogen (H2), hydrogen sulfide (H2S), carbon dioxide (CO2), sulfur dioxide (SO2), and humidity in wearable technology, is discussed. In addition, applications of graphene-based materials are also summarized in detecting toxic heavy metal ions (Cd, Hg, Pb, Cr, Fe, Ni, Co, Cu, Ag), and volatile organic compounds (VOCs) including nitrobenzene, toluene, acetone, formaldehyde, amines, phenols, bisphenol A (BPA), explosives, chemical warfare agents, and environmental pollutants. The sensitivity, selectivity and strategies for excluding interferents are also discussed for graphene-based gas and chemical sensors. The challenges for developing future generation of flexible and stretchable sensors for wearable technology that would be usable for the Internet of Things (IoT) are also highlighted.

  5. DG Planning with Amalgamation of Operational and Reliability Considerations

    NASA Astrophysics Data System (ADS)

    Battu, Neelakanteshwar Rao; Abhyankar, A. R.; Senroy, Nilanjan

    2016-04-01

    Distributed Generation has been playing a vital role in dealing issues related to distribution systems. This paper presents an approach which provides policy maker with a set of solutions for DG placement to optimize reliability and real power loss of the system. Optimal location of a Distributed Generator is evaluated based on performance indices derived for reliability index and real power loss. The proposed approach is applied on a 15-bus radial distribution system and a 18-bus radial distribution system with conventional and wind distributed generators individually.

  6. Simulations of Micropumps Based on Tilted Flexible Fibers

    NASA Astrophysics Data System (ADS)

    Hancock, Matthew; Elabbasi, Nagi; Demirel, Melik

    2015-11-01

    Pumping liquids at low Reynolds numbers is challenging because of the principle of reversibility. We report here a class of microfluidic pump designs based on tilted flexible structures that combines the concepts of cilia (flexible elastic elements) and rectifiers (e.g., Tesla valves, check valves). We demonstrate proof-of-concept with 2D and 3D fluid-structure interaction (FSI) simulations in COMSOL Multiphysics®of micropumps consisting of a source for oscillatory fluidic motion, e.g. a piston, and a channel lined with tilted flexible rods or sheets to provide rectification. When flow is against the rod tilt direction, the rods bend backward, narrowing the channel and increasing flow resistance; when flow is in the direction of rod tilt, the rods bend forward, widening the channel and decreasing flow resistance. The 2D and 3D simulations involve moving meshes whose quality is maintained by prescribing the mesh displacement on guide surfaces positioned on either side of each flexible structure. The prescribed displacement depends on structure bending and maintains mesh quality even for large deformations. Simulations demonstrate effective pumping even at Reynolds numbers as low as 0.001. Because rod rigidity may be specified independently of Reynolds number, in principle, rod rigidity may be reduced to enable pumping at arbitrarily low Reynolds numbers.

  7. Overexpression of two chrysanthemum DgDREB1 group genes causing delayed flowering or dwarfism in Arabidopsis.

    PubMed

    Tong, Zheng; Hong, Bo; Yang, Yingjie; Li, Qiuhua; Ma, Nan; Ma, Chao; Gao, Junping

    2009-09-01

    We isolated 13 DREB1 (dehydration responsive element binding factor 1) genes from chrysanthemum and further divided them into three groups, DgDREB1A, DgDREB1B and DgDREB1C, based on the phylogenetic analysis. Each group showed their unique expression patterns under cold, dehydration and salt stress conditions. Arabidopsis plants overexpressing DgDREB1A (1A plants) exhibited significantly stronger tolerance to freezing and drought than those overexpressing DgDREB1B (1B plants) and the control plants. In addition, 1A plants showed delayed flowering, but not dwarfism; while 1B plants showed dwarfism, but not delayed flowering. In 1A plants, the expression of three stress-related DREB1-downstream genes, COR47, COR15A, and RD29A, was strongly induced while the expression of CO and FT, two photoperiod responsive flowering-time genes, was inhibited. In 1B plants, the expression of GA2ox7, a GA-deactivation enzyme gene, was dramatically enhanced. The results above strongly suggest that members from different DgDREB1 groups may have distinct effects on plant development: DgDREB1A may be involved in photoperiod-related flowering-time determination and DgDREB1B in GA-mediated plant development.

  8. All-transparent graphene-based flexible pressure sensor array

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Wu, Yichuan; Wang, Xudong; Wang, Xiaohao

    2017-03-01

    In this work, we propose and demonstrate a flexible capacitive tactile sensor array based on graphene served as electrodes. The sensor array consists of 3 × 3 units with 3 mm spatial resolution, similar to that of human skin. Each unit has three layers. The middle layer with microstructured PDMS served as an insulator is sandwiched by two perpendicular graphene-based electrodes. The size of each unit is 3 mm × 3 mm and the initial capacitance is about 0.2 pF. High sensitivities of 0.73 kPa-1 between 0 and 1.2 kPa and 0.26 kPa-1 between 1.2 and 2.5 kPa were achieved on the fabricated graphene pressure sensors. The proposed flexible pressure sensor array shows a great potential on the application of electric skin or 3D touch control.

  9. The flexible grinding technology based on the electric current control

    NASA Astrophysics Data System (ADS)

    Peng, Liwen; Yao, Bin; Li, Fei; Wang, Xiao; Yao, Boshi

    2012-01-01

    A flexible grinding technology based on the electric current control is presented to resolve the problem of low rigidity of PCB during grinding, the thickness of which varies from 0.1mm up to 3.5 mm. The comparative results between the real-time current and the setting current in the process of grinding control the frequency and the number of servo pulse, and then the servo motor adjusts the grinding depth of brushing roller at several different rotational speeds, namely, realizing the constant grinding force during grinding. The results show that the PCB can be grinded efficiently and accurately by means of the flexible grinding technology based on the electric current control.

  10. 77 FR 2236 - Airworthiness Directives; DG Flugzeugbau GmbH Sailplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-17

    ... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; DG Flugzeugbau GmbH... earlier NPRM for DG Flugzeugbau GmbH DG-500 Elan series sailplanes and Models DG-500M and DG-500MB powered... information identified in this proposed AD, DG Flugzeugbau GmbH, Otto-Lilienthal-Weg 2, 76646 Bruchsal...

  11. Fabrication, Characterization, and Applications of Graphene-based Flexible Films

    NASA Astrophysics Data System (ADS)

    Naik, Gautam

    Scientific interest in the field of nanotechnology has increased multifold since the discovery of multi-walled carbon nanotubes in the early 1990s. This further received a tremendous boost with the isolation of graphene, a single layer of sp2-hybridized carbon atoms, in 2004. Graphene has exceptional mechanical and electrical properties, which makes it an attractive candidate for electronics and composites. In order to realize the implementation of graphene for such applications, scalable production of graphene-based materials needs to be accomplished. Graphene oxide, the product of oxidation and exfoliation of graphite, is a promising precursor for bulk-production of graphene and graphene-like materials. The oxidation of graphite to synthesize graphene oxide results in the decoration of the basal plane of graphene with oxygen-containing functional groups. The presence of these functional groups makes graphene oxide strongly hydrophilic, making it soluble in water and a good candidate for solution-based processing. This hydrophilic nature of graphene oxide can also be utilized to fabricate highly sensitive and flexible humidity sensors, the results of which are included in this research. The fabricated humidity sensors show high sensitivity and a fast response time. A difference in response is observed at low and high humidity, with hysteresis observed at high humidity levels. A method to "reset" the sensor and a mechanism to explain the response is also proposed. Although the hydrophilic nature of graphene oxide makes it suitable for bulk processing, the presence of functional groups makes it defective and insulating. Graphene oxide needs to be reduced to make it electrically active. Numerous methodologies proposed for reduction of graphene oxide result in the simultaneous reduction and exfoliation of graphene oxide films. But for instances where flexible graphene films are required for certain applications, a method for reduction of graphene oxide flexible films

  12. A Flexible CSMA based MAC Protocol for Software Defined Radios

    NASA Astrophysics Data System (ADS)

    Puschmann, André; Kalil, Mohamed A.; Mitschele-Thiel, Andreas

    2012-09-01

    In this article, we propose a flexible CSMA based MAC protocol which facilitates research and experimentation using software define radios. The modular architecture allows to employ the protocol on platforms with heterogeneous hardware capabilities and provides the freedom to exchange or adapt the spectrum sensing mechanism without modifying the MAC protocol internals. We discuss the architecture of the protocol and provide structural details of its main components. Furthermore, we present throughput measurements that have been obtained on an example system using host-based spectrum sensing.

  13. An openstack-based flexible video transcoding framework in live

    NASA Astrophysics Data System (ADS)

    Shi, Qisen; Song, Jianxin

    2017-08-01

    With the rapid development of mobile live business, transcoding HD video is often a challenge for mobile devices due to their limited processing capability and bandwidth-constrained network connection. For live service providers, it's wasteful for resources to delay lots of transcoding server because some of them are free to work sometimes. To deal with this issue, this paper proposed an Openstack-based flexible transcoding framework to achieve real-time video adaption for mobile device and make computing resources used efficiently. To this end, we introduced a special method of video stream splitting and VMs resource scheduling based on access pressure prediction,which is forecasted by an AR model.

  14. Base-Displaced Intercalated Conformation of the 2-Amino-3-methylimidazo[4,5-f]quinoline N2-dG DNA Adduct Positioned at the Nonreiterated G1 in the NarI Restriction Site

    PubMed Central

    2016-01-01

    The conformation of an N2-dG adduct arising from the heterocyclic amine 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), a potent food mutagen, was determined in 5′-d(C1T2C3X4G5C6G7C8C9A10T11C12)-3′:5′-d(G13A14T15G16G17C18G19C20C21G22A23G24)-3′; X = N2-dG-IQ, in which the modified nucleotide X4 corresponds to G1 in the 5′-d(G1G2CG3CC)-3′ NarI restriction endonuclease site. Circular dichroism (CD) revealed blue shifts relative to the unmodified duplex, consistent with adduct-induced twisting, and a hypochromic effect for the IQ absorbance in the near UV region. NMR revealed that the N2-dG-IQ adduct adopted a base-displaced intercalated conformation in which the modified guanine remained in the anti conformation about the glycosidic bond, the IQ moiety intercalated into the duplex, and the complementary base C21 was displaced into the major groove. The processing of the N2-dG-IQ lesion by hpol η is sequence-dependent; when placed at the reiterated G3 position, but not at the G1 position, this lesion exhibits a propensity for frameshift replication [Choi, J. Y., et al. (2006) J. Biol. Chem., 281, 25297–25306]. The structure of the N2-dG-IQ adduct at the nonreiterated G1 position was compared to that of the same adduct placed at the G3 position [Stavros, K. M., et al. (2014) Nucleic Acids Res., 42, 3450–3463]. CD indicted minimal spectral differences between the G1 vs G3N2-dG-IQ adducts. NMR indicated that the N2-dG-IQ adduct exhibited similar base-displaced intercalated conformations at both the G1 and G3 positions. This result differed as compared to the corresponding C8-dG-IQ adducts placed at the same positions. The C8-dG-IQ adduct adopted a minor groove conformation when placed at position G1 but a base-displaced intercalated conformation when placed at position G3 in the NarI sequence. The present studies suggest that differences in lesion bypass by hpol η may be mediated by differences in the 3′-flanking sequences, perhaps modulating the ability

  15. A flexible framework for process-based hydraulic and water ...

    EPA Pesticide Factsheets

    Background Models that allow for design considerations of green infrastructure (GI) practices to control stormwater runoff and associated contaminants have received considerable attention in recent years. While popular, generally, the GI models are relatively simplistic. However, GI model predictions are being relied upon by many municipalities and State/Local agencies to make decisions about grey vs. green infrastructure improvement planning. Adding complexity to GI modeling frameworks may preclude their use in simpler urban planning situations. Therefore, the goal here was to develop a sophisticated, yet flexible tool that could be used by design engineers and researchers to capture and explore the effect of design factors and properties of the media used in the performance of GI systems at a relatively small scale. We deemed it essential to have a flexible GI modeling tool that is capable of simulating GI system components and specific biophysical processes affecting contaminants such as reactions, and particle-associated transport accurately while maintaining a high degree of flexibly to account for the myriad of GI alternatives. The mathematical framework for a stand-alone GI performance assessment tool has been developed and will be demonstrated.Framework Features The process-based model framework developed here can be used to model a diverse range of GI practices such as green roof, retention pond, bioretention, infiltration trench, permeable pavement and

  16. A flexible framework for process-based hydraulic and water ...

    EPA Pesticide Factsheets

    Background Models that allow for design considerations of green infrastructure (GI) practices to control stormwater runoff and associated contaminants have received considerable attention in recent years. While popular, generally, the GI models are relatively simplistic. However, GI model predictions are being relied upon by many municipalities and State/Local agencies to make decisions about grey vs. green infrastructure improvement planning. Adding complexity to GI modeling frameworks may preclude their use in simpler urban planning situations. Therefore, the goal here was to develop a sophisticated, yet flexible tool that could be used by design engineers and researchers to capture and explore the effect of design factors and properties of the media used in the performance of GI systems at a relatively small scale. We deemed it essential to have a flexible GI modeling tool that is capable of simulating GI system components and specific biophysical processes affecting contaminants such as reactions, and particle-associated transport accurately while maintaining a high degree of flexibly to account for the myriad of GI alternatives. The mathematical framework for a stand-alone GI performance assessment tool has been developed and will be demonstrated.Framework Features The process-based model framework developed here can be used to model a diverse range of GI practices such as green roof, retention pond, bioretention, infiltration trench, permeable pavement and

  17. Vibration of rotating-shaft design spindles with flexible bases

    NASA Astrophysics Data System (ADS)

    Tseng, Chaw-Wu

    The purpose of this study is to demonstrate an accurate mathematical model predicting forced vibration of rotating-shaft HDD spindle motors with flexible stationary parts. The mathematical model consists of three parts: a rotating part, a stationary part, and bearings. The rotating part includes a flexible hub, a flexible shaft press-fit into the hub, and N elastic disks mounted on the hub. The stationary part can include motor bracket (stator), base casting, and top cover. The bearings under consideration can be ball bearings or hydrodynamic bearings (HDB). The rotating disks are modelled through the classical plate theory. The rotating part (except the disks) and the stationary part are modelled through finite element analyses (FEA). With mode shapes and natural frequencies obtained from FEA, the kinetic and potential energies of the rotating and stationary parts are formulated and discretized to compensate for the gyroscopic effects from rotation. Finally, use of Lagrange equation results in the equations of motion. To verify the mathematical model, frequency response functions are measured experimentally for an HDB spindle carrying two identical disks at motor and drive levels. Experimental measurements agree very well with theoretical predictions not only in resonance frequency but also in resonance amplitude.

  18. Testing of the coping flexibility hypothesis based on the dual-process theory: Relationships between coping flexibility and depressive Symptoms.

    PubMed

    Kato, Tsukasa

    2015-12-15

    According to the dual-process theory of coping flexibility (Kato, 2012), coping flexibility is the ability to discontinue an ineffective coping strategy (i.e., evaluation coping process) and implement an alternative strategy (i.e., adaptive coping process). The coping flexibility hypothesis (CFH) proposes that the ability to engage in flexible coping is related to better psychological functioning and physical health, including less depression. I the present study, participants were 393 American Whites, 429 Australian Whites, and 496 Chinese, selected from the data pool of the 2013 Coping and Health Survey (see Kato, 2014b). They completed both the Coping Flexibility Scale (Kato, 2012), which is based on the dual-process theory of coping flexibility, and the Center for Epidemiologic Studies Depression Scale (CES-D). For all nationalities and genders, evaluation coping and adaptive coping were significantly correlated with lower levels of depressive symptoms. Structural equation modeling revealed that evaluation coping was associated with lower depressive symptoms for all nationalities and genders, whereas no significant relationships between adaptive coping and depressive symptoms were found for any nationalities. Our results partially supported that the CFH fits with the dual-process theory of coping flexibility.

  19. Transparent and flexible force sensor array based on optical waveguide.

    PubMed

    Kim, Youngsung; Park, Suntak; Park, Seung Koo; Yun, Sungryul; Kyung, Ki-Uk; Sun, Kyung

    2012-06-18

    This paper suggests a force sensor array measuring contact force based on intensity change of light transmitted throughout optical waveguide. For transparency and flexibility of the sensor, two soft prepolymers with different refractive index have been developed. The optical waveguide consists of two cladding layers and a core layer. The top cladding layer is designed to allow light scattering at the specific area in response to finger contact. The force sensor shows a distinct tendency that output intensity decreases with input force and measurement range is from 0 to -13.2 dB.

  20. Nanocrystal-based complementary inverters constructed on flexible plastic substrates.

    PubMed

    Jang, Jaewon; Cho, Kyoungah; Yun, Junggwon; Kim, Sangsig

    2013-05-01

    We demonstrate a nanocrystal (NC)-based complementary inverter constructed on a flexible plastic substrate. The NC-based complementary inverter consists of n-type HgSe NC- and p-type HgTe NC-based thin-film transistors (TFTs). Solid films on a plastic substrate obtained from HgSe and HgTe nanocrystals by thermal transformation are utilized as the n- and p-channel layers in these TFTs, respectively. The electrical properties of these component TFTs on unstrained and strained substrates are characterized and the performance of the inverter on the flexible substrate is investigated. The inverter on the unstrained substrate exhibits a logic gain of about 8, a logic swing of 90%, and a noise margin of 2.0 V. The characteristics of the inverter are changed under tensile and compressive strains, but not very significantly. Moreover, a comparison of the electrical characteristics of the n- and p-channel TFTs and the inverter is made in this paper.

  1. Flexible Molybdenum Electrodes towards Designing Affinity Based Protein Biosensors

    PubMed Central

    Kamakoti, Vikramshankar; Panneer Selvam, Anjan; Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Prasad, Shalini

    2016-01-01

    Molybdenum electrode based flexible biosensor on porous polyamide substrates has been fabricated and tested for its functionality as a protein affinity based biosensor. The biosensor performance was evaluated using a key cardiac biomarker; cardiac Troponin-I (cTnI). Molybdenum is a transition metal and demonstrates electrochemical behavior upon interaction with an electrolyte. We have leveraged this property of molybdenum for designing an affinity based biosensor using electrochemical impedance spectroscopy. We have evaluated the feasibility of detection of cTnI in phosphate-buffered saline (PBS) and human serum (HS) by measuring impedance changes over a frequency window from 100 mHz to 1 MHz. Increasing changes to the measured impedance was correlated to the increased dose of cTnI molecules binding to the cTnI antibody functionalized molybdenum surface. We achieved cTnI detection limit of 10 pg/mL in PBS and 1 ng/mL in HS medium. The use of flexible substrates for designing the biosensor demonstrates promise for integration with a large-scale batch manufacturing process. PMID:27438863

  2. Flexible Molybdenum Electrodes towards Designing Affinity Based Protein Biosensors.

    PubMed

    Kamakoti, Vikramshankar; Panneer Selvam, Anjan; Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Prasad, Shalini

    2016-07-18

    Molybdenum electrode based flexible biosensor on porous polyamide substrates has been fabricated and tested for its functionality as a protein affinity based biosensor. The biosensor performance was evaluated using a key cardiac biomarker; cardiac Troponin-I (cTnI). Molybdenum is a transition metal and demonstrates electrochemical behavior upon interaction with an electrolyte. We have leveraged this property of molybdenum for designing an affinity based biosensor using electrochemical impedance spectroscopy. We have evaluated the feasibility of detection of cTnI in phosphate-buffered saline (PBS) and human serum (HS) by measuring impedance changes over a frequency window from 100 mHz to 1 MHz. Increasing changes to the measured impedance was correlated to the increased dose of cTnI molecules binding to the cTnI antibody functionalized molybdenum surface. We achieved cTnI detection limit of 10 pg/mL in PBS and 1 ng/mL in HS medium. The use of flexible substrates for designing the biosensor demonstrates promise for integration with a large-scale batch manufacturing process.

  3. Dendritic-metasurface-based flexible broadband microwave absorbers

    NASA Astrophysics Data System (ADS)

    Wang, Mei; Weng, Bin; Zhao, Jing; Zhao, Xiaopeng

    2017-06-01

    Based on the dendritic metasurface model, a type of flexible and lightweight microwave absorber (MA) comprising resistance film array with dendritic slot (RFADS), dielectric material, and metal plate is proposed. A broadband absorptivity of >80% is obtained both from simulation and experiment at frequency ranges of 3.0-9.2 and 3.2-9.00 GHz, respectively. And the thickness of MA is 5 mm, which is only 0.05λ _{low}, or 0.15λ _ {high}, where the λ _{low} and the λ _{high} are the beginning and the end of the working frequency. By combining this metasurface-based MA with the dendritic-resistance-film-based microwave metasurface absorber (MMA), we designed a broadband MMA. The simulations and experiments showed that this kind of MMA can absorb the radiation effectively at a wide frequency range 4.5-17.5 GHz. And the thickness of this combined MMA is 4 mm. All the structures showed their insensitivity to the incident angle (0°-40°) and the polarization of the incident wave because of their structural symmetry. In addition, the small thickness, low apparent density, and flexibility made those structures possess the advantages of being applied in microwave stealth and radar cross-section (RCS) reduction.

  4. A ph sensor based on a flexible substrate

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Ding

    pH sensor is an essential component used in many chemical, food, and bio-material industries. Conventional glass electrodes have been used to construct pH sensors, however, have some disadvantages. Glass electrodes are easily affected by alkaline or HF solution, they require a high input impedance pH meter, they often exhibit a sluggish response. In some specific applications, it is also difficult to use glass electrodes for in vivo biomedical or food monitoring applications due to the difficulty of size miniaturization, planarization and polymerization based on current manufacturing technologies. In this work, we have demonstrated a novel flexible pH sensor based on low-cost sol-gel fabrication process of iridium oxide (IrOx) sensing film (IROF). A pair of flexible miniature IrOx/AgCl electrode generated the action potential from the solution by electrochemical mechanism to obtain the pH level of the reagent. The fabrication process including sol-gel, thermal oxidation, and the electro-plating process of the silver chloride (AgCl) reference electrode were reported in the work. The IrOx film was verified and characterized using electron dispersive analysis (EDAX), scanning electron microscope (SEM), and x-ray diffraction (XRD). The flexible pH sensor's performance and characterization have been investigated with different testing parameters such as sensitivity, response time, stability, reversibility, repeatability, selectivity and temperature dependence. The flexible IrOx pH sensors exhibited promising sensing performance with a near-Nernstian response of sensitivity which is between --51.1mV/pH and --51.7mV/pH in different pH levels ranging from 1.5 to 12 at 25°C. Two applications including gastroesophageal reflux disease (GERD) diagnosis and food freshness wireless monitoring using our micro-flexible IrOx pH sensors were demonstrated. For the GERD diagnosing system, we embedded the micro flexible pH sensor on a 1.2cmx3.8cm of the capsule size of wireless sensor

  5. Optimization of a stand-alone Solar PV-Wind-DG Hybrid System for Distributed Power Generation at Sagar Island

    NASA Astrophysics Data System (ADS)

    Roy, P. C.; Majumder, A.; Chakraborty, N.

    2010-10-01

    An estimation of a stand-alone solar PV and wind hybrid system for distributed power generation has been made based on the resources available at Sagar island, a remote area distant to grid operation. Optimization and sensitivity analysis has been made to evaluate the feasibility and size of the power generation unit. A comparison of the different modes of hybrid system has been studied. It has been estimated that Solar PV-Wind-DG hybrid system provides lesser per unit electricity cost. Capital investment is observed to be lesser when the system run with Wind-DG compared to Solar PV-DG.

  6. Strength gain and cementation of flexible pavement bases (revised)

    NASA Astrophysics Data System (ADS)

    Zimpfer, W. H.

    1991-02-01

    The strength gain of selected carbonate Florida Department of Transportation (FDOT) flexible pavement base materials is addressed. The gain in strength after aging of base sections constructed in an inside environment and outside environment was measured. Scanning electron microscope (SEM) photographs were also taken and examined to determine changes in structure. The materials investigated were: (1) bank run shell; (2) limerock; and (3) cemented coquina. Strength tests were the Clegg Impact Value (CIV) performed on inside and outside sections and a rigid plate test performed on the inside section. There was a small gain in strength for all three carbonate bases after 22 months. Changes in the matrix particles were observed in the SEM study. The three complementary phases (CIV, plate modulus, and SEM) tend to reinforce each other, indicating a small gain in strength.

  7. Early optical follow-up of the nearby active star DG CVn during its 2014 superflare

    NASA Astrophysics Data System (ADS)

    Caballero-García, M. D.; Šimon, V.; Jelínek, M.; Castro-Tirado, A. J.; Cwiek, A.; Claret, A.; Opiela, R.; Żarnecki, A. F.; Gorosabel, J.; Oates, S. R.; Cunniffe, R.; Jeong, S.; Hudec, R.; Sokolov, V. V.; Makarov, D. I.; Tello, J. C.; Lara-Gil, O.; Kubánek, P.; Guziy, S.; Bai, J.; Fan, Y.; Wang, C.; Park, I. H.

    2015-10-01

    DG Canum Venaticorum (DG CVn) is a binary system in which one of the components is an M-type dwarf ultrafast rotator, only three of which are known in the solar neighbourhood. Observations of DG CVn by the Swift satellite and several ground-based observatories during its superflare event on 2014 allowed us to perform a complete hard X-ray-optical follow-up of a superflare from the red-dwarf star. The observations support the fact that the superflare can be explained by the presence of (a) large active region(s) on the surface of the star. Such activity is similar to the most extreme solar flaring events. This points towards a plausible extrapolation between the behaviour from the most active red-dwarf stars and the processes occurring in the Sun.

  8. Active and Reactive Power Optimal Dispatch Associated with Load and DG Uncertainties in Active Distribution Network

    NASA Astrophysics Data System (ADS)

    Gao, F.; Song, X. H.; Zhang, Y.; Li, J. F.; Zhao, S. S.; Ma, W. Q.; Jia, Z. Y.

    2017-05-01

    In order to reduce the adverse effects of uncertainty on optimal dispatch in active distribution network, an optimal dispatch model based on chance-constrained programming is proposed in this paper. In this model, the active and reactive power of DG can be dispatched at the aim of reducing the operating cost. The effect of operation strategy on the cost can be reflected in the objective which contains the cost of network loss, DG curtailment, DG reactive power ancillary service, and power quality compensation. At the same time, the probabilistic constraints can reflect the operation risk degree. Then the optimal dispatch model is simplified as a series of single stage model which can avoid large variable dimension and improve the convergence speed. And the single stage model is solved using a combination of particle swarm optimization (PSO) and point estimate method (PEM). Finally, the proposed optimal dispatch model and method is verified by the IEEE33 test system.

  9. Facilitated charge transport in ternary interconnected electrodes for flexible supercapacitors with excellent power characteristics.

    PubMed

    Chen, Wanjun; He, Yongmin; Li, Xiaodong; Zhou, Jinyuan; Zhang, Zhenxing; Zhao, Changhui; Gong, Chengshi; Li, Shuankui; Pan, Xiaojun; Xie, Erqing

    2013-12-07

    Flexible and high performance supercapacitors are very critical in modern society. In order to develop the flexible supercapacitors with high power density, free-standing and flexible three-dimensional graphene/carbon nanotubes/MnO2 (3DG/CNTs/MnO2) composite electrodes with interconnected ternary 3D structures were fabricated, and the fast electron and ion transport channels were effectively constructed in the rationally designed electrodes. Consequently, the obtained 3DG/CNTs/MnO2 composite electrodes exhibit superior specific capacitance and rate capability compared to 3DG/MnO2 electrodes. Furthermore, the 3DG/CNTs/MnO2 based asymmetric supercapacitor demonstrates the maximum energy and power densities of 33.71 W h kg(-1) and up to 22,727.3 W kg(-1), respectively. Moreover, the asymmetric supercapacitor exhibits excellent cycling stability with 95.3% of the specific capacitance maintained after 1000 cycle tests. Our proposed synthesis strategy to construct the novel ternary 3D structured electrodes can be efficiently applied to other high performance energy storage/conversion systems.

  10. Flexible textile-based strain sensor induced by contacts

    NASA Astrophysics Data System (ADS)

    Zhang, Hui

    2015-10-01

    In this paper, the contact effects are used as the key sensing element to develop flexible textile-structured strain sensors. The structures of the contact are analyzed theoretically and the contact resistances are investigated experimentally. The electromechanical properties of the textiles are investigated to find the key factors which determine the sensitivity, repeatability, and linearity of the sensor. The sensing mechanism is based on the change of contact resistance induced by the change of the configuration of the textiles. In order to improve the performance of the textile strain sensor, the contact resistance is designed based on the electromechanical properties of the fabric. It can be seen from the results that the performance of the sensor is largely affected by the structure of the contacts, which are determined by the morphology of fiber surface and the structures of the yarn and fabric.

  11. KAT: A Flexible XML-based Knowledge Authoring Environment

    PubMed Central

    Hulse, Nathan C.; Rocha, Roberto A.; Del Fiol, Guilherme; Bradshaw, Richard L.; Hanna, Timothy P.; Roemer, Lorrie K.

    2005-01-01

    As part of an enterprise effort to develop new clinical information systems at Intermountain Health Care, the authors have built a knowledge authoring tool that facilitates the development and refinement of medical knowledge content. At present, users of the application can compose order sets and an assortment of other structured clinical knowledge documents based on XML schemas. The flexible nature of the application allows the immediate authoring of new types of documents once an appropriate XML schema and accompanying Web form have been developed and stored in a shared repository. The need for a knowledge acquisition tool stems largely from the desire for medical practitioners to be able to write their own content for use within clinical applications. We hypothesize that medical knowledge content for clinical use can be successfully created and maintained through XML-based document frameworks containing structured and coded knowledge. PMID:15802477

  12. Flexible silicon-based alpha-particle detector

    NASA Astrophysics Data System (ADS)

    Schuster, C. S.; Smith, B. R.; Sanderson, B. J.; Mullins, J. T.; Atkins, J.; Joshi, P.; McNamara, L.; Krauss, T. F.; Jenkins, D. G.

    2017-08-01

    The detection of alpha particles in the field can be challenging due to their short range in air of often only a few centimeters or less. This short range is a particular issue for measuring radiation inside contaminated pipework in the nuclear industry, for which there is currently no simple method available without cutting the pipes open. Here, we propose an approach for low cost, rapid, and safe identification of internally contaminated pipework based on a flexible 30 × 10 mm2 sheet of 50 μm thin crystalline silicon. Following established fabrication steps of pn-junction diodes, we have constructed a device with a signal-to-noise ratio of >20 in response to 5.5 MeV alpha-particles using a bespoke amplifier circuit. As flexible detectors may readily conform to a curved surface and are able to adapt to the curvature of a given pipeline, our prototype device stands out as a viable solution for nuclear decommissioning and related applications.

  13. Protein-based flexible whispering gallery mode resonators

    NASA Astrophysics Data System (ADS)

    Yilmaz, Huzeyfe; Pena-Francesch, Abdon; Xu, Linhua; Shreiner, Robert; Jung, Huihun; Huang, Steven H.; Özdemir, Sahin K.; Demirel, Melik C.; Yang, Lan

    2016-02-01

    The idea of creating photonics tools for sensing, imaging and material characterization has long been pursued and many achievements have been made. Approaching the level of solutions provided by nature however is hindered by routine choice of materials. To this end recent years have witnessed a great effort to engineer mechanically flexible photonic devices using polymer substrates. On the other hand, biodegradability and biocompatibility still remains to be incorporated. Hence biomimetics holds the key to overcome the limitations of traditional materials in photonics design. Natural proteins such as sucker ring teeth (SRT) and silk for instance have remarkable mechanical and optical properties that exceed the endeavors of most synthetic and natural polymers. Here we demonstrate for the first time, toroidal whispering gallery mode resonators (WGMR) fabricated entirely from protein structures such as SRT of Loligo vulgaris (European squid) and silk from Bombyx mori. We provide here complete optical and material characterization of proteinaceous WGMRs, revealing high quality factors in microscale and enhancement of Raman signatures by a microcavity. We also present a most simple application of a WGMR as a natural protein add-drop filter, made of SRT protein. Our work shows that with protein-based materials, optical, mechanical and thermal properties can be devised at the molecular level and it lays the groundwork for future eco-friendly, flexible photonics device design.

  14. Flexible non-volatile memory devices based on organic semiconductors

    NASA Astrophysics Data System (ADS)

    Cosseddu, Piero; Casula, Giulia; Lai, Stefano; Bonfiglio, Annalisa

    2015-09-01

    The possibility of developing fully organic electronic circuits is critically dependent on the ability to realize a full set of electronic functionalities based on organic devices. In order to complete the scene, a fundamental element is still missing, i.e. reliable data storage. Over the past few years, a considerable effort has been spent on the development and optimization of organic polymer based memory elements. Among several possible solutions, transistor-based memories and resistive switching-based memories are attracting a great interest in the scientific community. In this paper, a route for the fabrication of organic semiconductor-based memory devices with performances beyond the state of the art is reported. Both the families of organic memories will be considered. A flexible resistive memory based on a novel combination of materials is presented. In particular, high retention time in ambient conditions are reported. Complementary, a low voltage transistor-based memory is presented. Low voltage operation is allowed by an hybrid, nano-sized dielectric, which is also responsible for the memory effect in the device. Thanks to the possibility of reproducibly fabricating such device on ultra-thin substrates, high mechanical stability is reported.

  15. POLARIMETRY OF DG TAU AT 350 mum

    SciTech Connect

    Krejny, M.; Matthews, T. G.; Novak, G.; Cho, J.; Li, H.; Shinnaga, H.; Vaillancourt, J. E.

    2009-11-01

    We present the first 350 mum polarization measurement for the disk of the T Tauri star (TTS) DG Tau. The data were obtained using the SHARP polarimeter at the Caltech Submillimeter Observatory. We measured normalized Stokes parameters q= -0.0086 +- 0.0060 and u = -0.0012 +- 0.0061, which gives a 2sigma upper limit for the percent polarization of 1.7%. We obtain information about the polarization spectrum by comparing our 350 mum measurement with an 850 mum polarization detection previously published for this source. Comparing the two measurements in Stokes space (not in percent polarization) shows that the two data points are not consistent, i.e., either the degree of polarization or the angle of polarization (or both) must change significantly as one moves from 850 mum to 350 mum. This conclusion concerning the polarization spectrum disagrees with the predictions of a recent model for TTS disk polarization. We show that this discrepancy can be explained by optical depth effects. Specifically, we demonstrate that if one were to add more mass to the model disk, one would expect to obtain a model polarization spectrum in which the polarization degree falls sharply with increasing frequency, consistent with the observations at the two wavelengths. We suggest that multiwavelength polarimetry of TTS disk emission may provide a promising method for probing the opacity of TTS disks.

  16. DEVELOPMENT OF HFE SECTIONS OF DG-1145.

    SciTech Connect

    HIGGINS,J.C.; OHARA, J.M.; BONGARRA, J.

    2007-03-26

    For the licensing of the current fleet of commercial nuclear power plants (NPPs), the Nuclear Regulatory Commission (NRC) used two key documents, NUREG-0800 and Regulatory Guide (RG) 1.70. RG 1.70 provided guidance to applicants on the contents needed in their Safety Analysis Reports (SARs) submitted as part of their application to construct or operate an NPP. NUREG-0800, the NRC Standard Review Plan (SRP), provides guidance to the NRR staff reviewers on performing their safety reviews of these applications. As part of the preparation for a new wave of improved NPP designs the NRC is in the process of updating the SRP and is also developing a new RG designated as draft RG or DG-1145, ''Combined License Applications for Nuclear Power Plants (LWR Edition).'' This will eventually become RG 1.206 and will take the place of RG 1.70. This will provide guidance for combined license (COL) applicants, as well as for other 10CFR Part 52 variations that are permitted.

  17. 76 FR 76330 - Airworthiness Directives; DG Flugzeugbau GmbH Sailplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; DG Flugzeugbau GmbH... ] Flugzeugbau GmbH Models DG-500 Elan Orion sailplanes and DG-500M and DG-500MB powered sailplanes. This... identified in this proposed AD, contact DG Flugzeugbau GmbH, Otto-Lilienthal-Weg 2, 76646 Bruchsal, Federal...

  18. A flexible piezoelectric force sensor based on PVDF fabrics

    NASA Astrophysics Data System (ADS)

    Wang, Y. R.; Zheng, J. M.; Ren, G. Y.; Zhang, P. H.; Xu, C.

    2011-04-01

    Polyvinylidene fluoride (PVDF) film has been widely investigated as a sensor and transducer material due to its high piezo-, pyro- and ferroelectric properties. To activate these properties, PVDF films require a mechanical treatment, stretching or poling. In this paper, we report on a force sensor based on PVDF fabrics with excellent flexibility and breathability, to be used as a specific human-related sensor. PVDF nanofibrous fabrics were prepared by using an electrospinning unit and characterized by means of scanning electron microscopy (SEM), FTIR spectroscopy and x-ray diffraction. Preliminary force sensors have been fabricated and demonstrated excellent sensitivity and response to external mechanical forces. This implies that promising applications can be made for sensing garment pressure, blood pressure, heartbeat rate, respiration rate and accidental impact on the human body.

  19. CFD Based Computations of Flexible Helicopter Blades for Stability Analysis

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    2011-01-01

    As a collaborative effort among government aerospace research laboratories an advanced version of a widely used computational fluid dynamics code, OVERFLOW, was recently released. This latest version includes additions to model flexible rotating multiple blades. In this paper, the OVERFLOW code is applied to improve the accuracy of airload computations from the linear lifting line theory that uses displacements from beam model. Data transfers required at every revolution are managed through a Unix based script that runs jobs on large super-cluster computers. Results are demonstrated for the 4-bladed UH-60A helicopter. Deviations of computed data from flight data are evaluated. Fourier analysis post-processing that is suitable for aeroelastic stability computations are performed.

  20. Two-dimensional materials based transparent flexible electronics

    NASA Astrophysics Data System (ADS)

    Yu, Lili; Ha, Sungjae; El-Damak, Dina; McVay, Elaine; Ling, Xi; Chandrakasan, Anantha; Kong, Jing; Palacios, Tomas

    2015-03-01

    Two-dimensional (2D) materials have generated great interest recently as a set of tools for electronics, as these materials can push electronics beyond traditional boundaries. These materials and their heterostructures offer excellent mechanical flexibility, optical transparency, and favorable transport properties for realizing electronic, sensing, and optical systems on arbitrary surfaces. These thin, lightweight, bendable, highly rugged and low-power devices may bring dramatic changes in information processing, communications and human-electronic interaction. In this report, for the first time, we demonstrate two complex transparent flexible systems based on molybdenum disulfide (MoS2) grown by chemical vapor method: a transparent active-matrix organic light-emitting diode (AMOLED) display and a MoS2 wireless link for sensor nodes. The 1/2 x 1/2 square inch, 4 x 5 pixels AMOLED structures are built on transparent substrates, containing MoS2 back plane circuit and OLEDs integrated on top of it. The back plane circuit turns on and off the individual pixel with two MoS2 transistors and a capacitor. The device is designed and fabricated based on SPICE simulation to achieve desired DC and transient performance. We have also demonstrated a MoS2 wireless self-powered sensor node. The system consists of as energy harvester, rectifier, sensor node and logic units. AC signals from the environment, such as near-field wireless power transfer, piezoelectric film and RF signal, are harvested, then rectified into DC signal by a MoS2 diode. CIQM, CICS, SRC.

  1. Flexible Transparent Supercapacitors Based on Hierarchical Nanocomposite Films.

    PubMed

    Chen, Fanhong; Wan, Pengbo; Xu, Haijun; Sun, Xiaoming

    2017-05-31

    Flexible transparent electronic devices have recently gained immense popularity in smart wearable electronics and touch screen devices, which accelerates the development of the portable power sources with reliable flexibility, robust transparency and integration to couple these electronic devices. For potentially coupled as energy storage modules in various flexible, transparent and portable electronics, the flexible transparent supercapacitors are developed and assembled from hierarchical nanocomposite films of reduced graphene oxide (rGO) and aligned polyaniline (PANI) nanoarrays upon their synergistic advantages. The nanocomposite films are fabricated from in situ PANI nanoarrays preparation in a blended solution of aniline monomers and rGO onto the flexible, transparent, and stably conducting film (FTCF) substrate, which is obtained by coating silver nanowires (Ag NWs) layer with Meyer rod and then coating of rGO layer on polyethylene terephthalate (PET) substrate. Optimization of the transparency, the specific capacitance, and the flexibility resulted in the obtained all-solid state nanocomposite supercapacitors exhibiting enhanced capacitance performance, good cycling stability, excellent flexibility, and superior transparency. It provides promising application prospects for exploiting flexible, low-cost, transparent, and high-performance energy storage devices to be coupled into various flexible, transparent, and wearable electronic devices.

  2. Evaluation of base widening methods on flexible pavements in Wyoming

    NASA Astrophysics Data System (ADS)

    Offei, Edward

    The surface transportation system forms the biggest infrastructure investment in the United States of which the roadway pavement is an integral part. Maintaining the roadways can involve rehabilitation in the form of widening, which requires a longitudinal joint between the existing and new pavement sections to accommodate wider travel lanes, additional travel lanes or modification to shoulder widths. Several methods are utilized for the joint construction between the existing and new pavement sections including vertical, tapered and stepped joints. The objective of this research is to develop a formal recommendation for the preferred joint construction method that provides the best base layer support for the state of Wyoming. Field collection of Dynamic Cone Penetrometer (DCP) data, Falling Weight Deflectometer (FWD) data, base samples for gradation and moisture content were conducted on 28 existing and 4 newly constructed pavement widening projects. A survey of constructability issues on widening projects as experienced by WYDOT engineers was undertaken. Costs of each joint type were compared as well. Results of the analyses indicate that the tapered joint type showed relatively better pavement strength compared to the vertical joint type and could be the preferred joint construction method. The tapered joint type also showed significant base material savings than the vertical joint type. The vertical joint has an 18% increase in cost compared to the tapered joint. This research is intended to provide information and/or recommendation to state policy makers as to which of the base widening joint techniques (vertical, tapered, stepped) for flexible pavement provides better pavement performance.

  3. Incident Duration Modeling Using Flexible Parametric Hazard-Based Models

    PubMed Central

    2014-01-01

    Assessing and prioritizing the duration time and effects of traffic incidents on major roads present significant challenges for road network managers. This study examines the effect of numerous factors associated with various types of incidents on their duration and proposes an incident duration prediction model. Several parametric accelerated failure time hazard-based models were examined, including Weibull, log-logistic, log-normal, and generalized gamma, as well as all models with gamma heterogeneity and flexible parametric hazard-based models with freedom ranging from one to ten, by analyzing a traffic incident dataset obtained from the Incident Reporting and Dispatching System in Beijing in 2008. Results show that different factors significantly affect different incident time phases, whose best distributions were diverse. Given the best hazard-based models of each incident time phase, the prediction result can be reasonable for most incidents. The results of this study can aid traffic incident management agencies not only in implementing strategies that would reduce incident duration, and thus reduce congestion, secondary incidents, and the associated human and economic losses, but also in effectively predicting incident duration time. PMID:25530753

  4. Flexible ferroelectric element based on van der Waals heteroepitaxy.

    PubMed

    Jiang, Jie; Bitla, Yugandhar; Huang, Chun-Wei; Do, Thi Hien; Liu, Heng-Jui; Hsieh, Ying-Hui; Ma, Chun-Hao; Jang, Chi-Yuan; Lai, Yu-Hong; Chiu, Po-Wen; Wu, Wen-Wei; Chen, Yi-Chun; Zhou, Yi-Chun; Chu, Ying-Hao

    2017-06-01

    We present a promising technology for nonvolatile flexible electronic devices: A direct fabrication of epitaxial lead zirconium titanate (PZT) on flexible mica substrate via van der Waals epitaxy. These single-crystalline flexible ferroelectric PZT films not only retain their performance, reliability, and thermal stability comparable to those on rigid counterparts in tests of nonvolatile memory elements but also exhibit remarkable mechanical properties with robust operation in bent states (bending radii down to 2.5 mm) and cycling tests (1000 times). This study marks the technological advancement toward realizing much-awaited flexible yet single-crystalline nonvolatile electronic devices for the design and development of flexible, lightweight, and next-generation smart devices with potential applications in electronics, robotics, automotive, health care, industrial, and military systems.

  5. Flexible ferroelectric element based on van der Waals heteroepitaxy

    PubMed Central

    Jiang, Jie; Bitla, Yugandhar; Huang, Chun-Wei; Do, Thi Hien; Liu, Heng-Jui; Hsieh, Ying-Hui; Ma, Chun-Hao; Jang, Chi-Yuan; Lai, Yu-Hong; Chiu, Po-Wen; Wu, Wen-Wei; Chen, Yi-Chun; Zhou, Yi-Chun; Chu, Ying-Hao

    2017-01-01

    We present a promising technology for nonvolatile flexible electronic devices: A direct fabrication of epitaxial lead zirconium titanate (PZT) on flexible mica substrate via van der Waals epitaxy. These single-crystalline flexible ferroelectric PZT films not only retain their performance, reliability, and thermal stability comparable to those on rigid counterparts in tests of nonvolatile memory elements but also exhibit remarkable mechanical properties with robust operation in bent states (bending radii down to 2.5 mm) and cycling tests (1000 times). This study marks the technological advancement toward realizing much-awaited flexible yet single-crystalline nonvolatile electronic devices for the design and development of flexible, lightweight, and next-generation smart devices with potential applications in electronics, robotics, automotive, health care, industrial, and military systems. PMID:28630922

  6. HiCoDG: a hierarchical data-gathering scheme using cooperative multiple mobile elements.

    PubMed

    Van Le, Duc; Oh, Hoon; Yoon, Seokhoon

    2014-12-17

    In this paper, we study mobile element (ME)-based data-gathering schemes in wireless sensor networks. Due to the physical speed limits of mobile elements, the existing data-gathering schemes that use mobile elements can suffer from high data-gathering latency. In order to address this problem, this paper proposes a new hierarchical and cooperative data-gathering (HiCoDG) scheme that enables multiple mobile elements to cooperate with each other to collect and relay data. In HiCoDG, two types of mobile elements are used: the mobile collector (MC) and the mobile relay (MR). MCs collect data from sensors and forward them to the MR, which will deliver them to the sink. In this work, we also formulated an integer linear programming (ILP) optimization problem to find the optimal trajectories for MCs and the MR, such that the traveling distance of MEs is minimized. Two variants of HiCoDG, intermediate station (IS)-based and cooperative movement scheduling (CMS)-based, are proposed to facilitate cooperative data forwarding from MCs to the MR. An analytical model for estimating the average data-gathering latency in HiCoDG was also designed. Simulations were performed to compare the performance of the IS and CMS variants, as well as a multiple traveling salesman problem (mTSP)-based approach. The simulation results show that HiCoDG outperforms mTSP in terms of latency. The results also show that CMS can achieve the lowest latency with low energy consumption.

  7. HiCoDG: A Hierarchical Data-Gathering Scheme Using Cooperative Multiple Mobile Elements †

    PubMed Central

    Van Le, Duc; Oh, Hoon; Yoon, Seokhoon

    2014-01-01

    In this paper, we study mobile element (ME)-based data-gathering schemes in wireless sensor networks. Due to the physical speed limits of mobile elements, the existing data-gathering schemes that use mobile elements can suffer from high data-gathering latency. In order to address this problem, this paper proposes a new hierarchical and cooperative data-gathering (HiCoDG) scheme that enables multiple mobile elements to cooperate with each other to collect and relay data. In HiCoDG, two types of mobile elements are used: the mobile collector (MC) and the mobile relay (MR). MCs collect data from sensors and forward them to the MR, which will deliver them to the sink. In this work, we also formulated an integer linear programming (ILP) optimization problem to find the optimal trajectories for MCs and the MR, such that the traveling distance of MEs is minimized. Two variants of HiCoDG, intermediate station (IS)-based and cooperative movement scheduling (CMS)-based, are proposed to facilitate cooperative data forwarding from MCs to the MR. An analytical model for estimating the average data-gathering latency in HiCoDG was also designed. Simulations were performed to compare the performance of the IS and CMS variants, as well as a multiple traveling salesman problem (mTSP)-based approach. The simulation results show that HiCoDG outperforms mTSP in terms of latency. The results also show that CMS can achieve the lowest latency with low energy consumption. PMID:25526356

  8. A flexible microcontroller-based data acquisition device.

    PubMed

    Hercog, Darko; Gergič, Bojan

    2014-06-02

    This paper presents a low-cost microcontroller-based data acquisition device. The key component of the presented solution is a configurable microcontroller-based device with an integrated USB transceiver and a 12-bit analogue-to-digital converter (ADC). The presented embedded DAQ device contains a preloaded program (firmware) that enables easy acquisition and generation of analogue and digital signals and data transfer between the device and the application running on a PC via USB bus. This device has been developed as a USB human interface device (HID). This USB class is natively supported by most of the operating systems and therefore any installation of additional USB drivers is unnecessary. The input/output peripheral of the presented device is not static but rather flexible, and could be easily configured to customised needs without changing the firmware. When using the developed configuration utility, a majority of chip pins can be configured as analogue input, digital input/output, PWM output or one of the SPI lines. In addition, LabVIEW drivers have been developed for this device. When using the developed drivers, data acquisition and signal processing algorithms as well as graphical user interface (GUI), can easily be developed using a well-known, industry proven, block oriented LabVIEW programming environment.

  9. A Flexible Microcontroller-Based Data Acquisition Device

    PubMed Central

    Hercog, Darko; Gergič, Bojan

    2014-01-01

    This paper presents a low-cost microcontroller-based data acquisition device. The key component of the presented solution is a configurable microcontroller-based device with an integrated USB transceiver and a 12-bit analogue-to-digital converter (ADC). The presented embedded DAQ device contains a preloaded program (firmware) that enables easy acquisition and generation of analogue and digital signals and data transfer between the device and the application running on a PC via USB bus. This device has been developed as a USB human interface device (HID). This USB class is natively supported by most of the operating systems and therefore any installation of additional USB drivers is unnecessary. The input/output peripheral of the presented device is not static but rather flexible, and could be easily configured to customised needs without changing the firmware. When using the developed configuration utility, a majority of chip pins can be configured as analogue input, digital input/output, PWM output or one of the SPI lines. In addition, LabVIEW drivers have been developed for this device. When using the developed drivers, data acquisition and signal processing algorithms as well as graphical user interface (GUI), can easily be developed using a well-known, industry proven, block oriented LabVIEW programming environment. PMID:24892494

  10. Characterization and Prediction of Protein Flexibility Based on Structural Alphabets

    PubMed Central

    Liu, Bin

    2016-01-01

    Motivation. To assist efforts in determining and exploring the functional properties of proteins, it is desirable to characterize and predict protein flexibilities. Results. In this study, the conformational entropy is used as an indicator of the protein flexibility. We first explore whether the conformational change can capture the protein flexibility. The well-defined decoy structures are converted into one-dimensional series of letters from a structural alphabet. Four different structure alphabets, including the secondary structure in 3-class and 8-class, the PB structure alphabet (16-letter), and the DW structure alphabet (28-letter), are investigated. The conformational entropy is then calculated from the structure alphabet letters. Some of the proteins show high correlation between the conformation entropy and the protein flexibility. We then predict the protein flexibility from basic amino acid sequence. The local structures are predicted by the dual-layer model and the conformational entropy of the predicted class distribution is then calculated. The results show that the conformational entropy is a good indicator of the protein flexibility, but false positives remain a problem. The DW structure alphabet performs the best, which means that more subtle local structures can be captured by large number of structure alphabet letters. Overall this study provides a simple and efficient method for the characterization and prediction of the protein flexibility. PMID:27660756

  11. ACCUMULATION OF M1DG DNA ADDUCTS AFTER ...

    EPA Pesticide Factsheets

    ABSTRACT: Oxidative DNA damage is one of the key events leading to mutation and cancer. The present study examined the accumulation of M1dG DNA adducts, 3-(2’-deoxy-β-D-erythro-pentofuranosyl)-pyrimido[1,2-a]-purin-10(3H)-one, after single or yearly exposure to polyhalogenated aromatic hydrocarbons (PHAH) in order to test the role of oxidative DNA damage in PHAH carcinogenicity. The effect of PHAH exposure on the number of M1dG adducts was explored initially in female mice exposed to a single dose of either TCDD or a PHAH mixture. This study demonstrated that a single exposure to PHAH had no significant effect on the number of M1dG adducts compared to the corn oil control group. The role of M1dG adducts in PCB-induced carcinogenicity was further investigated in rats exposed for a year to PCB 153, PCB 126, or a mixture of the two. PCB 153 had no significant effect on M1dG adducts number in liver and brain tissues from the exposed rats compared to controls. However, high dose PCB 126 exposure resulted in M1dG adducts accumulation in the liver. More importantly, starting at low doses, co-administration of equal proportions of PCB 153 and PCB 126 resulted in dose-dependent increases in M1dG adducts accumulation in the liver. Interestingly, the result from co-administration of different amounts of PCB 153 with fixed amounts of PCB 126 demonstrated more M1dG adducts accumulation with higher doses of PCB 153. These results are consistent with the results from canc

  12. Design optimization of a fuzzy distributed generation (DG) system with multiple renewable energy sources

    NASA Astrophysics Data System (ADS)

    Ganesan, T.; Elamvazuthi, I.; Shaari, Ku Zilati Ku; Vasant, P.

    2012-09-01

    The global rise in energy demands brings major obstacles to many energy organizations in providing adequate energy supply. Hence, many techniques to generate cost effective, reliable and environmentally friendly alternative energy source are being explored. One such method is the integration of photovoltaic cells, wind turbine generators and fuel-based generators, included with storage batteries. This sort of power systems are known as distributed generation (DG) power system. However, the application of DG power systems raise certain issues such as cost effectiveness, environmental impact and reliability. The modelling as well as the optimization of this DG power system was successfully performed in the previous work using Particle Swarm Optimization (PSO). The central idea of that work was to minimize cost, minimize emissions and maximize reliability (multi-objective (MO) setting) with respect to the power balance and design requirements. In this work, we introduce a fuzzy model that takes into account the uncertain nature of certain variables in the DG system which are dependent on the weather conditions (such as; the insolation and wind speed profiles). The MO optimization in a fuzzy environment was performed by applying the Hopfield Recurrent Neural Network (HNN). Analysis on the optimized results was then carried out.

  13. Physics-based Morphology Analysis and Adjoint Optimization of Flexible Flapping Wings

    DTIC Science & Technology

    2016-08-30

    AFRL-AFOSR-VA-TR-2016-0349 Physics -based Morphology Analysis and Adjoint Optimization of Flexible Flapping Wings Joseph Shang WRIGHT STATE UNIVERSITY...TITLE AND SUBTITLE Physics -Based Morphology Analysis and Adjoint Optimization of Flexible Flapping Wing 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550...understand the underlying physics of flexible wings in flying insects and birds towards the bio-inspired wing designs with superior aerodynamic

  14. A CMOS LSI-Based Flexible Retinal Stimulator for Retinal Prosthesis

    NASA Astrophysics Data System (ADS)

    Tokuda, Takashi; Sugitani, Sachie; Asano, Ryosuke; Taniyama, Mari; Terasawa, Yasuo; Uehara, Akihiro; Kagawa, Keiichiro; Nunoshita, Masahiro; Tano, Yasuo; Ohta, Jun

    A CMOS LSI-based neural stimulator was developed for retinal prosthesis. The stimulator was designed with “multi-chip” architecture. Small LSI neural stimulators named “Unit Chip” were assembled on a flexible substrate into a flexible, multi-site retinal stimulator. An experimental system equipped with the fabricated LSI-based flexible stimulator was configured and current injection functionality was demonstrated in saline solution. Materials for improved charge injection were also discussed.

  15. Flexible video conference system based on ASICs and DSPs

    NASA Astrophysics Data System (ADS)

    Hu, Qiang; Yu, Songyu

    1995-02-01

    In this paper, a video conference system we developed recently is presented. In this system the video codec is compatible with CCITT H.261, the audio codec is compatible with G.711 and G.722, the channel interface circuit is designed according to CCITT H.221. In this paper emphasis is given to the video codec, which is both flexible and robust. The video codec is based on LSI LOGIC Corporation's L64700 series video compression chipset. The main function blocks of H.261, such as DCT, motion estimation, VLC, VLD, are performed by this chipset, but the chipset is a nude chipset, no peripheral function, such as memory interface, is integrated into it, this results in great difficulty to implement the system. To implement the frame buffer controller, a DSP-TMS 320c25 and a group of GALs is used, SRAM is used as a current and previous frame buffer, the DSP is not only the controller of the frame buffer, it's also the controller of the whole video codec. Because of the use of the DSP, the architecture of the video codec is very flexible, many system parameters can be reconfigured for different applications. The architecture of the whole video codec is a streamline structure. In H.261, BCH(511,493) coding is recommended to work against random errors in transmission, but if burst error occurs, it causes serious result. To solve this problem, an interleaving method is used, that means the BCH code is interleaved before it's transmitted, in the receiver it is interleaved again and the bit stream is in the original order, but the error bits are distributed into several BCH words, and the BCH decoder is able to correct it. Considering that extreme conditions may occur, a function block is implemented which is somewhat like a watchdog, it assures that the receiver can recover from errors no matter what serious error occurs in transmission. In developing the video conference system, a new synchronization problem must be solved, the monitor on the receiver can't be easily

  16. A flexible fast 3D profilometry based on modulation measurement

    NASA Astrophysics Data System (ADS)

    Dou, Yunfu; Su, Xianyu; Chen, Yanfei; Wang, Ying

    2011-03-01

    This paper proposes a flexible fast profilometry based on modulation measurement. Two orthogonal gratings through a beam splitter are vertically projected on an object surface, and the measured object is placed between the imaging planes of the two gratings. Then the image of the object surface modulated by the orthogonal gratings can be obtained by a CCD camera in the same direction as the grating projection. This image is processed by the operations consisting of performing the Fourier transform, spatial frequency filtering and inverse Fourier transform. Using the modulation distributions of two grating patterns, we can reconstruct the 3D shape of the object. In the measurement process, we only need to capture one fringe pattern, so it is faster than the MMP and remains the advantages of it. In the article, the principle of this method, the setup of the measurement system, some simulations and primary experiment results are given. The simulative and experimental result proves it can restore the 3D shape of the complex object fast and comparatively accurate. Because only one fringe pattern is needed in the testing, our method has a promising extensive application prospect in real-time acquiring and dynamic measurement of 3D data of complex objects.

  17. Implantable flexible pressure measurement system based on inductive coupling.

    PubMed

    Oliveira, Cristina C; Sepúlveda, Alexandra T; Almeida, Nuno; Wardle, Brian L; da Silva, José Machado; Rocha, Luís A

    2015-02-01

    One of the currently available treatments for aortic aneurysms is endovascular aneurysm repair (EVAR). In spite of major advances in the operating techniques, complications still occur and lifelong surveillance is recommended. In order to reduce and even eliminate the commonly used surveillance imaging exams, as well as to reduce follow-up costs, new technological solutions are being pursued. In this paper, we describe the development, including design and performance characterization, of a flexible remote pressure measurement system based on inductive-coupling for post-EVAR monitoring purposes. The telemetry system architecture and operation are described and main performance characteristics discussed. The implantable sensor details are provided and its model is presented. Simulations with the reading circuit and the sensor's model were performed and compared with measurements carried out with air and a phantom as media, in order to characterize the telemetry system and validate the models. The transfer characteristic curve (pressure versus frequency) of the monitoring system was obtained with measurements performed with the sensor inside a controlled pressure vacuum chamber. Additional experimental results which proof the system functionality were obtained within a hydraulic test bench that emulates the aorta. Several innovative aspects, when compared to the state of the art, both in the sensor and in the telemetry system were achieved.

  18. Microwave-induced thermoacoustic imaging system based on flexible transducer

    NASA Astrophysics Data System (ADS)

    Ji, Zhong; Yang, Sihua; Xing, Da

    2016-10-01

    Microwave-induced thermoacoustic (TA) imaging combines the advantages of high imaging contrast due to electromagnetic absorption and high resolution of the ultrasound technology, and it is a potential alternative imaging technique for biomedical applications, particularly for breast tumor detection. The traditional TA system uses circular-scanning (CS) to obtain complete information to reconstruct a two-dimensional image, however, it needs a large operating space for rotation of the transducers and bulk of coupling medium limiting its medical applications. The linear-scanning (LS) system can overcome these problems partially but usually lose some information and cause image distortion. In this paper, in order to overcome above limitations, a TA imaging system with Sample-Cling-Scanning (SCS) model based on a flexible multi-element transducer is presented. It combines the advantages of both CS and LS modes, and overcome their limitations. Meanwhile, an adaptive back projection algorithm is presented to implement this scanning model. The experimental results show that the proposed system combines advantages including shape adaptation, information integrity, and efficient transmission. These advantages make it a preferred system for TA applications, especially in breast tumor detection.

  19. RAD Capture (Rapture): Flexible and Efficient Sequence-Based Genotyping

    PubMed Central

    Ali, Omar A.; O’Rourke, Sean M.; Amish, Stephen J.; Meek, Mariah H.; Luikart, Gordon; Jeffres, Carson; Miller, Michael R.

    2016-01-01

    Massively parallel sequencing has revolutionized many areas of biology, but sequencing large amounts of DNA in many individuals is cost-prohibitive and unnecessary for many studies. Genomic complexity reduction techniques such as sequence capture and restriction enzyme-based methods enable the analysis of many more individuals per unit cost. Despite their utility, current complexity reduction methods have limitations, especially when large numbers of individuals are analyzed. Here we develop a much improved restriction site-associated DNA (RAD) sequencing protocol and a new method called Rapture (RAD capture). The new RAD protocol improves versatility by separating RAD tag isolation and sequencing library preparation into two distinct steps. This protocol also recovers more unique (nonclonal) RAD fragments, which improves both standard RAD and Rapture analysis. Rapture then uses an in-solution capture of chosen RAD tags to target sequencing reads to desired loci. Rapture combines the benefits of both RAD and sequence capture, i.e., very inexpensive and rapid library preparation for many individuals as well as high specificity in the number and location of genomic loci analyzed. Our results demonstrate that Rapture is a rapid and flexible technology capable of analyzing a very large number of individuals with minimal sequencing and library preparation cost. The methods presented here should improve the efficiency of genetic analysis for many aspects of agricultural, environmental, and biomedical science. PMID:26715661

  20. Novel metamaterial based antennas for flexible wireless systems

    NASA Astrophysics Data System (ADS)

    Khaleel, Haider Raad

    Recent years have witnessed a great deal of interest from both academia and industry in the field of flexible electronic systems. This research topic tops the pyramid of research priorities requested by many national research agencies. Consistently, flexible electronic systems require the integration of flexible antennas operating in specific frequency bands to provide wireless connectivity which is highly demanded by today's information oriented society. On the other hand, metamaterials have become very popular in the design of contemporary antenna and microwave devices due to their wide range of applications derived from their unique properties which significantly enhances the performance of antennas and RF systems. Accordingly, the integration of metamaterial structures within flexible wireless systems is very beneficial in this growing field of research. A systematic approach to the analysis and design of flexible and conformal antennas and metamaterials is ultimately needed. The research reported in this thesis focuses on developing flexible low profile antennas and metamaterial structures in addition to characterizing their performance when integrated within flexible wireless systems. Three flexible, compact, and extremely low profile (50.8 microm) antennas intended for WLAN, Bluetooth and Ultra Wide Band (UWB) applications are presented. Next, a novel miniaturized Artificial Magnetic Conductor (AMC) and a new technique to enhance the bandwidth of micro-Negative (MNG) metamaterial are reported. Furthermore, the effect of bending on the AMC and MNG metamaterial is investigated in this thesis for the first time. Finally, the findings of this research are utilized in practical applications with specific design constraints including mutual coupling reduction between radiating elements in antenna arrays and MIMO systems and Specific Absorption Rate (SAR) reduction in telemedicine systems.

  1. High-Performance Integrated Self-Package Flexible Li-O2 Battery Based on Stable Composite Anode and Flexible Gas Diffusion Layer.

    PubMed

    Yang, Xiao-Yang; Xu, Ji-Jing; Bao, Di; Chang, Zhi-Wen; Liu, Da-Peng; Zhang, Yu; Zhang, Xin-Bo

    2017-07-01

    With the rising development of flexible and wearable electronics, corresponding flexible energy storage devices with high energy density are required to provide a sustainable energy supply. Theoretically, rechargeable flexible Li-O2 batteries can provide high specific energy density; however, there are only a few reports on the construction of flexible Li-O2 batteries. Conventional flexible Li-O2 batteries possess a loose battery structure, which prevents flexibility and stability. The low mechanical strength of the gas diffusion layer and anode also lead to a flexible Li-O2 battery with poor mechanical properties. All these attributes limit their practical applications. Herein, the authors develop an integrated flexible Li-O2 battery based on a high-fatigue-resistance anode and a novel flexible stretchable gas diffusion layer. Owing to the synergistic effect of the stable electrocatalytic activity and hierarchical 3D interconnected network structure of the free-standing cathode, the obtained flexible Li-O2 batteries exhibit superior electrochemical performance, including a high specific capacity, an excellent rate capability, and exceptional cycle stability. Furthermore, benefitting from the above advantages, the as-fabricated flexible batteries can realize excellent mechanical and electrochemical stability. Even after a thousand cycles of the bending process, the flexible Li-O2 battery can still possess a stable open-circuit voltage, a high specific capacity, and a durable cycle performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Replacing Lectures by Text-Based Flexible Learning: Students' Performance and Perceptions.

    ERIC Educational Resources Information Center

    Green, John

    2002-01-01

    Presents the results of an extended evaluation program designed to test the effectiveness of text-based flexible learning as a replacement for 30-50% of the lectures in certain modules in conventional undergraduate courses in the School of Life Sciences at Napier University. Concludes that text-based flexible learning is an effective alternative…

  3. Replacing Lectures by Text-Based Flexible Learning: Students' Performance and Perceptions.

    ERIC Educational Resources Information Center

    Green, John

    2002-01-01

    Presents the results of an extended evaluation program designed to test the effectiveness of text-based flexible learning as a replacement for 30-50% of the lectures in certain modules in conventional undergraduate courses in the School of Life Sciences at Napier University. Concludes that text-based flexible learning is an effective alternative…

  4. Flexible energy storage devices based on nanocomposite paper.

    PubMed

    Pushparaj, Victor L; Shaijumon, Manikoth M; Kumar, Ashavani; Murugesan, Saravanababu; Ci, Lijie; Vajtai, Robert; Linhardt, Robert J; Nalamasu, Omkaram; Ajayan, Pulickel M

    2007-08-21

    There is strong recent interest in ultrathin, flexible, safe energy storage devices to meet the various design and power needs of modern gadgets. To build such fully flexible and robust electrochemical devices, multiple components with specific electrochemical and interfacial properties need to be integrated into single units. Here we show that these basic components, the electrode, separator, and electrolyte, can all be integrated into single contiguous nanocomposite units that can serve as building blocks for a variety of thin mechanically flexible energy storage devices. Nanoporous cellulose paper embedded with aligned carbon nanotube electrode and electrolyte constitutes the basic unit. The units are used to build various flexible supercapacitor, battery, hybrid, and dual-storage battery-in-supercapacitor devices. The thin freestanding nanocomposite paper devices offer complete mechanical flexibility during operation. The supercapacitors operate with electrolytes including aqueous solvents, room temperature ionic liquids, and bioelectrolytes and over record temperature ranges. These easy-to-assemble integrated nanocomposite energy-storage systems could provide unprecedented design ingenuity for a variety of devices operating over a wide range of temperature and environmental conditions.

  5. Ultra-flexible nonvolatile memory based on donor-acceptor diketopyrrolopyrrole polymer blends

    PubMed Central

    Zhou, Ye; Han, Su-Ting; Yan, Yan; Zhou, Li; Huang, Long-Biao; Zhuang, Jiaqing; Sonar, Prashant; Roy, V. A. L.

    2015-01-01

    Flexible memory cell array based on high mobility donor-acceptor diketopyrrolopyrrole polymer has been demonstrated. The memory cell exhibits low read voltage, high cell-to-cell uniformity and good mechanical flexibility, and has reliable retention and endurance memory performance. The electrical properties of the memory devices are systematically investigated and modeled. Our results suggest that the polymer blends provide an important step towards high-density flexible nonvolatile memory devices. PMID:26029856

  6. Multifunctional, flexible electronic systems based on engineered nanostructured materials

    NASA Astrophysics Data System (ADS)

    Ko, Hyunhyub; Kapadia, Rehan; Takei, Kuniharu; Takahashi, Toshitake; Zhang, Xiaobo; Javey, Ali

    2012-08-01

    The development of flexible electronic systems has been extensively researched in recent years, with the goal of expanding the potential scope and market of modern electronic devices in the areas of computation, communications, displays, sensing and energy. Uniquely, the use of soft polymeric substrates enables the incorporation of advanced features beyond mechanical bendability and stretchability. In this paper, we describe several functionalities which can be achieved using engineered nanostructured materials. In particular, reversible binding, self-cleaning, antireflective and shape-reconfigurable properties are introduced for the realization of multifunctional, flexible electronic devices. Examples of flexible systems capable of spatial mapping and/or responding to external stimuli are also presented as a new class of user-interactive devices.

  7. Flexible lithium–oxygen battery based on a recoverable cathode

    PubMed Central

    Liu, Qing-Chao; Xu, Ji-Jing; Xu, Dan; Zhang, Xin-Bo

    2015-01-01

    Although flexible power sources are crucial for the realization next-generation flexible electronics, their application in such devices is hindered by their low theoretical energy density. Rechargeable lithium–oxygen (Li–O2) batteries can provide extremely high specific energies, while the conventional Li–O2 battery is bulky, inflexible and limited by the absence of effective components and an adjustable cell configuration. Here we show that a flexible Li–O2 battery can be fabricated using unique TiO2 nanowire arrays grown onto carbon textiles (NAs/CT) as a free-standing cathode and that superior electrochemical performances can be obtained even under stringent bending and twisting conditions. Furthermore, the TiO2 NAs/CT cathode features excellent recoverability, which significantly extends the cycle life of the Li–O2 battery and lowers its life cycle cost. PMID:26235205

  8. A review of fabrication and applications of carbon nanotube film-based flexible electronics

    NASA Astrophysics Data System (ADS)

    Park, Steve; Vosguerichian, Michael; Bao, Zhenan

    2013-02-01

    Flexible electronics offer a wide-variety of applications such as flexible circuits, flexible displays, flexible solar cells, skin-like pressure sensors, and conformable RFID tags. Carbon nanotubes (CNTs) are a promising material for flexible electronics, both as the channel material in field-effect transistors (FETs) and as transparent electrodes, due to their high intrinsic carrier mobility, conductivity, and mechanical flexibility. In this feature article, we review the recent progress of CNTs in flexible electronics by describing both the processing and the applications of CNT-based flexible devices. To employ CNTs as the channel material in FETs, single-walled carbon nanotubes (SWNTs) are used. There are generally two methods of depositing SWNTs on flexible substrates--transferring CVD-grown SWNTs or solution-depositing SWNTs. Since CVD-grown SWNTs can be highly aligned, they often outperform solution-processed SWNT films that are typically in the form of random network. However, solution-based SWNTs can be printed at a large-scale and at low-cost, rendering them more appropriate for manufacturing. In either case, the removal of metallic SWNTs in an effective and a scalable manner is critical, which must still be developed and optimized. Nevertheless, promising results demonstrating SWNT-based flexible circuits, displays, RF-devices, and biochemical sensors have been reported by various research groups, proving insight into the exciting possibilities of SWNT-based FETs. In using carbon nanotubes as transparent electrodes (TEs), two main strategies have been implemented to fabricate highly conductive, transparent, and mechanically compliant films--superaligned films of CNTs drawn from vertically grown CNT forests using the ``dry-drawing'' technique and the deposition or embedding of CNTs onto flexible or stretchable substrates. The main challenge for CNT based TEs is to fabricate films that are both highly conductive and transparent. These CNT based TEs have

  9. Flexible, Carbon-Based Ohmic Contacts for Organic Transistors

    NASA Technical Reports Server (NTRS)

    Brandon, Erik

    2005-01-01

    A low-temperature process for fabricating flexible, ohmic contacts for use in organic thin-film transistors (OTFTs) has been developed. Typical drainsource contact materials used previously for OTFTs include (1) vacuum-deposited noble-metal contacts and (2) solution-deposited intrinsically conducting molecular or polymeric contacts. Both of these approaches, however, have serious drawbacks.

  10. Flexible carbon-based ohmic contacts for organic transistors

    NASA Technical Reports Server (NTRS)

    Brandon, Erik (Inventor)

    2007-01-01

    The present invention relates to a system and method of organic thin-film transistors (OTFTs). More specifically, the present invention relates to employing a flexible, conductive particle-polymer composite material for ohmic contacts (i.e. drain and source).

  11. Flexible Electronics-Based Transformers for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco B.; Stoica, Adrian; Ingham, Michel; Thakur, Anubhav

    2015-01-01

    This paper provides a survey of the use of modular multifunctional systems, called Flexible Transformers, to facilitate the exploration of extreme and previously inaccessible environments. A novel dynamics and control model of a modular algorithm for assembly, folding, and unfolding of these innovative structural systems is also described, together with the control model and the simulation results.

  12. Graphene-Based Flexible and Transparent Tunable Capacitors.

    PubMed

    Man, Baoyuan; Xu, Shicai; Jiang, Shouzheng; Liu, Aihua; Gao, Shoubao; Zhang, Chao; Qiu, Hengwei; Li, Zhen

    2015-12-01

    We report a kind of electric field tunable transparent and flexible capacitor with the structure of graphene-Bi1.5MgNb1.5O7 (BMN)-graphene. The graphene films with low sheet resistance were grown by chemical vapor deposition. The BMN thin films were fabricated on graphene by using laser molecular beam epitaxy technology. Compared to BMN films grown on Au, the samples on graphene substrates show better quality in terms of crystallinity, surface morphology, leakage current, and loss tangent. By transferring another graphene layer, we fabricated flexible and transparent capacitors with the structure of graphene-BMN-graphene. The capacitors show a large dielectric constant of 113 with high dielectric tunability of ~40.7 % at a bias field of 1.0 MV/cm. Also, the capacitor can work stably in the high bending condition with curvature radii as low as 10 mm. This flexible film capacitor has a high optical transparency of ~90 % in the visible light region, demonstrating their potential application for a wide range of flexible electronic devices.

  13. Breathable and Wearable Energy Storage Based on Highly Flexible Paper Electrodes.

    PubMed

    Dong, Liubing; Xu, Chengjun; Li, Yang; Pan, Zhengze; Liang, Gemeng; Zhou, Enlou; Kang, Feiyu; Yang, Quan-Hong

    2016-11-01

    Breathable and wearable energy storage is achieved based on an innovative design solution. Carbon nanotube/MnO2 -decorated air-laid paper electrodes, with outstanding flexibility and good electrochemical performances, are prepared. They are then assembled into solid-state supercapacitors. By making through-holes on the supercapacitors, breathable and flexible supercapacitors are successfully fabricated.

  14. Ultrathin hetero-nanowire-based flexible electronics with tunable conductivity.

    PubMed

    Liu, Jian-Wei; Huang, Wei-Ran; Gong, Ming; Zhang, Meng; Wang, Jin-Long; Zheng, Jing; Yu, Shu-Hong

    2013-11-06

    Flexible hetero-nanowire electronics: A simple solution process has been developed for the first time to fabricate macroscopic flexible, ordered Au-Te hetero-nanowire film electronics with tunable resistance from MΩ to Ω at room temperature (see the Figure). Nanowire films with an electrical conductivity as low as 10,000 S cm(-1) and a sheet resistance of 15Ω sq(-1) can generate reliable interconnections for light-emitting diode (LED) arrays. The Au-Te hetero-nanowire films remain conductive after bending 6000 times with a maximum bending radius of 2.0 mm without any obvious degradation. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Paper-Based Inkjet-Printed Flexible Electronic Circuits.

    PubMed

    Wang, Yan; Guo, Hong; Chen, Jin-Ju; Sowade, Enrico; Wang, Yu; Liang, Kun; Marcus, Kyle; Baumann, Reinhard R; Feng, Zhe-Sheng

    2016-10-05

    Printed flexible electronics have been widely studied for their potential use in various applications. In this paper, a simple, low-cost method of fabricating flexible electronic circuits with high conductivity of 4.0 × 10(7) S·m(-1) (about 70% of the conductivity of bulk copper) is demonstrated. Teslin paper substrate is treated with stannous chloride (SnCl2) colloidal solution to reduce the high ink absorption rate, and then the catalyst ink is inkjet-printed on its surface, followed by electroless deposition of copper at low temperature. In spite of the decrease in conductance to some extent, electronic circuits fabricated by this method can maintain function even under various folding angles or after repeated folding. This developed technology has great potential in a variety of applications, such as three-dimensional devices and disposable RFID tags.

  16. Ultrathin flexible memory devices based on organic ferroelectric transistors

    NASA Astrophysics Data System (ADS)

    Sugano, Ryo; Hirai, Yoshinori; Tashiro, Tomoya; Sekine, Tomohito; Fukuda, Kenjiro; Kumaki, Daisuke; Domingues dos Santos, Fabrice; Miyabo, Atsushi; Tokito, Shizuo

    2016-10-01

    Here, we demonstrate ultrathin, flexible nonvolatile memory devices with excellent durability under compressive strain. Ferroelectric-gate field-effect transistors (FeFETs) employing organic semiconductor and polymer ferroelectric layers are fabricated on a 1-µm-thick plastic film substrate. The FeFETs are characterized by measuring their transfer characteristics, programming time, and data retention time. The data retention time is almost unchanged even when a 50% compressive strain is applied to the devices. To clarify the origin of the excellent durability of the devices against compressive strain, an intermediate plane is calculated. From the calculation result, the intermediate plane is placed close to the channel region of the FeFETs. The high flexibility of the ferroelectric polymer and ultrathin device structure contributes to achieving a bending radius of 0.8 µm without the degradation of memory characteristics.

  17. A flexible humidity sensor based on KC-MWCNTs composites

    NASA Astrophysics Data System (ADS)

    Peng, Xiaoyan; Chu, Jin; Aldalbahi, Ali; Rivera, Manuel; Wang, Lidan; Duan, Shukai; Feng, Peter

    2016-11-01

    Multi-walled carbon nanotubes (MWCNTs) and single-walled carbon nanotubes (SWCNTs) were dispersed in the biopolymer kappa-carrageenan (KC) to form a flexible composite via evaporative casting method. The glycerin was used as plasticizer to increase the flexibility of the composite. The KC-CNTs was examined by using FESEM and Raman, and then the humidity sensing properties of the samples were characterized under alternating current (AC). The purpose for using AC power supply is to avoid the possible polarization effect during measurements of the humidity properties. The experimental data exhibit that the fabricated sensors have high response to relative humidity (RH) with good repeatability, stability, and low hysteresis. A phenomenon that the impedance of the sensor decreases with ascending RH was also found and the basic sensing mechanisms were discussed.

  18. Mimicking Classical Conditioning Based on a Single Flexible Memristor.

    PubMed

    Wu, Chaoxing; Kim, Tae Whan; Guo, Tailiang; Li, Fushan; Lee, Dea Uk; Yang, J Joshua

    2017-03-01

    The mimicking of classical conditioning, including acquisition, extinction, recovery, and generalization, can be efficiently achieved by using a single flexible memristor. In particular, the experiment of Pavlov's dog is successfully demonstrated. This demonstration paves the way for reproducing advanced neural processes and provides a frontier approach to the design of artificial-intelligence systems with dramatically reduced complexity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Gas microstrip detectors based on flexible printed circuit

    SciTech Connect

    Salomon, M.; Crowe, K.; Faszer, W.; Lindsay, P.; Curran Maier, J.M.

    1995-09-01

    Microstrip Gas Detectors (MSGC`s) were introduced some years ago as position sensitive detectors capable of operating at very high rates. The authors have studied the properties of a new type of Gas Microstrip Counter built using flexible printed circuit technology. They describe the manufacturing procedures, the assembly of the device, as well as its operation under a variety of conditions, gases and types of radiation. They also describe two new passivation materials, tantalum and niobium, which produce effective surfaces.

  20. Flexible strain sensor based on carbon nanotube rubber composites

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Ho; Kim, Young-Ju; Baek, Woon Kyung; Lim, Kwon Taek; Kang, Inpil

    2010-04-01

    Electrically conducting rubber composites (CRC) with carbon nanotubes (CNTs) filler have received much attention as potential materials for sensors. In this work, Ethylene propylene diene M-class rubber (EPDM)/CNT composites as a novel nano sensory material were prepared to develop flexible strain sensors that can measure large deformation of flexible structures. The EPDM/CNT composites were prepared by using a Brabender mixer with multi-walled CNTs and organo-clay. A strain sensor made of EPDM/CNT composite was attached to the surface of a flexible beam and change of resistance of the strain sensor was measured with respect to the beam deflection. Resistance of the sensor was change quite linearly under the bending and compressive large beam deflection. Upon external forces, CRC deformation takes place with the micro scale change of inter-electrical condition in rubber matrix due to the change of contact resistance, and CRC reveals macro scale piezoresistivity. It is anticipated that the CNT/EPDM fibrous strain sensor can be eligible to develop a biomimetic artificial neuron that can continuously sense deformation, pressure and shear force.

  1. Flexible Capacitive Tactile Sensor Based on Micropatterned Dielectric Layer.

    PubMed

    Li, Tie; Luo, Hui; Qin, Lin; Wang, Xuewen; Xiong, Zuoping; Ding, Haiyan; Gu, Yang; Liu, Zheng; Zhang, Ting

    2016-09-01

    Flexible tactile sensors are considered as an effective way to realize the sense of touch, which can perform the synchronized interactions with surrounding environment. Here, the utilization of bionic microstructures on natural lotus leaves is demonstrated to design and fabricate new-type of high-performance flexible capacitive tactile sensors. Taking advantage of unique surface micropattern of lotus leave as the template for electrodes and using polystyrene microspheres as the dielectric layer, the proposed devices present stable and high sensing performance, such as high sensitivity (0.815 kPa(-1) ), wide dynamic response range (from 0 to 50 N), and fast response time (≈38 ms). In addition, the flexible capacitive sensor is not only applicable to pressure (touch of a single hair), but also to bending and stretching forces. The results indicate that the proposed capacitive tactile sensor is a promising candidate for the future applications in electronic skins, wearable robotics, and biomedical devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. On the nonlinear dynamics of a space platform based mobile flexible manipulator

    NASA Astrophysics Data System (ADS)

    Modi, V. J.; Mah, H. W.; Misra, A. K.

    1993-10-01

    A relatively general formulation is developed for studying the dynamics of an orbiting arbitrary chain of translating, slewing flexible bodies. The formulation accounts for transverse, axial, and torsional deformation of beams. The model takes into account joint flexibility in three dimensions as well as specified and generalized coordinates at the joints, with freedom to transverse over a flexible platform free to librate and carrying a flexible payload. The model can also analyze a cluster of flexible bodies at joints forming 'flower petal-type' configurations, rigid central-body-based geometry applicable to a large class of scientific and communications satellites. The versatility of the formulation permits dynamical analysis and nonlinear control of a wide class of space- and ground-based manipulators.

  3. A review of carbon nanotube- and graphene-based flexible thin-film transistors.

    PubMed

    Sun, Dong-Ming; Liu, Chang; Ren, Wen-Cai; Cheng, Hui-Ming

    2013-04-22

    Carbon nanotubes (CNTs) and graphene have attracted great attention for numerous applications for future flexible electronics, owing to their supreme properties including exceptionally high electronic conductivity and mechanical strength. Here, the progress of CNT- and graphene-based flexible thin-film transistors from material preparation, device fabrication techniques to transistor performance control is reviewed. State-of-the-art fabrication techniques of thin-film transistors are divided into three categories: solid-phase, liquid-phase, and gas-phase techniques, and possible scale-up approaches to achieve realistic production of flexible nanocarbon-based transistors are discussed. In particular, the recent progress in flexible all-carbon nanomaterial transistor research is highlighted, and this all-carbon strategy opens up a perspective to realize extremely flexible, stretchable, and transparent electronics with a relatively low-cost and fast fabrication technique, compared to traditional rigid silicon, metal and metal oxide electronics.

  4. Metal substrate based electrodes for flexible dye-sensitized solar cells: fabrication methods, progress and challenges.

    PubMed

    Balasingam, Suresh Kannan; Kang, Man Gu; Jun, Yongseok

    2013-12-21

    A step towards commercialization of dye-sensitized solar cells (DSSCs) requires more attention to engineering aspects, such as flexibility, the roll to roll fabrication process, the use of cost effective materials, etc. In this aspect, advantages of flexible DSSCs attracted many researchers to contemplate the transparent conducting oxide coated flexible plastic substrates and the thin metallic foils. In this feature article, the pros and cons of these two kinds of substrates are compared. The flexible dye-sensitized solar cells fabricated using metal substrates are briefly discussed. The working electrodes of DSSCs fabricated on various metal substrates, their fabrication methods, the effect of high temperature calcination and drawbacks of back illumination are reviewed in detail. A few reports on the flexible metal substrate based counter electrodes that could be combined with the plastic substrate based working electrodes are also covered at the end.

  5. Fabrication techniques and applications of flexible graphene-based electronic devices

    NASA Astrophysics Data System (ADS)

    Luqi, Tao; Danyang, Wang; Song, Jiang; Ying, Liu; Qianyi, Xie; He, Tian; Ningqin, Deng; Xuefeng, Wang; Yi, Yang; Tian-Ling, Ren

    2016-04-01

    In recent years, flexible electronic devices have become a hot topic of scientific research. These flexible devices are the basis of flexible circuits, flexible batteries, flexible displays and electronic skins. Graphene-based materials are very promising for flexible electronic devices, due to their high mobility, high elasticity, a tunable band gap, quantum electronic transport and high mechanical strength. In this article, we review the recent progress of the fabrication process and the applications of graphene-based electronic devices, including thermal acoustic devices, thermal rectifiers, graphene-based nanogenerators, pressure sensors and graphene-based light-emitting diodes. In summary, although there are still a lot of challenges needing to be solved, graphene-based materials are very promising for various flexible device applications in the future. Project supported by the National Natural Science Foundation of China (Nos. 60936002, 61025021, 61434001, 61574083), the State Key Development Program for Basic Research of China (No. 2015CB352100), the National Key Project of Science and Technology (No. 2011ZX02403-002) and the Special Fund for Agroscientific Research in the Public Interest of China (No. 201303107). M.A.M is additionally supported by the Postdoctoral Fellowship (PDF) Program of the Natural Sciences and Engineering Research Council (NSERC) of Canada and China's Postdoctoral Science Foundation (CPSF).

  6. Short-channel drain current model for asymmetric heavily / lightly doped DG MOSFETs

    NASA Astrophysics Data System (ADS)

    Dutta, Pradipta; Syamal, Binit; Koley, Kalyan; Dutta, Arka; Sarkar, C. K.

    2017-08-01

    The paper presents a drain current model for double gate metal oxide semiconductor field effect transistors (DG MOSFETs) based on a new velocity saturation model that accounts for short-channel velocity saturation effect independently in the front and the back gate controlled channels under asymmetric front and back gate bias and oxide thickness. To determine the front and the back-channel velocity saturation, drain-induced barrier lowering is evaluated by effective gate voltages at the front and back gates obtained from surface potential at the threshold condition after considering symmetric and asymmetric front and back oxide thickness. The model also incorporates surface roughness scattering and ionized impurity scattering to estimate drain current for heavily / lightly doped channel for short-channel asymmetric DG MOSFET and a good agreement has been achieved with TCAD simulations, with a relative error of around 3-7%.

  7. Islandora A Flexible Drupal-Based Virtual Research Environment

    NASA Astrophysics Data System (ADS)

    Leggott, M.; Pan, J.

    2011-12-01

    Research today exists in a landscape where data flood in, literature grows exponentially, and disciplinary boundaries are increasingly porous. Many of the greatest challenges facing researchers are related to managing the information produced during the research life cycle - from the discussion of new projects to the creation of funding proposals, the production and analysis of data, and the presentation of findings via conferences and scholarly publications. The Islandora framework provides a system that stewards digital data in any form (textual, numeric, scientific, multimedia) along the entire course of this research continuum, it facilitates collaboration not just among physically distant members of research groups but also among research groups and their associated support groups. Because Islandora accommodates both the project-specific, experiment-based context and the cross-project, interdisciplinary exploration context of data, the approach to the creation and discovery of data can be called 'discipline-agnostic.' UPEI's Virtual Research Environment (or VRE) has demonstrated the immense benefits of such an approach. In one example scientists collects samples, create detailed metadata for each sample, potentially generating thousands of data files of various kinds, which can all be loaded in one step. Software (some of it developed specifically for this project) then combines, recombines, and transforms these data into alternate formats for analysis -- thereby saving scientists hundreds of hours of manual labor. Wherever possible data are translated, converting them from proprietary file formats to standard XML, and stored -- thereby exposing the data to a larger audience that may bring them together with quite different samples or experiments in novel ways. The same computer processes and software work-flows brought to bear in the context of one research program can be re-used in other areas and across completely different disciplines, since the data are

  8. In-silico Screening using Flexible Ligand Binding Pockets: A Molecular Dynamics-based Approach

    NASA Astrophysics Data System (ADS)

    Sivanesan, Dakshanamurthy; Rajnarayanan, Rajendram V.; Doherty, Jason; Pattabiraman, Nagarajan

    2005-04-01

    In-silico screening of flexible ligands against flexible ligand binding pockets (LBP) is an emerging approach in structure-based drug discovery. Here, we describe a molecular dynamics (MD) based docking approach to investigate the influence on the high-throughput in-silico screening of small molecules against flexible ligand binding pockets. In our approach, an ensemble of 51 energetically favorable structures of the LBP of human estrogen receptor α (hERα) were collected from 3 ns MD simulations. In-silico screening of 3500 endocrine disrupting compounds against these flexible ligand binding pockets resulted in thousands of ER-ligand complexes of which 582 compounds were unique. Detailed analysis of MD generated structures showed that only 17 of the LBP residues significantly contribute to the overall binding pocket flexibility. Using the flexible LBP conformations generated, we have identified 32 compounds that bind better to the flexible ligand-binding pockets compared to the crystal structure. These compounds, though chemically divergent, are structurally similar to the natural hormone. Our MD-based approach in conjunction with grid-based distributed computing could be applied routinely for in-silico screening of large databases against any given target.

  9. Highly flexible solid-state supercapacitor based on graphene/polypyrrole hydrogel

    NASA Astrophysics Data System (ADS)

    Wu, Xinming; Lian, Meng

    2017-09-01

    Polymer-based solid-state supercapacitors (PSCs) have potential for large-scale flexible energy storage applications because of their high electrochemical activity and the low cost. However, one of the obstacles to developing PSCs is maintaining the high flexibility (horizontal and vertical) and cycle stability along with a high specific capacitance. Thus, to develop high-flexible PSCs with excellent cycle stability, this paper presents a novel and highly flexible solid-state supercapacitor based on a graphene/polypyrrole hydrogel (PGH) with long cycle performance that was prepared via a simple heating approach. Specifically, the pore structures based on the PGH not only introduce more electrochemically active surfaces for absorption/desorption of electrolyte ions but also provide additional mechanical flexibility. The unique structural design for flexible supercapacitors exhibits a high specific capacitance of 363 F cm-3 at a current density of 1.0 mA cm-3 and excellent cycle stability with a capacitance retention of 98.6% after 12000 charge/discharge cycles under bent, folded and twisted states. The remarkable electrochemical and flexible properties of the PGH developed in this study are higher than those of similar polypyrrole (PPy)-based supercapacitors previously reported.

  10. Optimization-based design of control systems for flexible structures

    NASA Technical Reports Server (NTRS)

    Polak, E.; Baker, T. E.; Wuu, T-L.; Harn, Y-P.

    1988-01-01

    The purpose of this presentation is to show that it is possible to use nonsmooth optimization algorithms to design both closed-loop finite dimensional compensators and open-loop optimal controls for flexible structures modeled by partial differential equations. An important feature of our approach is that it does not require modal decomposition and hence is immune to instabilities caused by spillover effects. Furthermore, it can be used to design control systems for structures that are modeled by mixed systems of coupled ordinary and partial differential equations.

  11. Flexible Graphene-based Energy Storage Devices for Space Application Project

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.

    2014-01-01

    Develop prototype graphene-based reversible energy storage devices that are flexible, thin, lightweight, durable, and that can be easily attached to spacesuits, rovers, landers, and equipment used in space.

  12. Ternary Flexible Electro-resistive Memory Device based on Small Molecules.

    PubMed

    Zhang, Qi-Jian; He, Jing-Hui; Zhuang, Hao; Li, Hua; Li, Na-Jun; Xu, Qing-Feng; Chen, Dong-Yun; Lu, Jian-Mei

    2016-05-20

    Flexible memory devices have continued to attract more attention due to the increasing requirement for miniaturization, flexibility, and portability for further electronic applications. However, all reported flexible memory devices have binary memory characteristics, which cannot meet the demand of ever-growing information explosion. Organic resistive switching random access memory (RRAM) has plenty of advantages such as simple structure, facile processing, low power consumption, high packaging density, as well as the ability to store multiple states per bit (multilevel). In this study, we report a small molecule-based flexible ternary memory device for the first time. The flexible device maintains its ternary memory behavior under different bending conditions and within 500 bending cycles. The length of the alkyl chains in the molecular backbone play a significant role in molecular stacking, thus guaranteeing satisfactory memory and mechanical properties.

  13. DNA-nucleobases: Gate Dielectric/Passivation Layer for Flexible GFET-based Sensor Applications (Postprint)

    DTIC Science & Technology

    2015-09-24

    AFRL-RX-WP-JA-2016-0271 DNA -NUCLEOBASES: GATE DIELECTRIC/ PASSIVATION LAYER FOR FLEXIBLE GFET-BASED SENSOR APPLICATIONS (POSTPRINT...TITLE AND SUBTITLE DNA -NUCLEOBASES: GATE DIELECTRIC/ PASSIVATION LAYER FOR FLEXIBLE GFET-BASED SENSOR APPLICATIONS (POSTPRINT) 5a. CONTRACT...deposition of the gate dielectric layer used for making transistor devices. The approach was introducing a thin film of deoxyribonucleic acid ( DNA

  14. The effect of office based flexible and rigid cystoscopy on pain experience in female patients

    PubMed Central

    Vriesema, Jessica L.; Stomps, Saskia P.; van Balen, Olav L.W.B.; Cornel, Erik B.

    2017-01-01

    Purpose Rigid and flexible cystoscopies are both routinely used in female patients. Literature is conflicting whether flexible cystoscopy is less painful compared to rigid cystoscopy. The aim of this study was therefore to investigate whether using flexible cystoscopy leads to less discomfort and pain compared to rigid cystoscopy in female patients who underwent first time cystoscopy. Materials and Methods One hundred eighty-nine female patients, who never had undergone cystoscopy, were randomized into 2 groups: 92 patients underwent rigid cystoscopy and 97 patients flexible cystoscopy. Directly after the cystoscopy procedure all patients were asked to fill out their pain experience on a 100-mm visual analogue pain scale (VAS). Results Median VAS score was significantly lower for women undergoing flexible cystoscopy (0 [0–20]) compared to rigid cystoscopy (15 [0–38], p<0.001). In addition, age was inversely associated with VAS score, indicating that younger females experienced more pain (R=−0.30, p=0.001). The use of flexible cystoscopy was associated with a decrease in VAS score and remained significant after adjustment for age, sex of urologist, performing urologist and indication (standardized β=−0.17, p=0.048). Conclusions The use of flexible cystoscopy resulted in a significantly lower pain experience compared to rigid cystoscopy. Based on patient's pain experience during cystoscopy, this study implicates to use flexible cystoscopy in female patients who undergo first time cystoscopy. PMID:28097268

  15. The effect of office based flexible and rigid cystoscopy on pain experience in female patients.

    PubMed

    Casteleijn, Niek F; Vriesema, Jessica L; Stomps, Saskia P; van Balen, Olav L W B; Cornel, Erik B

    2017-01-01

    Rigid and flexible cystoscopies are both routinely used in female patients. Literature is conflicting whether flexible cystoscopy is less painful compared to rigid cystoscopy. The aim of this study was therefore to investigate whether using flexible cystoscopy leads to less discomfort and pain compared to rigid cystoscopy in female patients who underwent first time cystoscopy. One hundred eighty-nine female patients, who never had undergone cystoscopy, were randomized into 2 groups: 92 patients underwent rigid cystoscopy and 97 patients flexible cystoscopy. Directly after the cystoscopy procedure all patients were asked to fill out their pain experience on a 100-mm visual analogue pain scale (VAS). Median VAS score was significantly lower for women undergoing flexible cystoscopy (0 [0-20]) compared to rigid cystoscopy (15 [0-38], p<0.001). In addition, age was inversely associated with VAS score, indicating that younger females experienced more pain (R=-0.30, p=0.001). The use of flexible cystoscopy was associated with a decrease in VAS score and remained significant after adjustment for age, sex of urologist, performing urologist and indication (standardized β=-0.17, p=0.048). The use of flexible cystoscopy resulted in a significantly lower pain experience compared to rigid cystoscopy. Based on patient's pain experience during cystoscopy, this study implicates to use flexible cystoscopy in female patients who undergo first time cystoscopy.

  16. InGaN-based flexible light emitting diodes

    NASA Astrophysics Data System (ADS)

    Bayram, C.

    2017-02-01

    Novel layer release and transfer technology of single-crystalline GaN semiconductors is attractive for enabling many novel applications including flexible photonics and hybrid device integration. To date, light emitting diode (LED) research has been primarily focused on rigid devices due to the thick growth substrate. This prevented fundamental research in flexible inorganic LEDs, and limited the applications of LEDs in the solid state lighting (due to the substrate cost) and in biophotonics (i.e. optogenetics) (due to LED rigidness). In the literature, a number of methods to achieve layer transfer have been reported including the laser lift-off, chemical lift-off, and Smartcut. However, the release of films of LED layers (i.e. GaN semiconductors) has been challenging since their elastic moduli and chemical resistivity are much higher than most conventional semiconductors. In this talk, we are going to review the existing technologies and new mechanical release techniques (i.e. spalling) to overcome these problems.

  17. Identifying Regions Based on Flexible User Defined Constraints.

    PubMed

    Folch, David C; Spielman, Seth E

    2014-01-01

    The identification of regions is both a computational and conceptual challenge. Even with growing computational power, regionalization algorithms must rely on heuristic approaches in order to find solutions. Therefore, the constraints and evaluation criteria that define a region must be translated into an algorithm that can efficiently and effectively navigate the solution space to find the best solution. One limitation of many existing regionalization algorithms is a requirement that the number of regions be selected a priori. The max-p algorithm, introduced in Duque et al. (2012), does not have this requirement, and thus the number of regions is an output of, not an input to, the algorithm. In this paper we extend the max-p algorithm to allow for greater flexibility in the constraints available to define a feasible region, placing the focus squarely on the multidimensional characteristics of region. We also modify technical aspects of the algorithm to provide greater flexibility in its ability to search the solution space. Using synthetic spatial and attribute data we are able to show the algorithm's broad ability to identify regions in maps of varying complexity. We also conduct a large scale computational experiment to identify parameter settings that result in the greatest solution accuracy under various scenarios. The rules of thumb identified from the experiment produce maps that correctly assign areas to their "true" region with 94% average accuracy, with nearly 50 percent of the simulations reaching 100 percent accuracy.

  18. 3-D elastic wave propagation on regional to global scales using an ADER-DG method

    NASA Astrophysics Data System (ADS)

    Wenk, S.; Pelties, C.; Igel, H.

    2012-04-01

    The complex 3-D material property distributions inside the Earth and detailed information on the physical dynamics of an earthquake require robust numerical methods to generate accurate results in form of seismograms. Furthermore, these simulations must be highly scalable on HPC infrastructures for realistic simulations. Possible applications are regional forward modeling studies for hazard assessment or seismic tomography on a global scale to illuminate the deep Earth's interior. The Arbitrary high-order DERivative Discontinuous Galerkin (ADER-DG) method is well suited to simulate 3-D elastic wave propagation to capture the high frequency content of the wavefield over long propagation distances. It is able to incorporate fine-scale Earth structures on a regional to global scale using flexible tetrahedral meshing and features like h-p adaptivity and local time stepping (Dumbser et al. 2007). We were able to successfully benchmark seismograms originating from simpler 1-D layered Earth models with synthetics of the well-tested spectral-element method. The verification towards 3-D models is carried out on a regional model of Europe taking the topography of the Earth's surface and Mohorovicic discontinuity into account using the EPcrust model of Molinari et al. (2011) on top of the AK135 model of Kennett et al. (1995). For the L'Aquila earthquake (Italy) in 2009 we compare synthetic seismograms of our ADER-DG solver with real data up to 20s period and can show a very good fit between the signals.

  19. DG-FTLE: Lagrangian coherent structures with high-order discontinuous-Galerkin methods

    NASA Astrophysics Data System (ADS)

    Nelson, Daniel A.; Jacobs, Gustaaf B.

    2015-08-01

    We present an algorithm for the computation of finite-time Lyapunov exponent (FTLE) fields using discontinuous-Galerkin (dG) methods in two dimensions. The algorithm is designed to compute FTLE fields simultaneously with the time integration of dG-based flow solvers of conservation laws. Fluid tracers are initialized at Gauss-Lobatto quadrature nodes within an element. The deformation gradient tensor, defined by the deformation of the Lagrangian flow map in finite time, is determined per element with high-order dG operators. Multiple flow maps are constructed from a particle trace that is released at a single initial time by mapping and interpolating the flow map formed by the locations of the fluid tracers after finite time integration to a unit square master element and to the quadrature nodes within the element, respectively. The interpolated flow maps are used to compute forward-time and backward-time FTLE fields at several times using dG operators. For a large finite integration time, the interpolation is increasingly poorly conditioned because of the excessive subdomain deformation. The conditioning can be used in addition to the FTLE to quantify the deformation of the flow field and identify subdomains with material lines that define Lagrangian coherent structures. The algorithm is tested on three benchmarks: an analytical spatially periodic gyre flow, a vortex advected by a uniform inviscid flow, and the viscous flow around a square cylinder. In these cases, the algorithm is shown to have spectral convergence.

  20. Flexible Tactile Sensing Based on Piezoresistive Composites: A Review

    PubMed Central

    Stassi, Stefano; Cauda, Valentina; Canavese, Giancarlo; Pirri, Candido Fabrizio

    2014-01-01

    The large expansion of the robotic field in the last decades has created a growing interest in the research and development of tactile sensing solutions for robot hand and body integration. Piezoresistive composites are one of the most widely employed materials for this purpose, combining simple and low cost preparation with high flexibility and conformability to surfaces, low power consumption, and the use of simple read-out electronics. This work provides a review on the different type of composite materials, classified according to the conduction mechanism and analyzing the physics behind it. In particular piezoresistors, strain gauges, percolative and quantum tunnelling devices are reviewed here, with a perspective overview on the most used filler types and polymeric matrices. A description of the state-of-the-art of the tactile sensor solutions from the point of view of the architecture, the design and the performance is also reviewed, with a perspective outlook on the main promising applications. PMID:24638126

  1. Large scale rigidity-based flexibility analysis of biomolecules

    PubMed Central

    Streinu, Ileana

    2016-01-01

    KINematics And RIgidity (KINARI) is an on-going project for in silico flexibility analysis of proteins. The new version of the software, Kinari-2, extends the functionality of our free web server KinariWeb, incorporates advanced web technologies, emphasizes the reproducibility of its experiments, and makes substantially improved tools available to the user. It is designed specifically for large scale experiments, in particular, for (a) very large molecules, including bioassemblies with high degree of symmetry such as viruses and crystals, (b) large collections of related biomolecules, such as those obtained through simulated dilutions, mutations, or conformational changes from various types of dynamics simulations, and (c) is intended to work as seemlessly as possible on the large, idiosyncratic, publicly available repository of biomolecules, the Protein Data Bank. We describe the system design, along with the main data processing, computational, mathematical, and validation challenges underlying this phase of the KINARI project. PMID:26958583

  2. A genetic algorithm based method for docking flexible molecules

    SciTech Connect

    Judson, R.S.; Jaeger, E.P.; Treasurywala, A.M.

    1993-11-01

    The authors describe a computational method for docking flexible molecules into protein binding sites. The method uses a genetic algorithm (GA) to search the combined conformation/orientation space of the molecule to find low energy conformation. Several techniques are described that increase the efficiency of the basic search method. These include the use of several interacting GA subpopulations or niches; the use of a growing algorithm that initially docks only a small part of the molecule; and the use of gradient minimization during the search. To illustrate the method, they dock Cbz-GlyP-Leu-Leu (ZGLL) into thermolysin. This system was chosen because a well refined crystal structure is available and because another docking method had previously been tested on this system. Their method is able to find conformations that lie physically close to and in some cases lower in energy than the crystal conformation in reasonable periods of time on readily available hardware.

  3. Flexible strain sensors based on electrostatically actuated graphene flakes

    NASA Astrophysics Data System (ADS)

    Fardindoost, Somayeh; Alipour, Akbar; Mohammadi, Saeed; Gokyar, Sayim; Sarvari, Reza; Iraji zad, Azam; Demir, Hilmi Volkan

    2015-07-01

    In this paper we present flexible strain sensors made of graphene flakes fabricated, characterized, and analyzed for the electrical actuation and readout of their mechanical vibratory response in strain-sensing applications. For a typical suspended graphene membrane fabricated with an approximate length of 10 µm, a mechanical resonance frequency around 136 MHz with a quality factor (Q) of ~60 in air under ambient conditions was observed. The applied strain can shift the resonance frequency substantially, which is found to be related to the alteration of physical dimension and the built-in strain in the graphene flake. Strain sensing was performed using both planar and nonplanar surfaces (bending with different radii of curvature) as well as by stretching with different elongations.

  4. Back-stepping control of two-link flexible manipulator based on an extended state observer

    NASA Astrophysics Data System (ADS)

    Yang, Hongjiu; Yu, Yang; Yuan, Yuan; Fan, Xiaozhao

    2015-11-01

    In this paper, we consider trajectory tracking control of a two-link flexible manipulator model in space. Two variables of joint angle and elastic deformation are partly decoupled by a nonlinear decoupling feedback control method. An extended state observer is introduced to estimate nonlinear terms of the two-link flexible manipulator system. Based on a back-stepping method, a nonlinear controller is designed for the flexible manipulator system. Finally, some simulation results are given to demonstrate the effectiveness of the developed techniques in this paper.

  5. TiO2 thin film based transparent flexible resistive switching random access memory

    NASA Astrophysics Data System (ADS)

    Pham, Kim Ngoc; Dung Hoang, Van; Tran, Cao Vinh; Thang Phan, Bach

    2016-03-01

    In our work we have fabricated TiO2 based resistive switching devices both on transparent substrates (ITO, IGZO/glass) and transparent flexible substrate (ITO/PET). All devices demonstrate the reproducibility of forming free bipolar resistive switching with high transparency in the visible light range (∼80% at the wavelength of 550 nm). Particularly, transparent and flexible device exhibits stable resistive switching performance at the initial state (flat) and even after bending state up to 500 times with curvature radius of 10% compared to flat state. The achieved characteristics of resistive switching of TiO2 thin films seem to be promising for transparent flexible random access memory.

  6. High performance of a solid-state flexible asymmetric supercapacitor based on graphene films

    NASA Astrophysics Data System (ADS)

    Choi, Bong Gill; Chang, Sung-Jin; Kang, Hyun-Wook; Park, Chan Pil; Kim, Hae Jin; Hong, Won Hi; Lee, Sanggap; Huh, Yun Suk

    2012-07-01

    Solid-state flexible energy storage devices hold the key to realizing portable and flexible electronic devices. Achieving fully flexible energy storage devices requires that all of the essential components (i.e., electrodes, separator, and electrolyte) with specific electrochemical and interfacial properties are integrated into a single solid-state and mechanically flexible unit. In this study, we describe the fabrication of solid-state flexible asymmetric supercapacitors based on an ionic liquid functionalized-chemically modified graphene (IL-CMG) film (as the negative electrode) and a hydrous RuO2-IL-CMG composite film (as the positive electrode), separated with polyvinyl alcohol-H2SO4 electrolyte. The highly ordered macroscopic layer structures of these films arising through direct flow self-assembly make them simultaneously excellent electrical conductors and mechanical supports, allowing them to serve as flexible electrodes and current collectors in supercapacitor devices. Our asymmetric supercapacitors have been optimized with a maximum cell voltage up to 1.8 V and deliver a high energy density (19.7 W h kg-1) and power density (6.8 kW g-1), higher than those of symmetric supercapacitors based on IL-CMG films. They can operate even under an extremely high rate of 10 A g-1 with 79.4% retention of specific capacitance. Their superior flexibility and cycling stability are evident in their good performance stability over 2000 cycles under harsh mechanical conditions including twisted and bent states. These solid-state flexible asymmetric supercapacitors with their simple cell configuration could offer new design and fabrication opportunities for flexible energy storage devices that can combine high energy and power densities, high rate capability, and long-term cycling stability.Solid-state flexible energy storage devices hold the key to realizing portable and flexible electronic devices. Achieving fully flexible energy storage devices requires that all of the

  7. Flexible and Robust Thermoelectric Generators Based on All-Carbon Nanotube Yarn without Metal Electrodes.

    PubMed

    Choi, Jaeyoo; Jung, Yeonsu; Yang, Seung Jae; Oh, Jun Young; Oh, Jinwoo; Jo, Kiyoung; Son, Jeong Gon; Moon, Seung Eon; Park, Chong Rae; Kim, Heesuk

    2017-08-22

    As practical interest in flexible/or wearable power-conversion devices increases, the demand for high-performance alternatives to thermoelectric (TE) generators based on brittle inorganic materials is growing. Herein, we propose a flexible and ultralight TE generator (TEG) based on carbon nanotube yarn (CNTY) with excellent TE performance. The as-prepared CNTY shows a superior electrical conductivity of 3147 S/cm due to increased longitudinal carrier mobility derived from a highly aligned structure. Our TEG is innovative in that the CNTY acts as multifunctions in the same device. The CNTY is alternatively doped into n- and p-types using polyethylenimine and FeCl3, respectively. The highly conductive CNTY between the doped regions is used as electrodes to minimize the circuit resistance, thereby forming an all-carbon TEG without additional metal deposition. A flexible TEG based on 60 pairs of n- and p-doped CNTY shows the maximum power density of 10.85 and 697 μW/g at temperature differences of 5 and 40 K, respectively, which are the highest values among reported TEGs based on flexible materials. We believe that the strategy proposed here to improve the power density of flexible TEG by introducing highly aligned CNTY and designing a device without metal electrodes shows great potential for the flexible/or wearable power-conversion devices.

  8. Functional Design of Dielectric-Metal-Dielectric-Based Thin-Film Encapsulation with Heat Transfer and Flexibility for Flexible Displays.

    PubMed

    Kwon, Jeong Hyun; Choi, Seungyeop; Jeon, Yongmin; Kim, Hyuncheol; Chang, Ki Soo; Choi, Kyung Cheol

    2017-08-16

    In this study, a new and efficient dielectric-metal-dielectric-based thin-film encapsulation (DMD-TFE) with an inserted Ag thin film is proposed to guarantee the reliability of flexible displays by improving the barrier properties, mechanical flexibility, and heat dissipation, which are considered to be essential requirements for organic light-emitting diode (OLED) encapsulation. The DMD-TFE, which is composed of Al2O3, Ag, and a silica nanoparticle-embedded sol-gel hybrid nanocomposite, shows a water vapor transmission rate of 8.70 × 10(-6) g/m(2)/day and good mechanical reliability at a bending radius of 30 mm, corresponding to 0.41% strain for 1000 bending cycles. The electrical performance of a thin-film encapsulated phosphorescent organic light-emitting diode (PHOLED) was identical to that of a glass-lid encapsulated PHOLED. The operational lifetimes of the thin-film encapsulated and glass-lid encapsulated PHOLEDs are 832 and 754 h, respectively. After 80 days, the thin-film encapsulated PHOLED did not show performance degradation or dark spots on the cell image in a shelf-lifetime test. Finally, the difference in lifetime of the OLED devices in relation to the presence and thickness of a Ag film was analyzed by applying various TFE structures to fluorescent organic light-emitting diodes (FOLEDs) that could generate high amounts of heat. To demonstrate the difference in heat dissipation effect among the TFE structures, the saturated temperatures of the encapsulated FOLEDs were measured from the back side surface of the glass substrate, and were found to be 67.78, 65.12, 60.44, and 39.67 °C after all encapsulated FOLEDs were operated at an initial luminance of 10 000 cd/m(2) for sufficient heat generation. Furthermore, the operational lifetime tests of the encapsulated FOLED devices showed results that were consistent with the measurements of real-time temperature profiles taken with an infrared camera. A multifunctional hybrid thin-film encapsulation based

  9. Structure-Based Druggability Assessment of the Mammalian Structural Proteome with Inclusion of Light Protein Flexibility

    PubMed Central

    Loving, Kathryn A.; Lin, Andy; Cheng, Alan C.

    2014-01-01

    Advances reported over the last few years and the increasing availability of protein crystal structure data have greatly improved structure-based druggability approaches. However, in practice, nearly all druggability estimation methods are applied to protein crystal structures as rigid proteins, with protein flexibility often not directly addressed. The inclusion of protein flexibility is important in correctly identifying the druggability of pockets that would be missed by methods based solely on the rigid crystal structure. These include cryptic pockets and flexible pockets often found at protein-protein interaction interfaces. Here, we apply an approach that uses protein modeling in concert with druggability estimation to account for light protein backbone movement and protein side-chain flexibility in protein binding sites. We assess the advantages and limitations of this approach on widely-used protein druggability sets. Applying the approach to all mammalian protein crystal structures in the PDB results in identification of 69 proteins with potential druggable cryptic pockets. PMID:25079060

  10. Structure-based druggability assessment of the mammalian structural proteome with inclusion of light protein flexibility.

    PubMed

    Loving, Kathryn A; Lin, Andy; Cheng, Alan C

    2014-07-01

    Advances reported over the last few years and the increasing availability of protein crystal structure data have greatly improved structure-based druggability approaches. However, in practice, nearly all druggability estimation methods are applied to protein crystal structures as rigid proteins, with protein flexibility often not directly addressed. The inclusion of protein flexibility is important in correctly identifying the druggability of pockets that would be missed by methods based solely on the rigid crystal structure. These include cryptic pockets and flexible pockets often found at protein-protein interaction interfaces. Here, we apply an approach that uses protein modeling in concert with druggability estimation to account for light protein backbone movement and protein side-chain flexibility in protein binding sites. We assess the advantages and limitations of this approach on widely-used protein druggability sets. Applying the approach to all mammalian protein crystal structures in the PDB results in identification of 69 proteins with potential druggable cryptic pockets.

  11. Flexible perovskite solar cells based on the metal-insulator-semiconductor structure.

    PubMed

    Wei, Jing; Li, Heng; Zhao, Yicheng; Zhou, Wenke; Fu, Rui; Pan, Huiyue; Zhao, Qing

    2016-09-14

    The metal-insulator-semiconductor (MIS) structure is applied to perovskite solar cells, in which the traditional compact layer TiO2 is replaced by Al2O3 as the hole blocking material to realize an all-low-temperature process. Flexible devices based on this structure are also realized with excellent flexibility, which hold 85% of their initial efficiency after bending 100 times.

  12. Therapist responsiveness to child engagement: flexibility within manual-based CBT for anxious youth.

    PubMed

    Chu, Brian C; Kendall, Philip C

    2009-07-01

    Therapy process research helps delineate common and specific elements essential to positive outcomes as well as develop best practice training protocols. Child involvement and therapist flexibility were rated in 63 anxious youth (ages 8-14) who received cognitive-behavioral therapy. Therapist flexibility, defined as therapist attempts to adapt treatment to a child's needs, was hypothesized to act as an engagement strategy that serves to increase child involvement during therapy. Flexibility was significantly related to increases in later child engagement, which subsequently predicted improvement in posttreatment diagnosis and impairment. Therapist flexibility was not associated with earlier measures of child engagement, so a mediation model could not be supported. It was also hypothesized that the impact of flexibility would be greatest for cases who began treatment highly disengaged (i.e., early involvement would moderate the effect of flexibility). Basic descriptive data supported this model, but formal analyses failed to confirm. Further descriptive analyses suggest therapists employ a range of adaptations and a profile of flexible applications within a manual-based treatment is provided. Treatment, measurement, and dissemination issues are discussed.

  13. High quality transparent conductive Ag-based barium stannate multilayer flexible thin films.

    PubMed

    Wu, Muying; Yu, Shihui; He, Lin; Yang, Lei; Zhang, Weifeng

    2017-12-01

    Transparent conductive multilayer thin films of silver (Ag)-embedded barium stannate (BaSnO3) structures have been deposited onto flexible polycarbonate substrates by magnetron sputtering at room temperature to develop an indium free transparent flexible electrode. The effect of thicknesses of Ag mid-layer and barium stannate layers on optical and electrical properties were investigated, and the mechanisms of conduction and transmittance were discussed. The highest value of figure of merit is 25.5 × 10(-3) Ω(-1) for the BaSnO3/Ag/BaSnO3 multilayer flexible thin films with 9 nm thick silver mid-layer and 50 nm thick barium stannate layers, while the average optical transmittance in the visible range from 380 to 780 nm is above 87%, the resistivity is 9.66 × 10(-5) Ω · cm, and the sheet resistance is 9.89 Ω/sq. The change rate of resistivity is under 10% after repeated bending of the multilayer flexible thin films. These results indicate that Ag-based barium stannate multilayer flexible thin films can be used as transparent flexible electrodes in various flexible optoelectronic devices.

  14. Buckling of a Flexible Strip Sliding on a Frictional Base

    NASA Astrophysics Data System (ADS)

    Huynen, Alexandre; Marck, Julien; Denoel, Vincent; Detournay, Emmanuel

    2013-03-01

    The main motivation for this contribution is the buckling of a drillstring sliding on the bottom of the horizontal section of borehole. The open questions that remain today are related to the determination of the onset of instability, and to the conditions under which different modes of constrained buckling occur. In this presentation, we are concerned by a two-dimensional version of this problem; namely, the sliding of a flexible strip being fed inside a conduit. The ribbon, which has a flexural rigidity EI and a weight per unit length w, is treated as an inextensible elastica of negligible thickness. The contact between the ribbon and the wall of the conduit is characterized by a friction coefficient μ. First, we report the result of a stability analysis that aims at determining the critical inserted length of the ribbon l* (μ) (scaled by the characteristic length λ =(EI / w) 1 / 3) at which there is separation between the strip and the conduit bottom, as well as the buckling mode. Next, the relationship between the feeding force F and the inserted length l after bifurcation is computed. Finally, the results of a ``kitchen table'' experiment involving a strip of silicon rubber being pushed on a plank are reported and compared with predictions.

  15. Homogeneous bilayer graphene film based flexible transparent conductor.

    PubMed

    Lee, Seunghyun; Lee, Kyunghoon; Liu, Chang-Hua; Zhong, Zhaohui

    2012-01-21

    Graphene is considered as a promising candidate to replace conventional transparent conductors due to its low opacity, high carrier mobility and flexible structure. Multi-layer graphene or stacked single layer graphenes have been investigated in the past but both have their drawbacks. The uniformity of multi-layer graphene is still questionable, and single layer graphene stacks require many transfer processes to achieve sufficiently low sheet resistance. In this work, bilayer graphene film grown with low pressure chemical vapor deposition was used as a transparent conductor for the first time. The technique was demonstrated to be highly efficient in fabricating a conductive and uniform transparent conductor compared to multi-layer or single layer graphene. Four transfers of bilayer graphene yielded a transparent conducting film with a sheet resistance of 180 Ω(□) at a transmittance of 83%. In addition, bilayer graphene films transferred onto the plastic substrate showed remarkable robustness against bending, with sheet resistance change less than 15% at 2.14% strain, a 20-fold improvement over commercial indium oxide films.

  16. Flexible and Highly Biocompatible Nanofiber-Based Electrodes for Neural Surface Interfacing.

    PubMed

    Heo, Dong Nyoung; Kim, Han-Jun; Lee, Yi Jae; Heo, Min; Lee, Sang Jin; Lee, Donghyun; Do, Sun Hee; Lee, Soo Hyun; Kwon, Il Keun

    2017-03-28

    Polyimide (PI)-based electrodes have been widely used as flexible biosensors in implantable device applications for recording biological signals. However, the long-term quality of neural signals obtained from PI-based nerve electrodes tends to decrease due to nerve damage by neural tissue compression, mechanical mismatch, and insufficient fluid exchange between the neural tissue and electrodes. Here, we resolve these problems with a developed PI nanofiber (NF)-based nerve electrode for stable neural signal recording, which can be fabricated via electrospinning and inkjet printing. We demonstrate an NF-based nerve electrode that can be simply fabricated and easily applied due to its high permeability, flexibility, and biocompatibility. Furthermore, the electrode can record stable neural signals for extended periods of time, resulting in decreased mechanical mismatch, neural compression, and contact area. NF-based electrodes with highly flexible and body-fluid-permeable properties could enable future neural interfacing applications.

  17. High-Efficiency Flexible Solar Cells Based on Organometal Halide Perovskites.

    PubMed

    Wang, Yuming; Bai, Sai; Cheng, Lu; Wang, Nana; Wang, Jianpu; Gao, Feng; Huang, Wei

    2016-06-01

    Flexible and light-weight solar cells are important because they not only supply power to wearable and portable devices, but also reduce the transportation and installation cost of solar panels. High-efficiency organometal halide perovskite solar cells can be fabricated by a low-temperature solution process, and hence are promising for flexible-solar-cell applications. Here, the development of perovskite solar cells is briefly discussed, followed by the merits of organometal halide perovskites as promising candidates as high-efficiency, flexible, and light-weight photovoltaic materials. Afterward, recent developments of flexible solar cells based on perovskites are reviewed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper.

    PubMed

    Jung, Yei Hwan; Chang, Tzu-Hsuan; Zhang, Huilong; Yao, Chunhua; Zheng, Qifeng; Yang, Vina W; Mi, Hongyi; Kim, Munho; Cho, Sang June; Park, Dong-Wook; Jiang, Hao; Lee, Juhwan; Qiu, Yijie; Zhou, Weidong; Cai, Zhiyong; Gong, Shaoqin; Ma, Zhenqiang

    2015-05-26

    Today's consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and biodegradable materials and minimal amount of potentially toxic materials are desirable. Here we report high-performance flexible microwave and digital electronics that consume the smallest amount of potentially toxic materials on biobased, biodegradable and flexible cellulose nanofibril papers. Furthermore, we demonstrate gallium arsenide microwave devices, the consumer wireless workhorse, in a transferrable thin-film form. Successful fabrication of key electrical components on the flexible cellulose nanofibril paper with comparable performance to their rigid counterparts and clear demonstration of fungal biodegradation of the cellulose-nanofibril-based electronics suggest that it is feasible to fabricate high-performance flexible electronics using ecofriendly materials.

  19. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper

    NASA Astrophysics Data System (ADS)

    Jung, Yei Hwan; Chang, Tzu-Hsuan; Zhang, Huilong; Yao, Chunhua; Zheng, Qifeng; Yang, Vina W.; Mi, Hongyi; Kim, Munho; Cho, Sang June; Park, Dong-Wook; Jiang, Hao; Lee, Juhwan; Qiu, Yijie; Zhou, Weidong; Cai, Zhiyong; Gong, Shaoqin; Ma, Zhenqiang

    2015-05-01

    Today's consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and biodegradable materials and minimal amount of potentially toxic materials are desirable. Here we report high-performance flexible microwave and digital electronics that consume the smallest amount of potentially toxic materials on biobased, biodegradable and flexible cellulose nanofibril papers. Furthermore, we demonstrate gallium arsenide microwave devices, the consumer wireless workhorse, in a transferrable thin-film form. Successful fabrication of key electrical components on the flexible cellulose nanofibril paper with comparable performance to their rigid counterparts and clear demonstration of fungal biodegradation of the cellulose-nanofibril-based electronics suggest that it is feasible to fabricate high-performance flexible electronics using ecofriendly materials.

  20. Review of flexible and transparent thin-film transistors based on zinc oxide and related materials

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Hui; Mei, Zeng-Xia; Liang, Hui-Li; Du, Xiao-Long

    2017-04-01

    Flexible and transparent electronics enters into a new era of electronic technologies. Ubiquitous applications involve wearable electronics, biosensors, flexible transparent displays, radio-frequency identifications (RFIDs), etc. Zinc oxide (ZnO) and relevant materials are the most commonly used inorganic semiconductors in flexible and transparent devices, owing to their high electrical performances, together with low processing temperatures and good optical transparencies. In this paper, we review recent advances in flexible and transparent thin-film transistors (TFTs) based on ZnO and relevant materials. After a brief introduction, the main progress of the preparation of each component (substrate, electrodes, channel and dielectrics) is summarized and discussed. Then, the effect of mechanical bending on electrical performance is highlighted. Finally, we suggest the challenges and opportunities in future investigations. Project supported by the National Natural Science Foundation of China (Grants Nos. 61306011, 11274366, 51272280, 11674405, and 11675280).

  1. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper

    PubMed Central

    Jung, Yei Hwan; Chang, Tzu-Hsuan; Zhang, Huilong; Yao, Chunhua; Zheng, Qifeng; Yang, Vina W.; Mi, Hongyi; Kim, Munho; Cho, Sang June; Park, Dong-Wook; Jiang, Hao; Lee, Juhwan; Qiu, Yijie; Zhou, Weidong; Cai, Zhiyong; Gong, Shaoqin; Ma, Zhenqiang

    2015-01-01

    Today's consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and biodegradable materials and minimal amount of potentially toxic materials are desirable. Here we report high-performance flexible microwave and digital electronics that consume the smallest amount of potentially toxic materials on biobased, biodegradable and flexible cellulose nanofibril papers. Furthermore, we demonstrate gallium arsenide microwave devices, the consumer wireless workhorse, in a transferrable thin-film form. Successful fabrication of key electrical components on the flexible cellulose nanofibril paper with comparable performance to their rigid counterparts and clear demonstration of fungal biodegradation of the cellulose-nanofibril-based electronics suggest that it is feasible to fabricate high-performance flexible electronics using ecofriendly materials. PMID:26006731

  2. A flexible framework for sparse simultaneous component based data integration

    PubMed Central

    2011-01-01

    1 Background High throughput data are complex and methods that reveal structure underlying the data are most useful. Principal component analysis, frequently implemented as a singular value decomposition, is a popular technique in this respect. Nowadays often the challenge is to reveal structure in several sources of information (e.g., transcriptomics, proteomics) that are available for the same biological entities under study. Simultaneous component methods are most promising in this respect. However, the interpretation of the principal and simultaneous components is often daunting because contributions of each of the biomolecules (transcripts, proteins) have to be taken into account. 2 Results We propose a sparse simultaneous component method that makes many of the parameters redundant by shrinking them to zero. It includes principal component analysis, sparse principal component analysis, and ordinary simultaneous component analysis as special cases. Several penalties can be tuned that account in different ways for the block structure present in the integrated data. This yields known sparse approaches as the lasso, the ridge penalty, the elastic net, the group lasso, sparse group lasso, and elitist lasso. In addition, the algorithmic results can be easily transposed to the context of regression. Metabolomics data obtained with two measurement platforms for the same set of Escherichia coli samples are used to illustrate the proposed methodology and the properties of different penalties with respect to sparseness across and within data blocks. 3 Conclusion Sparse simultaneous component analysis is a useful method for data integration: First, simultaneous analyses of multiple blocks offer advantages over sequential and separate analyses and second, interpretation of the results is highly facilitated by their sparseness. The approach offered is flexible and allows to take the block structure in different ways into account. As such, structures can be found that are

  3. Development of PDMS-based flexible dry type SEMG electrodes by micromachining technologies

    NASA Astrophysics Data System (ADS)

    Jung, Jung Mo; Cha, Doo Yeol; Kim, Deok Su; Yang, Hee Jun; Choi, Kyo Sang; Choi, Jong Myoung; Chang, Sung Pil

    2014-09-01

    The authors developed PDMS (polydimethylsiloxane)-based dry type surface electromyography (SEMG) electrodes for myoelectric prosthetic hands. The SEMG electrodes were strongly recommended to be fabricated on a flexible substrate to be compatible with the surface of skin. In this study, the authors designed a bar-shaped dry-type flexible SEMG electrodes comprised of two input electrodes and a reference electrode on a flexible PDMS substrate to measure EMG signals. The space distance between each electrode with a size of 10 mm × 2 mm was chosen to 18 mm to get optimal result according to the simulation result with taking into consideration the conduction velocity and the median frequency of EMG signals. Raw EMG signals were measured from Brachioradialis, Biceps brachii, deltoideus, and pectoralis major muscles, to drive the application of the myoelectric hand prosthesis. Measured raw EMG signals were transformed to root mean square (RMS) EMG signals using Acqknowledge4.2. The experimental peak voltage values of RMS EMG signals from Brachioradialis, Biceps brachii, deltoideus, and pectoralis major muscles were 2.96 V, 4.45 V, 1.74 V, and 2.62 V, respectively. Values from the dry type flexible SEMG electrodes showed higher peak values than a commercially available wet type Ag-AgCl electrode. The study shows that the PDMS-based flexible electrode devised for measuring myoelectric signals from the surface of skin is more useful for prosthetic hands because of its greater sensitivity and flexibility.

  4. 78 FR 65869 - Airworthiness Directives; DG Flugzeugbau GmbH Gliders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ...-17646; AD 2013-22-14] RIN 2120-AA64 Airworthiness Directives; DG Flugzeugbau GmbH Gliders AGENCY... adopting a new airworthiness directive (AD) for any DG Flugzeugbau GmbH Model DG-1000T glider equipped with... information about the technical content of the requirements in this AD, contact Solo Kleinmotoren GmbH...

  5. Free-Suspension Residual Flexibility Testing of Space Station Pathfinder: Comparison to Fixed-Base Results

    NASA Technical Reports Server (NTRS)

    Tinker, Michael L.

    1998-01-01

    Application of the free-suspension residual flexibility modal test method to the International Space Station Pathfinder structure is described. The Pathfinder, a large structure of the general size and weight of Space Station module elements, was also tested in a large fixed-base fixture to simulate Shuttle Orbiter payload constraints. After correlation of the Pathfinder finite element model to residual flexibility test data, the model was coupled to a fixture model, and constrained modes and frequencies were compared to fixed-base test. modes. The residual flexibility model compared very favorably to results of the fixed-base test. This is the first known direct comparison of free-suspension residual flexibility and fixed-base test results for a large structure. The model correlation approach used by the author for residual flexibility data is presented. Frequency response functions (FRF) for the regions of the structure that interface with the environment (a test fixture or another structure) are shown to be the primary tools for model correlation that distinguish or characterize the residual flexibility approach. A number of critical issues related to use of the structure interface FRF for correlating the model are then identified and discussed, including (1) the requirement of prominent stiffness lines, (2) overcoming problems with measurement noise which makes the antiresonances or minima in the functions difficult to identify, and (3) the use of interface stiffness and lumped mass perturbations to bring the analytical responses into agreement with test data. It is shown that good comparison of analytical-to-experimental FRF is the key to obtaining good agreement of the residual flexibility values.

  6. Highly Sensitive Flexible Pressure Sensor Based on Silver Nanowires-Embedded Polydimethylsiloxane Electrode with Microarray Structure.

    PubMed

    Shuai, Xingtian; Zhu, Pengli; Zeng, Wenjin; Hu, Yougen; Liang, Xianwen; Zhang, Yu; Sun, Rong; Wong, Ching-Ping

    2017-08-09

    Flexible pressure sensors have attracted increasing research interest because of their potential applications for wearable sensing devices. Herein, a highly sensitive flexible pressure sensor is exhibited based on the elastomeric electrodes and a microarray architecture. Polydimethylsiloxane (PDMS) substrate, coated with silver nanowires (AgNWs), is used as the top electrode, while polyvinylidene fluoride (PVDF) as the dielectric layer. Several transfer processes are applied on seeking facile strategy for the preparation of the bottom electrode via embedding AgNWs into the PDMS film of microarray structure. The flexible pressure sensor integrates the top electrode, dielectric layer, and microarray electrode in a sandwich structure. It is demonstrated that such sensors possess the superiorities of high sensitivity (2.94 kPa(-1)), low detection limit (<3 Pa), short response time (<50 ms), excellent flexibility, and long-term cycle stability. This simple process for preparing such sensors can also be easily scaled up to construct pressure sensor arrays for detecting the intensity and distribution of the loaded pressure. In addition, this flexible pressure sensor exhibits good performance even in a noncontact way, such as detecting voice vibrations and air flow. Due to its superior performance, this designed flexible pressure sensor demonstrates promising potential in the application of electronic skins, as well as wearable healthcare monitors.

  7. Comment on "flexible protocol for quantum private query based on B92 protocol"

    NASA Astrophysics Data System (ADS)

    Chang, Yan; Zhang, Shi-Bin; Zhu, Jing-Min

    2017-03-01

    In a recent paper (Quantum Inf Process 13:805-813, 2014), a flexible quantum private query (QPQ) protocol based on B92 protocol is presented. Here we point out that the B92-based QPQ protocol is insecure in database security when the channel has loss, that is, the user (Alice) will know more records in Bob's database compared with she has bought.

  8. The Use of Work-Based Learning Pedagogical Perspectives to Inform Flexible Practice within Higher Education

    ERIC Educational Resources Information Center

    Nottingham, Paula

    2016-01-01

    The renewed emphasis on developing flexible learning practices in higher education (HE) underscores the importance of understanding pedagogies for students who are based in the workplace or undertake significant work-related elements of study. This paper draws on research that explores how work-based learning (WBL) pedagogy operates in UK HE using…

  9. A flexible future for paper-based electronics

    NASA Astrophysics Data System (ADS)

    Liang, Tongfen; Zou, Xiyue; Mazzeo, Aaron D.

    2016-05-01

    This paper will review the origins and state of the art in paper-based electronics, suggesting the stage is set for future promising applications. Current interest in paper-based electronics can trace its roots to recent developments in paper-based microfluidics. With a need to improve the reliability and sensitivity of paperbased microfluidics for certain tasks, there were natural efforts to begin embedding sensing electrodes into microfluidic devices. Recognizing the general benefits of paper as an advanced material (e.g., its environmental friendliness, bendable nature, and low cost), efforts in paper-based electronics also began to take a life of their own with demonstrations of transistors, batteries and devices for energy storage, energy harvesting, sensors to improve situational awareness, acoustics, and displays. The state-of-the-art paper-based electronic devices have benefited and will continue to profit from technologies for printing and transferring electronic functionality onto the surfaces of paper-based substrates. Nonetheless, the authors suggest that many future promising applications will go beyond using paper as a carrier/substrate for electronic components to explore tuning of the electrical, mechanical, and chemical properties of the paper itself. With these technical advances, paper-based electronics will move closer to economically viable killer applications.

  10. Flexible Data Base Management System Expedites Library Planning and Control

    ERIC Educational Resources Information Center

    Martin, Jean K.

    1974-01-01

    Application of a generalized data base management system enabled the new Physics-Mathematics-Astronomy Library to couple the immediate needs of moving and integrating two libraries with long-term capabilities. (Author)

  11. Transition-Metal-Free Biomolecule-Based Flexible Asymmetric Supercapacitors.

    PubMed

    Yang, Yun; Wang, Hua; Hao, Rui; Guo, Lin

    2016-09-01

    A transition-metal-free asymmetric supercapacitor (ASC) is successfully fabricated based on an earth-abundant biomass derived redox-active biomolecule, named lawsone. Such an ASC exhibits comparable or even higher energy densities than most of the recently reported transition-metal-based ASCs, and this green ASC generation from renewable resources is promising for addressing current issues of electronic hazard processing, high cost, and unsustainability.

  12. Flexible thin-film battery based on solid-like ionic liquid-polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Li, Qin; Ardebili, Haleh

    2016-01-01

    The development of high-performance flexible batteries is imperative for several contemporary applications including flexible electronics, wearable sensors and implantable medical devices. However, traditional organic liquid-based electrolytes are not ideal for flexible batteries due to their inherent safety and stability issues. In this study, a non-volatile, non-flammable and safe ionic liquid (IL)-based polymer electrolyte film with solid-like feature is fabricated and incorporated in a flexible lithium ion battery. The ionic liquid is 1-Ethyl-3-methylimidazolium dicyanamide (EMIMDCA) and the polymer is composed of poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP). The electrolyte exhibits good thermal stability (i.e. no weight loss up to 300 °C) and relatively high ionic conductivity (6 × 10-4 S cm-1). The flexible thin-film lithium ion battery based on solid-like electrolyte film is encapsulated using a thermal-lamination process and demonstrates excellent electrochemical performance, in both flat and bent configurations.

  13. Flexibility in competency-based workplace transition programs: an exploratory study of community child and family health nursing.

    PubMed

    Cusack, Lynette; Gilbert, Sandra; Fereday, Jennifer

    2013-03-01

    Successful transition to practice programs that use competency-based assessment require the involvement of all staff, especially those undertaking the preceptor role. Qualitative data were collected using interview methods. Participants were 14 newly employed nurses and 7 preceptors in the child and family community health service in South Australia. Participant narratives were recorded electronically, transcribed, and thematically analyzed using the paradigm of critical social science. Five themes were identified that describe enablers as well as barriers to applying a flexible transition to practice program using competency-based assessment. These included flexibility in the program design, flexibility on the part of preceptors, flexibility to enable recognition of previous learning, flexibility in the assessment of competencies, and flexibility in workload. To ensure successful application of a transition to practice program using competency-based assessment, preceptors must understand the flexible arrangements built into the program design and have the confidence and competence to apply them. Copyright 2013, SLACK Incorporated.

  14. Nonlinear dynamic modeling of a simple flexible rotor system subjected to time-variable base motions

    NASA Astrophysics Data System (ADS)

    Chen, Liqiang; Wang, Jianjun; Han, Qinkai; Chu, Fulei

    2017-09-01

    Rotor systems carried in transportation system or under seismic excitations are considered to have a moving base. To study the dynamic behavior of flexible rotor systems subjected to time-variable base motions, a general model is developed based on finite element method and Lagrange's equation. Two groups of Euler angles are defined to describe the rotation of the rotor with respect to the base and that of the base with respect to the ground. It is found that the base rotations would cause nonlinearities in the model. To verify the proposed model, a novel test rig which could simulate the base angular-movement is designed. Dynamic experiments on a flexible rotor-bearing system with base angular motions are carried out. Based upon these, numerical simulations are conducted to further study the dynamic response of the flexible rotor under harmonic angular base motions. The effects of base angular amplitude, rotating speed and base frequency on response behaviors are discussed by means of FFT, waterfall, frequency response curve and orbits of the rotor. The FFT and waterfall plots of the disk horizontal and vertical vibrations are marked with multiplications of the base frequency and sum and difference tones of the rotating frequency and the base frequency. Their amplitudes will increase remarkably when they meet the whirling frequencies of the rotor system.

  15. SU-8-based flexible amperometric device with IDA electrodes to regenerate redox species in small spaces.

    PubMed

    Kanno, Yusuke; Goto, Takehito; Ino, Kosuke; Inoue, Kumi Y; Takahashi, Yasufumi; Shiku, Hitoshi; Matsue, Tomokazu

    2014-01-01

    A flexible sensor based on SU-8 photoresist was fabricated and its electrochemical performance was investigated using cyclic voltammetry. The device consisted of interdigitated array (IDA) electrodes on an SU-8 layer. It exhibited a clear electrochemical response during redox cycling of ferrocenemethanol at the IDA electrodes. Since the device was flexible, it could be inserted into a narrow bent space to monitor electrochemical responses. The observed electrochemical behavior was found to be consistent with that predicted by simulations based on redox compound diffusion.

  16. Bifunctional Organic Polymeric Catalysts with a Tunable Acid-Base Distance and Framework Flexibility

    PubMed Central

    Chen, Huanhui; Wang, Yanan; Wang, Qunlong; Li, Junhui; Yang, Shiqi; Zhu, Zhirong

    2014-01-01

    Acid-base bifunctional organic polymeric catalysts were synthesized with tunable structures. we demonstrated two synthesis approaches for structural fine-tune. In the first case, the framework flexibility was tuned by changing the ratio of rigid blocks to flexible blocks within the polymer framework. In the second case, we precisely adjusted the acid-base distance by distributing basic monomers to be adjacent to acidic monomers, and by changing the chain length of acidic monomers. In a standard test reaction for the aldol condensation of 4-nitrobenzaldehyde with acetone, the catalysts showed good reusability upon recycling and maintained relatively high conversion percentage. PMID:25267260

  17. Bifunctional Organic Polymeric Catalysts with a Tunable Acid-Base Distance and Framework Flexibility

    NASA Astrophysics Data System (ADS)

    Chen, Huanhui; Wang, Yanan; Wang, Qunlong; Li, Junhui; Yang, Shiqi; Zhu, Zhirong

    2014-09-01

    Acid-base bifunctional organic polymeric catalysts were synthesized with tunable structures. we demonstrated two synthesis approaches for structural fine-tune. In the first case, the framework flexibility was tuned by changing the ratio of rigid blocks to flexible blocks within the polymer framework. In the second case, we precisely adjusted the acid-base distance by distributing basic monomers to be adjacent to acidic monomers, and by changing the chain length of acidic monomers. In a standard test reaction for the aldol condensation of 4-nitrobenzaldehyde with acetone, the catalysts showed good reusability upon recycling and maintained relatively high conversion percentage.

  18. Flexible thin-film battery based on graphene-oxide embedded in solid polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Kammoun, M.; Berg, S.; Ardebili, H.

    2015-10-01

    Enhanced safety of flexible batteries is an imperative objective due to the intimate interaction of such devices with human organs such as flexible batteries that are integrated with touch-screens or embedded in clothing or space suits. In this study, the fabrication and testing of a high performance thin-film Li-ion battery (LIB) is reported that is both flexible and relatively safer compared to the conventional electrolyte based batteries. The concept is facilitated by the use of solid polymer nanocomposite electrolyte, specifically, composed of polyethylene oxide (PEO) matrix and 1 wt% graphene oxide (GO) nanosheets. The flexible LIB exhibits a high maximum operating voltage of 4.9 V, high capacity of 0.13 mA h cm-2 and an energy density of 4.8 mW h cm-3. The battery is encapsulated using a simple lamination method that is economical and scalable. The laminated battery shows robust mechanical flexibility over 6000 bending cycles and excellent electrochemical performance in both flat and bent configurations. Finite element analysis (FEA) of the LIB provides critical insights into the evolution of mechanical stresses during lamination and bending.Enhanced safety of flexible batteries is an imperative objective due to the intimate interaction of such devices with human organs such as flexible batteries that are integrated with touch-screens or embedded in clothing or space suits. In this study, the fabrication and testing of a high performance thin-film Li-ion battery (LIB) is reported that is both flexible and relatively safer compared to the conventional electrolyte based batteries. The concept is facilitated by the use of solid polymer nanocomposite electrolyte, specifically, composed of polyethylene oxide (PEO) matrix and 1 wt% graphene oxide (GO) nanosheets. The flexible LIB exhibits a high maximum operating voltage of 4.9 V, high capacity of 0.13 mA h cm-2 and an energy density of 4.8 mW h cm-3. The battery is encapsulated using a simple lamination method

  19. Poly(vinylidene fluoride-hexafluoropropylene) polymer electrolyte for paper-based and flexible battery applications

    NASA Astrophysics Data System (ADS)

    Aliahmad, Nojan; Shrestha, Sudhir; Varahramyan, Kody; Agarwal, Mangilal

    2016-06-01

    Paper-based batteries represent a new frontier in battery technology. However, low-flexibility and poor ionic conductivity of solid electrolytes have been major impediments in achieving practical mechanically flexible batteries. This work discuss new highly ionic conductive polymer gel electrolytes for paper-based battery applications. In this paper, we present a poly(vinylidene fluoride-hexafluoropropylene) (PVDH-HFP) porous membrane electrolyte enhanced with lithium bis(trifluoromethane sulphone)imide (LiTFSI) and lithium aluminum titanium phosphate (LATP), with an ionic conductivity of 2.1 × 10-3 S cm-1. Combining ceramic (LATP) with the gel structure of PVDF-HFP and LiTFSI ionic liquid harnesses benefits of ceramic and gel electrolytes in providing flexible electrolytes with a high ionic conductivity. In a flexibility test experiment, bending the polymer electrolyte at 90° for 20 times resulted in 14% decrease in ionic conductivity. Efforts to further improving the flexibility of the presented electrolyte are ongoing. Using this electrolyte, full-cell batteries with lithium titanium oxide (LTO) and lithium cobalt oxide (LCO) electrodes and (i) standard metallic current collectors and (ii) paper-based current collectors were fabricated and tested. The achieved specific capacities were (i) 123 mAh g-1 for standard metallic current collectors and (ii) 99.5 mAh g-1 for paper-based current collectors. Thus, the presented electrolyte has potential to become a viable candidate in paper-based and flexible battery applications. Fabrication methods, experimental procedures, and test results for the polymer gel electrolyte and batteries are presented and discussed.

  20. Poly(vinylidene fluoride-hexafluoropropylene) polymer electrolyte for paper-based and flexible battery applications

    SciTech Connect

    Aliahmad, Nojan; Shrestha, Sudhir; Varahramyan, Kody; Agarwal, Mangilal

    2016-06-15

    Paper-based batteries represent a new frontier in battery technology. However, low-flexibility and poor ionic conductivity of solid electrolytes have been major impediments in achieving practical mechanically flexible batteries. This work discuss new highly ionic conductive polymer gel electrolytes for paper-based battery applications. In this paper, we present a poly(vinylidene fluoride-hexafluoropropylene) (PVDH-HFP) porous membrane electrolyte enhanced with lithium bis(trifluoromethane sulphone)imide (LiTFSI) and lithium aluminum titanium phosphate (LATP), with an ionic conductivity of 2.1 × 10{sup −3} S cm{sup −1}. Combining ceramic (LATP) with the gel structure of PVDF-HFP and LiTFSI ionic liquid harnesses benefits of ceramic and gel electrolytes in providing flexible electrolytes with a high ionic conductivity. In a flexibility test experiment, bending the polymer electrolyte at 90° for 20 times resulted in 14% decrease in ionic conductivity. Efforts to further improving the flexibility of the presented electrolyte are ongoing. Using this electrolyte, full-cell batteries with lithium titanium oxide (LTO) and lithium cobalt oxide (LCO) electrodes and (i) standard metallic current collectors and (ii) paper-based current collectors were fabricated and tested. The achieved specific capacities were (i) 123 mAh g{sup −1} for standard metallic current collectors and (ii) 99.5 mAh g{sup −1} for paper-based current collectors. Thus, the presented electrolyte has potential to become a viable candidate in paper-based and flexible battery applications. Fabrication methods, experimental procedures, and test results for the polymer gel electrolyte and batteries are presented and discussed.

  1. Magnetophoresis of flexible DNA-based dumbbell structures

    NASA Astrophysics Data System (ADS)

    Babić, B.; Ghai, R.; Dimitrov, K.

    2008-02-01

    Controlled movement and manipulation of magnetic micro- and nanostructures using magnetic forces can give rise to important applications in biomedecine, diagnostics, and immunology. We report controlled magnetophoresis and stretching, in aqueous solution, of a DNA-based dumbbell structure containing magnetic and diamagnetic microspheres. The velocity and stretching of the dumbbell were experimentally measured and correlated with a theoretical model based on the forces acting on individual magnetic beads or the entire dumbbell structures. The results show that precise and predictable manipulation of dumbbell structures is achievable and can potentially be applied to immunomagnetic cell separators.

  2. Takagi-Sugeno Fuzzy Model-Based Control of Spacecraft with Flexible Appendage

    NASA Astrophysics Data System (ADS)

    Ayoubi, Mohammad A.; Sendi, Chokri

    2015-06-01

    This paper presents a Takagi-Sugeno (T-S) fuzzy model-based approach to model and control a rigid spacecraft with flexible antenna. First, the equations of motion of the flexible spacecraft, which are based on Lagrange equations and given in terms of quasi-coordinates and the Rayleigh-Ritz method, are briefly reviewed. Then, the T-S fuzzy modeling and the parallel distributed compensation control technique are introduced. We utilize full state-feedback and optimal H∞ robustness performance via a T-S fuzzy model to achieve position and attitude stabilization, vibration suppression, and disturbance rejection objectives. Finally, this technique is applied to the flexible spacecraft equations of motion resulting in a nonlinear controller. The controller produces an asymptotically stable closed-loop system which is robust to external disturbances and has a simple structure for straightforward implementation. Numerical simulation is provided for performance evaluation of the proposed controller design.

  3. "Self-Peel-Off" Transfer Produces Ultrathin Polyvinylidene-Fluoride-Based Flexible Nanodevices.

    PubMed

    Tai, Yanlong; Lubineau, Gilles

    2017-04-01

    Here, a new strategy, self-peel-off transfer, for the preparation of ultrathin flexible nanodevices made from polyvinylidene-fluoride (PVDF) is reported. In this process, a functional pattern of nanoparticles is transferred via peeling from a temporary substrate to the final PVDF film. This peeling process takes advantage of the differences in the work of adhesion between the various layers (the PVDF layer, the nanoparticle-pattern layer and the substrate layer) and of the high stresses generated by the differential thermal expansion of the layers. The work of adhesion is mainly guided by the basic physical/chemical properties of these layers and is highly sensitive to variations in temperature and moisture in the environment. The peeling technique is tested on a variety of PVDF-based functional films using gold/palladium nanoparticles, carbon nanotubes, graphene oxide, and lithium iron phosphate. Several PVDF-based flexible nanodevices are prepared, including a single-sided wireless flexible humidity sensor in which PVDF is used as the substrate and a double-sided flexible capacitor in which PVDF is used as the ferroelectric layer and the carrier layer. Results show that the nanodevices perform with high repeatability and stability. Self-peel-off transfer is a viable preparation strategy for the design and fabrication of flexible, ultrathin, and light-weight nanodevices.

  4. Flexibility of short DNA helices with finite-length effect: From base pairs to tens of base pairs.

    PubMed

    Wu, Yuan-Yan; Bao, Lei; Zhang, Xi; Tan, Zhi-Jie

    2015-03-28

    Flexibility of short DNA helices is important for the biological functions such as nucleosome formation and DNA-protein recognition. Recent experiments suggest that short DNAs of tens of base pairs (bps) may have apparently higher flexibility than those of kilo bps, while there is still the debate on such high flexibility. In the present work, we have studied the flexibility of short DNAs with finite-length of 5-50 bps by the all-atomistic molecular dynamics simulations and Monte Carlo simulations with the worm-like chain model. Our microscopic analyses reveal that short DNAs have apparently high flexibility which is attributed to the significantly strong bending and stretching flexibilities of ∼6 bps at each helix end. Correspondingly, the apparent persistence length lp of short DNAs increases gradually from ∼29 nm to ∼45 nm as DNA length increases from 10 to 50 bps, in accordance with the available experimental data. Our further analyses show that the short DNAs with excluding ∼6 bps at each helix end have the similar flexibility with those of kilo bps and can be described by the worm-like chain model with lp ∼ 50 nm.

  5. Flexibility of short DNA helices with finite-length effect: From base pairs to tens of base pairs

    NASA Astrophysics Data System (ADS)

    Wu, Yuan-Yan; Bao, Lei; Zhang, Xi; Tan, Zhi-Jie

    2015-03-01

    Flexibility of short DNA helices is important for the biological functions such as nucleosome formation and DNA-protein recognition. Recent experiments suggest that short DNAs of tens of base pairs (bps) may have apparently higher flexibility than those of kilo bps, while there is still the debate on such high flexibility. In the present work, we have studied the flexibility of short DNAs with finite-length of 5-50 bps by the all-atomistic molecular dynamics simulations and Monte Carlo simulations with the worm-like chain model. Our microscopic analyses reveal that short DNAs have apparently high flexibility which is attributed to the significantly strong bending and stretching flexibilities of ˜6 bps at each helix end. Correspondingly, the apparent persistence length lp of short DNAs increases gradually from ˜29 nm to ˜45 nm as DNA length increases from 10 to 50 bps, in accordance with the available experimental data. Our further analyses show that the short DNAs with excluding ˜6 bps at each helix end have the similar flexibility with those of kilo bps and can be described by the worm-like chain model with lp ˜ 50 nm.

  6. Flexibility of short DNA helices with finite-length effect: From base pairs to tens of base pairs

    SciTech Connect

    Wu, Yuan-Yan; Bao, Lei; Zhang, Xi; Tan, Zhi-Jie

    2015-03-28

    Flexibility of short DNA helices is important for the biological functions such as nucleosome formation and DNA-protein recognition. Recent experiments suggest that short DNAs of tens of base pairs (bps) may have apparently higher flexibility than those of kilo bps, while there is still the debate on such high flexibility. In the present work, we have studied the flexibility of short DNAs with finite-length of 5–50 bps by the all-atomistic molecular dynamics simulations and Monte Carlo simulations with the worm-like chain model. Our microscopic analyses reveal that short DNAs have apparently high flexibility which is attributed to the significantly strong bending and stretching flexibilities of ∼6 bps at each helix end. Correspondingly, the apparent persistence length l{sub p} of short DNAs increases gradually from ∼29 nm to ∼45 nm as DNA length increases from 10 to 50 bps, in accordance with the available experimental data. Our further analyses show that the short DNAs with excluding ∼6 bps at each helix end have the similar flexibility with those of kilo bps and can be described by the worm-like chain model with l{sub p} ∼ 50 nm.

  7. Lyapunov-based control designs for flexible-link manipulators

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Huang, Jen-Kuang; Yang, Li-Farn

    1989-01-01

    A feedback controller for the stabilization of closed-loop systems is proposed which is based on the Liapunov stability criterion. A feedback control law is first generated for the linear portion of the system equation using linear control theory. A feedback control is then designed for the nonlinear portion of the system equation by making negative the time derivative of a positive definite Liapunov function.

  8. Lyapunov-based control designs for flexible-link manipulators

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Huang, Jen-Kuang; Yang, Li-Farn

    1989-01-01

    A feedback controller for the stabilization of closed-loop systems is proposed which is based on the Liapunov stability criterion. A feedback control law is first generated for the linear portion of the system equation using linear control theory. A feedback control is then designed for the nonlinear portion of the system equation by making negative the time derivative of a positive definite Liapunov function.

  9. WATER VAPOR IN THE PROTOPLANETARY DISK OF DG Tau

    SciTech Connect

    Podio, L.; Dougados, C.; Thi, W.-F.; Menard, F.; Pinte, C.; Codella, C.; Cabrit, S.; Nisini, B.; Sandell, G.; Williams, J. P.; Testi, L.; Woitke, P.

    2013-03-20

    Water is key in the evolution of protoplanetary disks and the formation of comets and icy/water planets. While high-excitation water lines originating in the hot inner disk have been detected in several T Tauri stars (TTSs), water vapor from the outer disk, where most water ice reservoirs are stored, was only reported in the nearby TTS TW Hya. We present spectrally resolved Herschel/HIFI observations of the young TTS DG Tau in the ortho- and para-water ground-state transitions at 557 and 1113 GHz. The lines show a narrow double-peaked profile, consistent with an origin in the outer disk, and are {approx}19-26 times brighter than in TW Hya. In contrast, CO and [C II] lines are dominated by emission from the envelope/outflow, which makes H{sub 2}O lines a unique tracer of the disk of DG Tau. Disk modeling with the thermo-chemical code ProDiMo indicates that the strong UV field, due to the young age and strong accretion of DG Tau, irradiates a disk upper layer at 10-90 AU from the star, heating it up to temperatures of 600 K and producing the observed bright water lines. The models suggest a disk mass of 0.015-0.1 M{sub Sun }, consistent with the estimated minimum mass of the solar nebula before planet formation, and a water reservoir of {approx}10{sup 2}-10{sup 3} Earth oceans in vapor and {approx}100 times larger in the form of ice. Hence, this detection supports the scenario of ocean delivery on terrestrial planets by the impact of icy bodies forming in the outer disk.

  10. A PDA-based flexible telecommunication system for telemedicine applications.

    PubMed

    Nazeran, Homer; Setty, Sunil; Haltiwanger, Emily; Gonzalez, Virgilio

    2004-01-01

    Technology has been used to deliver health care at a distance for many years. Telemedicine is a rapidly growing area and recently there are studies devoted to prehospital care of patients in emergency cases. In this work we have developed a compact, reliable, and low cost PDA-based telecommunication device for telemedicine applications to transmit audio, still images, and vital signs from a remote site to a fixed station such as a clinic or a hospital in real time. This was achieved based on a client-server architecture. A Pocket PC, a miniature camera, and a hands-free microphone were used at the client site and a desktop computer running the Windows XP operating system was used as a server. The server was located at a fixed station. The system was implemented on TCP/IP and HTTP protocol. Field tests have shown that the system can reliably transmit still images, audio, and sample vital signs from a simulated remote site to a fixed station either via a wired or wireless network in real time. The Pocket PC was used at the client site because of its compact size, low cost and processing capabilities.

  11. Stamping-based planarization of flexible substrate for low-pressure UV nanoimprint lithography.

    PubMed

    Altun, Ali Ozhan; Jeong, Jun-Ho; Jung, Sung-Un; Kim, Ki-Don; Choi, Dae-Geun; Choi, Jun-Hyuk; Shim, Jong-Youp; Lee, Dong-Il; Lee, Eung-Sug

    2008-11-01

    Patterning flexible substrates in nano scale is an important and challenging issue in the fabrication of next-generation devices based on a non-silicon substrate. Step and Flash imprint lithography (S-FIL) which is a room temperature and low pressure process offers several important advantages, such as the use of a smaller and therefore cheaper stamp or the possibility of the overlay imprinting, as a transparent stamp is utilized. However, it is very difficult to perform S-FIL on a flexible substrate successfully due to the high waviness. The waviness of a flexible substrate is not a constant value in contrast to a rigid substrate. It depends on the imprint pressure applied onto the substrate. In this paper, in section two, the effect of the imprint pressure on the waviness of the surface of the flexible substrate is examined. It is proved that the waviness of the surface of the flexible substrate could not be reduced sufficiently to assure a successful imprint at low imprint pressures. In the third section, a method of patterning polymer substrates using ultra-violet nanoimprint lithography (UV-NIL) is presented. The method consists of two stages, stamping-based planarization and S-FIL. In stamping-based planarization, a planarization layer of transparent polymer is formed onto the flexible substrate. Waviness of the blank stamp (in this study, glass wafer) is transferred to the planarization layer. S-FIL is performed with the nanoimprint tool IMPRIO100 directly onto the planarization layer employing a 1 x 1 in. quartz stamp. Optical microscope and SEM images of the successfully imprinted patterns were also presented.

  12. Planar patterned stretchable electrode arrays based on flexible printed circuits

    PubMed Central

    Taylor, R E; Boyce, C M; Boyce, M C; Pruitt, B L

    2013-01-01

    For stretchable electronics to achieve broad industrial application, they must be reliable to manufacture and must perform robustly while undergoing large deformations. We present a new strategy for creating planar stretchable electronics and demonstrate one such device, a stretchable microelectrode array based on flex circuit technology. Stretchability is achieved through novel, rationally designed perforations that provide islands of low strain and continuous low-strain pathways for conductive traces. This approach enables the device to maintain constant electrical properties and planarity while undergoing applied strains up to 15%. Materials selection is not limited to polyimide composite devices and can potentially be implemented with either soft or hard substrates and can incorporate standard metals or new nano-engineered conductors. By using standard flex circuit technology, our planar microelectrode device achieved constant resistances for strains up to 20% with less than a 4% resistance offset over 120,000 cycles at 10% strain. PMID:24244075

  13. Planar patterned stretchable electrode arrays based on flexible printed circuits

    NASA Astrophysics Data System (ADS)

    Taylor, R. E.; Boyce, C. M.; Boyce, M. C.; Pruitt, B. L.

    2013-10-01

    For stretchable electronics to achieve broad industrial application, they must be reliable to manufacture and must perform robustly while undergoing large deformations. We present a new strategy for creating planar stretchable electronics and demonstrate one such device, a stretchable microelectrode array based on flex circuit technology. Stretchability is achieved through novel, rationally designed perforations that provide islands of low strain and continuous low-strain pathways for conductive traces. This approach enables the device to maintain constant electrical properties and planarity while undergoing applied strains up to 15%. Materials selection is not limited to polyimide composite devices and can potentially be implemented with either soft or hard substrates and can incorporate standard metals or new nano-engineered conductors. By using standard flex circuit technology, our planar microelectrode device achieved constant resistances for strains up to 20% with less than a 4% resistance offset over 120 000 cycles at 10% strain.

  14. Highly conductive and flexible silver nanowire-based microelectrodes on biocompatible hydrogel.

    PubMed

    Ahn, Yumi; Lee, Hyungjin; Lee, Donghwa; Lee, Youngu

    2014-01-01

    We successfully fabricated silver nanowire (AgNW)-based microelectrodes on various substrates such as a glass and polydimethylsiloxane by using a photolithographic process for the first time. The AgNW-based microelectrodes exhibited excellent electrical conductivity and mechanical flexibility. We also demonstrated the direct transfer process of AgNW-based microelectrodes from a glass to a biocompatible polyacrylamide-based hydrogel. The AgNW-based microelectrodes on the biocompatible hydrogel showed excellent electrical performance. Furthermore, they showed great mechanical flexibility as well as superior stability under wet conditions. We anticipate that the AgNW-based microelectrodes on biocompatible hydrogel substrates can be a promising platform for realization of practical bioelectronics devices.

  15. Flexible Substrate-Based Devices for Point-of-Care Diagnostics.

    PubMed

    Wang, ShuQi; Chinnasamy, Thiruppathiraja; Lifson, Mark A; Inci, Fatih; Demirci, Utkan

    2016-11-01

    Point-of-care (POC) diagnostics play an important role in delivering healthcare, particularly for clinical management and disease surveillance in both developed and developing countries. Currently, the majority of POC diagnostics utilize paper substrates owing to affordability, disposability, and mass production capability. Recently, flexible polymer substrates have been investigated due to their enhanced physicochemical properties, potential to be integrated into wearable devices with wireless communications for personalized health monitoring, and ability to be customized for POC diagnostics. Here, we focus on the latest advances in developing flexible substrate-based diagnostic devices, including paper and polymers, and their clinical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Multiple-image encryption based on triple interferences for flexibly decrypting high-quality images.

    PubMed

    Li, Wei-Na; Phan, Anh-Hoang; Piao, Mei-Lan; Kim, Nam

    2015-04-10

    We propose a multiple-image encryption (MIE) scheme based on triple interferences for flexibly decrypting high-quality images. Each image is discretionarily deciphered without decrypting a series of other images earlier. Since it does not involve any cascaded encryption orders, the image can be decrypted flexibly by using the novel method. Computer simulation demonstrated that the proposed method's running time is less than approximately 1/4 that of the previous similar MIE method. Moreover, the decrypted image is perfectly correlated with the original image, and due to many phase functions serving as decryption keys, this method is more secure and robust.

  17. Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure.

    PubMed

    Yuan, Longyan; Lu, Xi-Hong; Xiao, Xu; Zhai, Teng; Dai, Junjie; Zhang, Fengchao; Hu, Bin; Wang, Xue; Gong, Li; Chen, Jian; Hu, Chenguo; Tong, Yexiang; Zhou, Jun; Wang, Zhong Lin

    2012-01-24

    A highly flexible solid-state supercapacitor was fabricated through a simple flame synthesis method and electrochemical deposition process based on a carbon nanoparticles/MnO(2) nanorods hybrid structure using polyvinyl alcohol/H(3)PO(4) electrolyte. Carbon fabric is used as a current collector and electrode (mechanical support), leading to a simplified, highly flexible, and lightweight architecture. The device exhibited good electrochemical performance with an energy density of 4.8 Wh/kg at a power density of 14 kW/kg, and a demonstration of a practical device is also presented, highlighting the path for its enormous potential in energy management.

  18. A Set of Free Cross-Platform Authoring Programs for Flexible Web-Based CALL Exercises

    ERIC Educational Resources Information Center

    O'Brien, Myles

    2012-01-01

    The Mango Suite is a set of three freely downloadable cross-platform authoring programs for flexible network-based CALL exercises. They are Adobe Air applications, so they can be used on Windows, Macintosh, or Linux computers, provided the freely-available Adobe Air has been installed on the computer. The exercises which the programs generate are…

  19. The Tension between Teacher Accountability and Flexibility: The Paradox of Standards-Based Reform

    ERIC Educational Resources Information Center

    Nadelson, Louis S.; Fuller, Michael; Briggs, Pamela; Hammons, David; Bubak, Katie; Sass, Margaret

    2012-01-01

    The anticipated constraints imposed by the accountability process associated with standards-based reform on teachers' practice suggest a tension between teachers' desire for flexibility and the accountability mandates associated with reform initiatives. In particular, we posited that the teachers would negatively perceive the influence of…

  20. A Competency-Based Technical Training Model That Embraces Learning Flexibility and Rewards Competency

    ERIC Educational Resources Information Center

    Yasinski, Lee

    2014-01-01

    Today's adult learners are continuously searching for successful programs with added learner flexibility, a positive learning experience, and the best education for their investment. Red Deer College's unique competency based welder apprenticeship training model fulfills this desire for many adult learners.

  1. Services for All: Are Outcome-Based Education and Flexible School Structures the Answer?

    ERIC Educational Resources Information Center

    Smith, Sarah J.

    1995-01-01

    This paper discusses the recent controversy over outcome-based education (OBE), arguing that while OBE may be correct in establishing high standards for student learning, its implementation has tended to establish rigid "assembly line" approaches to teaching. A call is made for more flexible and individualized systems that respond to…

  2. A Web-Based Learning and Assessment System To Support Flexible Education.

    ERIC Educational Resources Information Center

    Gardner, Lesley; Sheridan, D.; White, D.

    2002-01-01

    Describes the development of a computer-supported, Web-based learning system, CECIL, at the University of Auckland (New Zealand). Discusses the potential benefits that a university-wide resource management system may have in terms of educational flexibility, such as online learning for distance education, and resource sharing, as well as…

  3. Services for All: Are Outcome-Based Education and Flexible School Structures the Answer?

    ERIC Educational Resources Information Center

    Smith, Sarah J.

    1995-01-01

    This paper discusses the recent controversy over outcome-based education (OBE), arguing that while OBE may be correct in establishing high standards for student learning, its implementation has tended to establish rigid "assembly line" approaches to teaching. A call is made for more flexible and individualized systems that respond to…

  4. Latent Class Analysis with Distal Outcomes: A Flexible Model-Based Approach

    ERIC Educational Resources Information Center

    Lanza, Stephanie T.; Tan, Xianming; Bray, Bethany C.

    2013-01-01

    Although prediction of class membership from observed variables in latent class analysis is well understood, predicting an observed distal outcome from latent class membership is more complicated. A flexible model-based approach is proposed to empirically derive and summarize the class-dependent density functions of distal outcomes with…

  5. Flexible and Secure Computer-Based Assessment Using a Single Zip Disk

    ERIC Educational Resources Information Center

    Ko, C. C.; Cheng, C. D.

    2008-01-01

    Electronic examination systems, which include Internet-based system, require extremely complicated installation, configuration and maintenance of software as well as hardware. In this paper, we present the design and development of a flexible, easy-to-use and secure examination system (e-Test), in which any commonly used computer can be used as a…

  6. Patient tolerance of the flexible CO2 laser for office-based laryngeal surgery.

    PubMed

    Halum, Stacey L; Moberly, Aaron C

    2010-11-01

    The OmniGuide flexible carbon dioxide (CO(2)) laser can be readily used in the office but patient tolerance has not been established. The aim of this pilot study was to determine patient tolerance of the flexible CO(2) laser. As a reference point, the 585-nm pulsed-dye laser (PDL) was selected for comparison because it is the only office-based laser in which patient tolerance has specifically been studied. Prospective pilot study involving office-based surgery candidates with benign laryngeal pathology. Via flexible laryngoscopy, half of each lesion was treated with the CO(2) laser and the remaining half with the PDL, alternating the order of the lasers (to account for potential thermal injury from the first laser) and blinding the patient to treatment. Patients rated their discomfort immediately after each laser treatment and then completed postoperative questionnaires for discomfort and voice quality. Ten patients with benign laryngeal disease were included. All patients tolerated the office-based laser surgeries without difficulty. The CO(2) laser was extremely well tolerated, with mean pain and burning scores of 2.0 and 2.3, respectively, on a scale of 1-10 (10 being intolerable pain). Postoperative pain questionnaires demonstrated minimal discomfort after the laser treatment. Those with resolution of laryngeal disease had significant voice improvement. Flexible CO(2) laser laryngeal surgery is well tolerated in an office-based setting. Copyright © 2010 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  7. Latent Class Analysis with Distal Outcomes: A Flexible Model-Based Approach

    ERIC Educational Resources Information Center

    Lanza, Stephanie T.; Tan, Xianming; Bray, Bethany C.

    2013-01-01

    Although prediction of class membership from observed variables in latent class analysis is well understood, predicting an observed distal outcome from latent class membership is more complicated. A flexible model-based approach is proposed to empirically derive and summarize the class-dependent density functions of distal outcomes with…

  8. Flexible and Secure Computer-Based Assessment Using a Single Zip Disk

    ERIC Educational Resources Information Center

    Ko, C. C.; Cheng, C. D.

    2008-01-01

    Electronic examination systems, which include Internet-based system, require extremely complicated installation, configuration and maintenance of software as well as hardware. In this paper, we present the design and development of a flexible, easy-to-use and secure examination system (e-Test), in which any commonly used computer can be used as a…

  9. Semiconductor-based, large-area, flexible, electronic devices on {110}<100> oriented substrates

    SciTech Connect

    Goyal, Amit

    2014-08-05

    Novel articles and methods to fabricate the same resulting in flexible, oriented, semiconductor-based, electronic devices on {110}<100> textured substrates are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  10. A Flexible Fiber-Based Supercapacitor-Triboelectric-Nanogenerator Power System for Wearable Electronics.

    PubMed

    Wang, Jie; Li, Xiuhan; Zi, Yunlong; Wang, Sihong; Li, Zhaoling; Zheng, Li; Yi, Fang; Li, Shengming; Wang, Zhong Lin

    2015-09-02

    A flexible self-charging power system is built by integrating a fiber-based supercapacitor with a fiber-based triboelectric nanogenerator for harvesting mechanical energy from human motion. The fiber-based supercapacitor exhibits outstanding electrochemical properties, owing to the excellent pseudocapacitance of well-prepared RuO2 ·xH2 O by a vapor-phase hydrothermal method as the active material. The approach is a step forward toward self-powered wearable electronics.

  11. [100] or [110] aligned, semiconductor-based, large-area, flexible, electronic devices

    SciTech Connect

    Goyal, Amit

    2015-03-24

    Novel articles and methods to fabricate the same resulting in flexible, large-area, [100] or [110] textured, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  12. Flexible Textile-Based Organic Transistors Using Graphene/Ag Nanoparticle Electrode

    PubMed Central

    Kim, Youn; Kwon, Yeon Ju; Lee, Kang Eun; Oh, Youngseok; Um, Moon-Kwang; Seong, Dong Gi; Lee, Jea Uk

    2016-01-01

    Highly flexible and electrically-conductive multifunctional textiles are desirable for use in wearable electronic applications. In this study, we fabricated multifunctional textile composites by vacuum filtration and wet-transfer of graphene oxide films on a flexible polyethylene terephthalate (PET) textile in association with embedding Ag nanoparticles (AgNPs) to improve the electrical conductivity. A flexible organic transistor can be developed by direct transfer of a dielectric/semiconducting double layer on the graphene/AgNP textile composite, where the textile composite was used as both flexible substrate and conductive gate electrode. The thermal treatment of a textile-based transistor enhanced the electrical performance (mobility = 7.2 cm2·V−1·s−1, on/off current ratio = 4 × 105, and threshold voltage = −1.1 V) due to the improvement of interfacial properties between the conductive textile electrode and the ion-gel dielectric layer. Furthermore, the textile transistors exhibited highly stable device performance under extended bending conditions (with a bending radius down to 3 mm and repeated tests over 1000 cycles). We believe that our simple methods for the fabrication of graphene/AgNP textile composite for use in textile-type transistors can potentially be applied to the development of flexible large-area electronic clothes. PMID:28335276

  13. Flexible Textile-Based Organic Transistors Using Graphene/Ag Nanoparticle Electrode.

    PubMed

    Kim, Youn; Kwon, Yeon Ju; Lee, Kang Eun; Oh, Youngseok; Um, Moon-Kwang; Seong, Dong Gi; Lee, Jea Uk

    2016-08-16

    Highly flexible and electrically-conductive multifunctional textiles are desirable for use in wearable electronic applications. In this study, we fabricated multifunctional textile composites by vacuum filtration and wet-transfer of graphene oxide films on a flexible polyethylene terephthalate (PET) textile in association with embedding Ag nanoparticles (AgNPs) to improve the electrical conductivity. A flexible organic transistor can be developed by direct transfer of a dielectric/semiconducting double layer on the graphene/AgNP textile composite, where the textile composite was used as both flexible substrate and conductive gate electrode. The thermal treatment of a textile-based transistor enhanced the electrical performance (mobility = 7.2 cm²·V(-1)·s(-1), on/off current ratio = 4 × 10⁵, and threshold voltage = -1.1 V) due to the improvement of interfacial properties between the conductive textile electrode and the ion-gel dielectric layer. Furthermore, the textile transistors exhibited highly stable device performance under extended bending conditions (with a bending radius down to 3 mm and repeated tests over 1000 cycles). We believe that our simple methods for the fabrication of graphene/AgNP textile composite for use in textile-type transistors can potentially be applied to the development of flexible large-area electronic clothes.

  14. Flexible thin-film battery based on graphene-oxide embedded in solid polymer electrolyte.

    PubMed

    Kammoun, M; Berg, S; Ardebili, H

    2015-11-07

    Enhanced safety of flexible batteries is an imperative objective due to the intimate interaction of such devices with human organs such as flexible batteries that are integrated with touch-screens or embedded in clothing or space suits. In this study, the fabrication and testing of a high performance thin-film Li-ion battery (LIB) is reported that is both flexible and relatively safer compared to the conventional electrolyte based batteries. The concept is facilitated by the use of solid polymer nanocomposite electrolyte, specifically, composed of polyethylene oxide (PEO) matrix and 1 wt% graphene oxide (GO) nanosheets. The flexible LIB exhibits a high maximum operating voltage of 4.9 V, high capacity of 0.13 mA h cm(-2) and an energy density of 4.8 mW h cm(-3). The battery is encapsulated using a simple lamination method that is economical and scalable. The laminated battery shows robust mechanical flexibility over 6000 bending cycles and excellent electrochemical performance in both flat and bent configurations. Finite element analysis (FEA) of the LIB provides critical insights into the evolution of mechanical stresses during lamination and bending.

  15. Operational modal analysis via image based technique of very flexible space structures

    NASA Astrophysics Data System (ADS)

    Sabatini, Marco; Gasbarri, Paolo; Palmerini, Giovanni B.; Monti, Riccardo

    2013-08-01

    Vibrations represent one of the most important topics of the engineering design relevant to flexible structures. The importance of this problem increases when a very flexible system is considered, and this is often the case of space structures. In order to identify the modal characteristics, in terms of natural frequencies and relevant modal parameters, ground tests are performed. However, these parameters could vary due to the operative conditions of the system. In order to continuously monitor the modal characteristics during the satellite lifetime, an operational modal analysis is mandatory. This kind of analysis is usually performed by using classical accelerometers or strain gauges and by properly analyzing the acquired output. In this paper a different approach for the vibrations data acquisition will be performed via image-based technique. In order to simulate a flexible satellite, a free flying platform is used; the problem is furthermore complicated by the fact that the overall system, constituted by a highly rigid bus and very flexible panels, must necessarily be modeled as a multibody system. In the experimental campaign, the camera, placed on the bus, will be used to identify the eigenfrequencies of the vibrating structure; in this case aluminum thin plates simulate very flexible solar panels. The structure is excited by a hammer or studied during a fast attitude maneuver. The results of the experimental activity will be investigated and compared with respect to the numerical simulation obtained via a FEM-multibody software and the relevant results will be proposed and discussed.

  16. A Flexible 360-Degree Thermal Sound Source Based on Laser Induced Graphene

    PubMed Central

    Tao, Lu-Qi; Liu, Ying; Ju, Zhen-Yi; Tian, He; Xie, Qian-Yi; Yang, Yi; Ren, Tian-Ling

    2016-01-01

    A flexible sound source is essential in a whole flexible system. It’s hard to integrate a conventional sound source based on a piezoelectric part into a whole flexible system. Moreover, the sound pressure from the back side of a sound source is usually weaker than that from the front side. With the help of direct laser writing (DLW) technology, the fabrication of a flexible 360-degree thermal sound source becomes possible. A 650-nm low-power laser was used to reduce the graphene oxide (GO). The stripped laser induced graphene thermal sound source was then attached to the surface of a cylindrical bottle so that it could emit sound in a 360-degree direction. The sound pressure level and directivity of the sound source were tested, and the results were in good agreement with the theoretical results. Because of its 360-degree sound field, high flexibility, high efficiency, low cost, and good reliability, the 360-degree thermal acoustic sound source will be widely applied in consumer electronics, multi-media systems, and ultrasonic detection and imaging.

  17. Momentum is increasing towards a flexible electricity system based on renewables

    NASA Astrophysics Data System (ADS)

    Mitchell, Catherine

    2016-02-01

    Total global energy use is rising, and remains based on fossil fuels. Yet, the challenge of climate change requires a deep decarbonization of our energy system. Here I argue that the global energy policy discourse is moving rapidly towards one of renewable, energy-efficient and flexible electricity systems. This is primarily because of a rapid take-up within a few countries of variable renewable electricity sources over the past decade, resulting from falling renewable electricity prices, new and more economic means of flexible system operation, and changing social preferences. This in turn has led to widespread and supportive public policy announcements. I also argue that a ‘no-regrets’ energy policy is one that increases the energy system flexibility. Although the changing discourse is welcome, it is not to say that the challenge of climate change has been met. Policy statements must be backed up by more effective governance support and pressure to speed up change.

  18. Design of Control System for Flexible Packaging Bags Palletizing Production Line Based on PLC

    NASA Astrophysics Data System (ADS)

    Zheng, Huiping; Chen, Lin; Zhao, Xiaoming; Liu, Zhanyang

    Flexible packaging bags palletizing production line is to put the bags in the required area according to particular order and size, in order to finish handling, storage, loading and unloading, transportation and other logistics work of goods. Flexible packaging bags palletizing line is composed of turning bags mechanism, shaping mechanism, indexing mechanism, marshalling mechanism, pushing bags mechanism, pressing bags mechanism, laminating mechanism, elevator, tray warehouse, tray conveyor and loaded tray conveyor. Whether the whole production line can smoothly run depends on each of the above equipment and precision control among them. In this paper the technological process and the control logic of flexible packaging bags palletizing production line is introduced. Palletizing process of the production line realized automation by means of a control system based on programmable logic controller (PLC). It has the advantages of simple structure, reliable and easy maintenance etc.

  19. Constrained motion control of flexible robot manipulators based on recurrent neural networks.

    PubMed

    Tian, Lianfang; Wang, Jun; Mao, Zongyuan

    2004-06-01

    In this paper, a neural network approach is presented for the motion control of constrained flexible manipulators, where both the contact force everted by the flexible manipulator and the position of the end-effector contacting with a surface are controlled. The dynamic equations for vibration of flexible link and constrained force are derived. The developed control, scheme can adaptively estimate the underlying dynamics of the manipulator using recurrent neural networks (RNNs). Based on the error dynamics of a feedback controller, a learning rule for updating the connection weights of the adaptive RNN model is obtained. Local stability properties of the control system are discussed. Simulation results are elaborated on for both position and force trajectory tracking tasks in the presence of varying parameters and unknown dynamics, which show that the designed controller performs remarkably well.

  20. Flexible ferroelectric polymer devices based on inkjet-printed electrodes from nanosilver ink

    NASA Astrophysics Data System (ADS)

    Lü, Zhaoyue; Pu, Tiansong; Huang, Yaopeng; Meng, Xiangjian; Xu, Haisheng

    2015-02-01

    High-quality silver (Ag) patterns were inkjet-printed with nanosilver ink on a flexible polyethylene terephthalate (PET) substrate. All-solution-processed flexible ferroelectric polymer devices that use inkjet-printed Ag to create their bottom and top electrodes were demonstrated. The active layer, a poly (vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) thin film, was spin-coated from solution. The devices have a remanent polarization of 8.03 μC cm-2 and a coercive field of 68.5 MV m-1, which is comparable to the device with evaporated-Ti electrodes on a silicon substrate. Based on the results presented in this paper, mass production of flexible ferroelectric devices is predictable.

  1. Hydroxylated graphene-based flexible carbon film with ultrahigh electrical and thermal conductivity.

    PubMed

    Ding, Jiheng; Ur Rahman, Obaid; Zhao, Hongran; Peng, Wanjun; Dou, Huimin; Chen, Hao; Yu, Haibin

    2017-09-29

    Graphene-based films are widely used in the electronics industry. Here, surface hydroxylated graphene sheets (HGS) have been synthesized from natural graphite (NG) by a rapid and efficient molten hydroxide-assisted exfoliation technique. This method enables preparation of aqueous dispersible graphene sheets with a high dispersed concentration (∼10.0 mg ml(-1)) and an extraordinary production yield (∼100%). The HGS dispersion was processed into graphene flexible film (HGCF) through fast filtration, annealing treatment and mechanical compression. The HGS endows graphene flexible film with a high electrical conductivity of 11.5 × 10(4) S m(-1) and a superior thermal conductivity of 1842 W m(-1) K(-1). Simultaneously, the superflexible HGCF could endure 3000 repeated cycles of bending or folding. As a result, this graphene flexible film is expected to be integrated into electronic packaging and high-power electronics applications.

  2. Hydroxylated graphene-based flexible carbon film with ultrahigh electrical and thermal conductivity

    NASA Astrophysics Data System (ADS)

    Ding, Jiheng; Rahman, Obaid ur; Zhao, Hongran; Peng, Wanjun; Dou, Huimin; Chen, Hao; Yu, Haibin

    2017-09-01

    Graphene-based films are widely used in the electronics industry. Here, surface hydroxylated graphene sheets (HGS) have been synthesized from natural graphite (NG) by a rapid and efficient molten hydroxide-assisted exfoliation technique. This method enables preparation of aqueous dispersible graphene sheets with a high dispersed concentration (∼10.0 mg ml‑1) and an extraordinary production yield (∼100%). The HGS dispersion was processed into graphene flexible film (HGCF) through fast filtration, annealing treatment and mechanical compression. The HGS endows graphene flexible film with a high electrical conductivity of 11.5 × 104 S m‑1 and a superior thermal conductivity of 1842 W m‑1 K‑1. Simultaneously, the superflexible HGCF could endure 3000 repeated cycles of bending or folding. As a result, this graphene flexible film is expected to be integrated into electronic packaging and high-power electronics applications.

  3. Ultra-thin and high-response transparent and flexible heater based on carbon nanotube film

    NASA Astrophysics Data System (ADS)

    Kim, Yeji; Lee, Hye Ryoung; Saito, Takeshi; Nishi, Yoshio

    2017-04-01

    We demonstrated transparent and flexible heaters based on single-walled carbon nanotubes (SWNTs) using solution and room temperature processing. The direct film fabrication and curing onto a plastic substrate requiring no transfer processing enable a low-cost potential and large-scale fabrication of devices while restraining defects and damage to the transparent and flexible SWNT heaters. The developed ultra-thin heaters show high saturation temperature and extremely high response speed, as indicated by reaching over 100 °C within 1 s at an input voltage of 7 V. The temperature-power performance achieved 187 °C/W.cm2. The transparent and flexible heater with low driving voltage and high response speed is expected to have innovative thermal applications such as portable medical sensors and devices.

  4. Analysis of electric vehicle extended range misalignment based on rigid-flexible dynamics

    NASA Astrophysics Data System (ADS)

    Xu, Xiaowei; Lv, Mingliang; Chen, Zibo; Ji, Wei; Gao, Ruiceng

    2017-04-01

    The safety of the extended range electric vehicle is seriously affected by the misalignment fault. Therefore, this paper analyzed the electric vehicle extended range misalignment based on rigid-flexible dynamics. Through comprehensively applied the hybrid modeling of rigid-flexible and the method of fault diagnosis of machinery and equipment comprehensively, it established a extender hybrid rigid flexible mechanical model by means of the software ADAMS and ANSYS. By setting the relevant parameters to simulate the misalignment of shafting, the failure phenomenon, the spectrum analysis and the evolution rules were analyzed. It concluded that 0.5th and 1 harmonics are considered as the characteristic parameters of misalignment diagnostics for electric vehicle extended range.

  5. Flexible and hydrophobic Zn-based metal-organic framework.

    PubMed

    Hauptvogel, Ines Maria; Biedermann, Ralf; Klein, Nicole; Senkovska, Irena; Cadiau, Amandine; Wallacher, Dirk; Feyerherm, Ralf; Kaskel, Stefan

    2011-09-05

    A zinc-based metal-organic framework Zn(2)(adb)(2)(dabco)·4.5 DMF (K) (DUT-30(Zn), DUT = Dresden University of Technology, adb = 9,10-anthracene dibenzoate, dabco =1,4-diazabicyclo[2.2.2]octane, DMF = N,N-dimethylformamide) was synthesized using a solvothermal route. This MOF exhibits six crystallographic guest dependent phases. Two of them were characterized via single crystal X-ray analysis. The as-synthesized phase K crystallizes in the orthorhombic space group Fmmm, with a = 9.6349(9), b = 26.235(3), and c = 28.821(4) Å and consists of two interpenetrated pillar-layer networks with pcu topology. When the substance loses 0.5 DMF molecules per formula unit, a phase transition from the kinetic phase K to a thermodynamic phase T occurs. Zn(2)(adb)(2)(dabco)·4 DMF (T) crystallizes in the tetragonal space group I4/mmm, with a = 19.5316(8) and c = 9.6779(3) Å. During the evacuation the DUT-30(Zn) undergoes again the structural transformation to A. The activated compound A shows the gate pressure effect in the low pressure region of nitrogen physisorption isotherm and has a BET surface area of 960 m(2 )g(-1) and a specific pore volume of 0.43 cm(3) g(-1). Furthermore, DUT-30(Zn) exhibits a hydrogen storage capacity of 1.12 wt % at 1 bar, a CO(2) uptake of 200 cm(3) g(-1) at -78 °C and 0.9 bar, and a n-butane uptake of 3.0 mmol·g(-1) at 20 °C. The N(2) adsorption process was monitored in situ via X-ray powder diffraction using synchrotron radiation. A low temperature induced transformation of phase A to phase V could be observed if the compound was cooled under vacuum to -196 °C. A further crystalline phase N could be identified if the framework was filled with nitrogen at -196 °C. Additionally, the treatment of activated phase A with water leads to the new phase W.

  6. Flexible SERS-based substrates: challenges and opportunities toward an Army relevant universal sensing platform

    NASA Astrophysics Data System (ADS)

    Farrell, Mikella E.; Singamaneni, Srikanth; Pellegrino, Paul M.

    2015-05-01

    Generally the fabrication, assembly and evaluation of plasmonic nanostructures for surface enhanced Raman scattering (SERS) substrates has focused on static rigid substrates such as glass and silicon. However, these static substrates severely limit the application of plasmonic nanostructures as (i) they provide no means to alter the state of assembly of the nanostructures once they are formed or anchored on the surface i.e., not reconfigurable; and (ii) preclude applications which demand non-planar, flexible or conformal surfaces. The above considerations has led to the development of a novel class of SERS substrates based on flexible substrates such paper, polymer membranes and electrospun fibers. These flexible SERS media based on unconventional substrates such as paper offer distinct advantages compared to the conventional SERS substrates in that (i) flexible nature of the substrate enables conformal contact with the surfaces under investigation leading to efficient sample collection; (ii) porous nature of the SERS substrate (interstices between the fibers) provides efficient access to the analytes; (iii) high surface area of the 3D paper substrate results in large dynamic range of the chemical sensors; (iv) intricate network of fibers decorated with metal nanoparticles can provide potentially high density of electromagnetic hotspots; (v) intense light scattering caused by the fibrous structure of the substrate (e.g., paper) enables efficient light-metal interaction; and (vi) facile fabrication leads to efficient, robust, reliable, reusable and cost-effective SERS substrates. In this presentation, we will focus on the Army need for a more flexible (substrate surface and application) SERS substrate for universal sensing. This presentation will leverage from material presented at a flexible SERS (May 2014) workshop hosted by Dr. Srikanth Singamaneni at Washington University.

  7. Transparent, flexible, and high-performance supercapacitor based on ultrafine nickel cobaltite nanospheres

    NASA Astrophysics Data System (ADS)

    Liu, Xinyue; Wang, Jianxing; Yang, Guowei

    2017-07-01

    There has been growing interest in transparent and flexible electronic devices such as wrist watch, cell phone, and so on. These devices need the power sources which also have transparent and flexible features. Here, we demonstrate a transparent and flexible energy storage device with outstanding electrochemical performance, high energy density, and super-long life based on ultrafine NiCo2O4 nanospheres which are synthesized by an innovative method concerning laser ablation in liquid and hydrothermal process. The ultrafine NiCo2O4 nanospheres provide high electrochemical activity and the synthesized colloidal solution is suitable for transparent devices. The transparent and flexible device shows a high specific capacitance of 299.7 F/g at the scan rate of 1 mV/s and a long cycling life of 90.4% retention rate after 10,000 cycles at a scan rate of 10 mV/s, which is superior to that of previously reported transparent and flexible energy storage device. In addition, an optical transmittance up to 55% at the wavelength of 550 nm is obtained, and the bending test shows that the bending angle makes no difference to the specific capacitance of the device. In addition, it shows an outstanding energy density of 10.41 Wh/kg. The integrated electrochemical performances of the device are good based on NiCo2O4 nanospheres. These findings make the ultrafine NiCo2O4 nanospheres being promising electrode materials for transparent and flexible energy storage devices.

  8. Wave-based control of under-actuated flexible structures with strong external disturbing forces

    NASA Astrophysics Data System (ADS)

    O'Connor, William J.; Habibi, Hossein

    2015-09-01

    Wave-based control of under-actuated, flexible systems has many advantages over other methods. It considers actuator motion as launching a mechanical wave into the flexible system which it absorbs on its return to the actuator. The launching and absorbing proceed simultaneously. This simple, intuitive idea leads to robust, generic, highly efficient, precise, adaptable controllers, allowing rapid and almost vibrationless re-positioning of the system, using only sensors collocated at the actuator-system interface. It has been very successfully applied to simple systems such as mass-spring strings, systems of Euler-Bernoulli beams, planar mass-spring arrays, and flexible three-dimensional space structures undergoing slewing motion. In common with most other approaches, this work also assumed that, during a change of position, the forces from the environment were negligible in comparison with internal forces and torques. This assumption is not always valid. Strong external forces considerably complicate the flexible control problem, especially when unknown, unexpected or unmodelled. The current work extends the wave-based strategy to systems experiencing significant external disturbing forces, whether enduring or transient. The work also provides further robustness to sensor errors. The strategy has the controller learn about the disturbances and compensate for them, yet without needing new sensors, measurements or models beyond those of standard wave-based control.

  9. GaN-based micro-LED arrays on flexible substrates for optical cochlear implants

    NASA Astrophysics Data System (ADS)

    Goßler, Christian; Bierbrauer, Colin; Moser, Rüdiger; Kunzer, Michael; Holc, Katarzyna; Pletschen, Wilfried; Köhler, Klaus; Wagner, Joachim; Schwaerzle, Michael; Ruther, Patrick; Paul, Oliver; Neef, Jakob; Keppeler, Daniel; Hoch, Gerhard; Moser, Tobias; Schwarz, Ulrich T.

    2014-05-01

    Currently available cochlear implants are based on electrical stimulation of the spiral ganglion neurons. Optical stimulation with arrays of micro-sized light-emitting diodes (µLEDs) promises to increase the number of distinguishable frequencies. Here, the development of a flexible GaN-based micro-LED array as an optical cochlear implant is reported for application in a mouse model. The fabrication of 15 µm thin and highly flexible devices is enabled by a laser-based layer transfer process of the GaN-LEDs from sapphire to a polyimide-on-silicon carrier wafer. The fabricated 50 × 50 µm2 LEDs are contacted via conducting paths on both p- and n-sides of the LEDs. Up to three separate channels could be addressed. The probes, composed of a linear array of the said µLEDs bonded to the flexible polyimide substrate, are peeled off the carrier wafer and attached to flexible printed circuit boards. Probes with four µLEDs and a width of 230 µm are successfully implanted in the mouse cochlea both in vitro and in vivo. The LEDs emit 60 µW at 1 mA after peel-off, corresponding to a radiant emittance of 6 mW mm-2.

  10. Fast and accurate grid representations for atom-based docking with partner flexibility.

    PubMed

    de Vries, Sjoerd J; Zacharias, Martin

    2017-06-30

    Macromolecular docking methods can broadly be divided into geometric and atom-based methods. Geometric methods use fast algorithms that operate on simplified, grid-like molecular representations, while atom-based methods are more realistic and flexible, but far less efficient. Here, a hybrid approach of grid-based and atom-based docking is presented, combining precalculated grid potentials with neighbor lists for fast and accurate calculation of atom-based intermolecular energies and forces. The grid representation is compatible with simultaneous multibody docking and can tolerate considerable protein flexibility. When implemented in our docking method ATTRACT, grid-based docking was found to be ∼35x faster. With the OPLSX forcefield instead of the ATTRACT coarse-grained forcefield, the average speed improvement was >100x. Grid-based representations may allow atom-based docking methods to explore large conformational spaces with many degrees of freedom, such as multiple macromolecules including flexibility. This increases the domain of biological problems to which docking methods can be applied. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Evidence for an X-Ray Jet in DG Tauri A?

    NASA Astrophysics Data System (ADS)

    Güdel, M.; Skinner, S. L.; Briggs, K. R.; Audard, M.; Arzner, K.; Telleschi, A.

    2005-06-01

    We present evidence for an X-ray jet in the T Tauri star DG Tau A based on Chandra ACIS data. DG Tau A, a jet-driving classical T Tauri star with a flat infrared spectrum, reveals an unusual X-ray spectrum that requires two thermal components with different intervening absorption column densities. The softer component shows a low temperature of T~2.9 MK, and its absorption is compatible with the stellar optical extinction (hydrogen column density NH~5×1021 cm-2). In contrast, the harder component reveals a temperature (22 MK) characteristic of active T Tauri stars, but its emission is more strongly absorbed (NH~2.8×1022 cm-2). Furthermore, the high-resolution ACIS-S image reveals a weak excess of soft (0.5-2 keV) counts at distances of 2"-4" from the star precisely along the optical jet, with a suggestive concentration at 4", where a bow shock-like structure has previously been identified in optical line observations. The energy distribution of these photons is similar to those of the stellar soft component. We interpret the soft spectral component as originating from shocks at the base of the jet, with shock-heating continuing out to a distance of at least 500 AU along the jet, whereas the hard component is most likely coronal or magnetospheric as in other young stellar systems.

  12. Ultrastretchable and flexible copper interconnect-based smart patch for adaptive thermotherapy.

    PubMed

    Hussain, Aftab M; Lizardo, Ernesto Byas; Torres Sevilla, Galo A; Nassar, Joanna M; Hussain, Muhammad M

    2015-04-02

    Unprecedented 800% stretchable, non-polymeric, widely used, low-cost, naturally rigid, metallic thin-film copper (Cu)-based flexible and non-invasive, spatially tunable, mobile thermal patch with wireless controllability, adaptability (tunes the amount of heat based on the temperature of the swollen portion), reusability, and affordability due to low-cost complementary metal oxide semiconductor (CMOS) compatible integration. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Neural network based control schemes for flexible-link manipulators: simulations and experiments.

    PubMed

    Talebi, H A.; Khorasani, K; Patel, R V.

    1998-10-01

    This paper presents simulation and experimental results on the performance of neural network-based controllers for tip position tracking of flexible-link manipulators. The controllers are designed by utilizing the modified output re-definition approach. The modified output re-definition approach requires only a priori knowledge about the linear model of the system and no a priori knowledge about the payload mass. Four different neural network schemes are proposed. The first two schemes are developed by using a modified version of the 'feedback-error-learning' approach to learn the inverse dynamics of the flexible manipulator. Both schemes require only a linear model of the system for defining the new outputs and for designing conventional PD-type controllers. This assumption is relaxed in the third and fourth schemes. In the third scheme, the controller is designed based on tracking the hub position while controlling the elastic deflection at the tip. In the fourth scheme which employs two neural networks, the first network (referred to as the 'output neural network') is responsible for specifying an appropriate output for ensuring minimum phase behavior of the system. The second neural network is responsible for implementing an inverse dynamics controller. The performance of the four proposed neural network controllers is illustrated by simulation results for a two-link planar flexible manipulator and by experimental results for a single flexible-link test-bed. The networks are all trained and employed as online controllers and no off-line training is required.

  14. Continuous Patterning of Copper Nanowire-Based Transparent Conducting Electrodes for Use in Flexible Electronic Applications.

    PubMed

    Zhong, Zhaoyang; Lee, Hyungjin; Kang, Dongwoo; Kwon, Sin; Choi, Young-Man; Kim, Inhyuk; Kim, Kwang-Young; Lee, Youngu; Woo, Kyoohee; Moon, Jooho

    2016-08-23

    Simple, low-cost and scalable patterning methods for Cu nanowire (NW)-based flexible transparent conducting electrodes (FTCEs) are essential for the widespread use of Cu NW FTCEs in numerous flexible optoelectronic devices, wearable devices, and electronic skins. In this paper, continuous patterning for Cu NW FTCEs via a combination of selective intense pulsed light (IPL) and roll-to-roll (R2R) wiping process was explored. The development of continuous R2R patterning could be achieved because there was significant difference in adhesion properties between NWs and substrates depending on whether Cu NW coated area was irradiated by IPL or not. Using a custom-built, R2R-based wiping apparatus, it was confirmed that nonirradiated NWs could be clearly removed out without any damage on irradiated NWs strongly adhered to the substrate, resulting in continuous production of low-cost Cu NW FTCE patterns. In addition, the variations in microscale pattern size by varying IPL process parameters/the mask aperture sizes were investigated, and possible factors affecting on developed pattern size were meticulously examined. Finally, the successful implementation of the patterned Cu NW FTCEs into a phosphorescent organic light-emitting diode (PhOLED) and a flexible transparent conductive heater (TCH) were demonstrated, verifying the applicability of the patterned FTCEs. It is believed that our study is the key step toward realizing the practical use of NW FTCEs in various flexible electronic devices.

  15. A transparent flexible z-axis sensitive multi-touch panel based on colloidal ITO nanocrystals.

    PubMed

    Sangeetha, N M; Gauvin, M; Decorde, N; Delpech, F; Fazzini, P F; Viallet, B; Viau, G; Grisolia, J; Ressier, L

    2015-08-07

    Bottom-up fabrication of a flexible multi-touch panel prototype based on transparent colloidal indium tin oxide (ITO) nanocrystal (NC) films is presented. A series of 7% Sn(4+) doped ITO NCs protected by oleate, octanoate and butanoate ligands are synthesized and characterized by a battery of techniques including, high resolution transmission electron microscopy, X-ray diffraction, (1)H, (13)C and (119)Sn nuclear magnetic resonance spectroscopy, and the related diffusion ordered spectroscopy. Electrical resistivities of transparent films of these NCs assembled on flexible polyethylene terephthalate substrates by convective self-assembly from their suspension in toluene decrease with the ligand length, from 220 × 10(3) for oleate ITO to 13 × 10(3)Ω cm for butanoate ITO NC films. A highly transparent, flexible touch panel based on a matrix of strain gauges derived from the least resistive film of 17 nm butanoate ITO NCs sensitively detects the lateral position (x, y) of the touch as well as its intensity over the z-axis. Being compatible with a stylus or bare/gloved finger, a larger version of this module may be readily implemented in upcoming flexible screens, enabling navigation capabilities over all three axes, a feature highly desired by the display industry.

  16. Maximum margin classification based on flexible convex hulls for fault diagnosis of roller bearings

    NASA Astrophysics Data System (ADS)

    Zeng, Ming; Yang, Yu; Zheng, Jinde; Cheng, Junsheng

    2016-01-01

    A maximum margin classification based on flexible convex hulls (MMC-FCH) is proposed and applied to fault diagnosis of roller bearings. In this method, the class region of each sample set is approximated by a flexible convex hull of its training samples, and then an optimal separating hyper-plane that maximizes the geometric margin between flexible convex hulls is constructed by solving a closest pair of points problem. By using the kernel trick, MMC-FCH can be extended to nonlinear cases. In addition, multi-class classification problems can be processed by constructing binary pairwise classifiers as in support vector machine (SVM). Actually, the classical SVM also can be regarded as a maximum margin classification based on convex hulls (MMC-CH), which approximates each class region with a convex hull. The convex hull is a special case of the flexible convex hull. To train a MMC-FCH classifier, time-domain and frequency-domain statistical parameters are extracted not only from raw vibration signals but also from the resulting intrinsic mode functions (IMFs) by performing empirical mode decomposition (EMD) on the raw signals, and then the distance evaluation technique (DET) is used to select salient features from the whole statistical features. The experiments on bearing datasets show that the proposed method can reliably recognize different bearing faults.

  17. Flexible and Actuating Nanoporous Poly(ionic liquids)-paper based Hybrid Membranes.

    PubMed

    Lin, Huijuan; Gong, Jiang; Miao, Han; Guterman, Ryan; Song, Hao-Jie; Zhao, Qiang; Dunlop, John W C; Yuan, Jiayin

    2017-04-04

    Porous and flexible actuating materials are important in the development of smart systems. We report here a facile method to prepare scalable, flexible actuating porous membranes based on a poly(ionic liquid)-modified tissue paper. The targeted membrane property profile was based on a synergy of a gradient porous structure of poly(ionic liquid) network and the flexibility of tissue paper. The gradient porous structure was built up through ammonia-triggered electrostatic complexation of a poly(ionic liquid) with poly(acrylic acid) (PAA) that were previously impregnated inside the tissue paper. As a result, these porous membranes undergo bending deformation in response to organic solvents in vapor or liquid phase and can recover their shape back in air, which was demonstrated to be able to serve as solvent sensors. Besides, they show enhanced mechanical properties due to the introduction of mechanically flexible tissue paper that allows the membranes to be designed as new responsive textiles and contractile actuators.

  18. Highly Sensitive, Flexible MEMS Based Pressure Sensor with Photoresist Insulation Layer.

    PubMed

    Liang, Binghao; Chen, Wenjun; He, Zhongfu; Yang, Rongliang; Lin, Zhiqiang; Du, Huiwei; Shang, Yuanyuan; Cao, Anyuan; Tang, Zikang; Gui, Xuchun

    2017-09-29

    Pressure sensing is a crucial function for flexible and wearable electronics, such as artificial skin and health monitoring. Recent progress in material and device structure of pressure sensors has brought breakthroughs in flexibility, self-healing, and sensitivity. However, the fabrication process of many pressure sensors is too complicated and difficult to integrate with traditional silicon-based Micro-Electro-Mechanical System(MEMS). Here, this study demonstrates a scalable and integratable contact resistance-based pressure sensor based on a carbon nanotube conductive network and a photoresist insulation layer. The pressure sensors have high sensitivity (95.5 kPa(-1) ), low sensing threshold (16 Pa), fast response speed (<16 ms), and zero power consumption when without loading pressure. The sensitivity, sensing threshold, and dynamic range are all tunable by conveniently modifying the hole diameter and thickness of insulation layer. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes.

    PubMed

    Kang, Yu Jin; Chung, Haegeun; Han, Chi-Hwan; Kim, Woong

    2012-02-17

    All-solid-state flexible supercapacitors were fabricated using carbon nanotubes (CNTs), regular office papers, and ionic-liquid-based gel electrolytes. Flexible electrodes were made by coating CNTs on office papers by a drop-dry method. The gel electrolyte was prepared by mixing fumed silica nanopowders with ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][NTf(2)]). This supercapacitor showed high power and energy performance as a solid-state flexible supercapacitor. The specific capacitance of the CNT electrodes was 135 F g(-1) at a current density of 2 A g(-1), when considering the mass of active materials only. The maximum power and energy density of the supercapacitors were 164 kW kg(-1) and 41 Wh kg(-1), respectively. Interestingly, the solid-state supercapacitor with the gel electrolyte showed comparable performance to the supercapacitors with ionic-liquid electrolyte. Moreover, the supercapacitor showed excellent stability and flexibility. The CNT/paper- and gel-based supercapacitors may hold great potential for low-cost and high-performance flexible energy storage applications.

  20. Molecular dynamics studies of axis bending in d(G5-(GA4T4C)2-C5) and d(G5-(GT4A4C)2-C5): effects of sequence polarity on DNA curvature.

    PubMed

    Sprous, D; Young, M A; Beveridge, D L

    1999-01-29

    Gel retardation studies and other experiments indicate that DNA sequences containing the d(GA4T4C)n motif are curved, whereas those of identical composition but with a reverse sequence polarity, the d(GT4A4C)n motif, are straight. Hydroxyl radical cleavage experiments show that d(GA4T4C)n shows a unique signature, whereas d(GT4A4C)n behaves normally. To explain these results at a molecular level, molecular dynamics (MD) simulations were performed on the DNA duplexes d(G5-(GA4T4C)2-C5) and d(G5-(GT4A4C)2-C5) to 3.0 and 2.5 ns, respectively. The MD simulations are based on the Cornell force field implemented in the AMBER 4.1 modeling package and performed in a neutral solution of anionic DNA with K+, Cl- and Mg2+ at concentrations roughly comparable to a ligase buffer. Long range interactions were treated by the particle mesh Ewald method. Analysis of the results shows that the calculated dynamical structure of d(G5-(GA4T4C)2-C5) exhibits strong gross curvature, consistent with the observed behavior. The most significant locus of curvature in the MD structure is found at the central C15-G16 step, with an average roll angle of 12.8(+/-6.40)deg. The d(G5-(GT4A4C)2-C5) MD structure exhibited significantly less gross curvature. Analysis of results indicates that the reduction in gross curvature in the d(G5-(GT4A4C)2-C5) trajectory originates from the effect of the T10-A11 and T20-A21 steps, which showed average roll angles of 12.5(+/-5)deg. These three steps, T10-A11, C15-G16 and T20-A21, are half-helix turns away from one another, and their contributions to concerted bending cancel out. The A-tracts in the MD structure are essentially straight. The dynamical structure of d(G5-(GA4T4C)2-C5) exhibited minor groove deformation comprised of expansion at the 5' end of A-tracts and progressive narrowing towards the 3' end, consistent with and elaborating the interpretation of hydroxyl radical chemical probing results. Copyright 1999 Academic Press.

  1. Flexible Asymmetrical Solid-State Supercapacitors Based on Laboratory Filter Paper.

    PubMed

    Zhang, Leicong; Zhu, Pengli; Zhou, Fengrui; Zeng, Wenjin; Su, Haibo; Li, Gang; Gao, Jihua; Sun, Rong; Wong, Ching-Ping

    2016-01-26

    In this study, a flexible asymmetrical all-solid-state supercapacitor with high electrochemical performance was fabricated with Ni/MnO2-filter paper (FP) as the positive electrode and Ni/active carbon (AC)-filter paper as negative electrode, separated with poly(vinyl alcohol) (PVA)-Na2SO4 electrolyte. A simple procedure, such as electroless plating, was introduced to prepare the Ni/MnO2-FP electrode on the conventional laboratory FP, combined with the subsequent step of electrodeposition. Electrochemical results show that the as-prepared electrodes display outstanding areal specific capacitance (1900 mF/cm(2) at 5 mV/s) and excellent cycling performance (85.1% retention after 1000 cycles at 20 mA/cm(2)). Such a flexible supercapacitor assembled asymmetrically in the solid state exhibits a large volume energy density (0.78 mWh/cm(3)) and superior flexibility under different bending conditions. It has been demonstrated that the supercapacitors could be used as a power source to drive a 3 V light-emitting diode indicator. This study may provide an available method for designing and fabricating flexible supercapacitors with high performance in the application of wearable and portable electronics based on easily available materials.

  2. Parylene C-based flexible electronics for pH monitoring applications.

    PubMed

    Trantidou, Tatiana; Tariq, Mehvesh; Terracciano, Cesare M; Toumazou, Christofer; Prodromakis, Themistoklis

    2014-07-01

    Emerging materials in the field of implantable sensors should meet the needs for biocompatibility; transparency; flexibility and integrability. In this work; we present an integrated approach for implementing flexible bio-sensors based on thin Parylene C films that serve both as flexible support substrates and as active H(+) sensing membranes within the same platform. Using standard micro-fabrication techniques; a miniaturized 40-electrode array was implemented on a 5 μm-thick Parylene C film. A thin capping film (1 μm) of Parylene on top of the array was plasma oxidized and served as the pH sensing membrane. The sensor was evaluated with the use of extended gate discrete MOSFETs to separate the chemistry from the electronics and prolong the lifetime of the sensor. The chemical sensing array spatially maps the local pH levels; providing a reliable and rapid-response (<5 s) system with a sensitivity of 23 mV/pH. Moreover; it preserves excellent encapsulation integrity and low chemical drifts (0.26-0.38 mV/min). The proposed approach is able to deliver hybrid flexible sensing platforms that will facilitate concurrent electrical and chemical recordings; with application in real-time physiological recordings of organs and tissues.

  3. Flexible White Light Emitting Diodes Based on Nitride Nanowires and Nanophosphors

    PubMed Central

    2016-01-01

    We report the first demonstration of flexible white phosphor-converted light emitting diodes (LEDs) based on p–n junction core/shell nitride nanowires. GaN nanowires containing seven radial In0.2Ga0.8N/GaN quantum wells were grown by metal–organic chemical vapor deposition on a sapphire substrate by a catalyst-free approach. To fabricate the flexible LED, the nanowires are embedded into a phosphor-doped polymer matrix, peeled off from the growth substrate, and contacted using a flexible and transparent silver nanowire mesh. The electroluminescence of a flexible device presents a cool-white color with a spectral distribution covering a broad spectral range from 400 to 700 nm. Mechanical bending stress down to a curvature radius of 5 mm does not yield any degradation of the LED performance. The maximal measured external quantum efficiency of the white LED is 9.3%, and the wall plug efficiency is 2.4%. PMID:27331079

  4. Parylene C-Based Flexible Electronics for pH Monitoring Applications

    PubMed Central

    Trantidou, Tatiana; Tariq, Mehvesh; Terracciano, Cesare M.; Toumazou, Christofer; Prodromakis, Themistoklis

    2014-01-01

    Emerging materials in the field of implantable sensors should meet the needs for biocompatibility; transparency; flexibility and integrability. In this work; we present an integrated approach for implementing flexible bio-sensors based on thin Parylene C films that serve both as flexible support substrates and as active H+ sensing membranes within the same platform. Using standard micro-fabrication techniques; a miniaturized 40-electrode array was implemented on a 5 μm-thick Parylene C film. A thin capping film (1 μm) of Parylene on top of the array was plasma oxidized and served as the pH sensing membrane. The sensor was evaluated with the use of extended gate discrete MOSFETs to separate the chemistry from the electronics and prolong the lifetime of the sensor. The chemical sensing array spatially maps the local pH levels; providing a reliable and rapid-response (<5 s) system with a sensitivity of 23 mV/pH. Moreover; it preserves excellent encapsulation integrity and low chemical drifts (0.26–0.38 mV/min). The proposed approach is able to deliver hybrid flexible sensing platforms that will facilitate concurrent electrical and chemical recordings; with application in real-time physiological recordings of organs and tissues. PMID:24988379

  5. Flexible and Patterned Thin Film Polarizer: Photopolymerization of Perylene-based Lyotropic Chromonic Reactive Mesogens.

    PubMed

    Im, Pureun; Kang, Dong-Gue; Kim, Dae-Yoon; Choi, Yu-Jin; Yoon, Won-Jin; Lee, Myong-Hoon; Lee, In-Hwan; Lee, Cheul-Ro; Jeong, Kwang-Un

    2016-01-13

    A perylene-based reactive mesogen (DAPDI) forming a lyotropic chromonic liquid crystal (LCLC) phase was newly designed and synthesized for the fabrication of macroscopically oriented and patterned thin film polarizer (TFP) on the flexible polymer substrates. The anisotropic optical property and molecular self-assembly of DAPDI were investigated by the combination of microscopic, scattering and spectroscopic techniques. The main driving forces of molecular self-assembly were the face-to-face π-π intermolecular interaction among aromatic cores and the nanophase separation between hydrophilic ionic groups and hydrophobic aromatic cores. Degree of polarization for the macroscopically oriented and photopolymerized DAPDI TFP was estimated to be 99.81% at the λmax = 491 nm. After mechanically shearing the DAPDI LCLC aqueous solution on the flexible polymer substrates, we successfully fabricated the patterned DAPDI TFP by etching the unpolymerized regions selectively blocked by a photomask during the photopolymerization process. Chemical and mechanical stabilities were confirmed by the solvent and pencil hardness tests, and its surface morphology was further investigated by optical microscopy, atomic force microscopy, and three-dimensional surface nanoprofiler. The flexible and patterned DAPDI TFP with robust chemical and mechanical stabilities can be a stepping stone for the advanced flexible optoelectronic devices.

  6. Flexibility on storage-release based distributed hydrologic modeling with object-oriented approach

    NASA Astrophysics Data System (ADS)

    Kang, Kwangmin; Merwade, Venkatesh; Chun, Jong Ahn; Timlin, Dennis

    2016-09-01

    With the availability of advanced hydrologic data in public domain such as remote sensed and climate change scenario data, there is a need for a modeling framework that is capable of using these data to simulate and extend hydrologic processes with multidisciplinary approaches for sustainable water resources management. To address this need, a storage-release based distributed hydrologic model (STORE DHM) is developed based on an object-oriented approach. The model is tested for demonstrating model flexibility and extensibility to know how to well integrate object-oriented approach to further hydrologic research issues, e.g., reconstructing missing precipitation in this study, without changing its main frame. Moreover, the STORE DHM is applied to simulate hydrological processes with multiple classes in the Nanticoke watershed. This study also describes a conceptual and structural framework of object-oriented inheritance and aggregation characteristics under the STORE DHM. In addition, NearestMP (missing value estimation based on nearest neighborhood regression) and KernelMP (missing value estimation based on Kernel Function) are proposed for evaluating STORE DHM flexibility. And then, STORE DHM runoff hydrographs compared with NearestMP and KernelMP runoff hydrographs. Overall results from these comparisons show promising hydrograph outputs generated by the proposed two classes. Consequently, this study suggests that STORE DHM with an object-oriented approach will be a comprehensive water resources modeling tools by adding additional classes for toward developing through its flexibility and extensibility.

  7. Nitride-Based Materials for Flexible MEMS Tactile and Flow Sensors in Robotics.

    PubMed

    Abels, Claudio; Mastronardi, Vincenzo Mariano; Guido, Francesco; Dattoma, Tommaso; Qualtieri, Antonio; Megill, William M; De Vittorio, Massimo; Rizzi, Francesco

    2017-05-10

    The response to different force load ranges and actuation at low energies is of considerable interest for applications of compliant and flexible devices undergoing large deformations. We present a review of technological platforms based on nitride materials (aluminum nitride and silicon nitride) for the microfabrication of a class of flexible micro-electro-mechanical systems. The approach exploits the material stress differences among the constituent layers of nitride-based (AlN/Mo, Si x N y /Si and AlN/polyimide) mechanical elements in order to create microstructures, such as upwardly-bent cantilever beams and bowed circular membranes. Piezoresistive properties of nichrome strain gauges and direct piezoelectric properties of aluminum nitride can be exploited for mechanical strain/stress detection. Applications in flow and tactile sensing for robotics are described.

  8. Nitride-Based Materials for Flexible MEMS Tactile and Flow Sensors in Robotics

    PubMed Central

    Abels, Claudio; Mastronardi, Vincenzo Mariano; Guido, Francesco; Dattoma, Tommaso; Qualtieri, Antonio; Megill, William M.; De Vittorio, Massimo; Rizzi, Francesco

    2017-01-01

    The response to different force load ranges and actuation at low energies is of considerable interest for applications of compliant and flexible devices undergoing large deformations. We present a review of technological platforms based on nitride materials (aluminum nitride and silicon nitride) for the microfabrication of a class of flexible micro-electro-mechanical systems. The approach exploits the material stress differences among the constituent layers of nitride-based (AlN/Mo, SixNy/Si and AlN/polyimide) mechanical elements in order to create microstructures, such as upwardly-bent cantilever beams and bowed circular membranes. Piezoresistive properties of nichrome strain gauges and direct piezoelectric properties of aluminum nitride can be exploited for mechanical strain/stress detection. Applications in flow and tactile sensing for robotics are described. PMID:28489040

  9. Flexible Plasmonic Color Filters Fabricated via Nanotransfer Printing with Nanoimprint-Based Planarization.

    PubMed

    Hwang, Boyeon; Shin, Sang-Ho; Hwang, Soon-Hyoung; Jung, Joo-Yun; Choi, Jun-Hyuk; Ju, Byeong-Kwon; Jeong, Jun-Ho

    2017-08-23

    We investigated the preparation and performance of large-area transmission-type flexible plasmonic color filters (PCFs). These large-area PCFs were fabricated based on a nanotransfer printing (nTP) process that involves nanoimprint-based planarization. This process is a simple surface treatment for easy transfer of a metal to a flexible plastic substrate and formation of patterned aluminum nanodots and nanoholes on a substrate surface with poor roughness. Rabbit-ear structures can form during the nTP process, and this phenomenon was analyzed by numerical simulation. As defects were not detected in a 10 000-round bending test, the PCFs fabricated using this nTP process have excellent mechanical properties.

  10. Design of a smart ECG garment based on conductive textile electrode and flexible printed circuit board.

    PubMed

    Cai, Zhipeng; Luo, Kan; Liu, Chengyu; Li, Jianqing

    2017-08-09

    A smart electrocardiogram (ECG) garment system was designed for continuous, non-invasive and comfortable ECG monitoring, which mainly consists of four components: Conductive textile electrode, garment, flexible printed circuit board (FPCB)-based ECG processing module and android application program. Conductive textile electrode and FPCB-based ECG processing module (6.8 g, 55 mm × 53 mm × 5 mm) are identified as two key techniques to improve the system's comfort and flexibility. Preliminary experimental results verified that the textile electrodes with circle shape, 40 mm size in diameter, and 5 mm thickness sponge are best suited for the long-term ECG monitoring application. The tests on the whole system confirmed that the designed smart garment can obtain long-term ECG recordings with high signal quality.

  11. A flexible new method for 3D measurement based on multi-view image sequences

    NASA Astrophysics Data System (ADS)

    Cui, Haihua; Zhao, Zhimin; Cheng, Xiaosheng; Guo, Changye; Jia, Huayu

    2016-11-01

    Three-dimensional measurement is the base part for reverse engineering. The paper developed a new flexible and fast optical measurement method based on multi-view geometry theory. At first, feature points are detected and matched with improved SIFT algorithm. The Hellinger Kernel is used to estimate the histogram distance instead of traditional Euclidean distance, which is immunity to the weak texture image; then a new filter three-principle for filtering the calculation of essential matrix is designed, the essential matrix is calculated using the improved a Contrario Ransac filter method. One view point cloud is constructed accurately with two view images; after this, the overlapped features are used to eliminate the accumulated errors caused by added view images, which improved the camera's position precision. At last, the method is verified with the application of dental restoration CAD/CAM, experiment results show that the proposed method is fast, accurate and flexible for tooth 3D measurement.

  12. Modeling and control of a flexible rotor system with AMB-based sustentation.

    PubMed

    Arredondo, I; Jugo, J; Etxebarria, V

    2008-01-01

    In this work the modeling and basic control design process of a rotary flexible spindle hovered by Active Magnetic Bearings (AMB) whose good capabilities for machine-tool industry extensively treated in the literature is presented. The modeling takes into account the three main behavioral characteristics of such magnetically-levitated rotor: the rigid dynamics, the flexible dynamics and the rotating unbalanced motion. Besides, the gyroscopic coupling is also studied proving that in this case, its effects are not significant and can be neglected. Using this model, a stabilizing controller based on symmetry properties is successfully designed for the system and a complete experimental analysis of its performance is carried out. Also, the predictions of the model are compared with the actual measured experimental results on a laboratory set-up based on the MBC500 Rotor Dynamics. Afterwards, a brief study about some nonlinear behavior observed in the system and its effect over the system stability at the critical speed is included.

  13. An optimization-based integrated controls-structures design methodology for flexible space structures

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Joshi, Suresh M.; Armstrong, Ernest S.

    1993-01-01

    An approach for an optimization-based integrated controls-structures design is presented for a class of flexible spacecraft that require fine attitude pointing and vibration suppression. The integrated design problem is posed in the form of simultaneous optimization of both structural and control design variables. The approach is demonstrated by application to the integrated design of a generic space platform and to a model of a ground-based flexible structure. The numerical results obtained indicate that the integrated design approach can yield spacecraft designs that have substantially superior performance over a conventional design wherein the structural and control designs are performed sequentially. For example, a 40-percent reduction in the pointing error is observed along with a slight reduction in mass, or an almost twofold increase in the controlled performance is indicated with more than a 5-percent reduction in the overall mass of the spacecraft (a reduction of hundreds of kilograms).

  14. Retinal Stimulation on Rabbit Using Complementary Metal Oxide Semiconductor Based Multichip Flexible Stimulator toward Retinal Prosthesis

    NASA Astrophysics Data System (ADS)

    Tokuda, Takashi; Asano, Ryosuke; Sugitani, Sachie; Taniyama, Mari; Terasawa, Yasuo; Nunoshita, Masahiro; Nakauchi, Kazuaki; Fujikado, Takashi; Tano, Yasuo; Ohta, Jun

    2008-04-01

    The Functionality of a complementary metal oxide semiconductor (CMOS) LSI-based, multichip flexible retinal stimulator was demonstrated in retinal stimulation experiments on rabbits. A 1×4-configured multichip stimulator was fabricated for application to experiments on animals. An experimental procedure including surgical operations was developed, and retinal stimulation was performed with the fabricated multichip stimulator. Neural responses on the visual cortex were successfully evoked by the fabricated stimulator. The stimulator is confirmed to be applicable to acute animal experiments.

  15. Effectiveness of dynamic rescheduling in agent-based flexible manufacturing systems

    NASA Astrophysics Data System (ADS)

    Saad, Ashraf; Biswas, Gautam; Kawamura, Kazuhiko; Johnson, Eric M.

    1997-12-01

    This work has been developed within the framework of agent- based decentralized scheduling for flexible manufacturing systems. In this framework, all workcells comprising the manufacturing system, and the products to be generated, are modeled via intelligent software agents. These agents interact dynamically using a bidding production reservation (BPRS) scheme, based on the Contract Net Protocol, to devise the production schedule for each product unit. Simulation studies of a job shop have demonstrated the gains in performance achieved by this approach over heuristic dispatching rules commonly used in industry. Manufacturing environments are also prone to operational uncertainties such as variations in processing times and machine breakdowns. In order to cope with these uncertainties, the BPRS algorithm has been extended for dynamic rescheduling to also occur in a fully decentralized manner. The resulting multi-agent rescheduling scheme results in decentralized control of flexible manufacturing systems that are capable of responding dynamically to such operational uncertainties, thereby enhancing the robustness and fault tolerance of the proposed scheduling approach. This paper also presents the effects of the proposed agent-based decentralized scheduling approach on the performance of the underlying flexible manufacturing system under a variety of production and scheduling scenarios, including forward and backward scheduling. Future directions for this work include applying the proposed scheduling approach to other advanced manufacturing areas such as agile and holonic manufacturing.

  16. Using adjoint-based optimization to study wing flexibility in flapping flight

    NASA Astrophysics Data System (ADS)

    Wei, Mingjun; Xu, Min; Dong, Haibo

    2014-11-01

    In the study of flapping-wing flight of birds and insects, it is important to understand the impact of wing flexibility/deformation on aerodynamic performance. However, the large control space from the complexity of wing deformation and kinematics makes usual parametric study very difficult or sometimes impossible. Since the adjoint-based approach for sensitivity study and optimization strategy is a process with its cost independent of the number of input parameters, it becomes an attractive approach in our study. Traditionally, adjoint equation and sensitivity are derived in a fluid domain with fixed solid boundaries. Moving boundary is only allowed when its motion is not part of control effort. Otherwise, the derivation becomes either problematic or too complex to be feasible. Using non-cylindrical calculus to deal with boundary deformation solves this problem in a very simple and still mathematically rigorous manner. Thus, it allows to apply adjoint-based optimization in the study of flapping wing flexibility. We applied the ``improved'' adjoint-based method to study the flexibility of both two-dimensional and three-dimensional flapping wings, where the flapping trajectory and deformation are described by either model functions or real data from the flight of dragonflies. Supported by AFOSR.

  17. Fabrication and characterization of a sandpaper-based flexible energy storage

    NASA Astrophysics Data System (ADS)

    Shieh, Jen-Yu; Wu, Cheng-Hung; Tsai, Sung-Ying; Yu, Hsin Her

    2016-02-01

    In this paper, graphene and carbon nanotubes dispersed in a pectin solution are examined as a precursor for electrode fabrication for supercapacitor applications. The carbon nanotubes not only prevent the stacking of graphene sheets, but also act as spacers and binders. Dropping the hybrid conductive suspension onto sandpaper is found to form a sandpaper-based electrode that improves the specific capacitance of a subsequently fabricated supercapacitor because of its high surface area. In particular, the large contact surface of the sandpaper allows it to absorb more electrolyte ions and increases the number of ions assembled on the electrode surface. For the supercapacitor fabrication, replacing the liquid or solid electrolyte with a gel electrolyte prevents leakage and contact discontinuity. Therefore, a high-performance supercapacitor can be constructed with one separator coated with a gel electrolyte inserted between two fine-sandpaper-based electrodes, which can be assembled into a sandwich structure by hot pressing. Electrochemical analysis shows excellent cycle stability and flexibility of the fine-sandpaper-based supercapacitor. Because of the simple and low-cost assembly of this flexible and lightweight supercapacitor, it has potential applications in many energy storage fields, including wearable electronics and flexible products.

  18. Highly Flexible Graphene Oxide Nanosuspension Liquid-Based Microfluidic Tactile Sensor.

    PubMed

    Kenry; Yeo, Joo Chuan; Yu, Jiahao; Shang, Menglin; Loh, Kian Ping; Lim, Chwee Teck

    2016-03-23

    A novel graphene oxide (GO) nanosuspension liquid-based microfluidic tactile sensor is developed. It comprises a UV ozone-bonded Ecoflex-polydimethylsiloxane microfluidic assembly filled with GO nanosuspension, which serves as the working fluid of the tactile sensor. This device is highly flexible and able to withstand numerous modes of deformation as well as distinguish various user-applied mechanical forces it is subjected to, including pressing, stretching, and bending. This tactile sensor is also highly deformable and wearable, and capable of recognizing and differentiating distinct hand muscle-induced motions, such as finger flexing and fist clenching. Moreover, subtle differences in the handgrip strength derived from the first clenching gesture can be identified based on the electrical response of our device. This work highlights the potential application of the GO nanosuspension liquid-based flexible microfluidic tactile sensing platform as a wearable diagnostic and prognostic device for real-time health monitoring. Also importantly, this work can further facilitate the exploration and potential realization of a functional liquid-state device technology with superior mechanical flexibility and conformability.

  19. Biomechanics-Based Curvature Estimation for Ultrasound-guided Flexible Needle Steering in Biological Tissues.

    PubMed

    Moreira, Pedro; Misra, Sarthak

    2015-08-01

    Needle-based procedures are commonly performed during minimally invasive surgery for treatment and diagnosis. Accurate needle tip placement is important for the success of the procedures. Misplacement of the needle tip might cause unsuccessful treatment or misdiagnosis. Robot-assisted needle insertion systems have been developed in order to steer flexible bevel-tipped needles. However, current systems depend on the information of maximum needle curvature, which is estimated by performing prior insertions. This work presents a new three-dimensional flexible needle steering system which integrates an optimal steering control, ultrasound-based needle tracking system, needle deflection model, online needle curvature estimation and offline curvature estimation based on biomechanics properties. The online and the offline curvature estimations are used to update the steering control in real time. The system is evaluated by experiments in gelatin phantoms and biological tissues (chicken breast tissues). The average targeting error in gelatin phantoms is 0.42 ± 0.17 mm, and in biological tissues is 1.63 ± 0.29 mm. The system is able to accurately steer a flexible needle in multi-layer phantoms and biological tissues without performing prior insertions to estimate the maximum needle curvature.

  20. Highly-flexible, low-cost, all stainless steel mesh-based dye-sensitized solar cells.

    PubMed

    Li, Heng; Zhao, Qing; Dong, Hui; Ma, Qianli; Wang, Wei; Xu, Dongsheng; Yu, Dapeng

    2014-11-07

    Highly-flexible, ITO-free dye-sensitized solar cells (DSSCs) are fabricated in a simple, all-solution-based, facile, and controllable way. A double mesh structure is applied to DSSCs, and the design principles, especially scale parameters, are analyzed delicately to ensure the power conversion efficiency and mechanical flexibility of the device. The good flexibility of mesh-based DSSCs is verified by systematic bending tests compared to conventional flexible DSSCs based on PET/ITO or metal foil substrates. Commercial carbon ink is used as a counter electrode material, and it is proved to be low-cost and efficient. The double mesh structure design provides an attractive strategy toward the development of flexible and wearable electrochemical energy supplies.

  1. Case Study of Implementation of Flexible Grouping in One School Framed within the Change Based Adoption Model

    ERIC Educational Resources Information Center

    Slaydon, Donda

    2013-01-01

    This case study was designed to investigate the implementation of flexible grouping at one elementary school framed within the Change Based Adoption Model. Using interviews and observations, data were compiled to answer research questions related to the steps taken to implement flexible grouping, challenges faced, overall effects of flexible…

  2. Frequency domain active vibration control of a flexible plate based on neural networks

    NASA Astrophysics Data System (ADS)

    Liu, Jinxin; Chen, Xuefeng; He, Zhengjia

    2013-06-01

    A neural-network (NN)-based active control system was proposed to reduce the low frequency noise radiation of the simply supported flexible plate. Feedback control system was built, in which neural network controller (NNC) and neural network identifier (NNI) were applied. Multi-frequency control in frequency domain was achieved by simulation through the NN-based control systems. A pre-testing experiment of the control system on a real simply supported plate was conducted. The NN-based control algorithm was shown to perform effectively. These works lay a solid foundation for the active vibration control of mechanical structures.

  3. Light-controlled retinal stimulation on rabbit using CMOS-based flexible multi-chip stimulator.

    PubMed

    Tokuda, T; Takeuchi, Y; Noda, T; Sasagawa, K; Nishida, K; Kitaguchi, Y; Fujikado, T; Tano, Y; Ohta, J

    2009-01-01

    We implemented a light-sensing function on CMOS-based multi-chip stimulator for retinal prosthesis. Using the light-sensing circuitry attached to each stimulation electrode, the flexible multi-chip stimulator is capable of image-based patterned stimulation. We verified the function of the light-controlled decision based on the light intensity measured just beside the stimulation site. We also experimentally demonstrated in vivo retinal stimulation on rabbit's retina with light-controlled decision. The result of the present work is a simplified demonstration for the concept of retinal prosthesis with on-site imaging.

  4. Genomewide identification of target genes of histone methyltransferase dG9a during Drosophila embryogenesis.

    PubMed

    Shimaji, Kouhei; Konishi, Takahiro; Tanaka, Shintaro; Yoshida, Hideki; Kato, Yasuko; Ohkawa, Yasuyuki; Sato, Tetsuya; Suyama, Mikita; Kimura, Hiroshi; Yamaguchi, Masamitsu

    2015-11-01

    Post-translational modification of the histone plays important roles in epigenetic regulation of various biological processes. Among the identified histone methyltransferases (HMTases), G9a is a histone H3 Lys 9 (H3K9)-specific example active in euchromatic regions. Drosophila G9a (dG9a) has been reported to feature H3K9 dimethylation activity in vivo. Here, we show that the time required for hatching of a homozygous dG9a null mutant and heteroallelic combination of dG9a null mutants is delayed, suggesting that dG9a is at least partially responsible for progression of embryogenesis. Immunocytochemical analyses of the wild-type and the dG9a null mutant flies indicated that dG9a localizes in cytoplasm up to nuclear division cycle 7 where it is likely responsible for di-methylation of nucleosome-free H3K9. From cycles 8-11, dG9a moves into the nucleus and is responsible for di-methylating H3K9 in nucleosomes. RNA-sequence analysis utilizing early wild-type and dG9a mutant embryos showed that dG9a down-regulates expression of genes responsible for embryogenesis. RNA fluorescent in situ hybridization analysis further showed temporal and spatial expression patterns of these mRNAs did not significantly change in the dG9a mutant. These results indicate that dG9a controls transcription levels of some zygotic genes without changing temporal and spatial expression patterns of the transcripts of these genes.

  5. Highly-flexible, low-cost, all stainless steel mesh-based dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Heng; Zhao, Qing; Dong, Hui; Ma, Qianli; Wang, Wei; Xu, Dongsheng; Yu, Dapeng

    2014-10-01

    Highly-flexible, ITO-free dye-sensitized solar cells (DSSCs) are fabricated in a simple, all-solution-based, facile, and controllable way. A double mesh structure is applied to DSSCs, and the design principles, especially scale parameters, are analyzed delicately to ensure the power conversion efficiency and mechanical flexibility of the device. The good flexibility of mesh-based DSSCs is verified by systematic bending tests compared to conventional flexible DSSCs based on PET/ITO or metal foil substrates. Commercial carbon ink is used as a counter electrode material, and it is proved to be low-cost and efficient. The double mesh structure design provides an attractive strategy toward the development of flexible and wearable electrochemical energy supplies.Highly-flexible, ITO-free dye-sensitized solar cells (DSSCs) are fabricated in a simple, all-solution-based, facile, and controllable way. A double mesh structure is applied to DSSCs, and the design principles, especially scale parameters, are analyzed delicately to ensure the power conversion efficiency and mechanical flexibility of the device. The good flexibility of mesh-based DSSCs is verified by systematic bending tests compared to conventional flexible DSSCs based on PET/ITO or metal foil substrates. Commercial carbon ink is used as a counter electrode material, and it is proved to be low-cost and efficient. The double mesh structure design provides an attractive strategy toward the development of flexible and wearable electrochemical energy supplies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03999h

  6. Intelligent tracking control of fixed-base and free-flying flexible space robots

    NASA Astrophysics Data System (ADS)

    Green, Anthony

    Initially, tracking control of a fixed-base planar two-link rigid dynamics robot manipulator is simulated using inverse dynamics, linear quadratic regulator, fuzzy logic and linear quadratic Gaussian control strategies with a Jacobian transpose proportion-alderivative control law. The inverse dynamics strategy model is extended to tracking control of a fixed-base planar two-link robot manipulator with flexible dynamics derived using dominant cantilever and pinned-pinned assumed modes of vibration. Adaptation of the control law and transverse link vibration suppression is achieved by a fuzzy logic system within the control strategy. A heuristic design ratio is determined to select optimal fuzzy logic system controllers with a low number of membership functions, high tracking precision and fast execution time. Using the inverse flexible dynamics control strategy simulated tracking results are obtained for a fuzzy logic system with three, five, seven and nine triangular and Gaussian membership functions providing a combination of type and number of membership functions for optimal tracking control and execution time. An optimal fuzzy logic system design ratio of five is achieved with three triangular membership functions and an output scaling gain of fifteen. Repetitive learning performance is compared for inverse rigid dynamics control vs. fuzzy logic control and inverse flexible dynamics control vs. fuzzy logic system adaptive control strategies. Control strategies using fuzzy logic induce responsiveness to repetitive learning; whereas the conventional inverse dynamics control strategies induce no response. Nonmimmum phase behaviour of the flexible robot with dominant cantilever assumed mode dynamics is investigated to provide a method of achieving accurate end-effector tracking control in the presence of time delays and sensors noncollocated at alternate positions on the outboard link of a flexible robot manipulator. The effect of time-delayed control input is

  7. Catheter-based flexible microcoil RF detectors for internal magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Ahmad, M. M.; Syms, R. R. A.; Young, I. R.; Mathew, B.; Casperz, W.; Taylor-Robinson, S. D.; Wadsworth, C. A.; Gedroyc, W. M. W.

    2009-07-01

    Flexible catheter probes for magnetic resonance imaging (MRI) of the bile duct are demonstrated. The probes consist of a cytology brush modified to accept a resonant RF detector based on a spiral microcoil and hybrid integrated capacitors, and are designed for insertion into the duct via a non-magnetic endoscope during endoscopic retrograde cholangiopancreatography (ERCP). The coil must be narrow enough (<3 mm) to pass through the biopsy channel of the endoscope and sufficiently flexible to turn through 90° to enter the duct. Coils are fabricated as multi-turn electroplated conductors on a flexible base, and two designs formed on SU-8 and polyimide substrates are compared. It is shown that careful control of thermal load is used to obtain useable mechanical properties from SU-8, and that polyimide/SU-8 composites offer improved mechanical reliability. Good electrical performance is demonstrated and sub-millimetre resolution is obtained in 1H MRI experiments at 1.5 T magnetic field strength using test phantoms and in vitro liver tissue.

  8. Vibration/Libration Interaction Dynamics During the Orbiter Based Deployment of Flexible Members

    NASA Technical Reports Server (NTRS)

    Modi, V. J.; Ibrahim, A. M.

    1985-01-01

    Essential features of a general formulation for studying librational dynamics of a large class of spacecraft during deployment of flexible members are reviewed. The formulation is applicable to a variety of missions ranging from deployment of antennas, booms and solar panels to manufacturing of trusses for space platforms using the space shuttle. The governing nonlinear, non-autonomous and coupled equations of motion are extremely difficult to solve even with the help of a computer, not to mention the cost involved. To get some appreciation as to the complex interactions between flexibility, deployment and attitude dynamics as well as to help pursue stability and control analysis, the equations are linearized about their nominal deflected equilibrium configuration. The procedure is applied to the Space Shuttle based deployment of boom and plate-like members. Results suggest substantial influence of the inertia parameter, flexural rigidity of the appendages, orbit eccentricity, deployment velocity, initial conditions, etc. on the system response. The results should prove useful in planning of the Orbiter based experiments aimed at assessing effectiveness of procedures for studying dynamics and control of flexible orbiting members.

  9. FLASHFLOOD: A 3D Field-based similarity search and alignment method for flexible molecules

    NASA Astrophysics Data System (ADS)

    Pitman, Michael C.; Huber, Wolfgang K.; Horn, Hans; Krämer, Andreas; Rice, Julia E.; Swope, William C.

    2001-07-01

    A three-dimensional field-based similarity search and alignment method for flexible molecules is introduced. The conformational space of a flexible molecule is represented in terms of fragments and torsional angles of allowed conformations. A user-definable property field is used to compute features of fragment pairs. Features are generalizations of CoMMA descriptors (Silverman, B.D. and Platt, D.E., J. Med. Chem., 39 (1996) 2129.) that characterize local regions of the property field by its local moments. The features are invariant under coordinate system transformations. Features taken from a query molecule are used to form alignments with fragment pairs in the database. An assembly algorithm is then used to merge the fragment pairs into full structures, aligned to the query. Key to the method is the use of a context adaptive descriptor scaling procedure as the basis for similarity. This allows the user to tune the weights of the various feature components based on examples relevant to the particular context under investigation. The property fields may range from simple, phenomenological fields, to fields derived from quantum mechanical calculations. We apply the method to the dihydrofolate/methotrexate benchmark system, and show that when one injects relevant contextual information into the descriptor scaling procedure, better results are obtained more efficiently. We also show how the method works and include computer times for a query from a database that represents approximately 23 million conformers of seventeen flexible molecules.

  10. Reliability of office-based narrow-band imaging-guided flexible laryngoscopic tissue samplings.

    PubMed

    Chang, Catherine; Lin, Wan-Ni; Hsin, Li-Jen; Lee, Li-Ang; Lin, Chien-Yu; Li, Hsueh-Yu; Liao, Chun-Ta; Fang, Tuan-Jen

    2016-12-01

    Direct suspension laryngoscopic biopsy performed under general anesthesia is the conventional management for obtaining pathological diagnosis for neoplasms of the larynx, oropharynx, and hypopharynx. Since the development of distal chip laryngoscopy and digital imaging systems, transnasal flexible laryngoscopy tissue sampling has gained popularity as an office-based procedure. Additional assessment with narrow-band imaging (NBI) can help to increase the diagnostic yield. The aim of the study was to evaluate the accuracy, sensitivity, and specificity of a novel diagnostic tool: office-based NBI (OB-NBI) flexible laryngoscopic tissue sampling. Retrospective chart review performed in a tertiary referral medical center in Taiwan. From January 2010 to February 2013, 90 consecutive patients received OB-NBI biopsies. The accuracies of the OB-NBI biopsies were compared among locations, tumor sizes, head and neck cancer histories, and other factors. All patients had completed the procedure without life-threatening complications. The overall sensitivity and specificity were 97.2% and 100%, respectively, with a diagnostic accuracy of 98.9%. Accuracy was not affected by tumor size, location, learning curves, or previous head and neck cancer history. We present an integrated technique that merges the safety and versatility of flexible laryngoscopy with the diagnostic power of NBI to produce a promising method of high accuracy and minimal morbidity. 4 Laryngoscope, 126:2764-2769, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  11. Two-Link Flexible Manipulator Control Using Sliding Mode Control Based Linear Matrix Inequality

    NASA Astrophysics Data System (ADS)

    Zulfatman; Marzuki, Mohammad; Alif Mardiyah, Nur

    2017-04-01

    Two-link flexible manipulator is a manipulator robot which at least one of its arms is made of lightweight material and not rigid. Flexible robot manipulator has some advantages over the rigid robot manipulator, such as lighter, requires less power and costs, and to result greater payload. However, suitable control algorithm to maintain the two-link flexible robot manipulator in accurate positioning is very challenging. In this study, sliding mode control (SMC) was employed as robust control algorithm due to its insensitivity on the system parameter variations and the presence of disturbances when the system states are sliding on a sliding surface. SMC algorithm was combined with linear matrix inequality (LMI), which aims to reduce the effects of chattering coming from the oscillation of the state during sliding on the sliding surface. Stability of the control algorithm is guaranteed by Lyapunov function candidate. Based on simulation works, SMC based LMI resulted in better performance improvements despite the disturbances with significant chattering reduction. This was evident from the decline of the sum of squared tracking error (SSTE) and the sum of squared of control input (SSCI) indexes respectively 25.4% and 19.4%.

  12. Microthermoforming of flexible, not-buried hollow microstructures for chip-based life sciences applications.

    PubMed

    Truckenmüller, R; Giselbrecht, S

    2004-08-01

    A new method is presented for the manufacturing of flexible, not buried and thin-walled hollow microstructures from polymer films. This low-cost method seems to be especially suited for the fabrication of plastic microstructures for fluidic one-way applications in the field of life sciences. It is based on a thermoforming process adapted to microstructure technology and is called 'microthermoforming'. Inside a hot embossing press, a heated thin thermoplastic film is formed into the evacuated microcavities of a plate-shaped metal mould using a compressed gas. The film may be heat-sealed on to a thicker plastic film substrate inside the same press without demoulding the thermoformed film. To demonstrate the performance of the new manufacturing method, flexible capillary electrophoresis and cell culture chips from polystyrene, polycarbonate and a cyclo-olefin polymer with 16 and 625 parallel microstructures each, respectively, have been fabricated.

  13. Synthesis, Characterization and Biological Studies of New Linear Thermally Stable Schiff Base Polymers with Flexible Spacers.

    PubMed

    Qureshi, Farah; Khuhawar, Muhammad Yar; Jahangir, Taj Muhammad; Channar, Abdul Hamid

    2016-01-01

    Five new linear Schiff base polymers having azomethine structures, ether linkages and extended aliphatic chain lengths with flexible spacers were synthesized by polycondensation of dialdehyde (monomer) with aliphatic and aromatic diamines. The formation yields of monomer and polymers were obtained within 75-92%. The polymers with flexible spacers of n-hexane were somewhat soluble in acetone, chloroform, THF, DMF and DMSO on heating. The monomer and polymers were characterized by melting point, elemental microanalysis, FT-IR, (1)HNMR, UV-Vis spectroscopy, thermogravimetry (TG), differential thermal analysis (DTA), fluorescence emission, scanning electron microscopy (SEM) and viscosities and thermodynamic parameters measurements of their dilute solutions. The studies supported formation of the monomer and polymers and on the basis of these studies their structures have been assigned. The synthesized polymers were tested for their antibacterial and antifungal activities.

  14. A transparent flexible z-axis sensitive multi-touch panel based on colloidal ITO nanocrystals

    NASA Astrophysics Data System (ADS)

    Sangeetha, N. M.; Gauvin, M.; Decorde, N.; Delpech, F.; Fazzini, P. F.; Viallet, B.; Viau, G.; Grisolia, J.; Ressier, L.

    2015-07-01

    Bottom-up fabrication of a flexible multi-touch panel prototype based on transparent colloidal indium tin oxide (ITO) nanocrystal (NC) films is presented. A series of 7% Sn4+ doped ITO NCs protected by oleate, octanoate and butanoate ligands are synthesized and characterized by a battery of techniques including, high resolution transmission electron microscopy, X-ray diffraction, 1H, 13C and 119Sn nuclear magnetic resonance spectroscopy, and the related diffusion ordered spectroscopy. Electrical resistivities of transparent films of these NCs assembled on flexible polyethylene terephthalate substrates by convective self-assembly from their suspension in toluene decrease with the ligand length, from 220 × 103 for oleate ITO to 13 × 103 Ω cm for butanoate ITO NC films. A highly transparent, flexible touch panel based on a matrix of strain gauges derived from the least resistive film of 17 nm butanoate ITO NCs sensitively detects the lateral position (x, y) of the touch as well as its intensity over the z-axis. Being compatible with a stylus or bare/gloved finger, a larger version of this module may be readily implemented in upcoming flexible screens, enabling navigation capabilities over all three axes, a feature highly desired by the display industry.Bottom-up fabrication of a flexible multi-touch panel prototype based on transparent colloidal indium tin oxide (ITO) nanocrystal (NC) films is presented. A series of 7% Sn4+ doped ITO NCs protected by oleate, octanoate and butanoate ligands are synthesized and characterized by a battery of techniques including, high resolution transmission electron microscopy, X-ray diffraction, 1H, 13C and 119Sn nuclear magnetic resonance spectroscopy, and the related diffusion ordered spectroscopy. Electrical resistivities of transparent films of these NCs assembled on flexible polyethylene terephthalate substrates by convective self-assembly from their suspension in toluene decrease with the ligand length, from 220 × 103 for

  15. Photodetectors based on single-walled carbon nanotubes and thiamonomethinecyanine J-aggregates on flexible substrates

    SciTech Connect

    Fedorov, I. V. Emel’yanov, A. V.; Romashkin, A. V.; Bobrinetskiy, I. I.

    2015-09-15

    The present paper is devoted to observations of the photoresistive effect in multilayer structures with a sensitive layer of J-aggregates of thiamonomethinecyanine polymethine dye and a transparent electrode of a conductive carbon-nanotube network on a flexible polyethylenenaphtalate substrate. The effect of narrow-band emission with a wavelength of 465 nm on a change in the conductivity of the fabricated structures is studied. The prepared samples are studied by atomic-force microscopy, Raman spectroscopy, and spectrophotometry methods. It is shown that these structures are photosensitive to the indicated spectral region, and the dye layer is a film of dye J-aggregates. The change in the sample conductivity upon exposure to light one hundred times exceeds the dark conductivity. In general, the principal possibility of developing a photoresistive detector based on J-aggregates of cyanine dyes on flexible supports on account of the use of transparent and conductive carbon-nanotube layers is shown.

  16. A Rule-Based Modeling for the Description of Flexible and Self-healing Business Processes

    NASA Astrophysics Data System (ADS)

    Boukhebouze, Mohamed; Amghar, Youssef; Benharkat, Aïcha-Nabila; Maamar, Zakaria

    In this paper we discuss the importance of ensuring that business processes are label robust and agile at the same time robust and agile. To this end, we consider reviewing the way business processes are managed. For instance we consider offering a flexible way to model processes so that changes in regulations are handled through some self-healing mechanisms. These changes may raise exceptions at run-time if not properly reflected on these processes. To this end we propose a new rule based model that adopts the ECA rules and is built upon formal tools. The business logic of a process can be summarized with a set of rules that implement an organization’s policies. Each business rule is formalized using our ECAPE formalism (Event-Condition-Action-Post condition- post Event). This formalism allows translating a process into a graph of rules that is analyzed in terms of reliably and flexibility.

  17. Enhanced Flexibility and Reusability through State Machine-Based Architectures for Multisensor Intelligent Robotics

    PubMed Central

    Herrero, Héctor; Outón, Jose Luis; Puerto, Mildred; Sallé, Damien; López de Ipiña, Karmele

    2017-01-01

    This paper presents a state machine-based architecture, which enhances the flexibility and reusability of industrial robots, more concretely dual-arm multisensor robots. The proposed architecture, in addition to allowing absolute control of the execution, eases the programming of new applications by increasing the reusability of the developed modules. Through an easy-to-use graphical user interface, operators are able to create, modify, reuse and maintain industrial processes, increasing the flexibility of the cell. Moreover, the proposed approach is applied in a real use case in order to demonstrate its capabilities and feasibility in industrial environments. A comparative analysis is presented for evaluating the presented approach versus traditional robot programming techniques. PMID:28561750

  18. Flexible, highly sensitive pressure sensor with a wide range based on graphene-silk network structure

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Tao, Lu-Qi; Wang, Dan-Yang; Zhang, Tian-Yu; Yang, Yi; Ren, Tian-Ling

    2017-03-01

    In this paper, a flexible, simple-preparation, and low-cost graphene-silk pressure sensor based on soft silk substrate through thermal reduction was demonstrated. Taking silk as the support body, the device had formed a three-dimensional structure with ordered multi-layer structure. Through a simple and low-cost process technology, graphene-silk pressure sensor can achieve the sensitivity value of 0.4 kPa - 1 , and the measurement range can be as high as 140 kPa. Besides, pressure sensor can have a good combination with knitted clothing and textile product. The signal had good reproducibility in response to different pressures. Furthermore, graphene-silk pressure sensor can not only detect pressure higher than 100 kPa, but also can measure weak body signals. The characteristics of high-sensitivity, good repeatability, flexibility, and comfort for skin provide the high possibility to fit on various wearable electronics.

  19. Online damage diagnosis for civil infrastructure employing a flexibility-based approach

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Spencer, B. F., Jr.

    2006-02-01

    Structural health monitoring (SHM) and damage detection have recently emerged as a new research area in civil engineering. Continuous and long-term monitoring of civil infrastructure is desirable, because it allows the damage in the structure to be detected at an early stage so that necessary measures can be carried out to prolong and optimize the associated service life and cost. In this paper, an approach which extends a flexibility-based damage detection technique, the damage locating vector (DLV) method, for continuous online SHM is presented. The essence of the proposed approach is to construct an approximate flexibility matrix for the damaged structure utilizing the modal normalization constants from the undamaged structure. This extended DLV method can then be applied for online damage diagnosis. Numerical simulation has been conducted using a 14-bay planar truss structure, with the results showing that the proposed approach works well for both single- and multiple-damage scenarios.

  20. BII stability and base step flexibility of N6-adenine methylated GATC motifs.

    PubMed

    Karolak, Aleksandra; van der Vaart, Arjan

    2015-01-01

    The effect of N6-adenine methylation on the flexibility and shape of palindromic GATC sequences has been investigated by molecular dynamics simulations. Variations in DNA backbone geometry were observed, which were dependent on the degree of methylation and the identity of the bases. While the effect was small, more frequent BI to BII conversions were observed in the GA step of hemimethylated DNA. The increased BII population of the hemimethylated system positively correlated with increased stacking interactions between methylated adenine and guanine, while stacking interactions decreased at the TC step for the fully methylated strand. The flexibility of the AT and TC steps was marginally affected by methylation, in a fashion that was correlated with stacking interactions. The facilitated BI to BII conversion in hemimethylated strands might be of importance for SeqA selectivity and binding.

  1. Enhanced Flexibility and Reusability through State Machine-Based Architectures for Multisensor Intelligent Robotics.

    PubMed

    Herrero, Héctor; Outón, Jose Luis; Puerto, Mildred; Sallé, Damien; López de Ipiña, Karmele

    2017-05-31

    This paper presents a state machine-based architecture, which enhances the flexibility and reusability of industrial robots, more concretely dual-arm multisensor robots. The proposed architecture, in addition to allowing absolute control of the execution, eases the programming of new applications by increasing the reusability of the developed modules. Through an easy-to-use graphical user interface, operators are able to create, modify, reuse and maintain industrial processes, increasing the flexibility of the cell. Moreover, the proposed approach is applied in a real use case in order to demonstrate its capabilities and feasibility in industrial environments. A comparative analysis is presented for evaluating the presented approach versus traditional robot programming techniques.

  2. Transparent, Flexible Piezoelectric Nanogenerator Based on GaN Membrane Using Electrochemical Lift-Off.

    PubMed

    Kang, Jin-Ho; Jeong, Dae Kyung; Ryu, Sang-Wan

    2017-03-29

    A transparent and flexible piezoelectric nanogenerator (TF PNG) is demonstrated based on a GaN membrane fabricated by electrochemical lift-off. Under shear stress on the TF PNG by finger force (∼182 mN), the GaN membrane effectively undergoes normal stress and generates piezoelectric polarization along the c-axis, resulting in the generation of piezoelectric output from the TF PNG. Although the GaN layer is 315 times thinner than the flexible polyethylene terephthalate (PET) substrate, the low Young's modulus of PET allows the GaN membranes to absorb ∼41% of the applied strain energy, which leads to their large lattice deformation under extremely low applied stress. Maximum output voltage and current values of 4.2 V and 150 nA are obtained, and the time decay of the output voltage is discussed.

  3. Flexible and printable paper-based strain sensors for wearable and large-area green electronics.

    PubMed

    Liao, Xinqin; Zhang, Zheng; Liao, Qingliang; Liang, Qijie; Ou, Yang; Xu, Minxuan; Li, Minghua; Zhang, Guangjie; Zhang, Yue

    2016-07-14

    Paper-based (PB) green electronics is an emerging and potentially game-changing technology due to ease of recycling/disposal, the economics of manufacture and the applicability to flexible electronics. Herein, new-type printable PB strain sensors (PPBSSs) from graphite glue (graphite powder and methylcellulose) have been fabricated. The graphite glue is exposed to thermal annealing to produce surface micro/nano cracks, which are very sensitive to compressive or tensile strain. The devices exhibit a gauge factor of 804.9, response time of 19.6 ms and strain resolution of 0.038%, all performance indicators attaining and even surpassing most of the recently reported strain sensors. Due to the distinctive sensing properties, flexibility and robustness, the PPBSSs are suitable for monitoring of diverse conditions such as structural strain, vibrational motion, human muscular movements and visual control.

  4. High performance flexible pH sensor based on carboxyl-functionalized and DEP aligned SWNTs

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Shao, Jinyou; Li, Xiangming; Zhao, Qiang; Nie, Bangbang; Xu, Chuan; Ding, Haitao

    2016-11-01

    The detection and control of the pH is very important in many biomedical and chemical reaction processes. A miniaturized flexible pH sensor that is light weight, robust, and conformable is very important in many applications, such as multifunctional lab-on-a-chip systems or wearable biomedical devices. In this work, we demonstrate a flexible chemiresistive pH sensor based on dielectrophoresis (DEP) aligned carboxyl-functionalized single-walled carbon nanotubes (SWNTs). Decorated carboxyl groups can react with hydrogen (H+) and hydroxide (OH-) ions, enabling the sensor to be capable of sensing the pH. DEP is used to deposit well-organized and highly aligned SWNTs in desired locations, which improves the metal-nanotube interface and highly rapid detection of the pH, resulting in better overall device performance. When pH buffer solutions are dropped onto such SWNTs, the H+ and OH- ions caninteract with the carboxyl groups and affect the generation of holes and electrons in the SWNTs, leading to resistance variations in the SWNTs. The results shows that the relative resistance variations of the sensor increases linearly with increasing the pH values in the range from 5 to 9 and the response time ranges from 0.2 s to 22.6 s. The pH sensor also shows high performance in mechanical bendability, which benefited from the combination of flexible PET substrates and SWNTs. The SWNT-based flexible pH sensor demonstrates great potential in a wide range of areas due to its simple structure, excellent performance, low power consumption, and compatibility with integrated circuits.

  5. Flexible and printable paper-based strain sensors for wearable and large-area green electronics

    NASA Astrophysics Data System (ADS)

    Liao, Xinqin; Zhang, Zheng; Liao, Qingliang; Liang, Qijie; Ou, Yang; Xu, Minxuan; Li, Minghua; Zhang, Guangjie; Zhang, Yue

    2016-06-01

    Paper-based (PB) green electronics is an emerging and potentially game-changing technology due to ease of recycling/disposal, the economics of manufacture and the applicability to flexible electronics. Herein, new-type printable PB strain sensors (PPBSSs) from graphite glue (graphite powder and methylcellulose) have been fabricated. The graphite glue is exposed to thermal annealing to produce surface micro/nano cracks, which are very sensitive to compressive or tensile strain. The devices exhibit a gauge factor of 804.9, response time of 19.6 ms and strain resolution of 0.038%, all performance indicators attaining and even surpassing most of the recently reported strain sensors. Due to the distinctive sensing properties, flexibility and robustness, the PPBSSs are suitable for monitoring of diverse conditions such as structural strain, vibrational motion, human muscular movements and visual control.Paper-based (PB) green electronics is an emerging and potentially game-changing technology due to ease of recycling/disposal, the economics of manufacture and the applicability to flexible electronics. Herein, new-type printable PB strain sensors (PPBSSs) from graphite glue (graphite powder and methylcellulose) have been fabricated. The graphite glue is exposed to thermal annealing to produce surface micro/nano cracks, which are very sensitive to compressive or tensile strain. The devices exhibit a gauge factor of 804.9, response time of 19.6 ms and strain resolution of 0.038%, all performance indicators attaining and even surpassing most of the recently reported strain sensors. Due to the distinctive sensing properties, flexibility and robustness, the PPBSSs are suitable for monitoring of diverse conditions such as structural strain, vibrational motion, human muscular movements and visual control. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02172g

  6. A flexible tactile sensor calibration method based on an air-bearing six-dimensional force measurement platform

    NASA Astrophysics Data System (ADS)

    Huang, Bin

    2015-07-01

    A number of common issues related to the process of flexible tactile sensor calibration are discussed in this paper, and an estimate of the accuracy of classical calibration methods, as represented by a weight-pulley device, is presented. A flexible tactile sensor calibration method that is based on a six-dimensional force measurement is proposed on the basis of a theoretical analysis. A high-accuracy flexible tactile sensor calibration bench based on the air-bearing six-dimensional force measurement principle was developed to achieve a technically challenging measurement accuracy of 2% full scale (FS) for three-dimensional (3D) flexible tactile sensor calibration. The experimental results demonstrate that the accuracy of the air-bearing six-dimensional force measurement platform can reach 0.2% FS. Thus, the system satisfies the 3D flexible tactile sensor calibration requirement of 2% FS.

  7. A flexible tactile sensor calibration method based on an air-bearing six-dimensional force measurement platform.

    PubMed

    Huang, Bin

    2015-07-01

    A number of common issues related to the process of flexible tactile sensor calibration are discussed in this paper, and an estimate of the accuracy of classical calibration methods, as represented by a weight-pulley device, is presented. A flexible tactile sensor calibration method that is based on a six-dimensional force measurement is proposed on the basis of a theoretical analysis. A high-accuracy flexible tactile sensor calibration bench based on the air-bearing six-dimensional force measurement principle was developed to achieve a technically challenging measurement accuracy of 2% full scale (FS) for three-dimensional (3D) flexible tactile sensor calibration. The experimental results demonstrate that the accuracy of the air-bearing six-dimensional force measurement platform can reach 0.2% FS. Thus, the system satisfies the 3D flexible tactile sensor calibration requirement of 2% FS.

  8. Testing of flexible InGaZnO-based thin-film transistors under mechanical strain

    NASA Astrophysics Data System (ADS)

    Münzenrieder, N. S.; Cherenack, K. H.; Tröster, G.

    2011-08-01

    Thin-film transistors (TFTs) fabricated on flexible plastic substrates are an integral part of future flexible large-area electronic devices like displays and smart textiles. Devices for such applications require stable electrical performance under electrical stress and also during applied mechanical stress induced by bending of the flexible substrate. Mechanical stress can be tensile or compressive strain depending on whether the TFT is located outside or inside of the bending plane. Especially the impact of compressive bending on TFT performance is hard to measure, because the device is covered with the substrate in this case. We present a method which allows us to continuously measure the electrical performance parameters of amorphous Indium-Gallium-Zinc Oxide (a-IGZO) based TFTs exposed to arbitrary compressive and tensile bending radii. To measure the influence of strain on a TFT it is attached and electrically connected to a flexible carrier foil, which afterwards is fastened to two plates in our bending tester. The bending radius can be adjusted by changing the distance between these plates. Thus it is possible to apply bending radii in the range between a totally flat substrate and ≈1 mm, corresponding to a strain of ≈3.5%. The tested bottom-gate TFTs are especially designed for use with our bending tester and fabricated on 50 μm thick flexible Kapton® E polyimide substrates. To show the different application areas of our bending method we characterized our TFTs while they are bent to different tensile and compressive bending radii. These measurements show that the field effect mobilities and threshold voltages of the tested a-IGZO TFTs are nearly, but not absolutely, stable under applied strain, compared to the initial values the mobilities shift by ≈3.5% in the tensile case and ≈-1.5% in the compressive one, at a bending radius of 8 mm. We also measured the influence of repeated bending (2500 cycles over ≈70 h), where a shift of the

  9. Structure-based ligand design for flexible proteins: Application of new F-DycoBlock

    NASA Astrophysics Data System (ADS)

    Zhu, Jiang; Fan, Hao; Liu, Haiyan; Shi, Yunyu

    2001-11-01

    A method of structure-based ligand design - DycoBlock - has been proposed and tested by Liu et al.[1]. It was further improved by Zhu et al. and applied to design new selective inhibitors of cyclooxygenase 2 [2]. In the current work, we present a new methodology - F-DycoBlock that allows for the incorporation of receptor flexibility. During the designing procedure, both the receptor and molecular building blocks are subjected to the multiple-copy stochastic molecular dynamics (MCSMD) simulation [1], while the protein moves in the mean field of all copies. It is tested for two enzymes studied previously - cyclooxygenase 2 (COX-2) and human immunodeficiency type 1 (HIV-1) protease. To identify the applicability of F-DycoBlock, the binding protein structure was used as starting point to explore the conformational space around the bound state. This method can be easily extended to accommodate the flexibility in different degree. Four types of treatment of the receptor flexibility - all-atom restrained, backbone restrained, intramolecular hydrogen-bond restrained and active-site flexible - were tested with or without the grid approximation. Two inhibitors, SC-558 for COX-2 and L700417 for HIV-1 protease, are used in this testing study for comparison with previous results. The accuracy of recovery, binding energy, solvent accessible surface area (SASA) and positional root-mean-square (RMS) deviation are used as criteria. The results indicate that F-DycoBlock is a robust methodology for flexible drug design. It is particularly notable that the protein flexibility has been perfectly associated with each stage of drug design - search for the binding sites, dynamic assembly and optimization of candidate compounds. When all protein atoms were restrained, F-DycoBlock yielded higher accuracy of recovery than DycoBlock (100%). If backbone atoms were restrained, the same ratio of accuracy was achieved. Moreover, with the intramolecular hydrogen bonds restrained, reasonable

  10. Attitude stabilization of flexible spacecrafts via extended disturbance observer based controller

    NASA Astrophysics Data System (ADS)

    Yan, Ruidong; Wu, Zhong

    2017-04-01

    To achieve the high-precision attitude stabilization for the flexible spacecraft in the presence of space environmental disturbances, unmodeled dynamics, and the disturbances caused by the elastic vibration of flexible appendages, an extended disturbance observer (EDO) based controller is proposed. The proposed controller is formulated by combining EDO and a backstepping feedback controller. EDO is used to estimate the disturbance, which is modeled as an unknown high-order differentiable equation and the rth-order derivative of the disturbance is assumed to be bounded. Compared to the conventional first-order disturbance observer, the higher order EDO offers improvement in estimate accuracy, if the absolute values of poles for EDO transfer function are chosen larger than the frequency content of the disturbance. Then, the output of EDO plus the backstepping feedback controller are applied to stabilize the attitude with high precision by rejecting disturbances for the flexible spacecraft. Finally, numerical simulations have been conducted to verify the effectiveness of the proposed controller.

  11. Highly flexible SRAM cells based on novel tri-independent-gate FinFET

    NASA Astrophysics Data System (ADS)

    Liu, Chengsheng; Zheng, Fanglin; Sun, Yabin; Li, Xiaojin; Shi, Yanling

    2017-10-01

    In this paper, a novel tri-independent-gate (TIG) FinFET is proposed for highly flexible SRAM cells design. To mitigate the read-write conflict, two kinds of SRAM cells based on TIG FinFETs are designed, and high tradeoff are obtained between read stability and speed. Both cells can offer multi read operations for frequency requirement with single voltage supply. In the first TIG FinFET SRAM cell, the strength of single-fin access transistor (TIG FinFET) can be flexibly adjusted by selecting five different modes to meet the needs of dynamic frequency design. Compared to the previous double-independent-gate (DIG) FinFET SRAM cell, 12.16% shorter read delay can be achieved with only 1.62% read stability decrement. As for the second TIG FinFET SRAM cell, pass-gate feedback technology is applied and double-fin TIG FinFETs are used as access transistors to solve the severe write-ability degradation. Three modes exist to flexibly adjust read speed and stability, and 68.2% larger write margin and 51.7% shorter write delay are achieved at only the expense of 26.2% increase in leakage power, with the same layout area as conventional FinFET SRAM cell.

  12. Information flow analysis and Petri-net-based modeling for welding flexible manufacturing cell

    NASA Astrophysics Data System (ADS)

    Qiu, T.; Chen, Shanben; Wang, Y. T.; Wu, Lin

    2000-10-01

    Due to the development of advanced manufacturing technology and the introduction of Smart-Manufacturing notion in the field of modern industrial production, welding flexible manufacturing system (WFMS) using robot technology has become the inevitable developing direction on welding automation. In WFMS process, the flexibility for different welding products and the realizing on corresponding welding parameters control are the guarantees for welding quality. Based on a new intelligent arc-welding flexible manufacturing cell (WFMC), the system structure and control policies are studied in this paper. Aiming at the different information flows among every subsystem and central monitoring computer in this WFMC, Petri net theory is introduced into the process of welding manufacturing. With its help, a discrete control model of WFMC has been constructed, in which the system status is regarded as place and the control process is regarded as transition. Moreover, grounded on automation Petri net principle, the judging and utilizing of information obtained from welding sensors are imported into net structure, which extends the traditional Petri net concepts. The control model and policies researched in this paper have established foundation for further intelligent real-time control on WFMC and WFMS.

  13. Flexible Unicast-Based Group Communication for CoAP-Enabled Devices †

    PubMed Central

    Ishaq, Isam; Hoebeke, Jeroen; Van den Abeele, Floris; Rossey, Jen; Moerman, Ingrid; Demeester, Piet

    2014-01-01

    Smart embedded objects will become an important part of what is called the Internet of Things. Applications often require concurrent interactions with several of these objects and their resources. Existing solutions have several limitations in terms of reliability, flexibility and manageability of such groups of objects. To overcome these limitations we propose an intermediately level of intelligence to easily manipulate a group of resources across multiple smart objects, building upon the Constrained Application Protocol (CoAP). We describe the design of our solution to create and manipulate a group of CoAP resources using a single client request. Furthermore we introduce the concept of profiles for the created groups. The use of profiles allows the client to specify in more detail how the group should behave. We have implemented our solution and demonstrate that it covers the complete group life-cycle, i.e., creation, validation, flexible usage and deletion. Finally, we quantitatively analyze the performance of our solution and compare it against multicast-based CoAP group communication. The results show that our solution improves reliability and flexibility with a trade-off in increased communication overhead. PMID:24901978

  14. A flexible ligand-based wavy layered metal-organic framework for lithium-ion storage.

    PubMed

    An, Tiance; Wang, Yuhang; Tang, Jing; Wang, Yang; Zhang, Lijuan; Zheng, Gengfeng

    2015-05-01

    A substantial challenge for direct utilization of metal-organic frameworks (MOFs) as lithium-ion battery anodes is to maintain the rigid MOF structure during lithiation/delithiation cycles. In this work, we developed a flexible, wavy layered nickel-based MOF (C20H24Cl2N8Ni, designated as Ni-Me4bpz) by a solvothermal approach of 3,3',5,5'-tetramethyl-4,4'-bipyrazole (H2Me4bpz) with nickel(II) chloride hexahydrate. The obtained MOF materials (Ni-Me4bpz) with metal azolate coordination mode provide 2-dimensional layered structure for Li(+) intercalation/extraction, and the H2Me4bpz ligands allow for flexible rotation feature and structural stability. Lithium-ion battery anodes made of the Ni-Me4bpz material demonstrate excellent specific capacity and cycling performance, and the crystal structure is well preserved after the electrochemical tests, suggesting the potential of developing flexible layered MOFs for efficient and stable electrochemical storage. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Flexible unicast-based group communication for CoAP-enabled devices.

    PubMed

    Ishaq, Isam; Hoebeke, Jeroen; Van den Abeele, Floris; Rossey, Jen; Moerman, Ingrid; Demeester, Piet

    2014-06-04

    Smart embedded objects will become an important part of what is called the Internet of Things. Applications often require concurrent interactions with several of these objects and their resources. Existing solutions have several limitations in terms of reliability, flexibility and manageability of such groups of objects. To overcome these limitations we propose an intermediately level of intelligence to easily manipulate a group of resources across multiple smart objects, building upon the Constrained Application Protocol (CoAP). We describe the design of our solution to create and manipulate a group of CoAP resources using a single client request. Furthermore we introduce the concept of profiles for the created groups. The use of profiles allows the client to specify in more detail how the group should behave. We have implemented our solution and demonstrate that it covers the complete group life-cycle, i.e., creation, validation, flexible usage and deletion. Finally, we quantitatively analyze the performance of our solution and compare it against multicast-based CoAP group communication. The results show that our solution improves reliability and flexibility with a trade-off in increased communication overhead.

  16. Flexible Wing Base Micro Aerial Vehicles: Composite Materials for Micro Air Vehicles

    NASA Technical Reports Server (NTRS)

    Ifju, Peter G.; Ettinger, Scott; Jenkins, David; Martinez, Luis

    2002-01-01

    This paper will discuss the development of the University of Florida's Micro Air Vehicle concept. A series of flexible wing based aircraft that possess highly desirable flight characteristics were developed. Since computational methods to accurately model flight at the low Reynolds numbers associated with this scale are still under development, our effort has relied heavily on trial and error. Hence a time efficient method was developed to rapidly produce prototype designs. The airframe and wings are fabricated using a unique process that incorporates carbon fiber composite construction. Prototypes can be fabricated in around five man-hours, allowing many design revisions to be tested in a short period of time. The resulting aircraft are far more durable, yet lighter, than their conventional counterparts. This process allows for thorough testing of each design in order to determine what changes were required on the next prototype. The use of carbon fiber allows for wing flexibility without sacrificing durability. The construction methods developed for this project were the enabling technology that allowed us to implement our designs. The resulting aircraft were the winning entries in the International Micro Air Vehicle Competition for the past two years. Details of the construction method are provided in this paper along with a background on our flexible wing concept.

  17. Evaluation of inertial devices for the control of large, flexible, space-based telerobotic arms

    NASA Technical Reports Server (NTRS)

    Montgomery, Raymond C.; Kenny, Sean P.; Ghosh, Dave; Shenhar, Joram

    1993-01-01

    Inertial devices, including sensors and actuators, offer the potential of improving the tracking of telerobotic commands for space-based robots by smoothing payload motions and suppressing vibrations. In this paper, inertial actuators (specifically, torque-wheels and reaction-masses) are studied for that potential application. Batch simulation studies are presented which show that torque-wheels can reduce the overshoot in abrupt stop commands by 82 percent for a two-link arm. For man-in-the-loop evaluation, a real-time simulator has been developed which samples a hand-controller, solves the nonlinear equations of motion, and graphically displays the resulting motion on a computer workstation. Currently, two manipulator models, a two-link, rigid arm and a single-link, flexible arm, have been studied. Results are presented which show that, for a single-link arm, a reaction-mass/torque-wheel combination at the payload end can yield a settling time of 3 s for disturbances in the first flexible mode as opposed to 10 s using only a hub motor. A hardware apparatus, which consists of a single-link, highly flexible arm with a hub motor and a torque-wheel, has been assembled to evaluate the concept and is described herein.

  18. Evaluation of inertial devices for the control of large, flexible, space-based telerobotic arms

    NASA Astrophysics Data System (ADS)

    Montgomery, Raymond C.; Kenny, Sean P.; Ghosh, Dave; Shenhar, Joram

    1993-02-01

    Inertial devices, including sensors and actuators, offer the potential of improving the tracking of telerobotic commands for space-based robots by smoothing payload motions and suppressing vibrations. In this paper, inertial actuators (specifically, torque-wheels and reaction-masses) are studied for that potential application. Batch simulation studies are presented which show that torque-wheels can reduce the overshoot in abrupt stop commands by 82 percent for a two-link arm. For man-in-the-loop evaluation, a real-time simulator has been developed which samples a hand-controller, solves the nonlinear equations of motion, and graphically displays the resulting motion on a computer workstation. Currently, two manipulator models, a two-link, rigid arm and a single-link, flexible arm, have been studied. Results are presented which show that, for a single-link arm, a reaction-mass/torque-wheel combination at the payload end can yield a settling time of 3 s for disturbances in the first flexible mode as opposed to 10 s using only a hub motor. A hardware apparatus, which consists of a single-link, highly flexible arm with a hub motor and a torque-wheel, has been assembled to evaluate the concept and is described herein.

  19. Integrated Flexible Electronic Devices Based on Passive Alignment for Physiological Measurement

    PubMed Central

    Ryu, Jin Hwa; Byun, Sangwon; Baek, In-Bok; Lee, Bong Kuk; Jang, Won Ick; Jang, Eun-Hye; Kim, Ah-Yung; Yu, Han Yung

    2017-01-01

    This study proposes a simple method of fabricating flexible electronic devices using a metal template for passive alignment between chip components and an interconnect layer, which enabled efficient alignment with high accuracy. An electrocardiogram (ECG) sensor was fabricated using 20 µm thick polyimide (PI) film as a flexible substrate to demonstrate the feasibility of the proposed method. The interconnect layer was fabricated by a two-step photolithography process and evaporation. After applying solder paste, the metal template was placed on top of the interconnect layer. The metal template had rectangular holes at the same position as the chip components on the interconnect layer. Rectangular hole sizes were designed to account for alignment tolerance of the chips. Passive alignment was performed by simply inserting the components in the holes of the template, which resulted in accurate alignment with positional tolerance of less than 10 µm based on the structural design, suggesting that our method can efficiently perform chip mounting with precision. Furthermore, a fabricated flexible ECG sensor was easily attachable to the curved skin surface and able to measure ECG signals from a human subject. These results suggest that the proposed method can be used to fabricate epidermal sensors, which are mounted on the skin to measure various physiological signals. PMID:28420219

  20. Integrated Flexible Electronic Devices Based on Passive Alignment for Physiological Measurement.

    PubMed

    Ryu, Jin Hwa; Byun, Sangwon; Baek, In-Bok; Lee, Bong Kuk; Jang, Won Ick; Jang, Eun-Hye; Kim, Ah-Yung; Yu, Han Yung

    2017-04-18

    This study proposes a simple method of fabricating flexible electronic devices using a metal template for passive alignment between chip components and an interconnect layer, which enabled efficient alignment with high accuracy. An electrocardiogram (ECG) sensor was fabricated using 20 µm thick polyimide (PI) film as a flexible substrate to demonstrate the feasibility of the proposed method. The interconnect layer was fabricated by a two-step photolithography process and evaporation. After applying solder paste, the metal template was placed on top of the interconnect layer. The metal template had rectangular holes at the same position as the chip components on the interconnect layer. Rectangular hole sizes were designed to account for alignment tolerance of the chips. Passive alignment was performed by simply inserting the components in the holes of the template, which resulted in accurate alignment with positional tolerance of less than 10 µm based on the structural design, suggesting that our method can efficiently perform chip mounting with precision. Furthermore, a fabricated flexible ECG sensor was easily attachable to the curved skin surface and able to measure ECG signals from a human subject. These results suggest that the proposed method can be used to fabricate epidermal sensors, which are mounted on the skin to measure various physiological signals.

  1. Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin.

    PubMed

    Guo, Huayang; Lan, Changyong; Zhou, Zhifei; Sun, Peihua; Wei, Dapeng; Li, Chun

    2017-05-18

    Skin-mountable chemical sensors using flexible chemically sensitive nanomaterials are of great interest for electronic skin (e-skin) application. To build these sensors, the emerging atomically thin two-dimensional (2D) layered semiconductors could be a good material candidate. Herein, we show that a large-area WS2 film synthesized by sulfurization of a tungsten film exhibits high humidity sensing performance both in natural flat and high mechanical flexible states (bending curvature down to 5 mm). The conductivity of as-synthesized WS2 increases sensitively over a wide relative humidity range (up to 90%) with fast response and recovery times in a few seconds. By using graphene as electrodes and thin polydimethylsiloxane (PDMS) as substrate, a transparent, flexible, and stretchable humidity sensor was fabricated. This senor can be well laminated onto skin and shows stable water moisture sensing behaviors in the undeformed relaxed state as well as under compressive and tensile loadings. Furthermore, its high sensing performance enables real-time monitoring of human breath, indicating a potential mask-free breath monitoring for healthcare application. We believe that such a skin-activity compatible WS2 humidity sensor may shed light on developing low power consumption wearable chemical sensors based on 2D semiconductors.

  2. Flexible Photodiodes Based on Nitride Core/Shell p–n Junction Nanowires

    PubMed Central

    2016-01-01

    A flexible nitride p-n photodiode is demonstrated. The device consists of a composite nanowire/polymer membrane transferred onto a flexible substrate. The active element for light sensing is a vertical array of core/shell p–n junction nanowires containing InGaN/GaN quantum wells grown by MOVPE. Electron/hole generation and transport in core/shell nanowires are modeled within nonequilibrium Green function formalism showing a good agreement with experimental results. Fully flexible transparent contacts based on a silver nanowire network are used for device fabrication, which allows bending the detector to a few millimeter curvature radius without damage. The detector shows a photoresponse at wavelengths shorter than 430 nm with a peak responsivity of 0.096 A/W at 370 nm under zero bias. The operation speed for a 0.3 × 0.3 cm2 detector patch was tested between 4 Hz and 2 kHz. The −3 dB cutoff was found to be ∼35 Hz, which is faster than the operation speed for typical photoconductive detectors and which is compatible with UV monitoring applications. PMID:27615556

  3. Exploring the role of receptor flexibility in structure-based drug discovery.

    PubMed

    Feixas, Ferran; Lindert, Steffen; Sinko, William; McCammon, J Andrew

    2014-02-01

    The proper understanding of biomolecular recognition mechanisms that take place in a drug target is of paramount importance to improve the efficiency of drug discovery and development. The intrinsic dynamic character of proteins has a strong influence on biomolecular recognition mechanisms and models such as conformational selection have been widely used to account for this dynamic association process. However, conformational changes occurring in the receptor prior and upon association with other molecules are diverse and not obvious to predict when only a few structures of the receptor are available. In view of the prominent role of protein flexibility in ligand binding and its implications for drug discovery, it is of great interest to identify receptor conformations that play a major role in biomolecular recognition before starting rational drug design efforts. In this review, we discuss a number of recent advances in computer-aided drug discovery techniques that have been proposed to incorporate receptor flexibility into structure-based drug design. The allowance for receptor flexibility provided by computational techniques such as molecular dynamics simulations or enhanced sampling techniques helps to improve the accuracy of methods used to estimate binding affinities and, thus, such methods can contribute to the discovery of novel drug leads. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Exploring the Role of Receptor Flexibility in Structure-Based Drug Discovery

    PubMed Central

    Feixas, Ferran; Lindert, Steffen; Sinko, William; McCammon, J. Andrew

    2015-01-01

    The proper understanding of biomolecular recognition mechanisms that take place in a drug target is of paramount importance to improve the efficiency of drug discovery and development. The intrinsic dynamic character of proteins has a strong influence on biomolecular recognition mechanisms and models such as conformational selection have been widely used to account for this dynamic association process. However, conformational changes occurring in the receptor prior and upon association with other molecules are diverse and not obvious to predict when only a few structures of the receptor are available. In view of the prominent role of protein flexibility in ligand binding and its implications for drug discovery, it is of great interest to identify receptor conformations that play a major role in biomolecular recognition before starting rational drug design efforts. In this review, we discuss a number of recent advances in computer-aided drug discovery techniques that have been proposed to incorporate receptor flexibility into structure-based drug design. The allowance for receptor flexibility provided by computational techniques such as molecular dynamics simulations or enhanced sampling techniques helps to improve the accuracy of methods used to estimate binding affinities and, thus, such methods can contribute to the discovery of novel drug leads. PMID:24332165

  5. Novel ring-based architecture for TWDM-PON with high reliability and flexible extensibility

    NASA Astrophysics Data System (ADS)

    Xiong, Yu; Sun, Peng; Li, Zhiqiang

    2017-02-01

    Time and wavelength division multiplexed passive optical network (TWDM-PON) was determined as a primary solution to NG-PON2 by the full service access network (FSAN) in 2012. Since then, TWDM-PON has been applied to a wider set of applications, including those that are outage sensitive and expansion flexible. So the protection techniques with reliability and flexibility should be studied to address the above needs. In this paper, we propose a novel ring-based architecture for TWDM-PON. The architecture can provide reliable ring protection scheme against a fiber fault occurring on main ring (MR), sub-ring (SR) or last mile ring (LMR). In addition, we exploit the extended node (EN) to realize the network expansion conveniently and smoothly for the flexible extensibility. Thus, more remote nodes(RNs) and optical network units (ONUs) could access this architecture through EN. Moreover, in order to further improve reliability of the network, we design the 1:1 protection scheme against the connected fiber fault between RN and EN. The results show that the proposed architecture has a recovery time of 17 ms under protection mode and the reliability of the network is also illustrated to be greatly improved compared to the network without protection. As the number of ONUs increases, the average cost of each ONU could be gradually reduced. Finally, the simulations verify the feasibility of the architecture.

  6. Capillary-Force-Induced Cold Welding in Silver-Nanowire-Based Flexible Transparent Electrodes.

    PubMed

    Liu, Yuan; Zhang, Jianming; Gao, Heng; Wang, Yan; Liu, Qingxian; Huang, Siya; Guo, Chuan Fei; Ren, Zhifeng

    2017-02-08

    Silver nanowire (AgNW) films have been studied as the most promising flexible transparent electrodes for flexible photoelectronics. The wire-wire junction resistance in the AgNW film is a critical parameter to the electrical performance, and several techniques of nanowelding or soldering have been reported to reduce the wire-wire junction resistance. However, these methods require either specific facilities, or additional materials as the "solder", and often have adverse effects to the AgNW film or substrate. In this study, we show that at the nanoscale, capillary force is a powerful driving force that can effectively cause self-limited cold welding of the wire-wire junction for AgNWs. The capillary-force-induced welding can be simply achieved by applying moisture on the AgNW film, without any technical support like the addition of materials or the use of specific facilities. The moisture-treated AgNW films exhibit a significant decrease in sheet resistance, but negligible changes in transparency. We have also demonstrated that this method is effective to heal damaged AgNW films of wearable electronics and can be conveniently performed not only indoors but also outdoors where technical support is often unavailable. The capillary-force-based method may also be useful in the welding of other metal NWs, the fabrication of nanostructures, and smart assemblies for versatile flexible optoelectronic applications.

  7. PDMS-based flexible energy harvester with Parylene electret and copper mesh electrodes

    NASA Astrophysics Data System (ADS)

    Chiu, Y.; Lee, M. H.; Wu, S.-H.

    2015-10-01

    Currently, most vibrational energy harvesters have rigid and resonant structures to scavenge kinetic energy from periodic motion in specific directions. However, in some situations the motion is random in amplitude, frequency, and direction; or the targeted energy sources apply direct deformation or displacement to the harvesters. In these applications, flexible energy harvesters that are light, flat, and conformable to arbitrary 3D surfaces of the sources are desired to scavenge the energy from device deformation, rather than the motion of a moving mass. Therefore we propose and demonstrate a PDMS-based flexible energy harvester with Parylene-C electret that can be attached to deformable surfaces. Furthermore, copper mesh is embedded in the flexible electrodes for robust electrode metallization as compared with traditional sputtered metal thin films. The fabricated harvesters achieved net output power of 2.2 μW, area power density of 2.2 μW cm-2, and volume power density of 22 μW cm-3 at the maximum test frequency of 20 Hz. Power generation by finger tapping and bending was demonstrated. Such harvesters have the potential for wearable and implantable electronic applications.

  8. PScan 1.0: flexible software framework for polygon based multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Li, Yongxiao; Lee, Woei Ming

    2016-12-01

    Multiphoton laser scanning microscopes exhibit highly localized nonlinear optical excitation and are powerful instruments for in-vivo deep tissue imaging. Customized multiphoton microscopy has a significantly superior performance for in-vivo imaging because of precise control over the scanning and detection system. To date, there have been several flexible software platforms catered to custom built microscopy systems i.e. ScanImage, HelioScan, MicroManager, that perform at imaging speeds of 30-100fps. In this paper, we describe a flexible software framework for high speed imaging systems capable of operating from 5 fps to 1600 fps. The software is based on the MATLAB image processing toolbox. It has the capability to communicate directly with a high performing imaging card (Matrox Solios eA/XA), thus retaining high speed acquisition. The program is also designed to communicate with LabVIEW and Fiji for instrument control and image processing. Pscan 1.0 can handle high imaging rates and contains sufficient flexibility for users to adapt to their high speed imaging systems.

  9. Ultrathin, flexible organic-inorganic hybrid solar cells based on silicon nanowires and PEDOT:PSS.

    PubMed

    Sharma, Manisha; Pudasaini, Pushpa Raj; Ruiz-Zepeda, Francisco; Elam, David; Ayon, Arturo A

    2014-03-26

    Recently, free-standing, ultrathin, single-crystal silicon (c-Si) membranes have attracted considerable attention as a suitable material for low-cost, mechanically flexible electronics. In this paper, we report a promising ultrathin, flexible, hybrid solar cell based on silicon nanowire (SiNW) arrays and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The free-standing, ultrathin c-Si membranes of different thicknesses were produced by KOH etching of double-side-polished silicon wafers for various etching times. The processed free-standing silicon membranes were observed to be mechanically flexible, and in spite of their relatively small thickness, the samples tolerated the different steps of solar cell fabrication, including surface nanotexturization, spin-casting, dielectric film deposition, and metallization. However, in terms of the optical performance, ultrathin c-Si membranes suffer from noticeable transmission losses, especially in the long-wavelength region. We describe the experimental performance of a promising light-trapping scheme in the aforementioned ultrathin c-Si membranes of thicknesses as small as 5.7 μm employing front-surface random SiNW texturization in combination with a back-surface distribution of silver (Ag) nanoparticles (NPs). We report the enhancement of both the short-circuit current density (JSC) and the open-circuit voltage (VOC) that has been achieved in the described devices. Such enhancement is attributable to the plasmonic backscattering effect of the back-surface Ag NPs, which led to an overall 10% increase in the power conversion efficiency (PCE) of the devices compared to similar structures without Ag NPs. A PCE in excess of 6.62% has been achieved in the described devices having a c-Si membrane of thickness 8.6 μm. The described device technology could prove crucial in achieving an efficient, low-cost, mechanically flexible photovoltaic device in the near future.

  10. The role of competitive learning in the generation of DG fields from EC inputs.

    PubMed

    Si, Bailu; Treves, Alessandro

    2009-06-01

    We follow up on a suggestion by Rolls and co-workers, that the effects of competitive learning should be assessed on the shape and number of spatial fields that dentate gyrus (DG) granule cells may form when receiving input from medial entorhinal cortex (mEC) grid units. We consider a simple non-dynamical model where DG units are described by a threshold-linear transfer function, and receive feedforward inputs from 1,000 mEC model grid units of various spacing, orientation and spatial phase. Feedforward weights are updated according to a Hebbian rule as the virtual rodent follows a long simulated trajectory through a single environment. Dentate activity is constrained to be very sparse. We find that indeed competitive Hebbian learning tends to result in a few active DG units with a single place field each, rounded in shape and made larger by iterative weight changes. These effects are more pronounced when produced with thousands of DG units and inputs per DG unit, which the realistic system has available, than with fewer units and inputs, in which case several DG units persists with multiple fields. The emergence of single-field units with learning is in contrast, however, to recent data indicating that most active DG units do have multiple fields. We show how multiple irregularly arranged fields can be produced by the addition of non-space selective lateral entorhinal cortex (lEC) units, which are modelled as simply providing an additional effective input specific to each DG unit. The mean number of such multiple DG fields is enhanced, in particular, when lEC and mEC inputs have overall similar variance across DG units. Finally, we show that in a restricted environment the mean size of the fields is unaltered, while their mean number is scaled down with the area of the environment.

  11. Radioactive 2-DG incorporation patterns in the mesial frontal cortex of task-performing monkeys.

    PubMed

    Matsunami, K; Kawashima, T

    1995-11-01

    The pattern of radioactive 2-deoxy-D-glucose (2-DG) uptake in the rostral mesial cortex was investigated in seven hemispheres of four task-performing monkeys (a delayed-response task performed with a forelimb). A two-dimensional 2-DG map was constructed from frontal sections. Blob-like 2-DG incorporation sites (2-DG active sites) were observed in single frontal sections, e.g., in the anterior cingulate gyrus (CiG) and supplementary and primary motor cortices in the mesial surface, and around the superior precentral sulcus in the premotor area. Blob-like 2-DG incorporation sites were also observed in the medial part of the dorsal frontal cortex near the midline. However, most of these blob-like 2-DG active sites were revealed in fact not to be blobs. They formed rostrocaudally continuous streaks when they were constructed in a two-dimensional map. Streaks fused with one another in some areas, and gave off branches in other areas. These 2-DG uptake patterns were similar between the paired left and right hemispheres of three brains. It is highly probable that these 2-DG active streaks (or blobs) reflected neuronal activity related to somatomotor and/or eye movements, because the 2-DG-labeled areas included motor, premotor, supplementary motor, and possibly part of the supplementary eye fields. It is also probable that this 2-DG incorporation was related to cognitive or memory functions, because neuronal activity related to performance of a delayed-response was reported in the rostral mesial cortex and in the CiG.

  12. Physical properties of the DG Tau jet on sub-arcsecond scales with HST/STIS

    NASA Astrophysics Data System (ADS)

    Bacciotti, Francesca; Maurri, Lorenzo; Podio, Linda; Eisloeffel, Jochen; Ray, Tom; Mundt, Reinhard; Locatelli, Ugo; Coffey, Deirdre

    2013-07-01

    Stellar jets are believed to play a key role in the formation of a new star, but the question of how they originate is still under debate. To get a better understanding of the launch process we derive the physical properties at the base of the blue-shifted jet from the Classical T Tauri star (CTTS) DG TAU, from spectra taken with the Hubble Space Telescope Imaging Spectrograph (HST/STIS) at optical wavelengths. The analysis provides information on the jet physics (kinematics, density, excitation) at 0.''1 angular resolution in two dimensions (along and across the jet), and as a function of velocity. Mass outflow and angular momentum rates can be estimated for different velocity components, giving indications on the validity of the proposed models for the jet generation.

  13. MLAA-based attenuation correction of flexible hardware components in hybrid PET/MR imaging.

    PubMed

    Heußer, Thorsten; Rank, Christopher M; Berker, Yannick; Freitag, Martin T; Kachelrieß, Marc

    2017-12-01

    Accurate PET quantification demands attenuation correction (AC) for both patient and hardware attenuation of the 511 keV annihilation photons. In hybrid PET/MR imaging, AC for stationary hardware components such as patient table and MR head coil is straightforward, employing CT-derived attenuation templates. AC for flexible hardware components such as MR-safe headphones and MR radiofrequency (RF) surface coils is more challenging. Registration-based approaches, aligning CT-based attenuation templates with the current patient position, have been proposed but are not used in clinical routine. Ignoring headphone or RF coil attenuation has been shown to result in regional activity underestimation values of up to 18%. We propose to employ the maximum-likelihood reconstruction of attenuation and activity (MLAA) algorithm to estimate the attenuation of flexible hardware components. Starting with an initial attenuation map not including flexible hardware components, the attenuation update of MLAA is applied outside the body outline only, allowing to estimate hardware attenuation without modifying the patient attenuation map. Appropriate prior expectations on the attenuation coefficients are incorporated into MLAA. The proposed method is investigated for non-TOF PET phantom and (18)F-FDG patient data acquired with a clinical PET/MR device, using headphones or RF surface coils as flexible hardware components. Although MLAA cannot recover the exact physical shape of the hardware attenuation maps, the overall attenuation of the hardware components is accurately estimated. Therefore, the proposed algorithm significantly improves PET quantification. Using the phantom data, local activity underestimation when neglecting hardware attenuation was reduced from up to 25% to less than 3% under- or overestimation as compared to reference scans without hardware present or to CT-derived AC. For the patient data, we found an average activity underestimation of 7.9% evaluated in the full

  14. Coronal Emission from dG Halo Stars

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Harnden, F. R.

    2005-01-01

    The halo dG star HD 114762 was observed with the XMM-Newton satellite on 28-29 June 2004, during orbit 834, and the data were processed using the XMM-Newton Science Analysis System (SAS), version 6.0.0. Somewhat surprisingly, the target was NOT detected during this approx.30 ks exposure, which yielded instead a count rate upper limit of less than 0.0041 cts/s. We computed an X-ray flux upper limit by assuming a Raymond-Smith thermal spectrum of coronal temperature 1 million degrees K, typical of quiet old stars, a hydrogen column density of 2-10$^{19)$ cm$^{-2)$ and sub-solar abundances of 0.2. Our calculated X-ray luminosity upper limit in the 0.25-7.8 keV band is L$_x < 4.95 $\\time$10$^{26)$ erg/s, where we have assumed a stellar distance of 28 pc. This relatively low upper limit has implications for the capability of metal poor stars to host solar-like dynamos, as we will report in a forthcoming paper (now in preparation).

  15. Coronal Emission from dG Halo Stars

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Harnden, F. R.

    2005-01-01

    The halo dG star HD 114762 was observed with the XMM-Newton satellite on 28-29 June 2004, during orbit 834, and the data were processed using the XMM-Newton Science Analysis System (SAS), version 6.0.0. Somewhat surprisingly, the target was NOT detected during this approx.30 ks exposure, which yielded instead a count rate upper limit of less than 0.0041 cts/s. We computed an X-ray flux upper limit by assuming a Raymond-Smith thermal spectrum of coronal temperature 1 million degrees K, typical of quiet old stars, a hydrogen column density of 2-10$^{19)$ cm$^{-2)$ and sub-solar abundances of 0.2. Our calculated X-ray luminosity upper limit in the 0.25-7.8 keV band is L$_x < 4.95 $\\time$10$^{26)$ erg/s, where we have assumed a stellar distance of 28 pc. This relatively low upper limit has implications for the capability of metal poor stars to host solar-like dynamos, as we will report in a forthcoming paper (now in preparation).

  16. Passivity/Lyapunov based controller design for trajectory tracking of flexible joint manipulators

    NASA Technical Reports Server (NTRS)

    Sicard, Pierre; Wen, John T.; Lanari, Leonardo

    1992-01-01

    A passivity and Lyapunov based approach for the control design for the trajectory tracking problem of flexible joint robots is presented. The basic structure of the proposed controller is the sum of a model-based feedforward and a model-independent feedback. Feedforward selection and solution is analyzed for a general model for flexible joints, and for more specific and practical model structures. Passivity theory is used to design a motor state-based controller in order to input-output stabilize the error system formed by the feedforward. Observability conditions for asymptotic stability are stated and verified. In order to accommodate for modeling uncertainties and to allow for the implementation of a simplified feedforward compensation, the stability of the system is analyzed in presence of approximations in the feedforward by using a Lyapunov based robustness analysis. It is shown that under certain conditions, e.g., the desired trajectory is varying slowly enough, stability is maintained for various approximations of a canonical feedforward.

  17. Flexibility in infant actions during arm- and leg-based learning in a mobile paradigm.

    PubMed

    Watanabe, Hama; Taga, Gentaro

    2009-01-01

    To understand young infants' flexible changes of learned actions when abrupt environmental changes occur, we examined fifty-four 3-month-olds who performed a mobile task, in which they learned to move the mobile by a string attached to their arms or legs (arm-based or leg-based learning). We manipulated the order of tests-arm to leg (AL) and leg to arm (LA)-and observed the time course of motion of four limbs. The infants in the AL condition showed a differentiated movement pattern, in which the movement of the connected arm was dominant, and when the connected limb changed, they immediately inhibited the prior movement pattern. The infants in the LA condition produced undifferentiated movement pattern of multiple limbs, which was maintained even when the critical limb was changed. The results suggest that the infants' flexibility of actions in a novel situation depends on the prior experience. We speculate neural mechanisms, which may underlie the difference between the arm-based and leg-based learning.

  18. Fabrication of newspaper-based potentiometric platforms for flexible and disposable ion sensors.

    PubMed

    Yoon, Jo Hee; Kim, Kyung Hoon; Bae, Nam Ho; Sim, Gap Seop; Oh, Yong-Jun; Lee, Seok Jae; Lee, Tae Jae; Lee, Kyoung G; Choi, Bong Gill

    2017-12-15

    Paper-based materials have attracted a great deal of attention in sensor applications because they are readily available, biodegradable, inexpensive, and mechanically flexible. Although paper-based sensors have been developed, but important obstacles remian, which include the retention of chemical and mechanical stabilities when paper is wetted. Herein, we develop a simple and scalable process for fabrication of newspaper-based platforms by coating of parylene C and patterning of metal layers. As-prepared parylene C-coated newspaper (PC-paper) provides low-cost, disposable, and mechanically and chemically stable electrochemical platforms for the development of potentiometric ion sensors for the detection of electrolyte cations, such as, H(+) and K(+). The pH and K(+) sensors produced show near ideal Nernstian sensitivity, good repeatability, good ion selectivity, and low potential drift. These disposable, flexible ion sensors based on PC-paper platforms could provide new opportunities for the development of point-of-care testing sensors, for diagnostics, healthcare, and environment testing. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Fully flexible, lightweight, high performance all-solid-state supercapacitor based on 3-Dimensional-graphene/graphite-paper

    NASA Astrophysics Data System (ADS)

    Ramadoss, Ananthakumar; Yoon, Ki-Yong; Kwak, Myung-Jun; Kim, Sun-I.; Ryu, Seung-Tak; Jang, Ji-Hyun

    2017-01-01

    Realization of a highly flexible, lightweight, and high performance flexible supercapacitor was achieved using three-dimensional graphene on flexible graphite-paper. A simple and fast self-assembly approach was utilized for the uniform deposition of chemical vapor deposition (CVD)-grown high quality 3D-graphene powders on a flexible graphite-paper substrate. The fabricated paper-based symmetric supercapacitor exhibited a maximum capacitance of 260 F g-1 (15.6 mF cm-2) in a three electrode system, 80 F g-1 (11.1 mF cm-2) in a full cell, high capacitance retention and a high energy density of 8.8 Wh kg-1 (1.24 μWh cm-2) at a power density of 178.5 W kg-1 (24.5 μW cm-2). The flexible supercapacitor maintained its supercapacitor performance well, even under bent, rolled, or twisted conditions, signifying the excellent flexibility of the fabricated device. Our straightforward approach to the fabrication of highly flexible and lightweight supercapacitors offers new design opportunities for flexible/wearable electronics and miniaturized device applications that require energy storage units that meet the demands of the multifarious applications.

  20. Assembly of new polyoxometalate–templated metal–organic frameworks based on flexible ligands

    SciTech Connect

    Li, Na; Mu, Bao; Lv, Lei; Huang, Rudan

    2015-03-15

    Four new polyoxometalate(POM)–templated metal–organic frameworks based on flexible ligands, namely, [Cu{sub 6}(bip){sub 12}(PMo{sup VI}{sub 12}O{sub 40}){sub 2}(PMo{sup V}Mo{sup VI}{sub 11}O{sub 40}O{sub 2})]·8H{sub 2}O(1), [Cu{sup I}{sub 3}Cu{sup II}{sub 3}(bip){sub 12}(PMo{sup VI}{sub 12}O{sub 40}){sub 2}(PMo{sup V}{sub 12}O{sub 34})]·8H{sub 2}O(2), [Ni{sub 6}(bip){sub 12}(PMo{sup VI}{sub 12}O{sub 40})(PMo{sup VI}{sub 11}Mo{sup V}O{sub 40}){sub 2}]Cl·6H{sub 2}O(3), [Co{sup II}{sub 3}Co{sup III}{sub 2}(H{sub 2}bib){sub 2}(Hbib){sub 2}(PW{sub 9}O{sub 34}){sub 2}(H{sub 2}O){sub 6}]·6H{sub 2}O(4) (bip=1,3-bis(imidazolyl)propane, bib=1,4-bis(imidazolyl)butane) have been obtained under hydrothermal condition and characterized by single-crystal X-ray diffraction analyses, elemental analyses, and thermogravimetric (TG) analyses. The studies of single crystal X-ray indicate that compounds 1–3 crystallize in the trigonal space group P-3, and compound 4 crystallizes in the triclinic space group P-1. Compounds 1 and 3 represent 3D frameworks, and POMs as the guest molecules are incorporated into the cages which are composed of the ligands and metals, while compounds 2 and 4 show 3D frameworks by hydrogen bonds. This compounds provide new examples of host–guest compounds based on flexible bis(imidazole) ligands. In addition, the electrochemical property and the catalytic property of compound 1 have also been investigated. - Graphical abstract: Four inorganic–organic hybrid compounds based polyoxometalates (POMs) and flexible ligands, namely, have been obtained under hydrothermal conditions and characterized by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra, and thermogravimetric (TG) analyses. Compounds 1–3 are new examples of host–guest compounds based on flexible bis(imidazole) ligands and POMs as the guest molecules are incorporated into the cages which are composed of the ligands and metals. - Highlights: • Polyoxometalate

  1. The Experimental Research on E-Learning Instructional Design Model Based on Cognitive Flexibility Theory

    NASA Astrophysics Data System (ADS)

    Cao, Xianzhong; Wang, Feng; Zheng, Zhongmei

    The paper reports an educational experiment on the e-Learning instructional design model based on Cognitive Flexibility Theory, the experiment were made to explore the feasibility and effectiveness of the model in promoting the learning quality in ill-structured domain. The study performed the experiment on two groups of students: one group learned through the system designed by the model and the other learned by the traditional method. The results of the experiment indicate that the e-Learning designed through the model is helpful to promote the intrinsic motivation, learning quality in ill-structured domains, ability to resolve ill-structured problem and creative thinking ability of the students.

  2. Flexible Wing Base Micro Aerial Vehicles: Micro Air Vehicles (MAVs) for Surveillance and Remote Sensor Delivery

    NASA Technical Reports Server (NTRS)

    Ifju, Peter

    2002-01-01

    Micro Air Vehicles (MAVs) will be developed for tracking individuals, locating terrorist threats, and delivering remote sensors, for surveillance and chemical/biological agent detection. The tasks are: (1) Develop robust MAV platform capable of carrying sensor payload. (2) Develop fully autonomous capabilities for delivery of sensors to remote and distant locations. The current capabilities and accomplishments are: (1) Operational electric (inaudible) 6-inch MAVs with novel flexible wing, providing superior aerodynamic efficiency and control. (2) Vision-based flight stability and control (from on-board cameras).

  3. Fuzzy Model-based Pitch Stabilization and Wing Vibration Suppression of Flexible Wing Aircraft.

    NASA Technical Reports Server (NTRS)

    Ayoubi, Mohammad A.; Swei, Sean Shan-Min; Nguyen, Nhan T.

    2014-01-01

    This paper presents a fuzzy nonlinear controller to regulate the longitudinal dynamics of an aircraft and suppress the bending and torsional vibrations of its flexible wings. The fuzzy controller utilizes full-state feedback with input constraint. First, the Takagi-Sugeno fuzzy linear model is developed which approximates the coupled aeroelastic aircraft model. Then, based on the fuzzy linear model, a fuzzy controller is developed to utilize a full-state feedback and stabilize the system while it satisfies the control input constraint. Linear matrix inequality (LMI) techniques are employed to solve the fuzzy control problem. Finally, the performance of the proposed controller is demonstrated on the NASA Generic Transport Model (GTM).

  4. Silicon-Based Thermoelectrics: Harvesting Low Quality Heat Using Economically Printed Flexible Nanostructured Stacked Thermoelectric Junctions

    SciTech Connect

    2010-03-01

    Broad Funding Opportunity Announcement Project: UIUC is experimenting with silicon-based materials to develop flexible thermoelectric devices—which convert heat into energy—that can be mass-produced at low cost. A thermoelectric device, which resembles a computer chip, creates electricity when a different temperature is applied to each of its sides. Existing commercial thermoelectric devices contain the element tellurium, which limits production levels because tellurium has become increasingly rare. UIUC is replacing this material with microscopic silicon wires that are considerably cheaper and could be equally effective. Improvements in thermoelectric device production could return enough wasted heat to add up to 23% to our current annual electricity production.

  5. Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process.

    PubMed

    Wang, Xiandi; Zhang, Hanlu; Yu, Ruomeng; Dong, Lin; Peng, Dengfeng; Zhang, Aihua; Zhang, Yan; Liu, Hong; Pan, Caofeng; Wang, Zhong Lin

    2015-04-08

    A self-powered pressure-sensor matrix based on ZnS:Mn particles for more-secure signature collection is presented, by recording both handwritten signatures and the pressure applied by the signees. This large-area, flexible sensor matrix can map 2D pressure distributions in situ, either statically or dynamically, and the piezophotonic effect is proposed to initiate the mechanoluminescence process once a dynamic mechanical strain is applied. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Formation of a N2-dG:N2-dG Carbinolamine DNA Cross-link by the trans-4-Hydroxynonenal-Derived (6S,8R,11S) 1,N2-dG Adduct

    PubMed Central

    2011-01-01

    Michael addition of trans-4-hydroxynonenal (HNE) to deoxyguanosine yields diastereomeric 1,N2-dG adducts in DNA. When placed opposite dC in the 5′-CpG-3′ sequence, the (6S,8R,11S) diastereomer forms a N2-dG:N2-dG interstrand cross-link [Wang, H.; Kozekov, I. D.; Harris, T. M.; Rizzo, C. J. J. Am. Chem. Soc.2003, 125, 5687–5700]. We refined its structure in 5′-d(G1C2T3A4G5C6X7A8G9T10C11C12)-3′·5′-d(G13G14A15C16T17C18Y19C20T21A22G23C24)-3′ [X7 is the dG adjacent to the C6 carbon of the cross-link or the α-carbon of the (6S,8R,11S) 1,N2-dG adduct, and Y19 is the dG adjacent to the C8 carbon of the cross-link or the γ-carbon of the HNE-derived (6S,8R,11S) 1,N2-dG adduct; the cross-link is in the 5′-CpG-3′ sequence]. Introduction of 13C at the C8 carbon of the cross-link revealed one 13C8→H8 correlation, indicating that the cross-link existed predominantly as a carbinolamine linkage. The H8 proton exhibited NOEs to Y19 H1′, C20 H1′, and C20 H4′, orienting it toward the complementary strand, consistent with the (6S,8R,11S) configuration. An NOE was also observed between the HNE H11 proton and Y19 H1′, orienting the former toward the complementary strand. Imine and pyrimidopurinone linkages were excluded by observation of the Y19N2H and X7 N1H protons, respectively. A strong H8→H11 NOE and no 3J(13C→H) coupling for the 13C8–O–C11–H11 eliminated the tetrahydrofuran species derived from the (6S,8R,11S) 1,N2-dG adduct. The (6S,8R,11S) carbinolamine linkage and the HNE side chain were located in the minor groove. The X7N2 and Y19N2 atoms were in the gauche conformation with respect to the linkage, maintaining Watson–Crick hydrogen bonds at the cross-linked base pairs. A solvated molecular dynamics simulation indicated that the anti conformation of the hydroxyl group with respect to C6 of the tether minimized steric interaction and predicted hydrogen bonds involving O8H with C20O2 of the 5′-neighbor base pair G5·C20 and O11H with C

  7. Fetus support manipulator with flexible balloon-based stabilizer for endoscopic intrauterine surgery.

    PubMed

    Liao, Hongen; Suzuki, Hirokazu; Matsumiya, Kiyoshi; Masamune, Ken; Dohi, Takeyoshi; Chiba, Toshio

    2006-01-01

    A novel manipulator is described for stabilizing fetus and preventing it from free-floating during the endoscopic intrauterine surgery. Minimally invasive endoscopic fetal surgery enables intrauterine intervention with reduced risk to the mother and fetus. We designed and fabricated a prototype of a fetus supporting manipulator equipped with a flexible bending/curving mechanisms and a soft balloon-based stabilizer. The flexible bending and curving mechanisms enable the stabilizer to reach the target sites within the uterus under an ultrasound-guidance. The balloon-based stabilizer could be inserted into the uterus with a small incision for entry. The accuracy evaluation showed that the maximum error of the curving mechanism was as small as 7 mm and the standard deviation of the bending mechanism was just 1.6 degrees. In the experiments using a fetus model, the manipulator could be well controlled under ultrasound guidance and its curving mechanism with the balloon-based stabilizer could be clearly visualized during the implementation of fetus model supporting. The manipulator has the potential to be used in minimally invasive intrauterine surgery, though further improvements and experiments remain to be carried out.

  8. Calibration of a flexible measurement system based on industrial articulated robot and structured light sensor

    NASA Astrophysics Data System (ADS)

    Mu, Nan; Wang, Kun; Xie, Zexiao; Ren, Ping

    2017-05-01

    To realize online rapid measurement for complex workpieces, a flexible measurement system based on an articulated industrial robot with a structured light sensor mounted on the end-effector is developed. A method for calibrating the system parameters is proposed in which the hand-eye transformation parameters and the robot kinematic parameters are synthesized in the calibration process. An initial hand-eye calibration is first performed using a standard sphere as the calibration target. By applying the modified complete and parametrically continuous method, we establish a synthesized kinematic model that combines the initial hand-eye transformation and distal link parameters as a whole with the sensor coordinate system as the tool frame. According to the synthesized kinematic model, an error model is constructed based on spheres' center-to-center distance errors. Consequently, the error model parameters can be identified in a calibration experiment using a three-standard-sphere target. Furthermore, the redundancy of error model parameters is eliminated to ensure the accuracy and robustness of the parameter identification. Calibration and measurement experiments are carried out based on an ER3A-C60 robot. The experimental results show that the proposed calibration method enjoys high measurement accuracy, and this efficient and flexible system is suitable for online measurement in industrial scenes.

  9. Copper Nanowire-Based Aerogel with Tunable Pore Structure and Its Application as Flexible Pressure Sensor.

    PubMed

    Xu, Xiaojuan; Wang, Ranran; Nie, Pu; Cheng, Yin; Lu, Xiaoyu; Shi, Liangjing; Sun, Jing

    2017-04-26

    Aerogel is a kind of material with high porosity and low density. However, the research on metal-based aerogel with good conductivity is quite limited, which hinders its usage in electronic devices, such as flexible pressure sensors. In this work, we successfully fabricate copper nanowire (CuNW) based aerogel through a one-pot method, and the dynamics for the assembly of CuNWs into hydrogel is intensively investigated. The "bubble controlled assembly" mechanism is put forward for the first time, according to which tunable pore structures and densities (4.3-7.5 mg cm(-3)) of the nanowire aerogel is achieved. Subsequently, ultralight flexible pressure sensors with tunable sensitivities (0.02 kPa(-1) to 0.7 kPa(-1)) are fabricated from the Cu NWs aerogels, and the negative correlation behavior of the sensitivity to the density of the aerogel sensors is disclosed systematically. This work provides a versatile strategy for the fabrication of nanowire-based aerogels, which greatly broadens their application potential.

  10. Disturbance observer-based fuzzy control for flexible spacecraft combined attitude & sun tracking system

    NASA Astrophysics Data System (ADS)

    Chak, Yew-Chung; Varatharajoo, Renuganth; Razoumny, Yury

    2017-04-01

    This paper investigates the combined attitude and sun-tracking control problem in the presence of external disturbances and internal disturbances, caused by flexible appendages. A new method based on Pythagorean trigonometric identity is proposed to drive the solar arrays. Using the control input and attitude output, a disturbance observer is developed to estimate the lumped disturbances consisting of the external and internal disturbances, and then compensated by the disturbance observer-based controller via a feed-forward control. The stability analysis demonstrates that the desired attitude trajectories are followed even in the presence of external disturbance and internal flexible modes. The main features of the proposed control scheme are that it can be designed separately and incorporated into the baseline controller to form the observer-based control system, and the combined attitude and sun-tracking control is achieved without the conventional attitude actuators. The attitude and sun-tracking performance using the proposed strategy is evaluated and validated through numerical simulations. The proposed control solution can serve as a fail-safe measure in case of failure of the conventional attitude actuator, which triggered by automatic reconfiguration of the attitude control components.

  11. Voltage-Tunable Multicolor, Sub-1.5 V, Flexible Electrochromic Devices Based on Ion Gels.

    PubMed

    Oh, Hwan; Seo, Dong Gyu; Yun, Tae Yong; Kim, Chan Young; Moon, Hong Chul

    2017-03-01

    Voltage-tunable multicolor electrochromic devices (ECDs) are fabricated based on flexible ion gels consisting of copolymers and ionic liquids as an electrolyte layer. Dimethyl ferrocene (dmFc) is incorporated into the gel, which serves as an anodic species. In this study, two electrochromic (EC) materials, monoheptyl viologen (MHV(+)) and diheptyl viologen (DHV(2+)), are employed and show significantly different EC behavior despite the similar chemical structure. Both MHV(+)- and DHV(2+)-containing ECDs are slightly yellowish in the bleached state, whereas the colored states are magenta and blue, respectively. All devices have good coloration efficiency of 87.5 cm(2)/C (magenta) and 91.3 cm(2)/C (blue). In addition, the required power of ∼248 μW/cm(2) (magenta) and ∼72 μW/cm(2) (blue) to maintain the colored state put the ion gel-based ECDs in a class of ultralow power consumption displays. On the basis of the distinct difference in the coloration voltage range between MHV(+) and DHV(2+), and the rubbery character of the gel, flexible ECDs showing multiple colors are demonstrated. These results imply that voltage-tunable multicolor ECDs based on the gel are attractive to functional electrochemical displays.

  12. High Performance All-Solid-State Flexible Micro-Pseudocapacitor Based on Hierarchically Nanostructured Tungsten Trioxide Composite.

    PubMed

    Huang, Xuezhen; Liu, Hewei; Zhang, Xi; Jiang, Hongrui

    2015-12-23

    Microsupercapacitors (MSCs) are promising energy storage devices to power miniaturized portable electronics and microelectromechanical systems. With the increasing attention on all-solid-state flexible supercapacitors, new strategies for high-performance flexible MSCs are highly desired. Here, we demonstrate all-solid-state, flexible micropseudocapacitors via direct laser patterning on crack-free, flexible WO3/polyvinylidene fluoride (PVDF)/multiwalled carbon nanotubes (MWCNTs) composites containing high levels of porous hierarchically structured WO3 nanomaterials (up to 50 wt %) and limited binder (PVDF, <25 wt %). The work leads to an areal capacitance of 62.4 mF·cm(-2) and a volumetric capacitance of 10.4 F·cm(-3), exceeding that of graphene based flexible MSCs by a factor of 26 and 3, respectively. As a noncarbon based flexible MSC, hierarchically nanostructured WO3 in the narrow finger electrode is essential to such enhancement in energy density due to its pseudocapacitive property. The effects of WO3/PVDF/MWCNTs composite composition and the dimensions of interdigital structure on the performance of the flexible MSCs are investigated.

  13. Plug-n-play microfluidic systems from flexible assembly of glass-based flow-control modules.

    PubMed

    Meng, Zhi-Jun; Wang, Wei; Liang, Xuan; Zheng, Wei-Chao; Deng, Nan-Nan; Xie, Rui; Ju, Xiao-Jie; Liu, Zhuang; Chu, Liang-Yin

    2015-04-21

    In this study, we report on a simple and versatile plug-n-play microfluidic system that is fabricated from flexible assembly of glass-based flow-control modules for flexibly manipulating flows for versatile emulsion generation. The microfluidic system consists of three basic functional units: a flow-control module, a positioning groove, and a connection fastener. The flow-control module that is based on simple assembly of low-cost glass slides, coverslips, and glass capillaries provides excellent chemical resistance and optical properties, and easy wettability modification for flow manipulation. The flexible combination of the flow-control modules with 3D-printed positioning grooves and connection fasteners enables creation of versatile microfluidic systems for generating various higher-order multiple emulsions. The simple and reversible connection of the flow-control modules also allows easy disassembly of the microfluidic systems for further scale-up and functionalization. We demonstrate the scalability and controllability of flow manipulation by creating microfluidic systems from flexible assembly of flow-control modules for controllable generation of multiple emulsions from double emulsions to quadruple emulsions. Meanwhile, the flexible flow manipulation in the flow-control module provides advanced functions for improved control of the drop size, and for controllable generation of drops containing distinct components within multiple emulsions to extend the emulsion structure. Such modular microfluidic systems provide flexibility and versatility to flexibly manipulate micro-flows for enhanced and extended applications.

  14. High Performance All-Solid-State Flexible Micro-Pseudocapacitor Based on Hierarchically Nanostructured Tungsten Trioxide Composite

    PubMed Central

    2015-01-01

    Microsupercapacitors (MSCs) are promising energy storage devices to power miniaturized portable electronics and microelectromechanical systems. With the increasing attention on all-solid-state flexible supercapacitors, new strategies for high-performance flexible MSCs are highly desired. Here, we demonstrate all-solid-state, flexible micropseudocapacitors via direct laser patterning on crack-free, flexible WO3/polyvinylidene fluoride (PVDF)/multiwalled carbon nanotubes (MWCNTs) composites containing high levels of porous hierarchically structured WO3 nanomaterials (up to 50 wt %) and limited binder (PVDF, <25 wt %). The work leads to an areal capacitance of 62.4 mF·cm–2 and a volumetric capacitance of 10.4 F·cm–3, exceeding that of graphene based flexible MSCs by a factor of 26 and 3, respectively. As a noncarbon based flexible MSC, hierarchically nanostructured WO3 in the narrow finger electrode is essential to such enhancement in energy density due to its pseudocapacitive property. The effects of WO3/PVDF/MWCNTs composite composition and the dimensions of interdigital structure on the performance of the flexible MSCs are investigated. PMID:26618406

  15. Docking ligands into flexible and solvated macromolecules. 7. Impact of protein flexibility and water molecules on docking-based virtual screening accuracy.

    PubMed

    Therrien, Eric; Weill, Nathanael; Tomberg, Anna; Corbeil, Christopher R; Lee, Devin; Moitessier, Nicolas

    2014-11-24

    The use of predictive computational methods in the drug discovery process is in a state of continual growth. Over the last two decades, an increasingly large number of docking tools have been developed to identify hits or optimize lead molecules through in-silico screening of chemical libraries to proteins. In recent years, the focus has been on implementing protein flexibility and water molecules. Our efforts led to the development of Fitted first reported in 2007 and further developed since then. In this study, we wished to evaluate the impact of protein flexibility and occurrence of water molecules on the accuracy of the Fitted docking program to discriminate active compounds from inactive compounds in virtual screening (VS) campaigns. For this purpose, a total of 171 proteins cocrystallized with small molecules representing 40 unique enzymes and receptors as well as sets of known ligands and decoys were selected from the Protein Data Bank (PDB) and the Directory of Useful Decoys (DUD), respectively. This study revealed that implementing displaceable crystallographic or computationally placed particle water molecules and protein flexibility can improve the enrichment in active compounds. In addition, an informed decision based on library diversity or research objectives (hit discovery vs lead optimization) on which implementation to use may lead to significant improvements.

  16. Fabrication of graphene-based flexible devices utilizing a soft lithographic patterning method

    NASA Astrophysics Data System (ADS)

    Jung, Min Wook; Myung, Sung; Kim, Ki Woong; Song, Wooseok; Jo, You-Young; Lee, Sun Suk; Lim, Jongsun; Park, Chong-Yun; An, Ki-Seok

    2014-07-01

    There has been considerable interest in soft lithographic patterning processing of large scale graphene sheets due to the low cost and simplicity of the patterning process along with the exceptional electrical or physical properties of graphene. These properties include an extremely high carrier mobility and excellent mechanical strength. Recently, a study has reported that single layer graphene grown via chemical vapor deposition (CVD) was patterned and transferred to a target surface by controlling the surface energy of the polydimethylsiloxane (PDMS) stamp. However, applications are limited because of the challenge of CVD-graphene functionalization for devices such as chemical or bio-sensors. In addition, graphene-based layers patterned with a micron scale width on the surface of biocompatible silk fibroin thin films, which are not suitable for conventional CMOS processes such as the patterning or etching of substrates, have yet to be reported. Herein, we developed a soft lithographic patterning process via surface energy modification for advanced graphene-based flexible devices such as transistors or chemical sensors. Using this approach, the surface of a relief-patterned elastomeric stamp was functionalized with hydrophilic dimethylsulfoxide molecules to enhance the surface energy of the stamp and to remove the graphene-based layer from the initial substrate and transfer it to a target surface. As a proof of concept using this soft lithographic patterning technique, we demonstrated a simple and efficient chemical sensor consisting of reduced graphene oxide and a metallic nanoparticle composite. A flexible graphene-based device on a biocompatible silk fibroin substrate, which is attachable to an arbitrary target surface, was also successfully fabricated. Briefly, a soft lithographic patterning process via surface energy modification was developed for advanced graphene-based flexible devices such as transistors or chemical sensors and attachable devices on a

  17. Fabrication of graphene-based flexible devices utilizing a soft lithographic patterning method.

    PubMed

    Jung, Min Wook; Myung, Sung; Kim, Ki Woong; Song, Wooseok; Jo, You-Young; Lee, Sun Suk; Lim, Jongsun; Park, Chong-Yun; An, Ki-Seok

    2014-07-18

    There has been considerable interest in soft lithographic patterning processing of large scale graphene sheets due to the low cost and simplicity of the patterning process along with the exceptional electrical or physical properties of graphene. These properties include an extremely high carrier mobility and excellent mechanical strength. Recently, a study has reported that single layer graphene grown via chemical vapor deposition (CVD) was patterned and transferred to a target surface by controlling the surface energy of the polydimethylsiloxane (PDMS) stamp. However, applications are limited because of the challenge of CVD-graphene functionalization for devices such as chemical or bio-sensors. In addition, graphene-based layers patterned with a micron scale width on the surface of biocompatible silk fibroin thin films, which are not suitable for conventional CMOS processes such as the patterning or etching of substrates, have yet to be reported. Herein, we developed a soft lithographic patterning process via surface energy modification for advanced graphene-based flexible devices such as transistors or chemical sensors. Using this approach, the surface of a relief-patterned elastomeric stamp was functionalized with hydrophilic dimethylsulfoxide molecules to enhance the surface energy of the stamp and to remove the graphene-based layer from the initial substrate and transfer it to a target surface. As a proof of concept using this soft lithographic patterning technique, we demonstrated a simple and efficient chemical sensor consisting of reduced graphene oxide and a metallic nanoparticle composite. A flexible graphene-based device on a biocompatible silk fibroin substrate, which is attachable to an arbitrary target surface, was also successfully fabricated. Briefly, a soft lithographic patterning process via surface energy modification was developed for advanced graphene-based flexible devices such as transistors or chemical sensors and attachable devices on a

  18. Controlling the Resistive Switching Behavior in Starch-Based Flexible Biomemristors.

    PubMed

    Raeis-Hosseini, Niloufar; Lee, Jang-Sik

    2016-03-23

    Implementation of biocompatible materials in resistive switching memory (ReRAM) devices provides opportunities to use them in biomedical applications. We demonstrate a robust, nonvolatile, flexible, and transparent ReRAM based on potato starch. We also introduce a biomolecular memory device that has a starch-chitosan composite layer. The ReRAM behavior can be controlled by mixing starch with chitosan in the resistive switching layer. Whereas starch-based biomemory devices which show abrupt changes in current level; the memory device with mixed biopolymers undergoes gradual changes. Both devices exhibit uniform and robust programmable memory properties for nonvolatile memory applications. The explicated source of the bipolar resistive switching behavior is assigned to formation and rupture of carbon-rich filaments. The gradual set/reset behavior in the memory device based on a starch-chitosan mixture makes it suitable for use in neuromorphic devices.

  19. DG TO FT - AUTOMATIC TRANSLATION OF DIGRAPH TO FAULT TREE MODELS

    NASA Technical Reports Server (NTRS)

    Iverson, D. L.

    1994-01-01

    root node. A subtree is created for each of the inputs to the digraph terminal node and the root of those subtrees are added as children of the top node of the fault tree. Every node in the digraph upstream of the terminal node will be visited and converted. During the conversion process, the algorithm keeps track of the path from the digraph terminal node to the current digraph node. If a node is visited twice, then the program has found a cycle in the digraph. This cycle is broken by finding the minimal cut sets of the twice visited digraph node and forming those cut sets into subtrees. Another implementation of the algorithm resolves loops by building a subtree based on the digraph minimal cut sets calculation. It does not reduce the subtree to minimal cut set form. This second implementation produces larger fault trees, but runs much faster than the version using minimal cut sets since it does not spend time reducing the subtrees to minimal cut sets. The fault trees produced by DG TO FT will contain OR gates, AND gates, Basic Event nodes, and NOP gates. The results of a translation can be output as a text object description of the fault tree similar to the text digraph input format. The translator can also output a LISP language formatted file and an augmented LISP file which can be used by the FTDS (ARC-13019) diagnosis system, available from COSMIC, which performs diagnostic reasoning using the fault tree as a knowledge base. DG TO FT is written in C-language to be machine independent. It has been successfully implemented on a Sun running SunOS, a DECstation running ULTRIX, a Macintosh running System 7, and a DEC VAX running VMS. The RAM requirement varies with the size of the models. DG TO FT is available in UNIX tar format on a .25 inch streaming magnetic tape cartridge (standard distribution) or on a 3.5 inch diskette. It is also available on a 3.5 inch Macintosh format diskette or on a 9-track 1600 BPI magnetic tape in DEC VAX FILES-11 format. Sample input

  20. DG TO FT - AUTOMATIC TRANSLATION OF DIGRAPH TO FAULT TREE MODELS

    NASA Technical Reports Server (NTRS)

    Iverson, D. L.

    1994-01-01

    root node. A subtree is created for each of the inputs to the digraph terminal node and the root of those subtrees are added as children of the top node of the fault tree. Every node in the digraph upstream of the terminal node will be visited and converted. During the conversion process, the algorithm keeps track of the path from the digraph terminal node to the current digraph node. If a node is visited twice, then the program has found a cycle in the digraph. This cycle is broken by finding the minimal cut sets of the twice visited digraph node and forming those cut sets into subtrees. Another implementation of the algorithm resolves loops by building a subtree based on the digraph minimal cut sets calculation. It does not reduce the subtree to minimal cut set form. This second implementation produces larger fault trees, but runs much faster than the version using minimal cut sets since it does not spend time reducing the subtrees to minimal cut sets. The fault trees produced by DG TO FT will contain OR gates, AND gates, Basic Event nodes, and NOP gates. The results of a translation can be output as a text object description of the fault tree similar to the text digraph input format. The translator can also output a LISP language formatted file and an augmented LISP file which can be used by the FTDS (ARC-13019) diagnosis system, available from COSMIC, which performs diagnostic reasoning using the fault tree as a knowledge base. DG TO FT is written in C-language to be machine independent. It has been successfully implemented on a Sun running SunOS, a DECstation running ULTRIX, a Macintosh running System 7, and a DEC VAX running VMS. The RAM requirement varies with the size of the models. DG TO FT is available in UNIX tar format on a .25 inch streaming magnetic tape cartridge (standard distribution) or on a 3.5 inch diskette. It is also available on a 3.5 inch Macintosh format diskette or on a 9-track 1600 BPI magnetic tape in DEC VAX FILES-11 format. Sample input

  1. Flexible electrochemical biosensors based on graphene nanowalls for the real-time measurement of lactate

    NASA Astrophysics Data System (ADS)

    Chen, Qianwei; Sun, Tai; Song, Xuefen; Ran, Qincui; Yu, Chongsheng; Yang, Jun; Feng, Hua; Yu, Leyong; Wei, Dapeng

    2017-08-01

    We demonstrate a flexible biosensor for lactate detection based on l-lactate oxidase immobilized by chitosan film cross-linked with glutaraldehyde on the surface of a graphene nanowall (GNW) electrode. The oxygen-plasma technique was developed to enhance the wettability of the GNWs, and the strength of the sensor’s oxidation response depended on the concentration of lactate. First, in order to eliminate interference from other substances, biosensors were primarily tested in deionized water and displayed good electrochemical reversibility at different scan rates (20-100 mV s-1), a large index range (1.0 μM to 10.0 mM) and a low detection limit (1.0 μM) for lactate. Next, these sensors were further examined in phosphate buffer solution (to mimick human body fluids), and still exhibited high sensitivity, stability and flexibility. These results show that the GNW-based lactate biosensors possess important potential for application in clinical analysis, sports medicine and the food industry.

  2. Flexibility Support for Homecare Applications Based on Models and Multi-Agent Technology

    PubMed Central

    Armentia, Aintzane; Gangoiti, Unai; Priego, Rafael; Estévez, Elisabet; Marcos, Marga

    2015-01-01

    In developed countries, public health systems are under pressure due to the increasing percentage of population over 65. In this context, homecare based on ambient intelligence technology seems to be a suitable solution to allow elderly people to continue to enjoy the comforts of home and help optimize medical resources. Thus, current technological developments make it possible to build complex homecare applications that demand, among others, flexibility mechanisms for being able to evolve as context does (adaptability), as well as avoiding service disruptions in the case of node failure (availability). The solution proposed in this paper copes with these flexibility requirements through the whole life-cycle of the target applications: from design phase to runtime. The proposed domain modeling approach allows medical staff to design customized applications, taking into account the adaptability needs. It also guides software developers during system implementation. The application execution is managed by a multi-agent based middleware, making it possible to meet adaptation requirements, assuring at the same time the availability of the system even for stateful applications. PMID:26694416

  3. Flexible supercapacitors with high areal capacitance based on hierarchical carbon tubular nanostructures

    NASA Astrophysics Data System (ADS)

    Zhang, Haitao; Su, Hai; Zhang, Lei; Zhang, Binbin; Chun, Fengjun; Chu, Xiang; He, Weidong; Yang, Weiqing

    2016-11-01

    Hierarchical structure design can greatly enhance the unique properties of primary material(s) but suffers from complicated preparation process and difficult self-assembly of materials with different dimensionalities. Here we report on the growth of single carbon tubular nanostructures with hierarchical structure (hCTNs) through a simple method based on direct conversion of carbon dioxide. Resorting to in-situ transformation and self-assembly of carbon micro/nano-structures, the obtained hCTNs are blood-like multichannel hierarchy composed of one large channel across the hCTNs and plenty of small branches connected to each other. Due to the unique pore structure and high surface area, these hCTN-based flexible supercapacitors possess the highest areal capacitance of ∼320 mF cm-2, as well as good rate-capability and excellent cycling stability (95% retention after 2500 cycles). It was established that this method can control the morphology, size, and density of hCTNs and effectively construct hCTNs well anchored to the various substrates. Our work unambiguously demonstrated the potential of hCTNs for large flexible supercapacitors and integrated energy management electronics.

  4. CSI compensation for reduced-order model based control of a flexible robot manipulator

    NASA Technical Reports Server (NTRS)

    Reisenauer, Brian T.; Balas, Mark J.

    1989-01-01

    In controller design for flexible structures, certain system modes are extremely important for the overall performance of the structure. A reduced-order model (ROM) based control focuses on these modes, providing a viable, active control algorithm for large systems. Unfortunately, unmodeled structure dynamics can interact with the ROM controller (CSI) and cause crippling deterioration of system performance, possibly to the point that system stability is lost. A residual model filter (RMF) eliminates one channel of control structure interaction (CSI), while adding only a simple, second-order filter to the control loop. Thus, the ROM controller can be designed independently, based strictly on performance criteria, and residual mode filters can then be selected to compensate for CSI. A flexible robot manipulator is used for preliminary experimentation with the ROM/RMF design methodology. Since the controller was to be implemented both with, and without compensation for CSI, the ROM control gains are carefully chosen such that closed loop stability is never compromised. In this way, RMF effectiveness is easily evaluated in terms of the improvement in system performance resulting from CSI compensation.

  5. Transparent, Flexible Strain Sensor Based on a Solution-Processed Carbon Nanotube Network.

    PubMed

    Lee, Jieun; Lim, Meehyun; Yoon, Jinsu; Kim, Min Seong; Choi, Bongsik; Kim, Dong Myong; Kim, Dae Hwan; Park, Inkyu; Choi, Sung-Jin

    2017-08-09

    The demands for transparent, flexible electronic devices are continuously increasing due to their potential applications to the human body. In particular, skin-like, transparent, flexible strain sensors have been developed to realize multifunctional human-machine interfaces. Here, we report a sandwich-like structured strain sensor with excellent optical transparency based on highly purified, solution-processed, 99% metallic CNT-polydimethylsiloxane (PDMS) composite thin films. Our CNT-PDMS composite strain sensors are mechanically compliant, physically robust, and easily fabricated. The fabricated strain sensors exhibit a high optical transparency of over 92% in the visible range with acceptable sensing performances in terms of sensitivity, hysteresis, linearity, and drift. We also found that the sensitivity and linearity of the strain sensors can be controlled by the number of CNT sprays; hence, our sensor can be applied and controlled based on the need of individual applications. Finally, we investigated the detections of human activities and emotions by mounting our transparent strain sensor on various spots of human skins.

  6. Development of OCDMA system based on Flexible Cross Correlation (FCC) code with OFDM modulation

    NASA Astrophysics Data System (ADS)

    Aldhaibani, A. O.; Aljunid, S. A.; Anuar, M. S.; Arief, A. R.; Rashidi, C. B. M.

    2015-03-01

    The performance of the OCDMA systems is governed by numerous quantitative parameters such as the data rate, simultaneous number of users, the powers of transmitter and receiver, and the type of codes. This paper analyzes the performance of the OCDMA system using OFDM technique to enhance the channel data rate, to save power and increase the number of user of OSCDMA systems compared with previous hybrid subcarrier multiplexing/optical spectrum code division multiplexing (SCM/OSCDM) system. The average received signal to noise ratio (SNR) with the nonlinearity of subcarriers is derived. The theoretical results have been evaluated based on BER and number of users as well as amount of power saved. The proposed system gave better performance and save around -6 dBm of the power as well as increase the number of users twice compare to SCM/OCDMA system. In addition it is robust against interference and much more spectrally efficient than SCM/OCDMA system. The system was designed based on Flexible Cross Correlation (FCC) code which is easier construction, less complexity of encoder/decoder design and flexible in-phase cross-correlation for uncomplicated to implement using Fiber Bragg Gratings (FBGs) for the OCDMA systems for any number of users and weights. The OCDMA-FCC_OFDM improves the number of users (cardinality) 108% compare to SCM/ODCMA-FCC system.

  7. Flexibility Support for Homecare Applications Based on Models and Multi-Agent Technology.

    PubMed

    Armentia, Aintzane; Gangoiti, Unai; Priego, Rafael; Estévez, Elisabet; Marcos, Marga

    2015-12-17

    In developed countries, public health systems are under pressure due to the increasing percentage of population over 65. In this context, homecare based on ambient intelligence technology seems to be a suitable solution to allow elderly people to continue to enjoy the comforts of home and help optimize medical resources. Thus, current technological developments make it possible to build complex homecare applications that demand, among others, flexibility mechanisms for being able to evolve as context does (adaptability), as well as avoiding service disruptions in the case of node failure (availability). The solution proposed in this paper copes with these flexibility requirements through the whole life-cycle of the target applications: from design phase to runtime. The proposed domain modeling approach allows medical staff to design customized applications, taking into account the adaptability needs. It also guides software developers during system implementation. The application execution is managed by a multi-agent based middleware, making it possible to meet adaptation requirements, assuring at the same time the availability of the system even for stateful applications.

  8. An image-based multi-directional reflectance measurement setup for flexible objects

    NASA Astrophysics Data System (ADS)

    Sole, Aditya S.; Farup, Ivar; Tominaga, Shoji

    2015-03-01

    This paper presents an image-based method to measure reflectance of a homogeneous flexible object material (usually used in packaging). A point light source and a commercially available RGB camera is used to illuminate and measure the radiance reflected from the object surface in multiple reflection directions. By curving the flexible object onto a cylinder of known radius we are able to record radiance at multiple reflection angles in a faster way. In order to estimate the reflectance and to characterise the material, a spectralon reference tile is used. The spectralon tile is assumed to be homogenous and has near lambertain surface properties. Using Lambert's cosine law, irradiance at a given point on the object surface is calculated. This information is then used to calculate a BRDF using Phong reflection model to describe the sample surface reflection properties. The measurement setup is described and discussed in this paper along with its use to estimate a BRDF for a given material/substrate. Results obtained indicate that the proposed image-based technique works well to measure light reflected at different planar angles and record information to estimate the BRDF of the sample materials that can be modelled using Phong reflection model. The object material properties, sample curvature and camera resolution decides the number of incident and reflection angles at which the bi-directional reflectance, or the material BRDF, can be estimated using this method.

  9. Flexible supercapacitor electrodes based on real metal-like cellulose papers.

    PubMed

    Ko, Yongmin; Kwon, Minseong; Bae, Wan Ki; Lee, Byeongyong; Lee, Seung Woo; Cho, Jinhan

    2017-09-14

    The effective implantation of conductive and charge storage materials into flexible frames has been strongly demanded for the development of flexible supercapacitors. Here, we introduce metallic cellulose paper-based supercapacitor electrodes with excellent energy storage performance by minimizing the contact resistance between neighboring metal and/or metal oxide nanoparticles using an assembly approach, called ligand-mediated layer-by-layer assembly. This approach can convert the insulating paper to the highly porous metallic paper with large surface areas that can function as current collectors and nanoparticle reservoirs for supercapacitor electrodes. Moreover, we demonstrate that the alternating structure design of the metal and pseudocapacitive nanoparticles on the metallic papers can remarkably increase the areal capacitance and rate capability with a notable decrease in the internal resistance. The maximum power and energy density of the metallic paper-based supercapacitors are estimated to be 15.1 mW cm(-2) and 267.3 μWh cm(-2), respectively, substantially outperforming the performance of conventional paper or textile-type supercapacitors.With ligand-mediated layer-by-layer assembly between metal nanoparticles and small organic molecules, the authors prepare metallic paper electrodes for supercapacitors with high power and energy densities. This approach could be extended to various electrodes for portable/wearable electronics.

  10. Solving the flexible job shop problem by hybrid metaheuristics-based multiagent model

    NASA Astrophysics Data System (ADS)

    Nouri, Houssem Eddine; Belkahla Driss, Olfa; Ghédira, Khaled

    2017-05-01

    The flexible job shop scheduling problem (FJSP) is a generalization of the classical job shop scheduling problem that allows to process operations on one machine out of a set of alternative machines. The FJSP is an NP-hard problem consisting of two sub-problems, which are the assignment and the scheduling problems. In this paper, we propose how to solve the FJSP by hybrid metaheuristics-based clustered holonic multiagent model. First, a neighborhood-based genetic algorithm (NGA) is applied by a scheduler agent for a global exploration of the search space. Second, a local search technique is used by a set of cluster agents to guide the research in promising regions of the search space and to improve the quality of the NGA final population. The efficiency of our approach is explained by the flexible selection of the promising parts of the search space by the clustering operator after the genetic algorithm process, and by applying the intensification technique of the tabu search allowing to restart the search from a set of elite solutions to attain new dominant scheduling solutions. Computational results are presented using four sets of well-known benchmark literature instances. New upper bounds are found, showing the effectiveness of the presented approach.

  11. 75 FR 54918 - Draft Regulatory Guide, DG-1247, “Design-Basis Hurricane and Hurricane Missiles for Nuclear Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ... COMMISSION Draft Regulatory Guide, DG-1247, ``Design-Basis Hurricane and Hurricane Missiles for Nuclear Power... issuance and availability of Draft Regulatory Guide (DG)--1247, ``Design-Basis Hurricane and Hurricane... permits and licenses. The draft regulatory guide (DG), entitled, ``Design-Basis Hurricane and...

  12. Fast-Response and Flexible Nanocrystal-Based Humidity Sensor for Monitoring Human Respiration and Water Evaporation on Skin.

    PubMed

    Kano, Shinya; Kim, Kwangsoo; Fujii, Minoru

    2017-06-23

    We develop a fast-response and flexible nanocrystal-based humidity sensor for real-time monitoring of human activity: respiration and water evaporation on skin. A silicon-nanocrystal film is formed on a polyimide film by spin-coating the colloidal solution and is used as a flexible and humidity-sensitive material in a humidity sensor. The flexible nanocrystal-based humidity sensor shows a high sensitivity; current through the nanocrystal film changes by 5 orders of magnitude in the relative humidity range of 8-83%. The response/recovery time of the sensor is 40 ms. Thanks to the fast response and recovery time, the sensor can monitor human respiration and water evaporation on skin in real time. Due to the flexibility and the fast response/recovery time, the sensor is promising for application in personal health monitoring as well as environmental monitoring.

  13. On-orbit assembly of a team of flexible spacecraft using potential field based method

    NASA Astrophysics Data System (ADS)

    Chen, Ti; Wen, Hao; Hu, Haiyan; Jin, Dongping

    2017-04-01

    In this paper, a novel control strategy is developed based on artificial potential field for the on-orbit autonomous assembly of four flexible spacecraft without inter-member collision. Each flexible spacecraft is simplified as a hub-beam model with truncated beam modes in the floating frame of reference and the communication graph among the four spacecraft is assumed to be a ring topology. The four spacecraft are driven to a pre-assembly configuration first and then to the assembly configuration. In order to design the artificial potential field for the first step, each spacecraft is outlined by an ellipse and a virtual leader of circle is introduced. The potential field mainly depends on the attitude error between the flexible spacecraft and its neighbor, the radial Euclidian distance between the ellipse and the circle and the classical Euclidian distance between the centers of the ellipse and the circle. It can be demonstrated that there are no local minima for the potential function and the global minimum is zero. If the function is equal to zero, the solution is not a certain state, but a set. All the states in the set are corresponding to the desired configurations. The Lyapunov analysis guarantees that the four spacecraft asymptotically converge to the target configuration. Moreover, the other potential field is also included to avoid the inter-member collision. In the control design of the second step, only small modification is made for the controller in the first step. Finally, the successful application of the proposed control law to the assembly mission is verified by two case studies.

  14. Fabrication of digital microfluidic devices on flexible paper-based and rigid substrates via screen printing

    NASA Astrophysics Data System (ADS)

    Yafia, Mohamed; Shukla, Saurabh; Najjaran, Homayoun

    2015-05-01

    In this work, a new fabrication method is presented for digital microfluidic (DMF) devices in which the electrodes are generated using the screen printing technique. This method is applicable to both rigid and flexible substrates. The proposed screen printing approach, as a batch printing technique, is advantageous to the widely reported DMF fabrication methods in terms of fabrication time, cost and capability of mass production. Screen printing provides an effective means for printing different types of conductive materials on a variety of substrates. Specifically, screen printing of conductive silver and carbon based inks is performed on paper, glass and wax paper. As a result, the fabricated DMF devices are characterized by being flexible, disposable and incinerable. Hence, the main advantage of screen printing carbon based inks on paper substrates is more pronounced for point-of-care applications that require a large number of low cost DMF chips, and laboratory setups that lack sophisticated microfabrication facilities. The resolution of the printed DMF electrodes generated by this technique is examined for proof of concept using manual screen printing, but higher resolution screens and automated machines are available off-the-shelf, if needed. Another contribution of this research is the improved actuation techniques that facilitate droplet transport in electrode configurations with relatively large electrode spacing to alleviate the disadvantage of lower resolution screens. Thus, we were able to reduce the cost of fabrication significantly without compromising the DMF performance. The paper-based devices have already shown to be effective in continuous microfluidics domain, so the investigation of their applicability in DMF systems is worthwhile. With this in mind, successful integration of a paper-based microchannel with paper-based digital microfluidic chip is demonstrated in this work.

  15. Fuzzy based attitude controller for flexible spacecraft with on/off thrusters

    NASA Technical Reports Server (NTRS)

    Knapp, Roger G.; Adams, Neil J.

    1993-01-01

    A fuzzy-based attitude controller is designed for attitude control of a generic spacecraft with on/off thrusters. The controller is comprised of packages of rules dedicated to addressing different objectives (e.g., disturbance rejection, low fuel consumption, avoiding the excitation of flexible appendages, etc.). These rule packages can be inserted or removed depending on the requirements of the particular spacecraft and are parameterized based on vehicle parameters such as inertia or operational parameters such as the maneuvering rate. Individual rule packages can be 'weighted' relative to each other to emphasize the importance of one objective relative to another. Finally, the fuzzy controller and rule packages are demonstrated using the high-fidelity Space Shuttle Interactive On-Orbit Simulator (IOS) while performing typical on-orbit operations and are subsequently compared with the existing shuttle flight control system performance.

  16. A stable neural network-based observer with application to flexible-joint manipulators.

    PubMed

    Abdollahi, Farzaneh; Talebi, H A; Patel, Rajnikant V

    2006-01-01

    A stable neural network (NN)-based observer for general multivariable nonlinear systems is presented in this paper. Unlike most previous neural network observers, the proposed observer uses a nonlinear-in-parameters neural network (NLPNN). Therefore, it can be applied to systems with higher degrees of nonlinearity without any a priori knowledge about system dynamics. The learning rule for the neural network is a novel approach based on the modified backpropagation (BP) algorithm. An e-modification term is added to guarantee robustness of the observer. No strictly positive real (SPR) or any other strong assumption is imposed on the proposed approach. The stability of the recurrent neural network observer is shown by Lyapunov's direct method. Simulation results for a flexible-joint manipulator are presented to demonstrate the enhanced performance achieved by utilizing the proposed neural network observer.

  17. Highly Sensitive Flexible Human Motion Sensor Based on ZnSnO3/PVDF Composite

    NASA Astrophysics Data System (ADS)

    Yang, Young Jin; Aziz, Shahid; Mehdi, Syed Murtuza; Sajid, Memoon; Jagadeesan, Srikanth; Choi, Kyung Hyun

    2017-02-01

    A highly sensitive body motion sensor has been fabricated based on a composite active layer of zinc stannate (ZnSnO3) nano-cubes and poly(vinylidene fluoride) (PVDF) polymer. The thin film-based active layer was deposited on polyethylene terephthalate flexible substrate through D-bar coating technique. Electrical and morphological characterizations of the films and sensors were carried out to discover the physical characteristics and the output response of the devices. The synergistic effect between piezoelectric ZnSnO3 nanocubes and β phase PVDF provides the composite with a desirable electrical conductivity, remarkable bend sensitivity, and excellent stability, ideal for the fabrication of a motion sensor. The recorded resistance of the sensor towards the bending angles of -150° to 0° to 150° changed from 20 MΩ to 55 MΩ to 100 MΩ, respectively, showing the composite to be a very good candidate for motion sensing applications.

  18. Highly Sensitive Flexible Human Motion Sensor Based on ZnSnO3/PVDF Composite

    NASA Astrophysics Data System (ADS)

    Yang, Young Jin; Aziz, Shahid; Mehdi, Syed Murtuza; Sajid, Memoon; Jagadeesan, Srikanth; Choi, Kyung Hyun

    2017-07-01

    A highly sensitive body motion sensor has been fabricated based on a composite active layer of zinc stannate (ZnSnO3) nano-cubes and poly(vinylidene fluoride) (PVDF) polymer. The thin film-based active layer was deposited on polyethylene terephthalate flexible substrate through D-bar coating technique. Electrical and morphological characterizations of the films and sensors were carried out to discover the physical characteristics and the output response of the devices. The synergistic effect between piezoelectric ZnSnO3 nanocubes and β phase PVDF provides the composite with a desirable electrical conductivity, remarkable bend sensitivity, and excellent stability, ideal for the fabrication of a motion sensor. The recorded resistance of the sensor towards the bending angles of -150° to 0° to 150° changed from 20 MΩ to 55 MΩ to 100 MΩ, respectively, showing the composite to be a very good candidate for motion sensing applications.

  19. Ground-based testing of the dynamics of flexible space structures using band mechanisms

    NASA Technical Reports Server (NTRS)

    Yang, L. F.; Chew, Meng-Sang

    1991-01-01

    A suspension system based on a band mechanism is studied to provide the free-free conditions for ground based validation testing of flexible space structures. The band mechanism consists of a noncircular disk with a convex profile, preloaded by torsional springs at its center of rotation so that static equilibrium of the test structure is maintained at any vertical location; the gravitational force will be directly counteracted during dynamic testing of the space structure. This noncircular disk within the suspension system can be configured to remain unchanged for test articles with the different weights as long as the torsional spring is replaced to maintain the originally designed frequency ratio of W/k sub s. Simulations of test articles which are modeled as lumped parameter as well as continuous parameter systems, are also presented.

  20. Frontostriatal Mechanisms in Instruction-Based Learning as a Hallmark of Flexible Goal-Directed Behavior

    PubMed Central

    Wolfensteller, Uta; Ruge, Hannes

    2012-01-01

    The present review intends to provide a neuroscientific perspective on the flexible (here: almost instantaneous) adoption of novel goal-directed behaviors. The overarching goal is to sketch the emerging framework for examining instruction-based learning and how this can be related to more established research approaches to instrumental learning and goal-directed action. We particularly focus on the contribution of frontal and striatal brain regions drawing on studies in both, animals and humans, but with an emphasize put on human neuroimaging studies. In section one, we review and integrate a selection of previous studies that are suited to generally delineate the neural underpinnings of goal-directed action as opposed to more stimulus-based (i.e., habitual) action. Building on that the second section focuses more directly on the flexibility to rapidly implement novel behavioral rules as a hallmark of goal-directed action with a special emphasis on instructed rules. In essence, the current neuroscientific evidence suggests that the prefrontal cortex and associative striatum are able to selectively and transiently code the currently relevant relationship between stimuli, actions, and the effects of these actions in both, instruction-based learning as well as in trial-and-error learning. The premotor cortex in turn seems to form more durable associations between stimuli and actions or stimuli, actions and effects (but not incentive values) thus representing the available action possibilities. Together, the central message of the present review is that instruction-based learning should be understood as a prime example of goal-directed action, necessitating a closer interlacing with basic mechanisms of goal-directed action on a more general level. PMID:22701445

  1. "Everything Is Kind of up in the Air": Flexible and Creative Organizing at an Arts-Based Nonprofit

    ERIC Educational Resources Information Center

    Scarduzio, Jennifer A.

    2009-01-01

    This study expands upon the research of arts-based inquiry by exploring the ways creativity and flexibility impact communicating and organizing in an arts-based nonprofit. Based on ethnographic observation and interviews, this piece reveals specific tensions that impact the ways staff members and mentors communicate: (a) consistency/inconsistency,…

  2. "Everything Is Kind of up in the Air": Flexible and Creative Organizing at an Arts-Based Nonprofit

    ERIC Educational Resources Information Center

    Scarduzio, Jennifer A.

    2009-01-01

    This study expands upon the research of arts-based inquiry by exploring the ways creativity and flexibility impact communicating and organizing in an arts-based nonprofit. Based on ethnographic observation and interviews, this piece reveals specific tensions that impact the ways staff members and mentors communicate: (a) consistency/inconsistency,…

  3. Flexible fluidic microchips based on thermoformed and locally modified thin polymer films.

    PubMed

    Truckenmüller, R; Giselbrecht, S; van Blitterswijk, C; Dambrowsky, N; Gottwald, E; Mappes, T; Rolletschek, A; Saile, V; Trautmann, C; Weibezahn, K-F; Welle, A

    2008-09-01

    This paper presents a fundamentally new approach for the manufacturing and the possible applications of lab on a chip devices, mainly in the form of disposable fluidic microchips for life sciences applications. The new technology approach is based on a novel microscale thermoforming of thin polymer films as core process. The flexibility not only of the semi-finished but partly also of the finished products in the form of film chips could enable future reel to reel processes in production but also in application. The central so-called 'microthermoforming' process can be surrounded by pairs of associated pre- and postprocesses for micro- and nanopatterned surface and bulk modification or functionalisation of the formed films. This new approach of microscale thermoforming of thin polymer film substrates overlaid with a split local modification of the films is called 'SMART', which stands for 'substrate modification and replication by thermoforming'. In the process, still on the unformed, plane film, the material modifications of the preprocess define the locations where later, then on the spatially formed film, the postprocess generates the final local modifications. So, one can obtain highly resolved modification patterns also on hardly accessible side walls and even behind undercuts. As a first application of the new technology, we present a flexible chip-sized scaffold for three dimensional cell cultivation in the form of a microcontainer array. The spatially warped container walls have been provided with micropores, cell adhesion micropatterns and thin film microelectrodes.

  4. Silver nanowire based flexible electrodes with improved properties: High conductivity, transparency, adhesion and low haze

    SciTech Connect

    Kiran Kumar, A.B.V.; Wan Bae, Chang; Piao, Longhai Kim, Sang-Ho

    2013-08-01

    Graphical abstract: This graphical abstract illustrates the schematic representation of the main drawbacks and rectifications for AgNWs based transparent electrodes. - Highlights: • Films exhibited low sheet resistance and optical properties with R{sub s} ≤ 30 Ω/□ and T ≥ 90%. • We decreased haze to 2% by controlling AgNWs length, diameter, and concentration. • We achieved good adhesion for AgNWs on PET film. • There is no significant change in resistance in the bending angle from 0° to 180°, and on twisting. - Abstract: Recent work has been focusing on solution processable transparent electrodes for various applications including solar cells and displays. As well as, the research aims majorly at silver nanowires (AgNWs) to replace ITO. We enhance the transparent electrode performance as a function of optical and mechanical properties with low sheet resistance, by controlling the AgNWs accept ratios, ink composition, and processing conditions. The nanowire network of transparent films agrees with the 2D percolation law. The film transmittance values at 550 nm are coping with a reference ITO film. Sheet resistance and haze values are suitable for flexible electronic applications. We fabricate transparent flexible film using a low-cost processing technique.

  5. Improved Flexible Transparent Conductive Electrodes based on Silver Nanowire Networks by a Simple Sunlight Illumination Approach.

    PubMed

    Kou, Pengfei; Yang, Liu; Chang, Cheng; He, Sailing

    2017-02-07

    Silver nanowire (Ag NW) networks have attracted wide attention as transparent electrodes for emerging flexible optoelectronics. However, the sheet resistance is greatly limited by large wire-to-wire contact resistances. Here, we propose a simple sunlight illumination approach to remarkably improve their electrical conductivity without any significant degradation of the light transmittance. Because the power density is extremely low (0.1 W/cm(2), 1-Sun), only slight welding between Ag NWs has been observed. Despite this, a sheet resistance of <20 Ω/sq and transmittance of ~87% at wavelength of 550 nm as well as excellent mechanical flexibility have still been achieved for Ag NW networks after sunlight illumination for 1 hour or longer, which are significant upgrades over those of ITO. Slight plasmonic welding together with the associated self-limiting effect has been investigated by numerical simulations and further verified experimentally through varied solar concentrations. Due to the reduced resistance, high-performance transparent film heaters as well as efficient defrosters have been demonstrated, which are superior to the previously-reported Ag NW based film heaters. Since the sunlight is environmentally friendly and easily available, sophisticated or expensive facilities are not necessary. Our findings are particularly meaningful and show enormous potential for outdoor applications.

  6. Improved Flexible Transparent Conductive Electrodes based on Silver Nanowire Networks by a Simple Sunlight Illumination Approach

    PubMed Central

    Kou, Pengfei; Yang, Liu; Chang, Cheng; He, Sailing

    2017-01-01

    Silver nanowire (Ag NW) networks have attracted wide attention as transparent electrodes for emerging flexible optoelectronics. However, the sheet resistance is greatly limited by large wire-to-wire contact resistances. Here, we propose a simple sunlight illumination approach to remarkably improve their electrical conductivity without any significant degradation of the light transmittance. Because the power density is extremely low (0.1 W/cm2, 1-Sun), only slight welding between Ag NWs has been observed. Despite this, a sheet resistance of <20 Ω/sq and transmittance of ~87% at wavelength of 550 nm as well as excellent mechanical flexibility have still been achieved for Ag NW networks after sunlight illumination for 1 hour or longer, which are significant upgrades over those of ITO. Slight plasmonic welding together with the associated self-limiting effect has been investigated by numerical simulations and further verified experimentally through varied solar concentrations. Due to the reduced resistance, high-performance transparent film heaters as well as efficient defrosters have been demonstrated, which are superior to the previously-reported Ag NW based film heaters. Since the sunlight is environmentally friendly and easily available, sophisticated or expensive facilities are not necessary. Our findings are particularly meaningful and show enormous potential for outdoor applications. PMID:28169343

  7. A flexible 3D vision system based on structured light for in-line product inspection

    NASA Astrophysics Data System (ADS)

    Skotheim, Øystein; Nygaard, Jens Olav; Thielemann, Jens; Vollset, Thor

    2008-02-01

    A flexible and highly configurable 3D vision system targeted for in-line product inspection is presented. The system includes a low cost 3D camera based on structured light and a set of flexible software tools that automate the measurement process. The specification of the measurement tasks is done in a first manual step. The user selects regions of the point cloud to analyze and specifies primitives to be characterized within these regions. After all measurement tasks have been specified, measurements can be carried out on successive parts automatically and without supervision. As a test case, a measurement cell for inspection of a V-shaped car component has been developed. The car component consists of two steel tubes attached to a central hub. Each of the tubes has an additional bushing clamped to its end. A measurement is performed in a few seconds and results in an ordered point cloud with 1.2 million points. The software is configured to fit cylinders to each of the steel tubes as well as to the inside of the bushings of the car part. The size, position and orientation of the fitted cylinders allow us to measure and verify a series of dimensions specified on the CAD drawing of the component with sub-millimetre accuracy.

  8. Piezoresistive effects in controllable defective HFTCVD graphene-based flexible pressure sensor

    PubMed Central

    Mohammad Haniff, Muhammad Aniq Shazni; Muhammad Hafiz, Syed; Wahid, Khairul Anuar Abd; Endut, Zulkarnain; Wah Lee, Hing; Bien, Daniel C. S.; Abdul Azid, Ishak; Abdullah, Mohd. Zulkifly; Ming Huang, Nay; Abdul Rahman, Saadah

    2015-01-01

    In this work, the piezoresistive effects of defective graphene used on a flexible pressure sensor are demonstrated. The graphene used was deposited at substrate temperatures of 750, 850 and 1000 °C using the hot-filament thermal chemical vapor deposition method in which the resultant graphene had different defect densities. Incorporation of the graphene as the sensing materials in sensor device showed that a linear variation in the resistance change with the applied gas pressure was obtained in the range of 0 to 50 kPa. The deposition temperature of the graphene deposited on copper foil using this technique was shown to be capable of tuning the sensitivity of the flexible graphene-based pressure sensor. We found that the sensor performance is strongly dominated by the defect density in the graphene, where graphene with the highest defect density deposited at 750 °C exhibited an almost four-fold sensitivity as compared to that deposited at 1000 °C. This effect is believed to have been contributed by the scattering of charge carriers in the graphene networks through various forms such as from the defects in the graphene lattice itself, tunneling between graphene islands, and tunneling between defect-like structures. PMID:26423893

  9. Improved Flexible Transparent Conductive Electrodes based on Silver Nanowire Networks by a Simple Sunlight Illumination Approach

    NASA Astrophysics Data System (ADS)

    Kou, Pengfei; Yang, Liu; Chang, Cheng; He, Sailing

    2017-02-01

    Silver nanowire (Ag NW) networks have attracted wide attention as transparent electrodes for emerging flexible optoelectronics. However, the sheet resistance is greatly limited by large wire-to-wire contact resistances. Here, we propose a simple sunlight illumination approach to remarkably improve their electrical conductivity without any significant degradation of the light transmittance. Because the power density is extremely low (0.1 W/cm2, 1-Sun), only slight welding between Ag NWs has been observed. Despite this, a sheet resistance of <20 Ω/sq and transmittance of ~87% at wavelength of 550 nm as well as excellent mechanical flexibility have still been achieved for Ag NW networks after sunlight illumination for 1 hour or longer, which are significant upgrades over those of ITO. Slight plasmonic welding together with the associated self-limiting effect has been investigated by numerical simulations and further verified experimentally through varied solar concentrations. Due to the reduced resistance, high-performance transparent film heaters as well as efficient defrosters have been demonstrated, which are superior to the previously-reported Ag NW based film heaters. Since the sunlight is environmentally friendly and easily available, sophisticated or expensive facilities are not necessary. Our findings are particularly meaningful and show enormous potential for outdoor applications.

  10. Developing and Evaluating a Flexible Wireless Microcoil Array Based Integrated Interface for Epidural Cortical Stimulation

    PubMed Central

    Wang, Xing; Chaudhry, Sharjeel A.; Hou, Wensheng; Jia, Xiaofeng

    2017-01-01

    Stroke leads to serious long-term disability. Electrical epidural cortical stimulation has made significant improvements in stroke rehabilitation therapy. We developed a preliminary wireless implantable passive interface, which consists of a stimulating surface electrode, receiving coil, and single flexible passive demodulated circuit printed by flexible printed circuit (FPC) technique and output pulse voltage stimulus by inductively coupling an external circuit. The wireless implantable board was implanted in cats’ unilateral epidural space for electrical stimulation of the primary visual cortex (V1) while the evoked responses were recorded on the contralateral V1 using a needle electrode. The wireless implantable board output stable monophasic voltage stimuli. The amplitude of the monophasic voltage output could be adjusted by controlling the voltage of the transmitter circuit within a range of 5–20 V. In acute experiment, cortico-cortical evoked potential (CCEP) response was recorded on the contralateral V1. The amplitude of N2 in CCEP was modulated by adjusting the stimulation intensity of the wireless interface. These results demonstrated that a wireless interface based on a microcoil array can offer a valuable tool for researchers to explore electrical stimulation in research and the dura mater-electrode interface can effectively transmit electrical stimulation. PMID:28165427

  11. Flexible ZnO nanorod-based piezoelectric nanogenerators on carbon papers.

    PubMed

    Banna, G M Hasan Ul; Park, Ii-Kyu

    2017-08-15

    We report on the fabrication of ZnO nanorod (NR)-based flexible piezoelectric nanogenerators (PENGs) on carbon paper (CP). Structural investigations indicate that the ZnO NRs grew well along the porous CP surface. Optical investigation shows that the crystal quality of the ZnO NRs on the CP was comparable to that of NRs grown on Si substrate. As the molar concentration increased from 10 to 70 mM, and the output voltage and current increased consistently from 3.6 to 6.8 V and 0.79 to 1.45 μA, respectively. The enhancements of the voltage and current were attributed to the enhanced accumulation of the potentials generated by the increased number of series-connected ZnO NRs in the PENG devices. Therefore, the porous CP enhanced the PENGs performance due to the higher surface area and provided a super-flexible self-powering platform. © 2017 IOP Publishing Ltd.

  12. Inverter Circuits Using ZnO Nanoparticle Based Thin-Film Transistors for Flexible Electronic Applications

    PubMed Central

    Vidor, Fábio F.; Meyers, Thorsten; Hilleringmann, Ulrich

    2016-01-01

    Innovative systems exploring the flexibility and the transparency of modern semiconducting materials are being widely researched by the scientific community and by several companies. For a low-cost production and large surface area applications, thin-film transistors (TFTs) are the key elements driving the system currents. In order to maintain a cost efficient integration process, solution based materials are used as they show an outstanding tradeoff between cost and system complexity. In this paper, we discuss the integration process of ZnO nanoparticle TFTs using a high-k resin as gate dielectric. The performance in dependence on the transistor structure has been investigated, and inverted staggered setups depict an improved performance over the coplanar device increasing both the field-effect mobility and the ION/IOFF ratio. Aiming at the evaluation of the TFT characteristics for digital circuit applications, inverter circuits using a load TFT in the pull-up network and an active TFT in the pull-down network were integrated. The inverters show reasonable switching characteristics and V/V gains. Conjointly, the influence of the geometry ratio and the supply voltage on the devices have been analyzed. Moreover, as all integration steps are suitable to polymeric templates, the fabrication process is fully compatible to flexible substrates. PMID:28335282

  13. Flexible conductive polypyrrole nanocomposite membranes based on bacterial cellulose with amphiphobicity.

    PubMed

    Tang, Lian; Han, Jinlu; Jiang, Zhenlin; Chen, Shiyan; Wang, Huaping

    2015-03-06

    Flexible conductive polypyrrole nanocomposite membranes based on bacterial cellulose (BC) with amphiphobicity have been successfully prepared through in situ chemical synthesis and then infiltrated with polysiloxane solution. The results suggested that polypyrrole (PPy) nanoparticles deposited on the surface of BC formed a continuous core-shell structure by taking along the BC template. After modification with polysiloxane, the surface characteristics of the conductive BC membranes changed from highly hydrophilic to hydrophobic. The AFM images revealed that the roughness of samples after polysiloxane treatment increased along with the increase of pyrrole concentration. The contact angles (CAs) data revealed that the highest water contact angle and highest oil contact angle are 160.3° and 136.7°, respectively. The conductivity of the amphiphobic membranes with excellent flexibility reached 0.32 S/cm and demonstrated a good electromagnetic shielding effectiveness with an SE of 15 dB which could be applied in electromagnetic shielding materials with self-cleaning properties. It opened a new field of potential applications of BC materials. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  14. Multifunctional Wearable Device Based on Flexible and Conductive Carbon Sponge/Polydimethylsiloxane Composite.

    PubMed

    Li, Yuan-Qing; Zhu, Wei-Bin; Yu, Xiao-Guang; Huang, Pei; Fu, Shao-Yun; Hu, Ning; Liao, Kin

    2016-12-07

    Wearable devices that can be used to monitor personal health, track human motions, and provide thermotherapy, etc., are highly desired in personalized healthcare. In this work, a multifunctional wearable "wrist band" which works as both heater for thermotherapy and sensor for personal health and motion monitoring is fabricated from a flexible and conductive carbon sponge/polydimethylsiloxane (CS/PDMS) composite. The key functional material of the wrist band, namely, the conductive CS, is synthesized from waste paper by a freeze-drying and high-temperature pyrolysis process. When the wrist band works as a heater under 15 V, a stable temperature difference of 20 °C is achieved between the wrist band and the ambient. When the wrist band serves as a wearable strain sensor, the wrist band exhibits fast and repeatable response and excellent durability within the strain range of 0-20% and the working frequency of 0.01-10 Hz. Finally, the typical applications of the multifunctional wearable wrist band, as a heater for thermotherapy and a sensor for blood pulse, breathe, and walk monitoring, are demonstrated. Due to its low cost, high flexibility, moderate conductivity, and excellent strain sensibility, the as-prepared wearable device based on the CS/PDMS composite is promising to be applied for the provision of personal healthcare.

  15. Flexible Fusion Structure-Based Performance Optimization Learning for Multisensor Target Tracking.

    PubMed

    Ge, Quanbo; Wei, Zhongliang; Cheng, Tianfa; Chen, Shaodong; Wang, Xiangfeng

    2017-05-06

    Compared with the fixed fusion structure, the flexible fusion structure with mixed fusion methods has better adjustment performance for the complex air task network systems, and it can effectively help the system to achieve the goal under the given constraints. Because of the time-varying situation of the task network system induced by moving nodes and non-cooperative target, and limitations such as communication bandwidth and measurement distance, it is necessary to dynamically adjust the system fusion structure including sensors and fusion methods in a given adjustment period. Aiming at this, this paper studies the design of a flexible fusion algorithm by using an optimization learning technology. The purpose is to dynamically determine the sensors' numbers and the associated sensors to take part in the centralized and distributed fusion processes, respectively, herein termed sensor subsets selection. Firstly, two system performance indexes are introduced. Especially, the survivability index is presented and defined. Secondly, based on the two indexes and considering other conditions such as communication bandwidth and measurement distance, optimization models for both single target tracking and multi-target tracking are established. Correspondingly, solution steps are given for the two optimization models in detail. Simulation examples are demonstrated to validate the proposed algorithms.

  16. Flexible Neural Electrode Array Based-on Porous Graphene for Cortical Microstimulation and Sensing

    PubMed Central

    Lu, Yichen; Lyu, Hongming; Richardson, Andrew G.; Lucas, Timothy H.; Kuzum, Duygu

    2016-01-01

    Neural sensing and stimulation have been the backbone of neuroscience research, brain-machine interfaces and clinical neuromodulation therapies for decades. To-date, most of the neural stimulation systems have relied on sharp metal microelectrodes with poor electrochemical properties that induce extensive damage to the tissue and significantly degrade the long-term stability of implantable systems. Here, we demonstrate a flexible cortical microelectrode array based on porous graphene, which is capable of efficient electrophysiological sensing and stimulation from the brain surface, without penetrating into the tissue. Porous graphene electrodes show superior impedance and charge injection characteristics making them ideal for high efficiency cortical sensing and stimulation. They exhibit no physical delamination or degradation even after 1 million biphasic stimulation cycles, confirming high endurance. In in vivo experiments with rodents, same array is used to sense brain activity patterns with high spatio-temporal resolution and to control leg muscles with high-precision electrical stimulation from the cortical surface. Flexible porous graphene array offers a minimally invasive but high efficiency neuromodulation scheme with potential applications in cortical mapping, brain-computer interfaces, treatment of neurological disorders, where high resolution and simultaneous recording and stimulation of neural activity are crucial. PMID:27642117

  17. Developing and Evaluating a Flexible Wireless Microcoil Array Based Integrated Interface for Epidural Cortical Stimulation.

    PubMed

    Wang, Xing; Chaudhry, Sharjeel A; Hou, Wensheng; Jia, Xiaofeng

    2017-02-05

    Stroke leads to serious long-term disability. Electrical epidural cortical stimulation has made significant improvements in stroke rehabilitation therapy. We developed a preliminary wireless implantable passive interface, which consists of a stimulating surface electrode, receiving coil, and single flexible passive demodulated circuit printed by flexible printed circuit (FPC) technique and output pulse voltage stimulus by inductively coupling an external circuit. The wireless implantable board was implanted in cats' unilateral epidural space for electrical stimulation of the primary visual cortex (V1) while the evoked responses were recorded on the contralateral V1 using a needle electrode. The wireless implantable board output stable monophasic voltage stimuli. The amplitude of the monophasic voltage output could be adjusted by controlling the voltage of the transmitter circuit within a range of 5-20 V. In acute experiment, cortico-cortical evoked potential (CCEP) response was recorded on the contralateral V1. The amplitude of N2 in CCEP was modulated by adjusting the stimulation intensity of the wireless interface. These results demonstrated that a wireless interface based on a microcoil array can offer a valuable tool for researchers to explore electrical stimulation in research and the dura mater-electrode interface can effectively transmit electrical stimulation.

  18. Performance of flexible capacitors based on polypyrrole/carbon fiber electrochemically prepared from various phosphate electrolytes

    NASA Astrophysics Data System (ADS)

    Yuan, Wei; Han, Gaoyi; Chang, Yunzhen; Li, Miaoyu; Xiao, Yaoming; Zhou, Haihan; Zhang, Ying; Li, Yanping

    2016-11-01

    In order to investigate the influence of electrolytes in electro-deposition solution on the capacitive properties of polypyrrole (PPy), we have chosen phosphoric acid, phosphate, hydrogen phosphate and dihydrogen phosphate as electrolyte in deposition solution respectively and electrochemically deposited PPy on carbon fibers (CFs) via galvanostatic method. The morphologies of the PPy/CFs samples have been characterized by scanning electron microscope. The specific capacitance of PPy/CFs samples has been evaluated in different electrolytes through three-electrode test system. The assembled flexible capacitors by using PPy/CFs as electrodes and H3PO4/polyvinyl alcohol as gel electrolyte have been systematically measured by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. The results show that the electrochemical capacitors based on PPy/CFs prepared from deposition solution containing NaH2PO4·2H2O electrolyte exhibit higher specific capacitance, flexibility and excellent stability (retaining 96.8% of initial capacitance after 13,000 cycles), and that three cells connected in series can power a light-emitting diode.

  19. Flexible Time-Triggered Sampling in Smart Sensor-Based Wireless Control Systems

    PubMed Central

    Xia, Feng; Zhao, Wenhong

    2007-01-01

    Wireless control systems (WCSs) often have to operate in dynamic environments where the network traffic load may vary unpredictably over time. The sampling in sensors is conventionally time triggered with fixed periods. In this context, only worse-than-possible quality of control (QoC) can be achieved when the network is underloaded, while overloaded conditions may significantly degrade the QoC, even causing system instability. This is particularly true when the bandwidth of the wireless network is limited and shared by multiple control loops. To address these problems, a flexible time-triggered sampling scheme is presented in this work. Smart sensors are used to facilitate dynamic adjustment of sampling periods, which enhances the flexibility and resource efficiency of the system based on time-triggered sampling. Feedback control technology is exploited for adapting sampling periods in a periodic manner. The deadline miss ratio in each control loop is maintained at/around a desired level, regardless of workload variations. Simulation results show that the proposed sampling scheme is able to deal with dynamic and unpredictable variations in network traffic load. Compared to conventional time-triggered sampling, it leads to much better QoC in WCSs operating in dynamic environments.

  20. Flexible Neural Electrode Array Based-on Porous Graphene for Cortical Microstimulation and Sensing

    NASA Astrophysics Data System (ADS)

    Lu, Yichen; Lyu, Hongming; Richardson, Andrew G.; Lucas, Timothy H.; Kuzum, Duygu

    2016-09-01

    Neural sensing and stimulation have been the backbone of neuroscience research, brain-machine interfaces and clinical neuromodulation therapies for decades. To-date, most of the neural stimulation systems have relied on sharp metal microelectrodes with poor electrochemical properties that induce extensive damage to the tissue and significantly degrade the long-term stability of implantable systems. Here, we demonstrate a flexible cortical microelectrode array based on porous graphene, which is capable of efficient electrophysiological sensing and stimulation from the brain surface, without penetrating into the tissue. Porous graphene electrodes show superior impedance and charge injection characteristics making them ideal for high efficiency cortical sensing and stimulation. They exhibit no physical delamination or degradation even after 1 million biphasic stimulation cycles, confirming high endurance. In in vivo experiments with rodents, same array is used to sense brain activity patterns with high spatio-temporal resolution and to control leg muscles with high-precision electrical stimulation from the cortical surface. Flexible porous graphene array offers a minimally invasive but high efficiency neuromodulation scheme with potential applications in cortical mapping, brain-computer interfaces, treatment of neurological disorders, where high resolution and simultaneous recording and stimulation of neural activity are crucial.

  1. A novel method to fabricate parylene-based flexible microfluidic platforms with commercial adhesive tape

    NASA Astrophysics Data System (ADS)

    Kim, Byung Jun; Lee, Donghee; Lee, Jongho; Yang, Sung

    2015-01-01

    We developed a new method to fabricate parylene-based flexible microfluidic platforms using commercial adhesive tape. Most of the previous methods required the preparation of parylene channels via a parylene-to-parylene bonding, which could only be achieved at high pressure and temperature. Instead, our method exploits the adherent property of commercial tape as a substrate for the parylene peel-off process. Once the parylene thin film is deposited by chemical vapour deposition (CVD) on top of the polydimethylsiloxane (PDMS) replica, prepared by conventional lithography process, an adhesive tape peels off the deposited parylene layer with the micro-scale structures from the PDMS replica. We found that the minimum size of the circle posts successfully fabricated by this process is about 10 μm in diameter and 10 μm in height; the maximum value in aspect ratio is about 2.5. In our experimental investigation, pressure in the parylene channels with different wall thicknesses, was measured to estimate the hydraulic resistance of the channel. Our results are comparable with calculated data, with a normalized deviation smaller than 5%. In addition, the hydraulic resistance of the channels on the curved surface obtained with a similar approach showed an increase when the radius of curvature was reduced. Finally, this contribution shows that our method enables a simple and relatively inexpensive fabrication of flexible microfluidic platforms.

  2. Multicolored, Low-Power, Flexible Electrochromic Devices Based on Ion Gels.

    PubMed

    Moon, Hong Chul; Kim, Chang-Hyun; Lodge, Timothy P; Frisbie, C Daniel

    2016-03-09

    Ion gels composed of a copolymer and a room temperature ionic liquid are versatile solid-state electrolytes with excellent features including high ionic conductivity, nonvolatility, easily tunable mechanical properties, good flexibility and solution processability. Ion gels can be functionalized by incorporating redox-active species such as electrochemiluminescent (ECL) luminophores or electrochromic (EC) dyes. Here, we enhance the functionality of EC gels for realizing multicolored EC devices (ECDs), either by controlling the chemical equilibrium between a monomer and dimer of a colored EC species, or by modifying the molecular structures of the EC species. All devices in this work are conveniently fabricated by a "cut-and-stick" strategy, and require very low power for maintaining the colored state [i.e., 90 μW/cm(2) (113 μA/cm(2) at -0.8 V) for blue, 4 μW/cm(2) (10 μA/cm(2) at -0.4 V) for green, and 32 μW/cm(2) (79 μA/cm(2) at -0.4 V) for red ECD]. We also successfully demonstrate a patterned, multicolored, flexible ECD on plastic. Overall, these results suggest that gel-based ECDs have significant potential as low power displays in printed electronics powered by thin-film batteries.

  3. 3DMolNavi: A web-based retrieval and navigation tool for flexible molecular shape comparison

    PubMed Central

    2012-01-01

    Background Many molecules of interest are flexible and undergo significant shape deformation as part of their function, but most existing methods of molecular shape comparison treat them as rigid shapes, which may lead to incorrect measure of the shape similarity of flexible molecules. Currently, there still is a limited effort in retrieval and navigation for flexible molecular shape comparison, which would improve data retrieval by helping users locate the desirable molecule in a convenient way. Results To address this issue, we develop a web-based retrieval and navigation tool, named 3DMolNavi, for flexible molecular shape comparison. This tool is based on the histogram of Inner Distance Shape Signature (IDSS) for fast retrieving molecules that are similar to a query molecule, and uses dimensionality reduction to navigate the retrieved results in 2D and 3D spaces. We tested 3DMolNavi in the Database of Macromolecular Movements (MolMovDB) and CATH. Compared to other shape descriptors, it achieves good performance and retrieval results for different classes of flexible molecules. Conclusions The advantages of 3DMolNavi, over other existing softwares, are to integrate retrieval for flexible molecular shape comparison and enhance navigation for user’s interaction. 3DMolNavi can be accessed via https://engineering.purdue.edu/PRECISE/3dmolnavi/index.html. PMID:22583488

  4. Flexible Description Language for HPC based Processing of Remote Sense Data

    NASA Astrophysics Data System (ADS)

    Nandra, Constantin; Gorgan, Dorian; Bacu, Victor

    2016-04-01

    When talking about Big Data, the most challenging aspect lays in processing them in order to gain new insight, find new patterns and gain knowledge from them. This problem is likely most apparent in the case of Earth Observation (EO) data. With ever higher numbers of data sources and increasing data acquisition rates, dealing with EO data is indeed a challenge [1]. Geoscientists should address this challenge by using flexible and efficient tools and platforms. To answer this trend, the BigEarth project [2] aims to combine the advantages of high performance computing solutions with flexible processing description methodologies in order to reduce both task execution times and task definition time and effort. As a component of the BigEarth platform, WorDeL (Workflow Description Language) [3] is intended to offer a flexible, compact and modular approach to the task definition process. WorDeL, unlike other description alternatives such as Python or shell scripts, is oriented towards the description topologies, using them as abstractions for the processing programs. This feature is intended to make it an attractive alternative for users lacking in programming experience. By promoting modular designs, WorDeL not only makes the processing descriptions more user-readable and intuitive, but also helps organizing the processing tasks into independent sub-tasks, which can be executed in parallel on multi-processor platforms in order to improve execution times. As a BigEarth platform [4] component, WorDeL represents the means by which the user interacts with the system, describing processing algorithms in terms of existing operators and workflows [5], which are ultimately translated into sets of executable commands. The WorDeL language has been designed to help in the definition of compute-intensive, batch tasks which can be distributed and executed on high-performance, cloud or grid-based architectures in order to improve the processing time. Main references for further

  5. Design and fabrication of a flexible MEMS-based electromechanical sensor array for breast cancer diagnosis.

    PubMed

    Pandya, Hardik J; Park, Kihan; Desai, Jaydev P

    2015-06-23

    The use of flexible micro-electro-mechanical systems (MEMS) based device provides a unique opportunity in bio-medical robotics such as characterization of normal and malignant tissues. This paper reports on design and development of a flexible MEMS-based sensor array integrating mechanical and electrical sensors on the same platform to enable the study of the change in electro-mechanical properties of the benign and cancerous breast tissues. In this work, we present the analysis for the electrical characterization of the tissue specimens and also demonstrate the feasibility of using the sensor for mechanical characterization of the tissue specimens. Eight strain gauges acting as mechanical sensors were fabricated using poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) conducting polymer on poly(dimethylsiloxane) (PDMS) as the substrate material. Eight electrical sensors were fabricated using SU-8 pillars on gold (Au) pads which were patterned on the strain gauges separated by a thin insulator (SiO2 1.0μm). These pillars were coated with gold to make it conducting. The electromechanical sensors are integrated on the same substrate. The sensor array covers 180μm × 180μm area and the size of the complete device is 20mm in diameter. The diameter of each breast tissue core used in the present study was 1mm and the thickness was 8μm. The region of interest was 200μm × 200μm. Microindentation technique was used to characterize the mechanical properties of the breast tissues. The sensor is integrated with conducting SU-8 pillars to study the electrical property of the tissue. Through electro-mechanical characterization studies using this MEMS-based sensor, we were able to measure the accuracy of the fabricated device and ascertain the difference between benign and cancer breast tissue specimens.

  6. Active vibration isolation of a flexible structure mounted on a vibrating elastic base

    NASA Astrophysics Data System (ADS)

    El-Sinawi, A. H.

    2004-03-01

    The problem of isolating the vibration at any location on a flexible structure mounted on a vibrating flexible base is considered using a Kalman-based active feedforward-feedback controller (KAFB) with non-collocated sensors and actuators. The control strategy developed in this study focuses on lowering the force transmitted to the structure through its vibrating elastic foundation in the presence of process and measurements noise. A state-space model of the structure is constructed from the natural frequencies and mode shapes generated via finite element modal analysis of the structure. The important aspect of the proposed control strategy is that, while it's design is based on a full order model of the physical structure (plant), its implementation is reduced to the realization of a second order estimator regardless of the order of the plant model, and with negligible effect on its accuracy and performance. Therefore, the proposed control strategy requires low computational effort, which makes it well suited for real time control applications. Another unique aspect of this control strategy is its agility and speed in compensating for any phase or magnitude mismatch between transmitted force and control force. Moreover, the stability of the control system is implicitly attained by the controllability condition posed by the Kalman filter on the model. Thus, proper choice of Kalman gains will drive the states of the structure, at the sensor location, ideally to zero. In addition to that, digital implementation of the proposed controller can be easily done considering the fact that the discrete Kalman filter is exact. Numerical simulation of the controller performance is carried out and the results are presented.

  7. Assessing an ensemble docking-based virtual screening strategy for kinase targets by considering protein flexibility.

    PubMed

    Tian, Sheng; Sun, Huiyong; Pan, Peichen; Li, Dan; Zhen, Xuechu; Li, Youyong; Hou, Tingjun

    2014-10-27

    In this study, to accommodate receptor flexibility, based on multiple receptor conformations, a novel ensemble docking protocol was developed by using the naïve Bayesian classification technique, and it was evaluated in terms of the prediction accuracy of docking-based virtual screening (VS) of three important targets in the kinase family: ALK, CDK2, and VEGFR2. First, for each target, the representative crystal structures were selected by structural clustering, and the capability of molecular docking based on each representative structure to discriminate inhibitors from non-inhibitors was examined. Then, for each target, 50 ns molecular dynamics (MD) simulations were carried out to generate an ensemble of the conformations, and multiple representative structures/snapshots were extracted from each MD trajectory by structural clustering. On average, the representative crystal structures outperform the representative structures extracted from MD simulations in terms of the capabilities to separate inhibitors from non-inhibitors. Finally, by using the naïve Bayesian classification technique, an integrated VS strategy was developed to combine the prediction results of molecular docking based on different representative conformations chosen from crystal structures and MD trajectories. It was encouraging to observe that the integrated VS strategy yields better performance than the docking-based VS based on any single rigid conformation. This novel protocol may provide an improvement over existing strategies to search for more diverse and promising active compounds for a target of interest.

  8. A novel flexible tactile sensor based on Ce-doped BaTiO3 nanofibers

    NASA Astrophysics Data System (ADS)

    Zhuang, Yongyong; Xu, Zhuo; Fu, Xiaotian; Li, Fei; Li, Jinglei; Liao, Zhipeng; Liu, Weihua

    2017-07-01

    The performance of a robotic hand is severely limited by the tactile feedback information similar to a human hand. Hence, a novel and robust tactile sensor has been developed to cope with the challenge of robotic hand technology. Piezoelectric material is proposed as a suitable candidate for a new efficient tactile sensor due to its excellent piezoelectric properties. In this paper, a novel flexible tactile sensor based on Ce-doped BTO nanofibers was developed. The doping mechanism of cerium ions and the working process of the sensor were analysed. The results showed that sheer stress had no contribution to the sensor, this indicated that the sensor was easy to control according to the individual’s wish. The output voltage of the sensor could reach up to 0.078 V which showed great potential for the future of intelligent robot skin application.

  9. Highly flexible resistive switching memory based on amorphous-nanocrystalline hafnium oxide films.

    PubMed

    Shang, Jie; Xue, Wuhong; Ji, Zhenghui; Liu, Gang; Niu, Xuhong; Yi, Xiaohui; Pan, Liang; Zhan, Qingfeng; Xu, Xiao-Hong; Li, Run-Wei

    2017-06-01

    Flexible and transparent resistive switching memories are highly desired for the construction of portable and even wearable electronics. Upon optimization of the microstructure wherein an amorphous-nanocrystalline hafnium oxide thin film is fabricated, an all-oxide based transparent RRAM device with stable resistive switching behavior that can withstand a mechanical tensile stress of up to 2.12% is obtained. It is demonstrated that the superior electrical, thermal and mechanical performance of the ITO/HfOx/ITO device can be ascribed to the formation of pseudo-straight metallic hafnium conductive filaments in the switching layer, and is only limited by the choice of electrode materials. When the ITO bottom electrode is replaced with platinum metal, the mechanical failure threshold of the device can be further extended.

  10. Flexible assembly module for beam-shaping product families based on support structures

    NASA Astrophysics Data System (ADS)

    Haag, Sebastian; Rübenach, Olaf; Beleke, Andreas; Haverkamp, Tobias; Müller, Tobias; Zontar, Daniel; Wenzel, Christian; Brecher, Christian

    2016-03-01

    Depending on the application, high-power diode lasers (HPDL) have individual requirements on their beam-shaping as well as their mechanical fixation. In order to reduce assembly efforts, laser system manufacturers request pre-assembled beam-shaping systems consisting of a support structure for adhesive bonding as well as one, two or more lenses. Therefore, manufacturers of micro-optics for HPDL need flexible solutions for assembling beam-shaping subassemblies. This paper discusses current solutions for mounting optical subassemblies for beam-shaping of high-power diode lasers and their drawbacks regarding quality and scalability. Subsequently, the paper presents a device which can be used for the sensor-guided assembly of beam-shaping systems based on bottomtab support structures. Results from test productions of several hundred modules are presented showing that repeatability in the range of 1 μm is feasible on an industrial level.

  11. Flexible symmetric supercapacitors based on vertical TiO2 and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chien, C. J.; Chang, Pai-Chun; Lu, Jia G.

    2010-03-01

    Highly conducting and porous carbon nanotubes are widely used as electrodes in double-layer-effect supercapacitors. In this presentation, vertical TiO2 nanotube array is fabricated by anodization process and used as supercapacitor electrode utilizing its compact density, high surface area and porous structure. By spin coating carbon nanotube networks on vertical TiO2 nanotube array as electrodes with 1M H2SO4 electrolyte in between, the specific capacitance can be enhanced by 30% compared to using pure carbon nanotube network alone because of the combination of double layer effect and redox reaction from metal oxide materials. Based on cyclic voltammetry and galvanostatic charge-discharge measurements, this type of hybrid electrode has proven to be suitable for high performance supercapacitor application and maintain desirable cycling stability. The electrochemical impedance spectroscopy technique shows that the electrode has good electrical conductivity. Furthermore, we will discuss the prospect of extending this energy storage approach in flexible electronics.

  12. Transparent and flexible write-once-read-many (WORM) memory device based on egg albumen

    NASA Astrophysics Data System (ADS)

    Qu, Bo; Lin, Qianru; Wan, Tao; Du, Haiwei; Chen, Nan; Lin, Xi; Chu, Dewei

    2017-08-01

    Egg albumen, as an important protein resource in nature, is an interesting dielectric material exhibiting many fascinating properties for the development of environmentally friendly electronic devices. Taking advantage of their extraordinary transparency and flexibility, this paper presents an innovative preparation approach for albumen thin film based write-once-read-many-times (WORM) memory devices in a simple, cost-effective manner. The fabricated device shows superior data retention properties including non-volatile character (over 105 s) and promising great read durability (106 times). Furthermore, our results suggested that the electric-field-induced trap-controlled space charge limited current (SCLC) conduction is responsible for the observed resistance switching effect. The present study may likely reveal another pathway towards complete see-through electrical devices.

  13. Eigensensitivity based optimal distribution of a viscoelastic damping layer for a flexible beam

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Woo; Kim, Ji-Hwan

    2004-05-01

    In this paper, optimal distribution of a viscoelastic damping layer is sought for suppression of the transient vibration of a flexible beam. For the damping design, eigenvalues in the range of interest are taken as design criteria rather than the responses at a specific frequency. Two eigensensitivity based optimizing procedures are proposed, which are analogous to the pole placement technique and optimal control theory for dynamic system design. For the eigenanalysis of the structure with frequency-dependent material, Golla-Hughes-McTavish (GHM) model is used in expressing the viscoelastic material property and an approximate eigensolution is employed to avoid the intensity of iterative computation in the optimization process which is caused by additional degrees of freedom due to GHM modelling. Optimized partial coverage configurations are illustrated and compared to the full coverage configuration demonstrating the improved vibration characteristic of the optimally layered structure.

  14. Note: A flexible light emitting diode-based broadband transient-absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Gottlieb, Sean M.; Corley, Scott C.; Madsen, Dorte; Larsen, Delmar S.

    2012-05-01

    This Note presents a simple and flexible ns-to-ms transient absorption spectrometer based on pulsed light emitting diode (LED) technology that can be incorporated into existing ultrafast transient absorption spectrometers or operate as a stand-alone instrument with fixed-wavelength laser sources. The LED probe pulses from this instrument exhibit excellent stability (˜0.5%) and are capable of producing high signal-to-noise long-time (>100 ns) transient absorption signals either in a broadband multiplexed (spanning 250 nm) or in tunable narrowband (20 ns) operation. The utility of the instrument is demonstrated by measuring the photoinduced ns-to-ms photodynamics of the red/green absorbing fourth GMP phosphodiesterase/adenylyl cyclase/FhlA domain of the NpR6012 locus of the nitrogen-fixing cyanobacterium Nostoc punctiforme.

  15. Nanocomposite based flexible ultrasensitive resistive gas sensor for chemical reactions studies

    PubMed Central

    Pandey, Sadanand; Goswami, Gopal K.; Nanda, Karuna K.

    2013-01-01

    Room temperature operation, low detection limit and fast response time are highly desirable for a wide range of gas sensing applications. However, the available gas sensors suffer mainly from high temperature operation or external stimulation for response/recovery. Here, we report an ultrasensitive-flexible-silver-nanoparticle based nanocomposite resistive sensor for ammonia detection and established the sensing mechanism. We show that the nanocomposite can detect ammonia as low as 500 parts-per-trillion at room temperature in a minute time. Furthermore, the evolution of ammonia from different chemical reactions has been demonstrated using the nanocomposite sensor as an example. Our results demonstrate the proof-of-concept for the new detector to be used in several applications including homeland security, environmental pollution and leak detection in research laboratories and many others. PMID:23803772

  16. Flexible impedance and capacitive tensile load Sensor based on CNT composite

    NASA Astrophysics Data System (ADS)

    Zubair, Ahmad; Kh, S. Karimov; Farid, Touati

    2016-02-01

    In this paper, the fabrication and investigation of flexible impedance and capacitive tensile load sensors based on carbon nanotube (CNT) composite are reported. On thin rubber substrates, CNTs are deposited from suspension in water and pressed at elevated temperature. It is found that the fabricated load cells are highly sensitive to the applied mechanical force with good repeatability. The increase in impedance of the cells is observed to be 2.0 times while the decrease in the capacitance is found to be 2.1 times as applied force increases up to 0.3 N. The average impedance and capacitive sensitivity of the cell are equal to 3.4 N-1 and 1.8 N-1, respectively. Experimental results are compared with the simulated values, and they show that they are in reasonable agreement with each other.

  17. Screen printed, transparent, and flexible electrodes based on graphene nanoplatelet pastes

    NASA Astrophysics Data System (ADS)

    Wróblewski, Grzegorz; Janczak, Daniel

    Transparent, flexible and conducting graphene films were produced by screen printing method using printing pastes based on graphene nanoplatelets in polymer matrix. The transparency of received layers and the mechanical resistivity in several bending cycles were measured. Subsequently percolation threshold was investigated. Graphene layers were printed on diverse substrates (glass, Al2O3, PET) and afterwards for samples printed on glass different firing atmospheres (N2, H2, air) were studied. Best firing results (resistance decrease) were obtained for treatment in 250 °C in atmosphere of air. Finally investigation results were used to produce a transparent and elastic electrode for an electroluminescent display, showing the application potential of our graphene nanocomposite pastes.

  18. InN Based Water Condensation Sensors on Glass and Flexible Plastic Substrates

    PubMed Central

    Dumitru, Viorel; Costea, Stefan; Brezeanu, Mihai; Stan, George E.; Besleaga, Cristina; Galca, Aurelian C.; Ionescu, Gabriela; Ionescu, Octavian

    2013-01-01

    In this paper, we report the realization and characterization of a condensation sensor based on indium nitride (InN) layers deposited by magnetron sputtering on glass and flexible plastic substrates, having fast response and using potentially low cost fabrication technology. The InN devices work as open gate thin film sensitive transistors. Condensed water droplets, formed on the open gate region of the sensors, deplete the electron accumulation layer on the surface of InN film, thus decreasing the current of the sensor. The current increases back to its initial value when water droplets evaporate from the exposed InN film surface. The response time is as low as 2 s.

  19. A flexible Li polymer primary cell with a novel gel electrolyte based on poly(acrylonitrile)

    NASA Astrophysics Data System (ADS)

    Akashi, Hiroyuki; Tanaka, Ko-ichi; Sekai, Koji

    The performance of a Li polymer primary cell with fire-retardant poly(acrylonitrile) (PAN)-based gel electrolytes is reported. By optimizing electrodes, electrolytes, the packaging material, and the structural design of the polymer cell, we succeeded in developing a "film-like" Li polymer primary cell with sufficient performance for practical use. The cell is flexible and less than 0.5 mm thick, which makes it suitable for a power source for some smart devices, such as an IC card. Fast cation conduction in the gel electrolyte minimizes the drop of the discharge capacity even at -20 °C. The high chemical stability of the gel electrolytes and the new packaging material allow the self-discharge rate to be limited to under 4.3%, which is equivalent to that of conventional coin-shaped or cylindrical Li-MnO 2 cells.

  20. FAT-based adaptive sliding control for flexible arms: Theory and experiments

    NASA Astrophysics Data System (ADS)

    Haung, An-Chyau; Liao, Kuo-Kai

    2006-11-01

    An adaptive sliding controller is proposed in this paper for flexible arms containing time-varying uncertainties with unknown bounds based on function approximation technique (FAT). The uncertainties are firstly represented by finite linear combinations of orthonormal basis with some unknown constant weighting vectors. Output error dynamics can thus be derived as a stable first-order filter driven by parameter error vectors. Appropriate update laws for the weighting vectors are selected using the Lyapunov method so that asymptotic convergence of the output error can be proved as long as a sufficient number of basis functions are used. Effects of the approximation error on system performance are also investigated in this paper. Both computer simulation and experimental results confirm the feasibility of the proposed control strategy.

  1. MEMS-based electrostatically tunable microstrip patch antenna using flexible polyimide film

    NASA Astrophysics Data System (ADS)

    Goteti, Raghav Venkat; Ramadoss, Ramesh

    2005-05-01

    This paper reports a MEMS-based electrostatically tunable microstrip patch antenna fabricated using printed circuit processing techniques. The microstrip patch is patterned on the top side of the flexible kapton polyimide film, which is suspended above the fixed ground plane using a spacer. The air gap between the microstrip patch and the ground plane is decreased by applying a DC bias voltage between the patch and the ground plane. A decrease in air gap increases the effective permittivity of the antenna resulting in a downward shift in the resonant frequency. The microstrip patch is excited by a slot in the ground plane, which is inductively coupled by a coplanar waveguide (CPW) feed line. A 6 mm x 6 mm microstrip patch antenna tunable from 18.34 GHz at 0 V to 17.95 GHz at 268 V (with a tuning range of 390 MHz) is discussed.

  2. A flexible flight display research system using a ground-based interactive graphics terminal

    NASA Technical Reports Server (NTRS)

    Hatfield, J. J.; Elkins, H. C.; Batson, V. M.; Poole, W. L.

    1975-01-01

    Requirements and research areas for the air transportation system of the 1980 to 1990's were reviewed briefly to establish the need for a flexible flight display generation research tool. Specific display capabilities required by aeronautical researchers are listed and a conceptual system for providing these capabilities is described. The conceptual system uses a ground-based interactive graphics terminal driven by real-time radar and telemetry data to generate dynamic, experimental flight displays. These displays are scan converted to television format, processed, and transmitted to the cockpits of evaluation aircraft. The attendant advantages of a Flight Display Research System (FDRS) designed to employ this concept are presented. The detailed implementation of an FDRS is described. The basic characteristics of the interactive graphics terminal and supporting display electronic subsystems are presented and the resulting system capability is summarized. Finally, the system status and utilization are reviewed.

  3. Shape-adapting thermoacoustic imaging system based on flexible multi-element transducer

    NASA Astrophysics Data System (ADS)

    Ji, Zhong; Ding, Wenzheng; Ye, Fanghao; Lou, Cunguang; Xing, Da

    2015-08-01

    Microwave-induced thermoacoustic (TA) imaging is efficient in detecting the anomaly that has difference in microwave absorption with normal tissue, particularly for breast tumor and foreign objects. However, the traditional circular-scanning TA system needs a large operating space for rotation of the transducers and bulk of coupling medium. The linear-scanning system can overcome these problems partially but usually lose some information and cause image distortion. In order to overcome these limitations, a shape-adapting TA imaging system based on flexible multi-element transducer is proposed in this letter. The experimental results show that this system provides obvious advantages, including shape adaptation, information integrity, and efficient transmission, which make it a preferred choice for biomedical applications, especially for breast tumor detection.

  4. One step shift towards flexible supercapacitors based on carbon nanotubes - A review

    SciTech Connect

    Yar, A. E-mail: johndennis@petronas.com.my E-mail: asad-032@yahoo.com Dennis, J. O. E-mail: johndennis@petronas.com.my E-mail: asad-032@yahoo.com Mohamed, N. M. E-mail: johndennis@petronas.com.my E-mail: asad-032@yahoo.com Mumtaz, A. E-mail: johndennis@petronas.com.my E-mail: asad-032@yahoo.com Irshad, M. I. E-mail: johndennis@petronas.com.my E-mail: asad-032@yahoo.com; Ahmad, F.

    2014-10-24

    Supercapacitors have emerged as prominent energy storage devices that offer high energy density compared to conventional capacitors and high power density which is not found in batteries. Carbon nanotubes (CNTs) because of their high surface area and tremendous electrical properties are used as electrode material for supercapacitors. In this review we focused on the factors like surface area, role of the electrolyte and techniques adopted to improve performance of CNTs based supercapacitors. The supercapacitors are widely tested in liquid electrolytes which are normally hazardous in nature, toxic, flammable and their leakage has safety concerns. This review also focuses on research which is replacing these unsafe electrolytes by solid electrolytes with the combination of low cost CNTs deposited flexible supports for supercapacitors.

  5. Toward a More Flexible Web-Based Framework for Multidisciplinary Design

    NASA Technical Reports Server (NTRS)

    Rogers, J. L.; Salas, A. O.

    1999-01-01

    In today's competitive environment, both industry and government agencies are under pressure to reduce the time and cost of multidisciplinary design projects. New tools have been introduced to assist in this process by facilitating the integration of and communication among diverse disciplinary codes. One such tool, a framework for multidisciplinary design, is defined as a hardware-software architecture that enables integration, execution, and communication among diverse disciplinary processes. An examination of current frameworks reveals weaknesses in various areas, such as sequencing, monitoring, controlling, and displaying the design process. The objective of this research is to explore how Web technology can improve these areas of weakness and lead toward a more flexible framework. This article describes a Web-based system that optimizes and controls the execution sequence of design processes in addition to monitoring the project status and displaying the design results.

  6. Split-Ring Resonator-Based Strain Sensor on Flexible Substrates for Glaucoma Detection

    NASA Astrophysics Data System (ADS)

    Ekinci, Gizem; Deniz Yalcinkaya, Arda; Dundar, Gunhan; Torun, Hamdi

    2016-10-01

    This paper presents split-ring resonator-based strain sensors designed and characterized for glaucoma detection application. The geometry of the sensor is optimized such that it can be embedded in a contact lens. Silver conductive paint is to form the sensors realized on flexible substrates made of cellulose acetate and latex rubber. The devices are excited and interrogated using a pair of monopole antennas and the characteristics of devices with different curvature profiles are obtained. The sensitivity of the device, i.e. the change in resonant frequency for a unit change in radius of curvature, on acetate film is calculated as -4.73 MHz/mm and the sensitivity of the device on latex is 33.2 MHz/mm. The results indicate that the demonstrated device is suitable for glaucoma diagnosis.

  7. A flexible and modular data format ROOT-based implementation for HEP

    NASA Astrophysics Data System (ADS)

    D'Urso, Domenico; Duranti, Matteo

    2015-12-01

    Data access and availability is a crucial issue in high energy physics (HEP) experiments, given the huge amount of data produced. We present a flexible and modular data format implementation for HEP applications. It has been designed to modularize data in order to update the minimum amount of event information in case of bug correction, software updates or data format extension, to simplify data distribution and upgrades to the regional data centers, and to reduce the amount of data to be transferred to data members really affected by reprocessing. The proposed design and implementation has been developed as mini-DST data format for the Alpha Magnetic Spectrometer (AMS [1]) experiment on the International Space Station (ISS) and is based on the CERN ROOT [2] toolkit.

  8. Vibration energy harvester with low resonant frequency based on flexible coil and liquid spring

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Zhang, Q.; Zhao, L.; Tang, Y.; Shkel, A.; Kim, E. S.

    2016-11-01

    This paper reports an electromagnetic vibration-energy harvester with low resonant frequency based on liquid spring composed of ferrofluid. Cylinder magnet array formed by four disc NdFeB magnets is suspended by ferrofluid in a laser-machined acrylic tube which is wrapped by flexible planar coil fabricated with microfabrication process. The magnet array and coil are aligned automatically by the ferrofluid. Restoring force when the magnet array is deviated from the balance position is proportional to the deviated distance, which makes the ferrofluid work as a liquid spring obeying Hook's law. Experimental results show that the electromagnetic energy harvester occupying 1.8 cc and weighing 5 g has a resonant frequency of 16 Hz and generates an induced electromotive force of Vrms = 2.58 mV (delivering 79 nW power into matched load of 21 Ω) from 3 g acceleration at 16 Hz.

  9. A Petri Net Approach Based Elementary Siphons Supervisor for Flexible Manufacturing Systems

    NASA Astrophysics Data System (ADS)

    Abdul-Hussin, Mowafak Hassan

    2015-05-01

    This paper presents an approach to constructing a class of an S3PR net for modeling, simulation and control of processes occurring in the flexible manufacturing system (FMS) used based elementary siphons of a Petri net. Siphons are very important to the analysis and control of deadlocks of FMS that is significant objectives of siphons. Petri net models in the efficiency structure analysis, and utilization of the FMSs when different policy can be implemented lead to the deadlock prevention. We are representing an effective deadlock-free policy of a special class of Petri nets called S3PR. Simulation of Petri net structural analysis and reachability graph analysis is used for analysis and control of Petri nets. Petri nets contain been successfully as one of the most powerful tools for modelling of FMS, where Using structural analysis, we show that liveness of such systems can be attributed to the absence of under marked siphons.

  10. Diversity of photonic differentiators based on flexible demodulation of phase signals

    NASA Astrophysics Data System (ADS)

    Zheng, Ao-Ling; Dong, Jian-Ji; Lei, Lei; Yang, Ting; Zhang, Xin-Liang

    2014-03-01

    We theoretically propose a multifunctional photonic differentiation (DIFF) scheme based on phase demodulation using two cascaded linear filters. The photonic DIFF has a diversity of output forms, such as the 1st order intensity DIFF, the 1st order field DIFF and its inversion, and the 2nd-order field DIFF, depending on the relative shift between the optical carrier and the filter's resonant notches. As a proof, we also experimentally demonstrate the DIFF diversity using a phase modulator and two delay interferometers (DIs). The calculated average deviation is less than 7% for all DIFF waveforms. Our schemes show the advantages of flexible DIFF functions and forms, which may have different optical applications. For example, high order field differentiators can be used to generate complex temporal waveforms, and intensity differentiators are useful for the ultra-wideband pulse generation.

  11. Fabrication of arrayed Si nanowire-based nano-floating gate memory devices on flexible plastics.

    PubMed

    Yoon, Changjoon; Jeon, Youngin; Yun, Junggwon; Kim, Sangsig

    2012-01-01

    Arrayed Si nanowire (NW)-based nano-floating gate memory (NFGM) devices with Pt nanoparticles (NPs) embedded in Al2O3 gate layers are successfully constructed on flexible plastics by top-down approaches. Ten arrayed Si NW-based NFGM devices are positioned on the first level. Cross-linked poly-4-vinylphenol (PVP) layers are spin-coated on them as isolation layers between the first and second level, and another ten devices are stacked on the cross-linked PVP isolation layers. The electrical characteristics of the representative Si NW-based NFGM devices on the first and second levels exhibit threshold voltage shifts, indicating the trapping and detrapping of electrons in their NPs nodes. They have an average threshold voltage shift of 2.5 V with good retention times of more than 5 x 10(4) s. Moreover, most of the devices successfully retain their electrical characteristics after about one thousand bending cycles. These well-arrayed and stacked Si NW-based NFGM devices demonstrate the potential of nanowire-based devices for large-scale integration.

  12. Performance improvement in flexible polymer solar cells based on modified silver nanowire electrode

    NASA Astrophysics Data System (ADS)

    Wang, Danbei; Zhou, Weixin; Liu, Huan; Ma, Yanwen; Zhang, Hongmei

    2016-08-01

    In this work, an efficient flexible polymer solar cell was achieved by controlling the UV-ozone treatment time of silver nanowires (Ag NWs) used in the electrode and combined with other modification materials. Through optimizing the time of UV-ozone treatment, it is shown that Ag NWs electrode treated by UV-ozone for 10 s improves the power conversion efficiency (PCE) of the device based on the blend of poly(3-hexylthiophene)(P3HT): [6,6]-phenyl C61-butyric acid methyl ester (PC61BM) from 0.76% to 1.34%. After treatment by UV-ozone, Ag NWs electrodes exhibit several promising characteristics, including high optical transparency, low sheet resistance and superior surface work function. As a consequence, the performance of devices utilizing 10 s UV-ozone-treated Ag NWs with PEDOT:PSS or MoO3 as composite anode showed higher PCEs of 2.77% (2.73%) compared with that for Ag NW electrodes without UV-ozone treatment. In addition, a PCE of 5.97% in flexible polymer solar cells based on poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b0]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl](PBDTTT-EFT):[6, 6]-phenyl C71-butyric acid methyl ester (PC71BM) as a photoactive layer was obtained.

  13. Flexible transparent displays based on core/shell upconversion nanophosphor-incorporated polymer waveguides.

    PubMed

    Park, Bong Je; Hong, A-Ra; Park, Suntak; Kyung, Ki-Uk; Lee, Kwangyeol; Seong Jang, Ho

    2017-04-03

    Core/shell (C/S)-structured upconversion nanophosphor (UCNP)-incorporated polymer waveguide-based flexible transparent displays are demonstrated. Bright green- and blue-emitting Li(Gd,Y)F4:Yb,Er and Li(Gd,Y)F4:Yb,Tm UCNPs are synthesized via solution chemical route. Their upconversion luminescence (UCL) intensities are enhanced by the formation of C/S structure with LiYF4 shell. The Li(Gd,Y)F4:Yb,Er/LiYF4 and Li(Gd,Y)F4:Yb,Tm/LiYF4 C/S UCNPs exhibit 3.3 and 2.0 times higher UCL intensities than core counterparts, respectively. In addition, NaGdF4:Yb,Tm/NaGdF4:Eu C/S UCNPs are synthesized and they show red emission via energy transfer and migration of Yb(3+) → Tm(3+) → Gd(3+) → Eu(3+). The C/S UCNPs are incorporated into bisphenol A ethoxylate diacrylate which is used as a core material of polymer waveguides. The fabricated stripe-type polymer waveguides are highly flexible and transparent (transmittance > 90% in spectral range of 443-900 nm). The polymer waveguides exhibit bright blue, green, and red luminescence, depending on the incorporated UCNPs into the polymer core, under coupling with a near infrared (NIR) laser. Moreover, patterned polymer waveguide-based display devices are fabricated by reactive ion etching process and they realize bright blue-, green-, and red-colored characters under coupling with an NIR laser.

  14. Defining the Costs of Reusable Flexible Ureteroscope Reprocessing Using Time-Driven Activity-Based Costing.

    PubMed

    Isaacson, Dylan; Ahmad, Tessnim; Metzler, Ian; Tzou, David T; Taguchi, Kazumi; Usawachintachit, Manint; Zetumer, Samuel; Sherer, Benjamin; Stoller, Marshall; Chi, Thomas

    2017-09-20

    Careful decontamination and sterilization of reusable flexible ureteroscopes used in ureterorenoscopy cases prevent the spread of infectious pathogens to patients and technicians. However, inefficient reprocessing and unavailability of ureteroscopes sent out for repair can contribute to expensive operating room (OR) delays. Time-driven activity-based costing (TDABC) was applied to describe the time and costs involved in reprocessing. Direct observation and timing were performed for all steps in reprocessing of reusable flexible ureteroscopes following operative procedures. Estimated times needed for each step by which damaged ureteroscopes identified during reprocessing are sent for repair were characterized through interviews with purchasing analyst staff. Process maps were created for reprocessing and repair detailing individual step times and their variances. Cost data for labor and disposables used were applied to calculate per minute and average step costs. Ten ureteroscopes were followed through reprocessing. Process mapping for ureteroscope reprocessing averaged 229.0 ± 74.4 minutes, whereas sending a ureteroscope for repair required an estimated 143 minutes per repair. Most steps demonstrated low variance between timed observations. Ureteroscope drying was the longest and highest variance step at 126.5 ± 55.7 minutes and was highly dependent on manual air flushing through the ureteroscope working channel and ureteroscope positioning in the drying cabinet. Total costs for reprocessing totaled $96.13 per episode, including the cost of labor and disposable items. Utilizing TDABC delineates the full spectrum of costs associated with ureteroscope reprocessing and identifies areas for process improvement to drive value-based care. At our institution, ureteroscope drying was one clearly identified target area. Implementing training in ureteroscope drying technique could save up to 2 hours per reprocessing event, potentially preventing expensive OR delays.

  15. Flexible transparent displays based on core/shell upconversion nanophosphor-incorporated polymer waveguides

    NASA Astrophysics Data System (ADS)

    Park, Bong Je; Hong, A.-Ra; Park, Suntak; Kyung, Ki-Uk; Lee, Kwangyeol; Seong Jang, Ho

    2017-04-01

    Core/shell (C/S)-structured upconversion nanophosphor (UCNP)-incorporated polymer waveguide-based flexible transparent displays are demonstrated. Bright green- and blue-emitting Li(Gd,Y)F4:Yb,Er and Li(Gd,Y)F4:Yb,Tm UCNPs are synthesized via solution chemical route. Their upconversion luminescence (UCL) intensities are enhanced by the formation of C/S structure with LiYF4 shell. The Li(Gd,Y)F4:Yb,Er/LiYF4 and Li(Gd,Y)F4:Yb,Tm/LiYF4 C/S UCNPs exhibit 3.3 and 2.0 times higher UCL intensities than core counterparts, respectively. In addition, NaGdF4:Yb,Tm/NaGdF4:Eu C/S UCNPs are synthesized and they show red emission via energy transfer and migration of Yb3+ → Tm3+ → Gd3+ → Eu3+. The C/S UCNPs are incorporated into bisphenol A ethoxylate diacrylate which is used as a core material of polymer waveguides. The fabricated stripe-type polymer waveguides are highly flexible and transparent (transmittance > 90% in spectral range of 443-900 nm). The polymer waveguides exhibit bright blue, green, and red luminescence, depending on the incorporated UCNPs into the polymer core, under coupling with a near infrared (NIR) laser. Moreover, patterned polymer waveguide-based display devices are fabricated by reactive ion etching process and they realize bright blue-, green-, and red-colored characters under coupling with an NIR laser.

  16. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique.

    PubMed

    Nilghaz, Azadeh; Wicaksono, Dedy H B; Gustiono, Dwi; Abdul Majid, Fadzilah Adibah; Supriyanto, Eko; Abdul Kadir, Mohammed Rafiq

    2012-01-07

    This paper describes the fabrication of microfluidic cloth-based analytical devices (μCADs) using a simple wax patterning method on cotton cloth for performing colorimetric bioassays. Commercial cotton cloth fabric is proposed as a new inexpensive, lightweight, and flexible platform for fabricating two- (2D) and three-dimensional (3D) microfluidic systems. We demonstrated that the wicking property of the cotton microfluidic channel can be improved by scouring in soda ash (Na(2)CO(3)) solution which will remove the natural surface wax and expose the underlying texture of the cellulose fiber. After this treatment, we fabricated narrow hydrophilic channels with hydrophobic barriers made from patterned wax to define the 2D microfluidic devices. The designed pattern is carved on wax-impregnated paper, and subsequently transferred to attached cotton cloth by heat treatment. To further obtain 3D microfluidic devices having multiple layers of pattern, a single layer of wax patterned cloth can be folded along a predefined folding line and subsequently pressed using mechanical force. All the fabrication steps are simple and low cost since no special equipment is required. Diagnostic application of cloth-based devices is shown by the development of simple devices that wick and distribute microvolumes of simulated body fluids along the hydrophilic channels into reaction zones to react with analytical reagents. Colorimetric detection of bovine serum albumin (BSA) in artificial urine is carried out by direct visual observation of bromophenol blue (BPB) colour change in the reaction zones. Finally, we show the flexibility of the novel microfluidic platform by conducting a similar reaction in a bent pinned μCAD.

  17. Flexible transparent displays based on core/shell upconversion nanophosphor-incorporated polymer waveguides

    PubMed Central

    Park, Bong Je; Hong, A-Ra; Park, Suntak; Kyung, Ki-Uk; Lee, Kwangyeol; Seong Jang, Ho

    2017-01-01

    Core/shell (C/S)-structured upconversion nanophosphor (UCNP)-incorporated polymer waveguide-based flexible transparent displays are demonstrated. Bright green- and blue-emitting Li(Gd,Y)F4:Yb,Er and Li(Gd,Y)F4:Yb,Tm UCNPs are synthesized via solution chemical route. Their upconversion luminescence (UCL) intensities are enhanced by the formation of C/S structure with LiYF4 shell. The Li(Gd,Y)F4:Yb,Er/LiYF4 and Li(Gd,Y)F4:Yb,Tm/LiYF4 C/S UCNPs exhibit 3.3 and 2.0 times higher UCL intensities than core counterparts, respectively. In addition, NaGdF4:Yb,Tm/NaGdF4:Eu C/S UCNPs are synthesized and they show red emission via energy transfer and migration of Yb3+ → Tm3+ → Gd3+ → Eu3+. The C/S UCNPs are incorporated into bisphenol A ethoxylate diacrylate which is used as a core material of polymer waveguides. The fabricated stripe-type polymer waveguides are highly flexible and transparent (transmittance > 90% in spectral range of 443–900 nm). The polymer waveguides exhibit bright blue, green, and red luminescence, depending on the incorporated UCNPs into the polymer core, under coupling with a near infrared (NIR) laser. Moreover, patterned polymer waveguide-based display devices are fabricated by reactive ion etching process and they realize bright blue-, green-, and red-colored characters under coupling with an NIR laser. PMID:28368021

  18. Assembly of new polyoxometalate-templated metal-organic frameworks based on flexible ligands

    NASA Astrophysics Data System (ADS)

    Li, Na; Mu, Bao; Lv, Lei; Huang, Rudan

    2015-03-01

    Four new polyoxometalate(POM)-templated metal-organic frameworks based on flexible ligands, namely, [Cu6(bip)12(PMoVI12O40)2(PMoVMoVI11O40O2)]·8H2O(1), [CuI3CuII3(bip)12(PMoVI12O40)2(PMoV12O34)]·8H2O(2), [Ni6(bip)12(PMoVI12O40)(PMoVI11MoVO40)2]Cl·6H2O(3), [CoII3CoIII2(H2bib)2(Hbib)2(PW9O34)2(H2O)6]·6H2O(4) (bip=1,3-bis(imidazolyl)propane, bib=1,4-bis(imidazolyl)butane) have been obtained under hydrothermal condition and characterized by single-crystal X-ray diffraction analyses, elemental analyses, and thermogravimetric (TG) analyses. The studies of single crystal X-ray indicate that compounds 1-3 crystallize in the trigonal space group P-3, and compound 4 crystallizes in the triclinic space group P-1. Compounds 1 and 3 represent 3D frameworks, and POMs as the guest molecules are incorporated into the cages which are composed of the ligands and metals, while compounds 2 and 4 show 3D frameworks by hydrogen bonds. This compounds provide new examples of host-guest compounds based on flexible bis(imidazole) ligands. In addition, the electrochemical property and the catalytic property of compound 1 have also been investigated.

  19. Performance improvement in flexible polymer solar cells based on modified silver nanowire electrode.

    PubMed

    Wang, Danbei; Zhou, Weixin; Liu, Huan; Ma, Yanwen; Zhang, Hongmei

    2016-08-19

    In this work, an efficient flexible polymer solar cell was achieved by controlling the UV-ozone treatment time of silver nanowires (Ag NWs) used in the electrode and combined with other modification materials. Through optimizing the time of UV-ozone treatment, it is shown that Ag NWs electrode treated by UV-ozone for 10 s improves the power conversion efficiency (PCE) of the device based on the blend of poly(3-hexylthiophene)(P3HT): [6,6]-phenyl C61-butyric acid methyl ester (PC61BM) from 0.76% to 1.34%. After treatment by UV-ozone, Ag NWs electrodes exhibit several promising characteristics, including high optical transparency, low sheet resistance and superior surface work function. As a consequence, the performance of devices utilizing 10 s UV-ozone-treated Ag NWs with PSS or MoO3 as composite anode showed higher PCEs of 2.77% (2.73%) compared with that for Ag NW electrodes without UV-ozone treatment. In addition, a PCE of 5.97% in flexible polymer solar cells based on poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b0]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl](PBDTTT-EFT):[6, 6]-phenyl C71-butyric acid methyl ester (PC71BM) as a photoactive layer was obtained.

  20. Bridging Diversity and Family Systems: Culturally Informed and Flexible Family Based Treatment for Hispanic Adolescents

    PubMed Central

    Santisteban, Daniel A.; Mena, Maite P.; Abalo, Clara

    2014-01-01

    There is growing interest in identifying interventions that have been tested and found efficacious with minority families. This interest is fueled in part by the growth of Hispanics in the U.S. as well as by research findings that suggest that Hispanics have better outcomes when treatments are adapted to their unique experiences, and risk and protective factors. Family-based treatments for culturally diverse populations require the integration of advances from both the cultural and family systems domains. Current intervention research has begun to move towards developing and advancing individualized interventions for patients/clients. Adaptive interventions, tailored interventions, adapted interventions, and targeted interventions have all been identified in the literature as appropriate for addressing distinct cultural characteristics which generic interventions may not address effectively. To date, research has focused less on tailored or adaptive interventions partly due to the fact that they require decision rules, more careful implementation, and measurement of individualized outcomes. In this article we present evidence for the usefulness of adaptive interventions that can address not only subgroup variability but within group variability as well. Culturally Informed and Flexible Family-Based Treatment for Adolescents is presented as an adaptive treatment that allows for the tailoring of treatment to the unique clinical and cultural variations of individual adolescents and families, but that does so in a systematic and replicable fashion. By building decision-making processes into the manualized treatment, the transportability of the treatment may be enhanced as family therapists appreciate it’s flexibility to address the complexity of clinical work. PMID:24772378

  1. Organizational Learning, Strategic Flexibility and Business Model Innovation: An Empirical Research Based on Logistics Enterprises

    NASA Astrophysics Data System (ADS)

    Bao, Yaodong; Cheng, Lin; Zhang, Jian

    Using the data of 237 Jiangsu logistics firms, this paper empirically studies the relationship among organizational learning capability, business model innovation, strategic flexibility. The results show as follows; organizational learning capability has positive impacts on business model innovation performance; strategic flexibility plays mediating roles on the relationship between organizational learning capability and business model innovation; interaction among strategic flexibility, explorative learning and exploitative learning play significant roles in radical business model innovation and incremental business model innovation.

  2. DG TO FT - AUTOMATIC TRANSLATION OF DIGRAPH TO FAULT TREE MODELS

    NASA Technical Reports Server (NTRS)

    Iverson, D. L.

    1994-01-01

    root node. A subtree is created for each of the inputs to the digraph terminal node and the root of those subtrees are added as children of the top node of the fault tree. Every node in the digraph upstream of the terminal node will be visited and converted. During the conversion process, the algorithm keeps track of the path from the digraph terminal node to the current digraph node. If a node is visited twice, then the program has found a cycle in the digraph. This cycle is broken by finding the minimal cut sets of the twice visited digraph node and forming those cut sets into subtrees. Another implementation of the algorithm resolves loops by building a subtree based on the digraph minimal cut sets calculation. It does not reduce the subtree to minimal cut set form. This second implementation produces larger fault trees, but runs much faster than the version using minimal cut sets since it does not spend time reducing the subtrees to minimal cut sets. The fault trees produced by DG TO FT will contain OR gates, AND gates, Basic Event nodes, and NOP gates. The results of a translation can be output as a text object description of the fault tree similar to the text digraph input format. The translator can also output a LISP language formatted file and an augmented LISP file which can be used by the FTDS (ARC-13019) diagnosis system, available from COSMIC, which performs diagnostic reasoning using the fault tree as a knowledge base. DG TO FT is written in C-language to be machine independent. It has been successfully implemented on a Sun running SunOS, a DECstation running ULTRIX, a Macintosh running System 7, and a DEC VAX running VMS. The RAM requirement varies with the size of the models. DG TO FT is available in UNIX tar format on a .25 inch streaming magnetic tape cartridge (standard distribution) or on a 3.5 inch diskette. It is also available on a 3.5 inch Macintosh format diskette or on a 9-track 1600 BPI magnetic tape in DEC VAX FILES-11 format. Sample input

  3. Template-mediated synthesis and bio-functionalization of flexible lignin-based nanotubes and nanowires

    NASA Astrophysics Data System (ADS)

    Caicedo, Hector M.; Dempere, Luisa A.; Vermerris, Wilfred

    2012-03-01

    Limitations of cylindrical carbon nanotubes based on the buckminsterfullerene structure as delivery vehicles for therapeutic agents include their chemical inertness, sharp edges and toxicological concerns. As an alternative, we have developed lignin-based nanotubes synthesized in a sacrificial template of commercially available alumina membranes. Lignin is a complex phenolic plant cell wall polymer that is generated as a waste product from paper mills and biorefineries that process lignocellulosic biomass into fuels and chemicals. We covalently linked isolated lignin to the inner walls of activated alumina membranes and then added layers of dehydrogenation polymer onto this base layer via a peroxidase-catalyzed reaction. By using phenolic monomers displaying different reactivities, we were able to change the thickness of the polymer layer deposited within the pores, resulting in the synthesis of nanotubes with a wall thickness of approximately 15 nm or nanowires with a nominal diameter of 200 nm. These novel nanotubes are flexible and can be bio-functionalized easily and specifically, as shown by in vitro assays with biotin and Concanavalin A. Together with their intrinsic optical properties, which can also be varied as a function of their chemical composition, these lignin-based nanotubes are expected to enable a variety of new applications including as delivery systems that can be easily localized and imaged after uptake by living cells.

  4. Template-mediated synthesis and bio-functionalization of flexible lignin-based nanotubes and nanowires.

    PubMed

    Caicedo, Hector M; Dempere, Luisa A; Vermerris, Wilfred

    2012-03-16

    Limitations of cylindrical carbon nanotubes based on the buckminsterfullerene structure as delivery vehicles for therapeutic agents include their chemical inertness, sharp edges and toxicological concerns. As an alternative, we have developed lignin-based nanotubes synthesized in a sacrificial template of commercially available alumina membranes. Lignin is a complex phenolic plant cell wall polymer that is generated as a waste product from paper mills and biorefineries that process lignocellulosic biomass into fuels and chemicals. We covalently linked isolated lignin to the inner walls of activated alumina membranes and then added layers of dehydrogenation polymer onto this base layer via a peroxidase-catalyzed reaction. By using phenolic monomers displaying different reactivities, we were able to change the thickness of the polymer layer deposited within the pores, resulting in the synthesis of nanotubes with a wall thickness of approximately 15 nm or nanowires with a nominal diameter of 200 nm. These novel nanotubes are flexible and can be bio-functionalized easily and specifically, as shown by in vitro assays with biotin and Concanavalin A. Together with their intrinsic optical properties, which can also be varied as a function of their chemical composition, these lignin-based nanotubes are expected to enable a variety of new applications including as delivery systems that can be easily localized and imaged after uptake by living cells.

  5. Flexible piezoelectric PMN-PT nanowire-based nanocomposite and device.

    PubMed

    Xu, Shiyou; Yeh, Yao-wen; Poirier, Gerald; McAlpine, Michael C; Register, Richard A; Yao, Nan

    2013-06-12

    Piezoelectric nanocomposites represent a unique class of materials that synergize the advantageous features of polymers and piezoelectric nanostructures and have attracted extensive attention for the applications of energy harvesting and self-powered sensing recently. Currently, most of the piezoelectric nanocomposites were synthesized using piezoelectric nanostructures with relatively low piezoelectric constants, resulting in lower output currents and lower output voltages. Here, we report a synthesis of piezoelectric (1 - x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT) nanowire-based nanocomposite with significantly improved performances for energy harvesting and self-powered sensing. With the high piezoelectric constant (d33) and the unique hierarchical structure of the PMN-PT nanowires, the PMN-PT nanowire-based nanocomposite demonstrated an output voltage up to 7.8 V and an output current up to 2.29 μA (current density of 4.58 μA/cm(2)); this output voltage is more than double that of other reported piezoelectric nanocomposites, and the output current is at least 6 times greater. The PMN-PT nanowire-based nanocomposite also showed a linear relationship of output voltage versus strain with a high sensitivity. The enhanced performance and the flexibility of the PMN-PT nanowire-based nanocomposite make it a promising building block for energy harvesting and self-powered sensing applications.

  6. In vivo stimulation on rabbit retina using CMOS LSI-based multi-chip flexible stimulator for retinal prosthesis.

    PubMed

    Tokuda, T; Asano, R; Sugitani, S; Terasawa, Y; Nunoshita, M; Nakauchi, K; Fujikado, T; Tano, Y; Ohta, J

    2007-01-01

    We have performed in vivo electric stimulation experiments on rabbit retina to demonstrate feasibility of CMOS LSI-based multi-chip flexible neural stimulator for retinal prosthesis. We have developed new packaging structure with an improved flexibility and device control system which totally controls the LSI-based multi-chip stimulator, counter electrode, and stimulation generator. We have implanted the fabricated multi-chip stimulator into sclera pocket for STS (Suprachoroidal Transretinal Stimulation) configuration. We successfully obtained EEP (Electrically Evoked Potential) on visual cortex evoked by the multi-chip stimulator.

  7. A flexible dual-mode proximity sensor based on cooperative sensing for robot skin applications

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Cai, Xia; Kan, Wenqing; Qiu, Shihua; Guo, Xiaohui; Liu, Caixia; Liu, Ping

    2017-08-01

    A flexible dual-mode proximity sensor has been designed and implemented, which is capable of combining capacitive-resistive detection in this paper. The capacitive type proximity sensor detecting is defined as mode-C, and the resistive type proximity sensor detecting is defined as mode-R. The characteristics of the proximity sensor are as follows: (1) the theoretical mode is developed which indicates that this proximity sensor can reflect proximity information accurately; (2) both sensing modes are vertically integrated into a sandwich-like chip with an 8 mm × 12 mm unit area. The thickness of a mode-R sensing material (graphene nanoplatelets) and mode-C dielectric (the mixture of carbon black and silicone rubber) is 1 mm and 2.5 mm, respectively; (3) for mode-R, the linearity of temperature-resistance curve can achieve 0.998 in the temperature range from 25°C to 65°C. And for mode-C, various materials can be successfully detected with fast response and high reversibility. Meanwhile, the study compensated the influence of object temperature to ensure mode-C properly works. A cooperative sensing test shows that R-C dual modes sense effectively which can enlarge the sensing distance compared with the single mode proximity sensor. The fabrication of this sensor is convenient, and the integrity of a flexible sandwich-like structure based on dual modes is beneficial to form arrays, which is suitable to be used in skin-like sensing applications.

  8. [Study on the absorption spectrum properties of flexible black silicon doped with sulfur and fluorine based on first-principles].

    PubMed

    Wei, Wei; Zhu, Yong; Lin, Cheng; Tian, Li; Xu, Zu-Wen; Nong, Jin-Peng

    2014-04-01

    It is quite urgent to need a flexible photodetector in the ultraviolet-visible-near infrared region for building a miniaturization broadband spectrometer. In the present paper, one kind of flexible black silicon doped with sulfur and fluorine was proposed and the optical absorption spectrum was investigated in broadband region. Firstly, the electronic structure, band structure and the optical absorption properties of the flexible black silicon doped with sulfur and fluoride were calculated using the first-principles pseudo potential calculations based on density-functional theory. Then, the absorption spectrum model of the flexible black silicon was built based on both the first-principles and finite domain time difference method. The results show that the cut-off wavelength has a red shift as the band gap of doped material becomes narrower. The higher the doping concentration is, the higher the optical absorption coefficient is obtained. The absorption coefficient of flexible black silicon doped with 50% sulfur is 8.3 times higher than that of 1.5% sulfur doping sample at the wavelength of 1 500 nm while the ratio turns to be 3 times when doped with 50% and 1.5% fluoride. The black silicon with small-size surface microstructure has the highest absorptance in the near-infrared region at the same doping concentration of 50%. Finally, a sample of flexible black silicon was fabricated by the femtosecond laser auto scanning system. The test results indicate that the absorptance of the sample is higher than 95% both in the ultraviolet and visible region and is fluctuated from 70% to 80% in the near-infrared region. It shows that as a novel light-absorbing material in broadband region the flexible black silicon doped with Sulfur and Fluorine has an potential application in exploring miniaturization broadband spectroscopy.

  9. 2DG suppresses the in vivo anti-tumor efficacy of erlotinib in HNSCC cells

    PubMed Central

    Sobhakumari, Arya; Orcutt, Kevin; Love-Homan, Laurie; Kowalski, Christopher; Parsons, Arlene; Knudson, C. Michael; Simons, Andrean L.

    2017-01-01

    Poor tumor response to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) is a significant challenge for effective treatment of head and neck squamous cell carcinoma (HNSCC). Therefore, strategies that may increase tumor response to EGFR TKIs are warranted in order to improve HNSCC patient treatment and overall survival. HNSCC tumors are highly glycolytic and increased EGFR signaling has been found to promote glucose metabolism through various mechanisms. We have previously shown that inhibition of glycolysis with 2-deoxy-D-glucose (2DG) significantly enhanced the antitumor effects of cisplatin and radiation which are commonly used to treat HNSCC. The goal of the current studies is to determine if 2DG will enhance the anti-tumor activity of the EGFR TKI erlotinib in HNSCC. Erlotinib transiently suppressed glucose consumption accompanied by alterations in pyruvate kinase M2 (PKM2) expression. 2DG enhanced the cytotoxic effect of erlotinib in vitro but reversed the anti-tumor effect of erlotinib in vivo. 2DG altered the N-glycosylation status of EGFR and induced the endoplasmic reticulum (ER) stress markers CHOP and BiP in vitro. Additionally, the effects of 2DG+erlotinib on cytotoxicity and ER stress in vitro were reversed by mannose but not glucose or antioxidant enzymes. Lastly, the protective effect of 2DG on erlotinib-induced cytotoxicity in vivo was reversed by chloroquine. Altogether, 2DG suppressed the anti-tumor efficacy of erlotinib in a HNSCC xenograft mouse model which may be due to increased cytoprotective autophagy mediated by ER stress activation. PMID:27178822

  10. Waste management under multiple complexities: Inexact piecewise-linearization-based fuzzy flexible programming

    SciTech Connect

    Sun Wei; Huang, Guo H.; Lv Ying; Li Gongchen

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Inexact piecewise-linearization-based fuzzy flexible programming is proposed. Black-Right-Pointing-Pointer It's the first application to waste management under multiple complexities. Black-Right-Pointing-Pointer It tackles nonlinear economies-of-scale effects in interval-parameter constraints. Black-Right-Pointing-Pointer It estimates costs more accurately than the linear-regression-based model. Black-Right-Pointing-Pointer Uncertainties are decreased and more satisfactory interval solutions are obtained. - Abstract: To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerance intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate

  11. Flexible biodegradable citrate-based polymeric step-index optical fiber.

    PubMed

    Shan, Dingying; Zhang, Chenji; Kalaba, Surge; Mehta, Nikhil; Kim, Gloria B; Liu, Zhiwen; Yang, Jian

    2017-10-01

    Implanting fiber optical waveguides into tissue or organs for light delivery and collection is among the most effective ways to overcome the issue of tissue turbidity, a long-standing obstacle for biomedical optical technologies. Here, we report a citrate-based material platform with engineerable opto-mechano-biological properties and demonstrate a new type of biodegradable, biocompatible, and low-loss step-index optical fiber for organ-scale light delivery and collection. By leveraging the rich designability and processibility of citrate-based biodegradable polymers, two exemplary biodegradable elastomers with a fine refractive index difference and yet matched mechanical properties and biodegradation profiles were developed. Furthermore, we developed a two-step fabrication method to fabricate flexible and low-loss (0.4 db/cm) optical fibers, and performed systematic characterizations to study optical, spectroscopic, mechanical, and biodegradable properties. In addition, we demonstrated the proof of concept of image transmission through the citrate-based polymeric optical fibers and conducted in vivo deep tissue light delivery and fluorescence sensing in a Sprague-Dawley (SD) rat, laying the groundwork for realizing future implantable devices for long-term implantation where deep-tissue light delivery, sensing and imaging are desired, such as cell, tissue, and scaffold imaging in regenerative medicine and in vivo optogenetic stimulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes

    PubMed Central

    Lee, Jaeho; Han, Tae-Hee; Park, Min-Ho; Jung, Dae Yool; Seo, Jeongmin; Seo, Hong-Kyu; Cho, Hyunsu; Kim, Eunhye; Chung, Jin; Choi, Sung-Yool; Kim, Taek-Soo; Lee, Tae-Woo; Yoo, Seunghyup

    2016-01-01

    Graphene-based organic light-emitting diodes (OLEDs) have recently emerged as a key element essential in next-generation displays and lighting, mainly due to their promise for highly flexible light sources. However, their efficiency has been, at best, similar to that of conventional, indium tin oxide-based counterparts. We here propose an ideal electrode structure based on a synergetic interplay of high-index TiO2 layers and low-index hole-injection layers sandwiching graphene electrodes, which results in an ideal situation where enhancement by cavity resonance is maximized yet loss to surface plasmon polariton is mitigated. The proposed approach leads to OLEDs exhibiting ultrahigh external quantum efficiency of 40.8 and 62.1% (64.7 and 103% with a half-ball lens) for single- and multi-junction devices, respectively. The OLEDs made on plastics with those electrodes are repeatedly bendable at a radius of 2.3 mm, partly due to the TiO2 layers withstanding flexural strain up to 4% via crack-deflection toughening. PMID:27250743

  13. Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Lee, Jaeho; Han, Tae-Hee; Park, Min-Ho; Jung, Dae Yool; Seo, Jeongmin; Seo, Hong-Kyu; Cho, Hyunsu; Kim, Eunhye; Chung, Jin; Choi, Sung-Yool; Kim, Taek-Soo; Lee, Tae-Woo; Yoo, Seunghyup

    2016-06-01

    Graphene-based organic light-emitting diodes (OLEDs) have recently emerged as a key element essential in next-generation displays and lighting, mainly due to their promise for highly flexible light sources. However, their efficiency has been, at best, similar to that of conventional, indium tin oxide-based counterparts. We here propose an ideal electrode structure based on a synergetic interplay of high-index TiO2 layers and low-index hole-injection layers sandwiching graphene electrodes, which results in an ideal situation where enhancement by cavity resonance is maximized yet loss to surface plasmon polariton is mitigated. The proposed approach leads to OLEDs exhibiting ultrahigh external quantum efficiency of 40.8 and 62.1% (64.7 and 103% with a half-ball lens) for single- and multi-junction devices, respectively. The OLEDs made on plastics with those electrodes are repeatedly bendable at a radius of 2.3 mm, partly due to the TiO2 layers withstanding flexural strain up to 4% via crack-deflection toughening.

  14. Latent Class Analysis With Distal Outcomes: A Flexible Model-Based Approach

    PubMed Central

    Lanza, Stephanie T.; Tan, Xianming; Bray, Bethany C.

    2014-01-01

    Although prediction of class membership from observed variables in latent class analysis is well understood, predicting an observed distal outcome from latent class membership is more complicated. A flexible model-based approach is proposed to empirically derive and summarize the class-dependent density functions of distal outcomes with categorical, continuous, or count distributions. A Monte Carlo simulation study is conducted to compare the performance of the new technique to two commonly used classify-analyze techniques: maximum-probability assignment and multiple pseudo-class draws. Simulation results show that the model-based approach produces substantially less biased estimates of the effect compared to either classify-analyze technique, particularly when the association between the latent class variable and the distal outcome is strong. In addition, we show that only the model-based approach is consistent. The approach is demonstrated empirically: latent classes of adolescent depression are used to predict smoking, grades, and delinquency. SAS syntax for implementing this approach using PROC LCA and a corresponding macro are provided. PMID:25419096

  15. Flexible and Foldable Li-O2 Battery Based on Paper-Ink Cathode.

    PubMed

    Liu, Qing-Chao; Li, Lin; Xu, Ji-Jing; Chang, Zhi-Wen; Xu, Dan; Yin, Yan-Bin; Yang, Xiao-Yang; Liu, Tong; Jiang, Yin-Shan; Yan, Jun-Min; Zhang, Xin-Bo

    2015-12-22

    A flexible freestanding air cathode inspired by traditional Chinese calligraphy art is built. When this novel electrode is employed as both a new concept cathode and current collector, to replace conventional rigid and bulky counterparts, a highly flexible and foldable Li-O2 battery with excellent mechanical strength and superior electrochemical performance is obtained.

  16. Variants of mouse DNA polymerase κ reveal a mechanism of efficient and accurate translesion synthesis past a benzo[a]pyrene dG adduct.

    PubMed

    Liu, Yang; Yang, Yeran; Tang, Tie-Shan; Zhang, Hui; Wang, Zhifeng; Friedberg, Errol; Yang, Wei; Guo, Caixia

    2014-02-04

    DNA polymerase κ (Polκ) is the only known Y-family DNA polymerase that bypasses the 10S (+)-trans-anti-benzo[a]pyrene diol epoxide (BPDE)-N(2)-deoxyguanine adducts efficiently and accurately. The unique features of Polκ, a large structure gap between the catalytic core and little finger domain and a 90-residue addition at the N terminus known as the N-clasp, may give rise to its special translesion capability. We designed and constructed two mouse Polκ variants, which have reduced gap size on both sides [Polκ Gap Mutant (PGM) 1] or one side flanking the template base (PGM2). These Polκ variants are nearly as efficient as WT in normal DNA synthesis, albeit with reduced accuracy. However, PGM1 is strongly blocked by the 10S (+)-trans-anti-BPDE-N(2)-dG lesion. Steady-state kinetic measurements reveal a significant reduction in efficiency of dCTP incorporation opposite the lesion by PGM1 and a moderate reduction by PGM2. Consistently, Polκ-deficient cells stably complemented with PGM1 GFP-Polκ remained hypersensitive to BPDE treatment, and complementation with WT or PGM2 GFP-Polκ restored BPDE resistance. Furthermore, deletion of the first 51 residues of the N-clasp in mouse Polκ (mPolκ(52-516)) leads to reduced polymerization activity, and the mutant PGM2(52-516) but not PGM1(52-516) can partially compensate the N-terminal deletion and restore the catalytic activity on normal DNA. However, neither WT nor PGM2 mPolκ(52-516) retains BPDE bypass activity. We conclude that the structural gap physically accommodates the bulky aromatic adduct and the N-clasp is essential for the structural integrity and flexibility of Polκ during translesion synthesis.

  17. Development of a flexible optical fiber based high resolution integrated PET∕MRI system.

    PubMed

    Yamamoto, Seiichi; Watabe, Hiroshi; Kanai, Yasukazu; Watabe, Tadashi; Aoki, Masaaki; Sugiyama, Eiji; Kato, Katsuhiko; Hatazawa, Jun

    2012-11-01

    The simultaneous measurement of PET and magnetic resonance imaging (MRI) is an emerging field for molecular imaging research. Although optical fiber based PET∕MRI systems have advantages on less interference between PET and MRI, there is a drawback in reducing the scintillation light due to the fiber. To reduce the problem, the authors newly developed flexible optical fiber bundle based block detectors and employed them for a high resolution integrated PET∕MRI system. The flexible optical fiber bundle used 0.5 mm diameter, 80 cm long double clad fibers which have dual 12 mm × 24 mm rectangular inputs and a single 24 mm × 24 mm rectangular output. In the input surface, LGSO scintillators of 0.025 mol.% (decay time: ∼31 ns: 0.9 mm × 1.3 mm × 5 mm) and 0.75 mol.% (decay time: ∼46 ns: 0.9 mm × 1.3 mm × 6 mm) were optically coupled in depth direction to form depth-of-interaction detector, arranged in 11 × 13 matrix and optically coupled to the fiber bundle. The two inputs of the bundle are bent for 90°, bound to one, and are optically coupled to a Hamamatsu 1-in. square position sensitive photomultiplier tube. Light loss due to the fiber bundle could be reduced and the performance of the block detectors was improved. Eight optical fiber based block detectors (16 LGSO blocks) were arranged in a 56 mm diameter ring to form a PET system. Spatial resolution and sensitivity were 1.2 mm full-width at half-maximum and 1.2% at the central field-of-view, respectively. Sensitivity change was less than 1% for 2 °C temperature changes. This PET system was integrated with a 0.3 T permanent magnet MRI system which has 17 cm diameter hole at the yoke area for insertion of the PET detector ring. There was no observable interference between PET and MRI. Simultaneous imaging of PET and MRI was successfully performed for small animal studies. The authors confirmed that the developed high resolution PET∕MRI system is promising for molecular

  18. Development of a flexible optical fiber based high resolution integrated PET/MRI system

    SciTech Connect

    Yamamoto, Seiichi; Watabe, Hiroshi; Kanai, Yasukazu; Watabe, Tadashi; Aoki, Masaaki; Sugiyama, Eiji; Kato, Katsuhiko; Hatazawa, Jun

    2012-11-15

    Purpose: The simultaneous measurement of PET and magnetic resonance imaging (MRI) is an emerging field for molecular imaging research. Although optical fiber based PET/MRI systems have advantages on less interference between PET and MRI, there is a drawback in reducing the scintillation light due to the fiber. To reduce the problem, the authors newly developed flexible optical fiber bundle based block detectors and employed them for a high resolution integrated PET/MRI system. Methods: The flexible optical fiber bundle used 0.5 mm diameter, 80 cm long double clad fibers which have dual 12 mm Multiplication-Sign 24 mm rectangular inputs and a single 24 mm Multiplication-Sign 24 mm rectangular output. In the input surface, LGSO scintillators of 0.025 mol.% (decay time: {approx}31 ns: 0.9 mm Multiplication-Sign 1.3 mm Multiplication-Sign 5 mm) and 0.75 mol.% (decay time: {approx}46 ns: 0.9 mm Multiplication-Sign 1.3 mm Multiplication-Sign 6 mm) were optically coupled in depth direction to form depth-of-interaction detector, arranged in 11 Multiplication-Sign 13 matrix and optically coupled to the fiber bundle. The two inputs of the bundle are bent for 90 Degree-Sign , bound to one, and are optically coupled to a Hamamatsu 1-in. square position sensitive photomultiplier tube. Results: Light loss due to the fiber bundle could be reduced and the performance of the block detectors was improved. Eight optical fiber based block detectors (16 LGSO blocks) were arranged in a 56 mm diameter ring to form a PET system. Spatial resolution and sensitivity were 1.2 mm full-width at half-maximum and 1.2% at the central field-of-view, respectively. Sensitivity change was less than 1% for 2 Degree-Sign C temperature changes. This PET system was integrated with a 0.3 T permanent magnet MRI system which has 17 cm diameter hole at the yoke area for insertion of the PET detector ring. There was no observable interference between PET and MRI. Simultaneous imaging of PET and MRI was

  19. A flexible and high-voltage internal tandem supercapacitor based on graphene-based porous materials with ultrahigh energy density.

    PubMed

    Zhang, Fan; Lu, Yanhong; Yang, Xi; Zhang, Long; Zhang, Tengfei; Leng, Kai; Wu, Yingpeng; Huang, Yi; Ma, Yanfeng; Chen, Yongsheng

    2014-06-12

    Pursuing higher working voltage and packaged energy density, an internal tandem supercapacitor has been successfully designed and fabricated based on graphene-based porous carbon hybrid material. Compared with the packaged energy density of 27.2 Wh kgcell (-1) and working voltage of 3.5 V using EMIMBF4 electrolyte for the conventional single-cell supercapacitor, the internal tandem device with the same material achieves a much higher working voltage of 7 V as well as a significantly improved energy density of 36.3 Wh kgcell (-1) (increased by 33%), which is also about 7 times of that of the state-of-art commercial supercapacitors. A flexible internal tandem device is also designed and fabricated and demonstrated similar excellent performance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A flexible, transparent and super-long-life supercapacitor based on ultrafine Co3O4 nanocrystal electrodes

    NASA Astrophysics Data System (ADS)

    Liu, X. Y.; Gao, Y. Q.; Yang, G. W.

    2016-02-01

    Flexible and transparent supercapacitors, as advanced energy storage devices, are essential for the development of innovative wearable electronics because of their unique optical and mechanical qualities. However, all previous designs are based on carbon-based nanostructures like carbon nanotubes and graphene, and these devices usually have poor or short cycling lives. Here, we demonstrate a high-performance, flexible, transparent, and super-long-life supercapacitor made from ultrafine Co3O4 nanocrystals synthesized using a novel process involving laser ablation in liquid. The fabricated flexible and transparent pseudocapacitor exhibits a high capacitance of 177 F g-1 on a mass basis and 6.03 mF cm-2 based on the area of the active material at a scan rate of 1 mV s-1, as well as a super-long cycling life with 100% retention rate after 20 000 cycles. An optical transmittance of up to 51% at a wavelength of 550 nm is achieved, and there are not any obvious changes in the specific capacitance after bending from 0° to 150°, even after bending over 100 times. The integrated electrochemical performance of the Co3O4-based supercapacitor is greatly superior to that of the carbon-based ones reported to date. These findings open the door to applications of transition metal oxides as advanced electrode materials in flexible and transparent pseudocapacitors.

  1. A flexible, transparent and super-long-life supercapacitor based on ultrafine Co3O4 nanocrystal electrodes.

    PubMed

    Liu, X Y; Gao, Y Q; Yang, G W

    2016-02-21

    Flexible and transparent supercapacitors, as advanced energy storage devices, are essential for the development of innovative wearable electronics because of their unique optical and mechanical qualities. However, all previous designs are based on carbon-based nanostructures like carbon nanotubes and graphene, and these devices usually have poor or short cycling lives. Here, we demonstrate a high-performance, flexible, transparent, and super-long-life supercapacitor made from ultrafine Co3O4 nanocrystals synthesized using a novel process involving laser ablation in liquid. The fabricated flexible and transparent pseudocapacitor exhibits a high capacitance of 177 F g(-1) on a mass basis and 6.03 mF cm(-2) based on the area of the active material at a scan rate of 1 mV s(-1), as well as a super-long cycling life with 100% retention rate after 20 000 cycles. An optical transmittance of up to 51% at a wavelength of 550 nm is achieved, and there are not any obvious changes in the specific capacitance after bending from 0° to 150°, even after bending over 100 times. The integrated electrochemical performance of the Co3O4-based supercapacitor is greatly superior to that of the carbon-based ones reported to date. These findings open the door to applications of transition metal oxides as advanced electrode materials in flexible and transparent pseudocapacitors.

  2. ITO-Free Solution-Processed Flexible Electrochromic Devices Based on PEDOT:PSS as Transparent Conducting Electrode.

    PubMed

    Singh, Rekha; Tharion, Joseph; Murugan, Sengottaiyan; Kumar, Anil

    2017-06-14

    Electrochromic devices (ECDs) are emerging as novel technology for various applications ranging from commercialized smart window glasses, goggles, and autodimming rear view mirrors to uncommon yet more sophisticated applications such as infrared camouflage in military and thermal control in space satellites. The development of low-power, lightweight, inexpensive, and flexible devices is the need of the hour. In this respect, utilizing PEDOT:PSS as transparent conducting electrode (TCE) to replace indium tin oxide (ITO) and metal based TCEs for ECDs is a promising solution for the aforementioned requirements. In this work we have demonstrated the performance of PEDOT:PSS films coated on flexible substrates, treated with PTSA-DMSO, as TCEs for ECD applications and their comparison with that of ITO based ECDs. The PEDOT:PSS based flexible TCEs used in this study have conductivity of 1400-1500 S·cm(-1) and figure of merit (FoM) of 70-77. The process of increasing the conductivity of PEDOT:PSS films also led to the broadening of the conducting potential window (CPW), which is important for electrochemical applications of PEDOT:PSS when used as a stand-alone electrode. More than achieving a comparable electrochromic contrast, switching time, and coloration efficiency with respect to the ITO based ECDs, PEDOT:PSS devices also had the added advantage of good mechanical flexibility. These devices demonstrated superior stability during electrochemical cycling and multiple mechanical bending tests, making them an inexpensive alternative to the costly ITO based ECD technology.

  3. Vibration control of a pneumatic driven piezoelectric flexible manipulator using self-organizing map based multiple models

    NASA Astrophysics Data System (ADS)

    Zhao, Zhi-li; Qiu, Zhi-cheng; Zhang, Xian-min; Han, Jian-da

    2016-03-01

    A kind of hybrid pneumatic-piezoelectric flexible manipulator system has been presented in the paper. A hybrid driving scheme is achieved by combining of a pneumatic proportional valve based pneumatic drive and a piezoelectric actuator bonded to the flexible beam. The system dynamics models are obtained based on system identification approaches, using the established experimental system. For system identification of the flexible piezoelectric manipulator subsystem, parametric estimation methods are utilized. For the pneumatic driven system, a single global linear model is not accurate enough to describe its dynamics, due to the high nonlinearity of the pneumatic driven system. Therefore, a self-organizing map (SOM) based multi-model system identification approach is used to get multiple local linear models. Then, a SOM based multi-model inverse controller and a variable damping pole-placement controller are applied to the pneumatic drive and piezoelectric actuator, respectively. Experiments on pneumatic driven vibration control, piezoelectric vibration control and hybrid vibration control are conducted, utilized proportional and derivative (PD) control, SOM based multi-model inverse controller, and the variable damping pole-placement controller. Experimental results demonstrate that the investigated control algorithms can improve the vibration control performance of the pneumatic driven flexible piezoelectric manipulator system.

  4. Flexible data integration and curation using a graph-based approach.

    PubMed

    Croset, Samuel; Rupp, Joachim; Romacker, Martin

    2016-03-15

    The increasing diversity of data available to the biomedical scientist holds promise for better understanding of diseases and discovery of new treatments for patients. In order to provide a complete picture of a biomedical question, data from many different origins needs to be combined into a unified representation. During this data integration process, inevitable errors and ambiguities present in the initial sources compromise the quality of the resulting data warehouse, and greatly diminish the scientific value of the content. Expensive and time-consuming manual curation is then required to improve the quality of the information. However, it becomes increasingly difficult to dedicate and optimize the resources for data integration projects as available repositories are growing both in size and in number everyday. We present a new generic methodology to identify problematic records, causing what we describe as 'data hairball' structures. The approach is graph-based and relies on two metrics traditionally used in social sciences: the graph density and the betweenness centrality. We evaluate and discuss these measures and show their relevance for flexible, optimized and automated data curation and linkage. The methodology focuses on information coherence and correctness to improve the scientific meaningfulness of data integration endeavors, such as knowledge bases and large data warehouses. samuel.croset@roche.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. The CAOS model: a physically based, flexible hydrological model for the mesoscale

    NASA Astrophysics Data System (ADS)

    Westhoff, Martijn; Zehe, Erwin

    2014-05-01

    Hydrological models are not only tools to predict discharge, but they are also hypotheses of how a catchment functions with respect to rainfall-runoff behaviour. In this work in progress, we present a new (physically based) model concept that should ultimately be suitable to run at the mesoscale. To be able to run it efficiently on the mesoscale, the model cannot be too complex. Yet, we wanted it physically based, with explicit incorporation of dissipative structures, such as macropores and lateral preferential flow paths. Besides water fluxes it should also be able to simulate solute concentrations and energy fluxes. This helps to parameterize the model while the model is also thermodynamically consistent, meaning that it is suitable to test thermodynamic optimality principles (such as maximum entropy production principle). With these constraints in mind, we developed a model where, in each subroutine, flow is modelled in only one dimension (vertical for the unsaturated zone and lateral for subsurface storm flow, groundwater flow and stream flow routines, making the model multiple 1-D), decreasing computation time significantly. The code is developed in an object oriented way, leading to more flexibility to test different model structures. For example, we will demonstrate the effect on simulated rapid subsurface flow for different mathematical descriptions (i.e. the Darcy-Weisbach equation vs. the diffusive wave and kinematic wave equation). For this study, the model will also be evaluated for hillslopes in three different geological settings within the Attert Basin in Luxembourg.

  6. High performance flexible strain sensor based on self-locked overlapping graphene sheets.

    PubMed

    Wang, Dan-Yang; Tao, Lu-Qi; Liu, Ying; Zhang, Tian-Yu; Pang, Yu; Wang, Qian; Jiang, Song; Yang, Yi; Ren, Tian-Ling

    2016-12-08

    Strain sensors have been widely used in the fields of wearable devices, robot arms, medical sensing, bio-sensing, artificial skin and so on, but the existing strain sensors have some shortcomings such as a limited gauge factor (GF) or strain range. We fabricate a novel and flexible strain sensor with high performance based on self-locked overlapping graphene sheets (SOGS) which can be used for wearable devices. Polydimethylsiloxane (PDMS) is used to lock the overlapping graphene sheets, and then the graphene can be stretched and achieve an ultrahigh GF. In addition, a new theory is put forward to explain the GF changes with strain range for the SOGS strain sensor. In this work, graphene oxide (GO) film is reduced to reduced GO (rGO) by a laser. Then, the SOGS and electrodes are encapsulated by PDMS. The SOGS strain sensor has a high GF up to 400 and strain range over 7.5%, and this SOGS strain sensor achieves a balance between high sensitivity and large strain range compared with other existing strain sensors. Furthermore the theoretical equation based on the new theory agrees well with the experimental results. And this strain sensor can be used in many applications because of its high sensitivity. Some applications of the SOGS strain sensors are demonstrated for the detection of various human motions and human sounds. The SOGS strain sensor can exhibit great potential in wearable electronics because of its good balance between high sensitivity and large strain.

  7. Flexible heterostructures based on metal phthalocyanines thin films obtained by MAPLE

    NASA Astrophysics Data System (ADS)

    Socol, M.; Preda, N.; Rasoga, O.; Breazu, C.; Stavarache, I.; Stanculescu, F.; Socol, G.; Gherendi, F.; Grumezescu, V.; Popescu-Pelin, G.; Girtan, M.; Stefan, N.

    2016-06-01

    Heterostructures based on zinc phthalocyanine (ZnPc), magnesium phthalocyanine (MgPc) and 5,10,15,20-tetra(4-pyrydil)21H,23H-porphine (TPyP) were deposited on ITO flexible substrates by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. Organic heterostructures containing (TPyP/ZnPc(MgPc)) stacked or (ZnPc(MgPc):TPyP) mixed layers were characterized by X-ray diffraction-XRD, photoluminescence-PL, UV-vis and FTIR spectroscopy. No chemical decomposition of the initial materials was observed. The investigated structures present a large spectral absorption in the visible range making them suitable for organic photovoltaics applications (OPV). Scanning electron microscopy-SEM and atomic force microscopy-AFM revealed morphologies typical for the films prepared by MAPLE. The current-voltage characteristics of the investigated structures, measured in dark and under light, present an improvement in the current value (∼3 order of magnitude larger) for the structure based on the mixed layer (Al/MgPc:TPyP/ITO) in comparison with the stacked layer (Al/MgPc//TPyP/ITO). A photogeneration process was evidenced in the case of structures Al/ZnPc:TPyP/ITO with mixed layers.

  8. A fast and flexible library-based thick-mask near-field calculation method

    NASA Astrophysics Data System (ADS)

    Ma, Xu; Gao, Jie; Chen, Xuanbo; Dong, Lisong; Li, Yanqiu

    2015-03-01

    Aerial image calculation is the basis of the current lithography simulation. As the critical dimension (CD) of the integrated circuits continuously shrinks, the thick mask near-field calculation has increasing influence on the accuracy and efficiency of the entire aerial image calculation process. This paper develops a flexible librarybased approach to significantly improve the efficiency of the thick mask near-field calculation compared to the rigorous modeling method, while leading to much higher accuracy than the Kirchhoff approximation method. Specifically, a set of typical features on the fullchip are selected to serve as the training data, whose near-fields are pre-calculated and saved in the library. Given an arbitrary test mask, we first decompose it into convex corners, concave corners and edges, afterwards match each patch to the training layouts based on nonparametric kernel regression. Subsequently, we use the matched near-fields in the library to replace the mask patches, and rapidly synthesize the near-field for the entire test mask. Finally, a data-fitting method is proposed to improve the accuracy of the synthesized near-field based on least square estimate (LSE). We use a pair of two-dimensional mask patterns to test our method. Simulations show that the proposed method can significantly speed up the current FDTD method, and effectively improve the accuracy of the Kirchhoff approximation method.

  9. Flexible transparent metal/polymer composite materials based on optical resonant laminate structures.

    PubMed

    Narayanan, Sudarshan; Choi, Jihoon; Porter, Lisa; Bockstaller, Michael R

    2013-05-22

    Suitable design of periodic metal/polymer composite materials is shown to facilitate resonant tunneling of light at absorbing wavelengths and to provide a means to significantly reduce optical absorption losses in polymer-based metallodielectric composite structures. The conditions for resonant tunneling are established based on the concept of "photonic band edge alignment" in 1D-periodic systems. For the particular case of a four-layer gold/polystyrene laminate structure, it is shown that the matching of the lower band edge of the 1D-periodic structure with the plasma frequency of the metal component facilitates the increase of optical transmission by about 500% as compared to monolithic film structures of equal total thickness. The effect of sheet thickness on the optical properties of thin metal films is determined and shown to be an important prerequisite for the reliable prediction of resonant metallodielectric structures. The resonant 1D-periodic metal/polymer heterostructures are shown to retain the flexural stability of the polymer matrix and thus could find application as flexible transparent conductors in areas such as "plastic electronics".

  10. Two-dimensional vanadium-doped ZnO nanosheet-based flexible direct current nanogenerator.

    PubMed

    Gupta, Manoj Kumar; Lee, Ju-Hyuck; Lee, Keun Young; Kim, Sang-Woo

    2013-10-22

    Here, we report the synthesis of lead-free single-crystalline two-dimensional (2D) vanadium(V)-doped ZnO nanosheets (NSs) and their application for high-performance flexible direct current (DC) power piezoelectric nanogenerators (NGs). The vertically aligned ZnO nanorods (NRs) converted to NS networks by V doping. Piezoresponse force microscopy studies reveal that vertical V-doped ZnO NS exhibit typical ferroelectricity with clear phase loops, butterfly, and well-defined hysteresis loops with a piezoelectric charge coefficient of up to 4 pm/V, even in 2D nanostructures. From pristine ZnO NR-based NGs, alternating current (AC)-type output current was observed, while from V-doped ZnO NS-based NGs, a DC-type output current density of up to 1.0 μAcm(-2) was surprisingly obtained under the same vertical compressive force. The growth mechanism, ferroelectric behavior, charge inverted phenomena, and high piezoelectric output performance observed from the V-doped ZnO NS are discussed in terms of the formation of an ionic layer of [V(OH)4(-)], permanent electric dipole, and the doping-induced resistive behavior of ZnO NS.

  11. Highly Flexible Hybrid CMOS Inverter Based on Si Nanomembrane and Molybdenum Disulfide.

    PubMed

    Das, Tanmoy; Chen, Xiang; Jang, Houk; Oh, Il-Kwon; Kim, Hyungjun; Ahn, Jong-Hyun

    2016-11-01

    2D semiconductor materials are being considered for next generation electronic device application such as thin-film transistors and complementary metal-oxide-semiconductor (CMOS) circuit due to their unique structural and superior electronics properties. Various approaches have already been taken to fabricate 2D complementary logics circuits. However, those CMOS devices mostly demonstrated based on exfoliated 2D materials show the performance of a single device. In this work, the design and fabrication of a complementary inverter is experimentally reported, based on a chemical vapor deposition MoS2 n-type transistor and a Si nanomembrane p-type transistor on the same substrate. The advantages offered by such CMOS configuration allow to fabricate large area wafer scale integration of high performance Si technology with transition-metal dichalcogenide materials. The fabricated hetero-CMOS inverters which are composed of two isolated transistors exhibit a novel high performance air-stable voltage transfer characteristic with different supply voltages, with a maximum voltage gain of ≈16, and sub-nano watt power consumption. Moreover, the logic gates have been integrated on a plastic substrate and displayed reliable electrical properties paving a realistic path for the fabrication of flexible/transparent CMOS circuits in 2D electronics.

  12. Toward a self-wired active reconstruction of the hippocampal trisynaptic loop: DG-CA3

    PubMed Central

    Brewer, Gregory J.; Boehler, Michael D.; Leondopulos, Stathis; Pan, Liangbin; Alagapan, Sankaraleengam; DeMarse, Thomas B.; Wheeler, Bruce C.

    2013-01-01

    The mammalian hippocampus functions to encode and retrieve memories by transiently changing synaptic strengths, yet encoding in individual subregions for transmission between regions remains poorly understood. Toward the goal of better understanding the coding in the trisynaptic pathway from the dentate gyrus (DG) to the CA3 and CA1, we report a novel microfabricated device that divides a micro-electrode array into two compartments of separate hippocampal network subregions connected by axons that grow through 3 × 10 × 400 μm tunnels. Gene expression by qPCR demonstrated selective enrichment of separate DG, CA3, and CA1 subregions. Reconnection of DG to CA3 altered burst dynamics associated with marked enrichment of GAD67 in DG and GFAP in CA3. Surprisingly, DG axon spike propagation was preferentially unidirectional to the CA3 region at 0.5 m/s with little reverse transmission. Therefore, select hippocampal subregions intrinsically self-wire in anatomically appropriate patterns and maintain their distinct subregion phenotype without external inputs. PMID:24155693

  13. Toward a self-wired active reconstruction of the hippocampal trisynaptic loop: DG-CA3.

    PubMed

    Brewer, Gregory J; Boehler, Michael D; Leondopulos, Stathis; Pan, Liangbin; Alagapan, Sankaraleengam; DeMarse, Thomas B; Wheeler, Bruce C

    2013-01-01

    The mammalian hippocampus functions to encode and retrieve memories by transiently changing synaptic strengths, yet encoding in individual subregions for transmission between regions remains poorly understood. Toward the goal of better understanding the coding in the trisynaptic pathway from the dentate gyrus (DG) to the CA3 and CA1, we report a novel microfabricated device that divides a micro-electrode array into two compartments of separate hippocampal network subregions connected by axons that grow through 3 × 10 × 400 μm tunnels. Gene expression by qPCR demonstrated selective enrichment of separate DG, CA3, and CA1 subregions. Reconnection of DG to CA3 altered burst dynamics associated with marked enrichment of GAD67 in DG and GFAP in CA3. Surprisingly, DG axon spike propagation was preferentially unidirectional to the CA3 region at 0.5 m/s with little reverse transmission. Therefore, select hippocampal subregions intrinsically self-wire in anatomically appropriate patterns and maintain their distinct subregion phenotype without external inputs.

  14. A New Discontinuous Galerkin Method for Convection-Diffusion Problems: The Gradient-Recovery DG Method

    NASA Astrophysics Data System (ADS)

    Johnson, Philip; Johnsen, Eric

    2016-11-01

    The Discontinuous Galerkin (DG) numerical method, while well-suited for hyperbolic PDE systems such as the Euler equations, is not naturally competitive for convection-diffusion systems, such as the Navier-Stokes equations. Where the DG weak form of the Euler equations depends only on the field variables for calculation of numerical fluxes, the traditional form of the Navier-Stokes equations requires calculation of the gradients of field variables for flux calculations. It is this latter task for which the standard DG discretization is ill-suited, and several approaches have been proposed to treat the issue. The most popular strategy for handling diffusion is the "mixed" approach, where the solution gradient is constructed from the primal as an auxiliary. We designed a new mixed approach, called Gradient-Recovery DG; it uses the Recovery concept of Van Leer & Nomura with the mixed approach to produce a scheme with excellent stability, high accuracy, and unambiguous implementation when compared to typical mixed approach concepts. In addition to describing the scheme, we will perform analysis with comparison to other DG approaches for diffusion. Gas dynamics examples will be presented to demonstrate the scheme's capabilities.

  15. [Effects of intergenic interaction of the high pigmentation gene hp-2(dg) (high pigment-2 dark green) with the gene B (beta-carotene) in tomato].

    PubMed

    Kuzemenskiĭ, A V

    2008-01-01

    It was shown that during intergenic interaction of genes hp-2(dg) and B in dihomozygote an additive factor is formed activating biogenesis of beta-carotene in tomato fruits. In the genotype B/B//hp-2(dg)/hp-2(dg) there is preserved the positive effects of the gene hp-2(dg) on the content of ascorbic acid and the negative one on the content of titrated acids. With this stabilization of the gene hp-2(dg) genetic depression is observed, which is manifested in the increased productivity of B/B//hp-2(dg)/hp-2(dg)-genotypes.

  16. Hypercoordinate silicon complexes based on hydrazide ligands. A remarkably flexible molecular system.

    PubMed

    Kost, Daniel; Kalikhman, Inna

    2009-02-17

    Though only one row apart on the periodic table, silicon greatly differs from carbon in its ability to readily form five- and six-coordinate complexes, termed "hypercoordinate silicon compounds". The assorted chemistry of these compounds is varied in both structures and reactivity and has generated a flurry of innovative research endeavors in recent years. This Account summarizes the latest work done on a specific class of hypercoordinate silicon compounds, specifically those with two hydrazide-derived chelate rings. This family is especially interesting due to the ability to form multiple penta- and hexacoordinate complexes, the chemical reactivity of pentacoordinate complexes, and the observation of intermolecular ligand crossovers in hexacoordinate complexes. Pentacoordinate complexes in this family exhibit marked structural flexibility, as demonstrated by the construction of a complete hypothetical Berry-pseudorotation reaction coordinate generated from individual crystallographic molecular structures. Although hexacoordinate complexes generally crystallize as octahedra, with a decrease in the ligand donor strength the complexes can crystallize as bicapped tetrahedra. Hexacoordinate complexes bearing a halogen ligand undergo a solvent-driven equilibrium ionic dissociation, which is controlled by solvent, temperature, counterion, and chelate structure and has been directly demonstrated by conductivity measurements and temperature-dependent (29)Si NMR. Hexacoordinate silicon complexes can also undergo reversible neutral nonionic dissociation of the N-Si dative bond. Ionic pentacoordinate siliconium salts react readily via methyl halide elimination, initiated by their own counterion acting as a base. Pentacoordinate complexes can also undergo intramolecular aldol condensations of imines, which may find potential as a template for organic synthesis. In addition, these complexes are capable of performing an uncatalyzed intramolecular hydrosilylation of imine double

  17. Flexible touchpads based on inductive sensors using embedded conductive composite polymer

    NASA Astrophysics Data System (ADS)

    Rahbar, A.; Rahbar, M.; Gray, B. L.

    2014-04-01

    We present the design, fabrication, and preliminary testing of a flexible array of sensor switches intended for applications in wearable electronics and sensor systems. The touch pad sensor arrays feature flexible printed circuit board (flexible PCB) substrates and/or flexible conductive composite polymer (CCP) structures, resulting in highly flexible switch arrays. Each switch consists of 4 elements: fascia, target, spacer and a sensor coil. The user presses the fascia, bringing the target in contact with the sensor coil. Any change in the position of the target changes the coil inductance due to the generation of eddy currents, which are detected by an electronic circuit and custom software. Contact between the target and coil also measurably changes the inductance of the coils. Different sizes and geometries (square, circular, hexagonal and octagonal) of coils in both flexible PCB metal (copper) and CCP were investigated to determine which couple best with the CCP that forms the target for the inductive coils. We describe techniques for patterning two-layer inductive coils on flexible PCBs. Using this process, we demonstrate coil trace thicknesses of 200 micrometers. We also present a new low cost microfabrication technique to create inductive flexible coils using embedded CCP in polydimethylsiloxane (PDMS) as an alternative to flexible PCB metal coils. We further describe an electronic circuit that accurately measures inductances as low as 500 nH that is used to detect the change in the inductance of a sensor's coil when the user presses the target element of the sensor. The inductance for a sensor composed of CCP square coils and CCP target was measured to be approximately 35 μH before being pressed. When pressed, the inductance dropped to 3.8 μH, a change which was easily detected.

  18. A flexible and miniaturized hair dye based photodetector via chemiluminescence pathway.

    PubMed

    Lin, Ching-Chang; Sun, Da-Shiuan; Lin, Ya-Lin; Tsai, Tsung-Tso; Cheng, Chieh; Sun, Wen-Hsien; Ko, Fu-Hsiang

    2017-04-15

    A flexible and miniaturized metal semiconductor metal (MSM) biomolecular photodetector was developed as the core photocurrent system through chemiluminescence for hydrogen peroxide sensing. The flexible photocurrent sensing system was manufactured on a 30-µm-thick crystalline silicon chip by chemical etching process, which produced a flexible silicon chip. A surface texturization design on the flexible device enhanced the light-trapping effect and minimized reflectivity losses from the incident light. The model protein streptavidin bound to horseradish peroxidase (HRP) was successfully immobilized onto the sensor surface through high-affinity conjugation with biotin. The luminescence reaction occurred with luminol, hydrogen peroxide and HRP enzyme, and the emission of light from the catalytic reaction was detected by underlying flexible photodetector. The chemiluminescence in the miniaturized photocurrent sensing system was successfully used to determine the hydrogen peroxide concentration in real-time analyses. The hydrogen peroxide detection limit of the flexible MSM photodetector was 2.47mM. The performance of the flexible MSM photodetector maintained high stability under bending at various bending radii. Moreover, for concave bending, a significant improvement in detection signal intensity (14.5% enhancement compared with a flat configuration) was observed because of the increased photocurrent, which was attributed to enhancement of light trapping. Additionally, this detector was used to detect hydrogen peroxide concentrations in commercial hair dye products, which is a significant issue in the healthcare field. The development of this novel, flexible and miniaturized MSM biomolecular photodetector with excellent mechanical flexibility and high sensitivity demonstrates the applicability of this approach to future wearable sensor development efforts. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Effects of hexagonal boron nitride on dry compression mixture of Avicel DG and Starch 1500.

    PubMed

    Uğurlu, Timuçin; Halaçoğlu, Mekin Doğa

    2016-01-01

    The objective of this study was to investigate the lubrication properties of hexagonal boron nitride (HBN) on a (1:1) binary mixture of Avicel DG and Starch 1500 after using the dry granulation-slugging method and compare it with conventional lubricants, such as magnesium stearate (MGST), glyceryl behenate (COMP) and stearic acid (STAC). MGST is one of the most commonly used lubricants in the pharmaceutical industry. However, it has several adverse effects on tablet properties. In our current study, we employed various methods to eradicate the work hardening phenomenon in dry granulation, and used HBN as a new lubricant to overcome the adverse effects of other lubricants on tablet properties. HBN was found to be as effective as MGST and did not show any significant adverse effects on the crushing strength or work hardening. From the scanning electron microscope (SEM) images, it was concluded that HBN distributed better than MGST. As well as showing better distribution, HBN's effect on disintegration was the least pronounced. Semi-quantitative weight percent distribution of B and N elements in the tablets was obtained using EDS (energy dispersive spectroscopy). Based on atomic force microscope (AFM) surface roughness images, formulations prepared with 1% HBN showed better plastic character than those prepared with MGST.

  20. A hierarchical uniformly high order DG-IMEX scheme for the 1D BGK equation

    NASA Astrophysics Data System (ADS)

    Xiong, Tao; Qiu, Jing-Mei

    2017-05-01

    A class of high order nodal discontinuous Galerkin implicit-explicit (DG-IMEX) schemes with asymptotic preserving (AP) property has been developed for the one-dimensional (1D) BGK equation in Xiong et al. (2015) [40], based on a micro-macro reformulation. The schemes are globally stiffly accurate and asymptotically consistent, and as the Knudsen number becomes small or goes to zero, they recover first the compressible Navier-Stokes (CNS) and then the Euler limit. Motivated by the recent work of Filbet and Rey (2015) [27] and the references therein, in this paper, we propose a hierarchical high order AP method, namely kinetic, CNS and Euler solvers are automatically applied in regions where their corresponding models are appropriate. The numerical solvers for different regimes are coupled naturally by interface conditions. To the best of our knowledge, the resulting scheme is the very first hierarchical one being proposed in the literature, that enjoys AP property as well as uniform high order accuracy. Numerical experiments demonstrate the efficiency and effectiveness of the proposed approach. As time evolves, three different regimes are dynamically identified and naturally coupled, leading to significant CPU time savings (more than 80% for some of our test problems).