Verification strategies for fluid-based plasma simulation models
NASA Astrophysics Data System (ADS)
Mahadevan, Shankar
2012-10-01
Verification is an essential aspect of computational code development for models based on partial differential equations. However, verification of plasma models is often conducted internally by authors of these programs and not openly discussed. Several professional research bodies including the IEEE, AIAA, ASME and others have formulated standards for verification and validation (V&V) of computational software. This work focuses on verification, defined succinctly as determining whether the mathematical model is solved correctly. As plasma fluid models share several aspects with the Navier-Stokes equations used in Computational Fluid Dynamics (CFD), the CFD verification process is used as a guide. Steps in the verification process: consistency checks, examination of iterative, spatial and temporal convergence, and comparison with exact solutions, are described with examples from plasma modeling. The Method of Manufactured Solutions (MMS), which has been used to verify complex systems of PDEs in solid and fluid mechanics, is introduced. An example of the application of MMS to a self-consistent plasma fluid model using the local mean energy approximation is presented. The strengths and weaknesses of the techniques presented in this work are discussed.
Kelly, Sinead; O'Rourke, Malachy
2012-04-01
This article describes the use of fluid, solid and fluid-structure interaction simulations on three patient-based abdominal aortic aneurysm geometries. All simulations were carried out using OpenFOAM, which uses the finite volume method to solve both fluid and solid equations. Initially a fluid-only simulation was carried out on a single patient-based geometry and results from this simulation were compared with experimental results. There was good qualitative and quantitative agreement between the experimental and numerical results, suggesting that OpenFOAM is capable of predicting the main features of unsteady flow through a complex patient-based abdominal aortic aneurysm geometry. The intraluminal thrombus and arterial wall were then included, and solid stress and fluid-structure interaction simulations were performed on this, and two other patient-based abdominal aortic aneurysm geometries. It was found that the solid stress simulations resulted in an under-estimation of the maximum stress by up to 5.9% when compared with the fluid-structure interaction simulations. In the fluid-structure interaction simulations, flow induced pressure within the aneurysm was found to be up to 4.8% higher than the value of peak systolic pressure imposed in the solid stress simulations, which is likely to be the cause of the variation in the stress results. In comparing the results from the initial fluid-only simulation with results from the fluid-structure interaction simulation on the same patient, it was found that wall shear stress values varied by up to 35% between the two simulation methods. It was concluded that solid stress simulations are adequate to predict the maximum stress in an aneurysm wall, while fluid-structure interaction simulations should be performed if accurate prediction of the fluid wall shear stress is necessary. Therefore, the decision to perform fluid-structure interaction simulations should be based on the particular variables of interest in a given
Physically-Based Modelling and Real-Time Simulation of Fluids.
NASA Astrophysics Data System (ADS)
Chen, Jim Xiong
1995-01-01
Simulating physically realistic complex fluid behaviors presents an extremely challenging problem for computer graphics researchers. Such behaviors include the effects of driving boats through water, blending differently colored fluids, rain falling and flowing on a terrain, fluids interacting in a Distributed Interactive Simulation (DIS), etc. Such capabilities are useful in computer art, advertising, education, entertainment, and training. We present a new method for physically-based modeling and real-time simulation of fluids in computer graphics and dynamic virtual environments. By solving the 2D Navier -Stokes equations using a CFD method, we map the surface into 3D using the corresponding pressures in the fluid flow field. This achieves realistic real-time fluid surface behaviors by employing the physical governing laws of fluids but avoiding extensive 3D fluid dynamics computations. To complement the surface behaviors, we calculate fluid volume and external boundary changes separately to achieve full 3D general fluid flow. To simulate physical activities in a DIS, we introduce a mechanism which uses a uniform time scale proportional to the clock-time and variable time-slicing to synchronize physical models such as fluids in the networked environment. Our approach can simulate many different fluid behaviors by changing the internal or external boundary conditions. It can model different kinds of fluids by varying the Reynolds number. It can simulate objects moving or floating in fluids. It can also produce synchronized general fluid flows in a DIS. Our model can serve as a testbed to simulate many other fluid phenomena which have never been successfully modeled previously.
Node Deployment Algorithm Based on Viscous Fluid Model for Wireless Sensor Networks
Qian, Huanyan
2014-01-01
With the scale expands, traditional deployment algorithms are becoming increasingly complicated than before, which are no longer fit for sensor networks. In order to reduce the complexity, we propose a node deployment algorithm based on viscous fluid model. In wireless sensor networks, sensor nodes are abstracted as fluid particles. Similar to the diffusion and self-propagation behavior of fluid particles, sensor nodes realize deployment in unknown region following the motion rules of fluid. Simulation results show that our algorithm archives good coverage rate and homogeneity in large-scale sensor networks. PMID:25133222
Fluid identification in tight sandstone reservoirs based on a new rock physics model
NASA Astrophysics Data System (ADS)
Sun, Jianmeng; Wei, Xiaohan; Chen, Xuelian
2016-08-01
To identify pore fluids, we establish a new rock physics model named the tight sandstone dual-porosity model based on the Voigt-Reuss-Hill model, approximation for the Xu-White model and Gassmann’s equation to predict elastic wave velocities. The modeling test shows that predicted sonic velocities derived from this rock physics model match well with measured ones from logging data. In this context, elastic moduli can be derived from the model. By numerical study and characteristic analyzation of different elastic properties, a qualitative fluid identification method based on Poisson’s ratio and the S-L dual-factor method based on synthetic moduli is proposed. Case studies of these two new methods show the applicability in distinguishing among different fluids and different layers in tight sandstone reservoirs.
An Image-Based Model of Fluid Flow Through Lymph Nodes.
Cooper, Laura J; Heppell, James P; Clough, Geraldine F; Ganapathisubramani, Bharathram; Roose, Tiina
2016-01-01
The lymphatic system returns fluid to the bloodstream from the tissues to maintain tissue fluid homeostasis. Lymph nodes distributed throughout the system filter the lymphatic fluid. The afferent and efferent lymph flow conditions of lymph nodes can be measured in experiments; however, it is difficult to measure the flow within the nodes. In this paper, we present an image-based modelling approach to investigating how the internal structure of the node affects the fluid flow pathways within the node. Selective plane illumination microscopy images of murine lymph nodes are used to identify the geometry and structure of the tissue within the node and to determine the permeability of the lymph node interstitium to lymphatic fluid. Experimental data are used to determine boundary conditions and optimise the parameters for the model. The numerical simulations conducted within the model are implemented in COMSOL Multiphysics, a commercial finite element analysis software. The parameter fitting resulted in the estimate that the average permeability for lymph node tissue is of the order of magnitude of [Formula: see text]. Our modelling shows that the flow predominantly takes a direct path between the afferent and efferent lymphatics and that fluid is both filtered and absorbed across the blood vessel boundaries. The amount that is absorbed or extravasated in the model is dependent on the efferent lymphatic lumen fluid pressure. PMID:26690921
Yield shear stress model of magnetorheological fluids based on exponential distribution
NASA Astrophysics Data System (ADS)
Guo, Chu-wen; Chen, Fei; Meng, Qing-rui; Dong, Zi-xin
2014-06-01
The magnetic chain model that considers the interaction between particles and the external magnetic field in a magnetorheological fluid has been widely accepted. Based on the chain model, a yield shear stress model of magnetorheological fluids was proposed by introducing the exponential distribution to describe the distribution of angles between the direction of magnetic field and the chain formed by magnetic particles. The main influencing factors were considered in the model, such as magnetic flux density, intensity of magnetic field, particle size, volume fraction of particles, the angle of magnetic chain, and so on. The effect of magnetic flux density on the yield shear stress was discussed. The yield stress of aqueous Fe3O4 magnetreological fluids with volume fraction of 7.6% and 16.2% were measured by a device designed by ourselves. The results indicate that the proposed model can be used for calculation of yield shear stress with acceptable errors.
Development Of Sputtering Models For Fluids-Based Plasma Simulation Codes
NASA Astrophysics Data System (ADS)
Veitzer, Seth; Beckwith, Kristian; Stoltz, Peter
2015-09-01
Rf-driven plasma devices such as ion sources and plasma processing devices for many industrial and research applications benefit from detailed numerical modeling. Simulation of these devices using explicit PIC codes is difficult due to inherent separations of time and spatial scales. One alternative type of model is fluid-based codes coupled with electromagnetics, that are applicable to modeling higher-density plasmas in the time domain, but can relax time step requirements. To accurately model plasma-surface processes, such as physical sputtering and secondary electron emission, kinetic particle models have been developed, where particles are emitted from a material surface due to plasma ion bombardment. In fluid models plasma properties are defined on a cell-by-cell basis, and distributions for individual particle properties are assumed. This adds a complexity to surface process modeling, which we describe here. We describe the implementation of sputtering models into the hydrodynamic plasma simulation code USim, as well as methods to improve the accuracy of fluids-based simulation of plasmas-surface interactions by better modeling of heat fluxes. This work was performed under the auspices of the Department of Energy, Office of Basic Energy Sciences Award #DE-SC0009585.
Adaptive registration of magnetic resonance images based on a viscous fluid model.
Chang, Herng-Hua; Tsai, Chih-Yuan
2014-11-01
This paper develops a new viscous fluid registration algorithm that makes use of a closed incompressible viscous fluid model associated with mutual information. In our approach, we treat the image pixels as the fluid elements of a viscous fluid governed by the nonlinear Navier-Stokes partial differential equation (PDE) that varies in both temporal and spatial domains. We replace the pressure term with an image-based body force to guide the transformation that is weighted by the mutual information between the template and reference images. A computationally efficient algorithm with staggered grids is introduced to obtain stable solutions of this modified PDE for transformation. The registration process of updating the body force, the velocity and deformation fields is repeated until the mutual information reaches a prescribed threshold. We have evaluated this new algorithm in a number of synthetic and medical images. As consistent with the theory of the viscous fluid model, we found that our method faithfully transformed the template images into the reference images based on the intensity flow. Experimental results indicated that the proposed scheme achieved stable registrations and accurate transformations, which is of potential in large-scale medical image deformation applications. PMID:25176596
A Rayleigh-Plesset based transport model for cryogenic fluid cavitating flow computations
NASA Astrophysics Data System (ADS)
Shi, SuGuo; Wang, GuoYu; Hu, ChangLi
2014-04-01
The present article focuses on modeling issues to simulate cryogenic fluid cavitating flows. A revised cavitation model, in which the thermal effect is considered, is derivated and established based on Kubota model. Cavitating flow computations are conducted around an axisymmetric ogive and a 2D quarter caliber hydrofoil in liquid nitrogen implementing the revised model and Kubota model coupled with energy equation and dynamically updating the fluid physical properties, respecitively. The results show that the revised cavitation model can better describe the mass transport process in the cavitation process in cryogenic fluids. Compared with Kubota model, the revised model can reflect the observed "frosty" appearance within the cavity. The cavity length becomes shorter and it can capture the temperature and pressure depressions more consistently in the cavitating region, particularly at the rear of the cavity. The evaporation rate decreases, and while the magnitude of the condensation rate becomes larger because of the thermal effect terms in the revised model compared with the results obtained by the Kubota model.
Predicting multidimensional annular flows with a locally based two-fluid model
Antal, S.P. Edwards, D.P.; Strayer, T.D.
1998-06-01
Annular flows are a well utilized flow regime in many industrial applications, such as, heat exchangers, chemical reactors and industrial process equipment. These flows are characterized by a droplet laden vapor core with a thin, wavy liquid film wetting the walls. The prediction of annular flows has been largely confined to one-dimensional modeling which typically correlates the film thickness, droplet loading, and phase velocities by considering the average flow conditions and global mass and momentum balances to infer the flow topology. In this paper, a methodology to predict annular flows using a locally based two-fluid model of multiphase flow is presented. The purpose of this paper is to demonstrate a modeling approach for annular flows using a multifield, multidimensional two-fluid model and discuss the need for further work in this area.
Self-reconfigurable ship fluid-network modeling for simulation-based design
NASA Astrophysics Data System (ADS)
Moon, Kyungjin
Our world is filled with large-scale engineering systems, which provide various services and conveniences in our daily life. A distinctive trend in the development of today's large-scale engineering systems is the extensive and aggressive adoption of automation and autonomy that enable the significant improvement of systems' robustness, efficiency, and performance, with considerably reduced manning and maintenance costs, and the U.S. Navy's DD(X), the next-generation destroyer program, is considered as an extreme example of such a trend. This thesis pursues a modeling solution for performing simulation-based analysis in the conceptual or preliminary design stage of an intelligent, self-reconfigurable ship fluid system, which is one of the concepts of DD(X) engineering plant development. Through the investigations on the Navy's approach for designing a more survivable ship system, it is found that the current naval simulation-based analysis environment is limited by the capability gaps in damage modeling, dynamic model reconfiguration, and simulation speed of the domain specific models, especially fluid network models. As enablers of filling these gaps, two essential elements were identified in the formulation of the modeling method. The first one is the graph-based topological modeling method, which will be employed for rapid model reconstruction and damage modeling, and the second one is the recurrent neural network-based, component-level surrogate modeling method, which will be used to improve the affordability and efficiency of the modeling and simulation (M&S) computations. The integration of the two methods can deliver computationally efficient, flexible, and automation-friendly M&S which will create an environment for more rigorous damage analysis and exploration of design alternatives. As a demonstration for evaluating the developed method, a simulation model of a notional ship fluid system was created, and a damage analysis was performed. Next, the models
NASA Astrophysics Data System (ADS)
Brown, M.; Fotheringham, J. D.; Hoyes, T. J.; Mortier, R. M.; Orszulik, S. T.; Randles, S. J.; Stroud, P. M.
The chemical nature and technology of the main synthetic lubricant base fluids is described, covering polyalphaolefins, alkylated aromatics, gas-to-liquid (GTL) base fluids, polybutenes, aliphatic diesters, polyolesters, polyalkylene glycols or PAGs and phosphate esters.Other synthetic lubricant base oils such as the silicones, borate esters, perfluoroethers and polyphenylene ethers are considered to have restricted applications due to either high cost or performance limitations and are not considered here.Each of the main synthetic base fluids is described for their chemical and physical properties, manufacture and production, their chemistry, key properties, applications and their implications when used in the environment.
Masoumi, Nafiseh; Framanzad, F; Zamanian, Behnam; Seddighi, A S; Moosavi, M H; Najarian, S; Bastani, Dariush
2013-01-01
Many diseases are related to cerebrospinal fluid (CSF) hydrodynamics. Therefore, understanding the hydrodynamics of CSF flow and intracranial pressure is helpful for obtaining deeper knowledge of pathological processes and providing better treatments. Furthermore, engineering a reliable computational method is promising approach for fabricating in vitro models which is essential for inventing generic medicines. A Fluid-Solid Interaction (FSI)model was constructed to simulate CSF flow. An important problem in modeling the CSF flow is the diastolic back flow. In this article, using both rigid and flexible conditions for ventricular system allowed us to evaluate the effect of surrounding brain tissue. Our model assumed an elastic wall for the ventricles and a pulsatile CSF input as its boundary conditions. A comparison of the results and the experimental data was done. The flexible model gave better results because it could reproduce the diastolic back flow mentioned in clinical research studies. The previous rigid models have ignored the brain parenchyma interaction with CSF and so had not reported the back flow during the diastolic time. In this computational fluid dynamic (CFD) analysis, the CSF pressure and flow velocity in different areas were concordant with the experimental data.
Masoumi, Nafiseh; Framanzad, F; Zamanian, Behnam; Seddighi, A S; Moosavi, M H; Najarian, S; Bastani, Dariush
2013-01-01
Many diseases are related to cerebrospinal fluid (CSF) hydrodynamics. Therefore, understanding the hydrodynamics of CSF flow and intracranial pressure is helpful for obtaining deeper knowledge of pathological processes and providing better treatments. Furthermore, engineering a reliable computational method is promising approach for fabricating in vitro models which is essential for inventing generic medicines. A Fluid-Solid Interaction (FSI)model was constructed to simulate CSF flow. An important problem in modeling the CSF flow is the diastolic back flow. In this article, using both rigid and flexible conditions for ventricular system allowed us to evaluate the effect of surrounding brain tissue. Our model assumed an elastic wall for the ventricles and a pulsatile CSF input as its boundary conditions. A comparison of the results and the experimental data was done. The flexible model gave better results because it could reproduce the diastolic back flow mentioned in clinical research studies. The previous rigid models have ignored the brain parenchyma interaction with CSF and so had not reported the back flow during the diastolic time. In this computational fluid dynamic (CFD) analysis, the CSF pressure and flow velocity in different areas were concordant with the experimental data. PMID:25337330
Kenkeremath, D.
1985-05-01
Numerical simulation models and data bases that were developed for DOE as part of a number of geothermal programs have been assessed with respect to their overall stage of development and usefulness. This report combines three separate studies that focus attention upon: (1) economic models related to geothermal energy; (2) physical geothermal system models pertaining to thermal energy and the fluid medium; and (3) geothermal energy data bases. Computerized numerical models pertaining to the economics of extracting and utilizing geothermal energy have been summarized and catalogued with respect to their availability, utility and function. The 19 models that are discussed in detail were developed for use by geothermal operators, public utilities, and lending institutions who require a means to estimate the value of a given resource, total project costs, and the sensitivity of these values to specific variables. A number of the models are capable of economically assessing engineering aspects of geothermal projects. Computerized simulations of heat distribution and fluid flow have been assessed and are presented for ten models. Five of the models are identified as wellbore simulators and five are described as reservoir simulators. Each model is described in terms of its operational characteristics, input, output, and other pertinent attributes. Geothermal energy data bases are reviewed with respect to their current usefulness and availability. Summaries of eight data bases are provided in catalogue format, and an overall comparison of the elements of each data base is included.
Mathematical modeling of CSF pulsatile hydrodynamics based on fluid-solid interaction.
Masoumi, Nafiseh; Bastani, Dariush; Najarian, Siamak; Ganji, Fariba; Farmanzad, Farhad; Seddighi, Amir Saeed
2010-06-01
Intracranial pressure (ICP) is derived from cerebral blood pressure and cerebrospinal fluid (CSF) circulatory dynamics and can be affected in the course of many diseases. Computer analysis of the ICP time pattern plays a crucial role in the diagnosis and treatment of those diseases. This study proposes the application of Linninger et al.'s [IEEE Trans. Biomed. Eng., vol. 52, no. 4, pp. 557-565, Apr. 2005] fluid-solid interaction model of CSF hydrodynamic in ventricular system based on our clinical data from a group of patients with brain parenchyma tumor. The clinical experiments include the arterial blood pressure (ABP), venous blood pressure, and ICP in the subarachnoid space (SAS). These data were used as inputs to the model that predicts the intracranial dynamic phenomena. In addition, the model has been modified by considering CSF pulsatile production rate as the major factor of CSF motion. The approximations of ventricle enlargement, CSF pressure distribution in the ventricular system and CSF velocity magnitude in the aqueduct and foramina were obtained in this study. The observation of reversal flow in the CSF flow pattern due to brain tissue compression is another finding in our investigation. Based on the experimental results, no existence of large transmural pressure differences were found in the brain system. The measured pressure drop in the ventricular system was less than 5 Pa. Moreover, the CSF flow pattern, ICP distribution, and velocity magnitude were in good agreement with the published models and CINE (phase-contrast magnetic resonance imaging) experiments, respectively.
An earthquake instability model based on faults containing high fluid-pressure compartments
Lockner, D.A.; Byerlee, J.D.
1995-01-01
It has been proposed that large strike-slip faults such as the San Andreas contain water in seal-bounded compartments. Arguments based on heat flow and stress orientation suggest that in most of the compartments, the water pressure is so high that the average shear strength of the fault is less than 20 MPa. We propose a variation of this basic model in which most of the shear stress on the fault is supported by a small number of compartments where the pore pressure is relatively low. As a result, the fault gouge in these compartments is compacted and lithified and has a high undisturbed strength. When one of these locked regions fails, the system made up of the neighboring high and low pressure compartments can become unstable. Material in the high fluid pressure compartments is initially underconsolidated since the low effective confining pressure has retarded compaction. As these compartments are deformed, fluid pressure remains nearly unchanged so that they offer little resistance to shear. The low pore pressure compartments, however, are overconsolidated and dilate as they are sheared. Decompression of the pore fluid in these compartments lowers fluid pressure, increasing effective normal stress and shear strength. While this effect tends to stabilize the fault, it can be shown that this dilatancy hardening can be more than offset by displacement weakening of the fault (i.e., the drop from peak to residual strength). If the surrounding rock mass is sufficiently compliant to produce an instability, slip will propagate along the fault until the shear fracture runs into a low-stress region. Frictional heating and the accompanying increase in fluid pressure that are suggested to occur during shearing of the fault zone will act as additional destabilizers. However, significant heating occurs only after a finite amount of slip and therefore is more likely to contribute to the energetics of rupture propagation than to the initiation of the instability. We present
Predicting multidimensional annular flow with a locally based two-fluid model
Antal, S.P.; Edwards, D.P.; Strayer, T.D.
1998-06-01
The purpose of this work was to: develop a methodology to predict annular flows using a multidimensional four-field, two-fluid Computational Fluid Dynamics (CFD) computer code; develop closure models which use the CFD predicted local velocities, phasic volume fractions, etc...; implement a numerical method which allows the discretized equations to have the same characteristics as the differential form; and compare predicted results to local flow field data taken in a R-134a working fluid test section.
An Eulerian-based Bubble Dynamics Model for Computational Fluid Dynamics
NASA Astrophysics Data System (ADS)
Balu, Asish; Kinzel, Michael
2015-11-01
Cavitation dynamics of nuclei are largely governed by the Rayleigh-Plesset Equation (RPE). This research explores the implementation of a one-way coupling to the solution of the RPE to a computational fluid dynamics (CFD) simulation in an Eulerian-framework. In this work, we used transport equations (i.e., advection) of the bubble radius and bubble growth rate, both of which are governed by advection mechanisms and coupling to the RPE through the CFD pressure field. The method is validated in the context of hypothetical pressure fields by prescribing a temporally varying pressure. Then, it is extended to one-way coupling with cavitation development in three different flow situations: (1) flow over a cylinder, (2) bubble formation during a bottle collapse event, and (3) cavitation in a tip vortex. In the context of these flows, the CFD simulations replicate an equivalent MATLAB-based solution to the RPE, thus validating the model. Additionally, an analytical formulation for appropriate upper and lower bounds for the bubble's physical properties is presented. These boundary values allow the CFD solver to run at larger time steps, therefore increasing the rate of convergence as well as maintaining solution accuracy. The results from this work suggest that Eulerian-based RPE cavitation models are practical and have the potential to simulate large numbers of bubbles that challenge Lagrangian methods.
Fluid flow model of the Cerro Prieto Geothermal Field based on well log interpretation
Halfman, S.E.; Lippmann, M.J.; Zelwe, R.; Howard, J.H.
1982-08-10
The subsurface geology of the Cerro Prieto geothermal field was analyzed using geophysical and lithologic logs. The distribution of permeable and relatively impermeable units and the location of faults are shown in a geologic model of the system. By incorporating well completion data and downhole temperature profiles into the geologic model, it was possible to determine the direction of geothermal fluid flow and the role of subsurface geologic features that control this movement.
Fluid flow model of the Cerro Prieto geothermal field based on well log interpretation
Halfman, S.E.; Lippmann, M.J.; Zelwer, R.; Howard, J.H.
1982-10-01
The subsurface geology of the Cerro Prieto geothermal field was analyzed using geophysical and lithologic logs. The distribution of permeable and relatively impermeable units and the location of faults are shown in a geologic model of the system. By incorporating well completion data and downhole temperature profiles into the geologic model, it was possible to determine he direction of geothermal fluid flow and the role of subsurface geologic features that control this movement.
Simulation of single microorganism motion in fluid based on granular model
NASA Astrophysics Data System (ADS)
Viridi, S.; Nuraini, N.
2016-04-01
Microorganism model for simulating its motion is proposed in this work. It consists of granular particles which can interact to each other through linear spring mimicking microorganism muscles, which is simpler than other model. As a part of the organism organ is moving, while the other remains at its position, it will push the surrounding fluid through Stoke's force and as reaction the fluid pushes back the microorganism. Contracting force is used to change the distance between two points in the organ. Gravity influence is simply neglected in this work. All the considered forces are used to get motion parameters of organism through molecular dynamics method. It is observed that the use of contracting (push-pull) organ constructs slightly more effective model than shrink- and swell-organs as previously investigated, if weighted effectiveness formula is used as function of number of considered forces and involved particles.
Castro, Marcelo A; Ahumada Olivares, María C; Putman, Christopher M; Cebral, Juan R
2014-10-01
The aim of this work was to determine whether or not Newtonian rheology assumption in image-based patient-specific computational fluid dynamics (CFD) cerebrovascular models harboring cerebral aneurysms may affect the hemodynamics characteristics, which have been previously associated with aneurysm progression and rupture. Ten patients with cerebral aneurysms with lobulations were considered. CFD models were reconstructed from 3DRA and 4DCTA images by means of region growing, deformable models, and an advancing front technique. Patient-specific FEM blood flow simulations were performed under Newtonian and Casson rheological models. Wall shear stress (WSS) maps were created and distributions were compared at the end diastole. Regions of lower WSS (lobulation) and higher WSS (neck) were identified. WSS changes in time were analyzed. Maximum, minimum and time-averaged values were calculated and statistically compared. WSS characterization remained unchanged. At high WSS regions, Casson rheology systematically produced higher WSS minimum, maximum and time-averaged values. However, those differences were not statistically significant. At low WSS regions, when averaging over all cases, the Casson model produced higher stresses, although in some cases the Newtonian model did. However, those differences were not significant either. There is no evidence that Newtonian model overestimates WSS. Differences are not statistically significant.
Anderson, Debra F.; Cheung, Cecilia Y.
2014-01-01
Experimentation in late-gestation fetal sheep has suggested that regulation of amniotic fluid (AF) volume occurs primarily by modulating the rate of intramembranous transport of water and solutes across the amnion into underlying fetal blood vessels. In order to gain insight into intramembranous transport mechanisms, we developed a computer model that allows simulation of experimentally measured changes in AF volume and composition over time. The model included fetal urine excretion and lung liquid secretion as inflows into the amniotic compartment plus fetal swallowing and intramembranous absorption as outflows. By using experimental flows and solute concentrations for urine, lung liquid, and swallowed fluid in combination with the passive and active transport mechanisms of the intramembranous pathway, we simulated AF responses to basal conditions, intra-amniotic fluid infusions, fetal intravascular infusions, urine replacement, and tracheoesophageal occlusion. The experimental data are consistent with four intramembranous transport mechanisms acting in concert: 1) an active unidirectional bulk transport of AF with all dissolved solutes out of AF into fetal blood presumably by vesicles; 2) passive bidirectional diffusion of solutes, such as sodium and chloride, between fetal blood and AF; 3) passive bidirectional water movement between AF and fetal blood; and 4) unidirectional transport of lactate into the AF. Further, only unidirectional bulk transport is dynamically regulated. The simulations also identified areas for future study: 1) identifying intramembranous stimulators and inhibitors, 2) determining the semipermeability characteristics of the intramembranous pathway, and 3) characterizing the vesicles that are the primary mediators of intramembranous transport. PMID:25186112
Brace, Robert A; Anderson, Debra F; Cheung, Cecilia Y
2014-11-15
Experimentation in late-gestation fetal sheep has suggested that regulation of amniotic fluid (AF) volume occurs primarily by modulating the rate of intramembranous transport of water and solutes across the amnion into underlying fetal blood vessels. In order to gain insight into intramembranous transport mechanisms, we developed a computer model that allows simulation of experimentally measured changes in AF volume and composition over time. The model included fetal urine excretion and lung liquid secretion as inflows into the amniotic compartment plus fetal swallowing and intramembranous absorption as outflows. By using experimental flows and solute concentrations for urine, lung liquid, and swallowed fluid in combination with the passive and active transport mechanisms of the intramembranous pathway, we simulated AF responses to basal conditions, intra-amniotic fluid infusions, fetal intravascular infusions, urine replacement, and tracheoesophageal occlusion. The experimental data are consistent with four intramembranous transport mechanisms acting in concert: 1) an active unidirectional bulk transport of AF with all dissolved solutes out of AF into fetal blood presumably by vesicles; 2) passive bidirectional diffusion of solutes, such as sodium and chloride, between fetal blood and AF; 3) passive bidirectional water movement between AF and fetal blood; and 4) unidirectional transport of lactate into the AF. Further, only unidirectional bulk transport is dynamically regulated. The simulations also identified areas for future study: 1) identifying intramembranous stimulators and inhibitors, 2) determining the semipermeability characteristics of the intramembranous pathway, and 3) characterizing the vesicles that are the primary mediators of intramembranous transport.
Jenny, Patrick Torrilhon, Manuel; Heinz, Stefan
2010-02-20
In this paper, a stochastic model is presented to simulate the flow of gases, which are not in thermodynamic equilibrium, like in rarefied or micro situations. For the interaction of a particle with others, statistical moments of the local ensemble have to be evaluated, but unlike in molecular dynamics simulations or DSMC, no collisions between computational particles are considered. In addition, a novel integration technique allows for time steps independent of the stochastic time scale. The stochastic model represents a Fokker-Planck equation in the kinetic description, which can be viewed as an approximation to the Boltzmann equation. This allows for a rigorous investigation of the relation between the new model and classical fluid and kinetic equations. The fluid dynamic equations of Navier-Stokes and Fourier are fully recovered for small relaxation times, while for larger values the new model extents into the kinetic regime. Numerical studies demonstrate that the stochastic model is consistent with Navier-Stokes in that limit, but also that the results become significantly different, if the conditions for equilibrium are invalid. The application to the Knudsen paradox demonstrates the correctness and relevance of this development, and comparisons with existing kinetic equations and standard solution algorithms reveal its advantages. Moreover, results of a test case with geometrically complex boundaries are presented.
NASA Technical Reports Server (NTRS)
Elleman, Daniel D. (Inventor); Wang, Taylor G. (Inventor)
1989-01-01
Systems are described for using multiple closely-packed spheres. In one system for passing fluid, a multiplicity of spheres lie within a container, with all of the spheres having the same outside diameter and with the spheres being closely nested in one another to create multiple interstitial passages of a known size and configuration and smooth walls. The container has an inlet and outlet for passing fluid through the interstitial passages formed between the nested spheres. The small interstitial passages can be used to filter out material, especially biological material such as cells in a fluid, where the cells can be easily destroyed if passed across sharp edges. The outer surface of the spheres can contain a material that absorbs a constitutent in the flowing fluid, such as a particular contamination gas, or can contain a catalyst to chemically react the fluid passing therethrough, the use of multiple small spheres assuring a large area of contact of these surfaces of the spheres with the fluid. In a system for storing and releasing a fluid such as hydrogen as a fuel, the spheres can include a hollow shell containing the fluid to be stored, and located within a compressable container that can be compressed to break the shells and release the stored fluid.
NASA Astrophysics Data System (ADS)
Cui, Ke; Song, Yan-Ping; Chen, Huan-Long; Chen, Fu; Ooyama, Hiroharu
2016-07-01
A two-fluid model with the influence of inter-phase velocity-slip taken into account is proposed and a modified realizable k- ɛ turbulence model is put forward as well to make the equation set of two-fluid model closed. Based on this two-fluid model, numerical simulations are implemented on typical wet steam flow in different cases. Good consistency between numerical result and the experimental result implies that this two-fluid model is provided with high accuracy and wide applicability. The flow field analysis also shows that there exist several particular sites along the flow direction. These particular sites could illustrate the development mechanism of nucleation and droplet growing. In addition, further discussion about the flow in cascade then indicates that the presence of condensation has strong impact on the flow while the impact of inter-phase velocity-slip is relatively weaker. The composition of total pressure loss is present here, the majority of total pressure loss brought by condensation is about 8.78 % of inlet total pressure while the inter-phase velocity-slip just results in a small part of about 0.42 % of inlet total pressure, the rest of the total pressure loss is caused by pneumatic factors and this part is about 3.95 % of inlet total pressure.
NASA Astrophysics Data System (ADS)
Guo, Xiaohui
Fluid and thermal problems are widely encountered in micro/nano-scale devices, the characteristic lengths of which are from hundreds of microns down to tens of nanometers. A great number of such devices involve fundamental components like microchannels, capillaries, membranes and cantilever beams. Continuum assumptions that lead to classical governing equations such as Navier-Stokes equations and Fourier Laws break down when the characteristic size shrinks by an order of millions. In addition, conventional sensors, actuators and controllers turn to be insufficient to depict the flow, thermal, or electrical fields in micro-devices without impacting the original conditions greatly. Therefore, the development of numerical methods becomes indispensable in design and performance analysis of micro-electro-mechanical systems (MEMS). The main goal of this PhD research is the development, implementation and application of comprehensive deterministic Boltzmann-ESBGK modeling framework to micro-scale fluid-thermal phenomena. Investigation of gas flows in short rectangular microchannels has been carried out to understand the rarefaction effects on the reduced mass-flow-rate as well as the non-equilibrium effects on the temperature components. At high Knudsen numbers, the reduced mass-flow-rate only depends on the pressure ratio and the temperature components deviate at the channel exit. For gas flows in long microchannels with and without constrictions, the Navier-Stokes equations with first-order slip boundary conditions are solved. Numerical results accurately predict the entrance pressure drop comparing to high-resolution experimental data using pressure-sensitive-paint (PSP). Simultions show clearly that the compressibility effects become less important than the rarefaction effects at low pressures. The coupled gas-phonon Boltzmann solver has been developed. The reduced distribution functions are used in the two-dimensional code to reduce the computational cost. The
NASA Astrophysics Data System (ADS)
Varela-Jiménez, M. I.; Vargas Luna, J. L.; Cortés-Ramírez, J. A.; Song, G.
2015-04-01
Magnetorheological fluid (MRF) is a smart material whose rheological properties can be varied by a magnetic field; it has been applied in the development of semiactive dampers for a variety of applications. The material essentially consists of a suspension of magnetic particles in a nonmagnetic carrier fluid. It is important to understand the magnetic response of MRF and its dependence on several parameters for improving and designing MRF devices. The purpose of this work is to develop a constitutive model that describes the behavior of the shear yield stress of the material as function of the magnetic field and composition. Taking into account that the material changes its rheology and apparent viscosity according to magnetic field, a magnetically induced state transition is proposed; by the use of a state transition equation, a constitutive model for shear yield stress is defined, consisting of an expression that relates composition of the material and the stimulus applied, it also associates the volume fraction of particles, magnetic field and the material that composes the particles.
Stenroos, Matti; Nummenmaa, Aapo
2016-01-01
MEG/EEG source imaging is usually done using a three-shell (3-S) or a simpler head model. Such models omit cerebrospinal fluid (CSF) that strongly affects the volume currents. We present a four-compartment (4-C) boundary-element (BEM) model that incorporates the CSF and is computationally efficient and straightforward to build using freely available software. We propose a way for compensating the omission of CSF by decreasing the skull conductivity of the 3-S model, and study the robustness of the 4-C and 3-S models to errors in skull conductivity. We generated dense boundary meshes using MRI datasets and automated SimNIBS pipeline. Then, we built a dense 4-C reference model using Galerkin BEM, and 4-C and 3-S test models using coarser meshes and both Galerkin and collocation BEMs. We compared field topographies of cortical sources, applying various skull conductivities and fitting conductivities that minimized the relative error in 4-C and 3-S models. When the CSF was left out from the EEG model, our compensated, unbiased approach improved the accuracy of the 3-S model considerably compared to the conventional approach, where CSF is neglected without any compensation (mean relative error < 20% vs. > 40%). The error due to the omission of CSF was of the same order in MEG and compensated EEG. EEG has, however, large overall error due to uncertain skull conductivity. Our results show that a realistic 4-C MEG/EEG model can be implemented using standard tools and basic BEM, without excessive workload or computational burden. If the CSF is omitted, compensated skull conductivity should be used in EEG. PMID:27472278
Stenroos, Matti; Nummenmaa, Aapo
2016-01-01
MEG/EEG source imaging is usually done using a three-shell (3-S) or a simpler head model. Such models omit cerebrospinal fluid (CSF) that strongly affects the volume currents. We present a four-compartment (4-C) boundary-element (BEM) model that incorporates the CSF and is computationally efficient and straightforward to build using freely available software. We propose a way for compensating the omission of CSF by decreasing the skull conductivity of the 3-S model, and study the robustness of the 4-C and 3-S models to errors in skull conductivity. We generated dense boundary meshes using MRI datasets and automated SimNIBS pipeline. Then, we built a dense 4-C reference model using Galerkin BEM, and 4-C and 3-S test models using coarser meshes and both Galerkin and collocation BEMs. We compared field topographies of cortical sources, applying various skull conductivities and fitting conductivities that minimized the relative error in 4-C and 3-S models. When the CSF was left out from the EEG model, our compensated, unbiased approach improved the accuracy of the 3-S model considerably compared to the conventional approach, where CSF is neglected without any compensation (mean relative error < 20% vs. > 40%). The error due to the omission of CSF was of the same order in MEG and compensated EEG. EEG has, however, large overall error due to uncertain skull conductivity. Our results show that a realistic 4-C MEG/EEG model can be implemented using standard tools and basic BEM, without excessive workload or computational burden. If the CSF is omitted, compensated skull conductivity should be used in EEG. PMID:27472278
Tao, Chao; Jiang, Jack J.; Czerwonka, Lukasz
2011-01-01
The human vocal fold is treated as a continuous, transversally isotropic, porous solid saturated with liquid. A set of mathematical equations, based on the theory of fluid-saturated porous solids, is developed to formulate the vibration of the vocal fold tissue. As the fluid-saturated porous tissue model degenerates to the continuous elastic tissue model when the relative movement of liquid in the porous tissue is ignored, it can be considered a more general description of vocal fold tissue than the continuous, elastic model. Using the fluid-saturated porous tissue model, the vibration of a bunch of one-dimensional fibers in the vocal fold is analytically solved based on the small amplitude assumption. It is found that the vibration of the tissue will lead to the accumulation of excess liquid in the midmembranous vocal fold. The degree of liquid accumulation is positively proportional to the vibratory amplitude and frequency. The correspondence between the liquid distribution predicted by the porous tissue theory and the location of vocal nodules observed in clinical practice, provides theoretical evidence for the liquid accumulation hypothesis of vocal nodule formation (Jiang, Ph. D., dissertation, 1991, University of Iowa). PMID:19660905
Computational Fluid Dynamic Modeling of Rocket Based Combined Cycle Engine Flowfields
NASA Technical Reports Server (NTRS)
Daines, Russell L.; Merkle, Charles L.
1994-01-01
Computational Fluid Dynamic techniques are used to study the flowfield of a fixed geometry Rocket Based Combined Cycle engine operating in rocket ejector mode. Heat addition resulting from the combustion of injected fuel causes the subsonic engine flow to choke and go supersonic in the slightly divergent combustor-mixer section. Reacting flow computations are undertaken to predict the characteristics of solutions where the heat addition is determined by the flowfield. Here, adaptive gridding is used to improve resolution in the shear layers. Results show that the sonic speed is reached in the unheated portions of the flow first, while the heated portions become supersonic later. Comparison with results from another code show reasonable agreement. The coupled solutions show that the character of the combustion-based thermal choking phenomenon can be controlled reasonably well such that there is opportunity to optimize the length and expansion ratio of the combustor-mixer.
Measurement-based quantum lattice gas model of fluid dynamics in 2+1 dimensions.
Micci, Michael M; Yepez, Jeffrey
2015-09-01
Presented are quantum simulation results using a measurement-based quantum lattice gas algorithm for Navier-Stokes fluid dynamics in 2+1 dimensions. Numerical prediction of the kinematic viscosity was measured by the decay rate of an initial sinusoidal flow profile. Due to local quantum entanglement in the quantum lattice gas, the minimum kinematic viscosity in the measurement-based quantum lattice gas is lower than achievable in a classical lattice gas. The numerically predicted viscosities precisely match the theoretical predictions obtained with a mean field approximation. Uniform flow profile with double shear layers, on a 16K×8K lattice, leads to the Kelvin-Helmholtz instability, breaking up the shear layer into pairs of counter-rotating vortices that eventually merge via vortex fusion and dissipate because of the nonzero shear viscosity.
Computational fluid dynamic simulations of image-based stented coronary bifurcation models.
Chiastra, Claudio; Morlacchi, Stefano; Gallo, Diego; Morbiducci, Umberto; Cárdenes, Rubén; Larrabide, Ignacio; Migliavacca, Francesco
2013-07-01
One of the relevant phenomenon associated with in-stent restenosis in coronary arteries is an altered haemodynamics in the stented region. Computational fluid dynamics (CFD) offers the possibility to investigate the haemodynamics at a level of detail not always accessible within experimental techniques. CFD can quantify and correlate the local haemodynamics structures which might lead to in-stent restenosis. The aim of this work is to study the fluid dynamics of realistic stented coronary artery models which replicate the complete clinical procedure of stent implantation. Two cases of pathologic left anterior descending coronary arteries with their bifurcations are reconstructed from computed tomography angiography and conventional coronary angiography images. Results of wall shear stress and relative residence time show that the wall regions more prone to the risk of restenosis are located next to stent struts, to the bifurcations and to the stent overlapping zone for both investigated cases. Considering a bulk flow analysis, helical flow structures are generated by the curvature of the zone upstream from the stent and by the bifurcation regions. Helical recirculating microstructures are also visible downstream from the stent struts. This study demonstrates the feasibility to virtually investigate the haemodynamics of patient-specific coronary bifurcation geometries.
Two-fluid Hydrodynamic Model for Fluid-Flow Simulation in Fluid-Solids Systems
1994-06-20
FLUFIX is a two-dimensional , transient, Eulerian, and finite-difference program, based on a two-fluid hydrodynamic model, for fluid flow simulation in fluid-solids systems. The software is written in a modular form using the Implicit Multi-Field (IMF) numerical technique. Quantities computed are the spatial distribution of solids loading, gas and solids velocities, pressure, and temperatures. Predicted are bubble formation, bed frequencies, and solids recirculation. Applications include bubbling and circulating atmospheric and pressurized fluidized bed reactors, combustors, gasifiers, and FCC (Fluid Catalytic Cracker) reactors.
Two-fluid Hydrodynamic Model for Fluid-Flow Simulation in Fluid-Solids Systems
1994-06-20
FLUFIX is a two-dimensional , transient, Eulerian, and finite-difference program, based on a two-fluid hydrodynamic model, for fluid flow simulation in fluid-solids systems. The software is written in a modular form using the Implicit Multi-Field (IMF) numerical technique. Quantities computed are the spatial distribution of solids loading, gas and solids velocities, pressure, and temperatures. Predicted are bubble formation, bed frequencies, and solids recirculation. Applications include bubbling and circulating atmospheric and pressurized fluidized bed reactors, combustors,more » gasifiers, and FCC (Fluid Catalytic Cracker) reactors.« less
NASA Astrophysics Data System (ADS)
Ovaysi, S.; Piri, M.
2009-12-01
We present a three-dimensional fully dynamic parallel particle-based model for direct pore-level simulation of incompressible viscous fluid flow in disordered porous media. The model was developed from scratch and is capable of simulating flow directly in three-dimensional high-resolution microtomography images of naturally occurring or man-made porous systems. It reads the images as input where the position of the solid walls are given. The entire medium, i.e., solid and fluid, is then discretized using particles. The model is based on Moving Particle Semi-implicit (MPS) technique. We modify this technique in order to improve its stability. The model handles highly irregular fluid-solid boundaries effectively. It takes into account viscous pressure drop in addition to the gravity forces. It conserves mass and can automatically detect any false connectivity with fluid particles in the neighboring pores and throats. It includes a sophisticated algorithm to automatically split and merge particles to maintain hydraulic connectivity of extremely narrow conduits. Furthermore, it uses novel methods to handle particle inconsistencies and open boundaries. To handle the computational load, we present a fully parallel version of the model that runs on distributed memory computer clusters and exhibits excellent scalability. The model is used to simulate unsteady-state flow problems under different conditions starting from straight noncircular capillary tubes with different cross-sectional shapes, i.e., circular/elliptical, square/rectangular and triangular cross-sections. We compare the predicted dimensionless hydraulic conductances with the data available in the literature and observe an excellent agreement. We then test the scalability of our parallel model with two samples of an artificial sandstone, samples A and B, with different volumes and different distributions (non-uniform and uniform) of solid particles among the processors. An excellent linear scalability is
NASA Astrophysics Data System (ADS)
Niu, Yang-Yao
2016-03-01
This paper is to continue our previous work in 2008 on solving a two-fluid model for compressible liquid-gas flows. We proposed a pressure-velocity based diffusion term original derived from AUSMD scheme of Wada and Liou in 1997 to enhance its robustness. The proposed AUSMD schemes have been applied to gas and liquid fluids universally to capture fluid discontinuities, such as the fluid interfaces and shock waves, accurately for the Ransom's faucet problem, air-water shock tube problems and 2D shock-water liquid interaction problems. However, the proposed scheme failed at computing liquid-gas interfaces in problems under large ratios of pressure, density and volume of fraction. The numerical instability has been remedied by Chang and Liou in 2007 using the exact Riemann solver to enhance the accuracy and stability of numerical flux across the liquid-gas interface. Here, instead of the exact Riemann solver, we propose a simple AUSMD type primitive variable Riemann solver (PVRS) which can successfully solve 1D stiffened water-air shock tube and 2D shock-gas interaction problems under large ratios of pressure, density and volume of fraction without the expensive cost of tedious computer time. In addition, the proposed approach is shown to deliver a good resolution of the shock-front, rarefaction and cavitation inside the evolution of high-speed droplet impact on the wall.
Guidelines for optimizing multilevel ECN using fluid-flow-based TCP model
NASA Astrophysics Data System (ADS)
Quet, Pierre-Francois; Chellappan, Sriram; Durresi, Arjan; Sridharan, Mukundan; Ozbay, Hitay; Jain, Raj
2002-07-01
Congestion avoidance on today's Internet is mainly provided by the combination of the TCP protocol and Active Queue Management (AQM) schemes such as the de facto standard RED (Random Early Detection). When used with ECN (Explicit Congestion Notification), these algorithms can be modeled as a feedback control system in which the feedback information is carried on a single bit. A modification of this scheme called MECN was proposed, where the marking information is carried using 2 bits. MECN conveys more accurate feedback about the network congestion to the source than the current 1-bit ECN. The TCP source reaction was modified so that it takes advantage of the extra information about congestion and adapts faster to the changing congestion scenario leading to a smoother decrease in the sending rates of the sources upon congestion detection and consequently resulting in an increase in the router's throughput. A linearized fluid flow model already developed for ECN is extended to our case. Using control theoretic tools we justify the performance obtained in using the MECN scheme and give guidelines for optimizing its parameters. We use ns simulations to illustrate the performance improvement from the point of better throughput and low level of oscillations in the queue.
Trajectory-based modeling of fluid transport in a medium with smoothly varying heterogeneity
NASA Astrophysics Data System (ADS)
Vasco, D. W.; Pride, Steven R.; Commer, Michael
2016-04-01
Using an asymptotic methodology, valid in the presence of smoothly varying heterogeneity and prescribed boundaries, we derive a trajectory-based solution for tracer transport. The analysis produces a Hamilton-Jacobi partial differential equation for the phase of the propagating tracer front. The trajectories follow from the characteristic equations that are equivalent to the Hamilton-Jacobi equation. The paths are determined by the fluid velocity field, the total porosity, and the dispersion tensor. Due to their dependence upon the local hydrodynamic dispersion, they differ from conventional streamlines. This difference is borne out in numerical calculations for both uniform and dipole flow fields. In an application to the computational X-ray imaging of a saline tracer test, we illustrate that the trajectories may serve as the basis for a form of tracer tomography. In particular, we use the onset time of a change in attenuation for each volume element of the X-ray image as a measure of the arrival time of the saline tracer. The arrival times are used to image the spatial variation of the effective hydraulic conductivity within the laboratory sample.
High order fluid model for streamer discharges
NASA Astrophysics Data System (ADS)
Markosyan, Aram; Dujko, Sasa; White, Ronald; Teunissen, Jannis; Ebert, Ute
2012-10-01
We present a high order fluid model for streamer discharges. Using momentum transfer theory, the fluid equations are obtained as velocity moments of the Boltzmann equation. We solve Poisson equation to obtain space charge electric field. The high order tensors from the energy flux equation are specified in terms of low order moments to close the system. The average collision frequencies for momentum and energy transfer in elastic and inelastic collisions required as an input in high order fluid model of streamers in molecular nitrogen are calculated using a multi term Boltzmann equation solution. The results of simulations are compared with those obtained by a PIC/MC method and by the classical first order fluid model based on the drift-diffusion and local field approximation. The comparison clearly validates the high order fluid model, while the first order fluid model underestimates many aspects of streamer dynamics. Two important issues are discussed on the basis of fundamental kinetic theory developed in the past decade: (1) the correct implementation of transport data in fluid models of streamer discharges; (2) the accuracy of two term approximation for solving Boltzmann's equation in the context of streamer studies.
2010-01-01
Based on recently reported data that fructose ingestion is linked to arterial hypertension, a model of regulatory loops involving the colon role in maintenance of fluid and sodium homeostasis is proposed. In normal digestion of hyperosmolar fluids, also in cases of postprandial hypotension and in patients having the "dumping" syndrome after gastric surgery, any hyperosmolar intestinal content is diluted by water taken from circulation and being trapped in the bowel until reabsorption. High fructose corn sirup (HFCS) soft drinks are among common hyperosmolar drinks. Fructose is slowly absorbed through passive carrier-mediated facilitated diffusion, along the entire small bowel, thus preventing absorption of the trapped water for several hours. Here presented interpretation is that ingestion of hyperosmolar HFCS drinks due to a transient fluid shift into the small bowel increases renin secretion and sympathetic activity, leading to rise in ADH and aldosterone secretions. Their actions spare water and sodium in the large bowel and kidneys. Alteration of colon absorption due to hormone exposure depends on cell renewal and takes days to develop, so the momentary capacity of sodium absorption in the colon depends on the average aldosterone and ADH exposure during few previous days. This inertia in modulation of the colon function can make an individual that often takes HFCS drinks prone to sodium retention, until a new balance is reached with an expanded ECF pool and arterial hypertension. In individuals with impaired fructose absorption, even a higher risk of arterial hypertension can be expected. PMID:20579372
First Author = C.Z. Cheng; Jay R. Johnson
1998-07-10
A nonlinear kinetic-fluid model for high-beta plasmas with multiple ion species which can be applied to multiscale phenomena is presented. The model embeds important kinetic effects due to finite ion Larmor radius (FLR), wave-particle resonances, magnetic particle trapping, etc. in the framework of simple fluid descriptions. When further restricting to low frequency phenomena with frequencies less than the ion cyclotron frequency the kinetic-fluid model takes a simpler form in which the fluid equations of multiple ion species collapse into single-fluid density and momentum equations and a low frequency generalized Ohm's law. The kinetic effects are introduced via plasma pressure tensors for ions and electrons which are computed from particle distribution functions that are governed by the Vlasov equation or simplified plasma dynamics equations such as the gyrokinetic equation. The ion FLR effects provide a finite parallel electric field, a perpendicular velocity that modifies the ExB drift, and a gyroviscosity tensor, all of which are neglected in the usual one-fluid MHD description. Eigenmode equations are derived which include magnetosphere-ionosphere coupling effects for low frequency waves (e.g., kinetic/inertial Alfven waves and ballooning-mirror instabilities).
Comprehensive Mathematical Model Of Real Fluids
NASA Technical Reports Server (NTRS)
Anderson, Peter G.
1996-01-01
Mathematical model of thermodynamic properties of water, steam, and liquid and gaseous hydrogen and oxygen developed for use in computational simulations of flows of mass and heat in main engine of space shuttle. Similar models developed for other fluids and applications. Based on HBMS equation of state.
NASA Astrophysics Data System (ADS)
Hakkarainen, Elina; Tähtinen, Matti
2016-05-01
Demonstrations of direct steam generation (DSG) in linear Fresnel collectors (LFC) have given promising results related to higher steam parameters compared to the current state-of-the-art parabolic trough collector (PTC) technology using oil as heat transfer fluid (HTF). However, DSG technology lacks feasible solution for long-term thermal energy storage (TES) system. This option is important for CSP technology in order to offer dispatchable power. Recently, molten salts have been proposed to be used as HTF and directly as storage medium in both line-focusing solar fields, offering storage capacity of several hours. This direct molten salt (DMS) storage concept has already gained operational experience in solar tower power plant, and it is under demonstration phase both in the case of LFC and PTC systems. Dynamic simulation programs offer a valuable effort for design and optimization of solar power plants. In this work, APROS dynamic simulation program is used to model a DMS linear Fresnel solar field with two-tank TES system, and example simulation results are presented in order to verify the functionality of the model and capability of APROS for CSP modelling and simulation.
VISCOPLASTIC FLUID MODEL FOR DEBRIS FLOW ROUTING.
Chen, Cheng-lung
1986-01-01
This paper describes how a generalized viscoplastic fluid model, which was developed based on non-Newtonian fluid mechanics, can be successfully applied to routing a debris flow down a channel. The one-dimensional dynamic equations developed for unsteady clear-water flow can be used for debris flow routing if the flow parameters, such as the momentum (or energy) correction factor and the resistance coefficient, can be accurately evaluated. The writer's generalized viscoplastic fluid model can be used to express such flow parameters in terms of the rheological parameters for debris flow in wide channels. A preliminary analysis of the theoretical solutions reveals the importance of the flow behavior index and the so-called modified Froude number for uniformly progressive flow in snout profile modeling.
Martin, Kelly J; Picioreanu, Cristian; Nerenberg, Robert
2013-09-01
A two-dimensional, particle-based biofilm model coupled with mass transport and computational fluid dynamics was developed to simulate autotrophic denitrification in a spiral-wound membrane biofilm reactor (MBfR), where hydrogen is supplied via hollow-fiber membrane fabric. The spiral-wound configuration consists of alternating layers of plastic spacer net and membrane fabric that create rows of flow channels, with the top and bottom walls comprised of membranes. The transversal filaments of the spacer partially obstruct the channel flow, producing complex mixing and shear patterns that require multidimensional representation. This study investigated the effect of hydrogen and nitrate concentrations, as well as spacer configuration, on biofilm development and denitrification fluxes. The model results indicate that the cavity spacer filaments, which rest on the bottom membranes, cause uneven biofilm growth. Most biofilm resided on the bottom membranes, only in the wake of the filaments where low shear zones formed. In this way, filament configuration may help achieve a desired biofilm thickness. For the conditions tested in this study, the highest nitrate fluxes were attained by minimizing the filament diameter and maximizing the filament spacing. This lowered the shear stress at the top membranes, allowing for more biofilm growth. For the scenarios studied, biomass limitation at the top membranes hindered performance more significantly than diffusion limitation in the thick biofilms at the bottom membranes. The results also highlighted the importance of two-dimensional modeling to capture uneven biofilm growth on a substratum with geometrical complexity.
Parametric Modeling for Fluid Systems
NASA Technical Reports Server (NTRS)
Pizarro, Yaritzmar Rosario; Martinez, Jonathan
2013-01-01
Fluid Systems involves different projects that require parametric modeling, which is a model that maintains consistent relationships between elements as is manipulated. One of these projects is the Neo Liquid Propellant Testbed, which is part of Rocket U. As part of Rocket U (Rocket University), engineers at NASA's Kennedy Space Center in Florida have the opportunity to develop critical flight skills as they design, build and launch high-powered rockets. To build the Neo testbed; hardware from the Space Shuttle Program was repurposed. Modeling for Neo, included: fittings, valves, frames and tubing, between others. These models help in the review process, to make sure regulations are being followed. Another fluid systems project that required modeling is Plant Habitat's TCUI test project. Plant Habitat is a plan to develop a large growth chamber to learn the effects of long-duration microgravity exposure to plants in space. Work for this project included the design and modeling of a duct vent for flow test. Parametric Modeling for these projects was done using Creo Parametric 2.0.
NASA Astrophysics Data System (ADS)
Ohta, J.; Tokunaga, T.
2012-12-01
In deep crust, it is considered that the solid phase tends to keep its polycrystalline structure while it flows as highly-viscous fluid, and that the fluid phase flows through polycrystalline solid as porous flow. Here, the solid-framework is considered to change its bulk volume due to the changes of fluid volumetric fraction. In addition, wettability of solid-liquid system, which is expressed as solid-liquid dihedral angle, is also considered to affect internal pore structure. Thus, the solid-framework deformation and wettability of solid-liquid system are considered to influence fluid migration. In this research, we firstly constructed the permeability model to formulate a relationship among solid-liquid dihedral angle, fluid fraction, and permeability based on the energetic and textural considerations of grain boundary interface. The permeability and the fluid fraction under minimum interfacial energy condition were expressed as functions of solid-liquid dihedral angle from this model. Then, we found that permeability can be written as functions of the fluid fraction and the permeability under minimum interfacial energy condition. Secondly, we formulated the deformation of solid-framework and fluid flow through the deforming framework. The governing equations included solid bulk viscosity and solid shear viscosity as necessary parameters to describe the behavior. Based on the derived governing equations, the one-dimensional numerical simulations were conducted with different solid viscosities. From the results where solid bulk/shear viscosity was set to be 1020 Pa×s, intervals with relatively high fluid fraction were formed and the intervals showed attenuated fluctuation of their fluid volume fraction. On the other hand, the results where solid bulk/shear viscosity was set to be 1019 Pa×s did not show such fluctuation. The complex interaction among fluid fraction, permeability, and solid viscosity could contribute to the observed phenomena, and further
Fluids and Combustion Facility: Fluids Integrated Rack Modal Model Correlation
NASA Technical Reports Server (NTRS)
McNelis, Mark E.; Suarez, Vicente J.; Sullivan, Timothy L.; Otten, Kim D.; Akers, James C.
2005-01-01
The Fluids Integrated Rack (FIR) is one of two racks in the Fluids and Combustion Facility on the International Space Station. The FIR is dedicated to the scientific investigation of space system fluids management supporting NASA s Exploration of Space Initiative. The FIR hardware was modal tested and FIR finite element model updated to satisfy the International Space Station model correlation criteria. The final cross-orthogonality results between the correlated model and test mode shapes was greater than 90 percent for all primary target modes.
Standardization of Thermo-Fluid Modeling in Modelica.Fluid
Franke, Rudiger; Casella, Francesco; Sielemann, Michael; Proelss, Katrin; Otter, Martin; Wetter, Michael
2009-09-01
This article discusses the Modelica.Fluid library that has been included in the Modelica Standard Library 3.1. Modelica.Fluid provides interfaces and basic components for the device-oriented modeling of onedimensional thermo-fluid flow in networks containing vessels, pipes, fluid machines, valves and fittings. A unique feature of Modelica.Fluid is that the component equations and the media models as well as pressure loss and heat transfer correlations are decoupled from each other. All components are implemented such that they can be used for media from the Modelica.Media library. This means that an incompressible or compressible medium, a single or a multiple substance medium with one or more phases might be used with one and the same model as long as the modeling assumptions made hold. Furthermore, trace substances are supported. Modeling assumptions can be configured globally in an outer System object. This covers in particular the initialization, uni- or bi-directional flow, and dynamic or steady-state formulation of mass, energy, and momentum balance. All assumptions can be locally refined for every component. While Modelica.Fluid contains a reasonable set of component models, the goal of the library is not to provide a comprehensive set of models, but rather to provide interfaces and best practices for the treatment of issues such as connector design and implementation of energy, mass and momentum balances. Applications from various domains are presented.
A study of the variation of physical conditions in the cometary coma based on a 3D multi-fluid model
NASA Astrophysics Data System (ADS)
Shou, Y.; Combi, M. R.; Fougere, N.; Tenishev, V.; Toth, G.; Gombosi, T. I.; Huang, Z.; Jia, X.; Bieler, A. M.; Hansen, K. C.
2015-12-01
Physics-based numerical coma models are desirable whether to interpret the spacecraft observations of the inner coma or to compare with the ground-based observations of the outer coma. One example is Direct Simulation Monte Carlo (DSMC) method, which has been successfully adopted to simulate the coma under various complex conditions. However, for bright comets with large production rates, the time step in DSMC model has to be tiny to accommodate the small mean free path and the high collision frequency. In addition a truly time-variable 3D DSMC model would still be computationally difficult or even impossible under most circumstances. In this work, we develop a multi-neutral-fluid model based on BATS-R-US in the University of Michigan's SWMF (Space Weather Modeling Framework), which can serve as a useful alternative to DSMC methods to compute both the inner and the outer coma and to treat time-variable phenomena. This model treats H2O, OH, H2, O, H and CO2 as separate fluids and each fluid has its own velocity and temperature. But collisional interactions can also couple all fluids together. Collisional interactions tend to decrease the velocity differences and are also able to re-distribute the excess energy deposited by chemical reactions among all species. To compute the momentum and energy transfer caused by such interactions self-consistently, collisions between fluids, whose efficiency is proportional to the densities, are included as well as heating from various chemical reactions. By applying the model to comets with different production rates (i.e. 67P/Churyumov-Gerasimenko, 1P/Halley, etc.), we are able to study how the heating efficiency varies with cometocentric distances and production rates. The preliminary results and comparison are presented and discussed. This work has been partially supported by grant NNX14AG84G from the NASA Planetary Atmospheres Program, and US Rosetta contracts JPL #1266313, JPL #1266314 and JPL #1286489.
NASA Technical Reports Server (NTRS)
White, R. J.
1973-01-01
A detailed description of Guyton's model and modifications are provided. Also included are descriptions of several typical experiments which the model can simulate to illustrate the model's general utility. A discussion of the problems associated with the interfacing of the model to other models such as respiratory and thermal regulation models which is prime importance since these stimuli are not present in the current model is also included. A user's guide for the operation of the model on the Xerox Sigma 3 computer is provided and two programs are described. A verification plan and procedure for performing experiments is also presented.
FLUFIXMOD2. Two-fluid Hydrodynamic Model for Fluid-Flow Simulation in Fluid-Solids Systems
Lyczkowski, R.W.; Bouillard, J.X.; Folga, S.M.
1992-04-01
FLUFIX is a two-dimensional , transient, Eulerian, and finite-difference program, based on a two-fluid hydrodynamic model, for fluid flow simulation in fluid-solids systems. The software is written in a modular form using the Implicit Multi-Field (IMF) numerical technique. Quantities computed are the spatial distribution of solids loading, gas and solids velocities, pressure, and temperatures. Predicted are bubble formation, bed frequencies, and solids recirculation. Applications include bubbling and circulating atmospheric and pressurized fluidized bed reactors, combustors, gasifiers, and FCC (Fluid Catalytic Cracker) reactors.
On some generalizations of the second grade fluid model
Massoudi, M.; Vaidya, A.
2008-01-01
In this article, we provide a brief review of some generalizations of the second grade fluid model. We discuss certain similarities between these fluids and fluids of higher grades, while also describing certain limitations of these models. The new models that we put forth are based upon some interesting experimental results which suggest that not only can normal stress coefficients depend upon the shear rate, but that this dependency is in fact not the same rate as that of shear viscosity variation with shear rate. We then discuss some steady flows of these generalized second grade fluid models.
On some generalizations of the second grade fluid model
Massoudi, Mehrdad; Vaidya, Ashwin
2008-07-01
In this article, we provide a brief review of some generalizations of the second grade fluid model. We discuss certain similarities between these fluids and fluids of higher grades, while also describing certain limitations of these models. The new models that we put forth are based upon some interesting experimental results which suggest that not only can normal stress coefficients depend upon the shear rate, but that this dependency is in fact not the same rate as that of shear viscosity variation with shear rate. We then discuss some steady flows of these generalized second grade fluid models.
NASA Astrophysics Data System (ADS)
Yoon, Jeoung Seok; Zang, Arno; Zimmermann, Günter; Stephansson, Ove
2016-04-01
Operation of fluid injection into and withdrawal from the subsurface for various purposes has been known to induce earthquakes. Such operations include hydraulic fracturing for shale gas extraction, hydraulic stimulation for Enhanced Geothermal System development and waste water disposal. Among these, several damaging earthquakes have been reported in the USA in particular in the areas of high-rate massive amount of wastewater injection [1] mostly with natural fault systems. Oil and gas production have been known to induce earthquake where pore fluid pressure decreases in some cases by several tens of Mega Pascal. One recent seismic event occurred in November 2013 near Azle, Texas where a series of earthquakes began along a mapped ancient fault system [2]. It was studied that a combination of brine production and waste water injection near the fault generated subsurface pressures sufficient to induced earthquakes on near-critically stressed faults. This numerical study aims at investigating the occurrence mechanisms of such earthquakes induced by fluid injection [3] and withdrawal by using hydro-geomechanical coupled dynamic simulator (Itasca's Particle Flow Code 2D). Generic models are setup to investigate the sensitivity of several parameters which include fault orientation, frictional properties, distance from the injection well to the fault, amount of fluid withdrawal around the injection well, to the response of the fault systems and the activation magnitude. Fault slip movement over time in relation to the diffusion of pore pressure is analyzed in detail. Moreover, correlations between the spatial distribution of pore pressure change and the locations of induced seismic events and fault slip rate are investigated. References [1] Keranen KM, Weingarten M, Albers GA, Bekins BA, Ge S, 2014. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection, Science 345, 448, DOI: 10.1126/science.1255802. [2] Hornbach MJ, DeShon HR
Computational fluid dynamic modelling of cavitation
NASA Technical Reports Server (NTRS)
Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.
1993-01-01
Models in sheet cavitation in cryogenic fluids are developed for use in Euler and Navier-Stokes codes. The models are based upon earlier potential-flow models but enable the cavity inception point, length, and shape to be determined as part of the computation. In the present paper, numerical solutions are compared with experimental measurements for both pressure distribution and cavity length. Comparisons between models are also presented. The CFD model provides a relatively simple modification to an existing code to enable cavitation performance predictions to be included. The analysis also has the added ability of incorporating thermodynamic effects of cryogenic fluids into the analysis. Extensions of the current two-dimensional steady state analysis to three-dimensions and/or time-dependent flows are, in principle, straightforward although geometrical issues become more complicated. Linearized models, however offer promise of providing effective cavitation modeling in three-dimensions. This analysis presents good potential for improved understanding of many phenomena associated with cavity flows.
NASA Astrophysics Data System (ADS)
Cooke, Ira R.; Deserno, Markus
2005-12-01
We present a simple and highly adaptable method for simulating coarse-grained lipid membranes without explicit solvent. Lipids are represented by one head bead and two tail beads, with the interaction between tails being of key importance in stabilizing the fluid phase. Two such tail-tail potentials were tested, with the important feature in both cases being a variable range of attraction. We examined phase diagrams of this range versus temperature for both functional forms of the tail-tail attraction and found that a certain threshold attractive width was required to stabilize the fluid phase. Within the fluid-phase region we find that material properties such as area per lipid, orientational order, diffusion constant, interleaflet flip-flop rate, and bilayer stiffness all depend strongly and monotonically on the attractive width. For three particular values of the potential width we investigate the transition between gel and fluid phases via heating or cooling and find that this transition is discontinuous with considerable hysteresis. We also investigated the stretching of a bilayer to eventually form a pore and found excellent agreement with recent analytic theory.
NASA Astrophysics Data System (ADS)
Leibs, Christopher A.
Efforts are currently being directed towards a fully implicit, electromagnetic, JFNK-based solver, motivating the necessity of developing a fluid-based, electromag- netic, preconditioning strategy. The two-fluid plasma (TFP) model is an ideal approximation to the kinetic Jacobian. The TFP model couples both an ion and an electron fluid with Maxwell's equations. The fluid equations consist of the conservation of momentum and number density. A Darwin approximation of Maxwell is used to eliminate light waves from the model in order to facilitate coupling to non-relativistic particle models. We analyze the TFP-Darwin system in the context of a stand-alone solver with consideration of preconditioning a kinetic-JFNK approach. The TFP-Darwin system is addressed numerically by use of nested iteration (NI) and a First-Order Systems Least Squares (FOSLS) discretization. An important goal of NI is to produce an approximation that is within the basis of attraction for Newton's method on a relatively coarse mesh and, thus, on all subsequent meshes. After scaling and modification, the TFP-Darwin model yields a nonlinear, first-order system of equa- tions whose Frechet derivative is shown to be uniformly H1-elliptic in a neighborhood of the exact solution. H1 ellipticity yields optimal finite element performance and lin- ear systems amenable to solution with Algebraic Multigrid (AMG). To efficiently focus computational resources, an adaptive mesh refinement scheme, based on the accuracy per computational cost, is leveraged. Numerical tests demonstrate the efficacy of the approach, yielding an approximate solution within discretization error in a relatively small number of computational work units.
A fluid model simulation of a simplified plasma limiter based on spectral-element time-domain method
Qian, Cheng; Ding, Dazhi Fan, Zhenhong; Chen, Rushan
2015-03-15
A simplified plasma limiter prototype is proposed and the fluid model coupled with Maxwell's equations is established to describe the operating mechanism of plasma limiter. A three-dimensional (3-D) simplified sandwich structure plasma limiter model is analyzed with the spectral-element time-domain (SETD) method. The field breakdown threshold of air and argon at different frequency is predicted and compared with the experimental data and there is a good agreement between them for gas microwave breakdown discharge problems. Numerical results demonstrate that the two-layer plasma limiter (plasma-slab-plasma) has better protective characteristics than a one-layer plasma limiter (slab-plasma-slab) with the same length of gas chamber.
A fluid model simulation of a simplified plasma limiter based on spectral-element time-domain method
NASA Astrophysics Data System (ADS)
Qian, Cheng; Ding, Dazhi; Fan, Zhenhong; Chen, Rushan
2015-03-01
A simplified plasma limiter prototype is proposed and the fluid model coupled with Maxwell's equations is established to describe the operating mechanism of plasma limiter. A three-dimensional (3-D) simplified sandwich structure plasma limiter model is analyzed with the spectral-element time-domain (SETD) method. The field breakdown threshold of air and argon at different frequency is predicted and compared with the experimental data and there is a good agreement between them for gas microwave breakdown discharge problems. Numerical results demonstrate that the two-layer plasma limiter (plasma-slab-plasma) has better protective characteristics than a one-layer plasma limiter (slab-plasma-slab) with the same length of gas chamber.
Fluid-solid modeling of lymphatic valves
NASA Astrophysics Data System (ADS)
Caulk, Alexander; Ballard, Matthew; Nepiyushchikh, Zhanna; Dixon, Brandon; Alexeev, Alexander
2015-11-01
The lymphatic system performs important physiological functions such as the return of interstitial fluid to the bloodstream to maintain tissue fluid balance, as well as the transport of immune cells in the body. It utilizes contractile lymphatic vessels, which contain valves that open and close to allow flow in only one direction, to directionally pump lymph against a pressure gradient. We develop a fluid-solid model of geometrically representative lymphatic valves. Our model uses a hybrid lattice-Boltzmann lattice spring method to capture fluid-solid interactions with two-way coupling between a viscous fluid and lymphatic valves in a lymphatic vessel. We use this model to investigate the opening and closing of lymphatic valves, and its effect on lymphatic pumping. This helps to broaden our understanding of the fluid dynamics of the lymphatic system.
Computational fluid dynamics modelling in cardiovascular medicine.
Morris, Paul D; Narracott, Andrew; von Tengg-Kobligk, Hendrik; Silva Soto, Daniel Alejandro; Hsiao, Sarah; Lungu, Angela; Evans, Paul; Bressloff, Neil W; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P
2016-01-01
This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards 'digital patient' or 'virtual physiological human' representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges.
Computational fluid dynamics modelling in cardiovascular medicine
Morris, Paul D; Narracott, Andrew; von Tengg-Kobligk, Hendrik; Silva Soto, Daniel Alejandro; Hsiao, Sarah; Lungu, Angela; Evans, Paul; Bressloff, Neil W; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P
2016-01-01
This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards ‘digital patient’ or ‘virtual physiological human’ representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges. PMID:26512019
Computational fluid dynamics modelling in cardiovascular medicine.
Morris, Paul D; Narracott, Andrew; von Tengg-Kobligk, Hendrik; Silva Soto, Daniel Alejandro; Hsiao, Sarah; Lungu, Angela; Evans, Paul; Bressloff, Neil W; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P
2016-01-01
This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards 'digital patient' or 'virtual physiological human' representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges. PMID:26512019
[Kidney, Fluid, and Acid-Base Balance].
Shioji, Naohiro; Hayashi, Masao; Morimatsu, Hiroshi
2016-05-01
Kidneys play an important role to maintain human homeostasis. They contribute to maintain body fluid, electrolytes, and acid-base balance. Especially in fluid control, we, physicians can intervene body fluid balance using fluid resuscitation and diuretics. In recent years, one type of fluid resuscitation, hydroxyl ethyl starch has been extensively studied in the field of intensive care. Although their effects on fluid resuscitation are reasonable, serious complications such as kidney injury requiring renal replacement therapy occur frequently. Now we have to pay more attention to this important complication. Another topic of fluid management is tolvaptan, a selective vasopressin-2 receptor antagonist Recent randomized trial suggested that tolvaptan has a similar supportive effect for fluid control and more cost effective compared to carperitide. In recent years, Stewart approach is recognized as one important tool to assess acid-base balance in critically ill patients. This approach has great value, especially to understand metabolic components in acid-base balance. Even for assessing the effects of kidneys on acid-base balance, this approach gives us interesting insight. We should appropriately use this new approach to treat acid-base abnormality in critically ill patients. PMID:27319095
Fluid casting of particle-based articles
Menchhofer, Paul
1995-01-01
A method for the production of articles made of a particle-based material; e.g., ceramics and sintered metals. In accordance with one aspect of the invention, a thermally settable slurry containing a relatively high concentration of the particles is introduced into an immiscible, heated fluid. The slurry sets or hardens into a shape determined by the physical characteristics of the fluid and the manner of introduction of the slurry into the fluid. For example, the slurry is pulse injected into the fluid to provide spherical articles. The hardened spheres may then be sintered to consolidate the particles and provide a high density product.
Fluid casting of particle-based articles
Menchhofer, P.
1995-03-28
A method is disclosed for the production of articles made of a particle-based material; e.g., ceramics and sintered metals. In accordance with one aspect of the invention, a thermally settable slurry containing a relatively high concentration of the particles is introduced into an immiscible, heated fluid. The slurry sets hardens into a shape determined by the physical characteristics of the fluid and the manner of introduction of the slurry into the fluid. For example, the slurry is pulse injected into the fluid to provide spherical articles. The hardened spheres may then be sintered to consolidate the particles and provide a high density product. 1 figure.
Geochemical modeling of fluid-fluid and fluid-mineral interactions during geological CO2 storage
NASA Astrophysics Data System (ADS)
Zhu, C.; Ji, X.; Lu, P.
2013-12-01
The long time required for effective CO2 storage makes geochemical modeling an indispensable tool for CCUS. One area of geochemical modeling research that is in urgent need is impurities in CO2 streams. Permitting impurities, such as H2S, in CO2 streams can lead to potential capital and energy savings. However, predicting the consequences of co-injection of CO2 and impurities into geological formations requires the understanding of the phase equilibrium and fluid-fluid interactions. To meet this need, we developed a statistical associating fluid theory (SAFT)-based equation of state (EOS) for the H2S-CO2-H2O-NaCl system at 373.15
Simple models for fluid transport during peritoneal dialysis.
Waniewski, J; Heimbürger, O; Werynski, A; Lindholm, B
1996-08-01
Peritoneal fluid transport can be predicted using different simplified formulas. To evaluate three such models, fluid transport was studied in 38 single six hour dwell studies using standard glucose 1.36% (n = 9), 2.27% (n = 9) and 3.86% (n = 20) dialysis fluids as well as amino acid 2.70% fluid (n = 8) in 33 patients on continuous ambulatory peritoneal dialysis (CAPD). Dialysate volume and the peritoneal absorption rate were measured using radioiodinated serum albumin (RISA) as a marker. The dialysate volume over dwell time curves were examined using three mathematical models of fluid transport for solutions with a crystalloid osmotic agent: Model P based on phenomenologically derived exponential function of time (Pyle, 1981), Model OS based on linear relationship between the rate of net volume change, Qv, to the difference of osmolality in dialysate and blood, and Model G based on linear relationship between Qv and the difference of glucose concentration in dialysate and blood. All these models provided a good description of the measured dialysate volume over time curves, however the descriptions with Models OS and G for glucose 3.86% fluid were slightly but significantly less precise. The coefficients of Model OS were stable in time, but the coefficients of Model G and P dependend in general on the time period used for their estimation, especially for glucose 3.86% dialysis fluid. The evaluation of dwell studies with solutions containing amino acid 2.70% (instead of glucose) as osmotic agent, using Model OS and P, showed that the transport coefficients were stable in time and both models provided equally precise descriptions. These results suggested that all three models can be used but models P and OS can be preferred for practical applications such as predictions of fluid transport with alternative cristalloid osmotic agents. Furthermore, we found that the peritoneal barrier for fluid transport may change transiently during exchanges with the standard glucose-based
Fluid and Electrolyte Balance model (FEB)
NASA Technical Reports Server (NTRS)
Fitzjerrell, D. G.
1973-01-01
The effects of various oral input water loads on solute and water distribution throughout the body are presented in the form of a model. The model was a three compartment model; the three compartments being plasma, interstitial fluid and cellular fluid. Sodium, potassium, chloride and urea were the only major solutes considered explicitly. The control of body water and electrolyte distribution was affected via drinking and hormone levels.
Liu, Huolong; Li, Mingzhong
2014-11-20
In this work a two-compartmental population balance model (TCPBM) was proposed to model a pulsed top-spray fluidized bed granulation. The proposed TCPBM considered the spatially heterogeneous granulation mechanisms of the granule growth by dividing the granulator into two perfectly mixed zones of the wetting compartment and drying compartment, in which the aggregation mechanism was assumed in the wetting compartment and the breakage mechanism was considered in the drying compartment. The sizes of the wetting and drying compartments were constant in the TCPBM, in which 30% of the bed was the wetting compartment and 70% of the bed was the drying compartment. The exchange rate of particles between the wetting and drying compartments was determined by the details of the flow properties and distribution of particles predicted by the computational fluid dynamics (CFD) simulation. The experimental validation has shown that the proposed TCPBM can predict evolution of the granule size and distribution within the granulator under different binder spray operating conditions accurately.
Liu, Huolong; Li, Mingzhong
2014-11-20
In this work a two-compartmental population balance model (TCPBM) was proposed to model a pulsed top-spray fluidized bed granulation. The proposed TCPBM considered the spatially heterogeneous granulation mechanisms of the granule growth by dividing the granulator into two perfectly mixed zones of the wetting compartment and drying compartment, in which the aggregation mechanism was assumed in the wetting compartment and the breakage mechanism was considered in the drying compartment. The sizes of the wetting and drying compartments were constant in the TCPBM, in which 30% of the bed was the wetting compartment and 70% of the bed was the drying compartment. The exchange rate of particles between the wetting and drying compartments was determined by the details of the flow properties and distribution of particles predicted by the computational fluid dynamics (CFD) simulation. The experimental validation has shown that the proposed TCPBM can predict evolution of the granule size and distribution within the granulator under different binder spray operating conditions accurately. PMID:25181553
Direct modeling for computational fluid dynamics
NASA Astrophysics Data System (ADS)
Xu, Kun
2015-06-01
All fluid dynamic equations are valid under their modeling scales, such as the particle mean free path and mean collision time scale of the Boltzmann equation and the hydrodynamic scale of the Navier-Stokes (NS) equations. The current computational fluid dynamics (CFD) focuses on the numerical solution of partial differential equations (PDEs), and its aim is to get the accurate solution of these governing equations. Under such a CFD practice, it is hard to develop a unified scheme that covers flow physics from kinetic to hydrodynamic scales continuously because there is no such governing equation which could make a smooth transition from the Boltzmann to the NS modeling. The study of fluid dynamics needs to go beyond the traditional numerical partial differential equations. The emerging engineering applications, such as air-vehicle design for near-space flight and flow and heat transfer in micro-devices, do require further expansion of the concept of gas dynamics to a larger domain of physical reality, rather than the traditional distinguishable governing equations. At the current stage, the non-equilibrium flow physics has not yet been well explored or clearly understood due to the lack of appropriate tools. Unfortunately, under the current numerical PDE approach, it is hard to develop such a meaningful tool due to the absence of valid PDEs. In order to construct multiscale and multiphysics simulation methods similar to the modeling process of constructing the Boltzmann or the NS governing equations, the development of a numerical algorithm should be based on the first principle of physical modeling. In this paper, instead of following the traditional numerical PDE path, we introduce direct modeling as a principle for CFD algorithm development. Since all computations are conducted in a discretized space with limited cell resolution, the flow physics to be modeled has to be done in the mesh size and time step scales. Here, the CFD is more or less a direct
Fiber bundle model under fluid pressure
NASA Astrophysics Data System (ADS)
Amitrano, David; Girard, Lucas
2016-03-01
Internal fluid pressure often plays an important role in the rupture of brittle materials. This is a major concern for many engineering applications and for natural hazards. More specifically, the mechanisms through which fluid pressure, applied at a microscale, can enhance the failure at a macroscale and accelerate damage dynamics leading to failure remains unclear. Here we revisit the fiber bundle model by accounting for the effect of fluid under pressure that contributes to the global load supported by the fiber bundle. Fluid pressure is applied on the broken fibers, following Biot's theory. The statistical properties of damage avalanches and their evolution toward macrofailure are analyzed for a wide range of fluid pressures. The macroscopic strength of the new model appears to be strongly controlled by the action of the fluid, particularly when the fluid pressure becomes comparable with the fiber strength. The behavior remains consistent with continuous transition, i.e., second order, including for large pressure. The main change concerns the damage acceleration toward the failure that is well modeled by the concept of sweeping of an instability. When pressure is increased, the exponent β characterizing the power-law distribution avalanche sizes significantly decreases and the exponent γ characterizing the cutoff divergence when failure is approached significantly increases. This proves that fluid pressure plays a key role in failure process acting as destabilization factor. This indicates that macrofailure occurs more readily under fluid pressure, with a behavior that becomes progressively unstable as fluid pressure increases. This may have considerable consequences on our ability to forecast failure when fluid pressure is acting.
Fiber bundle model under fluid pressure.
Amitrano, David; Girard, Lucas
2016-03-01
Internal fluid pressure often plays an important role in the rupture of brittle materials. This is a major concern for many engineering applications and for natural hazards. More specifically, the mechanisms through which fluid pressure, applied at a microscale, can enhance the failure at a macroscale and accelerate damage dynamics leading to failure remains unclear. Here we revisit the fiber bundle model by accounting for the effect of fluid under pressure that contributes to the global load supported by the fiber bundle. Fluid pressure is applied on the broken fibers, following Biot's theory. The statistical properties of damage avalanches and their evolution toward macrofailure are analyzed for a wide range of fluid pressures. The macroscopic strength of the new model appears to be strongly controlled by the action of the fluid, particularly when the fluid pressure becomes comparable with the fiber strength. The behavior remains consistent with continuous transition, i.e., second order, including for large pressure. The main change concerns the damage acceleration toward the failure that is well modeled by the concept of sweeping of an instability. When pressure is increased, the exponent β characterizing the power-law distribution avalanche sizes significantly decreases and the exponent γ characterizing the cutoff divergence when failure is approached significantly increases. This proves that fluid pressure plays a key role in failure process acting as destabilization factor. This indicates that macrofailure occurs more readily under fluid pressure, with a behavior that becomes progressively unstable as fluid pressure increases. This may have considerable consequences on our ability to forecast failure when fluid pressure is acting. PMID:27078437
Smart prosthetics based on magnetorheological fluids
NASA Astrophysics Data System (ADS)
Carlson, J. David; Matthis, Wilfried; Toscano, James R.
2001-06-01
One of the most exciting new applications for magnetorheological fluid technology is that of real-time controlled dampers for use in advanced prosthetic devices. In such systems a small magnetorheological fluid damper is used to control, in real-time, the motion of an artificial limb based on inputs from a group of sensors. A 'smart' prosthetic knee system based on a controllable magnetorheological fluid damper was commercially introduced to the orthopedics and prosthetics market in 2000. The benefit of such an artificial knee is a more natural gait that automatically adapts to changing gait conditions.
Modeling quantum fluid dynamics at nonzero temperatures
Berloff, Natalia G.; Brachet, Marc; Proukakis, Nick P.
2014-01-01
The detailed understanding of the intricate dynamics of quantum fluids, in particular in the rapidly growing subfield of quantum turbulence which elucidates the evolution of a vortex tangle in a superfluid, requires an in-depth understanding of the role of finite temperature in such systems. The Landau two-fluid model is the most successful hydrodynamical theory of superfluid helium, but by the nature of the scale separations it cannot give an adequate description of the processes involving vortex dynamics and interactions. In our contribution we introduce a framework based on a nonlinear classical-field equation that is mathematically identical to the Landau model and provides a mechanism for severing and coalescence of vortex lines, so that the questions related to the behavior of quantized vortices can be addressed self-consistently. The correct equation of state as well as nonlocality of interactions that leads to the existence of the roton minimum can also be introduced in such description. We review and apply the ideas developed for finite-temperature description of weakly interacting Bose gases as possible extensions and numerical refinements of the proposed method. We apply this method to elucidate the behavior of the vortices during expansion and contraction following the change in applied pressure. We show that at low temperatures, during the contraction of the vortex core as the negative pressure grows back to positive values, the vortex line density grows through a mechanism of vortex multiplication. This mechanism is suppressed at high temperatures. PMID:24704874
Transient Wellbore Fluid Flow Model
1982-04-06
WELBORE is a code to solve transient, one-dimensional two-phase or single-phase non-isothermal fluid flow in a wellbore. The primary thermodynamic variables used in solving the equations are the pressure and specific energy. An equation of state subroutine provides the density, quality, and temperature. The heat loss out of the wellbore is calculated by solving a radial diffusion equation for the temperature changes outside the bore. The calculation is done at each node point in themore » wellbore.« less
Theoretical models for supercritical fluid extraction.
Huang, Zhen; Shi, Xiao-Han; Jiang, Wei-Juan
2012-08-10
For the proper design of supercritical fluid extraction processes, it is essential to have a sound knowledge of the mass transfer mechanism of the extraction process and the appropriate mathematical representation. In this paper, the advances and applications of kinetic models for describing supercritical fluid extraction from various solid matrices have been presented. The theoretical models overviewed here include the hot ball diffusion, broken and intact cell, shrinking core and some relatively simple models. Mathematical representations of these models have been in detail interpreted as well as their assumptions, parameter identifications and application examples. Extraction process of the analyte solute from the solid matrix by means of supercritical fluid includes the dissolution of the analyte from the solid, the analyte diffusion in the matrix and its transport to the bulk supercritical fluid. Mechanisms involved in a mass transfer model are discussed in terms of external mass transfer resistance, internal mass transfer resistance, solute-solid interactions and axial dispersion. The correlations of the external mass transfer coefficient and axial dispersion coefficient with certain dimensionless numbers are also discussed. Among these models, the broken and intact cell model seems to be the most relevant mathematical model as it is able to provide realistic description of the plant material structure for better understanding the mass-transfer kinetics and thus it has been widely employed for modeling supercritical fluid extraction of natural matters. PMID:22560346
AFDM: An Advanced Fluid-Dynamics Model
Bohl, W.R.; Parker, F.R. ); Wilhelm, D. . Inst. fuer Neutronenphysik und Reaktortechnik); Berthier, J. ); Goutagny, L. . Inst. de Protection et de Surete Nucleaire); Ninokata,
1990-09-01
AFDM, or the Advanced Fluid-Dynamics Model, is a computer code that investigates new approaches simulating the multiphase-flow fluid-dynamics aspects of severe accidents in fast reactors. The AFDM formalism starts with differential equations similar to those in the SIMMER-II code. These equations are modified to treat three velocity fields and supplemented with a variety of new models. The AFDM code has 12 topologies describing what material contacts are possible depending on the presence or absence of a given material in a computational cell, on the dominant liquid, and on the continuous phase. Single-phase, bubbly, churn-turbulent, cellular, and dispersed flow regimes are permitted for the pool situations modeled. Virtual mass terms are included for vapor in liquid-continuous flow. Interfacial areas between the continuous and discontinuous phases are convected to allow some tracking of phenomenological histories. Interfacial areas are also modified by models of nucleation, dynamic forces, turbulence, flashing, coalescence, and mass transfer. Heat transfer is generally treated using engineering correlations. Liquid-vapor phase transitions are handled with the nonequilibrium, heat-transfer-limited model, whereas melting and freezing processes are based on equilibrium considerations. Convection is treated using a fractional-step method of time integration, including a semi-implicit pressure iteration. A higher-order differencing option is provided to control numerical diffusion. The Los Alamos SESAME equation-of-state has been implemented using densities and temperatures as the independent variables. AFDM programming has vectorized all computational loops consistent with the objective of producing an exportable code. 24 refs., 4 figs.
Pedersen, Jenny M.; Shim, Yoo-Sik; Hans, Vaibhav; Phillips, Martin B.; Macdonald, Jeffrey M.; Walker, Glenn; Andersen, Melvin E.; Clewell, Harvey J.; Yoon, Miyoung
2016-01-01
Accurate prediction of metabolism is a significant outstanding challenge in toxicology. The best predictions are based on experimental data from in vitro systems using primary hepatocytes. The predictivity of the primary hepatocyte-based culture systems, however, is still limited due to well-known phenotypic instability and rapid decline of metabolic competence within a few hours. Dynamic flow bioreactors for three-dimensional cell cultures are thought to be better at recapitulating tissue microenvironments and show potential to improve in vivo extrapolations of chemical or drug toxicity based on in vitro test results. These more physiologically relevant culture systems hold potential for extending metabolic competence of primary hepatocyte cultures as well. In this investigation, we used computational fluid dynamics to determine the optimal design of a flow-based hepatocyte culture system for evaluating chemical metabolism in vitro. The main design goals were (1) minimization of shear stress experienced by the cells to maximize viability, (2) rapid establishment of a uniform distribution of test compound in the chamber, and (3) delivery of sufficient oxygen to cells to support aerobic respiration. Two commercially available flow devices – RealBio® and QuasiVivo® (QV) – and a custom developed fluidized bed bioreactor were simulated, and turbulence, flow characteristics, test compound distribution, oxygen distribution, and cellular oxygen consumption were analyzed. Experimental results from the bioreactors were used to validate the simulation results. Our results indicate that maintaining adequate oxygen supply is the most important factor to the long-term viability of liver bioreactor cultures. Cell density and system flow patterns were the major determinants of local oxygen concentrations. The experimental results closely corresponded to the in silico predictions. Of the three bioreactors examined in this study, we were able to optimize the experimental
Reduced Order Models for Fluid-Structure Interaction Phenomena
NASA Astrophysics Data System (ADS)
Gallardo, Daniele
With the advent of active flow control devices for regulating the structural responses of systems involving fluid-structure interaction phenomena, there is a growing need of efficient models that can be used to control the system. The first step is then to be able to model the system in an efficient way based on reduced-order models. This is needed so that accurate predictions of the system evolution could be performed in a fast manner, ideally in real time. However, existing reduced-order models of fluid-structure interaction phenomena that provide closed-form solutions are applicable to only a limited set of scenarios while for real applications high-fidelity experiments or numerical simulations are required, which are unsuitable as efficient or reduced-order models. This thesis proposes a novel reduced-order and efficient model for fluid-structure interaction phenomena. The model structure employed is such that it is generic for different fluid-structure interaction problems. Based on this structure, the model is first built for a given fluid-structure interaction problem based on a database generated through high-fidelity numerical simulations while it can subsequently be used to predict the structural response over a wide set of flow conditions for the fluid-structure interaction problem at hand. The model is tested on two cases: a cylinder suspended in a low Reynolds number flow that includes the lock-in region and an airfoil subjected to plunge oscillations in a high Reynolds number regime. For each case, in addition to training profile we also present validation profiles that are used to determine the performance of the reduced-order model. The reduced-order model devised in this study proved to be an effective and efficient modeling method for fluid-structure interaction phenomena and it shown its applicability in very different kind of scenarios.
Fluid Coupling in a Discrete Cochlear Model
NASA Astrophysics Data System (ADS)
Elliott, S. J.; Lineton, B.; Ni, G.
2011-11-01
The interaction between the basilar membrane, BM, dynamics and the fluid coupling in the cochlea can be formulated using a discrete model by assuming that the BM is divided into a number of longitudinal elements. The form of the fluid coupling can then be understood by dividing it into a far field component, due to plane wave acoustic coupling, and a near field component, due to higher order evanescent acoustic modes. The effects of non-uniformity and asymmetry in the cross-sectional areas of the fluid chambers can also be accounted for within this formulation. The discrete model is used to calculate the effect on the coupled BM response of a short cochlear implant, which reduces the volume of one of the fluid chambers over about half its length. The passive response of the coupled cochlea at lower frequencies is shown to be almost unaffected by this change in volume.
NASA Technical Reports Server (NTRS)
Kandelman, A.; Nelson, D. J.
1977-01-01
Simplified mathematical model simulates large hydraulic systems on either analog or digital computers. Models of pumps, servoactuators, reservoirs, accumulators, and valves are connected generating systems containing six hundred elements.
Fluid-dynamical model for antisurfactants
NASA Astrophysics Data System (ADS)
Conn, Justin J. A.; Duffy, Brian R.; Pritchard, David; Wilson, Stephen K.; Halling, Peter J.; Sefiane, Khellil
2016-04-01
We construct a fluid-dynamical model for the flow of a solution with a free surface at which surface tension acts. This model can describe both classical surfactants, which decrease the surface tension of the solution relative to that of the pure solvent, and antisurfactants (such as many salts when added to water, and small amounts of water when added to alcohol) which increase it. We demonstrate the utility of the model by considering the linear stability of an infinitely deep layer of initially quiescent fluid. In particular, we predict the occurrence of an instability driven by surface-tension gradients, which occurs for antisurfactant, but not for surfactant, solutions.
Non-Markovian coarse-grained modeling of polymeric fluids based on the Mori-Zwanzig formalism
NASA Astrophysics Data System (ADS)
Li, Zhen; Bian, Xin; Li, Xiantao; Karniadakis, George
The Mori-Zwanzig formalism for coarse-graining a complex dynamical system typically introduces memory effects. The Markovian assumption of delta-correlated fluctuating forces is often employed to simplify the formulation of coarse-grained (CG) models and numerical implementations. However, when the time scales of a system are not clearly separated, the memory effects become strong and the Markovian assumption becomes inaccurate. To this end, we incorporate memory effects into CG modeling by preserving non-Markovian interactions between CG variables based on the Mori-Zwanzig formalism. For a specific example, molecular dynamics (MD) simulations of star polymer melts are performed while the corresponding CG system is defined by grouping many bonded atoms into single clusters. Then, the effective interactions between CG clusters as well as the memory kernel are obtained from the MD simulations. The constructed CG force field with a memory kernel leads to a non-Markovian dissipative particle dynamics (NM-DPD). Quantitative comparisons on both static and dynamic properties between the CG models with Markovian and non-Markovian approximations will be presented. Supported by the DOE Center on Mathematics for Mesoscopic Modeling of Materials (CM4) and an INCITE grant.
Two-fluid models of turbulence
NASA Technical Reports Server (NTRS)
Spalding, D. B.
1985-01-01
The defects of turbulence models are summarized and the importance of so-called nongradient diffusion in turbulent fluxes is discussed. The mathematical theory of the flow of two interpenetrating continua is reviewed, and the mathematical formulation of the two fluid model is outlined. Results from plane wake, axisymmetric jet, and combustion studies are shown.
The Role of Critical Nonwetting Fluid Saturation in Darcy-Based Models of Two-Phase Primary Drainage
NASA Astrophysics Data System (ADS)
Breen, S. J.; Pride, S. R.; Manga, M.
2015-12-01
Primary drainage is the displacement of a wetting phase by a nonwetting phase where the initial condition is fully saturated with wetting phase. The typical approach to simulating this process involves the solution of coupled mass conservation equations with Darcy-based flux terms, but this method ignores the complex pore-scale processes that influence the propagation rate and shape of drainage fronts. Therefore, we explore weaknesses in the practical application of the continuum-scale Darcy approach for modeling primary drainage by comparing 1D numerical simulations to laboratory core-scale observations. The multiphase properties of cylindrical bead packs are characterized by stepped outflow experiments and standard hydrological models are used to describe water retention and relative permeability, such as van Genuchten-Mualem. Subsequently, we generate predictions of drainage front breakthrough time with Tough2 and compare them to observations of gravitationally stabilized primary drainage at low capillary number. We find that Corey's critical nonwetting saturation parameter must be used in relative permeability curves in order to match observations, and that the best-fit value is flow-rate dependent and grid-size independent. We also argue that the value of this parameter is not constrained by current experimental methods or physical arguments, and that it is an important but irreducible source of uncertainty in the standard approach to multiphase flow. This highlights the need for a scalable model that incorporates dynamic percolation thresholds with dependency on pore-scale processes.
Demachi, Hiroshi; Matsui, Osamu; Abo, Hitoshi; Tatsu, Hiroki
2000-07-15
Purpose: To verify the difference in embolic effect between oil-in-water (O-W) and water-in-oil (W-O) emulsions composed of iodized oil and an anticancer drug, epirubicin, using a simulation model based on non-Newtonian fluid mechanics.Methods: Flow curves of pure iodized oil and two types of O-W and W-O emulsions immediately and 1 hr after preparation were examined with a viscometer. Using the yield stress data obtained, we simulated the stagnation of each fluid with steady flow in a rigid tube.Results: The W-O emulsions were observed to stagnate in the thin tube at a low pressure gradient. However, the embolic effect of the W-O emulsions decreased 1 hr after preparation. The O-W emulsions were stable and did not stagnate under the conditions in which the W-O emulsions stagnated.Conclusion: The simulation model showed that the embolic effect of the W-O emulsions was superior to that of the O-W emulsions.
Picciotto, Sally; Peters, Annette; Eisen, Ellen A.
2015-01-01
Occupational exposure to aerosolized particles of oil-based metalworking fluid was recently linked to deaths from ischemic heart disease. The current recommended exposure limits might be insufficient. Studying cardiovascular mortality is challenging because symptoms can induce sicker workers to reduce their exposure, causing healthy-worker survivor bias. G-estimation of accelerated failure time models reduces this bias and permits comparison of multiple exposure interventions. Michigan autoworkers from the United AutoWorkers–General Motors cohort (n = 38,666) were followed from 1941 through 1994. Separate binary variables indicated whether annual exposure exceeded a series of potential limits. Separate g-estimation analyses for each limit yielded the total number of life-years that could have been saved among persons who died from specific cardiovascular causes by enforcing that exposure limit. Banning oil-based fluids would have saved an estimated 4,003 (95% confidence interval: 2,200, 5,807) life-years among those who died of ischemic heart disease. Estimates for cardiovascular disease overall, acute myocardial infarction, and cerebrovascular disease were 3,500 (95% confidence interval: 1,350, 5,651), 2,932 (95% confidence interval: 1,587, 4,277), and 917 (95% confidence interval: −80, 1,913) life-years, respectively. A limit of 0.01 mg/m3 would have had a similar impact on cerebrovascular disease but one only half as great on ischemic heart disease. Analyses suggest that limiting exposure to metalworking fluids could have saved many life-years lost to cardiovascular diseases in this cohort. PMID:25816818
Picciotto, Sally; Peters, Annette; Eisen, Ellen A
2015-04-15
Occupational exposure to aerosolized particles of oil-based metalworking fluid was recently linked to deaths from ischemic heart disease. The current recommended exposure limits might be insufficient. Studying cardiovascular mortality is challenging because symptoms can induce sicker workers to reduce their exposure, causing healthy-worker survivor bias. G-estimation of accelerated failure time models reduces this bias and permits comparison of multiple exposure interventions. Michigan autoworkers from the United AutoWorkers-General Motors cohort (n = 38,666) were followed from 1941 through 1994. Separate binary variables indicated whether annual exposure exceeded a series of potential limits. Separate g-estimation analyses for each limit yielded the total number of life-years that could have been saved among persons who died from specific cardiovascular causes by enforcing that exposure limit. Banning oil-based fluids would have saved an estimated 4,003 (95% confidence interval: 2,200, 5,807) life-years among those who died of ischemic heart disease. Estimates for cardiovascular disease overall, acute myocardial infarction, and cerebrovascular disease were 3,500 (95% confidence interval: 1,350, 5,651), 2,932 (95% confidence interval: 1,587, 4,277), and 917 (95% confidence interval: -80, 1,913) life-years, respectively. A limit of 0.01 mg/m(3) would have had a similar impact on cerebrovascular disease but one only half as great on ischemic heart disease. Analyses suggest that limiting exposure to metalworking fluids could have saved many life-years lost to cardiovascular diseases in this cohort. PMID:25816818
Schroth, Martin H.; Oostrom, Mart; Dobson, Richard; Zeyer, Josef
2008-08-01
Fluid/fluid interfacial areas are important in controlling the rate of mass and energy transfer between fluid phases in porous media. We present a modified thermodynamically based model (TBM) to predict fluid/fluid interfacial areas in porous media for arbitrary drainage/imbibition sequences. The TBM explicitly distinguishes between interfacial areas associated with continuous (free) and isolated (entrapped) nonwetting fluids. The model is restricted to two-fluid systems in which (1) no significant conversion of mechanical work into heat occurs, (2) the wetting fluid completely wets the porous medium’s solid surfaces, and (3) no changes in interfacial area due to mass transfer between phases occur. We show example calculations for two different drainage/imbibition sequences in two porous media: a highly uniform silica sand and a well-graded silt. The TBM’s predictions for interfacial area associated with free nonwetting-fluid are identical to those of a previously published geometry-based model (GBM). However, predictions for interfacial area associated with entrapped nonwetting-fluid are consistently larger in the TBM than in the GBM. Although a comparison of model predictions with experimental data is currently only possible to a limited extent, good general agreement was found for the TBM. As required model parameters are commonly used as inputs for or tracked during multifluid-flow simulations, the modified TBM may be easily incorporated in numerical codes.
Modeling the Migration of Fluids in Subduction Zones
NASA Astrophysics Data System (ADS)
Wilson, C. R.; Spiegelman, M.; Van Keken, P. E.; Vrijmoed, J. C.; Hacker, B. R.
2011-12-01
Fluids play a major role in the formation of arc volcanism and the generation of continental crust. Progressive dehydration reactions in the downgoing slab release fluids to the hot overlying mantle wedge, causing flux melting and the migration of melts to the volcanic front. While the qualitative concept is well established, the quantitative details of fluid release and especially that of fluid migration and generation of hydrous melting in the wedge is still poorly understood. Here we present new models of the fluid migration through the mantle wedge for subduction zones. We use an existing set of high resolution metamorphic models (van Keken et al, 2010) to predict the regions of water release from the sediments, upper and lower crust, and upper most mantle. We use this water flux as input for the fluid migration calculation based on new finite element models built on advanced computational libraries (FEniCS/PETSc) for efficient and flexible solution of coupled multi-physics problems. The first generation of one-way coupled models solves for the evolution of porosity and fluid-pressure/flux throughout the slab and wedge given solid flow, viscosity and thermal fields from separate solutions to the incompressible Stokes and energy equations in the mantle wedge. These solutions are verified by comparing to previous benchmark studies (van Keken et al, 2008) and global suites of thermal subduction models (Syracuse et al, 2010). Fluid flow depends on both permeability and the rheology of the slab-wedge system as interaction with rheological variability can induce additional pressure gradients that affect the fluid flow pathways. These non-linearities have been shown to explain laboratory-scale observations of melt band orientation in labratory experiments and numerical simulations of melt localization in shear bands (Katz et al 2006). Our second generation of models dispense with the pre-calculation of incompressible mantle flow and fully couple the now compressible
Electrorheological Fluid Based Force Feedback Device
NASA Technical Reports Server (NTRS)
Pfeiffer, Charles; Bar-Cohen, Yoseph; Mavroidis, Constantinos; Dolgin, Benjamin
1999-01-01
Parallel to the efforts to develop fully autonomous robots, it is increasingly being realized that there are applications where it is essential to have a fully controlled robot and "feel" its operating conditions, i.e. telepresence. This trend is a result of the increasing efforts to address tasks where humans can perform significantly better but, due to associated hazards, distance, physical limitations and other causes, only robots can be employed to perform these tasks. Such robots need to be assisted by a human that remotely controls the operation. To address the goal of operating robots as human surrogates, the authors launched a study of mechanisms that provide mechanical feedback. For this purpose, electrorheological fluids (ERF) are being investigated for the potential application as miniature haptic devices. This family of electroactive fluids has the property of changing the viscosity during electrical stimulation. Consequently, ERF can be used to produce force feedback haptic devices for tele-operated control of medical and space robotic systems. Forces applied at the robot end-effector due to a compliant environment are reflected to the user using an ERF device where a change in the system viscosity will occur proportionally to the transmitted force. Analytical model and control algorithms are being developed taking into account the non-linearities of these type of devices. This paper will describe the concept and the developed mechanism of ERF based force feedback. The test process and the physical properties of this device will be described and the results of preliminary tests will be presented.
De Boever, Wesley; Bultreys, Tom; Derluyn, Hannelore; Van Hoorebeke, Luc; Cnudde, Veerle
2016-06-01
In this paper, we examine the possibility to use on-site permeability measurements for cultural heritage applications as an alternative for traditional laboratory tests such as determination of the capillary absorption coefficient. These on-site measurements, performed with a portable air permeameter, were correlated with the pore network properties of eight sandstones and one granular limestone that are discussed in this paper. The network properties of the 9 materials tested in this study were obtained from micro-computed tomography (μCT) and compared to measurements and calculations of permeability and the capillary absorption rate of the stones under investigation, in order to find the correlation between pore network characteristics and fluid management characteristics of these sandstones. Results show a good correlation between capillary absorption, permeability and network properties, opening the possibility of using on-site permeability measurements as a standard method in cultural heritage applications.
Preisach Model of ER Fluids Considering Temperature Variations
NASA Astrophysics Data System (ADS)
Han, Y. M.; Choi, S. B.; Choi, H. J.
This paper presents a new approach for hysteresis modeling of an electro-rheological (ER) fluid. The Preisach model is adopted to describe change of an ER fluid hysteresis with temperature, and its applicability is experimentally proved by examining two significant properties under two dominant temperature conditions. As a first step, the polymethylaniline (PMA)-based ER fluid is made by dispersing the chemically synthesized PMA particles into non-conducting oil. Then, using the Couette type electroviscometer, multiple first order descending (FOD) curves are constructed to consider temperature variations in the model. Subsequently, a nonlinear hysteresis model of the ER fluid is formulated between input (electric field) and output (yield stress). A compensation strategy is also formulated in a discrete manner through the Preisach model inversion to attain desired shear stress of the ER fluid. In order to demonstrate the effectiveness of the identified hysteresis model and the tracking performance of the control strategy, the field-dependent hysteresis loop and tracking error responses are experimentally evaluated in time domain and compared with responses obtained from Bingham model.
Comparing fluid mechanics models with experimental data.
Spedding, G R
2003-01-01
The art of modelling the physical world lies in the appropriate simplification and abstraction of the complete problem. In fluid mechanics, the Navier-Stokes equations provide a model that is valid under most circumstances germane to animal locomotion, but the complexity of solutions provides strong incentive for the development of further, more simplified practical models. When the flow organizes itself so that all shearing motions are collected into localized patches, then various mathematical vortex models have been very successful in predicting and furthering the physical understanding of many flows, particularly in aerodynamics. Experimental models have the significant added convenience that the fluid mechanics can be generated by a real fluid, not a model, provided the appropriate dimensionless groups have similar values. Then, analogous problems can be encountered in making intelligible but independent descriptions of the experimental results. Finally, model predictions and experimental results may be compared if, and only if, numerical estimates of the likely variations in the tested quantities are provided. Examples from recent experimental measurements of wakes behind a fixed wing and behind a bird in free flight are used to illustrate these principles. PMID:14561348
NASA Technical Reports Server (NTRS)
Spirka, T. A.; Myers, J. G.; Setser, R. M.; Halliburton, S. S.; White, R. D.; Chatzimavroudis, G. P.
2005-01-01
A priority of NASA is to identify and study possible risks to astronauts health during prolonged space missions [l]. The goal is to develop a procedure for a preflight evaluation of the cardiovascular system of an astronaut and to forecast how it will be affected during the mission. To predict these changes, a computational cardiovascular model must be constructed. Although physiology data can be used to make a general model, a more desirable subject-specific model requires anatomical, functional, and flow data from the specific astronaut. MRI has the unique advantage of providing images with all of the above information, including three-directional velocity data which can be used as boundary conditions in a computational fluid dynamics (CFD) program [2,3]. MRI-based CFD is very promising for reproduction of the flow patterns of a specific subject and prediction of changes in the absence of gravity. The aim of this study was to test the feasibility of this approach by reconstructing the geometry of MRI-scanned arterial models and reproducing the MRI-measured velocities using CFD simulations on these geometries.
Fluid flow through carbon nanotubes and graphene based nanostructures
NASA Astrophysics Data System (ADS)
Tahmassebi, Amirhessam
The investigation into the behavior of the fluids in nanoscale channels, such as carbon nanotubes leads us to a new approach in the field of nanoscience. This is referred to as nano-fluidics, which can be used in nano-scale filtering and as nano-pipes for conveying fluids. The behavior of fluids in nano-fluidic devices is very different from the corresponding behavior in microscopic and macroscopic channels. In this study, we investigate the fluid flow through carbon nanotubes and graphene based nanostructures using a molecular dynamics (MD) method at a constant temperature. Three different models were created which contain single-walled carbon nanotube, graphene, and a combination of both. Liquid argon is used as fluid in the system. In the previous investigations, they were considered bombarding the atoms towards the carbon nanotubes like bullets from a gun, and due to the interactions, they lost most of their momentum. Thus, the chance for the atoms to pass through the carbon nanotube was very low. Here, we employed a new approach using a moving graphene wall to push the argon fluid towards the confinements of the systems. By performing this method, we have tried to make a continuum flow to find out how the physical quantities such as, position, velocity, pressure, and energy change when the fluid flow reaches the confinements of the systems.
Experimental Evaluation of Equivalent-Fluid Models for Melamine Foam
NASA Technical Reports Server (NTRS)
Allen, Albert R.; Schiller, Noah H.
2016-01-01
Melamine foam is a soft porous material commonly used in noise control applications. Many models exist to represent porous materials at various levels of fidelity. This work focuses on rigid frame equivalent fluid models, which represent the foam as a fluid with a complex speed of sound and density. There are several empirical models available to determine these frequency dependent parameters based on an estimate of the material flow resistivity. Alternatively, these properties can be experimentally educed using an impedance tube setup. Since vibroacoustic models are generally sensitive to these properties, this paper assesses the accuracy of several empirical models relative to impedance tube measurements collected with melamine foam samples. Diffuse field sound absorption measurements collected using large test articles in a laboratory are also compared with absorption predictions determined using model-based and measured foam properties. Melamine foam slabs of various thicknesses are considered.
NASA Astrophysics Data System (ADS)
Lou, Wentao; Zhu, Miaoyong
2014-10-01
A computation fluid dynamics-simultaneous reaction model (CFD-SRM) coupled model has been proposed to describe the desulfurization behavior in a gas-stirred ladle. For the desulfurization thermodynamics, different models were investigated to determine sulfide capacity and oxygen activity. For the desulfurization kinetic, the effect of bubbly plume flow, as well as oxygen absorption and oxidation reactions in slag eyes are considered. The thermodynamic and kinetic modification coefficients are proposed to fit the measured data, respectively. Finally, the effects of slag basicity and gas flow rate on the desulfurization efficiency are investigated. The results show that as the interfacial reactions (Al2O3)-(FeO)-(SiO2)-(MnO)-[S]-[O] simultaneous kinetic equilibrium is adopted to determine the oxygen activity, and the Young's model with the modification coefficient R th of 1.5 is adopted to determine slag sulfide capacity, the predicted sulfur distribution ratio LS agrees well with the measured data. With an increase of the gas blowing time, the predicted desulfurization rate gradually decreased, and when the modification parameter R k is 0.8, the predicted sulfur content changing with time in ladle agrees well with the measured data. If the oxygen absorption and oxidation reactions in slag eyes are not considered in this model, then the sulfur removal rate in the ladle would be overestimated, and this trend would become more obvious with an increase of the gas flow rate and decrease of the slag layer height. With the slag basicity increasing, the total desulfurization ratio increases; however, the total desulfurization ratio changes weakly as the slag basicity exceeds 7. With the increase of the gas flow rate, the desulfurization ratio first increases and then decreases. When the gas flow rate is 200 NL/min, the desulfurization ratio reaches a maximum value in an 80-ton gas-stirred ladle.
Discrete models of fluids: spatial averaging, closure and model reduction
Panchenko, Alexander; Tartakovsky, Alexandre M.; Cooper, Kevin
2014-04-15
We consider semidiscrete ODE models of single-phase fluids and two-fluid mixtures. In the presence of multiple fine-scale heterogeneities, the size of these ODE systems can be very large. Spatial averaging is then a useful tool for reducing computational complexity of the problem. The averages satisfy exact balance equations of mass, momentum, and energy. These equations do not form a satisfactory continuum model because evaluation of stress and heat flux requires solving the underlying ODEs. To produce continuum equations that can be simulated without resolving microscale dynamics, we recently proposed a closure method based on the use of regularized deconvolution. Here we continue the investigation of deconvolution closure with the long term objective of developing consistent computational upscaling for multiphase particle methods. The structure of the fine-scale particle solvers is reminiscent of molecular dynamics. For this reason we use nonlinear averaging introduced for atomistic systems by Noll, Hardy, and Murdoch-Bedeaux. We also consider a simpler linear averaging originally developed in large eddy simulation of turbulence. We present several simple but representative examples of spatially averaged ODEs, where the closure error can be analyzed. Based on this analysis we suggest a general strategy for reducing the relative error of approximate closure. For problems with periodic highly oscillatory material parameters we propose a spectral boosting technique that augments the standard deconvolution and helps to correctly account for dispersion effects. We also conduct several numerical experiments, one of which is a complete mesoscale simulation of a stratified two-fluid flow in a channel. In this simulation, the operation count per coarse time step scales sublinearly with the number of particles.
Mathematical modeling of fluid-electrolyte alterations during weightlessness
NASA Technical Reports Server (NTRS)
Leonard, J. I.
1984-01-01
Fluid electrolyte metabolism and renal endocrine control as it pertains to adaptation to weightlessness were studied. The mathematical models that have been particularly useful are discussed. However, the focus of the report is on the physiological meaning of the computer studies. A discussion of the major ground based analogs of weightlessness are included; for example, head down tilt, water immersion, and bed rest, and a comparison of findings. Several important zero g phenomena are described, including acute fluid volume regulation, blood volume regulation, circulatory changes, longer term fluid electrolyte adaptations, hormonal regulation, and body composition changes. Hypotheses are offered to explain the major findings in each area and these are integrated into a larger hypothesis of space flight adaptation. A conceptual foundation for fluid electrolyte metabolism, blood volume regulation, and cardiovascular regulation is reported.
Numerical modeling of fluid flow in solid tumors.
Soltani, M; Chen, P
2011-01-01
A mathematical model of interstitial fluid flow is developed, based on the application of the governing equations for fluid flow, i.e., the conservation laws for mass and momentum, to physiological systems containing solid tumors. The discretized form of the governing equations, with appropriate boundary conditions, is developed for a predefined tumor geometry. The interstitial fluid pressure and velocity are calculated using a numerical method, element based finite volume. Simulations of interstitial fluid transport in a homogeneous solid tumor demonstrate that, in a uniformly perfused tumor, i.e., one with no necrotic region, because of the interstitial pressure distribution, the distribution of drug particles is non-uniform. Pressure distribution for different values of necrotic radii is examined and two new parameters, the critical tumor radius and critical necrotic radius, are defined. Simulation results show that: 1) tumor radii have a critical size. Below this size, the maximum interstitial fluid pressure is less than what is generally considered to be effective pressure (a parameter determined by vascular pressure, plasma osmotic pressure, and interstitial osmotic pressure). Above this size, the maximum interstitial fluid pressure is equal to effective pressure. As a consequence, drugs transport to the center of smaller tumors is much easier than transport to the center of a tumor whose radius is greater than the critical tumor radius; 2) there is a critical necrotic radius, below which the interstitial fluid pressure at the tumor center is at its maximum value. If the tumor radius is greater than the critical tumor radius, this maximum pressure is equal to effective pressure. Above this critical necrotic radius, the interstitial fluid pressure at the tumor center is below effective pressure. In specific ranges of these critical sizes, drug amount and therefore therapeutic effects are higher because the opposing force, interstitial fluid pressure, is low in
COMPUTATIONAL FLUID DYNAMICS MODELING ANALYSIS OF COMBUSTORS
Mathur, M.P.; Freeman, Mark; Gera, Dinesh
2001-11-06
In the current fiscal year FY01, several CFD simulations were conducted to investigate the effects of moisture in biomass/coal, particle injection locations, and flow parameters on carbon burnout and NO{sub x} inside a 150 MW GEEZER industrial boiler. Various simulations were designed to predict the suitability of biomass cofiring in coal combustors, and to explore the possibility of using biomass as a reburning fuel to reduce NO{sub x}. Some additional CFD simulations were also conducted on CERF combustor to examine the combustion characteristics of pulverized coal in enriched O{sub 2}/CO{sub 2} environments. Most of the CFD models available in the literature treat particles to be point masses with uniform temperature inside the particles. This isothermal condition may not be suitable for larger biomass particles. To this end, a stand alone program was developed from the first principles to account for heat conduction from the surface of the particle to its center. It is envisaged that the recently developed non-isothermal stand alone module will be integrated with the Fluent solver during next fiscal year to accurately predict the carbon burnout from larger biomass particles. Anisotropy in heat transfer in radial and axial will be explored using different conductivities in radial and axial directions. The above models will be validated/tested on various fullscale industrial boilers. The current NO{sub x} modules will be modified to account for local CH, CH{sub 2}, and CH{sub 3} radicals chemistry, currently it is based on global chemistry. It may also be worth exploring the effect of enriched O{sub 2}/CO{sub 2} environment on carbon burnout and NO{sub x} concentration. The research objective of this study is to develop a 3-Dimensional Combustor Model for Biomass Co-firing and reburning applications using the Fluent Computational Fluid Dynamics Code.
NASA Technical Reports Server (NTRS)
Chatzimavroudis, George P.; Spirka, Thomas A.; Setser, Randolph M.; Myers, Jerry G.
2004-01-01
One of NASA's objectives is to be able to perform a complete, pre-flight, evaluation of cardiovascular changes in astronauts scheduled for prolonged space missions. Computational fluid dynamics (CFD) has shown promise as a method for estimating cardiovascular function during reduced gravity conditions. For this purpose, MRI can provide geometrical information, to reconstruct vessel geometries, and measure all spatial velocity components, providing location specific boundary conditions. The objective of this study was to investigate the reliability of MRI-based model reconstruction and measured boundary conditions for CFD simulations. An aortic arch model and a carotid bifurcation model were scanned in a 1.5T Siemens MRI scanner. Axial MRI acquisitions provided images for geometry reconstruction (slice thickness 3 and 5 mm; pixel size 1x1 and 0.5x0.5 square millimeters). Velocity acquisitions provided measured inlet boundary conditions and localized three-directional steady-flow velocity data (0.7-3.0 L/min). The vessel walls were isolated using NIH provided software (ImageJ) and lofted to form the geometric surface. Constructed and idealized geometries were imported into a commercial CFD code for meshing and simulation. Contour and vector plots of the velocity showed identical features between the MRI velocity data, the MRI-based CFD data, and the idealized-geometry CFD data, with less than 10% differences in the local velocity values. CFD results on models reconstructed from different MRI resolution settings showed insignificant differences (less than 5%). This study illustrated, quantitatively, that reliable CFD simulations can be performed with MRI reconstructed models and gives evidence that a future, subject-specific, computational evaluation of the cardiovascular system alteration during space travel is feasible.
Modeling of Non-Isothermal Cryogenic Fluid Sloshing
NASA Technical Reports Server (NTRS)
Agui, Juan H.; Moder, Jeffrey P.
2015-01-01
A computational fluid dynamic model was used to simulate the thermal destratification in an upright self-pressurized cryostat approximately half-filled with liquid nitrogen and subjected to forced sinusoidal lateral shaking. A full three-dimensional computational grid was used to model the tank dynamics, fluid flow and thermodynamics using the ANSYS Fluent code. A non-inertial grid was used which required the addition of momentum and energy source terms to account for the inertial forces, energy transfer and wall reaction forces produced by the shaken tank. The kinetics-based Schrage mass transfer model provided the interfacial mass transfer due to evaporation and condensation at the sloshing interface. The dynamic behavior of the sloshing interface, its amplitude and transition to different wave modes, provided insight into the fluid process at the interface. The tank pressure evolution and temperature profiles compared relatively well with the shaken cryostat experimental test data provided by the Centre National D'Etudes Spatiales.
de Loubens, Clément; Lentle, Roger G; Hulls, Corrin; Janssen, Patrick W M; Love, Richard J; Chambers, J Paul
2014-01-01
The understanding of mixing and mass transfers of nutrients and drugs in the small intestine is of prime importance in creating formulations that manipulate absorption and digestibility. We characterised mixing using a dye tracer methodology during spontaneous longitudinal contractions, i.e. pendular activity, in 10 cm segments of living proximal duodenum of the rat maintained ex-vivo. The residence time distribution (RTD) of the tracer was equivalent to that generated by a small number (8) of continuous stirred tank reactors in series. Fluid mechanical modelling, that was based on real sequences of longitudinal contractions, predicted that dispersion should occur mainly in the periphery of the lumen. Comparison with the experimental RTD showed that centriluminal dispersion was accurately simulated whilst peripheral dispersion was underestimated. The results therefore highlighted the potential importance of micro-phenomena such as microfolding of the intestinal mucosa in peripheral mixing. We conclude that macro-scale modeling of intestinal flow is useful in simulating centriluminal mixing, whereas multi-scales strategies must be developed to accurately model mixing and mass transfers at the periphery of the lumen. PMID:24747714
de Loubens, Clément; Lentle, Roger G.; Hulls, Corrin; Janssen, Patrick W. M.; Love, Richard J.; Chambers, J. Paul
2014-01-01
The understanding of mixing and mass transfers of nutrients and drugs in the small intestine is of prime importance in creating formulations that manipulate absorption and digestibility. We characterised mixing using a dye tracer methodology during spontaneous longitudinal contractions, i.e. pendular activity, in 10 cm segments of living proximal duodenum of the rat maintained ex-vivo. The residence time distribution (RTD) of the tracer was equivalent to that generated by a small number (8) of continuous stirred tank reactors in series. Fluid mechanical modelling, that was based on real sequences of longitudinal contractions, predicted that dispersion should occur mainly in the periphery of the lumen. Comparison with the experimental RTD showed that centriluminal dispersion was accurately simulated whilst peripheral dispersion was underestimated. The results therefore highlighted the potential importance of micro-phenomena such as microfolding of the intestinal mucosa in peripheral mixing. We conclude that macro-scale modeling of intestinal flow is useful in simulating centriluminal mixing, whereas multi-scales strategies must be developed to accurately model mixing and mass transfers at the periphery of the lumen. PMID:24747714
Computational modeling of glow discharge-induced fluid dynamics
NASA Astrophysics Data System (ADS)
Jayaraman, Balaji
Glow discharge at atmospheric pressure using a dielectric barrier discharge can induce fluid flow and operate as an actuator for flow control. The largely isothermal surface plasma generation realized above can modify the near-wall flow structure by means of Lorentzian collisions between the ionized fluid and the neutral fluid. Such an actuator has advantages of no moving parts, performance at atmospheric conditions and devising complex control strategies through the applied voltage. However, the mechanism of the momentum coupling between the plasma and the fluid flow is not yet adequately understood. In the present work, a modeling framework is presented to simulate athermal, non-equilibrium plasma discharges in conjunction with low Mach number fluid dynamics at atmospheric pressure. The plasma and fluid species are treated as a two-fluid system exhibiting a few decades of length and time scales. The effect of the plasma dynamics on the fluid dynamics is devised via a body force treatment in the Navier-Stokes equations. Two different approaches of different degrees of fidelity are presented for modeling the plasma dynamics. The first approach, a phenomenological model, is based on a linearized force distribution approximating the discharge structure, and utilizing experimental guidance to deduce the empirical constants. A high fidelity approach is to model the plasma dynamics in a self-consistent manner using a first principle-based hydrodynamic plasma model. The atmospheric pressure regime of interest here enables us to employ local equilibrium assumptions, signifying efficient collisional energy exchange as against thermal heating from inelastic collision processes. The time scale ratios between convection, diffusion, and reaction/ionization mechanisms are O(107), making the system computationally stiff. To handle the stiffness, a sequential finite-volume operator-splitting algorithm capable of conserving space charge is developed; the approach can handle time
Capacitance based mass metering for cryogenic fluids
NASA Astrophysics Data System (ADS)
Nurge, Mark A.; Youngquist, Robert; Walters, Deron
2003-09-01
This paper describes a method for measuring the mass of cryogenic fluids in on-board rocket propellant tanks or ground storage tanks. Linear approximations to the Clausius-Mossotti relationship serve as the foundation for a capacitance based mass sensor, regardless of fluid density stratification or tank shape. Sensor design considerations are presented along with the experimental results for a capacitance based mass gage tested in liquid nitrogen. This test data is shown to be consistent with theory resulting in a demonstrated mass measurement accuracy of ±0.75% and a deviation from linearity of less than ±0.30% of full scale mass. Theoretical accuracies are also shown to be ±0.73% for hydrogen and ±1.39% for oxygen for a select range of pressures and temperatures.
A nonlinear viscoelastic - plastic model for electrorheological fluids
NASA Astrophysics Data System (ADS)
Kamath, Gopalakrishna M.; Wereley, Norman M.
1997-06-01
A nonlinear dynamic model is presented that characterizes electrorheological material behavior in terms of its shear stress versus shear strain behavior. The ER fluid model is essentially a nonlinear combination of linear shear flow mechanisms. These linear shear flow mechanisms, a three-parameter viscoelastic fluid element and a viscous fluid element, are used to describe shear flow behavior in the pre-yield and the post-yield regimes, respectively. In order to capture the material behavior in the transition through the yield point, a nonlinear combination of these linear shear flow mechanisms is used. The model, which relates the shear strain input to the shear stress output, is represented by a simple network that consists of two parallel linear mechanisms whose outputs are combined using nonlinear weighting functions. The weighting functions are dependent on the strain rate in the material. A system identification technique is developed to estimate the model parameters from experimental data, which consists of shear stress versus shear strain hysteresis loops at different levels of electric field. The results of this system identification approach indicate that the model parameters are smooth monotonic functions of the electric field. The experimental hysteresis loops are reconstructed using the estimated model parameters and the results show that the model accurately predicts material response. It is shown that the Coulomb friction-like behavior at high field strengths, which is characteristic of ER fluids, can be captured by this nonlinear mechanism-based model.
NASA Astrophysics Data System (ADS)
Stacey, W. M.
2016-06-01
A fluid model for the tokamak edge pressure profile required by the conservation of particles, momentum and energy in the presence of specified heating and fueling sources and electromagnetic and geometric parameters has been developed. Kinetics effects of ion orbit loss are incorporated into the model. The use of this model as a "transport" constraint together with a "Peeling-Ballooning (P-B)" instability constraint to achieve a prediction of edge pressure pedestal heights and widths in future tokamaks is discussed.
Landau Fluid Models for Magnetized Plasmas
Sulem, P. L.; Passot, T.; Marradi, L.
2008-10-15
A Landau fluid model for a magnetized plasma, that retains a linear description of low-frequency kinetic effects involving transverse scales significantly smaller than the ion Larmor radius, is discussed and validated in the context of nonlinear wave dynamics. Preliminary simulations of the turbulent regime are presented in one space dimension, as a first step towards more realistic three-dimensional computations, aimed to analyze the combined effect of dispersion and collisionless dissipation on the energy cascade.
Corley, Richard A; Kabilan, Senthil; Kuprat, Andrew P; Carson, James P; Jacob, Richard E; Minard, Kevin R; Teeguarden, Justin G; Timchalk, Charles; Pipavath, Sudhakar; Glenny, Robb; Einstein, Daniel R
2015-07-01
Computational fluid dynamics (CFD) modeling is well suited for addressing species-specific anatomy and physiology in calculating respiratory tissue exposures to inhaled materials. In this study, we overcame prior CFD model limitations to demonstrate the importance of realistic, transient breathing patterns for predicting site-specific tissue dose. Specifically, extended airway CFD models of the rat and human were coupled with airway region-specific physiologically based pharmacokinetic (PBPK) tissue models to describe the kinetics of 3 reactive constituents of cigarette smoke: acrolein, acetaldehyde and formaldehyde. Simulations of aldehyde no-observed-adverse-effect levels for nasal toxicity in the rat were conducted until breath-by-breath tissue concentration profiles reached steady state. Human oral breathing simulations were conducted using representative aldehyde yields from cigarette smoke, measured puff ventilation profiles and numbers of cigarettes smoked per day. As with prior steady-state CFD/PBPK simulations, the anterior respiratory nasal epithelial tissues received the greatest initial uptake rates for each aldehyde in the rat. However, integrated time- and tissue depth-dependent area under the curve (AUC) concentrations were typically greater in the anterior dorsal olfactory epithelium using the more realistic transient breathing profiles. For human simulations, oral and laryngeal tissues received the highest local tissue dose with greater penetration to pulmonary tissues than predicted in the rat. Based upon lifetime average daily dose comparisons of tissue hot-spot AUCs (top 2.5% of surface area-normalized AUCs in each region) and numbers of cigarettes smoked/day, the order of concern for human exposures was acrolein > formaldehyde > acetaldehyde even though acetaldehyde yields were 10-fold greater than formaldehyde and acrolein.
Corley, Richard A.; Kabilan, Senthil; Kuprat, Andrew P.; Carson, James P.; Jacob, Richard E.; Minard, Kevin R.; Teeguarden, Justin G.; Timchalk, Charles; Pipavath, Sudhakar; Glenny, Robb; Einstein, Daniel R.
2015-01-01
Computational fluid dynamics (CFD) modeling is well suited for addressing species-specific anatomy and physiology in calculating respiratory tissue exposures to inhaled materials. In this study, we overcame prior CFD model limitations to demonstrate the importance of realistic, transient breathing patterns for predicting site-specific tissue dose. Specifically, extended airway CFD models of the rat and human were coupled with airway region-specific physiologically based pharmacokinetic (PBPK) tissue models to describe the kinetics of 3 reactive constituents of cigarette smoke: acrolein, acetaldehyde and formaldehyde. Simulations of aldehyde no-observed-adverse-effect levels for nasal toxicity in the rat were conducted until breath-by-breath tissue concentration profiles reached steady state. Human oral breathing simulations were conducted using representative aldehyde yields from cigarette smoke, measured puff ventilation profiles and numbers of cigarettes smoked per day. As with prior steady-state CFD/PBPK simulations, the anterior respiratory nasal epithelial tissues received the greatest initial uptake rates for each aldehyde in the rat. However, integrated time- and tissue depth-dependent area under the curve (AUC) concentrations were typically greater in the anterior dorsal olfactory epithelium using the more realistic transient breathing profiles. For human simulations, oral and laryngeal tissues received the highest local tissue dose with greater penetration to pulmonary tissues than predicted in the rat. Based upon lifetime average daily dose comparisons of tissue hot-spot AUCs (top 2.5% of surface area-normalized AUCs in each region) and numbers of cigarettes smoked/day, the order of concern for human exposures was acrolein > formaldehyde > acetaldehyde even though acetaldehyde yields were 10-fold greater than formaldehyde and acrolein. PMID:25858911
A preliminary study to Assess Model Uncertainties in Fluid Flows
Marc Oliver Delchini; Jean C. Ragusa
2009-09-01
The goal of this study is to assess the impact of various flow models for a simplified primary coolant loop of a light water nuclear reactor. The various fluid flow models are based on the Euler equations with an additional friction term, gravity term, momentum source, and energy source. The geometric model is purposefully chosen simple and consists of a one-dimensional (1D) loop system in order to focus the study on the validity of various fluid flow approximations. The 1D loop system is represented by a rectangle; the fluid is heated up along one of the vertical legs and cooled down along the opposite leg. A pressurizer and a pump are included in the horizontal legs. The amount of energy transferred and removed from the system is equal in absolute value along the two vertical legs. The various fluid flow approximations are compressible vs. incompressible, and complete momentum equation vs. Darcy’s approximation. The ultimate goal is to compute the fluid flow models’ uncertainties and, if possible, to generate validity ranges for these models when applied to reactor analysis. We also limit this study to single phase flows with low-Mach numbers. As a result, sound waves carry a very small amount of energy in this particular case. A standard finite volume method is used for the spatial discretization of the system.
Modeling extended fluid objects in general relativity
NASA Astrophysics Data System (ADS)
Schiff, Conrad
The purpose of this dissertation is to introduce and explore the notion of modeling extended fluid objects in numerical general relativity. These extended fluid objects, called Fat Particles, are proxies for compact hydrodynamic objects. Unlike full hydrodynamic models, we make the approximation that the details of the matter distribution are riot as important as the gross motion of the Fat Particles center of mass and its contribution to the gravitational field. Thus we provide a semi-analytic model of matter for numerical simulations of Einstein's equations, which may help in modeling gravitational radiation from candidate sources. Our approach to carrying out these investigations is to begin with a continuum variational principle, which yields the desired hydrodynamic and gravitational equations for ideal fluids. Following our analysis of the related numerical technique, Smoothed Particle Hydrodynamics (SPH), we apply a set of discretization and smoothing rules to obtain a discrete action. Subsequent variations yield the Fat Particle equations. Our analysis of a classical ideal fluid demonstrated that a Newtonian Fat Particle is capable of remaining at rest while generating its own gravitational field. We then developed analogous principles for describing relativistic ideal fluids in both covariant and ADM 3+1 forms. Using these principles, we developed analytic and numerical results from relativistic Fat Particle theory. We began with the Subscribe Only model, in which a Fat Particle of negligible mass moves in a fixed background metric. Corrections to its motion due to the extended nature of the Fat Particle, are obtained by summing metric contributions over its volume. We find a universal scaling law that describes the phase shift, relative to a test particle, that is independent of its size, shape, and distribution. We then show that finite-size effects eventually dominate radiation damping effects in describing the motion of a white dwarf around a more
Numerical Modeling of Fluid Transient in Cryogenic Fluid Network of Rocket Propulsion System
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Flachbart, Robin
2003-01-01
Fluid transients, also known as water hammer, can have a significant impact on the design and operation of both spacecraft and launch vehicles propulsion systems. These transients often occur at system activation and shut down. For ground safety reasons, many spacecrafts are launched with the propellant lines dry. These lines are often evacuated by the time the spacecraft reaches orbit. When the propellant isolation valve opens during propulsion system activation, propellant rushes into lines creating a pressure surge. During propellant system shutdown, a pressure surge is created due to sudden closure of a valve. During both activation and shutdown, pressure surges must be predicted accurately to ensure structural integrity of the propulsion system fluid network. The method of characteristics is the most widely used method of calculating fluid transients in pipeline [ 1,2]. The method of characteristics, however, has limited applications in calculating flow distribution in complex flow circuits with phase change, heat transfer and rotational effects. A robust cryogenic propulsion system analyzer must have the capability to handle phase change, heat transfer, chemical reaction, rotational effects and fluid transients in conjunction with subsystem flow model for pumps, valves and various pipe fittings. In recent years, such a task has been undertaken at Marshall Space Flight Center with the development of the Generalized Fluid System Simulation Program (GFSSP), which is based on finite volume method in fluid network [3]. GFSSP has been extensively verified and validated by comparing its predictions with test data and other numerical methods for various applications such as internal flow of turbo-pump [4], propellant tank pressurization [5,6], chilldown of cryogenic transfer line [7] and squeeze film damper rotordynamics [8]. The purpose of the present paper is to investigate the applicability of the finite volume method to predict fluid transient in cryogenic flow
Soleimani, Sajjad; Dubini, Gabriele; Pennati, Giancarlo
2016-06-01
It is important to thoroughly remove the thrombus within the course of aspiration thrombectomy; otherwise, it may lead to further embolization. The performance of the aspiration thrombectomy device with a generic geometry is studied through the computational approach. In order to model the thrombus aspiration, a real left coronary artery is chosen while thrombi with various sizes are located at the bifurcation area of the coronary artery and, depending on the size of the thrombus, it is stretched toward the side branches. The thrombus occupies the artery resembling the blood current obstruction in the coronary vessel similar to the situation that leads to heart attack. It is concluded that the aspiration ability of the thrombectomy device is not linked to the thrombus size; it is rather linked to the aspiration pressure and thrombus age (organized versus fresh thrombus). However, the aspiration time period correlates to the thrombus size. The minimum applicable aspiration pressure is also investigated in this study. PMID:26351782
Impulse-based methods for fluid flow
Cortez, R.
1995-05-01
A Lagrangian numerical method based on impulse variables is analyzed. A relation between impulse vectors and vortex dipoles with a prescribed dipole moment is presented. This relation is used to adapt the high-accuracy cutoff functions of vortex methods for use in impulse-based methods. A source of error in the long-time implementation of the impulse method is explained and two techniques for avoiding this error are presented. An application of impulse methods to the motion of a fluid surrounded by an elastic membrane is presented.
Variable flexure-based fluid filter
Brown, Steve B.; Colston, Jr., Billy W.; Marshall, Graham; Wolcott, Duane
2007-03-13
An apparatus and method for filtering particles from a fluid comprises a fluid inlet, a fluid outlet, a variable size passage between the fluid inlet and the fluid outlet, and means for adjusting the size of the variable size passage for filtering the particles from the fluid. An inlet fluid flow stream is introduced to a fixture with a variable size passage. The size of the variable size passage is set so that the fluid passes through the variable size passage but the particles do not pass through the variable size passage.
Schembri Wismayer, P.; Lung, C. Y. K.; Rappa, F.; Cappello, F.; Camilleri, J.
2016-01-01
Portland cement used in the construction industry improves its properties when wet. Since most dental materials are used in a moist environment, Portland cement has been developed for use in dentistry. The first generation material is mineral trioxide aggregate (MTA), used in surgical procedures, thus in contact with blood. The aim of this study was to compare the setting of MTA in vitro and in vivo in contact with blood by subcutaneous implantation in rats. The tissue reaction to the material was also investigated. ProRoot MTA (Dentsply) was implanted in the subcutaneous tissues of Sprague-Dawley rats in opposite flanks and left in situ for 3 months. Furthermore the material was also stored in physiological solution in vitro. At the end of the incubation time, tissue histology and material characterization were performed. Surface assessment showed the formation of calcium carbonate for both environments. The bismuth was evident in the tissues thus showing heavy element contamination of the animal specimen. The tissue histology showed a chronic inflammatory cell infiltrate associated with the MTA. MTA interacts with the host tissues and causes a chronic inflammatory reaction when implanted subcutaneously. Hydration in vivo proceeds similarly to the in vitro model with some differences particularly in the bismuth oxide leaching patterns. PMID:27683067
Yang, Chun; Tang, Dalin; Atluri, Satya
2011-01-01
Previously, we introduced a computational procedure based on three-dimensional meshless generalized finite difference (MGFD) method and serial magnetic resonance imaging (MRI) data to quantify patient-specific carotid atherosclerotic plaque growth functions and simulate plaque progression. Structure-only models were used in our previous report. In this paper, fluid-stricture interaction (FSI) was added to improve on prediction accuracy. One participating patient was scanned three times (T1, T2, and T3, at intervals of about 18 months) to obtain plaque progression data. Blood flow was assumed to laminar, Newtonian, viscous and incompressible. The Navier-Stokes equations with arbitrary Lagrangian-Eulerian (ALE) formulation were used as the governing equations. Plaque material was assumed to be uniform, homogeneous, isotropic, linear, and nearly incompressible. The linear elastic model was used. The 3D FSI plaque model was discretized and solved using a meshless generalized finite difference (GFD) method. Growth functions with a) morphology alone; b) morphology and plaque wall stress (PWS); morphology and flow shear stress (FSS), and d) morphology, PWS and FSS were introduced to predict future plaque growth based on previous time point data. Starting from the T2 plaque geometry, plaque progression was simulated by solving the FSI model and adjusting plaque geometry using plaque growth functions iteratively until T3 is reached. Numerically simulated plaque progression agreed very well with the target T3 plaque geometry with errors ranging from 8.62%, 7.22%, 5.77% and 4.39%, with the growth function including morphology, plaque wall stress and flow shear stress terms giving the best predictions. Adding flow shear stress term to the growth function improved the prediction error from 7.22% to 4.39%, a 40% improvement. We believe this is the first time 3D plaque progression FSI simulation based on multi-year patient-tracking data was reported. Serial MRI-based progression
A Two-Fluid, MHD Coronal Model
NASA Technical Reports Server (NTRS)
Suess, Steven T.; Wang, A.-H.; Wu, S. T.; Poletto, G.; McComas, D. J.
1998-01-01
We describe first results from a numerical two-fluid MHD model of the global structure of the solar corona. The model is two-fluid in the sense that it accounts for the collisional energy exchange between protons and electrons. As in our single-fluid model, volumetric heat and momentum sources are required to produce high speed wind from coronal holes, low speed wind above streamers, and mass fluxes similar to the empirical solar wind. By specifying different proton and electron heating functions we obtain a high proton temperature in the coronal hole and a relatively low proton temperature in the streamer (in comparison with the electron temperature). This is consistent with inferences from SOHO/UVCS, and with the Ulysses/SWOOPS proton and electron temperature measurements which we show from the fast latitude scan. The density in the coronal hole between 2 solar radii and 5 solar radii (2RS and 5RS) is similar to the density reported from SPARTAN 201-01 measurements by Fisher and Guhathakurta. The proton mass flux scaled to 1 AU is 2.4 x 10(exp 8)/sq cm s, which is consistent with Ulysses observations. Inside the closed field region, the density is sufficiently high so that the simulation gives equal proton and electron temperatures due to the high collision rate. In open field regions (in the coronal hole and above the streamer) the proton and electron temperatures differ by varying amounts. In the streamer, the temperature and density are similar to those reported empirically by Li et al and the plasma beta is larger than unity everywhere above approx. 1.5 R(sub s), as it is in all other MHD coronal streamer models.
A Two-Fluid, MHD Coronal Model
NASA Technical Reports Server (NTRS)
Suess, S. T.; Wang, A.-H.; Wu, S. T.; Poletto, G.; McComas, D. J.
1999-01-01
We describe first results from a numerical two-fluid MHD model of the global structure of the solar Corona. The model is two-fluid in the sense that it accounts for the collisional energy exchange between protons and electrons. As in our single-fluid model, volumetric heat and Momentum sources are required to produce high speed wind from Corona] holes, low speed wind above streamers, and mass fluxes similar to the empirical solar wind. By specifying different proton and electron heating functions we obtain a high proton temperature in the coronal hole and a relatively low proton temperature above the streamer (in comparison with the electron temperature). This is consistent with inferences from SOHO/UltraViolet Coronagraph Spectrometer instrument (UVCS), and with the Ulysses/Solar Wind Observations Over the Poles of the Sun instrument (SWOOPS) proton and electron temperature measurements which we show from the fast latitude scan. The density in the coronal hole between 2 and 5 solar radii (2 and 5 R(sub S)) is similar to the density reported from SPARTAN 201.-01 measurements by Fisher and Guhathakurta [19941. The proton mass flux scaled to 1 AU is 2.4 x 10(exp 8)/sq cm s, which is consistent with Ulysses observations. Inside the closed field region, the density is sufficiently high so that the simulation gives equal proton and electron temperatures due to the high collision rate. In open field regions (in the coronal hole and above the streamer) the proton and electron temperatures differ by varying amounts. In the streamer the temperature and density are similar to those reported empirically by Li et al. [1998], and the plasma beta is larger than unity everywhere above approx. 1.5 R(sub S), as it is in all other MHD coronal streamer models [e.g., Steinolfson et al., 1982; also G. A. Gary and D. Alexander, Constructing the coronal magnetic field, submitted to Solar Physics, 1998].
A two-fluid, MHD coronal model
NASA Astrophysics Data System (ADS)
Suess, S. T.; Wang, A.-H.; Wu, S. T.; Poletto, G.; McComas, D. J.
1999-03-01
We describe first results from a numerical two-fluid MHD model of the global structure of the solar corona. The model is two-fluid in the sense that it accounts for the collisional energy exchange between protons and electrons. As in our single-fluid model, volumetric heat and momentum sources are required to produce high speed wind from coronal holes, low speed wind above streamers, and mass fluxes similar to the empirical solar wind. By specifying different proton and electron heating functions we obtain a high proton temperature in the coronal hole and a relatively low proton temperature above the streamer (in comparison with the electron temperature). This is consistent with inferences from SOHO/UltraViolet Coronagraph Spectrometer instrument (UVCS) [Kohl et al., 1997], and with the Ulysses/Solar Wind Observations Over the Poles of the Sun instrument (SWOOPS) proton and electron temperature measurements which we show from the fast latitude scan. The density in the coronal hole between 2 and 5 solar radii (2 and 5RS) is similar to the density reported from SPARTAN 201-01 measurements by Fisher and Guhathakurta [1994]. The proton mass flux scaled to 1 AU is 2.4×108cm-2s-1, which is consistent with Ulysses observations [Phillips et al., 1995]. Inside the closed field region, the density is sufficiently high so that the simulation gives equal proton and electron temperatures due to the high collision rate. In open field regions (in the coronal hole and above the streamer) the proton and electron temperatures differ by varying amounts. In the streamer the temperature and density are similar to those reported empirically by Li et al. [1998], and the plasma β is larger than unity everywhere above ~1.5RS, as it is in all other MHD coronal streamer models [e.g., Steinolfson et al., 1982; also G. A. Gary and D. Alexander, Constructing the coronal magnetic field, submitted to Solar Physics, 1998].
Wu, Binxin
2010-12-01
In this paper, 12 turbulence models for single-phase non-newtonian fluid flow in a pipe are evaluated by comparing the frictional pressure drops obtained from computational fluid dynamics (CFD) with those from three friction factor correlations. The turbulence models studied are (1) three high-Reynolds-number k-ε models, (2) six low-Reynolds-number k-ε models, (3) two k-ω models, and (4) the Reynolds stress model. The simulation results indicate that the Chang-Hsieh-Chen version of the low-Reynolds-number k-ε model performs better than the other models in predicting the frictional pressure drops while the standard k-ω model has an acceptable accuracy and a low computing cost. In the model applications, CFD simulation of mixing in a full-scale anaerobic digester with pumped circulation is performed to propose an improvement in the effective mixing standards recommended by the U.S. EPA based on the effect of rheology on the flow fields. Characterization of the velocity gradient is conducted to quantify the growth or breakage of an assumed floc size. Placement of two discharge nozzles in the digester is analyzed to show that spacing two nozzles 180° apart with each one discharging at an angle of 45° off the wall is the most efficient. Moreover, the similarity rules of geometry and mixing energy are checked for scaling up the digester.
Reduced order modeling of fluid/structure interaction.
Barone, Matthew Franklin; Kalashnikova, Irina; Segalman, Daniel Joseph; Brake, Matthew Robert
2009-11-01
This report describes work performed from October 2007 through September 2009 under the Sandia Laboratory Directed Research and Development project titled 'Reduced Order Modeling of Fluid/Structure Interaction.' This project addresses fundamental aspects of techniques for construction of predictive Reduced Order Models (ROMs). A ROM is defined as a model, derived from a sequence of high-fidelity simulations, that preserves the essential physics and predictive capability of the original simulations but at a much lower computational cost. Techniques are developed for construction of provably stable linear Galerkin projection ROMs for compressible fluid flow, including a method for enforcing boundary conditions that preserves numerical stability. A convergence proof and error estimates are given for this class of ROM, and the method is demonstrated on a series of model problems. A reduced order method, based on the method of quadratic components, for solving the von Karman nonlinear plate equations is developed and tested. This method is applied to the problem of nonlinear limit cycle oscillations encountered when the plate interacts with an adjacent supersonic flow. A stability-preserving method for coupling the linear fluid ROM with the structural dynamics model for the elastic plate is constructed and tested. Methods for constructing efficient ROMs for nonlinear fluid equations are developed and tested on a one-dimensional convection-diffusion-reaction equation. These methods are combined with a symmetrization approach to construct a ROM technique for application to the compressible Navier-Stokes equations.
NASA Astrophysics Data System (ADS)
Aland, Sebastian; Lowengrub, John; Voigt, Axel
2012-10-01
Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland [Phys. FluidsPHFLE61070-663110.1063/1.3584815 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid.
Aland, Sebastian; Lowengrub, John; Voigt, Axel
2012-10-01
Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland et al. [Phys. Fluids 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid. PMID:23214691
Aland, Sebastian; Lowengrub, John; Voigt, Axel
2013-01-01
Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland et al. [Phys. Fluids 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid. PMID:23214691
Null fluid collapse in brane world models
NASA Astrophysics Data System (ADS)
Harko, Tiberiu; Lake, Matthew J.
2014-03-01
The brane world description of our Universe entails a large extra dimension and a fundamental scale of gravity that may be lower than the Planck scale by several orders of magnitude. An interesting consequence of this scenario occurs in the nature of spherically symmetric vacuum solutions to the brane gravitational field equations, which often have properties quite distinct from the standard black hole solutions of general relativity. In this paper, the spherically symmetric collapse on the brane world of four types of null fluid, governed by the barotropic, polytropic, strange quark "bag" model and Hagedorn equations of state, is investigated. In each case, we solve the approximate gravitational field equations, obtained in the high-density limit, determine the equation which governs the formation of apparent horizons and investigate the conditions for the formation of naked singularities. Though, naively, one would expect the increased effective energy density on the brane to favor the formation of black holes over naked singularities, we find that, for the types of fluid considered, this is not the case. However, the black hole solutions differ substantially from their general-relativistic counterparts and brane world corrections often play a role analogous to charge in general relativity. As an astrophysical application of this work, the possibility that energy emission from a Hagedorn fluid collapsing to form a naked singularity may be a source of GRBs in the brane world is also considered.
A numerical model for dynamic crustal-scale fluid flow
NASA Astrophysics Data System (ADS)
Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique; Koehn, Daniel
2015-04-01
Fluid flow in the crust is often envisaged and modeled as continuous, yet minimal flow, which occurs over large geological times. This is a suitable approximation for flow as long as it is solely controlled by the matrix permeability of rocks, which in turn is controlled by viscous compaction of the pore space. However, strong evidence (hydrothermal veins and ore deposits) exists that a significant part of fluid flow in the crust occurs strongly localized in both space and time, controlled by the opening and sealing of hydrofractures. We developed, tested and applied a novel computer code, which considers this dynamic behavior and couples it with steady, Darcian flow controlled by the matrix permeability. In this dual-porosity model, fractures open depending on the fluid pressure relative to the solid pressure. Fractures form when matrix permeability is insufficient to accommodate fluid flow resulting from compaction, decompression (Staude et al. 2009) or metamorphic dehydration reactions (Weisheit et al. 2013). Open fractures can close when the contained fluid either seeps into the matrix or escapes by fracture propagation: mobile hydrofractures (Bons, 2001). In the model, closing and sealing of fractures is controlled by a time-dependent viscous law, which is based on the effective stress and on either Newtonian or non-Newtonian viscosity. Our simulations indicate that the bulk of crustal fluid flow in the middle to lower upper crust is intermittent, highly self-organized, and occurs as mobile hydrofractures. This is due to the low matrix porosity and permeability, combined with a low matrix viscosity and, hence, fast sealing of fractures. Stable fracture networks, generated by fluid overpressure, are restricted to the uppermost crust. Semi-stable fracture networks can develop in an intermediate zone, if a critical overpressure is reached. Flow rates in mobile hydrofractures exceed those in the matrix porosity and fracture networks by orders of magnitude
A web-services approach to modeling global fluid flux
NASA Astrophysics Data System (ADS)
Wood, W. T.; Martin, K. M.; Sample, J.; Owens, R.; Jung, W.; Calantoni, J.; Boyd, T. J.; Coffin, R. B.
2013-12-01
Regional and global estimates of fluid and solute accumulation and transport require aspects of physics, chemistry, and biology that manifest as geospatial data sets. Recent developments in computer sciences known as web-services allow a new approach to earth modeling that allows data and models from different sources and on different platforms to be linked - allowing continual updates as data are acquired or models upgraded. NRL has begun constructing a such a generic earth modeling system (GEMS) based on OGC and WD3 compliant web-services data exchange, and designed to take advantage of newly developing web-service based data repositories funded by NSF, NOAA, USGS and others. Specifically, global data sets such as those found in the World Ocean Atlas (2009), sediment thickness, crust age, and seafloor temperature that have been used previously to estimate methane hydrate content in the World's ocean can now be combined with models of sedimentary accretion to generate estimates of fluid flux along margins. The data are served up as independent web coverage services, so they can be independently updated as new data arrives. We anticipate the web services approach to will allow a more flexible, dynamic, and resilient global model of fluid and solute flux than was previously possible.
Eylenceoğlu, E.; Rafatov, I.; Kudryavtsev, A. A.
2015-01-15
Two-dimensional hybrid Monte Carlo–fluid numerical code is developed and applied to model the dc glow discharge. The model is based on the separation of electrons into two parts: the low energetic (slow) and high energetic (fast) electron groups. Ions and slow electrons are described within the fluid model using the drift-diffusion approximation for particle fluxes. Fast electrons, represented by suitable number of super particles emitted from the cathode, are responsible for ionization processes in the discharge volume, which are simulated by the Monte Carlo collision method. Electrostatic field is obtained from the solution of Poisson equation. The test calculations were carried out for an argon plasma. Main properties of the glow discharge are considered. Current-voltage curves, electric field reversal phenomenon, and the vortex current formation are developed and discussed. The results are compared to those obtained from the simple and extended fluid models. Contrary to reports in the literature, the analysis does not reveal significant advantages of existing hybrid methods over the extended fluid model.
Structural stability of a 1D compressible viscoelastic fluid model
NASA Astrophysics Data System (ADS)
Huo, Xiaokai; Yong, Wen-An
2016-07-01
This paper is concerned with a compressible viscoelastic fluid model proposed by Öttinger. Although the model has a convex entropy, the Hessian matrix of the entropy does not symmetrize the system of first-order partial differential equations due to the non-conservative terms in the constitutive equation. We show that the corresponding 1D model is symmetrizable hyperbolic and dissipative and satisfies the Kawashima condition. Based on these, we prove the global existence of smooth solutions near equilibrium and justify the compatibility of the model with the Navier-Stokes equations.
The Chemical Behavior of Fluids Released during Deep Subduction Based on Fluid Inclusions
NASA Astrophysics Data System (ADS)
Frezzotti, M. L.; Ferrando, S.
2014-12-01
We present a review of current research on fluid inclusions in (HP-) UHP metamorphic rocks that, combined with existing experimental research and thermodynamic models, allow us to investigate the chemical and physical properties of fluids released during deep subduction, their solvent and element transport capacity, and the subsequent implications for the element recycling in the mantle wedge. An impressive number of fluid inclusion studies indicate three main populations of fluid inclusions in HP and UHP metamorphic rocks: i) aqueous and/or non-polar gaseous fluid inclusions (FI), ii) multiphase solid inclusions (MSI), and iii) melt inclusions (MI). Chemical data from preserved fluid inclusions in rocks match with and implement "model" fluids by experiments and thermodynamics, revealing a continuity behind the extreme variations of physico-chemical properties of subduction-zone fluids. From fore-arc to sub-arc depths, fluids released by progressive devolatilization reactions from slab lithologies change from relatively diluted chloride-bearing aqueous solutions (± N2), mainly influenced by halide ligands, to (alkali) aluminosilicate-rich aqueous fluids, in which polymerization probably governs the solubility and transport of major (e.g., Si and Al) and trace elements (including C). Fluid inclusion data implement the petrological models explaining deep volatile liberation in subduction zones, and their flux into the mantle wedge.
Modelling non-dust fluids in cosmology
Christopherson, Adam J.; Hidalgo, Juan Carlos; Malik, Karim A. E-mail: juan.hidalgo@port.ac.uk
2013-01-01
Currently, most of the numerical simulations of structure formation use Newtonian gravity. When modelling pressureless dark matter, or 'dust', this approach gives the correct results for scales much smaller than the cosmological horizon, but for scenarios in which the fluid has pressure this is no longer the case. In this article, we present the correspondence of perturbations in Newtonian and cosmological perturbation theory, showing exact mathematical equivalence for pressureless matter, and giving the relativistic corrections for matter with pressure. As an example, we study the case of scalar field dark matter which features non-zero pressure perturbations. We discuss some problems which may arise when evolving the perturbations in this model with Newtonian numerical simulations and with CMB Boltzmann codes.
AIR INGRESS ANALYSIS: COMPUTATIONAL FLUID DYNAMIC MODELS
Chang H. Oh; Eung S. Kim; Richard Schultz; Hans Gougar; David Petti; Hyung S. Kang
2010-08-01
The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in very high temperature reactors (VHTRs). Phenomena Identification and Ranking Studies to date have ranked an air ingress event, following on the heels of a VHTR depressurization, as important with regard to core safety. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority. Following a loss of coolant and system depressurization incident, air will enter the core of the High Temperature Gas Cooled Reactor through the break, possibly causing oxidation of the in-the core and reflector graphite structure. Simple core and plant models indicate that, under certain circumstances, the oxidation may proceed at an elevated rate with additional heat generated from the oxidation reaction itself. Under postulated conditions of fluid flow and temperature, excessive degradation of the lower plenum graphite can lead to a loss of structural support. Excessive oxidation of core graphite can also lead to the release of fission products into the confinement, which could be detrimental to a reactor safety. Computational fluid dynamic model developed in this study will improve our understanding of this phenomenon. This paper presents two-dimensional and three-dimensional CFD results for the quantitative assessment of the air ingress phenomena. A portion of results of the density-driven stratified flow in the inlet pipe will be compared with results of the experimental results.
Fluid mechanical model of the Helmholtz resonator
NASA Technical Reports Server (NTRS)
Hersh, A. S.; Walker, B.
1977-01-01
A semi-empirical fluid mechanical model of the acoustic behavior of Helmholtz resonators is presented which predicts impedance as a function of the amplitude and frequency of the incident sound pressure field and resonator geometry. The model assumes that the particle velocity approaches the orifice in a spherical manner. The incident and cavity sound fields are connected by solving the governing oscillating mass and momentum conservation equations. The model is in agreement with the Rayleigh slug-mass model at low values of incident sound pressure level. At high values, resistance is predicted to be independent of frequency, proportional to the square root of the amplitude of the incident sound pressure field, and virtually independent of resonator geometry. Reactance is predicted to depend in a very complicated way upon resonator geometry, incident sound pressure level, and frequency. Nondimensional parameters are defined that divide resonator impedance into three categories corresponding to low, moderately low, and intense incident sound pressure amplitudes. The two-microphone method was used to measure the impedance of a variety of resonators. The data were used to refine and verify the model.
Modeling and Direct Numerical Simulation of Ternary Fluid Flows
NASA Astrophysics Data System (ADS)
Kim, Jun-Seok; Lowengrub, John; Longmire, Ellen
2001-06-01
In this talk, we will present a physically-based model of flows involving three liquid components. The components may exhibit preferential miscibility with one another. The flows we consider are characterized by the presence of interfaces separating immiscible flow components with pinchoff and reconnection of interfaces being important features of the flow. In our model, these topological transitions are handled smoothly without explicit interface reconstruction. In addition, we model the diffusion of miscible components in the bulk and across the interfaces. To illustrate the method, we present numerical simulations of remediation of a contaminant-laden fluid using liquid/liquid extraction.
Modeling and Algorithmic Approaches to Constitutively-Complex, Microstructured Fluids
Miller, Gregory H.; Forest, Gregory
2014-05-01
We present a new multiscale model for complex fluids based on three scales: microscopic, kinetic, and continuum. We choose the microscopic level as Kramers' bead-rod model for polymers, which we describe as a system of stochastic differential equations with an implicit constraint formulation. The associated Fokker-Planck equation is then derived, and adiabatic elimination removes the fast momentum coordinates. Approached in this way, the kinetic level reduces to a dispersive drift equation. The continuum level is modeled with a finite volume Godunov-projection algorithm. We demonstrate computation of viscoelastic stress divergence using this multiscale approach.
An anisotropic-fluid model for inhomogeneous Stokesian suspensions
NASA Astrophysics Data System (ADS)
Goddard, Joe
2007-11-01
A constitutive model is proposed for a suspension of rigid spheres with spatially non-uniform strain rate E and particle concentration φ. As in [1], the model involves a 4^th rank viscosity tensor depending on φ and a 2^nd rank structure tensor A determined by a kinematic evolution equations. The particle flux j is a linear function of the spatial gradients in φ, E, & A . In contrast to existing models [2,3], the constitutive equations exhibits Stokesian linearity in E, and all nonlinear suspension-dynamics effects are represented by A and its evolution. An expansion up to third order in A is given, and illustrative calculations are made for oscillatory simple shear based on parameters determined as in [1]. Desirably, the model offers a frame-indifferent description of the effects of streamline curvature on particle flux; and it admits transiently negative particle diffusivities following shear reversal, indicating dominance of Stokesian reversibility over shear-induced memory loss. The main drawback, is the plethora of scalar parameters, and possible simplifications inspired by previous models are discussed briefly. [1] J. D. Goddard, J. Fluid. Mech., 568:1--17, 2006. [2] G. P. Krishnan, et al., J. Fluid Mech., 321:371--93, 1996. [3] R. J. Phillips, et al., Phys. Fluids A, 4(1): 30--40, 1992.
Discrete Models of Fluids: Spatial Averaging, Closure, and Model Reduction
Panchenko, Alexander; Tartakovsky, Alexandre; Cooper, Kevin
2014-03-06
The main question addressed in the paper is how to obtain closed form continuum equations governing spatially averaged dynamics of semi-discrete ODE models of fluid flow. In the presence of multiple small scale heterogeneities, the size of these ODE systems can be very large. Spatial averaging is then a useful tool for reducing computational complexity of the problem. The averages satisfy balance equations of mass, momentum and energy. These equations are exact, but they do not form a continuum model in the true sense of the word because calculation of stress and heat flux requires solving the underlying ODE system. To produce continuum equations that can be simulated without resolving micro-scale dynamics, we developed a closure method based on the use of regularized deconvolutions. We mostly deal with non-linear averaging suitable for Lagrangian particle solvers, but consider Eulerian linear averaging where appropriate. The results of numerical experiments show good agreement between our closed form flux approximations and their exact counterparts.
NASA Astrophysics Data System (ADS)
Septiani, Eka Lutfi; Widiyastuti, W.; Winardi, Sugeng; Machmudah, Siti; Nurtono, Tantular; Kusdianto
2016-02-01
Flame assisted spray dryer are widely uses for large-scale production of nanoparticles because of it ability. Numerical approach is needed to predict combustion and particles production in scale up and optimization process due to difficulty in experimental observation and relatively high cost. Computational Fluid Dynamics (CFD) can provide the momentum, energy and mass transfer, so that CFD more efficient than experiment due to time and cost. Here, two turbulence models, k-ɛ and Large Eddy Simulation were compared and applied in flame assisted spray dryer system. The energy sources for particle drying was obtained from combustion between LPG as fuel and air as oxidizer and carrier gas that modelled by non-premixed combustion in simulation. Silica particles was used to particle modelling from sol silica solution precursor. From the several comparison result, i.e. flame contour, temperature distribution and particle size distribution, Large Eddy Simulation turbulence model can provide the closest data to the experimental result.
Template Matching Using a Fluid Flow Model
NASA Astrophysics Data System (ADS)
Newman, William Curtis
Template matching is successfully used in machine recognition of isolated spoken words. In these systems a word is broken into frames (20 millisecond time slices) and the spectral characteristics of each frame are found. Thus, each word is represented as a 2-dimensional (2-D) function of spectral characteristic and frame number. An unknown word is recognized by matching its 2-D representation to previously stored example words, or templates, also in this 2-D form. A new model for this matching step will be introduced. The 2-D representations of the template and unknown are used to determine the shape of a volume of viscous fluid. This volume is broken up into many small elements. The unknown is changed into the template by allowing flows between the element boundaries. Finally the match between the template and unknown is determined by calculating a weighted squared sum of the flow values. The model also allows the relative flow resistance between the element boundaries to be changed. This is useful for characterizing the important features of a given template. The flow resistances are changed according to the gradient of a simple performance function. This performance function is evaluated using a set of training samples provided by the user. The model is applied to isolated word and single character recognition tasks. Results indicate the applications where this model works best.
Design and development of magnetorheological fluid-based passive actuator.
Shokrollahi, Elnaz; Price, Karl; Drake, James M; Goldenberg, Andrew A
2015-08-01
We present the design and experimental validation of a magnetorheological (MR) fluid-based passive actuator for tele-robotic bone biopsy procedures. With Finite Element Method Magnet (FEMM) software, the required uniform magnetic field circuit design was simulated. An 1100 turn 24 AWG copper wire coil wrapped around a magnetic core was used to create a magnetic field. The field strength was measured with a Hall effect sensor, and compared to the simulation. The maximum magnetic field flux produced by a constant current of 1.4 A was 0.2 T, similar to the simulation results. A series of quasi-static experiments were conducted to characterize the forces generated by the MR fluid-based actuator under various currents up to 12 N. An analytical model was developed to validate the measurements from the passive actuator. PMID:26737387
Dimension reduction method for ODE fluid models
Tartakovsky, Alexandre M.; Panchenko, Alexander; Ferris, Kim F.
2011-09-20
We develop a dimension reduction method for large size ODE systems obtained from a dis- cretization of partial differential equations of viscous fluid flow of nearly constant density. The method is also applicable to other large size classical particle systems with negligibly small variations of concentration. We propose a new computational closure for mesoscale balance equations based on numerical iterative deconvolution. To illustrate the computa- tional advantages of the proposed reduction method we use it to solve a system of Smoothed Particle Hydrodynamic ODEs describing Poiseuille flows driven by uniform and periodic (in space) body forces. For the Poiseuille flow driven by the uniform force the coarse solution was obtained with the zero-order deconvolution. For the flow driven by the periodic body force, the first-order deconvolution was necessary to obtain a sufficiently accurate solution.
State-of-the-art review of computational fluid dynamics modeling for fluid-solids systems
NASA Astrophysics Data System (ADS)
Lyczkowski, R. W.; Bouillard, J. X.; Ding, J.; Chang, S. L.; Burge, S. W.
1994-05-01
As the result of 15 years of research (50 staff years of effort) Argonne National Laboratory (ANL), through its involvement in fluidized-bed combustion, magnetohydrodynamics, and a variety of environmental programs, has produced extensive computational fluid dynamics (CFD) software and models to predict the multiphase hydrodynamic and reactive behavior of fluid-solids motions and interactions in complex fluidized-bed reactors (FBR's) and slurry systems. This has resulted in the FLUFIX, IRF, and SLUFIX computer programs. These programs are based on fluid-solids hydrodynamic models and can predict information important to the designer of atmospheric or pressurized bubbling and circulating FBR, fluid catalytic cracking (FCC) and slurry units to guarantee optimum efficiency with minimum release of pollutants into the environment. This latter issue will become of paramount importance with the enactment of the Clean Air Act Amendment (CAAA) of 1995. Solids motion is also the key to understanding erosion processes. Erosion rates in FBR's and pneumatic and slurry components are computed by ANL's EROSION code to predict the potential metal wastage of FBR walls, intervals, feed distributors, and cyclones. Only the FLUFIX and IRF codes will be reviewed in the paper together with highlights of the validations because of length limitations. It is envisioned that one day, these codes with user-friendly pre- and post-processor software and tailored for massively parallel multiprocessor shared memory computational platforms will be used by industry and researchers to assist in reducing and/or eliminating the environmental and economic barriers which limit full consideration of coal, shale, and biomass as energy sources; to retain energy security; and to remediate waste and ecological problems.
State-of-the-art review of computational fluid dynamics modeling for fluid-solids systems
Lyczkowski, R.W.; Bouillard, J.X.; Ding, J.; Chang, S.L.; Burge, S.W.
1994-05-12
As the result of 15 years of research (50 staff years of effort) Argonne National Laboratory (ANL), through its involvement in fluidized-bed combustion, magnetohydrodynamics, and a variety of environmental programs, has produced extensive computational fluid dynamics (CFD) software and models to predict the multiphase hydrodynamic and reactive behavior of fluid-solids motions and interactions in complex fluidized-bed reactors (FBRS) and slurry systems. This has resulted in the FLUFIX, IRF, and SLUFIX computer programs. These programs are based on fluid-solids hydrodynamic models and can predict information important to the designer of atmospheric or pressurized bubbling and circulating FBR, fluid catalytic cracking (FCC) and slurry units to guarantee optimum efficiency with minimum release of pollutants into the environment. This latter issue will become of paramount importance with the enactment of the Clean Air Act Amendment (CAAA) of 1995. Solids motion is also the key to understanding erosion processes. Erosion rates in FBRs and pneumatic and slurry components are computed by ANL`s EROSION code to predict the potential metal wastage of FBR walls, intervals, feed distributors, and cyclones. Only the FLUFIX and IRF codes will be reviewed in the paper together with highlights of the validations because of length limitations. It is envisioned that one day, these codes with user-friendly pre and post-processor software and tailored for massively parallel multiprocessor shared memory computational platforms will be used by industry and researchers to assist in reducing and/or eliminating the environmental and economic barriers which limit full consideration of coal, shale and biomass as energy sources, to retain energy security, and to remediate waste and ecological problems.
A coupled model of fluid flow in jointed rock
Swenson, Daniel; Martineau, Rick; James, Mark; Brown, Don
1991-01-01
We present a fully coupled model of fluid flow in jointed rock, where the fluid flow depends on the joint openings and the joint openings depend on the fluid pressure. The joints and rock blocks are modeled discretely using the finite element method. Solutions for the fluid and rock are obtained and iteration is performed until both solutions converge. Example applications include an examination of the effects of back-pressure on flow in a geothermal reservoir and transient fluid injection into a reservoir.
NASA Astrophysics Data System (ADS)
Templeton, Jeremy; Jones, Reese; Zimmerman, Jonathan; Wong, Bryan; Lee, Jonathan
2010-11-01
Understanding charge transport processes at a molecular level using computational techniques is currently hindered by a lack of appropriate models for incorporating anistropic electric fields, as occur at charged fluid/solid interfaces, in molecular dynamics (MD) simulations. In this work, we develop a model for including electric fields in MD using an atomistic-to-continuum framework. Our model represents the electric potential on a finite element mesh satisfying a Poisson equation with source terms determined by the distribution of the atomic charges. The method is verified using simulations where analytical solutions are known or comparisons can be made to existing techniques. A Calculation of a salt water solution in a silicon nanochannel is performed to demonstrate the method in a target scientific application.
Modelling couplings between reaction, fluid flow and deformation: Kinetics
NASA Astrophysics Data System (ADS)
Malvoisin, Benjamin; Podladchikov, Yury Y.; Connolly, James A. D.
2016-04-01
Mineral assemblages out of equilibrium are commonly found in metamorphic rocks testifying of the critical role of kinetics for metamorphic reactions. As experimentally determined reaction rates in fluid-saturated systems generally indicate complete reaction in less than several years, i.e. several orders of magnitude faster than field-based estimates, metamorphic reaction kinetics are generally thought to be controlled by transport rather than by processes at the mineral surface. However, some geological processes like earthquakes or slow-slip events have shorter characteristic timescales, and transport processes can be intimately related to mineral surface processes. Therefore, it is important to take into account the kinetics of mineral surface processes for modelling fluid/rock interactions. Here, a model coupling reaction, fluid flow and deformation was improved by introducing a delay in the achievement of equilibrium. The classical formalism for dissolution/precipitation reactions was used to consider the influence of the distance from equilibrium and of temperature on the reaction rate, and a dependence on porosity was introduced to model evolution of reacting surface area during reaction. The fitting of experimental data for three reactions typically occurring in metamorphic systems (serpentine dehydration, muscovite dehydration and calcite decarbonation) indicates a systematic faster kinetics close from equilibrium on the dehydration side than on the hydration side. This effect is amplified through the porosity term in the reaction rate since porosity is formed during dehydration. Numerical modelling indicates that this difference in reaction rate close from equilibrium plays a key role in microtextures formation. The developed model can be used in a wide variety of geological systems where couplings between reaction, deformation and fluid flow have to be considered.
Modelling Transcapillary Transport of Fluid and Proteins in Hemodialysis Patients
Pietribiasi, Mauro; Waniewski, Jacek; Załuska, Alicja; Załuska, Wojciech; Lindholm, Bengt
2016-01-01
Background The kinetics of protein transport to and from the vascular compartment play a major role in the determination of fluid balance and plasma refilling during hemodialysis (HD) sessions. In this study we propose a whole-body mathematical model describing water and protein shifts across the capillary membrane during HD and compare its output to clinical data while evaluating the impact of choosing specific values for selected parameters. Methods The model follows a two-compartment structure (vascular and interstitial space) and is based on balance equations of protein mass and water volume in each compartment. The capillary membrane was described according to the three-pore theory. Two transport parameters, the fractional contribution of large pores (αLP) and the total hydraulic conductivity (LpS) of the capillary membrane, were estimated from patient data. Changes in the intensity and direction of individual fluid and solute flows through each part of the transport system were analyzed in relation to the choice of different values of small pores radius and fractional conductivity, lymphatic sensitivity to hydraulic pressure, and steady-state interstitial-to-plasma protein concentration ratio. Results The estimated values of LpS and αLP were respectively 10.0 ± 8.4 mL/min/mmHg (mean ± standard deviation) and 0.062 ± 0.041. The model was able to predict with good accuracy the profiles of plasma volume and serum total protein concentration in most of the patients (average root-mean-square deviation < 2% of the measured value). Conclusions The applied model provides a mechanistic interpretation of fluid transport processes induced by ultrafiltration during HD, using a minimum of tuned parameters and assumptions. The simulated values of individual flows through each kind of pore and lymphatic absorption rate yielded by the model may suggest answers to unsolved questions on the relative impact of these not-measurable quantities on total vascular refilling and
Computational fluid dynamic modeling of fluidized-bed polymerization reactors
Rokkam, Ram
2012-01-01
Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.
Fluid Structure Modelling of Blood Flow in Vessels.
Moatamedi, M; Souli, M; Al-Bahkali, E
2014-12-01
This paper describes the capabilities of fluid structure interaction based multi-physics numerical modelling in solving problems related to vascular biomechanics. In this research work, the onset of a pressure pulse was simulated at the entrance of a three dimensional straight segment of the blood vessel like circular tube and the resulting dynamic response in the form of a propagating pulse wave through the wall was analysed and compared. Good agreement was found between the numerical results and the theoretical description of an idealized artery. Work has also been done on implementing the material constitutive models specific for vascular applications.
Fluid Structure Modelling of Blood Flow in Vessels.
Moatamedi, M; Souli, M; Al-Bahkali, E
2014-12-01
This paper describes the capabilities of fluid structure interaction based multi-physics numerical modelling in solving problems related to vascular biomechanics. In this research work, the onset of a pressure pulse was simulated at the entrance of a three dimensional straight segment of the blood vessel like circular tube and the resulting dynamic response in the form of a propagating pulse wave through the wall was analysed and compared. Good agreement was found between the numerical results and the theoretical description of an idealized artery. Work has also been done on implementing the material constitutive models specific for vascular applications. PMID:26336693
Edison, John R.; Monson, Peter A.
2014-07-14
Recently we have developed a dynamic mean field theory (DMFT) for lattice gas models of fluids in porous materials [P. A. Monson, J. Chem. Phys. 128(8), 084701 (2008)]. The theory can be used to describe the relaxation processes in the approach to equilibrium or metastable states for fluids in pores and is especially useful for studying system exhibiting adsorption/desorption hysteresis. In this paper we discuss the extension of the theory to higher order by means of the path probability method (PPM) of Kikuchi and co-workers. We show that this leads to a treatment of the dynamics that is consistent with thermodynamics coming from the Bethe-Peierls or Quasi-Chemical approximation for the equilibrium or metastable equilibrium states of the lattice model. We compare the results from the PPM with those from DMFT and from dynamic Monte Carlo simulations. We find that the predictions from PPM are qualitatively similar to those from DMFT but give somewhat improved quantitative accuracy, in part due to the superior treatment of the underlying thermodynamics. This comes at the cost of greater computational expense associated with the larger number of equations that must be solved.
Tribological and Rheological Properties of a Synovial Fluid Model
NASA Astrophysics Data System (ADS)
Klossner, Rebecca; Liang, Jing; Krause, Wendy
2010-03-01
Hyaluronic acid (HA) and the plasma proteins, albumin and globulins, are the most abundant macromolecules in synovial fluid, the fluid that lubricates freely moving joints. In previous studies, bovine synovial fluid, a synovial fluid model (SFM) and albumin in phosphate buffered saline (PBS) were observed to be rheopectic---viscosity increases over time under constant shear. Additionally, steady shear experiments have a strong shear history dependence in protein-containing solutions, whereas samples of HA in PBS behaved as a ``typical'' polyelectrolyte. The observed rheopexy and shear history dependence are indicative of structure building in solution, which is most likely caused by protein aggregation. The tribology of the SFM was also investigated using nanoindenter-based scratch tests. The coefficient of frictions (μ) between the diamond nanoindenter tip and a polyethylene surface was measured in the presence of the SFM and solutions with varied protein and HA concentrations. The lowest μ is observed in the SFM, which most closely mimics a healthy joint. Finally, an anti-inflammatory drug, hydroxychloroquine, was shown to inhibit protein interactions in the SFM in rheological studies, and thus the tribological response was examined. We hypothesize that the rheopectic behavior is important in lubrication regimes and therefore, the rheological and tribological properties of these solutions will be correlated.
Diffuse interface field approach to modeling arbitrarily-shaped particles at fluid-fluid interfaces
Paul C. Millett; Yu. U. Wang
2011-01-01
We present a novel mesoscale simulation approach to modeling the evolution of solid particles segregated at fluid-fluid interfaces. The approach involves a diffuse- interface field description of each fluid phase in addition to the set of solid particles. The unique strength of the model is its generality to include particles of arbitrary shapes and orientations, as well as the ability to incorporate electrostatic particle interactions and external forces via a previous work [Millett PC, Wang YU, Acta Mater 2009;57:3101]. In this work, we verify that the model produces the correct capillary forces and contact angles by comparing with a well-defined analytical solution. In addition, simulation results of rotations of various-shaped particles at fluid-fluid interfaces, external force- induced capillary attraction/repulsion between particles, and spinodal decomposition arrest due to colloidal particle jamming at the interfaces are presented.
Simulation and modeling techniques for parachute fluid-structure interactions
NASA Astrophysics Data System (ADS)
Stein, Keith Robert
This thesis is on advanced flow simulation and modeling techniques for fluid-structure interactions (FSI) encountered in parachute systems. The main fluid dynamics solver is based on the Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST) finite element formulation of the Navier-Stokes equations of incompressible flows. The DSD/SST formulation, which was introduced earlier for flow computations involving moving boundaries and interfaces, gives us the capability to handle parachute structural deformations. The structural dynamics solver is based on a total Lagrangian finite element formulation of the equilibrium equations for a "tension structure" composed of membranes, cables, and concentrated masses. The fluid and structure are coupled iteratively within a nonlinear iteration loop, with multiple nonlinear iterations improving the convergence of the coupled system. Unstructured mesh generation and mesh moving techniques for handling of parachute deformations are developed and/or adapted to address the challenges posed by the coupled problem. The FSI methodology was originally implemented on the Thinking Machines CM-5 supercomputer and is now actively used on the CRAY T3E-1200. Applications to a variety of round and cross parachutes used by the US Army are presented, and different stages of the parachute operations, including inflation and terminal descent, are modeled.
Modeling of Fluid-Membrane Interaction in Cellular Microinjection Process
NASA Astrophysics Data System (ADS)
Karzar-Jeddi, Mehdi; Diaz, Jhon; Olgac, Nejat; Fan, Tai-Hsi
2009-11-01
Cellular microinjection is a well-accepted method to deliver matters such as sperm, nucleus, or macromolecules into biological cells. To improve the success rate of in vitro fertilization and to establish the ideal operating conditions for a novel computer controlled rotationally oscillating intracytoplasmic sperm injection (ICSI) technology, we investigate the fluid-membrane interactions in the ICSI procedure. The procedure consists of anchoring the oocyte (a developing egg) using a holding pipette, penetrating oocyte's zona pellucida (the outer membrane) and the oolemma (the plasma or inner membrane) using an injection micropipette, and finally to deliver sperm into the oocyte for fertilization. To predict the large deformation of the oocyte membranes up to the piercing of the oolemma and the motion of fluids across both membranes, the dynamic fluid-pipette-membrane interactions are formulated by the coupled Stokes' equations and the continuum membrane model based on Helfrich's energy theory. A boundary integral model is developed to simulate the transient membrane deformation and the local membrane stress induced by the longitudinal motion of the injection pipette. The model captures the essential features of the membranes shown on optical images of ICSI experiments, and is capable of suggesting the optimal deformation level of the oolemma to start the rotational oscillations for piercing into the oolemma.
A THC Simulator for Modeling Fluid-Rock Interactions
NASA Astrophysics Data System (ADS)
Hamidi, Sahar; Galvan, Boris; Heinze, Thomas; Miller, Stephen
2014-05-01
Fluid-rock interactions play an essential role in many earth processes, from a likely influence on earthquake nucleation and aftershocks, to enhanced geothermal system, carbon capture and storage (CCS), and underground nuclear waste repositories. In THC models, two-way interactions between different processes (thermal, hydraulic and chemical) are present. Fluid flow influences the permeability of the rock especially if chemical reactions are taken into account. On one hand solute concentration influences fluid properties while, on the other hand, heat can affect further chemical reactions. Estimating heat production from a naturally fractured geothermal systems remains a complex problem. Previous works are typically based on a local thermal equilibrium assumption and rarely consider the salinity. The dissolved salt in fluid affects the hydro- and thermodynamical behavior of the system by changing the hydraulic properties of the circulating fluid. Coupled thermal-hydraulic-chemical models (THC) are important for investigating these processes, but what is needed is a coupling to mechanics to result in THMC models. Although similar models currently exist (e.g. PFLOTRAN), our objective here is to develop algorithms for implementation using the Graphics Processing Unit (GPU) computer architecture to be run on GPU clusters. To that aim, we present a two-dimensional numerical simulation of a fully coupled non-isothermal non-reactive solute flow. The thermal part of the simulation models heat transfer processes for either local thermal equilibrium or nonequilibrium cases, and coupled to a non-reactive mass transfer described by a non-linear diffusion/dispersion model. The flow process of the model includes a non-linear Darcian flow for either saturated or unsaturated scenarios. For the unsaturated case, we use the Richards' approximation for a mixture of liquid and gas phases. Relative permeability and capillary pressure are determined by the van Genuchten relations
ANFIS modeling for prediction of particle motions in fluid flows
NASA Astrophysics Data System (ADS)
Safdari, Arman; Kim, Kyung Chun
2015-11-01
Accurate dynamic analysis of parcel of solid particles driven in fluid flow system is of interest for many natural and industrial applications such as sedimentation process, study of cloud particles in atmosphere, etc. In this paper, numerical modeling of solid particles in incompressible flow using Eulerian-Lagrangian approach is carried out to investigate the dynamic behavior of particles in different flow conditions; channel and cavity flow. Although modern computers have been well developed, the high computational time and costs for this kind of problems are still demanded. The Lattice Boltzmann Method (LBM) is used to simulate fluid flows and combined with the Lagrangian approach to predict the motion of particles in the range of masses. Some particles are selected, and subjected to Adaptive-network-based fuzzy inference system (ANFIS) to predict the trajectory of moving solid particles. Using a hybrid learning procedure from computational particle movement, the ANFIS can construct an input-output mapping based on fuzzy if-then rules and stipulated computational fluid dynamics prediction pairs. The obtained results from ANFIS algorithm is validated and compared with the set of benchmark data provided based on point-like approach coupled with the LBM method.
Modeling and Simulation of Fluid Mixing Laser Experiments and Supernova
James Glimm
2009-06-04
The three year plan for this project was to develop novel theories and advanced simulation methods leading to a systematic understanding of turbulent mixing. A primary focus is the comparison of simulation models (Direct Numerical Simulation (DNS), Large Eddy Simulations (LES), full two fluid simulations and subgrid averaged models) to experiments. The comprehension and reduction of experimental and simulation data are central goals of this proposal. We model 2D and 3D perturbations of planar or circular interfaces. We compare these tests with models derived from averaged equations (our own and those of others). As a second focus, we develop physics based subgrid simulation models of diffusion across an interface, with physical but no numerical mass diffusion. Multiple layers and reshock are considered here.
Complex fluid flow modeling with SPH on GPU
NASA Astrophysics Data System (ADS)
Bilotta, Giuseppe; Hérault, Alexis; Del Negro, Ciro; Russo, Giovanni; Vicari, Annamaria
2010-05-01
We describe an implementation of the Smoothed Particle Hydrodynamics (SPH) method for the simulation of complex fluid flows. The algorithm is entirely executed on Graphic Processing Units (GPUs) using the Compute Unified Device Architecture (CUDA) developed by NVIDIA and fully exploiting their computational power. An increase of one to two orders of magnitude in simulation speed over equivalent CPU code is achieved. A complete modeling of the flow of a complex fluid such as lava is challenging from the modelistic, numerical and computational points of view. The natural topography irregularities, the dynamic free boundaries and phenomena such as solidification, presence of floating solid bodies or other obstacles and their eventual fragmentation make the problem difficult to solve using traditional numerical methods (finite volumes, finite elements): the need to refine the discretization grid in correspondence of high gradients, when possible, is computationally expensive and with an often inadequate control of the error; for real-world applications, moreover, the information needed by the grid refinement may not be available (e.g. because the Digital Elevation Models are too coarse); boundary tracking is also problematic with Eulerian discretizations, more so with complex fluids due to the presence of internal boundaries given by fluid inhomogeneity and presence of solidification fronts. An alternative approach is offered by mesh-free particle methods, that solve most of the problems connected to the dynamics of complex fluids in a natural way. Particle methods discretize the fluid using nodes which are not forced on a given topological structure: boundary treatment is therefore implicit and automatic; the movement freedom of the particles also permits the treatment of deformations without incurring in any significant penalty; finally, the accuracy is easily controlled by the insertion of new particles where needed. Our team has developed a new model based on the
Spectral element modelling and analysis of a pipeline conveying internal unsteady fluid
NASA Astrophysics Data System (ADS)
Lee, U.; Park, J.
2006-02-01
In this paper, a spectral element model is developed for the uniform straight pipelines conveying internal unsteady fluid. Four coupled pipe-dynamics equations are derived first by using the Hamilton's principle and the principles of fluid mechanics. The transverse displacement, the axial displacement, the fluid pressure and the fluid velocity are all considered as the dependent variables. The coupled pipe-dynamics equations are then linearized about the steady-state values of the fluid pressure and velocity. As the final step, the spectral element model represented by the exact dynamic stiffness matrix, which is often called spectral element matrix, is formulated by using the frequency-domain solutions of the linearized pipe-dynamics equations. The fast Fourier transform (FFT)-based spectral dynamic analyses are conducted to evaluate the accuracy of the present spectral element model and also to investigate the structural dynamic characteristics and the internal fluid transients of an example pipeline system.
Physicochemical properties of magnetic fluids based on synthetic oils
NASA Astrophysics Data System (ADS)
Korolev, V. V.; Ramazanova, A. G.; Yashkova, V. I.; Balmasova, O. V.
2013-04-01
A technique for synthesizing magnetic fluids based on Alkaren synthetic oil is described. The optimum synthesis conditions for the magnetite are selected, and the magnetic phase-stabilizer quantitative ratio is calculated. A magnetic fluid based on synthetic hydrocarbon oil is synthesized, and its physicochemical characteristics are determined.
Modeling of supercritical fluid extraction of phenanthrene from clayey soil.
Elektorowicz, Maria; El-Sadi, Haifa; Ayadat, Tahar
2008-05-01
The supercritical fluid (SFC) extraction efficiency of phenanthrene from clayey soils was modeled. The model accounts for effective diffusion of the phenanthrene in the solid pores, axial dispersion in the fluid phase, and external mass transfer to the fluid phase from the particle surface. This model, involving partial differential equations, was solved using the finite difference. The model showed the relationship between diffusivity, mass transfer coefficient, and properties of porous media (clay texture). The porous media analysis was performed with a microscope and by an image analysis. The proposed model compared well with the experimental data available in the literature. PMID:18366027
Modeling of supercritical fluid extraction of phenanthrene from clayey soil.
Elektorowicz, Maria; El-Sadi, Haifa; Ayadat, Tahar
2008-05-01
The supercritical fluid (SFC) extraction efficiency of phenanthrene from clayey soils was modeled. The model accounts for effective diffusion of the phenanthrene in the solid pores, axial dispersion in the fluid phase, and external mass transfer to the fluid phase from the particle surface. This model, involving partial differential equations, was solved using the finite difference. The model showed the relationship between diffusivity, mass transfer coefficient, and properties of porous media (clay texture). The porous media analysis was performed with a microscope and by an image analysis. The proposed model compared well with the experimental data available in the literature.
Modeling Fluid Flows in Distensible Tubes for Applications in Hemodynamics
NASA Astrophysics Data System (ADS)
Descovich, X.; Pontrelli, G.; Melchionna, S.; Succi, S.; Wassertheurer, S.
2013-05-01
We present a lattice Boltzmann (LB) model for the simulation of hemodynamic flows in the presence of compliant walls. The new scheme is based on the use of a continuous bounce-back boundary condition, as combined with a dynamic constitutive relation between the flow pressure at the wall and the resulting wall deformation. The method is demonstrated for the case of two-dimensional (axisymmetric) pulsatile flows, showing clear evidence of elastic wave propagation of the wall perturbation in response to the fluid pressure. The extension of the present two-dimensional axisymmetric formulation to more general three-dimensional geometries is currently under investigation.
Microscope-Based Fluid Physics Experiments in the Fluids and Combustion Facility on ISS
NASA Technical Reports Server (NTRS)
Doherty, Michael P.; Motil, Susan M.; Snead, John H.; Malarik, Diane C.
2000-01-01
At the NASA Glenn Research Center, the Microgravity Science Program is planning to conduct a large number of experiments on the International Space Station in both the Fluid Physics and Combustion Science disciplines, and is developing flight experiment hardware for use within the International Space Station's Fluids and Combustion Facility. Four fluids physics experiments that require an optical microscope will be sequentially conducted within a subrack payload to the Fluids Integrated Rack of the Fluids and Combustion Facility called the Light Microscopy Module, which will provide the containment, changeout, and diagnostic capabilities to perform the experiments. The Light Microscopy Module is planned as a fully remotely controllable on-orbit microscope facility, allowing flexible scheduling and control of experiments within International Space Station resources. This paper will focus on the four microscope-based experiments, specifically, their objectives and the sample cell and instrument hardware to accommodate their requirements.
Gundacker, Claudia; Dolznig, Helmut; Mikula, Mario; Rosner, Margit; Brandau, Oliver; Hengstschläger, Markus
2012-03-01
Male infertility is a major public health issue predominantly caused by defects in germ cell development. In the past, studies on the genetic regulation of spermatogenesis as well as on negative environmental impacts have been hampered by the fact that human germ cell development is intractable to direct analysis in vivo. Compared with model organisms including mice, there are fundamental differences in the molecular processes of human germ cell development. Therefore, an in vitro model mimicking human sperm formation would be an extremely valuable research tool. In the recent past, both human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells have been reported to harbour the potential to differentiate into primordial germ cells and gametes. We here discuss the possibility to use human amniotic fluid stem (AFS) cells as a biological model. Since their discovery in 2003, AFS cells have been characterized to differentiate into cells of all three germ layers, to be genomically stable, to have a high proliferative potential and to be non-tumourigenic. In addition, AFS cells are not subject of ethical concerns. In contrast to iPS cells, AFSs cells do not need ectopic induction of pluripotency, which is often associated with only imperfectly cleared epigenetic memory of the source cells. Since AFS cells can be derived from amniocentesis with disease-causing mutations and can be transfected with high efficiency, they could be used in probing gene functions for spermatogenesis and in screening for male reproductive toxicity.
Gundacker, Claudia; Dolznig, Helmut; Mikula, Mario; Rosner, Margit; Brandau, Oliver; Hengstschläger, Markus
2012-01-01
Male infertility is a major public health issue predominantly caused by defects in germ cell development. In the past, studies on the genetic regulation of spermatogenesis as well as on negative environmental impacts have been hampered by the fact that human germ cell development is intractable to direct analysis in vivo. Compared with model organisms including mice, there are fundamental differences in the molecular processes of human germ cell development. Therefore, an in vitro model mimicking human sperm formation would be an extremely valuable research tool. In the recent past, both human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells have been reported to harbour the potential to differentiate into primordial germ cells and gametes. We here discuss the possibility to use human amniotic fluid stem (AFS) cells as a biological model. Since their discovery in 2003, AFS cells have been characterized to differentiate into cells of all three germ layers, to be genomically stable, to have a high proliferative potential and to be non-tumourigenic. In addition, AFS cells are not subject of ethical concerns. In contrast to iPS cells, AFSs cells do not need ectopic induction of pluripotency, which is often associated with only imperfectly cleared epigenetic memory of the source cells. Since AFS cells can be derived from amniocentesis with disease-causing mutations and can be transfected with high efficiency, they could be used in probing gene functions for spermatogenesis and in screening for male reproductive toxicity. PMID:22231297
Pulmonary fluid flow challenges for experimental and mathematical modeling.
Levy, Rachel; Hill, David B; Forest, M Gregory; Grotberg, James B
2014-12-01
Modeling the flow of fluid in the lungs, even under baseline healthy conditions, presents many challenges. The complex rheology of the fluids, interaction between fluids and structures, and complicated multi-scale geometry all add to the complexity of the problem. We provide a brief overview of approaches used to model three aspects of pulmonary fluid and flow: the surfactant layer in the deep branches of the lung, the mucus layer in the upper airway branches, and closure/reopening of the airway. We discuss models of each aspect, the potential to capture biological and therapeutic information, and open questions worthy of further investigation. We hope to promote multi-disciplinary collaboration by providing insights into mathematical descriptions of fluid-mechanics in the lung and the kinds of predictions these models can make. PMID:25096289
Pulmonary Fluid Flow Challenges for Experimental and Mathematical Modeling
Levy, Rachel; Hill, David B.; Forest, M. Gregory; Grotberg, James B.
2014-01-01
Modeling the flow of fluid in the lungs, even under baseline healthy conditions, presents many challenges. The complex rheology of the fluids, interaction between fluids and structures, and complicated multi-scale geometry all add to the complexity of the problem. We provide a brief overview of approaches used to model three aspects of pulmonary fluid and flow: the surfactant layer in the deep branches of the lung, the mucus layer in the upper airway branches, and closure/reopening of the airway. We discuss models of each aspect, the potential to capture biological and therapeutic information, and open questions worthy of further investigation. We hope to promote multi-disciplinary collaboration by providing insights into mathematical descriptions of fluid-mechanics in the lung and the kinds of predictions these models can make. PMID:25096289
Development of Efficient Real-Fluid Model in Simulating Liquid Rocket Injector Flows
NASA Technical Reports Server (NTRS)
Cheng, Gary; Farmer, Richard
2003-01-01
The characteristics of propellant mixing near the injector have a profound effect on the liquid rocket engine performance. However, the flow features near the injector of liquid rocket engines are extremely complicated, for example supercritical-pressure spray, turbulent mixing, and chemical reactions are present. Previously, a homogeneous spray approach with a real-fluid property model was developed to account for the compressibility and evaporation effects such that thermodynamics properties of a mixture at a wide range of pressures and temperatures can be properly calculated, including liquid-phase, gas- phase, two-phase, and dense fluid regions. The developed homogeneous spray model demonstrated a good success in simulating uni- element shear coaxial injector spray combustion flows. However, the real-fluid model suffered a computational deficiency when applied to a pressure-based computational fluid dynamics (CFD) code. The deficiency is caused by the pressure and enthalpy being the independent variables in the solution procedure of a pressure-based code, whereas the real-fluid model utilizes density and temperature as independent variables. The objective of the present research work is to improve the computational efficiency of the real-fluid property model in computing thermal properties. The proposed approach is called an efficient real-fluid model, and the improvement of computational efficiency is achieved by using a combination of a liquid species and a gaseous species to represent a real-fluid species.
Modeling Tools Predict Flow in Fluid Dynamics
NASA Technical Reports Server (NTRS)
2010-01-01
"Because rocket engines operate under extreme temperature and pressure, they present a unique challenge to designers who must test and simulate the technology. To this end, CRAFT Tech Inc., of Pipersville, Pennsylvania, won Small Business Innovation Research (SBIR) contracts from Marshall Space Flight Center to develop software to simulate cryogenic fluid flows and related phenomena. CRAFT Tech enhanced its CRUNCH CFD (computational fluid dynamics) software to simulate phenomena in various liquid propulsion components and systems. Today, both government and industry clients in the aerospace, utilities, and petrochemical industries use the software for analyzing existing systems as well as designing new ones."
Lateral (Parasagittal) Fluid Percussion Model of Traumatic Brain Injury.
Van, Ken C; Lyeth, Bruce G
2016-01-01
Fluid percussion was first conceptualized in the 1940s and has evolved into one of the leading laboratory methods for studying experimental traumatic brain injury (TBI). Over the decades, fluid percussion has been used in numerous species and today is predominantly applied to the rat. The fluid percussion technique rapidly injects a small volume of fluid, such as isotonic saline, through a circular craniotomy onto the intact dura overlying the brain cortex. In brief, the methods involve surgical production of a circular craniotomy, attachment of a fluid-filled conduit between the dura overlying the cortex and the outlet port of the fluid percussion device. A fluid pulse is then generated by the free-fall of a pendulum striking a piston on the fluid-filled cylinder of the device. The fluid enters the cranium, producing a compression and displacement of the brain parenchyma resulting in a sharp, high magnitude elevation of intracranial pressure that is propagated diffusely through the brain. This results in an immediate and transient period of traumatic unconsciousness as well as a combination of focal and diffuse damage to the brain, which is evident upon histological and behavioral analysis. Numerous studies have demonstrated that the rat fluid percussion model reproduces a wide range of pathological features associated with human TBI. PMID:27604722
Properties of forced convection experimental with silicon carbide based nano-fluids
NASA Astrophysics Data System (ADS)
Soanker, Abhinay
With the advent of nanotechnology, many fields of Engineering and Science took a leap to the next level of advancements. The broad scope of nanotechnology initiated many studies of heat transfer and thermal engineering. Nano-fluids are one such technology and can be thought of as engineered colloidal fluids with nano-sized colloidal particles. There are different types of nano-fluids based on the colloidal particle and base fluids. Nano-fluids can primarily be categorized into metallic, ceramics, oxide, magnetic and carbon based. The present work is a part of investigation of the thermal and rheological properties of ceramic based nano-fluids. alpha-Silicon Carbide based nano-fluid with Ethylene Glycol and water mixture 50-50% volume concentration was used as the base fluid here. This work is divided into three parts; Theoretical modelling of effective thermal conductivity (ETC) of colloidal fluids, study of Thermal and Rheological properties of alpha-SiC nano-fluids, and determining the Heat Transfer properties of alpha-SiC nano-fluids. In the first part of this work, a theoretical model for effective thermal conductivity (ETC) of static based colloidal fluids was formulated based on the particle size, shape (spherical), thermal conductivity of base fluid and that of the colloidal particle, along with the particle distribution pattern in the fluid. A MATLAB program is generated to calculate the details of this model. The model is specifically derived for least and maximum ETC enhancement possible and thereby the lower and upper bounds was determined. In addition, ETC is also calculated for uniform colloidal distribution pattern. Effect of volume concentration on ETC was studied. No effect of particle size was observed for particle sizes below a certain value. Results of this model were compared with Wiener bounds and Hashin- Shtrikman bounds. The second part of this work is a study of thermal and rheological properties of alpha-Silicon Carbide based nano-fluids
Numerical modeling of fluid migration in subduction zones
NASA Astrophysics Data System (ADS)
Walter, M. J.; Quinteros, J.; Sobolev, S. V.
2015-12-01
It is well known that fluids play a crucial role in subduction evolution. For example, mechanical weakening along tectonic interfaces, due to high fluid pressure, may enable oceanic subduction. Hence, the fluid content seems to be a critical parameter for subduction initiation. Studies have also shown a correlation between the location of slab dehydration and intermediate seismic activity. Furthermore, expelled fluids from the subduction slab affect the melting temperature, consequently, contributing to partial melting in the wedge above the down-going plate and extensive volcanism. In summary, fluids have a great impact on tectonic processes and therefore should be incorporated into geodynamic numerical models. Here we use existing approaches to couple and solve fluid flow equations in the SLIM-3D thermo-mechanical code. SLIM-3D is a three-dimensional thermo-mechanical code capable of simulating lithospheric deformation with elasto-visco-plastic rheology. It has been successfully applied to model geodynamic processes at different tectonic settings, including subduction zones. However, although SLIM-3D already includes many features, fluid migration has not been incorporated into the model yet. To this end, we coupled solid and fluid flow assuming that fluids flow through a porous and deformable solid. Thereby, we introduce a two-phase flow into the model, in which the Stokes flow is coupled with the Darcy law for fluid flow. Ultimately, the evolution of porosity is governed by a compaction pressure and the advection of the porous solid. We show the details of our implementation of the fluid flow into the existing thermo-mechanical finite element code and present first results of benchmarks and experiments. We are especially interested in the coupling of subduction processes and the evolution of the magmatic arc. Thereby, we focus on the key factors controlling magma emplacement and its influence on subduction processes.
Hydraulic fracturing fluid migration in the subsurface: A review and expanded modeling results
NASA Astrophysics Data System (ADS)
Birdsell, Daniel T.; Rajaram, Harihar; Dempsey, David; Viswanathan, Hari S.
2015-09-01
Understanding the transport of hydraulic fracturing (HF) fluid that is injected into the deep subsurface for shale gas extraction is important to ensure that shallow drinking water aquifers are not contaminated. Topographically driven flow, overpressured shale reservoirs, permeable pathways such as faults or leaky wellbores, the increased formation pressure due to HF fluid injection, and the density contrast of the HF fluid to the surrounding brine can encourage upward HF fluid migration. In contrast, the very low shale permeability and capillary imbibition of water into partially saturated shale may sequester much of the HF fluid, and well production will remove HF fluid from the subsurface. We review the literature on important aspects of HF fluid migration. Single-phase flow and transport simulations are performed to quantify how much HF fluid is removed via the wellbore with flowback and produced water, how much reaches overlying aquifers, and how much is permanently sequestered by capillary imbibition, which is treated as a sink term based on a semianalytical, one-dimensional solution for two-phase flow. These simulations include all of the important aspects of HF fluid migration identified in the literature review and are performed in five stages to faithfully represent the typical operation of a hydraulically fractured well. No fracturing fluid reaches the aquifer without a permeable pathway. In the presence of a permeable pathway, 10 times more fracturing fluid reaches the aquifer if well production and capillary imbibition are not included in the model.
NASA Astrophysics Data System (ADS)
Bird, M. B.; Butler, S. L.; Hawkes, C. D.; Kotzer, T.
2014-12-01
The use of numerical simulations to model physical processes occurring within subvolumes of rock samples that have been characterized using advanced 3D imaging techniques is becoming increasingly common. Not only do these simulations allow for the determination of macroscopic properties like hydraulic permeability and electrical formation factor, but they also allow the user to visualize processes taking place at the pore scale and they allow for multiple different processes to be simulated on the same geometry. Most efforts to date have used specialized research software for the purpose of simulations. In this contribution, we outline the steps taken to use commercial software Avizo to transform a 3D synchrotron X-ray-derived tomographic image of a rock core sample to an STL (STereoLithography) file which can be imported into the commercial multiphysics modeling package COMSOL. We demonstrate that the use of COMSOL to perform fluid and electrical current flow simulations through the pore spaces. The permeability and electrical formation factor of the sample are calculated and compared with laboratory-derived values and benchmark calculations. Although the simulation domains that we were able to model on a desk top computer were significantly smaller than representative elementary volumes, and we were able to establish Kozeny-Carman and Archie's Law trends on which laboratory measurements and previous benchmark solutions fall. The rock core samples include a Fountainebleau sandstone used for benchmarking and a marly dolostone sampled from a well in the Weyburn oil field of southeastern Saskatchewan, Canada. Such carbonates are known to have complicated pore structures compared with sandstones, yet we are able to calculate reasonable macroscopic properties. We discuss the computing resources required.
GEOSIM: A numerical model for geophysical fluid flow simulation
NASA Technical Reports Server (NTRS)
Butler, Karen A.; Miller, Timothy L.; Lu, Huei-Iin
1991-01-01
A numerical model which simulates geophysical fluid flow in a wide range of problems is described in detail, and comparisons of some of the model's results are made with previous experimental and numerical studies. The model is based upon the Boussinesq Navier-Stokes equations in spherical coordinates, which can be reduced to a cylindrical system when latitudinal walls are used near the pole and the ratio of latitudinal length to the radius of the sphere is small. The equations are approximated by finite differences in the meridional plane and spectral decomposition in the azimuthal direction. The user can specify a variety of boundary and initial conditions, and there are five different spectral truncation options. The results of five validation cases are presented: (1) the transition between axisymmetric flow and baroclinic wave flow in the side heated annulus; (2) the steady baroclinic wave of the side heated annulus; (3) the wave amplitude vacillation of the side heated annulus; (4) transition to baroclinic wave flow in a bottom heated annulus; and (5) the Spacelab Geophysical Fluid Flow Cell (spherical) experiment.
Finite Element Modelling of Fluid Coupling in the Coiled Cochlea
NASA Astrophysics Data System (ADS)
Ni, Guangjian; Elliott, S. J.; Lineton, B.; Saba, R.
2011-11-01
A finite element model is first used to calculate the modal pressure difference for a box model of the cochlea, which shows that the number of fluid elements across the width of the cochlea determines the accuracy with which the near field, or short wavenumber, component of the fluid coupling is reproduced. Then results are compared with the analytic results to validate the accuracy of the FE model. It is, however, the far field, or long wavelength, component of the fluid coupling that is most affected by the geometry. A finite element model of the coiled cochlea is then used to calculate fluid coupling in this case, which has similar characteristics to the uncoiled model.
Relativistic fluid model of the resistive hose instability
Siambis, J.G. )
1992-10-01
A systematic analysis of the hose instability using the relativistic fluid formulation is reported. In its basic nature, the hose instability is a macroscopic, low-frequency instability, hence a fluid model should, in principle, give an accurate account of the hose instability. It has been found that for zeroth-order beam displacements, giving rise to rigid beam displacements, the fluid wave equation and resulting dispersion relation are identical to the spread-mass model and the energy-group model results. When first-order fluid displacements are included as well, giving rise to compressible, nonfrozen displacements in the axial direction and beam cross-section distortion in the radial direction, then there is obtained a wave equation similar, but not identical to the multicomponent model. The dispersion relation is solved for numerically. The hose instability growth rate is found to be similar to the multicomponent model result, over part of the beam frame, real hose frequency range.
Computational fluid dynamics modeling for emergency preparedness and response
Lee, R.L.; Albritton, J.R.; Ermak, D.L.; Kim, J.
1995-02-01
Computational fluid dynamics (CFD) has (CFD) has played an increasing in the improvement of atmospheric dispersion modeling. This is because many dispersion models are now driven by meteorological fields generated from CFD models or, in numerical weather prediction`s terminology, prognostic models. Whereas most dispersion models typically involve one or a few scalar, uncoupled equations, the prognostic equations are a set of highly-couple equations whose solution requires a significant level of computational power. Recent advances in computer hardware and software have enabled modestly-priced, high performance, workstations to exhibit the equivalent computation power of some mainframes. Thus desktop-class machines that were limited to performing dispersion calculations driven by diagnostic wind fields may now be used to calculate complex flows using prognostic CFD models. The Release and Advisory Capability (ARAC) program at Lawrence Livermore National Laboratory (LLNL) has, for the past several years, taken advantage of the improvements in hardware technology to develop a national emergency response capability based on executing diagnostic models on workstations. Diagnostic models that provide wind fields are, in general, simple to implement, robust and require minimal time for execution. Because these models typically contain little physics beyond mass-conservation, their performance is extremely sensitive to the quantity and quality of input meteorological data and, in spite of their utility, can be applied with confidence to only modestly complex flows. We are now embarking on a development program to incorporate prognostic models to generate, in real-time, the meteorological fields for the dispersion models. In contrast to diagnostic models, prognostic models are physically-based and are capable of incorporating many physical processes to treat highly complex flow scenarios.
A reexamination of two-fluid solar wind models
NASA Technical Reports Server (NTRS)
Nerney, S.; Barnes, A.
1977-01-01
The two-fluid solar-wind equations have been solved by a method which is approximately 50 times faster than any previously developed, through the use of asymptotic expansions which are self-consistently iterated upon to find a solution that passes through the critical point. The energy assumptions in two-fluid solar-wind models are reexamined, and the conclusions are as follows: (1) proton thermal conduction may not be neglected, (2) the Coulomb logarithm must be calculated as a function of radius, and (3) the electron and proton temperatures at the base need not be equal, even when the time scale for energy exchange between the species is an order of magnitude smaller than the expansion time at the base. It is possible to reproduce reasonable quiet-time solar-wind parameters at 1 AU, but only if the proton temperature is approximately twice the electron temperature at 1 solar radius. This may indicate that extended proton heating is important in the outer solar corona. Winds with velocities at 1 AU of 450 km/s are generated without nonthermal energy deposition but require high proton temperatures as well as very low densities at the base. Higher-velocity solutions are not possible in a spherically symmetric geometry for reasonable particle fluxes at 1 AU, and it is suggested that these higher-velocity states probably require additional heating, acceleration mechanisms, or nonradial flow.
Multiscale modeling for fluid transport in nanosystems.
Lee, Jonathan W.; Jones, Reese E.; Mandadapu, Kranthi Kiran; Templeton, Jeremy Alan; Zimmerman, Jonathan A.
2013-09-01
Atomistic-scale behavior drives performance in many micro- and nano-fluidic systems, such as mircrofludic mixers and electrical energy storage devices. Bringing this information into the traditionally continuum models used for engineering analysis has proved challenging. This work describes one such approach to address this issue by developing atomistic-to-continuum multi scale and multi physics methods to enable molecular dynamics (MD) representations of atoms to incorporated into continuum simulations. Coupling is achieved by imposing constraints based on fluxes of conserved quantities between the two regions described by one of these models. The impact of electric fields and surface charges are also critical, hence, methodologies to extend finite-element (FE) MD electric field solvers have been derived to account for these effects. Finally, the continuum description can have inconsistencies with the coarse-grained MD dynamics, so FE equations based on MD statistics were derived to facilitate the multi scale coupling. Examples are shown relevant to nanofluidic systems, such as pore flow, Couette flow, and electric double layer.
A fully coupled porous flow and geomechanics model for fluid driven cracks: a peridynamics approach
NASA Astrophysics Data System (ADS)
Ouchi, Hisanao; Katiyar, Amit; York, Jason; Foster, John T.; Sharma, Mukul M.
2015-03-01
A state-based non-local peridynamic formulation is presented for simulating fluid driven fractures in an arbitrary heterogeneous poroelastic medium. A recently developed peridynamic formulation of porous flow has been coupled with the existing peridynamic formulation of solid and fracture mechanics resulting in a peridynamic model that for the first time simulates poroelasticity and fluid-driven fracture propagation. This coupling is achieved by modeling the role of pore pressure on the deformation of porous media and vice versa through porosity variation with medium deformation, pore pressure and total mean stress. The poroelastic model is verified by simulating the one-dimensional consolidation of fluid saturated rock. An additional porous flow equation with material permeability dependent on fracture width is solved to simulate fluid flow in the fractured region. Finally, single fluid-driven fracture propagation with a two-dimensional plane strain assumption is simulated and verified against the corresponding classical analytical solution.
NASA Astrophysics Data System (ADS)
Tang, Z. B.; Deng, Y. D.; Su, C. Q.; Yuan, X. H.
2015-06-01
In this study, a numerical model has been employed to analyze the internal flow field distribution in a heat exchanger applied for an automotive thermoelectric generator based on computational fluid dynamics. The model simulates the influence of factors relevant to the heat exchanger, including the automotive waste heat mass flow velocity, temperature, internal fins, and back pressure. The result is in good agreement with experimental test data. Sensitivity analysis of the inlet parameters shows that increase of the exhaust velocity, compared with the inlet temperature, makes little contribution (0.1 versus 0.19) to the heat transfer but results in a detrimental back pressure increase (0.69 versus 0.21). A configuration equipped with internal fins is proved to offer better thermal performance compared with that without fins. Finally, based on an attempt to improve the internal flow field, a more rational structure is obtained, offering a more homogeneous temperature distribution, higher average heat transfer coefficient, and lower back pressure.
Development of an analytical model for organic-fluid fouling
Panchal, C.B.; Watkinson, A.P.
1994-10-01
The research goal of this project is to determine ways to effectively mitigate fouling in organic fluids: hydrocarbons and derived fluids. The fouling research focuses on the development of methodology for determining threshold conditions for fouling. Initially, fluid containing chemicals known to produce foulant is analyzed; subsequently, fouling of industrial fluids is investigated. The fouling model developed for determining the effects of physical parameters is the subject of this report. The fouling model is developed on the premise that the chemical reaction for generation of precursor can take place in the bulk fluid, in the thermal-boundary layer, or at the fluid/wall interface, depending upon the interactive effects of fluid dynamics, heat and mass transfer, and the controlling chemical reaction. In the analysis, the experimental data are examined for fouling deposition of polyperoxide produced by autoxidation of indene in kerosene. The effects of fluid and wall temperatures for two flow geometries are analyzed. The results show that the relative effects of physical parameters on the fouling rate differ for the three fouling mechanisms. Therefore, to apply the closed-flow-loop data to industrial conditions, the controlling mechanism must be identified.
Two-fluid model for heavy electron physics
NASA Astrophysics Data System (ADS)
Yang, Yi-feng
2016-07-01
The two-fluid model is a phenomenological description of the gradual change of the itinerant and local characters of f-electrons with temperature and other tuning parameters and has been quite successful in explaining many unusual and puzzling experimental observations in heavy electron materials. We review some of these results and discuss possible implications of the two-fluid model in understanding the microscopic origin of heavy electron physics.
Dielectric breakdown in mineral oil ITO 100 based magnetic fluid
NASA Astrophysics Data System (ADS)
Kudelcik, J.; Bury, P.; Kopcansky, P.; Timko, M.
The development of dielectric breakdown and the DC dielectric breakdown voltage of magnetic fluids based on inhibited transformer oil ITO 100 were investigated in parallel orientations of external magnetic field. It was shown that the breakdown voltage is strongly influenced by the magnetic nanoparticles. The magnetic fluids with the volume concentration 1and 0.2% had better dielectric properties than pure transformer oil. The increase of breakdown voltage was interpreted on the base of the bubble theory of breakdown.
High-order fluid model for streamer discharges: I. Derivation of model and transport data
NASA Astrophysics Data System (ADS)
Dujko, S.; Markosyan, A. H.; White, R. D.; Ebert, U.
2013-11-01
Streamer discharges pose basic problems in plasma physics, as they are very transient, far from equilibrium and have high ionization density gradients; they appear in diverse areas of science and technology. This paper focuses on the derivation of a high-order fluid model for streamers. Using momentum transfer theory, the fluid equations are obtained as velocity moments of the Boltzmann equation; they are closed in the local mean energy approximation and coupled to the Poisson equation for the space charge generated electric field. The high-order tensor in the energy flux equation is approximated by the product of two lower order moments to close the system. The average collision frequencies for momentum and energy transfer in elastic and inelastic collisions for electrons in molecular nitrogen are calculated from a multi-term Boltzmann equation solution. We then discuss, in particular, (1) the correct implementation of transport data in streamer models; (2) the accuracy of the two-term approximation for solving Boltzmann's equation in the context of streamer studies; and (3) the evaluation of the mean-energy-dependent collision rates for electrons required as an input in the high-order fluid model. In the second paper in this sequence, we will discuss the solutions of the high-order fluid model for streamers, based on model and input data derived in this paper.
Implementation of a model of bodily fluids regulation.
Fontecave-Jallon, Julie; Thomas, S Randall
2015-09-01
The classic model of blood pressure regulation by Guyton et al. (Annu Rev Physiol 34:13-46, 1972a; Ann Biomed Eng 1:254-281, 1972b) set a new standard for quantitative exploration of physiological function and led to important new insights, some of which still remain the focus of debate, such as whether the kidney plays the primary role in the genesis of hypertension (Montani et al. in Exp Physiol 24:41-54, 2009a; Exp Physiol 94:382-388, 2009b; Osborn et al. in Exp Physiol 94:389-396, 2009a; Exp Physiol 94:388-389, 2009b). Key to the success of this model was the fact that the authors made the computer code (in FORTRAN) freely available and eventually provided a convivial user interface for exploration of model behavior on early microcomputers (Montani et al. in Int J Bio-med Comput 24:41-54, 1989). Ikeda et al. (Ann Biomed Eng 7:135-166, 1979) developed an offshoot of the Guyton model targeting especially the regulation of body fluids and acid-base balance; their model provides extended renal and respiratory functions and would be a good basis for further extensions. In the interest of providing a simple, useable version of Ikeda et al.'s model and to facilitate further such extensions, we present a practical implementation of the model of Ikeda et al. (Ann Biomed Eng 7:135-166, 1979), using the ODE solver Berkeley Madonna.
Implementation of a model of bodily fluids regulation.
Fontecave-Jallon, Julie; Thomas, S Randall
2015-09-01
The classic model of blood pressure regulation by Guyton et al. (Annu Rev Physiol 34:13-46, 1972a; Ann Biomed Eng 1:254-281, 1972b) set a new standard for quantitative exploration of physiological function and led to important new insights, some of which still remain the focus of debate, such as whether the kidney plays the primary role in the genesis of hypertension (Montani et al. in Exp Physiol 24:41-54, 2009a; Exp Physiol 94:382-388, 2009b; Osborn et al. in Exp Physiol 94:389-396, 2009a; Exp Physiol 94:388-389, 2009b). Key to the success of this model was the fact that the authors made the computer code (in FORTRAN) freely available and eventually provided a convivial user interface for exploration of model behavior on early microcomputers (Montani et al. in Int J Bio-med Comput 24:41-54, 1989). Ikeda et al. (Ann Biomed Eng 7:135-166, 1979) developed an offshoot of the Guyton model targeting especially the regulation of body fluids and acid-base balance; their model provides extended renal and respiratory functions and would be a good basis for further extensions. In the interest of providing a simple, useable version of Ikeda et al.'s model and to facilitate further such extensions, we present a practical implementation of the model of Ikeda et al. (Ann Biomed Eng 7:135-166, 1979), using the ODE solver Berkeley Madonna. PMID:25935135
Using record player demonstrations as analog models for geophysical fluids
NASA Astrophysics Data System (ADS)
Grannan, A. M.; Cheng, J. S.; Hawkins, E. K.; Ribeiro, A.; Aurnou, J. M.
2015-12-01
All celestial bodies, including stars, planets, satellites, and asteroids, rotate. The influence of rotation on the fluid layers in these bodies plays an important and diverse role, affecting many processes including oceanic and atmospheric circulation at the surface and magnetic field generation occurring in the interior. To better understand these large-scale processes, record players and containers of water are used as analog models to demonstrate the basic interplay between rotation and fluid motions. To contrast between rotating and non-rotating fluid motions, coffee creamer and food coloring are used as fluid tracers to provide a hands-on method of understanding the influence of rotation on the shapes of the planets, weather patterns, and the alignment of magnetic fields with rotational axes. Such simple demonstrations have been successfully employed for children in public outreach events and for adults in graduate level fluid dynamics courses.
Cigala, Rosalia Maria; Crea, Francesco; De Stefano, Concetta; Lando, Gabriele; Milea, Demetrio; Sammartano, Silvio
2012-08-01
The acid-base properties of γ-L-glutamyl-L-cysteinyl-glycine (glutathione, GSH) were determined by potentiometry (ISE-H(+), glass electrode) in pure NaI((aq)) and in NaCl((aq))/MgCl(2(aq)), and NaCl((aq))/CaCl(2(aq)) mixtures, at T = 298.15 K and different ionic strengths (up to I(c) ~ 5.0 mol L(-1)). In addition, the activity coefficients of glutathione were also determined by the distribution method at the same temperature in various ionic media (LiCl((aq)), NaCl((aq)), KCl((aq)), CsCl((aq)), MgCl(2(aq)), CaCl(2(aq)), NaI((aq))). The results obtained were also used to calculate the Specific ion Interaction Theory (SIT) and Pitzer coefficients for the dependence on medium and ionic strength of glutathione species, as well as the formation constants of weak Mg(j)H( i )(GSH)((i+2j-3)) and Ca(j)H(i)(GSH)((i+2j-3)) complexes. Direct calorimetric titrations were also carried out in pure NaCl((aq)) and in NaCl((aq))/CaCl(2(aq)) mixtures at different ionic strengths (0.25 ≤ I (c )/mol L(-1) ≤ 5.0) in order to determine the enthalpy changes for the protonation and complex formation equilibria in these media at T = 298.15 K. Results obtained are useful for the definition of glutathione speciation in any aqueous media containing the main cations of natural waters and biological fluids, such as Na(+), K(+), Mg(2+), and Ca(2+). Finally, this kind of systematic studies, where a series of ionic media (e.g., all alkali metal chlorides) is taken into account in the determination of various thermodynamic parameters, is useful for the definition of some trends in the thermodynamic behavior of glutathione in aqueous solution. PMID:21997535
Cigala, Rosalia Maria; Crea, Francesco; De Stefano, Concetta; Lando, Gabriele; Milea, Demetrio; Sammartano, Silvio
2012-08-01
The acid-base properties of γ-L-glutamyl-L-cysteinyl-glycine (glutathione, GSH) were determined by potentiometry (ISE-H(+), glass electrode) in pure NaI((aq)) and in NaCl((aq))/MgCl(2(aq)), and NaCl((aq))/CaCl(2(aq)) mixtures, at T = 298.15 K and different ionic strengths (up to I(c) ~ 5.0 mol L(-1)). In addition, the activity coefficients of glutathione were also determined by the distribution method at the same temperature in various ionic media (LiCl((aq)), NaCl((aq)), KCl((aq)), CsCl((aq)), MgCl(2(aq)), CaCl(2(aq)), NaI((aq))). The results obtained were also used to calculate the Specific ion Interaction Theory (SIT) and Pitzer coefficients for the dependence on medium and ionic strength of glutathione species, as well as the formation constants of weak Mg(j)H( i )(GSH)((i+2j-3)) and Ca(j)H(i)(GSH)((i+2j-3)) complexes. Direct calorimetric titrations were also carried out in pure NaCl((aq)) and in NaCl((aq))/CaCl(2(aq)) mixtures at different ionic strengths (0.25 ≤ I (c )/mol L(-1) ≤ 5.0) in order to determine the enthalpy changes for the protonation and complex formation equilibria in these media at T = 298.15 K. Results obtained are useful for the definition of glutathione speciation in any aqueous media containing the main cations of natural waters and biological fluids, such as Na(+), K(+), Mg(2+), and Ca(2+). Finally, this kind of systematic studies, where a series of ionic media (e.g., all alkali metal chlorides) is taken into account in the determination of various thermodynamic parameters, is useful for the definition of some trends in the thermodynamic behavior of glutathione in aqueous solution.
The effect of Fe3O4 nanoparticles on the thermal conductivities of various base fluids.
Altan, Cem L; Bucak, Seyda
2011-07-15
Conventional heat transfer fluids have intrinsically poor heat transfer properties compared to solids. Enhancing the efficiency of heat transfer is of great interest for various industrial applications. Suspending solid particles in a fluid increases the thermal conductivity of the resulting suspension and enhances the heat transfer properties. In this work, changes in thermal conductivities of fluids upon the addition of magnetic nanoparticles have been investigated. Fe(3)O(4) nanoparticles are synthesized using different synthesis methods and are suspended in various oils. The effect of the base fluid and the type of magnetic particle on the thermal conductivity is investigated in detail. Up to 28% increase in the thermal conductivity is obtained with 2.5 wt% magnetic particles in hexane. The thermal conductivity enhancement is found to depend on the particle concentration, method of preparation and base fluid. The enhancements obtained are higher than those estimated using any theoretical model present in the literature. PMID:21659690
The effect of Fe3O4 nanoparticles on the thermal conductivities of various base fluids
NASA Astrophysics Data System (ADS)
Altan, Cem L.; Bucak, Seyda
2011-07-01
Conventional heat transfer fluids have intrinsically poor heat transfer properties compared to solids. Enhancing the efficiency of heat transfer is of great interest for various industrial applications. Suspending solid particles in a fluid increases the thermal conductivity of the resulting suspension and enhances the heat transfer properties. In this work, changes in thermal conductivities of fluids upon the addition of magnetic nanoparticles have been investigated. Fe3O4 nanoparticles are synthesized using different synthesis methods and are suspended in various oils. The effect of the base fluid and the type of magnetic particle on the thermal conductivity is investigated in detail. Up to 28% increase in the thermal conductivity is obtained with 2.5 wt% magnetic particles in hexane. The thermal conductivity enhancement is found to depend on the particle concentration, method of preparation and base fluid. The enhancements obtained are higher than those estimated using any theoretical model present in the literature.
An efficient fully atomistic potential model for dense fluid methane
NASA Astrophysics Data System (ADS)
Jiang, Chuntao; Ouyang, Jie; Zhuang, Xin; Wang, Lihua; Li, Wuming
2016-08-01
A fully atomistic model aimed to obtain a general purpose model for the dense fluid methane is presented. The new optimized potential for liquid simulation (OPLS) model is a rigid five site model which consists of five fixed point charges and five Lennard-Jones centers. The parameters in the potential model are determined by a fit of the experimental data of dense fluid methane using molecular dynamics simulation. The radial distribution function and the diffusion coefficient are successfully calculated for dense fluid methane at various state points. The simulated results are in good agreement with the available experimental data shown in literature. Moreover, the distribution of mean number hydrogen bonds and the distribution of pair-energy are analyzed, which are obtained from the new model and other five reference potential models. Furthermore, the space-time correlation functions for dense fluid methane are also discussed. All the numerical results demonstrate that the new OPLS model could be well utilized to investigate the dense fluid methane.
Validation of an All-Pressure Fluid Drop Model: Heptane Fluid Drops in Nitrogen
NASA Technical Reports Server (NTRS)
Harstad, K.; Bellan, J.; Bulzan, Daniel L. (Technical Monitor)
2000-01-01
Despite the fact that supercritical fluids occur both in nature and in industrial situations, the fundamentals of their behavior is poorly understood because supercritical fluids combine the characteristics of both liquids and gases, and therefore their behavior is not intuitive. There are several specific reasons for the lack of understanding: First, data from (mostly optical) measurements can be very misleading because regions of high density thus observed are frequently identified with liquids. A common misconception is that if in an experiment one can optically identify "drops" and "ligaments", the observed fluid must be in a liquid state. This inference is incorrect because in fact optical measurements detect any large change (i.e. gradients) in density. Thus, the density ratio may be well below Omicron(10(exp 3)) that characterizes its liquid/gas value, but the measurement will still identify a change in the index of refraction providing that the change is sudden (steep gradients). As shown by simulations of supercritical fluids, under certain conditions the density gradients may remain large during the supercritical binary fluids mixing, thus making them optically identifiable. Therefore, there is no inconsistency between the optical observation of high density regions and the fluids being in a supercritical state. A second misconception is that because a fluid has a liquid-like density, it is appropriate to model it as a liquid. However, such fluids may have liquid-like densities while their transport properties differ from those of a liquid. Considering that the critical pressure of most fuel hydrocarbons used in Diesel and gas turbine engines is in the range of 1.5 - 3 MPa, and the fact that the maximum pressure attained in these engines is about 6 Mps, it is clear that the fuel in the combustion chamber will experience both subcritical and supercritical conditions. Studies of drop behavior over a wide range of pressures were performed in the past
Computational fluid dynamics modeling for emergency preparedness & response
Lee, R.L.; Albritton, J.R.; Ermak, D.L.; Kim, J.
1995-07-01
Computational fluid dynamics (CFD) has played an increasing role in the improvement of atmospheric dispersion modeling. This is because many dispersion models are now driven by meteorological fields generated from CFD models or, in numerical weather prediction`s terminology, prognostic models. Whereas most dispersion models typically involve one or a few scalar, uncoupled equations, the prognostic equations are a set of highly-coupled, nonlinear equations whose solution requires a significant level of computational power. Until recently, such computer power could be found only in CRAY-class supercomputers. Recent advances in computer hardware and software have enabled modestly-priced, high performance, workstations to exhibit the equivalent computation power of some mainframes. Thus desktop-class machines that were limited to performing dispersion calculations driven by diagnostic wind fields may now be used to calculate complex flows using prognostic CFD models. The Atmospheric Release and Advisory Capability (ARAC) program at Lawrence Livermore National Laboratory (LLNL) has, for the past several years, taken advantage of the improvements in hardware technology to develop a national emergency response capability based on executing diagnostic models on workstations. Diagnostic models that provide wind fields are, in general, simple to implement, robust and require minimal time for execution. Such models have been the cornerstones of the ARAC operational system for the past ten years. Kamada (1992) provides a review of diagnostic models and their applications to dispersion problems. However, because these models typically contain little physics beyond mass-conservation, their performance is extremely sensitive to the quantity and quality of input meteorological data and, in spite of their utility, can be applied with confidence to only modestly complex flows.
Computational fluid dynamics framework for aerodynamic model assessment
NASA Astrophysics Data System (ADS)
Vallespin, D.; Badcock, K. J.; Da Ronch, A.; White, M. D.; Perfect, P.; Ghoreyshi, M.
2012-07-01
This paper reviews the work carried out at the University of Liverpool to assess the use of CFD methods for aircraft flight dynamics applications. Three test cases are discussed in the paper, namely, the Standard Dynamic Model, the Ranger 2000 jet trainer and the Stability and Control Unmanned Combat Air Vehicle. For each of these, a tabular aerodynamic model based on CFD predictions is generated along with validation against wind tunnel experiments and flight test measurements. The main purpose of the paper is to assess the validity of the tables of aerodynamic data for the force and moment prediction of realistic aircraft manoeuvres. This is done by generating a manoeuvre based on the tables of aerodynamic data, and then replaying the motion through a time-accurate computational fluid dynamics calculation. The resulting forces and moments from these simulations were compared with predictions from the tables. As the latter are based on a set of steady-state predictions, the comparisons showed perfect agreement for slow manoeuvres. As manoeuvres became more aggressive some disagreement was seen, particularly during periods of large rates of change in attitudes. Finally, the Ranger 2000 model was used on a flight simulator.
Regional Multi-Fluid-Based Geophysical Excitation of Polar Motion
NASA Technical Reports Server (NTRS)
Nastula, Jolanta; Salstein, David A.; Gross, Richard
2011-01-01
By analyzing geophysical fluids geographic distribution, we can isolate the regional provenance for some of the important signals in polar motion. An understanding of such will enable us to determine whether certain climate signals can have an impact on polar motion. Here we have compared regional patterns of three surficial fluids: the atmosphere, ocean and land-based hydrosphere. The oceanic excitation function of polar motion was estimated with the ECCO/JPL data - assimilating model, and the atmospheric excitation function was determined from NCEP/NCAR reanalyses. The excitation function due to land hydrology was estimated from the Gravity Recovery and Climate Experiment (GRACE) data by an indirect approach that determines water thickness. Our attention focuses on the regional distribution of atmospheric and oceanic excitation of the annual and Chandler wobbles during 1993-2010, and on hydrologic excitation of these wobbles during 2002.9-2011.5. It is found that the regions of maximum fractional covariance (those exceeding a value of 3 .10 -3) for the annual band are over south Asia, southeast Asia and south central Indian ocean, for hydrology, atmosphere and ocean respectively; and for the Chandler period, areas over North America, Asia, and South America; and scattered across the southern oceans for the atmosphere and oceans respectively
Hybrid fluid/kinetic model for parallel heat conduction
Callen, J.D.; Hegna, C.C.; Held, E.D.
1998-12-31
It is argued that in order to use fluid-like equations to model low frequency ({omega} < {nu}) phenomena such as neoclassical tearing modes in low collisionality ({nu} < {omega}{sub b}) tokamak plasmas, a Chapman-Enskog-like approach is most appropriate for developing an equation for the kinetic distortion (F) of the distribution function whose velocity-space moments lead to the needed fluid moment closure relations. Further, parallel heat conduction in a long collision mean free path regime can be described through a combination of a reduced phase space Chapman-Enskog-like approach for the kinetics and a multiple-time-scale analysis for the fluid and kinetic equations.
Viscous quark-gluon plasma model through fluid QCD approach
Djun, T. P.; Soegijono, B.; Mart, T.; Handoko, L. T. E-mail: Laksana.tri.handoko@lipi.go.id
2014-09-25
A Lagrangian density for viscous quark-gluon plasma has been constructed within the fluid-like QCD framework. Gauge symmetry is preserved for all terms inside the Lagrangian, except for the viscous term. The transition mechanism from point particle field to fluid field, and vice versa, are discussed. The energy momentum tensor that is relevant to the gluonic plasma having the nature of fluid bulk of gluon sea is derived within the model. By imposing conservation law in the energy momentum tensor, shear viscosity appears as extractable from the equation.
Numerical modeling of fluid migration in subduction zones
NASA Astrophysics Data System (ADS)
Walter, Marius J.; Quinteros, Javier; Sobolev, Stephan V.
2015-04-01
It is well known that fluids play a crucial role in subduction evolution. For example, excess mechanical weakening along tectonic interfaces, due to excess fluid pressure, may enable oceanic subduction. Hence, the fluid content seems to be a critical parameter for subduction initiation. Studies have also shown a correlation between the location of slab dehydration and intermediate seismic activity. Furthermore, expelled fluids from the subduction slab affect the melting temperature, consequently, contributing to partial melting in the wedge above the downgoing plate, and resulting in chemical changes in earth interior and extensive volcanism. In summary, fluids have a great impact on tectonic processes and therefore should be incorporated into geodynamic numerical models. Here we use existing approaches to couple and solve fluid flow equations in the SLIM-3D thermo-mechanical code. SLIM-3D is a three-dimensional thermo-mechanical code capable of simulating lithospheric deformation with elasto-visco-plastic rheology. It incorporates an arbitrary Lagrangian Eulerian formulation, free surface, and changes in density and viscosity, due to endothermic and exothermic phase transitions. It has been successfully applied to model geodynamic processes at different tectonic settings, including subduction zones. However, although SLIM-3D already includes many features, fluid migration has not been incorporated into the model yet. To this end, we coupled solid and fluid flow assuming that fluids flow through a porous and deformable solid. Thereby, we introduce a two-phase flow into the model, in which the Stokes flow is coupled with the Darcy law for fluid flow. This system of equations becomes, however, nonlinear, because the rheology and permeability are depended on the porosity (fluid fraction of the matrix). Ultimately, the evolution of porosity is governed by the compaction pressure and the advection of the porous solid. We show the details of our implementation of the
Phenomenological model of interstitial fluid pressure in a solid tumor.
Liu, L J; Brown, S L; Ewing, J R; Schlesinger, M
2011-08-01
Tumor interstitial fluid pressure (TIFP) has the potential to predict tumor response to nonsurgical cancer treatments, including radiation therapy. At present the only quantitative measures available are of limited use, since they are invasive and yield only point measurements. We present the mathematical framework for a quantitative, noninvasive measure of TIFP. The model describes the distribution of interstitial fluid pressure in three distinct tumor regions: vascularized tumor rim, central tumor region, and normal tissue. A relationship between the TIFP and the fluid flow velocity at the periphery of a tumor is presented. This model suggests that a measure of fluid flow rate from a tumor into normal tissue reflects TIFP. We demonstrate that the acquisition of serial images of a tumor after the injection of a contrast agent can provide a noninvasive and potentially quantitative measure of TIFP.
Development Of Simulation Model For Fluid Catalytic Cracking
NASA Astrophysics Data System (ADS)
Ghosh, Sobhan
2010-10-01
Fluid Catalytic Cracking (FCC) is the most widely used secondary conversion process in the refining industry, for producing gasoline, olefins, and middle distillate from heavier petroleum fractions. There are more than 500 units in the world with a total processing capacity of about 17 to 20% of the crude capacity. FCC catalyst is the highest consumed catalyst in the process industry. On one hand, FCC is quite flexible with respect to it's ability to process wide variety of crudes with a flexible product yield pattern, and on the other hand, the interdependence of the major operating parameters makes the process extremely complex. An operating unit is self balancing and some fluctuations in the independent parameters are automatically adjusted by changing the temperatures and flow rates at different sections. However, a good simulation model is very useful to the refiner to get the best out of the process, in terms of selection of the best catalyst, to cope up with the day to day changing of the feed quality and the demands of different products from FCC unit. In addition, a good model is of great help in designing the process units and peripherals. A simple empirical model is often adequate to monitor the day to day operations, but they are not of any use in handling the other problems such as, catalyst selection or, design / modification of the plant. For this, a kinetic based rigorous model is required. Considering the complexity of the process, large number of chemical species undergoing "n" number of parallel and consecutive reactions, it is virtually impossible to develop a simulation model based on the kinetic parameters. The most common approach is to settle for a semi empirical model. We shall take up the key issues for developing a FCC model and the contribution of such models in the optimum operation of the plant.
Dispersant for water-based solids-containing fluids and a drilling fluid
Branch, H. III
1986-04-08
A dispersant is described for water-based, solids-containing fluids comprising a copolymer of a solufonated styrene monomer and a second monomer neutralized into having an amide substituent and being originally selected from the group consisting of maleic anhydride, maleimide and dimethyl maleate, the copolymer having from 2 to 100 monomer units.
NASA Technical Reports Server (NTRS)
Muszynska, Agnes; Bently, Donald E.
1991-01-01
Perturbation techniques used for identification of rotating system dynamic characteristics are described. A comparison between two periodic frequency-swept perturbation methods applied in identification of fluid forces of rotating machines is presented. The description of the fluid force model identified by inputting circular periodic frequency-swept force is given. This model is based on the existence and strength of the circumferential flow, most often generated by the shaft rotation. The application of the fluid force model in rotor dynamic analysis is presented. It is shown that the rotor stability is an entire rotating system property. Some areas for further research are discussed.
NASA Astrophysics Data System (ADS)
Konrad-Schmolke, Matthias; Halama, Ralf
2014-11-01
Quantitative geochemical modeling is today applied in a variety of geological environments from the petrogenesis of igneous rocks to radioactive waste disposal. In addition, the development of thermodynamic databases and computer programs to calculate equilibrium phase diagrams has greatly advanced our ability to model geodynamic processes. Combined with experimental data on elemental partitioning and isotopic fractionation, thermodynamic forward modeling unfolds enormous capacities that are far from exhausted. In metamorphic petrology the combination of thermodynamic and trace element forward modeling can be used to study and to quantify processes at spatial scales from μm to km. The thermodynamic forward models utilize Gibbs energy minimization to quantify mineralogical changes along a reaction path of a chemically open fluid/rock system. These results are combined with mass balanced trace element calculations to determine the trace element distribution between rock and melt/fluid during the metamorphic evolution. Thus, effects of mineral reactions, fluid-rock interaction and element transport in metamorphic rocks on the trace element and isotopic composition of minerals, rocks and percolating fluids or melts can be predicted. Here we illustrate the capacities of combined thermodynamic-geochemical modeling based on two examples relevant to mass transfer during metamorphism. The first example focuses on fluid-rock interaction in and around a blueschist-facies shear zone in felsic gneisses, where fluid-induced mineral reactions and their effects on boron (B) concentrations and isotopic compositions in white mica are modeled. In the second example, fluid release from a subducted slab, the associated transport of B as well as variations in B concentrations and isotopic compositions in liberated fluids and residual rocks are modeled. We compare the modeled results of both examples to geochemical data of natural minerals and rocks and demonstrate that the combination
A 3-field electromagnetic gyro-fluid model for tokamak edge turbulence
NASA Astrophysics Data System (ADS)
Xi, P. W.; Xu, X. Q.
2012-03-01
To investigate the L-H transition of low-high confinement mode, the H-mode pedestal structure and edge-localized modes, a set of 3-field gyro-fluid equations is derived based on an electromagnetic gyro-fluid model. By evolving gyrokinetic vorticity density, ion density and Ohm's law, this set of gyro-fluid equations correctly describes a range of plasma instabilities relevant to edge plasmas, such as low to intermediate n peeling-ballooning mode and high-n drift ballooning mode. Meanwhile electron acoustic wave is also taken into account. Utilizing Pad'e approximation for modified Bessel function, this set of equations is implemented under BOUT++ framework with full ion gyro-radius effects and the simulation results are compared with previous two-fluid model with ion diamagnetic drift, which retains the first-order finite ion gyro-radius correction. This simple 3-field gyro-fluid model does not take Landau damping into account. Linear simulations show a consistent diamagnetic stabilization with two-fluid model and reveal several new features at high-n modes due to kinetic effects and nonlinear simulations demonstrate the importance of kinetic effects on ELM crash as well as turbulent transport in H-mode recovery phase. A more comprehensive gyro-fluid model is also developed by using the gyrokinetic equations for edge plasmas.
A New Model for Temperature Jump at a Fluid-Solid Interface
Shu, Jian-Jun; Teo, Ji Bin Melvin; Chan, Weng Kong
2016-01-01
The problem presented involves the development of a new analytical model for the general fluid-solid temperature jump. To the best of our knowledge, there are no analytical models that provide the accurate predictions of the temperature jump for both gas and liquid systems. In this paper, a unified model for the fluid-solid temperature jump has been developed based on our adsorption model of the interfacial interactions. Results obtained from this model are validated with available results from the literature. PMID:27764230
Computational fluid dynamics modeling of coal gasification in a pressurized spout-fluid bed
Zhongyi Deng; Rui Xiao; Baosheng Jin; He Huang; Laihong Shen; Qilei Song; Qianjun Li
2008-05-15
Computational fluid dynamics (CFD) modeling, which has recently proven to be an effective means of analysis and optimization of energy-conversion processes, has been extended to coal gasification in this paper. A 3D mathematical model has been developed to simulate the coal gasification process in a pressurized spout-fluid bed. This CFD model is composed of gas-solid hydrodynamics, coal pyrolysis, char gasification, and gas phase reaction submodels. The rates of heterogeneous reactions are determined by combining Arrhenius rate and diffusion rate. The homogeneous reactions of gas phase can be treated as secondary reactions. A comparison of the calculated and experimental data shows that most gasification performance parameters can be predicted accurately. This good agreement indicates that CFD modeling can be used for complex fluidized beds coal gasification processes. 37 refs., 7 figs., 5 tabs.
Soy Protein Isolate As Fluid Loss Additive in Bentonite-Water-Based Drilling Fluids.
Li, Mei-Chun; Wu, Qinglin; Song, Kunlin; Lee, Sunyoung; Jin, Chunde; Ren, Suxia; Lei, Tingzhou
2015-11-11
Wellbore instability and formation collapse caused by lost circulation are vital issues during well excavation in the oil industry. This study reports the novel utilization of soy protein isolate (SPI) as fluid loss additive in bentonite-water based drilling fluids (BT-WDFs) and describes how its particle size and concentration influence on the filtration property of SPI/BT-WDFs. It was found that high pressure homogenization (HPH)-treated SPI had superior filtration property over that of native SPI due to the improved ability for the plugging pore throat. HPH treatment also caused a significant change in the surface characteristic of SPI, leading to a considerable surface interaction with BT in aqueous solution. The concentration of SPI had a significant impact on the dispersion state of SPI/BT mixtures in aquesous solution. At low SPI concentrations, strong aggregations were created, resulting in the formation of thick, loose, high-porosity and high-permeability filter cakes and high fluid loss. At high SPI concentrations, intercatlated/exfoliated structures were generated, resulting in the formation of thin, compact, low-porosity and low-permeability filter cakes and low fluid loss. The SPI/BT-WDFs exhibited superior filtration property than pure BT-WDFs at the same solid concentraion, demonstrating the potential utilization of SPI as an effective, renewable, and biodegradable fluid loss reducer in well excavation applications. PMID:26492498
Soy Protein Isolate As Fluid Loss Additive in Bentonite-Water-Based Drilling Fluids.
Li, Mei-Chun; Wu, Qinglin; Song, Kunlin; Lee, Sunyoung; Jin, Chunde; Ren, Suxia; Lei, Tingzhou
2015-11-11
Wellbore instability and formation collapse caused by lost circulation are vital issues during well excavation in the oil industry. This study reports the novel utilization of soy protein isolate (SPI) as fluid loss additive in bentonite-water based drilling fluids (BT-WDFs) and describes how its particle size and concentration influence on the filtration property of SPI/BT-WDFs. It was found that high pressure homogenization (HPH)-treated SPI had superior filtration property over that of native SPI due to the improved ability for the plugging pore throat. HPH treatment also caused a significant change in the surface characteristic of SPI, leading to a considerable surface interaction with BT in aqueous solution. The concentration of SPI had a significant impact on the dispersion state of SPI/BT mixtures in aquesous solution. At low SPI concentrations, strong aggregations were created, resulting in the formation of thick, loose, high-porosity and high-permeability filter cakes and high fluid loss. At high SPI concentrations, intercatlated/exfoliated structures were generated, resulting in the formation of thin, compact, low-porosity and low-permeability filter cakes and low fluid loss. The SPI/BT-WDFs exhibited superior filtration property than pure BT-WDFs at the same solid concentraion, demonstrating the potential utilization of SPI as an effective, renewable, and biodegradable fluid loss reducer in well excavation applications.
A Generalized Fluid System Simulation Program to Model Flow Distribution in Fluid Networks
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Bailey, John W.; Schallhorn, Paul; Steadman, Todd
1998-01-01
This paper describes a general purpose computer program for analyzing steady state and transient flow in a complex network. The program is capable of modeling phase changes, compressibility, mixture thermodynamics and external body forces such as gravity and centrifugal. The program's preprocessor allows the user to interactively develop a fluid network simulation consisting of nodes and branches. Mass, energy and specie conservation equations are solved at the nodes; the momentum conservation equations are solved in the branches. The program contains subroutines for computing "real fluid" thermodynamic and thermophysical properties for 33 fluids. The fluids are: helium, methane, neon, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide, fluorine, hydrogen, parahydrogen, water, kerosene (RP-1), isobutane, butane, deuterium, ethane, ethylene, hydrogen sulfide, krypton, propane, xenon, R-11, R-12, R-22, R-32, R-123, R-124, R-125, R-134A, R-152A, nitrogen trifluoride and ammonia. The program also provides the options of using any incompressible fluid with constant density and viscosity or ideal gas. Seventeen different resistance/source options are provided for modeling momentum sources or sinks in the branches. These options include: pipe flow, flow through a restriction, non-circular duct, pipe flow with entrance and/or exit losses, thin sharp orifice, thick orifice, square edge reduction, square edge expansion, rotating annular duct, rotating radial duct, labyrinth seal, parallel plates, common fittings and valves, pump characteristics, pump power, valve with a given loss coefficient, and a Joule-Thompson device. The system of equations describing the fluid network is solved by a hybrid numerical method that is a combination of the Newton-Raphson and successive substitution methods. This paper also illustrates the application and verification of the code by comparison with Hardy Cross method for steady state flow and analytical solution for unsteady flow.
A magnetorheological fluid based orthopedic active knee brace
NASA Astrophysics Data System (ADS)
Zite, Jamaal L.; Ahmadkhanlou, Farzad; Neelakantan, Vijay A.; Washington, Gregory N.
2006-03-01
The disadvantage of current knee braces ranges from high cost for customization to a loss in physical mobility and limited rehabilitative value. One approach to solving this problem is to use a Magnetorheological (MR) device to make the knee brace have a controllable resistance. Our design solution is to replace the manufacturer's joint with an rotary MR fluid based shear damper. The device is designed based on a maximum yield stress, a corresponding magnetic field, a torque and the MR fluid viscosity. The analytical and experimental results show the advantages and the feasibility of using the proposed MR based controllable knee braces.
Fully Coupled Well Models for Fluid Injection and Production
White, Mark D.; Bacon, Diana H.; White, Signe K.; Zhang, Z. F.
2013-08-05
Wells are the primary engineered component of geologic sequestration systems with deep subsurface reservoirs. Wells provide a conduit for injecting greenhouse gases and producing reservoirs fluids, such as brines, natural gas, and crude oil, depending on the target reservoir. Well trajectories, well pressures, and fluid flow rates are parameters over which well engineers and operators have control during the geologic sequestration process. Current drilling practices provided well engineers flexibility in designing well trajectories and controlling screened intervals. Injection pressures and fluids can be used to purposely fracture the reservoir formation or to purposely prevent fracturing. Numerical simulation of geologic sequestration processes involves the solution of multifluid transport equations within heterogeneous geologic media. These equations that mathematically describe the flow of fluid through the reservoir formation are nonlinear in form, requiring linearization techniques to resolve. In actual geologic settings fluid exchange between a well and reservoir is a function of local pressure gradients, fluid saturations, and formation characteristics. In numerical simulators fluid exchange between a well and reservoir can be specified using a spectrum of approaches that vary from totally ignoring the reservoir conditions to fully considering reservoir conditions and well processes. Well models are a numerical simulation approach that account for local conditions and gradients in the exchange of fluids between the well and reservoir. As with the mathematical equations that describe fluid flow in the reservoir, variation in fluid properties with temperature and pressure yield nonlinearities in the mathematical equations that describe fluid flow within the well. To numerically simulate the fluid exchange between a well and reservoir the two systems of nonlinear multifluid flow equations must be resolved. The spectrum of numerical approaches for resolving
Hole-cleaning capabilities of an ester-based drilling fluid system
Kenny, P.; Hemphill, T.
1996-03-01
Well 33/9-C02, located in the Statfjord field in the Norwegian sector of the North Sea, held the world record in extended-reach drilling from 1993--95. To successfully drill a well of this type, an efficient drilling fluid is required to suspend the weighting material and provide good carrying capacity. The ester-based mud system used in the 12{1/4}- and 8{1/2}-in. hole sections of this well exhibited excellent hole-cleaning capabilities. This paper describes the fluid`s performance in the field and in the laboratory where the fluid was tested under down-hole conditions. Fluid rheological behavior is described with the more accurate yield-power law. (YPL) (Herschel-Bulkley) model.
High-water-base hydraulic fluid-irradiation experiments
Bradley, E.C.; Meacham, S.A.
1981-10-01
A remote system for shearing spent nuclear fuel assemblies is being designed under the direction of the Consolidated Fuel Reprocessing Program (CFRP). The design incorporates a dual hydraulic fluid actuation system in which only one of the fluids, a high-water-base (HWBF), would be exposed to ionizing radiation and radioactive contamination. A commercially available synthetic, solution-type HWBF was selected as the reference. Single-sample irradiation experiments were conducted with three commercial fluids over a range of irradiation exposures. The physical and chemical properties of the irradiated HWBFs were analyzed and compared with unirradiated samples. In general, the results of the analyses showed increasing degradation of fluid properties with increasing irradiation dose. The results also indicated that a synthetic solution-type HWBF would perform satisfactorily in the remote shear system where irradiation doses up to 10/sup 6/ Gy (10/sup 8/ rad) are expected.
Desbonnets, Quentin; Broc, Daniel
2012-07-01
It is well known that a fluid may strongly influence the dynamic behaviour of a structure. Many different physical phenomena may take place, depending on the conditions: fluid flow, fluid at rest, little or high displacements of the structure. Inertial effects can take place, with lower vibration frequencies, dissipative effects also, with damping, instabilities due to the fluid flow (Fluid Induced Vibration). In this last case the structure is excited by the fluid. Tube bundles structures are very common in the nuclear industry. The reactor cores and the steam generators are both structures immersed in a fluid which may be submitted to a seismic excitation or an impact. In this case the structure moves under an external excitation, and the movement is influence by the fluid. The main point in such system is that the geometry is complex, and could lead to very huge sizes for a numerical analysis. Homogenization models have been developed based on the Euler equations for the fluid. Only inertial effects are taken into account. A next step in the modelling is to build models based on the homogenization of the Navier-Stokes equations. The papers presents results on an important step in the development of such model: the analysis of the fluid flow in a oscillating tube bundle. The analysis are made from the results of simulations based on the Navier-Stokes equations for the fluid. Comparisons are made with the case of the oscillations of a single tube, for which a lot of results are available in the literature. Different fluid flow pattern may be found, depending in the Reynolds number (related to the velocity of the bundle) and the Keulegan Carpenter number (related to the displacement of the bundle). A special attention is paid to the quantification of the inertial and dissipative effects, and to the forces exchanges between the bundle and the fluid. The results of such analysis will be used in the building of models based on the homogenization of the Navier
Computational fluid dynamics modeling of proton exchange membrane fuel cells
UM,SUKKEE; WANG,C.Y.; CHEN,KEN S.
2000-02-11
A transient, multi-dimensional model has been developed to simulate proton exchange membrane (PEM) fuel cells. The model accounts simultaneously for electrochemical kinetics, current distribution, hydrodynamics and multi-component transport. A single set of conservation equations valid for flow channels, gas-diffusion electrodes, catalyst layers and the membrane region are developed and numerically solved using a finite-volume-based computational fluid dynamics (CFD) technique. The numerical model is validated against published experimental data with good agreement. Subsequently, the model is applied to explore hydrogen dilution effects in the anode feed. The predicted polarization cubes under hydrogen dilution conditions are found to be in qualitative agreement with recent experiments reported in the literature. The detailed two-dimensional electrochemical and flow/transport simulations further reveal that in the presence of hydrogen dilution in the fuel stream, hydrogen is depleted at the reaction surface resulting in substantial kinetic polarization and hence a lower current density that is limited by hydrogen transport from the fuel stream to the reaction site.
Two-Fluid Models and Interfacial Area Transport in Microgravity Condition
NASA Technical Reports Server (NTRS)
Ishii, Mamoru; Sun, Xiao-Dong; Vasavada, Shilp
2004-01-01
The objective of the present study is to develop a two-fluid model formulation with interfacial area transport equation applicable for microgravity conditions. The new model is expected to make a leapfrog improvement by furnishing the constitutive relations for the interfacial interaction terms with the interfacial area transport equation, which can dynamically model the changes of the interfacial structures. In the first year of this three-year project supported by the U.S. NASA, Office of Biological and Physics Research, the primary focus is to design and construct a ground-based, microgravity two-phase flow simulation facility, in which two immiscible fluids with close density will be used. In predicting the two-phase flow behaviors in any two-phase flow system, the interfacial transfer terms are among the most essential factors in the modeling. These interfacial transfer terms in a two-fluid model specify the rate of phase change, momentum exchange, and energy transfer at the interface between the two phases. For the two-phase flow under the microgravity condition, the stability of the fluid particle interface and the interfacial structures are quite different from those under normal gravity condition. The flow structure may not reach an equilibrium condition and the two fluids may be loosely coupled such that the inertia terms of each fluid should be considered separately by use of the two-fluid model. Previous studies indicated that, unless phase-interaction terms are accurately modeled in the two-fluid model, the complex modeling does not necessarily warrant an accurate solution.
Greg Weirs; Hyung Lee
2011-09-01
V&V and UQ are the primary means to assess the accuracy and reliability of M&S and, hence, to establish confidence in M&S. Though other industries are establishing standards and requirements for the performance of V&V and UQ, at present, the nuclear industry has not established such standards or requirements. However, the nuclear industry is beginning to recognize that such standards are needed and that the resources needed to support V&V and UQ will be very significant. In fact, no single organization has sufficient resources or expertise required to organize, conduct and maintain a comprehensive V&V and UQ program. What is needed is a systematic and standardized approach to establish and provide V&V and UQ resources at a national or even international level, with a consortium of partners from government, academia and industry. Specifically, what is needed is a structured and cost-effective knowledge base that collects, evaluates and stores verification and validation data, and shows how it can be used to perform V&V and UQ, leveraging collaboration and sharing of resources to support existing engineering and licensing procedures as well as science-based V&V and UQ processes. The Nuclear Energy Knowledge base for Advanced Modeling and Simulation (NE-KAMS) is being developed at the Idaho National Laboratory in conjunction with Bettis Laboratory, Sandia National Laboratories, Argonne National Laboratory, Utah State University and others with the objective of establishing a comprehensive and web-accessible knowledge base to provide V&V and UQ resources for M&S for nuclear reactor design, analysis and licensing. The knowledge base will serve as an important resource for technical exchange and collaboration that will enable credible and reliable computational models and simulations for application to nuclear power. NE-KAMS will serve as a valuable resource for the nuclear industry, academia, the national laboratories, the U.S. Nuclear Regulatory Commission (NRC) and
New hydrologic model of fluid migration in deep porous media
NASA Astrophysics Data System (ADS)
Dmitrievsky, A.; Balanyuk, I.
2009-04-01
The authors present a new hydrological model of mantle processes that effect on formation of oil-and-gas bearing basins, fault tectonics and thermal convection. Any fluid migration is initially induced by lateral stresses in the crust and lithosphere which result from global geodynamic processes related to the mantle convection. The global processes are further transformed into regional movements in weakness zones. Model of porous media in deep fractured zones and idea of self-oscillation processes in mantle layers and fractured zones of the crust at different depths was used as the basis for developed concept. The content of these notions resides in the fact that there are conditions of dynamic balance in mantle layers originating as a result of combination and alternate actions of compaction and dilatance mechanisms. These mechanisms can be manifested in different combinations and under different conditions as well as can be complemented by other processes influencing on regime of fluid migration. They can act under condition of passive margin, ocean rift and ocean subduction zones as well as in consolidated platform and sheet. Self-oscillation regime, sub vertical direction of fluid flows, anomalously high layer pressure, and high level of anomalies of various geophysical fields are common for them. A certain class of fluid dynamic models describing consolidation of sedimentary basins, free oscillation processes slow and quick (at the final stage) fluid dynamic processes of the evolution of a sedimentary basin in subduction zones is considered for the first time. The last model of quick fluid dynamic processes reflects the process of formation of hydrocarbon deposits in the zones of collision of lithosphere plates. The results of numerical simulation and diagrams reflecting consecutive stages of the gas-fluid dynamic front propagation are assessed of the Pri-Caspian depression as the example. Calculations with this model will simultaneously be carried out for
Salt tectonics and shallow subseafloor fluid convection: models of coupled fluid-heat-salt transport
Wilson, A.; Ruppel, C.
2007-01-01
Thermohaline convection associated with salt domes has the potential to drive significant fluid flow and mass and heat transport in continental margins, but previous studies of fluid flow associated with salt structures have focused on continental settings or deep flow systems of importance to petroleum exploration. Motivated by recent geophysical and geochemical observations that suggest a convective pattern to near-seafloor pore fluid flow in the northern Gulf of Mexico (GoMex), we devise numerical models that fully couple thermal and chemical processes to quantify the effects of salt geometry and seafloor relief on fluid flow beneath the seafloor. Steady-state models that ignore halite dissolution demonstrate that seafloor relief plays an important role in the evolution of shallow geothermal convection cells and that salt at depth can contribute a thermal component to this convection. The inclusion of faults causes significant, but highly localized, increases in flow rates at seafloor discharge zones. Transient models that include halite dissolution show the evolution of flow during brine formation from early salt-driven convection to later geothermal convection, characteristics of which are controlled by the interplay of seafloor relief and salt geometry. Predicted flow rates are on the order of a few millimeters per year or less for homogeneous sediments with a permeability of 10−15 m2, comparable to compaction-driven flow rates. Sediment permeabilities likely fall below 10−15 m2 at depth in the GoMex basin, but such thermohaline convection can drive pervasive mass transport across the seafloor, affecting sediment diagenesis in shallow sediments. In more permeable settings, such flow could affect methane hydrate stability, seafloor chemosynthetic communities, and the longevity of fluid seeps.
Hydromechanical Modeling of Fluid Flow in the Lower Crust
NASA Astrophysics Data System (ADS)
Connolly, J.
2011-12-01
The lower crust lies within an ambiguous rheological regime between the brittle upper crust and ductile sub-lithospheric mantle. This ambiguity has allowed two schools of thought to develop concerning the nature of fluid flow in the lower crust. The classical school holds that lower crustal rocks are inviscid and that any fluid generated by metamorphic devolatilization is squeezed out of rocks as rapidly as it is produced. According to this school, permeability is a dynamic property and fluid flow is upward. In contrast, the modern school uses concepts from upper crustal hydrology that presume implicitly, if not explicitly, that rocks are rigid or, at most, brittle. For the modern school, the details of crustal permeability determine fluid flow and as these details are poorly known almost anything is possible. Reality, to the extent that it is reflected by inference from field studies, offers some support to both schools. In particular, evidence of significant lateral and channelized fluid flow are consistent with flow in rigid media, while evidence for short (104 - 105 y) grain-scale fluid-rock interaction during much longer metamorphic events, suggests that reaction-generated grain-scale permeability is sealed rapidly by compaction; a phenomenon that is also essential to prevent extensive retrograde metamorphism. These observations provide a compelling argument for recognizing in conceptual models of lower crustal fluid flow that rocks are neither inviscid nor rigid, but compact by viscous mechanisms on a finite time-scale. This presentation will review the principle consequences of, and obstacles to, incorporating compaction in such models. The role of viscous compaction in the lower crust is extraordinarily uncertain, but ignoring this uncertainty in models of lower crustal fluid flow does not make the models any more certain. Models inevitably invoke an initial steady state hydraulic regime. This initial steady state is critical to model outcomes because it
Magnetic wire-based sensors for the microrheology of complex fluids.
Chevry, L; Sampathkumar, N K; Cebers, A; Berret, J-F
2013-12-01
We propose a simple microrheology technique to evaluate the viscoelastic properties of complex fluids. The method is based on the use of magnetic wires of a few microns in length submitted to a rotational magnetic field. In this work, the method is implemented on a surfactant wormlike micellar solution that behaves as an ideal Maxwell fluid. With increasing frequency, the wires undergo a transition between a steady and a hindered rotation regime. The study shows that the average rotational velocity and the amplitudes of the oscillations obey scaling laws with well-defined exponents. From a comparison between model predictions and experiments, the rheological parameters of the fluid are determined. PMID:24483443
Nonlinear sound--vortex interactions in an inviscid isentropic fluid: A two-fluid model
Nazarenko, S.V.; Zabusky, N.J.; Scheidegger, T.
1995-10-01
A new two-fluid model is developed to describe the nonlinear interaction of acoustic waves and vortices. Analytical and computational results are presented for a sound pulse interacting with and being modified by a vortex. A novel numerical method based on a particle-in-cell discretization of the acoustic field is developed and used to study the nonlinear scattering of sound by a cylindrical vortex. Equations for the sound wave packet propagating in an axially symmetric mean flow are integrated analytically. Nonlinear modification of the vortex flow by the high-frequency sound is found to be mediated by growing pressure disturbances generated by the radiative forcing on the high gradient regions of the acoustic pulse. The total energy of the vortex mean flow grows monotonically, as the acoustic component loses its energy. The changes in the kinetic and internal energies of the vortex are greater than the changes in its total energy, although these changes are reversible in lowest order of the nonlinear vortex--acoustic interaction. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.
Particle hopping vs. fluid-dynamical models for traffic flow
Nagel, K.
1995-12-31
Although particle hopping models have been introduced into traffic science in the 19509, their systematic use has only started recently. Two reasons for this are, that they are advantageous on modem computers, and that recent theoretical developments allow analytical understanding of their properties and therefore more confidence for their use. In principle, particle hopping models fit between microscopic models for driving and fluiddynamical models for traffic flow. In this sense, they also help closing the conceptual gap between these two. This paper shows connections between particle hopping models and traffic flow theory. It shows that the hydrodynamical limits of certain particle hopping models correspond to the Lighthill-Whitham theory for traffic flow, and that only slightly more complex particle hopping models produce already the correct traffic jam dynamics, consistent with recent fluid-dynamical models for traffic flow. By doing so, this paper establishes that, on the macroscopic level, particle hopping models are at least as good as fluid-dynamical models. Yet, particle hopping models have at least two advantages over fluid-dynamical models: they straightforwardly allow microscopic simulations, and they include stochasticity.
Coupled Hydro-Mechanical Modeling of Fluid Geological Storage
NASA Astrophysics Data System (ADS)
Castelletto, N.; Garipov, T.; Tchelepi, H. A.
2013-12-01
The accurate modeling of the complex coupled physical processes occurring during the injection and the post-injection period is a key factor for assessing the safety and the feasibility of anthropogenic carbon dioxide (CO2) sequestration in subsurface formations. In recent years, it has become widely accepted the importance of the coupling between fluid flow and geomechanical response in constraining the sustainable pressure buildup caused by fluid injection relative to the caprock sealing capacity, induced seismicity effects and ground surface stability [e.g., Rutqvist, 2012; Castelletto et al., 2013]. Here, we present a modeling approach based on a suitable combination of Finite Volumes (FVs) and Finite Elements (FEs) to solve the coupled system of partial differential equations governing the multiphase flow in a deformable porous medium. Specifically, a FV method is used for the flow problem while the FE method is adopted to address the poro-elasto-plasticity equations. The aim of the present work is to compare the performance and the robustness of unconditionally stable sequential-implicit schemes [Kim et al., 2011] and the fully-implicit method in solving the algebraic systems arising from the discretization of the governing equations, for both normally conditioned and severely ill-conditioned problems. The two approaches are tested against well-known analytical solutions and experimented with in a realistic application of CO2 injection in a synthetic aquifer. References: - Castelletto N., G. Gambolati, and P. Teatini (2013), Geological CO2 sequestration in multi-compartment reservoirs: Geomechanical challenges, J. Geophys. Res. Solid Earth, 118, 2417-2428, doi:10.1002/jgrb.50180. - Kim J., H. A. Tchelepi, and R. Juanes (2011), Stability, accuracy and efficiency of sequential methods for coupled flow and geomechanics, SPE J., 16(2), 249-262. - Rutqvist J. (2012), The geomechanics of CO2 storage in deep sedimentary formations, Geotech. Geol. Eng., 30, 525-551.
Computational Fluid Dynamics Model for Saltstone Vault 4 Vapor Sapce
Lee, Si Young
2005-06-27
Computational fluid dynamics (CFD) methods have been used to estimate the flow patterns for vapor space inside the Saltstone Vault No.4 under different operating scenarios. The purpose of this work is to examine the gas motions inside the vapor space under the current vault configurations. A CFD model took three-dimensional transient momentum-energy coupled approach for the vapor space domain of the vault. The modeling calculations were based on prototypic vault geometry and expected normal operating conditions as defined by Waste Solidification Engineering. The modeling analysis was focused on the air flow patterns near the ventilated corner zones of the vapor space inside the Saltstone vault. The turbulence behavior and natural convection mechanism used in the present model were benchmarked against the literature information and theoretical results. The verified model was applied to the Saltstone vault geometry for the transient assessment of the air flow patterns inside the vapor space of the vault region using the boundary conditions as provided by the customer. The present model considered two cases for the estimations of the flow patterns within the vapor space. One is the reference baseline case. The other is for the negative temperature gradient between the roof inner and top grout surface temperatures intended for the potential bounding condition. The flow patterns of the vapor space calculated by the CFD model demonstrate that the ambient air comes into the vapor space of the vault through the lower-end ventilation hole, and it gets heated up by the Benard-cell type circulation before leaving the vault via the higher-end ventilation hole. The calculated results are consistent with the literature information.
Aptamer-Based Screens of Human Body Fluids for Biomarkers
Albaba, Dania; Soomro, Sanam; Mohan, Chandra
2015-01-01
In recent years, aptamers have come to replace antibodies in high throughput multiplexed experiments. The aptamer-based biomarker screening technology, which kicked off in 2010, is capable of interrogating thousands of proteins in a very small sample volume. With this new technology, researchers hope to find clinically appropriate biomarkers for a myriad of illnesses by screening human body fluids. In this work, we have reviewed a total of eight studies utilizing aptamer-based biomarker screens of human body fluids, and have highlighted novel protein biomarkers discovered. PMID:27600232
Aptamer-Based Screens of Human Body Fluids for Biomarkers
Albaba, Dania; Soomro, Sanam; Mohan, Chandra
2015-01-01
In recent years, aptamers have come to replace antibodies in high throughput multiplexed experiments. The aptamer-based biomarker screening technology, which kicked off in 2010, is capable of interrogating thousands of proteins in a very small sample volume. With this new technology, researchers hope to find clinically appropriate biomarkers for a myriad of illnesses by screening human body fluids. In this work, we have reviewed a total of eight studies utilizing aptamer-based biomarker screens of human body fluids, and have highlighted novel protein biomarkers discovered.
Direct pore-level modeling of incompressible fluid flow in porous media
Ovaysi, Saeed; Piri, Mohammad
2010-09-20
We present a dynamic particle-based model for direct pore-level modeling of incompressible viscous fluid flow in disordered porous media. The model is capable of simulating flow directly in three-dimensional high-resolution micro-CT images of rock samples. It is based on moving particle semi-implicit (MPS) method. We modify this technique in order to improve its stability for flow in porous media problems. Using the micro-CT image of a rock sample, the entire medium, i.e., solid and fluid, is discretized into particles. The incompressible Navier-Stokes equations are then solved for each particle using the MPS summations. The model handles highly irregular fluid-solid boundaries effectively. An algorithm to split and merge fluid particles is also introduced. To handle the computational load, we present a parallel version of the model that runs on distributed memory computer clusters. The accuracy of the model is validated against the analytical, numerical, and experimental data available in the literature. The validated model is then used to simulate both unsteady- and steady-state flow of an incompressible fluid directly in a representative elementary volume (REV) size micro-CT image of a naturally-occurring sandstone with 3.398 {mu}m resolution. We analyze the quality and consistency of the predicted flow behavior and calculate absolute permeability using the steady-state flow rate.
CO2-based mixtures as working fluids for geothermal turbines.
Wright, Steven Alan; Conboy, Thomas M.; Ames, David E.
2012-01-01
Sandia National Laboratories is investigating advanced Brayton cycles using supercritical working fluids for application to a variety of heat sources, including geothermal, solar, fossil, and nuclear power. This work is centered on the supercritical CO{sub 2} (S-CO{sub 2}) power conversion cycle, which has the potential for high efficiency in the temperature range of interest for these heat sources and is very compact-a feature likely to reduce capital costs. One promising approach is the use of CO{sub 2}-based supercritical fluid mixtures. The introduction of additives to CO{sub 2} alters the equation of state and the critical point of the resultant mixture. A series of tests was carried out using Sandia's supercritical fluid compression loop that confirmed the ability of different additives to increase or lower the critical point of CO{sub 2}. Testing also demonstrated that, above the modified critical point, these mixtures can be compressed in a turbocompressor as a single-phase homogenous mixture. Comparisons of experimental data to the National Institute of Standards and Technology (NIST) Reference Fluid Thermodynamic and Transport Properties (REFPROP) Standard Reference Database predictions varied depending on the fluid. Although the pressure, density, and temperature (p, {rho}, T) data for all tested fluids matched fairly well to REFPROP in most regions, the critical temperature was often inaccurate. In these cases, outside literature was found to provide further insight and to qualitatively confirm the validity of experimental findings for the present investigation.
Good modelling practice in applying computational fluid dynamics for WWTP modelling.
Wicklein, Edward; Batstone, Damien J; Ducoste, Joel; Laurent, Julien; Griborio, Alonso; Wicks, Jim; Saunders, Stephen; Samstag, Randal; Potier, Olivier; Nopens, Ingmar
2016-01-01
Computational fluid dynamics (CFD) modelling in the wastewater treatment (WWT) field is continuing to grow and be used to solve increasingly complex problems. However, the future of CFD models and their value to the wastewater field are a function of their proper application and knowledge of their limits. As has been established for other types of wastewater modelling (i.e. biokinetic models), it is timely to define a good modelling practice (GMP) for wastewater CFD applications. An International Water Association (IWA) working group has been formed to investigate a variety of issues and challenges related to CFD modelling in water and WWT. This paper summarizes the recommendations for GMP of the IWA working group on CFD. The paper provides an overview of GMP and, though it is written for the wastewater application, is based on general CFD procedures. A forthcoming companion paper to provide specific details on modelling of individual wastewater components forms the next step of the working group.
A fluid model for Helicobacter pylori
NASA Astrophysics Data System (ADS)
Reigh, Shang-Yik; Lauga, Eric
2015-11-01
Swimming microorganisms and self-propelled nanomotors are often found in confined environments. The bacterium Helicobacter pylori survives in the acidic environment of the human stomach and is able to penetrate gel-like mucus layers and cause infections by locally changing the rheological properties of the mucus from gel-like to solution-like. In this talk we propose an analytical model for the locomotion of Helicobacter pylori as a confined spherical squirmer which generates its own confinement. We solve analytically the flow field around the swimmer, and derive the swimming speed and energetics. The role of the boundary condition in the outer wall is discussed. An extension of our model is also proposed for other biological and chemical swimmers. Newton Trust.
Fluid mechanics in stented arterial model
NASA Astrophysics Data System (ADS)
Bernad, S. I.; Totorean, A.; Bosioc, A.; Crainic, N.; Hudrea, C.; Bernad, E. S.
2015-12-01
Local hemodynamic factors are known affect the natural history of the restenosis critically after coronary stenting of atherosclerosis. Stent-induced flows disturbance magnitude dependent directly on the strut design. Strut shape, strut thickness and the distance between consecutive struts have been associated clinically with the with post-intervention clinical outcomes. Hemodynamically favorable designs according to computational modeling can reduced in-stent restenosis after coronary stenting intervention.
Impact of Wettability on Fluid-Fluid Displacement in Porous Media: A Pore-Scale Model
NASA Astrophysics Data System (ADS)
Holtzman, R.; Segre, E.; Trojer, M.; Juanes, R.
2014-12-01
The displacement of a fluid by another in porous media is affected by the wetting properties of the medium. While the wettability can vary significantly, its impact is poorly understood. Here, we study the effect of wettability on the invasion patterns via a pore-scale model. We simulate the invasion of an inviscid fluid into a medium saturated with a viscous fluid, for various contact angles and injection rates. We show that increasing the contact angle (making the invading fluid more wetting) stabilizes the invasion front. In particular, at low injection rates, the invasion pattern becomes compact despite of the large, unfavorable viscosity ratio. These results compare favorably with experiments, in which air is injected in a Hele-Shaw cell filled with chemically-treated glass beads and saturated with water/glycerol. Our simulations suggest that the stabilization of the invasion front is due to the increasing dominance of cooperative, non-local invasion mechanisms. For nonwetting invasion (small contact angles, or drainage), the dominant mechanism is Haines jumps, which are controlled by the local pressure drop across individual menisci, whereas for wetting invasion (large contact angles, or imbibition) the stability of individual menisci depends on adjacent parts of the interface.
A new approach for fluid dynamics simulation: The Short-lived Water Cuboid Particle model
NASA Astrophysics Data System (ADS)
Qiao, Changjian; Li, Jiansong; Tian, Zongshun
2016-09-01
There are many researches to simulate the fluid which adopt the traditional particle-based approach and the grid-based approach. However, it needs massive storage in the traditional particle-based approach and it is very complicated to design the grid-based approach with the Navier-Stokes Equations or the Shallow Water Equations (SWEs) because of the difficulty of solving equations. This paper presents a new model called the Short-lived Water Cuboid Particle model. It updates the fluid properties (mass and momentum) recorded in the fixed Cartesian grids by computing the weighted sum of the water cuboid particles with a time step life. Thus it is a two-type-based approach essentially, which not only owns efficient computation and manageable memory like the grid-based approach, but also deals with the discontinuous water surface (wet/dry fronts, boundary conditions, etc.) with high accuracy as well as the particle-based approach. The proposed model has been found capable to simulate the fluid excellently for three laboratory experimental cases and for the field case study of the Malpasset dam-break event occurred in France in 1959. The obtained results show that the model is proved to be an alternative approach to simulate the fluid dynamics with a fair accuracy.
Management of Anterior Skull Base Cerebrospinal Fluid Leaks.
Le, Christopher; Strong, E Bradley; Luu, Quang
2016-10-01
Cerebrospinal fluid (CSF) leak occurs from traumatic, iatrogenic, and idiopathic etiologies. Its timely diagnosis requires clinical, radiographic, and laboratory testing. Medical and surgical management can mitigate the risk of life-threatening infection and morbidity. This article outlines the pathophysiology, diagnosis, and management or CSF leak of the anterior skull base. PMID:27648397
Mathematical modeling of the instability of viscous fluid films
NASA Astrophysics Data System (ADS)
Prokudina, L. A.
2016-08-01
Nonlinear mathematical model of free surface fluid film is presents. Increment, frequency, phase velocity for thin layers of viscous liquids at low Reynolds numbers are calculated. The instability region is found. Optimal flow regimes of films of water and alcohol, corresponding to the maximum values of increment, are calculated.
Inhomogeneous generalizations of Bianchi type VIh models with perfect fluid
NASA Astrophysics Data System (ADS)
Roy, S. R.; Prasad, A.
1991-07-01
Inhomogeneous universes admitting an Abelian G2 of isometry and filled with perfect fluid have been derived. These contain as special cases exact homogeneous universes of Bianchi type VIh. Many of these universes asymptotically tend to homogeneous Bianchi VIh universes. The models have been discussed for their physical and kinematical behaviors.
Constraints on fluid modeling of magnetized collisionless plasmas
NASA Astrophysics Data System (ADS)
Sulem, Pierre-Louis; Passot, Thierry; Laveder, Dimitri; Hunana, Peter; Henri, Pierre
2013-04-01
It is well known that a complete description of the solar wind requires a kinetic description and that, particularly at sub-proton scales, kinetic effects cannot be ignored. It is nevertheless usually assumed that, at scales significantly larger than the proton gyroscale, MHD or bifluid models with isotropic pressures provide a satisfactory description. We demonstrate that in order to accurately capture, even at large scales, the low-frequency dynamics of a collisionless plasma, a fluid model should actually include kinetic effects such as Landau damping and finite Larmor radius corrections. Indeed, the usual polytropic bi-fluid models strongly overestimate the magnetic compressibility of oblique Alfvén waves. Retaining pressure anisotropy and Landau damping partially corrects this deficiency, but an accurate description of the Alfvén wave polarization and of the mirror instability growth rate actually requires to take into account the finite-Larmor corrections to all the retained moments. These remarks lead us to use the so-called FLR Landau fluid model (Phys. Plasmas, 19, 082113, 2012), for which a three-dimensional parallel code has been developed. Preliminary simulations in the turbulent regime will be presented, showing the reduction of the fluid compressibility and the inhibition of the parallel energy transfer. We will also report on the development of temperature anisotropy, associated with non-resonant perpendicular ion heating and constrained by the onset of the mirror instability.
Three-fluid solar wind model with Alfven waves
NASA Technical Reports Server (NTRS)
Esser, Ruth; Habbal, Shadia R.; Hu, You Q.
1995-01-01
We present a study of a three-fluid solar wind model. with continuity, momentum and separate energy equations for protons. alpha particles and electrons. Allowing separate coronal heat sources for all three species, we study the flow properties of the solar wind as a function of heat input, Alfven wave energy input, and alpha particle abundance.
NASA Astrophysics Data System (ADS)
Azma, Sahra; Rezazadeh, Ghader; Shabani, Rasoul; Alizadeh-Haghighi, Elnaz
2016-06-01
Viscous damping is a dominant source of energy dissipation in laterally oscillating micro-structures. In micro-resonators in which the characteristic dimensions are comparable to the dimensions of the fluid molecules, the assumption of the continuum fluid theory is no longer justified and the use of micro-polar fluid theory is indispensable. In this paper a mathematical model was presented in order to predict the viscous fluid damping in a laterally oscillating finger of a micro-resonator considering micro-polar fluid theory. The coupled governing partial differential equations of motion for the vibration of the finger and the micro-polar fluid field have been derived. Considering spin and no-spin boundary conditions, the related shape functions for the fluid field were presented. The obtained governing differential equations with time varying boundary conditions have been transformed to an enhanced form with homogenous boundary conditions and have been discretized using a Galerkin-based reduced order model. The effects of physical properties of the micro-polar fluid and geometrical parameters of the oscillating structure on the damping ratio of the system have been investigated.
TIO2 Based Electrorheological Fluid with High Yield Stress
NASA Astrophysics Data System (ADS)
Shen, Rong; Wang, Xuezhao; Wen, Weijia; Lu, Kunquan
We have fabricated several TiO2 based ER fluids with doping and without designed doping, which exhibit the high yield stress up to more than 100kPa. The titanium oxide nanoparticles were synthesized by using wet chemical method. The ER effect of those materials is dominated by the special additives, such as amide or its ramification, as well as the remained molecules or ions in the sample preparation. It is found that the yield stress is also strongly dependent on the viscosity of the oil. The prepared ER fluids possess other attractive characters, for instance the current density is low and against sedimentation.
OpenFLUID: an open-source software environment for modelling fluxes in landscapes
NASA Astrophysics Data System (ADS)
Fabre, Jean-Christophe; Rabotin, Michaël; Crevoisier, David; Libres, Aline; Dagès, Cécile; Moussa, Roger; Lagacherie, Philippe; Raclot, Damien; Voltz, Marc
2013-04-01
Integrative landscape functioning has become a common concept in environmental management. Landscapes are complex systems where many processes interact in time and space. In agro-ecosystems, these processes are mainly physical processes, including hydrological-processes, biological processes and human activities. Modelling such systems requires an interdisciplinary approach, coupling models coming from different disciplines, developed by different teams. In order to support collaborative works, involving many models coupled in time and space for integrative simulations, an open software modelling platform is a relevant answer. OpenFLUID is an open source software platform for modelling landscape functioning, mainly focused on spatial fluxes. It provides an advanced object-oriented architecture allowing to i) couple models developed de novo or from existing source code, and which are dynamically plugged to the platform, ii) represent landscapes as hierarchical graphs, taking into account multi-scale, spatial heterogeneities and landscape objects connectivity, iii) run and explore simulations in many ways : using the OpenFLUID software interfaces for users (command line interface, graphical user interface), or using external applications such as GNU R through the provided ROpenFLUID package. OpenFLUID is developed in C++ and relies on open source libraries only (Boost, libXML2, GLib/GTK, OGR/GDAL, …). For modelers and developers, OpenFLUID provides a dedicated environment for model development, which is based on an open source toolchain, including the Eclipse editor, the GCC compiler and the CMake build system. OpenFLUID is distributed under the GPLv3 open source license, with a special exception allowing to plug existing models licensed under any license. It is clearly in the spirit of sharing knowledge and favouring collaboration in a community of modelers. OpenFLUID has been involved in many research applications, such as modelling of hydrological network
A gravitational test of wave reinforcement versus fluid density models
NASA Technical Reports Server (NTRS)
Johnson, Jacqueline Umstead
1990-01-01
Spermatozoa, protozoa, and algae form macroscopic patterns somewhat analogous to thermally driven convection cells. These bioconvective patterns have attracted interest in the fluid dynamics community, but whether in all cases these waves were gravity driven was unknown. There are two conflicting theories, one gravity dependent (fluid density model), the other gravity independent (wave reinforcement theory). The primary objectives of the summer faculty fellows were to: (1) assist in sample collection (spermatozoa) and preparation for the KC-135 research airplane experiment; and (2) to collaborate on ground testing of bioconvective variables such as motility, concentration, morphology, etc., in relation to their macroscopic patterns. Results are very briefly given.
Acoustic waves switch based on meta-fluid phononic crystals
NASA Astrophysics Data System (ADS)
Zhu, Xue-Feng
2012-08-01
The acoustic waves switch based on meta-fluid phononic crystals (MEFL PCs) is theoretically investigated. The MEFL PCs consist of fluid matrix and fluid-like inclusions with extremely anisotropic-density. The dispersion relations are calculated via the plane wave expansion method, which are in good agreement with the transmitted sound pressure level spectra obtained by the finite element method. The results show that the width of absolute band gap in MEFL PCs depends sensitively upon the orientation of the extremely anisotropic-density inclusions and reaches maximum at the rotating angle of 45°, with the gap position nearly unchanged. Also, the inter-mode conversion inside anisotropic-density inclusions can be ignored due to large acoustic mismatch. The study gives a possibility to realize greater flexibility and stronger effects in tuning the acoustic band gaps, which is very significant in the enhanced control over sound waves and has potential applications in ultrasonic imaging and therapy.
Hydrodynamic focusing of conducting fluids for conductivity-based biosensors.
Nasir, Mansoor; Ateya, Daniel A; Burk, Diana; Golden, Joel P; Ligler, Frances S
2010-02-15
Hydrodynamic focusing of a conducting fluid by a non-conducting fluid to form a constricted current path between two sensing electrodes is implemented in order to enhance the sensitivity of a 4-electrode conductance-based biosensor. The sensor has a simple two-inlet T-junction design and performs four-point conductivity measurements to detect particles immobilized between the sensing electrode pair. Computational simulations conducted in conjunction with experimental flow studies using confocal microscopy show that a flat profile for the focused layer is dependent on the Reynolds number for the chosen flow parameters. The results also indicate that a flat focused layer is desirable for both increased sensitivity as well as surface-binding efficiency. Proof of concept for conductance measurements in a hydrodynamically focused conducting fluid was demonstrated with entrapped magnetic beads. PMID:19932019
[Determination of body fluid based on analysis of nucleic acids].
Korabečná, Marie
2015-01-01
Recent methodological approaches of molecular genetics allow isolation of nucleic acids (DNA and RNA) from negligible forensic samples. Analysis of these molecules may be used not only for individual identification based on DNA profiling but also for the detection of origin of the body fluid which (alone or in mixture with other body fluids) forms the examined biological trace. Such an examination can contribute to the evaluation of procedural, technical and tactical value of the trace. Molecular genetic approaches discussed in the review offer new possibilities in comparison with traditional spectrum of chemical, immunological and spectroscopic tests especially with regard to the interpretation of mixtures of biological fluids and to the confirmatory character of the tests. Approaches based on reverse transcription of tissue specific mRNA and their subsequent polymerase chain reaction (PCR) and fragmentation analysis are applicable on samples containing minimal amounts of biological material. Methods for body fluid discrimination based on examination of microRNA in samples provided so far confusing results therefore further development in this field is needed. The examination of tissue specific methylation of nucleotides in selected gene sequences seems to represent a promising enrichment of the methodological spectrum. The detection of DNA sequences of tissue related bacteria has been established and it provides satisfactory results mainly in combination with above mentioned methodological approaches. PMID:26419517
A fluid mechanical model for current-generating-feeding jellyfish
NASA Astrophysics Data System (ADS)
Peng, Jifeng; Dabiri, John
2008-11-01
Many jellyfish species, e.g. moon jellyfish Aurelia aurita, use body motion to generate fluid currents which carry their prey to the vicinity of their capture appendages. In this study, a model was developed to understand the fluid mechanics for this current-generating-feeding mode of jellyfish. The flow generated by free-swimming Aurelia aurita was measured using digital particle image velocimetry. The dynamics of prey (e.g., brine shrimp Artemia) in the flow field were described by a modified Maxey-Riley equation which takes into consideration the inertia of prey and the escape forces, which prey exert in the presence of predator. A Lagrangian analysis was used to identify the region of the flow in which prey can be captured by the jellyfish and the clearance rate was quantified. The study provides a new methodology to study biological current-generating-feeding and the transport and mixing of particles in fluid flow in general.
Fluid coupling in a discrete model of cochlear mechanics.
Elliott, Stephen J; Lineton, Ben; Ni, Guangjian
2011-09-01
A discrete model of cochlear mechanics is introduced that includes a full, three-dimensional, description of fluid coupling. This formulation allows the fluid coupling and basilar membrane dynamics to be analyzed separately and then coupled together with a simple piece of linear algebra. The fluid coupling is initially analyzed using a wavenumber formulation and is separated into one component due to one-dimensional fluid coupling and one comprising all the other contributions. Using the theory of acoustic waves in a duct, however, these two components of the pressure can also be associated with a far field, due to the plane wave, and a near field, due to the evanescent, higher order, modes. The near field components are then seen as one of a number of sources of additional longitudinal coupling in the cochlea. The effects of non-uniformity and asymmetry in the fluid chamber areas can also be taken into account, to predict both the pressure difference between the chambers and the mean pressure. This allows the calculation, for example, of the effect of a short cochlear implant on the coupled response of the cochlea. PMID:21895085
Fluid coupling in a discrete model of cochlear mechanics.
Elliott, Stephen J; Lineton, Ben; Ni, Guangjian
2011-09-01
A discrete model of cochlear mechanics is introduced that includes a full, three-dimensional, description of fluid coupling. This formulation allows the fluid coupling and basilar membrane dynamics to be analyzed separately and then coupled together with a simple piece of linear algebra. The fluid coupling is initially analyzed using a wavenumber formulation and is separated into one component due to one-dimensional fluid coupling and one comprising all the other contributions. Using the theory of acoustic waves in a duct, however, these two components of the pressure can also be associated with a far field, due to the plane wave, and a near field, due to the evanescent, higher order, modes. The near field components are then seen as one of a number of sources of additional longitudinal coupling in the cochlea. The effects of non-uniformity and asymmetry in the fluid chamber areas can also be taken into account, to predict both the pressure difference between the chambers and the mean pressure. This allows the calculation, for example, of the effect of a short cochlear implant on the coupled response of the cochlea.
NASA Astrophysics Data System (ADS)
Shervais, John W.; Jean, Marlon M.
2012-10-01
Enrichment of the mantle wedge above subduction zones with fluid mobile elements is thought to represent a fundamental process in the origin of arc magmas. This "subduction factory" is typically modeled as a mass balance of inputs (from the subducted slab) and outputs (arc volcanics). We present here a new method to model fluid mobile elements, based on the composition of peridotites associated with supra-subduction ophiolites, which form by melt extraction and fluid enrichment in the mantle wedge above nascent subduction zones. The Coast Range ophiolite (CRO), California, is a Jurassic supra-subduction zone ophiolite that preserves mantle lithologies formed in response to hydrous melting. We use high-precision laser ablation ICP-MS analyses of relic pyroxenes from these peridotites to document fluid-mobile element (FME) concentrations, along with a suite of non-fluid mobile elements that includes rare earth and high-field strength elements. In the CRO, fluid-mobile elements are enriched by factors of up to 100× DMM, whereas fluid immobile elements are progressively depleted by melt extraction. The high concentrations of fluid mobile elements in supra-subduction peridotite pyroxene can be attributed to a flux of aqueous fluid or fluid-rich melt phase derived from the subducting slab. To model this enrichment, we derive a new algorithm that calculates the concentration of fluid mobile elements added to the source: C=[C/[[D/(D-PF)]∗[1-(PF/D)
Analytical Model For Fluid Dynamics In A Microgravity Environment
NASA Technical Reports Server (NTRS)
Naumann, Robert J.
1995-01-01
Report presents analytical approximation methodology for providing coupled fluid-flow, heat, and mass-transfer equations in microgravity environment. Experimental engineering estimates accurate to within factor of 2 made quickly and easily, eliminating need for time-consuming and costly numerical modeling. Any proposed experiment reviewed to see how it would perform in microgravity environment. Model applied in commercial setting for preliminary design of low-Grashoff/Rayleigh-number experiments.
The AFDM (advanced fluid dynamics model) program: Scope and significance
Bohl, W.R.; Parker, F.R. ); Wilhelm, D. . Inst. fuer Neutronenphysik und Reaktortechnik); Berthier, J. )
1990-01-01
The origins and goals of the advanced fluid dynamics model (AFDM) program are described, and the models, algorithm, and coding used in the resulting AFDM computer program are summarized. A sample fuel-steel boiling pool calculation is presented and compared with a similar SIMMER-II calculation. A subjective assessment of the AFDM developments is given, and areas where future work is possible are detailed. 10 refs.
NASA Astrophysics Data System (ADS)
Inderbitzen, K. E.; Wheat, C. G.; Baker, P. A.; Fisher, A. T.
2014-12-01
Currently, fluid circulation patterns and the evolution of rock/fluid compositions as circulation occurs in subseafloor hydrothermal systems are poorly constrained. Sedimented spreading centers provide a unique opportunity to study subsurface flow because sediment acts as an insulating blanket that traps heat from the cooling magma body and limits: (a) potential flow paths for seawater to recharge the aquifer in permeable upper basaltic basement and (b) points of altered fluid egress. This also allows for a range of thermal and geochemical gradients to exist near the sediment-water interface. Models of fluid circulation patterns in this type of hydrologic setting have been generated (eg. Stein and Fisher, 2001); however fluid chemistry datasets have not previously been used to test the model's viability. We address this issue by integrating the existing circulation model with fluid compositional data collected from sediment pore waters and high temperature hydrothermal vents located in Middle Valley on the Juan de Fuca Ridge. Middle Valley hosts a variety of hydrologic regimes: including areas of fluid recharge (Site 855), active venting (Site 858/1036; Dead Dog vent field), recent venting (Site 856/1035; Bent Hill Massive Sulfide deposit) and a section of heavily sedimented basement located between recharge and discharge sites (Site 857). We will present new results based on thermal and geochemical data from the area of active venting (Sites 858 and 1036), that was collected during Ocean Drilling Program Legs 139 and 169 and a subsequent heat flow/gravity coring effort. These results illuminate fine scale controls on secondary recharge and fluid flow within the sediment section at Site 858/1036. The current status of high temperature vents in this area (based on observations made in July, 2014) will also be outlined.
Paul Meakin; Alexandre Tartakovsky
2009-07-01
In the subsurface fluids play a critical role by transporting dissolved minerals, colloids and contaminants (sometimes over long distances), by mediating dissolution and precipitation processes and enabling chemical transformations in solution and at mineral surfaces. Although the complex geometries of fracture apertures, fracture networks and pore spaces may make it difficult to accurately predict fluid flow in saturated (single-phase) subsurface systems, well developed methods are available. The simulation of multiphase fluid flow in the subsurface is much more challenging because of the large density and/or viscosity ratios found in important applications (water/air in the vadose zone, water/oil, water/gas, gas/oil and water/oil/gas in oil reservoirs, water/air/non-aqueous phase liquids (NAPL) in contaminated vadose zone systems and gas/molten rock in volcanic systems, for example). In addition, the complex behavior of fluid-fluid-solid contact lines, and its impact on dynamic contact angles, must also be taken into account, and coupled with the fluid flow. Pore network models and simple statistical physics based models such as the invasion percolation and diffusion-limited aggregation models have been used quite extensively. However, these models for multiphase fluid flow are based on simplified models for pore space geometries and simplified physics. Other methods such a lattice Boltzmann and lattice gas models, molecular dynamics, Monte Carlo methods, and particle methods such as dissipative particle dynamics and smoothed particle hydrodynamics are based more firmly on first principles, and they do not require simplified pore and/or fracture geometries. However, they are less (in some cases very much less) computationally efficient that pore network and statistical physics models. Recently a combination of continuum computation fluid dynamics, fluid-fluid interface tracking or capturing and simple models for the dependence of contact angles on fluid velocity
Meakin, Paul; Tartakovsky, Alexandre M.
2009-07-14
In the subsurface fluids play a critical role by transporting dissolved minerals, colloids and contaminants (sometimes over long distances), by mediating dissolution and precipitation processes and enabling chemical transformations in solution and at mineral surfaces. Although the complex geometries of fracture apertures, fracture networks and pore spaces may make it difficult to accurately predict fluid flow in saturated (single-phase) subsurface systems, well developed methods are available. The simulation of multiphase fluid flow in the subsurface is much more challenging because of the large density and/or viscosity ratios found in important applications (water/air in the vadose zone, water/oil, water/gas, gas/oil and water/oil/gas in oil reservoirs, water/air/non-aqueous phase liquids (NAPL) in contaminated vadose zone systems and gas/molten rock in volcanic systems, for example). In addition, the complex behavior of fluid-fluid-solid contact lines, and its impact on dynamic contact angles, must also be taken into account, and coupled with the fluid flow. Pore network models and simple statistical physics based models such as the invasion percolation and diffusion-limited aggregation models have been used quite extensively. However, these models for multiphase fluid flow are based on simplified models for pore space geometries and simplified physics. Other methods such a lattice Boltzmann and lattice gas models, molecular dynamics, Monte Carlo methods, and particle methods such as dissipative particle dynamics and smoothed particle hydrodynamics are based more firmly on first principles, and they do not require simplified pore and/or fracture geometries. However, they are less (in some cases very much less) computationally efficient that pore network and statistical physics models. Recently a combination of continuum computation fluid dynamics, fluid-fluid interface tracking or capturing and simple models for the dependence of contact angles on fluid velocity
Freezable Radiator Model Correlation Improvements and Fluids Study
NASA Technical Reports Server (NTRS)
Lillibridge, Sean; Navarro, Moses
2011-01-01
Freezable radiators offer an attractive solution to the issue of thermal control system scalability. As thermal environments change, a freezable radiator will effectively scale the total heat rejection it is capable of as a function of the thermal environment and flow rate through the radiator. Scalable thermal control systems are a critical technology for spacecraft that will endure missions with widely varying thermal requirements. These changing requirements are a result of the space craft s surroundings and because of different thermal rejection requirements during different mission phases. However, freezing and thawing (recovering) a radiator is a process that has historically proven very difficult to predict through modeling, resulting in highly inaccurate predictions of recovery time. To attempt to improve this, tests were conducted in 2009 to determine whether the behavior of a simple stagnating radiator could be predicted or emulated in a Thermal Desktop(trademark) numerical model. A 50-50 mixture of DowFrost HD and water was used as the working fluid. Efforts to scale this model to a full scale design, as well as efforts to characterize various thermal control fluids at low temperatures are also discussed. Previous testing and modeling efforts showed that freezable radiators could be operated as intended, and be fairly, if not perfectly predicted by numerical models. This paper documents the improvements made to the numerical model, and outcomes of fluid studies that were determined necessary to go forward with further radiator testing.
Fluids and Combustion Facility: Combustion Integrated Rack Modal Model Correlation
NASA Technical Reports Server (NTRS)
McNelis, Mark E.; Suarez, Vicente J.; Sullivan, Timothy L.; Otten, Kim D.; Akers, James C.
2005-01-01
The Fluids and Combustion Facility (FCF) is a modular, multi-user, two-rack facility dedicated to combustion and fluids science in the US Laboratory Destiny on the International Space Station. FCF is a permanent facility that is capable of accommodating up to ten combustion and fluid science investigations per year. FCF research in combustion and fluid science supports NASA's Exploration of Space Initiative for on-orbit fire suppression, fire safety, and space system fluids management. The Combustion Integrated Rack (CIR) is one of two racks in the FCF. The CIR major structural elements include the International Standard Payload Rack (ISPR), Experiment Assembly (optics bench and combustion chamber), Air Thermal Control Unit (ATCU), Rack Door, and Lower Structure Assembly (Input/Output Processor and Electrical Power Control Unit). The load path through the rack structure is outlined. The CIR modal survey was conducted to validate the load path predicted by the CIR finite element model (FEM). The modal survey is done by experimentally measuring the CIR frequencies and mode shapes. The CIR model was test correlated by updating the model to represent the test mode shapes. The correlated CIR model delivery is required by NASA JSC at Launch-10.5 months. The test correlated CIR flight FEM is analytically integrated into the Shuttle for a coupled loads analysis of the launch configuration. The analysis frequency range of interest is 0-50 Hz. A coupled loads analysis is the analytical integration of the Shuttle with its cargo element, the Mini Payload Logistics Module (MPLM), in the Shuttle cargo bay. For each Shuttle launch configuration, a verification coupled loads analysis is performed to determine the loads in the cargo bay as part of the structural certification process.
DPSM technique for ultrasonic field modelling near fluid-solid interface.
Banerjee, Sourav; Kundu, Tribikram; Alnuaimi, Nasser A
2007-06-01
Distributed point source method (DPSM) is gradually gaining popularity in the field of non-destructive evaluation (NDE). DPSM is a semi-analytical technique that can be used to calculate the ultrasonic fields produced by transducers of finite dimension placed in homogeneous or non-homogeneous media. This technique has been already used to model ultrasonic fields in homogeneous and multi-layered fluid structures. In this paper the method is extended to model the ultrasonic fields generated in both fluid and solid media near a fluid-solid interface when the transducer is placed in the fluid half-space near the interface. Most results in this paper are generated by the newly developed DPSM technique that requires matrix inversion. This technique is identified as the matrix inversion based DPSM technique. Some of these results are compared with the results produced by the Rayleigh-Sommerfield integral based DPSM technique. Theory behind both matrix inversion based and Rayleigh-Sommerfield integral based DPSM techniques is presented in this paper. The matrix inversion based DPSM technique is found to be very efficient for computing the ultrasonic field in non-homogeneous materials. One objective of this study is to model ultrasonic fields in both solids and fluids generated by the leaky Rayleigh wave when finite size transducers are inclined at Rayleigh critical angles. This phenomenon has been correctly modelled by the technique. It should be mentioned here that techniques based on paraxial assumptions fail to model the critical reflection phenomenon. Other advantages of the DPSM technique compared to the currently available techniques for transducer radiation modelling are discussed in the paper under Introduction.
Yamaguchi, Takami; Ishikawa, Takuji; Imai, Y; Matsuki, N; Xenos, Mikhail; Deng, Yuefan; Bluestein, Danny
2010-03-01
A major computational challenge for a multiscale modeling is the coupling of disparate length and timescales between molecular mechanics and macroscopic transport, spanning the spatial and temporal scales characterizing the complex processes taking place in flow-induced blood clotting. Flow and pressure effects on a cell-like platelet can be well represented by a continuum mechanics model down to the order of the micrometer level. However, the molecular effects of adhesion/aggregation bonds are on the order of nanometer. A successful multiscale model of platelet response to flow stresses in devices and the ensuing clotting responses should be able to characterize the clotting reactions and their interactions with the flow. This paper attempts to describe a few of the computational methods that were developed in recent years and became available to researchers in the field. They differ from traditional approaches that dominate the field by expanding on prevailing continuum-based approaches, or by completely departing from them, yielding an expanding toolkit that may facilitate further elucidation of the underlying mechanisms of blood flow and the cellular response to it. We offer a paradigm shift by adopting a multidisciplinary approach with fluid dynamics simulations coupled to biophysical and biochemical transport.
On the Mathematical Modelling of a Compressible Viscoelastic Fluid
NASA Astrophysics Data System (ADS)
Bollada, P. C.; Phillips, T. N.
2012-07-01
Thermodynamical considerations have largely been avoided in the modelling of complex fluids by invoking the assumption of incompressibility. This approximation allows pressure to be defined as a Lagrange multiplier, and therefore its natural connection with other thermodynamic variables such as density and temperature is irretrievably lost. Relaxing this condition to allow more realistic modelling involves much more than prescribing an equation of state. Even for a simple isothermal viscoelastic model, as explored in this paper, the transition to a compressible model is non-trivial. This paper shows that pressure enters the governing equations in a non-intuitive way. Furthermore, a fluid volume element, which is no longer constant, radically changes the way the basic element of the constitutive equations is viewed—stress is no longer the fundamental constitutive link between the momentum equations and velocity. The importance of geometry in fluid modelling is emphasised through the use of the Lie derivative, which is of a more fundamental character than the "upper" and "lower" convected derivatives prevalent in the literature and which are found to be almost redundant for a compressible fluid. There is now a strong body of non-equilibrium thermodynamics theory for flowing systems, which proves indispensible for this development. These fundamental principles are described herein using methodology and examples, that are sometimes conflicting, from the literature. The main conflict arises from the relationship between thermodynamic pressure and the trace of Cauchy stress, where the current preferred choice is (up to a constant) to set them equal—this is shown to be incorrect. Other issues such as the dependence of viscosity on density, bulk viscosity, integral modelling, the principle of objectivity and convected derivatives, are also clarified and resolved.
Ground-based activities in preparation of SELENE ISS experiment on self-rewetting fluids
NASA Astrophysics Data System (ADS)
Savino, R.; Abe, Y.; Castagnolo, D.; Celata, G. P.; Kabov, O.; Kawaji, M.; Sato, M.; Tanaka, K.; Thome, J. R.; Van Vaerenbergh, S.
2011-12-01
SELENE (SELf rewetting fluids for thermal ENErgy management) is a microgravity experiment proposed to the European Space Agency (ESA) in response to the Announcement of Opportunities for Physical Sciences. Main objectives of the microgravity research onboard ISS include the quantitative investigation of heat transfer performances of "self-rewetting fluids" and "nano self-rewetting fluids" in model heat pipes and validation of adequate theoretical and numerical modelling able to predict their behaviour in microgravity conditions. This article summarizes the results of ground-based research activities in preparation of the microgravity experiments. They include: 1) thermophysical properties measurements; 2) study of thermo-soluto-capillary effects in micro-channels; 3) numerical modelling; 4) thermal and concentration distribution measurements with optical (e.g. interferometric) and intrusive techniques; 5) surface tension-driven effects and thermal performances test on different capillary structures and heat pipes; 6) breadboards development and support to definition of scientific requirements.
Fluid-solid interaction model for hydraulic reciprocating O-ring seals
NASA Astrophysics Data System (ADS)
Liao, Chuanjun; Huang, Weifeng; Wang, Yuming; Suo, Shuangfu; Liu, Ying
2013-01-01
Elastohydrodynamic lubrication characteristics of hydraulic reciprocating seals have significant effects on sealing and tribology performances of hydraulic actuators, especially in high parameter hydraulic systems. Only elastic deformations of hydraulic reciprocating seals were discussed, and hydrodynamic effects were neglected in many studies. The physical process of the fluid-solid interaction effect did not be clearly presented in the existing fluid-solid interaction models for hydraulic reciprocating O-ring seals, and few of these models had been simultaneously validated through experiments. By exploring the physical process of the fluid-solid interaction effect of the hydraulic reciprocating O-ring seal, a numerical fluid-solid interaction model consisting of fluid lubrication, contact mechanics, asperity contact and elastic deformation analyses is constructed with an iterative procedure. With the SRV friction and wear tester, the experiments are performed to investigate the elastohydrodynamic lubrication characteristics of the O-ring seal. The regularity of the friction coefficient varying with the speed of reciprocating motion is obtained in the mixed lubrication condition. The experimental result is used to validate the fluid-solid interaction model. Based on the model, The elastohydrodynamic lubrication characteristics of the hydraulic reciprocating O-ring seal are presented respectively in the dry friction, mixed lubrication and full film lubrication conditions, including of the contact pressure, film thickness, friction coefficient, liquid film pressure and viscous shear stress in the sealing zone. The proposed numerical fluid-solid interaction model can be effectively used to analyze the operation characteristics of the hydraulic reciprocating O-ring seal, and can also be widely used to study other hydraulic reciprocating seals.
NASA Astrophysics Data System (ADS)
Wang, Ya; Masoumi, Masoud; Gaucher-Petitdemange, Matthias
2015-03-01
Passive structural damping treatments have been applied with the use of high-viscosity fillings (in practice) and have been the focus of numerous research studies and papers. However, internal viscoelastic fluid leading to passive damping of flexible cantilever beams, has not yet been investigated in the literature. Although structures containing internal fluid channels provide multifunctional solutions to many engineering issues, they also raise damping control requests caused by unacceptable vibrations due to ambient environmental changes. In this paper, we examine ambient effects on damping properties of flexible cantilever beams, each conveying an internal high-viscosity fluid channel. Experiments are conducted to investigate how the internal fluids provide damping to the system under varied temperatures, frequencies and base-acceleration levels. While the vibration analysis of pipes conveying internal flow has been extensively studied, internal high-viscosity fluids in relation to passive damping of flexible cantilever beams and their ambient, environment-dependent behaviors have not been well-investigated. Originally motivated by research, which uses internal fluid channels to provide the cooling of multifunctional composite structures, we aim to research the damping behaviors of cantilever beams. We will conduct an experimental study and modeling analysis, examining the vibrations and frequency responses of the cantilever beams when filled with three types of internal fluids.
NASA Astrophysics Data System (ADS)
Pfunt, Helena; Houben, Georg; Himmelsbach, Thomas
2016-09-01
Gas production from shale formations by hydraulic fracturing has raised concerns about the effects on the quality of fresh groundwater. The migration of injected fracking fluids towards the surface was investigated in the North German Basin, based on the known standard lithology. This included cases with natural preferential pathways such as permeable fault zones and fracture networks. Conservative assumptions were applied in the simulation of flow and mass transport triggered by a high pressure boundary of up to 50 MPa excess pressure. The results show no significant fluid migration for a case with undisturbed cap rocks and a maximum of 41 m vertical transport within a permeable fault zone during the pressurization. Open fractures, if present, strongly control the flow field and migration; here vertical transport of fracking fluids reaches up to 200 m during hydraulic fracturing simulation. Long-term transport of the injected water was simulated for 300 years. The fracking fluid rises vertically within the fault zone up to 485 m due to buoyancy. Progressively, it is transported horizontally into sandstone layers, following the natural groundwater flow direction. In the long-term, the injected fluids are diluted to minor concentrations. Despite the presence of permeable pathways, the injected fracking fluids in the reported model did not reach near-surface aquifers, either during the hydraulic fracturing or in the long term. Therefore, the probability of impacts on shallow groundwater by the rise of fracking fluids from a deep shale-gas formation through the geological underground to the surface is small.
NASA Astrophysics Data System (ADS)
Pfunt, Helena; Houben, Georg; Himmelsbach, Thomas
2016-04-01
Gas production from shale formations by hydraulic fracturing has raised concerns about the effects on the quality of fresh groundwater. The migration of injected fracking fluids towards the surface was investigated in the North German Basin, based on the known standard lithology. This included cases with natural preferential pathways such as permeable fault zones and fracture networks. Conservative assumptions were applied in the simulation of flow and mass transport triggered by a high pressure boundary of up to 50 MPa excess pressure. The results show no significant fluid migration for a case with undisturbed cap rocks and a maximum of 41 m vertical transport within a permeable fault zone during the pressurization. Open fractures, if present, strongly control the flow field and migration; here vertical transport of fracking fluids reaches up to 200 m during hydraulic fracturing simulation. Long-term transport of the injected water was simulated for 300 years. The fracking fluid rises vertically within the fault zone up to 485 m due to buoyancy. Progressively, it is transported horizontally into sandstone layers, following the natural groundwater flow direction. In the long-term, the injected fluids are diluted to minor concentrations. Despite the presence of permeable pathways, the injected fracking fluids in the reported model did not reach near-surface aquifers, either during the hydraulic fracturing or in the long term. Therefore, the probability of impacts on shallow groundwater by the rise of fracking fluids from a deep shale-gas formation through the geological underground to the surface is small.
NASA Astrophysics Data System (ADS)
Biyanto, Totok R.
2016-06-01
Fouling in a heat exchanger in Crude Preheat Train (CPT) refinery is an unsolved problem that reduces the plant efficiency, increases fuel consumption and CO2 emission. The fouling resistance behavior is very complex. It is difficult to develop a model using first principle equation to predict the fouling resistance due to different operating conditions and different crude blends. In this paper, Artificial Neural Networks (ANN) MultiLayer Perceptron (MLP) with input structure using Nonlinear Auto-Regressive with eXogenous (NARX) is utilized to build the fouling resistance model in shell and tube heat exchanger (STHX). The input data of the model are flow rates and temperatures of the streams of the heat exchanger, physical properties of product and crude blend data. This model serves as a predicting tool to optimize operating conditions and preventive maintenance of STHX. The results show that the model can capture the complexity of fouling characteristics in heat exchanger due to thermodynamic conditions and variations in crude oil properties (blends). It was found that the Root Mean Square Error (RMSE) are suitable to capture the nonlinearity and complexity of the STHX fouling resistance during phases of training and validation.
NASA Astrophysics Data System (ADS)
Konrad-Schmolke, M.; Jahn, S.
2012-12-01
The subduction of oceanic lithosphere induces one of the major element cycles on Earth. Devolatilisation reactions in the subducted plate, the associated major and trace element transport as well as fluid-rock interaction within the slab and the mantle wedge control the flux of matter from the down-going plate into the upper plate and the atmosphere. Prediction and quantification of these fluxes is therefore a fundamental task in geosciences. The amount and composition of liberated fluids in a subducted slab is controlled by thermodynamic constraints, the fluid-rock element distribution as well as reaction kinetics in the affected rocks. Consequently, prediction of the element transfer within the slab and into the overlying rocks must consider these processes and their complex interactions. In this contribution we focus on the thermodynamic constraints on devolatilisation reactions in slab-crust and -mantle, the associated fluid migration and the chemical aspect of fluid-rock interaction within a hydrated subducted plate. Based on numerically modeled isotherm patterns of contrasting subduction settings we calculate phase relations in different layers of the subducted slabs. We use incremental Gibbs energy minimisation models and consider upward migration of liberated fluids during subduction. Moreover, modeled phase relations, fluid amounts and trace element partition coefficients, are used to calculate mass balanced distribution of fluid-mobile trace elements among the stable phases within the slab. Trace element transport occurs within the migrating fluid phase that equilibrates with the wall rock during ascent. This process controls element depletion and/or enrichment of fluid and wall rock and enables detailed prediction of the trace element transfer along the slab mantle interface. Our results show that fluid fluxes at the slab surface are clearly bimodal: at fore-arc depths water is continuously released predominantly from the MORB layer whereas at sub- and
Interstellar turbulence model : A self-consistent coupling of plasma and neutral fluids
Shaikh, Dastgeer; Zank, Gary P.; Pogorelov, Nikolai
2006-09-26
We present results of a preliminary investigation of interstellar turbulence based on a self-consistent two-dimensional fluid simulation model. Our model describes a partially ionized magnetofluid interstellar medium (ISM) that couples a neutral hydrogen fluid to a plasma through charge exchange interactions and assumes that the ISM turbulent correlation scales are much bigger than the shock characteristic length-scales, but smaller than the charge exchange mean free path length-scales. The shocks have no influence on the ISM turbulent fluctuations. We find that nonlinear interactions in coupled plasma-neutral ISM turbulence are influenced substantially by charge exchange processes.
NASA Astrophysics Data System (ADS)
Heinze, Thomas; Galvan, Boris; Miller, Stephen
2013-04-01
Fluid-rock interactions are mechanically fundamental to many earth processes, including fault zones and hydrothermal/volcanic systems, and to future green energy solutions such as enhanced geothermal systems and carbon capture and storage (CCS). Modeling these processes is challenging because of the strong coupling between rock fracture evolution and the consequent large changes in the hydraulic properties of the system. In this talk, we present results of a numerical model that includes poro-elastic plastic rheology (with hardening, softening, and damage), and coupled to a non-linear diffusion model for fluid pressure propagation and two-phase fluid flow. Our plane strain model is based on the poro- elastic plastic behavior of porous rock and is advanced with hardening, softening and damage using the Mohr- Coulomb failure criteria. The effective stress model of Biot (1944) is used for coupling the pore pressure and the rock behavior. Frictional hardening and cohesion softening are introduced following Vermeer and de Borst (1984) with the angle of internal friction and the cohesion as functions of the principal strain rates. The scalar damage coefficient is assumed to be a linear function of the hardening parameter. Fluid injection is modeled as a two phase mixture of water and air using the Richards equation. The theoretical model is solved using finite differences on a staggered grid. The model is benchmarked with experiments on the laboratory scale in which fluid is injected from below in a critically-stressed, dry sandstone (Stanchits et al. 2011). We simulate three experiments, a) the failure a dry specimen due to biaxial compressive loading, b) the propagation a of low pressure fluid front induced from the bottom in a critically stressed specimen, and c) the failure of a critically stressed specimen due to a high pressure fluid intrusion. Comparison of model results with the fluid injection experiments shows that the model captures most of the experimental
Majorczyk, Vincent; Cotin, Stéphane; Duriez, Christian; Allard, Jeremie
2013-01-01
We present a method to simulate the outcome of reconstructive facial surgery based on fat-filling. Facial anatomy is complex: the fat is constrained between layers of tissues which behave as walls along the face; in addition, connective tissues that are present between these different layers also influence the fat-filling procedure. To simulate the end result, we propose a method which couples a 2.5D Eulerian fluid model for the fat and a finite element model for the soft tissues. The two models are coupled using the computation of the mechanical compliance matrix. Two contributions are presented in this paper: a solver for fluids which couples properties of solid tissues and fluid pressure, and an application of this solver to fat-filling surgery procedure simulation. PMID:24505774
A magnetorheological fluid-based controllable active knee brace
NASA Astrophysics Data System (ADS)
Ahmadkhanlou, Farzad; Zite, Jamaal L.; Washington, Gregory N.
2007-04-01
High customization costs and reduction of natural mobility put current rehabilitative knee braces at a disadvantage. A resolution to this problem is to integrate a Magnetorheological (MR) fluid-based joint into the system. A MR joint will allow patients to apply and control a resistive torque to knee flexion and extension. The resistance torque can also be continuously adjusted as a function of extension angle and patient strength (or as a function of time), which is currently impossible with state of the art rehabilitative knee braces. A novel MR fluid-based controllable knee brace is designed and prototyped in this research. The device exhibits large resistive torque in the on-state and low resistance in the offstate. The controllable variable stiffness, compactness, and portability of the system make it a proper alternative to current rehabilitative knee braces.
Agent-Based Chemical Plume Tracing Using Fluid Dynamics
NASA Technical Reports Server (NTRS)
Zarzhitsky, Dimitri; Spears, Diana; Thayer, David; Spears, William
2004-01-01
This paper presents a rigorous evaluation of a novel, distributed chemical plume tracing algorithm. The algorithm is a combination of the best aspects of the two most popular predecessors for this task. Furthermore, it is based on solid, formal principles from the field of fluid mechanics. The algorithm is applied by a network of mobile sensing agents (e.g., robots or micro-air vehicles) that sense the ambient fluid velocity and chemical concentration, and calculate derivatives. The algorithm drives the robotic network to the source of the toxic plume, where measures can be taken to disable the source emitter. This work is part of a much larger effort in research and development of a physics-based approach to developing networks of mobile sensing agents for monitoring, tracking, reporting and responding to hazardous conditions.
Lennard-Jones and lattice models of driven fluids.
Díez-Minguito, M; Garrido, P L; Marro, J
2005-08-01
We introduce a nonequilibrium off-lattice model for anisotropic phenomena in fluids. This is a Lennard-Jones generalization of the driven lattice-gas model in which the particles' spatial coordinates vary continuously. A comparison between the two models allows us to discuss some exceptional, hardly realistic features of the original discrete system--which has been considered a prototype for nonequilibrium anisotropic phase transitions. We thus help to clarify open issues, and discuss on the implications of our observations for future investigation of anisotropic phase transitions.
Analog model for quantum gravity effects: phonons in random fluids.
Krein, G; Menezes, G; Svaiter, N F
2010-09-24
We describe an analog model for quantum gravity effects in condensed matter physics. The situation discussed is that of phonons propagating in a fluid with a random velocity wave equation. We consider that there are random fluctuations in the reciprocal of the bulk modulus of the system and study free phonons in the presence of Gaussian colored noise with zero mean. We show that, in this model, after performing the random averages over the noise function a free conventional scalar quantum field theory describing free phonons becomes a self-interacting model.
Approaches to Validation of Models for Low Gravity Fluid Behavior
NASA Technical Reports Server (NTRS)
Chato, David J.; Marchetta, Jeffery; Hochstein, John I.; Kassemi, Mohammad
2005-01-01
This paper details the author experiences with the validation of computer models to predict low gravity fluid behavior. It reviews the literature of low gravity fluid behavior as a starting point for developing a baseline set of test cases. It examines authors attempts to validate their models against these cases and the issues they encountered. The main issues seem to be that: Most of the data is described by empirical correlation rather than fundamental relation; Detailed measurements of the flow field have not been made; Free surface shapes are observed but through thick plastic cylinders, and therefore subject to a great deal of optical distortion; and Heat transfer process time constants are on the order of minutes to days but the zero-gravity time available has been only seconds.
Extended fluid models: Pressure tensor effects and equilibria
Cerri, S. S.; Henri, P.; Califano, F.; Pegoraro, F.; Del Sarto, D.; Faganello, M.
2013-11-15
We consider the use of “extended fluid models” as a viable alternative to computationally demanding kinetic simulations in order to manage the global large scale evolution of a collisionless plasma while accounting for the main effects that come into play when spatial micro-scales of the order of the ion inertial scale d{sub i} and of the thermal ion Larmor radius ρ{sub i} are formed. We present an extended two-fluid model that retains finite Larmor radius (FLR) corrections to the ion pressure tensor while electron inertia terms and heat fluxes are neglected. Within this model we calculate analytic FLR plasma equilibria in the presence of a shear flow and elucidate the role of the magnetic field asymmetry. Using a Hybrid Vlasov code, we show that these analytic equilibria offer a significant improvement with respect to conventional magnetohydrodynamic shear-flow equilibria when initializing kinetic simulations.
Mean-field fluid behavior of the Gaussian core model
NASA Astrophysics Data System (ADS)
Louis, A. A.; Bolhuis, P. G.; Hansen, J. P.
2000-12-01
We show that the Gaussian core model of particles interacting via a penetrable repulsive Gaussian potential, first considered by Stillinger [J. Chem. Phys. 65, 3968 (1976)], behaves as a weakly correlated ``mean-field fluid'' over a surprisingly wide density and temperature range. In the bulk, the structure of the fluid phase is accurately described by the random phase approximation for the direct correlation function, and by the more sophisticated hypernetted chain integral equation. The resulting pressure deviates very little from a simple mean-field-like quadratic form in the density, while the low density virial expansion turns out to have an extremely small radius of convergence. Density profiles near a hard wall are also very accurately described by the corresponding mean-field free-energy functional. The binary version of the model exhibits a spinodal instability against demixing at high densities. Possible implications for semidilute polymer solutions are discussed.
A New Unified Dark Fluid Model and Its Cosmic Constraint
NASA Astrophysics Data System (ADS)
Xu, Lixin
2014-11-01
In this paper, we propose a new unified dark fluid (UDF) model with equation of state (EoS) w( a)=- α/( β a - n +1), which includes the generalized Chaplygin gas model (gGg) as its special case, where α, β and n are three positive numbers. It is clear that this model reduces to the gCg model with EoS w( a)=- B s /( B s +(1- B s ) a -3(1+ α)), when α=1, β=(1- B s )/ B s and n=3(1+ α). By combination the cold dark matter and the cosmological constant, one can coin a EoS of unified dark fluid in the form of w( a)=-1/(1+(1-ΩΛ) a -3/ΩΛ). With this observations, our proposed EoS provides a possible deviation from ΛCDM model when the model parameters α and n deviate from 1 and 3 respectively. By using the currently available cosmic observations from type Ia supernovae (SN Ia) Union2.1, baryon acoustic oscillation (BAO) and cosmic microwave background radiation (CMB), we test the viability of this model and detect the possible devotion from the ΛCDM model. The results show that the new UDF model fits the cosmic observation as well as that of the ΛCDM model and no deviation is found from the ΛCDM model in 3 σ confidence level. However, our new UDF model can give a non-zero sound speed, as a contrast, which is zero for the ΛCDM model. We expect the large structure formation information can distinct the new UDF model from the ΛCDM model.
Fraser, L.J.; Reid, P.I.; Williamson, L.D.; Enriquez, F.P. Jr.
1999-09-01
Horizontal wells are commonly completed without casing and the fluids used to drill said sections can have a significant effect on the production outcome. Mixed metal hydroxide (MMH)/bentonite-based fluids are compared to two commonly used reservoir drill-in fluids (DIFs) with respect to filter-cake characteristics and regain in permeability. The MMH fluids are found to produce filter cakes with unique features which result in efficient backflow without need for chemical treatment. Return permeability results which equal or exceed those for more commonly used DIFs raise questions over the conventional view that bentonite-containing DIFs are harmful to reservoirs.
Modeling interfacial area transport in multi-fluid systems
Yarbro, S.L.
1996-11-01
Many typical chemical engineering operations are multi-fluid systems. They are carried out in distillation columns (vapor/liquid), liquid-liquid contactors (liquid/liquid) and other similar devices. An important parameter is interfacial area concentration, which determines the rate of interfluid heat, mass and momentum transfer and ultimately, the overall performance of the equipment. In many cases, the models for determining interfacial area concentration are empirical and can only describe the cases for which there is experimental data. In an effort to understand multiphase reactors and the mixing process better, a multi-fluid model has been developed as part of a research effort to calculate interfacial area transport in several different types of in-line static mixers. For this work, the ensemble-averaged property conservation equations have been derived for each fluid and for the mixture. These equations were then combined to derive a transport equation for the interfacial area concentration. The final, one-dimensional model was compared to interfacial area concentration data from two sizes of Kenics in-line mixer, two sizes of concurrent jet and a Tee mixer. In all cases, the calculated and experimental data compared well with the highest scatter being with the Tee mixer comparison.
Fluid-Structure interaction modeling in deformable porous arteries
NASA Astrophysics Data System (ADS)
Zakerzadeh, Rana; Zunino, Paolo
2015-11-01
A computational framework is developed to study the coupling of blood flow in arteries interacting with a poroelastic arterial wall featuring possibly large deformations. Blood is modeled as an incompressible, viscous, Newtonian fluid using the Navier-Stokes equations and the arterial wall consists of a thick material which is modeled as a Biot system that describes the mechanical behavior of a homogeneous and isotropic elastic skeleton, and connecting pores filled with fluid. Discretization via finite element method leads to the system of nonlinear equations and a Newton-Raphson scheme is adopted to solve the resulting nonlinear system through consistent linearization. Moreover, interface conditions are imposed on the discrete level via mortar finite elements or Nitsche's coupling. The discrete linearized coupled FSI system is solved by means of a splitting strategy, which allows solving the Navier-Stokes and Biot equations separately. The numerical results investigate the effects of proroelastic parameters on the pressure wave propagation in arteries, filtration of incompressible fluids through the porous media, and the structure displacement. The fellowship support from the Computational Modeling & Simulation PhD program at University of Pittsburgh for Rana Zakerzadeh is gratefully acknowledged.
Fluid particle diffusion in a semidilute suspension of model micro-organisms
NASA Astrophysics Data System (ADS)
Ishikawa, Takuji; Locsei, J. T.; Pedley, T. J.
2010-08-01
We calculate non-Brownian fluid particle diffusion in a semidilute suspension of swimming micro-organisms. Each micro-organism is modeled as a spherical squirmer, and their motions in an infinite suspension otherwise at rest are computed by the Stokesian-dynamics method. In calculating the fluid particle motions, we propose a numerical method based on a combination of the boundary element technique and Stokesian dynamics. We present details of the numerical method and examine its accuracy. The limitation of semidiluteness is required to ensure accuracy of the fluid particle velocity calculation. In the case of a suspension of non-bottom-heavy squirmers the spreading of fluid particles becomes diffusive in a shorter time than that of the squirmers, and the diffusivity of fluid particles is smaller than that of squirmers. It is confirmed that the probability density distribution of fluid particles also shows diffusive properties. The effect of tracer particle size is investigated by inserting some inert spheres of the same radius as the squirmers, instead of fluid particles, into the suspension. The diffusivity for inert spheres is not less than one tenth of that for fluid particles, even though the particle size is totally different. Scaling analysis indicates that the diffusivity of fluid particles and inert spheres becomes proportional to the volume fraction of squirmers in the semidilute regime provided that there is no more than a small recirculation region around a squirmer, which is confirmed numerically. In the case of a suspension of bottom-heavy squirmers, horizontal diffusivity decreases considerably even with small values of the bottom heaviness, which indicates the importance of bottom heaviness in the diffusion phenomena. We believe that these fundamental findings will enhance our understanding of the basic mechanics of a suspension of swimming micro-organisms.
Fluid particle diffusion in a semidilute suspension of model micro-organisms.
Ishikawa, Takuji; Locsei, J T; Pedley, T J
2010-08-01
We calculate non-Brownian fluid particle diffusion in a semidilute suspension of swimming micro-organisms. Each micro-organism is modeled as a spherical squirmer, and their motions in an infinite suspension otherwise at rest are computed by the Stokesian-dynamics method. In calculating the fluid particle motions, we propose a numerical method based on a combination of the boundary element technique and Stokesian dynamics. We present details of the numerical method and examine its accuracy. The limitation of semidiluteness is required to ensure accuracy of the fluid particle velocity calculation. In the case of a suspension of non-bottom-heavy squirmers the spreading of fluid particles becomes diffusive in a shorter time than that of the squirmers, and the diffusivity of fluid particles is smaller than that of squirmers. It is confirmed that the probability density distribution of fluid particles also shows diffusive properties. The effect of tracer particle size is investigated by inserting some inert spheres of the same radius as the squirmers, instead of fluid particles, into the suspension. The diffusivity for inert spheres is not less than one tenth of that for fluid particles, even though the particle size is totally different. Scaling analysis indicates that the diffusivity of fluid particles and inert spheres becomes proportional to the volume fraction of squirmers in the semidilute regime provided that there is no more than a small recirculation region around a squirmer, which is confirmed numerically. In the case of a suspension of bottom-heavy squirmers, horizontal diffusivity decreases considerably even with small values of the bottom heaviness, which indicates the importance of bottom heaviness in the diffusion phenomena. We believe that these fundamental findings will enhance our understanding of the basic mechanics of a suspension of swimming micro-organisms.
Spherically symmetric Einstein-aether perfect fluid models
Coley, Alan A.; Latta, Joey; Leon, Genly; Sandin, Patrik E-mail: genly.leon@ucv.cl E-mail: lattaj@mathstat.dal.ca
2015-12-01
We investigate spherically symmetric cosmological models in Einstein-aether theory with a tilted (non-comoving) perfect fluid source. We use a 1+3 frame formalism and adopt the comoving aether gauge to derive the evolution equations, which form a well-posed system of first order partial differential equations in two variables. We then introduce normalized variables. The formalism is particularly well-suited for numerical computations and the study of the qualitative properties of the models, which are also solutions of Horava gravity. We study the local stability of the equilibrium points of the resulting dynamical system corresponding to physically realistic inhomogeneous cosmological models and astrophysical objects with values for the parameters which are consistent with current constraints. In particular, we consider dust models in (β−) normalized variables and derive a reduced (closed) evolution system and we obtain the general evolution equations for the spatially homogeneous Kantowski-Sachs models using appropriate bounded normalized variables. We then analyse these models, with special emphasis on the future asymptotic behaviour for different values of the parameters. Finally, we investigate static models for a mixture of a (necessarily non-tilted) perfect fluid with a barotropic equations of state and a scalar field.
Fluid-Rock Interaction Models: Code Release and Results
NASA Astrophysics Data System (ADS)
Bolton, E. W.
2006-12-01
Numerical models our group has developed for understanding the role of kinetic processes during fluid-rock interaction will be released free to the public. We will also present results that highlight the importance of kinetic processes. The author is preparing manuals describing the numerical methods used, as well as "how-to" guides for using the models. The release will include input files, full in-line code documentation of the FORTRAN source code, and instructions for use of model output for visualization and analysis. The aqueous phase (weathering) and supercritical (mixed-volatile metamorphic) fluid flow and reaction models for porous media will be released separately. These codes will be useful as teaching and research tools. The codes may be run on current generation personal computers. Although other codes are available for attacking some of the problems we address, unique aspects of our codes include sub-grid-scale grain models to track grain size changes, as well as dynamic porosity and permeability. Also, as the flow field can change significantly over the course of the simulation, efficient solution methods have been developed for the repeated solution of Poisson-type equations that arise from Darcy's law. These include sparse-matrix methods as well as the even more efficient spectral-transform technique. Results will be presented for kinetic control of reaction pathways and for heterogeneous media. Codes and documentation for modeling intra-grain diffusion of trace elements and isotopes, and exchange of these between grains and moving fluids will also be released. The unique aspect of this model is that it includes concurrent diffusion and grain growth or dissolution for multiple mineral types (low-diffusion regridding has been developed to deal with the moving-boundary problem at the fluid/mineral interface). Results for finite diffusion rates will be compared to batch and fractional melting models. Additional code and documentation will be released
NASA Astrophysics Data System (ADS)
Trejos, Víctor M.; Gil-Villegas, Alejandro
2012-05-01
Thermodynamic properties of quantum fluids are described using an extended version of the statistical associating fluid theory for potentials of variable range (SAFT-VR) that takes into account quantum corrections to the Helmholtz free energy A, based on the Wentzel-Kramers-Brillouin approximation. We present the theoretical background of this approach (SAFT-VRQ), considering two different cases depending on the continuous or discontinuous nature of the particles pair interaction. For the case of continuous potentials, we demonstrate that the standard Wigner-Kirkwood theory for quantum fluids can be derived from the de Broglie-Bohm formalism for quantum mechanics that can be incorporated within the Barker and Henderson perturbation theory for liquids in a straightforward way. When the particles interact via a discontinuous pair potential, the SAFT-VR method can be combined with the perturbation theory developed by Singh and Sinha [J. Chem. Phys. 67, 3645 (1977); Singh and Sinha J. Chem. Phys. 68, 562 (1978)]. We present an analytical expression for the first-order quantum perturbation term for a square-well potential, and the theory is applied to model thermodynamic properties of hydrogen, deuterium, neon, and helium-4. Vapor-liquid equilibrium, liquid and vapor densities, isochoric and isobaric heat capacities, Joule-Thomson coefficients and inversion curves are predicted accurately with respect to experimental data. We find that quantum corrections are important for the global behavior of properties of these fluids and not only for the low-temperature regime. Predictions obtained for hydrogen compare very favorably with respect to cubic equations of state.
Trejos, Víctor M; Gil-Villegas, Alejandro
2012-05-14
Thermodynamic properties of quantum fluids are described using an extended version of the statistical associating fluid theory for potentials of variable range (SAFT-VR) that takes into account quantum corrections to the Helmholtz free energy A, based on the Wentzel-Kramers-Brillouin approximation. We present the theoretical background of this approach (SAFT-VRQ), considering two different cases depending on the continuous or discontinuous nature of the particles pair interaction. For the case of continuous potentials, we demonstrate that the standard Wigner-Kirkwood theory for quantum fluids can be derived from the de Broglie-Bohm formalism for quantum mechanics that can be incorporated within the Barker and Henderson perturbation theory for liquids in a straightforward way. When the particles interact via a discontinuous pair potential, the SAFT-VR method can be combined with the perturbation theory developed by Singh and Sinha [J. Chem. Phys. 67, 3645 (1977); and ibid. 68, 562 (1978)]. We present an analytical expression for the first-order quantum perturbation term for a square-well potential, and the theory is applied to model thermodynamic properties of hydrogen, deuterium, neon, and helium-4. Vapor-liquid equilibrium, liquid and vapor densities, isochoric and isobaric heat capacities, Joule-Thomson coefficients and inversion curves are predicted accurately with respect to experimental data. We find that quantum corrections are important for the global behavior of properties of these fluids and not only for the low-temperature regime. Predictions obtained for hydrogen compare very favorably with respect to cubic equations of state.
Toward Quantitative Coarse-Grained Models of Lipids with Fluids Density Functional Theory.
Frink, Laura J Douglas; Frischknecht, Amalie L; Heroux, Michael A; Parks, Michael L; Salinger, Andrew G
2012-04-10
We describe methods to determine optimal coarse-grained models of lipid bilayers for use in fluids density functional theory (fluids-DFT) calculations. Both coarse-grained lipid architecture and optimal parametrizations of the models based on experimental measures are discussed in the context of dipalmitoylphosphatidylcholine (DPPC) lipid bilayers in water. The calculations are based on a combination of the modified-iSAFT theory for bonded systems and an accurate fundamental measures theory (FMT) for hard sphere reference fluids. We furthermore discuss a novel approach for pressure control in the fluids-DFT calculations that facilitates both partitioning studies and zero tension control for the bilayer studies. A detailed discussion of the numerical implementations for both solvers and pressure control capabilities are provided. We show that it is possible to develop a coarse-grained lipid bilayer model that is consistent with experimental properties (thickness and area per lipid) of DPPC provided that the coarse-graining is not too extreme. As a final test of the model, we find that the predicted area compressibility moduli and lateral pressure profiles of the optimized models are in reasonable agreement with prior results.
Fluid flow and heat transfer modeling for castings
Domanus, H.M.; Liu, Y.Y.; Sha, W.T.
1986-01-01
Casting is fundamental to manufacturing of many types of equipment and products. Although casting is a very old technology that has been in existence for hundreds of years, it remains a highly empirical technology, and production of new castings requires an expensive and time-consuming trial-and-error approach. In recent years, mathematical modeling of casting has received increasing attention; however, a majority of the modeling work has been in the area of heat transfer and solidification. Very little work has been done in modeling fluid flow of the liquid melt. This paper presents a model of fluid flow coupled with heat transfer of a liquid melt for casting processes. The model to be described in this paper is an extension of the COMMIX code and is capable of handling castings with any shape, size, and material. A feature of this model is the ability to track the liquid/gas interface and liquid/solid interface. The flow of liquid melt through the sprue and runners and into the mold cavity is calculated as well as three-dimensional temperature and velocity distributions of the liquid melt throughout the casting process. 14 refs., 13 figs.
Base fluid in improving heat transfer for EV car battery
NASA Astrophysics Data System (ADS)
Bin-Abdun, Nazih A.; Razlan, Zuradzman M.; Shahriman, A. B.; Wan, Khairunizam; Hazry, D.; Ahmed, S. Faiz; Adnan, Nazrul H.; Heng, R.; Kamarudin, H.; Zunaidi, I.
2015-05-01
This study examined the effects of base fluid (as coolants) channeling inside the heat exchanger in the process of the increase in thermal conductivity between EV car battery and the heat exchanger. The analysis showed that secondary cooling system by means of water has advantages in improving the heat transfer process and reducing the electric power loss on the form of thermal energy from batteries. This leads to the increase in the efficiency of the EV car battery, hence also positively reflecting the performance of the EV car. The present work, analysis is performed to assess the design and use of heat exchanger in increasing the performance efficiency of the EV car battery. This provides a preface to the use this design for nano-fluids which increase and improve from heat transfer.
A two-phase solid/fluid model for dense granular flows including dilatancy effects
NASA Astrophysics Data System (ADS)
Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Koné, El-Hadj; Narbona-Reina, Gladys
2016-04-01
Describing grain/fluid interaction in debris flows models is still an open and challenging issue with key impact on hazard assessment [{Iverson et al.}, 2010]. We present here a two-phase two-thin-layer model for fluidized debris flows that takes into account dilatancy effects. It describes the velocity of both the solid and the fluid phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure [{Bouchut et al.}, 2016]. The model is derived from a 3D two-phase model proposed by {Jackson} [2000] based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work [{Bouchut et al.}, 2015]. In particular, {Pitman and Le} [2005] replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's model by closing the mixture equations by a weak compressibility relation following {Roux and Radjai} [1998]. This relation implies that the occurrence of dilation or contraction of the granular material in the model depends on whether the solid volume fraction is respectively higher or lower than a critical value. When dilation occurs, the fluid is sucked into the granular material, the pore pressure decreases and the friction force on the granular phase increases. On the contrary, in the case of contraction, the fluid is expelled from the mixture, the pore pressure increases and the friction force diminishes. To
Acoustic intensity calculations for axisymmetrically modeled fluid regions
NASA Technical Reports Server (NTRS)
Hambric, Stephen A.; Everstine, Gordon C.
1992-01-01
An algorithm for calculating acoustic intensities from a time harmonic pressure field in an axisymmetric fluid region is presented. Acoustic pressures are computed in a mesh of NASTRAN triangular finite elements of revolution (TRIAAX) using an analogy between the scalar wave equation and elasticity equations. Acoustic intensities are then calculated from pressures and pressure derivatives taken over the mesh of TRIAAX elements. Intensities are displayed as vectors indicating the directions and magnitudes of energy flow at all mesh points in the acoustic field. A prolate spheroidal shell is modeled with axisymmetric shell elements (CONEAX) and submerged in a fluid region of TRIAAX elements. The model is analyzed to illustrate the acoustic intensity method and the usefulness of energy flow paths in the understanding of the response of fluid-structure interaction problems. The structural-acoustic analogy used is summarized for completeness. This study uncovered a NASTRAN limitation involving numerical precision issues in the CONEAX stiffness calculation causing large errors in the system matrices for nearly cylindrical cones.
Magnetic Capture of a Molecular Biomarker from Synovial Fluid in a Rat Model of Knee Osteoarthritis.
Yarmola, Elena G; Shah, Yash; Arnold, David P; Dobson, Jon; Allen, Kyle D
2016-04-01
Biomarker development for osteoarthritis (OA) often begins in rodent models, but can be limited by an inability to aspirate synovial fluid from a rodent stifle (similar to the human knee). To address this limitation, we have developed a magnetic nanoparticle-based technology to collect biomarkers from a rodent stifle, termed magnetic capture. Using a common OA biomarker--the c-terminus telopeptide of type II collagen (CTXII)--magnetic capture was optimized in vitro using bovine synovial fluid and then tested in a rat model of knee OA. Anti-CTXII antibodies were conjugated to the surface of superparamagnetic iron oxide-containing polymeric particles. Using these anti-CTXII particles, magnetic capture was able to estimate the level of CTXII in 25 μL aliquots of bovine synovial fluid; and under controlled conditions, this estimate was unaffected by synovial fluid viscosity. Following in vitro testing, anti-CTXII particles were tested in a rat monoiodoacetate model of knee OA. CTXII could be magnetically captured from a rodent stifle without the need to aspirate fluid and showed tenfold changes in CTXII levels from OA-affected joints relative to contralateral control joints. Combined, these data demonstrate the ability and sensitivity of magnetic capture for post-mortem analysis of OA biomarkers in the rat. PMID:26136062
Green Algae as Model Organisms for Biological Fluid Dynamics*
Goldstein, Raymond E.
2015-01-01
In the past decade the volvocine green algae, spanning from the unicellular Chlamydomonas to multicellular Volvox, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 μm to several millimetres), their geometric regularity, the ease with which they can be cultured and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms. PMID:26594068
Green Algae as Model Organisms for Biological Fluid Dynamics
NASA Astrophysics Data System (ADS)
Goldstein, Raymond E.
2015-01-01
In the past decade, the volvocine green algae, spanning from the unicellular Chlamydomonas to multicellular Volvox, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 μm to several millimeters), their geometric regularity, the ease with which they can be cultured, and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms.
A mathematical model of post-instability in fluid mechanics
NASA Technical Reports Server (NTRS)
Zak, M. A.
1982-01-01
Postinstability of fluids is eliminated in numerical models by introducing multivalued velocity fields after discarding the principle of impenetrability. Smooth functions are shown to be incapable of keeping the derivatives from going towards infinity when iterating solutions for the governing equations such as those defined by Navier-Stokes. Enlarging the class of functions is shown to be necessary to eliminate the appearance of imaginary characteristic roots in the systems of arbitrary partial differential equations, a condition which leads to physically impossible motions. The enlarging is demonstrated to be achievable by allowing several individual particles with different velocities to appear at the same point of space, and the subsequent multivaluedness of the solutions is purely a mathematical concern, rather than one of actual physical existence. Applications are provided for an inviscid fluid and for turbulence.
40 CFR Appendix 3 to Subpart A of... - Procedure for Mixing Base Fluids With Sediments
Code of Federal Regulations, 2011 CFR
2011-07-01
... homogenized before density determinations and addition of base fluid to control sediment. Because base fluids... approximately 10 g subsamples of the screened and homogenized wet sediment into tared aluminum weigh pans....
Roughness and growth in a continuous fluid invasion model
NASA Astrophysics Data System (ADS)
Hecht, Inbal; Taitelbaum, Haim
2004-10-01
We have studied interface characteristics in a continuous fluid invasion model, first introduced by Cieplak and Robbins [Phys. Rev. Lett. 60, 2042 (1988)]. In this model, the interface grows as a response to an applied quasistatic pressure, which induces various types of instabilities. We suggest a variant of the model, which differs from the original model by the order of instabilities treatment. This order represents the relative importance of the physical mechanisms involved in the system. This variant predicts the existence of a third, intermediate regime, in the behavior of the roughness exponent as a function of the wetting properties of the system. The gradual increase of the roughness exponent in this third regime can explain the scattered experimental data for the roughness exponent in the literature. The growth exponent in this model was found to be around zero, due to the initial rough interface.
Viscoelastic models with consistent hypoelasticity for fluids undergoing finite deformations
NASA Astrophysics Data System (ADS)
Altmeyer, Guillaume; Rouhaud, Emmanuelle; Panicaud, Benoit; Roos, Arjen; Kerner, Richard; Wang, Mingchuan
2015-08-01
Constitutive models of viscoelastic fluids are written with rate-form equations when considering finite deformations. Trying to extend the approach used to model these effects from an infinitesimal deformation to a finite transformation framework, one has to ensure that the tensors and their rates are indifferent with respect to the change of observer and to the superposition with rigid body motions. Frame-indifference problems can be solved with the use of an objective stress transport, but the choice of such an operator is not obvious and the use of certain transports usually leads to physically inconsistent formulation of hypoelasticity. The aim of this paper is to present a consistent formulation of hypoelasticity and to combine it with a viscosity model to construct a consistent viscoelastic model. In particular, the hypoelastic model is reversible.
NASA Astrophysics Data System (ADS)
Gangwar, Rahul Kumar; Bhardwaj, Vanita; Singh, Vinod Kumar
2016-02-01
We reported the modeling result of selectively magnetic fluid infiltrated dual-core photonic crystal fiber based magnetic field sensor. Inside the cross-section of the designed photonic crystal fiber, the two fiber cores filled with magnetic fluid (Fe3O4) form two independent waveguides with mode coupling. The mode coupling under different magnetic field strengths is investigated theoretically. The sensitivity of the sensor as a function of the structural parameters of the photonic crystal fiber is calculated. The result shows that the proposed sensing device with 1 cm photonic crystal fiber length has a large sensitivity of 305.8 pm/Oe.
One-dimensional cloud fluid model for propagating star formation
NASA Technical Reports Server (NTRS)
Titus, Timothy N.; Struck-Marcell, Curtis
1990-01-01
The aim of this project was to study the propagation of star formation (SF) with a self-consistent deterministic model for the interstellar gas. The questions of under what conditions does star formation propagate in this model and what are the mechanisms of the propagation are explored. Here, researchers used the deterministic Oort-type cloud fluid model of Scalo and Struck-Marcell (1984, also see the review of Struck-Marcell, Scalo and Appleton 1987). This cloud fluid approach includes simple models for the effects of cloud collisional coalescence or disruption, collisional energy dissipation, and cloud disruption and acceleration as the result of young star winds, HII regions and supernovae. An extensive one-zone parameter study is presented in Struck-Marcell and Scalo (1987). To answer the questions above, researchers carried out one-dimensional calculations for an annulus within a galactic disk, like the so-called solar neighborhood of the galactic chemical evolution. In the calculations the left-hand boundary is set equal to the right hand boundary. The calculation is obviously idealized; however, it is computationally convenient to study the first order effects of propagating star formation. The annulus was treated as if it were at rest, i.e., in the local rotating frame. This assumption may remove some interesting effects of a supersonic gas flow, but was necessary to maintain a numerical stability in the annulus. The results on the one-dimensional propagation of SF in the Oort cloud fluid model follow: (1) SF is propagated by means of hydrodynamic waves, which can be generated by external forces or by the pressure generated by local bursts. SF is not effectively propagated via diffusion or variation in cloud interaction rates without corresponding density and velocity changes. (2) The propagation and long-range effects of SF depend on how close the gas density is to the critical threshold value, i.e., on the susceptibility of the medium.
GIS-based mapping for marine geohazards in seabed fluid leakage areas (Gulf of Cadiz, Spain)
NASA Astrophysics Data System (ADS)
León, Ricardo; Somoza, Luis
2011-03-01
This paper applies, for the first time in offshore deepwater, a method based on geographic information systems for seafloor susceptibility assessment as a first approach to marine geohazard mapping in fluid leakage areas (slope instabilities, gas escapes, seabed collapses, pockmarks, etc.). The assessment was carried out in a known seabed fluid-flow province located on the Iberian margin of the Gulf of Cádiz, Spain. The method (based on statistical bivariate analysis) creates a susceptibility map that defines the likelihood of occurrence of seafloor features related to fluid flow: crater-like depressions and submarine landslides. It is based on the statistical index ( Wi) method (Van Westen in Statistical landslide hazard analysis. ILWIS 2.1 for Windows application guide. ITC Publication, Enschede, pp 73-84, 1997), in which Wi is a function of the cartographic density of seafloor features on "factor maps". The factors selected monitor the seafloor's capability to store and transfer hydrocarbon gases and gravitational instability triggers: geology-lithology, gas hydrate stability zone thickness (temperature, pressure-water depth and geothermal gradient), occurrence of diapirs, proximity to faults or lineaments, and slope angle of the seafloor. Results show that the occurrence of seafloor features related to fluid flow is highest where the factors "gas source and storage" and "pathways of fluid escape" converge. This means that they are particularly abundant over diapirs in contourite deposits, in the vicinity of faults, and inside theoretical gas hydrate stability fields thinned by warm undercurrents. Furthermore, the submarine landslides located on the Palaeozoic-Toarcian basement are not related to fluid leakage. This methodology provides helpful information for hazard mitigation in regional selection of potential drill sites, deep-water construction sites or pipeline routes. It is an easily applied and useful tool for taking the first step in risk assessment on
Forward-in-time differencing for fluids: Nonhydrostatic modeling of fluid motions on a sphere
Smolarkiewicz, P.K.; Grubisic, V.; Margolin, L.G.; Wyszogrodzki, A.A. |
1998-12-31
Traditionally, numerical models for simulating planetary scale weather and climate employ the hydrostatic primitive equations--an abbreviated form of Navier-Stokes` equations that neglect vertical accelerations and use simplified Coriolis forces. Although there is no evidence so far that including nonhydrostatic effects in global models has any physical significance for large scale solutions, there is an emerging trend in the community toward restoring Navier-Stokes` equations (or at least their less constrained forms) in global models of atmospheres and oceans. The primary motivation is that state-of-the-art computers already admit resolutions where local nonhydrostatic effects become noticeable. much of this present research aims to improve the design of a high-performance numerical model for simulating the flows of moist (and precipitating), rotating, stratified fluids past a specified time-dependent irregular lower boundary. This model is representative of a class of nonhydrostatic atmospheric codes that employs the anelastic equations of motion in a terrain-following curvilinear framework, and contains parallel implementations of semi-Lagrangian and Eulerian approximations selectable by the user. The model has been employed in a variety of application; the quality of results suggest that modern nonoscillatory forward-in-time (NFT) methods are superior to the more traditional centered-in-time-and-space schemes, in terms of accuracy, computational efficiency, flexibility and robustness. The authors have extended the Cartesian NFT model to a mountainous sphere and, consequently, have dispensed with the traditional geophysical simplifications of hydrostaticity, gentle terrain slopes, and weak rotation. In this paper, they discuss the algorithmic design, relative efficiency and accuracy of several different variants (hydrostatic, nonhydrostatic, implicit, explicit, etc.) of the NFT global model. They substantiate their theoretical discussions with the results of
NASA Technical Reports Server (NTRS)
Majumdar, Alok K.; LeClair, Andre C.; Hedayat, Ali
2016-01-01
This paper presents a numerical model of pressurization of a cryogenic propellant tank for the Integrated Vehicle Fluid (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) has been running tests to verify the functioning of the IVF system using a flight tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to develop an integrated model of the tank and the pressurization system. This paper presents an iterative algorithm for converging the interface boundary conditions between different component models of a large system model. The model results have been compared with test data.
Magnetorheology of dimorphic magnetorheological fluids based on nanofibers
NASA Astrophysics Data System (ADS)
Bombard, Antonio J. F.; Gonçalves, Flavia R.; Morillas, Jose R.; de Vicente, Juan
2014-12-01
We report a systematic experimental investigation on the use of nanofibers to enhance the magnetorheological (MR) effect in conventional (microsphere-based) MR fluids formulated in polyalphaolefin oil/1-octanol. Two kinds of nanofibers are employed that have very similar morphology but very different magnetic properties. On the one hand we use non-magnetic goethite nanofibers. On the other hand we employ magnetic chromium dioxide nanofibers. For appropriate concentrations the on-state relative yield stress increases up to 80% when incorporating the nanofibers in the formulation. A similar yield stress enhancement is found for both nanofibers investigated (magnetic and non-magnetic) suggesting that the main factor behind this MR enhancement is the particle shape anisotropy. The relative yield stresses obtained by partial substitution of carbonyl iron particles with nanofibers are significantly larger than those measured in previous works on MR fluids formulated by partial substitution with non-magnetic micronsized spherical particles. We also demonstrate that these dimorphic MR fluids also exhibit remarkably larger long-term sedimentation stability while keeping the same penetration and redispersibility characteristics.
Plate-like iron particles based bidisperse magnetorheological fluid
NASA Astrophysics Data System (ADS)
Shah, Kruti; Oh, Jong-Seok; Choi, Seung-Bok; Upadhyay, R. V.
2013-12-01
Magnetorheological (MR) properties are experimentally investigated for bi-dispersion suspension of plate-like iron magnetic particles dispersed in carrier liquid to see the influence of small size particle on large size MR fluid. As a first step, structural, magnetic, and morphology of two different micron size magnetic particles are described in details. The three different weight fractions of MR fluid samples are then prepared, followed by measuring their magneto-viscous and visco-elastic properties. In the steady-state shear, the Bingham yield stress obtained by extrapolating the shear stress to the zero shear rate increases by augmenting the weight fraction of small micron size magnetic particles and the strength of magnetic field. In the oscillatory strain sweep test at an angular frequency of 10 rad s-1, a transition from visco-elastic solid to visco-elastic liquid is observed and a strong chain formation is proposed to explain the mechanism for transition. The storage modulus also increases with increasing weight fraction. From the frequency sweep test, the storage modulus is seen as independent of frequency, but depends on the magnetic field strength and weight fraction. The magneto-viscous sweep test indicates that both shear modulus and complex viscosity are independent with weight fraction at a high magnetic field. This experimental study reveals some very important physical parameters, rheological properties, and storage modulus of the plate-like iron particles based on MR fluid. The formation of less compact because of the anisotropy in iron particle creates weak sedimentation and good redispersibility of MR fluid. The results presented in this work are the key factors for devising how mechanical applications operated under static and dynamic conditions.
Third-order thermodynamic perturbation theory for effective potentials that model complex fluids
NASA Astrophysics Data System (ADS)
Zhou, Shiqi; Solana, J. R.
2008-08-01
We have performed Monte Carlo simulations to obtain the thermodynamic properties of fluids with two kinds of hard-core plus attractive-tail or oscillatory potentials. One of them is the square-well potential with small well width. The other is a model potential with oscillatory and decaying tail. Both model potentials are suitable for modeling the effective potential arising in complex fluids and fluid mixtures with extremely-large-size asymmetry, as is the case of the solvent-induced depletion interactions in colloidal dispersions. For the former potential, the compressibility factor, the excess energy, the constant-volume excess heat capacity, and the chemical potential have been obtained. For the second model potential only the first two of these quantities have been obtained. The simulations cover the whole density range for the fluid phase and several temperatures. These simulation data have been used to test the performance of a third-order thermodynamic perturbation theory (TPT) recently developed by one of us [S. Zhou, Phys. Rev. E 74, 031119 (2006)] as compared with the well-known second-order TPT based on the macroscopic compressibility approximation due to Barker and Henderson. It is found that the first of these theories provides much better accuracy than the second one for all thermodynamic properties analyzed for the two effective potential models.
Lattice-fluid model for gas-liquid chromatography.
Tao, Y; Wells, P S; Yi, X; Yun, K S; Parcher, J F
1999-11-01
Lattice-fluid models describe molecular ensembles in terms of the number of lattice sites occupied by molecular species (r-mers) and the interactions between neighboring molecules. The lattice-fluid model proposed by Sanchez and Lacombe (Macromolecules, 1978;11:1145-1156) was used to model specific retention volume data for a series of n-alkane solutes with n-alkane, polystyrene, and poly(dimethylsiloxane) stationary liquid phases. Theoretical equations were derived for the specific retention volume and also for the temperature dependence and limiting (high temperature) values for the specific retention volume. The model was used to predict retention volumes within 10% for the n-alkanes phases; 22% for polystyrene; and from 20 to 70% for PDMS using no adjustable parameters. The temperature derivative (enthalpy) could be calculated within 5% for all of the solutes in nine stationary liquid phases. The limiting value for the specific retention volume at high temperature (entropy controlled state) could be calculated within 10% for all of the systems. The limiting data also provided a new chromatographic method to measure the size parameter, r, for any chromatographic solute using characteristic and size parameters for the stationary phase only. The calculated size parameters of the solutes were consistent, i.e. independent of the stationary phase and agreed within experimental error with the size parameters previously reported from saturated vapor pressure, latent heat of vaporization or density data.
A model for restricted diffusion in complex fluids
NASA Astrophysics Data System (ADS)
de Bruyn, John; Wylie, Jonathan
2014-03-01
We use a model originally due to Tanner to study the diffusion of tracer particles in complex fluids both analytically and through Monte-Carlo simulations. The model consists of regions through which the particles diffuse freely, separated by membranes with a specified low permeability. The mean squared displacement of the particles calculated from the model agrees well with experimental data on the diffusion of particles in a concentrated colloidal suspension when the membrane permeability is used as an adjustable parameter. Data on a micro-phase-separated polymer system can be well modeled by considering two populations of particles constrained by membranes with different permeabilites. Supported by the Hong Kong Research Grants Council and the Natural Sciences and Engineering Research Council of Canada.
Fluid-Gravity Model for the Chiral Magnetic Effect
Kalaydzhyan, Tigran; Kirsch, Ingo
2011-05-27
We consider the STU model as a gravity dual of a strongly coupled plasma with multiple anomalous U(1) currents. In the bulk we add additional background gauge fields to include the effects of external electric and magnetic fields on the plasma. Reducing the number of chemical potentials in the STU model to two and interpreting them as quark and chiral chemical potential, we obtain a holographic description of the chiral magnetic and chiral vortical effects (CME and CVE) in relativistic heavy-ion collisions. These effects formally appear as first-order transport coefficients in the electromagnetic current. We compute these coefficients from our model using fluid-gravity duality. We also find analogous effects in the axial-vector current. Finally, we briefly discuss a variant of our model, in which the CME/CVE is realized in the late-time dynamics of an expanding plasma.
Fluid-gravity model for the chiral magnetic effect.
Kalaydzhyan, Tigran; Kirsch, Ingo
2011-05-27
We consider the STU model as a gravity dual of a strongly coupled plasma with multiple anomalous U(1) currents. In the bulk we add additional background gauge fields to include the effects of external electric and magnetic fields on the plasma. Reducing the number of chemical potentials in the STU model to two and interpreting them as quark and chiral chemical potential, we obtain a holographic description of the chiral magnetic and chiral vortical effects (CME and CVE) in relativistic heavy-ion collisions. These effects formally appear as first-order transport coefficients in the electromagnetic current. We compute these coefficients from our model using fluid-gravity duality. We also find analogous effects in the axial-vector current. Finally, we briefly discuss a variant of our model, in which the CME/CVE is realized in the late-time dynamics of an expanding plasma. PMID:21699286
Computational modeling of fluid structural interaction in arterial stenosis
NASA Astrophysics Data System (ADS)
Bali, Leila; Boukedjane, Mouloud; Bahi, Lakhdar
2013-12-01
Atherosclerosis affects the arterial blood vessels causing stenosis because of which the artery hardens resulting in loss of elasticity in the affected region. In this paper, we present: an approach to model the fluid-structure interaction through such an atherosclerosis affected region of the artery, The blood is assumed as an incompressible Newtonian viscous fluid, and the vessel wall was treated as a thick-walled, incompressible and isotropic material with uniform mechanical properties. The numerical simulation has been studied in the context of The Navier-Stokes equations for an interaction with an elastic solid. The study of fluid flow and wall motion was initially carried out separately, Discretized forms of the transformed wall and flow equations, which are coupled through the boundary conditions at their interface, are obtained by control volume method and simultaneously to study the effects of wall deformability, solutions are obtained for both rigid and elastic walls. The results indicate that deformability of the wall causes an increase in the time average of pressure drop, but a decrease in the maximum wall shear stress. Displacement and stress distributions in the wall are presented.
An Anisotropic Fluid-Solid Model of the Mouse Heart
Carson, James P.; Kuprat, Andrew P.; Jiao, Xiangmin; del Pin, Facundo; Einstein, Daniel R.
2010-01-01
A critical challenge in biomechanical simulations is the spatial discretization of complex fluid-solid geometries created from imaging. This is especially important when dealing with Lagrangian interfaces, as there must be at a minimum both geometric and topological compatibility between fluid and solid phases, with exact matching of the interfacial nodes being highly desirable. We have developed a solution to this problem and applied the approach to the creation of a 3D fluidsolid mesh of the mouse heart. First, a 50 micron isotropic MRI dataset of a perfusion-fixed mouse heart was segmented into blood, tissue, and background using a customized multimaterial connected fuzzy thresholding algorithm. Then, a multimaterial marching cubes algorithm was applied to produce two compatible isosurfaces, one for the blood-tissue boundary and one for the tissue-background boundary. A multimaterial smoothing algorithm that rigorously conserves volume for each phase simultaneously smoothed the isosurfaces. Next we applied novel automated meshing algorithms to generate anisotropic hybrid meshes with the number of layers and the desired element anisotropy for each material as the only input parameters. As the meshes are scale-invariant within a material and include boundary layer prisms, fluid-structure interaction computations would have a relative error equilibrated over the entire mesh. The resulting model is highly detailed mesh representation of the mouse heart, including features such as chordae and coronary vasculature, that is also maximally efficient to produce the best simulation results for the computational resources available
Modelling cavitation erosion using fluid-material interaction simulations.
Chahine, Georges L; Hsiao, Chao-Tsung
2015-10-01
Material deformation and pitting from cavitation bubble collapse is investigated using fluid and material dynamics and their interaction. In the fluid, a novel hybrid approach, which links a boundary element method and a compressible finite difference method, is used to capture non-spherical bubble dynamics and resulting liquid pressures efficiently and accurately. The bubble dynamics is intimately coupled with a finite-element structure model to enable fluid/structure interaction simulations. Bubble collapse loads the material with high impulsive pressures, which result from shock waves and bubble re-entrant jet direct impact on the material surface. The shock wave loading can be from the re-entrant jet impact on the opposite side of the bubble, the fast primary collapse of the bubble, and/or the collapse of the remaining bubble ring. This produces high stress waves, which propagate inside the material, cause deformation, and eventually failure. A permanent deformation or pit is formed when the local equivalent stresses exceed the material yield stress. The pressure loading depends on bubble dynamics parameters such as the size of the bubble at its maximum volume, the bubble standoff distance from the material wall and the pressure driving the bubble collapse. The effects of standoff and material type on the pressure loading and resulting pit formation are highlighted and the effects of bubble interaction on pressure loading and material deformation are preliminarily discussed.
NASA Astrophysics Data System (ADS)
XUE, Chunji; CHI, Guoxiang; CHEN, Yuchuan; ZENG, Rong; GAO, Yongbao; QING, Hairuo
The Lanping basin, Yunnan, SW China, is known for the giant Jinding Zn-Pb deposit and the newly-discovered Baiyangping Cu-Co-Ag super-large deposit. With a reserve of ˜ 200 Mt ore grading 6.08% Zn and 1.29% Pb (i.e., a metal reserve of ˜ 15 Mt) hosted in Cretaceous and Tertiary terrestrial rocks, the Jinding deposit is the largest Zn-Pb deposit in China, and also the youngest sediment-hosted and the only continental sediment-hosted super-large Zn-Pb deposit in the world. Differing from the known major types of sediment-hosted Zn-Pb deposits in the world, including SST, MVT and Sedex, the Jinding deposit represents a new type of sediment-hosted Zn-Pb deposits. Most previous studies assumed that the mineralizing fluids were derived from within the basin and the fluid flow was driven by topographic relief under a hydrostatic regime. However, the observations of hydraulic fractures and fluid inclusion data indicate that the mineralizing fluid system was strongly over-pressured. The study of fluid inclusions in sphalerites and associated gangue minerals (quartz, celestite, calcite, and gypsum) shows that homogenization temperatures cluster around 110-150°C, with salinities of 1.6-18.0 wt% NaCl equivalent. The fluid temperature increases with the decrease of salinities during the main ore stages, and there is a systematic westward decrease in temperature and increase in salinity in the Jinding ore district. Fluid pressures as high as (513-1364) × 10 5 Pa are indicated by CO 2-rich fluid inclusions. The basin fluid dynamic modeling results indicate that the overpressures could not have been produced by normal sediment compaction, and the overpressure related to the thrusting may not be enough to explain the high fluid pressures indicated by fluid inclusions. The injection of mantle-derived fluids is likely responsible for the building-up of the high overpressures. The mixing of two types of fluids in a structural-lithologic trap may have been the key dynamic process
Application of Ester based Drilling Fluid for Shale Gas Drilling
NASA Astrophysics Data System (ADS)
Sauki, Arina; Safwan Zazarli Shah, Mohamad; Bakar, Wan Zairani Wan
2015-05-01
Water based mud is the most commonly used mud in drilling operation. However, it is ineffective when dealing with water-sensitive shale that can lead to shale hydration, consequently wellbore instability is compromised. The alternative way to deal with this kind of shale is using synthetic-based mud (SBM) or oil-based mud (OBM). OBM is the best option in terms of technical requirement. Nevertheless, it is toxic and will create environmental problems when it is discharged to onshore or offshore environment. SBM is safer than the OBM. The aim of this research is to formulate a drilling mud system that can carry out its essential functions for shale gas drilling to avoid borehole instability. Ester based SBM has been chosen for the mud formulation. The ester used is methyl-ester C12-C14 derived from palm oil. The best formulation of ester-based drilling fluid was selected by manipulating the oil-water ratio content in the mud which are 70/30, 80/20 and 90/10 respectively. The feasibility of using this mud for shale gas drilling was investigated by measuring the rheological properties, shale reactivity and toxicity of the mud and the results were compared with a few types of OBM and WBM. The best rheological performance can be seen at 80/20 oil-water ratio of ester based mud. The findings revealed that the rheological performance of ester based mud is comparable with the excellent performance of sarapar based OBM and about 80% better than the WBM in terms of fluid loss. Apart from that, it is less toxic than other types of OBM which can maintain 60% prawn's survival even after 96 hours exposure in 100,000 ppm of mud concentration in artificial seawater.
Equivalent Liénard-type models for a fluid transmission line
NASA Astrophysics Data System (ADS)
Torres, Lizeth; Aguiñaga, Jorge Alejandro Delgado; Besançon, Gildas; Verde, Cristina; Begovich, Ofelia
2016-08-01
The main contribution of this paper is the derivation of spatiotemporal Liénard-type models for expressing the dynamical behavior of a fluid transmission line. The derivation is carried out from a quasilinear hyperbolic system made of a momentum equation and a continuity one. An advantage of these types of models is that they are suitable for formulating estimation algorithms. This claim is confirmed in the present paper for the case of fluid dynamics, since the article presents the conception and evaluation of a Liénard model-based observer that estimates the parameters of a pipeline such as the friction factor, the equivalent length and the wave speed. To show the potentiality of the approach, results based on some simulation and experimental tests are presented. xml:lang="fr"
A model for data analysis of microRNA expression in forensic body fluid identification.
Wang, Zheng; Luo, Haibo; Pan, Xiongfei; Liao, Miao; Hou, Yiping
2012-05-01
MicroRNAs (miRNAs, 18-25 bases in length) are small, non-coding RNAs that regulate gene expression at the post-transcriptional level. MiRNA expression patterns, including presence and relative abundance of particular miRNA species, provide cell- and tissue-specific information that can be used for body fluid identification. Recently, two published studies reported that a number of body fluid-specific miRNAs had been identified. However, the results were inconsistent when different technology platforms and statistical methods were applied. To further study the role of miRNAs in identification of body fluids, this study sets out to develop an accurate and reliable model for data analysis of miRNA expression. To that end, the relative expression levels of three miRNAs were studied using the mirVana™ miRNA Isolation Kit, high-specificity stem-loop reverse transcription (RT) and high-sensitivity hydrolysis probes (TaqMan) quantitative real-time polymerase chain reaction (qPCR) in forensically relevant biological fluids, including venous blood, vaginal secretions, menstrual blood, semen and saliva. Accurate quantification of miRNAs requires not only a highly sensitive and specific detection platform for experiment operation, but also a reproducible methodology with an adequate model for data analysis. In our study, the efficiency-calibrated model that incorporated the impact of the quantification cycle (Cq) values and PCR efficiencies of target and reference genes was developed to calculate the relative expression ratio of miRNAs in forensically relevant body fluids. Our results showed that venous blood was distinguished from other body fluids according to the relative expression ratio of miR16 using as little as 50pg of total RNA, while the expression level of miR658 was unstable and that of miR205 was nonspecific among different body fluids. Collectively, the findings may constitute a basis for future miRNA-based research on body fluid identification and show mi
Computational Fluid Dynamics-Based Aeroservoelastic Analysis with Hyper-X Applications
NASA Technical Reports Server (NTRS)
Gupta, K. K.; Bach, C.
2007-01-01
A finite element computational fluids dynamics-based aeroservoelastic analysis methodology is presented in this paper, in which both structural and fluids discretization are achieved by the finite element method, and their interaction is modeled by the transpiration boundary condition technique. In the fluids discipline either inviscid or viscous flow may be accounted for, usually employing unstructured grids.Adescription of a novel viscous flow solver employing unstructured grids is given in detail. Provisions are made for digital as well as analog controllers. These new aeroservoelastic analysis techniques are next applied for the solution of a number of example problems including the novel Hyper-X launch vehicle. Experimental and actual flight test data are also compared with analysis results that signify to the efficacy and accuracy of the newly developed solution procedures.
NASA Astrophysics Data System (ADS)
Hurlbatt, A.; O'Connell, D.; Gans, T.
2016-08-01
Analytical and numerical models allow investigation of complicated discharge phenomena and the interplay that makes plasmas such a complex environment. Global models are quick to implement and can have almost negligible computation cost, but provide only bulk or spatially averaged values. Full fluid models take longer to develop, and can take days to solve, but provide accurate spatio-temporal profiles of the whole plasma. The work presented here details a different type of model, analytically similar to fluid models, but computationally closer to a global model, and able to give spatially resolved solutions for the challenging environment of electronegative plasmas. Included are non-isothermal electrons, gas heating, and coupled neutral dynamics. Solutions are reached in seconds to minutes, and spatial profiles are given for densities, fluxes, and temperatures. This allows the semi-analytical model to fill the gap that exists between global and full fluid models, extending the tools available to researchers. The semi-analytical model can perform broad parameter sweeps that are not practical with more computationally expensive models, as well as exposing non-trivial trends that global models cannot capture. Examples are given for a low pressure oxygen CCP. Excellent agreement is shown with a full fluid model, and comparisons are drawn with the corresponding global model.
Global Regularity for Several Incompressible Fluid Models with Partial Dissipation
NASA Astrophysics Data System (ADS)
Wu, Jiahong; Xu, Xiaojing; Ye, Zhuan
2016-09-01
This paper examines the global regularity problem on several 2D incompressible fluid models with partial dissipation. They are the surface quasi-geostrophic (SQG) equation, the 2D Euler equation and the 2D Boussinesq equations. These are well-known models in fluid mechanics and geophysics. The fundamental issue of whether or not they are globally well-posed has attracted enormous attention. The corresponding models with partial dissipation may arise in physical circumstances when the dissipation varies in different directions. We show that the SQG equation with either horizontal or vertical dissipation always has global solutions. This is in sharp contrast with the inviscid SQG equation for which the global regularity problem remains outstandingly open. Although the 2D Euler is globally well-posed for sufficiently smooth data, the associated equations with partial dissipation no longer conserve the vorticity and the global regularity is not trivial. We are able to prove the global regularity for two partially dissipated Euler equations. Several global bounds are also obtained for a partially dissipated Boussinesq system.
Numerical modelling of the impact of a liquid drop on the surface of a two-phase fluid system
NASA Astrophysics Data System (ADS)
Sochan, Agata; Lamorski, Krzysztof; Bieganowski, Andrzej; Ryżak, Magdalena
2014-05-01
The aim of the study was validation of a numerical model of the impact of a liquid drop on the surface of a two-phase system of immiscible fluids. The drop impact phenomenon was recorded using a high-speed camera (Vision Research MIRO M310) and the data were recorded at 2000 frames per second. The numerical calculations were performed with the Finite Volume Method (FVM) solving the three-dimensional Navier-Stokes equations for three phases: air and two selected immiscible fluids. The Volume of Fluid (VOF) technique was employed for modelling of the boundaries between the phases. Numerical modelling was done with the Finite Volume Method using an available OpenFOAM software. The experiment was based on three variables: • the height from which the drop of the selected fluids fell (the speed of the drop), • the thickness of the layers of the two selected immiscible fluids (a thin layer of the fluid with a lower density was spread over the higher-density fluid), • the size of the fluid droplet. The velocity and radius of the falling drop was calculated based on the recorded images. The used parameters allowed adequate projection of the impact of fluid droplets on a system of two immiscible liquids. Development of the numerical model of splash may further have practical applications in environmental protection (spraying of hazardous fluids, spread of fuels and other hazardous substances as a result of disasters, spraying (water cooling) of hot surfaces), and in agriculture (prevention of soil erosion). The study was partially funded from the National Science Centre (Poland) based on the decision no. DEC-2012/07/N/ST10/03280.
NASA Astrophysics Data System (ADS)
Jovanović, A. P.; Stankov, M. N.; Marković, V. Lj.; Stamenković, S. N.
2013-12-01
In this letter the validity of the fluid model used to simulate the electrical breakdown in air at low pressure is discussed. The new method for the determination of the ionization source term for the mixed gases is proposed. Paschen's curve obtained by the fluid model is compared to the available experimental data. The electron and ions density profiles calculated by the fluid model are presented. Based on Ohm's law, the current and voltage waveforms are calculated and compared to the ones measured by the oscilloscope in the synthetic-air filled tube with stainless-steel electrodes. It is shown that the one-dimensional fluid model can be used for modeling the electrical breakdown at pd values higher than Paschen's minimum and to determine stationary values of electron and ions densities.
Midline (Central) Fluid Percussion Model of Traumatic Brain Injury.
Rowe, Rachel K; Griffiths, Daniel R; Lifshitz, Jonathan
2016-01-01
Research models of traumatic brain injury (TBI) hold significant validity towards the human condition, with each model replicating a subset of clinical features and symptoms. After 30 years of characterization and implementation, fluid percussion injury (FPI) is firmly recognized as a clinically relevant model of TBI, encompassing concussion through severe injury. The midline variation of FPI may best represent mild and diffuse clinical brain injury, because of the acute behavioral deficits, the late onset of subtle behavioral morbidities, and the absence of gross histopathology. This chapter outlines the procedures for midline (diffuse) FPI in adult male rats and mice. With these procedures, it becomes possible to generate brain-injured laboratory animals for studies of injury-induced pathophysiology and behavioral deficits, for which rational therapeutic interventions can be implemented. PMID:27604721
Modeling of supercritical fluid extraction from herbaceous matrices
Reverchon, E.; Donsi, G.; Osseo, L.S. . Dipt. di Ingegneria Chimica e Alimentare)
1993-11-01
Experimental results of supercritical fluid extraction from various herbaceous matrices are presented. In optimal extraction conditions, the use of a fractional separation technique allows a nearly complete separation of the extract in cuticular waxes and essential oil. The modeling of these results is proposed starting from the description of the mass transfer from a single spherical particle. The simultaneous extraction of two pseudocompounds is assumed to simulate the two compound families obtained by fractionation. The model is then extended to simulate the whole extractor. The yields of essential oil and cuticular waxes obtained from rosemary, basil, and marjoram leaves are fairly simulated by the model. Intraparticle mass transfer resulted as the controlling stage in supercritical extraction of essential oils.
Current development of saliva/oral fluid-based diagnostics.
Yeh, Chih-Ko; Christodoulides, Nicolaos J; Floriano, Pierre N; Miller, Craig S; Ebersole, Jeffrey L; Weigum, Shannon E; McDevitt, John; Redding, Spencer W
2010-07-01
Saliva can be easily obtained in medical and non-medical settings, and contains numerous bio-molecules, including those typically found in serum for disease detection and monitoring. In the past two decades, the achievements of high-throughput approaches afforded by biotechnology and nanotechnology allow for disease-specific salivary biomarker discovery and establishment of rapid, multiplex, and miniaturized analytical assays. These developments have dramatically advanced saliva-based diagnostics. In this review, we discuss the current consensus on development of saliva/oral fluid-based diagnostics and provide a summary of recent research advancements of the Texas-Kentucky Saliva Diagnostics Consortium. In the foreseeable future, current research on saliva based diagnostic methods could revolutionize health care.
A model for C-O-H fluid in the Earth’s mantle
NASA Astrophysics Data System (ADS)
Zhang, Chi; Duan, Zhenhao
2009-04-01
A model is presented for predicting the composition (H 2O, CO 2, CH 4, H 2, CO, O 2 and C 2H 6) in the C-O-H fluid system under high temperatures and pressures found in the Earth's mantle. The model is based on a molecular dynamic equation of state, statistical mechanics calculations and non-stoichiometric global free-energy minimization. Although the model is not fitted to experimental data on C-O-H speciation, it does accurately reproduce these datasets and should extrapolate at least to the depths of ˜80-220 km. The model results suggest that (1) in the upper cratonic mantle, H 2O is the dominant fluid species in the C-O-H fluid system; (2) the abundance of CO 2 increases with decreasing depth, the trend of CH 4 is just the opposite; (3) the boundary between lithosphere and asthenosphere generally divides fluid systems into H 2O-CH 4+ minor species and H 2O-CO 2+ minor species, respectively; (4) it is entirely possible to generate methane and ethane and possibly other hydrocarbons under mantle conditions, confirming previously experimental results.
Model energy landscapes of low-temperature fluids: Dipolar hard spheres.
Matyushov, Dmitry V
2007-07-01
An analytical model of non-Gaussian energy landscape of low-temperature fluids is developed based on the thermodynamics of the fluid of dipolar hard spheres. The entire excitation profile of the liquid, from the high-temperature liquid to the point of ideal-glass transition, has been obtained from Monte Carlo simulations. The fluid of dipolar hard spheres loses stability close to the point of ideal-glass transition transforming via a first-order transition into a columnar liquid phase of dipolar chains locally arranged in a body-centered-tetragonal order. Significant non-Gaussianity of the energy landscape is responsible for narrowing of the distribution of potential energies and energies of inherent structures with decreasing temperature. We suggest that the proposed functionality of the enumeration function is widely applicable to both polar and nonpolar low-temperature liquids.
A New Method Based on the F-Curve for Characterizing Fluid Flow in Continuous Casting Tundishes
NASA Astrophysics Data System (ADS)
Li, Dongxia; Cui, Heng; Liu, Yang; Tian, Enhua; Du, Jianxin
2016-04-01
"Combined Model" is often applied to characterize the fluid flow in tundishes. There are different ways to manage the calculation of this model, while the most recently used is introduced by SAHAI and EMI. But this approach may lead to incorrect results in some special cases. In this paper, a new method based on the F-Curve is proposed to analyze the fluid flow in tundishes, and the relationship between E-Curve and F-Curve is concerned. In the end, their application to tundish fluid flow has been outlined. The dead volume calculated by the new method is much close to the results of dye experiment and the numerical simulation.
Dynamic coupling between fluid flow and vein growth in fractures: a 3D numerical model
NASA Astrophysics Data System (ADS)
Schwarz, J.-O.; Enzmann, F.
2012-04-01
Fluid flow is one of the main mass transport mechanisms in the Earth's crust and abundant mineral vein networks are important indicators for fluid flow and fluid rock interaction. These systems are dynamic and part of the so called RTM processes (reaction-transport-mechanics). Understanding of mineral vein systems requires coupling of these processes. Here we present a conceptional model for dynamic vein growth of syntaxial, posttectonic veins generated by advective fluid flow and show first results of a numerical model for this scenario. Vein generation requires three processes to occur: (i) fracture generation by mechanical stress e.g. hydro-fracturing, (ii) flow of a supersaturated fluid on that fracture and (iii) crystallization of phase(s) on or in the fracture. 3D synthetic fractures are generated with the SynFrac code (Ogilvie, et al. 2006). Subsequently solutions of the Navier-Stokes equation for this fracture are computed by a computational fluid dynamics code called GeoDict (Wiegmann 2007). Transport (advective and diffusive) of chemical species to growth sites in the fracture and vein growth are computed by a self-written MATLAB script. The numerical model discretizes the wall rock and fracture geometry by volumetric pixels (voxels). Based on this representation, the model computes the three basic functions for vein generation: (a) nucleation, (b) fluid flow with transport of chemical species and (c) growth. The following conditions were chosen for these three modules. Nucleation is heterogeneous and occurs instantaneously at the wall rock/fracture interface. Advective and diffusive flow of a supersaturated fluid and related transport of chemical species occurs according to the computed fluid flow field by GeoDict. Concentration of chemical species at the inflow is constant, representing external fluid buffering. Changes/decrease in the concentration of chemical species occurs only due to vein growth. Growth of nuclei is limited either by transport of
Mapping fluid distribution in a pinch-out reservoir model: A physical modeling study
NASA Astrophysics Data System (ADS)
Assis, Carlos A. M.; Ceia, Marco A. R.; Misságia, Roseane M.; Lupinacci, Wagner M.
2014-10-01
This work shows the results obtained from seismic physical modeling experiments that image the non-homogeneous, two-phase distribution of immiscible fluids inside a cavity in a pinch-out model. The main goal of this study was to verify how the seismic sections can be used to observe the fluid distribution in this type of reservoir. A high-resolution deconvolution method was applied to improve the image resolution and depth migration correctly positioned the events. Instantaneous attributes were used to assist data interpretation. The results provided an image of the oil-water interface and revealed a complex fluid compartmentalization pattern that was confirmed by numerical modeling simulations. The results of this study should improve the understanding of mapping fluid distributions from seismic sections in pinch-out reservoirs.
Benchmarking computational fluid dynamics models for lava flow simulation
NASA Astrophysics Data System (ADS)
Dietterich, Hannah; Lev, Einat; Chen, Jiangzhi
2016-04-01
Numerical simulations of lava flow emplacement are valuable for assessing lava flow hazards, forecasting active flows, interpreting past eruptions, and understanding the controls on lava flow behavior. Existing lava flow models vary in simplifying assumptions, physics, dimensionality, and the degree to which they have been validated against analytical solutions, experiments, and natural observations. In order to assess existing models and guide the development of new codes, we conduct a benchmarking study of computational fluid dynamics models for lava flow emplacement, including VolcFlow, OpenFOAM, FLOW-3D, and COMSOL. Using the new benchmark scenarios defined in Cordonnier et al. (Geol Soc SP, 2015) as a guide, we model viscous, cooling, and solidifying flows over horizontal and sloping surfaces, topographic obstacles, and digital elevation models of natural topography. We compare model results to analytical theory, analogue and molten basalt experiments, and measurements from natural lava flows. Overall, the models accurately simulate viscous flow with some variability in flow thickness where flows intersect obstacles. OpenFOAM, COMSOL, and FLOW-3D can each reproduce experimental measurements of cooling viscous flows, and FLOW-3D simulations with temperature-dependent rheology match results from molten basalt experiments. We can apply these models to reconstruct past lava flows in Hawai'i and Saudi Arabia using parameters assembled from morphology, textural analysis, and eruption observations as natural test cases. Our study highlights the strengths and weaknesses of each code, including accuracy and computational costs, and provides insights regarding code selection.
NASA Astrophysics Data System (ADS)
Song, Yongjia; Hu, Hengshan; Rudnicki, John W.
2016-07-01
Grain-scale local fluid flow is an important loss mechanism for attenuating waves in cracked fluid-saturated poroelastic rocks. In this study, a dynamic elastic modulus model is developed to quantify local flow effect on wave attenuation and velocity dispersion in porous isotropic rocks. The Eshelby transform technique, inclusion-based effective medium model (the Mori-Tanaka scheme), fluid dynamics and mass conservation principle are combined to analyze pore-fluid pressure relaxation and its influences on overall elastic properties. The derivation gives fully analytic, frequency-dependent effective bulk and shear moduli of a fluid-saturated porous rock. It is shown that the derived bulk and shear moduli rigorously satisfy the Biot-Gassmann relationship of poroelasticity in the low-frequency limit, while they are consistent with isolated-pore effective medium theory in the high-frequency limit. In particular, a simplified model is proposed to quantify the squirt-flow dispersion for frequencies lower than stiff-pore relaxation frequency. The main advantage of the proposed model over previous models is its ability to predict the dispersion due to squirt flow between pores and cracks with distributed aspect ratio instead of flow in a simply conceptual double-porosity structure. Independent input parameters include pore aspect ratio distribution, fluid bulk modulus and viscosity, and bulk and shear moduli of the solid grain. Physical assumptions made in this model include (1) pores are inter-connected and (2) crack thickness is smaller than the viscous skin depth. This study is restricted to linear elastic, well-consolidated granular rocks.
Over the past thirty years, scientists at the Environmental Protection Agency's (EPA) Fluid Modeling Facility (FMF) have conducted laboratory studies of fluid flow and pollutant dispersion within three distinct experimental chambers: a meteorological wind tunnel, a water-channel ...
Experiments and Modeling of G-Jitter Fluid Mechanics
NASA Technical Reports Server (NTRS)
Leslie, F. W.; Ramachandran, N.; Whitaker, Ann F. (Technical Monitor)
2002-01-01
While there is a general understanding of the acceleration environment onboard an orbiting spacecraft, past research efforts in the modeling and analysis area have still not produced a general theory that predicts the effects of multi-spectral periodic accelerations on a general class of experiments nor have they produced scaling laws that a prospective experimenter can use to assess how an experiment might be affected by this acceleration environment. Furthermore, there are no actual flight experimental data that correlates heat or mass transport with measurements of the periodic acceleration environment. The present investigation approaches this problem with carefully conducted terrestrial experiments and rigorous numerical modeling for better understanding the effect of residual gravity and gentler on experiments. The approach is to use magnetic fluids that respond to an imposed magnetic field gradient in much the same way as fluid density responds to a gravitational field. By utilizing a programmable power source in conjunction with an electromagnet, both static and dynamic body forces can be simulated in lab experiments. The paper provides an overview of the technique and includes recent results from the experiments.
Effect of order fluid models on flue gas streamer dynamics
NASA Astrophysics Data System (ADS)
Eichwald, O.; Ducasse, O.; Merbahi, N.; Yousfi, M.; Dubois, D.
2006-01-01
The present paper shows that in the case of a micro-discharge modelling using the hydrodynamics assumption, the second order fluid model involving the complete electron momentum conservation equation must be used in order to better quantify the radical formation in a micro-discharge applied to air pollution control. The present results show large differences in the micro-discharge parameters (such as velocity and electron density) between the three tested hydrodynamics models: the classical first order model using the local electric field approximation and two second order models using the local energy approximation with or without the drift-diffusion approximation. The tests have been carried out in the case of a wire-to-plane corona reactor filled with a typical flue gas (76% N2, 12% CO2, 6% O2, 6% H2O) at atmospheric pressure and ambient temperature. The simulation of the micro-discharge dynamics is performed using a 1.5D numerical streamer model coupled with a simple chemical kinetics model involving 31 species (charged and neutral particles in their fundamental or metastable state) reacting following 29 selected chemical reactions.
He, Wei; Anderson, Roger N.
1998-01-01
A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management.
He, W.; Anderson, R.N.
1998-08-25
A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management. 20 figs.
Knowledge-based zonal grid generation for computational fluid dynamics
NASA Technical Reports Server (NTRS)
Andrews, Alison E.
1988-01-01
Automation of flow field zoning in two dimensions is an important step towards reducing the difficulty of three-dimensional grid generation in computational fluid dynamics. Using a knowledge-based approach makes sense, but problems arise which are caused by aspects of zoning involving perception, lack of expert consensus, and design processes. These obstacles are overcome by means of a simple shape and configuration language, a tunable zoning archetype, and a method of assembling plans from selected, predefined subplans. A demonstration system for knowledge-based two-dimensional flow field zoning has been successfully implemented and tested on representative aerodynamic configurations. The results show that this approach can produce flow field zonings that are acceptable to experts with differing evaluation criteria.
NASA Astrophysics Data System (ADS)
Zhang, G.; Zheng, Z.
2004-12-01
Leakage of high alkaline-saline fluids, such as those stored in Hanford, a site of the U.S. Department of Energy (DOE) in Washington State, has raised attention of scientific community. These fluids have unique thermodynamic and physical properties. Chemical components in the fluids are incompletely dissociated, especially those containing divalent or polyvalent ions. A number of laboratory experiments through injecting synthetic high alkaline-saline fluids (up to 10M of sodium nitrate, pH >12) into the sediments sampled from the DOE Hanford site were conducted to study the reactive transport processes of the fluids in subsurface environments. The experimental results observed show that the composition of the high alkaline sodium nitrate fluids can be drastically changed due to fluid-rock interactions, and eventually lead to pH neutralization of the fluid in the plume front. The dominant fluid-rock interactions are cation exchanges (Na+-K+-Ca+2-Mg+2-H+), precipitation of calcium and magnesium minerals, and dissolution of silica. In order to precisely model the reactive transport of these processes, a coupling of the Pitzer's ion-interaction geochemical model and a flow and transport model would be highly needed. The extended existing reactive geochemical transport code, BIO-CORE2Dc, incorporating a comprehensive Pitzer ion-interaction model, is capable of predicting the experimental observations. In addition, the developed model was tested against two reported cases. In both cases, the measured mean ionic activity coefficients were well reproduced by our model, while the Debye-Hückel model, usually used to calculate aqueous species activities in dilute solutions, was unable to predict the experimental data. Finally, modeling study based on our laboratory column experiment was performed. Our simulation is able to capture the observed pH trends, changes in exchangeable cations such as Ca+2, Mg+2, and formation of secondary precipitation phases in the plume front.
Physics based simulation of seismicity induced in the vicinity of a high-pressure fluid injection
NASA Astrophysics Data System (ADS)
McCloskey, J.; NicBhloscaidh, M.; Murphy, S.; O'Brien, G. S.; Bean, C. J.
2013-12-01
High-pressure fluid injection into subsurface is known, in some cases, to induce earthquakes in the surrounding volume. The increasing importance of ';fracking' as a potential source of hydrocarbons has made the seismic hazard from this effect an important issue the adjudication of planning applications and it is likely that poor understanding of the process will be used as justification of refusal of planning in Ireland and the UK. Here we attempt to understand some of the physical controls on the size and frequency of induced earthquakes using a physics-based simulation of the process and examine resulting earthquake catalogues The driver for seismicity in our simulations is identical to that used in the paper by Murphy et al. in this session. Fluid injection is simulated using pore fluid movement throughout a permeable layer from a high-pressure point source using a lattice Boltzmann scheme. Diffusivities and frictional parameters can be defined independently at individual nodes/cells allowing us to reproduce 3-D geological structures. Active faults in the model follow a fractal size distribution and exhibit characteristic event size, resulting in a power-law frequency-size distribution. The fluid injection is not hydraulically connected to the fault (i.e. fluid does not come into physical contact with the fault); however stress perturbations from the injection drive the seismicity model. The duration and pressure-time function of the fluid injection can be adjusted to model any given injection scenario and the rate of induced seismicity is controlled by the local structures and ambient stress field as well as by the stress perturbations resulting from the fluid injection. Results from the rate and state fault models of Murphy et al. are incorporated to include the effect of fault strengthening in seismically quite areas. Initial results show similarities with observed induced seismic catalogues. Seismicity is only induced where the active faults have not been
Hydraulic sand-model studies of miscible-fluid flow
Cahill, J.M.
1973-01-01
Hydraulic sand models are useful physical tools in the investigation of the transition zone that occurs between salt and fresh ground water in coastal aquifers. Such models are used to demonstrate the effects of transport mechanisms that influence the dynamic behavior and the shape of the transition zone. The techniques employed in obtaining in-place measurements of solute concentrations are generally the stumbling block in generating data for two-dimensional dispersion systems. Two in-place measurement techniques were used in the studies described: (1) conductivity probes when salt was used as a tracer; and (2) photoelectric cells when organic dye was used as a tracer. Results indicate that conductivity methods are more reliable; however, care must be exercised inasmuch as the probes tend to disturb the fluid flow.
Two-dimensional lattice-fluid model with waterlike anomalies.
Buzano, C; De Stefanis, E; Pelizzola, A; Pretti, M
2004-06-01
We investigate a lattice-fluid model defined on a two-dimensional triangular lattice, with the aim of reproducing qualitatively some anomalous properties of water. Model molecules are of the "Mercedes Benz" type, i.e., they possess a D3 (equilateral triangle) symmetry, with three bonding arms. Bond formation depends both on orientation and local density. We work out phase diagrams, response functions, and stability limits for the liquid phase, making use of a generalized first order approximation on a triangle cluster, whose accuracy is verified, in some cases, by Monte Carlo simulations. The phase diagram displays one ordered (solid) phase which is less dense than the liquid one. At fixed pressure the liquid phase response functions show the typical anomalous behavior observed in liquid water, while, in the supercooled region, a reentrant spinodal is observed.
Two-dimensional lattice-fluid model with waterlike anomalies
NASA Astrophysics Data System (ADS)
Buzano, C.; de Stefanis, E.; Pelizzola, A.; Pretti, M.
2004-06-01
We investigate a lattice-fluid model defined on a two-dimensional triangular lattice, with the aim of reproducing qualitatively some anomalous properties of water. Model molecules are of the “Mercedes Benz” type, i.e., they possess a D3 (equilateral triangle) symmetry, with three bonding arms. Bond formation depends both on orientation and local density. We work out phase diagrams, response functions, and stability limits for the liquid phase, making use of a generalized first order approximation on a triangle cluster, whose accuracy is verified, in some cases, by Monte Carlo simulations. The phase diagram displays one ordered (solid) phase which is less dense than the liquid one. At fixed pressure the liquid phase response functions show the typical anomalous behavior observed in liquid water, while, in the supercooled region, a reentrant spinodal is observed.
Industrial processing of complex fluids: Formulation and modeling
Scovel, J.C.; Bleasdale, S.; Forest, G.M.; Bechtel, S.
1997-08-01
The production of many important commercial materials involves the evolution of a complex fluid through a cooling phase into a hardened product. Textile fibers, high-strength fibers(KEVLAR, VECTRAN), plastics, chopped-fiber compounds, and fiber optical cable are such materials. Industry desires to replace experiments with on-line, real time models of these processes. Solutions to the problems are not just a matter of technology transfer, but require a fundamental description and simulation of the processes. Goals of the project are to develop models that can be used to optimize macroscopic properties of the solid product, to identify sources of undesirable defects, and to seek boundary-temperature and flow-and-material controls to optimize desired properties.
Singular Limits of Voigt Models in Fluid Dynamics
NASA Astrophysics Data System (ADS)
Coti Zelati, Michele; Gal, Ciprian G.
2015-06-01
We investigate the long-term behavior, as a certain regularization parameter vanishes, of the three-dimensional Navier-Stokes-Voigt model of a viscoelastic incompressible fluid. We prove the existence of global and exponential attractors of optimal regularity. We then derive explicit upper bounds for the dimension of these attractors in terms of the three-dimensional Grashof number and the regularization parameter. Finally, we also prove convergence of the (strong) global attractor of the 3D Navier-Stokes-Voigt model to the (weak) global attractor of the 3D Navier-Stokes equation. Our analysis improves and extends recent results obtained by Kalantarov and Titi (Chin Ann Math Ser B 30:697-714, 2009).
Two-dimensional lattice-fluid model with waterlike anomalies.
Buzano, C; De Stefanis, E; Pelizzola, A; Pretti, M
2004-06-01
We investigate a lattice-fluid model defined on a two-dimensional triangular lattice, with the aim of reproducing qualitatively some anomalous properties of water. Model molecules are of the "Mercedes Benz" type, i.e., they possess a D3 (equilateral triangle) symmetry, with three bonding arms. Bond formation depends both on orientation and local density. We work out phase diagrams, response functions, and stability limits for the liquid phase, making use of a generalized first order approximation on a triangle cluster, whose accuracy is verified, in some cases, by Monte Carlo simulations. The phase diagram displays one ordered (solid) phase which is less dense than the liquid one. At fixed pressure the liquid phase response functions show the typical anomalous behavior observed in liquid water, while, in the supercooled region, a reentrant spinodal is observed. PMID:15244571
NASA Astrophysics Data System (ADS)
Porter, M. L.; Kang, Q.; Tarimala, S.; Abdel-Fattah, A.; Backhaus, S.; Carey, J. W.
2010-12-01
Successful sequestration of CO2 into deep saline aquifers presents an enormous challenge that requires fundamental understanding of reactive-multiphase flow and transport across many temporal and spatial scales. Of critical importance is accurately predicting the efficiency of CO2 trapping mechanisms. At the pore scale (e.g., microns to millimeters) the interfacial area between CO2 and brine, as well as CO2 and the solid phase, directly influences the amount of CO2 trapped due to capillary forces, dissolution and mineral precipitation. In this work, we model immiscible displacement micromodel experiments using the lattice-Boltzmann (LB) method. We focus on quantifying interfacial area as a function of capillary numbers and viscosity ratios typically encountered in CO2 sequestration operations. We show that the LB model adequately predicts the steady-state experimental flow patterns and interfacial area measurements. Based on the steady-state agreement, we use the LB model to investigate interfacial dynamics (e.g., fluid-fluid interfacial velocity and the rate of production of fluid-fluid interfacial area). In addition, we quantify the amount of interfacial area and the interfacial dynamics associated with the capillary trapped nonwetting phase. This is expected to be important for predicting the amount of nonwetting phase subsequently trapped due to dissolution and mineral precipitation.
NASA Astrophysics Data System (ADS)
Facci, Andrea L.; Porfiri, Maurizio
2012-12-01
In this paper, we investigate finite amplitude polychromatic flexural vibration of a thin beam oscillating in a quiescent viscous fluid. We consider a cantilever beam with rectangular cross section undergoing periodic base excitation in the form of a triangular wave. Experiments are performed on centimeter-size beams in water to elucidate the effect of the amplitude and the frequency of the base excitation on the fluid structure interaction. The fundamental frequency of the excitation is selected to induce structural resonance and the shape of the cantilevers is parametrically varied to explore different flow regimes. Experimental results demonstrate the presence of a frequency-dependent nonlinear hydrodynamic damping which tends to enhance higher frequency harmonics as compared to the fundamental harmonic. Such filtering effect produced by the encompassing fluid increases with both the frequency and amplitude of the base excitation. Experimental results are interpreted through available theoretical models, based on the notion of the complex hydrodynamic function, and pertinent computational fluid dynamics findings.
Fluid-percussion–induced traumatic brain injury model in rats
Kabadi, Shruti V.; Hilton, Genell D.; Stoica, Bogdan A.; Zapple, David N.; Faden, Alan I.
2013-01-01
Traumatic brain injury (TBI) is a major cause of mortality and morbidity. Various attempts have been made to replicate clinical TBI using animal models. The fluid-percussion model (FP) is one of the oldest and most commonly used models of experimentally induced TBI. Both central (CFP) and lateral (LFP) variations of the model have been used. Developed initially for use in larger species, the standard FP device was adapted more than 20 years ago to induce consistent degrees of brain injury in rodents. Recently, we developed a microprocessor-controlled, pneumatically driven instrument, micro-FP (MFP), to address operational concerns associated with the use of the standard FP device in rodents. We have characterized the MFP model with regard to injury severity according to behavioral and histological outcomes. In this protocol, we review the FP models and detail surgical procedures for LFP. The surgery involves tracheal intubation, craniotomy and fixation of Luer fittings, and induction of injury. The surgical procedure can be performed within 45–50 min. PMID:20725070
Modeling the Chemical Composition of the Fluid that Formed the ALH84001 Carbonates
NASA Astrophysics Data System (ADS)
Niles, P. B.; Leshin, L.
2005-12-01
The character of aqueous systems on Mars can provide us with important information regarding the history of water and the possibilities for the presence of life on Mars. Evidence of these aqueous systems has been preserved in carbonates found in the martian meteorite ALH84001 whose crystallization age of 4.5 Ga indicates that it has experienced almost all of Mars' history. In addition, the 3.9 Ga age of the carbonates places their formation at a critical time that has been argued to have been `warm and wet' by many studies. The carbonates in the ALH84001 meteorite provide the best opportunity, among all of the martian meteorites, to understand the details of an ancient aqueous system on Mars. Their unique chemical, isotopic and mineralogical composition provides the opportunity to make conclusive statements about the geological conditions in which they formed including the temperature, association with the atmosphere, chemistry of the fluids, and the presence or absence of life. This study uses an empirical model to understand the attributes of the formation fluid based on the unique chemical compositions of the carbonates. This requires the assumption that the ALH84001 carbonate globules formed from a single fluid whose chemical composition changed due to the precipitation of carbonates more calcium rich than the overall fluid composition. The model consists of a simple stepwise stoichiometric calculation of the precipitation of the ALH84001 carbonates from a hypothetical solution. From extensive measurements of the chemical composition of the globules and their abundance in the rock, one can calculate the total amount of magnesium, calcium, and iron removed from the formation fluid as the carbonates precipitated. The unique zoned nature of the ALH84001 carbonates provides a real constraint on the possible fluid compositions consistent with their precipitation. Our results indicate that the fluid that formed the ALH84001 carbonates had an Mg/Ca ratio that was
Carbon dioxide-based supercritical fluids as IC manufacturing solvents
Rubin, J.B.; Davenhall, L.B.; Taylor, C.M.V.; Sivils, L.D.; Pierce, T.; Tiefert, K.
1999-05-11
The production of integrated circuits (IC's) involves a number of discrete steps which utilize hazardous or regulated solvents and generate large waste streams. ES&H considerations associated with these chemicals have prompted a search for alternative, more environmentally benign solvent systems. An emerging technology for conventional solvent replacement is the use of supercritical fluids based on carbon dioxide (CO{sub 2}). Research work, conducted at Los Alamos in conjunction with the Hewlett-Packard Company, has lead to the development of a CO{sub 2}-based supercritical fluid treatment system for the stripping of hard-baked photoresists. This treatment system, known as Supercritical CO{sub 2} Resist Remover, or CORR, uses a two-component solvent composed of a nonhazardous, non-regulated compound, dissolved in supercritical CO{sub 2}. The solvent/treatment system has been successfully tested on metallized Si wafers coated with negative and positive photoresist, the latter both before and after ion-implantation. A description of the experimental data will be presented. Based on the initial laboratory results, the project has progressed to the design and construction of prototype, single-wafer photoresist-stripping equipment. The integrated system involves a closed-loop, recirculating cycle which continuously cleans and regenerates the CO{sub 2}, recycles the dissolved solvent, and separates and concentrates the spent resist. The status of the current design and implementation strategy of a treatment system to existing IC fabrication facilities will be discussed. Additional remarks will be made on the use of a SCORR-type system for the cleaning of wafers prior to processing.
BOOK REVIEW: Plasma and Fluid Turbulence: Theory and Modelling
NASA Astrophysics Data System (ADS)
Yoshizawa, A.; Itoh, S. I.; Itoh, K.
2003-03-01
The area of turbulence has been covered by many books over the years. This has, of course, mainly been fluid turbulence, while the area of plasma turbulence has been treated much less. This book by Yoshizawa et al covers both plasma and fluid turbulence, in a way that does justice to both areas at the same time as cross-disciplinary aspects are illuminated. The book should be useful to physicists working in both areas partly because it examines fundamental aspects in a pedagogical way, partly because it is up to date and partly because of the cross-disciplinary aspects which enrich both areas. It is written as an advanced textbook. The reader should have previous knowledge of at least one of the areas and also some background in statistical physics. The book starts with the very important and highly up to date area of structure formation which is relevant both to fluids and plasmas. Here, pipe flow of fluids is treated as an introduction to the area, then follows discussion of the generation of magnetic fields by turbulent motion in stellar objects and stucture formation in plasmas confined by a magnetic field. Also the concept of bifurcation is introduced. This part builds up knowledge from the simple fluid case to the problems of magnetic confinement of plasmas in a very pedagogical way. It continues by introducing the fundamentals of fluid turbulence. This is done very systematically and concepts useful for industrial applications like the K-e method and several ways of heuristic modelling are introduced. Also the two dimensional vortex equation, which is also relevant to magnetized plasmas is introduced. In chapter 5 the statistical theory of turbulence is treated. It starts with a very nice and easy to understand example of renormalization of a simple nonlinear equation where the exact solution is known. It introduces the method of partial renormalization, Greens functions and the direct interaction approximation (DIA). The book then continues with an
Oil drainage in model porous media by viscoelastic fluids
NASA Astrophysics Data System (ADS)
Beaumont, Julien; Bodiguel, Hugues; Colin, Annie
2012-11-01
Crude oil recovery efficiency has been shown to depend directly on the capillary number (Ca). If the capillary phenomenon is well described for Newtonian fluids, the consequences of non linear rheology and viscoelasticity require more experimental work at the pore scale. In this work we take advantage of microfluidic to revisit this field. We carried out oil drainage experiments through a micromodel made up with photoresist resin. The wetting phase trapped is a model oil. The invading phases used are aqueous solutions of high molecular weight hydrolyzed polyacrylamide (HPAM) and surfactant. Qualitatively, we observed a transition between a capillary fingering at low flow rates and a stable front at high flow rates for the drainage experiments with HPAM and surfactant solutions as it happened for drainage with Newtonian fluids. From movies of the filling of the device, we determine the local velocity of all menisci in the porous media. Thus, we quantify the capillary fingering. Surprisingly, local velocities are not significantly different from those measured using water, whereas the HPAM solutions are much more viscous. With betaine solutions, we observed an emulsification of the oil clusters trapped during the invasion leading to a very high oil recovery after percolation.
An unsteady state retention model for fluid desorption from sorbents.
Bazargan, Alireza; Sadeghi, Hamed; Garcia-Mayoral, Ricardo; McKay, Gordon
2015-07-15
New studies regarding the sorption of fluids by solids are published every day. In performance testing, after the sorbent has reached saturation, it is usually removed from the sorbate bath and allowed to drain. The loss of liquid from the sorbents with time is of prime importance in the real-world application of sorbents, such as in oil spill response. However, there is currently no equation used for modeling the unsteady state loss of the liquid from the dripping sorbent. Here, an analytical model has been provided for modeling the dynamic loss of liquid from the sorbent in dripping experiments. Data from more than 60 sorbent-sorbate systems has been used to validate the model. The proposed model shows excellent agreement with experimental results and is expressed as: U(t)=U(L)e(-Kt)+U(e) In which U(t) (kg/kg) is the uptake capacity of the sorbent at any time t (s) during dripping, U(L) (kg/kg) is the uptake capacity lost due to dripping, and U(e) (kg/kg) is the equilibrium uptake capacity reached after prolonged dripping. K (1/s) is defined as the Kamaan coefficient and controls the curvature of the retention profile. Kamaan ([symbol: see text] IPA phonetics: kæmɒn) is an Iranian (Farsi/Persian) word meaning "arc" or "curve" and hence the letter K has been designated. PMID:25814100
NASA Astrophysics Data System (ADS)
Jain, Rajat; Mahto, Triveni K.; Mahto, Vikas
2016-02-01
In the present study, polyacrylamide grafted xanthan gum/multiwalled carbon nanotubes (PA-g-XG/MWCNT) nanocomposite was synthesized by free radical polymerization technique using potassium persulfate as an initiator. The polyacrylamide was grafted on xanthan gum backbone in the presence of MWCNT. The synthesized nanocomposite was characterized by X-ray diffraction technique (XRD), and Fourier transform infrared spectroscopy analysis (FT-IR). The morphological characteristics of the nanocomposite were analyzed by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) analyses. Also, its temperature resistance property was observed with Thermogravimetric analysis (TGA). The effect of nanocomposite on the rheological properties of the developed drilling fluid system was analyzed with a strain controlled rheometer and Fann viscometer. Flow curves were drawn for the developed water based drilling fluid system at elevated temperatures. The experimental data were fitted to Bingham, power-law, and Herschel Bulkley flow models. It was observed that the Herschel Bulkley flow model predict the flow behavior of the developed system more accurately. Further, nanocomposite exhibited non-Newtonian shear thinning flow behavior in the developed drilling fluid system. Nanocomposite showed high temperature stability and had a significant effect on the rheological properties of the developed drilling fluid system as compared to conventionally used partially hydrolyzed polyacrylamide (PHPA) polymer.
[Present status and trend of heart fluid mechanics research based on medical image analysis].
Gan, Jianhong; Yin, Lixue; Xie, Shenghua; Li, Wenhua; Lu, Jing; Luo, Anguo
2014-06-01
With introduction of current main methods for heart fluid mechanics researches, we studied the characteristics and weakness for three primary analysis methods based on magnetic resonance imaging, color Doppler ultrasound and grayscale ultrasound image, respectively. It is pointed out that particle image velocity (PIV), speckle tracking and block match have the same nature, and three algorithms all adopt block correlation. The further analysis shows that, with the development of information technology and sensor, the research for cardiac function and fluid mechanics will focus on energy transfer process of heart fluid, characteristics of Chamber wall related to blood fluid and Fluid-structure interaction in the future heart fluid mechanics fields.
A novel magnetic fluid based magnetic field F-P current sensor
NASA Astrophysics Data System (ADS)
Xia, Ji; Wang, Qi; Jiang, Shuyu; Luo, Hong
2015-08-01
A novel current measuring method based on the magnetic controllable refractive index characteristic of magnetic fluid and fiber optic Fabry-Perot (F-P) interferometer is proposed and demonstrated. A current sensing probe composed of fiber optic F-P interferometer filled with magnetic fluid (MF) is analyzed theoretically and numerically. Based on the theoretical analysis and numerical simulation results, the structure of the fiber optic F-P current sensor is designed and fabricated experimentally. The relationship of the magnetic fluid at various magnetic field is measured experimentally and the numerical model of relationship between the refractive index of magnetic fluid and the characteristics of F-P current sensor is built up. The sensor has the advantages of simple structure, low cost, and high magnetic field measurement sensitivity. A high magnetic field measurement sensitivity of 0.034 nm/Gs is achieved with the magnetic field varied from 0 to 391.5Gs, and the experiment results are consistent with the theoretical analysis and numerical simulation.
NASA Astrophysics Data System (ADS)
Chen, Guang-Hao; Wang, Guo-Yu; Huang, Biao; Hu, Chang-Li; Wang, Zhi-Ying; Wang, Jian
2015-02-01
In this paper, a compressible fluid model is proposed to investigate dynamics of the turbulent cavitating flow over a Clark-Y hydrofoil. The numerical simulation is based on the homogeneous mixture approach coupled with filter-based density correction model (FBDCM) turbulence model and Zwart cavitation model. Considering the compressibility effect, the equation of state of each phase is introduced into the numerical model. The results show that the predicted results agree well with experimental data concerning the time-averaged lift/drag coefficient and shedding frequency. The quasi-periodic evolution of sheet/cloud cavitation and the resulting lift and drag are discussed in detail. Especially, the present compressible-mixture numerical model is capable of simulating the shock waves in the final stage of cavity collapse. It is found that the shock waves may cause the transient significant increase and decrease in lift and drag if the cavity collapses near the foil surface.
Personal Computer (PC) based image processing applied to fluid mechanics
NASA Technical Reports Server (NTRS)
Cho, Y.-C.; Mclachlan, B. G.
1987-01-01
A PC based image processing system was employed to determine the instantaneous velocity field of a two-dimensional unsteady flow. The flow was visualized using a suspension of seeding particles in water, and a laser sheet for illumination. With a finite time exposure, the particle motion was captured on a photograph as a pattern of streaks. The streak pattern was digitized and processed using various imaging operations, including contrast manipulation, noise cleaning, filtering, statistical differencing, and thresholding. Information concerning the velocity was extracted from the enhanced image by measuring the length and orientation of the individual streaks. The fluid velocities deduced from the randomly distributed particle streaks were interpolated to obtain velocities at uniform grid points. For the interpolation a simple convolution technique with an adaptive Gaussian window was used. The results are compared with a numerical prediction by a Navier-Stokes computation.
Luo, Qizhi; Li, Wei; Zou, Xin; Dang, Yongming; Wu, Jun
2015-01-01
Acute burn injuries are among the most devastating forms of trauma and lead to significant morbidity and mortality. Appropriate fluid resuscitation after severe burn, specifically during the first 48 hours following injury, is considered as the single most important therapeutic intervention in burn treatment. Although many formulas have been developed to estimate the required fluid amount in severe burn patients, many lines of evidence showed that patients still receive far more fluid than formulas recommend. Overresuscitation, which is known as “fluid creep,” has emerged as one of the most important problems during the initial period of burn care. If fluid titration can be personalized and automated during the resuscitation phase, more efficient burn care and outcome will be anticipated. In the present study, a dynamic urine output based infusion rate prediction model was developed and validated during the initial 48 hours in severe thermal burn adult patients. The experimental results demonstrated that the developed dynamic fluid resuscitation model might significantly reduce the total fluid volume by accurately predicting hourly urine output and has the potential to aid fluid administration in severe burn patients. PMID:26090415
Thermal-fluid modeling of the Missouri S&T Reactor
NASA Astrophysics Data System (ADS)
Sipaun, Susan Maria
Thermal-fluid modeling of the Missouri University of Science and Technology Reactor (MSTR) was carried out using a computational fluid dynamics code (CFD), STAR-CCM+. First, a three-dimensional parallel-plate model was developed, and the cosine-shaped heat flux was applied to the MSTR core. Simulation results for fluid flow under natural convection condition show coolant temperature and velocity as a function of core power. A characteristic equation for the parallel-plate model was obtained based on Forchheimer's flow equation. The inertial resistance tensor and viscous resistance tensor were found to be 281005 kg/m. 4 and 7121.6 kg/m. 3 respectively. The MSTR core was then definedas a porous region with porosity 0.7027. A second model was developed to study convection within a section of the MSTR includes 3 fuel elements (power density of 1.86E+6 Wm-3) in one third of the reactor pool volume. For validation work, both plume temperature and pool temperature measurements were recorded at several locations within the MSTR pool. At 200kW, the temperature field was consistent with the pool temperature data at 15 locations. A third model included the workings of an eductor outlet from, and inlet into the active cooling system to predict heat removal capability. The major contribution of this study is to explain the thermal flow in the MSTR channels and pool, and to provide a framework for supporting reactor license renewal, and power uprate plans.
NASA Astrophysics Data System (ADS)
Rajabzadeh Oghaz, Hamidreza; Damiano, Robert; Meng, Hui
2015-11-01
Intracranial aneurysms (IAs) are pathological outpouchings of cerebral vessels, the progression of which are mediated by complex interactions between the blood flow and vasculature. Image-based computational fluid dynamics (CFD) has been used for decades to investigate IA hemodynamics. However, the commonly adopted simplifying assumptions in CFD (e.g. rigid wall) compromise the simulation accuracy and mask the complex physics involved in IA progression and eventual rupture. Several groups have considered the wall compliance by using fluid-structure interaction (FSI) modeling. However, FSI simulation is highly sensitive to numerical assumptions (e.g. linear-elastic wall material, Newtonian fluid, initial vessel configuration, and constant pressure outlet), the effects of which are poorly understood. In this study, a comprehensive investigation of the sensitivity of FSI simulations in patient-specific IAs is investigated using a multi-stage approach with a varying level of complexity. We start with simulations incorporating several common simplifications: rigid wall, Newtonian fluid, and constant pressure at the outlets, and then we stepwise remove these simplifications until the most comprehensive FSI simulations. Hemodynamic parameters such as wall shear stress and oscillatory shear index are assessed and compared at each stage to better understand the sensitivity of in FSI simulations for IA to model assumptions. Supported by the National Institutes of Health (1R01 NS 091075-01).
Critique of fluid theory of magnetospheric phenomena. [kinetic theory vs two fluid models
NASA Technical Reports Server (NTRS)
Heikkila, W. J.
1973-01-01
Discussion of the limitations and shortcomings of the fluid theory of magnetospheric phenomena. Following a brief qualitative review of the various theoretical approaches and of their interrelation, some of the limitations of the fluid theory with respect to magnetospheric problems are outlined, and the subsequent fallacies are exposed. The idea of frozen field convection and the concept of field line annihilation or merging are criticized. In conclusion, a plea is made for a more balanced approach to magnetospheric problems.
Morin, Kristen T; Lenz, Michelle S; Labat, Caroline A; Tranquillo, Robert T
2015-05-01
Knowledge is limited about fluid flow in tissues containing engineered microvessels, which can be substantially different in topology than native capillary networks. A need exists for a computational model that allows for flow through tissues dense in nonpercolating and possibly nonperfusable microvessels to be efficiently evaluated. A finite difference (FD) model based on Poiseuille flow through a distribution of straight tubes acting as point sources and sinks, and Darcy flow through the interstitium, was developed to describe fluid flow through a tissue containing engineered microvessels. Accuracy of the FD model was assessed by comparison to a finite element (FE) model for the case of a single tube. Because the case of interest is a tissue with microvessels aligned with the flow, accuracy was also assessed in depth for a corresponding 2D FD model. The potential utility of the 2D FD model was then explored by correlating metrics of flow through the model tissue to microvessel morphometric properties. The results indicate that the model can predict the density of perfused microvessels based on parameters that can be easily measured. PMID:25424905
COTHERM: Modelling fluid-rock interactions in Icelandic geothermal systems
NASA Astrophysics Data System (ADS)
Thien, Bruno; Kosakowski, Georg; Kulik, Dmitrii
2014-05-01
Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced geothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. We model the mineralogical and porosity evolution of Icelandic geothermal systems with 1D and 2D reactive transport models. These geothermal systems are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. The shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. We investigate two contrasting geothermal systems: Krafla, for which the water recharge consists of meteoritic water; and Reykjanes, for which the water recharge mainly consists of seawater. The initial rock composition is a fresh basalt. We use the GEM-Selektor geochemical modeling package [1] for calculation of kinetically controlled mineral equilibria between the rock and the ingression water. We consider basalt minerals dissolution kinetics according to Palandri & Kharaka [2]. Reactive surface areas are assumed to be geometric surface areas, and are corrected using a spherical-particle surface/mass relationship. For secondary minerals, we consider the partial equilibrium assuming that the primary mineral dissolution is slow, and the secondary mineral precipitation is fast. Comparison of our modeling results with the mineralogical assemblages observed in the
Barker, Andrew T. Cai Xiaochuan
2010-02-01
We introduce and study numerically a scalable parallel finite element solver for the simulation of blood flow in compliant arteries. The incompressible Navier-Stokes equations are used to model the fluid and coupled to an incompressible linear elastic model for the blood vessel walls. Our method features an unstructured dynamic mesh capable of modeling complicated geometries, an arbitrary Lagrangian-Eulerian framework that allows for large displacements of the moving fluid domain, monolithic coupling between the fluid and structure equations, and fully implicit time discretization. Simulations based on blood vessel geometries derived from patient-specific clinical data are performed on large supercomputers using scalable Newton-Krylov algorithms preconditioned with an overlapping restricted additive Schwarz method that preconditions the entire fluid-structure system together. The algorithm is shown to be robust and scalable for a variety of physical parameters, scaling to hundreds of processors and millions of unknowns.
Gamma-ray free-electron lasers: Quantum fluid model
NASA Astrophysics Data System (ADS)
Silva, H. M.; Serbeto, A.; Galvão, R. M. O.; Mendonça, J. T.; Monteiro, L. F.
2014-12-01
A quantum fluid model is used to describe the interaction of a nondegenerate cold relativistic electron beam with an intense optical wiggler taking into account the beam space-charge potential and photon recoil effect. A nonlinear set of coupled equations is obtained and solved numerically. The numerical results indicate that intense γ-ray free-electron laser emission, with intensities approaching the Schwinger limit, can be driven by the strong nonlinear space-charge wave, for feasible values of the electron beam parameters. However, the achievement of this regime of extreme intensities depends rather critically on the choice of the detuning and of the signal initial phase at the entrance of the interaction region.
Fluid transport processes within sea ice: towards physically derived models
NASA Astrophysics Data System (ADS)
Wells, A. J.; Wettlaufer, J. S.; Orszag, S.
2012-12-01
Rather than being an impermeable solid barrier, young sea ice forms a porous matrix of ice crystals through which the interstitial brine can flow. Gravity drainage of dense brine is of particular importance in young sea ice, with the resulting fluid flow redistributing heat, salt, and passive tracers through the ice and controlling exchanges with the ocean. Hence, an understanding of this buoyancy-driven flow is critical for quantifying ice-ocean tracer fluxes, biogeochemical cycles, and evolution of the salinity-dependent material properties of ice that influence growth and decay. We use mushy layer theory, which describes the thermodynamics of the relevant multiphase flow, simulations and analogue experiments to provide insight into these processes. The approach provides a structure to evaluate ad-hoc parameterizations of brine drainage for consistency with the underlying physics. The resulting theoretical framework points towards a bottom-up approach to deriving models via a homogenization of the underlying physical processes.
A Two-Phase Solid/Fluid Model for Dense Granular Flows Including Dilatancy Effects
NASA Astrophysics Data System (ADS)
Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Narbona-Reina, Gladys
2015-04-01
We propose a thin layer depth-averaged two-phase model to describe solid-fluid mixtures such as debris flows. It describes the velocity of the two phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure, that itself modifies the friction within the granular phase (Iverson et al., 2010). The model is derived from a 3D two-phase model proposed by Jackson (2000) based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work (Bouchut et al., 2014). In particular, Pitman and Le replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's equations. We close the mixture equations by a weak compressibility relation involving a critical density, or equivalently a critical pressure. Moreover, we relax one boundary condition, making it possible for the fluid to escape the granular media when compression of the granular mass occurs. Furthermore, we introduce second order terms in the equations making it possible to describe the evolution of the pore fluid pressure in response to the compression/dilatation of the granular mass without prescribing an extra ad-hoc equation for the pore pressure. We prove that the energy balance associated with this Jackson closure is dissipative, as well as its thin layer associated model. We present several numerical tests for the 1D case that are compared to the
A Two-Phase Solid/Fluid Model for Dense Granular Flows Including Dilatancy Effects
NASA Astrophysics Data System (ADS)
Mangeney, A.; Bouchut, F.; Fernández-Nieto, E. D.; Narbona-Reina, G.; Kone, E. H.
2014-12-01
We propose a thin layer depth-averaged two-phase model to describe solid-fluid mixtures such as debris flows. It describes the velocity of the two phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure, that itself modifies the friction within the granular phase (Iverson et al., 2010). The model is derived from a 3D two-phase model proposed by Jackson (2000) based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work (Bouchut et al., 2014). In particular, Pitman and Le replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's equations. We close the mixture equations by a weak compressibility relation involving a critical density, or equivalently a critical pressure. Moreover, we relax one boundary condition, making it possible for the fluid to escape the granular media when compression of the granular mass occurs. Furthermore, we introduce second order terms in the equations making it possible to describe the evolution of the pore fluid pressure in response to the compression/dilatation of the granular mass without prescribing an extra ad-hoc equation for the pore pressure. We prove that the energy balance associated with this Jackson closure is dissipative, as well as its thin layer associated model. We present several numerical tests for the 1D case that are compared to the
Model for hydromagnetic convection in a magnetized fluid.
Macek, Wiesław M; Strumik, Marek
2010-08-01
We consider convection in a horizontally magnetized viscous fluid layer in the gravitational field heated from below with a vertical temperature gradient. Following Rayleigh-Bénard scenario and using a general magnetohydrodynamic approach, we obtain a simple set of four ordinary differential equations. In addition to the usual three-dimensional Lorenz model a new variable describes the profile of the induced magnetic field. We show that nonperiodic oscillations are influenced by anisotropic magnetic forces resulting not only in an additional viscosity but also substantially modifying nonlinear forcing of the system. On the other hand, this can stabilize convective motion of the flow. However, for certain values of the model parameters we have identified a deterministic intermittent behavior of the system resulting from bifurcation. In this way, we have identified here a basic mechanism of intermittent release of energy bursts, which is frequently observed in space and laboratory plasmas. Hence, we propose this model as a useful tool for the analysis of intermittent behavior of various environments, including convection in planets and stars. Therefore, we hope that our simple but still a more general nonlinear model could shed light on the nature of hydromagnetic convection. PMID:20866943
Model for hydromagnetic convection in a magnetized fluid.
Macek, Wiesław M; Strumik, Marek
2010-08-01
We consider convection in a horizontally magnetized viscous fluid layer in the gravitational field heated from below with a vertical temperature gradient. Following Rayleigh-Bénard scenario and using a general magnetohydrodynamic approach, we obtain a simple set of four ordinary differential equations. In addition to the usual three-dimensional Lorenz model a new variable describes the profile of the induced magnetic field. We show that nonperiodic oscillations are influenced by anisotropic magnetic forces resulting not only in an additional viscosity but also substantially modifying nonlinear forcing of the system. On the other hand, this can stabilize convective motion of the flow. However, for certain values of the model parameters we have identified a deterministic intermittent behavior of the system resulting from bifurcation. In this way, we have identified here a basic mechanism of intermittent release of energy bursts, which is frequently observed in space and laboratory plasmas. Hence, we propose this model as a useful tool for the analysis of intermittent behavior of various environments, including convection in planets and stars. Therefore, we hope that our simple but still a more general nonlinear model could shed light on the nature of hydromagnetic convection.
Methods for simulation-based analysis of fluid-structure interaction.
Barone, Matthew Franklin; Payne, Jeffrey L.
2005-10-01
Methods for analysis of fluid-structure interaction using high fidelity simulations are critically reviewed. First, a literature review of modern numerical techniques for simulation of aeroelastic phenomena is presented. The review focuses on methods contained within the arbitrary Lagrangian-Eulerian (ALE) framework for coupling computational fluid dynamics codes to computational structural mechanics codes. The review treats mesh movement algorithms, the role of the geometric conservation law, time advancement schemes, wetted surface interface strategies, and some representative applications. The complexity and computational expense of coupled Navier-Stokes/structural dynamics simulations points to the need for reduced order modeling to facilitate parametric analysis. The proper orthogonal decomposition (POD)/Galerkin projection approach for building a reduced order model (ROM) is presented, along with ideas for extension of the methodology to allow construction of ROMs based on data generated from ALE simulations.
A one-domain approach for modeling and simulation of free fluid over a porous medium
NASA Astrophysics Data System (ADS)
Chen, Huangxin; Wang, Xiao-Ping
2014-02-01
We propose a one-domain approach based on the Brinkman model for the modeling and simulation of the transport phenomenon between free fluid and a porous medium. A thin transition layer is introduced between the free fluid region and the porous media region, across which the porosity and permeability undergo a rapid but continuous change. We study the behavior of the solution to the one-domain model analytically and numerically. Using the method of matched asymptotic expansion, we recover the Beavers-Joseph-Saffman (BJS) interface condition as the thickness of the transition layer goes to zero. We also calculate the error estimates between the leading order solution of the one-domain model and the standard Darcy-Stokes model of two-domain model with BJS condition. Numerical methods are developed for both the one-domain model and the two-domain model. Numerical results are presented to support the analytical results, thereby justifying the one-domain model as a good approximation to the two domain Stokes-Darcy model.
Methods of use for sensor based fluid detection devices
NASA Technical Reports Server (NTRS)
Lewis, Nathan S. (Inventor)
2001-01-01
Methods of use and devices for detecting analyte in fluid. A system for detecting an analyte in a fluid is described comprising a substrate having a sensor comprising a first organic material and a second organic material where the sensor has a response to permeation by an analyte. A detector is operatively associated with the sensor. Further, a fluid delivery appliance is operatively associated with the sensor. The sensor device has information storage and processing equipment, which is operably connected with the device. This device compares a response from the detector with a stored ideal response to detect the presence of analyte. An integrated system for detecting an analyte in a fluid is also described where the sensing device, detector, information storage and processing device, and fluid delivery device are incorporated in a substrate. Methods for use for the above system are also described where the first organic material and a second organic material are sensed and the analyte is detected with a detector operatively associated with the sensor. The method provides for a device, which delivers fluid to the sensor and measures the response of the sensor with the detector. Further, the response is compared to a stored ideal response for the analyte to determine the presence of the analyte. In different embodiments, the fluid measured may be a gaseous fluid, a liquid, or a fluid extracted from a solid. Methods of fluid delivery for each embodiment are accordingly provided.
Fakhrabadi, Mir Masoud Seyyed; Rastgoo, Abbas; Ahmadian, Mohammad Taghi
2013-01-01
The paper presents the effects of fluid flow on the static and dynamic properties of carbon nanotubes that convey a viscous fluid. The mathematical model is based on the modified couple stress theory. The effects of various fluid parameters and boundary conditions on the pull-in voltages are investigated in detail. The applicability of the proposed system as nanovalves or nanosensors in nanoscale fluidic systems is elaborated. The results confirm that the nanoscale system studied in this paper can be properly applied for these purposes.
A Lumped-Parameter Subject-Specific Model of Blood Volume Response to Fluid Infusion
Bighamian, Ramin; Reisner, Andrew T.; Hahn, Jin-Oh
2016-01-01
This paper presents a lumped-parameter model that can reproduce blood volume response to fluid infusion. The model represents the fluid shift between the intravascular and interstitial compartments as the output of a hypothetical feedback controller that regulates the ratio between the volume changes in the intravascular and interstitial fluid at a target value (called “target volume ratio”). The model is characterized by only three parameters: the target volume ratio, feedback gain (specifying the speed of fluid shift), and initial blood volume. This model can obviate the need to incorporate complex mechanisms involved in the fluid shift in reproducing blood volume response to fluid infusion. The ability of the model to reproduce real-world blood volume response to fluid infusion was evaluated by fitting it to a series of data reported in the literature. The model reproduced the data accurately with average error and root-mean-squared error (RMSE) of 0.6 and 9.5% across crystalloid and colloid fluids when normalized by the underlying responses. Further, the parameters derived for the model showed physiologically plausible behaviors. It was concluded that this simple model may accurately reproduce a variety of blood volume responses to fluid infusion throughout different physiological states by fitting three parameters to a given dataset. This offers a tool that can quantify the fluid shift in a dataset given the measured fractional blood volumes.
A Lumped-Parameter Subject-Specific Model of Blood Volume Response to Fluid Infusion
Bighamian, Ramin; Reisner, Andrew T.; Hahn, Jin-Oh
2016-01-01
This paper presents a lumped-parameter model that can reproduce blood volume response to fluid infusion. The model represents the fluid shift between the intravascular and interstitial compartments as the output of a hypothetical feedback controller that regulates the ratio between the volume changes in the intravascular and interstitial fluid at a target value (called “target volume ratio”). The model is characterized by only three parameters: the target volume ratio, feedback gain (specifying the speed of fluid shift), and initial blood volume. This model can obviate the need to incorporate complex mechanisms involved in the fluid shift in reproducing blood volume response to fluid infusion. The ability of the model to reproduce real-world blood volume response to fluid infusion was evaluated by fitting it to a series of data reported in the literature. The model reproduced the data accurately with average error and root-mean-squared error (RMSE) of 0.6 and 9.5% across crystalloid and colloid fluids when normalized by the underlying responses. Further, the parameters derived for the model showed physiologically plausible behaviors. It was concluded that this simple model may accurately reproduce a variety of blood volume responses to fluid infusion throughout different physiological states by fitting three parameters to a given dataset. This offers a tool that can quantify the fluid shift in a dataset given the measured fractional blood volumes. PMID:27642283
A Lumped-Parameter Subject-Specific Model of Blood Volume Response to Fluid Infusion.
Bighamian, Ramin; Reisner, Andrew T; Hahn, Jin-Oh
2016-01-01
This paper presents a lumped-parameter model that can reproduce blood volume response to fluid infusion. The model represents the fluid shift between the intravascular and interstitial compartments as the output of a hypothetical feedback controller that regulates the ratio between the volume changes in the intravascular and interstitial fluid at a target value (called "target volume ratio"). The model is characterized by only three parameters: the target volume ratio, feedback gain (specifying the speed of fluid shift), and initial blood volume. This model can obviate the need to incorporate complex mechanisms involved in the fluid shift in reproducing blood volume response to fluid infusion. The ability of the model to reproduce real-world blood volume response to fluid infusion was evaluated by fitting it to a series of data reported in the literature. The model reproduced the data accurately with average error and root-mean-squared error (RMSE) of 0.6 and 9.5% across crystalloid and colloid fluids when normalized by the underlying responses. Further, the parameters derived for the model showed physiologically plausible behaviors. It was concluded that this simple model may accurately reproduce a variety of blood volume responses to fluid infusion throughout different physiological states by fitting three parameters to a given dataset. This offers a tool that can quantify the fluid shift in a dataset given the measured fractional blood volumes. PMID:27642283
Preparation and Characterization of Water-Based Nano-fluids for Nuclear Applications
Williams, W.C.; Forrest, E.; Hu, L.W.; Buongiorno, J.
2006-07-01
As part of an effort to evaluate water-based nano-fluids for nuclear applications, preparation and characterization has been performed for nano-fluids being considered for MIT's nano-fluid heat transfer experiments. Three methods of generating these nano-fluids are available: creating them from chemical precipitation, purchasing the nano-particles in powder form and mixing them with the base fluid, and direct purchase of prepared nano-fluids. Characterization of nano-fluids includes colloidal stability, size distribution, concentration, and elemental composition. Quality control of the nano-fluids to be used for heat transfer testing is crucial; an exact knowledge of the fluid constituents is essential to uncovering mechanisms responsible for heat transport enhancement. Testing indicates that nano-fluids created by mixing a liquid with nano-particles in powder form are often not stable, although some degree of stabilization is obtainable with pH control and/or surfactant addition. Some commercially available prepared nano-fluids have been found to contain unacceptable levels of impurities and/or include a different weight percent of nano-particles compared to vendor specifications. Tools utilized to characterize and qualify nano-fluids for this study include neutron activation analysis (NAA), inductively-coupled plasma spectroscopy (ICP), transmission electron microscopy (TEM) imaging, thermogravimetric analysis (TGA) and dynamic light scattering (DLS). Preparation procedures and characterization results for selected nano-fluids will be discussed in detail. (authors)
FLUENT/BFC - A general purpose fluid flow modeling program for all flow speeds
NASA Astrophysics Data System (ADS)
Dvinsky, Arkady S.
FLUENT/BFC is a fluid flow modeling program for a variety of applications. Current capabilities of the program include laminar and turbulent flows, subsonic and supersonic viscous flows, incompressible flows, time-dependent and stationary flows, isothermal flows and flows with heat transfer, Newtonian and power-law fluids. The modeling equations in the program have been written in coordinate system invariant form to accommodate the use of boundary-conforming, generally nonorthogonal coordinate systems. The boundary-conforming coordinate system can be generated using both an internal grid generator, which is an integral part of the code, and external application-specific grid generators. The internal grid generator is based on a solution of a system of elliptic partial differential equations and can produce grids for a wide variety of two- and three-dimensional geometries.
Rheological modelling of complex fluids. I. The concept of effective volume fraction revisited
NASA Astrophysics Data System (ADS)
Quemada, D.
1998-01-01
Number of complex fluids (as slurries, drilling muds, paints and coatings, many foods, cosmetics, biofluids...) can approximately be described as concentrated dispersions of Structural Units (SUs). Due to shear forces, SUs are assumed to be approximately spherical in shape and uniform in size under steady flow conditions, so that a complex fluid can be considered as a roughly monodisperse dispersion of roughly spherical SUs (with a shear-dependent mean radius), what allows to generalize hard sphere models of monodisperse suspensions to complex fluids. A rheological model of such dispersions of SUs is based on the concept of the effective volume fraction, φ_{eff} which depends on flow conditions. Indeed, in competition with particle interactions, hydrodynamic forces can modify (i) S, the number fraction of particles that all SUs contain, (ii) both SUs arrangements and their internal structure, especially the SU's compactness, \\varphi. As a structural variable, S is governed by a kinetic equation. Through the shear-dependent kinetic rates involved in the latter, the general solution S depends on Γ, a dimensionless shear variable, leading to φ_{eff}(t, Γ; \\varphi). The structural modelling is achieved by introducing this expression of φ_{eff} into a well-established viscosity model of hard sphere suspensions. Using the steady state solution of the kinetic equation, S_{eq}(Γ ), allows to model non-Newtonian behaviors of complex fluids under steady shear conditions, as pseudo-plastic, plastic, dilatant ... ones. In this model, the ratio of high shear to low shear limiting viscosities appears as a key variable. Different examples of application will be discussed.
Microtomography and pore-scale modeling of two-phase Fluid Distribution
Silin, D.; Tomutsa, L.; Benson, S.; Patzek, T.
2010-10-19
Synchrotron-based X-ray microtomography (micro CT) at the Advanced Light Source (ALS) line 8.3.2 at the Lawrence Berkeley National Laboratory produces three-dimensional micron-scale-resolution digital images of the pore space of the reservoir rock along with the spacial distribution of the fluids. Pore-scale visualization of carbon dioxide flooding experiments performed at a reservoir pressure demonstrates that the injected gas fills some pores and pore clusters, and entirely bypasses the others. Using 3D digital images of the pore space as input data, the method of maximal inscribed spheres (MIS) predicts two-phase fluid distribution in capillary equilibrium. Verification against the tomography images shows a good agreement between the computed fluid distribution in the pores and the experimental data. The model-predicted capillary pressure curves and tomography-based porosimetry distributions compared favorably with the mercury injection data. Thus, micro CT in combination with modeling based on the MIS is a viable approach to study the pore-scale mechanisms of CO{sub 2} injection into an aquifer, as well as more general multi-phase flows.
NASA Astrophysics Data System (ADS)
Huang, Weifeng; Liao, Chuanjun; Liu, Xiangfeng; Suo, Shuangfu; Liu, Ying; Wang, Yuming
2014-09-01
Hydrostatic mechanical face seals for reactor coolant pumps are very important for the safety and reliability of pressurized-water reactor power plants. More accurate models on the operating mechanism of the seals are needed to help improve their performance. The thermal fluid-solid interaction (TFSI) mechanism of the hydrostatic seal is investigated in this study. Numerical models of the flow field and seal assembly are developed. Based on the mechanism for the continuity condition of the physical quantities at the fluid-solid interface, an on-line numerical TFSI model for the hydrostatic mechanical seal is proposed using an iterative coupling method. Dynamic mesh technology is adopted to adapt to the changing boundary shape. Experiments were performed on a test rig using a full-size test seal to obtain the leakage rate as a function of the differential pressure. The effectiveness and accuracy of the TFSI model were verified by comparing the simulation results and experimental data. Using the TFSI model, the behavior of the seal is presented, including mechanical and thermal deformation, and the temperature field. The influences of the rotating speed and differential pressure of the sealing device on the temperature field, which occur widely in the actual use of the seal, are studied. This research proposes an on-line and assembly-based TFSI model for hydrostatic mechanical face seals, and the model is validated by full-sized experiments.
Khosravian, N; Rafii-Tabar, H
2008-07-01
In the design of nanotube-based fluidic devices, a critical issue is the effect of the induced vibrations in the nanotube arising from the fluid flow, since these vibrations can promote structural instabilities, such as buckling transitions. It is known that the induced resonant frequencies depend on the fluid flow velocity in a significant manner. We have studied, for the first time, the flow of a non-viscous fluid in stubby multi-walled carbon nanotubes, using the Timoshenko classical beam theory to model the nanotubes as a continuum structure. We have obtained the variations of the resonant frequencies with the fluid flow velocity under several experimentally interesting boundary conditions and aspect ratios of the nanotube. The main finding from our work is that, compared to an Euler-Bernoulli classical beam model of a nanotube, the Timoshenko beam predicts the loss of stability at lower fluid flow velocities. PMID:21828715
Modeling strain and pore pressure associated with fluid extraction: The Pathfinder Ranch experiment
NASA Astrophysics Data System (ADS)
Barbour, Andrew J.; Wyatt, Frank K.
2014-06-01
Strainmeters can be subject to hydrologic effects from pumping of nearby water wells, depending on the state of the local rock. Strain signals associated with hydrology are generally not used and regarded as troublesome because they are much larger than most tectonic signals (e.g., tides or slow slip episodes in Cascadia), but here we show that fluid extraction leads to detectable strain and pore pressure signals, which we use to constrain valuable material properties of the rock, namely the hydraulic diffusivity and elastic shear modulus. We collected multiple years of pump activity at two active water wells near a pair of Plate Boundary Observatory borehole strainmeters in southern California. These data demonstrate clearly the connection between fluid extraction and deformation: the onset of transient strains and pore pressures is strongly correlated with both the onset of fluid extraction, and the sizes of the transient signals are strongly correlated with cumulative extraction volumes. These data also suggest that the instruments are a possible tool for remote monitoring of fluid injection and withdrawal. Based on poroelastic modeling, we find estimates of hydraulic diffusivity (0.061 m2s-1 to 0.126 m2s-1) which are consistent with data for fractured igneous rock, and estimates of shear modulus (39.7 MPa to 101 MPa) which are comparable to data for shallow granodiorite—expected to be weak from weathering, and other sources of damage (e.g., faulting). We infer that crustal rock in this region is drained at shallow depths by pervasive, hydraulically conductive fractures: as a result of changes in applied stress, fluid flow will occur rather than a sustained change in pore fluid pressure.
Working fluid selection for space-based two-phase heat transport systems
NASA Technical Reports Server (NTRS)
Mclinden, Mark O.
1988-01-01
The working fluid for externally-mounted, space-based two-phase heat transport systems is considered. A sequence of screening criteria involving freezing and critical point temperatures and latent heat of vaporization and vapor density are applied to a data base of 860 fluids. The thermal performance of the 52 fluids which pass this preliminary screening are then ranked according to their impact on the weight of a reference system. Upon considering other nonthermal criteria (flammability, toxicity, and chemical stability) a final set of 10 preferred fluids is obtained. The effects of variations in system parameters is investigated for these 10 fluids by means of a factorial design.
NASA Astrophysics Data System (ADS)
Muha, Boris; Canić, Suncica
2013-03-01
We study a nonlinear, unsteady, moving boundary, fluid-structure interaction (FSI) problem arising in modeling blood flow through elastic and viscoelastic arteries. The fluid flow, which is driven by the time-dependent pressure data, is governed by two-dimensional incompressible Navier-Stokes equations, while the elastodynamics of the cylindrical wall is modeled by the one-dimensional cylindrical Koiter shell model. Two cases are considered: the linearly viscoelastic and the linearly elastic Koiter shell. The fluid and structure are fully coupled (two-way coupling) via the kinematic and dynamic lateral boundary conditions describing continuity of velocity (the no-slip condition), and the balance of contact forces at the fluid-structure interface. We prove the existence of weak solutions to the two FSI problems (the viscoelastic and the elastic case) as long as the cylinder radius is greater than zero. The proof is based on a novel semi-discrete, operator splitting numerical scheme, known as the kinematically coupled scheme, introduced in Guidoboni et al. (J Comput Phys 228(18):6916-6937, 2009) to numerically solve the underlying FSI problems. The backbone of the kinematically coupled scheme is the well-known Marchuk-Yanenko scheme, also known as the Lie splitting scheme. We effectively prove convergence of that numerical scheme to a solution of the corresponding FSI problem.
Four fluid model and numerical simulations of magnetic structures in the heliosheath
NASA Astrophysics Data System (ADS)
Avinash, K.; Cox, S. M.; Shaikh, D.; Zank, G. P.
2007-12-01
A magnetic hole/hump is a stable structure with small scale minima/maxima of the mean magnetic field in the centre. Such structure has been observed in inter-planetary magnetic field, planetary magneto sheath, cometary's plasma, and very recently in the heliosheath, as revealed by Voyager I observations. Recently, we have proposed a realistic three fluid model that comprises of three fluids in the model are electrons, heliosheath ions, and neutrals. Stationary, time independent solutions of this model consisting of holes, humps, trains of holes and humps etc. were found to be consistent with Voyager observations e.g. a few tens of ion gyro-radii width, large magnetic maxima/minima, oblique angles of propagation and well approximated by Gaussians. In the first part of the present work, we extend the three fluid model to a four fluid model consisting of electrons, pick up ions (PUI), solar wind ions (SWI), and neutrals. The PUIs are generated by neutrals via charge exchange with SWI. The kinetic pressure of PUI is nearly three to four times the pressure of SWI. Hence these are more suited to mediate small scale structures in heliosheath like shocks, magnetic holes/humps etc. We show that the constant energy exchange between these two fluid drives them non adiabatic. The modified adiabatic index, is calculated by solving the corresponding enthalpy equation. The PUI are found to be isothermal ( = 1) while SWI have 1.25. In the four fluid model, these effects are captured by including a modified equation of state for PUIs and SWIs. The phase space of time independent solutions in terms of the Mach numbers of PUI and SWI is constructed to delineate the parameter space which allows structure formation. In the second part of the present work, we examine the stability of our time independent solution by evolving them via a full set of modified Hall-MHD equations. The evolutions are examined using two codes e.g. a pseudo spectral code and a code based on finite difference
Relativistic model of anisotropic charged fluid sphere in general relativity
NASA Astrophysics Data System (ADS)
Pant, Neeraj; Pradhan, N.; Bansal, Rajeev K.
2016-01-01
In this present paper, we present a class of static, spherically symmetric charged anisotropic fluid models of super dense stars in isotropic coordinates by considering a particular type of metric potential, a specific choice of electric field intensity E and pressure anisotropy factor Δ which involve parameters K (charge) and α (anisotropy) respectively. The solutions so obtained are utilized to construct the models for super-dense stars like neutron stars and strange quark stars. Our solutions are well behaved within the following ranges of different constant parameters. In the absence of pressure anisotropy and charge present model reduces to the isotropic model Pant et al. (Astrophys. Space Sci. 330:353-359, 2010). Our solution is well behaved in all respects for all values of X lying in the range 0< X ≤ 0.18, α lying in the range 0 ≤ α ≤6.6, K lying in the range 0< K ≤ 6.6 and Schwarzschild compactness parameter "u" lying in the range 0< u ≤ 0.38. Since our solution is well behaved for a wide ranges of the parameters, we can model many different types of ultra-cold compact stars like quark stars and neutron stars. We have shown that corresponding to X=0.088, α=0.6 and K=4.3 for which u=0.2054 and by assuming surface density ρb = 4.6888 × 10^{14} g/cm3 the mass and radius are found to be 1.51 M_{\\varTheta} and 10.90 km respectively. Assuming surface density ρb = 2 × 10^{14} g/cm3 the mass and radius for a neutron star candidate are found to be 2.313 M_{\\varTheta} and 16.690 km respectively. Hence we obtain masses and radii that fall in the range of what is generally expected for quark stars and neutron stars.
NASA Astrophysics Data System (ADS)
Ghanbari, Mina; Hossainpour, Siamak; Rezazadeh, Ghader
2015-11-01
This paper deals with the analysis of a novel micro-electromechanical sensor for measurement of microscale fluid physical properties. The proposed sensor is made up of a micro-beam with one end fixed and a micro-plate as a sensing element at its free end, which is immersed in a microscale fluid media. As fluids show different behavior in microscale than in macroscale, the microscale fluid media have been modeled based on micro-polar theory. So non-classical properties of fluid that are absent in macroscale flows need to be measured. In order to actuate the sensor longitudinally, an AC voltage is applied to the piezoelectric layers on the upper and lower surfaces of the micro-beam. Coupled governing partial differential equations of motion of the fluid field and longitudinal vibration of the micro-beam have been derived based on micro-polar theory. The obtained governing differential equations with time-varying boundary conditions have been simplified and transformed to an enhanced form with homogenous boundary conditions. Then, they have been discretized over the beam and fluid domain using Galerkin-based reduced-order model. The dynamic response of the sensing element for different piezoelectric actuation voltages and different exciting frequencies has been studied. It has been shown that by investigating damping and inertial effect fluid loading on response of the micro-beam, properties of a microscale fluid can be measured. At the end, effects of geometrical parameters of the sensor on the response of sensing element have been studied.
Controllable magneto-rheological fluid-based dampers for drilling
Raymond, David W.; Elsayed, Mostafa Ahmed
2006-05-02
A damping apparatus and method for a drillstring comprising a bit comprising providing to the drillstring a damping mechanism comprising magnetorheological fluid and generating an electromagnetic field affecting the magnetorheological fluid in response to changing ambient conditions encountered by the bit.
Evaluation of generic types of drilling fluid using a risk-based analytic hierarchy process.
Sadiq, Rehan; Husain, Tahir; Veitch, Brian; Bose, Neil
2003-12-01
The composition of drilling muds is based on a mixture of clays and additives in a base fluid. There are three generic categories of base fluid--water, oil, and synthetic. Water-based fluids (WBFs) are relatively environmentally benign, but drilling performance is better with oil-based fluids (OBFs). The oil and gas industry developed synthetic-based fluids (SBFs), such as vegetable esters, olefins, ethers, and others, which provide drilling performance comparable to OBFs, but with lower environmental and occupational health effects. The primary objective of this paper is to present a methodology to guide decision-making in the selection and evaluation of three generic types of drilling fluids using a risk-based analytic hierarchy process (AHP). In this paper a comparison of drilling fluids is made considering various activities involved in the life cycle of drilling fluids. This paper evaluates OBFs, WBFs, and SBFs based on four major impacts--operations, resources, economics, and liabilities. Four major activities--drilling, discharging offshore, loading and transporting, and disposing onshore--cause the operational impacts. Each activity involves risks related to occupational injuries (safety), general public health, environmental impact, and energy use. A multicriteria analysis strategy was used for the selection and evaluation of drilling fluids using a risk-based AHP. A four-level hierarchical structure is developed to determine the final relative scores, and the SBFs are found to be the best option.
Evaluation of generic types of drilling fluid using a risk-based analytic hierarchy process.
Sadiq, Rehan; Husain, Tahir; Veitch, Brian; Bose, Neil
2003-12-01
The composition of drilling muds is based on a mixture of clays and additives in a base fluid. There are three generic categories of base fluid--water, oil, and synthetic. Water-based fluids (WBFs) are relatively environmentally benign, but drilling performance is better with oil-based fluids (OBFs). The oil and gas industry developed synthetic-based fluids (SBFs), such as vegetable esters, olefins, ethers, and others, which provide drilling performance comparable to OBFs, but with lower environmental and occupational health effects. The primary objective of this paper is to present a methodology to guide decision-making in the selection and evaluation of three generic types of drilling fluids using a risk-based analytic hierarchy process (AHP). In this paper a comparison of drilling fluids is made considering various activities involved in the life cycle of drilling fluids. This paper evaluates OBFs, WBFs, and SBFs based on four major impacts--operations, resources, economics, and liabilities. Four major activities--drilling, discharging offshore, loading and transporting, and disposing onshore--cause the operational impacts. Each activity involves risks related to occupational injuries (safety), general public health, environmental impact, and energy use. A multicriteria analysis strategy was used for the selection and evaluation of drilling fluids using a risk-based AHP. A four-level hierarchical structure is developed to determine the final relative scores, and the SBFs are found to be the best option. PMID:15160901
A numerical model for elliptical instability of the Earth's fluid outer core
NASA Astrophysics Data System (ADS)
Seyed-Mahmoud, Behnam; Henderson, Gary; Aldridge, Keith
2000-01-01
A dynamical model is proposed for the elliptical instability that has been reported by Aldridge et al. [Aldridge, K.D., Seyed-Mahmoud, B., Henderson, G.A., van Wijngaarden, W., 1997. Elliptical instability of the Earth's fluid core. Phys. Earth Planet. Inter., 103, 365-374] in connection with recent experiments on an ellipsoidal shell of rotating fluid. The frequencies and growth rates of the instability are obtained numerically by means of a Galerkin method that is based upon the normal modes of the contained fluid. A finite-element method has been employed to approximately solve the ill-posed Poincaré problem for the normal modes. The numerical results for a special case are compared with their analytical counterparts, and the agreement is to within 0.1% for shells of small ellipticity. Results are presented for other cases, including some where the boundary perturbation is allowed to rotate slowly with respect to the inertial frame. The conclusion is that such investigations are of geophysical interest, since tidal forcing might be sufficient to excite an elliptical instability of the fluid outer core of the Earth and thus contribute to the geomagnetic field.
Acoustic and Aero-Mixing Experimental Results for Fluid Shield Scale Model Nozzles
NASA Technical Reports Server (NTRS)
Salikuddin, M.; Mengle, V. G.; Shin, H. W.; Majjigi, R. K.
2005-01-01
The principle objectives of this investigation are to evaluate the acoustic and aerodynamic characteristics of fluid shield nozzle concept and to assess Far 36, Stage 3 potential for fluid shield nozzle with Flade Cycle. Acoustic data for nine scale model nozzle configurations are obtained. The effects of simulated flight and geometric and aerothermodynamic flow variables on the acoustic behavior of the fluid shield are determined. The acoustic tests are aimed at studying the effect of: (1) shield thickness, (2) wrap angle, (3) mass flow and velocity ratios between shield and core streams at constant cycle specific thrust (i.e., mixed velocity), (4) porous plug, and (5) subsonic shield. Shadowgraphs of six nozzle configurations are obtained to understand the plume flowfield features. Static pressure data on suppressor chutes in the core stream (shielded and unshielded) sides and on plug surface are acquired to determine the impact of fluid shield on base drag of the 36-chute suppressor nozzle and the thrust augmentation due to the plug, respectively.
NASA Astrophysics Data System (ADS)
Guo, Yuan-Yuan; Chen, Xiao-Song
2009-08-01
By considering the fluctuation of grand potential Ω around equilibrium with respect to small one-particle density fluctuations δρα(vec r), the phase instability of restricted primitive model (RPM) of ionic systems is investigated. We use the integral equation theory to calculate the direct correlation functions in the reference hypernetted chain approximation and obtain the spinodal line of RPM. Our analysis explicitly indicates that the gas-fluid phase instability is induced by k = 0 fluctuation mode, while the fluid-solid phase instability is related to k ≠ 0 fluctuation modes. The spinodal line is qualitatively consistent with the result of computer simulations by others.
VOLD, ERIK L.; SCANNAPIECO, TONY J.
2007-10-16
A sub-grid mix model based on a volume-of-fluids (VOF) representation is described for computational simulations of the transient mixing between reactive fluids, in which the atomically mixed components enter into the reactivity. The multi-fluid model allows each fluid species to have independent values for density, energy, pressure and temperature, as well as independent velocities and volume fractions. Fluid volume fractions are further divided into mix components to represent their 'mixedness' for more accurate prediction of reactivity. Time dependent conversion from unmixed volume fractions (denoted cf) to atomically mixed (af) fluids by diffusive processes is represented in resolved scale simulations with the volume fractions (cf, af mix). In unresolved scale simulations, the transition to atomically mixed materials begins with a conversion from unmixed material to a sub-grid volume fraction (pf). This fraction represents the unresolved small scales in the fluids, heterogeneously mixed by turbulent or multi-phase mixing processes, and this fraction then proceeds in a second step to the atomically mixed fraction by diffusion (cf, pf, af mix). Species velocities are evaluated with a species drift flux, {rho}{sub i}u{sub di} = {rho}{sub i}(u{sub i}-u), used to describe the fluid mixing sources in several closure options. A simple example of mixing fluids during 'interfacial deceleration mixing with a small amount of diffusion illustrates the generation of atomically mixed fluids in two cases, for resolved scale simulations and for unresolved scale simulations. Application to reactive mixing, including Inertial Confinement Fusion (ICF), is planned for future work.
NASA Astrophysics Data System (ADS)
Wang, Jie; Zhao, Shougen; Wu, Dafang; Jing, Xingjian
2016-01-01
Micro-vibration isolation is a hot topic in spacecraft vibration control, and fluid based vibration isolators alternatively provide a good and reliable solution to this challenging issue. In this paper, a novel fluid based micro-vibration isolator (FBMVI) is investigated. According to its inherent working principle and deformation pattern, the generation mechanisms of the damping and stiffness characteristics are derived, which are nonlinear functions of the environmental temperature. Then a lumped parameter model which is expressed by the physical design parameters (PDPs) is constructed, and the corresponding performance objective indices (POIs) are also obtained by applying the equivalence of mechanical impedance. Based on the finite element analysis of the internal damping component, a single variable method is further adopted to carry out the parametric study, and the influences of each PDP on the POIs are analyzed in details. Finally, experiments are conducted to identify the variation of fluid bulk modulus with the outside environmental temperature, and to validate the performance of the isolator under different temperature environments. The tested results show great consistence compared with the predicted tendencies of the parametric study. The results of this study can provide a very useful insight into and/or an important guidance for the design and application of this type of FBMVIs in engineering practice.
NASA Astrophysics Data System (ADS)
Li, Feng-Chen; Wang, Lu; Cai, Wei-Hua
2015-07-01
A mixed subgrid-scale (SGS) model based on coherent structures and temporal approximate deconvolution (MCT) is proposed for turbulent drag-reducing flows of viscoelastic fluids. The main idea of the MCT SGS model is to perform spatial filtering for the momentum equation and temporal filtering for the conformation tensor transport equation of turbulent flow of viscoelastic fluid, respectively. The MCT model is suitable for large eddy simulation (LES) of turbulent drag-reducing flows of viscoelastic fluids in engineering applications since the model parameters can be easily obtained. The LES of forced homogeneous isotropic turbulence (FHIT) with polymer additives and turbulent channel flow with surfactant additives based on MCT SGS model shows excellent agreements with direct numerical simulation (DNS) results. Compared with the LES results using the temporal approximate deconvolution model (TADM) for FHIT with polymer additives, this mixed SGS model MCT behaves better, regarding the enhancement of calculating parameters such as the Reynolds number. For scientific and engineering research, turbulent flows at high Reynolds numbers are expected, so the MCT model can be a more suitable model for the LES of turbulent drag-reducing flows of viscoelastic fluid with polymer or surfactant additives. Project supported by the China Postdoctoral Science Foundation (Grant No. 2011M500652), the National Natural Science Foundation of China (Grant Nos. 51276046 and 51206033), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20112302110020).
Excess-entropy-based anomalies for a waterlike fluid.
Errington, Jeffrey R; Truskett, Thomas M; Mittal, Jeetain
2006-12-28
Many thermodynamic and dynamic properties of water display unusual behavior at low enough temperatures. In a recent study, Yan et al. [Phys. Rev. Lett. 95, 130604 (2005)] identified a spherically symmetric two-scale potential that displays many of the same anomalous properties as water. More specifically, for select parametrizations of the potential, one finds that the regions where isothermal compression anomalously (i) decreases the fluid's structural order, (ii) increases its translational self-diffusivity, and (iii) increases its entropy form nested domes in the temperature-density plane. These property relationships are similar to those found for more realistic models of water. In this work, the authors provide evidence that suggests that the anomalous regions specified above can all be linked through knowledge of the excess entropy. Specifically, the authors show how entropy scaling relationships developed by Rosenfeld [Phys. Rev. A 15, 2545 (1977)] can be used to describe the region of diffusivity anomalies and to predict the state conditions for which anomalous viscosity and thermal conductivity behavior might be found. PMID:17199350
Excess-entropy-based anomalies for a waterlike fluid.
Errington, Jeffrey R; Truskett, Thomas M; Mittal, Jeetain
2006-12-28
Many thermodynamic and dynamic properties of water display unusual behavior at low enough temperatures. In a recent study, Yan et al. [Phys. Rev. Lett. 95, 130604 (2005)] identified a spherically symmetric two-scale potential that displays many of the same anomalous properties as water. More specifically, for select parametrizations of the potential, one finds that the regions where isothermal compression anomalously (i) decreases the fluid's structural order, (ii) increases its translational self-diffusivity, and (iii) increases its entropy form nested domes in the temperature-density plane. These property relationships are similar to those found for more realistic models of water. In this work, the authors provide evidence that suggests that the anomalous regions specified above can all be linked through knowledge of the excess entropy. Specifically, the authors show how entropy scaling relationships developed by Rosenfeld [Phys. Rev. A 15, 2545 (1977)] can be used to describe the region of diffusivity anomalies and to predict the state conditions for which anomalous viscosity and thermal conductivity behavior might be found.
NASA Astrophysics Data System (ADS)
Hu, F. F.; Chen, T.; Wu, D. Z.; Wang, L. Q.
2013-12-01
The internal flow evolution of the pump was induced with impeller movement. In various conditions, the peak load on centrifugal blade under the change of rotational speed or flow rate was also changed. It would cause an error when inertia load with a safety coefficient (that was difficult to ascertain) was applied in structure design. In order to accurately analyze the impeller stress under various conditions and improve the reliability of pump, based on a mixed flow pump model, the stress distribution characteristic was analyzed under different flow rates and rotational speeds. Based on a three-dimensional calculation model including impeller, guide blade, inlet and outlet, the three-dimension incompressible turbulence flow in the centrifugal pump was simulated by using the standard k-epsilon turbulence model. Based on the sequentially coupled simulation approach, a three-dimensional finite element model of impeller was established, and the fluid-structure interaction method of the blade load transfer was discussed. The blades pressure from flow simulation, together with inertia force acting on the blade, was used as the blade loading on solid surface. The Finite Element Method (FEM) was used to calculate the stress distribution of the blade respectively under inertia load, or fluid load, or combined load. The results showed that the blade stress changed with flow rate and rotational speed. In all cases, the maximum stress on the blade appeared on the pressure side near the hub, and the maximum static stress increased with the decreasing of the flow rate and the increasing of rotational speed. There was a big difference on the static stress when inertia load, fluid load and combined loads was applied respectively. In order to more accurately calculate the stress distribution, the structure analysis should be conducted due to combined loads. The results could provide basis for the stress analysis and structure optimization of pump.
E-1 Dynamic Fluid-Flow Model Update: EASY/ROCETS Enhancement and Model Development Support
NASA Technical Reports Server (NTRS)
Follett, Randolph F.; Taylor, Robert P.
1998-01-01
This report documents the research conducted to update computer models for dynamic fluid flow simulation of the E-1 test stand subsystems at te NASA John C. Stennis Space Center.Work also involved significant upgrades to the capabilities of EASY/ROCKETS library through the inclusion of the NIST-12 thermodynamic property database and development of new control system modules.
DEVS-based intelligent control of space adapted fluid mixing
NASA Technical Reports Server (NTRS)
Chi, Sung-Do; Zeigler, Bernard P.
1990-01-01
The development is described of event-based intelligent control system for a space-adapted mixing process by employing the DEVS (Discrete Event System Specification) formalism. In this control paradigm, the controller expects to receive confirming sensor responses to its control commands within definite time windows determined by its DEVS model of the system under control. The DEVS-based intelligent control paradigm was applied in a space-adapted mixing system capable of supporting the laboratory automation aboard a Space Station.
NASA Astrophysics Data System (ADS)
Meakin, Paul; Tartakovsky, Alexandre M.
2009-07-01
In the subsurface, fluids play a critical role by transporting dissolved minerals, colloids, and contaminants (sometimes over long distances); by mediating dissolution and precipitation processes; and by enabling chemical transformations in solution and at mineral surfaces. Although the complex geometries of fracture apertures, fracture networks, and pore spaces may make it difficult to accurately predict fluid flow in saturated (single-phase) subsurface systems, well-developed methods are available. The simulation of multiphase fluid flow in the subsurface is much more challenging because of the large density and/or viscosity ratios found in important applications (water/air in the vadose zone; water/oil, water/gas, gas/oil, and water/oil/gas in hydrocarbon reservoirs; water/air/nonaqueous phase liquids (nonaqueous phase liquids/dense nonaqueous phase liquids) in contaminated vadose zone systems; and gas/molten rock in volcanic systems, for example). In addition, the complex behavior of fluid-fluid-solid contact lines and their impact on dynamic contact angles must also be taken into account and coupled with the fluid flow. Here we review the methods that are currently being used to simulate pore-scale multiphase fluid flow and reactive transport in fractured and porous media. After the introduction, the review begins with an overview of the fundamental physics of multiphase fluids flow followed by a more detailed discussion of the complex dynamic behavior of contact lines and contact angles, an important barrier to accurate pore-scale modeling and simulation. The main part of the review focuses on five different approaches: pore network models, lattice gas and lattice Boltzmann methods, Monte Carlo methods, particle methods (molecular dynamics, dissipative particle dynamics, and smoothed particle hydrodynamics), and traditional grid-based computational fluid dynamics coupled with interface tracking and a contact angle model. Finally, the review closes with a
Analytical model for the deformation of a fluid-fluid interface beneath an AFM probe.
Quinn, Daniel B; Feng, Jie; Stone, Howard A
2013-02-01
We present an analytical solution for the shape of a fluid-fluid interface near a nanoscale solid sphere, which is a configuration motivated by common measurements with an atomic force microscope. The forces considered are surface tension, gravity, and the van der Waals attraction. The nonlinear governing equation has been solved previously using the method of matched asymptotic expansions, and this requires that the surface tension forces far exceed those of gravity, i.e., the Bond number is much less than one. We first present this method using a physically relevant scaling of the equations, then offer a new analytical solution valid for all Bond numbers. We show that one configuration with a large effective Bond number, and thus one requiring our new solution, is a nanothick liquid film spread over a solid substrate. The scaling implications of both analytical methods are considered, and both are compared with numerical solutions of the full equation.
Graphene oxide as a high-performance fluid-loss-control additive in water-based drilling fluids.
Kosynkin, Dmitry V; Ceriotti, Gabriel; Wilson, Kurt C; Lomeda, Jay R; Scorsone, Jason T; Patel, Arvind D; Friedheim, James E; Tour, James M
2012-01-01
Graphene oxide (GO) performs well as a filtration additive in water-based drilling fluids at concentrations as low as 0.2 % (w/w) by carbon content. Standard American Petroleum Institute (API) filtration tests were conducted on pH-adjusted, aqueous dispersions of GO and xanthan gum. It was found that a combination of large-flake GO and powdered GO in a 3:1 ratio performed best in the API tests, allowing an average fluid loss of 6.1 mL over 30 min and leaving a filter cake ~20 μm thick. In comparison, a standard suspension (~12 g/L) of clays and polymers used in the oil industry gave an average fluid loss of 7.2 mL and a filter cake ~280 μm thick. Scanning electron microscopy imaging revealed the extreme pliability of well-exfoliated GO, as the pressure due to filtration crumpled single GO sheets, forcing them to slide through pores with diameters much smaller than the flake's flattened size. GO solutions also exhibited greater shear thinning and higher temperature stability compared to clay-based fluid-loss additives, demonstrating potential for high-temperature well applications.
Graphene oxide as a high-performance fluid-loss-control additive in water-based drilling fluids.
Kosynkin, Dmitry V; Ceriotti, Gabriel; Wilson, Kurt C; Lomeda, Jay R; Scorsone, Jason T; Patel, Arvind D; Friedheim, James E; Tour, James M
2012-01-01
Graphene oxide (GO) performs well as a filtration additive in water-based drilling fluids at concentrations as low as 0.2 % (w/w) by carbon content. Standard American Petroleum Institute (API) filtration tests were conducted on pH-adjusted, aqueous dispersions of GO and xanthan gum. It was found that a combination of large-flake GO and powdered GO in a 3:1 ratio performed best in the API tests, allowing an average fluid loss of 6.1 mL over 30 min and leaving a filter cake ~20 μm thick. In comparison, a standard suspension (~12 g/L) of clays and polymers used in the oil industry gave an average fluid loss of 7.2 mL and a filter cake ~280 μm thick. Scanning electron microscopy imaging revealed the extreme pliability of well-exfoliated GO, as the pressure due to filtration crumpled single GO sheets, forcing them to slide through pores with diameters much smaller than the flake's flattened size. GO solutions also exhibited greater shear thinning and higher temperature stability compared to clay-based fluid-loss additives, demonstrating potential for high-temperature well applications. PMID:22136134
Dynamical analysis of an accelerator-based fluid-fueled subcritical radioactive waste burning system
NASA Astrophysics Data System (ADS)
Woosley, Michael Louis, Jr.
The recent revival of interest in accelerator-driven subcritical fluid-fueled systems is documented. Several important applications of these systems are mentioned. In particular, new applications have focused on the destruction of high-level radioactive waste. Systems can be designed to quickly destroy the actinides and long-lived fission products from light water reactor fuel, weapons plutonium, and other high-level defense wastes. The proposed development of these systems is used to motivate the need for the development of dynamic analysis methods for their nuclear kinetics. A physical description of the Los Alamos Accelerator-Based Conversion (ABC) concept is provided. This system is used as the basis for the kinetics study in this research. The current approach to the dynamic simulation of an accelerator-driven subcritical fluid-fueled system includes three elements: A discrete ordinates model is used to calculate the flux distribution for the source-driven system; A nodal convection model is used to calculate time-dependent isotope and temperature distributions which impact reactivity; A nodal importance weighting model is used to calculate the reactivity impact of temperature and isotope distributions and to feed this information back to the time-dependent nodal convection model. Specific transients which have been analyzed with the current modeling system are discussed. These transients include loss-of-flow and loss-of-cooling accidents, xenon and samarium transients, and cold-plug and overfueling events. The results of various transients have uncovered unpredictable behavior, unresolved design issues, and the need for active control. Modest initiating events can cause significant swings in system temperature and power. The circulation of the fluid fuel can lead to oscillations on the relatively short scale of the loop circulation time. The system responds quickly to reactivity changes because the large neutron source overwhelms the damping effect of delayed
Modeling and Simulation of Fluid Mixing Laser Experiments and Supernova
Glimm, James
2008-06-24
The three year plan for this project is to develop novel theories and advanced simulation methods leading to a systematic understanding of turbulent mixing. A primary focus is the comparison of simulation models (both Direct Numerical Simulation and subgrid averaged models) to experiments. The comprehension and reduction of experimental and simulation data are central goals of this proposal. We will model 2D and 3D perturbations of planar interfaces. We will compare these tests with models derived from averaged equations (our own and those of others). As a second focus, we will develop physics based subgrid simulation models of diffusion across an interface, with physical but no numerical mass diffusion. We will conduct analytic studies of mix, in support of these objectives. Advanced issues, including multiple layers and reshock, will be considered.
Forte, Esther; Haslam, Andrew J; Jackson, George; Müller, Erich A
2014-09-28
The use of effective fluid-surface potentials, in which the full positional dependence is replaced by a dependence only on the distance from the surface of the solid, is common practice as a route to reduce the complexity of evaluating adsorption of fluids on substrates. Conceptually this is equivalent to replacing the detailed description of the discrete molecular nature by a coarse-grained description in which the solid is represented by a continuous (structureless) surface. These effective fluid-surface potentials are essential in the development of theories for surface adsorption, and they provide a means to reduce the computational cost associated with the molecular simulation of the system. The main purpose of the present contribution is to emphasise the necessity of using an adequate averaging procedure to obtain effective fluid-surface potentials. A simple unweighted average of the configurational energy is commonly employed, resulting in effective potentials that are temperature independent. We describe here a procedure to develop free-energy-averaged effective fluid-surface potentials retaining the important temperature dependence of the coarse-grained interaction between the particle and the surface. Although the approach is general in nature, we assess the merits of free-energy-averaged potentials for the adsorption of methane on graphene and graphite, making appropriate comparisons with the description obtained with the more traditional temperature-independent potentials. Additionally, we develop effective fluid-surface potentials for crystalline faces of monolayer and multilayer homogeneous and heterogeneous fcc lattices based on the Lennard-Jones (12-6) pair potential, and compute the corresponding adsorption isotherms of Lennard-Jones fluids on these surfaces using Grand Canonical Monte Carlo (GCMC) simulations. The adequacy of the two different options to obtain effective fluid-surface potentials (a free-energy-based versus a simple unweighted
Modelling of fluid-structure interaction with multiphase viscous flows using an immersed-body method
NASA Astrophysics Data System (ADS)
Yang, P.; Xiang, J.; Fang, F.; Pavlidis, D.; Latham, J.-P.; Pain, C. C.
2016-09-01
An immersed-body method is developed here to model fluid-structure interaction for multiphase viscous flows. It does this by coupling a finite element multiphase fluid model and a combined finite-discrete element solid model. A coupling term containing the fluid stresses is introduced within a thin shell mesh surrounding the solid surface. The thin shell mesh acts as a numerical delta function in order to help apply the solid-fluid boundary conditions. When used with an advanced interface capturing method, the immersed-body method has the capability to solve problems with fluid-solid interfaces in the presence of multiphase fluid-fluid interfaces. Importantly, the solid-fluid coupling terms are treated implicitly to enable larger time steps to be used. This two-way coupling method has been validated by three numerical test cases: a free falling cylinder in a fluid at rest, elastic membrane and a collapsing column of water moving an initially stationary solid square. A fourth simulation example is of a water-air interface with a floating solid square being moved around by complex hydrodynamic flows including wave breaking. The results show that the immersed-body method is an effective approach for two-way solid-fluid coupling in multiphase viscous flows.
NASA Astrophysics Data System (ADS)
Schmitt, D. R.; Wang, Z.; Wang, F.; Wang, R.
2015-12-01
Currently the moduli and velocities of rocks at seismic frequencies are usually measured by the strain-stress method in lab. However, such measurements require well-designed equipment and skilled technicians, which greatly hinders the experimental investigation on the elastic and visco-elastic properties of rocks at seismic frequencies. We attempt to model the dynamic moduli of porous rocks saturated with viscous fluid at seismic frequencies on core scale using the strain-stress method, aiming to provide a complement to real core measurements in lab. First, we build 2D geometrical models containing the pore structure information of porous rocks based on the digital images (such as thin section, SEM, CT, etc.) of real rocks. Then we assume the rock frames are linearly elastic, and use the standard Maxwell spring-dash pot model to describe the visco-elastic properties of pore fluids. Boundary conditions are set according to the strain-stress method; and the displacement field is calculated using the finite element method (FEM). We numerically test the effects of fluid viscosity, frequency, and pore structure on the visco-elastic properties based on the calculation results. In our modeling, the viscosity of the pore fluid ranges from 103mPas to 109mPas; and the frequency varies from 5Hz to 500Hz. The preliminary results indicate that the saturated rock behaves stiffer and shows larger phase lag between stress and strain when the viscosity of the pore fluid and (or) the frequency increase.
Ubbelohde viscometer measurement of water-based Fe3O4 magnetic fluid prepared by coprecipitation
NASA Astrophysics Data System (ADS)
Gu, H.; Tang, X.; Hong, R. Y.; Feng, W. G.; Xie, H. D.; Chen, D. X.; Badami, D.
2013-12-01
Fe3O4 nanoparticles were prepared by co-precipitation and coated by sodium dodecyl benzene sulfonate (SDBS) to obtain water-based magnetic fluid. The viscosity of the magnetic fluid was measured using an Ubbelohde viscometer. The effects of magnetic particles volume fraction, surfactant mass fraction and temperature on the viscosity were studied. Experimental results showed that the magnetic fluid with low magnetic particle volume fraction behaved as a Newtonian fluid and the viscosity of the magnetic fluid increased with an increase of the suspended magnetic particles volume fraction. The experimental data was compared with the results of a theoretically derived equation. The viscosity of the magnetic fluid also increased with an increase in surfactant mass portion, while it decreased with increasing temperature. Moreover, the viscosity increased with increasing the magnetic field intensity. Increasing the temperature and the surfactant mass fraction weakened the influence of the magnetic field on the viscosity of the magnetic fluid.
40 CFR Appendix 3 to Subpart A of... - Procedure for Mixing Base Fluids With Sediments
Code of Federal Regulations, 2010 CFR
2010-07-01
... Sediments 3 Appendix 3 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... With Sediments This procedure describes a method for amending uncontaminated and nontoxic (control) sediments with the base fluids that are used to formulate synthetic-based drilling fluids and other...
ASSESSING THE IMPACT OF SYNTHETIC-BASED DRILLING FLUIDS ON BENTHIC ORGANISMS IN TEMPERATE WATERS
Efforts to enhance the efficiency of oil/gas drilling operations and to minimize hazards to marine ecosystems have resulted in the increased use of synthetic-based fluids (SBF). SBFs have performance characteristics closely related to oil-based fluids (OBF) however their lower PA...
Statistical properties of three-dimensional two-fluid plasma model
Qaisrani, M. Hasnain; Xia, ZhenWei; Zou, Dandan
2015-09-15
The nonlinear dynamics of incompressible non-dissipative two-fluid plasma model is investigated through classical Gibbs ensemble methods. Liouville's theorem of phase space for each wave number is proved, and the absolute equilibrium spectra for Galerkin truncated two-fluid model are calculated. In two-fluid theory, the equilibrium is built on the conservation of three quadratic invariants: the total energy and the self-helicities for ions and electrons fluid, respectively. The implications of statistic equilibrium spectra with arbitrary ratios of conserved invariants are discussed.
Evaluation of Propylene Glycol-Based Fluids for Constellation Habitats and Vehicles
NASA Technical Reports Server (NTRS)
Lee, Steve
2009-01-01
Two fluid life tests have been conducted to evaluate propylene glycol-based fluids for use in Constellation habitats and vehicles. The first test was conducted from November 2008 to January 2009 to help determine the compatibility of the propylene glycol-based fluid selected for Orion at the time. When the first test uncovered problems with the fluid selection, an investigation and selection of a new fluid were conducted. A second test was started in March 2010 to evaluate the new selection. For the first test, the fluid was subjected to a thermal fluid loop that had flight-like properties, as compared to Orion. The fluid loop had similar wetted materials, temperatures, flow rates, and aluminum wetted surface area to fluid volume ratio. The test was designed to last for 10 years, the life expectancy of the lunar habitat. However, the test lasted less than two months. System filters became clogged with precipitate, rendering the fluid system inoperable. Upon examination of the precipitate, it was determined that the precipitate composition contained aluminum, which could have only come from materials in the test stand, as aluminum is not part of the original fluid composition. Also, the fluid pH was determined to have increased from 10.1, at the first test sample, to 12.2, at the completion of the test. This high of a pH is corrosive to aluminum and was certainly a contributing factor to the development of precipitate. Due to the problems encountered during this test, the fluid was rejected as a coolant candidate for Orion. A new propylene glycol-based fluid was selected by the Orion project for use in the Orion vehicle. The Orion project has conducted a series of screening tests to help verify that there will be no problems with the new fluid selection. To compliment testing performed by the Orion project team, a new life test was developed to test the new fluid. The new test bed was similar to the original test bed, but with some improvements based on experience
The impact of fluid topology on residual saturations - A pore-network model study
NASA Astrophysics Data System (ADS)
Doster, F.; Kallel, W.; van Dijke, R.
2014-12-01
In two-phase flow in porous media only fractions of the resident fluid are mobilised during a displacement process and, in general, a significant amount of the resident fluid remains permanently trapped. Depending on the application, entrapment is desirable (geological carbon storage), or it should be obviated (enhanced oil recovery, contaminant remediation). Despite its utmost importance for these applications, predictions of trapped fluid saturations for macroscopic systems, in particular under changing displacement conditions, remain challenging. The models that aim to represent trapping phenomena are typically empirical and require tracking of the history of the state variables. This exacerbates the experimental verification and the design of sophisticated displacement technologies that enhance or impede trapping. Recently, experiments [1] have suggested that a macroscopic normalized Euler number, quantifying the topology of fluid distributions, could serve as a parameter to predict residual saturations based on state variables. In these experiments the entrapment of fluids was visualised through 3D micro CT imaging. However, the experiments are notoriously time consuming and therefore only allow for a sparse sampling of the parameter space. Pore-network models represent porous media through an equivalent network structure of pores and throats. Under quasi-static capillary dominated conditions displacement processes can be modeled through simple invasion percolation rules. Hence, in contrast to experiments, pore-network models are fast and therefore allow full sampling of the parameter space. Here, we use pore-network modeling [2] to critically investigate the knowledge gained through observing and tracking the normalized Euler number. More specifically, we identify conditions under which (a) systems with the same saturations but different normalized Euler numbers lead to different residual saturations and (b) systems with the same saturations and the same
Immersed boundary-finite element model of fluid-structure interaction in the aortic root
NASA Astrophysics Data System (ADS)
Flamini, Vittoria; DeAnda, Abe; Griffith, Boyce E.
2016-04-01
It has long been recognized that aortic root elasticity helps to ensure efficient aortic valve closure, but our understanding of the functional importance of the elasticity and geometry of the aortic root continues to evolve as increasingly detailed in vivo imaging data become available. Herein, we describe a fluid-structure interaction model of the aortic root, including the aortic valve leaflets, the sinuses of Valsalva, the aortic annulus, and the sinotubular junction, that employs a version of Peskin's immersed boundary (IB) method with a finite element description of the structural elasticity. As in earlier work, we use a fiber-based model of the valve leaflets, but this study extends earlier IB models of the aortic root by employing an incompressible hyperelastic model of the mechanics of the sinuses and ascending aorta using a constitutive law fit to experimental data from human aortic root tissue. In vivo pressure loading is accounted for by a backward displacement method that determines the unloaded configuration of the root model. Our model yields realistic cardiac output at physiological pressures, with low transvalvular pressure differences during forward flow, minimal regurgitation during valve closure, and realistic pressure loads when the valve is closed during diastole. Further, results from high-resolution computations indicate that although the detailed leaflet and root kinematics show some grid sensitivity, our IB model of the aortic root nonetheless produces essentially grid-converged flow rates and pressures at practical grid spacings for the high Reynolds number flows of the aortic root. These results thereby clarify minimum grid resolutions required by such models when used as stand-alone models of the aortic valve as well as when used to provide models of the outflow valves in models of left-ventricular fluid dynamics.
This paper discusses the status and application of Computational Fluid Dynamics (CFD) models to address challenges for modeling human exposures to air pollutants around urban building microenvironments. There are challenges for more detailed understanding of air pollutant sour...
NASA Astrophysics Data System (ADS)
El-Wahed, Ali K.; Stanway, Roger; Sproston, John L.
2002-06-01
It is now widely accepted that smart fluids in the so-called squeeze-flow mode have many potential applications in vibration damping and isolation. In squeeze-flow the fluid is subjected to forces imposed by oscillating electrodes (or poles) which alternatively subject the fluid to tensile and compressive loading. Consequently displacement levels are limited to a few millimeters but large force levels are available. Modeling of smart fluid squeeze-flow devices is a complex process, primarily since the fluid is liable to be subjected to simultaneous changes in the inter-electrode gap and the strength of the applied electric (or magnetic) field. Consequently the authors have developed a comprehensive test facility dedicated to the study of smart fluids in dynamic squeeze-flow operation. In the present paper, the authors will describe a new approach to modeling smart fluids in squeeze-flow. The analysis relates specifically to an electrorheological fluid modeled using a bi- viscous shear stress/shear strain characteristics. By assuming that the electrically stressed fluid has a yield stress which is dependent on the strain direction, it will be shown how the model is able to account for observed experimental behavior.
Efficient tunable generic model for self-assembling fluid bilayer membranes
NASA Astrophysics Data System (ADS)
Deserno, Markus
2005-03-01
We present a new model for the simulation of generic lipid bilayers in the mesoscopic regime (between a few nanometers and many tens of nanometers), which is very robust, versatile, and extremely efficient, since it avoids the need for an embedding solvent. Based entirely on simple pair potentials, it features a wide region of unassisted self assembly into fluid bilayers without the need for careful parameter tuning. The resulting membranes display the correct continuum elastic behavior with bending constants in the experimentally relevant range. It can be readily used to study events like bilayer fusion, bilayer melting, lipid mixtures, rafts, and protein-bilayer interactions.
Differential Geometry Based Multiscale Models
Wei, Guo-Wei
2010-01-01
Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atom-istic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier–Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson–Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson–Nernst–Planck equations that
Differential geometry based multiscale models.
Wei, Guo-Wei
2010-08-01
Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atomistic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier-Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson-Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson-Nernst-Planck equations that are
Differential geometry based multiscale models.
Wei, Guo-Wei
2010-08-01
Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atomistic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier-Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson-Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson-Nernst-Planck equations that are
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff
2015-01-01
Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from: inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. The work presented under this task uses the first-principles based Computational Fluid Dynamics (CFD) technique to compute heat transfer from tank wall to the cryogenic fluids, and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between tank wall and cryogenic propellant, and that between tank wall and ullage gas were then simulated. The results showed that commonly used heat transfer correlations for either vertical or horizontal plate over predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.
ERIC Educational Resources Information Center
Besson, Ugo; Viennot, Laurence
2004-01-01
This article examines the didactic suitability of introducing models at an intermediate (i.e. mesoscopic) scale in teaching certain subjects, at an early stage. The design and evaluation of two short sequences based on this rationale will be outlined: one bears on propulsion by solid friction, the other on fluid statics in the presence of gravity.…
SDEM modelling of deformation associated with a listric fault system and associated fluid flow
NASA Astrophysics Data System (ADS)
Rasmussen, Marie L.; Clausen, Ole R.; Egholm, David L.; Andresen, Katrine J.
2016-04-01
zones of high chimney probability coincide with the modelled vertical deformation zones. It cannot be excluded that the vertical deformation zones which have been inferred from the numerical modelling are responsible for or highly influence the high chimney probabilities observed in the chimney cube and thus that the interpretation of chimneys (and vertical fluid migration) is incorrect. However, since the chimney cube is also based on seed picks from areas without deformation, we suggest that the vertical deformation zones contributed to vertical fluid flow from the deeper succession into the shallow gas compartments. Thus the modelling demonstrates the capability of resolving sub-seismic deformation zones which appear to be critical for the facilitation of vertical fluid migration in the study area. Similar vertical deformation zones may therefore constitute the fluid migration routes in areas where such are only inferred but not imaged by the seismic data.
Sanford, Ward E.; Pearson, S.C.P.; Kiyosugi, K.; Lehto, H.L.; Saballos, J.A.; Connor, C.B.
2012-01-01
We investigate geologic controls on circulation in the shallow hydrothermal system of Masaya volcano, Nicaragua, and their relationship to surface diffuse degassing. On a local scale (~250 m), relatively impermeable normal faults dipping at ~60° control the flowpath of water vapor and other gases in the vadose zone. These shallow normal faults are identified by modeling of a NE-SW trending magnetic anomaly of up to 2300 nT that corresponds to a topographic offset. Elevated SP and CO2 to the NW of the faults and an absence of CO2 to the SE suggest that these faults are barriers to flow. TOUGH2 numerical models of fluid circulation show enhanced flow through the footwalls of the faults, and corresponding increased mass flow and temperature at the surface (diffuse degassing zones). On a larger scale, TOUGH2 modeling suggests that groundwater convection may be occurring in a 3-4 km radial fracture zone transecting the entire flank of the volcano. Hot water rising uniformly into the base of the model at 1 x 10-5 kg/m2s results in convection that focuses heat and fluid and can explain the three distinct diffuse degassing zones distributed along the fracture. Our data and models suggest that the unusually active surface degassing zones at Masaya volcano can result purely from uniform heat and fluid flux at depth that is complicated by groundwater convection and permeability variations in the upper few km. Therefore isolating the effects of subsurface geology is vital when trying to interpret diffuse degassing in light of volcanic activity.
Moller, Nancy; Weare J. H.
2008-05-29
Successful exploitation of the vast amount of heat stored beneath the earth’s surface in hydrothermal and fluid-limited, low permeability geothermal resources would greatly expand the Nation’s domestic energy inventory and thereby promote a more secure energy supply, a stronger economy and a cleaner environment. However, a major factor limiting the expanded development of current hydrothermal resources as well as the production of enhanced geothermal systems (EGS) is insufficient knowledge about the chemical processes controlling subsurface fluid flow. With funding from past grants from the DOE geothermal program and other agencies, we successfully developed advanced equation of state (EOS) and simulation technologies that accurately describe the chemistry of geothermal reservoirs and energy production processes via their free energies for wide XTP ranges. Using the specific interaction equations of Pitzer, we showed that our TEQUIL chemical models can correctly simulate behavior (e.g., mineral scaling and saturation ratios, gas break out, brine mixing effects, down hole temperatures and fluid chemical composition, spent brine incompatibilities) within the compositional range (Na-K-Ca-Cl-SO4-CO3-H2O-SiO2-CO2(g)) and temperature range (T < 350°C) associated with many current geothermal energy production sites that produce brines with temperatures below the critical point of water. The goal of research carried out under DOE grant DE-FG36-04GO14300 (10/1/2004-12/31/2007) was to expand the compositional range of our Pitzer-based TEQUIL fluid/rock interaction models to include the important aluminum and silica interactions (T < 350°C). Aluminum is the third most abundant element in the earth’s crust; and, as a constituent of aluminosilicate minerals, it is found in two thirds of the minerals in the earth’s crust. The ability to accurately characterize effects of temperature, fluid mixing and interactions between major rock-forming minerals and hydrothermal and
Chang, F.C.; Hull, J.R.; Wang, Y.H.; Blazek, K.E.
1996-02-01
A computer model was developed to predict eddy currents and fluid flows in molten steel. The model was verified by comparing predictions with experimental results of liquid-metal containment and fluid flow in electromagnetic (EM) edge dams (EMDs) designed at Inland Steel for twin-roll casting. The model can optimize the EMD design so it is suitable for application, and minimize expensive, time-consuming full-scale testing. Numerical simulation was performed by coupling a three-dimensional (3-D) finite-element EM code (ELEKTRA) and a 3-D finite-difference fluids code (CaPS-EM) to solve heat transfer, fluid flow, and turbulence transport in a casting process that involves EM fields. ELEKTRA is able to predict the eddy- current distribution and the electromagnetic forces in complex geometries. CaPS-EM is capable of modeling fluid flows with free surfaces. Results of the numerical simulation compared well with measurements obtained from a static test.
Comparative Experimental and Modeling Study of Fluid Velocities in Heterogeneous Rocks
NASA Astrophysics Data System (ADS)
Hingerl, F.; Romanenko, K.; Pini, R.; Balcom, B.; Benson, S. M.
2013-12-01
Understanding the spatial distribution of fluid velocities and effective porosities in rocks is crucial for predicting kinetic reaction rates and fluid-rock interactions in a plethora of geo-engineering applications, ranging from geothermal systems, Enhanced Oil Recovery to Carbon Capture and Storage. Magnetic Resonance Imaging can be used to measure spatially resolved porosities and fluid velocities in porous media. Large internal field gradients and short spin relaxation times, however, constrain the usability of the conventional MRI technique in natural rock samples. The combination of three-dimensional Single Point Ramped Imaging with T1 Enhancement (SPRITE) and the 13-interval Alternating-Pulsed-Gradient Stimulated-Echo (APGSTE) scheme - a method developed at the UNB MRI Center - is able to compensate for those challenges and quantitative 3 dimensional maps of porosities and fluid velocities can be obtained. In this study we measured velocities and porosities using MRI in a sandstone rock sample showing meso-scale heterogeneities. Then we generated permeabilities using three independent approaches, employed them to model single-phase fluid flow in the measured rock sample and compared the generated velocity maps with the respective MRI measurements. For the first modeling approach, we applied the Kozeny-Carman relationship to create a permeability map based on porosities measured using MRI. For the second approach we used permeabilities derived from CO2-H2O multi-phase experiments performed in the same rock sample assuming the validity of the J-Leverett function. The permeabilities in the third approach were generated by applying a new inverse iterative-updating technique. The resulting three permeability maps were then used as input for a CFD simulation - using the Stanford CFD code AD-GPRS - to create a respective velocity map, which in turn was then compared to the measured velocity map. The results of the different independent methods for generating
NASA Astrophysics Data System (ADS)
Ilyasov, A. M.; Bulgakova, G. T.
2016-08-01
This paper describes a mathematical model of the main fracture isolation in porous media by water-based mature gels. While modeling injection, water infiltration from the gel pack through fracture walls is taking into account, due to which the polymer concentration changes and the residual water resistance factor changes as a consequence. The salutation predicts velocity and pressure fields of the non-Newtonian incompressible fluid filtration for conditions of a non-deformable formation as well as a gel front trajectory in the fracture. The mathematical model of agent injection into the main fracture is based on the fundamental laws of continuum mechanics conservation describing the flow of non-Newtonian and Newtonian fluids separated by an interface plane in a flat channel with permeable walls. The mathematical model is based on a one-dimensional isothermal approximation, with dynamic parameters pressure and velocity, averaged over the fracture section.
Modeling deformation-induced fluid flow in cortical bone's canalicular-lacunar system.
Gururaja, S; Kim, H J; Swan, C C; Brand, R A; Lakes, R S
2005-01-01
To explore the potential role that load-induced fluid flow plays as a mechano-transduction mechanism in bone adaptation, a lacunar-canalicular scale bone poroelasticity model is developed and implemented. The model uses micromechanics to homogenize the pericanalicular bone matrix, a system of straight circular cylinders in the bone matrix through which bone fluids can flow, as a locally anisotropic poroelastic medium. In this work, a simplified two-dimensional model of a periodic array of lacunae and their surrounding systems of canaliculi is used to quantify local fluid flow characteristics in the vicinity of a single lacuna. When the cortical bone model is loaded, microscale stress, and strain concentrations occur in the vicinity of individual lacunae and give rise to microscale spatial variations in the pore fluid pressure field. Furthermore, loading of the bone matrix containing canaliculi generates fluid pressures in the contained fluids. Consequently, loading of cortical bone induces fluid flow in the canaliculi and exchange of fluid between canaliculi and lacunae. For realistic bone morphology parameters, and a range of loading frequencies, fluid pressures and fluid-solid drag forces in the canalicular bone are computed and the associated energy dissipation in the models compared to that measured in physical in vitro experiments on human cortical bone. The proposed model indicates that deformation-induced fluid pressures in the lacunar-canalicular system have relaxation times on the order of milliseconds as opposed to the much shorter times (hundredths of milliseconds) associated with deformation-induced pressures in the Haversian system.
Adaptive forward-inverse modeling of reservoir fluids away from wellbores
Ziagos, J P; Gelinas, R J; Doss, S K; Nelson, R G
1999-07-30
This Final Report contains the deliverables of the DeepLook Phase I project entitled, ''Adaptive Forward-Inverse Modeling of Reservoir Fluids Away from Wellbores''. The deliverables are: (i) a description of 2-D test problem results, analyses, and technical descriptions of the techniques used, (ii) a listing of program setup commands that construct and execute the codes for selected test problems (these commands are in mathematical terminology, which reinforces technical descriptions in the text), and (iii) an evaluation and recommendation regarding continuance of this project, including considerations of possible extensions to 3-D codes, additional technical scope, and budget for the out-years. The far-market objective in this project is to develop advanced technologies that can help locate and enhance the recovery of oil from heterogeneous rock formations. The specific technical objective in Phase I was to develop proof-of-concept of new forward and inverse (F-I) modeling techniques [Gelinas et al, 1998] that seek to enhance estimates (images) of formation permeability distributions and fluid motion away from wellbore volumes. This goes to the heart of improving industry's ability to jointly image reservoir permeability and flow predictions of trapped and recovered oil versus time. The estimation of formation permeability away from borehole measurements is an ''inverse'' problem. It is an inseparable part of modeling fluid flows throughout the reservoir in efforts to increase the efficiency of oil recovery at minimum cost. Classic issues of non-uniqueness, mathematical instability, noise effects, and inadequate numerical solution techniques have historically impeded progress in reservoir parameter estimations. Because information pertaining to fluid and rock properties is always sampled sparsely by wellbore measurements, a successful method for interpolating permeability and fluid data between the measurements must be: (i) physics-based, (ii) conditioned by
Kim, Jihoon; Um, Evan; Moridis, George
2014-12-01
We investigate fracture propagation induced by hydraulic fracturing with water injection, using numerical simulation. For rigorous, full 3D modeling, we employ a numerical method that can model failure resulting from tensile and shear stresses, dynamic nonlinear permeability, leak-off in all directions, and thermo-poro-mechanical effects with the double porosity approach. Our numerical results indicate that fracture propagation is not the same as propagation of the water front, because fracturing is governed by geomechanics, whereas water saturation is determined by fluid flow. At early times, the water saturation front is almost identical to the fracture tip, suggesting that the fracture is mostly filled with injected water. However, at late times, advance of the water front is retarded compared to fracture propagation, yielding a significant gap between the water front and the fracture top, which is filled with reservoir gas. We also find considerable leak-off of water to the reservoir. The inconsistency between the fracture volume and the volume of injected water cannot properly calculate the fracture length, when it is estimated based on the simple assumption that the fracture is fully saturated with injected water. As an example of flow-geomechanical responses, we identify pressure fluctuation under constant water injection, because hydraulic fracturing is itself a set of many failure processes, in which pressure consistently drops when failure occurs, but fluctuation decreases as the fracture length grows. We also study application of electromagnetic (EM) geophysical methods, because these methods are highly sensitive to changes in porosity and pore-fluid properties due to water injection into gas reservoirs. Employing a 3D finite-element EM geophysical simulator, we evaluate the sensitivity of the crosswell EM method for monitoring fluid movements in shaly reservoirs. For this sensitivity evaluation, reservoir models are generated through the coupled flow
Computational fluid mechanics utilizing the variational principle of modeling damping seals
NASA Technical Reports Server (NTRS)
Abernathy, J. M.
1986-01-01
A computational fluid dynamics code for application to traditional incompressible flow problems has been developed. The method is actually a slight compressibility approach which takes advantage of the bulk modulus and finite sound speed of all real fluids. The finite element numerical analog uses a dynamic differencing scheme based, in part, on a variational principle for computational fluid dynamics. The code was developed in order to study the feasibility of damping seals for high speed turbomachinery. Preliminary seal analyses have been performed.
NASA Astrophysics Data System (ADS)
Chao, Zhongxi; Wang, Yuefa; Jakobsen, Jana P.; Fernandino, Maria; Jakobsen, Hugo A.
2011-12-01
A turbulent multi-fluid reactive fluid model is presented in the paper, which is a combination of a kinetic theory granular flow multi-fluid model(Chao et al., 2011) and the reaction kinetics description(Lindborg, 2008). A two dimensional in-house code was developed to simulate the gas-catalyst-sorbent three-phase reactive flow in the sorption enhanced steam methane reforming fluidized bed reactor. In the simulation, Ca-based sorbents and Ni/MgAl2O3 catalysts are used. The simulation results show that a high production of hydrogen in SE-SMR is obtained compared with the conventional SMR process. The increase of the gas fluidization velocity does not affect the purity of the product hydrogen apparently,while it can shorten the time to get to the breakthrough apparently. The increase of the steam/carbon ratio can increase the purity of the product hydrogen. A homogeneous gas temperature distribution is found which is due to the gas, particle turbulent flows and the heat balance of the SMR-CO2 adsorption reactions. These simulation results are in good agreement with the experimental results from Johnsen et al. (2006a).
Cloud fluid models of gas dynamics and star formation in galaxies
NASA Technical Reports Server (NTRS)
Struck-Marcell, Curtis; Scalo, John M.; Appleton, P. N.
1987-01-01
The large dynamic range of star formation in galaxies, and the apparently complex environmental influences involved in triggering or suppressing star formation, challenges the understanding. The key to this understanding may be the detailed study of simple physical models for the dominant nonlinear interactions in interstellar cloud systems. One such model is described, a generalized Oort model cloud fluid, and two simple applications of it are explored. The first of these is the relaxation of an isolated volume of cloud fluid following a disturbance. Though very idealized, this closed box study suggests a physical mechanism for starbursts, which is based on the approximate commensurability of massive cloud lifetimes and cloud collisional growth times. The second application is to the modeling of colliding ring galaxies. In this case, the driving processes operating on a dynamical timescale interact with the local cloud processes operating on the above timescale. The results is a variety of interesting nonequilibrium behaviors, including spatial variations of star formation that do not depend monotonically on gas density.
Dynamic mesoscale model of dipolar fluids via fluctuating hydrodynamics
Persson, Rasmus A. X.; Chu, Jhih-Wei; Voulgarakis, Nikolaos K.
2014-11-07
Fluctuating hydrodynamics (FHD) is a general framework of mesoscopic modeling and simulation based on conservational laws and constitutive equations of linear and nonlinear responses. However, explicit representation of electrical forces in FHD has yet to appear. In this work, we devised an Ansatz for the dynamics of dipole moment densities that is linked with the Poisson equation of the electrical potential ϕ in coupling to the other equations of FHD. The resulting ϕ-FHD equations then serve as a platform for integrating the essential forces, including electrostatics in addition to hydrodynamics, pressure-volume equation of state, surface tension, and solvent-particle interactions that govern the emergent behaviors of molecular systems at an intermediate scale. This unique merit of ϕ-FHD is illustrated by showing that the water dielectric function and ion hydration free energies in homogeneous and heterogenous systems can be captured accurately via the mesoscopic simulation. Furthermore, we show that the field variables of ϕ-FHD can be mapped from the trajectory of an all-atom molecular dynamics simulation such that model development and parametrization can be based on the information obtained at a finer-grained scale. With the aforementioned multiscale capabilities and a spatial resolution as high as 5 Å, the ϕ-FHD equations represent a useful semi-explicit solvent model for the modeling and simulation of complex systems, such as biomolecular machines and nanofluidics.
A unified approach to fluid-flow, geomechanical, and seismic modelling
NASA Astrophysics Data System (ADS)
Yarushina, Viktoriya; Minakov, Alexander
2016-04-01
The perturbations of pore pressure can generate seismicity. This is supported by observations from human activities that involve fluid injection into rocks at high pressure (hydraulic fracturing, CO2 storage, geothermal energy production) and natural examples such as volcanic earthquakes. Although the seismic signals that emerge during geotechnical operations are small both in amplitude and duration when compared to natural counterparts. A possible explanation for the earthquake source mechanism is based on a number of in situ stress measurements suggesting that the crustal rocks are close to its plastic yield limit. Hence, a rapid increase of the pore pressure decreases the effective normal stress, and, thus, can trigger seismic shear deformation. At the same time, little attention has been paid to the fact that the perturbation of fluid pressure itself represents an acoustic source. Moreover, non-double-couple source mechanisms are frequently reported from the analysis of microseismicity. A consistent formulation of the source mechanism describing microseismic events should include both a shear and isotropic component. Thus, improved understanding of the interaction between fluid flow and seismic deformation is needed. With this study we aim to increase the competence in integrating real-time microseismic monitoring with geomechanical modelling such that there is a feedback loop between monitored deformation and stress field modelling. We propose fully integrated seismic, geomechanical and reservoir modelling. Our mathematical formulation is based on fundamental set of force balance, mass balance, and constitutive poro-elastoplastic equations for two-phase media consisting of deformable solid rock frame and viscous fluid. We consider a simplified 1D modelling setup for consistent acoustic source and wave propagation in poro-elastoplastic media. In this formulation the seismic wave is generated due to local changes of the stress field and pore pressure induced by
Advances in modelling of biomimetic fluid flow at different scales
2011-01-01
The biomimetic flow at different scales has been discussed at length. The need of looking into the biological surfaces and morphologies and both geometrical and physical similarities to imitate the technological products and processes has been emphasized. The complex fluid flow and heat transfer problems, the fluid-interface and the physics involved at multiscale and macro-, meso-, micro- and nano-scales have been discussed. The flow and heat transfer simulation is done by various CFD solvers including Navier-Stokes and energy equations, lattice Boltzmann method and molecular dynamics method. Combined continuum-molecular dynamics method is also reviewed. PMID:21711847
Fedosov, Dmitry A.; Karniadakis, George Em; Caswell, Bruce
2010-01-01
Polymer fluids are modeled with dissipative particle dynamics (DPD) as undiluted bead-spring chains and their solutions. The models are assessed by investigating their steady shear-rate properties. Non-Newtonian viscosity and normal stress coefficients, for shear rates from the lower to the upper Newtonian regimes, are calculated from both plane Couette and plane Poiseuille flows. The latter is realized as reverse Poiseuille flow (RPF) generated from two Poiseuille flows driven by uniform body forces in opposite directions along two-halves of a computational domain. Periodic boundary conditions ensure the RPF wall velocity to be zero without density fluctuations. In overlapping shear-rate regimes the RPF properties are confirmed to be in good agreement with those calculated from plane Couette flow with Lees–Edwards periodic boundary conditions (LECs), the standard virtual rheometer for steady shear-rate properties. The concentration and the temperature dependence of the properties of the model fluids are shown to satisfy the principles of concentration and temperature superposition commonly employed in the empirical correlation of real polymer-fluid properties. The thermodynamic validity of the equation of state is found to be a crucial factor for the achievement of time-temperature superposition. With these models, RPF is demonstrated to be an accurate and convenient virtual rheometer for the acquisition of steady shear-rate rheological properties. It complements, confirms, and extends the results obtained with the standard LEC configuration, and it can be used with the output from other particle-based methods, including molecular dynamics, Brownian dynamics, smooth particle hydrodynamics, and the lattice Boltzmann method. PMID:20405981
Fedosov, Dmitry A; Karniadakis, George Em; Caswell, Bruce
2010-04-14
Polymer fluids are modeled with dissipative particle dynamics (DPD) as undiluted bead-spring chains and their solutions. The models are assessed by investigating their steady shear-rate properties. Non-Newtonian viscosity and normal stress coefficients, for shear rates from the lower to the upper Newtonian regimes, are calculated from both plane Couette and plane Poiseuille flows. The latter is realized as reverse Poiseuille flow (RPF) generated from two Poiseuille flows driven by uniform body forces in opposite directions along two-halves of a computational domain. Periodic boundary conditions ensure the RPF wall velocity to be zero without density fluctuations. In overlapping shear-rate regimes the RPF properties are confirmed to be in good agreement with those calculated from plane Couette flow with Lees-Edwards periodic boundary conditions (LECs), the standard virtual rheometer for steady shear-rate properties. The concentration and the temperature dependence of the properties of the model fluids are shown to satisfy the principles of concentration and temperature superposition commonly employed in the empirical correlation of real polymer-fluid properties. The thermodynamic validity of the equation of state is found to be a crucial factor for the achievement of time-temperature superposition. With these models, RPF is demonstrated to be an accurate and convenient virtual rheometer for the acquisition of steady shear-rate rheological properties. It complements, confirms, and extends the results obtained with the standard LEC configuration, and it can be used with the output from other particle-based methods, including molecular dynamics, Brownian dynamics, smooth particle hydrodynamics, and the lattice Boltzmann method.
Computer modeling of fluid flow and combustion in the ISV (In Situ Vitrification) confinement hood
Johnson, R.W.; Paik, S.
1990-09-01
Safety and suitability objectives for the application of the In Situ Vitrification (ISV) technology at the INEL require that the physical processes involved in ISVV be modeled to determine their operational behavior. The mathematical models that have been determined to address the modeling needs adequately for the ISV analysis package are detailed elsewhere. The present report is concerned with the models required for simulating the reacting flow that occurs in the ISV confinement hood. An experimental code named COYOTE has been secured that appears adequate to model the combustion in the confinement hood. The COYOTE code is a two-dimensional, transient, compressible, Eulerian, gas dynamics code for modeling reactive flows. It recognizes nonuniform Cartesian and cylindrical geometry and is based on the ICE (Implicit Continuous-fluid Eulerian) family of solution methods. It includes models for chemical reactions based on chemical kinetics as well as equilibrium chemistry. The mathematical models contained in COYOTE, their discrete analogs, the solution procedure, code structure and some test problems are presented in the report. 12 refs., 17 figs., 6 tabs.
A knowledge-based approach to automated flow-field zoning for computational fluid dynamics
NASA Technical Reports Server (NTRS)
Vogel, Alison Andrews
1989-01-01
An automated three-dimensional zonal grid generation capability for computational fluid dynamics is shown through the development of a demonstration computer program capable of automatically zoning the flow field of representative two-dimensional (2-D) aerodynamic configurations. The applicability of a knowledge-based programming approach to the domain of flow-field zoning is examined. Several aspects of flow-field zoning make the application of knowledge-based techniques challenging: the need for perceptual information, the role of individual bias in the design and evaluation of zonings, and the fact that the zoning process is modeled as a constructive, design-type task (for which there are relatively few examples of successful knowledge-based systems in any domain). Engineering solutions to the problems arising from these aspects are developed, and a demonstration system is implemented which can design, generate, and output flow-field zonings for representative 2-D aerodynamic configurations.
Fluid dynamic modelling of renal pelvic pressure during endoscopic stone removal
NASA Astrophysics Data System (ADS)
Oratis, Alexandros; Subasic, John; Bird, James; Eisner, Brian
2015-11-01
Endoscopic kidney stone removal procedures are known to increase internal pressure in the renal pelvis, the kidney's urinary collecting system. High renal pelvic pressure incites systemic absorption of irrigation fluid, which can increase the risk of postoperative fever and sepsis or the unwanted absorption of electrolytes. Urologists choose the appropriate surgical procedure based on patient history and kidney stone size. However, no study has been conducted to compare the pressure profiles of each procedure, nor is there a precise sense of how the renal pelvic pressure scales with various operational parameters. Here we develop physical models for the flow rates and renal pelvic pressure for various procedures. We show that the results of our models are consistent with existing urological data on each procedure and that the models can predict pressure profiles where data is unavailable.
Tanner's simple model of crystallization for power-law fluids extended
NASA Astrophysics Data System (ADS)
Mitsoulis, E.; Zisis, Th.
2014-05-01
Tanner et al. (Rheol. Acta, 48, 2009, 499-507) presented a simple model for power-law fluids in which it was possible to derive semi-analytical solutions based on some key simplifying assumptions. These include shear flows in tubes and channels, a 'step function' or 'amorphous-frozen' model of the viscosity changes due to crystallization, and a power-law index of 1/3 valid for a crystallizing poly(butene-1) polymer for which experiments were available. Their work compared favorably with experimental data for the onset of crystallization times. In the present work, we have repeated and verified the Tanner model and extended it to power-law indices from 1 (Newtonian behavior) down to 0 (extreme shear thinning) in order to study the effect of the different problem parameters and place a set of results that will act as reference for future and more detailed computational calculations through the Finite Element Method.
NASA Astrophysics Data System (ADS)
Arciniega-Ceballos, Alejandra; Scheu, Bettina; Sanchez-Sesma, Francisco; Dingwell, Donald
2014-05-01
We compute transients fluid-rock dynamic interaction in a fluid driven axisymmetric conduit embedded in an infinite, homogeneous elastic space. Both fluid and solid are dynamically coupled fulfilling continuity of velocities and radial stresses at the conduit's wall. The calculation model considers the viscosity as a key parameter leading to non-linear scheme. A pressure transient at a point of the conduit, that perturbs a steady flow of incompressible viscous fluid, produces the interaction between the fluid and motion at the conduit's walls. The fluid motion induces the elastic response of the conduit forcing it to oscillate radially. The fluid-filled conduit dynamics is governed by three second-order, ordinary non-linear differential equations, which are solved numerically by applying a fifth-order Runge-Kutta scheme. Boundary conditions satisfy the Bernoulli's principle allowing coupling several pipe segments which may present smooth variation in fluid properties. The nature of the source involves different pressure excitations functions including those measuring during simulations of gas burst and fragmentation of volcanic rocks under controlled laboratory conditions. Far-field velocity synthetics radiated by motion of the conduit's walls and fluid flows ascending to the surface, display characteristic waveforms and frequency content that are similar to those of long-period signals and tremor observed at active volcanoes. Results suggest that transient fluid flow induced oscillations may explain long-period and tremor signals. Advantages and limitations of this approach are discussed.
Preparation and Properties of ε-Fe3N-Based Magnetic Fluid
2008-01-01
In this work, ε-Fe3N nanoparticles and ε-Fe3N-based magnetic fluid were synthesized by chemical reaction of iron carbonyl and ammonia gas. The size of ε-Fe3N nanoparticles was tested by TEM and XRD. Stable ε-Fe3N-based magnetic fluid was prepared by controlling the proper ratio of carrier liquid and surfactant. The saturation magnetization of stable ε-Fe3N-based magnetic fluid was calculated according to the volume fraction of the particles in the fluid. The result shows that both the calculated and measured magnetizations increase by increasing the particle concentration. With the increasing concentration of the ε-Fe3N particles, the measured value of the magnetic fluid magnetization gradually departs from the calculated magnetization, which was caused by agglomeration affects due to large volume fraction and large particle size.
NASA Astrophysics Data System (ADS)
Usmanov, Arcadi V.; Goldstein, Melvyn L.; Matthaeus, William H.
2016-03-01
We have developed a four-fluid, three-dimensional magnetohydrodynamic model of the solar wind interaction with the local interstellar medium. The unique features of the model are: (a) a three-fluid description for the charged components of the solar wind and interstellar plasmas (thermal protons, electrons, and pickup protons), (b) the built-in turbulence transport equations based on Reynolds decomposition and coupled with the mean-flow Reynolds-averaged equations, and (c) a solar corona/solar wind model that supplies inner boundary conditions at 40 au by computing solar wind and magnetic field parameters outward from the coronal base. The three charged species are described by separate energy equations and are assumed to move with the same velocity. The fourth fluid in the model is the interstellar hydrogen which is treated by separate continuity, momentum, and energy equations and is coupled with the charged components through photoionization and charge exchange. We evaluate the effects of turbulence transport and pickup protons on the global heliospheric structure and compute the distribution of plasma, magnetic field, and turbulence parameters throughout the heliosphere for representative solar minimum and maximum conditions. We compare our results with Voyager 1 observations in the outer heliosheath and show that the relative amplitude of magnetic fluctuations just outside the heliopause is in close agreement with the value inferred from Voyager 1 measurements by Burlaga et al. The simulated profiles of magnetic field parameters in the outer heliosheath are in qualitative agreement with the Voyager 1 observations and with the analytical model of magnetic field draping around the heliopause of Isenberg et al.
Deriving a blood-mimicking fluid for particle image velocimetry in Sylgard-184 vascular models.
Yousif, Majid Y; Holdsworth, David W; Poepping, Tamie L
2009-01-01
A new blood-mimicking fluid (BMF) has been developed for particle image velocimetry (PIV), which enables flow studies in vascular models (phantoms). A major difficulty in PIV that affects measurement accuracy is the refraction and distortion of light passing through the interface between the model and the fluid, due to the difference in refractive index (n) between the two materials. The problem can be eliminated by using a fluid with a refractive index matching that of the model. Such fluids are not commonly available, especially for vascular research where the fluid should also have a viscosity similar to human blood. In this work, a blood-mimicking fluid, composed of water (47.38% by weight), glycerol (36.94% by weight) and sodium iodide salt (15.68% by weight), was developed for compatibility with our silicone (Sylgard 184; n = 1.414) phantoms. The fluid exhibits a dynamic viscosity of 4.31+/-0.03 cP which lies within the range of human blood viscosity (4.4+/-0.6 cP). Both refractive index and viscosity were attained at 22.2+/-0.2 degrees C, which is a feasible room temperature, thus eliminating the need for a temperature-control system. The fluid will be used to study hemodynamics in vascular flow models fabricated from Sylgard 184.
NASA Astrophysics Data System (ADS)
Zhao, Gaiping; Wu, Jie; Xu, Shixiong; Collins, M. W.; Long, Quan; König, Carola S.; Jiang, Yuping; Wang, Jian; Padhani, A. R.
2007-10-01
A coupled intravascular transvascular interstitial fluid flow model is developed to study the distributions of blood flow and interstitial fluid pressure in solid tumor microcirculation based on a tumor-induced microvascular network. This is generated from a 2D nine-point discrete mathematical model of tumor angiogenesis and contains two parent vessels. Blood flow through the microvascular network and interstitial fluid flow in tumor tissues are performed by the extended Poiseuille’s law and Darcy’s law, respectively, transvascular flow is described by Starling’s law; effects of the vascular permeability and the interstitial hydraulic conductivity are also considered. The simulation results predict the heterogeneous blood supply, interstitial hypertension and low convection on the inside of the tumor, which are consistent with physiological observed facts. These results may provide beneficial information for anti-angiogenesis treatment of tumor and further clinical research.
Modeling and Simulation of Petroleum Coke Calcination in Pot Calciner Using Two-Fluid Model
NASA Astrophysics Data System (ADS)
Xiao, Jin; Huang, Jindi; Zhong, Qifan; Zhang, Hongliang; Li, Jie
2016-02-01
The aim of this work was to establish a mathematical model for the analysis of calcining process of petroleum coke in a 24-pot calciner via computational fluid dynamics (CFD) numerical simulation method. The model can be divided into two main parts (1) heterogeneous reacting flow of petroleum coke calcination in the pot was simulated using a two-fluid model approach where the gas and solid phase are treated as a continuous phases; and (2) the standard turbulence equations combined with the finite rate/eddy-dissipation combustion model and discrete ordinates model were solved for the turbulent gas reacting flow in the flue. The model of the calcining process was implemented in ANSYS Fluent 15.0 (commercial CFD software) and validated by industrial production data. After the validation research, the model has been applied to inspect the distribution features of the temperature field in the furnace, the concentration field of residual moisture and volatiles in the petroleum coke, and the vector velocity field of gas and solid phases. This research can provide a theoretical basis for optimizing the structure and improving the automatic control level of a pot calciner.
A two-fluid model for relativistic heat conduction
López-Monsalvo, César S.
2014-01-14
Three years ago it was presented in these proceedings the relativistic dynamics of a multi-fluid system together with various applications to a set of topical problems [1]. In this talk, I will start from such dynamics and present a covariant formulation of relativistic thermodynamics which provides us with a causal constitutive equation for the propagation of heat in a relativistic setting.
Regional Fluid Flow and Basin Modeling in Northern Alaska
Kelley, Karen D.
2007-01-01
INTRODUCTION The foothills of the Brooks Range contain an enormous accumulation of zinc (Zn) in the form of zinc sulfide and barium (Ba) in the form of barite in Carboniferous shale, chert, and mudstone. Most of the resources and reserves of Zn occur in the Red Dog deposit and others in the Red Dog district; these resources and reserves surpass those of most deposits worldwide in terms of size and grade. In addition to zinc and lead sulfides (which contain silver, Ag) and barite, correlative strata host phosphate deposits. Furthermore, prolific hydrocarbon source rocks of Carboniferous and Triassic to Early Jurassic age generated considerable amounts of petroleum that may have contributed to the world-class petroleum resources of the North Slope. Deposits of Zn-Pb-Ag or barite as large as those in the Brooks Range are very rare on a global basis and, accordingly, multiple coincident favorable factors must be invoked to explain their origins. To improve our understanding of these factors and to contribute to more effective assessments of resources in sedimentary basins of northern Alaska and throughout the world, the Mineral Resources Program and the Energy Resources Program of the U.S. Geological Survey (USGS) initiated a project that was aimed at understanding the petroleum maturation and mineralization history of parts of the Brooks Range that were previously poorly characterized. The project, titled ?Regional Fluid Flow and Basin Modeling in Northern Alaska,? was undertaken in collaboration with industry, academia, and other government agencies. This Circular contains papers that describe the results of the recently completed project. The studies that are highlighted in these papers have led to a better understanding of the following: *The complex sedimentary facies relationships and depositional settings and the geochemistry of the sedimentary rocks that host the deposits (sections 2 and 3). *The factors responsible for formation of the barite and zinc deposits
A simple model of fluid flow and electrolyte balance in the body
NASA Technical Reports Server (NTRS)
White, R. J.; Neal, L.
1973-01-01
The model is basically a three-compartment model, the three compartments being the plasma, interstitial fluid and cellular fluid. Sodium, potassium, chloride and urea are the only major solutes considered explicitly. The control of body water and electrolyte distribution is affected via drinking and hormone levels. Basically, the model follows the effect of various oral input water loads on solute and water distribution throughout the body.
Improvement performance of secondary clarifiers by a computational fluid dynamics model
NASA Astrophysics Data System (ADS)
Ghawi, Ali G.; Kriš, J.
2011-12-01
Secondary clarifier is one of the most commonly used unit operations in wastewater treatment plants. It is customarily designed to achieve the separation of solids from biologically treated effluents through the clarification of biological solids and the thickening of sludge. As treatment plants receive increasingly high wastewater flows, conventional sedimentation tanks suffer from overloading problems, which result in poor performance. Modification of inlet baffles through the use of an energy dissipating inlet (EDI) was proposed to enhance the performance in the circular clarifiers at the Al-Dewanyia wastewater treatment plant. A 3-dimensional fully mass conservative clarifier model, based on modern computational fluid dynamics theory, was applied to evaluate the proposed tank modification and to estimate the maximum capacity of the existing and modified clarifiers. A Computational Fluid Dynamics (CFD) model was formulated to describe the tank is performance, and design parameters were obtained based on the experimental results. The study revealed that velocity and (suspended solids) SS is a better parameter than TS (total solids), (Biochemical Oxygen Demand) BOD, (Chemical Oxygen Demand) COD to evaluate the performance of sedimentation tanks and that the removal efficiencies of the suspended solids, biochemical oxygen demand, and chemical oxygen demand were higher in the baffle.
Quantitative models of hydrothermal fluid-mineral reaction: The Ischia case
NASA Astrophysics Data System (ADS)
Di Napoli, Rossella; Federico, Cinzia; Aiuppa, Alessandro; D'Antonio, Massimo; Valenza, Mariano
2013-03-01
The intricate pathways of fluid-mineral reactions occurring underneath active hydrothermal systems are explored in this study by applying reaction path modelling to the Ischia case study. Ischia Island, in Southern Italy, hosts a well-developed and structurally complex hydrothermal system which, because of its heterogeneity in chemical and physical properties, is an ideal test sites for evaluating potentialities/limitations of quantitative geochemical models of hydrothermal reactions. We used the EQ3/6 software package, versio