Science.gov

Sample records for based hot plate

  1. Micro hot plate-based sensor array system for the detection of environmentally relevant gases.

    PubMed

    Graf, M; Frey, U; Taschini, S; Hierlemann, A

    2006-10-01

    A monolithic stand-alone gas sensor system is presented, which includes on a single chip an array of three metal oxide-coated micro hot plates with integrated MOS-transistor heaters, as well as a specifically designed digital system architecture. An octagonal-shaped micro hot plate design with MOS-transistor heaters has been adopted for the three gas sensors. The integrated circuitry includes a programmable digital temperature regulation, digital sensor readout units, and a standard serial interface. The programmable digital temperature controllers enable individual regulation of the micro hot plate temperatures in constant or dynamic mode. Nanocrystalline tin oxide thick films with different Pd dopings (undoped, 0.2 and 3 wt %) were used. Gas test measurements for environmentally relevant gases were carried out and evidenced detection limits of less than 1 ppm for carbon monoxide, or 100 ppm for methane, both at 40% relative humidity. Temperature modulation techniques were successfully applied for improved analyte discrimination.

  2. Expression of the difference between the Cold (Han) and Hot (Re) natures of traditional Chinese medicines (Strobal and Rhubarb) based on the cold/hot plate differentiating assay.

    PubMed

    Zhao, HaiPing; Zhao, YanLing; Wang, JiaBo; Li, HanBing; Ren, YongShen; Zhou, CanPing; Yan, Dan; Xiao, XiaoHe

    2009-12-01

    In this study, objective differences between the Cold (Han) and Hot (Re) nature of traditional Chinese medicines, e.g. Strobal and Rhubarb, are determined by using a cold/hot plate differentiation technology. A novel, self-designed cold/hot plate differentiating instrument, with methodological study, was used to investigate the intervention of Strobal and Rhubarb on the temperature tropism of mice. Compared with the ICR and BALB/c mice, it was found that KM mice on the cold/hot plate were more sensitive to the change of temperature, within the tolerant temperature range of 15-40 degrees C. The temperature tropism behavior of mice is influenced by treatment with Rhubarb and Strobal, as is the activity of ATPase in liver tissue. These trends are consistent with the definition of the Cold/Hot nature of Chinese medicines based on traditional Chinese medicinal theory. This study showed that the differences of the Cold/Hot nature of traditional Chinese medicines. might be objectively represented by the temperature tropism of animal by means of cold/hot differentiating assay.

  3. High-Temperature Thermal Conductivity Measurement Apparatus Based on Guarded Hot Plate Method

    NASA Astrophysics Data System (ADS)

    Turzo-Andras, E.; Magyarlaki, T.

    2017-10-01

    An alternative calibration procedure has been applied using apparatus built in-house, created to optimize thermal conductivity measurements. The new approach compared to those of usual measurement procedures of thermal conductivity by guarded hot plate (GHP) consists of modified design of the apparatus, modified position of the temperature sensors and new conception in the calculation method, applying the temperature at the inlet section of the specimen instead of the temperature difference across the specimen. This alternative technique is suitable for eliminating the effect of thermal contact resistance arising between a rigid specimen and the heated plate, as well as accurate determination of the specimen temperature and of the heat loss at the lateral edge of the specimen. This paper presents an overview of the specific characteristics of the newly developed "high-temperature thermal conductivity measurement apparatus" based on the GHP method, as well as how the major difficulties are handled in the case of this apparatus, as compared to the common GHP method that conforms to current international standards.

  4. High thermal capacity cold plate/hot plate

    NASA Technical Reports Server (NTRS)

    Hwangbo, H.; Mcever, W. S.

    1985-01-01

    The results of an analytical study to determine the feasibility of a novel two-phase cold plate/hot plate (CPHP) are presented. A key feature of the CPHP is the use of capillary forces to separate the liquid and vapor phases and distribute the liquid over the evaporating/condensing surface. The liquid phase is held by capillary forces in a reservoir and is carried to the evaporating surface by a wick. The reservoir is replenished at intervals from a valved external liquid supply line. In the hot plate mode, liquid accumulates in the reservoir and is removed by an external condensate line. Performance requirements for the device were capability of handling a power density of 4 watts/sq cm, an outlet quality (percentage of vapor flow to total flow) greater than 90 percent, and operation in a 0-g environment. An analytical model of CPHP operation was developed which concentrated on the liquid and vapor flows. It was found that the liquid carrying capillary grooves of rectangular cross-section gave significantly better predicted performance than V-shaped grooves. Using the analytical model, capillary groove width and length, vapor channel dimensions, and other parameters were selected to meet the performance requirements with a 100-percent margin.

  5. Effect of a hot spot on the strain response of an acoustically-loaded flat plate

    SciTech Connect

    Koval, L.R.; Jong, C.P.

    1989-01-01

    Previous studies of the acoustic fatigue of heated plates have treated uniformly-heated plates. The current study examines the effect of a 'hot spot' on the acoustic fatigue of a simply-supported flat plate. The hot spot is provided by a concentration of hot gas and is 'applied' to the plate through a convection boundary condition on the upper surface of the plate. For simplicity, the hot spot is assumed to be rectangular with its sides parallel to the sides of the plate. The size of the hot spot, the location of the hot spot, and the temperature of the hot spot were all varied to see their effects. 18 references.

  6. Graphene-Based "Hot Plate" for the Capture and Destruction of the Herpes Simplex Virus Type 1.

    PubMed

    Deokar, Archana R; Nagvenkar, Anjani P; Kalt, Inna; Shani, Lior; Yeshurun, Yosef; Gedanken, Aharon; Sarid, Ronit

    2017-02-16

    The study of graphene-based antivirals is still at a nascent stage and the photothermal antiviral properties of graphene have yet to be studied. Here, we design and synthesize sulfonated magnetic nanoparticles functionalized with reduced graphene oxide (SMRGO) to capture and photothermally destroy herpes simplex virus type 1 (HSV-1). Graphene sheets were uniformly anchored with spherical magnetic nanoparticles (MNPs) of varying size between ∼5 and 25 nm. Fourier-transform infrared spectroscopy (FT-IR) confirmed the sulfonation and anchoring of MNPs on the graphene sheets. Upon irradiation of the composite with near-infrared light (NIR, 808 nm, 7 min), SMRGO (100 ppm) demonstrated superior (∼99.99%) photothermal antiviral activity. This was probably due to the capture efficiency, unique sheet-like structure, high surface area, and excellent photothermal properties of graphene. In addition, electrostatic interactions of MNPs with viral particles appear to play a vital role in the inhibition of viral infection. These results suggest that graphene composites may help to combat viral infections including, but not only, HSV-1.

  7. Development of ion-plated aluminide diffusion coatings for thermal cyclic oxidation and hot corrosion protection of a nickel-based superalloy and a stainless steel

    NASA Astrophysics Data System (ADS)

    Elsawy, Abdel Raouf

    This project was carried out at the University of Toronto and Cametoid Ltd of Whitby, Ontario. Ohno continuous casting; a novel net shape casting technique, was used to generate, Al-Y, Al-Ce, Al-La, and Al-Si-Y, in form of 1.6 to 1.7 mm diameter alloy wires. These alloy wires exhibited suitable properties for use as feed materials to an Ion Vapor Deposition facility. The deposition parameters were optimized to provide coatings with a compact and cohesive columnar structure with reduced porosity and diffusion barriers that were essential to ensure the success of the diffusion process in the subsequent stage. Solid-state diffusion heat treatment processes were developed in order to form the stable aluminide phases, AlNi and FeAl, on IN738 and S310 substrates, respectively. Experiments simulating the coating service conditions and environments encountered during the prospective aerospace and fuel cell applications were conducted to evaluate the performance of each aluminide coating developed during this study. Thermal cyclic oxidation and molten sulfate corrosion studies were performed on coated IN738 pins at 1050°C and 900°C, respectively, simulating the service environment of turbine engine blades and other hot section components. Molten carbonate corrosion behavior was investigated for coated S310 coupons that were immersed in, or covered with a thin film of molten carbonate, at 650°C, in air plus 30%CO2, to simulate the operating conditions of the cathode-side separator plates of molten carbonate fuel cells. The behavior of the reactive elements, yttrium, cerium, lanthanum, and silicon in enhancing the adhesion of the protective aluminum oxide scale was determined by weight variation experiments, structural examination and compositional analysis. The influence of the base material elements, nickel, chromium, and iron, on the formation of protective oxides was investigated. All coatings were found to provide significant improvement for thermal cyclic oxidation

  8. Parallel-Plate Acoustic Absorbers For Hot Environments

    NASA Technical Reports Server (NTRS)

    Doychak, Joseph; Parrot, Tony L.

    1995-01-01

    Stacking patterns and materials chosen to suppress noise. Acoustic liners incorporating parallel-plate absorbing elements proposed for use in suppressing broadband aerodynamic noise originating in flows of hot gases in ducts. One potential application lies in suppressing noise generated in exhaust-jet mixer/ejectors in propulsion system of proposed High-Speed Civil Transport. In addition, such absorbers useful in any situation in which high temperature limits use of such conventional resonant acoustic-liner materials as perforated face sheets bonded to honey-comb-core panels.

  9. Parallel-Plate Acoustic Absorbers For Hot Environments

    NASA Technical Reports Server (NTRS)

    Doychak, Joseph; Parrot, Tony L.

    1995-01-01

    Stacking patterns and materials chosen to suppress noise. Acoustic liners incorporating parallel-plate absorbing elements proposed for use in suppressing broadband aerodynamic noise originating in flows of hot gases in ducts. One potential application lies in suppressing noise generated in exhaust-jet mixer/ejectors in propulsion system of proposed High-Speed Civil Transport. In addition, such absorbers useful in any situation in which high temperature limits use of such conventional resonant acoustic-liner materials as perforated face sheets bonded to honey-comb-core panels.

  10. A passive guard for low thermal conductivity measurement of small samples by the hot plate method

    NASA Astrophysics Data System (ADS)

    Jannot, Yves; Degiovanni, Alain; Grigorova-Moutiers, Veneta; Godefroy, Justine

    2017-01-01

    Hot plate methods under steady state conditions are based on a 1D model to estimate the thermal conductivity, using measurements of the temperatures T 0 and T 1 of the two sides of the sample and of the heat flux crossing it. To be consistent with the hypothesis of the 1D heat flux, either a hot plate guarded apparatus is used, or the temperature is measured at the centre of the sample. On one hand the latter method can be used only if the ratio thickness/width of the sample is sufficiently low and on the other hand the guarded hot plate method requires large width samples (typical cross section of 0.6  ×  0.6 m2). That is why both methods cannot be used for low width samples. The method presented in this paper is based on an optimal choice of the temperatures T 0 and T 1 compared to the ambient temperature T a, enabling the estimation of the thermal conductivity with a centered hot plate method, by applying the 1D heat flux model. It will be shown that these optimal values do not depend on the size or on the thermal conductivity of samples (in the range 0.015-0.2 W m-1 K-1), but only on T a. The experimental results obtained validate the method for several reference samples for values of the ratio thickness/width up to 0.3, thus enabling the measurement of the thermal conductivity of samples having a small cross-section, down to 0.045  ×  0.045 m2.

  11. Low-Cost Magnetic Stirrer from Recycled Computer Parts with Optional Hot Plate

    ERIC Educational Resources Information Center

    Guidote, Armando M., Jr.; Pacot, Giselle Mae M.; Cabacungan, Paul M.

    2015-01-01

    Magnetic stirrers and hot plates are key components of science laboratories. However, these are not readily available in many developing countries due to their high cost. This article describes the design of a low-cost magnetic stirrer with hot plate from recycled materials. Some of the materials used are neodymium magnets and CPU fans from…

  12. Low-Cost Magnetic Stirrer from Recycled Computer Parts with Optional Hot Plate

    ERIC Educational Resources Information Center

    Guidote, Armando M., Jr.; Pacot, Giselle Mae M.; Cabacungan, Paul M.

    2015-01-01

    Magnetic stirrers and hot plates are key components of science laboratories. However, these are not readily available in many developing countries due to their high cost. This article describes the design of a low-cost magnetic stirrer with hot plate from recycled materials. Some of the materials used are neodymium magnets and CPU fans from…

  13. Experimental comparison and validation of hot-ball method with guarded hot plate method on polyurethane foams

    NASA Astrophysics Data System (ADS)

    Hudec, Ján; Glorieux, Christ; Dieška, Peter; Kubičár, Ľudovít

    2016-07-01

    The Hot-ball method is an innovative transient method for measuring thermophysical properties. The principle is based on heating of a small ball, incorporated in measured medium, by constant heating power and simultaneous measuring of the ball's temperature response since the heating was initiated. The shape of the temperature response depends on thermophysical properties of the medium, where the sensor is placed. This method is patented by Institute of Physics, SAS, where the method and sensors based on this method are being developed. At the beginning of the development of sensors for this method we were oriented on monitoring applications, where relative precision is much more important than accuracy. Meanwhile, the quality of sensors was improved good enough to be used for a new application - absolute measuring of thermophysical parameters of low thermally conductive materials. This paper describes experimental verification and validation of measurement by hot-ball method. Thanks to cooperation with Laboratory of Soft Matter and Biophysics of Catholic University of Leuven in Belgium, established Guarded Hot Plate method was used as a reference. Details about measuring setups, description of the experiments and results of the comparison are presented.

  14. Thermal response simulation for tuning PID controllers in a 1016 mm guarded hot plate apparatus.

    PubMed

    Thomas, William C; Zarr, Robert R

    2011-07-01

    A mathematical model has been developed and used to simulate the controlled thermal performance of a large guarded hot-plate apparatus. This highly specialized apparatus comprises three interdependent components whose temperatures are closely controlled in order to measure the thermal conductivity of insulation materials. The simulation model was used to investigate control strategies and derive controller gain parameters that are directly transferable to the actual instrument. The simulations take orders-of-magnitude less time to carry out when compared to traditional tuning methods based on operating the actual apparatus. The control system consists primarily of a PC-based PID control algorithm that regulates the output voltage of programmable power amplifiers. Feedback parameters in the form of controller gains are required for the three heating circuits. An objective is to determine an improved set of gains that meet temperature control criteria for testing insulation materials of interest. The analytical model is based on aggregated thermal capacity representations of the primary components and includes the same control algorithm as used in the actual hot-plate apparatus. The model, accounting for both thermal characteristics and temperature control, was validated by comparisons with test data. The tuning methodology used with the simulation model is described and results are presented. The resulting control algorithm and gain parameters have been used in the actual apparatus without modification during several years of testing materials over wide ranges of thermal conductivity, thickness, and insulation resistance values.

  15. Effects of the microstructure of twin roll cast and hot rolled plates on the surface quality of presensitized plates

    NASA Astrophysics Data System (ADS)

    Zhu, Yuan-Zhi; Zhang, Ya-Feng; Zhao, Chao-Qi; Zhou, Feng

    2014-09-01

    The effect of the microstructure of plates fabricated both in the traditional process, involving casting, hot rolling and cold rolling (HR), and in the novel twin roll casting + cold rolling (TRC) process on the surface quality of presensitized (PS) plates was analyzed by optical microscopy (OM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDXS). The formation of pores on the surface of the electrolyzed HR plate could be attributed to the presence of approximately 1-μm-sized large Al-Fe precipitates in the HR plate compared to the smaller precipitates in the TRC plate. Moreover, residual graphite lubricants used during the TRC process were entrapped on the surface of the TRC plate during the subsequent rolling process. The entrapped pollutants tended to further deteriorate the formation of pores on the surface of the TRC plate, and no residual carbon was detected on the surface of the HR plate. Furthermore, the surface quality of the TRC plate can be improved by surface cleaning before the cold rolling process, which could dramatically lower the residual graphite on the surface.

  16. Evaluation of the surface strength of glass plates shaped by hot slumping process

    NASA Astrophysics Data System (ADS)

    Proserpio, Laura; Basso, Stefano; Borsa, Francesco; Citterio, Oberto; Civitani, Marta; Ghigo, Mauro; Pareschi, Giovanni; Salmaso, Bianca; Sironi, Giorgia; Spiga, Daniele; Tagliaferri, Gianpiero; D'Este, Alberto; Dall'Igna, Roberto; Silvestri, Mirko; Parodi, Giancarlo; Martelli, Francesco; Bavdaz, Marcos; Wille, Eric

    2014-08-01

    Hot slumping technology is under development by several research groups in the world for the realization of grazing-incidence segmented mirrors for x-ray astronomy, based on thin glass plates shaped over a mold at temperatures above the transformation point. The performed thermal cycle and related operations might have effects on the strength of the glass, with consequences for the structural design of the elemental optical modules and, consequently, on the entire x-ray optic for large astronomical missions such as IXO and ATHENA. The mechanical strength of glass plates after they underwent the slumping process was tested through destructive double-ring tests in the context of a study performed by the Astronomical Observatory of Brera with the collaboration of Stazione Sperimentale del Vetro and BCV Progetti. The entire study was done on more than 200 D263 Schott borosilicate glass specimens of dimensions 100 mm×100 mm and a thickness 0.4 mm, either flat or bent at a radius of curvature of 1000 mm through the pressure-assisted hot slumping process developed by INAF-OAB. The collected experimental data have been compared with nonlinear finite element model analyses and treated with the Weibull statistic to assess the current IXO glass x-ray telescope design, in terms of survival probability, when subjected to static and acoustic loads characteristic of the launch phase. The paper describes the activities performed and presents the obtained results.

  17. Effect of finishing temperature of hot rolling on recrystallization and mechanical properties of MA 754 plate

    SciTech Connect

    Park, L.J.; Tundermann, J.H.; deBarbadillo, J.J.

    1997-12-15

    Nickel-base oxide-dispersion-strengthened (ODS) alloys produced by the mechanical alloying process have been developed for high temperature applications. In particular, INCONEL{trademark} alloy MA 754 has been used as a turbine vane alloy in advanced jet engines. ODS alloys attract great attention as advanced high temperature materials, because they can retain useful strength up to relatively high fractions of their melting points. The elevated temperature strength of ODS alloys is due to the presence of inert, finely dispersed oxide particles which serve to inhibit the motion of dislocations. In addition to this direct strengthening by oxide particles, the most important microstructural feature affecting elevated temperature strength of ODS alloys is a very coarse grain structure. The aim of this study was to investigate the effect of the finishing temperature (FT) of hot rolling on the microstructure and the secondary recrystallization response of hot rolled INCONEL alloy MA 754 plate. Also, this work addressed the relationship between as-hot rolled microstructure and recrystallized grain structure after secondary recrystallization.

  18. A New Guarded Hot Plate Designed for Thermal-Conductivity Measurements at High Temperature

    NASA Astrophysics Data System (ADS)

    Scoarnec, V.; Hameury, J.; Hay, B.

    2015-03-01

    The Laboratoire National de Métrologie et d'Essais has developed a new guarded hot-plate apparatus operating from to in the thermal-conductivity range from to . This facility has been specifically designed for measuring medium thermal-conductivity materials at high temperature on square specimens (100 mm side), which are easier to machine than circular ones. The hot plate and cold plates are similar with a metering section independent from the guard ring. The specimens are laterally isolated by an air gap of 4 mm width and can be instrumented by temperature sensors in order to reduce effects of thermal contact resistances between the specimens and the heating plates. Measurements have been performed on certified reference materials and on "calibrated" materials. Relative deviations between thermal conductivities measured and reference values are less than 5 % in the operating range.

  19. Hot-air flat-plate solar collector-design package

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Report contains design data, performance specifications, and drawings for hot-air flat-plate solar-energy collector. Evaluation consists of tests on thermal performance time constance, and incidence angle modifier test. Results are presented in table and graph form and are analyzed in detail.

  20. Hot-air flat-plate solar collector-design package

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Report contains design data, performance specifications, and drawings for hot-air flat-plate solar-energy collector. Evaluation consists of tests on thermal performance time constance, and incidence angle modifier test. Results are presented in table and graph form and are analyzed in detail.

  1. The stability of buoyancy-driven gaseous boundary layers over inclined semi-infinite hot plates

    NASA Astrophysics Data System (ADS)

    Rajamanickam, Prabakaran; Coenen, Wilfried; Sanchez, Antonio L.

    2016-11-01

    The free-convective boundary-layer flow that develops over a semi-infinite inclined hot plate is known to become unstable at a finite distance from the leading edge, characterized by a critical value of the Grashof number Grδ based on the local boundary-layer thickness δ. The character of the instability depends on the inclination angle ϕ, measured from the vertical direction. For values of ϕ below a critical value ϕc the instability is characterized by the appearance of spanwise vortices, whereas for ϕ >ϕc the bifurcated flow displays Görtler-like streamwise vortices. The Boussinesq approximation, employed in previous linear stability analyses, ceases to be valid for gaseous flow when the wall-to-ambient temperature ratio θw =Tw /T∞ is not close to unity. The corresponding non-Boussinesq analysis is presented here, accounting also for the variation with temperature of the different transport properties. The base-flow profiles are used in a parallel-flow temporal stability analysis to delineate the dependence of the critical Grashof numbers Grδ on the inclination angles ϕ and on the temperature ratio θw. The analysis provides in particular the values of the crossover inclination angles ϕc (θw) .

  2. Numerical Simulation of Bubble Growth in Liquid Jet Impingement on a Hot Plate

    NASA Astrophysics Data System (ADS)

    Kim, Kyungmin; Son, Gihun

    Complete numerical simulations are performed for bubble growth in water jet impingement on a hot plate. The governing equations for the conservation of mass, momentum and energy are numerically solved in the liquid, vapor and air phases. The liquid-vapor and liquid-air interfaces are tracked by a level-set method which is modified to include the effect of phase change at the liquid-vapor interface. The level-set approach is combined with a non-equilibrium k-ε turbulence model. The effects of jet velocity, jet temperature and wall superheat on the bubble growth in water jet and the associated flow and heat transfer are quantified.

  3. Hot Isostatic Press Manufacturing Process Development for Fabrication of RERTR Monolithic Fuel Plates

    SciTech Connect

    Crapps, Justin M.; Clarke, Kester D.; Katz, Joel D.; Alexander, David J.; Aikin, Beverly; Vargas, Victor D.; Montalvo, Joel D.; Dombrowski, David E.; Mihaila, Bogdan

    2012-06-06

    We use experimentation and finite element modeling to study a Hot Isostatic Press (HIP) manufacturing process for U-10Mo Monolithic Fuel Plates. Finite element simulations are used to identify the material properties affecting the process and improve the process geometry. Accounting for the high temperature material properties and plasticity is important to obtain qualitative agreement between model and experimental results. The model allows us to improve the process geometry and provide guidance on selection of material and finish conditions for the process strongbacks. We conclude that the HIP can must be fully filled to provide uniform normal stress across the bonding interface.

  4. Effect of nanostructure on rapid boiling of water on a hot copper plate: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Fu, Ting; Mao, Yijin; Tang, Yong; Zhang, Yuwen; Yuan, Wei

    2016-08-01

    Molecular dynamic simulations are performed to study the effects of nanostructure on rapid boiling of water that is suddenly heated by a hot copper plate. The results show that the nanostructure has significant effects on energy transfer from solid copper plate to liquid water and phase change process from liquid water to vapor. The liquid water on the solid surface rapidly boil after contacting with an extremely hot copper plate and consequently a cluster of liquid water moves upward during phase change. The temperature of the water film when it separates from solid surface and its final temperature when the system is at equilibrium strongly depend on the size of the nanostructure. These temperatures increase with increasing size of nanostructure. Furthermore, a non-vaporized molecular layer is formed on the surface of the copper plate even continuous heat flux is passing into water domain through the plate.

  5. Ultra fast cooling of hot steel plate by air atomized spray with salt solution

    NASA Astrophysics Data System (ADS)

    Mohapatra, Soumya S.; Ravikumar, Satya V.; Jha, Jay M.; Singh, Akhilendra K.; Bhattacharya, Chandrima; Pal, Surjya K.; Chakraborty, Sudipto

    2014-05-01

    In the present study, the applicability of air atomized spray with the salt added water has been studied for ultra fast cooling (UFC) of a 6 mm thick AISI-304 hot steel plate. The investigation includes the effect of salt (NaCl and MgSO4) concentration and spray mass flux on the cooling rate. The initial temperature of the steel plate before the commencement of cooling is kept at 900 °C or above, which is usually observed as the "finish rolling temperature" in the hot strip mill of a steel plant. The heat transfer analysis shows that air atomized spray with the MgSO4 salt produces 1.5 times higher cooling rate than atomized spray with the pure water, whereas air atomized spray with NaCl produces only 1.2 times higher cooling rate. In transition boiling regime, the salt deposition occurs which causes enhancement in heat transfer rate by conduction. Moreover, surface tension is the governing parameter behind the vapour film instability and this length scale increases with increase in surface tension of coolant. Overall, the achieved cooling rates produced by both types of salt added air atomized spray are found to be in the UFC regime.

  6. Differential effects of weekly and daily exposure to the hot plate on the rat's behavior.

    PubMed

    Espejo, E F; Mir, D

    1994-06-01

    Animals were assigned to two groups: weekly stimulated (WS, n = 30) and daily stimulated (DS, n = 30). Three hot plate tests (55.0 +/- 0.5 degree C, 45 s exposure time) were carried out for each rat. Behavior was videotaped and analyzed by a 14-pattern ethogram and a software package. A cluster analysis revealed that naive rats mainly displayed: i) exploratory patterns (walk-sniff, immobile-sniff), ii) primary noxious-evoked elements (forepaw licking, hindpaw licking, stamping), iii) escape responses (learning posture, jumping), and iv) hindleg withdrawal, an independent noxious-evoked element. The main behavioral changes over time were: i) exploratory behavior was habituated in both groups, ii) sensitization of primary noxious-evoked elements was observed only in the WS group, iii) escape elements were enhanced in both groups, although to less extent in the DS group, and iv) hindleg withdrawal was enhanced in both groups. Furthermore, in the WS group, the nociceptive threshold was significantly decreased, and cluster analysis indicated reliable changes over time. Results suggest that a sensitization phenomenon came about when rats were tested weekly, but was minimized by using the daily testing schedule. This study indicated that an ethological analysis is useful to categorize the rat's patterns in the hot plate test, as well as to follow the gradual changes in responses when repeated measures are used.

  7. Metamaterial perfect absorber based hot electron photodetection.

    PubMed

    Li, Wei; Valentine, Jason

    2014-06-11

    While the nonradiative decay of surface plasmons was once thought to be only a parasitic process that limits the performance of plasmonic devices, it has recently been shown that it can be harnessed in the form of hot electrons for use in photocatalysis, photovoltaics, and photodetectors. Unfortunately, the quantum efficiency of hot electron devices remains low due to poor electron injection and in some cases low optical absorption. Here, we demonstrate how metamaterial perfect absorbers can be used to achieve near-unity optical absorption using ultrathin plasmonic nanostructures with thicknesses of 15 nm, smaller than the hot electron diffusion length. By integrating the metamaterial with a silicon substrate, we experimentally demonstrate a broadband and omnidirectional hot electron photodetector with a photoresponsivity that is among the highest yet reported. We also show how the spectral bandwidth and polarization-sensitivity can be manipulated through engineering the geometry of the metamaterial unit cell. These perfect absorber photodetectors could open a pathway for enhancing hot electron based photovoltaic, sensing, and photocatalysis systems.

  8. Is the Juan Fernandez Ridge (nazca Plate) a Deep-Mantle Hot SPOT Trail?

    NASA Astrophysics Data System (ADS)

    Lara, L. E.; Selles, D.; Díaz, A.; Piña-Gauthier, M.

    2011-12-01

    The Juan Fernández Ridge on the oceanic Nazca plate is thought to be a classic hot spot trail because of the apparent westward rejuvenation of the eruptive ages. Geochronological data is still scarce to prove this is the case, and other hypothesis should be taken into account. There are a few constrains, like the ca. 9 Ma Ar-Ar age of the O'Higgins seamount (115 km from the Chile-Perú trench), published K-Ar ages of ca. 3-4 Ma in Robinson Crusoe island (580 km from the trench) and ca. 1 Ma in Alejandro Selkirk (180 km further west). New reconnaissance K-Ar ages in Robinson Crusoe yield ca. 1-3 Ma, which partially overlap with the age of Alejandro Selkirk, breaking the expected age progression given that the Nazca plate moves eastwards at ca. 6-8 cm/yr. New geological mapping also shows a sharp unconformity between the older, strongly altered sequences and more recent, post-erosional volcanic piles, where only the vent facies have disappeared. A fixed deep-mantle plume origin for Pacific hot spots has been widely debated and concurrent phenomena arose as a possible explanation for non-linear age progressions and/or long-lived volcanic activity. In fact, intraplate regional tectonics, plume displacement, and mantle heterogeneities could be the main factor of the ridge architecture or the mask for a first-order linear trend. An ongoing mapping and dating effort is aimed to understand the evolution of the Juan Fernández Ridge, testing the main hypothesis. Fondecyt grant 110966 is acknowledged for financial support.

  9. Hot press with flat plate heaters and its application to the fabrication of large varistor slugs

    SciTech Connect

    Snow, G.S.; Cooper, R.A.

    1980-05-01

    A hot press was designed and constructed for fabricating large ZnO varistor slugs. The electrical properties of ZnO varistors containing CoO, PbO, and Bi/sub 2/O/sub 3/ are very dependent on processing temperature. To fabricate varistors with the desired field (E = 42.5 +- 1.5 kV/cm at 5 A/cm/sup 2/), it was necessary to maintain temperature uniformity within +- 3.5/sup 0/C throughout the slug and from run to run. The slugs were fabricated in the form of disks approx. = 75 mm in diameter with a final thickness of approx. = 14 mm. Ceramics have been hot pressed previously using apparatus in which the heat source was in the form of a cylinder surrounding, and coaxial to, the slug. Unless the heat source is long compared with its diameter, such a heating method results in poor temperature uniformity, which is aggravated by poor thermal coupling with the heat source and by large heat losses through the pushrods. In the design described herein, these problems are avoided by using flat plate heaters above and below the slug.

  10. Ejaculation induced changes in escape latency in the hot plate test: pharmacological analysis of anxiolytic versus analgesic effect.

    PubMed

    Saldívar-González, A; Fernández-Guasti, A

    1994-02-28

    The possible changes in nociception at various stages of male sexual behaviour were explored in the hot plate test. Although other authors have reported an antinociceptive effect of mating, we failed to find this effect on the hot plate test after several sexual behaviour events. To further explore the possible antinociceptive action of copulation we administered a suboptimal analgesic dose of morphine (0.3 mg/kg i.p.). No change in nociception were observed in animals treated with a subthreshold dose of morphine and tested in the nociception test after ejaculation were observed. Since previous reports have refered that ejaculation produces hypoalgesia when measured in the hot plate test, we attempted to replicate these findings. We found that one ejaculation produces an increase in the latency to escape in male rats previously habituated to the hot plate test. These results suggest a hypoalgesic effect. However, such changes could also be interpreted as alterations in the animals' emotionality. Thus, a group of habituated animals was tested on the switched off plate. An important increase in the escape latency behaviour after ejaculation was observed, while no differences between control animals, without sexual behaviour display, tested on switched on and switched off plate were observed. The participation of the benzodiazepine and opiod systems in the ejaculation effect on the switched off plate was explored. A similar increase in escape latency to that induced by ejaculation was caused by diazepam (1.0 and 2.0 mg/kg). The increase in escape latency induced by ejaculation was prevented by the benzodiazepine antagonist, flumazenil (20.0 mg/kg).(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Effect of pressure on the micro-explosion of water/oil emulsion droplets over a hot plate

    SciTech Connect

    Cho, P. ); Law, C.K. ); Mizomoto, M. )

    1991-02-01

    The purpose of the present investigation is experimentally to study the micro-explosion behavior of water/oil emulsion droplets over a hot plate in general, and the effect of pressure on this droplet/plate system in particular. The technological relevance of this study stems from the interest in direct injection high-compression-ratio engines because droplet/wall interaction is believed to be an important process within these engines, and because water/oil emulsion is most suitable for application with the heavier oils used by them. From the fundamental viewpoint it is not clear a priori that insights gained from results of freely falling droplets can be readily applied to the present system. This is because droplet gasification behavior over a hot plate (commonly known as the Leidenfrost phenomenon) is a nonmonotonic one. Specifically, for a droplet originally in contact with the plate, with increasing plate temperature the droplet lifetime will first decrease, then increase rapidly as the droplet attempts to levitate itself by its outgoing vapor, and finally decrease gradually when it is in the totally levitated mode. Furthermore, a change in pressure not only will shift the transition plate temperatures for the different gasification modes, but it can also conceivably alter the nucleation mode of the superheated water microdroplets depending on whether the emulsion droplet is in physical contact with the plate.

  12. A neutron detector based on microchannel plates

    SciTech Connect

    MacArthur, D.W.

    1987-06-01

    We propose a large-area neutron detector design based on microchannel plates (MCPs). Two characteristics of the MCP make it ideal as a high-rate neutron detector: (1) its signals can have a very fast rise time, and (2) it can count at a high rate. The MCP-based detector could use both the high-voltage power supplies and the readout electronics designed for a neutron detector based on the multiwire proportional chamber (MWPC).

  13. Aluminum-based hot carrier plasmonics

    NASA Astrophysics Data System (ADS)

    Gong, Tao; Munday, Jeremy N.

    2017-01-01

    Aluminum has recently arisen as an excellent alternative plasmonic material due to its tunability, low optical loss, and CMOS compatibility. However, its use in optoelectronic applications has been limited due to Al oxidation. Herein, we report a semiconductor-free aluminum hot carrier device that exploits the self-terminating oxidation to create an interface barrier for high performance metal-insulator-transparent conducting oxide devices. We find a 300% enhancement of the responsivity compared to similarly reported Au-based devices, resulting in a responsivity up to ˜240 nA/W, and a clear dependence of the open-circuit voltage on incident photon energy. We show that further improvement can be obtained by coupling to plasmonic modes of a metal-insulator-metal structure composed of a nanowire array adjacent to a thin aluminum film, increasing light absorption by a factor of three and enabling tunability of the hot carrier response for improved device performance.

  14. Hot Corrosion of Cobalt-Base Alloys

    DTIC Science & Technology

    1975-06-01

    Cast Alloys : NASA VIA, B-1900, 713C and 738X", Report NASA TN D-7682, Lewis Research Center, Cleveland, Ohio, August 1974. 36. Giggins, C.S. and...resistance of cobalt-base and nickel-base alloys . The contract was accomplished under the technical direction of Dr. H. C. Graham of the Aerospace Research...Interpretation of Results 3. SODIUM SULFATE INDUCED HOT CORROSION OF Co-25Al AND Co-35Cr ALLOYS a. Introduction b. Experimental Co-25Al c. Experimental

  15. Hot Plate Method with Two Simultaneous Temperature Measurements for Thermal Characterization of Building Materials

    NASA Astrophysics Data System (ADS)

    Osséni, Sibiath O. G.; Ahouannou, Clément; Sanya, Emile A.; Jannot, Yves

    2017-07-01

    This paper presents a study of the hot plate method with two simultaneous temperature measurements, on the heated and unheated faces of a sample to characterize. The thermal properties of polyvinyl chloride, plaster and laterite were considered to be a representative range of building materials. A 1D quadrupolar model was developed to represent the temperature evolution on the two faces over time. Three-dimensional numerical modeling of a quarter of the testing device with COMSOL software allowed defining the domain of the 1D hypothesis validity. The analysis of estimation possibilities of materials' thermal characteristics, with the developed method, revealed that thermal effusivity can be accurately estimated by using the temperature of the heated face at the beginning of heating. We showed that the simultaneous use of two temperatures enables the estimation of the thermal conductivity with a greater accuracy and over a shorter time interval than using the temperature of the heated face alone. We also demonstrated that under certain conditions (samples with a high ratio of thickness to width) the method with two temperature measurements enabled the estimation of the thermal effusivity and conductivity, while the method with one temperature allowed only the thermal effusivity to be estimated, because of 3D effects. This conclusion was confirmed by experimental results obtained with a mortar sample.

  16. Analgesic properties of Epilobium angustifolium, evaluated by the hot plate test and the writhing test.

    PubMed

    Tita, B; Abdel-Haq, H; Vitalone, A; Mazzanti, G; Saso, L

    2001-01-01

    The analgesic properties of Epilobium angustifolium (Ea), a plant containing flavonoids with anti-inflammatory activity, have not been sufficiently studied so far. Thus, we decided to evaluate, by the classical hot plate test and the writhing test, the analgesic effect of a dry extract of Ea obtained by evaporating a commercially available mother tincture. In the former assay, the effect of Ea (380 mg/kg) was slightly lower than that of morphine (10 mg/kg s.c.). In the writhing test, which is more sensitive for non-steroidal analgesics, the effect of Ea was already significant (P < 0.05) at 95 mg/kg while at doses > or = 190 mg/kg, its activity was similar to that of lysine acetylsalicylate (300 mg/kg). The LD50 of this dry extract of Ea was 1.4+/-0.1 g/kg. Further studies are necessary for the identification of the active principles and the elucidation of their mechanism of action.

  17. Antinociceptive effects of voluntarily ingested buprenorphine in the hot-plate test in laboratory rats.

    PubMed

    Hestehave, Sara; Munro, Gordon; Pedersen, Tina Brønnum; Abelson, Klas S P

    2016-09-27

    Researchers performing experiments on animals should always strive towards the refinement of experiments, minimization of stress and provision of better animal welfare. An adequate analgesic strategy is important to improve post-operative recovery and welfare in laboratory rats and mice. In addition, it is desirable to provide post-operative analgesia using methods that are minimally invasive and stressful. This study investigated the antinociceptive effects of orally administered buprenorphine ingested in Nutella® in comparison with subcutaneous buprenorphine administration. By exposing the animal to a thermal stimulus using a hot plate, significant antinociceptive effects of voluntarily ingested buprenorphine administered in Nutella® were demonstrated. This was evident at doses of 1.0 mg/kg 60 and 120 min post administration (P < 0.01), although antinociceptive effects were not as marked as with subcutaneous administration, and had a later onset. It is advised to administer the oral formulation of buprenorphine in Nutella® in a 10-fold higher dose, as well as approximately 60 min earlier, than with the more commonly employed subcutaneous route of administration.

  18. Thermolithographic patterning of sol-gel metal oxides on micro hot plate sensing arrays using organosilanes.

    PubMed

    Savage, Nancy Ortins; Roberson, Sonya; Gillen, Greg; Tarlov, Michael J; Semancik, Steve

    2003-09-01

    Sol-gel-derived SnO2 and Fe2O3 were selectively deposited on elements of micro hot plate (microHP) arrays. The silicon micromachined microHP arrays contain heating elements (100 microm x 100 microm) that are electronically addressable and thermally isolated from each other. Thin films of (tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane (TFS) or hexyltrichlorosilane (HFS) assembled on surfaces of the arrays served as thermally sensitive resists whereby heating of specific microHPs resulted in removal of organosilane films only in heated areas. TFS-masked surfaces were characterized with condensation figures and secondary ion mass spectrometry (SIMS) imaging. TFS was removed from regions heated above 400 degrees C to expose hydrophilic surfaces, while TFS films in unheated areas were unaffected and remained hydrophobic. Sol-gel tin oxide spin-coated on the thermally patterned arrays adhered only to the hydrophilic regions and was repelled from the hydrophobic areas masked by the TFS films. By using HFS films, it was possible to selectively deposit two sol-gel materials, SnO2 and Fe2O3, on different microHPs in the same array as confirmed by SIMS imaging. Both materials showed varying degrees of electrical response to hydrogen and methanol in gas-sensing measurements.

  19. Thermal conductivity of a wide range of alternative refrigerants measured with an improved guarded hot-plate apparatus

    SciTech Connect

    Hammerschmidt, U.

    1995-09-01

    The thermal conductivity of the refrigerants R22, R123, R134a, R142b, R143a, and R152a has been determined as a function of temperature in the range from 300 to 460 K. Measurements were carried out at atmospheric pressure with an improved guarded hot-plate apparatus. The width of the instrument`s gas layer and the temperature difference across the metering section were varied to detect any stray heat transfer. Radiation correction factors were derived from IR absorption spectra. The uncertainty of the measurements is estimated to be 2% at a standard deviation of less than 0.1%. Our data sets are compared with corresponding hot wire results. In contrast to the generally preferred hot wire technique, with its possible electrical and chemical interactions between the wire and the polar refrigerant, there are no such difficulties using a guarded hot-plate apparatus. Our data sets may thus contribute to the discussions on discrepancies in thermal conductivity values from various authors using hot wire as one particular method.

  20. Discovery of feature-based hot spots using supervised clustering

    NASA Astrophysics Data System (ADS)

    Ding, Wei; Stepinski, Tomasz F.; Parmar, Rachana; Jiang, Dan; Eick, Christoph F.

    2009-07-01

    Feature-based hot spots are localized regions where the attributes of objects attain high values. There is considerable interest in automatic identification of feature-based hot spots. This paper approaches the problem of finding feature-based hot spots from a data mining perspective, and describes a method that relies on supervised clustering to produce a list of hot spot regions. Supervised clustering uses a fitness function rewarding isolation of the hot spots to optimally subdivide the dataset. The clusters in the optimal division are ranked using the interestingness of clusters that encapsulate their utility for being hot spots. Hot spots are associated with the top ranked clusters. The effectiveness of supervised clustering as a hot spot identification method is evaluated for four conceptually different clustering algorithms using a dataset describing the spatial distribution of ground ice on Mars. Clustering solutions are visualized by specially developed raster approximations. Further assessment of the ability of different algorithms to yield hot spots is performed using raster approximations. Density-based clustering algorithm is found to be the most effective for hot spot identification. The results of the hot spot discovery by supervised clustering are comparable to those obtained using the G* statistic, but the new method offers a high degree of automation, making it an ideal tool for mining large datasets for the existence of potential hot spots.

  1. Evaluation of the antinociceptive activities of enaminone compounds on the formalin and hot plate tests in mice

    NASA Astrophysics Data System (ADS)

    Masocha, Willias; Kombian, Samuel B.; Edafiogho, Ivan O.

    2016-02-01

    Recently, we found that methyl 4-(4‧-bromophenyl)aminocyclohex-3-en-6-methyl-2-oxo-1-oate (E139), an anticonvulsant enaminone, has antinociceptive activity in the hot plate test. In this study we evaluated the antinociceptive activity of five anilino enaminones E139, ethyl 4-(4‧-chlorophenyl)amino-6-methyl-2-oxocyclohex-3-en-1-oate (E121), ethyl 4-(4‧-bromophenyl)amino-6-methyl-2-oxocyclohex-3-en-1-oate (E122), methyl 4-(4‧-chlorophenyl)amino-6-methyl-2-oxocyclohex-3-en-1-oate (E138) and ethyl 4-(4‧-fluorophenyl)amino-6-methyl-2-oxocyclohex-3-en-1-oate (BRG 19) using the formalin and hot plate tests. E139 has been reported to exert its effects via enhancement of extracellular GABA levels, thus tiagabine, a GABA transporter inhibitor, was evaluated as a control together with indomethacin. Tiagabine had antinociceptive activity in both phase 1 (neurogenic pain) and phase 2 (inflammatory pain) of the formalin test, whereas indomethacin had activity only in phase 2. E139 and E138 had antinociceptive activity in both phases of the formalin test, whereas E121 had activity only in phase 1 and BRG 19 had activity only in phase 2. E122 had no significant activity in either phase. In the hot plate test only E139 had antinociceptive activity. Administration of either bicuculline, a GABAA receptor antagonist, or CGP 35348, a GABAB receptor antagonist, blocked the antinociceptive activity of E139. In conclusion our results indicate that E139 has antinociceptive activity in the formalin and hot plate tests that are dependent on GABA receptors.

  2. Evaluation of protective ensemble thermal characteristics through sweating hot plate, sweating thermal manikin, and human tests.

    PubMed

    Kim, Jung-Hyun; Powell, Jeffery B; Roberge, Raymond J; Shepherd, Angie; Coca, Aitor

    2014-01-01

    The purpose of this study was to evaluate the predictive capability of fabric Total Heat Loss (THL) values on thermal stress that Personal Protective Equipment (PPE) ensemble wearers may encounter while performing work. A series of three tests, consisting of the Sweating Hot Plate (SHP) test on two sample fabrics and the Sweating Thermal Manikin (STM) and human performance tests on two single-layer encapsulating ensembles (fabric/ensemble A = low THL and B = high THL), was conducted to compare THL values between SHP and STM methods along with human thermophysiological responses to wearing the ensembles. In human testing, ten male subjects performed a treadmill exercise at 4.8 km and 3% incline for 60 min in two environmental conditions (mild = 22°C, 50% relative humidity (RH) and hot/humid = 35°C, 65% RH). The thermal and evaporative resistances were significantly higher on a fabric level as measured in the SHP test than on the ensemble level as measured in the STM test. Consequently the THL values were also significantly different for both fabric types (SHP vs. STM: 191.3 vs. 81.5 W/m(2) in fabric/ensemble A, and 909.3 vs. 149.9 W/m(2) in fabric/ensemble B (p < 0.001). Body temperature and heart rate response between ensembles A and B were consistently different in both environmental conditions (p < 0.001), which is attributed to significantly higher sweat evaporation in ensemble B than in A (p < 0.05), despite a greater sweat production in ensemble A (p < 0.001) in both environmental conditions. Further, elevation of microclimate temperature (p < 0.001) and humidity (p < 0.01) was significantly greater in ensemble A than in B. It was concluded that: (1) SHP test determined THL values are significantly different from the actual THL potential of the PPE ensemble tested on STM, (2) physiological benefits from wearing a more breathable PPE ensemble may not be feasible with incremental THL values (SHP test) less than approximately 150-200 W·m(2), and (3) the

  3. Learning influence on the behavioral structure of rat response to pain in hot-plate.

    PubMed

    Casarrubea, Maurizio; Sorbera, Filippina; Santangelo, Andrea; Crescimanno, Giuseppe

    2011-11-20

    Aim of the research was to study, by means of descriptive and multivariate analyses, whether, and how, learning influences the behavioral structure of rat response to pain. To this purpose, a hot-plate test daily repetition procedure was carried out on male Wistar rats for five days. A 6-day interval without stimulation elapsed before last test was carried out on day 12. After composition of an ethogram, descriptive (number, latency, per cent distribution) and multivariate analyses (cluster, stochastic) were carried out for each scheduled test day. One-way ANOVA and Newman-Keuls post-hoc test for multiple comparisons revealed significant changes for climbing, jumping, front-paw licking and stamping mean latencies. Student's t-test, carried out between days 1 and 12, showed that significant modifications persisted over time only for climbing and jumping. Cluster analysis evidenced three different clusters: exploratory (sniffing, walking), primary noxious evoked elements (front-paw licking, hind-paw licking, stamping), and escape (climbing and jumping), each showing modifications during test repetition. Comparison between days 1 and 12 revealed substantial differences in similarity values of escape patterns whereas, for the response to pain ones, a conservative structure of dendrograms was maintained. Stochastic analysis revealed a progressive increase of transitions toward jumping and a significant reduction of the ones between sniffing and walking. Such modifications persisted also after 6 days without any stimulation. Present study shows that learning provokes a complex and fine temporal evolution of the innermost behavioral structure of rat response to pain aiming at a more efficient escape strategy.

  4. Magma production rate along the Ninetyeast Ridge and its relationship to Indian plate motion and Kerguelen hot spot activity

    NASA Astrophysics Data System (ADS)

    Sreejith, K. M.; Krishna, K. S.

    2015-02-01

    The Ninetyeast Ridge, a linear trace of the Kerguelen hot spot in the Indian Ocean, was emplaced on a rapidly drifting Indian plate. Magma production rates along the ridge track are computed using gravity-derived excess crustal thickness data. The production rates change between 2 and 15 m3/s over timescales of 3-16 Myr. Major variations in magma production rates are primarily associated with significant changes in the Indian plate velocity with low-production phases linked to high plate velocity periods. The lowest magma production rate (2 m3/s) at 62 Ma is associated with the rapid northward drift of Indian plate under the influence of the Reunion mantle plume. The contemporaneous slowing of the African plate coincides with increase in magma production rate along the Walvis Ridge in the Atlantic Ocean. The present study suggests that variations in the Indian plate motion and frequent ridge jumps have a major role in controlling the magma production, particularly on long-period cycles (~16 Myr). Short-period variations (~5 Myr) in magma productions may be associated with intrinsic changes in the plume, possibly due to the presence of solitary waves in the plume conduit.

  5. Ground based spectroscopy of hot Jupiters

    NASA Astrophysics Data System (ADS)

    Waldmann, Ingo

    2010-05-01

    It has been shown in recent years with great success that spectroscopy of exoplanetary atmospheres is feasible using space based observatories such as the HST and Spitzer. However, with the end of the Spitzer cold-phase, space based observations in the near to mid infra-red are limited, which will remain true until the the onset of the JWST. The importance of developing methods of ground based spectroscopic analysis of known hot Jupiters is therefore apparent. In the past, various groups have attempted exoplanetary spectroscopy using ground based facilities and various techniques. Here I will present results using a novel spectral retrieval method for near to mid infra-red emission and transmission spectra of exoplanetary atmospheres taken from the ground and discuss the feasibility of future ground-based spectroscopy in a broader context. My recently commenced PhD project is under the supervision of Giovanna Tinetti (University College London) and in collaboration with J. P. Beaulieu (Institut d'Astrophysique de Paris), Mark Swain and Pieter Deroo (Jet Propulsion Laboratory, Caltech).

  6. Site-based data curation based on hot spring geobiology

    PubMed Central

    Palmer, Carole L.; Thomer, Andrea K.; Baker, Karen S.; Wickett, Karen M.; Hendrix, Christie L.; Rodman, Ann; Sigler, Stacey; Fouke, Bruce W.

    2017-01-01

    Site-Based Data Curation (SBDC) is an approach to managing research data that prioritizes sharing and reuse of data collected at scientifically significant sites. The SBDC framework is based on geobiology research at natural hot spring sites in Yellowstone National Park as an exemplar case of high value field data in contemporary, cross-disciplinary earth systems science. Through stakeholder analysis and investigation of data artifacts, we determined that meaningful and valid reuse of digital hot spring data requires systematic documentation of sampling processes and particular contextual information about the site of data collection. We propose a Minimum Information Framework for recording the necessary metadata on sampling locations, with anchor measurements and description of the hot spring vent distinct from the outflow system, and multi-scale field photography to capture vital information about hot spring structures. The SBDC framework can serve as a global model for the collection and description of hot spring systems field data that can be readily adapted for application to the curation of data from other kinds scientifically significant sites. PMID:28253269

  7. Site-based data curation based on hot spring geobiology.

    PubMed

    Palmer, Carole L; Thomer, Andrea K; Baker, Karen S; Wickett, Karen M; Hendrix, Christie L; Rodman, Ann; Sigler, Stacey; Fouke, Bruce W

    2017-01-01

    Site-Based Data Curation (SBDC) is an approach to managing research data that prioritizes sharing and reuse of data collected at scientifically significant sites. The SBDC framework is based on geobiology research at natural hot spring sites in Yellowstone National Park as an exemplar case of high value field data in contemporary, cross-disciplinary earth systems science. Through stakeholder analysis and investigation of data artifacts, we determined that meaningful and valid reuse of digital hot spring data requires systematic documentation of sampling processes and particular contextual information about the site of data collection. We propose a Minimum Information Framework for recording the necessary metadata on sampling locations, with anchor measurements and description of the hot spring vent distinct from the outflow system, and multi-scale field photography to capture vital information about hot spring structures. The SBDC framework can serve as a global model for the collection and description of hot spring systems field data that can be readily adapted for application to the curation of data from other kinds scientifically significant sites.

  8. Laser-based characterization of nuclear fuel plates

    SciTech Connect

    Smith, James A.; Cottle, Dave L.; Rabin, Barry H.

    2014-02-18

    Ensuring the integrity of fuel-clad and clad-clad bonding in nuclear fuels is important for safe reactor operation and assessment of fuel performance, yet the measurement of bond strengths in actual fuels has proved challenging. The laser shockwave technique (LST) originally developed to characterize structural adhesion in composites is being employed to characterize interface strength in a new type of plate fuel being developed at Idaho National Laboratory (INL). LST is a non-contact method that uses lasers for the generation and detection of large-amplitude acoustic waves and is well suited for application to both fresh and irradiated nuclear-fuel plates. This paper will report on initial characterization results obtained from fresh fuel plates manufactured by different processes, including hot isostatic pressing, friction stir welding, and hot rolling.

  9. Laser-Based Characterization of Nuclear Fuel Plates

    SciTech Connect

    James A. Smith; David L. Cottle; Barry H. Rabin

    2013-07-01

    Ensuring the integrity of fuel-clad and clad-clad bonding in nuclear fuels is important for safe reactor operation and assessment of fuel performance, yet the measurement of bond strengths in actual fuels has proved challenging. The laser shockwave technique (LST) originally developed to characterize structural adhesion in composites is being employed to characterize interface strength in a new type of plate fuel being developed at Idaho National Laboratory (INL). LST is a non-contact method that uses lasers for the generation and detection of large-amplitude acoustic waves and is well suited for application to both fresh and irradiated nuclear-fuel plates. This paper will report on initial characterization results obtained from fresh fuel plates manufactured by different processes, including hot isostatic pressing, friction stir welding, and hot rolling.

  10. Laser-based characterization of nuclear fuel plates

    NASA Astrophysics Data System (ADS)

    Smith, James A.; Cottle, Dave L.; Rabin, Barry H.

    2014-02-01

    Ensuring the integrity of fuel-clad and clad-clad bonding in nuclear fuels is important for safe reactor operation and assessment of fuel performance, yet the measurement of bond strengths in actual fuels has proved challenging. The laser shockwave technique (LST) originally developed to characterize structural adhesion in composites is being employed to characterize interface strength in a new type of plate fuel being developed at Idaho National Laboratory (INL). LST is a non-contact method that uses lasers for the generation and detection of large-amplitude acoustic waves and is well suited for application to both fresh and irradiated nuclear-fuel plates. This paper will report on initial characterization results obtained from fresh fuel plates manufactured by different processes, including hot isostatic pressing, friction stir welding, and hot rolling.

  11. Amorphous silicon-based microchannel plates

    NASA Astrophysics Data System (ADS)

    Franco, Andrea; Riesen, Yannick; Wyrsch, Nicolas; Dunand, Sylvain; Powolny, François; Jarron, Pierre; Ballif, Christophe

    2012-12-01

    Microchannel plates (MCP) based on hydrogenated amorphous silicon (a-Si:H) were recently introduced to overcome some of the limitations of crystalline silicon and glass MCP. The typical thickness of a-Si:H based MCPs (AMCP) ranges between 80 and 100 μm and the micromachining of the channels is realized by deep reactive ion etching (DRIE). Advantages and issues regarding the fabrication process are presented and discussed. Electron amplification is demonstrated and analyzed using Electron Beam Induced Current (EBIC) technique. The gain increases as a function of the bias voltage, limited to -340 V on account of high leakage currents across the structure. EBIC maps on 10° tilted samples confirm that the device active area extend to the entire channel opening. AMCP characterization with the electron beam shows gain saturation and signal quenching which depends on the effectiveness of the charge replenishment in the channel walls.

  12. The transference of heat from a hot plate to an air stream

    NASA Technical Reports Server (NTRS)

    Elias, Franz

    1931-01-01

    The object of the present study was to define experimentally the field of temperature and velocity in a heated flat plate when exposed to an air stream whose direction is parallel to it, then calculate therefrom the heat transference and the friction past the flat plate, and lastly, compare the test data with the mathematical theory. To ensure comparable results, we were to actually obtain or else approximate: a) two-dimensional flow; b) constant plate temperature in the direction of the stream. To approximate the flow in two dimensions, we chose a relatively wide plate and measured the velocity and temperature in the median plane.

  13. Zero Pressure Gradient Flat Plate Boundary Layer Experiments Using Synchronized PIV and a Hot Wire Anemometry Rake

    NASA Astrophysics Data System (ADS)

    Tutkun, M.; Johansson, P. B. V.; George, W. K.; Stanislas, M.; Foucaut, J. M.; Kostas, J.; Coudert, S.; Delville, J.

    2006-11-01

    Zero pressure gradient flat plate boundary layer experiments have been performed in the 20 meter long test section of the Laboratoire de M'ecanique de Lille, LML, wind tunnel. Measurements were carried out at Reθ=10 000 and Reθ=20 000 using synchronized PIV and a hot wire anemometry rake. The boundary layer thickness at the measurement location was about 30 cm. A hot wire rake of 143 probes was placed in the test section of the wind tunnel to provide the time history of the boundary layer. 2 stereo PIV systems in the wallnormal-spanwise (YZ) plane, and 1 stereo PIV system to record in the streamwise-wallnormal (XY) were used. One high repetition PIV system was used in streamwise-spanwise (XZ) plane. The sampling frequency of the XZ PIV system was 3000 VF/s at Reθ=20 000 and 1500 VF/s at Reθ=10 000.

  14. Structural Behavior of Monolithic Fuel Plates During Hot Isostatic Pressing and Annealing

    SciTech Connect

    Pavel G. Medvedev; Hakan Ozaltun

    2010-03-01

    This paper presents results of the stress analysis in the monolithic fuel plates during thermal transients performed using COMSOL finite element analysis software. Large difference in the thermal expansion between the U-Mo foil and Al cladding is the main load origin during heating and cooling of the fuel plates. In addition, the mechanical behavior of the plate is affected by the difference in yield points between the foil and the cladding. This is manifested by the plastic deformation and permanent strains in the cladding, and elastic deformation of the foil. The results show existence of the critical temperature points at which the stresses change from compressive to tensile. The paper highlights principal differences in mechanical behavior between monolithic and dispersion fuel plates, underlines the need for mechanical property data, especially for the U-Mo alloys, and discusses the methodology for mechanical analysis of the monolithic plates.

  15. Effect of DT4 Interlayer on Properties of Hot-roll Bonding TA2/Q235B Plate

    NASA Astrophysics Data System (ADS)

    Yu, Chao; Xiao, Hong; Li, Na; Qi, Zichen; Ren, Zhongkai

    2017-09-01

    In this paper, a Q235B/TA2/DT4/Q235B plate was bonded by hot-rolling in a vacuum, and the effect of including a DT4 interlayer within the TA2/Q235B plate was studied. The microstructure and properties of the composite plate at different reduction ratios were investigated by scanning electron microscopy, as well as tensile-shear, bending and tensile tests. The results show that when the reduction ratio is below 18%, the shear strength of the interface is higher with the DT4 interlayer than without it. At 35% reduction, the shear strength is similar in both cases. At a reduction ratio of 68%, with the DT4 interlayer, fracture of the bonding interface occurs on the TA2 side, whereas without the DT4 interlayer, fracture occurs on both the TA2 side and the compound layer on the interface. Including the DT4 interlayer improves the bending and tensile properties of the TA2/Q235B plate appreciably.

  16. Microstructure and Mechanical Properties in Hot-Rolled Extra High-Yield-Strength Steel Plates for Offshore Structure and Shipbuilding

    NASA Astrophysics Data System (ADS)

    Liu, Dongsheng; Li, Qingliang; Emi, Toshihiko

    2011-05-01

    Key parameters for a thermomechanically controlled processing and accelerated cooling process (TMCP-AcC) were determined for integrated mass production to produce extra high-yield-strength microalloyed low carbon SiMnCrNiCu steel plates for offshore structure and bulk shipbuilding. Confocal scanning microscopy was used to make in-situ observations on the austenite grain growth during reheating. A Gleeble 3800 thermomechanical simulator was employed to investigate the flow stress behavior, static recrystallization (SRX) of austenite, and decomposition behavior of the TMCP conditioned austenite during continuous cooling. The Kocks-Mecking model was employed to describe the constitutive behavior, while the Johnson-Mehl-Avrami-Kolmogorov (JMAK) approach was used to predict the SRX kinetics. The effects of hot rolling schedule and AcC on microstructure and properties were investigated by test-scale rolling trials. The bridging between the laboratory observations and the process parameter determination to optimize the mass production was made by integrated industrial production trials on a set of a 5-m heavy plate mill equipped with an accelerated cooling system. Successful production of 60- and 50-mm-thick plates with yield strength in excess of 460 MPa and excellent toughness at low temperature (213 K (-60 °C)) in the parent metal and the simulated coarse-grained heat affected zone (CGHAZ) provides a useful integrated database for developing advanced high-strength steel plates via TMCP-AcC.

  17. Harvesting the loss: surface plasmon-based hot electron photodetection

    NASA Astrophysics Data System (ADS)

    Li, Wei; Valentine, Jason G.

    2016-11-01

    Although the nonradiative decay of surface plasmons was once thought to be only a parasitic process within the plasmonic and metamaterial communities, hot carriers generated from nonradiative plasmon decay offer new opportunities for harnessing absorption loss. Hot carriers can be harnessed for applications ranging from chemical catalysis, photothermal heating, photovoltaics, and photodetection. Here, we present a review on the recent developments concerning photodetection based on hot electrons. The basic principles and recent progress on hot electron photodetectors are summarized. The challenges and potential future directions are also discussed.

  18. Harvesting the loss: surface plasmon-based hot electron photodetection

    NASA Astrophysics Data System (ADS)

    Li, Wei; Valentine, Jason G.

    2017-01-01

    Although the nonradiative decay of surface plasmons was once thought to be only a parasitic process within the plasmonic and metamaterial communities, hot carriers generated from nonradiative plasmon decay offer new opportunities for harnessing absorption loss. Hot carriers can be harnessed for applications ranging from chemical catalysis, photothermal heating, photovoltaics, and photodetection. Here, we present a review on the recent developments concerning photodetection based on hot electrons. The basic principles and recent progress on hot electron photodetectors are summarized. The challenges and potential future directions are also discussed.

  19. Dynamics of upper mantle rocks decompression melting above hot spots under continental plates

    NASA Astrophysics Data System (ADS)

    Perepechko, Yury; Sorokin, Konstantin; Sharapov, Victor

    2014-05-01

    Numeric 2D simulation of the decompression melting above the hot spots (HS) was accomplished under the following conditions: initial temperature within crust mantle section was postulated; thickness of the metasomatized lithospheric mantle is determined by the mantle rheology and position of upper asthenosphere boundary; upper and lower boundaries were postulated to be not permeable and the condition for adhesion and the distribution of temperature (1400-2050°C); lateral boundaries imitated infinity of layer. Sizes and distribution of lateral points, their symmetry, and maximum temperature varied between the thermodynamic condition for existences of perovskite - majorite transition and its excess above transition temperature. Problem was solved numerically a cell-vertex finite volume method for thermo hydrodynamic problems. For increasing convergence of iterative process the method of lower relaxation with different value of relaxation parameter for each equation was used. The method of through calculation was used for the increase in the computing rate for the two-layered upper mantle - lithosphere system. Calculated region was selected as 700 x (2100-4900) km. The time step for the study of the asthenosphere dynamics composed 0.15-0.65 Ma. The following factors controlling the sizes and melting degree of the convective upper mantle, are shown: a) the initial temperature distribution along the section of upper mantleb) sizes and the symmetry of HS, c) temperature excess within the HS above the temperature on the upper and lower mantle border TB=1500-2000oC with 5-15% deviation but not exceed 2350oC. It is found, that appearance of decompression melting with HS presence initiate primitive mantle melting at TB > of 1600oC. Initial upper mantle heating influence on asthenolens dimensions with a constant HS size is controlled mainly by decompression melting degree. Thus, with lateral sizes of HS = 400 km the decompression melting appears at TB > 1600oC and HS

  20. 21 CFR 872.6200 - Base plate shellac.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Base plate shellac. 872.6200 Section 872.6200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6200 Base plate shellac. (a) Identification. Base plant...

  1. 21 CFR 872.6200 - Base plate shellac.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Base plate shellac. 872.6200 Section 872.6200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6200 Base plate shellac. (a) Identification. Base plant...

  2. 21 CFR 872.6200 - Base plate shellac.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Base plate shellac. 872.6200 Section 872.6200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6200 Base plate shellac. (a) Identification. Base plant...

  3. 21 CFR 872.6200 - Base plate shellac.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Base plate shellac. 872.6200 Section 872.6200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6200 Base plate shellac. (a) Identification. Base...

  4. [COLD or HOT natural attribute of Zuojinwan and Fanzuojinwan based on temperature tropism of mice].

    PubMed

    Yang, Hong-Bo; Zhao, Yan-Ling; Li, Bao-Cai; Wang, Jia-Bo; Li, Rui-Sheng; Jia, Lei; Cheng, Dan-Hong; Xiao, Xiao-He

    2010-06-01

    This study is to investigate the authenticity between COLD and HOT natural attribute in the famous Chinese medicine formulas--Zuojinwan (Coptis-Evodia 6 : 1) and Fanzuojinwan (Coptis-Evodia 1 : 6) based on mice temperature tropism, and establish an objective method to estimate the difference of two natural attribute by using a cold/hot plate differentiating technology. The results indicated that the COLD nature Zuojinwan could decrease significantly the remaining rate of HOT-symptom rat on warm pad (P < 0.05). That was not notable to COLD-symptom rat. The interference result of COLD-HOT temperature tropism to COLD/HOT symptom rat in Fanzuojinwan was the reverse with the COLD nature Zuojinwan. Meanwhile, biochemical indicators which are relative to energy metabolism such as ATPase enzyme activity and total anti-oxidant capability (T-AOC), had corresponding change in the organism. In the study, the COLD and HOT natural tendency in Zuojinwan and Fanzuojinwan which were composed by the same herbs with different proportion could be expressed qualitatively, quantitatively, objectively and directly with applying animal temperature tropism, and be verified to philosophical idea of treating disease theory with "expelling heat with cold herbs and cryopathy requiring warm prescription", not "expelling heat with heat herbs and cryopathy requiring cold prescription" in ancient traditional Chinese medicine, which brings a new approach in investigation of the nature theory of traditional Chinese medicine.

  5. Application of MMC model on simulation of shearing process of thick hot-rolled high strength steel plate

    NASA Astrophysics Data System (ADS)

    Dong, Liang; Li, Shuhui; Yang, Bing; Gao, Yongsheng

    2013-12-01

    Shear operation is widely used as the first step in sheet metal forming to cut the sheet or plate into the required size. The shear of thick hot-rolled High Strength Steel (HSS) requires large shearing force and the sheared edge quality is relatively poor because of the large thickness and high strength compared with the traditional low carbon steel. Bad sheared edge quality will easily lead to edge cracking during the post-forming process. This study investigates the shearing process of thick hot-rolled HSS plate metal, which is generally exploited as the beam of heavy trucks. The Modified Mohr-Coulomb fracture criterion (MMC) is employed in numerical simulation to calculate the initiation and propagation of cracks during the process evolution. Tensile specimens are designed to obtain various stress states in tension. Equivalent fracture strains are measured with Digital Image Correlation (DIC) equipment to constitute the fracture locus. Simulation of the tension test is carried out to check the fracture model. Then the MMC model is applied to the simulation of the shearing process, and the simulation results show that the MMC model predicts the ductile fracture successfully.

  6. Vision-based surface defect inspection for thick steel plates

    NASA Astrophysics Data System (ADS)

    Yun, Jong Pil; Kim, Dongseob; Kim, KyuHwan; Lee, Sang Jun; Park, Chang Hyun; Kim, Sang Woo

    2017-05-01

    There are several types of steel products, such as wire rods, cold-rolled coils, hot-rolled coils, thick plates, and electrical sheets. Surface stains on cold-rolled coils are considered defects. However, surface stains on thick plates are not considered defects. A conventional optical structure is composed of a camera and lighting module. A defect inspection system that uses a dual lighting structure to distinguish uneven defects and color changes by surface noise is proposed. In addition, an image processing algorithm that can be used to detect defects is presented in this paper. The algorithm consists of a Gabor filter that detects the switching pattern and employs the binarization method to extract the shape of the defect. The optics module and detection algorithm optimized using a simulator were installed at a real plant, and the experimental results conducted on thick steel plate images obtained from the steel production line show the effectiveness of the proposed method.

  7. A high-brightness light guide plate with high precise double-sided microstructures fabricated using the fixed boundary hot embossing technique

    NASA Astrophysics Data System (ADS)

    Yang, Cheng-Huan; Yang, Sen-Yeu

    2013-03-01

    In recent years, microstructures have been widely applied in many key optical elements and bio-elements. The effective and efficient fabrication of optical elements and bio-elements with superior performance has become an essential challenge. This requires very accurate shape replication of microstructures. The plate-to-plate hot embossing process is the most likely method of mass production for the replication of double-sided micro/nano structures with high precision and quality. However, the traditional uniform heating hot embossing process as the free boundary of open die forging leads to variation. In this research, three techniques are implemented; the conventional uniform heating technique, the non-uniform pressure compensating technique and the fixed boundary hot embossing technique. The temperature distribution of the hot-plates of the fixed boundary hot embossing technique are designed to keep the temperature in the center part higher than the outer part on the surface of the substrates. This phenomenon changes free boundary in conventional uniform heating into fixed boundary. The results demonstrate the potential of the fixed boundary hot embossing technique for the fabrication of large-area high brightness LGPs with double-sided microstructures. The results are also helpful for enhancing the performance of optical elements and bio-elements fabricated using the fixed boundary hot embossing technique.

  8. Linear optical pulse compression based on temporal zone plates.

    PubMed

    Li, Bo; Li, Ming; Lou, Shuqin; Azaña, José

    2013-07-15

    We propose and demonstrate time-domain equivalents of spatial zone plates, namely temporal zone plates, as alternatives to conventional time lenses. Both temporal intensity zone plates, based on intensity-only temporal modulation, and temporal phase zone plates, based on phase-only temporal modulation, are introduced and studied. Temporal zone plates do not exhibit the limiting tradeoff between temporal aperture and frequency bandwidth (temporal resolution) of conventional linear time lenses. As a result, these zone plates can be ideally designed to offer a time-bandwidth product (TBP) as large as desired, practically limited by the achievable temporal modulation bandwidth (limiting the temporal resolution) and the amount of dispersion needed in the target processing systems (limiting the temporal aperture). We numerically and experimentally demonstrate linear optical pulse compression by using temporal zone plates based on linear electro-optic temporal modulation followed by fiber-optics dispersion. In the pulse-compression experiment based on temporal phase zone plates, we achieve a resolution of ~25.5 ps over a temporal aperture of ~5.77 ns, representing an experimental TBP larger than 226 using a phase-modulation amplitude of only ~0.8π rad. We also numerically study the potential of these devices to achieve temporal imaging of optical waveforms and present a comparative analysis on the performance of different temporal intensity and phase zone plates.

  9. Base plate mechanics of the barnacle Balanus amphitrite (=Amphibalanus amphitrite).

    PubMed

    Ramsay, David B; Dickinson, Gary H; Orihuela, Beatriz; Rittschof, Daniel; Wahl, Kathryn J

    2008-01-01

    The mechanical properties of barnacle base plates were measured using a punch test apparatus, with the purpose of examining the effect that the base plate flexural rigidity may have on adhesion mechanics. Base plate compliance was measured for 43 Balanus amphitrite (=Amphibalanus amphitrite) barnacles. Compliance measurements were used to determine flexural rigidity (assuming a fixed-edge circular plate approximation) and composite modulus of the base plates. The barnacles were categorized by age and cement type (hard or gummy) for statistical analyses. Barnacles that were 'hard' (> or =70% of the base plate thin, rigid cement) and 'gummy' (>30% of the base plate covered in compliant, tacky cement) showed statistically different composite moduli but did not show a difference in base plate flexural rigidity. The average flexural rigidity for all barnacles was 0.0020 Nm (SEM +/- 0.0003). Flexural rigidity and composite modulus did not differ significantly between 3-month and 14-month-old barnacles. The relatively low flexural rigidity measured for barnacles suggests that a rigid punch approximation is not sufficient to account for the contributions to adhesion mechanics due to flexing of real barnacles during release.

  10. High-pressure, high-temperature equations of state using nanofabricated controlled-geometry Ni/SiO2/Ni double hot-plate samples

    NASA Astrophysics Data System (ADS)

    Pigott, Jeffrey S.; Ditmer, Derek A.; Fischer, Rebecca A.; Reaman, Daniel M.; Hrubiak, Rostislav; Meng, Yue; Davis, Robert J.; Panero, Wendy R.

    2015-12-01

    We have fabricated novel controlled-geometry samples for the laser-heated diamond-anvil cell (LHDAC) in which a transparent oxide layer (SiO2) is sandwiched between two laser-absorbing layers (Ni) in a single, cohesive sample. The samples were mass manufactured (>104 samples) using a combination of physical vapor deposition, photolithography, and wet and plasma etching. The double hot-plate arrangement of the samples, coupled with the chemical and spatial homogeneity of the laser-absorbing layers, addresses problems of spatial temperature heterogeneities encountered in previous studies where simple mechanical mixtures of transparent and opaque materials were used. Here we report thermal equations of state (EOS) for nickel to 100 GPa and 3000 K and stishovite to 50 GPa and 2400 K obtained using the LHDAC and in situ synchrotron X-ray microdiffraction. We discuss the inner core composition and the stagnation of subducted slabs in the mantle based on our refined thermal EOS.

  11. High-Pressure, High-Temperature Equations of State Using Fabricated Controlled-Geometry Ni/SiO2 Double Hot-Plate Samples

    NASA Astrophysics Data System (ADS)

    Pigott, J. S.; Ditmer, D. A.; Fischer, R. A.; Reaman, D. M.; Davis, R. J.; Panero, W. R.

    2014-12-01

    To model and predict the structure, dynamics, and composition of Earth's deep interior, accurate and precise measurements of thermal expansion and compressibility are required. The laser-heated diamond-anvil cell (LHDAC) coupled with synchrotron-based x-ray diffraction (XRD) is a powerful tool to determine pressure-volume-temperature (P-V-T) relationships. However, LHDAC experiments may be hampered by non-uniform heating caused by the mixing of transparent materials with opaque laser absorbers. Additionally, radial temperature gradients are exacerbated by small misalignments (1-3 µm) of the x-ray beam with respect to the center of the laser-heated hotspot. We have fabricated three-dimensional, controlled-geometry, double hot-plate samples. In this double hot-plate arrangement, a transparent oxide layer (SiO2) is sandwiched between two laser absorbing layers (Ni) in a single, cohesive sample. These samples were mass manufactured (>105 samples) using a combination of physical vapor deposition, photolithography, wet etching, and plasma etching. The double hot-plate arrangement coupled with the chemical and spatial homogeneity of the laser absorbing layers addresses problems caused by mixtures of transparent and opaque samples. The controlled-geometry samples have dimensions of 50 μm x 50 μm x 1.4 μm. The dimensions of the samples are much larger than the synchrotron x-ray beam. With a heating laser FWHM of ~50 μm, the radial temperature gradients within the volume probed by the x-ray are reduced. We conducted XRD experiments to P > 50 GPa and T > 2200 K at beamline 16-ID-B (HPCAT) of the Advanced Photon Source. Here we present relevant thermal modeling of the LHDAC environment along with Ni and SiO2 P-V-T equations of state. Our photolithography method of sample fabrication can be extended to different materials including but not limited to Fe and MgO.

  12. Detection system for inclusion defects in hot-rolled steel plates using MFLT with two different magnetizing strengths

    NASA Astrophysics Data System (ADS)

    Yotsuji, Junichi; Koshihara, Takahiro

    2014-02-01

    Recently, steel can manufacturing requires higher quality because otherwise minute non-metallic inclusions in thin sheets cause cracks and result in a burst during pressurization after the pressing process. Quality testing systems have already been installed in the final process in steel plants, but if there were another inspection in an earlier step, for example, at the hot strip mill, the mass manufacture of nonconforming products could be avoided and maintaining quality control would be more efficient. In order to detect inclusion defects in hot-rolled steel plates, the authors developed a new technique for MFLT (Magnetic Flux Leakage Testing) using different magnetizing forces. According to an analysis of the noise factors in MFLT, it was found that the signals generated from the scale layer on a steel surface are dominant. A different magnetizing force method is the used to decrease this overpowering noise level in MFLT. In this paper, it was confirmed that inclusions larger than 160μm in diameter and less than 0.45mm in depth can be detected utilizing this method.

  13. Fractal zone plate beam based optical tweezers

    PubMed Central

    Cheng, Shubo; Zhang, Xinyu; Ma, Wenzhuo; Tao, Shaohua

    2016-01-01

    We demonstrate optical manipulation with an optical beam generated by a fractral zone plate (FZP). The experimental results show that the FZP beam can simultaneously trap multiple particles positioned in different focal planes of the FZP beam, owing to the multiple foci and self-reconstruction property of the FZP beam. The FZP beam can also be used to construct three-dimensional optical tweezers for potential applications. PMID:27678305

  14. MANTLE CONVECTION, PLATE TECTONICS, AND VOLCANISM ON HOT EXO-EARTHS

    SciTech Connect

    Van Summeren, Joost; Conrad, Clinton P.; Gaidos, Eric

    2011-07-20

    Recently discovered exoplanets on close-in orbits should have surface temperatures of hundreds to thousands of Kelvin. They are likely tidally locked and synchronously rotating around their parent stars and, if an atmosphere is absent, have surface temperature contrasts of many hundreds to thousands of Kelvin between permanent day and night sides. We investigated the effect of elevated surface temperature and strong surface temperature contrasts for Earth-mass planets on the (1) pattern of mantle convection, (2) tectonic regime, and (3) rate and distribution of partial melting, using numerical simulations of mantle convection with a composite viscous/pseudo-plastic rheology. Our simulations indicate that if a close-in rocky exoplanet lacks an atmosphere to redistribute heat, a {approx}>400 K surface temperature contrast can maintain an asymmetric degree 1 pattern of mantle convection in which the surface of the planet moves preferentially toward subduction zones on the cold night side. The planetary surface features a hemispheric dichotomy, with plate-like tectonics on the night side and a continuously evolving mobile lid on the day side with diffuse surface deformation and vigorous volcanism. If volcanic outgassing establishes an atmosphere and redistributes heat, plate tectonics is globally replaced by diffuse surface deformation and volcanism accelerates and becomes distributed more uniformly across the planetary surface.

  15. Ultrasonic plate waves in wood-based composite panels

    NASA Astrophysics Data System (ADS)

    Tucker, Brian James

    Two key shortcomings of current ultrasonic nondestructive evaluation (NDE) techniques for plywood, medium density fiberboard (MDF), and oriented strandboard are the reliance on empirical correlations and the neglect of valuable waveform information. The research reported herein examined the feasibility of using fundamental physical relationships along with advanced signal analysis to evaluate material properties and locate defects in wood-based composite panels. Dispersion curves were constructed exhibiting the variation of ultrasonic flexural plate wave phase velocity with frequency. Based on shear deformation plate wave theory, flexural and transverse shear rigidity values for a variety of wood-based composite panels were obtained from the dispersion curves. Axial rigidity values were obtained directly from extensional plate wave phase velocity. Excellent agreement (within 5%) of flexural rigidity values was obtained between NDE and mechanical testing for thin panels (less than or equal to 6.4 mm). Transverse shear rigidity values were obtained from NDE, but no reliable mechanical results were obtained for comparison. Tensile and compressive axial rigidity values obtained from NDE were from 12% to 31% and from 22% to 41% higher than mechanical tension and compression test results, respectively. These differences between NDE and axial mechanical testing results are likely due to load-rate effects. Nondestructive rigidity results for thicker panels using the setup described herein were either unreliable or not interpretable due to highly attenuated signals and/or violation of plate wave assumptions. Shear deformation laminated plate theory was used to predict flexural and axial laminate rigidity values of wood-based laminates from NDE measurements to within 3% and 25%, respectively. Plate wave NDE was also used to successfully locate a 60-mm square delaminated area within a 6.4-mm thick MDF laminate. This fundamental research advances the state-of-the-art of wood-based

  16. Predictive Capability for Hot Spot Ignition of Double Base Propellants

    DTIC Science & Technology

    2009-08-01

    propellants are composed of nitrocellulose and stirred with a reactive plasticizer liquid nitrate ester such as nitroglycerine which also affects the oxygen...Predictive Capability for Hot Spot Ignition of Double Base Propellants by Stephan R. Bilyk ARL-RP-261 August 2009...Ignition of Double Base Propellants Stephan R. Bilyk Weapons and Materials Research Directorate, ARL A reprint from the 2006

  17. Stochastic and hybrid-stress plate/shell finite elements for hot-section components

    NASA Technical Reports Server (NTRS)

    Atluri, S. N.

    1987-01-01

    The research effort in the Center for the Advancement of Computational Mechanics at Georgia Tech has two main thrusts. The first of these is the development of special approaches for the numerical stress analysis of solids and structures whose material and geometric properties are uncertain. The second seeks to develop and implement high-efficiency plate and shell elements. The stochastic element method, currently being implemented, will be able to more accurately portray the probabilistic nature of stress, strain, and displacement in actual structures. Current research has provided a hybrid-stress shell element whose behavior is acceptable for aspect ratios as high as 30 to 1. Thus, substantially more complex analyses will be practicable as soon as this element is fully implemented. An additional advantage of the hybrid approach is that it permits more accurate stress-recovery at the upper and lower surfaces of the shell, an important consideration in high thickness-gradient applications. The software associated with the above research is being implemented in the form of extensions to the Nessus code. The hybrid shell element has been successfully tested in several small-deformation elastic analyses. The theoretical formulation of the stochastic elements is essentially complete; its implementation is just beginning.

  18. Geodynamical Analysis of Plate Reconstructions based on Subduction History Models

    NASA Astrophysics Data System (ADS)

    Quevedo, L. E.; Butterworth, N. P.; Matthews, K. J.; Morra, G.; Müller, R. D.

    2011-12-01

    We present a novel method to produce global subduction history models from plate reconstructions and use their predicted geodynamic behaviour as a quality metric for the physical consistency of absolute motions. We show that modelled slabs constructed by advecting material into the mantle according to absolute and relative plate motions given by a particular reconstruction are better correlated with the present day slab dips observed in mantle tomography than instantaneous kinematic quantities like present convergence rate. A complete simulation incorporating lithospheric thickness derived from oceanic age and a rheological model of the lithosphere was run using the Boundary Element Method-based software BEMEarth to infer the global pattern of mantle flow. The predicted plate motion orientations in the form of Euler pole location for the present day and mid-Cretaceous (125 Ma) were compared with the kinematic model for a set of rheologies and mantle structures, and found to be a robust and efficient indicator of the physical consistency of kinematic reconstructions based on their effect on the balance of plate driving forces. As an application example, during the Early Cretaceous, the predicted motion of the Farallon plate was found to be more consistent with the regional geology of the Western North American Cordillera system than the instantaneous motion suggested by a reconstruction at 125 Ma based on sparse hotspot track data on the Pacific Plate. This suggests that a methodology based on forward geodynamic modellling could be used to predict absolute plate motions in reconstructions for times that are ill-constrained by observations constraining absolute plate motions.

  19. Juan Fernández Ridge (Nazca Plate): petrology and thermochronology of a rejuvenated hot spot trail

    NASA Astrophysics Data System (ADS)

    Reyes, J.; Lara, L. E.

    2012-04-01

    The Juan Fernández Ridge on the oceanic Nazca plate is thought to be a classic hot spot trail because of the apparent westward rejuvenation of the eruptive ages. However, geochronological data is still scarce and there are a few constrains to support this hypothesis like the ca. 9 Ma Ar-Ar age of the O'Higgins seamount (115 km from the Chile-Perú trench), some published K-Ar ages of ca. 3-4 Ma in Robinson Crusoe island (580 km from the trench) and ca. 1 Ma in Alejandro Selkirk (180 km further west). New reconnaissance K-Ar ages and specially the ongoing Ar-Ar dating effort in Robinson Crusoe define a ca. 1-4 Ma time span, which partially overlap with the age of Alejandro Selkirk, breaking the expected age progression given that the Nazca plate moves eastwards at ca. 6-8 cm/yr. In addition, new geological mapping shows a sharp unconformity between the older (ca. 4 Ma), strongly altered sequences and the more recent (ca. 1 Ma), post-erosional volcanic piles, where the proximal facies are still preserved. Petrological evidence also supports this evolution pattern. In fact, the partially altered older sequence is tholeiitic (Ba/Yb=12.70; La/Yb=8.12; Ba/Y=6.51; Ba/Zr=0.89). The shield stage (ca. 1-3 Ma) is transicional from tholeiitic to alkaline (Ba/Yb=18.07-8.32; La/Yb=4.59-9.84; Ba/Y=4.24-8.18; Ba/Zr=0.73-1.09) and the younger (ca. 1 Ma) is mostly alkaline (Ba/Yb=38.15; La/Yb=15.66; Ba/Y=20.27; Ba/Zr=2.31). A fixed deep-mantle plume origin for Pacific hot spots has been widely debated and concurrent phenomena arose as a possible explanation for non-linear age progressions and/or long-lived volcanic activity. In fact, intraplate regional tectonics, plume displacement, and mantle heterogeneities could be the main factor of the ridge architecture or the mask for a first-order linear trend. An ongoing mapping and dating effort is aimed to understand the evolution of the Juan Fernández Ridge, testing the main hypothesis. This research is supported by FONDECYT Project

  20. Design and validation of guarded hot plate instruments for measuring heat flow between evacuated plane-parallel glass surfaces

    NASA Astrophysics Data System (ADS)

    Dey, C. J.; Simko, T. M.; Collins, R. E.; Zhang, Q.-C.

    1998-08-01

    This article discusses the design and construction of guarded hot plate instruments for measuring the heat flow through an evacuated space between plane-parallel glass surfaces. In this structure, the insulating region is surrounded by two pieces of relatively highly conducting material. High resolution measurements of heat flow using these instruments therefore requires the detection of quite small temperature differences (10-4 K) between the metering piece and the guard. The instruments are calibrated, and the linearity evaluated, by measuring radiative heat transfer through the evacuated space between uncoated soda lime glass sheets; this is because this heat flow can be calculated to high accuracy from the infrared optical properties of the glass. The level of parasitic heat flow in the instruments is estimated by measuring radiative heat flow between glass surfaces coated with very low emittance layers, such as evaporated gold. These instruments operate over a range of temperatures from 0 to about 70 °C. It is shown that the heat flow between evacuated glass surfaces can be measured with these instruments to high resolution (˜10 μW) and high accuracy (˜1%) over an area of ˜1 cm2. The departures from linearity, and the level of parasitic heat flow, are within the measurement resolution. For a temperature difference across the sample of 20 K, the measurement resolution corresponds to an uncertainty in the thermal conductance of the sample of ˜0.005 W m-2 K-1.

  1. Hierarchic plate and shell models based on p-extension

    NASA Technical Reports Server (NTRS)

    Szabo, Barna A.; Sahrmann, Glenn J.

    1988-01-01

    Formulations of finite element models for beams, arches, plates and shells based on the principle of virtual work was studied. The focus is on computer implementation of hierarchic sequences of finite element models suitable for numerical solution of a large variety of practical problems which may concurrently contain thin and thick plates and shells, stiffeners, and regions where three dimensional representation is required. The approximate solutions corresponding to the hierarchic sequence of models converge to the exact solution of the fully three dimensional model. The stopping criterion is based on: (1) estimation of the relative error in energy norm; (2) equilibrium tests, and (3) observation of the convergence of quantities of interest.

  2. Cancer incidence among population utilizing geothermal hot water: a census-based cohort study.

    PubMed

    Kristbjornsdottir, Adalbjorg; Rafnsson, Vilhjalmur

    2013-12-15

    The aim of the study was to assess whether utilization of geothermal hot-water is associated with risk of cancer. The cohort from census was followed from 1981 to 2010 in nation-wide death and cancer registries. The moving apart of American-Eurasian tectonic plates, observed in Iceland, results in high volcanic activity. The definition of the study populations was based on geological information. The target population was inhabitants of communities located on bedrock younger than 3.3 million years, utilizing hot-water supply generated from geothermal wells since 1972. The two reference populations were inhabitants of communities without this hot-water supply located on areas with less volcanic/geothermal activity, and bedrock older than 3.3 million years. Hazard ratio (HR), and 95% confidence intervals (CI) were adjusted for age, gender, education, housing, reproductive factors and smoking. HR in the geothermal hot-water supply areas for all cancer was 1.15 (95% CI 1.05-1.25) as compared with nongeothermal areas. The HR for breast cancer was 1.40 (1.12-1.75), prostate cancer 1.61 (1.29-2.00), kidney cancer 1.64 (1.11-2.41), lymphatic and haematopoietic tissue cancers 1.45 (1.08-1.95), and for basal cell carcinoma (BCC) of the skin 1.46 (1.16-1.82). Positive exposure-response relations were observed between the risk of these cancers and the degree of volcanic/geothermal activity in the reference areas. Increased incidence of all cancers, breast, prostate, kidney cancer and BCC of the skin was found among the population utilizing geothermal hot-water for decades. More precise information on exposure is needed in future studies.

  3. The license plate recognition system based on improved algorithm

    NASA Astrophysics Data System (ADS)

    Huo, MinXia; Li, JingYi

    2017-09-01

    The research of this paper is based on the license plate location algorithm and Radon transform. The license plate location algorithm applies edge detection and morphological algorithm. The principle of Radon transform is adopting binarization processing for the selected global threshold and morphological processing for the license plate to segment the connected region, on the basis of the vertical projection of local areas and the character segmentation of connected areas. At the end of this paper, a character recognition system based on improved BP neural network is taken. It can overcome some difficulties that traditional algorithm confronts, such as slow in getting the optimal solution and easy to fall into the local minimum. Also, compared with existing methods, this method has a fast convergence rate and recognition speed and a high accuracy.

  4. Hot Carrier-Based Near-Field Thermophotovoltaic Energy Conversion.

    PubMed

    St-Gelais, Raphael; Bhatt, Gaurang Ravindra; Zhu, Linxiao; Fan, Shanhui; Lipson, Michal

    2017-03-28

    Near-field thermophotovoltaics (NFTPV) is a promising approach for direct conversion of heat to electrical power. This technology relies on the drastic enhancement of radiative heat transfer (compared to conventional blackbody radiation) that occurs when objects at different temperatures are brought to deep subwavelength distances (typically <100 nm) from each other. Achieving such radiative heat transfer between a hot object and a photovoltaic (PV) cell could allow direct conversion of heat to electricity with a greater efficiency than using current solid-state technologies (e.g., thermoelectric generators). One of the main challenges in the development of this technology, however, is its incompatibility with conventional silicon PV cells. Thermal radiation is weak at frequencies larger than the ∼1.1 eV bandgap of silicon, such that PV cells with lower excitation energies (typically 0.4-0.6 eV) are required for NFTPV. Using low bandgap III-V semiconductors to circumvent this limitation, as proposed in most theoretical works, is challenging and therefore has never been achieved experimentally. In this work, we show that hot carrier PV cells based on Schottky junctions between silicon and metallic films could provide an attractive solution for achieving high efficiency NFTPV electricity generation. Hot carrier science is currently an important field of research and several approaches are investigated for increasing the quantum efficiency (QE) of hot carrier generation beyond conventional Fowler model predictions. If the Fowler limit can indeed be overcome, we show that hot carrier-based NFTPV systems-after optimization of their thermal radiation spectrum-could allow electricity generation with up to 10-30% conversion efficiencies and 10-500 W/cm(2) generated power densities (at 900-1500 K temperatures). We also discuss how the unique properties of thermal radiation in the extreme near-field are especially well suited for investigating recently proposed approaches

  5. Fabrication of tunable plasmonic substrates using a table-top gold coater and a hot plate, their optical characterization, and surface enhanced Raman activity

    NASA Astrophysics Data System (ADS)

    Arora, A.; Krishnan, A.

    2015-10-01

    We present a simple scalable technique for repeatable fabrication of large area (cm2) electromagnetic hot spots using tunable Localized Surface Plasmon Resonance (LSPR) substrates and their k-space microscopic imaging characterization. The substrates were fabricated simply using a low vacuum air plasma scanning electron microscope gold coater and annealing using a hot plate. The measured permittivity profile and optical transmission characteristics of such substrates showed large changes before and after annealing, with clear changes in the occurrence and position of the LSPR in the visible spectrum. Furthermore, the LSPR wavelength of these substrates was tuned from 537 nm to 630 nm using cyclic deposition and annealing. It was observed that every anneal step could be used to blue shift the resonance, while a deposition step could be used to red shift the resonance, thus giving rise to a wide tunability. We also present the k-space images of the substrates using narrowband fluorescence leakage radiation microscopy and broadband polarization microscopy. The enhanced scattering in these substrates was clearly imaged in the k-space, and the color content in the broadband k-space images correlates well with the spectral characteristics of these substrates that can be used in commercial quality testing without a spectrometer. The optical characteristics of the substrates were attributed to the morphology evolution verified using scanning probe microscopy. A single particle model based simulation was used to evaluate the optical response. The substrates were then tested for surface enhanced Raman spectroscopy (SERS) activity using control experiments involving Rhodamine 6G dye in PMMA matrix of different concentrations with analyte volumes of approximately 200 pl and analytical enhancements of >3 ×104 (net enhancement >1.8 ×107 ) were obtained. The limit of detection was ≈ 10-8 M in low volume (≈200 pl) analyte, reaching the regime of few molecule detection. To

  6. Development of a System to Measure Austenite Grain Size of Plate Steel Using Laser-Based Ultrasonics

    SciTech Connect

    Lim, C. S.; Hong, S. T.; Yi, J. K.; Choi, S. G.; Oh, K. J.; Nagata, Y.; Yamada, H.; Hamada, N.

    2007-03-21

    A measurement system for austenite grain size of plate steel using laser-based ultrasonics has been developed. At first, the relationship between the ultrasonic attenuation coefficients using longitudinal waves and austenite grain size of samples was investigated in the laboratory experiments. According to the experimental results, the ultrasonic attenuation coefficients showed a good correlation with actual austenite grain sizes. For the next step, the system was installed in a hot rolling pilot plant of plate steel, and it was verified that the austenite grain size could be measured even in the environment of a hot rolling pilot plant. In the experiments, it was also confirmed that the fiber delivery system could deliver Nd:YAG laser beam of 810 mJ/pulse and ultrasonic signals could be obtained successfully.

  7. Microtiter plate-based antibody microarrays for bacteria and toxins

    USDA-ARS?s Scientific Manuscript database

    Research has focused on the development of rapid biosensor-based, high-throughput, and multiplexed detection of pathogenic bacteria in foods. Specifically, antibody microarrays in 96-well microtiter plates have been generated for the purpose of selective detection of Shiga toxin-producing E. coli (...

  8. Gasoline identifier based on SH0 plate acoustic waves.

    PubMed

    Kuznetsova, Iren E; Zaitsev, Boris D; Seleznev, Eugenii P; Verona, Enrico

    2016-08-01

    The present paper is devoted to the development of gasoline identifier based on zero order shear-horizontal (SH0) acoustic wave propagating in piezoelectric plate. It has been found that the permittivity of gasoline is increased when its octane number rises. The development of such identifier is experimentally demonstrated to be possible.

  9. Large-area and thin light guide plates fabricated using UV-based imprinting.

    PubMed

    Huang, Po-Hsun; Huang, Tzu-Chien; Sun, Yi-Ting; Yang, Sen-Yeu

    2008-09-15

    As the demand of larger and thinner flat panel display increasing, conventional methods such as injection molding and hot embossing to fabricate light guide plates (LGPs) become difficult and unsuitable. This study reports a low-cost and high-throughput method to fabricate large-size (320 mm x 240 mm, 15" in diagonal) LGPs by using UV-based imprinting process. With the UV-based imprinting process, a large-size LGP with thickness down to 0.8 mm has been successfully fabricated. The optical property of fabricated LGP has been verified. This study has demonstrated the fabrication of large-size and thin LGPs by using UV-based imprinting process, and the possibility of UV-based imprinting process for fabricating other large thin optical elements.

  10. Phase decomposition of γ-U (bcc) in U-10 wt% Mo fuel alloy during hot isostatic pressing of monolithic fuel plate

    NASA Astrophysics Data System (ADS)

    Park, Y.; Eriksson, N.; Newell, R.; Keiser, D. D.; Sohn, Y. H.

    2016-11-01

    Eutectoid decomposition of γ-phase (cI2) into α-phase (oC4) and γ‧-phase (tI6) during the hot isostatic pressing (HIP) of the U-10 wt% Mo (U10Mo) alloy was investigated using monolithic fuel plate samples consisting of U10Mo fuel alloy, Zr diffusion barrier and AA6061 cladding. The decomposition of the γ-phase was observed because the HIP process is carried out near the eutectoid temperature, 555 °C. Initially, a cellular structure, consisting of γ‧-phase surrounded by α-phase, developed from the destabilization of the γ-phase. The cellular structure further developed into an alternating lamellar structure of α- and γ‧-phases. Using scanning electron microscopy and transmission electron microscopy, qualitative and quantitative microstructural analyses were carried out to identify the phase constituents, and elucidate the microstructural development based on time-temperature-transformation diagram of the U10Mo alloy. The destabilization of γ -phase into α- and γ‧-phases would be minimized when HIP process was carried out with rapid ramping/cooling rate and dwell temperature higher than 560 °C.

  11. High-pressure, high-temperature equations of state using nanofabricated controlled-geometry Ni/SiO2/Ni double hot-plate samples

    SciTech Connect

    Pigott, Jeffrey S.; Ditmer, Derek A.; Fischer, Rebecca A.; Reaman, Daniel M.; Hrubiak, Rostislav; Meng, Yue; Davis, Robert J.; Panero, Wendy R.

    2015-11-24

    We have fabricated novel controlled-geometry samples for the laser-heated diamond anvil cell (LHDAC) in which a transparent oxide layer (SiO2) is sandwiched between two laser-absorbing layers (Ni) in a single, cohesive sample. The samples were mass manufactured (>104 samples) using a combination of physical vapor deposition, photolithography, and wet and plasma etching. The double hot-plate arrangement of the samples, coupled with the chemical and spatial homogeneity of the laser-absorbing layers, addresses problems of spatial temperature heterogeneities encountered in previous studies where simple mechanical mixtures of transparent and opaque materials were used. Here we report thermal equations of state (EOS) for nickel to 100 GPa and 3000 K and stishovite to 50 GPa and 2400 K obtained using the LHDAC and in situ synchrotron x-ray micro-diffraction. Lastly, we discuss the inner core composition and the stagnation of subducted slabs in the mantle based on our refined thermal EOS.

  12. Evolution of the central Atlantic hot spots cluster in the last 100 Myr: interaction between plate tectonics, a lower mantle thermochemical instability and upper mantle secondary plumes

    NASA Astrophysics Data System (ADS)

    Sibrant, A.; Davaille, A.; Marques, F. O.; Hildenbrand, A.

    2014-12-01

    Born 200 Ma ago, the central Atlantic presents nowadays a large low seismic velocity anomaly in the lower mantle, a cluster of "hot" spots (Azores, Cape Verde, Madeira, Canary, Great Meteor), a mid-ocean ridge, and a triple junction located in the Azores. We carried out laboratory experiments to examine the possible links between mantle instabilities, plate boundary migration, and the
development of the volcanism on various spatial and temporal scales. Coupled with the current knowledge of these volcanic areas (tomography, tectonics and K/Ar dating), our fluid mechanics
experiments suggest that: (1) The Azores, as Canary, Cape Verde, Madeira Islands and Great Meteor seamounts might be the surface expression of a cluster of mantle instabilities rising from the top of a large thermochemical dome located in the lower mantle. However, such secondary plumes present a strong
time-dependence 5-40 Myr time scale. (2) These secondary instabilities could be sufficiently weak to adapt their motions to the pre-existing force
balance, and morphology and mechanical properties of the lithosphere. Based on current knowledge and modelling, we present a scenario of the Central Atlantic area evolution in the last 100 Ma combining a triple junction and decompression melting-generated buoyant material (i.e. such in volatiles and/or
temperature) under a cooling and thickening lithosphere.

  13. High-pressure, high-temperature equations of state using nanofabricated controlled-geometry Ni/SiO2/Ni double hot-plate samples

    DOE PAGES

    Pigott, Jeffrey S.; Ditmer, Derek A.; Fischer, Rebecca A.; ...

    2015-11-24

    We have fabricated novel controlled-geometry samples for the laser-heated diamond anvil cell (LHDAC) in which a transparent oxide layer (SiO2) is sandwiched between two laser-absorbing layers (Ni) in a single, cohesive sample. The samples were mass manufactured (>104 samples) using a combination of physical vapor deposition, photolithography, and wet and plasma etching. The double hot-plate arrangement of the samples, coupled with the chemical and spatial homogeneity of the laser-absorbing layers, addresses problems of spatial temperature heterogeneities encountered in previous studies where simple mechanical mixtures of transparent and opaque materials were used. Here we report thermal equations of state (EOS) formore » nickel to 100 GPa and 3000 K and stishovite to 50 GPa and 2400 K obtained using the LHDAC and in situ synchrotron x-ray micro-diffraction. Lastly, we discuss the inner core composition and the stagnation of subducted slabs in the mantle based on our refined thermal EOS.« less

  14. Hot spot management through design based metrology: measurement and filtering

    NASA Astrophysics Data System (ADS)

    Lee, Taehyeong; Yang, Hyunjo; Kim, Jungchan; Jung, Areum; Yoo, Gyun; Yim, Donggyu; Park, Sungki; Ishikawa, Akio; Yamamoto, Masahiro; Vikram, Abhishek

    2009-12-01

    Recently several Design Based Metrologies (DBMs) are introduced and being in use for wafer verification. The major applications of DBM are OPC accuracy improvement, DFM feed-back through Process Window Qualification (PWQ) and advanced process control. In general, however, the amount of output data from DBM is normally so large that it is very hard to handle the data for valuable feed-back. In case of PWQ, more than thousands of hot spots are detected on a single chip at the edge of process window. So, it takes much time and labor to review and analyze all the hot spots detected at PWQ. Design-related systematic defects, however, will be found repeatedly and if they can be classified into groups, it would be possible to save a lot of time for the analysis. We have demonstrated an EDA tool which can handle the large amount of output data from DBM by classifying pattern defects into groups. It can classify millions of patterns into less than thousands of pattern groups. It has been evaluated on the analysis of PWQ of metal layer in NAND Flash memory device and random contact hole patterns in a DRAM device. Also, verification was tuned to specific needs of the designer as well as defect analysis engineers by use of EDA tool's 'Pattern Matching Function'. The verification result was well within the required specification of the designer as well as the analysis engineer. The procedures of Hot Spot Management through Design Based Metrology are presented in detail.

  15. Leak Location in Plates Using Spatial Fourier Transform Based Analysis

    NASA Astrophysics Data System (ADS)

    Roberts, R.; Holland, S.; Strei, M.; Song, J.; Chimenti, D. E.

    2005-04-01

    The location of air leaks in plate-like structures is examined using a spatial Fourier transform based analysis. Noise data is collected over 2-D spatial arrays at sensor locations, from which mean cross-correlations are compiled. Propagation properties, transit times, and energy distribution among modes are extracted through spatial Fourier transformation of these data. A simple algorithm to determine source location using a reduced set of transform data is demonstrated experimentally, based upon extraction of energy propagation direction.

  16. Plate-Based Fuel Processing System Final Report

    SciTech Connect

    Carlos Faz; Helen Liu; Jacques Nicole; David Yee

    2005-12-22

    took the initial steam reforming plate-reactor concept and advanced it towards an integrated fuel processing system. A substantial amount of modeling was performed to guide the catalyst development and prototype hardware design and fabrication efforts. The plate-reactor mechanical design was studied in detail to establish design guidelines which would help the plate reactor survive the stresses of repeated thermal cycles (from start-ups and shut-downs). Integrated system performance modeling was performed to predict system efficiencies and determine the parameters with the most significant impact on efficiency. In conjunction with the modeling effort, a significant effort was directed towards catalyst development. CESI developed a highly active, sulfur tolerant, coke resistant, precious metal based reforming catalyst. CESI also developed its own non-precious metal based water-gas shift catalyst and demonstrated the catalysts durability over several thousands of hours of testing. CESI also developed a unique preferential oxidation catalyst capable of reducing 1% CO to < 10 ppm CO over a 35 C operating window through a single pass plate-based reactor. Finally, CESI combined the modeling results and steam reforming catalyst development efforts into prototype hardware. The first generation 3kW(e) prototype was fabricated from existing heat-exchanger plates to expedite the fabrication process. This prototype demonstrated steady state operation ranging from 5 to 100% load conditions. The prototype also demonstrated a 20:1 turndown ratio, 10:1 load transient operation and rapid start-up capability.

  17. Hot blast stove process model and model-based controller

    SciTech Connect

    Muske, K.R.; Howse, J.W.; Hansen, G.A.; Cagliostro, D.J.; Chaubal, P.C.

    1998-12-31

    This paper describes the process model and model-based control techniques implemented on the hot blast stoves for the No. 7 Blast Furnace at the Inland Steel facility in East Chicago, Indiana. A detailed heat transfer model of the stoves is developed and verified using plant data. This model is used as part of a predictive control scheme to determine the minimum amount of fuel necessary to achieve the blast air requirements. The model is also used to predict maximum and minimum temperature constraint violations within the stove so that the controller can take corrective actions while still achieving the required stove performance.

  18. Hot corrosion of S-57, 1 cobalt-base alloy

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.

    1977-01-01

    A cobalt base alloy, S-57, was hot corrosion tested in Mach 0.3 burner rig combustion gases at maximum alloy temperatures of 900 and 1000 C. Various salt concentrations were injected into the burner: 0.5, 2, 5, and 10 ppm synthetic sea salt and 4 ppm sodium sulfate (Na2SO4). S-57 underwent accelerated corrosion only under the most severe test conditions, for example, 4 ppm Na2SO4 at 900 C. The process of the accelerated corrosion was primarily sulfidation.

  19. Time Dependent Antinociceptive Effects of Morphine and Tramadol in the Hot Plate Test: Using Different Methods of Drug Administration in Female Rats

    PubMed Central

    Gholami, Morteza; Saboory, Ehsan; Mehraban, Sogol; Niakani, Afsaneh; Banihabib, Nafiseh; Azad, Mohamad-Reza; Fereidoni, Javid

    2015-01-01

    Morphine and tramadol which have analgesic effects can be administered acutely or chronically. This study tried to investigate the effect of these drugs at various times by using different methods of administration (intraperitoneal, oral, acute and chronic). Sixty adult female rats were divided into six groups. They received saline, morphine or tramadol (20 to 125 mg/Kg) daily for 15 days. A hot plate test was performed for the rats at the 1st, 8th and 15th days. After drug withdrawal, the hot plate test was repeated at the 17th, 19th, and 22nd days. There was a significant correlation between the day, drug, group, and their interaction (P<0.001). At 1st day (d1), both morphine, and tramadol caused an increase in the hot plate time comparing to the saline groups (P<0.001), while there was no correlation between drug administration methods of morphine and/or tramadol. At the 8th day (d8), morphine and tramadol led to the most powerful analgesic effect comparing to the other experimental days (P<0.001). At the 15th day (d15), their effects diminished comparing to the d8. After drug withdrawal, analgesic effect of morphine, and tramadol disappeared. It can be concluded that the analgesic effect of morphine and tramadol increases with the repeated use of them. Thereafter, it may gradually decrease and reach to a level compatible to d1. The present data also indicated that although the analgesic effect of morphine and tramadol is dose-and-time dependent, but chronic exposure to them may not lead to altered nociceptive responses later in life. PMID:25561936

  20. Solid plate-based dietary restriction in Caenorhabditis elegans.

    PubMed

    Ching, Tsui-Ting; Hsu, Ao-Lin

    2011-05-28

    Reduction of food intake without malnutrition or starvation is known to increase lifespan and delay the onset of various age-related diseases in a wide range of species, including mammals. It also causes a decrease in body weight and fertility, as well as lower levels of plasma glucose, insulin, and IGF-1 in these animals. This treatment is often referred to as dietary restriction (DR) or caloric restriction (CR). The nematode Caenorhabditis elegans has emerged as an important model organism for studying the biology of aging. Both environmental and genetic manipulations have been used to model DR and have shown to extend lifespan in C. elegans. However, many of the reported DR studies in C. elegans were done by propagating animals in liquid media, while most of the genetic studies in the aging field were done on the standard solid agar in petri plates. Here we present a DR protocol using standard solid NGM agar-based plate with killed bacteria.

  1. Hot Isostatic Press Can Optimization for Aluminum Cladding of U-10Mo Reactor Fuel Plates: FY12 Final Report and FY13 Update

    SciTech Connect

    Clarke, Kester D.; Crapps, Justin M.; Scott, Jeffrey E.; Aikin, Beverly; Vargas, Victor D.; Dvornak, Matthew J.; Duffield, Andrew N.; Weinberg, Richard Y.; Alexander, David J.; Montalvo, Joel D.; Hudson, Richard W.; Mihaila, Bogdan; Liu, Cheng; Lovato, Manuel L.; Dombrowski, David E.

    2013-08-26

    Currently, the proposed processing path for low enriched uranium – 10 wt. pct. molybdenum alloy (LEU-10Mo) monolithic fuel plates for high power research and test reactors includes hot isostatic pressing (HIP) to bond the aluminum cladding that encapsulates the fuel foil. Initial HIP experiments were performed at Idaho National Laboratory (INL) on approximately ¼ scale “mini” fuel plate samples using a HIP can design intended for these smaller experimental trials. These experiments showed that, with the addition of a co-rolled zirconium diffusion barrier on the LEU-10Mo alloy fuel foil, the HIP bonding process is a viable method for producing monolithic fuel plates. Further experimental trials at Los Alamos National Laboratory (LANL) effectively scaled-up the “mini” can design to produce full-size fuel prototypic plates. This report summarizes current efforts at LANL to produce a HIP can design that is further optimized for higher volume production runs. The production-optimized HIP can design goals were determined by LANL and Babcock & Wilcox (B&W) to include maintaining or improving the quality of the fuel plates produced with the baseline scaled-up mini can design, while minimizing material usage, improving dimensional stability, easing assembly and disassembly, eliminating machining, and significantly reducing welding. The initial small-scale experiments described in this report show that a formed-can approach can achieve the goals described above. Future work includes scaling the formed-can approach to full-size fuel plates, and current progress toward this goal is also summarized here.

  2. Irradiation Performance of U-Mo Alloy Based ‘Monolithic’ Plate-Type Fuel – Design Selection

    SciTech Connect

    A. B. Robinson; G. S. Chang; D. D. Keiser, Jr.; D. M. Wachs; D. L. Porter

    2009-08-01

    A down-selection process has been applied to the U-Mo fuel alloy based monolithic plate fuel design, supported by irradiation testing of small fuel plates containing various design parameters. The irradiation testing provided data on fuel performance issues such as swelling, fuel-cladding interaction (interdiffusion), blister formation at elevated temperatures, and fuel/cladding bond quality and effectiveness. U-10Mo (wt%) was selected as the fuel alloy of choice, accepting a somewhat lower uranium density for the benefits of phase stability. U-7Mo could be used, with a barrier, where the trade-off for uranium density is critical to nuclear performance. A zirconium foil barrier between fuel and cladding was chosen to provide a predictable, well-bonded, fuel-cladding interface, allowing little or no fuel-cladding interaction. The fuel plate testing conducted to inform this selection was based on the use of U-10Mo foils fabricated by hot co-rolling with a Zr foil. The foils were subsequently bonded to Al-6061 cladding by hot isostatic pressing or friction stir bonding.

  3. Assessment of Uncertainties for the NIST 1016 mm Guarded-Hot-Plate Apparatus: Extended Analysis for Low-Density Fibrous-Glass Thermal Insulation

    PubMed Central

    Zarr, Robert R.

    2010-01-01

    An assessment of uncertainties for the National Institute of Standards and Technology (NIST) 1016 mm Guarded-Hot-Plate apparatus is presented. The uncertainties are reported in a format consistent with current NIST policy on the expression of measurement uncertainty. The report describes a procedure for determination of component uncertainties for thermal conductivity and thermal resistance for the apparatus under operation in either the double-sided or single-sided mode of operation. An extensive example for computation of uncertainties for the single-sided mode of operation is provided for a low-density fibrous-glass blanket thermal insulation. For this material, the relative expanded uncertainty for thermal resistance increases from 1 % for a thickness of 25.4 mm to 3 % for a thickness of 228.6 mm. Although these uncertainties have been developed for a particular insulation material, the procedure and, to a lesser extent, the results are applicable to other insulation materials measured at a mean temperature close to 297 K (23.9 °C, 75 °F). The analysis identifies dominant components of uncertainty and, thus, potential areas for future improvement in the measurement process. For the NIST 1016 mm Guarded-Hot-Plate apparatus, considerable improvement, especially at higher values of thermal resistance, may be realized by developing better control strategies for guarding that include better measurement techniques for the guard gap thermopile voltage and the temperature sensors. PMID:27134779

  4. The effects of oxotremorine, epibatidine, atropine, mecamylamine and naloxone in the tail-flick, hot-plate, and formalin tests in the naked mole-rat (Heterocephalus glaber).

    PubMed

    Dulu, Thomas D; Kanui, Titus I; Towett, Philemon K; Maloiy, Geoffrey M; Abelson, Klas S P

    2014-01-01

    The naked mole-rat (Heterocephalus glaber) is a promising animal model for the study of pain mechanisms, therefore a thorough characterization of this species is essential. The aim of the present study was to establish the naked mole-rat as a model for studying the cholinergic receptor system in antinociception by investigating the involvement of muscarinic, nicotinic and opioid receptors in nociceptive tests in this species. The effects of systemic administration of the muscarinic receptor agonist oxotremorine and the nicotinic receptor agonist epibatidine were investigated in the tail-flick, the hot-plate, and the formalin tests. The effects of co-administration of the muscarinic receptor antagonist atropine, the nicotinic receptor antagonist mecamylamine, and the opioid receptor antagonist naloxone were also investigated. Oxotremorine and epibatidine induced a significant, dose-dependent antinociceptive effect in the tail-flick, hot-plate, and formalin tests, respectively. The effects of oxotremorine and epibatidine were blocked by atropine and mecamylamine, respectively. In all three nociceptive tests, naloxone in combination with oxotremorine or epibatidine enhanced the antinociceptive effects of the drugs. The present study demonstrated that stimulation of muscarinic and nicotinic receptors produces antinociceptive effects in the naked-mole rat. The reversal effect of atropine and mecamylamine suggests that this effect is mediated by cholinergic receptors. As naloxone increases the antinociceptive effects of cholinergic agonists, it is suggested that the cholinergic antinociception acts via a gateway facilitated by opioid receptor blockage; however, the precise interaction between these receptor systems needs further investigation.

  5. Assessment of Uncertainties for the NIST 1016 mm Guarded-Hot-Plate Apparatus: Extended Analysis for Low-Density Fibrous-Glass Thermal Insulation.

    PubMed

    Zarr, Robert R

    2010-01-01

    An assessment of uncertainties for the National Institute of Standards and Technology (NIST) 1016 mm Guarded-Hot-Plate apparatus is presented. The uncertainties are reported in a format consistent with current NIST policy on the expression of measurement uncertainty. The report describes a procedure for determination of component uncertainties for thermal conductivity and thermal resistance for the apparatus under operation in either the double-sided or single-sided mode of operation. An extensive example for computation of uncertainties for the single-sided mode of operation is provided for a low-density fibrous-glass blanket thermal insulation. For this material, the relative expanded uncertainty for thermal resistance increases from 1 % for a thickness of 25.4 mm to 3 % for a thickness of 228.6 mm. Although these uncertainties have been developed for a particular insulation material, the procedure and, to a lesser extent, the results are applicable to other insulation materials measured at a mean temperature close to 297 K (23.9 °C, 75 °F). The analysis identifies dominant components of uncertainty and, thus, potential areas for future improvement in the measurement process. For the NIST 1016 mm Guarded-Hot-Plate apparatus, considerable improvement, especially at higher values of thermal resistance, may be realized by developing better control strategies for guarding that include better measurement techniques for the guard gap thermopile voltage and the temperature sensors.

  6. Acoustic Plate Mode sensing in liquids based on free and electrically shorted plate surfaces.

    PubMed

    Anisimkin, V I; Caliendo, C; Verona, E

    2016-05-01

    The sensing behavior to liquids for Acoustic Plate Modes (APMs) propagating along 64°Y, 90°X LiNbO3 plate was investigated vs. two electric boundary conditions. The changes in the APMs phase velocity and attenuation were measured upon exposure to different liquids wetting one of the surfaces of the plate, either free or electrically shorted by a thin conductive Al layer. The experimental data confirm that the presence of a metallic layer covering one of the plate surfaces affects the viscosity and temperature sensitivity of the device. The differences between the sensor response for various liquids, with free or metalized faces, are interpreted in terms of the APM polarization.

  7. Hot spot-based design of small-molecule inhibitors for protein-protein interactions.

    PubMed

    Guo, Wenxing; Wisniewski, John A; Ji, Haitao

    2014-06-01

    Protein-protein interactions (PPIs) are important targets for the development of chemical probes and therapeutic agents. From the initial discovery of the existence of hot spots at PPI interfaces, it has been proposed that hot spots might provide the key for developing small-molecule PPI inhibitors. However, there has been no review on the ways in which the knowledge of hot spots can be used to achieve inhibitor design, nor critical examination of successful examples. This Digest discusses the characteristics of hot spots and the identification of druggable hot spot pockets. An analysis of four examples of hot spot-based design reveals the importance of this strategy in discovering potent and selective PPI inhibitors. A general procedure for hot spot-based design of PPI inhibitors is outlined. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. TPSLVM: a dimensionality reduction algorithm based on thin plate splines.

    PubMed

    Jiang, Xinwei; Gao, Junbin; Wang, Tianjiang; Shi, Daming

    2014-10-01

    Dimensionality reduction (DR) has been considered as one of the most significant tools for data analysis. One type of DR algorithms is based on latent variable models (LVM). LVM-based models can handle the preimage problem easily. In this paper we propose a new LVM-based DR model, named thin plate spline latent variable model (TPSLVM). Compared to the well-known Gaussian process latent variable model (GPLVM), our proposed TPSLVM is more powerful especially when the dimensionality of the latent space is low. Also, TPSLVM is robust to shift and rotation. This paper investigates two extensions of TPSLVM, i.e., the back-constrained TPSLVM (BC-TPSLVM) and TPSLVM with dynamics (TPSLVM-DM) as well as their combination BC-TPSLVM-DM. Experimental results show that TPSLVM and its extensions provide better data visualization and more efficient dimensionality reduction compared to PCA, GPLVM, ISOMAP, etc.

  9. Development Of Hot Surface Polysilicon-Based Chemical Sensor And Actuator With Integrated Catalytic Micropatterns For Gas Sensing Applications

    NASA Astrophysics Data System (ADS)

    Vereshchagina, E.; Gardeniers, J. G. E.

    2009-05-01

    Over the last twenty years, we have followed a rapid expansion in the development of chemical sensors and microreactors for detection and analysis of volatile organic compounds. However, for many of the developed gas sensors poor sensitivity and selectivity, and high-power consumption remain among one of the main drawbacks. One promising approach to increase selectivity at lower power consumption is calorimetric sensing, performed in a pulsed regime and using specific catalytic materials. In this work, we study kinetics of various catalytic oxidation reactions using micromachined hot surface polysilicon-based sensor containing sensitive and selective catalysts. The sensor acts as both thermal actuator of chemical and biochemical reactions on hot-surfaces and detector of heats (enthalpies) associated with these reactions. Using novel deposition techniques we integrated selective catalysts in an array of hot plates such that they can be thermally actuated and sensed individually. This allows selective detection and analysis of dangerous gas compounds in a mixture, specifically hydrocarbons at concentrations down to low ppm level. In this contribution we compare various techniques for the local immobilization of catalytic material on hot spots of the sensor in terms of process compatibility, mechanical stress, stability and cost.

  10. The ERESE Project: Modeling Inquiry-Based Plate Tectonic Lessons

    NASA Astrophysics Data System (ADS)

    Symons, C. M.; Helly, M.; Helly, J.; Miller, S. P.; Staudigel, H.; Koppers, A.

    2004-12-01

    The Enduring Resources for Earth Science Education (ERESE) project is a collaborative effort between earth scientists, educators, librarians and data archive managers. Its goal is to develop and maintain a persistent online research and education archive in a digital library environment that supports earth science education in plate tectonics. A key to the library's effectiveness as an educational tool is the efficiency with which educators can access, use and contribute to the library. We have created a master template that educators use to develop inquiry-based curriculum. The central components of the master template include a teacher log, a student log and resource matrices. The teacher's log is divided into stages that reflect our approach to inquiry. This approach was used during a workshop as scientists worked with the teachers to model a reasonable pedagogical analog to scientific inquiry. The student log is similar in structure to a scientific method lab report. There are currently 17 resource matrices that directly access canonical education objects in the digital library, 3 of which relate to expedition planning and 14 to plate tectonics. The structure of the resource matrices allows teachers and students to traverse manageable packets of information relating to a specific topic by expert level (rows) and information type (columns). Teachers download and customize the master template using any web composer and are then invited to upload their lessons through a simple interface at Earthref.org. Once uploaded the lessons become part of the ERESE digital library collection. The upload process allows teachers to define keywords and metadata to allow useful searches by topic, concept or educational standard. The use of a single master template for inquiry lesson design means library contributions will share a common format as well as exploit identical plate tectonic resources.

  11. Rate Capability in Bakelite Based Resistive Plate Chambers

    NASA Astrophysics Data System (ADS)

    Candocia, Max

    2011-10-01

    Bakelite-based resistive plate chambers (RPCs) are particle detectors commonly used in muon trigger systems for high-energy physics experiments. Bakelite RPCs combine fast response, sufficient position resolution and low cost, and they can be operated at instantaneous background rates up to about 1.5 kHz/cm2. Current and future collider experiments will demand operation of trigger RPCs under background rates higher than what is currently achieved. The rate capability is related to the bulk and surface conductivities of the Bakelite material used for the plates bordering the active gas volume in the RPCs. The inner surface of present Bakelite RPCs used at the LHC and RHIC is coated with linseed oil, lowering the surface resistivity of the raw Bakelite. Methods of increasing the surface conductivity of Bakelite sheets via dispersion of carbon blacks in linseed oil are being developed. Performance tests of prototype RPCs are carried out in a test stand that utilizes cosmic ray muons and radioactive 55Fe sources. In this presentation different dispersion methods and the rate capability of the resulting prototype RPCs will be compared.

  12. Individual based simulations of bacterial growth on agar plates

    NASA Astrophysics Data System (ADS)

    Ginovart, M.; López, D.; Valls, J.; Silbert, M.

    2002-03-01

    The individual based simulator, INDividual DIScrete SIMulations (INDISIM) has been used to study the behaviour of the growth of bacterial colonies on a finite dish. The simulations reproduce the qualitative trends of pattern formation that appear during the growth of Bacillus subtilis on an agar plate under different initial conditions of nutrient peptone concentration, the amount of agar on the plate, and the temperature. The simulations are carried out by imposing closed boundary conditions on a square lattice divided into square spatial cells. The simulator studies the temporal evolution of the bacterial population possible by setting rules of behaviour for each bacterium, such as its uptake, metabolism and reproduction, as well as rules for the medium in which the bacterial cells grow, such as concentration of nutrient particles and their diffusion. The determining factors that characterize the structure of the bacterial colony patterns in the presents simulations, are the initial concentrations of nutrient particles, that mimic the amount of peptone in the experiments, and the set of values for the microscopic diffusion parameter related, in the experiments, to the amount of the agar medium.

  13. New method of hot rolling for fabricating anisotropic Pr-Fe-B-based magnets

    NASA Astrophysics Data System (ADS)

    Mukai, T.; Sakamoto, H.

    1989-04-01

    A unique method of hot rolling is described which fabricates high performance plate-shaped magnets from a cast Pr17Fe76.5B5Cu1.5 alloy. A flat ingot of the alloy with fine-scale columnar grains of a Pr2Fe14B phase is prepared by chill casting. The ingot is hot rolled in such a way that the roll pressure is applied perpendicular to the preferential growth direction of the columnar grains. A maximum energy product of 25.3 MG Oe has been obtained by this method.

  14. High precision refractometry based on Fresnel diffraction from phase plates.

    PubMed

    Tavassoly, M Taghi; Naraghi, Roxana Rezvani; Nahal, Arashmid; Hassani, Khosrow

    2012-05-01

    When a transparent plane-parallel plate is illuminated at a boundary region by a monochromatic parallel beam of light, Fresnel diffraction occurs because of the abrupt change in phase imposed by the finite change in refractive index at the plate boundary. The visibility of the diffraction fringes varies periodically with changes in incident angle. The visibility period depends on the plate thickness and the refractive indices of the plate and the surrounding medium. Plotting the phase change versus incident angle or counting the visibility repetition in an incident-angle interval provides, for a given plate thickness, the refractive index of the plate very accurately. It is shown here that the refractive index of a plate can be determined without knowing the plate thickness. Therefore, the technique can be utilized for measuring plate thickness with high precision. In addition, by installing a plate with known refractive index in a rectangular cell filled with a liquid and following the described procedures, the refractive index of the liquid is obtained. The technique is applied to measure the refractive indices of a glass slide, distilled water, and ethanol. The potential and merits of the technique are also discussed.

  15. CEMS using hot wet extractive method based on DOAS

    NASA Astrophysics Data System (ADS)

    Sun, Bo; Zhang, Chi; Sun, Changku

    2011-11-01

    A continuous emission monitoring system (CEMS) using hot wet extractive method based on differential optical absorption spectroscopy (DOAS) is designed. The developed system is applied to retrieving the concentration of SO2 and NOx in flue gas on-site. The flue gas is carried along a heated sample line into the sample pool at a constant temperature above the dew point. In this case, the adverse impact of water vapor on measurement accuracy is reduced greatly, and the on-line calibration is implemented. And then the flue gas is discharged from the sample pool after the measuring process is complete. The on-site applicability of the system is enhanced by using Programmable Logic Controller (PLC) to control each valve in the system during the measuring and on-line calibration process. The concentration retrieving method used in the system is based on the partial least squares (PLS) regression nonlinear method. The relationship between the known concentration and the differential absorption feature gathered by the PLS nonlinear method can be figured out after the on-line calibration process. Then the concentration measurement of SO2 and NOx can be easily implemented according to the definite relationship. The concentration retrieving method can identify the information and noise effectively, which improves the measuring accuracy of the system. SO2 with four different concentrations are measured by the system under laboratory conditions. The results proved that the full-scale error of this system is less than 2%FS.

  16. Bioavailability of starch based hot stage extrusion formulations.

    PubMed

    Henrist, D; Lefebvre, R A; Remon, J P

    1999-10-05

    The aim of the study was to develop a starch based hot stage extrusion formulation for controlled drug delivery and to evaluate its in vivo behavior. The extrusion mixture consisted of 53% corn starch as the matrix forming agent, 15% sorbitol as a plasticizer, 30% theophylline monohydrate as the model drug and 2% glyceryl monostearate as a lubricant. The extrudates were produced by means of a corotating twin screw extruder of APV Baker equipped with a twin screw powder feeder and a 3-mm cylindrical die. During extrusion 20% water (based on the wet mass) was added to the powder mixture. The extrudates were dried in an oven at 60 degrees C during 48 h, cut and filled out in hard gelatine capsules, in a way that the content of two capsules corresponded with a dose of 300 mg anhydrous theophylline. The dissolution profile of the experimental dosage form was retarded with a drug release of around 80% in 8 h. The in vivo behavior of the experimental formulation was evaluated in a randomized crossover design study (n=8) with a commercially available multiple unit sustained release product as the reference formulation. The plasma samples were analyzed by a validated HPLC-UV method with solid phase extraction for the sample preparation. It was clear that the experimental formulation exhibited sustained release behavior, but that it performed less well than the multiple unit dosage form.

  17. Hot coal gas desulfurization with manganese-based sorbents

    SciTech Connect

    Hepworth, M.T.

    1993-06-01

    The focus of work being performed on Hot Coal Gas Desulfurization is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies at the U.S. Steel Fundamental Research Laboratories in Monroeville, PA, by E.T. Turkdogan indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt% ore + 25 wt% Al{sub 2}O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion for the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese higher temperatures than zinc ferrite or zinc titanate. This presentation give the thermodynamic background for consideration of manganese-based sorbents as an alternative to zinc ferrite. To date the work which has been in progress for nine months is limited at this stage to thermogravimetric testing of four formulations of manganese-alumina sorbents to determine the optimum conditions of pelletization and induration to produce reactive pellets.

  18. Hot coal gas desulfurization with manganese-based sorbents

    SciTech Connect

    Lynch, D.; Hepworth, M.T.

    1993-09-01

    The focus of work being performed on Hot Coal Gas Desulfurization is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies at the US Steel Fundamental Research Laboratories in Monroeville, PA, by E.T. Turkdogan indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt % ore + 25 wt % Al{sub 2}/O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese higher temperatures than zinc ferrite or zinc titanate. This presentation gives the thermodynamic background for consideration of manganese-based sorbents as an alternative to zinc ferrite. To date the work which has been in progress for nine months is limited at this stage to thermogravimetric testing of four formulations of manganese-alumina sorbents to determine the optimum conditions of pelletization and induration to produce reactive pellets.

  19. Sensor network based vehicle classification and license plate identification system

    SciTech Connect

    Frigo, Janette Rose; Brennan, Sean M; Rosten, Edward J; Raby, Eric Y; Kulathumani, Vinod K

    2009-01-01

    Typically, for energy efficiency and scalability purposes, sensor networks have been used in the context of environmental and traffic monitoring applications in which operations at the sensor level are not computationally intensive. But increasingly, sensor network applications require data and compute intensive sensors such video cameras and microphones. In this paper, we describe the design and implementation of two such systems: a vehicle classifier based on acoustic signals and a license plate identification system using a camera. The systems are implemented in an energy-efficient manner to the extent possible using commercially available hardware, the Mica motes and the Stargate platform. Our experience in designing these systems leads us to consider an alternate more flexible, modular, low-power mote architecture that uses a combination of FPGAs, specialized embedded processing units and sensor data acquisition systems.

  20. Emergence of silicic continents as the lower crust peels off on a hot plate-tectonic Earth

    NASA Astrophysics Data System (ADS)

    Chowdhury, Priyadarshi; Gerya, Taras; Chakraborty, Sumit

    2017-09-01

    The rock record and geochemical evidence indicate that continental recycling has been occurring since the early history of the Earth. The stabilization of felsic continents in place of Earth's early mafic crust about 3.0 to 2.0 billion years ago, perhaps due to the initiation of plate tectonics, implies widespread destruction of mafic crust during this time interval. However, the physical mechanisms of such intense recycling on a hotter, (late) Archaean and presumably plate-tectonic Earth remain largely unknown. Here we use thermomechanical modelling to show that extensive recycling via lower crustal peeling-off (delamination but not eclogitic dripping) during continent-continent convergence was near ubiquitous during the late Archaean to early Proterozoic. We propose that such destruction of the early mafic crust, together with felsic magmatism, may have caused both the emergence of silicic continents and their subsequent isostatic rise, possibly above the sea level. Such changes in the continental character have been proposed to influence the Great Oxidation Event and, therefore, peeling-off plate tectonics could be the geodynamic trigger for this event. A transition to the slab break-off controlled syn-orogenic recycling occurred as the Earth aged and cooled, leading to reduced recycling and enhanced preservation of the continental crust of present-day composition.

  1. Deformation Behavior of Powder Metallurgy Connecting Rod Preform During Hot Forging Based on Hot Compression and Finite Element Method Simulation

    NASA Astrophysics Data System (ADS)

    Li, Fengxian; Yi, Jianhong; Eckert, Jürgen

    2017-06-01

    Powder-forged connecting rod with a complex geometry shape always has a problem with nonuniform density distribution. Moreover, the physical property of preform plays a critical role for optimizing the connecting rod quality. The flow behavior of a Fe-3Cu-0.5C (wt pct) alloy with a relative density of 0.8 manufactured by powder metallurgy (P/M, Fe-Cu-C) was studied using isothermal compression tests. The material constitutive equation, power dissipation ( η) maps, and hot processing maps of the P/M Fe-Cu-C alloy were established. Then, the hot forging process of the connecting rod preforms was simulated using the material constitutive model based on finite element method simulation. The calculated results agree well with the experimental ones. The results show that the flow stress increases with decreasing temperature and increasing strain rate. The activation energy of the P/M Fe-Cu-C alloy with a relative density of 0.8 is 188.42 kJ/mol. The optimum temperature at the strain of 0.4 for good hot workability of sintered Fe-Cu-C alloy ranges from 1333 K to 1380 K (1060 °C to 1107 °C). The relative density of the hot-forged connecting rod at the central part changed significantly compared with that at the big end and that at the small end. These present theoretical and experimental investigations can provide a methodology for accurately predicting the densification behavior of the P/M connecting rod preform during hot forging, and they help to optimize the processing parameters.

  2. Hot coal gas desulfurization with manganese-based sorbents

    SciTech Connect

    Hepworth, M.T.; Ben-Slimane, R.

    1994-12-01

    The focus of work being performed on Hot Coal Gas Desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt % ore + 25 wt % Al{sub 2}O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This annual topical report documents progress in pelletizing and testing via thermo-gravimetric analysis of individual pellet formulations of manganese ore/alumina combinations and also manganese carbonate/alumina with two binders, dextrin and bentonite.

  3. "Hot-wire" microfluidic flowmeter based on a microfiber coupler.

    PubMed

    Yan, Shao-Cheng; Liu, Zeng-Yong; Li, Cheng; Ge, Shi-Jun; Xu, Fei; Lu, Yan-Qing

    2016-12-15

    Using an optical microfiber coupler (MC), we present a microfluidic platform for strong direct or indirect light-liquid interaction by wrapping a MC around a functionalized capillary. The light propagating in the MC and the liquid flowing in the capillary can be combined and divorced smoothly, keeping a long-distance interaction without the conflict of input and output coupling. Using this approach, we experimentally demonstrate a "hot-wire" microfluidic flowmeter based on a gold-integrated helical MC device. The microfluid inside the glass channel takes away the heat, then cools the MC and shifts the resonant wavelength. Due to the long-distance interaction and high temperature sensitivity, the proposed microfluidic flowmeter shows an ultrahigh flow rate sensitivity of 2.183 nm/(μl/s) at a flow rate of 1 μl/s. The minimum detectable change of the flow rate is around 9 nl/s at 1 μl/s.

  4. Validation of the DIFFAL, HPAC and HotSpot Dispersion Models Using the Full-Scale Radiological Dispersal Device (FSRDD) Field Trials Witness Plate Deposition Dataset.

    PubMed

    Purves, Murray; Parkes, David

    2016-05-01

    Three atmospheric dispersion models--DIFFAL, HPAC, and HotSpot--of differing complexities have been validated against the witness plate deposition dataset taken during the Full-Scale Radiological Dispersal Device (FSRDD) Field Trials. The small-scale nature of these trials in comparison to many other historical radiological dispersion trials provides a unique opportunity to evaluate the near-field performance of the models considered. This paper performs validation of these models using two graphical methods of comparison: deposition contour plots and hotline profile graphs. All of the models tested are assessed to perform well, especially considering that previous model developments and validations have been focused on larger-scale scenarios. Of the models, HPAC generally produced the most accurate results, especially at locations within ∼100 m of GZ. Features present within the observed data, such as hot spots, were not well modeled by any of the codes considered. Additionally, it was found that an increase in the complexity of the meteorological data input to the models did not necessarily lead to an improvement in model accuracy; this is potentially due to the small-scale nature of the trials.

  5. The Earth's Hot Spots.

    ERIC Educational Resources Information Center

    Vink, Gregory E.; And Others

    1985-01-01

    Hot spots are isolated areas of geologic activity where volcanic eruptions, earthquakes, and upwelling currents occur far from plate boundaries. These mantle plumes are relatively stable and crustal plates drift over them. The nature and location of hot spots (with particular attention to the Hawaiian Islands and Iceland) are discussed. (DH)

  6. The Earth's Hot Spots.

    ERIC Educational Resources Information Center

    Vink, Gregory E.; And Others

    1985-01-01

    Hot spots are isolated areas of geologic activity where volcanic eruptions, earthquakes, and upwelling currents occur far from plate boundaries. These mantle plumes are relatively stable and crustal plates drift over them. The nature and location of hot spots (with particular attention to the Hawaiian Islands and Iceland) are discussed. (DH)

  7. Methods for testing Zernike phase plates and a report on silicon-based phase plates with reduced charging and improved ageing characteristics.

    PubMed

    Marko, Michael; Meng, Xing; Hsieh, Chyongere; Roussie, James; Striemer, Christopher

    2013-11-01

    Imaging with Zernike phase plates is increasingly being used in cryo-TEM tomography and cryo-EM single-particle applications. However, rapid ageing of the phase plates, together with the cost and effort in producing them, present serious obstacles to widespread adoption. We are experimenting with phase plates based on silicon chips that have thin windows; such phase plates could be mass-produced and made available at moderate cost. The windows are coated with conductive layers to reduce charging, and this considerably extends the useful life of the phase plates compared to traditional pure-carbon phase plates. However, a compromise must be reached between robustness and transmission through the phase-plate film. Details are given on testing phase-plate performance by means of imaging an amorphous thin film and evaluating the power spectra of the images.

  8. Methods for testing Zernike phase plates and a report on silicon-based phase plates with reduced charging and improved ageing characteristics

    PubMed Central

    Marko, Michael; Meng, Xing; Hsieh, Chyongere; Roussie, James; Striemer, Christopher

    2013-01-01

    Imaging with Zernike phase plates is increasingly being used in cryo-TEM tomography and cryo-EM single-particle applications. However, rapid ageing of the phase plates, together with the cost and effort in producing them, present serious obstacles to widespread adoption. We are experimenting with phase plates based on silicon chips that have thin windows; such phase plates could be mass-produced and made available at moderate cost. The windows are coated with conductive layers to reduce charging, and this considerably extends the useful life of the phase plates compared to traditional pure-carbon phase plates. However, a compromise must be reached between robustness and transmission through the phase-plate film. Details are given on testing phase-plate performance by means of imaging an amorphous thin film and evaluating the power spectra of the images. PMID:23994351

  9. The parameterization of microchannel-plate-based detection systems

    NASA Astrophysics Data System (ADS)

    Gershman, Daniel J.; Gliese, Ulrik; Dorelli, John C.; Avanov, Levon A.; Barrie, Alexander C.; Chornay, Dennis J.; MacDonald, Elizabeth A.; Holland, Matthew P.; Giles, Barbara L.; Pollock, Craig J.

    2016-10-01

    The most common instrument for low-energy plasmas consists of a top-hat electrostatic analyzer (ESA) geometry coupled with a microchannel-plate-based (MCP-based) detection system. While the electrostatic optics for such sensors are readily simulated and parameterized during the laboratory calibration process, the detection system is often less well characterized. Here we develop a comprehensive mathematical description of particle detection systems. As a function of instrument azimuthal angle, we parameterize (1) particle scattering within the ESA and at the surface of the MCP, (2) the probability distribution of MCP gain for an incident particle, (3) electron charge cloud spreading between the MCP and anode board, and (4) capacitive coupling between adjacent discrete anodes. Using the Dual Electron Spectrometers on the Fast Plasma Investigation on NASA's Magnetospheric Multiscale mission as an example, we demonstrate a method for extracting these fundamental detection system parameters from laboratory calibration. We further show that parameters that will evolve in flight, namely, MCP gain, can be determined through application of this model to specifically tailored in-flight calibration activities. This methodology provides a robust characterization of sensor suite performance throughout mission lifetime. The model developed in this work is not only applicable to existing sensors but also can be used as an analytical design tool for future particle instrumentation.

  10. Dual-mode operation of 2D material-base hot electron transistors

    NASA Astrophysics Data System (ADS)

    Lan, Yann-Wen; Torres, Carlos M., Jr.; Zhu, Xiaodan; Qasem, Hussam; Adleman, James R.; Lerner, Mitchell B.; Tsai, Shin-Hung; Shi, Yumeng; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L.

    2016-09-01

    Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (VCB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (VCB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications.

  11. Dual-mode operation of 2D material-base hot electron transistors.

    PubMed

    Lan, Yann-Wen; Torres, Carlos M; Zhu, Xiaodan; Qasem, Hussam; Adleman, James R; Lerner, Mitchell B; Tsai, Shin-Hung; Shi, Yumeng; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L

    2016-09-01

    Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (VCB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (VCB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications.

  12. Dual-mode operation of 2D material-base hot electron transistors

    PubMed Central

    Lan, Yann-Wen; Torres, Jr., Carlos M.; Zhu, Xiaodan; Qasem, Hussam; Adleman, James R.; Lerner, Mitchell B.; Tsai, Shin-Hung; Shi, Yumeng; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L.

    2016-01-01

    Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (VCB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (VCB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications. PMID:27581550

  13. Variable crustal structure along the Juan de Fuca Ridge: Influence of on-axis hot spots and absolute plate motions

    NASA Astrophysics Data System (ADS)

    Carbotte, Suzanne M.; Nedimović, Mladen R.; Canales, Juan Pablo; Kent, Graham M.; Harding, Alistair J.; Marjanović, Milena

    2008-08-01

    Multichannel seismic and bathymetric data from the Juan de Fuca Ridge (JDFR) provide constraints on axial and ridge flank structure for the past 4-8 Ma within three spreading corridors crossing Cleft, Northern Symmetric, and Endeavour segments. Along-axis data reveal south-to-north gradients in seafloor relief and presence and depth of the crustal magma lens, which indicate a warmer axial regime to the south, both on a regional scale and within individual segments. For young crust, cross-axis lines reveal differences between segments in Moho two-way traveltimes of 200-300 ms which indicate 0.5-1 km thicker crust at Endeavour and Cleft compared to Northern Symmetric. Moho traveltime anomalies extend beyond the 5-15 km wide axial high and coincide with distinct plateaus, 32 and 40 km wide and 200-400 m high, found at both segments. On older crust, Moho traveltimes are similar for all three segments (˜2100 ± 100 ms), indicating little difference in average crustal production prior to ˜0.6 and 0.7 Ma. The presence of broad axis-centered bathymetric plateau with thickened crust at Cleft and Endeavour segments is attributed to recent initiation of ridge axis-centered melt anomalies associated with the Cobb hot spot and the Heckle melt anomaly. Increased melt supply at Cleft segment upon initiation of Axial Volcano and southward propagation of Endeavour segment during the Brunhes point to rapid southward directed along-axis channeling of melt anomalies linked to these hot spots. Preferential southward flow of the Cobb and Heckle melt anomalies and the regional-scale south-to-north gradients in ridge structure along the JDFR may reflect influence of the northwesterly absolute motion of the ridge axis on subaxial melt distribution.

  14. TYPICAL HOT WATER DRAW PATTERNS BASED ON FIELD DATA

    SciTech Connect

    Lutz, Jim; Melody, Moya

    2012-11-08

    There is significant variation in hot water use and draw patterns among households. This report describes typical hot water use patterns in single-family residences in North America. We found that daily hot water use is highly variable both among residences and within the same residence. We compared the results of our analysis of the field data to the conditions and draw patterns established in the current U.S. Department of Energy (DOE) test procedure for residential water heaters. The results show a higher number of smaller draws at lower flow rates than used in the test procedure. The data from which the draw patterns were developed were obtained from 12 separate field studies. This report describes the ways in which we managed, cleaned, and analyzed the data and the results of our data analysis. After preparing the data, we used the complete data set to analyze inlet and outlet water temperatures. Then we divided the data into three clusters reflecting house configurations that demonstrated small, medium, or large median daily hot water use. We developed the three clusters partly to reflect efforts of the ASHRAE standard project committee (SPC) 118.2 to revise the test procedure for residential water heaters to incorporate a range of draw patterns. ASHRAE SPC 118.2 has identified the need to separately evaluate at least three, and perhaps as many as five, different water heater capacities. We analyzed the daily hot water use data within each cluster in terms of volume and number of hot water draws. The daily draw patterns in each cluster were characterized using distributions for volume of draws, duration of draws, time since previous draw, and flow rates.

  15. Rigorous assessment and integration of the sequence and structure based features to predict hot spots

    PubMed Central

    2011-01-01

    Background Systematic mutagenesis studies have shown that only a few interface residues termed hot spots contribute significantly to the binding free energy of protein-protein interactions. Therefore, hot spots prediction becomes increasingly important for well understanding the essence of proteins interactions and helping narrow down the search space for drug design. Currently many computational methods have been developed by proposing different features. However comparative assessment of these features and furthermore effective and accurate methods are still in pressing need. Results In this study, we first comprehensively collect the features to discriminate hot spots and non-hot spots and analyze their distributions. We find that hot spots have lower relASA and larger relative change in ASA, suggesting hot spots tend to be protected from bulk solvent. In addition, hot spots have more contacts including hydrogen bonds, salt bridges, and atomic contacts, which favor complexes formation. Interestingly, we find that conservation score and sequence entropy are not significantly different between hot spots and non-hot spots in Ab+ dataset (all complexes). While in Ab- dataset (antigen-antibody complexes are excluded), there are significant differences in two features between hot pots and non-hot spots. Secondly, we explore the predictive ability for each feature and the combinations of features by support vector machines (SVMs). The results indicate that sequence-based feature outperforms other combinations of features with reasonable accuracy, with a precision of 0.69, a recall of 0.68, an F1 score of 0.68, and an AUC of 0.68 on independent test set. Compared with other machine learning methods and two energy-based approaches, our approach achieves the best performance. Moreover, we demonstrate the applicability of our method to predict hot spots of two protein complexes. Conclusion Experimental results show that support vector machine classifiers are quite

  16. Plate-shaped transformation products in zirconium-base alloys

    NASA Astrophysics Data System (ADS)

    Banerjee, S.; Dey, G. K.; Srivastava, D.; Ranganathan, S.

    1997-11-01

    Plate-shaped products resulting from martensitic, diffusional, and mixed mode transformations in zirconium-base alloys are compared in the present study. These alloys are particularly suitable for the comparison in view of the fact that the lattice correspondence between the parent β (bcc) and the product α (hcp) or γ-hydride (fct) phases are remarkably similar for different types of transformations. Crystallographic features such as orientation relations, habit planes, and interface structures associated with these transformations have been compared, with a view toward examining whether the transformation mechanisms have characteristic imprints on these experimental observables. Martensites exhibiting dislocated lath, internally twinned plate, and self-accommodating three-plate cluster morphologies have been encountered in Zr-2.5Nb alloy. Habit planes corresponding to all these morphologies have been found to be consistent with the predictions based on the invariant plane strain (IPS) criterion. Different morphologies have been found to reflect the manner in which the neighboring martensite variants are assembled. Lattice-invariant shears (LISs) for all these cases have been identified to be either {10 bar 11} α < bar 1123> α slip or twinning on {10 bar 11} α planes. Widmanstätten α precipitates, forming in a step-quenching treatment, have been shown to have a lath morphology, the α/β interface being decorated with a periodic array of < c + a> dislocations at a spacing of 8 to 10 nm. The line vectors of these dislocations are nearly parallel to the invariant lines. The α precipitates, forming in the retained β phase on aging, exhibit an internally twinned structure with a zigzag habit plane. Average habit planes for the morphologies have been found to lie near the {103} β — {113} β poles, which are close to the specific variant of the {112} β plane, which transforms into a prismatic plane of the type {1 bar 100} α . The crystallography of the

  17. Hot film anemometry. Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Habercom, G. E., Jr.

    1980-08-01

    The principles of hot film anemometer operation are summarized; wind tunnel and laboratory tests are described; flow field dynamics are discussed involving turbulence, boundary layers, separation, shock waves, and stresses; mathematical models and analysis are presented; computer techniques are outlined; and a number of applications are given. This updated bibliography contains 58 citations, 3 of which are new entries to the previous edition.

  18. Optical waveguide spectrometer based on thin-film glass plates.

    PubMed

    Qi, Zhi-Mei; Matsuda, Naoki; Yoshida, Takamitsu; Asano, Hajime; Takatsu, Akiko; Kato, Kenji

    2002-11-15

    Commercially available thin-film glass plates have been successfully used for optical waveguide spectroscopy of chemical and biological films adsorbed upon the plates' surfaces. A 50-mum -thick glass plate was placed in contact with two parallel strips of silicone rubber supported on a slide glass. The plate area between the rubber strips served as the waveguiding region, eliminating the negative effect of the substrate on absorbance sensitivity. We coupled white light into the waveguide by focusing the light from a xenon lamp onto one end of a glass fiber and then inserting the other end into a glycerol drop overlaid upon the plate's surface. With a CCD detector, light at wavelengths as short as 360 nm was found to transmit out of the plate's end face. The propagation loss of the waveguide was measured to be

  19. Recognition of blurred license plate of vehicle based on natural image matting

    NASA Astrophysics Data System (ADS)

    Liang, Fangfang; Liu, Yong; Yao, Gang

    2009-10-01

    Car's license plate identification system based on image processing is one of the key technologies of intelligent transportation system. In most cases, license plate numbers can be accurately recognized by the generic identification systems while the image is clear. However, sometime the license plate are seriously blurred by some dunghill such as mud or water smoke before camera lens, which is hard to be identified. In order to get higher recognition rate of blurred license plate, an approach based on natural image matting is proposed in this paper.

  20. Dynamic programming-based hot spot identification approach for pedestrian crashes.

    PubMed

    Medury, Aditya; Grembek, Offer

    2016-08-01

    Network screening techniques are widely used by state agencies to identify locations with high collision concentration, also referred to as hot spots. However, most of the research in this regard has focused on identifying highway segments that are of concern to automobile collisions. In comparison, pedestrian hot spot detection has typically focused on analyzing pedestrian crashes in specific locations, such as at/near intersections, mid-blocks, and/or other crossings, as opposed to long stretches of roadway. In this context, the efficiency of the some of the widely used network screening methods has not been tested. Hence, in order to address this issue, a dynamic programming-based hot spot identification approach is proposed which provides efficient hot spot definitions for pedestrian crashes. The proposed approach is compared with the sliding window method and an intersection buffer-based approach. The results reveal that the dynamic programming method generates more hot spots with a higher number of crashes, while providing small hot spot segment lengths. In comparison, the sliding window method is shown to suffer from shortcomings due to a first-come-first-serve approach vis-à-vis hot spot identification and a fixed hot spot window length assumption. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. A feature-based approach to modeling protein-protein interaction hot spots.

    PubMed

    Cho, Kyu-il; Kim, Dongsup; Lee, Doheon

    2009-05-01

    Identifying features that effectively represent the energetic contribution of an individual interface residue to the interactions between proteins remains problematic. Here, we present several new features and show that they are more effective than conventional features. By combining the proposed features with conventional features, we develop a predictive model for interaction hot spots. Initially, 54 multifaceted features, composed of different levels of information including structure, sequence and molecular interaction information, are quantified. Then, to identify the best subset of features for predicting hot spots, feature selection is performed using a decision tree. Based on the selected features, a predictive model for hot spots is created using support vector machine (SVM) and tested on an independent test set. Our model shows better overall predictive accuracy than previous methods such as the alanine scanning methods Robetta and FOLDEF, and the knowledge-based method KFC. Subsequent analysis yields several findings about hot spots. As expected, hot spots have a larger relative surface area burial and are more hydrophobic than other residues. Unexpectedly, however, residue conservation displays a rather complicated tendency depending on the types of protein complexes, indicating that this feature is not good for identifying hot spots. Of the selected features, the weighted atomic packing density, relative surface area burial and weighted hydrophobicity are the top 3, with the weighted atomic packing density proving to be the most effective feature for predicting hot spots. Notably, we find that hot spots are closely related to pi-related interactions, especially pi . . . pi interactions.

  2. Effects of selected cooking procedures on the survival of Escherichia coli O157:H7 in inoculated steaks cooked on a hot plate or gas barbecue grill.

    PubMed

    Gill, C O; Devos, J; Youssef, M K; Yang, X

    2014-06-01

    Beef steaks (2 cm thick) were each inoculated at three sites in the central plane with Escherichia coli O157:H7 at 5.9 ± 0.3 log CFU per site. Temperatures at steak centers were monitored during cooking on a hot plate or the grill of a gas barbeque. Steaks were cooked in groups of five using the same procedures and cooking each steak to the same temperature, and surviving E. coli O157:H7 at each site was enumerated. When steaks cooked on the hot plate were turned over every 2 or 4 min during cooking to between 56 and 62°C, no E. coli O157:H7 was recovered from steaks cooked to ≥58 or 62°C, respectively. When steaks were cooked to ≤71°C and turned over once during cooking, E. coli O157:H7 was recovered from steaks in groups turned over after ≤8 min but not from steaks turned over after 10 or 12 min. E. coli O157:H7 was recovered in similar numbers from steaks that were not held or were held for 3 min after cooking when steaks were turned over once after 4 or 6 min during cooking. When steaks were cooked on the grill with the barbeque lid open and turned over every 2 or 4 min during cooking to 63 or 56°C, E. coli O157:H7 was recovered from only those steaks turned over at 4-min intervals and cooked to 56°C. E. coli O157:H7 was recovered from some steaks turned over once during cooking on the grill and held or not held after cooking to 63°C. E. coli O157:H7 was not recovered from steaks turned over after 4 min during cooking to 60°C on the grill with the barbeque lid closed or when the lid was closed after 6 min. Apparently, the microbiological safety of mechanically tenderized steaks can be assured by turning steaks over at intervals of about 2 min during cooking to ≥60°C in an open skillet or on a barbecue grill. When steaks are turned over only once during cooking to ≥60°C, microbiological safety may be assured by covering the skillet or grill with a lid during at least the final minutes of cooking.

  3. Hot-carrier solar cell NEGF-based simulations

    NASA Astrophysics Data System (ADS)

    Cavassilas, Nicolas; Michelini, Fabienne; Bescond, Marc; Joie, Thibault

    2016-03-01

    Ultra thin absorbers for the hot carrier solar cell applications are promising. Indeed, in these ultimate absorbers electronphonon scattering are reduced and thickness can be lower than the electron mean-free-path. In this case carriers reach contact ballistically. However it is important that the contact permits to extract these carriers. This theoretical study is about the extraction of the photogenerated carriers and particularly the ballistic extraction without any scattering. We show that quantum interaction between the ultra-thin absorber and the contact can be used to enhance the extraction. Particularly, a contact composed of a quantum well into a double barrier permits to increase the current compared to a simple contact. This improvement is due to a quantum resonance. This result is interesting for the hot carrier solar cells but also for all the ultra-thin cells.

  4. Microstructural anomalies in hot-isostatic pressed U–10wt.% Mo fuel plates with Zr diffusion barrier

    SciTech Connect

    Park, Y.; Eriksson, N.; Keiser, D. D.; Jue, J.; Rabin, B.; Moore, G.; Sohn, Y. H.

    2015-05-01

    Microstructural anomalies in the co-rolled-and-HIP'ed U–10 wt.% Mo (U10Mo) metallic fuel plate with Zr diffusion barrier assembly were examined as a function of HIP temperature (from 520 to 580 °C) and duration (45, 60, 90, 180 and 345 min) by scanning and transmission electron microscopy. The anomalies observed in this study are carbide/oxide inclusions within the U10Mo fuel alloy, and regions of limited interaction between the U10Mo alloy and Zr barrier, frequently associated with carbide/oxide inclusions. In the U10Mo alloy, the cF8, Fm3m (225) UC phase (a=4.955 Å) and cF12, Fm3m (225) UO2 phase (a=5.467 Å) were observed throughout the U10Mo alloy with an approximate volume percent of 0.5 to 1.8. The volume percent of the UC–UO2 inclusions within the U10Mo alloy did not change as functions of HIP temperature and time. These inclusion phases, located near the surface of the U10Mo alloy, were frequently observed to impede the development of interdiffusion and reaction between the U10Mo alloy and Zr diffusion barrier. The regions of limited interaction between the U10Mo and Zr barrier decreased with an increase in HIP temperature, however no noticeable trend was observed with an increase in HIP duration at constant temperature of 560 °C.

  5. Growth kinetics and microstructural evolution during hot isostatic pressing of U-10 wt.% Mo monolithic fuel plate in AA6061 cladding with Zr diffusion barrier

    SciTech Connect

    Y. Park; J. Yoo; K. Huang; D. D. Keiser, Jr.; J. F. Jue; B. Rabin; G. Moore; Y. H. Sohn

    2014-04-01

    Phase constituents and microstructure changes in RERTR fuel plate assemblies as functions of temperature and duration of hot-isostatic pressing (HIP) during fabrication were examined. The HIP process was carried out as functions of temperature (520, 540, 560 and 580 °C for 90 min) and time (45–345 min at 560 °C) to bond 6061 Al-alloy to the Zr diffusion barrier that had been co-rolled with U-10 wt.% Mo (U10Mo) fuel monolith prior to the HIP process. Scanning and transmission electron microscopies were employed to examine the phase constituents, microstructure and layer thickness of interaction products from interdiffusion. At the interface between the U10Mo and Zr, following the co-rolling, the UZr2 phase was observed to develop adjacent to Zr, and the a-U phase was found between the UZr2 and U10Mo, while the Mo2Zr was found as precipitates mostly within the a-U phase. The phase constituents and thickness of the interaction layer at the U10Mo-Zr interface remained unchanged regardless of HIP processing variation. Observable growth due to HIP was only observed for the (Al,Si)3Zr phase found at the Zr/AA6061 interface, however, with a large activation energy of 457 ± 28 kJ/mole. Thus, HIP can be carried to improve the adhesion quality of fuel plate without concern for the excessive growth of the interaction layer, particularly at the U10Mo-Zr interface with the a-U, Mo2Zr, and UZr2 phases.

  6. Silicon Micropore-Based Parallel Plate Membrane Oxygenator.

    PubMed

    Dharia, Ajay; Abada, Emily; Feinberg, Benjamin; Yeager, Torin; Moses, Willieford; Park, Jaehyun; Blaha, Charles; Wright, Nathan; Padilla, Benjamin; Roy, Shuvo

    2017-08-11

    Extracorporeal membrane oxygenation (ECMO) is a life support system that circulates the blood through an oxygenating system to temporarily (days to months) support heart or lung function during cardiopulmonary failure until organ recovery or replacement. Currently, the need for high levels of systemic anticoagulation and the risk for bleeding are main drawbacks of ECMO that can be addressed with a redesigned ECMO system. Our lab has developed an approach using microelectromechanical systems (MEMS) fabrication techniques to create novel gas exchange membranes consisting of a rigid silicon micropore membrane (SμM) support structure bonded to a thin film of gas-permeable polydimethylsiloxane (PDMS). This study details the fabrication process to create silicon membranes with highly uniform micropores that have a high level of pattern fidelity. The oxygen transport across these membranes was tested in a simple water-based bench-top set-up as well in a porcine in vivo model. It was determined that the mass transfer coefficient for the system using SµM-PDMS membranes was 3.03 ± 0.42 mL O2 min(-1) m(-2) cm Hg(-1) with pure water and 1.71 ± 1.03 mL O2 min(-1) m(-2) cm Hg(-1) with blood. An analytic model to predict gas transport was developed using data from the bench-top experiments and validated with in vivo testing. This was a proof of concept study showing adequate oxygen transport across a parallel plate SµM-PDMS membrane when used as a membrane oxygenator. This work establishes the tools and the equipoise to develop future generations of silicon micropore membrane oxygenators. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  7. Slender Compressed Plate in Component Based Finite Element Model

    NASA Astrophysics Data System (ADS)

    Kurejková, M.; Wald, F.; Kabeláč, J.; Šabatka, L.

    2015-11-01

    The paper presents an advance design model of a slender plate in the structural steel joint. Finite element methods and material models are described and design procedure for slender plates in numerical models of steel joints is proposed. The design procedure is demonstrated on examples. The results are verified with an analytical model according to European standards. A compressed beam with slender web and beam-to-column joint are studied by numerical analysis, buckling resistances are determined and results verified. The verification shows very good agreement.

  8. Tectonic Plate Parameters Estimated in the International Terrestrial Reference Frame ITRF2008 Based on SLR Stations

    NASA Astrophysics Data System (ADS)

    Kraszewska, Katarzyna; Jagoda, Marcin; Rutkowska, Miłosława

    2016-10-01

    This paper concerns an analysis of the accuracy of estimated parameters Ω (Φ, Λ, ω) which define the tectonic plate motions. The study is based on the velocities of station positions published by ITRF2008 for Satellite Laser Ranging (SLR) technique. The Eurasian, African, North American and Australian plates were used in the analysis. Influence of the number and location of stations on the plate surface on estimation accuracy of the tectonic plate motion parameters was discussed. The results were compared with the APKIM 2005 IGN model. In general, a remarkable concurrence agreement between our solutions and the APKIM 2005 model was found.

  9. A seismic reflection image for the base of a tectonic plate.

    PubMed

    Stern, T A; Henrys, S A; Okaya, D; Louie, J N; Savage, M K; Lamb, S; Sato, H; Sutherland, R; Iwasaki, T

    2015-02-05

    Plate tectonics successfully describes the surface of Earth as a mosaic of moving lithospheric plates. But it is not clear what happens at the base of the plates, the lithosphere-asthenosphere boundary (LAB). The LAB has been well imaged with converted teleseismic waves, whose 10-40-kilometre wavelength controls the structural resolution. Here we use explosion-generated seismic waves (of about 0.5-kilometre wavelength) to form a high-resolution image for the base of an oceanic plate that is subducting beneath North Island, New Zealand. Our 80-kilometre-wide image is based on P-wave reflections and shows an approximately 15° dipping, abrupt, seismic wave-speed transition (less than 1 kilometre thick) at a depth of about 100 kilometres. The boundary is parallel to the top of the plate and seismic attributes indicate a P-wave speed decrease of at least 8 ± 3 per cent across it. A parallel reflection event approximately 10 kilometres deeper shows that the decrease in P-wave speed is confined to a channel at the base of the plate, which we interpret as a sheared zone of ponded partial melts or volatiles. This is independent, high-resolution evidence for a low-viscosity channel at the LAB that decouples plates from mantle flow beneath, and allows plate tectonics to work.

  10. A seismic reflection image for the base of a tectonic plate

    NASA Astrophysics Data System (ADS)

    Stern, T. A.; Henrys, S. A.; Okaya, D.; Louie, J. N.; Savage, M. K.; Lamb, S.; Sato, H.; Sutherland, R.; Iwasaki, T.

    2015-02-01

    Plate tectonics successfully describes the surface of Earth as a mosaic of moving lithospheric plates. But it is not clear what happens at the base of the plates, the lithosphere-asthenosphere boundary (LAB). The LAB has been well imaged with converted teleseismic waves, whose 10-40-kilometre wavelength controls the structural resolution. Here we use explosion-generated seismic waves (of about 0.5-kilometre wavelength) to form a high-resolution image for the base of an oceanic plate that is subducting beneath North Island, New Zealand. Our 80-kilometre-wide image is based on P-wave reflections and shows an approximately 15° dipping, abrupt, seismic wave-speed transition (less than 1 kilometre thick) at a depth of about 100 kilometres. The boundary is parallel to the top of the plate and seismic attributes indicate a P-wave speed decrease of at least 8 +/- 3 per cent across it. A parallel reflection event approximately 10 kilometres deeper shows that the decrease in P-wave speed is confined to a channel at the base of the plate, which we interpret as a sheared zone of ponded partial melts or volatiles. This is independent, high-resolution evidence for a low-viscosity channel at the LAB that decouples plates from mantle flow beneath, and allows plate tectonics to work.

  11. Prediction of protein interaction hot spots using rough set-based multiple criteria linear programming.

    PubMed

    Chen, Ruoying; Zhang, Zhiwang; Wu, Di; Zhang, Peng; Zhang, Xinyang; Wang, Yong; Shi, Yong

    2011-01-21

    Protein-protein interactions are fundamentally important in many biological processes and it is in pressing need to understand the principles of protein-protein interactions. Mutagenesis studies have found that only a small fraction of surface residues, known as hot spots, are responsible for the physical binding in protein complexes. However, revealing hot spots by mutagenesis experiments are usually time consuming and expensive. In order to complement the experimental efforts, we propose a new computational approach in this paper to predict hot spots. Our method, Rough Set-based Multiple Criteria Linear Programming (RS-MCLP), integrates rough sets theory and multiple criteria linear programming to choose dominant features and computationally predict hot spots. Our approach is benchmarked by a dataset of 904 alanine-mutated residues and the results show that our RS-MCLP method performs better than other methods, e.g., MCLP, Decision Tree, Bayes Net, and the existing HotSprint database. In addition, we reveal several biological insights based on our analysis. We find that four features (the change of accessible surface area, percentage of the change of accessible surface area, size of a residue, and atomic contacts) are critical in predicting hot spots. Furthermore, we find that three residues (Tyr, Trp, and Phe) are abundant in hot spots through analyzing the distribution of amino acids.

  12. Estimation of tensile strengths at 4K of 316LN forging and hot rolled plate for the ITER toroidal field coils

    NASA Astrophysics Data System (ADS)

    Iguchi, M.; Saito, T.; Kawano, K.; Takano, K.; Tsutsumi, F.; Chida, Y.; Nakajima, H.

    2012-06-01

    A prediction method for both yield and tensile strengths of stainless steels from room temperature to liquid helium temperature (4K) has been developed by JAEA in order to rationalize qualification tests of cryogenic structural materials used in large superconducting magnet for a fusion device. This method is to use quadratic curves which are expressed as a function of carbon and nitrogen contents and strengths at room temperature. This study shows results of tensile tests at 4K and confirmation of accuracy of prediction method for tensile strengths at 4K for large forgings and thick hot rolled plates of austenitic stainless steels, which can be used in the actual coil case of the International Thermonuclear Experimental Reactor (ITER) toroidal field (TF) coils. These products are 316LN having high nitrogen and maximum thickness is 600mm. As the results, it was confirmed that the materials which satisfied ITER design requirement can be manufactured and the tensile strengths of these products at 4K can be predicted by using appropriate quadratic curves.

  13. Developing a Basal Texture with Two Peaks Tilting Towards the Transverse Direction in Hot Rolled Mg-5.7Zn-0.5Zr Plates

    NASA Astrophysics Data System (ADS)

    Wang, Yannan; Xin, Yunchang; Chapuis, Adrien; Yu, Huihui; Liu, Qing

    2016-08-01

    Rolled Mg alloys often present a basal texture with the (0002) poles slightly tilting from the normal direction (ND) towards the rolling direction. The current work systematically studies the formation of a double-peaked basal texture tilting from the ND towards the transverse direction (TD) of Mg-5.7Zn-0.5Zr (ZK60) plates hot rolled from the as-cast condition. Our results show that a basal texture forms with the two peaks obviously tilting from the ND towards the TD after rolling to reductions over 19 pct at 673 K (400 °C), but does not appear after rolling at 293 K (20 °C). The TD-tilted double peaks of basal poles disappear after annealing, developing a stronger peak of basal poles around the ND. The microstructural examination indicates that this TD-tilted basal texture mainly results from rolling deformation rather than dynamic recrystallization. Crystal plasticity simulation using the VPSC model was used to understand the effect of slips and twinning on the formation of this TD-tilted basal texture. Simulation demonstrates that, compared to prismatic slip, pyramidal slip is more efficient to generate the basal texture tilting towards the TD. The possible mechanisms affecting the activity of non-basal slips are discussed.

  14. Pharmacological analysis of response latency in the hot plate test following whole-body static magnetic field-exposure in the snail Helix pomatia.

    PubMed

    Hernádi, László; László, János F

    2014-07-01

    To study the effect of single, 30-min long, whole-body, homogeneous static magnetic field (SMF)-exposure of magnetic induction 147 ± 3 mT on the response latency of the snail Helix pomatia. The response was investigated using the hot plate test. The effect caused by exposure to SMF was compared to sham-exposure and resulted in significant differences (up to 47.1%, p < 0.001). The response latency depended on the day-night cycle; response latency was higher by 51.2% (p < 0.001) during the night. This trend also held for SMF-exposure (28.6%, p < 0.001). Serotonin alone increased response latency (55.7%, p < 0.001), whereas serotonin antagonist tryptamine decreased it (- 97.8%, p < 0.001). Using naloxone, response latency decreased (- 52.5%, p < 0.001); however both SMF-exposure and serotonin in combination with naloxone rose it back to above the control level (116.9%, p < 0.001 or 150.2%, p < 0.001, respectively). This study provides evidence that SMF-exposure mediates peripheral thermal nociceptive threshold by affecting the serotonerg as well as the opioiderg system.

  15. Hot Plate Annealing at a Low Temperature of a Thin Ferroelectric P(VDF-TrFE) Film with an Improved Crystalline Structure for Sensors and Actuators

    PubMed Central

    Mahdi, Rahman Ismael; Gan, W.C.; Abd. Majid, W. H.

    2014-01-01

    Ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymer 70/30 thin films are prepared by spin coating. The crystalline structure of these films is investigated by varying the annealing temperature from the ferroelectric phase to the paraelectric phase. A hot plate was used to produce a direct and an efficient annealing effect on the thin film. The dielectric, ferroelectric and pyroelectric properties of the P(VDF-TrFE) thin films are measured as a function of different annealing temperatures (80 to 140 °C). It was found that an annealing temperature of 100 °C (slightly above the Curie temperature, Tc) has induced a highly crystalline β phase with a rod-like crystal structure, as examined by X-ray. Such a crystal structure yields a high remanent polarization, Pr = 94 mC/m2, and pyroelectric constant, p = 24 μC/m2K. A higher annealing temperature exhibits an elongated needle-like crystal domain, resulting in a decrease in the crystalline structure and the functional electrical properties. This study revealed that highly crystalline P(VDF-TrFE) thin films could be induced at 100 °C by annealing the thin film with a simple and cheap method. PMID:25317763

  16. Hot plate annealing at a low temperature of a thin ferroelectric P(VDF-TrFE) film with an improved crystalline structure for sensors and actuators.

    PubMed

    Mahdi, Rahman Ismael; Gan, W C; Abd Majid, W H

    2014-10-14

    Ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymer 70/30 thin films are prepared by spin coating. The crystalline structure of these films is investigated by varying the annealing temperature from the ferroelectric phase to the paraelectric phase. A hot plate was used to produce a direct and an efficient annealing effect on the thin film. The dielectric, ferroelectric and pyroelectric properties of the P(VDF-TrFE) thin films are measured as a function of different annealing temperatures (80 to 140 °C). It was found that an annealing temperature of 100 °C (slightly above the Curie temperature, Tc) has induced a highly crystalline β phase with a rod-like crystal structure, as examined by X-ray. Such a crystal structure yields a high remanent polarization, Pr = 94 mC/m2, and pyroelectric constant, p = 24 μC/m2K. A higher annealing temperature exhibits an elongated needle-like crystal domain, resulting in a decrease in the crystalline structure and the functional electrical properties. This study revealed that highly crystalline P(VDF-TrFE) thin films could be induced at 100 °C by annealing the thin film with a simple and cheap method.

  17. Plate Tectonics Constrained by Evidence-Based Magmatic Temperatures and Phase Relations of Fertile Lherzolite (Invited)

    NASA Astrophysics Data System (ADS)

    Green, D. H.; Falloon, T.

    2010-12-01

    In order to understand Earth’s plate tectonics we must interpret the most direct probes for mantle composition and temperature distribution i.e. the primitive basaltic magmas and peridotites representing partial melts and mantle residues. An evidence-based approach to identification of parental magmas and determination of their temperatures requires glass and phenocryst compositions and experimentally calibrated Fe/Mg partitioning between olivine and melt. We have compared magmatic crystallization temperatures between ‘hot-spot’(proposed to be plume-related) and normal mid-ocean ridge basalt (MORB) parental liquids, by examining three representative magmatic suites from both ocean island (Hawaii, Iceland, and Réunion) and mid-ocean ridge settings (Cocos-Nazca, East Pacific Rise, and Mid-Atlantic Ridge). We have glass and olivine phenocryst compositions, including volatile (H2O) contents, and have calculated parental liquid compositions at 0.2GPa by incrementally adding olivine back into the glass compositions until a liquid in equilibrium with the most-magnesian olivine phenocryst composition is obtained. The results of these calculations demonstrate that there is very little difference (maximum of ~20°C) between the ranges of crystallization temperatures of the parental liquids (MORB:1243-1351°C versus OIB:1286-1372°C) when volatile contents are taken into account. However while lacking temperature contrast, the source regions for ‘hot-spot’ parental magmas contain geochemical signatures of old subducted crust/lithosphere. The mantle depths of origin determined for both the MORB and OIB suites are similar (MORB:1-2 GPa; OIB:1-2.5 GPa). Calculations of mantle potential temperatures (Tp) are model dependent, particularly to melt fraction from an inferred source. Assuming similar fertile lherzolite sources, the differences in Tp values between the hottest MORB and the hottest ocean island tholeiite sources are ~80°C. These differences disappear if the

  18. Physics-Based 3-D Simulation for Earthquake Generation Cycles at Plate Interfaces in Subduction Zones

    NASA Astrophysics Data System (ADS)

    Hashimoto, Chihiro; Fukuyama, Eiichi; Matsu'ura, Mitsuhiro

    2014-08-01

    The generation of interplate earthquakes can be regarded as a process of tectonic stress accumulation and release, driven by relative plate motion. We completed a physics-based simulation system for earthquake generation cycles at plate interfaces in the Japan region, where the Pacific plate is descending beneath the North American and Philippine Sea plates, and the Philippine Sea plate is descending beneath the North American and Eurasian plates. The system is composed of a quasi-static tectonic loading model and a dynamic rupture propagation model, developed on a realistic 3-D plate interface model. The driving force of the system is relative plate motion. In the quasi-static tectonic loading model, mechanical interaction at plate interfaces is rationally represented by the increase of tangential displacement discontinuity (fault slip) across them on the basis of dislocation theory for an elastic surface layer overlying Maxwell-type viscoelastic half-space. In the dynamic rupture propagation model, stress changes due to fault slip motion on non-planar plate interfaces are evaluated with the boundary integral equation method. The progress of seismic (dynamic) or aseismic (quasi-static) fault slip on plate interfaces is governed by a slip- and time-dependent fault constitutive law. As an example, we numerically simulated earthquake generation cycles at the source region of the 1968 Tokachi-oki earthquake on the North American-Pacific plate interface. From the numerical simulation, we can see that postseismic stress relaxation in the asthenosphere accelerates stress accumulation in the source region. When the stress state of the source region is close to a critical level, dynamic rupture is rapidly accelerated and develops over the whole source region. When the stress state is much lower than the critical level, the rupture is not accelerated. This means that the stress state realized by interseismic tectonic loading essentially controls the subsequent dynamic

  19. Microstructure, Mechanical and Wear Behaviors of Hot-Pressed Copper-Nickel-Based Materials for Diamond Cutting Tools

    NASA Astrophysics Data System (ADS)

    Miranda, G.; Ferreira, P.; Buciumeanu, M.; Cabral, A.; Fredel, M.; Silva, F. S.; Henriques, B.

    2017-08-01

    The current trend to replace cobalt in diamond cutting tools (DCT) for stone cutting has motivated the study of alternative materials for this end. The present study characterizes several copper-nickel-based materials (Cu-Ni; Cu-Ni-10Sn, Cu-Ni-15Sn, Cu-Ni-Sn-2WC and Cu-Ni-Sn-10WC) for using as matrix material for diamond cutting tools for stone. Copper-nickel-based materials were produced by hot pressing, at a temperature of 850 °C during 15 min and under an applied pressure of 50 MPa. The mechanical properties were evaluated though the shear strength and hardness values. The microstructures and fracture surfaces were analyzed by SEM. The wear behavior of all specimens was assessed using a reciprocating ball-on-plate tribometer. The hot pressing produced compacts with good densification. Sn and WC promoted enhanced mechanical properties and wear performance to Cu-Ni alloys. Cu-Ni-10Sn and Cu-Ni-10Sn-2WC displayed the best compromise between mechanical and wear performance.

  20. Highly sensitive hot electron bolometer based on disordered graphene

    PubMed Central

    Han, Qi; Gao, Teng; Zhang, Rui; Chen, Yi; Chen, Jianhui; Liu, Gerui; Zhang, Yanfeng; Liu, Zhongfan; Wu, Xiaosong; Yu, Dapeng

    2013-01-01

    A bolometer is a device that makes an electrical resistive response to the electromagnetic radiation resulted from a raise of temperature due to heating. The combination of the extremely weak electron-phonon interactions along with its small electron heat capacity makes graphene an ideal material for applications in ultra-fast and sensitive hot electron bolometer. However, a major issue is that the resistance of pristine graphene weakly depends on the electronic temperature. We propose using disordered graphene to obtain a strongly temperature dependent resistance. The measured electrical responsivity of the disordered graphene bolometer reaches 6 × 106 V/W at 1.5 K, corresponding to an optical responsivity of 1.6 × 105 V/W. The deduced electrical noise equivalent power is 1.2 , corresponding to the optical noise equivalent power of 44 . The minimal device structure and no requirement for high mobility graphene make a step forward towards the applications of graphene hot electron bolometers. PMID:24346418

  1. Theoretical analysis based on fundamental functions of thin plate and experimental measurement for vibration characteristics of a plate coupled with liquid

    NASA Astrophysics Data System (ADS)

    Liao, Chan-Yi; Wu, Yi-Chuang; Chang, Ching-Yuan; Ma, Chien-Ching

    2017-04-01

    This study combined theoretical, experimental, and numerical analysis to investigate the vibration characteristics of a thin rectangular plate positioned horizontally at the bottom of a rectangular container filled with liquid. Flow field pressure was derived using an equation governing the behavior of incompressible fluids. Analytic solutions to vibrations in a thin plate in air served as the fundamental function of the thin plate coupled with liquid. We then used liquid pressure, and the out-of-plane deflection of the thin plate for the construction of frequency response functions for the analysis of vibration characteristics in the liquid-plate coupling system. Two experimental methods were employed to measure the vibration characteristics of the thin plate immersed in water. The first involved using sensors of polyvinylidene difluoride (PVDF) to measure transient signals of fluid-plate system subjected an impact at the thin plate. These were then converted to the frequency domain in order to obtain the resonant frequencies of the fluid-plate coupling system. The second method was amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI), which was used to measure the dynamic characteristics of the thin plate in the flow field. This method was paired with the image processing techniques, temporal speckle pattern interferometry (TSPI) and temporal standard deviation (TSTD), to obtain clear mode shapes of the thin plate and resonant frequencies. Comparison of the results from theoretical analysis, finite element method, and experimental measurements confirmed the accuracy of our theoretical analysis, which was superior to the conventional approach based on beam mode shape functions. The experimental methods proposed in this study can be used to measure the resonant frequencies of underwater thin plates, and clear mode shapes can be obtained using AF-ESPI. Our results indicate that the resonant frequencies of thin plates underwater are lower than

  2. Multifrequency multi-qubit entanglement based on plasmonic hot spots

    NASA Astrophysics Data System (ADS)

    Ren, Jun; Wu, Tong; Zhang, Xiangdong

    2015-09-01

    The theoretical method to study strong coupling between an ensemble of quantum emitters (QEs) and surface plasmons excited by the nanoparticle cluster has been presented by using a rigorous first-principles electromagnetic Green’s tensor technique. We have demonstrated that multi-qubit entanglements for two-level QEs can be produced at different coupling resonance frequencies, when they locate in the hot spots of the metallic nanoparticle cluster. The duration of quantum beats for such an entanglement can reach two orders longer than that for the entanglement in a photonic cavity. The phenomenon originates from collective coupling resonance excitation of the cluster. At the frequency of single scattering resonance, the entanglement cannot be produced although the single QE spontaneous decay rate is very big.

  3. Multifrequency multi-qubit entanglement based on plasmonic hot spots

    PubMed Central

    Ren, Jun; Wu, Tong; Zhang, Xiangdong

    2015-01-01

    The theoretical method to study strong coupling between an ensemble of quantum emitters (QEs) and surface plasmons excited by the nanoparticle cluster has been presented by using a rigorous first-principles electromagnetic Green’s tensor technique. We have demonstrated that multi-qubit entanglements for two-level QEs can be produced at different coupling resonance frequencies, when they locate in the hot spots of the metallic nanoparticle cluster. The duration of quantum beats for such an entanglement can reach two orders longer than that for the entanglement in a photonic cavity. The phenomenon originates from collective coupling resonance excitation of the cluster. At the frequency of single scattering resonance, the entanglement cannot be produced although the single QE spontaneous decay rate is very big. PMID:26350051

  4. Hot coal gas desulfurization with manganese-based sorbents

    SciTech Connect

    Hepworth, M.T.; Ben-Slimane, R.

    1995-11-01

    The primary major deposit of manganese in the US which can be readily mined by an in situ process is located in the Emily district of Minnesota. The US Bureau of Mines Research Centers at both the Twin Cities and Salt Lake City have developed a process for extracting and refining manganese in the form of a high-purity carbonate product. This product has been formulated into pellets by a multi-step process of drying, calcination, and induration to produce relatively high-strength formulations which are capable of being used for hot fuel gas desulfurization. These pellets, which have been developed at the University of Minnesota under joint sponsorship of the US Department of Energy and the US Bureau of Mines, appear superior to other, more expensive, formulations of zinc titanate and zinc ferrite which have previously been studied for multi-cycle loading (desulfurization) and regeneration (evolution of high-strength SO{sub 2} and restoration of pellet reactivity). Although these other formulations have been under development for the past twelve years, their prices still exceed $7 per pound. If manganese pellets perform as predicted in fixed bed testing, and if a significant number of utilities which burn high-sulfur coals incorporate combined-cycle gasification with hot coal gas desulfurization as a viable means of increasing conversion efficiencies, then the potential market for manganese pellets may be as high as 200,000 tons per year at a price not less than $3 per pound. This paper discusses the role of manganese pellets in the desulfurization process with respect to the integrated gasification combined-cycle (IGCC) for power generation.

  5. Numerical calculation of the operation wavelength range of a polarization controller based on rotatable wave plates

    NASA Astrophysics Data System (ADS)

    Park, Hee Su; Sharma, Aditya

    2016-12-01

    We calculate the operation wavelength range of polarization controllers based on rotating wave plates such as paddle-type optical fiber devices. The coverages over arbitrary polarization conversion or arbitrary birefringence compensation are numerically estimated. The results present the acceptable phase retardation range of polarization controllers composed of two quarter-wave plates or a quarter-half-quarter-wave plate combination, and thereby determines the operation wavelength range of a given design. We further prove that a quarter-quarter-half-wave-plate combination is also an arbitrary birefringence compensator as well as a conventional quarter-half-quarter-wave-plate combination, and show that the two configurations have the identical range of acceptable phase retardance within the uncertainty of our numerical method.

  6. Ion source for IMS based on wire-to-plate corona discharge

    NASA Astrophysics Data System (ADS)

    Xia, Qing; Zhang, Yu; Ouyang, Jiting

    2017-08-01

    In this paper, an ion source based on wire-to-plate corona is developed for Ion Mobility Spectrometer (IMS). The characteristics of the corona discharge and the ion current detected on Faraday plate are investigated under different electrode spacing and voltage. The effect of voltage polarity is also studied. The features of this new designed ion source are compared with that of point-to-plate corona. The results show that the present IMS prototype machine can provide a much larger value of ion current connected by Faraday plate than the point-to-plate corona and/or the traditional 63Ni source. The corona configuration can also act as a good electromagnetic shielding to defense the electromagnetic emission from the corona discharge.

  7. Hot corrosion testing of Ni-based alloys and coatings in a modified Dean rig

    NASA Astrophysics Data System (ADS)

    Steward, Jason Reid

    Gas turbine blades are designed to withstand a variety of harsh operating conditions. Although material and coating improvements are constantly administered to increase the mean time before turbine refurbishment or replacement, hot corrosion is still considered as the major life-limiting factor in many industrial and marine gas turbines. A modified Dean rig was designed and manufactured at Tennessee Technological University to simulate the accelerated hot corrosion conditions and to conduct screening tests on the new coatings on Ni-based superalloys. Uncoated Ni-based superalloys, Rene 142 and Rene 80, were tested in the modified Dean rig to establish a testing procedure for Type I hot corrosion. The influence of surface treatments on the hot corrosion resistance was then investigated. It was found that grit-blasted specimens showed inferior hot corrosion resistance than that of the polished counterpart. The Dean rig was also used to test model MCrAlY alloys, pack cementation NiAl coatings, and electro-codeposited MCrAlY coatings. Furthermore, the hot corrosion attack on the coated-specimens were also assessed using a statistical analysis approach.

  8. Hot Electron-Based Near-Infrared Photodetection Using Bilayer MoS2.

    PubMed

    Wang, Wenyi; Klots, Andrey; Prasai, Dhiraj; Yang, Yuanmu; Bolotin, Kirill I; Valentine, Jason

    2015-11-11

    Recently, there has been much interest in the extraction of hot electrons generated from surface plasmon decay, as this process can be used to achieve additional bandwidth for both photodetectors and photovoltaics. Hot electrons are typically injected into semiconductors over a Schottky barrier between the metal and semiconductor, enabling generation of photocurrent with below bandgap photon illumination. As a two-dimensional semiconductor single and few layer molybdenum disulfide (MoS2) has been demonstrated to exhibit internal photogain and therefore becomes an attractive hot electron acceptor. Here, we investigate hot electron-based photodetection in a device consisting of bilayer MoS2 integrated with a plasmonic antenna array. We demonstrate sub-bandgap photocurrent originating from the injection of hot electrons into MoS2 as well as photoamplification that yields a photogain of 10(5). The large photogain results in a photoresponsivity of 5.2 A/W at 1070 nm, which is far above similar silicon-based hot electron photodetectors in which no photoamplification is present. This technique is expected to have potential use in future ultracompact near-infrared photodetection and optical memory devices.

  9. A feature-based approach to modeling protein–protein interaction hot spots

    PubMed Central

    Cho, Kyu-il; Kim, Dongsup; Lee, Doheon

    2009-01-01

    Identifying features that effectively represent the energetic contribution of an individual interface residue to the interactions between proteins remains problematic. Here, we present several new features and show that they are more effective than conventional features. By combining the proposed features with conventional features, we develop a predictive model for interaction hot spots. Initially, 54 multifaceted features, composed of different levels of information including structure, sequence and molecular interaction information, are quantified. Then, to identify the best subset of features for predicting hot spots, feature selection is performed using a decision tree. Based on the selected features, a predictive model for hot spots is created using support vector machine (SVM) and tested on an independent test set. Our model shows better overall predictive accuracy than previous methods such as the alanine scanning methods Robetta and FOLDEF, and the knowledge-based method KFC. Subsequent analysis yields several findings about hot spots. As expected, hot spots have a larger relative surface area burial and are more hydrophobic than other residues. Unexpectedly, however, residue conservation displays a rather complicated tendency depending on the types of protein complexes, indicating that this feature is not good for identifying hot spots. Of the selected features, the weighted atomic packing density, relative surface area burial and weighted hydrophobicity are the top 3, with the weighted atomic packing density proving to be the most effective feature for predicting hot spots. Notably, we find that hot spots are closely related to π–related interactions, especially π · · · π interactions. PMID:19273533

  10. Plate Tectonics and Taiwan Orogeny based on TAIGER Experiments

    NASA Astrophysics Data System (ADS)

    Wu, F. T.; Kuochen, H.; McIntosh, K. D.

    2014-12-01

    Plate tectonics framework is usually complex in a collision zone, where continental lithosphere is involved. In the young Taiwan orogeny, with geologic understanding and large new geodetic and subsurface datasets now available an environment has been created for testing tectonic hypotheses regarding collision and orogeny. Against the background of the commonly accepted view of Taiwan as a southward propagating, self-similar 2-D orogen, a fully 3-D structure is envisaged. Along the whole length of the island the convergence of the Eurasian plate (EUP) the Philippine Sea plate (PSP) takes shape with different plate configurations. In northern Taiwan the convergence occurs with simultaneous collision of the oceanic PSP with continental EUP and the northward subduction of the PSP; in the south, EUP, in the guise of the South China Sea rifted Eurasian continent, subducts toward the east; in central Taiwan collision of oceanic PSP with continental EUP dominates. When relocated seismicity and focal mechanisms are superposed on subsurface P and Vp/Vs velocity images the configurations and the kinematics of the PSP and EUP collision and subduction become clear. While in northern Taiwan the subduction/collision explains well the high peaks and their dwindling (accompanied by crustal thinning) toward the north. In the south, mountains rise above the east-dipping EUP subduction zone as the Eurasian continental shelf veers toward the southwest, divergent from the trend of the Luzon Arc - calling into question the frequently cited arc-continent collision model of Taiwan orogeny. High velocity anomaly and Benioff seismicity coexist in the south. Going north toward Central Taiwan the high velocity anomaly persists for another 150 km or so, but it becomes seismically quiescent. Above the quiescent section the PSP and EUP collide to build the main part of the Central Range and its parallel neighbor the eastern Coastal Range. Key implications regarding orogeny include: 1) Significant

  11. Collaborative guarded-hot-plate tests between the Laboratoire national de métrologie et d’essais and the National Institute of Standards and Technology

    NASA Astrophysics Data System (ADS)

    Zarr, Robert R.; Guthrie, William F.; Hay, Bruno; Koenen, Alain

    2017-02-01

    A collaborative study to compare the long-term measurement performance between guarded-hot-plate facilities at the Laboratoire national de métrologie et d’essais (LNE) in France and the National Institute of Standards and Technology (NIST) in the United States is presented. Thermal conductivity data were compiled from three international comparisons organized from 1997 to 2014. Measurements were conducted in accordance with standardized test methods (ISO 8302 or ASTM C 177) over a temperature range from 280 K to 320 K. Nine thermal insulating materials (either mineral fiber or expanded polystyrene) were examined covering broad ranges of bulk densities (13 kg · m-3-200 kg · m-3) and thicknesses (13 mm-70 mm). A different set of specimens was utilized for each comparison. Results of this study indicate that, over a 17 year interval, the majority of test data from LNE and NIST agreed to within  ±1.0%, or less, for mineral fiber materials and to within  ±0.5%, or less, for expanded polystyrene. The long-term variability limit of 1% between the two laboratories is in good agreement with their current measurement uncertainties. Regression coefficients and their standard uncertainties for a straight-line model relating thermal conductivity to temperature from 280 K to 320 K were computed by material and laboratory. Graphical analysis of the data and corresponding fits exhibit consistent behavior by material type between the two laboratories. Sources of measurement variability are addressed.

  12. Enzymic and molecular properties of base-plate parts of bacteriophage P22.

    PubMed

    Iwashita, S; Kanegasaki, S

    1976-05-17

    Using 14C-labeled Salmonella bacterial cells as the substrate, the enzymic and molecular properties of the base-plate parts of phage P22 were studied. The base-plate part consisted of a single protein species which cleaved extensively the O-antigen of Salmonella typhimurium, Salmonelly schottmuellerie and with somewhat slower rate that of Salmonella typhi, releasing oligo-saccharide products with rhamnose at the reducing end. Much less cleavage was observed with a strain of S. typhimurium lysogenic for P22, and no significant reaction with Salmonella anatum, Salmonella newington and Salmonella minneapolis. The base-plate part enzyme was a very heat-stable protein and only 10-20% loss was observed after treatment at 85 degrees C for 5 min. The pH optimum of the enzyme was around 7.5, and the glycosidase activity was not influenced by the ionic strength (25-250 mM( of the medium or the presence of Mg2+. The molecular weight of the base-plate part was 320,000 by sedimentation equilibrium. Dodecylsulphate-acrylamide gel electrophoresis revealed a single band of molecular weight 77,000, indicating that a single base-plate part corresponds to a tetramer of identical subunits. Circular dichroism spectra of P22 base-plate parts showed a major contribution of beta structure. The protein was rich in acidic amino acids, glycine and serine.

  13. Computer animation of Phanerozoic plate motions

    SciTech Connect

    Scotese, C.R. . Dept. of Geology)

    1992-01-01

    Since 1985, the PALEOMAP Project, in collaboration with research groups both in the US and abroad, has assembled a digital model that describes global plate motions during the last 600 million years. In this paper the authors present a series of computer animations that dynamically illustrates the movement of continents and terranes, and the evolution of the ocean basins since the breakup of the late Precambrian supercontinent. These animations depict the motion of the plates from both equatorial and polar perspectives. Mesozoic and Cenozoic plate tectonic reconstructions are based on a synthesis of linear magnetic anomalies, fracture zone locations, intracontinental rifts, collision and thrust belts, and zones of strike-slip. Paleozoic plate reconstructions, though more speculative, are based on evidence of past subduction, continental collision, and inferred sea floor spreading. The relative longitudinal positions of the continents during the Paleozoic and the width of intervening oceans have been adjusted to best explain changing biogeographic and paleoclimatic patterns. A new paleomagnetic/hot spot reference frame has been constructed that combines paleomagnetic data compiled by Rob Van der Voo (1992) with inferred motion relative to a fixed frame of hot spots. Using probable Early Mesozoic and Paleozoic hot spot tracks on the major continents, the authors have extended plate motions relative to the hot spot reference frame back to 400 million years.

  14. Design and Development of ZigBee Based Instantaneous Flat-plate Collector Efficiency Measurement System

    NASA Astrophysics Data System (ADS)

    Vairamani, K.; Venkatesh, K. Arun; Mathivanan, N.

    2011-01-01

    Computing the efficiency of flat-plate collector is vital in solar thermal system testing. This paper presents the design of ZigBee enabled data acquisition system for instantaneous flat-plate collector efficiency calculation. It involves measurement of parameters like inlet and outlet fluid temperatures, ambient temperature and solar radiation intensity. The designed system has a base station and a sensor node. ZigBee wireless communication protocol is used for communication between the base station and the sensor node for wireless data acquisition. The wireless sensor node which is mounted over the collector plate includes the necessary sensors and associated signal-conditioners. An application program has been developed on LabVIEW platform for data acquisition, processing and analysis and is executed in base station PC. Instantaneous flat-plate collector efficiency is computed and reported.

  15. Constitutive Description of 7075 Aluminum Alloy During Hot Deformation by Apparent and Physically-Based Approaches

    NASA Astrophysics Data System (ADS)

    Mirzadeh, Hamed

    2015-03-01

    Hot flow stress of 7075 aluminum alloy during compressive hot deformation was correlated to the Zener-Hollomon parameter through constitutive analyses based on the apparent approach and the proposed physically-based approach which accounts for the dependence of the Young's modulus and the self-diffusion coefficient of aluminum on temperature. It was shown that the latter approach not only results in a more reliable constitutive equation, but also significantly simplifies the constitutive analysis, which in turn makes it possible to conduct comparative hot working studies. It was also demonstrated that the theoretical exponent of 5 and the lattice self-diffusion activation energy of aluminum (142 kJ/mol) can be set in the hyperbolic sine law to describe the peak flow stresses and the resulting constitutive equation was found to be consistent with that resulted from the proposed physically-based approach.

  16. Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy

    SciTech Connect

    Chao, W.; Kim, J.; Rekawa, S.; Fischer, P.; Anderson, E. H.

    2009-06-05

    To extend soft x-ray microscopy to a resolution of order 10 nm or better, we developed a new nanofabrication process for Fresnel zone plate lenses. The new process, based on the double patterning technique, has enabled us to fabricate high quality gold zone plates with 12 nm outer zones. Testing of the zone plate with the full-field transmission x-ray microscope, XM-1, in Berkeley, showed that the lens clearly resolved 12 nm lines and spaces. This result represents a significant step towards 10 nm resolution and beyond.

  17. Distributed hot-wire anemometry based on Brillouin optical time-domain analysis.

    PubMed

    Wylie, Michael T V; Brown, Anthony W; Colpitts, Bruce G

    2012-07-02

    A distributed hot-wire anemometer based on Brillouin optical time-domain analysis is presented. The anemometer is created by passing a current through a stainless steel tube fibre bundle and monitoring Brillouin frequency changes in the presence of airflow. A wind tunnel is used to provide laminar airflow while the device response is calibrated against theoretical models. The sensitivity equation for this anemometer is derived and discussed. Airspeeds from 0 m/s to 10 m/s are examined, and the results show that a Brillouin scattering based distributed hot-wire anemometer is feasible.

  18. Growth plate injury at the base of the coracoid: MRI features.

    PubMed

    Alaia, Erin FitzGerald; Rosenberg, Zehava Sadka; Rossi, Ignacio; Zember, Jonathan; Roedl, Johannes B; Pinkney, Lynne; Steinbach, Lynne S

    2017-07-29

    To assess the MRI features of growth plate injury at the base of the coracoid process. Subjects were identified through retrospective search of our department imaging database and teaching files and the teaching files of two outside academic institutions. The coracoid base growth plate was examined with attention to widening, irregularity, abnormal signal intensity of the growth plate, and the presence of adjacent soft tissue edema. The apposing coracoid and scapular bony surfaces were examined for signal intensity and morphology. Shoulder MRIs in eight patients with coracoid base growth plate disturbances were retrospectively reviewed (7 males, 1 female, mean age 15 years). Growth plate injury manifested as widening, irregularity and increased signal, apposing bony marrow edema and hypertrophy, and surrounding soft tissue edema. Five subjects were athletes (football, archery, basketball, swimming, rugby), two had a history of neuromuscular disorders, and one subject presented after a fall. Clinical indications included: rule out labral tear (n = 3), rule out rotator cuff tear or fracture after fall (n = 1), nonspecific pain (n = 1), shoulder subluxation, rule out glenoid pathology (n = 1, patient with underlying neuromuscular disorder), muscular dystrophy with shoulder pain (n = 1), and impingement (n = 1). Coracoid growth plate injury was not suspected clinically in any of the patients. Awareness of the imaging appearance of coracoid base growth plate injury can aid in a more accurate diagnosis of shoulder MRI studies in young pediatric athletes. While uncommon, coracoid growth plate injury should be considered when assessing children with shoulder symptomatology.

  19. Tandem-structured, hot electron based photovoltaic cell with double Schottky barriers.

    PubMed

    Lee, Young Keun; Lee, Hyosun; Park, Jeong Young

    2014-04-03

    We demonstrate a tandem-structured, hot electron based photovoltaic cell with double Schottky barriers. The tandem-structured, hot electron based photovoltaic cell is composed of two metal/semiconductor interfaces. Two types of tandem cells were fabricated using TiO2/Au/Si and TiO2/Au/TiO2, and photocurrent enhancement was detected. The double Schottky barriers lead to an additional pathway for harvesting hot electrons, which is enhanced through multiple reflections between the two barriers with different energy ranges. In addition, light absorption is improved by the band-to-band excitation of both semiconductors with different band gaps. Short-circuit current and energy conversion efficiency of the tandem-structured TiO2/Au/Si increased by 86% and 70%, respectively, compared with Au/Si metal/semiconductor nanodiodes, showing an overall solar energy conversion efficiency of 5.3%.

  20. Tandem-structured, hot electron based photovoltaic cell with double Schottky barriers

    PubMed Central

    Lee, Young Keun; Lee, Hyosun; Park, Jeong Young

    2014-01-01

    We demonstrate a tandem-structured, hot electron based photovoltaic cell with double Schottky barriers. The tandem-structured, hot electron based photovoltaic cell is composed of two metal/semiconductor interfaces. Two types of tandem cells were fabricated using TiO2/Au/Si and TiO2/Au/TiO2, and photocurrent enhancement was detected. The double Schottky barriers lead to an additional pathway for harvesting hot electrons, which is enhanced through multiple reflections between the two barriers with different energy ranges. In addition, light absorption is improved by the band-to-band excitation of both semiconductors with different band gaps. Short-circuit current and energy conversion efficiency of the tandem-structured TiO2/Au/Si increased by 86% and 70%, respectively, compared with Au/Si metal/semiconductor nanodiodes, showing an overall solar energy conversion efficiency of 5.3%. PMID:24694838

  1. Effectiveness of higher order thinking skills (HOTS) based i-Think map concept towards primary students

    NASA Astrophysics Data System (ADS)

    Ping, Owi Wei; Ahmad, Azhar; Adnan, Mazlini; Hua, Ang Kean

    2017-05-01

    Higher Order Thinking Skills (HOTS) is a new concept of education reform based on the Taxonomies Bloom. The concept concentrate on student understanding in learning process based on their own methods. Through the HOTS questions are able to train students to think creatively, critic and innovative. The aim of this study was to identify the student's proficiency in solving HOTS Mathematics question by using i-Think map. This research takes place in Sabak Bernam, Selangor. The method applied is quantitative approach that involves approximately all of the standard five students. Pra-posttest was conduct before and after the intervention using i-Think map in solving the HOTS questions. The result indicates significant improvement for post-test, which prove that applying i-Think map enhance the students ability to solve HOTS question. Survey's analysis showed 90% of the students agree having i-Thinking map in analysis the question carefully and using keywords in the map to solve the questions. As conclusion, this process benefits students to minimize in making the mistake when solving the questions. Therefore, teachers are necessarily to guide students in applying the eligible i-Think map and methods in analyzing the question through finding the keywords.

  2. Degradation behaviour of LAE442-based plate-screw-systems in an in vitro bone model.

    PubMed

    Wolters, Leonie; Besdo, Silke; Angrisani, Nina; Wriggers, Peter; Hering, Britta; Seitz, Jan-Marten; Reifenrath, Janin

    2015-04-01

    The use of absorbable implant materials for fixation after bone fracture helps to avoid a second surgery for implant removal and the risks and costs involved. Magnesium (Mg) is well known as a potential metallic material for degradable implants. The aim of the present in vitro study was to evaluate if degradable LAE442-based magnesium plate-screw-systems are suitable candidates for osteosynthesis implants in load-bearing bones. The corrosion behaviour was tested concerning the influence of different surface treatments, coatings and screw torques. Steel plates and screws of the same size served as control. Plates without special treatment screwed on up to a specified torque of 15cNm or 7cNm, NaOH treated plates (15cNm), magnesium fluoride coated plates (15cNm) and steel plates as control (15cNm) were examined in pH-buffered, temperature-controlled SBF solution for two weeks. The experimental results indicate that the LAE442 plates and screws coated with magnesium fluoride revealed a lower hydrogen evolution in SBF solution as well as a lower weight loss and volume decrease in μ-computed tomography (μCT). The nanoindentation and SEM/EDX measurements at several plate areas showed no significant differences. Summarized, the different screw torques did not affect the corrosion behaviour differently. Also the NaOH treatment seemed to have no essential influence on the degradation kinetics. The plates coated with magnesium fluoride showed a decreased corrosion rate. Hence, it is recommended to consider this coating for the next in vivo study. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Ballistic Hot Electron Transport in Heteroepitaxial SrRuO3 Metal-Base Transistors

    NASA Astrophysics Data System (ADS)

    Kim, Brian; Hikita, Yasuyuki; Yajima, Takeaki; Bell, Christopher; Hwang, Harold

    Perovskite oxide heterostructures is a rapidly emerging field significant for interface-induced electronic and magnetic reconstructions, resulting in novel phases distinct from those found in the bulk counterparts. Notably, utilizing device structures is an effective way to probe these interface-induced phases. One of the most prevalent device structures that has been adopted so far is a three-terminal field-effect geometry, used to probe in-plane electronic transport properties. However, the out-of-plane three-terminal device geometry, though less studied due to its complexity, is also useful in many aspects. In the metal-base transistor (MBT), for instance, ballistic transport of hot electrons injected across a Schottky diode emitter can be used to probe hot electron properties of the metal-base, providing information on inelastic scattering mechanisms, electron confinement effects, and intervalley transfer. One promising model system for the metal-base is SrRuO3 (SRO), characterized by intermediate electron correlations with unusual transport properties. Here we present an all-perovskite oxide heteroepitaxial MBT using SRO as a metal-base layer. Successful MBT operation for various metal-base layer thicknesses was achieved, from which the hot electron attenuation length of SRO was deduced. These results form a foundation on which to examine the properties of hot electrons in strongly correlated systems using the out-of-plane three-terminal device geometry.

  4. Applied information system-based in enhancing students' understanding towards higher order thinking (HOTS)

    NASA Astrophysics Data System (ADS)

    Hua, Ang Kean; Ping, Owi Wei

    2017-05-01

    The application of information and communications technology (ICT) had become more important in our daily life, especially in educational field. Teachers are encouraged to use information system-based in teaching Mathematical courses. Higher Order Thinking Skills (HOTS) approach is unable to explain using chalk and talk methods. It needs students to analyze, evaluate, and create by their own natural abilities. The aim of this research study was to evaluate the effectiveness of the application information system-based in enhance the students understanding about HOTS question. Mixed-methods or quantitative and qualitative approach was applied in collecting data, which involve only the standard five students and the teachers in Sabak Bernam, Selangor. Pra-postests was held before and after using information system-based in teaching to evaluate the students' understanding. The result from post-test indicates significant improvement which proves that the use of information system based able to enhance students' understanding about HOTS question and solve it. There were several factor influenced the students such as students' attitude, teachers attraction, school facilities, and computer approach. Teachers play an important role in attracting students to learn. Therefore, the school should provide a conducive learning environment and good facilities for students to learn so that they are able to access more information and always exposed to new knowledge. As conclusion, information system-based are able to enhance students understanding the need of HOTS questions and solve it.

  5. Hot-tearing of multicomponent Al-Cu alloys based on casting load measurements in a constrained permanent mold

    SciTech Connect

    Sabau, Adrian S; Mirmiran, Seyed; Glaspie, Christopher; Li, Shimin; Apelian, Diran; Shyam, Amit; Haynes, James A; Rodriguez, Andres

    2017-01-01

    Hot-tearing is a major casting defect that is often difficult to characterize, especially for multicomponent Al alloys used for cylinder head castings. The susceptibility of multicomponent Al-Cu alloys to hot-tearing during permanent mold casting was investigated using a constrained permanent mold in which the load and displacement was measured. The experimental results for hot tearing susceptibility are compared with those obtained from a hot-tearing criterion based temperature range evaluated at fraction solids of 0.87 and 0.94. The Cu composition was varied from approximately 5 to 8 pct. (weight). Casting experiments were conducted without grain refining. The measured load during casting can be used to indicate the severity of hot tearing. However, when small hot-tears are present, the load variation cannot be used to detect and assess hot-tearing susceptibility.

  6. Content-based analysis of Ki-67 stained meningioma specimens for automatic hot-spot selection.

    PubMed

    Swiderska-Chadaj, Zaneta; Markiewicz, Tomasz; Grala, Bartlomiej; Lorent, Malgorzata

    2016-10-07

    Hot-spot based examination of immunohistochemically stained histological specimens is one of the most important procedures in pathomorphological practice. The development of image acquisition equipment and computational units allows for the automation of this process. Moreover, a lot of possible technical problems occur in everyday histological material, which increases the complexity of the problem. Thus, a full context-based analysis of histological specimens is also needed in the quantification of immunohistochemically stained specimens. One of the most important reactions is the Ki-67 proliferation marker in meningiomas, the most frequent intracranial tumour. The aim of our study is to propose a context-based analysis of Ki-67 stained specimens of meningiomas for automatic selection of hot-spots. The proposed solution is based on textural analysis, mathematical morphology, feature ranking and classification, as well as on the proposed hot-spot gradual extinction algorithm to allow for the proper detection of a set of hot-spot fields. The designed whole slide image processing scheme eliminates such artifacts as hemorrhages, folds or stained vessels from the region of interest. To validate automatic results, a set of 104 meningioma specimens were selected and twenty hot-spots inside them were identified independently by two experts. The Spearman rho correlation coefficient was used to compare the results which were also analyzed with the help of a Bland-Altman plot. The results show that most of the cases (84) were automatically examined properly with two fields of view with a technical problem at the very most. Next, 13 had three such fields, and only seven specimens did not meet the requirement for the automatic examination. Generally, the Automatic System identifies hot-spot areas, especially their maximum points, better. Analysis of the results confirms the very high concordance between an automatic Ki-67 examination and the expert's results, with a Spearman

  7. An infrared achromatic quarter-wave plate designed based on simulated annealing algorithm

    NASA Astrophysics Data System (ADS)

    Pang, Yajun; Zhang, Yinxin; Huang, Zhanhua; Yang, Huaidong

    2017-03-01

    Quarter-wave plates are primarily used to change the polarization state of light. Their retardation usually varies depending on the wavelength of the incident light. In this paper, the design and characteristics of an achromatic quarter-wave plate, which is formed by a cascaded system of birefringent plates, are studied. For the analysis of the combination, we use Jones matrix method to derivate the general expressions of the equivalent retardation and the equivalent azimuth. The infrared achromatic quarter-wave plate is designed based on the simulated annealing (SA) algorithm. The maximum retardation variation and the maximum azimuth variation of this achromatic waveplate are only about 1.8 ° and 0.5 ° , respectively, over the entire wavelength range of 1250-1650 nm. This waveplate can change the linear polarized light into circular polarized light with a less than 3.2% degree of linear polarization (DOLP) over that wide wavelength range.

  8. Electroplated Fe-Co-Ni films prepared from deep-eutectic-solvent-based plating baths

    NASA Astrophysics Data System (ADS)

    Yanai, Takeshi; Shiraishi, Kotaro; Akiyoshi, Toshiki; Azuma, Keita; Watanabe, Yoshimasa; Ohgai, Takeshi; Morimura, Takao; Nakano, Masaki; Fukunaga, Hirotoshi

    2016-05-01

    We fabricated soft magnetic films from DES-based plating baths, and investigated magnetic properties of the plated films. The plating baths were obtained by stirring the mixture of choline chloride, ethylene glycol, FeCl2 ṡ 4H2O, NiCl2 ṡ 6H2O and CoCl2 ṡ 6H2O. The composition of the electroplated film depended on the amount of the reagent in the plating bath, and we consequently obtained the films with various composition. The current efficiency of the plating process shows high values (> 88 %) in the wide composition range. The soft magnetic films with low coercivity were obtained at the Fe compositions of ≈ 30 at.% and > 80 at.%, and we found that low coercivity could be realized by the control of the film composition. We also found that the Fe-rich films prepared from DES-based plating bath have some advantages as a soft magnetic phase for a nanocomposite magnet due to their high saturation magnetization and very fine crystal structure.

  9. A feasibility study on laser rapid forming of a complete titanium denture base plate.

    PubMed

    Wu, Jiang; Gao, Bo; Tan, Hua; Chen, Jing; Tang, Chak-Yin; Tsui, Chi-Pong

    2010-05-01

    This work attempted to integrate the technologies of computer-aided design and computer-aided manufacture (CAD/CAM) and laser rapid forming (LRF) for the fabrication of the titanium plate of a complete denture. By the combination of laser scan and reverse engineering software, the standard triangulation language (STL)-formatted denture base plate was finally designed and sliced into a sequence of numerical controlled codes. The titanium (Ti) complete denture plate was finally built, layer-by-layer, on the LRF system. To evaluate the quality of fit, a virtual adaptation test that measured and compared the profiles of the laser free formed denture plate and those of the edentulous plaster cast had been conducted, and the mean deviation was found to be 0.34 mm. After traditional dental finishing techniques, a complete denture with a Ti base plate was then made and judged to be acceptable. The CAD/CAM/LRF system is a potential candidate and a new platform for the design and manufacture of custom-made Ti denture plates and restorations.

  10. Magnetic Fe-Co films electroplated in a deep-eutectic-solvent-based plating bath

    NASA Astrophysics Data System (ADS)

    Yanai, T.; Shiraishi, K.; Watanabe, Y.; Ohgai, T.; Nakano, M.; Suzuki, K.; Fukunaga, H.

    2015-05-01

    We fabricated Fe-Co films from a deep eutectic solvent (DES)-based plating bath and investigated magnetic properties of the plated films. The plating baths were obtained by stirring the mixture of choline chloride, ethylene glycol, FeCl2.4H2O, and CoCl2.6H2O. The composition of the plated films depended on the amount of FeCl2.4H2O in the plating bath, and Fe content of the films was varied from 0 to 100 at. %. Depending on the Fe content, the saturation magnetization and the coercivity of the films varied. The Fe76Co24 film shows high saturation magnetization and smooth surface, and the change in the saturation magnetization shows good agreement with the expected change by the Slater-Pauling curve. High current efficiency (>90%) could be obtained in the wide film composition. From these results, we concluded that the DES-based plating bath is one of effective baths for the Fe-Co films with high current efficiency.

  11. Plasma-based surface modification of polystyrene microtiter plates for covalent immobilization of biomolecules.

    PubMed

    North, Stella H; Lock, Evgeniya H; Cooper, Candace J; Franek, James B; Taitt, Chris R; Walton, Scott G

    2010-10-01

    In recent years, polymer surfaces have become increasingly popular for biomolecule attachment because of their relatively low cost and desirable bulk physicochemical characteristics. However, the chemical inertness of some polymer surfaces poses an obstacle to more expansive implementation of polymer materials in bioanalytical applications. We describe use of argon plasma to generate reactive hydroxyl moieties at the surface of polystyrene microtiter plates. The plates are then selectively functionalized with silanes and cross-linkers suitable for the covalent immobilization of biomolecules. This plasma-based method for microtiter plate functionalization was evaluated after each step by X-ray photoelectron spectroscopy, water contact angle analysis, atomic force microscopy, and bioimmobilization efficacy. We further demonstrate that the plasma treatment followed by silane derivatization supports direct, covalent immobilization of biomolecules on microtiter plates and thus overcomes challenging issues typically associated with simple physisorption. Importantly, biomolecules covalently immobilized onto microtiter plates using this plasma-based method retained functionality and demonstrated attachment efficiency comparable to commercial preactivated microtiter plates.

  12. Automated methodology for selecting hot and cold pixel for remote sensing based evapotranspiration mapping

    USDA-ARS?s Scientific Manuscript database

    Surface energy fluxes, especially the latent heat flux from evapotranspiration (ET), determine exchanges of energy and mass between the hydrosphere, atmosphere, and biosphere. There are numerous remote sensing-based energy balance approaches such as METRIC and SEBAL that use hot and cold pixels from...

  13. A Hot-Wire Method Based Thermal Conductivity Measurement Apparatus for Teaching Purposes

    ERIC Educational Resources Information Center

    Alvarado, S.; Marin, E.; Juarez, A. G.; Calderon, A.; Ivanov, R.

    2012-01-01

    The implementation of an automated system based on the hot-wire technique is described for the measurement of the thermal conductivity of liquids using equipment easily available in modern physics laboratories at high schools and universities (basically a precision current source and a voltage meter, a data acquisition card, a personal computer…

  14. An investigation of the initiation stage of hot corrosion in Ni-base alloys

    NASA Technical Reports Server (NTRS)

    Huang, T. T.; Meier, G. H.

    1979-01-01

    The commercial nickel base alloy, IN-738, and high purity laboratory alloys were prepared to simulate the effects of the major elements in IN-738. Results indicate that the initiation of hot corrosion attack of IN-738 and other similar alloys is the result of local penetration of molten salt through the protective oxide scale.

  15. A Hot-Wire Method Based Thermal Conductivity Measurement Apparatus for Teaching Purposes

    ERIC Educational Resources Information Center

    Alvarado, S.; Marin, E.; Juarez, A. G.; Calderon, A.; Ivanov, R.

    2012-01-01

    The implementation of an automated system based on the hot-wire technique is described for the measurement of the thermal conductivity of liquids using equipment easily available in modern physics laboratories at high schools and universities (basically a precision current source and a voltage meter, a data acquisition card, a personal computer…

  16. The effect of refractory elements on the hot corrosion resistance of nickel-base superalloys

    SciTech Connect

    Verdonik, D.P.

    1988-01-01

    The superalloy B 1900, an alumina former, is known to possess reasonable oxidation resistance but less adequate resistance to hot corrosion. Superalloys IN 738 and U 710, chromia formers, are know to possess oxidation and corrosion resistance. Experimental alloys based on these existing superalloys are designed by mutually substituting the refractory elements Mo, W, Nb and Ta. The effects of these substitutions were tested for hot corrosion resistance. The experiments were carried out at 800, 900 and 1000{degree}C and activation energies were determined from the rate constants in the different regimes. Consistent with previous results, U 710 is the most hot corrosion-resistant standard alloy, ranked second is IN 738, and lastly is B 1900. Within the entire series of alloys, the U 710 based alloys are the most hot corrosion resistant exhibiting only the initial regime. The B 1900 based alloys with only Ta or Nb (no Mo) are the next best showing only up to accelerated attack. The IN 738 alloys rank third. Within these derivative alloys, the alloys without Nb are the best, exhibiting the smallest accelerated attack and the longest initial regime. The B 1900 based alloys containing Mo are the worst of the entire series. Within these substitutions, the alloys with Ta are the best. The alloys with Mo and Nb, and with just Mo are nearly equivalent, being the least corrosion resistant of all the alloys tested.

  17. Frequency domain active vibration control of a flexible plate based on neural networks

    NASA Astrophysics Data System (ADS)

    Liu, Jinxin; Chen, Xuefeng; He, Zhengjia

    2013-06-01

    A neural-network (NN)-based active control system was proposed to reduce the low frequency noise radiation of the simply supported flexible plate. Feedback control system was built, in which neural network controller (NNC) and neural network identifier (NNI) were applied. Multi-frequency control in frequency domain was achieved by simulation through the NN-based control systems. A pre-testing experiment of the control system on a real simply supported plate was conducted. The NN-based control algorithm was shown to perform effectively. These works lay a solid foundation for the active vibration control of mechanical structures.

  18. Seismic and Geodynamic Constraints on Compositional Heterogeneity in the Lower Mantle: Implications for Deeply-Rooted Hot Upwellings Under the African and Pacific Plates

    NASA Astrophysics Data System (ADS)

    Forte, A. M.; Glisovic, P.; Rowley, D. B.; Simmons, N. A.; Grand, S. P.; Lu, C.

    2014-12-01

    We present the results of a series of tests that probe the possible existence of compositionally distinct material in the central core of the LLSVPs under the African and Pacific plates using tomography-based mantle flow models that employ several independently-derived viscosity profiles (Mitrovica & Forte 2004, Behn et al. 2004, Steinberger & Calderwood 2006, Forte et al. 2010). We also consider four global tomography models derived from seismic shear velocity data alone (Grand 2002, Panning & Romanowicz 2006, Kustowski et al. 2008, Ritsema et al. 2011). The possible combinations of viscosity and tomography models yield 16 different tests for compositional heterogeneity inside the LLSVPs. In all tests we begin with a mineral physical scaling between lower-mantle shear velocity and density anomalies that assumes thermal effects are dominant everywhere, including within the LLSVPs. We find it is not possible, in any of the tests, to obtain a satisfactory fit to surface geodynamic data, especially the global, long-wavelength gravity anomalies and space-geodetic inferences of excess CMB flattening with a purely thermal interpretation of lower-mantle heterogeneity. If we introduce compositionally-distinct material in the central portions of the LLSVPs, all tests show a notable improvement in the fit to the gravity anomaly and CMB ellipticity data. An optimal reconciliation of the gravity and CMB data is obtained by extending compositional heterogeneity upwards, with maximum-amplitude in the seismic D"-layer and tapering off to negligible values in the mid-mantle. A robust assessment of the dynamical impact of this deeply-rooted compositional heterogeneity is obtained with maps of "mean" convective flow, by averaging the results of all 16 test cases. We find (see map below) dominant lower-mantle upwellings below the axis of the East Pacific Rise (EPR), and under the Caroline Islands in the Western Pacific. Under the African plate we find large-scale upwellings under the

  19. Assessment of coal gasification/hot gas cleanup based advanced gas turbine systems

    SciTech Connect

    Not Available

    1990-12-01

    The major objectives of the joint SCS/DOE study of air-blown gasification power plants with hot gas cleanup are to: (1) Evaluate various power plant configurations to determine if an air-blown gasification-based power plant with hot gas cleanup can compete against pulverized coal with flue gas desulfurization for baseload expansion at Georgia Power Company's Plant Wansley; (2) determine if air-blown gasification with hot gas cleanup is more cost effective than oxygen-blown IGCC with cold gas cleanup; (3) perform Second-Law/Thermoeconomic Analysis of air-blown IGCC with hot gas cleanup and oxygen-blown IGCC with cold gas cleanup; (4) compare cost, performance, and reliability of IGCC based on industrial gas turbines and ISTIG power island configurations based on aeroderivative gas turbines; (5) compare cost, performance, and reliability of large (400 MW) and small (100 to 200 MW) gasification power plants; and (6) compare cost, performance, and reliability of air-blown gasification power plants using fluidized-bed gasifiers to air-blown IGCC using transport gasification and pressurized combustion.

  20. High-Current Gain Two-Dimensional MoS₂-Base Hot-Electron Transistors.

    PubMed

    Torres, Carlos M; Lan, Yann-Wen; Zeng, Caifu; Chen, Jyun-Hong; Kou, Xufeng; Navabi, Aryan; Tang, Jianshi; Montazeri, Mohammad; Adleman, James R; Lerner, Mitchell B; Zhong, Yuan-Liang; Li, Lain-Jong; Chen, Chii-Dong; Wang, Kang L

    2015-12-09

    The vertical transport of nonequilibrium charge carriers through semiconductor heterostructures has led to milestones in electronics with the development of the hot-electron transistor. Recently, significant advances have been made with atomically sharp heterostructures implementing various two-dimensional materials. Although graphene-base hot-electron transistors show great promise for electronic switching at high frequencies, they are limited by their low current gain. Here we show that, by choosing MoS2 and HfO2 for the filter barrier interface and using a noncrystalline semiconductor such as ITO for the collector, we can achieve an unprecedentedly high-current gain (α ∼ 0.95) in our hot-electron transistors operating at room temperature. Furthermore, the current gain can be tuned over 2 orders of magnitude with the collector-base voltage albeit this feature currently presents a drawback in the transistor performance metrics such as poor output resistance and poor intrinsic voltage gain. We anticipate our transistors will pave the way toward the realization of novel flexible 2D material-based high-density, low-energy, and high-frequency hot-carrier electronic applications.

  1. Processing Map and Mechanism of Hot Deformation of a Corrosion-Resistant Nickel-Based Alloy

    NASA Astrophysics Data System (ADS)

    Wang, L.; Liu, F.; Zuo, Q.; Cheng, J. J.; Chen, C. F.

    2017-01-01

    Hot deformation behavior of a corrosion-resistant nickel-based alloy was studied in temperature range of 1050-1200 °C and strain rate range of 0.001-10 s-1 by employing hot compression tests. An approach of processing map was used to reveal the hot workability and microstructural evolution during the hot deformation. The results show that different stable domains in the processing map associated with the microstructure evolution can be ascribed to different dynamic recrystallization (DRX) mechanisms. The discontinuous dynamic recrystallization (DDRX) grains evolved by the necklace mechanism are finer than those evolved by the ordinary mechanism, respectively, arising from the strong nucleation process and the growth process. If subjected to low temperature and high strain rate, the flow instability domain occurs, due to the continuous dynamic recrystallization (CDRX) based on the evolution of deformation micro-bands within the deformed grains. Based on the processing map, a DRX mechanism map is established, which can provide an idea for designing desired microstructure.

  2. Developing Model-Based Control Strategies for Hot Isostatic Pressing.

    DTIC Science & Technology

    1994-08-31

    feedback. It was found that density feedback based on PI control . (proportional plus integral) has better performance than proporational control alone. The...controller in linear system is the well- known proportional-integration ( PI ) controller . We will see that the unpredictable variations in HIP plant could be...effectively eliminated through PI feedback control. However, it should be noticed that, when introducing a PI control , the proportion gain and the

  3. Robust and fast license plate detection based on the fusion of color and edge feature

    NASA Astrophysics Data System (ADS)

    Cai, De; Shi, Zhonghan; Liu, Jin; Hu, Chuanping; Mei, Lin; Qi, Li

    2014-11-01

    Extracting a license plate is an important stage in automatic vehicle identification. The degradation of images and the computation intense make this task difficult. In this paper, a robust and fast license plate detection based on the fusion of color and edge feature is proposed. Based on the dichromatic reflection model, two new color ratios computed from the RGB color model are introduced and proved to be two color invariants. The global color feature extracted by the new color invariants improves the method's robustness. The local Sobel edge feature guarantees the method's accuracy. In the experiment, the detection performance is good. The detection results show that this paper's method is robust to the illumination, object geometry and the disturbance around the license plates. The method can also detect license plates when the color of the car body is the same as the color of the plates. The processing time for image size of 1000x1000 by pixels is nearly 0.2s. Based on the comparison, the performance of the new ratios is comparable to the common used HSI color model.

  4. Hydrocarbon Seepage during the Boreal Base Cretaceous Hot Shale Event

    NASA Astrophysics Data System (ADS)

    Hammer, Ø.; Hryniewicz, K.; Nakrem, H. A.; Little, C.

    2014-12-01

    We have identified a number of carbonate bodies interpreted as seep-related from near the Jurassic-Cretaceous boundary in Svalbard, arctic Norway. The paleoseeps discovered so far occur over 50 km along strike, representing a seepage field of considerable extent. Ammonites indicate a base Cretaceous (Late Volgian to Late Ryazanian) age. The carbonate bodies are highly fossiliferous, with a very diverse fauna consisting mainly of normal-marine species but also seep-restricted taxa. Carbonate d13C isotopes reach -46‰, which, considering mixture with seawater-derived carbon, is interpreted as indicating a biogenic methane source. It is of interest to note the correlation of this paleoseepage with an episode of extremely high burial of organic matter near the Jurassic-Cretaceous boundary, noted both in Svalbard (top Slottsmøya Member of the Agardhfjellet Formation), in the Barents Sea (Hekkingen Formation) and in the North Sea (Mandal Formation), possibly providing a shallow source for biogenic gas. Together with near contemporaneous events in the Boreal Realm such as ongoing rifting, the base Cretaceous unconformity, the Mjølnir meteorite impact and a possible minor extinction event, these finds contribute to the impression of the Jurassic-Cretaceous boundary as a highly dynamic and interesting time in the North Atlantic area.

  5. [Application of the laser welding to preventing the break of the base plate caused by the increase of magnetic attachments].

    PubMed

    Zhan, De-Song; Ma, Hong-Mei; Zhao, Xiao-Hui

    2006-08-01

    This study was intended to design a kind of resisting part dint of device in order to preventing the base plate break while being subjected to the dint when partial base plate dint concentrates because of the increase of the magnetic attachment to the original movable artificial teeth. Ten patients who should increase magnetic attachment was adopted in the study, and we increased a kind of new designed partial cast base plate on the original base plate using laser welding technique, then designed magnetic attachment and artificial teeth. None of ten sufferers appeared the phenomenon of the break of the base plate. The application of the laser welding technique can prevent the break of the base plate when partial dint increase because of the increase of the magnetic attachments.

  6. Preparation Model Based Control System For Hot Steel Strip Rolling Mill Stands

    NASA Astrophysics Data System (ADS)

    Bouazza, S. E.; Abbassi, H. A.; Moussaoui, A. K.

    2008-06-01

    As part of a research project on El-hadjar Hot Steel Rolling Mill Plant Annaba Algeria a new Model based control system is suggested to improve the performance of the hot strip rolling mill process. In this paper off-line model based controllers and a process simulator are described. The process models are based on the laws of physics. these models can predict the future behavior and the stability of the controlled process very reliably. The control scheme consists of a control algorithm. This Model based Control system is evaluated on a simulation model that represents accurately the dynamic of the process. Finally the usefulness to the Steel Industry of the suggested method is highlighted.

  7. Hot News Recommendation System from Heterogeneous Websites Based on Bayesian Model

    PubMed Central

    Xia, Zhengyou; Xu, Shengwu; Liu, Ningzhong; Zhao, Zhengkang

    2014-01-01

    The most current news recommendations are suitable for news which comes from a single news website, not for news from different heterogeneous news websites. Previous researches about news recommender systems based on different strategies have been proposed to provide news personalization services for online news readers. However, little research work has been reported on utilizing hundreds of heterogeneous news websites to provide top hot news services for group customers (e.g., government staffs). In this paper, we propose a hot news recommendation model based on Bayesian model, which is from hundreds of different news websites. In the model, we determine whether the news is hot news by calculating the joint probability of the news. We evaluate and compare our proposed recommendation model with the results of human experts on the real data sets. Experimental results demonstrate the reliability and effectiveness of our method. We also implement this model in hot news recommendation system of Hangzhou city government in year 2013, which achieves very good results. PMID:25093207

  8. Hot news recommendation system from heterogeneous websites based on bayesian model.

    PubMed

    Xia, Zhengyou; Xu, Shengwu; Liu, Ningzhong; Zhao, Zhengkang

    2014-01-01

    The most current news recommendations are suitable for news which comes from a single news website, not for news from different heterogeneous news websites. Previous researches about news recommender systems based on different strategies have been proposed to provide news personalization services for online news readers. However, little research work has been reported on utilizing hundreds of heterogeneous news websites to provide top hot news services for group customers (e.g., government staffs). In this paper, we propose a hot news recommendation model based on Bayesian model, which is from hundreds of different news websites. In the model, we determine whether the news is hot news by calculating the joint probability of the news. We evaluate and compare our proposed recommendation model with the results of human experts on the real data sets. Experimental results demonstrate the reliability and effectiveness of our method. We also implement this model in hot news recommendation system of Hangzhou city government in year 2013, which achieves very good results.

  9. Multi-scaled license plate detection based on the label-moveable maximal MSER clique

    NASA Astrophysics Data System (ADS)

    Gu, Qin; Yang, Jianyu; Kong, Lingjiang; Cui, Guolong

    2015-08-01

    In this paper, we consider a robust vehicle license plate detection problem for intelligent transportation systems in the presence of various illumination situations. We propose a robust and fast multi-scaled license plate detection and location algorithm, which exploits a Label-Moveable Maximal MSER clique. Specifically, first, we extract the candidate character regions using the Maximally Stable Extremal Region (MSER) features. Second, we divide each candidate character region into four types and extract the suspected initial node (the top-left character) based on its neighbor MSER distribution characteristic. Third, we label each candidate character region to accomplish license detection and location based on the detected suspected initial node and the corresponding label-moveable maximal MSER clique. The robust of license plate detection, the accuracy of character labeling for license location, and the improvement of calculation efficiency are evaluated via the real data.

  10. Preclinical Studies on Mesenchymal Stem Cell-Based Therapy for Growth Plate Cartilage Injury Repair

    PubMed Central

    Chung, Rosa; Foster, Bruce K.; Xian, Cory J.

    2011-01-01

    In the last two decades, there has been a strong interest in searching for biological treatments for regeneration of injured growth plate cartilage and prevention of its bony repair. Various means have been tried, including implantation of chondrocytes, mesenchymal stem cell (MSC), together with exogenous growth factor and scaffolds, and gene therapy. However, with the lack of success with chondrocytes, more research has focussed on MSC-based treatments. In addition to circumvent limitations with MSC-based treatments (including cell harvest-associated morbidity, difficulties/time/cost involved in MSC isolation and ex vivo expansion, and potential disease transmission), mobilising endogenous MSCs to the growth plate injury site and enhancing in situ regeneration mechanisms would represent an alternative attractive approach. Further studies are required to investigate the potential particularly in large animal models or clinical setting of the ex vivo MSC approach and the feasibility of the endogenous MSC in situ approach in growth plate regeneration. PMID:21808649

  11. LQR-based optimization of multiple tuned resonators for plate sound radiation reduction

    NASA Astrophysics Data System (ADS)

    Michielsen, J.; Arteaga, I. Lopez; Nijmeijer, H.

    2016-02-01

    A linear quadratic regulator based optimization problem is formulated in order to minimize the broad-band low-frequency domain vibration and acoustic response of a baffled simply supported plate by means of multiple optimally tuned mass-spring-damper systems. To this end, we propose a robust method to obtain a (stable) state-space model describing the far-field radiated sound power, also known as the radiation filter. The Kirchhoff plate equation, which describes the plate vibrations, is discretized based on the Rayleigh-Ritz method. The resulting state-space models of the plate and the mass-springdamper systems are coupled to the radiation filter. Finally, the optimal spring stiffness and damping values of each mass-spring-damper system are successfully obtained by minimizing the kinetic energy or the far-field radiated sound power of the plate for low computational cost. In general, the results indicate that tuned mass-spring-damper systems have great potential to reduce the broadband low frequency vibration and acoustic response of vibro-acoustic systems. From the results, it can be concluded that there are fundamental differences between the optimal TMD systems if one minimizes the kinetic energy or the far-field radiated sound power.

  12. Empirical study on neural network based predictive techniques for automatic number plate recognition

    NASA Astrophysics Data System (ADS)

    Shashidhara, M. S.; Indrakumar, S. S.

    2011-10-01

    The objective of this study is to provide an easy, accurate and effective technology for the Bangalore city traffic control. This is based on the techniques of image processing and laser beam technology. The core concept chosen here is an image processing technology by the method of automatic number plate recognition system. First number plate is recognized if any vehicle breaks the traffic rules in the signals. The number is fetched from the database of the RTO office by the process of automatic database fetching. Next this sends the notice and penalty related information to the vehicle owner email-id and an SMS sent to vehicle owner. In this paper, we use of cameras with zooming options & laser beams to get accurate pictures further applied image processing techniques such as Edge detection to understand the vehicle, Identifying the location of the number plate, Identifying the number plate for further use, Plain plate number, Number plate with additional information, Number plates in the different fonts. Accessing the database of the vehicle registration office to identify the name and address and other information of the vehicle number. The updates to be made to the database for the recording of the violation and penalty issues. A feed forward artificial neural network is used for OCR. This procedure is particularly important for glyphs that are visually similar such as '8' and '9' and results in training sets of between 25,000 and 40,000 training samples. Over training of the neural network is prevented by Bayesian regularization. The neural network output value is set to 0.05 when the input is not desired glyph, and 0.95 for correct input.

  13. HotEye (tm) Based Coordinate Measuring Machine for Forging Industry

    SciTech Connect

    OG Technologies

    2003-06-09

    The objective of this project is to develop a 3 dimensional measurement system for the domestic forging industry based on HotEye{trademark}. This technology will allow high definition camera to accurately image a red hot object. The project marries conventional Coordinate Measurement Machine ''CMM'' technology to HotEye{trademark} technology to permit the accurate measurement of forged parts while they are at high temperature. Being able to take such measurements will dramatically reduce the amount of scrap produced by the domestic forging industry. This industry wastes a significant amount of energy because of the high rate of scrap it produces. OGT will: (1) Develop a 3D measurement sensor head that will work on a part at a temperature up to 1,450 C with an accuracy of 0.1mm or better and with a scanning speed of less than 10 seconds for an area of 100mm x 100mm. (2) Develop a Virtual-Fixturing software package to alleviate the need of precise hard fixturing. (3) Integrate the 3D measurement sensor head and the Virtual-Fixturing software into a standard CMM, both hardware (replacing the probes) and software (data format and user interface match) so that the system can automatically perform a complete preprogrammed measurement of a hot product. (4) Test and evaluate the system in a forging facility.

  14. KFC2: a knowledge-based hot spot prediction method based on interface solvation, atomic density, and plasticity features.

    PubMed

    Zhu, Xiaolei; Mitchell, Julie C

    2011-09-01

    Hot spots constitute a small fraction of protein-protein interface residues, yet they account for a large fraction of the binding affinity. Based on our previous method (KFC), we present two new methods (KFC2a and KFC2b) that outperform other methods at hot spot prediction. A number of improvements were made in developing these new methods. First, we created a training data set that contained a similar number of hot spot and non-hot spot residues. In addition, we generated 47 different features, and different numbers of features were used to train the models to avoid over-fitting. Finally, two feature combinations were selected: One (used in KFC2a) is composed of eight features that are mainly related to solvent accessible surface area and local plasticity; the other (KFC2b) is composed of seven features, only two of which are identical to those used in KFC2a. The two models were built using support vector machines (SVM). The two KFC2 models were then tested on a mixed independent test set, and compared with other methods such as Robetta, FOLDEF, HotPoint, MINERVA, and KFC. KFC2a showed the highest predictive accuracy for hot spot residues (True Positive Rate: TPR = 0.85); however, the false positive rate was somewhat higher than for other models. KFC2b showed the best predictive accuracy for hot spot residues (True Positive Rate: TPR = 0.62) among all methods other than KFC2a, and the False Positive Rate (FPR = 0.15) was comparable with other highly predictive methods. Copyright © 2011 Wiley-Liss, Inc.

  15. The Biological Sensor for Detection of Bacterial Cells in Liquid Phase Based on Plate Acoustic Wave

    NASA Astrophysics Data System (ADS)

    Borodina, Irina; Zaitsev, Boris; Shikhabudinov, Alexander; Guliy, Olga; Ignatov, Oleg; Teplykh, Andrey

    The interactions "bacterial cells - bacteriophages", "bacterial cells - antibodies" and "bacterial cells - mini- antibodies" directly in liquid phase were experimentally investigated with a help of acoustic sensor. The acoustic sensor under study represents two-channel delay line based on the plate of Y-X lithium niobate. One channel of delay line was electrically shorted, the second channel was electrically open. The liquid container was glued on plate surface between transducers of delay line. The dependencies of the change in phase and insertion loss on concentration of bacteriophages, antibodies, and mini- antibodies were obtained for both channels of delay line.

  16. A millimeter-wave integrated-circuit antenna based on the Fresnel zone plate

    NASA Astrophysics Data System (ADS)

    Gouker, Mark A.; Smith, Glenn S.

    1992-05-01

    A moderate-gain, easily constructed, millimeter-wave IC antenna based on the Fresnel zone plate has been developed. The gain and beamwidth of the antenna can be varied by adjusting the diameter and focal length of the zone plate. A theory is developed which accurately predicts the on-axis gain, beamwidth, and sidelobe levels of antennas with zone-plate focal lengths greater than 8-9 lambda. Graphs are presented to aid in the design of other IC zone-plate antennas. The performance of the antenna without the reflector and lambda/4 spacer was investigated. The gain of the antenna with nothing behind the zone plate is found to approach that of the fully configured antenna with the lambda/4 spacer and reflector. The reflection from the open rings which is responsible for this phenomenon is enhanced as the dielectric constant of the substrate is increased. Thus, on substrates with high permittivity the reflector and lambda/4 spacer may not be necessary.

  17. A variable-order laminated plate theory based on the variational-asymptotical method

    NASA Technical Reports Server (NTRS)

    Lee, Bok W.; Sutyrin, Vladislav G.; Hodges, Dewey H.

    1993-01-01

    The variational-asymptotical method is a mathematical technique by which the three-dimensional analysis of laminated plate deformation can be split into a linear, one-dimensional, through-the-thickness analysis and a nonlinear, two-dimensional, plate analysis. The elastic constants used in the plate analysis are obtained from the through-the-thickness analysis, along with approximate, closed-form three-dimensional distributions of displacement, strain, and stress. In this paper, a theory based on this technique is developed which is capable of approximating three-dimensional elasticity to any accuracy desired. The asymptotical method allows for the approximation of the through-the-thickness behavior in terms of the eigenfunctions of a certain Sturm-Liouville problem associated with the thickness coordinate. These eigenfunctions contain all the necessary information about the nonhomogeneities along the thickness coordinate of the plate and thus possess the appropriate discontinuities in the derivatives of displacement. The theory is presented in this paper along with numerical results for the eigenfunctions of various laminated plates.

  18. Deformation behavior of SS400 Thick plate by high-frequency-induction-heating-based line heating

    NASA Astrophysics Data System (ADS)

    Lee, Kwang Seok; Eom, Deuk Ha; Lee, Jung-Hwan

    2013-03-01

    In this study, the line heating-induced permanent deformation behavior of an SS400 thick plate was investigated through both numerical analysis and experimental testing by applying high-frequency induction heating after generating dual-curvature by secondary line heating. First, an approach based on electromagnetic-thermal-structural coupling numerical analysis was adopted for predicting the temperature distribution and subsequent permanent deformation over the SS400 carbon steel plate. Experimental line heating was also carried out to validate the feasibility of the numerical analysis by applying newly designed laboratory-scale high-frequency (HF) induction-heating (IH) equipment. It was found that the shape of the heat-affected zone (HAZ) generated by HF IH and the subsequent microstructure of the SS400 carbon steel plate within the HAZ were strongly dependent on the input power. Permanent vertical deformation increased with an increase in the input power, regardless of the shape of the doubly curved plates (concave- or saddle-type plates). Transverse curvature determined in both the simulation and the experiment were investigated and compared.

  19. Germanium-Based Circular Zone Plates for Soft and Hard X-Rays

    NASA Astrophysics Data System (ADS)

    Firsov, A.; Belkhou, R.; Idir, M.; Svintsov, A.; Zaitsev, S.; Ferlazzo, L.; Cambril, E.

    2011-09-01

    Development of a technological basis for the fabrication of diffraction optical elements has been underway at Synchrotron SOLEIL since April 2009. These diffraction focusing elements are: zone plates and condenser lenses for soft x-rays (80-2500 eV), focusing zone plates for hard x-rays (4-24 keV), and diffraction elements working under complete external reflection conditions with elliptical diffraction zones and a topology appropriate to operate at a glancing incidence to fulfill the conditions of total external reflection (energy range 100-1500 eV). This work discusses fabrication of circular germanium-based zone plates and results of numerical calculations of the behavior of zone plates with real topologies under real experimental conditions. The software used for these calculations allows us to take into account the undercut of zones that occurs after plasmachemical etching as well as variations in the zone heights. Such variations could be used to correct or improve zone plate efficiency after electroplating or plasmachemical etching and can be performed by a focused ion beam etching [1] (direct or with active gas assistance). Data preparation and ion beam control for these corrections can be carried out by Nanomaker software (Interface Ltd).

  20. Virtual plate pre-bending for the long bone fracture based on axis pre-alignment.

    PubMed

    Liu, Bin; Luo, Xinjian; Huang, Rui; Wan, Chao; Zhang, Bingbing; Hu, Weihua; Yue, Zongge

    2014-06-01

    In this paper, a modeling and visualizing system for assisting surgeons in correctly registering for the closed fracture reduction surgery is presented. By using this system, the geometric parameters of the target fixation plate before the long bone fracture operation can be obtained. The main processing scheme consists of following steps: firstly (image data process), utilize the Curvelet transform to denoise the CT images of fracture part and then reconstruct the 3D models of the broken bones. Secondly (pre-alignment), extract the axial lines of the broken bones and spatially align them. Then drive the broken bone models to be pre-aligned. Thirdly (mesh segmentation), a method based on vertex normal feature is utilized to obtain the broken bone cross-sections mesh models. Fourthly (fine registration), the ICP (Iterative Closest Point) algorithm is used to register the cross-sections and the broken bone models are driven to achieve the fine registration posture. Lastly (plate fitting), an accurate NURBS surface fitting method is used to construct the virtual plate. The experiment proved that the obtained models of the pre-bended plates were closely bonded to the surface of the registered long bone models. Finally, the lengths, angles and other interested geometric parameters can be measured on the plate models. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Design of Stress-Strain Measuring System for Bulldozing Plate Based on Virtual Instrument Technology

    NASA Astrophysics Data System (ADS)

    Xu, S. C.; Li, J. Q.; Zhang, R.

    2006-10-01

    Soil is a kind of discrete, multiphase compound that is composed of soil particles, liquid and air. When soil is disturbed by bulldozing plate, the mechanical behavior of the soil will become very complex. Based on the law of action and reaction, the dynamic mechanical behavior of disturbed soil was indirectly analyzed by measuring and studying the forces on the bulldozing plate by soil currently, so a stress-strain virtual measuring system for bulldozing plate, which was designed by the graphical programming language DASYLab, was used to measure the horizontal force Fz acting on the bulldozing plate. In addition, during the course of design, the experimental complexities and the interferential factors influencing on signal logging were analyzed when bulldozing plate worked, so the anti-jamming methods of hardware and software technology were adopted correlatively. In the end, the horizontal force Fz was analyzed with Error Theory, the result shown that the quantificational analysis of Fz were identical to the qualitative results of soil well, and the error of the whole test system is under 5 percent, so the tress-strain virtual measuring system was stable and credible.

  2. A variable-order laminated plate theory based on the variational-asymptotical method

    NASA Technical Reports Server (NTRS)

    Lee, Bok W.; Sutyrin, Vladislav G.; Hodges, Dewey H.

    1993-01-01

    The variational-asymptotical method is a mathematical technique by which the three-dimensional analysis of laminated plate deformation can be split into a linear, one-dimensional, through-the-thickness analysis and a nonlinear, two-dimensional, plate analysis. The elastic constants used in the plate analysis are obtained from the through-the-thickness analysis, along with approximate, closed-form three-dimensional distributions of displacement, strain, and stress. In this paper, a theory based on this technique is developed which is capable of approximating three-dimensional elasticity to any accuracy desired. The asymptotical method allows for the approximation of the through-the-thickness behavior in terms of the eigenfunctions of a certain Sturm-Liouville problem associated with the thickness coordinate. These eigenfunctions contain all the necessary information about the nonhomogeneities along the thickness coordinate of the plate and thus possess the appropriate discontinuities in the derivatives of displacement. The theory is presented in this paper along with numerical results for the eigenfunctions of various laminated plates.

  3. Study on the Hot Workability of SiCp/Al Composites Based on a Critical Strain Map

    NASA Astrophysics Data System (ADS)

    Zhanwei, Yuan; Fuguo, Li; Chunwei, Wang

    2017-08-01

    We used the isothermal compression test (conducted in a Gleeble-3500 system) to study the hot deformation behaviors of SiCp/Al composites over a wide range of temperatures (623-773 K) and strain rates (0.001-10 s-1). A 3D hot-processing map was constructed based on the Malas stability criteria and experimental data. An artificial neural network model of four hot work quality characteristic parameters (strain rate sensitivity m, its derivative m', temperature sensitivity s, and its derivative s') were established. A new hot-processing map, known as a hot-processing critical strain map, has been proposed based on the smallest strain prior to instability. Two optimized processing regions at 623-660 K, 0.05-0.075 s-1 and 720-773 K, 0.04-0.18 s-1 were determined based on this map.

  4. Non-model-based damage identification of plates using principal, mean and Gaussian curvature mode shapes

    NASA Astrophysics Data System (ADS)

    Xu, Y. F.; Zhu, W. D.; Smith, S. A.

    2017-07-01

    Mode shapes have been extensively used to identify structural damage. This paper presents a new non-model-based method that uses principal, mean and Gaussian curvature mode shapes (CMSs) to identify damage in plates; the method is applicable to mode shapes associated with low and high elastic modes on dense and coarse measurement grids and robust against measurement noise. A multi-scale discrete differential-geometry scheme is proposed to calculate principal, mean and Gaussian CMSs associated with a mode shape of a plate, which can alleviate adverse effects of measurement noise on calculating the CMSs. Principal, mean and Gaussian CMSs of a damaged plate and those of an undamaged one are used to yield four curvature damage indices (CDIs), including Maximum-CDIs, Minimum-CDIs, Mean-CDIs and Gaussian-CDIs. Damage can be identified near regions with consistently higher values of the CDIs. It is shown that a mode shape of an undamaged plate can be well approximated using a polynomial of a properly determined order that fits a mode shape of a damaged one, provided that the undamaged plate has a smooth geometry and is made of material that has no stiffness and mass discontinuities. Fitting and convergence indices are introduced to quantify the level of approximation of a mode shape from a polynomial fit to that of a damaged plate and to determine the proper order of the polynomial fit, respectively. A weight function is applied to the proposed CDIs to alleviate adverse effects of measurement noise on the CDIs and manifest existence of damage in the CDIs. A mode shape of an aluminum plate with damage in the form of a machined thickness reduction area was measured to experimentally investigate effectiveness of the proposed CDIs in damage identification; the damage on the plate was successfully identified. The experimental damage identification results were numerically verified by applying the proposed method to the mode shape associated with the same mode as that of the

  5. Mechanism of beneficial effect of tantalum in hot corrosion of nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Fryburg, G. C.; Stearns, C. A.; Kohl, F. J.

    1977-01-01

    X-ray diffraction and electron microprobe analyses were used to examine a prominent NaTaO3 pattern formed in a number of nickel-base superalloys. It is found that a beneficial effect of tantalum with respect to hot corrosion attack arises from the ability of Ta2O5 to tie up Na2O and prevent the formation of a molten Na2MoO4 phase.

  6. Extended Kalman Filter Based Neural Networks Controller For Hot Strip Rolling mill

    NASA Astrophysics Data System (ADS)

    Moussaoui, A. K.; Abbassi, H. A.; Bouazza, S.

    2008-06-01

    The present paper deals with the application of an Extended Kalman filter based adaptive Neural-Network control scheme to improve the performance of a hot strip rolling mill. The suggested Neural Network model was implemented using Bayesian Evidence based training algorithm. The control input was estimated iteratively by an on-line extended Kalman filter updating scheme basing on the inversion of the learned neural networks model. The performance of the controller is evaluated using an accurate model estimated from real rolling mill input/output data, and the usefulness of the suggested method is proved.

  7. Extended Kalman Filter Based Neural Networks Controller For Hot Strip Rolling mill

    SciTech Connect

    Moussaoui, A. K.; Abbassi, H. A.; Bouazza, S.

    2008-06-12

    The present paper deals with the application of an Extended Kalman filter based adaptive Neural-Network control scheme to improve the performance of a hot strip rolling mill. The suggested Neural Network model was implemented using Bayesian Evidence based training algorithm. The control input was estimated iteratively by an on-line extended Kalman filter updating scheme basing on the inversion of the learned neural networks model. The performance of the controller is evaluated using an accurate model estimated from real rolling mill input/output data, and the usefulness of the suggested method is proved.

  8. Are 'hot spots' hot spots?

    NASA Astrophysics Data System (ADS)

    Foulger, Gillian R.

    2012-07-01

    The term 'hot spot' emerged in the 1960s from speculations that Hawaii might have its origins in an unusually hot source region in the mantle. It subsequently became widely used to refer to volcanic regions considered to be anomalous in the then-new plate tectonic paradigm. It carried with it the implication that volcanism (a) is emplaced by a single, spatially restricted, mongenetic melt-delivery system, assumed to be a mantle plume, and (b) that the source is unusually hot. This model has tended to be assumed a priori to be correct. Nevertheless, there are many geological ways of testing it, and a great deal of work has recently been done to do so. Two fundamental problems challenge this work. First is the difficulty of deciding a 'normal' mantle temperature against which to compare estimates. This is usually taken to be the source temperature of mid-ocean ridge basalts (MORBs). However, Earth's surface conduction layer is ˜200 km thick, and such a norm is not appropriate if the lavas under investigation formed deeper than the 40-50 km source depth of MORB. Second, methods for estimating temperature suffer from ambiguity of interpretation with composition and partial melt, controversy regarding how they should be applied, lack of repeatability between studies using the same data, and insufficient precision to detect the 200-300 °C temperature variations postulated. Available methods include multiple seismological and petrological approaches, modelling bathymetry and topography, and measuring heat flow. Investigations have been carried out in many areas postulated to represent either (hot) plume heads or (hotter) tails. These include sections of the mid-ocean spreading ridge postulated to include ridge-centred plumes, the North Atlantic Igneous Province, Iceland, Hawaii, oceanic plateaus, and high-standing continental areas such as the Hoggar swell. Most volcanic regions that may reasonably be considered anomalous in the simple plate-tectonic paradigm have been

  9. Laser-printing of toner-based 96-microzone plates for immunoassays.

    PubMed

    Oliveira, Karoliny Almeida; Rodrigues de Oliveira, Cristina; Antonelli da Silveira, Lucimeire; Coltro, Wendell Karlos Tomazelli

    2013-02-21

    This work describes the quick and simple fabrication of toner-based 96-microzone plates by a direct-printing technology. The printer deposits a toner layer (ca. 5 μm thick) on the polyester surface which acts as a hydrophobic barrier to confine small volumes of sample on test zones (wells). A 96-microzone toner plate was explored to demonstrate its capability of performing enzyme-linked immunosorbent assay (ELISA). The detection of anti-immunoglobulin G (anti-IgG) and immunoglobulin M (IgM) antibodies has been successfully achieved in cell culture and serum samples, respectively. The use of a conventional microplate reader has allowed obtaining a limit of detection of 13 fmol of mouse IgG per zone on printed microplates. The IgM antibody has been detected in a serum sample collected from a patient infected with dengue virus. The detection of a primary infection has been provided by a microplate reader and also by a cell phone camera. Besides the bioanalytical feasibility, toner-based zones have shown good repeatability for inter-zone and intra-plate comparisons. The relative standard deviation (RSD) values for inter-zone (n = 12) and intra-plate (n = 3) comparisons were lower than 6% and 11%, respectively. Furthermore, it was found that the lifetime of each printed microplate depends on the storage temperature. The shelf life for devices stored at 10 °C has been estimated to be ca. four weeks.

  10. Nd:YAG Pulsed Laser based flaw imaging techniques for noncontact NDE of an aluminum plate

    NASA Astrophysics Data System (ADS)

    Park, Woong-Ki; Lee, Changgil; Park, Seunghee

    2012-04-01

    Recently, the longitudinal, shear and surface waves have been very widely used as a kind of ultrasonic wave exploration methods to identify internal defects of metallic structures. The ultrasonic wave-based non-destructive testing (NDT) is one of main non-destructive inspection techniques for a health assessment about nuclear power plant, aircraft, ships, and/or automobile manufacturing. In this study, a noncontact pulsed laser-based flaw imaging NDT technique is implemented to detect the damage of a plate-like structure and to identify the location of the damage. To achieve this goal, the Nd:YAG pulsed laser equipment is used to generate a guided wave and scans a specific area to find damage location. The Nd: YAG pulsed laser is used to generate Lamb wave and piezoelectric sensors are installed to measure structural responses. Ann aluminum plate is investigated to verify the effectiveness and the robustness of the proposed NDT approach. A notch is a target to detect, which is inflicted on the surface of an aluminum plate. The damagesensitive features are extracted by comparing the time of flight of the guided wave obtained from an acoustic emission (AE) sensor and make use of the flaw imaging techniques of the aluminum plate.

  11. Hot Workability of CuZr-Based Shape Memory Alloys for Potential High-Temperature Applications

    NASA Astrophysics Data System (ADS)

    Biffi, Carlo Alberto; Tuissi, Ausonio

    2014-07-01

    The research on high-temperature shape memory alloys has been growing because of the interest of several potential industrial fields, such as automotive, aerospace, mechanical, and control systems. One suitable candidate is given by the CuZr system, because of its relative low price in comparison with others, like the NiTi-based one. In this context, the goal of this work is the study of hot workability of some CuZr-based shape memory alloys. In particular, this study addresses on the effect of hot rolling process on the metallurgical and calorimetric properties of the CuZr system. The addition of some alloying elements (Cr, Co, Ni, and Ti) is taken into account and their effect is also put in comparison with each other. The alloys were produced by means of an arc melting furnace in inert atmosphere under the shape of cigars. Due to the high reactivity of these alloys at high temperature, the cigars were sealed in a stainless steel can before the processing and two different procedures of hot rolling were tested. The characterization of the rolled alloys is performed using discrete scanning calorimetry in terms of evolution of the martensitic transformation and scanning electron microscopy for the microstructural investigations. Additionally, preliminary tests of laser interaction has been also proposed on the alloy more interesting for potential applications, characterized by high transformation temperatures and its good thermal stability.

  12. Hot corrosion behavior of the spray-formed nickel-based superalloy

    NASA Astrophysics Data System (ADS)

    Xia, Min; Gu, Tian-Fu; Jia, Chong-Lin; Ge, Chang-Chun

    2016-12-01

    An investigation of low temperature hot corrosion is carried out on a spray-formed nickel-based superalloy FGH100 pre-coated with Na2SO4-NaCl at 700 °C for 100 h. Mass gain measurement, x-ray diffraction, scanning electron microscopy, and energy dispersive x-ray spectroscopy are used to study the corrosion behavior. Results reveal that corrosion behavior follows a sequence, that is, first rapidly proceeding, then gradually slowing down, and finally forming an outer layer composed of different types of oxides and an inner layer mainly comprised of sulfides. In-depth analysis reveals that the hot corrosion of FGH100 is a combined effect of oxidation-sulfidation and transfer of oxides.

  13. Investigation of vanadium and hot-corrosion resistance of chromium- and silicon-base coating systems

    SciTech Connect

    Barkalow, R.H.; Kahn, A.S.

    1981-04-01

    This program evaluated turbine coating materials for resisting hot corrosion and ash erosion effects due to V, S, and alkali metals in residual oils, and coal-derived fuels. Furnace and burner rig tests were conducted to evaluate the performance of NiCrSi alloys, NiCrSi alloys containing additives, Cr-base alloys, and Si-34Cr-23Ta in Na/sub 2/SO/sub 4/, V/sub 2/O/sub 5/ and mixed salt hot corrosion. CoCrAlY, Co-40Cr-8Si, and Cr-20Ni-5Mn-5Si were also evaluated. Tests in gaseous environments containing SO/sub 3/ are planned. 8 figures. (DLC)

  14. OUT Success Stories: Solar Hot Water Technology

    DOE R&D Accomplishments Database

    Clyne, R.

    2000-08-01

    Solar hot water technology was made great strides in the past two decades. Every home, commercial building, and industrial facility requires hot water. DOE has helped to develop reliable and durable solar hot water systems. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors. Flat-plate collectors are commonly used in residential hot water systems and can be integrated into the architectural design of the building.

  15. Imaging-based optical caliper for objects in hot manufacturing processes

    SciTech Connect

    Huang, Howard

    2013-04-03

    OG Technologies, Inc. (OGT), in conjunction with its industrial and academic partners, proposes to develop an Imaging-Based Optical Caliper (hereafter referred to as OC) for Objects in Hot Manufacturing Processes. The goal is to develop and demonstrate the OC with the synergy of OGT's current technological pool and other innovations to provide a light weight, robust, safe and accurate portable dimensional measurement device for hot objects with integrated wireless communication capacity to enable real time process control. The technical areas of interest in this project are the combination of advanced imaging, Sensor Fusion, and process control. OGT believes that the synergistic interactions between its current set of technologies and other innovations could deliver products that are viable and have high impact in the hot manufacture processes, such as steel making, steel rolling, open die forging, and glass industries, resulting in a new energy efficient control paradigm in the operations through improved yield, prolonged tool life and improved quality. In-line dimension measurement and control is of interest to the steel makers, yet current industry focus is on the final product dimension only instead of whole process due to the limit of man power, system cost and operator safety concerns. As sensor technologies advances, the industry started to see the need to enforce better dimensional control throughout the process, but lack the proper tools to do so. OGT along with its industrial partners represent the indigenous effort of technological development to serve the US steel industry. The immediate market that can use and get benefited from the proposed OC is the Steel Industry. The deployment of the OC has the potential to provide benefits in reduction of energy waste, CO2 emission, waste water amount, toxic waste, and so forth. The potential market after further expended function includes Hot Forging and Freight Industries. The OC prototypes were fabricated, and

  16. A reconstructed edge-based smoothed DSG element based on global coordinates for analysis of Reissner-Mindlin plates

    NASA Astrophysics Data System (ADS)

    Yang, Gang; Hu, De'an; Long, Shuyao

    2017-02-01

    A reconstructed edge-based smoothed triangular element, which is incorporated with the discrete shear gap (DSG) method, is formulated based on the global coordinate for analysis of Reissner-Mindlin plates. A symbolic integration combined with the smoothing technique is implemented to calculate the smoothed finite element matrices, which is integrated along the boundaries of each smoothing cell. Numerical results show that the proposed element is free from shear locking, and its results are in good agreement with the exact solutions, even for very thin plates with extremely distorted elements. The proposed element gives more accurate results than the original DSG element without smoothing, and it can be taken as an alternative element for analysis of Reissner-Mindlin plates. The prominent feature of the present element is that the integration scheme is unified in the smoothed form for all of the finite element matrices.

  17. Hot coal gas desulfurization with manganese-based sorbents. Final report, September 1992--December 1994

    SciTech Connect

    Hepworth, M.T.; Slimane, R.B.

    1994-11-01

    The focus of much current work being performed by the Morgantown Energy Technology Center (METC) of the Department of Energy on hot coal-derived fuel gas desulfurization is in the use of zinc-based sorbents. METC has shown interest in formulating and testing manganese-based pellets as alternative effective sulfur sorbents in the 700 to 1200{degree}C temperature range. To substantiate the potential superiority of Mn-based pellets, a systematic approach toward the evaluation of the desulfurizing power of single-metal sorbents is developed based on thermodynamic considerations. This novel procedure considered several metal-based sorbents and singled out manganese oxide as a prime candidate sorbent capable of being utilized under a wide temperature range, irrespective of the reducing power (determined by CO{sub 2}/CO ratio) of the fuel gas. Then, the thermodynamic feasibility of using Mn-based pellets for the removal of H{sub 2}S from hot-coal derived fuel gases, and the subsequent oxidative regeneration of loaded (sulfided) pellets was established. It was concluded that MnO is the stable form of manganese for virtually all commercially available coal-derived fuel gases. In addition, the objective of reducing the H{sub 2}S concentration below 150 ppMv to satisfy the integrated gasification combined cycle system requirement was shown to be thermodynamically feasible. A novel process is developed for the manufacture of Mn-based spherical pellets which have the desired physical and chemical characteristics required.

  18. Component-Based Model for Single-Plate Shear Connections with Pretension and Pinched Hysteresis

    PubMed Central

    Weigand, Jonathan M.

    2016-01-01

    Component-based connection models provide a natural framework for modeling the complex behaviors of connections under extreme loads by capturing both the individual behaviors of the connection components, such as the bolt, shear plate, and beam web, and the complex interactions between those components. Component-based models also provide automatic coupling between the in-plane flexural and axial connection behaviors, a feature that is essential for modeling the behavior of connections under column removal. This paper presents a new component-based model for single-plate shear connections that includes the effects of pre-tension in the bolts and provides the capability to model standard and slotted holes. The component-based models are exercised under component-level deformations calculated from the connection demands via a practical rigid-body displacement model, so that the results of the presented modeling approach remains hand-calculable. Validation cases are presented for connections subjected to both seismic and column removal loading. These validation cases show that the component-based model is capable of predicting the response of single-plate shear connections for both seismic and column removal loads. PMID:28133413

  19. Component-Based Model for Single-Plate Shear Connections with Pretension and Pinched Hysteresis.

    PubMed

    Weigand, Jonathan M

    2017-02-01

    Component-based connection models provide a natural framework for modeling the complex behaviors of connections under extreme loads by capturing both the individual behaviors of the connection components, such as the bolt, shear plate, and beam web, and the complex interactions between those components. Component-based models also provide automatic coupling between the in-plane flexural and axial connection behaviors, a feature that is essential for modeling the behavior of connections under column removal. This paper presents a new component-based model for single-plate shear connections that includes the effects of pre-tension in the bolts and provides the capability to model standard and slotted holes. The component-based models are exercised under component-level deformations calculated from the connection demands via a practical rigid-body displacement model, so that the results of the presented modeling approach remains hand-calculable. Validation cases are presented for connections subjected to both seismic and column removal loading. These validation cases show that the component-based model is capable of predicting the response of single-plate shear connections for both seismic and column removal loads.

  20. Validation of the Hot Strip Mill Model

    SciTech Connect

    Richard Shulkosky; David Rosberg; Jerrud Chapman

    2005-03-30

    The Hot Strip Mill Model (HSMM) is an off-line, PC based software originally developed by the University of British Columbia (UBC) and the National Institute of Standards and Technology (NIST) under the AISI/DOE Advanced Process Control Program. The HSMM was developed to predict the temperatures, deformations, microstructure evolution and mechanical properties of steel strip or plate rolled in a hot mill. INTEG process group inc. undertook the current task of enhancing and validating the technology. With the support of 5 North American steel producers, INTEG process group tested and validated the model using actual operating data from the steel plants and enhanced the model to improve prediction results.

  1. Seismic evaluation of a hot cell structure

    SciTech Connect

    Srinivasan, M.G.; Kot, C.A.

    1995-07-01

    The evaluation of the structural capacity of and the seismic demand on an existing hot cell structure in a nuclear facility is described. An ANSYS finite-element model of the cell was constructed, treating the walls as plates and the floor and ceiling as a system of discrete beams. A modal analysis showed that the fundamental frequencies of the cell walls lie far above the earthquake frequency range. An equivalent static analysis of the structure was performed. Based on the analysis it was demonstrated that the hot cell structure, would readily withstand the evaluation basis earthquake.

  2. Effects of cobalt on the hot workability of nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Jarrett, R. N.; Collier, J. P.; Tien, J. K.

    1984-01-01

    The effect of cobalt on the workability of nickel-base superalloys is examined with reference to experimental results for four heats of alloys based on the Nimonic 115 composition with varying amounts of nickel substituted for the nominal 14 percent cobalt. It is shown that Co lowers the gamma-prime solvus, which in turn lowers the Cr23C6 carbide solvus. It is further shown that these solvus temperatures bracket the hot working range for the alloys. However, thermomechanical processing modifications reflecting the effect of Co on the gamma-prime and carbide solvi are shown to restore the workability and the properties of alloys with little or no cobalt.

  3. Effects of cobalt on the hot workability of nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Jarrett, R. N.; Collier, J. P.; Tien, J. K.

    1984-01-01

    The effect of cobalt on the workability of nickel-base superalloys is examined with reference to experimental results for four heats of alloys based on the Nimonic 115 composition with varying amounts of nickel substituted for the nominal 14 percent cobalt. It is shown that Co lowers the gamma-prime solvus, which in turn lowers the Cr23C6 carbide solvus. It is further shown that these solvus temperatures bracket the hot working range for the alloys. However, thermomechanical processing modifications reflecting the effect of Co on the gamma-prime and carbide solvi are shown to restore the workability and the properties of alloys with little or no cobalt.

  4. Segmenting Microscopy Images of Multi-Well Plates Based on Image Contrast.

    PubMed

    Chen, Weiyang; Liao, Bo; Li, Weiwei; Dong, Xiangjun; Flavel, Matthew; Jois, Markandeya; Li, Guojun; Xian, Bo

    2017-10-01

    Image segmentation is a key process in analyzing biological images. However, it is difficult to detect the differences between foreground and background when the image is unevenly illuminated. The unambiguous segmenting of multi-well plate microscopy images with various uneven illuminations is a challenging problem. Currently, no publicly available method adequately solves these various problems in bright-field multi-well plate images. Here, we propose a new method based on contrast values which removes the need for illumination correction. The presented method is effective enough to distinguish foreground and therefore a model organism (Caenorhabditis elegans) from an unevenly illuminated microscope image. In addition, the method also can solve a variety of problems caused by different uneven illumination scenarios. By applying this methodology across a wide range of multi-well plate microscopy images, we show that our approach can consistently analyze images with uneven illuminations with unparalleled accuracy and successfully solve various problems associated with uneven illumination. It can be used to process the microscopy images captured from multi-well plates and detect experimental subjects from an unevenly illuminated background.

  5. Fabrication of a glucose biosensor based on inserted barrel plating gold electrodes.

    PubMed

    Hsu, Cheng-Teng; Chung, Hsieh-Hsun; Tsai, Dong-Mung; Fang, Mei-Yen; Hsiao, Hung-Chan; Zen, Jyh-Myng

    2009-01-01

    We demonstrate here the application of barrel plating gold electrodes for fabricating a new type of disposable amperometric glucose biosensor. It is prepared by inserting two barrel plating gold electrodes onto an injection molding plastic base followed by immobilizing with a bioreagent layer and membrane on the electrode surface. The primary function of barrel plating is to provide an economical way to electroplate manufactured parts. The manufacture procedure is simple and can increase the fabrication precision for automation in mass production. At the two-electrode system, the detection of glucose is linear up to 800 mg/dL (i.e., 44.5 mM, r(2) > 0.99) in pH 7.4 PBS with a sensitivity of 0.71 microA/mM. Excellent sensor-to-sensor reproducibility shows coefficients of variation of only 0.8-1.4% for the detection of 56.5-561.0 mg/dL glucose. In laboratory trials 176 capillary blood samples with a range of 30-572 mg/dL glucose are used to evaluate the clinical application of the biosensor. A good linear correlation is observed between the measured values of the proposed biosensor and laboratory reference. Error grid analysis verifies that the proposed technique is promising in fabricating biosensor strips on a mass scale. As successfully demonstrated by using whole blood glucose as a model analyte, the fabrication technique can extend into other barrel plating noble metal electrodes for various applications.

  6. Superior long-term stability of a glucose biosensor based on inserted barrel plating gold electrodes.

    PubMed

    Hsu, Cheng-Teng; Hsiao, Hung-Chan; Fang, Mei-Yen; Zen, Jyh-Myng

    2009-10-15

    Disposable one shot usage blood glucose strips are routinely used in the diagnosis and management of diabetes mellitus and their performance can vary greatly. In this paper we critically evaluated the long-term stability of glucose strips made of barrel plating gold electrodes. Compared to other glucose biosensing platforms of vapor deposited palladium and screen printed carbon electrodes, the proposed glucose biosensor was found to show the best stability among the three biosensing platforms in thermal acceleration experiments at 40 degrees C for 6 months with an average bias of 3.4% at glucose concentrations of 5-20 mM. The precision test of this barrel plating gold glucose biosensor also showed the best performance (coefficients of variation in the range of 1.4-2.4%) in thermal acceleration experiments at 40 degrees C, 50 degrees C and 70 degrees C for 27 days. Error grid analysis revealed that all measurements fell in zone A and zone B. Regression analysis showed no significant difference between the proposed biosensor and the reference method at 99% confidence level. The amperometric glucose biosensor fabricated by inserting two barrel plating gold electrodes onto an injection-molding plastic base followed by immobilizing with a bio-reagent layer and membrane was very impressive with a long-term stability up to 2.5 years at 25 degrees C. Overall, these results indicated that the glucose oxidase/barrel plating gold biosensing platform is ideal for long-term accurate glycemic control.

  7. Discovering Plate Boundaries Update: Builds Content Knowledge and Models Inquiry-based Learning

    NASA Astrophysics Data System (ADS)

    Sawyer, D. S.; Pringle, M. S.; Henning, A. T.

    2009-12-01

    Discovering Plate Boundaries (DPB) is a jigsaw-structured classroom exercise in which students explore the fundamental datasets from which plate boundary processes were discovered. The exercise has been widely used in the past ten years as a classroom activity for students in fifth grade through high school, and for Earth Science major and general education courses in college. Perhaps more importantly, the exercise has been used extensively for professional development of in-service and pre-service K-12 science teachers, where it simultaneously builds content knowledge in plate boundary processes (including natural hazards), models an effective data-rich, inquiry-based pedagogy, and provides a set of lesson plans and materials which teachers can port directly into their own classroom (see Pringle, et al, this session for a specific example). DPB is based on 4 “specialty” data maps, 1) earthquake locations, 2) modern volcanic activity, 3) seafloor age, and 4) topography and bathymetry, plus a fifth map of (undifferentiated) plate boundary locations. The jigsaw is structured so that students are first split into one of the four “specialties,” then re-arranged into groups with each of the four specialties to describe the boundaries of a particular plate. We have taken the original DPB materials, used the latest digital data sets to update all the basic maps, and expanded the opportunities for further student and teacher learning. The earthquake maps now cover the recent period including the deadly Banda Aceh event. The topography/bathymetry map now has global coverage and uses ice-free elevations, which can, for example, extend to further inquiry about mantle viscosity and loading processes (why are significant portions of the bedrock surface of Greenland and Antarctica below sea level?). The volcanic activity map now differentiates volcano type and primary volcanic lithology, allowing a more elaborate understanding of volcanism at different plate boundaries

  8. Effect of a weak layer at the base of an oceanic plate on subduction dynamics

    NASA Astrophysics Data System (ADS)

    Carluccio, Roberta; Kaus, Boris

    2017-04-01

    The plate tectonics model relies on the concept of a relatively rigid lithospheric lid moving over a weaker asthenosphere. In this frame, the lithosphere asthenosphere boundary (LAB) is a first-order discontinuity that accommodates differential motions between tectonic plates and the underlying mantle. Recent seismic studies have revealed the existence of a low velocity and high electrical conductivity layer at the base of subducting tectonic plates. This thin layer has been interpreted as being weak and slightly buoyant and was suggested to affect the dynamics of subducting plates. However, geodynamically, the role of a weak layer at the base of the lithosphere remains poorly studied, especially at subduction zones. Therefore, we here use numerical models to investigate the first-order effects of a weak buoyant layer at the LAB on subduction dynamics. We employ both 2-D and 3-D models in which the slab and mantle are either linear viscous or have a more realistic temperature-dependent visco-elastic-plastic rheology. Results show that a weak layer affects the dynamics of the plates, foremost by increasing the subduction speed. The impact of this effect depends on the thickness of the layer and the viscosity contrast between the mantle and the weak layer. For moderate viscosity contrasts (<100) and a layer thickness of 30 km, it increases the plate velocity but not the overall shape of the slab. However, for larger viscosity contrasts (>1000), it can also change the morphology of the subduction itself, perhaps because this changes the overall effective viscosity contrast between the slab the and the mantle. For thinner layers, the overall effect is reduced. Yet, if seismological observations are correct that suggests that this layer is 10 km thick and partially molten, such that the viscosity is 1000 times lower than that of the mantle, our models suggest that this effect should be measurable. Some of our models also show a pile-up of weak material in the bending

  9. Prediction of Proper Temperatures for the Hot Stamping Process Based on the Kinetics Models

    NASA Astrophysics Data System (ADS)

    Samadian, P.; Parsa, M. H.; Mirzadeh, H.

    2015-02-01

    Nowadays, the application of kinetics models for predicting microstructures of steels subjected to thermo-mechanical treatments has increased to minimize direct experimentation, which is costly and time consuming. In the current work, the final microstructures of AISI 4140 steel sheets after the hot stamping process were predicted using the Kirkaldy and Li kinetics models combined with new thermodynamically based models in order for the determination of the appropriate process temperatures. In this way, the effect of deformation during hot stamping on the Ae3, Acm, and Ae1 temperatures was considered, and then the equilibrium volume fractions of phases at different temperatures were calculated. Moreover, the ferrite transformation rate equations of the Kirkaldy and Li models were modified by a term proposed by Åkerström to consider the influence of plastic deformation. Results showed that the modified Kirkaldy model is satisfactory for the determination of appropriate austenitization temperatures for the hot stamping process of AISI 4140 steel sheets because of agreeable microstructure predictions in comparison with the experimental observations.

  10. DEVELOPMENT OF A CALCIUM-BASED SORBENT FOR HOT GAS CLEANUP

    SciTech Connect

    T.D. Wheelock; L.K. Doraiswamy; K. Constant

    1999-10-01

    The development and testing of potential calcium-based sorbents for hot gas cleanup continued. One of the most promising materials combines powdered limestone and a calcium aluminate cement by two step pelletization followed by steam curing. Reasonably strong pellets are produced with good adsorption characteristics by incorporating 20 wt.% cement in the core and 40 wt.% cement in the shell. The resulting 4.76 mm diameter pellets are capable of withstanding a crushing force approaching 11.5 N/mm before breaking and are also capable of removing H{sub 2}S from dilute, hot gas streams. The pellets are also regenerable and reusable. Another promising material combines calcium carbonate powder and finely ground calcined alumina in tablet form. The small tablets are prepared by mixing the materials with water to form a thick paste which is then molded and dried. The tablets are hardened by calcining at either 1000 to 1100 C. The resulting tablets are strong and capable of removing H{sub 2}S from a dilute, hot gas stream.

  11. Burner Rig Hot Corrosion of Five Ni-Base Alloys Including Mar-M247

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Helmink, R.; Harris, K.; Erickson, G.

    2000-01-01

    The hot corrosion resistance of four new Ni-base superalloys was compared to that of Mar-M247 by testing in a Mach 0.3 burner rig at 900 C for 300 1-hr cycles. While the Al content was held the same as in the Mar-M247, the Cr and Co levels in the four new alloys were decreased while other strengthening elements (Re, Ta) were increased. Surprisingly, despite their lower Cr and Co contents, the hot corrosion behavior of all four new alloys was superior to that of the Mar-M247 alloy. The Mar-M247 alloy began to lose weight almost immediately whereas the other four alloys appeared to undergo an incubation period of 50-150 1-hr cycles. Examination of the cross-sectional microstructures showed regions of rampant corrosion attack (propagation stage) in all five alloys after 300 1-hr cycles . This rampant corrosion morphology was similar for each of the alloys with Ni and Cr sulfides located in an inner subscale region. The morphology of the attack suggests a classic "Type I", or high temperature, hot corrosion attack.

  12. Measurements of strain at plate boundaries using space based geodetic techniques

    NASA Technical Reports Server (NTRS)

    Robaudo, Stefano; Harrison, Christopher G. A.

    1993-01-01

    We have used the space based geodetic techniques of Satellite Laser Ranging (SLR) and VLBI to study strain along subduction and transform plate boundaries and have interpreted the results using a simple elastic dislocation model. Six stations located behind island arcs were analyzed as representative of subduction zones while 13 sites located on either side of the San Andreas fault were used for the transcurrent zones. The length deformation scale was then calculated for both tectonic margins by fitting the relative strain to an exponentially decreasing function of distance from the plate boundary. Results show that space-based data for the transcurrent boundary along the San Andreas fault help to define better the deformation length scale in the area while fitting nicely the elastic half-space earth model. For subduction type bonndaries the analysis indicates that there is no single scale length which uniquely describes the deformation. This is mainly due to the difference in subduction characteristics for the different areas.

  13. Combination of the Flow Disturbance Observer and Base Plate Jerk Feedback in a Pneumatic Positioning Stage

    NASA Astrophysics Data System (ADS)

    Wali, Mohebullah; Wakui, Shinji

    Pneumatic actuation systems are commonly used to drive the positioning stage due to several merits. However, one of the critical demerits of the pneumatic systems is the problem of the compressibility, which results in the flow disturbance. Another problem of the positioning stage can be addressed to the vibration which occurs due to the active condition of the base plate. This paper concerns the mentioned two issues in a pneumatic positioning stage. In order to suppress the flow disturbance and to reduce the horizontal vibration of the stage due to the reaction force, a combined control scheme is proposed. This scheme is composed of the fusion of flow disturbance observer (FDOB) and base plate jerk feedback (BPJFB) scheme. An enhanced experimental methodology is provided to successfully implement the fusion of the mentioned feedback controllers. The results show the effectiveness of the proposed method.

  14. Antinociception versus serum concentration relationships following acute administration of intravenous morphine in male and female Sprague-Dawley rats: differences between the tail flick and hot plate nociceptive tests.

    PubMed

    South, Samantha M; Edwards, Stephen R; Smith, Maree T

    2009-01-01

    1. Antinociception versus serum morphine concentration relationships were defined in male and female Sprague-Dawley rats administered single intravenous (i.v.) bolus doses of morphine, using the hot plate (2.1-14 mg/kg) and tail flick tests (1-8 mg/kg). 2. Serum concentrations of morphine and morphine-3-glucuronide (M3G), its major metabolite in the rat, were assayed using high-performance liquid chromatography (HPLC) with electrochemical detection. 3. Significantly higher (P < 0.05) values of peak antinociception (approximately 1.7-fold), as well as the extent and duration of antinociception (approximately fourfold), were observed in male compared with female rats administered 10 mg/kg morphine in the hot plate test. Although there were no significant sex-related differences in the area under the serum morphine concentration versus time curve (AUC) at this dose, systemic exposure to M3G (M3G AUC) was significantly higher (approximately twofold; P < 0.05) in female than male rats. 4. In contrast with most previous studies investigating sex differences in morphine antinociception in rats, the antinociceptive effects of single i.v. doses of morphine (1-8 mg/kg) in the tail flick test did not differ significantly between male and female rats. 5. Morphine ED(50) and EC(50) values (95% confidence intervals) for antinociception in the hot plate test were significantly lower (P < 0.05) in male rats (ED(50) 8.4 mg/kg (7.6-9.2); EC(50) 1.8 nmol/L (1.5-2.1)) compared with female rats (ED(50) 10.6 mg/kg (9.1-12.0); EC(50) 3.7 nmol/L (3.4-4.1)). However, in the tail flick test, there was no significant difference between male and female rats in ED(50) (1.8 (0.4-3.3) and 1.4 mg/kg (0.4-2.5), respectively) or EC(50) (0.5 (0.3-0.6) and 0.4 nmol/L (0.2-0.5), respectively) values. 6. Supraspinal attenuation of morphine antinociception by M3G may account for these differences.

  15. Investigation on the effect of MR elastomer based adaptive vibration absorbers on the radiated sound from circular elastic plates

    NASA Astrophysics Data System (ADS)

    Hemmatian, M.; Sedaghati, R.

    2016-04-01

    This study aims to investigate the effect of using magnetorheological elastomer (MRE)-based adaptive tuned vibration absorbers (ATVA) on the sound transmission in an elastic plate. Sound transmission loss (STL) of an elastic circular thin plate is analytically studied. The plate is excited by a plane acoustic wave as an incident sound and the displacement of the plate is calculated using corresponding mode shapes of the system for clamped boundary condition. Rayleigh integral approach is used to express the transmitted sound pressure in terms of the plate's displacement modal amplitude. In order to increase sound transmission loss of the plate, the MRE-based ATVA is considered. The basic idea is to be able to change the stiffness of the ATVA by varying magnetic field in order to reduce the transmitted acoustic energy of the host structure in a wide frequency range. Here, a MRE-based ATVA under the shear mode consisting of an oscillator mass, magnetic conductor, coils and MRE is investigated. In order to predict the viscoelastic characteristics of the field-dependent MRE based on the applied magnetic field, the double pole model is used. Finally, MRE-based ATVAs are integrated with the plate to absorb the plate energy with the aim of decreasing the transmitted sound power. Results show that plate with integrated MRE-based ATVAs suppresses the axisymmetric vibration of the plate and thus considerably improves the STL. Parametric studies on the influence of the position of MRE-based ATVAs and the effects of applied current on their performance are also presented.

  16. Analytical model development of an eddy-current-based non-contacting steel plate conveyance system

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Tsung; Lin, Sheng-Yang; Yang, Yung-Yi; Hwang, Chang-Chou

    A concise model for analyzing and predicting the quasi-static electromagnetic characteristics of an eddy-current-based non-contacting steel plate conveyance system has been developed. Confirmed by three-dimensional (3-D) finite element analysis (FEA), adequacy of the analytical model can be demonstrated. Such an effective approach, which can be conveniently used by the potential industries for preliminary system operational performance evaluations, will be essential for designers and on-site engineers.

  17. Reevaluation of plate motion models based on hotspot tracks in the Atlantic and Indian Oceans

    SciTech Connect

    Baksi, A.K.

    1999-01-01

    Plate motion models based on hotspot tracks in the Atlantic and Indian Oceans predict minimal movement (less than a few millimeters per year) between these hotspots and their counterparts in the Pacific Ocean for the past {approximately}100 m.yr., whereas plate circuit exercises indicate relative motions of {approximately}20 mm/yr. Hotspot-based models also suggest that the Rajmahal Traps, India, were located {approximately}1,000 km away from the Kerguelen hotspot at {approximately}115 Ma, and the Deccan Traps, India, were located a similar distance from the Reunion hotspot at {approximately}65 Ma; this is at odds with conclusions derived from paleomagnetism, plate circuits, and geochemical parameters that suggest a genetic link between flood basalt provinces in India and hotspots in the Indian Ocean. These divergent views may be explained by plume action {approximately}1,000 km from its center or errors in the hotspot motion models. The latter hypothesis is scrutinized in this article by examination of the radiometric ages for hotspot tracks in the Atlantic and Indian Oceans. The {sup 40}/{sup 39}Ar step-heating data for rocks defining the tracks of the Reunion and Kerguelen hotspots in the Indian Ocean and the Great Metero and Tristan da Cunha hotspots in the Atlantic Ocean are critically reexamined. Of {approximately}35 such ages utilized for deriving plate motion models for the past 130 m.yr., at best, only three ({approximately}32, {approximately}50, and {approximately}52 Ma) in the Indian Ocean and one ({approximately}65 Ma) for the Atlantic Ocean may be treated as crystallization ages. Conclusions based on hotspot track modeling for Late Cretaceous to Eocene time are suspect, and those for the Early to Late Cretaceous period are untenable. In the absence of precise age data for the tracks of hotspots in the Atlantic and Indian Oceans, and inconsistent age progressions noted within a single volcanic chain, plate circuit models serve as the superior technique

  18. A Prerecognition Model for Hot Topic Discovery Based on Microblogging Data

    PubMed Central

    Zhu, Tongyu

    2014-01-01

    The microblogging is prevailing since its easy and anonymous information sharing at Internet, which also brings the issue of dispersing negative topics, or even rumors. Many researchers have focused on how to find and trace emerging topics for analysis. When adopting topic detection and tracking techniques to find hot topics with streamed microblogging data, it will meet obstacles like streamed microblogging data clustering, topic hotness definition, and emerging hot topic discovery. This paper schemes a novel prerecognition model for hot topic discovery. In this model, the concepts of the topic life cycle, the hot velocity, and the hot acceleration are promoted to calculate the change of topic hotness, which aims to discover those emerging hot topics before they boost and break out. Our experiments show that this new model would help to discover potential hot topics efficiently and achieve considerable performance. PMID:25254235

  19. Vibration-based damage detection in plates by using time series analysis

    NASA Astrophysics Data System (ADS)

    Trendafilova, Irina; Manoach, Emil

    2008-07-01

    This paper deals with the problem of vibration health monitoring (VHM) in structures with nonlinear dynamic behaviour. It aims to introduce two viable VHM methods that use large amplitude vibrations and are based on nonlinear time series analysis. The methods suggested explore some changes in the state space geometry/distribution of the structural dynamic response with damage and their use for damage detection purposes. One of the methods uses the statistical distribution of state space points on the attractor of a vibrating structure, while the other one is based on the Poincaré map of the state space projected dynamic response. In this paper both methods are developed and demonstrated for a thin vibrating plate. The investigation is based on finite element modelling of the plate vibration response. The results obtained demonstrate the influence of damage on the local dynamic attractor of the plate state space and the applicability of the proposed strategies for damage assessment. The approach taken in this study and the suggested VHM methods are rather generic and permit development and applications for other more complex nonlinear structures.

  20. Fabrication and characterization of monolithically integrated microchannel plates based on amorphous silicon.

    PubMed

    Franco, Andrea; Geissbühler, Jonas; Wyrsch, Nicolas; Ballif, Christophe

    2014-04-04

    Microchannel plates are vacuum-based electron multipliers for particle--in particular, photon--detection, with applications ranging from image intensifiers to single-photon detectors. Their key strengths are large signal amplification, large active area, micrometric spatial resolution and picosecond temporal resolution. Here, we present the first microchannel plate made of hydrogenated amorphous silicon (a-Si:H) instead of lead glass. The breakthrough lies in the possibility of realizing amorphous silicon-based microchannel plates (AMCPs) on any kind of substrate. This achievement is based on mastering the deposition of an ultra-thick (80-120 μm) stress-controlled a-Si:H layer from the gas phase at temperatures of about 200 °C and micromachining the channels by dry etching. We fabricated AMCPs that are vertically integrated on metallic anodes of test structures, proving the feasibility of monolithic integration of, for instance, AMCPs on application-specific integrated circuits for signal processing. We show an electron multiplication factor exceeding 30 for an aspect ratio, namely channel length over aperture, of 12.5:1. This result was achieved for input photoelectron currents up to 100 pA, in the continuous illumination regime, which provides a first evidence of the a-Si:H effectiveness in replenishing the electrons dispensed in the multiplication process.

  1. Fabrication and characterization of monolithically integrated microchannel plates based on amorphous silicon

    PubMed Central

    Franco, Andrea; Geissbühler, Jonas; Wyrsch, Nicolas; Ballif, Christophe

    2014-01-01

    Microchannel plates are vacuum-based electron multipliers for particle—in particular, photon— detection, with applications ranging from image intensifiers to single-photon detectors. Their key strengths are large signal amplification, large active area, micrometric spatial resolution and picosecond temporal resolution. Here, we present the first microchannel plate made of hydrogenated amorphous silicon (a-Si:H) instead of lead glass. The breakthrough lies in the possibility of realizing amorphous silicon-based microchannel plates (AMCPs) on any kind of substrate. This achievement is based on mastering the deposition of an ultra-thick (80–120 μm) stress-controlled a-Si:H layer from the gas phase at temperatures of about 200°C and micromachining the channels by dry etching. We fabricated AMCPs that are vertically integrated on metallic anodes of test structures, proving the feasibility of monolithic integration of, for instance, AMCPs on application-specific integrated circuits for signal processing. We show an electron multiplication factor exceeding 30 for an aspect ratio, namely channel length over aperture, of 12.5:1. This result was achieved for input photoelectron currents up to 100 pA, in the continuous illumination regime, which provides a first evidence of the a-Si:H effectiveness in replenishing the electrons dispensed in the multiplication process. PMID:24698955

  2. An FE Based On-line Model for the Prediction of Work Roll Thermal Profile in Hot Strip Rolling

    NASA Astrophysics Data System (ADS)

    Choi, Ji Won; Lee, Jung Hyeung; Sun, Cheng Gang; Hwang, Sang Moo

    2010-06-01

    Prediction and control of the thermal deformation of the work roll is vital for enhancing product quality in hot strip and plate rolling. In this paper, we present an on-line model for the prediction of the work roll thermal profile. The model is developed on the basis of an integrated finite element model for the coupled analysis of heat transfer and deformation occurring at the bite zone, to rigorously take into account the effect of various rolling parameters on the thermal behavior of the work roll. The validity of the model is demonstrated through comparison with measurements made in an industrial hot strip mill. Also, an emphasis is given to the examination the effect of some selected rolling parameters in an actual production environment.

  3. An efficient license plate character recognition algorithm based on shape context

    NASA Astrophysics Data System (ADS)

    Wan, Yan; Xu, Xiaotao; Yao, Li

    It is usually hard for traditional machine-learning-based classification algorithms such as Support Vector Machine (SVM) to classify similar characters in the process of license plate character recognition. In this paper, we introduced an efficient character recognition system based on a local, robust shape descriptor called the shape context to solve this problem. We also improved the matching strategy overcome shape context's slow running speed. Experiment result shows the proposed algorithm has higher accuracy and quicker running speed compare to traditional machine- learning-based algorithms.

  4. High Q-factor colloidal nanocrystal-based vertical microcavity by hot embossing technology

    NASA Astrophysics Data System (ADS)

    Martiradonna, Luigi; Carbone, Luigi; De Giorgi, Milena; Manna, Liberato; Gigli, Giuseppe; Cingolani, Roberto; De Vittorio, Massimo

    2006-05-01

    We report on the fabrication and optical characterization of vertical hybrid microcavities in which a layer of colloidal nanocrystals dispersed in an organic matrix is embedded between two inorganic mirrors. The devices are fabricated by a technique based on the unconventional use of the hot embossing technology, which allows a very fine control of the cavity length. The technique exploits a λ-thick microstructured dielectric top mirror pressed onto the bottom one, previously coated with the active layer, to sandwich the cavity and precisely control its thickness. Room-temperature photoluminescence measurements show a Q factor as high as 146 for our devices.

  5. Recent progress in LWIR HOT photoconductors based on MOCVD grown (100) HgCdTe

    NASA Astrophysics Data System (ADS)

    Gawron, W.; Kębłowski, A.; Kopytko, M.; Madejczyk, P.; Martyniuk, P.; Pędzińska, M.; Piotrowski, A.; Piotrowski, J.; Rogalski, A.; Romanis, M.; Sosna, A.

    2016-10-01

    Hg1-x Cd x Te photoconductors grown in (100) crystallographic orientation are prone to demonstrating high crystalline quality, which results in a lower number of generation-recombination centers, lower noise and high responsivity. This work presents the optimum growth conditions and results of the characterization both of layers and high operating temperature (HOT) long wavelength infrared (LWIR) photoconductive devices based on them. The (100) HgCdTe photoconductor attains D*(13 μm) equal to 6.5 × 109 cmHz1/2W-1 at 200 K and therefore outperforms its (111)B counterpart.

  6. Glucose reactions with acid and base catalysts in hot compressed water at 473 K.

    PubMed

    Watanabe, Masaru; Aizawa, Yuichi; Iida, Toru; Aida, Taku M; Levy, Caroline; Sue, Kiwamu; Inomata, Hiroshi

    2005-09-05

    The effects of the homogeneous catalysts (H(2)SO(4) and NaOH) and heterogeneous catalysts (TiO(2) and ZrO(2)) on glucose reactions were examined in hot compressed water (473 K) by a batch-type reactor. From the homogeneous catalyst studies, we confirmed that the acid catalyst promoted dehydration, while isomerization of glucose to fructose was catalyzed by alkali. Anatase TiO(2) was found to act as an acid catalyst to promote formation of 5-hydroxymethylfuraldehyde (HMF). Zirconia (ZrO(2)) was a base catalyst to promote the isomerization of glucose. The effects of the additives were also confirmed through fructose reactions.

  7. McClellan Air Force Base plating shop rinse water recycle system

    SciTech Connect

    Miyasaki, D.H.; LaRue, D.M.

    1988-01-01

    The Idaho National Engineering Laboratory performed an assessment on the technical and economic viability of a total recycle of the rinse water generated by the Sacramento Air Logistics Center Plating Shop, located in Building 243-G of McClellan Air Force Base. A proposed conceptual design using ion exchange beds for the recycle of plating shop rinse water is presented and evaluated. Laboratory studies indicated that the proposed recycle system meets all functional and operational requirements that were identified. But concern over the amount of waste generated during the process of regenerating the ion exchange columns prompted an evaluation of a reverse osmosis unit, which would function as pretreatment before the ion exchange process. Further studies indicated that the addition of this pretreatment process would improve the performance of the recycle system, but that the cost of construction and operation would be significantly higher. Based on technical and economic evaluations, the ion exchange system is the recommended recycle system for the plating shop. 9 figs.

  8. Miniaturization of mitotic index cell-based assay using "wall-less" plate technology.

    PubMed

    Le Guezennec, Xavier; Phong, Mark; Nor, Liyana; Kim, Namyong

    2014-03-01

    The use of microscopic imaging for the accurate assessment of cells in mitosis is hampered by the round morphology of mitotic cells, which renders them poorly adherent and highly susceptible to loss during the washing stage of cell-based assays. Here, to circumvent these limitations, we make use of DropArray, a recent technology that allows high retention of weakly adherent cells and suspension cells. DropArray offers the competitive advantage of maintaining the classic high throughput format of microtiter plates while reducing classic microwell volume by up to 90% by using a drop format. Here, we present a mitotic index cell-based assay using the mitosis marker phospho histone H3 at serine 10 on a DropArray 384-well plate format. Dose-response curve analysis of the mitotic index assay with an antimitotic drug (docetaxel) on DropArray is presented that shows an effective dosage compared to previous established results similar to those obtained with conventional microtiter plates. The mitotic index assay with DropArray showed a Z-factor >0.6. Our results validate DropArray as a suitable platform for high throughput screening for compounds affecting mitosis or the cell cycle.

  9. Effects of tin plating on base metal alloy-ceramic bond strength.

    PubMed

    Değer, S; Caniklioglu, M B

    1998-01-01

    This study investigated the metal-ceramic bonding of treated metal surfaces. The study was divided into two parts. In Part I, the depth of tin diffusion from a tin-plated bone metal alloy surface was measured using an energy-dispersive spectrometer. In Part II the metal-ceramic bond strength was determined using a shear test. The weakest bonding was observed in the directly tin-plated group, and the strongest metal-ceramic bonding was maintained in the tin-diffused group. A controlled oxidation produced the greatest bond strengths. With the base metal alloys tested, diffusion under the argon environment was conducive to a stronger metal-ceramic bond. The metal oxidation rate should approximate the ceramic vitrification rate, and the diffusion rate of the metal elements should be slower than the vitrification rate to obtain the strongest metal-ceramic bond.

  10. Calibration of a microchannel plate based extreme ultraviolet grazing incident spectrometer at the Advanced Light Source

    SciTech Connect

    Bakeman, M. S.; Tilborg, J. van; Sokollik, T.; Baum, D.; Ybarrolaza, N.; Duarte, R.; Toth, C.; Leemans, W. P.

    2010-10-15

    We present the design and calibration of a microchannel plate based extreme ultraviolet spectrometer. Calibration was performed at the Advance Light Source (ALS) at the Lawrence Berkeley National Laboratory (LBNL). This spectrometer will be used to record the single shot spectrum of radiation emitted by the tapered hybrid undulator (THUNDER) undulator installed at the LOASIS GeV-class laser-plasma-accelerator. The spectrometer uses an aberration-corrected concave grating with 1200 lines/mm covering 11-62 nm and a microchannel plate detector with a CsI coated photocathode for increased quantum efficiency in the extreme ultraviolet. A touch screen interface controls the grating angle, aperture size, and placement of the detector in vacuum, allowing for high-resolution measurements over the entire spectral range.

  11. Calibration of a microchannel plate based extreme ultraviolet grazing incident spectrometer at the Advanced Light Source.

    PubMed

    Bakeman, M S; van Tilborg, J; Sokollik, T; Baum, D; Ybarrolaza, N; Duarte, R; Toth, C; Leemans, W P

    2010-10-01

    We present the design and calibration of a microchannel plate based extreme ultraviolet spectrometer. Calibration was performed at the Advance Light Source (ALS) at the Lawrence Berkeley National Laboratory (LBNL). This spectrometer will be used to record the single shot spectrum of radiation emitted by the tapered hybrid undulator (THUNDER) undulator installed at the LOASIS GeV-class laser-plasma-accelerator. The spectrometer uses an aberration-corrected concave grating with 1200 lines/mm covering 11-62 nm and a microchannel plate detector with a CsI coated photocathode for increased quantum efficiency in the extreme ultraviolet. A touch screen interface controls the grating angle, aperture size, and placement of the detector in vacuum, allowing for high-resolution measurements over the entire spectral range.

  12. Performance evaluation of dual-frequency driving plate ultrasonic motor based on an analytical model.

    PubMed

    Pang, Yafei; Yang, Ming; Chen, Xuying; He, Wei; Li, Shiyang; Li, Chaodong

    2011-08-01

    An analytical model is presented to explain the effects of dual-frequency drive on the plate ultrasonic motor in this paper. The experimental prototype is a plate ultrasonic motor using single-phase asymmetric excitation, which can work under a single vibration or multiple vibration modes. Based on the linear superposition of vibrations with two different excitation frequencies, an analytical model is established using the classic Coulomb friction model, and the non-load rotation speed and maximum stall torque are deduced. Moreover, some crucial parameters such as preload and dead-zone in dual-frequency superposition model are identified or modified automatically by searching for the maximum correlation coefficient between simulation and experimental data using single-frequency drive. It is found that simulation and experiment results agree well when no excitation frequency component is at resonance.

  13. Chip-based optical microscopy for imaging membrane sieve plates of liver scavenger cells

    NASA Astrophysics Data System (ADS)

    Helle, Øystein I.; Øie, Cristina I.; McCourt, Peter; Ahluwalia, Balpreet S.

    2015-08-01

    The evanescent field on top of optical waveguides is used to image membrane network and sieve-plates of liver endothelial cells. In waveguide excitation, the evanescent field is dominant only near the surface (~100-150 nm) providing a default optical sectioning by illuminating fluorophores in close proximity to the surface and thus benefiting higher signal-to-noise ratio. The sieve plates of liver sinusoidal endothelial cells are present on the cell membrane, thus near-field waveguide chip-based microscopy configuration is preferred over epi-fluorescence. The waveguide chip is compatible with optical fiber components allowing easy multiplexing to different wavelengths. In this paper, we will discuss the challenges and opportunities provided by integrated optical microscopy for imaging cell membranes.

  14. A novel disturbance-observer based friction compensation scheme for ball and plate system.

    PubMed

    Wang, Yongkun; Sun, Mingwei; Wang, Zenghui; Liu, Zhongxin; Chen, Zengqiang

    2014-03-01

    Friction is often ignored when designing a controller for the ball and plate system, which can lead to steady-error and stick-slip phenomena, especially for the small amplitude command. It is difficult to achieve high-precision control performance for the ball and plate system because of its friction. A novel reference compensation strategy is presented to attenuate the aftereffects caused by the friction. To realize this strategy, a linear control law is proposed based on a reduced-order observer. Neither the accurate friction model nor the estimation of specific characteristic parameters is needed in this design. Moreover, the describing function method illustrates that the limit cycle can be avoided. Finally, the comparative mathematical simulations and the practical experiments are used to validate the effectiveness of the proposed method.

  15. Seismic Probing of the Base of a Tectonic Plate from Subduction Zone to Trench Outer Rise: Hikurangi Margin, New Zealand

    NASA Astrophysics Data System (ADS)

    Louie, J. N.; Kent, G. M.; Lamb, S. H.; Savage, M. K.; Stern, T. A.; Stratford, W. R.

    2015-12-01

    The nature of the base of a tectonic plate (LAB) is the 3rd dimension of plate tectonics. Recent seismic studies of the LAB have revealed planar features that show very different characteristics. In the oceans, the top of the S-wave low velocity zone shows a systematic deepening with plate age that fits plate-cooling models. However, the change in radial anisotropy has a markedly constant depth of ~70 km, regardless of plate age. A recent land-based study (SAHKE 2) of the subducted Pacific Plate in the southern Hikurangi margin has imaged a pair of distinct reflectors defining a ~10 km thick channel parallel to and ~70 km below the top of the ~15° dipping plate. Low velocities indicate that the channel is a zone of partial melt or high volatile content, acting as a weak base to the plate. Receiver function studies along the Japan margin have also imaged layers at these depths, parallel to the top of the plate and dipping up to 45°. We propose probing the base of the tectonic plate by tracing potential LAB seismic reflectors from their dipping portions in the subduction zone to where they bend in the trench outer rise. If the seismically identified boundary represents a 'frozen-in' feature, created at the mid ocean ridge, then it will remain parallel to the top of the plate, and its nature will remain unchanged as it is tracked over the outer rise. Alternatively, if the base of the plate is a thin channel of partial melt, then one would expect thickening of the channel beneath the outer rise due to melt ponding in the core of the flexure; this melt ponding may be the source of volcanic activity. A 500-km survey will trace the Pacific plate LAB from the subduction zone into the trench outer rise. The deeper part of the line coincides with the part of the plate where the ~10 km thick 'melt' channel was clearly imaged with the SAHKE 2 experiment. We show with synthetic experiments that given seismic energy scatter and attenuation comparable to that observed in the

  16. Synthesis and antinociceptive properties of N-phenyl-N-(1-(2-(thiophen-2-yl)ethyl)azepane-4-yl)propionamide in the mouse tail-flick and hot-plate tests.

    PubMed

    Andurkar, Shridhar V; Reniguntala, Madhu Shaw J; Gulati, Anil; DeRuiter, Jack

    2014-01-15

    The goals of this study, were to synthesize N-phenyl-N-(1-(2-(thiophen-2-yl)ethyl)azepane-4-yl)propionamide (1c) and determine its antinociceptive properties. The effect of clonidine on 1c antinociception and the involvement of opioid, α2-adrenergic, and I2 imidazoline receptors in 1c antinociception were studied. Also examined was the effect of an endothelin ETA receptor antagonist on 1c antinociception. Synthesis of 1c was accomplished in two steps using modifications of previously reported methods. Antinociceptive (tail-flick and hot-plate) latencies were measured in male Swiss Webster mice treated with 1c; antagonists+1c; clonidine+1c; or antagonists+clonidine+1c. Mice were pretreated with naloxone (opioid antagonist), yohimbine (α2-adrenoceptor antagonist), idazoxan (α2-adrenoceptor/I2-imidazoline antagonist), BU224 (I2-imidazoline antagonist) or BQ123 (endothelin ETA receptor antagonist) to study the involvement of these receptors. Compound 1c produced a dose-dependent increase in antinociceptive latencies; ED50 values were 0.15 mg/kg and 0.16 mg/kg, respectively, in the tail flick and hot plate tests. Naloxone, but not yohimbine, idazoxan or BU224, blocked 1c antinociception. Neither clonidine nor BQ123 potentiated 1c antinociception. Results demonstrate that 1c is 15-times more potent than morphine. The antinociceptive effect of 1c is mediated through opioid receptors. The α2-adrenergic, I2-imidazoline and endothelin ETA receptors are not involved in 1c antinociception. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Computed Tomography-Based 3-Dimensional Finite Element Analyses of Various Types of Plates Placed for a Virtually Reduced Unilateral Condylar Fracture of the Mandible of a Patient.

    PubMed

    Murakami, Kazuhiro; Yamamoto, Kazuhiko; Sugiura, Tsutomu; Horita, Satoshi; Matsusue, Yumiko; Kirita, Tadaaki

    2017-06-01

    This study was performed to evaluate stresses in various types of plates placed for a virtually reduced unilateral condylar fracture of the mandible using computed tomography-based 3-dimensional finite element (FE) models of a patient to select the optimal plate system. A computed tomography-based FE model of the mandible of a patient with a unilateral condylar fracture was constructed. The fracture was virtually reduced and fixed with 1 straight titanium plate; 2 straight titanium plates; 2 straight poly-L-lactic acid plates; and 4-hole (box), 5-hole (strut), and 7-hole (lambda) condylar plates. Stresses developing in these plates were analyzed by applying 478.1 N of bite force at the first molar of the contralateral side of the mandible. The magnitudes of tensile stress were within the tensile strength in all types of plates. However, the magnitudes of compressive stress in 1 straight titanium plate and 2 straight poly-L-lactic acid plates were beyond the compressive strength. The tensile and compressive stresses of the 5-hole (strut) plate were the smallest among the 3 types of condylar plates. Fixation by 2 straight titanium plates or any type of condylar plate was biomechanically indicated for the condylar fracture of this patient. Among these plates, the 5-hole (strut) plate was considered optimal. FE analysis is useful in selecting the optimal fixation method in the individual patient. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  18. Design concepts for hot carrier-based detectors and energy converters in the near ultraviolet and infrared

    NASA Astrophysics Data System (ADS)

    Gong, Tao; Krayer, Lisa; Munday, Jeremy N.

    2016-10-01

    Semiconductor materials are well suited for power conversion when the incident photon energy is slightly larger than the bandgap energy of the semiconductor. However, for photons with energy significantly greater than the bandgap energy, power conversion efficiencies are low. Further, for photons with energy below the bandgap energy, the absence of absorption results in no power generation. Here, we describe photon detection and power conversion of both high- and low-energy photons using hot carrier effects. For the absorption of high-energy photons, excited electrons and holes have excess kinetic energy that is typically lost through thermalization processes between the carriers and the lattice. However, collection of hot carriers before thermalization allows for reduced power loss. Devices utilizing plasmonic nanostructures or simple three-layer stacks (transparent conductor-insulator-metal) can be used to generate and collect these hot carriers. Alternatively, hot carrier collection from sub-bandgap photons can be possible by forming a Schottky junction with an absorbing metal so that hot carriers generated in the metal can be injected across the semiconductor-metal interface. Such structures enable near-IR detection based on sub-bandgap photon absorption. Further, utilization and optimization of localized surface plasmon resonances can increase optical absorption and hot carrier generation (through plasmon decay). Combining these concepts, hot carrier generation and collection can be exploited over a large range of incident wavelengths spanning the UV, visible, and IR.

  19. MICROSCOPY CHARACTERIZATION OF U-MO BEARING MINI-PLATES FABRICATED BY HOT ISOSTATIC PRESSING (HIPPING) WITH A LONG THERMAL CYCLE

    SciTech Connect

    Jan-Fong Jue

    2007-07-01

    The RERTR Program has formed the Production Development Team to coordinate fabrication efforts to produce the fuel elements for the qualifying irradiation tests. These fuel elements will be fabricated in production facilities. Fabrication development data will be shared with all participants on the development team. The INL has been developing a method of cladding using a Hot Isostatic Press (HIP). The operating parameters were varied to understand the impact of time, pressure and temperature on the reaction between the fuel and the cladding. This report details some of the data produced to date.

  20. Boattail Plates With Non-Rectangular Geometries For Reducing Aerodynamic Base Drag Of A Bluff Body In Ground Effect

    SciTech Connect

    Ortega, Jason M.; Sabari, Kambiz

    2006-03-07

    An apparatus for reducing the aerodynamic base drag of a bluff body having a leading end, a trailing end, a top surface, opposing left and right side surfaces, and a base surface at the trailing end substantially normal to a longitudinal centerline of the bluff body, with the base surface joined (1) to the left side surface at a left trailing edge, (2) to the right side surface at a right trailing edge, and (3) to the top surface at a top trailing edge. The apparatus includes left and right vertical boattail plates which are orthogonally attached to the base surface of the bluff body and inwardly offset from the left and right trailing edges, respectively. This produces left and right vertical channels which generate, in a flowstream substantially parallel to the longitudinal centerline, respective left and right vertically-aligned vortical structures, with the left and right vertical boattail plates each having a plate width defined by a rear edge of the plate spaced from the base surface. Each plate also has a peak plate width at a location between top and bottom ends of the plate corresponding to a peak vortex of the respective vertically-aligned vortical structures.

  1. Performance evaluation of selective mode conversion based on phase plates for a 10-mode fiber.

    PubMed

    Igarashi, Koji; Souma, Daiki; Tsuritani, Takehiro; Morita, Itsuro

    2014-08-25

    We numerically and experimentally evaluate the performance of higher-order mode conversion based on phase plates for 10-mode fibers (10MFs). The phase plates have the phase jump of π between multiple planes, which match the phase patterns of linearly polarized (LP) modes of 10MF. First, we numerically investigate the effects of the fabrication errors such as the phase-difference error and the slope in the phase jump of the phase plate. The simulation results for the mode conversion to LP11 indicate that such errors make the spatial pattern of the converted beam asymmetric. In order to maintain the symmetric pattern, the phase-difference error is required to be less than ± 2%, and the ratio of the slope width to the input beam waist should be suppressed to be less than 0.05. Next, we calculate the coupling power efficiencies of the excitation of LP modes in 10MF when the converted beams after the phase plate are launched into 10MF using a lens. As the calculation results, highly accurate adjustment of the input beam waist is required to suppress the crosstalk due to coupling of undesirable LP modes by less than -20 dB. For mode excitation of LP11 or LP12, crosstalk of more than -20 dB is not avoidable even if the input beam waist is carefully adjusted. In contrast, the crosstalk for the mode excitation of LP21 or LP31 is easily suppressed to be less than -20 dB without careful adjustment of the input beam waist. These results suggest that phase plates are not applicable to mode conversion to LP11 and LP12 in 10MF while they are suitable for conversion to LP02, LP21 and LP31. Finally, we experimentally demonstrate conversion from LP01 to LP21 and LP31 modes in 10MF using phase plates. We obtain nearly ideal LP21 and LP31 modes with the small crosstalk due to the coupling of the other undesirable LP modes.

  2. Hybrid Semiloof elements for plates and shells based upon a modified Hu-Washizu principle

    NASA Technical Reports Server (NTRS)

    Pian, T. H. H.; Sumihara, K.

    1984-01-01

    Hybrid SemiLoof elements for plates and shells are developed based upon modified Hu-Washizu principle. In the new version of the assumed stress hybrid formulation the equilibrium equations are satisfied through the introduction of internal displacement parameters as Lagrange multipliers. The inversion of the resulting H-matrices is simplified particularly when the stresses are expressed in terms of natural coordinates. A 24-DOF triangular element and a 32-DOF quadrilateral element based on shallow shell theory are derived and evaluated.

  3. Extrapolation of Calibration Curve of Hot-wire Spirometer Using a Novel Neural Network Based Approach.

    PubMed

    Ardekani, Mohammad Ali; Nafisi, Vahid Reza; Farhani, Foad

    2012-10-01

    Hot-wire spirometer is a kind of constant temperature anemometer (CTA). The working principle of CTA, used for the measurement of fluid velocity and flow turbulence, is based on convective heat transfer from a hot-wire sensor to a fluid being measured. The calibration curve of a CTA is nonlinear and cannot be easily extrapolated beyond its calibration range. Therefore, a method for extrapolation of CTA calibration curve will be of great practical application. In this paper, a novel approach based on the conventional neural network and self-organizing map (SOM) method has been proposed to extrapolate CTA calibration curve for measurement of velocity in the range 0.7-30 m/seconds. Results show that, using this approach for the extrapolation of the CTA calibration curve beyond its upper limit, the standard deviation is about -0.5%, which is acceptable in most cases. Moreover, this approach for the extrapolation of the CTA calibration curve below its lower limit produces standard deviation of about 4.5%, which is acceptable in spirometry applications. Finally, the standard deviation on the whole measurement range (0.7-30 m/s) is about 1.5%.

  4. Extrapolation of Calibration Curve of Hot-wire Spirometer Using a Novel Neural Network Based Approach

    PubMed Central

    Ardekani, Mohammad Ali; Nafisi, Vahid Reza; Farhani, Foad

    2012-01-01

    Hot-wire spirometer is a kind of constant temperature anemometer (CTA). The working principle of CTA, used for the measurement of fluid velocity and flow turbulence, is based on convective heat transfer from a hot-wire sensor to a fluid being measured. The calibration curve of a CTA is nonlinear and cannot be easily extrapolated beyond its calibration range. Therefore, a method for extrapolation of CTA calibration curve will be of great practical application. In this paper, a novel approach based on the conventional neural network and self-organizing map (SOM) method has been proposed to extrapolate CTA calibration curve for measurement of velocity in the range 0.7-30 m/seconds. Results show that, using this approach for the extrapolation of the CTA calibration curve beyond its upper limit, the standard deviation is about –0.5%, which is acceptable in most cases. Moreover, this approach for the extrapolation of the CTA calibration curve below its lower limit produces standard deviation of about 4.5%, which is acceptable in spirometry applications. Finally, the standard deviation on the whole measurement range (0.7-30 m/s) is about 1.5%. PMID:23724368

  5. Hot hollow cathode gun assembly

    DOEpatents

    Zeren, J.D.

    1983-11-22

    A hot hollow cathode deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, the hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  6. Dynamic stability of laminated FGM plates based on higher-order shear deformation theory

    NASA Astrophysics Data System (ADS)

    Yang, J.; Liew, K. M.; Kitipornchai, S.

    This paper conducts a dynamic stability analysis of symmetrically laminated FGM rectangular plates with general out-of-plane supporting conditions, subjected to a uniaxial periodic in-plane load and undergoing uniform temperature change. Theoretical formulations are based on Reddy's third-order shear deformation plate theory, and account for the temperature dependence of material properties. A semi-analytical Galerkin-differential quadrature approach is employed to convert the governing equations into a linear system of Mathieu-Hill equations from which the boundary points on the unstable regions are determined by Bolotin's method. Free vibration and bifurcation buckling are also discussed as subset problems. Numerical results are presented in both dimensionless tabular and graphical forms for laminated plates with FGM layers made of silicon nitride and stainless steel. The influences of various parameters such as material composition, layer thickness ratio, temperature change, static load level, boundary constraints on the dynamic stability, buckling and vibration frequencies are examined in detail through parametric studies.

  7. Does obesity increase the risk of hot flashes among midlife women?: a population-based study.

    PubMed

    Saccomani, Sylvio; Lui-Filho, Jeffrey Frederico; Juliato, Cassia Raquel; Gabiatti, Jose Roberto; Pedro, Adriana Orcesi; Costa-Paiva, Lucia

    2017-09-01

    To evaluate the association between vasomotor symptoms and obesity in climacteric women. We conducted a cross-sectional population-based study of 749 women aged 45 to 60 years. The dependent variable was intensity of menopausal symptoms evaluated by the menopause rating scale questionnaire. Independent variables were sociodemographic and clinical characteristics, and obesity evaluated by body mass index. There was no significant difference in the majority of clinical and sociodemographic characteristics between the body mass index groups. Obese women had less physical activity (P = 0.019) and a higher prevalence of hypertension (P < 0.001), diabetes (P = 0.002), urinary incontinence (P < 0.001), and urge incontinence (P = 0.0006). The total mean menopause rating scale score was 9.7. Scores for hot flashes increased progressively and were higher for participants with body mass index greater than 30 kg/m (P = 0.027). Joint and muscle pain scores also increased with increased body mass index (P < 0.001). Regarding urogenital symptoms, there was a significant difference in urinary problems only, which were more intense in obese women (body mass index >30 kg/m) (P < 0.0001). There was no significant difference in any psychological symptoms on the menopause rating scale. Factors associated with hot flash scores were higher body mass index, presence of urinary urgency, and vaginal dryness. We found that menopausal symptoms, including vasomotor, joint, and urinary symptoms, were related to obesity. Hot flashes were associated with higher body mass index, urinary urgency, and vaginal dryness. Understanding this relationship may contribute to the development of healthcare strategies aimed at minimizing the impact of obesity on several health issues of climacteric women.

  8. A Catalog of 1.5273 um Diffuse Interstellar Bands Based on APOGEE Hot Telluric Calibrators

    NASA Astrophysics Data System (ADS)

    Elyajouri, M.; Monreal-Ibero, A.; Remy, Q.; Lallement, R.

    2016-08-01

    High resolution stellar spectroscopic surveys provide massive amounts of diffuse interstellar bands (DIBs) measurements. Data can be used to study the distribution of the DIB carriers and those environmental conditions that favor their formation. In parallel, recent studies have also proved that DIBs extracted from stellar spectra constitute new tools for building the 3D structure of the Galactic interstellar medium (ISM). The amount of details on the structure depends directly on the quantity of available lines of sight. Therefore there is a need to construct databases of high-quality DIB measurements as large as possible. We aim at providing the community with a catalog of high-quality measurements of the 1.5273 μm DIB toward a large fraction of the Apache Point Observatory Galactic Evolution Experiment (APOGEE) hot stars observed to correct for the telluric absorption and not used for ISM studies so far. This catalog would complement the extensive database recently extracted from the APOGEE observations and used for 3D ISM mapping. We devised a method to fit the stellar continuum of the hot calibration stars and extracted the DIB from the normalized spectrum. Severe selection criteria based on the absorption characteristics are applied to the results. In particular limiting constraints on the DIB widths and Doppler shifts are deduced from the H i 21 cm measurements, following a new technique of decomposition of the emission spectra. From ˜16,000 available hot telluric spectra we have extracted ˜6700 DIB measurements and their associated uncertainties. The statistical properties of the extracted absorptions are examined and our selection criteria are shown to provide a robust dataset. The resulting catalog contains the DIB total equivalent widths, central wavelengths and widths. We briefly illustrate its potential use for the stellar and interstellar communities.

  9. Hot corrosion studies of four nickel-base superalloys - B-1900, NASA-TRW VIA, 713C and IN738

    NASA Technical Reports Server (NTRS)

    Fryburg, G. C.; Kohl, F. J.; Stearns, C. A.

    1976-01-01

    The susceptibility to hot corrosion of four nickel-base superalloys has been studied at 900 and 1000 C in one atmosphere of slowly flowing oxygen. Hot corrosion was induced by coating the samples with known doses of Na2SO4 and oxidizing the coated samples isothermally on a sensitive microbalance. In order of decending susceptibility to hot corrosion, these alloys were ranked: B-1900, 713C, NASA-TRW VIA, IN738. This order corresponds to the order of decreasing molybdenum content of the alloys. Chemical evidence for B-1900 indicates that hot corrosion is instigated by acid fluxing of the protective Al2O3 coating by MoO3.

  10. Hot corrosion studies of four nickel-base superalloys - B-1900, NASA-TRW VIA, 713C and IN738

    NASA Technical Reports Server (NTRS)

    Fryburg, G. C.; Kohl, F. J.; Stearns, C. A.

    1976-01-01

    The susceptibility to hot corrosion of four nickel-base superalloys has been studied at 900 and 1000 C in one atmosphere of slowly flowing oxygen. Hot corrosion was induced by coating the samples with known doses of Na2SO4 and oxidizing the coated samples isothermally on a sensitive microbalance. In order of decending susceptibility to hot corrosion, these alloys were ranked: B-1900, 713C, NASA-TRW VIA, IN738. This order corresponds to the order of decreasing molybdenum content of the alloys. Chemical evidence for B-1900 indicates that hot corrosion is instigated by acid fluxing of the protective Al2O3 coating by MoO3.

  11. Steel Alloy Hot Roll Simulations and Through-Thickness Variation Using Dislocation Density-Based Modeling

    NASA Astrophysics Data System (ADS)

    Jansen Van Rensburg, G. J.; Kok, S.; Wilke, D. N.

    2017-07-01

    Different roll pass reduction schedules have different effects on the through-thickness properties of hot-rolled metal slabs. In order to assess or improve a reduction schedule using the finite element method, a material model is required that captures the relevant deformation mechanisms and physics. The model should also report relevant field quantities to assess variations in material state through the thickness of a simulated rolled metal slab. In this paper, a dislocation density-based material model with recrystallization is presented and calibrated on the material response of a high-strength low-alloy steel. The model has the ability to replicate and predict material response to a fair degree thanks to the physically motivated mechanisms it is built on. An example study is also presented to illustrate the possible effect different reduction schedules could have on the through-thickness material state and the ability to assess these effects based on finite element simulations.

  12. Steel Alloy Hot Roll Simulations and Through-Thickness Variation Using Dislocation Density-Based Modeling

    NASA Astrophysics Data System (ADS)

    Jansen Van Rensburg, G. J.; Kok, S.; Wilke, D. N.

    2017-10-01

    Different roll pass reduction schedules have different effects on the through-thickness properties of hot-rolled metal slabs. In order to assess or improve a reduction schedule using the finite element method, a material model is required that captures the relevant deformation mechanisms and physics. The model should also report relevant field quantities to assess variations in material state through the thickness of a simulated rolled metal slab. In this paper, a dislocation density-based material model with recrystallization is presented and calibrated on the material response of a high-strength low-alloy steel. The model has the ability to replicate and predict material response to a fair degree thanks to the physically motivated mechanisms it is built on. An example study is also presented to illustrate the possible effect different reduction schedules could have on the through-thickness material state and the ability to assess these effects based on finite element simulations.

  13. Hot roller embossing system equipped with a temperature margin-based controller.

    PubMed

    Kim, Seyoung; Son, Youngsu; Lee, Sunghee; Ham, Sangyong; Kim, Byungin

    2014-08-01

    A temperature control system was proposed for hot roller embossing. The roll surface was heated using induction coils and cooled with a circulating chilled water system. The temperature of the roll surface was precisely controlled by a temperature margin-based control algorithm that we developed. Implementation of the control system reduced deviations in the roll surface temperature to less than ±2 °C. The tight temperature control and the ability to rapidly increase and decrease the roll temperature will allow optimum operating parameters to be developed quickly. The temperature margin-based controller could also be used to optimize the time course of electrical power and shorten the cooling time by choosing an appropriate temperature margin, possibly for limited power consumption. The chiller-equipped heating roll with the proposed control algorithm is expected to decrease the time needed to determine the optimal embossing process.

  14. Terahertz Direct Detectors Based on Superconducting Hot Electron Bolometers with Microwave Biasing

    NASA Astrophysics Data System (ADS)

    Jiang, Shou-Lu; Li, Xian-Feng; Su, Run-Feng; Jia, Xiao-Qing; Tu, Xue-Cou; Kang, Lin; Jin, Biao-Bing; Xu, Wei-Wei; Chen, Jian; Wu, Pei-Heng

    2017-09-01

    Terahertz (THz) direct detectors based on superconducting niobium nitride (NbN) hot electron bolometers (HEBs) with microwave (MW) biasing are studied. The MW is used to bias the HEB to the optimum point and to readout the impedance changes caused by the incident THz signals. Compared with the thermal biasing method, this method would be more promising in large scale array with simple readout. The used NbN HEB has an excellent performance as heterodyne detector with the double sideband noise temperature (TN) of 403 K working at 4.2 K and 0.65 THz. As a result, the noise equivalent power of 1.5 pW/Hz1/2 and the response time of 64 ps are obtained for the direct detectors based on the NbN HEBs and working at 4.2 K and 0.65 THz.

  15. Hot roller embossing system equipped with a temperature margin-based controller

    SciTech Connect

    Kim, Seyoung Son, Youngsu; Lee, Sunghee; Ham, Sangyong; Kim, Byungin

    2014-08-15

    A temperature control system was proposed for hot roller embossing. The roll surface was heated using induction coils and cooled with a circulating chilled water system. The temperature of the roll surface was precisely controlled by a temperature margin-based control algorithm that we developed. Implementation of the control system reduced deviations in the roll surface temperature to less than ±2 °C. The tight temperature control and the ability to rapidly increase and decrease the roll temperature will allow optimum operating parameters to be developed quickly. The temperature margin-based controller could also be used to optimize the time course of electrical power and shorten the cooling time by choosing an appropriate temperature margin, possibly for limited power consumption. The chiller-equipped heating roll with the proposed control algorithm is expected to decrease the time needed to determine the optimal embossing process.

  16. A physically-based Mie–Gruneisen equation of state to determine hot spot temperature distributions

    DOE PAGES

    Kittell, David Erik; Yarrington, Cole Davis

    2016-07-14

    Here, a physically-based form of the Mie–Grüneisen equation of state (EOS) is derived for calculating 1d planar shock temperatures, as well as hot spot temperature distributions from heterogeneous impact simulations. This form utilises a multi-term Einstein oscillator model for specific heat, and is completely algebraic in terms of temperature, volume, an integrating factor, and the cold curve energy. Moreover, any empirical relation for the reference pressure and energy may be substituted into the equations via the use of a generalised reference function. The complete EOS is then applied to calculations of the Hugoniot temperature and simulation of hydrodynamic pore collapsemore » using data for the secondary explosive, hexanitrostilbene (HNS). From these results, it is shown that the choice of EOS is even more significant for determining hot spot temperature distributions than planar shock states. The complete EOS is also compared to an alternative derivation assuming that specific heat is a function of temperature alone, i.e. cv(T). Temperature discrepancies on the order of 100–600 K were observed corresponding to the shock pressures required to initiate HNS (near 10 GPa). Overall, the results of this work will improve confidence in temperature predictions. By adopting this EOS, future work may be able to assign physical meaning to other thermally sensitive constitutive model parameters necessary to predict the shock initiation and detonation of heterogeneous explosives.« less

  17. The use of polyolefins-based hot melts for wood bonding

    NASA Astrophysics Data System (ADS)

    Kajaks, J. A.; Bakradze, G. G.; Viksne, A. V.; Reihmane, S. A.; Kalnins, M. M.; Krutohvostov, R.

    2009-11-01

    The shear strength of three-layer birch veneer/polyolefin/birch veneer lap joints has been investigated. It was found that the optimum technological parameters for producing three-layer laminated systems (plywood) at 180°C were a pressure time of 1-3 min (plus 3-min preheating) and pressure of 5-10 MPa. All the systems investigated exhibited relatively high values of shear strength, which were higher than those of the industrially produced plywood based on phenol-formaldehyde glues (3.5-5 MPa). It is shown that the use of interfacial modifiers can increase the shear strength by 50% compared with its initial values. The high shear resistance is explained by the high mechanical adhesion between the hot melts and the wood substrate. After a prolonged moisture influence (70 days at relative air humidity of 80%), all the systems investigated showed a considerable (up to 25%) increase in the shear strength. This can be explained by swelling of birch veneer, which gives rise to additional resistance forces between the hot melt and the substrate.

  18. Hot Deformation Processing Map and Microstructural Evaluation of the Ni-Based Superalloy IN-738LC

    NASA Astrophysics Data System (ADS)

    Sajjadi, S. A.; Chaichi, A.; Ezatpour, H. R.; Maghsoudlou, A.; Kalaie, M. A.

    2016-04-01

    Hot deformation behavior of the Ni-based superalloy IN-738LC was investigated by means of hot compression tests over the temperature range of 1000-1200 °C and strain rate range of 0.01-1 s-1. The obtained peak flow stresses were related to strain rate and temperature through the hyperbolic sine equation with activation energy of 950 kJ/mol. Dynamic material model was used to obtain the processing map of IN-738LC. Analysis of the microstructure was carried out in order to study each domain's characteristic represented by the processing map. The results showed that dynamic recrystallization occurs in the temperature range of 1150-1200 °C and strain rate of 0.1 s-1 with the maximum power dissipation efficiency of 35%. The unstable domain was exhibited in the temperature range of 1000-1200 °C and strain rate of 1 s-1 on the occurrence of severe deformation bands and grain boundary cracking.

  19. FEA Based Tool Life Quantity Estimation of Hot Forging Dies Under Cyclic Thermo-Mechanical Loads

    NASA Astrophysics Data System (ADS)

    Behrens, B.-A.; Bouguecha, A.; Schäfer, F.; Hadifi, T.

    2011-01-01

    Hot forging dies are exposed during service to a combination of cyclic thermo-mechanical, tribological and chemical loads. Besides abrasive and adhesive wear on the die surface, fatigue crack initiation with subsequent fracture is one of the most frequent causes of failure. In order to extend the tool life, the finite element analysis (FEA) may serve as a means for process design and process optimisation. So far the FEA based estimation of the production cycles until initial cracking is limited as tool material behaviour due to repeated loading is not captured with the required accuracy. Material models which are able to account for cyclic effects are not verified for the fatigue life predictions of forging dies. Furthermore fatigue properties from strain controlled fatigue tests of relevant hot work steels are to date not available to allow for a close-to-reality fatigue life prediction. Two industrial forging processes, where clear fatigue crack initiation has been observed are considered for a fatigue analysis. For this purpose the relevant tool components are modelled with elasto-plastic material behaviour. The predicted sites, where crack initiation occurs, agree with the ones observed on the real die component.

  20. Sentiment Diffusion of Public Opinions about Hot Events: Based on Complex Network

    PubMed Central

    Hao, Xiaoqing; An, Haizhong; Zhang, Lijia; Li, Huajiao; Wei, Guannan

    2015-01-01

    To study the sentiment diffusion of online public opinions about hot events, we collected people’s posts through web data mining techniques. We calculated the sentiment value of each post based on a sentiment dictionary. Next, we divided those posts into five different orientations of sentiments: strongly positive (P), weakly positive (p), neutral (o), weakly negative (n), and strongly negative (N). These sentiments are combined into modes through coarse graining. We constructed sentiment mode complex network of online public opinions (SMCOP) with modes as nodes and the conversion relation in chronological order between different types of modes as edges. We calculated the strength, k-plex clique, clustering coefficient and betweenness centrality of the SMCOP. The results show that the strength distribution obeys power law. Most posts’ sentiments are weakly positive and neutral, whereas few are strongly negative. There are weakly positive subgroups and neutral subgroups with ppppp and ooooo as the core mode, respectively. Few modes have larger betweenness centrality values and most modes convert to each other with these higher betweenness centrality modes as mediums. Therefore, the relevant person or institutes can take measures to lead people’s sentiments regarding online hot events according to the sentiment diffusion mechanism. PMID:26462230

  1. Sentiment Diffusion of Public Opinions about Hot Events: Based on Complex Network.

    PubMed

    Hao, Xiaoqing; An, Haizhong; Zhang, Lijia; Li, Huajiao; Wei, Guannan

    2015-01-01

    To study the sentiment diffusion of online public opinions about hot events, we collected people's posts through web data mining techniques. We calculated the sentiment value of each post based on a sentiment dictionary. Next, we divided those posts into five different orientations of sentiments: strongly positive (P), weakly positive (p), neutral (o), weakly negative (n), and strongly negative (N). These sentiments are combined into modes through coarse graining. We constructed sentiment mode complex network of online public opinions (SMCOP) with modes as nodes and the conversion relation in chronological order between different types of modes as edges. We calculated the strength, k-plex clique, clustering coefficient and betweenness centrality of the SMCOP. The results show that the strength distribution obeys power law. Most posts' sentiments are weakly positive and neutral, whereas few are strongly negative. There are weakly positive subgroups and neutral subgroups with ppppp and ooooo as the core mode, respectively. Few modes have larger betweenness centrality values and most modes convert to each other with these higher betweenness centrality modes as mediums. Therefore, the relevant person or institutes can take measures to lead people's sentiments regarding online hot events according to the sentiment diffusion mechanism.

  2. Microfluidic flowmeter based on micro "hot-wire" sandwiched Fabry-Perot interferometer.

    PubMed

    Li, Ying; Yan, Guofeng; Zhang, Liang; He, Sailing

    2015-04-06

    We present a compact microfluidic flowmeter based on Fabry-Perot interferometer (FPI). The FPI was composed by a pair of fiber Bragg grating reflectors and a micro Co(2+)-doped optical fiber cavity, acting as a "hot-wire" sensor. Microfluidic channels made from commercial silica capillaries were integrated with the FPIs on a chip to realize flow-rate sensing system. By utilizing a tunable pump laser with wavelength of 1480 nm, the proposed flowmeter was experimentally demonstrated. The flow rate of the liquid sample is determined by the induced resonance wavelength shift of the FPI. The effect of the pump power, microfluidic channel scale and temperature on the performance of our flowmeter was investigated. The dynamic response was also measured under different flow-rate conditions. The experimental results achieve a sensitivity of 70 pm/(μL/s), a dynamic range up to 1.1 μL/s and response time in the level of seconds, with a spatial resolution ~200 μm. Such good performance renders the sensor a promising supplementary component in microfluidic biochemical sensing system. Furthermore, simulation modal was built up to analyze the heat distribution of the "hot-wire" cavity and optimize the FPI structure as well.

  3. A physically-based Mie–Gruneisen equation of state to determine hot spot temperature distributions

    SciTech Connect

    Kittell, David Erik; Yarrington, Cole Davis

    2016-07-14

    Here, a physically-based form of the Mie–Grüneisen equation of state (EOS) is derived for calculating 1d planar shock temperatures, as well as hot spot temperature distributions from heterogeneous impact simulations. This form utilises a multi-term Einstein oscillator model for specific heat, and is completely algebraic in terms of temperature, volume, an integrating factor, and the cold curve energy. Moreover, any empirical relation for the reference pressure and energy may be substituted into the equations via the use of a generalised reference function. The complete EOS is then applied to calculations of the Hugoniot temperature and simulation of hydrodynamic pore collapse using data for the secondary explosive, hexanitrostilbene (HNS). From these results, it is shown that the choice of EOS is even more significant for determining hot spot temperature distributions than planar shock states. The complete EOS is also compared to an alternative derivation assuming that specific heat is a function of temperature alone, i.e. cv(T). Temperature discrepancies on the order of 100–600 K were observed corresponding to the shock pressures required to initiate HNS (near 10 GPa). Overall, the results of this work will improve confidence in temperature predictions. By adopting this EOS, future work may be able to assign physical meaning to other thermally sensitive constitutive model parameters necessary to predict the shock initiation and detonation of heterogeneous explosives.

  4. Accuracy of obtaining optimal base plate declination in reverse shoulder arthroplasty.

    PubMed

    Bries, Andrew D; Pill, Stephan G; Wade Krause, F R; Kissenberth, Michael J; Hawkins, Richard J

    2012-12-01

    Reverse total shoulder arthroplasty has shown promising early and midterm results; however, complication rates remain a concern. Glenoid loosening and notching, for example, can be deleterious to the long-term success. A 15° inferior inclination angle has been shown to offer the most uniform compressive forces across the base plate and the least micromotion at the base plate-glenoid interface. The inferior inclination angle may also avoid scapular notching. The purpose of this study was to determine the accuracy of obtaining 15° of inferior inclination of the base plate. The radiographs of 138 reverse total shoulder patients were included. Overall, glenoid inclination and change in inclination from preoperative radiographs were measured using a previously described standardized method. Measurements were obtained by 2 orthopedic surgeons, who repeated all measurements 3 weeks apart. The final angle and change in inclination were averaged. Seventy-two patients had pre- and postoperative radiographs of sufficient quality to accurately measure inclination. Average pre- and postoperative inclination measured -4.8° (-27.2° to 28.1°) and -13.3° (-22.8° to 43.6°), respectively. The average change in inclination was -8.5° (-53.7(o) to 34.6(o)). No scapular notching was observed, which may relate to the lateralized center of rotation of the implant used in this study. Overall, the average decrease in inclination was very close to the intended target value using the standard guide. However, patients with preoperative superior glenoid erosion from advanced rotator cuff tear arthropathy appeared to be consistently tilted superiorly, suggesting the standard guide may be inadequate in these patients. Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  5. Architectural Blueprint for Plate Boundary Observatories based on interoperable Data Management Platforms

    NASA Astrophysics Data System (ADS)

    Kerschke, D. I.; Häner, R.; Schurr, B.; Oncken, O.; Wächter, J.

    2014-12-01

    Interoperable data management platforms play an increasing role in the advancement of knowledge and technology in many scientific disciplines. Through high quality services they support the establishment of efficient and innovative research environments. Well-designed research environments can facilitate the sustainable utilization, exchange, and re-use of scientific data and functionality by using standardized community models. Together with innovative 3D/4D visualization, these concepts provide added value in improving scientific knowledge-gain, even across the boundaries of disciplines. A project benefiting from the added value is the Integrated Plate boundary Observatory in Chile (IPOC). IPOC is a European-South American network to study earthquakes and deformation at the Chilean continental margin and to monitor the plate boundary system for capturing an anticipated great earthquake in a seismic gap. In contrast to conventional observatories that monitor individual signals only, IPOC captures a large range of different processes through various observation methods (e.g., seismographs, GPS, magneto-telluric sensors, creep-meter, accelerometer, InSAR). For IPOC a conceptual design has been devised that comprises an architectural blueprint for a data management platform based on common and standardized data models, protocols, and encodings as well as on an exclusive use of Free and Open Source Software (FOSS) including visualization components. Following the principles of event-driven service-oriented architectures, the design enables novel processes by sharing and re-using functionality and information on the basis of innovative data mining and data fusion technologies. This platform can help to improve the understanding of the physical processes underlying plate deformations as well as the natural hazards induced by them. Through the use of standards, this blueprint can not only be facilitated for other plate observing systems (e.g., the European Plate

  6. Model-based auralizations of violin sound trends accompanying plate-bridge tuning or holding.

    PubMed

    Bissinger, George; Mores, Robert

    2015-04-01

    To expose systematic trends in violin sound accompanying "tuning" only the plates or only the bridge, the first structural acoustics-based model auralizations of violin sound were created by passing a bowed-string driving force measured at the bridge of a solid body violin through the dynamic filter (DF) model radiativity profile "filter" RDF(f) (frequency-dependent pressure per unit driving force, free-free suspension, anechoic chamber). DF model auralizations for the more realistic case of a violin held/played in a reverberant auditorium reveal that holding the violin greatly diminishes its low frequency response, an effect only weakly compensated for by auditorium reverberation.

  7. One-dimensional plate impact experiments on the cyclotetramethylene tetranitramine (HMX) based explosive EDC32

    NASA Astrophysics Data System (ADS)

    Burns, Malcolm J.; Gustavsen, Richard L.; Bartram, Brian D.

    2012-09-01

    Eight one-dimensional plate impact experiments have been performed to study both the Shock to Detonation Transition and Hugoniot state in the cyclotetramethylene tetranitramine (HMX) based explosive EDC32. The experiments covered shock pressures ranging from 0.59 to 7.5 GPa with sustained shocks, double shocks, and short pulse shocks. Experiments were instrumented with embedded magnetic particle velocity gauges. Results include; (1) wave profiles of particle velocity vs. time vs. depth in the explosive, (2) time-distance coordinates for onset of detonation vs. initial shock pressure (aka the Pop-plot), (3) a reactants Hugoniot, and (4) measurement of the Hugoniot Elastic Limit of 0.22.GPa.

  8. An evaluation of displacement-based finite element models used for free vibration analysis of homogeneous and composite plates

    NASA Astrophysics Data System (ADS)

    Burlayenko, V. N.; Altenbach, H.; Sadowski, T.

    2015-12-01

    The finite element vibration analysis of plates has become one of the classical problems over the past several decades. Different finite element plate models based on classical, standard and improved shear deformable plate theories, three-dimensional elasticity equations or their combinations have been developed. The ability and accuracy of each such model can be established by validating it against analytical models, if it is possible, or other numerical models. In this paper, a comparative study of different plate finite element models used for the free vibration analysis of homogeneous isotropic and anisotropic, composite laminated and sandwich thin and thick plates with different boundary conditions is presented. The aim of the study is to find out the weaknesses and strengths of each model used and to pick out their interchangeability for the finite element calculations. For comparisons, the plate models based on classical and first-order shear deformation theories within the framework of both single-layer and layer-wise concept and three-dimensional theory of elasticity are used. The models are created using the finite element package ABAQUSTM. Natural frequencies obtained by the authors are compared with results known in the literature from different analytical or approximate solutions and, then, the correlation between them is discussed in detail. At the end, conclusions are drawn concerning the utility of each model considered for vibration predictions of plates.

  9. Construction and biomechanical properties of polyaxial self-locking anatomical plate based on the geometry of distal tibia.

    PubMed

    Liang, Weiguo; Ye, Weixiong; Ye, Dongping; Zhou, Ziqiang; Chen, Zhiguang; Li, Aiguo; Xie, Zong-Han; Zhang, Lihai; Xu, Jiake

    2014-01-01

    In order to provide scientific and empirical evidence for the clinical application of the polyaxial self-locking anatomical plate, 80 human tibias from healthy adults were scanned by spiral CT and their three-dimensional images were reconstructed using the surface shaded display (SSD) method. Firstly, based on the geometric data of distal tibia, a polyaxial self-locking anatomical plate for distal tibia was designed and constructed. Biomechanical tests were then performed by applying axial loading, 4-point bending, and axial torsion loading on the fracture fixation models of fresh cadaver tibias. Our results showed that variation in twisting angles of lateral tibia surface was found in various segments of the distal tibia. The polyaxial self-locking anatomical plate was constructed based on the geometry of the distal tibia. Compared to the conventional anatomical locking plate, the polyaxial self-locking anatomical plate of the distal tibia provides a better fit to the geometry of the distal tibia of the domestic population, and the insertion angle of locking screws can be regulated up to 30°. Collectively, this study assesses the geometry of the distal tibia and provides variable locking screw trajectory to improve screw-plate stability through the design of a polyaxial self-locking anatomical plate.

  10. INL HIP Plate Fabrication

    SciTech Connect

    B. H. Park; C. R. Clark; J. F. Jue

    2010-02-01

    This document outlines the process used to bond monolithic fuel plates by Hot Isostatic Pressing (HIP). This method was developed at Idaho National Laboratory (INL) for the Reduced Enrichment for Research and Test Reactors (RERTR) program. These foils have been used in a number of irradiation experiments in support of the United States Global Threat Reduction Initiative (GTRI) program.

  11. Case-based reasoning(CBR) model for ultra-fast cooling in plate mill

    NASA Astrophysics Data System (ADS)

    Hu, Xiao; Wang, Zhaodong; Wang, Guodong

    2014-11-01

    New generation thermo-mechanical control process(TMCP) based on ultra-fast cooling is being widely adopted in plate mill to product high-performance steel material at low cost. Ultra-fast cooling system is complex because of optimizing the temperature control error generated by heat transfer mathematical model and process parameters. In order to simplify the system and improve the temperature control precision in ultra-fast cooling process, several existing models of case-based reasoning(CBR) model are reviewed. Combining with ultra-fast cooling process, a developed R5 CBR model is proposed, which mainly improves the case representation, similarity relation and retrieval module. Certainty factor is defined in semantics memory unit of plate case which provides not only internal data reliability but also product performance reliability. Similarity relation is improved by defined power index similarity membership function. Retrieval process is simplified and retrieval efficiency is improved apparently by windmill retrieval algorithm. The proposed CBR model is used for predicting the case of cooling strategy and its capability is superior to traditional process model. In order to perform comprehensive investigations on ultra-fast cooling process, different steel plates are considered for the experiment. The validation experiment and industrial production of proposed CBR model are carried out, which demonstrated that finish cooling temperature(FCT) error is controlled within ±25°C and quality rate of product is more than 97%. The proposed CBR model can simplify ultra-fast cooling system and give quality performance for steel product.

  12. Microstructural Stability and Hot Deformation of γ- γ'- δ Ni-Base Superalloys

    NASA Astrophysics Data System (ADS)

    Detrois, Martin; Helmink, Randolph C.; Tin, Sammy

    2014-11-01

    Nickel-base superalloys exhibit excellent high-temperature mechanical and physical properties and remain the first choice for structural components in advanced gas turbine engines for the aerospace propulsion and power generation applications. In response to the increasing demand for more efficient solutions and tighter requirements linked to gas turbine technologies, the properties of nickel-base superalloys can be improved by modification of their thermo-mechanical and/or compositional attributes. Recent investigations have revealed the potential use of ternary eutectic γ- γ'- δ Ni-base superalloys in advanced gas turbines due to high temperature mechanical properties that are comparable to state-of-the-art polycrystalline Ni-base superalloys. With properties largely dependent on microstructural strengthening mechanisms, both the composition and thermo-mechanical processing parameters of this novel class of alloys need to be optimized concurrently. The hot deformation characteristics of four γ- γ'- δ Ni-base superalloys with varying levels of Nb were evaluated at temperatures and strain rates between 1353 K and 1433 K (1080 °C and 1160 °C) and 0.01 to 0.001/s, respectively. Evidence of dislocation-based plasticity was observed following deformation at low temperatures and high strain rates, while high temperatures and low strain rates promoted superplasticity in these alloys. The extent of the microstructural changes and the magnitude of the cavitation damage which occurred during deformation was found to vary as a function of the alloy composition.

  13. Effect of Rare Earth Yttrium on the Hot Ductility of Eco-friendly Bi-S Based Free Cutting Steel

    NASA Astrophysics Data System (ADS)

    Liu, Haitao; Chen, Weiqing; Qi, Fengyou; Li, Wenying

    2014-09-01

    The hot ductility of eco-friendly Bi-S based free cutting steels micro-alloyed with and without yttrium was studied using a Gleeble-1500 thermal-mechanical simulator over the temperature range 850-1200 °C. The results showed that the addition of rare earth yttrium had a substantial improvement in the hot ductility of Bi-S based free-cutting steel, especially at 1000 °C. The beneficial effect of yttrium on the hot ductility of Bi-S based free-cutting steel at the temperature no less than 1000 °C was mainly associated to the refinement of austenite grain size, which could effectively reduce the segregation density of bismuth at the grain boundary, and the lowering of the DRX onset temperature by yttrium addition. At 850-950 °C, the improvement of the hot ductility in these steels by yttrium addition might be attributed to the reduction of the low melting point sulphides at grain boundary and the refinement of the austenite grain size. However, the hot ductility of these steels micro-alloyed with yttrium was still poor at 850-950 °C, which was mainly owning to the presence of pro-eutectoid ferrite films and the absence of dynamic recrystallization as well as the segregation of liquid bismuth films at austenite grain boundaries.

  14. Hot, cold, and annual reference atmospheres for Edwards Air Force Base, California (1975 version)

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1975-01-01

    Reference atmospheres pertaining to summer (hot), winter (cold), and mean annual conditions for Edwards Air Force Base, California, are presented from surface to 90 km altitude (700 km for the annual model). Computed values of pressure, kinetic temperature, virtual temperature, and density and relative differences percentage departure from the Edwards reference atmospheres, 1975 (ERA-75) of the atmospheric parameters versus altitude are tabulated in 250 m increments. Hydrostatic and gas law equations were used in conjunction with radiosonde and rocketsonde thermodynamic data in determining the vertical structure of these atmospheric models. The thermodynamic parameters were all subjected to a fifth degree least-squares curve-fit procedure, and the resulting coefficients were incorporated into Univac 1108 computer subroutines so that any quantity may be recomputed at any desired altitude using these subroutines.

  15. An investigation of the initiation stage of hot corrosion in Ni-base alloys

    NASA Technical Reports Server (NTRS)

    Huang, T. T.; Meier, G. H.

    1979-01-01

    The mechanisms which lead to the destruction of a normally protective scale during the initial stages of hot corrosion of 14 nickel-base alloys contaminated with Na2SO4 and other condensed deposits were investigated. A continuous reading microbalance was used to record weight changes at temperatures between 900 C and 1000 C at 1 atmosphere pressure of slowly flowing oxygen. The reaction was initiated by raising a preheated furnace around the quartz tube in which the specimen was supported with oxygen flowing. The furnace was raised in a time period of seconds. At 900 C, the system and specimen came to thermal equilibrium in less than one minute. Oxidized specimens were studied using optical and scanning electron metallography and X-ray diffraction techniques. Transmission electron microscopy and electron diffraction spectroscopy were also used to identify the structure of carbides in some of the commercial alloys.

  16. Long rod penetration test of hot isostatically pressed Ti-based targets

    NASA Astrophysics Data System (ADS)

    Nesterenko, Vitali F.; Indrakanti, Sastry S.; Brar, Singh; Gu, YaBei

    2000-04-01

    Hot Isostatic Pressing (HIP) is one of the most efficient techniques to produce high quality materials from powders. Nevertheless there is a shortage of data on high-strain-rate behavior and penetration resistance of such materials. In this paper the results of penetration test with tungsten (93%) heavy alloy penetrators of solid and porous composite samples of Ti-6Al-4V alloy with different microstructures (Widmanstatten pattern and equiaxed) are presented. Penetration depth for HIPed materials is smaller than in baseline samples of Ti-6Al-4V alloy (forged rod MIL-T-9047G). Composite materials with alumina rods and tubes filled with B4C powders demonstrated a new features of penetration: projectile deflection with self sealing of hole and forced shear localization caused by tubes fracture. The results demonstrate the applicability of HIPing for Ti-based armor materials.

  17. High-strength zirconium diboride-based ceramic composites consolidated by low-temperature hot pressing

    NASA Astrophysics Data System (ADS)

    Guo, Shuqi; Kagawa, Yutaka

    2012-08-01

    Two compositions of ZrB2-based ceramic composites containing Si3N4, Al2O3 and Y2O3 have been hot-pressed at different temperatures between 1673 and 1773 K for 60 min in vacuum. The densification behavior of the composites was examined during the sintering process. The microstructures of the composites were characterized by scanning electron microscopy, and the crystalline phases were identified by x-ray diffraction. The effects of Al2O3 and Y2O3 additives on the densification behavior and flexural strength were assessed. A relative density of ˜95% was obtained after sintering at 1723 K or higher temperatures. The microstructures of the composites consisted of (Zr,Y)B2, α-Si3N4 and Y3(Al,Si)5O12 phases. The room-temperature flexural strength increased with the amount of additives and approached 1 GPa.

  18. Process improvement in laser hot wire cladding for martensitic stainless steel based on the Taguchi method

    NASA Astrophysics Data System (ADS)

    Huang, Zilin; Wang, Gang; Wei, Shaopeng; Li, Changhong; Rong, Yiming

    2016-09-01

    Laser hot wire cladding, with the prominent features of low heat input, high energy efficiency, and high precision, is widely used for remanufacturing metal parts. The cladding process, however, needs to be improved by using a quantitative method. In this work, volumetric defect ratio was proposed as the criterion to describe the integrity of forming quality for cladding layers. Laser deposition experiments with FV520B, one of martensitic stainless steels, were designed by using the Taguchi method. Four process variables, namely, laser power ( P), scanning speed ( V s), wire feed rate ( V f), and wire current ( I), were optimized based on the analysis of signal-to-noise (S/N) ratio. Metallurgic observation of cladding layer was conducted to compare the forming quality and to validate the analysis method. A stable and continuous process with the optimum parameter combination produced uniform microstructure with minimal defects and cracks, which resulted in a good metallurgical bonding interface.

  19. Factors Affecting the Morphology of Pb-Based Glass Frit Coated with Ag Material Prepared by Electroless Silver Plating

    NASA Astrophysics Data System (ADS)

    Huang, Bei; Gan, Weiping; Zhou, Jian; Li, Yingfen; Lin, Tao; Liu, Xiaogang

    2014-05-01

    Pb-based glass frit coated with nanosilver material for Si solar cell applications has been directly prepared by electroless silver plating. Activation of the glass frit was accomplished by using glycol, with the aim of reducing the silver ions to elemental silver on the surface of the glass frit. Electroless silver plating onto the glass frit was successfully realized using two kinds of electroless plating bath. However, the morphology of the composite powder greatly affected the modality, sheet resistance, series resistance, and photoelectric conversion efficiency of the conducting silver films. We found that the activation temperature affected the number and distribution of silver nanoparticles. Meanwhile, the average grain size of the silver particles and the silver content in the Pb-based glass frit coated with Ag material could be controlled by adjusting the pH value and loading capacity, respectively, during plating.

  20. Lamb-Wave-Based Tomographic Imaging Techniques for Hole-Edge Corrosion Monitoring in Plate Structures

    PubMed Central

    Wang, Dengjiang; Zhang, Weifang; Wang, Xiangyu; Sun, Bo

    2016-01-01

    This study presents a novel monitoring method for hole-edge corrosion damage in plate structures based on Lamb wave tomographic imaging techniques. An experimental procedure with a cross-hole layout using 16 piezoelectric transducers (PZTs) was designed. The A0 mode of the Lamb wave was selected, which is sensitive to thickness-loss damage. The iterative algebraic reconstruction technique (ART) method was used to locate and quantify the corrosion damage at the edge of the hole. Hydrofluoric acid with a concentration of 20% was used to corrode the specimen artificially. To estimate the effectiveness of the proposed method, the real corrosion damage was compared with the predicted corrosion damage based on the tomographic method. The results show that the Lamb-wave-based tomographic method can be used to monitor the hole-edge corrosion damage accurately. PMID:28774041

  1. Wind-Based Navigation of a Hot-air Balloon on Titan: A Feasibility Study

    NASA Technical Reports Server (NTRS)

    Furfaro, Roberto; Lunine, Jonathan I.; Elfes, Alberto; Reh, Kim

    2008-01-01

    Current analysis of data streamed back to Earth by the Cassini spacecraft features Titan as one of the most exciting places in the solar system. NASA centers and universities around the US, as well as the European Space Agency, are studying the possibility of sending, as part of the next mission to this giant moon of Saturn, a hot-air balloon (Montgolfier-type) for further and more in-depth exploration. The basic idea would be to design a reliable, semi-autonomous, and yet cheap Montgolfier capable of using continuous flow of waste heat from a power source to lift the balloon and sustain its altitude in the Titan environment. In this paper we study the problem of locally navigating a hot-air balloon in the nitrogen-based Titan atmosphere. The basic idea is to define a strategy (i.e. design of a suitable guidance system) that allows autonomous and semi-autonomous navigation of the balloon using the available (and partial) knowledge of the wind structure blowing on the saturnian satellite surface. Starting from first principles we determined the appropriate thermal and dynamical models describing (a) the vertical dynamics of the balloon and (b) the dynamics of the balloon moving on a vertical plane (2-D motion). Next, various non-linear fuzzy-based control strategies have been evaluated, analyzed and implemented in MATLAB to numerically simulate the capability of the system to simultaneously maintain altitude, as well as a scientifically desirable trajectory. We also looked at the ability of the balloon to perform station keeping. The results of the simulation are encouraging and show the effectiveness of such a system to cheaply and effectively perform semiautonomous exploration of Titan.

  2. Wind-based navigation of a hot-air balloon on Titan: a feasibility study

    NASA Astrophysics Data System (ADS)

    Furfaro, Roberto; Lunine, Jonathan I.; Elfes, Alberto; Reh, Kim

    2008-04-01

    Current analysis of data streamed back to Earth by the Cassini spacecraft features Titan as one of the most exciting places in the solar system. NASA centers and universities around the US, as well as the European Space Agency, are studying the possibility of sending, as part of the next mission to this giant moon of Saturn, a hot-air balloon (Montgolfier-type) for further and more in-depth exploration. The basic idea would be to design a reliable, semi-autonomous, and yet cheap Montgolfier capable of using continuous flow of waste heat from a power source to lift the balloon and sustain its altitude in the Titan environment. In this paper we study the problem of locally navigating a hot-air balloon in the nitrogen-based Titan atmosphere. The basic idea is to define a strategy (i.e. design of a suitable guidance system) that allows autonomous and semi-autonomous navigation of the balloon using the available (and partial) knowledge of the wind structure blowing on the saturnian satellite surface. Starting from first principles we determined the appropriate thermal and dynamical models describing (a) the vertical dynamics of the balloon and (b) the dynamics of the balloon moving on a vertical plane (2-D motion). Next, various non-linear fuzzy-based control strategies have been evaluated, analyzed and implemented in MATLAB to numerically simulate the capability of the system to simultaneously maintain altitude, as well as a scientifically desirable trajectory. We also looked at the ability of the balloon to perform station keeping. The results of the simulation are encouraging and show the effectiveness of such a system to cheaply and effectively perform semi-autonomous exploration of Titan.

  3. Wind-Based Navigation of a Hot-air Balloon on Titan: A Feasibility Study

    NASA Technical Reports Server (NTRS)

    Furfaro, Roberto; Lunine, Jonathan I.; Elfes, Alberto; Reh, Kim

    2008-01-01

    Current analysis of data streamed back to Earth by the Cassini spacecraft features Titan as one of the most exciting places in the solar system. NASA centers and universities around the US, as well as the European Space Agency, are studying the possibility of sending, as part of the next mission to this giant moon of Saturn, a hot-air balloon (Montgolfier-type) for further and more in-depth exploration. The basic idea would be to design a reliable, semi-autonomous, and yet cheap Montgolfier capable of using continuous flow of waste heat from a power source to lift the balloon and sustain its altitude in the Titan environment. In this paper we study the problem of locally navigating a hot-air balloon in the nitrogen-based Titan atmosphere. The basic idea is to define a strategy (i.e. design of a suitable guidance system) that allows autonomous and semi-autonomous navigation of the balloon using the available (and partial) knowledge of the wind structure blowing on the saturnian satellite surface. Starting from first principles we determined the appropriate thermal and dynamical models describing (a) the vertical dynamics of the balloon and (b) the dynamics of the balloon moving on a vertical plane (2-D motion). Next, various non-linear fuzzy-based control strategies have been evaluated, analyzed and implemented in MATLAB to numerically simulate the capability of the system to simultaneously maintain altitude, as well as a scientifically desirable trajectory. We also looked at the ability of the balloon to perform station keeping. The results of the simulation are encouraging and show the effectiveness of such a system to cheaply and effectively perform semiautonomous exploration of Titan.

  4. Crack Identification of Cantilever Plates Based on a Kriging Surrogate Model.

    PubMed

    Gao, Haiyang; Guo, Xinglin; Ouyang, Huajiang; Han, Fang

    2013-10-01

    This work presents an effective method to identify the tip locations of an internal crack in cantilever plates based on a Kriging surrogate model. Samples of varying crack parameters (tip locations) and their corresponding root mean square (RMS) of random responses are used to construct the initial Kriging surrogate model. Moreover, the pseudo excitation method (PEM) is employed to speed up the spectral analysis. For identifying crack parameters based on the constructed Kriging model, a robust stochastic particle swarm optimization (SPSO) algorithm is adopted for enhancing the global searching ability. To improve the accuracy of the surrogate model without using extensive samples, a small number of samples are first used. Then an optimal point-adding process is carried out to reduce computational cost. Numerical studies of a cantilever plate with an internal crack are performed. The effectiveness and efficiency of this method are demonstrated by the identified results. The effect of initial sampling size on the precision of the identified results is also investigated.

  5. Vehicle-bridge Interaction Analysis Based on the ANCF Quasi-conforming Plate Technique

    NASA Astrophysics Data System (ADS)

    Wang, Bingjian; He, Hua

    2017-06-01

    A new plate element is developed for analysis of plate structures in vehicle-bridge interaction analysis based on the combining of absolute nodal coordinate formulation (ANCF) and quasi-conforming technique (QCT). In order to simulate complex contact and large deformation during vehicle-bridge interaction (VBI) for the slender bridge, new curvature strains and explicit formulation of internal forces are developed for the shell elements of the bridge deck. The developed QCT_ANCF shell element is compared with the original ANCF element to verify its locking remedies. Compared with the original model, the new QCT_ANCF element shows better convergence and curvature continuity and is more accurate under the same number of elements. Numerical cases are analyzed using the QCT_ANCF element in comparison to analytical solutions and the original ANCF shell element. Meanwhile, there is less high frequency vibration in the velocity and acceleration curve by comparing with the original model. Furthermore, the vehicle-bridge interaction is parametrically analyzed using the new QCT_ANCF element under series of road roughness index and vehicle speeds. The impact factors based on the displacements and strains over the transverses of the bridge are investigated.

  6. Bead Based Proteome Enrichment Enhances Features of the Protein Elution Plate (PEP) for Functional Proteomic Profiling

    PubMed Central

    Wang, Xing; Davies, Michael; Roy, Swapan; Kuruc, Matthew

    2015-01-01

    A novel functional proteomics technology called PEP(Protein Elution Plate) was developed to separate complex proteomes from natural sources and analyze protein functions systematically. The technology takes advantage of the powerful resolution of two-dimensional gel electrophoresis (2-D Gels). The modification of electrophoretic conditions in combination with a high-resolution protein elution plate supports the recovery of functionally active proteins. As 2DE(2-Dimensional Electrophoresis) resolution can be limited by protein load, we investigated the use of bead based enrichment technologies, called AlbuVoid™ and KinaSorb™ to determine their effect on the proteomic features which can be generated from the PEP platform. Using a variety of substrates and enzyme activity assays, we report on the benefits of combining bead based enrichment to improve the signal report and the features generated for Hexokinase, Protein Kinase, Protease, and Alkaline Phosphatase activities. As a result, the PEP technology allows systematic analysis of large enzyme families and can build a comprehensive picture of protein function from a complex proteome, providing biological insights that could otherwise not be observed if only protein abundances were analyzed. PMID:28248280

  7. Metallurgical evaluation of SRAM II/SRAM A programmer base plates

    SciTech Connect

    Damkroger, B.K.; Maguire, M.C.; Robino, C.V.

    1993-05-01

    Ten MC4073/4369 programmer base plates were analyzed. This component, a programmer base plate for the SRAM II (and later the SRAM A), is specified as a Grade C quality casting made of aluminum Alloy A356, heat treated to the T6 condition. A concern was expressed regarding the choice of an A356 casting for this application, given the complexity and severity of the loading environment. Preliminary tests and analyses suggested that the design was adequate, but noted the uncertainty involved in a number of their underlying assumptions. The uncertainty was compounded by the discovery that the casting used in the original series of mechanical tests failed. In this investigation, several production castings were examined and found to be of a quality superior to that required under current specifications. Their defect content and microstructure were studied and compared with published data to establish a mechanical property data base. The data base was supplemented with a series of X-direction static tests, which characterized the loading environment and measured the overall casting performance. It was found that the mechanical properties of the supplied castings were adequate for the anticipated X-direction loading environment, but the component is not over-designed. The established data base further indicates that a reduction in casting quality to the allowable level could result in failure of the component. Recommendations were made including (1) change the component specification to require higher casting quality in highly stressed areas, (2) supplement the inspection procedures to ensure adequate quality in critical regions, (3) alter the component design to reduce the stress levels in the mounting feet, (4) substitute a modified A356 alloy to improve the mechanical properties and their consistency, and (5) more thoroughly establish a data base for the mechanical property consequences of levels and configurations of casting defects.

  8. A reactive burn model for shock initiation in a PBX: scaling and separability based on the hot spot concept

    SciTech Connect

    Show, Milton S; Menikoff, Ralph

    2010-01-01

    In the formulation of a reactive burn model for shock initiation, we endeavor to incorporate a number of effects based on the underlying physical concept of hot spot ignition followed by the growth of reaction due to diverging deflagration fronts. The passage of a shock front sets the initial condition for reaction, leading to a fraction of the hot spots that completely burn while others will quench. The form of the rate model is chosen to incorporate approximations based on the physical picture. In particular, the approximations imply scaling relations that are then used to mathematically separate various contributions. That is, the model is modular and refinements can be applied separately without changing the other contributions. For example, the effect of initial temperature, porosity, etc. predominantly enter the characterization of the non-quenching hot spot distribution. A large collection of velocity gauge data is shown to be well represented by the model with a very small number of parameters.

  9. Detection of ligand binding hot spots on protein surfaces via fragment-based methods: application to DJ-1 and glucocerebrosidase

    SciTech Connect

    Landon, Melissa R.; Lieberman, Raquel L.; Hoang, Quyen Q.; Ju, Shulin; Caaveiro, Jose M.M.; Orwig, Susan D.; Kozakov, Dima; Brenke, Ryan; Chuang, Gwo-Yu; Beglov, Dmitry; Vajda, Sandor; Petsko, Gregory A.; Ringe, Dagmar

    2010-08-04

    The identification of hot spots, i.e., binding regions that contribute substantially to the free energy of ligand binding, is a critical step for structure-based drug design. Here we present the application of two fragment-based methods to the detection of hot spots for DJ-1 and glucocerebrosidase (GCase), targets for the development of therapeutics for Parkinson's and Gaucher's diseases, respectively. While the structures of these two proteins are known, binding information is lacking. In this study we employ the experimental multiple solvent crystal structures (MSCS) method and computational fragment mapping (FTMap) to identify regions suitable for the development of pharmacological chaperones for DJ-1 and GCase. Comparison of data derived via MSCS and FTMap also shows that FTMap, a computational method for the identification of fragment binding hot spots, is an accurate and robust alternative to the performance of expensive and difficult crystallographic experiments.

  10. Microbial community analysis of a coastal hot spring in Kagoshima, Japan, using molecular- and culture-based approaches.

    PubMed

    Nishiyama, Minako; Yamamoto, Shuichi; Kurosawa, Norio

    2013-08-01

    Ibusuki hot spring is located on the coastline of Kagoshima Bay, Japan. The hot spring water is characterized by high salinity, high temperature, and neutral pH. The hot spring is covered by the sea during high tide, which leads to severe fluctuations in several environmental variables. A combination of molecular- and culture-based techniques was used to determine the bacterial and archaeal diversity of the hot spring. A total of 48 thermophilic bacterial strains were isolated from two sites (Site 1: 55.6°C; Site 2: 83.1°C) and they were categorized into six groups based on their 16S rRNA gene sequence similarity. Two groups (including 32 isolates) demonstrated low sequence similarity with published species, suggesting that they might represent novel taxa. The 148 clones from the Site 1 bacterial library included 76 operational taxonomy units (OTUs; 97% threshold), while 132 clones from the Site 2 bacterial library included 31 OTUs. Proteobacteria, Bacteroidetes, and Firmicutes were frequently detected in both clone libraries. The clones were related to thermophilic, mesophilic and psychrophilic bacteria. Approximately half of the sequences in bacterial clone libraries shared <92% sequence similarity with their closest sequences in a public database, suggesting that the Ibusuki hot spring may harbor a unique and novel bacterial community. By contrast, 77 clones from the Site 2 archaeal library contained only three OTUs, most of which were affiliated with Thaumarchaeota.

  11. Structural insights of microbial community of Deulajhari (India) hot spring using 16s-rRNA based metagenomic sequencing.

    PubMed

    Singh, Archana; Subudhi, Enketeswara

    2016-03-01

    Insights about the distribution of the microbial community prove to be the major goal of understanding microbial ecology which remains to be fully deciphered. Hot springs being hub for the thermophilic microbiota attract the attention of the microbiologists. Deulajhari hot spring cluster is located in the Angul district of Odisha. Covered within a wooded area, Deulajhari hot spring is also fed by the plant litter resulting in a relatively high amount of total organic content (TOC). For the first time, Illumina sequencing based biodiversity analysis of microbial composition is studied through amplicon metagenome sequencing of 16s rRNA targeting V3-V4 region using metagenomic DNA from the hot spring sediment. Over 28 phyla were detected through the amplicon metagenome sequencing of which the most dominating phyla at the existing physiochemical parameters like; temperature 69 °C, pH 8.09, electroconductivity 0.025 dSm(- 1) and total organic carbon 0.356%, were Proteobacteria (88.12%), Bacteriodetes (10.76%), Firmicutes (0.35%), Spirochetes (0.18%) and chloroflexi (0.11%). Approximately 713 species were observed at the above physiochemical parameters. The analysis of the metagenome provides the quantitative insights into microbial populations based on the sequence data in Deulajhari hot spring. Metagenome sequence is deposited to SRA database which is available at NCBI with accession no. SRX1459736.

  12. Kinetics of MN based sorbents for hot coal gas. Quarterly report, September--December 1996

    SciTech Connect

    1996-12-31

    Manganese-based sorbents have been investigated for the removal of hydrogen sulfide (the primary sulfur bearing compound) from hot coal gases prior to its use in combined cycle turbines. Four formulations of Mn-based sorbents were tested in an ambient-pressure fixed-bed reactor to determine steady state H{sub 2}S concentrations, breakthrough times and effectiveness of the sorbent when subjected to cyclic sulfidation and regeneration testing. In a previous report, the sulfidation results were presented. Manganese-based sorbents with molar ratios > 1:1 Mn:Substrate were effective in reducing the H{sub 2}S concentration in simulated coal gases to less than 100 ppmv over five cycles. Actual breakthrough time for formulation C6-2-1100 was as high as 73% of breakthrough time based on wt% Mn in sorbent. In this report, the regeneration results will be presented. Regeneration tests determined that loaded pellets can be fully regenerated in air/steam mixture at 750{degrees}C with minimal sulfate formation. 16 refs., 9 figs., 5 tabs.

  13. The Association of Hot Red Chili Pepper Consumption and Mortality: A Large Population-Based Cohort Study

    PubMed Central

    Chopan, Mustafa

    2017-01-01

    The evidence base for the health effects of spice consumption is insufficient, with only one large population-based study and no reports from Europe or North America. Our objective was to analyze the association between consumption of hot red chili peppers and mortality, using a population-based prospective cohort from the National Health and Nutritional Examination Survey (NHANES) III, a representative sample of US noninstitutionalized adults, in which participants were surveyed from 1988 to 1994. The frequency of hot red chili pepper consumption was measured in 16,179 participants at least 18 years of age. Total and cause-specific mortality were the main outcome measures. During 273,877 person-years of follow-up (median 18.9 years), a total of 4,946 deaths were observed. Total mortality for participants who consumed hot red chili peppers was 21.6% compared to 33.6% for those who did not (absolute risk reduction of 12%; relative risk of 0.64). Adjusted for demographic, lifestyle, and clinical characteristics, the hazard ratio was 0.87 (P = 0.01; 95% Confidence Interval 0.77, 0.97). Consumption of hot red chili peppers was associated with a 13% reduction in the instantaneous hazard of death. Similar, but statistically nonsignificant trends were seen for deaths from vascular disease, but not from other causes. In this large population-based prospective study, the consumption of hot red chili pepper was associated with reduced mortality. Hot red chili peppers may be a beneficial component of the diet. PMID:28068423

  14. The Association of Hot Red Chili Pepper Consumption and Mortality: A Large Population-Based Cohort Study.

    PubMed

    Chopan, Mustafa; Littenberg, Benjamin

    2017-01-01

    The evidence base for the health effects of spice consumption is insufficient, with only one large population-based study and no reports from Europe or North America. Our objective was to analyze the association between consumption of hot red chili peppers and mortality, using a population-based prospective cohort from the National Health and Nutritional Examination Survey (NHANES) III, a representative sample of US noninstitutionalized adults, in which participants were surveyed from 1988 to 1994. The frequency of hot red chili pepper consumption was measured in 16,179 participants at least 18 years of age. Total and cause-specific mortality were the main outcome measures. During 273,877 person-years of follow-up (median 18.9 years), a total of 4,946 deaths were observed. Total mortality for participants who consumed hot red chili peppers was 21.6% compared to 33.6% for those who did not (absolute risk reduction of 12%; relative risk of 0.64). Adjusted for demographic, lifestyle, and clinical characteristics, the hazard ratio was 0.87 (P = 0.01; 95% Confidence Interval 0.77, 0.97). Consumption of hot red chili peppers was associated with a 13% reduction in the instantaneous hazard of death. Similar, but statistically nonsignificant trends were seen for deaths from vascular disease, but not from other causes. In this large population-based prospective study, the consumption of hot red chili pepper was associated with reduced mortality. Hot red chili peppers may be a beneficial component of the diet.

  15. Hot Corrosion of Nickel-Base Alloys in Biomass-Derived Fuel Simulated Atmosphere

    SciTech Connect

    Leyens, C.; Pint, B.A.; Wright, I.G.

    1999-02-28

    Biomass fuels are considered to be a promising renewable source of energy. However, impurities present in the fuel may cause corrosion problems with the materials used in the hot sections of gas turbines and only limited data are available so far. As part of the Advanced Turbine Systems Program initiated by the U.S. Department of Energy, the present study provides initial data on the hot corrosion resistance of different nickel-base alloys against sodium sulfate-induced corrosion as a baseline, and against salt compositions simulating biomass-derived fuel deposits. Single crystal nickel-superalloy Rene N5, a cast NiCrAlY alloy, a NiCoCrAlY alloy representing industrially used overlay compositions, and a model {beta}NiAl+Hf alloy were tested in 1h thermal cycles at 950 C with different salt coatings deposited onto the surfaces. Whereas the NiCoCrAlY alloy exhibited reasonable resistance against pure sodium sulfate deposits, the NiCrAiY alloy and Rene N5 were attacked severely. Although considered to be an ideal alumina former in air and oxygen at higher temperatures, {beta}NiAl+Hf also suffered from rapid corrosion attack at 950 C when coated with sodium sulfate. The higher level of potassium present in biomass fuels compared with conventional fuels was addressed by testing a NiCoCrAlY alloy coated with salts of different K/Na atomic ratios. Starting at zero Na, the corrosion rate increased considerably when sodium was added to potassium sulfate. In an intermediate region the corrosion rate was initially insensitive to the K/Na ratio but accelerated when very Na-rich compositions were deposited. The key driver for corrosion of the NiCoCrAlY alloy was sodium sulfate rather than potassium sulfate, and no simple additive or synergistic effect of combining sodium and potassium was found.

  16. ASP (AntiSubmarine Penetrator) base plate redesign and explosive bolt test

    SciTech Connect

    Cole, J.K.; Wolfe, W.P.

    1988-10-01

    This report presents the results of a post-flight investigation of the Rocket Antisubmarine Penetrator (RAP) tests of the AntiSubmarine Penetrator (ASP). It focuses on the cause for the premature deployment of the on-board recovery system and the failure of the base pressure transducers. As a result of the investigation, the base plate of the ASP vehicle was modified to increase its structural stiffness. Also, an instrumented test was conducted to assess the environment that is created when the three explosive bolts are activated to separate the vehicle from the interstage adapter and the rocket booster. The results of this test are presented and discussed. 5 refs., 15 figs.

  17. Adjustable low frequency and broadband metamaterial absorber based on magnetic rubber plate and cross resonator

    NASA Astrophysics Data System (ADS)

    Cheng, Yongzhi; Nie, Yan; Wang, Xian; Gong, Rongzhou

    2014-02-01

    In this paper, the magnetic rubber plate absorber (MRPA) and metamaterial absorber (MA) based on MRP substrate were proposed and studied numerically and experimentally. Based on the characteristic of L-C resonances, experimental results show that the MA composed of cross resonator (CR) embedded single layer MRP could be adjustable easily by changing the wire length and width of CR structure and MRP thickness. Finally, experimental results show that the MA composed of CR-embedded two layers MRP with the total thickness of 2.42 mm exhibit a -10 dB absorption bandwidth from 1.65 GHz to 3.7 GHz, which is 1.86 times wider than the same thickness MRPA.

  18. Design of plate directional heat transmission structure based on layered thermal metamaterials

    SciTech Connect

    Sun, L. K.; Yu, Z. F.; Huang, J.

    2016-02-15

    Invisibility cloaks based on transformation optics are often closed structures; however, such a structure limits the kinds of objects that can be placed in the cloak. In this work, we adopt a transformation thermodynamics approach to design an “open cloak”, called a plate directional heat transmission structure, which is capable of guiding heat fluxes to the flank region of the metamaterial device. The most fascinating and unique feature of the device is that the lower surface can remain at a lower temperature compared with the SiO{sub 2} aerogel thermal insulation material. Our results are expected to markedly enhance capabilities in thermal protection, thermal-energy utilization, and domains beyond. In addition to the theoretical analysis, the present design is demonstrated in numerical simulations based on finite element calculations.

  19. Iron-based alloy and nitridation treatment for PEM fuel cell bipolar plates

    DOEpatents

    Brady, Michael P [Oak Ridge, TN; Yang, Bing [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN

    2010-11-09

    A corrosion resistant electrically conductive component that can be used as a bipolar plate in a PEM fuel cell application is composed of an alloy substrate which has 10-30 wt. % Cr, 0.5 to 7 wt. % V, and base metal being Fe, and a continuous surface layer of chromium nitride and vanadium nitride essentially free of base metal. A oxide layer of chromium vanadium oxide can be disposed between the alloy substrate and the continuous surface nitride layer. A method to prepare the corrosion resistant electrically conductive component involves a two-step nitridization sequence by exposing the alloy to a oxygen containing gas at an elevated temperature, and subsequently exposing the alloy to an oxygen free nitrogen containing gas at an elevated temperature to yield a component where a continuous chromium nitride layer free of iron has formed at the surface.

  20. Nanofocusing of hard X-ray free electron laser pulses using diamond based Fresnel zone plates.

    PubMed

    David, C; Gorelick, S; Rutishauser, S; Krzywinski, J; Vila-Comamala, J; Guzenko, V A; Bunk, O; Färm, E; Ritala, M; Cammarata, M; Fritz, D M; Barrett, R; Samoylova, L; Grünert, J; Sinn, H

    2011-01-01

    A growing number of X-ray sources based on the free-electron laser (XFEL) principle are presently under construction or have recently started operation. The intense, ultrashort pulses of these sources will enable new insights in many different fields of science. A key problem is to provide x-ray optical elements capable of collecting the largest possible fraction of the radiation and to focus into the smallest possible focus. As a key step towards this goal, we demonstrate here the first nanofocusing of hard XFEL pulses. We developed diamond based Fresnel zone plates capable of withstanding the full beam of the world's most powerful x-ray laser. Using an imprint technique, we measured the focal spot size, which was limited to 320 nm FWHM by the spectral band width of the source. A peak power density in the focal spot of 4×10(17)W/cm(2) was obtained at 70 fs pulse length.

  1. Eco-friendly gas mixtures for Resistive Plate Chambers based on tetrafluoropropene and Helium

    NASA Astrophysics Data System (ADS)

    Abbrescia, M.; Benussi, L.; Piccolo, D.; Bianco, S.; Ferrini, M.; Muhammad, S.; Passamonti, L.; Pierluigi, D.; Piccolo, D.; Primavera, F.; Russo, A.; Saviano, G.

    2016-08-01

    Due to the recent restrictions deriving from the application of the Kyoto protocol, the main components of the gas mixtures presently used in the Resistive Plate Chambers systems of the LHC experiments will be most probably phased out of production in the coming years. Identifying possible replacements with the adequate characteristics requires an intense R&D activity, which was recently started, in collaborations with various experiments. Possible new gases have been proposed and are thoroughly investigated. Some tests on one of the most promising candidate—HFO-1234ze, an allotropic form of tetrafluoropropane—have already been reported. Here an innovative approach, based on the use of Helium, to solve the problem related to the high operating voltage needed to operate the chambers with HFO-1234ze based gas mixtures, is discussed and the first results are shown.

  2. Fabrication of lotus-leaf-like superhydrophobic surfaces via Ni-based nano-composite electro-brush plating

    NASA Astrophysics Data System (ADS)

    Liu, Hongtao; Wang, Xuemei; Ji, Hongmin

    2014-01-01

    Superhydrophobic surface has become a research hot topic in recent years due to its excellent performance and wide application prospect. This paper investigates the method to fabricate superhydrophobic surface on carbon steel substrate via two-layer nano-composite electro-brush plating and subsequent surface modification with low free energy materials. The hydrophobic properties of as-prepared coatings were characterized by a water sliding angle (SA) and a water contact angle (CA) measured by the Surface tension instrument. A Scanning electron microscope was used to analyze the surface structure of plating coatings. Anti-corrosion performance of the superhydrophobic coating was characterized by a potentiodynamic polarization curve measured by the Electrochemical workstation. The research result shows that: the superhydrophobic structure can be successfully prepared by plating nano-C/Ni and nano-Cu/Ni two-layer coating on carbon steel substrate under appropriate technology and has similarity with lotus-leaf-like micro/nano composite structure; the contact angle of the as-prepared superhydrophobic coating can be up to 155.5°, the sliding angle is 5°; the coating has better anti-corrosion performance compared with substrate.

  3. Focal length measurement based on Fresnel diffraction from a phase plate.

    PubMed

    Dashtdar, Masoomeh; Mohammad-Ali Hosseini-Saber, S

    2016-09-10

    A method based on the Fresnel diffraction of light from the phase step is introduced for measuring effective focal length (EFL) and back focal length (BFL) of optical imaging systems. It is shown that, as a transparent plane-parallel plate is illuminated at a boundary region by a monochromatic beam of light, Fresnel diffraction occurs because of the abrupt change in phase imposed by the finite change in refractive index at the plate boundary. Variation of the incident angle in a convergent (or divergent) beam of light causes the periodic intensity along the central fringe of the diffraction pattern. The measurement of the extrema position of the intensity distribution accurately provides the EFL and BFL. The technique is easy to apply and can measure a wide range of both positive and negative focal lengths. The measuring setup can be very compact with low mechanical and optical noises. As examples of this technique, the EFLs of five different lenses are experimentally obtained. The results are quite consistent with the values indicated by the lens manufacturer.

  4. Vibrations of Base Plates in Annular Cylindrical Tanks: Theory and Experiments

    NASA Astrophysics Data System (ADS)

    Amabili, M.; Dalpiaz, G.

    1998-02-01

    In this paper, the bulging modes (i.e., modes where the walls oscillate moving the liquid) of the flexible bottom annular plate of an otherwise rigid annular cylindrical container are studied. The tank has a vertical axis and is partially filled with liquid, so that the free surface of the liquid is orthogonal to the tank axis. The volume occupied by the liquid is delimited by two coaxial rigid cylinders and the liquid deformation potential is obtained by using variables separation. First, by using the simplifying hypothesis that the mode shapes of the plates in contact with the liquid (wet modes) are the samein vacuo, the approach based on the non-dimensionalized added virtual mass incremental (NAVMI) factor is applied, so that all numerical computations can be made non-dimensional. Second, the accuracy of this method is checked by using the Rayleigh-Ritz method, which removes the restrictive hypothesis on the wet mode shapes. Finally, several experimental modal analyses were performed on two different test tanks filled with different water levels in order to verify the accuracy of the theoretical results.

  5. Hyaluronan is essential for the expansion of the cranial base growth plates.

    PubMed

    Gakunga, P T; Kuboki, Y; Opperman, L A

    2000-01-01

    Exquisite control of chondrocyte function in the zone of hypertrophy results in expansive growth of cartilaginous growth plates, and is a prerequisite for normal skeletal lengthening. We hypothesize that hyaluronan-mediated hydrostatic pressure causes lacunae expansion in the zone of hypertrophy; an important mechanism in cartilaginous growth plate and associated skeletal expansion. The role of hyaluronan and CD44 in this mechanism was studied using organ culture of the bipolar cranial base synchondroses. Hyaluronan was present in the hypertrophic zones, pericellular to the hypertrophic chondrocytes, while no hyaluronan was detected in the resting, proliferating and maturing zones. This localization of hyaluronan was associated with increased lacunae size, suggesting that chondrocytes deposit and retain pericellular hyaluronan as they mature. In comparison, Toluidine Blue staining was associated with the territorial matrix. Hyaluronidase, the hyaluronan-degrading enzyme, and CD44, the receptor for hyaluronan which also participates in the uptake and degradation of hyaluronan, were co-localized within the zone of ossification. This pattern of expression suggests that cells in the early zone of ossification internalize and degrade hyaluronan through a CD44-mediated mechanism. Treatment of the cultured segments with either Streptomyces hyaluronidase or hyaluronan hexasaccharides inhibited lacunae expansion. These observations demonstrate that hyaluronan-mediated mechanisms play an important role in controlling normal skeletal lengthening.

  6. Canadian Arctic Plate Reconstructions based on revised geological and geophysical data

    NASA Astrophysics Data System (ADS)

    Torsvik, Trond H.; Gaina, Carmen

    2015-04-01

    We present a revised rifting and seafloor spreading history around Greenland based on geological and geophysical constraints. Palaeomagnetic data from (i) Neoproterozoic dykes and sills in North America, NW Greenland, Devon and SW Ellesmere (Franklin and Clarence Head), (ii) Early Permian volcanism (Esayoo unit) in Ellesmere and (iii) Cretaceous volcanism and intrusive activity (Isachsen and Strandfjord Formations) in Axel Heiberg and Ellesmere have also been re-evaluated and used to develop a new Canadian Arctic plate model from Silurian to Paleogene times. We have tentatively divided the Canadian Arctic into seven tectonic units, including Pearya, which accreted to the northern sectors of Ellesmere and Axel Heiberg islands as part of the mid-Silurian Caledonide Orogeny. The Canadian Arctic was variable deformed during the Late Devonian Ellesmere and the Tertiary Eurekean events, the latter including c. 250 km of shortening and ultimately amalgamating all the Canadian Arctic units in the Late Eocene. Two of the units, Devon and SW Ellesmere must have been closely tied to NW Greenland (the 'Greenland Plate') in order to minimize Palaeocene-Eocene deformation across the Nares Strait during Labrador Sea and Baffin Bay seafloor spreading. We model 100 and 60 km of Late Cretaceous-Eocene transtension/extension in the Lancaster and Jones Sounds but in order to avoid too much continental overlap between Devon and North America (Lancaster Sound) we must include 150 km of pure strike-slip faulting along the Nares Strait.

  7. Plate-based diversity subset screening: an efficient paradigm for high throughput screening of a large screening file.

    PubMed

    Bell, Andrew S; Bradley, Joseph; Everett, Jeremy R; Knight, Michelle; Loesel, Jens; Mathias, John; McLoughlin, David; Mills, James; Sharp, Robert E; Williams, Christine; Wood, Terence P

    2013-05-01

    The screening files of many large companies, including Pfizer, have grown considerably due to internal chemistry efforts, company mergers and acquisitions, external contracted synthesis, or compound purchase schemes. In order to screen the targets of interest in a cost-effective fashion, we devised an easy-to-assemble, plate-based diversity subset (PBDS) that represents almost the entire computed chemical space of the screening file whilst comprising only a fraction of the plates in the collection. In order to create this file, we developed new design principles for the quality assessment of screening plates: the Rule of 40 (Ro40) and a plate selection process that insured excellent coverage of both library chemistry and legacy chemistry space. This paper describes the rationale, design, construction, and performance of the PBDS, that has evolved into the standard paradigm for singleton (one compound per well) high-throughput screening in Pfizer since its introduction in 2006.

  8. Study of acoustic wave behavior in silicon-based one-dimensional phononic-crystal plates using harmony response analysis

    NASA Astrophysics Data System (ADS)

    Zhu, Xuefeng; Xu, Tao; Liu, Shengchun; Cheng, Jianchun

    2009-11-01

    We promote an efficient method named harmony response analysis (HRA) as a comparison with transient response analysis and supercell plane wave expansion (supercell PWE) to study the behavior of Lamb wave in silicon-based one-dimensional composite plates. To implement HRA for dealing with Lamb waves in phononic-crystal plates, the viscous-spring artificial boundaries are employed to eliminate the boundary reflection in maximum. With the calculation of displacement field, the propagations of elastic waves under different frequency loads (inside/outside the completed band gap) are investigated in details. The method is then applied in plates both with and without substrate. We further study the plates with quasiperiodicity (generalized Fibonacci systems and double-period system) and investigate the change in band gaps induced by the quasiperiodicity.

  9. An assessment of four-noded plate finite elements based on a generalized third-order theory

    NASA Astrophysics Data System (ADS)

    Averill, R. C.; Reddy, J. N.

    1992-06-01

    Plate finite elements based on the generalized third-order theory of Reddy and the first-order shear deformation theory are analyzed and compared on the basis of thick and thin plate modeling behavior, distortion sensitivity, overall accuracy, reliability, and efficiency. In particular, several four-noded Reddy-type elements and the nine-noded Lagrangian and heterosis (Mindlin-type) plate elements are analyzed to assess their behavior in bending, vibration, and stability of isotropic and laminated composite plates. A four-noded Reddy-type element is identified which is free of all spurious stiffness and zero energy modes, computationally efficient, and suitable for use in any general-purpose finite element program.

  10. An assessment of four-noded plate finite elements based on a generalized third-order theory

    NASA Technical Reports Server (NTRS)

    Averill, R. C.; Reddy, J. N.

    1992-01-01

    Plate finite elements based on the generalized third-order theory of Reddy and the first-order shear deformation theory are analyzed and compared on the basis of thick and thin plate modeling behavior, distortion sensitivity, overall accuracy, reliability, and efficiency. In particular, several four-noded Reddy-type elements and the nine-noded Lagrangian and heterosis (Mindlin-type) plate elements are analyzed to assess their behavior in bending, vibration, and stability of isotropic and laminated composite plates. A four-noded Reddy-type element is identified which is free of all spurious stiffness and zero energy modes, computationally efficient, and suitable for use in any general-purpose finite element program.

  11. High-k dielectrics based field plate edge termination engineering in 4H-SiC Schottky diode

    NASA Astrophysics Data System (ADS)

    Shankar, Bhawani; Gupta, Sanjeev K.; Taube, William R.; Akhtar, J.

    2016-12-01

    This paper develops a deep insight into the behaviour of high-k dielectric-based field plate on Ni/4H-SiC Schottky diode. It tries to explain the mechanism by which high-k materials outperform silicon dioxide, when used under the field plate. Phenomena like modulation of field enhancement factor, reshaping of equipotential contours and expansion of depletion region while maintaining fixed depletion ratio (length/width = 2.3) helps to understand the electrical behaviour of high-k dielectric-based field plate. High-k materials relaxed the equipotential contours under the field plate edge which resulted in electric field reduction up to 88% and significant drop from 6.6 to 2.2 in field enhancement factor at device edges. The study considers the field plate of different dielectrics (SiO2, Si3N4, Al203, HfO2) and in each case, analytically explores the optimisation of field plate parameters (overlap length and dielectric thickness, dielectric constant). All the investigations have been done using numerical simulations on calibrated setup.

  12. Experimental Study on Hot Metal Desulfurization Using Sintered Red Mud-Based Flux

    NASA Astrophysics Data System (ADS)

    Li, Fengshan; Zhang, Yanling; Guo, Zhancheng

    2017-07-01

    This research presents the results of laboratory and pilot-scale tests conducted on the use of sintered red mud (RM)-based flux in the hot metal desulfurization (HMD) process. Al2O3/Na2O in RM can decrease the melting point of lime-based slag and can work as a flux in the HMD process. Good slag fluidity was observed throughout the process, and high desulfurization rates ( 80%) with a low final S content (<0.02%) were experimentally obtained when the RM:CaO ratio was between 1.2:1 and 2.4:1. The pilot-scale test results indicated that a desulfurization rate as high as 91% and a S content <0.0099% could be acquired when RM:lime = 1:1, verifying the feasibility of using sintered RM-based flux in HMD. The data obtained provide important information for promoting the large-scale application of sintered RM in steelmaking.

  13. Experimental Study on Hot Metal Desulfurization Using Sintered Red Mud-Based Flux

    NASA Astrophysics Data System (ADS)

    Li, Fengshan; Zhang, Yanling; Guo, Zhancheng

    2017-09-01

    This research presents the results of laboratory and pilot-scale tests conducted on the use of sintered red mud (RM)-based flux in the hot metal desulfurization (HMD) process. Al2O3/Na2O in RM can decrease the melting point of lime-based slag and can work as a flux in the HMD process. Good slag fluidity was observed throughout the process, and high desulfurization rates ( 80%) with a low final S content (<0.02%) were experimentally obtained when the RM:CaO ratio was between 1.2:1 and 2.4:1. The pilot-scale test results indicated that a desulfurization rate as high as 91% and a S content <0.0099% could be acquired when RM:lime = 1:1, verifying the feasibility of using sintered RM-based flux in HMD. The data obtained provide important information for promoting the large-scale application of sintered RM in steelmaking.

  14. Hot corrosion studies of four nickel-base superalloys: B-1900, NASA-TRW VIA, 713C and IN738

    NASA Technical Reports Server (NTRS)

    Fryburg, G. C.; Kohl, F. J.; Stearns, C. A.

    1976-01-01

    The susceptibility to hot corrosion of four nickel base superalloys has been studied at 900 deg and 1000 deg C in one atmosphere of slowly flowing oxygen. Hot corrosion was induced by coating the samples with known doses of NaSO4 and oxidizing the coated samples isothermally on a sensitive microbalance. In general, the order of susceptibility found was: B-1900 is greater than 713C is greater than NASA-TRW VIA and is greater than IN738. This order corresponds to the order of decreasing molybdenum content of the alloys. Chemical evidence for B-1900 indicates that hot corrosion is instigated by acid fluxing of the protective Al2O3 coating by MoO3.

  15. A 1.5 THz hot-electron bolometer mixer operated by a planar diode based local oscillator

    NASA Technical Reports Server (NTRS)

    Tong, C. Y. E.; Meledin, D.; Blundell, R.; Erickson, N.; Mehdi, I.; Goltsman, G.

    2003-01-01

    We have developed a 1.5 THz superconducting NbN Hot-Electron Bolometer mixer. It is oprated by an all-solid-state Local Oscillator comprising of a cascade of 4 planar doublers following an MMIC based W-band power amplifier.

  16. A 1.5 THz hot-electron bolometer mixer operated by a planar diode based local oscillator

    NASA Technical Reports Server (NTRS)

    Tong, C. Y. E.; Meledin, D.; Blundell, R.; Erickson, N.; Mehdi, I.; Goltsman, G.

    2003-01-01

    We have developed a 1.5 THz superconducting NbN Hot-Electron Bolometer mixer. It is oprated by an all-solid-state Local Oscillator comprising of a cascade of 4 planar doublers following an MMIC based W-band power amplifier.

  17. Photon-counting detector arrays based on microchannel array plates. [for image enhancement

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1975-01-01

    The recent development of the channel electron multiplier (CEM) and its miniaturization into the microchannel array plate (MCP) offers the possibility of fully combining the advantages of the photographic and photoelectric detection systems. The MCP has an image-intensifying capability and the potential of being developed to yield signal outputs superior to those of conventional photomultipliers. In particular, the MCP has a photon-counting capability with a negligible dark-count rate. Furthermore, the MCP can operate stably and efficiently at extreme-ultraviolet and soft X-ray wavelengths in a windowless configuration or can be integrated with a photo-cathode in a sealed tube for use at ultraviolet and visible wavelengths. The operation of one- and two-dimensional photon-counting detector arrays based on the MCP at extreme-ultraviolet wavelengths is described, and the design of sealed arrays for use at ultraviolet and visible wavelengths is briefly discussed.

  18. A novel silver-coated solid-phase microextraction metal fiber based on electroless plating technique.

    PubMed

    Feng, Juanjuan; Sun, Min; Li, Jubai; Liu, Xia; Jiang, Shengxiang

    2011-09-09

    A novel silver-coated solid-phase microextraction fiber was prepared based on electroless plating technique. Good extraction performance of the fiber for model compounds including phthalate esters (dibutyl phthalate, dioctyl phthalate, dicyclohexyl phthalate and diallyl phthalate) and polycyclic aromatic hydrocarbons (naphthalene, fluorene, phenanthrene, fluoranthene) in aqueous solution was obtained. Under the optimized conditions (extraction temperature, extraction time, ionic strength and desorption temperature), the proposed SPME-GC method showed wide linear ranges with correlation coefficients (R(2)) ranging from 0.9745 to 0.9984. The limits of detection were at the range of 0.02 to 0.1 μg L(-1). Single fiber repeatability and fiber-to-fiber reproducibility as well as stability to acid, alkali and high temperature were studied and the results were all satisfactory. The method was applied successfully to the aqueous extracts of disposable paper cup and instant noodle barrel. Several kinds of analytes were detected and quantified.

  19. Novel type of neutron image plates based on KCl:Eu2+-LiF

    NASA Astrophysics Data System (ADS)

    Schlapp, M.; Hoelzel, M.; Gilles, R.; Ioffe, A.; Brueckel, T.; Fuess, H.; Seggern, H. Von

    2004-07-01

    Neutron image plates (NIP) provide a mean for the two-dimensional, position-sensitive detection of neutrons. They combine the advantages of a large dynamic range (up to 5 orders of magnitude), good spatial resolution (<=300μm) and large detection areas. NIPs are used at various instruments for powder or single-crystal diffraction in numerous radiation facilities. They have also found an application in neutron radiography and can be used for small-angle neutron scattering (SANS) such as at the Structure Powder DIffractometer (SPODI) at the FRM-II. In this study, the resolution of a novel type of ceramic NIPs based on KCl:Eu2+-LiF is presented and simulations on the applicability of NIPs for neutron detection at the SANS apparatus of SPODI are reported.

  20. Web-based monitoring tools for Resistive Plate Chambers in the CMS experiment at CERN

    NASA Astrophysics Data System (ADS)

    Kim, M. S.; Ban, Y.; Cai, J.; Li, Q.; Liu, S.; Qian, S.; Wang, D.; Xu, Z.; Zhang, F.; Choi, Y.; Kim, D.; Goh, J.; Choi, S.; Hong, B.; Kang, J. W.; Kang, M.; Kwon, J. H.; Lee, K. S.; Lee, S. K.; Park, S. K.; Pant, L. M.; Mohanty, A. K.; Chudasama, R.; Singh, J. B.; Bhatnagar, V.; Mehta, A.; Kumar, R.; Cauwenbergh, S.; Costantini, S.; Cimmino, A.; Crucy, S.; Fagot, A.; Garcia, G.; Ocampo, A.; Poyraz, D.; Salva, S.; Thyssen, F.; Tytgat, M.; Zaganidis, N.; Doninck, W. V.; Cabrera, A.; Chaparro, L.; Gomez, J. P.; Gomez, B.; Sanabria, J. C.; Avila, C.; Ahmad, A.; Muhammad, S.; Shoaib, M.; Hoorani, H.; Awan, I.; Ali, I.; Ahmed, W.; Asghar, M. I.; Shahzad, H.; Sayed, A.; Ibrahim, A.; Aly, S.; Assran, Y.; Radi, A.; Elkafrawy, T.; Sharma, A.; Colafranceschi, S.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Iaselli, G.; Loddo, F.; Maggi, M.; Nuzzo, S.; Pugliese, G.; Radogna, R.; Venditti, R.; Verwilligen, P.; Benussi, L.; Bianco, S.; Piccolo, D.; Paolucci, P.; Buontempo, S.; Cavallo, N.; Merola, M.; Fabozzi, F.; Iorio, O. M.; Braghieri, A.; Montagna, P.; Riccardi, C.; Salvini, P.; Vitulo, P.; Vai, I.; Magnani, A.; Dimitrov, A.; Litov, L.; Pavlov, B.; Petkov, P.; Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Rodozov, M.; Sultanov, G.; Vutova, M.; Stoykova, S.; Hadjiiska, R.; Ibargüen, H. S.; Morales, M. I. P.; Bernardino, S. C.; Bagaturia, I.; Tsamalaidze, Z.; Crotty, I.

    2014-10-01

    The Resistive Plate Chambers (RPC) are used in the CMS experiment at the trigger level and also in the standard offline muon reconstruction. In order to guarantee the quality of the data collected and to monitor online the detector performance, a set of tools has been developed in CMS which is heavily used in the RPC system. The Web-based monitoring (WBM) is a set of java servlets that allows users to check the performance of the hardware during data taking, providing distributions and history plots of all the parameters. The functionalities of the RPC WBM monitoring tools are presented along with studies of the detector performance as a function of growing luminosity and environmental conditions that are tracked over time.

  1. FBG sensor array-based-low speed impact localization system on composite plate

    NASA Astrophysics Data System (ADS)

    Sai, Yaozhang; Jiang, Mingshun; Sui, Qingmei; Lu, Shizeng; Jia, Lei

    2016-03-01

    A fiber Bragg grating (FBG) sensors-based impact localization system on composite structure and a novel localization algorithm independent of wave velocity were proposed. Six FBG sensors constitute two isosceles right triangle FBG arrays. Impact signals were detected by a high-speed FBG interrogation system. Morlet wavelet transform was employed to extract time differences of impact signals. The straight lines equations, which are through impact source and FBG sensors of right-angled vertices of FBG arrays, can be obtained by the time differences. The coordinate of impact source is the intersection of straight lines. Testing experiments were carried out on composite plate within 400 mm × 400 mm monitor area. The experimental results showed that the maximum and average errors were 20.92 and 8.67 mm, respectively. This article provides a simple and stable impact source localization system independent of wave velocity.

  2. Ultra lightweight PMMA-based composite plates with robust super-hydrophobic surfaces.

    PubMed

    Pareo, Paola; De Gregorio, Gian Luca; Manca, Michele; Pianesi, Maria Savina; De Marco, Luisa; Cavallaro, Francesco; Mari, Margherita; Pappadà, Silvio; Ciccarella, Giuseppe; Gigli, Giuseppe

    2011-11-15

    Extremely lightweight plates made of an engineered PMMA-based composite material loaded with hollow glass micro-sized spheres, nano-sized silica particles and aluminum hydroxide prismatic micro-flakes were realized by cast molding. Their interesting bulk mechanical properties were combined to properly tailored surface topography compatible with the achievement of a superhydrophobic behavior after the deposition of a specifically designed hydrophobic coating. With this aim, we synthesized two different species of fluoromethacrylic polymers functionalized with methoxysilane anchoring groups to be covalently grafted onto the surface protruding inorganic fillers. By modulating the feed composition of the reacting monomers, it was possible to combine the hydrophobic character of the polymer with an high adhesion strength to the substrate and hence to maximize both the water contact angle (up to 157°) and the durability of the easy-to-clean effect (up to 2000 h long outdoor exposure).

  3. Exergy efficiency analysis of a flat plate solar collector using graphene based nanofluid

    NASA Astrophysics Data System (ADS)

    Said, Z.; Alim, M. A.; Janajreh, Isam

    2015-10-01

    The thermal efficiency of a flat plate solar thermal collector is largely affected by the thermal conductivity of the fluid used. In this paper, we theoretically analyzed the heat transfer performance, the entropy generation rate, and the exergy efficiency of the two different graphene based nanofluids (graphene/Acetone and graphene/water). From the analyses, it is revealed that by inserting a small amount of graphene nanoparticles in water, exergy efficiency could be enhanced by 21%, comparing to conventional fluids and entropy generation is decreased by 4%. However, the graphene/water nanofluid shows a lower entropy generation. This characteristic suggests that graphene/water nanofluid is a better candidate for flat solar thermal application.

  4. Ion beam figuring of continuous phase plates based on the frequency filtering process

    NASA Astrophysics Data System (ADS)

    Xu, Mingjin; Dai, Yifan; Xie, Xuhui; Zhou, Lin; Li, Shengyi; Peng, Wenqiang

    2017-03-01

    Ion beam figuring (IBF) technology is an effective technique for fabricating continuous phase plates (CPPs) with small feature structures. This study proposes a multi-pass IBF approach with different beam diameters based on the frequency filtering method to improve the machining accuracy and efficiency of CPPs during IBF. We present the selection principle of the frequency filtering method, which incorporates different removal functions that maximize material removal over the topographical frequencies being imprinted. Large removal functions are used early in the fabrication to figure the surface profile with low frequency. Small removal functions are used to perform final topographical correction with higher frequency and larger surface gradient. A high-precision surface can be obtained as long as the filtering frequency is suitably selected. This method maximizes the high removal efficiency of the large removal function and the high corrective capability of the small removal function. Consequently, the fast convergence of the machining accuracy and efficiency can be achieved.

  5. Evaluation of Ground Bearing Capacity Estimation Methods Based On Plate Loading Tests

    NASA Astrophysics Data System (ADS)

    Gül, Yavuz; Ceylanoğlu, Atilla

    2016-10-01

    Within the scope of this study, bearing capacities were calculated based on eleven different estimation methods in literature, using some mass and material properties for different rock units (magnetite, syenite, serpentinite, limestone, clayey limestone and gypsum) encountered in three different open-pit mines (Sivas-Ulaş Open-Pit Celestite Mine, Divriği Open-Pit Iron Mine and Kangal Open-Pit Coal Mine) around Sivas in Turkey. Through regression analyses between estimated bearing capacity values and those that had been determined as a result of plate loading tests, bearing capacity estimation methods specified in the literature were assessed. Moreover, four different equations to be used in bearing capacity estimation were proposed.

  6. A model of convergent plate margins based on the recent tectonics of Shikoku, Japan

    NASA Technical Reports Server (NTRS)

    Bischke, R. E.

    1974-01-01

    A viscoelastic finite element plate tectonic model is applied to displacement data for the island of Shikoku, Japan. The flow properties and geometry of the upper portions of the earth are assumed known from geophysical evidence, and the loading characteristics are determined from the model. The nature of the forces acting on the Philippine Sea plate, particularly in the vicinity of the Nankai trough, is determined. Seismic displacement data related to the 1946 Nankaido earthquake are modeled in terms of a thick elastic plate overlying a fluidlike substratum. The sequence of preseismic and seismic displacements can be explained in terms of two independent processes operating on elastic lithospheric plates: a strain accumulation process caused by vertical downward forces acting on or within the lithosphere in the vicinity of the trench, and a strain release process caused by plate failure along a preexisting zone on weakness. This is a restatement of Reid's elastic rebound theory in terms of elastic lithospheric plates.

  7. Investigation of the microbial community in the Odisha hot spring cluster based on the cultivation independent approach.

    PubMed

    Singh, Archana; Subudhi, Enketeswara; Sahoo, Rajesh Kumar; Gaur, Mahendra

    2016-03-01

    Deulajhari hot spring is located in the Angul district of Odisha. The significance of this hot spring is the presence of the hot spring cluster adjacent to the cold spring which attracts the attention of microbiologists to understand the role of physio-chemical factors of these springs on bacterial community structure. Next-generation sequencing technology helps us to depict the pioneering microflora of any ecological niche based on metagenomic approach. Our study represents the first Illumina based metagenomic study of Deulajhari hot spring DH1, and DH2 of the cluster with temperature 65 °C to 55 °C respectively establishing a difference of 10 °C. Comprehensive study of microbiota of these two hot springs was done using the metagenomic sequencing of 16S rRNA of V3-V4 region extracting metagenomic DNA from the two hot spring sediments. Sequencing community DNA reported about 28 phyla in spring DH1 of which the majority were Chloroflexi (22.98%), Proteobacteria (15.51%), Acidobacteria (14.51%), Chlorobi (9.52%), Nitrospirae (8.54%), and Armatimonadetes (7.07%), at the existing physiochemical conditions like; temperature 65 °C, pH 8.06, electro conductivity 0.020 dSm(- 1), and total organic carbon (TOC) 3.76%. About 40 phyla were detected in cluster DH2 at the existing physiochemical parameters like temperature 55 °C, pH 8.10, electro conductivity 0.019 dSm(- 1), and total organic carbon (TOC) 0.58% predominated with Chloroflexi (41.98%), Proteobacteria (10.74%), Nitrospirae (10.01%), Chlorobi (8.73%), Acidobacteria (6.73%) and Planctomycetes (3.73%). Approximately 68 class, 107 order, 171 genus and 184 species were reported in cluster DH1 but 102 class, 180 order, 375 genus and 411 species in cluster DH2. The comparative metagenomics study of the Deulajhari hot spring clusters DH1, and DH2 depicts the differential profile of the microbiota. Metagenome sequences of these two hot spring clusters are deposited to the SRA database and are available in

  8. A Study on the Recrystallization Behavior of Ni-Based Alloy G3 During Hot Deformation

    NASA Astrophysics Data System (ADS)

    Jiang, He; Dong, Jianxin; Zhang, Maicang; Yao, Zhihao; Jue, Wang

    2016-12-01

    An integrated microstructure evolution model of thermomechanical processing was developed in terms of dynamic recrystallization (DRX), post-dynamic recrystallization (PDRX) and grain growth. Hot compression tests were carried out on a Gleeble-1500 thermal simulator under different conditions to model DRX, PDRX and short-time grain growth during the post-deformation and cooling process. Furthermore, in combination with the established microstructure evolution models, an elastic-plastic finite element model was built using DEFORM-2D software to simulate the microstructure evolution during the hot extrusion process. The simulation result was compared with the microstructure of a hot-extruded pipe of alloy G3 manufactured in a factory. The simulation results agree well with the experimental ones, validating the accuracy of the established microstructure evolution model. Furthermore, the finite element simulation is an effective method for hot deformation analysis, which can provide theoretical guidance for the optimization manufacturing parameters.

  9. Hot corrosion of Ni-base turbine alloys in atmospheres in coal-conversion systems

    NASA Technical Reports Server (NTRS)

    Huang, T.; Gulbransen, E. A.; Meier, G. H.

    1979-01-01

    Alkali-metal contaminants in coal may form low-melting sulfate salts during coal gasification or subsequent combustion which can have very deleterious effects on turbine components. The mechanisms for the hot-corrosion phenomena are not completely understood.

  10. Hot Flashes

    MedlinePlus

    ... are due to menopause — the time when menstrual periods become irregular and eventually stop. In fact, hot flashes are the most common symptom of the menopausal transition. How often hot flashes occur varies among women ...

  11. Ground-based Observational Characterization of Transiting Hot-Jupiter Atmosphere

    NASA Astrophysics Data System (ADS)

    Chen, G.

    2016-09-01

    Transiting exoplanets are currently among the most favorable targets for atmospheric studies of exoplanets. Such special orbital geometry enables transits and secondary eclipses to be observable, which refer to the events when planets move in front of or behind host stars. Corresponding observations would result in transmission spectroscopy or emission spectroscopy, which are extremely powerful in the investigation of atmospheric compositions and temperature structures. Based on these two techniques, this thesis presents photometric observations on the secondary eclipses of three hot Jupiters using GROND (Gamma-Ray Burst Optical and Near-infrared Detector) mounted on the MPG 2.2 m telescope, and spectroscopic observations on the transits of another two hot Jupiters using DBSP (Double Spectrograph), TSpec (Triple Spectrograph), and COSMIC (Carnegie Observatories Spectroscopic Multislit and Imaging Camera) mounted on the Palomar 5.1 Hale telescope. The primary goal is to search for any detectable signals of atmospheric origin, and to study potential atmospheric diversity among hot Jupiters with various physical properties. The photometric observations on the secondary eclipses of WASP-5 b, WASP-46 b, and WASP-43 b are detailed in Chapter 3, 4, and 5, respectively. The dips of secondary eclipse have been significantly detected for all three hot Jupiters in the K band, along with some possible detection or 3σ upper limit in the J or H band. These near-infrared eclipse detection measures the thermal emission from the deep dayside atmosphere. It is the first time to detect any thermal emission in the near infrared for WASP-5 b and WASP-46 b. Our GROND measurements indicate a roughly isothermal temperature profile of around 2700 K in the deep layers of WASP-5 b's dayside atmosphere. Together with Spitzer observations, which probe higher layers with a temperature of around 1900 K, a temperature inversion is ruled out in the probed pressure range. While an oxygen

  12. Well Plate-Based Perfusion Culture Device for Tissue and Tumor Microenvironment Replication

    PubMed Central

    Zhang, W.; Gu, Y.; Hao, Y.; Sun, Q.; Konior, K.; Wang, H.

    2015-01-01

    There are significant challenges in developing in vitro human tissue and tumor models that can be used to support new drug development and evaluate personalized therapeutics. The challenges include: (1) working with primary cells which are often difficult to maintain ex vivo, (2) mimicking native microenvironments from which primary cells are harvested, and (3) lack of culture devices that can support these microenvironments to evaluate drug responses in a high-throughput manner. Here we report a versatile well plate-based perfusion culture device that was designed, fabricated and used to: (1) ascertain the role of perfusion in facilitating the expansion of human multiple myeloma cells and evaluate drug response of the cells, (2) preserve the physiological phenotype of primary murine osteocytes by reconstructing the 3D cellular network of osteocytes, and (3) circulate primary murine T cells through a layer of primary murine intestine epithelial cells to recapitulate the interaction of the immune cells with the epithelial cells. Through these diverse case studies, we demonstrate the device’s design features to support: (1) the convenient and spatiotemporal placement of cells and biomaterials into the culture wells of the device; (2) the replication of tissues and tumor microenvironments using perfusion, stromal cells, and/or biomaterials; (3) the circulation of non-adherent cells through the culture chambers; and (4) conventional tissue and cell characterization by plate reading, histology, and flow cytometry. Future challenges are identified and discussed from the perspective of manufacturing the device and making its operation for routine and wide use. PMID:26021852

  13. The ERESE Project: Enactment of Digital Library Inquiry-Based Plate Tectonic Lessons

    NASA Astrophysics Data System (ADS)

    Helly, M.; Symons, C. M.; Dow, N.; Miller, S. P.; Helly, J.; Staudigel, H.; Koppers, A.

    2004-12-01

    The Enduring Resources for Earth Science Education (ERESE) project is a collaborative effort between earth scientists, educators, librarians and data archive managers. Its goal is to develop and maintain a persistent online research and education archive in a digital library environment that supports earth science education in plate tectonics. A major contribution from educators has been the development of inquiry lessons included in the digital library. Fourteen middle and high school teachers from across the country participated in the ERESE Workshop in July 2004. The goal of the workshop was three-fold: to provide the teachers with a research experience based on the digital library materials, to model an inquiry process and to support teachers as they develop inquiry lessons for their students. This process was led by a team of scientists and expert educators. The team used a master template to facilitate the teacher's lesson development. The pedagogical approach outlined in the template reflects a model of scientific thinking the goal of which is to shift from direction by the teacher at the onset of a lesson to a self-directed experience on the part of the student as they engage in the inquiry process and complete the lesson. Two examples of inquiry lessons produced as part of the workshop are reported here. The first investigates the symmetry of magnetic stripes at the northern East Pacific Rise using real marine geophysical data from the digital library. The second inquiry lesson was developed by a participant teacher and has been implemented this academic year by a high school marine science teacher. The lesson investigates the evidence that supports plate tectonics on the basis of the Pangea model. Having already been implemented in the classroom this lesson provides a rigorous testing of the inquiry process and the robustness of the scientific content of the digital library.

  14. SHARK: Flight Results of an UHTC-Based Nose Related to USV Hot Structures

    NASA Astrophysics Data System (ADS)

    Gardi, R.; Del Vecchio, A.; Russo, G.; Marino, G.

    2011-05-01

    In the frame of USV program, CIRA is developing different projects aimed to develop new technologies for the future hypersonic vehicles. One of these technological projects is Sharp Hot Structures (SHS) and it is aimed to the realization of innovative thermo- structures, based on innovative material solution, able to sustain the heat loads generated during the hypersonic flight. Because the slender configuration of the USV program vehicles, SHS is focused on sharp geometries, like sharp leading edges and sharp nose cones. CIRA, for many years, is investigating the effectiveness of ultra high temperature ceramic materials (UHTC) by means of numerical simulations, ground testing in plasma torch and in SCIROCCO, the 70MW plasma wind tunnel (PWT) facility at CIRA. More recently CIRA is moving the experimentation in real flight environment, boarding UHTC components on the re-entering space capsules EXPERT and SHARK. The former is a European experimental test bed boarding a couple of UHTC fins, already qualified and integrated on the vehicle. SHARK is a 20kg capsule launched on March the 26th 2010 from Kiruna with the European sounding rocker Maxus-8. During the ascent parabola, the capsule was released and successfully executed its 15 minutes ballistic flight and then re-entered in the atmosphere from a 700km altitude. The capsule has been recovered on July the 1st and all data have been acquired. All the instrumentation worked nicely and the data acquisition continued even after the landing, confirming the robustness of the design.

  15. Resonant plasmonic terahertz detection in vertical graphene-base hot-electron transistors

    SciTech Connect

    Ryzhii, V.; Otsuji, T.; Ryzhii, M.; Mitin, V.; Shur, M. S.

    2015-11-28

    We analyze dynamic properties of vertical graphene-base hot-electron transistors (GB-HETs) and consider their operation as detectors of terahertz (THz) radiation using the developed device model. The GB-HET model accounts for the tunneling electron injection from the emitter, electron propagation across the barrier layers with the partial capture into the GB, and the self-consistent oscillations of the electric potential and the hole density in the GB (plasma oscillations), as well as the quantum capacitance and the electron transit-time effects. Using the proposed device model, we calculate the responsivity of GB-HETs operating as THz detectors as a function of the signal frequency, applied bias voltages, and the structural parameters. The inclusion of the plasmonic effect leads to the possibility of the GB-HET operation at the frequencies significantly exceeding those limited by the characteristic RC-time. It is found that the responsivity of GB-HETs with a sufficiently perfect GB exhibits sharp resonant maxima in the THz range of frequencies associated with the excitation of plasma oscillations. The positions of these maxima are controlled by the applied bias voltages. The GB-HETs can compete with and even surpass other plasmonic THz detectors.

  16. [A method of temperature measurement for hot forging with surface oxide based on infrared spectroscopy].

    PubMed

    Zhang, Yu-cun; Qi, Yan-de; Fu, Xian-bin

    2012-05-01

    High temperature large forging is covered with a thick oxide during forging. It leads to a big measurement data error. In this paper, a method of measuring temperature based on infrared spectroscopy is presented. It can effectively eliminate the influence of surface oxide on the measurement of temperature. The method can measure the surface temperature and emissivity of the oxide directly using the infrared spectrum. The infrared spectrum is radiated from surface oxide of forging. Then it can derive the real temperature of hot forging covered with the oxide using the heat exchange equation. In order to greatly restrain interference spectroscopy through included in the received infrared radiation spectrum, three interference filter system was proposed, and a group of optimal gap parameter values using spectral simulation were obtained. The precision of temperature measurement was improved. The experimental results show that the method can accurately measure the surface temperature of high temperature forging covered with oxide. It meets the requirements of measurement accuracy, and the temperature measurement method is feasible according to the experiment result.

  17. Studies on the hot corrosion of a nickel-base superalloy, Udimet 700

    NASA Technical Reports Server (NTRS)

    Misra, A. K.

    1984-01-01

    The hot corrosion of a nickel-base superalloy, Udimet 700, was studied in the temperature range of 884 to 965 C and with different amounts of Na2SO4. Two different modes of degradation were identified: (1) formation of Na2MoO4 - MoO3 melt and fluxing by this melt, and (2) formation of large interconnected sulfides. The dissolution of Cr2O3, TiO2 in the Na2SO4 melt does not play a significant role in the overall corrosion process. The conditions for the formation of massive interconnected sulfides were identified and a mechanism of degradation due to sulfide formation is described. The formation of Ns2MoO4 - MoO3 melt requires an induction period and various physiochemical processes during the induction period were identified. The factors affecting the length of the induction period were also examined. The melt penetration through the oxide appears to be the prime mode of degradation whether the degradation is due to the formation of sulfides or the formation of the Na2MoO4 - MoO3 melt.

  18. Studies on the hot corrosion of a nickel-base superalloy, Udimet 700

    NASA Technical Reports Server (NTRS)

    Misra, A. K.

    1986-01-01

    The hot corrosion of a nickel-base superalloy, Udimet 700, was studied in the temperture range of 884 to 965 C and with different amounts of Na2SO4. Two different modes of degradation were identified: (1) formation of Na2MoO4-MoO3 melt and fluxing by this melt, and (2) formation of large interconnected sulfides. The dissolution of Cr2O3, TiO2 in the Na2SO4 melt does not play a significnt role in the overall corrosion process. The conditions for the formation of massive interconnected sulfides were identified and a mechanism of degradation due to sulfide formation is described. The formation of Na2MoO4-MoO3 melt requires an induction period and various physiochemical processes during the induction period were identified. The factors affecting the length of the induction period were also examined. The melt penetration through the oxide appears to be the prime mode of degradation whether the degradation is due to the formation of sulfides or the formation of the Na2MoO4-MoO3 melt.

  19. High cycle fatigue and fracture behaviour of a hot isostatically pressed nickel-based superalloy

    NASA Astrophysics Data System (ADS)

    Qiu, Chunlei; Wu, Xinhua

    2014-01-01

    Powder of a nickel-based superalloy, RR1000, has been hot isostatically pressed (HIPped) at a supersolvus temperature and post-HIP heat treated to produce different microstructures. Microstructures were investigated using a scanning electron microscope together with an energy dispersive X-ray spectrometer and a wave-length dispersive X-ray spectrometer. High cycle four-point bending fatigue and tension-tension fatigue tests have been performed on the fabricated samples. It was found that HIPped and aged samples showed the best four-point bending fatigue limit while HIPped and solution-treated and aged samples had the lowest fatigue limit. The four-point bending fatigue crack initiations all occurred from the sample surfaces either at the sites of inclusion clusters or by cleavage through large grains on the surfaces. The tension-tension fatigue crack initiation occurred mainly due to large hafnia inclusion clusters, with lower fatigue lives for samples where inclusions were closer to the surface. Crack initiation at the compact Al2O3 inclusion cluster led to a much higher fatigue life than found when cracks were initiated by large hafnia inclusion clusters. The tension-tension fatigue limits were shown to decrease with increased testing temperature (from room temperature to 700 °C).

  20. Development of a Calicum-Based Sorbent for Hot Gas Cleanup.

    SciTech Connect

    Wheelock, T.W.; Constant, K.; Doraiswamy, L.K.; Akiti, T.; Zhu, J.; Amanda, A.; Roe, R.

    1997-09-01

    Further review of the technical literature has provided additional information which will support the development of a superior calcium-based sorbent for hot gas cleanup in IGCC systems. Two general methods of sorbent preparation are being investigated. One method involves impregnating a porous refractory substrate with calcium while another method involves pelletizing lime or other calcium containing materials with a suitable binder. Several potential substrates, which are made of alumina and are commercially available, have been characterized by various methods. The surface area and apparent density of the materials have been measured, and it has been shown that some of the high surface area materials (i.e., 200-400 m{sub 2}/g) undergo a large decrease in surface area when heated to higher temperatures. Some of the lower surface area materials (i.e., 1-30 m{sub 2}/g) have been successfully impregnated with calcium by soaking them in a calcium nitrate solution and then heat treating them to decompose the nitrate. Potentially useful sorbents have also been prepared by pelletizing type I Portland cement and mixtures of cement and lime.

  1. An investigation into Cu-Mn based sorbent for hot gas desulfurization

    SciTech Connect

    Wan Chen; Sha Xingzhong; Shen Wenqin; Xiong Lihong

    1998-12-31

    In the integrated gasification combined cycle for generation of electricity from coal, the efficient removal of sulfur is essential for improvement in thermal efficiency and process simplification. A family of copper manganese oxide sorbents has been studied. They show better strength and higher sulfur capacity than zinc based sorbents. The integrated gasification combined cycle (IGCC) is one of the most attractive technologies for advanced electricity generation. The coal gas cleanup process is necessary not only for the protection of gas turbine hardware, but also in compliance with the environmental requirements. In order to improve the efficiency of the overall cycle and simplify the process, the coal gas is purified at high temperature. For removal of hydrogen sulfide, the focus of much current work on hot coal gas desulfurization is primarily on the usage of zinc ferrite and zinc titanate sorbents. Zinc titanate is a promising sorbent and displays better strength than zinc ferrite, but its sulfur capacity is low. Therefore novel sorbents are still being searched for which can show improved properties. A family of copper manganese oxide sorbents has been studied and then their desulfurization properties are introduced here.

  2. Thermal conductivity calibration for hot wire based dc scanning thermal microscopy

    NASA Astrophysics Data System (ADS)

    Lefèvre, Stéphane; Volz, Sebastian; Saulnier, Jean-Bernard; Fuentes, Catherine; Trannoy, Nathalie

    2003-04-01

    Thermal conductivity characterization with nanoscale spatial resolution can be performed by contact probe techniques only. The technique based on a hot anemometer wire probe mounted in an atomic force microscope is now a standard setup. However, no rigorous calibration procedure is provided so far in basic dc mode. While in contact with the sample surface, the electrical current I injected into the probe is controlled so that electrical resistance or the wire temperature is maintained by the Joule effect. The variation in current is assumed to be linearly related to the heat flux lost towards the sample and traditional calibration is carried out by relating the thermal conductivity of a set of samples to the measured current I. We provide analytical and numerical thermal modeling of the tip and sample to estimate the key heat transfer in a conductivity calibration procedure. A simple calibration expression is established that provides thermal conductivity as a function of the probe current or voltage measured. Finally, experimental data allow us to determine the unknown quantities of the parametric form obtained, i.e., the mean tip-sample contact radius and conductance.

  3. Quantum optical devices based on four-wave mixing in hot rubidium vapor

    NASA Astrophysics Data System (ADS)

    Fang, YaMi; Qin, ZhongZhong; Wang, HaiLong; Cao, LeiMing; Xin, Jun; Feng, JingLiang; Zhang, WeiPing; Jing, JieTai

    2015-06-01

    In this paper, we briefly review the recent experimental progresses in quantum optics based on four-wave mixing (FWM) processes in hot rubidium vapor, particularly our two recent experiments in quantum information. We have experimentally produced strong quantum correlations between three bright beams generated by two cascaded FWM processes. The intensity difference squeezing with the cascaded system is enhanced to (-7.0±0.1)dB from the (-5.5±0.1)dB/(-4.5±0.1)dB with only one FWM process. Also, this system can be easily extended to multiple modes using multiple FWM processes. Besides, we have also successfully realized a cascade all-optical transistor (AOT), which is driven by a very weak light beam about 800 photons in total. The required probe power for achieving a switching efficiency of 50% can be as low as 180 pW, and it can manipulate a light beam with power of 5.0×106 times more, which proves the cascade of the AOT. Both experiments may find wide applications in quantum information and optical communication.

  4. Hot coal gas desulfurization with manganese based sorbents. Quarterly report, June--September 1994

    SciTech Connect

    Hepworth, M.T.; Slimane, R.B.

    1994-11-01

    The focus of work being performed on hot coal gas desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc titanate sorbents; however, prior studies indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt% ore + 25 wt% Al{sub 2}O{sub 3}) appears to be a strong contender to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc; hence, it is not as likely to undergo zinc-depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron; hence, the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Also manganese chlorides are much less stable and volatile than zinc chlorides. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This Eighth Quarterly Report documents progress in pelletizing and testing via thermo-gravimetric analysis of individual pellet formulations of manganese ore/alumina combinations and also manganese carbonate/alumina with two binders, dextrin and bentonite.

  5. Hot microswimmers

    NASA Astrophysics Data System (ADS)

    Kroy, Klaus; Chakraborty, Dipanjan; Cichos, Frank

    2016-11-01

    Hot microswimmers are self-propelled Brownian particles that exploit local heating for their directed self-thermophoretic motion. We provide a pedagogical overview of the key physical mechanisms underlying this promising new technology. It covers the hydrodynamics of swimming, thermophoresis and -osmosis, hot Brownian motion, force-free steering, and dedicated experimental and simulation tools to analyze hot Brownian swimmers.

  6. Hot Flashes

    MedlinePlus

    Diseases and Conditions Hot flashes By Mayo Clinic Staff Hot flashes are sudden feelings of warmth, which are usually most intense over the ... skin may redden, as if you're blushing. Hot flashes can also cause profuse sweating and may ...

  7. Investigation of the differences between the "Cold" and "Hot" nature of Coptis chinensis Franch and its processed materials based on animal's temperature tropism.

    PubMed

    Zhou, CanPing; Wang, JiaBo; Zhang, XueRu; Zhao, YanLing; Xia, XinHua; Zhao, HaiPing; Ren, YongShen; Xiao, XiaoHe

    2009-11-01

    The description and differentiation of the so-called "Cold" and "Hot" natures, the primary "Drug Naure" of Chinese medicine, is the focus of theoretical research. In this study, the divergency between the "Cold" and the "Hot" natures was investigated through examining the temperature tropism of mice affected by Coptis chinensis Franch and its processed materials by using a cold/hot plate differentiating technology. After exposure to C. chinensis Franch, the macroscopic behavioral index of the remaining rate (RR) on a warm pad (40 degrees C) significantly increased (P<0.05), suggesting the enhancement of Hot tropism. The internal indexes of adenosine triphosphatase (ATPase) activity and oxygen consuming volume decreased significantly (P<0.05), suggesting the decapability of energy metabolism. This external behavior of Hot tropism might reflect the internal Cold nature of C. chinensis Franch. However, the processed materials of C. chinensis Franch exhibited a different Cold nature in temperature tropism compared with crude C. chinensis Franch (CC): the Cold nature of bile-processed C. chinensis Franch (BC) enhanced while the ginger-processed C. chinensis Franch (GC) changed inversely. The changing sequence was consistent with the theoretical prognostication. It is indicated that the external Cold & Hot natures of Chinese medicine may possibly reflect in an ethological way for the changes of animal's temperature tropism which might be internally regulated by the body's energy metabolism.

  8. Error Propagation dynamics of PIV-based pressure calculation 2: from Poisson equations to Kirchhoff plates

    NASA Astrophysics Data System (ADS)

    Pan, Zhao; Whitehead, Jared; Truscott, Tadd

    2016-11-01

    Little research has been done to investigate the dynamics of error propagation from PIV-based velocity measurements to the pressure calculation. Rather than measure experimental error, we analytically investigate error propagation by examining the properties of the Poisson equation directly. Our results provide two contributions to the PIV community. First, we quantify the error bound in the pressure field by illustrating the mathematical roots of why and how PIV-based pressure calculations propagate. Second, we design the "worst case error" for a pressure Poisson solver. In other words, we provide a systematic example where the relatively small errors in the experimental data can lead to maximum error in the corresponding pressure calculations. The 2D calculation of the worst case error surprisingly leads to the classic Kirchhoff plates problem, and connects the PIV-based pressure calculation, which is a typical fluid problem, to elastic dynamics. The results can be used for optimizing experimental error minimization by avoiding worst case scenarios. More importantly, they can be used to design synthetic velocity error for future PIV-pressure challenges, which can be the hardest test case in the examinations.

  9. Paper microzone plates.

    PubMed

    Carrilho, Emanuel; Phillips, Scott T; Vella, Sarah J; Martinez, Andres W; Whitesides, George M

    2009-08-01

    This paper describes 96- and 384-microzone plates fabricated in paper as alternatives to conventional multiwell plates fabricated in molded polymers. Paper-based plates are functionally related to plastic well plates, but they offer new capabilities. For example, paper-microzone plates are thin (approximately 180 microm), require small volumes of sample (5 microL per zone), and can be manufactured from inexpensive materials ($0.05 per plate). The paper-based plates are fabricated by patterning sheets of paper, using photolithography, into hydrophilic zones surrounded by hydrophobic polymeric barriers. This photolithography used an inexpensive formulation photoresist that allows rapid (approximately 15 min) prototyping of paper-based plates. These plates are compatible with conventional microplate readers for quantitative absorbance and fluorescence measurements. The limit of detection per zone loaded for fluorescence was 125 fmol for fluorescein isothiocyanate-labeled bovine serum albumin, and this level corresponds to 0.02 the quantity of analyte per well used to achieve comparable signal-to-noise in a 96-well plastic plate (using a solution of 25 nM labeled protein). The limits of detection for absorbance on paper was approximately 50 pmol per zone for both Coomassie Brilliant Blue and Amaranth dyes; these values were 0.4 that required for the plastic plate. Demonstration of quantitative colorimetric correlations using a scanner or camera to image the zones and to measure the intensity of color, makes it possible to conduct assays without a microplate reader.

  10. Development and testing of a hot-air solar collector

    NASA Technical Reports Server (NTRS)

    Caudle, J. M.

    1979-01-01

    Summarized report on development and testing of hot-air flat-plate solar collector includes structural details, coating selection, and spacing between coating and glass plate. Report gives complete performance specifications and extensive certifications test report.

  11. Glued Joint Behavior of Ribs for Wood-Based Composite Plates

    NASA Astrophysics Data System (ADS)

    Frolovs, G.; Rocens, K.; Sliseris, J.

    2015-11-01

    This article presents experimental investigations of composite sandwich plywood plates with cell type core and their connections between skin layers of birch plywood and a core of straight and curved plywood honeycomb-type ribs. This shape of core ribs provides several improvements for these plates in the manufacturing process as well as improves the mechanical properties of plywood plates. This specific form of ribs allows simplifying the manufacturing of these plates although it should be detailed and improved. The most typical cases (series of specimens) were compared to the results obtained from FEM (ANSYS) simulations. All thicknesses of elements are chosen according to plywood supplier assortment. Standard birch plywood (Riga Ply) plates were used - three layer plywood was chosen for skin elements (Surfaces) and three or five layer plywood was chosen for edge elements. Different bond pressures were taken to compare their influence on joint strength and stiffness.

  12. Total and Viable Legionella pneumophila Cells in Hot and Natural Waters as Measured by Immunofluorescence-Based Assays and Solid-Phase Cytometry ▿†

    PubMed Central

    Parthuisot, N.; Binet, M.; Touron-Bodilis, A.; Pougnard, C.; Lebaron, P.; Baudart, J.

    2011-01-01

    A new method was developed for the rapid and sensitive detection of viable Legionella pneumophila. The method combines specific immunofluorescence (IF) staining using monoclonal antibodies with a bacterial viability marker (ChemChrome V6 cellular esterase activity marker) by means of solid-phase cytometry (SPC). IF methods were applied to the detection and enumeration of both the total and viable L. pneumophila cells in water samples. The sensitivity of the IF methods coupled to SPC was 34 cells liter−1, and the reproducibility was good, with the coefficient of variation generally falling below 30%. IF methods were applied to the enumeration of total and viable L. pneumophila cells in 46 domestic hot water samples as well as in cooling tower water and natural water samples, such as thermal spring water and freshwater samples. Comparison with standard plate counts showed that (i) the total direct counts were always higher than the plate counts and (ii) the viable counts were higher than or close to the plate counts. With domestic hot waters, when the IF assay was combined with the viability test, SPC detected up to 3.4 × 103 viable but nonculturable L. pneumophila cells per liter. These direct IF methods could be a powerful tool for high-frequency monitoring of domestic hot waters or for investigating the occurrence of viable L. pneumophila in both man-made water systems and environmental water samples. PMID:21742913

  13. Plate motion

    SciTech Connect

    Gordon, R.G. )

    1991-01-01

    The motion of tectonic plates on the earth is characterized in a critical review of U.S. research from the period 1987-1990. Topics addressed include the NUVEL-1 global model of current plate motions, diffuse plate boundaries and the oceanic lithosphere, the relation between plate motions and distributed deformations, accelerations and the steadiness of plate motions, the distribution of current Pacific-North America motion across western North America and its margin, plate reconstructions and their uncertainties, hotspots, and plate dynamics. A comprehensive bibliography is provided. 126 refs.

  14. Fabrication of an Aluminum Based Hot Electron Mixer for Terahertz Applications

    NASA Technical Reports Server (NTRS)

    Echternach, P. M.; LeDuc, H. G.; Skalare, A.; McGrath, W. R.

    2000-01-01

    Aluminum based diffusion cooled hot electron bolometers (HEB) mixers, predicted to have better noise, bandwidth and to require less LO power than Nb based diffusion cooled HEBs, have been fabricated. Preliminary DC tests were performed. The bolometer elements consisted of short (0.1 to 0.3 micron), narrow (0.08 to 0. 15 micron) and thin (11 nm) aluminum wires connected to large contact pads consisting of a novel trilayer Al/Ti/Au. The patterns were defined by electron beam lithography and the metal deposition involved a double angle process, the Aluminum wires being deposited straight on and the pads being deposited at a 45 degree angle without breaking vacuum. The Al/Ti/Au trilayer was developed to provide a way of making contact between the aluminum wire and the gold antenna. The Titanium layer acts as a diffusion barrier to avoid damage of the Aluminum contact and bolometer wire and to lower the transition temperature of the pads to below that of the bolometer wire. The Au layer avoids the formation of an oxide on the Ti layer and provides good electrical contact to the IF/antenna structure. The resistance of the bolometers as a function of temperature was measured. It is clear that below the transition temperature of the wire (1.8K) but above the transition temperature of the contact pads (0.6K), the proximity effect drives most of the bolometer wire normal, causing a very broad transition. This effect should not affect the performance of the bolometers since they will be operated at a temperature below the TC of the pads. This is evident from the IV characteristics measured at 0.3K. RF characterization tests will begin shortly.

  15. Sustained release from hot-melt extruded matrices based on ethylene vinyl acetate and polyethylene oxide.

    PubMed

    Almeida, A; Brabant, L; Siepmann, F; De Beer, T; Bouquet, W; Van Hoorebeke, L; Siepmann, J; Remon, J P; Vervaet, C

    2012-11-01

    The aim of the present study was to evaluate the importance of matrix flexibility of hot-melt extruded (HME) ethylene vinyl acetate (EVA) matrices (with vinyl acetate (VA) contents of 9%, 15%, 28% and 40%), through the addition of hydrophilic polymers with distinct swelling capacity. Polyethylene oxide (PEO 100K, 1M and 7M) was used as swelling agent and metoprolol tartrate (MPT) as model drug. The processability via HME and drug release profiles of EVA/MPT/PEO formulations were assessed. Solid state characteristics, porosity and polymer miscibility of EVA/PEO matrices were evaluated by means of DSC, X-ray tomography and Raman spectroscopy. The processability via HME varied according to the VA content: EVA 40 and 28 were extruded at 90°C, whereas higher viscosity EVA grades (EVA 15 and 9) required a minimum extrusion temperature of 110°C to obtain high-quality extrudates. Drug release from EVA matrices depended on the VA content, PEO molecular weight and PEO content, matrix porosity as well as pore size distribution. Interestingly, the interplay of PEO leaching, matrix swelling, water influx and changes in matrix porosity influenced drug release: EVA 40- and 28-based matrices extruded with PEO of higher MW accelerated drug release, whereas for EVA 15- and 9-based matrices, drug release slowed down. These differences were related to the distinct polymer flexibility imposed by the VA content (lower VA content presents higher crystallinity and less free movement of the amorphous segments resulting in a higher rigidity). In all cases, diffusional mass transport seems to play a major role, as demonstrated by mathematical modeling using an analytical solution of Fick's second law. The bioavailability of EVA 40 and 28 matrices in dogs was not significantly different, independent of PEO 7M concentration.

  16. Hot Coal Gas Desulfurization with manganese-based sorbents. Quarterly report, April--June 1994

    SciTech Connect

    Hepworth, M.T.; Slimane, R.B.

    1994-06-01

    The focus of work being performed on Hot Coal Gas Desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc titanate sorbents; however, prior studies indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt% ore + 25 wt% Al{sub 2}O{sub 3}) appears to be a strong contender to zincbased sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc; hence, it is not as likely to undergo zinc-depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron; hence, the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Also manganese chlorides are much less stable and volatile than zinc chlorides. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This Seventh Quarterly Report documents progress in bench-scale testing of a leading manganese-based sorbent pellets (FORM4-A). This formulation is a high-purity manganese carbonate-based material. This formulation was subjected to 20 consecutive cycles of sulfidation and regeneration at 900{degrees}C in a 2-inch fixed bed reactor. The sulfidation gas was a simulated Tampella U-gas with an increased hydrogen sulfide content of 3% by volume to accelerate the rate of breakthrough, arbitrarily taken as 500 ppmv. Consistent with thermo-gravimetric analysis (TGA) on individual pellets, the fixed bed tests show small improvement in capacity and kinetics with the sulfur-loading capacity being about 22% by weight of the original pellet, which corresponds to approximately 90% bed utilization!

  17. Oxidation and hot corrosion behavior of some land based gas turbine superalloys in steam environment

    SciTech Connect

    Desai, V.; Zhang, J.; Tamboli, D.; Philip, V.

    1998-12-31

    The high temperature behavior of nickel based superalloys IN738, IN617, and CMSX-4 in pure steam and impure steam was investigated. Two kinds of experiment were carried out in this study. The first focused on the performance of superalloys IN738, IN617, and CMSX4 in high temperature pure steam at 845, 875, 900, and 950 C. The results of this study were used to investigate the high temperature oxidation behavior of the superalloys induced by pure steam compared to those in air. The second dealt with the performance of these alloys in contaminated steam. In this case, two streams of steam carrying the salt impurities NaCl and Na{sub 2}SO{sub 4}, passed through the internal bore of hollow cylindrical specimens of superalloys IN738, and IN617 housed in a furnace whose temperature was controlled at 875 C. One stream of steam was produced from water containing 5 ppm each of Na{sub 2}SO{sub 4} and NaCl salts while the second was from that containing 1 ppm of each salt. The temperature of steam in the internal passages of the tested specimens was estimated at about 225 C. This study was used to investigate the hot corrosion behavior of the tested superalloys induced by impure steam cooling. Thus in this paper, the performance of the superalloys in pure steam and impure steam at high temperature is examined, the mechanisms of the oxidation and corrosion of the superalloys induced by steam are briefly discussed, and suggestions are provided with regard to the application of steam cooling in land based gas turbine systems for power generation.

  18. Hot N Sour Mantle Soup on Indian Plate During Cretaceous- Evidence from Clumped Isotope and Geochemical Studies of Sung Valley Carbonatite, India

    NASA Astrophysics Data System (ADS)

    Ghosh, P.; Banerjee, Y.; Tiwari, A.; Srivastava, R. K.

    2015-12-01

    Geological processes involved in the formation of Carbonatite rocks are complex and so is the understanding about its formational temperature. Fluid inclusion studies (1) on Carbonatite and their associated Ijolites showed a homogenization temperature of 1000-1100°C for Ijoltes and a temperature (T) range of 200-600°C was assigned to the carbonatite melts. Liquid immiscibility process is held responsible for the origin of parental carbonated (ijolititic/ nephelinitic) magma. The homogenization T signifies about a time interval during which there must be a considerable amount of T dropdown soon after the formation of Ijolite and subsequent crystallization of the residual carbonatite magma. However the lack of information about the T of the primary carbonated melt remains as an important area of petrological research. Experimental studies suggest a T range of 950-1400°C for the primary carbonate melt (2). Advent of Clumped isotope thermometry (3) allowed independent method for estimation of the formational T and provide avenues to derive composition of CO2 in equilibrium with carbonate melt. Earlier attempt involving carbonatites from several locations (4) captured range of T between 83°-416°C . Here we present our observation on calcite growth T in the carbonatites from the Cretaceous Sung valley ultramafic-alkaline-carbonatite complex. Based on stable C,O isotope study and Sr, Nd isotopic composition a mantle origin- genetically linked with the Kerguelen plume was proposed (5). Clumped isotope study on the same samples revealed consistent C and O isotope compositions, providing Δ47 values ranging from 0.32 to 0.48. δ13C and δ18O (in VPDB) values of the present study falls within the "Primary Igneous Carbonatite Field" (6). Using high T thermometry equation (7) we obtained a T range of 137-474 °C for the calcite present in the samples. The T recorded in our study is lower than that deduced experimental values of 960-625°C at 0.1 GPa (8) and fluid inclusion

  19. Hot-compress: A new postdeposition treatment for ZnO-based flexible dye-sensitized solar cells

    SciTech Connect

    Haque Choudhury, Mohammad Shamimul

    2016-08-15

    Highlights: • A new postdeposition treatment named hot-compress is introduced. • Hot-compression gives homogeneous compact layer ZnO photoanode. • I-V and EIS analysis data confirms the efficacy of this method. • Charge transport resistance was reduced by the application of hot-compression. - Abstract: This article introduces a new postdeposition treatment named hot-compress for flexible zinc oxide–base dye-sensitized solar cells. This postdeposition treatment includes the application of compression pressure at an elevated temperature. The optimum compression pressure of 130 Ma at an optimum compression temperature of 70 °C heating gives better photovoltaic performance compared to the conventional cells. The aptness of this method was confirmed by investigating scanning electron microscopy image, X-ray diffraction, current-voltage and electrochemical impedance spectroscopy analysis of the prepared cells. Proper heating during compression lowers the charge transport resistance, longer the electron lifetime of the device. As a result, the overall power conversion efficiency of the device was improved about 45% compared to the conventional room temperature compressed cell.

  20. Can we safely deform a plate to fit every bone? Population-based fit assessment and finite element deformation of a distal tibial plate.

    PubMed

    Harith, Hazreen; Schmutz, Beat; Malekani, Javad; Schuetz, Michael A; Yarlagadda, Prasad K

    2016-03-01

    Anatomically precontoured plates are commonly used to treat periarticular fractures. A well-fitting plate can be used as a tool for anatomical reduction of the fractured bone. Recent studies highlighted that some plates fit poorly for many patients due to considerable shape variations between bones of the same anatomical site. While it is impossible to design one shape that fits all, it is also burdensome for the manufacturers and hospitals to produce, store and manage multiple plate shapes without the certainty of utilization by a patient population. In this study, we investigated the number of shapes required for maximum fit within a given dataset, and if they could be obtained by manually deforming the original plate. A distal medial tibial plate was automatically positioned on 45 individual tibiae, and the optimal deformation was determined iteratively using finite element analysis simulation. Within the studied dataset, we found that: (i) 89% fit could be achieved with four shapes, (ii) 100% fit was impossible through mechanical deformation, and (iii) the deformations required to obtain the four plate shapes were safe for the stainless steel plate for further clinical use. The proposed framework is easily transferable to other orthopaedic plates. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. 96-Well Polycarbonate-Based Microfluidic Titer Plate for High-Throughput Purification of DNA and RNA

    PubMed Central

    Witek, Małgorzata A.; Hupert, Mateusz L.; Park, Daniel S.-W.; Fears, Kirby; Murphy, Michael C.; Soper, Steven A.

    2008-01-01

    We report a simple and effective method for the high-throughput purification of a variety of nucleic acids (NAs) from whole cell lysates or whole blood using a photactivated polycarbonate solid-phase reversible immobilization (PPC-SPRI) microfluidic chip. High-throughput operation was achieved by placing 96 purification beds, each containing an array of 3800 20 µm diameter posts, on a single 3″ × 5″ polycarbonate (PC) wafer fabricated by hot embossing. All beds were interconnected through a common microfluidic network that permitted parallel access through the use of a vacuum and syringe pump for delivery of immobilization buffer (IB) and effluent. The PPC-SPRI purification was accomplished by condensation of NAs onto a UV-modified PC surface in the presence of the IB comprised of polyethylene glycol, NaCl, and ethanol with a composition dependent on the length of the NAs to be isolated and the identity of the sample matrix. The performance of the device was validated by quantification of the recovered material following PCR (for DNA) or RT-PCR (for RNA). The extraction bed load capacity of NAs was 206 ± 93 ng for gDNA and 165 ± 81 ng for TRNA from Escherichia coli. Plate-to-plate variability was found to be 35 ± 10%. The purification process was fast (>30 min) and easy to automate, and the low cost of wafer fabrication makes it appropriate for single-use applications. PMID:18355091

  2. Ultrathin Terahertz Quarter-wave plate based on Split Ring Resonator and Wire Grating hybrid Metasurface

    NASA Astrophysics Data System (ADS)

    Nouman, Muhammad Tayyab; Hwang, Ji Hyun; Jang, Jae-Hyung

    2016-12-01

    Planar metasurface based quarter-wave plates offer various advantages over conventional waveplates in terms of compactness, flexibility and simple fabrication; however they offer very narrow bandwidth of operation. Here, we demonstrate a planar terahertz (THz) metasurface capable of linear to circular polarization conversion and vice versa in a wide frequency range. The proposed metasurface is based on horizontally connected split ring resonators and is realized on an ultrathin (0.05λ) zeonor substrate. The fabricated quarter waveplate realizes linear to circular polarization conversion in two broad frequency bands comprising 0.64–0.82 THz and 0.96–1.3 THz with an insertion loss ranging from ‑3.9 to ‑10 dB. By virtue of ultrathin sub wavelength thickness, the proposed waveplate design is well suited for application in near field THz optical systems. Additionally, the proposed metasurface design offers novel transmission phase characteristics that present further opportunities to realize dynamic polarization control of incident waves.

  3. Saturation and Dynamic Range of Microchannel Plate-Based X-Ray Imagers

    SciTech Connect

    ,

    2012-05-04

    This paper describes recent advances in Monte Carlo simulations of microchannel plate (MCP)–based x-ray detectors, a continuation of ongoing work in this area. A Monte Carlo simulation model has been developed over the past several years by National Security Technologies, LLC (NSTec). The model simulates the secondary electron emission process in an MCP pore and includes the effects of gain saturation. In this work we focus on MCP gain saturation and dynamic range. We have performed modeling and experimental characterizations of L/D = 46, 10-micron diameter, MCP-based detectors. The detectors are typically operated by applying a subnanosecond voltage pulse, which gates the detector on. Agreement between the simulations and experiment is very good for a variety of voltage pulse waveforms ranging in width from 150 to 300 ps. The results indicate that such an MCP begins to show nonlinear gain around 5 × 10^4 electrons per pore and hard saturation around 105 electrons per pore. The simulations show a difference in MCP sensitivity vs voltage for high flux of photons producing large numbers of photoelectrons on a subpicosecond timescale. Simulations and experiments both indicate an MCP dynamic range of 1 to 10,000, and the dynamic range depends on how the voltage is applied.

  4. Ultrathin Terahertz Quarter-wave plate based on Split Ring Resonator and Wire Grating hybrid Metasurface

    PubMed Central

    Nouman, Muhammad Tayyab; Hwang, Ji Hyun; Jang, Jae-Hyung

    2016-01-01

    Planar metasurface based quarter-wave plates offer various advantages over conventional waveplates in terms of compactness, flexibility and simple fabrication; however they offer very narrow bandwidth of operation. Here, we demonstrate a planar terahertz (THz) metasurface capable of linear to circular polarization conversion and vice versa in a wide frequency range. The proposed metasurface is based on horizontally connected split ring resonators and is realized on an ultrathin (0.05λ) zeonor substrate. The fabricated quarter waveplate realizes linear to circular polarization conversion in two broad frequency bands comprising 0.64–0.82 THz and 0.96–1.3 THz with an insertion loss ranging from −3.9 to −10 dB. By virtue of ultrathin sub wavelength thickness, the proposed waveplate design is well suited for application in near field THz optical systems. Additionally, the proposed metasurface design offers novel transmission phase characteristics that present further opportunities to realize dynamic polarization control of incident waves. PMID:27958358

  5. A Cell-based PDE4 Assay in 1536-well Plate format for High Throughput Screening

    PubMed Central

    Titus, Steven A.; Li, Xiao; Southall, Noel; Lu, Jianming; Inglese, James; Brasch, Michael; Austin, Christopher P.; Zheng, Wei

    2009-01-01

    The cyclic nucleotide phosphodiesterases (PDEs) are intracellular enzymes that catalyze the hydrolysis of 3', 5'-cyclic nucleotides, such as cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), to their corresponding 5'-nucleotide monophosphates. These enzymes play an important role in controlling cellular concentrations of cyclic nucleotides and thus regulate a variety of cellular signaling events. PDEs are emerging as drug targets for several diseases including asthma, cardiovascular disease, ADHD, Parkinson’s disease, and Alzheimer’s disease. Though biochemical assays with purified recombinant PDE enzymes and cAMP or cGMP substrate are commonly used for compound screening, cell-based assays would provide a better assessment of compound activity in a more physiological context. Here we report the development and validation of a new cell-based PDE4 assay using a constitutively active GPCR as a driving force for cAMP production and a cyclic nucleotide gated (CNG) cation channel as a biosensor in 1536-well plates. PMID:18591513

  6. Plate-based diversity subset screening generation 2: an improved paradigm for high-throughput screening of large compound files.

    PubMed

    Bell, Andrew S; Bradley, Joseph; Everett, Jeremy R; Loesel, Jens; McLoughlin, David; Mills, James; Peakman, Marie-Claire; Sharp, Robert E; Williams, Christine; Zhu, Hongyao

    2016-11-01

    High-throughput screening (HTS) is an effective method for lead and probe discovery that is widely used in industry and academia to identify novel chemical matter and to initiate the drug discovery process. However, HTS can be time consuming and costly and the use of subsets as an efficient alternative to screening entire compound collections has been investigated. Subsets may be selected on the basis of chemical diversity, molecular properties, biological activity diversity or biological target focus. Previously, we described a novel form of subset screening: plate-based diversity subset (PBDS) screening, in which the screening subset is constructed by plate selection (rather than individual compound cherry-picking), using algorithms that select for compound quality and chemical diversity on a plate basis. In this paper, we describe a second-generation approach to the construction of an updated subset: PBDS2, using both plate and individual compound selection, that has an improved coverage of the chemical space of the screening file, whilst only selecting the same number of plates for screening. We describe the validation of PBDS2 and its successful use in hit and lead discovery. PBDS2 screening became the default mode of singleton (one compound per well) HTS for lead discovery in Pfizer.

  7. Numerical determination of statistical energy analysis parameters of directly coupled composite plates using a modal-based approach

    NASA Astrophysics Data System (ADS)

    Seçgin, Abdullah

    2013-01-01

    Statistical energy analysis (SEA) parameters such as average modal spacing, coupling loss factor and input power are numerically determined for point connected, directly coupled symmetrically laminated composite plates using a modal-based approach. The approach is an enhancement of classical wave transmission formula. Unlike most of the existing numerical or experimental techniques, the approach uses uncoupled plate modal information and treats substructure by means of averaged modal impedances. The procedure introduced here is verified using analytical definitions of infinite orthotropic plates which physically resemble to laminated plates for (under) specific conditions, and is tested by performing experimental power injection method (PIM) for an actual, right-angled composite structure. In the development process, force and moment transmissions are individually considered in order to be consistent with analytical formulations. Modal information of composite plates is statistically evaluated by the discrete singular convolution method with random boundary conditions. Proposed methodology not only provides an efficient use of SEA method in high frequency vibration analysis of composite structures, but also enhances SEA accuracy in mid frequency region in which conventional SEA fails. Furthermore, the effect of orientation angles of laminations on SEA parameters are also discussed in mid and high frequency regions.

  8. Control of supersonic axisymmetric base flows using passive splitter plates and pulsed plasma actuators

    NASA Astrophysics Data System (ADS)

    Reedy, Todd Mitchell

    An experimental investigation evaluating the effects of flow control on the near-wake downstream of a blunt-based axisymmetric body in supersonic flow has been conducted. To better understand and control the physical phenomena that govern these massively separated high-speed flows, this research examined both passive and active flow-control methodologies designed to alter the stability characteristics and structure of the near-wake. The passive control investigation consisted of inserting splitter plates into the recirculation region. The active control technique utilized energy deposition from multiple electric-arc plasma discharges placed around the base. The flow-control authority of both methodologies was evaluated with experimental diagnostics including particle image velocimetry, schlieren photography, surface flow visualization, pressure-sensitive paint, and discrete surface pressure measurements. Using a blowdown-type wind tunnel reconstructed specifically for these studies, baseline axisymmetric experiments without control were conducted for a nominal approach Mach number of 2.5. In addition to traditional base pressure measurements, mean velocity and turbulence quantities were acquired using two-component, planar particle image velocimetry. As a result, substantial insight was gained regarding the time-averaged and instantaneous near-wake flow fields. This dataset will supplement the previous benchmark point-wise laser Doppler velocimetry data of Herrin and Dutton (1994) for comparison with new computational predictive techniques. Next, experiments were conducted to study the effects of passive triangular splitter plates placed in the recirculation region behind a blunt-based axisymmetric body. By dividing the near-wake into 1/2, 1/3, and 1/4 cylindrical regions, the time-averaged base pressure distribution, time-series pressure fluctuations, and presumably the stability characteristics were altered. While the spatial base pressure distribution was

  9. The impact of hot charge carrier mobility on photocurrent losses in polymer-based solar cells.

    PubMed

    Philippa, Bronson; Stolterfoht, Martin; Burn, Paul L; Juška, Gytis; Meredith, Paul; White, Ronald D; Pivrikas, Almantas

    2014-07-22

    A typical signature of charge extraction in disordered organic systems is dispersive transport, which implies a distribution of charge carrier mobilities that negatively impact on device performance. Dispersive transport has been commonly understood to originate from a time-dependent mobility of hot charge carriers that reduces as excess energy is lost during relaxation in the density of states. In contrast, we show via photon energy, electric field and film thickness independence of carrier mobilities that the dispersive photocurrent in organic solar cells originates not from the loss of excess energy during hot carrier thermalization, but rather from the loss of carrier density to trap states during transport. Our results emphasize that further efforts should be directed to minimizing the density of trap states, rather than controlling energetic relaxation of hot carriers within the density of states.

  10. KINETICS OF Mn-BASED SORBENTS FOR HOT COAL GAS DESULFURIZATION

    SciTech Connect

    K.A. SADECKI; M.T. HEPWORTH

    1997-06-15

    Manganese-based sorbents have been investigated for the removal of hydrogen sulfide (the primary sulfur bearing compound) from hot coal gases. Four formulations of Mn-based sorbents were tested in an ambient-pressure fixed-bed reactor to determine steady state H2S concentrations, breakthrough times and effectiveness of the sorbent when subjected to cyclic sulfidation and regeneration testing. In previous reports, the sulfidation and regeneration results from cyclic testing done at 550 and 600 °C were presented. Manganese-based sorbents with molar ratios > 1:1 Mn:Substrate were effective in reducing the H2S concentration in simulated coal gases to less than 100 ppmv over five cycles. Actual breakthrough time for formulation C6-2-1100 was as high as 73% of breakthrough time based on wt% Mn in sorbent at 600 °C. Regeneration tests determined that loaded pellets can be essentially completely regenerated in air/steam mixture at 750 °C with minimal sulfate formation. In this report, the performance of the leading formulation (designated C6-2) was investigated for high temperature removal of H2S from simulated coal-derived fuel gas under varying sorbent induration temperature, reaction temperature, and superficial gas velocity. Sulfidation experiments were performed in an ambient pressure fixed-bed reactor between 500 °C and 600 °C. Four tests were conducted with each test consisting of four cycles of sulfidation and regeneration. Results showed that the induration temperature of the sorbent and the reaction temperature greatly affected the H2S removal capacity of the sorbent while the superficial gas velocity between 1090 and 1635 cm/min had minimal affect on the sorbent's breakthrough capacity. Sorbent also showed 30 to 53% loss of its strength over four cycles of sulfidation and regeneration. The former being sorbent indurated at 1115 °C and the prior being sorbent indurated at 1100 °C.

  11. Hot coal gas desulfurization with manganese-based sorbents. Quarterly report, October--December 1993

    SciTech Connect

    Hepworth, M.T.; Slimane, R.B.

    1994-01-01

    The focus of work being performed on Hot Coal Gas Desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt% ore + 25 wt% Al{sub 2}O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This Fifth Quarterly Report documents progress in pellet testing via thermogravimetric analysis of pellet formulation FORM4-A of a manganese ore/alumina combination. This formulation, described more fully in the Quarterly Technical Progress Report of October 15, 1993, consists of manganese carbonate combined with alundum. A 2-inch fixed-bed reactor has been fabricated and is now ready for subjecting pellets to cyclic loading and regeneration; however, a minor problem has arisen during the regeneration cycle in that sulfur tends to form and plug the exit tube during the early stage of regeneration. This problem is about to be overcome by increasing the flow rate of air during the regeneration cycle resulting in more oxidizing conditions and hence less tendency for sulfide sulfur (S{sup =}) to oxidize to the intermediate elemental form (S{sup o}) rather than to 4-valent (S{sup +4}).

  12. Hot coal gas desulfurization with manganese-based sorbents. Annual report, September 1992--September 1993

    SciTech Connect

    Hepworth, M.T.

    1993-12-01

    The focus of work being performed on Hot Coal Gas Desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies at the US Steel Fundamental Research Laboratories in Monroeville, PA, by E. T. Turkdogan indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt % ore + 25 wt % Al{sub 2}O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This Annual Topical Report documents progress in pelletizing and testing via thermo-gravimetric analysis of individual pellet formulations of manganese ore/ alumina combinations and also manganese carbonate/alumina with two binders, dextrin and bentonite. It includes the prior Quarterly Technical Reports which indicate that the manganese carbonate material, being of higher purity than the manganese ore, has a higher degree of sulfur capacity and more rapid absorption kinetics. A 2-inch fixed-bed reactor has been fabricated and is now ready for subjecting pellets to cyclic loading and regeneration.

  13. Hot Coal Gas Desulfurization with manganese based sorbents. Quarterly report, August 1, 1993--September 30, 1993

    SciTech Connect

    Hepworth, M.T.

    1993-10-01

    The focus of work being performed on Hot Coal Gas Desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies at the US Steel Fundamental Research Laboratories in Monroeville, PA, by E. T. Turkdogan indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt % ore + 25 wt % Al{sub 2}O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This report documents progress in pelletizing and testing via thermogravimetric analysis of individual pellet formulations of manganese ore/alumina combinations and also manganese carbonate/alumina with two binders, dextrin and bentonite. Preliminary results indicate that the manganese carbonate material, being of higher purity than the manganese ore, has a higher degree of sulfur capacity and more rapid absorption kinetics. A 2-inch fixed-bed reactor has been fabricated and is now ready for subjecting pellets to cyclic loading and regeneration.

  14. Hot Corrosion Behavior of Arc-Sprayed Highly Dense NiCr-Based Coatings in Chloride Salt Deposit

    NASA Astrophysics Data System (ADS)

    Qin, Enwei; Yin, Song; Ji, Hua; Huang, Qian; Liu, Zekun; Wu, Shuhui

    2017-03-01

    To make cities more environmentally friendly, combustible wastes tend to be incinerated in waste-to-energy power plant boilers. However, release of chlorine gas (Cl2) during incineration causes serious problems related to hot corrosion of boiler tubes and poses a safety threat for such plants. In this study, a pseudo-de Laval nozzle was employed in a twin-wire arc spray system to enhance the velocity of in-flight particles. Highly dense NiCr-based coatings were obtained using the modified nozzle gun. The coating morphology was characterized by optical microscopy and scanning electron microscopy, and hot corrosion testing was carried out in a synthetic molten chloride salt environment. Results showed that the dense NiCr-based coatings exhibited high resistance against corrosion by chlorine, which can be related to the typical splat lamellar microstructure and chemical composition as well as minor alloying elements such as Ti and Mo.

  15. Hot Corrosion Behavior of Arc-Sprayed Highly Dense NiCr-Based Coatings in Chloride Salt Deposit

    NASA Astrophysics Data System (ADS)

    Qin, Enwei; Yin, Song; Ji, Hua; Huang, Qian; Liu, Zekun; Wu, Shuhui

    2017-04-01

    To make cities more environmentally friendly, combustible wastes tend to be incinerated in waste-to-energy power plant boilers. However, release of chlorine gas (Cl2) during incineration causes serious problems related to hot corrosion of boiler tubes and poses a safety threat for such plants. In this study, a pseudo-de Laval nozzle was employed in a twin-wire arc spray system to enhance the velocity of in-flight particles. Highly dense NiCr-based coatings were obtained using the modified nozzle gun. The coating morphology was characterized by optical microscopy and scanning electron microscopy, and hot corrosion testing was carried out in a synthetic molten chloride salt environment. Results showed that the dense NiCr-based coatings exhibited high resistance against corrosion by chlorine, which can be related to the typical splat lamellar microstructure and chemical composition as well as minor alloying elements such as Ti and Mo.

  16. Practice-Based Research: Ex Post Facto Evaluation of Evidence-Based Police Practices Implemented in Residential Burglary Micro-Time Hot Spots.

    PubMed

    Santos, Roberto G; Santos, Rachel Boba

    2015-10-01

    Police agencies around the country are implementing various strategies to reduce crime in their communities that need to be evaluated. These strategies are often based on systematic crime analysis and are focused on crime occurring in hot spots, which are areas of disproportionate amounts of crime. This article takes a practice-based research approach to evaluate whether evidence-based police strategies implemented by one police agency as its normal everyday crime reduction practice are effective in reducing residential burglary incidents in micro-time hot spots. A quasi-experimental ex post facto design is employed using 5 years of data from one police agency that has institutionalized the identification and response to micro-time hot spots into its day-to-day practices. Propensity score matching is used to match 54 pairs of micro-time hot spots using logistic regression to compute the propensity scores and greedy 1 to 1 matching with a caliper width of 0.5 of the standard deviation of the logit to match the cases. Independent t-tests show that tactical police response to micro-time hot spots can lead to significant reductions in residential burglary incidents without the spatial displacement of crime. Tactical police responses that seek to achieve short-term reductions in crime appear to be well suited for micro-time hot spots since they are, by nature, short term. Importantly, the conclusions are based on the evaluation of an agency's systematic implementation of the evidence-based practices as its normal practices and not for the sake of research. © The Author(s) 2015.

  17. Development of a Hot Working Steel Based on a Controlled Gas-Metal-Reaction

    NASA Astrophysics Data System (ADS)

    Ritzenhoff, Roman; Gharbi, Mohammad Malekipour

    As a result of cost sensitiveness, the demand on hot working steels with advanced characteristics and properties are ascending. We have used a controlled gas-metal-reaction in a P-ESR furnace to produce high quality hot working steel. These types of materials are also known as High Nitrogen Steels (HNS). An overview of the development in a pressurized induction furnace to the final industrial scale using P-ESR will be provided. Different heat treatment strategies are conducted and their effect on mechanical properties is investigated.

  18. Optimization of combined microwave-hot air roasting of malt based on energy consumption and neo-formed contaminants content.

    PubMed

    Akkarachaneeyakorn, S; Laguerre, J C; Tattiyakul, J; Neugnot, B; Boivin, P; Morales, F J; Birlouez-Aragon, I

    2010-05-01

    To produce specialty malt, malts were roasted by combined microwave-hot air at various specific microwave powers (SP = 2.5 to 3 W/g), microwave heating times (t(mw) = 3.3 to 3.5 min), oven temperatures (T(oven) = 180 to 220 degrees C), and oven heating times (t(oven) = 60 to 150 min). The response variables, color, energy consumption by microwave (E(mw)) and oven (E(oven)), total energy consumption (E(tot)), quantity of neo-formed contaminants (NFCs), which include hydroxymethylfurfural, furfural, furan, and acrylamide were determined. Response surface methodology (RSM) was performed to analyze and predict the optimum conditions for the specialty malt. Production using combined microwave-hot air roasting process based on minimum energy consumption and level of NFCs. At 95% confident level, SP, T(oven), and t(oven) were the most influencing effects with regard to E(tot), whereas t(mw) did not affect E(tot). T(oven) and t(oven) significantly affected malt color. Only T(oven) significantly influenced the NFCs content. The optimum parameters were: SP = 2.68 W/g for 3.44 min, T(oven) = 206 degrees C for 136 min for coffee malt, SP = 2.5 W/g for 3.48 min, T(oven) = 214 degrees C for 136 min for chocolate malt, and SP = 2.5 W/g for 3.48 min, T(oven) = 211 degrees C for 150 min for black malt. Comparing with conventional process, combined microwave-hot air reduced E(tot) by approximately 40%, 26%, and 26% for coffee, chocolate, and black malts, respectively, and reduced HMF, furfural, furan, and acrylamide contents by 40%, 18%, 23%, and 95%, respectively, for black malt. An important goal for research institutions and the brewery industry is to produce colored malt by combining microwave and hot air roasting, while saving energy, getting desirable color, and avoiding the formation of carcinogenic and toxic neo-formed contaminants (NFCs). Therefore, one objective of this study was to compare energy consumption and content of NFCs during roasting of malt by hot air-only and

  19. Microstructure and mechanical properties of hip-consolidated Rene 95 powders. [hot-isostatic pressed nickel-based powder metal

    NASA Technical Reports Server (NTRS)

    Shimanuki, Y.; Nishino, Y.; Masui, M.; Doi, H.

    1980-01-01

    The effects of heat-treatments on the microstructure of P/M Rene 95 (a nickel-based powder metal), consolidated by the hot-isostatic pressing (HIP), were examined. The microstructure of as-HIP'd specimen was characterized by highly serrated grain boundaries. Mechanical tests and microstructural observations reveal that the serrated grain boundaries improved ductility at both room and elevated temperatures by retarding crack propagation along grain boundaries.

  20. Kiln for hot-pressing compacts in a continuous manner

    DOEpatents

    Reynolds, Jr., Carl D.

    1985-01-01

    The present invention is directed to a hot pressing furnace or kiln which is capable of preheating, hot pressing, and cooling a plurality of articles in a sequential and continuous manner. The hot pressing furnace of the present invention comprises an elongated, horizontally disposed furnace capable of holding a plurality of displaceable pusher plates each supporting a die body loaded with refractory or ceramic material to be hot pressed. Each of these plates and the die body supported thereby is sequentially pushed through the preheating zone, a temperature stabilizing and a hot pressing zone, and a cooling zone so as to provide a continuous hot-pressing operation of a plurality of articles.

  1. Kiln for hot-pressing compacts in a continuous manner

    DOEpatents

    Reynolds, C.D Jr.

    1983-08-08

    The invention is directed to a hot pressing furnace or kiln which is capable of preheating, hot pressing, and cooling a plurality of articles in a sequential and continuous manner. The hot pressing furnace of the present invention comprises an elongated, horizontally disposed furnace capable of holding a plurality of displaceable pusher plates each supporting a die body loaded with refractory or ceramic material to be hot pressed. Each of these plates and the die body supported thereby is sequentially pushed through the preheating zone, a temperature stabilizing and a hot pressing zone, and a cooling zone so as to provide a continuous hot-pressing operation of a plurality of articles.

  2. Flat plate solar collector design and performance. Citations from the Engineering Index data base

    NASA Astrophysics Data System (ADS)

    Hundemann, A. S.

    1980-09-01

    Citations on the design, thermal performance, and optimization of air and liquid type flat plate collectors are covered. Topic areas include heat loss and heat transfer, effect of orientation, corrosion protection, optical coatings, enhancement of performance through the use of planar reflectors, and the effect of honeycomb layers on collector performance. A few studies pertain to grooved, corrugated, or V-trough collectors. Methods of measuring the performance of flat plate collectors and computer optimization studies are included.

  3. Experimental study of a vortex ring impacting a smart material-based cantilevered plate

    NASA Astrophysics Data System (ADS)

    Peterson, Sean; Porfiri, Maurizio

    2011-11-01

    Recent developments in lightweight smart materials have generated scientific and technological advancements in small scale energy harvesting for powering low-consumption electronic devices. Often, energy is harvested from base excitation of a cantilevered smart material strip. In this case, the encompassing fluid acts as a passive damper, reducing the vibration amplitude and frequency, which reduces the harvesting capacity. By comparison, relatively few research efforts to date have explored the feasibility of using smart materials for harvesting energy directly from fluid motion. In this paper we employ vortex rings as the source from which to extract energy and use an ionic polymer metal composite (IPMC) strip in a cantilevered configuration as the harvesting device. Vortex rings, generated using a piston/cylinder arrangement submersed in water, are fired at the IPMC harvester and the resulting impact is recorded using a high speed video camera. The vortex ring propagation and circulation are estimated using flow visualization and particle image velocimetry. The plate deflection and electrical output are recorded as functions of time and correlated to the vortex strength and geometry.

  4. The application of Fresnel zone plate based projection in optofluidic microscopy

    PubMed Central

    Wu, Jigang; Cui, Xiquan; Lee, Lap Man; Yang, Changhuei

    2009-01-01

    Optofluidic microscopy (OFM) is a novel technique for low-cost, high-resolution on-chip microscopy imaging. In this paper we report the use of the Fresnel zone plate (FZP) based projection in OFM as a cost-effective and compact means for projecting the transmission through an OFM's aperture array onto a sensor grid. We demonstrate this approach by employing a FZP (diameter = 255 μm, focal length = 800 μm) that has been patterned onto a glass slide to project the transmission from an array of apertures (diameter = 1 μm, separation = 10 μm) onto a CMOS sensor. We are able to resolve the contributions from 44 apertures on the sensor under the illumination from a HeNe laser (wavelength = 633 nm). The imaging quality of the FZP determines the effective field-of-view (related to the number of resolvable transmissions from apertures) but not the image resolution of such an OFM system – a key distinction from conventional microscope systems. We demonstrate the capability of the integrated system by flowing the protist Euglena gracilis across the aperture array microfluidically and performing OFM imaging of the samples. PMID:18825198

  5. License plate detection in an open environment by density-based boundary clustering

    NASA Astrophysics Data System (ADS)

    Tian, Jiangmin; Wang, Guoyou; Liu, Jianguo; Xia, Yuanchun

    2017-05-01

    Due to the variation of background, illumination, and view point, license plate detection in an open environment is challenging. We propose a detection method by boundary clustering. To start with, a boundary map is obtained through Canny edge detector and removal of unwanted horizontal background edges. Second, boundaries are classified into different clusters by a density-based approach. In the approach, the density of each boundary is defined by the total gradient intensity of its neighboring and reachable boundaries. Also, the cluster centers and the number of them are determined automatically according to a minimum-distance principle. At last, a set of horizontal candidate regions with accurately located borders are extracted for classification. The classifier is trained on the histogram of oriented gradient feature by a linear support vector machine model. Experiments on three public datasets including images captured under different scenarios demonstrate that the proposed method outperforms several state-of-the-art methods in detection accuracy and its performance in efficiency is also comparable.

  6. Genetic algorithm based LQR vibration wireless control of laminated plate using photostrictive actuators

    NASA Astrophysics Data System (ADS)

    Chen, Dejin; Zheng, Shijie; Wang, Hongtao

    2012-03-01

    A photostrictive type of opto-electromechanical actuator activated by high-energy lights can introduce actuation and control effects without hard-wired connections. This paper addresses the controllability aspect in wireless vibration control of plate structures via photostrictive actuators. A modal force index, which has taken into account the mode number, the spatial distribution, and the dimension of the actuator, is chosen as an objective function to determine the optimal locations of photostrictive actuators. A linear methodology is proposed in this paper and the vibration equation is written in the standard state-space form. A binary-coded GA based combined optimal placement and LQR (linear quadratic regulator) control scheme has been incorporated, which maximizes the modal force index, the closed loop damping and minimizes input light intensity to the actuators. In the present method only three weighting factors have been used to search optimal Q and R matrices using GA, which reduces chromosome length and hence minimizes computational time. Numerical results demonstrate that the use of strategically positioned actuator patches can effectively control the fundamental modes that dominate the structural vibration.

  7. Simple plate-based, parallel synthesis of disulfide fragments using the CuAAC click reaction.

    PubMed

    Turner, David M; Tom, Christopher T M B; Renslo, Adam R

    2014-12-08

    Disulfide exchange screening is a site-directed approach to fragment-based lead discovery that requires a bespoke library of disulfide-containing fragments. Previously, we described a simple one-pot, two-step synthesis of disulfide fragments from amine- or acid-bearing starting materials. Here, we describe the synthesis of disulfide fragments that bear a 1,4-substituted-1,2,3-triazole linkage between disulfide and molecular diversity element. This work establishes the compatibility of copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry with a one-pot, two-step reaction sequence that can be readily parallelized. We performed 96 reactions in a single deep-well microtiter plate, employing 48 alkynes and two different azide linker reagents. From this effort, a total of 81 triazole-containing disulfide fragments were obtained in useful isolated yields. Thus, CuAAC chemistry offers an experimentally convenient method to rapidly prepare disulfide fragments that are structurally distinct from fragments accessed via amide, sulfonamide, or isocyanate chemistries.

  8. GIS-based Reconstruction of Pangaea with Recent Progresses in Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Kwon, O.-H.; Cheong, H.-B.; Lee, Y.-W.

    2012-04-01

    It is now widely accepted that the continents or land masses are constantly, slowly moving, or drifting over the asthenosphere as the sea floors spread in response to the mantle convection. These continents were joined together at one time, some 250 million years ago, in a single giant landmass called Pangaea. Alfred Wegener, who proposed originally the hypothesis of continental drift, succeeded in reconstructing the Pangaea in early 20th century, by gathering evidences such as land features, fossils, and climate change. The shape of Pangaea shown by Wegener is a huge landmass which is in rounded shape close to an oval. The Pangaea of Wegener was found to be in good agreement with the supercontinent which was reconstructed by modern scientists in late 1960s based on concrete and sophisticated sciences such as the plate tectonics. There are a couple of shapes describing the Pangaea by now, other than the Wegener's, that are recognized by the geological community. In spite of profound geological data and development of related-area sciences, uncertainties still remains on the precise shape of Pangaea before the stage of breaking up and drifting apart. In this study, the Pangaea is reconstructed taking the recent progresses of plate tectonics into full consideration with the use of an elaborate Geographical Information System (GIS) mapping technique. For a better visualization of the shape of the supercontinent the equidistant map projection is incorporated to display the Pangaea, where the central point of Pangaea is placed on the center of the map. The Pangaea reconstructed in this way appears in an almost circular shape, which has never been seen in previous studies (Fig. 1). The radius of the circle which circumscribes the Pangaea is about 9 000 km, giving the total area slightly above that of continents and lands of present day, because some of the continental margins were considered as a part of continents. This result suggests us that the Pangaea might have

  9. Numerical simulations of human tibia osteosynthesis using modular plates based on Nitinol staples.

    PubMed

    Tarniţă, Daniela; Tarniţă, D N; Popa, D; Grecu, D; Tarniţă, Roxana; Niculescu, D; Cismaru, F

    2010-01-01

    The shape memory alloys exhibit a number of remarkable properties, which open new possibilities in engineering and more specifically in biomedical engineering. The most important alloy used in biomedical applications is NiTi. This alloy combines the characteristics of the shape memory effect and superelasticity with excellent corrosion resistance, wear characteristics, mechanical properties and a good biocompatibility. These properties make it an ideal biological engineering material, especially in orthopedic surgery and orthodontics. In this work, modular plates for the osteosynthesis of the long bones fractures are presented. The proposed modular plates are realized from identical modules, completely interchangeable, made of titanium or stainless steel having as connecting elements U-shaped staples made of Nitinol. Using computed tomography (CT) images to provide three-dimensional geometric details and SolidWorks software package, the three dimensional virtual models of the tibia bone and of the modular plates are obtained. The finite element models of the tibia bone and of the modular plate are generated. For numerical simulation, VisualNastran software is used. Finally, displacements diagram, von Misses strain diagram, for the modular plate and for the fractured tibia and modular plate ensemble are obtained.

  10. An Agar-Based Method for Plating Marine Protozoan Parasites of the Genus Perkinsus

    PubMed Central

    Cold, Emma R.; Freyria, Nastasia J.; Martínez Martínez, Joaquín; Fernández Robledo, José A.

    2016-01-01

    The genus Perkinsus includes protozoan parasites of mollusks responsible for losses in the aquaculture industry and hampering the recovery of natural shellfish beds worldwide, and they are a key taxon for understanding intracellular parasitism adaptations. The ability to propagate the parasite in liquid media, in the absence of the host, has been crucial for improving understanding of its biology; however, alternative techniques to grow the parasite are needed to explore other basic aspects of the Perkinsus spp. biology. We optimized a DME: Ham’s F12–5% FBS- containing solid agar medium for plating Perkinsus marinus. This solid medium supported trophozoite propagation both by binary fission and schizogony. Colonies were visible to the naked eye 17 days after plating. We tested the suitability of this method for several applications, including the following: 1) Subcloning P. marinus isolates: single discrete P. marinus colonies were obtained from DME: Ham’s F12–5% FBS– 0.75% agar plates, which could be further propagated in liquid medium; 2) Subcloning engineered Perkinsus mediterraneus MOE[MOE]: GFP by streaking cultures on plates; 3) Chemical susceptibility: Infusing the DME: Ham’s F12–5% FBS– 0.75% agar plates with triclosan resulted in inhibition of the parasite propagation in a dose-dependent manner. Altogether, our plating method has the potential for becoming a key tool for investigating diverse aspects of Perkinsus spp. biology, developing new molecular tools, and for biotechnological applications. PMID:27149378

  11. Dynamic Response of a Rigid Pavement Plate Based on an Inertial Soil.

    PubMed

    Gibigaye, Mohamed; Yabi, Crespin Prudence; Alloba, I Ezéchiel

    2016-01-01

    This work presents the dynamic response of a pavement plate resting on a soil whose inertia is taken into account in the design of pavements by rational methods. Thus, the pavement is modeled as a thin plate with finite dimensions, supported longitudinally by dowels and laterally by tie bars. The subgrade is modeled via Pasternak-Vlasov type (three-parameter type) foundation models and the moving traffic load is expressed as a concentrated dynamic load of harmonically varying magnitude, moving straight along the plate with a constant acceleration. The governing equation of the problem is solved using the modified Bolotin method for determining the natural frequencies and the wavenumbers of the system. The orthogonal properties of eigenfunctions are used to find the general solution of the problem. Considering the load over the center of the plate, the results showed that the deflections of the plate are maximum about the middle of the plate but are not null at its edges. It is therefore observed that the deflection decreased 18.33 percent when the inertia of the soil is taken into account. This result shows the possible economic gain when taking into account the inertia of soil in pavement dynamic design.

  12. Dynamic Response of a Rigid Pavement Plate Based on an Inertial Soil

    PubMed Central

    Gibigaye, Mohamed; Yabi, Crespin Prudence; Alloba, I. Ezéchiel

    2016-01-01

    This work presents the dynamic response of a pavement plate resting on a soil whose inertia is taken into account in the design of pavements by rational methods. Thus, the pavement is modeled as a thin plate with finite dimensions, supported longitudinally by dowels and laterally by tie bars. The subgrade is modeled via Pasternak-Vlasov type (three-parameter type) foundation models and the moving traffic load is expressed as a concentrated dynamic load of harmonically varying magnitude, moving straight along the plate with a constant acceleration. The governing equation of the problem is solved using the modified Bolotin method for determining the natural frequencies and the wavenumbers of the system. The orthogonal properties of eigenfunctions are used to find the general solution of the problem. Considering the load over the center of the plate, the results showed that the deflections of the plate are maximum about the middle of the plate but are not null at its edges. It is therefore observed that the deflection decreased 18.33 percent when the inertia of the soil is taken into account. This result shows the possible economic gain when taking into account the inertia of soil in pavement dynamic design. PMID:27382639

  13. An Agar-Based Method for Plating Marine Protozoan Parasites of the Genus Perkinsus.

    PubMed

    Cold, Emma R; Freyria, Nastasia J; Martínez Martínez, Joaquín; Fernández Robledo, José A

    2016-01-01

    The genus Perkinsus includes protozoan parasites of mollusks responsible for losses in the aquaculture industry and hampering the recovery of natural shellfish beds worldwide, and they are a key taxon for understanding intracellular parasitism adaptations. The ability to propagate the parasite in liquid media, in the absence of the host, has been crucial for improving understanding of its biology; however, alternative techniques to grow the parasite are needed to explore other basic aspects of the Perkinsus spp. biology. We optimized a DME: Ham's F12-5% FBS- containing solid agar medium for plating Perkinsus marinus. This solid medium supported trophozoite propagation both by binary fission and schizogony. Colonies were visible to the naked eye 17 days after plating. We tested the suitability of this method for several applications, including the following: 1) Subcloning P. marinus isolates: single discrete P. marinus colonies were obtained from DME: Ham's F12-5% FBS- 0.75% agar plates, which could be further propagated in liquid medium; 2) Subcloning engineered Perkinsus mediterraneus MOE[MOE]: GFP by streaking cultures on plates; 3) Chemical susceptibility: Infusing the DME: Ham's F12-5% FBS- 0.75% agar plates with triclosan resulted in inhibition of the parasite propagation in a dose-dependent manner. Altogether, our plating method has the potential for becoming a key tool for investigating diverse aspects of Perkinsus spp. biology, developing new molecular tools, and for biotechnological applications.

  14. A new cervical artificial disc prosthesis based on physiological curvature of end plate: a finite element analysis.

    PubMed

    Yu, Cheng-Cheng; Liu, Peng; Huang, Da-Geng; Jiang, Yong-Hong; Feng, Hang; Hao, Ding-Jun

    2016-11-01

    The study aimed to build a new cervical artificial disc C3-C7 segment prosthesis, and perform a biomechanical comparison between the new prosthesis and the Prestige LP prosthesis using a three-dimensional non-linear finite element (FE) model. The study compared the biomechanical differences between the new cervical artificial disc prosthesis based on the physiological curvature of the end plate and the Prestige LP prosthesis after artificial disc replacement. There has been no prior research on artificial disc prostheses based on the physiological curvature of the end plate; studies of biomechanical changes after cervical disc arthroplasty (CDR) are few. An FE model of the C3-C7 segments was developed and validated. A new cervical artificial disc prosthesis based on the physiological curvature of the end plate and the Prestige LP prosthesis were integrated at the C5-C6 segment into the validated FE model. All models were subjected to a follower load of 73.6 N and a 1 Nm in flexion-extension, lateral bending, and axial torsion. The segmental range of motion (ROM) and stress on the prostheses were analyzed. The ROM in most segments after CDR with new cervical artificial disc prosthesis was more similar to that of the normal cervical spine than the Prestige LP prosthesis. However, there was no significant difference between the two prostheses. The stress on the new artificial disc was significantly less than that in the Prestige LP prosthesis. There was no significant difference in ROM in all segments after CDR for the two prostheses. The stress on the new cervical artificial disc prosthesis based on the physiological curvature of the end plate was significantly less than that in the Prestige LP prosthesis. The new artificial disc prosthesis is feasible and effective, and can reduce the implant-bone interface stress on the end plate, which may be one of the causes of prosthesis subsidence. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. The Effect of Stress and Hot Corrosion on Nickel-Base Superalloys

    DTIC Science & Technology

    1985-03-01

    Inconel 718 round bar tensile specimen. 19 ’I.. FIC. . Experimental test apparatus. 20 The creep ...the corrosion attack. 3 33 77. -. IV. EXPERIMENTAL RESULTS AND DISCUSSION A. INCONEL 718 1. CREEP BEHAVIOR Sustained-load creep tests were conducted at...of Inconel 718 were prepared for metrllographic examination after creep testing . Figure 18 shows dramatically the hot corrosion attack by a

  16. Extracting Vegetation Coverage in Dry-hot Valley Regions Based on Alternating Angle Minimum Algorithm

    NASA Astrophysics Data System (ADS)

    Y Yang, M.; Wang, J.; Zhang, Q.

    2017-07-01

    Vegetation coverage is one of the most important indicators for ecological environment change, and is also an effective index for the assessment of land degradation and desertification. The dry-hot valley regions have sparse surface vegetation, and the spectral information about the vegetation in such regions usually has a weak representation in remote sensing, so there are considerable limitations for applying the commonly-used vegetation index method to calculate the vegetation coverage in the dry-hot valley regions. Therefore, in this paper, Alternating Angle Minimum (AAM) algorithm of deterministic model is adopted for selective endmember for pixel unmixing of MODIS image in order to extract the vegetation coverage, and accuracy test is carried out by the use of the Landsat TM image over the same period. As shown by the results, in the dry-hot valley regions with sparse vegetation, AAM model has a high unmixing accuracy, and the extracted vegetation coverage is close to the actual situation, so it is promising to apply the AAM model to the extraction of vegetation coverage in the dry-hot valley regions.

  17. An Interactive Internet-Based Plate for Assessing Lunchtime Food Intake: A Validation Study on Male Employees

    PubMed Central

    Bellocco, Rino; Bakkman, Linda; Trolle Lagerros, Ylva

    2013-01-01

    Background Misreporting food intake is common because most health screenings rely on self-reports. The more accurate methods (eg, weighing food) are costly, time consuming, and impractical. Objectives We developed a new instrument for reporting food intake—an Internet-based interactive virtual food plate. The objective of this study was to validate this instrument’s ability to assess lunch intake. Methods Participants were asked to compose an ordinary lunch meal using both a virtual and a real lunch plate (with real food on a real plate). The participants ate their real lunch meals on-site. Before and after pictures of the composed lunch meals were taken. Both meals included identical food items. Participants were randomized to start with either instrument. The 2 instruments were compared using correlation and concordance measures (total energy intake, nutritional components, quantity of food, and participant characteristics). Results A total of 55 men (median age: 45 years, median body mass index [BMI]: 25.8 kg/m2) participated. We found an overall overestimation of reported median energy intake using the computer plate (3044 kJ, interquartile range [IQR] 1202 kJ) compared with the real lunch plate (2734 kJ, IQR 1051 kJ, P<.001). Spearman rank correlations and concordance correlations for energy intake and nutritional components ranged between 0.58 to 0.79 and 0.65 to 0.81, respectively. Conclusion Although it slightly overestimated, our computer plate provides promising results in assessing lunch intake. PMID:23335728

  18. Hot embossed polyethylene through-hole chips for bead-based microfluidic devices

    PubMed Central

    Chou, Jie; Du, Nan; Ou, Tina; Floriano, Pierre N.; Christodoulides, Nicolaos; McDevitt, John T.

    2013-01-01

    Over the past decade, there has been a growth of interest in the translation of microfluidic systems into real-world clinical practice, especially for use in point-of-care or near patient settings. While initial fabrication advances in microfluidics involved mainly the etching of silicon and glass, the economics of scaling of these materials is not amendable for point-of-care usage where single-test applications forces cost considerations to be kept low and throughput high. As such, a materials base more consistent with point-of-care needs is required. In this manuscript, the fabrication of a hot embossed, through-hole low-density polyethylene ensembles derived from an anisotropically etched silicon wafer is discussed. This semi-opaque polymer that can be easily sterilized and recycled provides low background noise for fluorescence measurements and yields more affordable cost than other thermoplastics commonly used for microfluidic applications such as cyclic olefin copolymer (COC). To fabrication through-hole microchips from this alternative material for microfluidics, a fabrication technique that uses a high-temperature, high-pressure resistant mold is described. This aluminum-based epoxy mold, serving as the positive master mold for embossing, is casted over etched arrays of pyramidal pits in a silicon wafer. Methods of surface treatment of the wafer prior to casting and PDMS casting of the epoxy are discussed to preserve the silicon wafer for future use. Changes in the thickness of polyethylene are observed for varying embossing temperatures. The methodology described herein can quickly fabricate 20 disposable, single use chips in less than 30 minutes with the ability to scale up 4x by using multiple molds simultaneously. When coupled as a platform supporting porous bead sensors, as in the recently developed Programmable Bio-Nano-Chip, this bead chip system can achieve limits of detection, for the cardiac biomarker C-reactive protein, of 0.3 ng/mL, thereby

  19. KINETICS OF Mn-BASED SORBENTS FOR HOT COAL GAS DESULFURIZATION

    SciTech Connect

    J.J. BERNS; K.A. SADECKI; M.T. HEPWORTH

    1997-09-15

    Mixed manganese oxide sorbents have been investigated for high-temperature removal of hydrogen sulfide (the primary sulfur bearing compound) from hot coal gases. The sorbents were screened by thermodynamic equilibrium considerations for sulfidation. Preliminary experimental work using thermogravimetric analysis (TGA) indicated titania to be a superior substrate than alumina. Four formulations showing superior reactivity in a TGA were then tested in an ambient pressure fixed-bed reactor to determine steady state H 2 S concentrations, breakthrough times and effectiveness of the sorbent when subjected to cyclic sulfidation and regeneration testing. Eight tests were conducted with each test consisting of five cycles of sulfidation and regeneration. Sulfidation occurred at 600 o C using a simulated coal gas at an empty-bed space velocity of approximately 12,000 per hour. Manganese-based sorbents with molar ratios > 1:1 Mn:Substrate were effective in reducing the H 2 S concentration in simulated coal gases to less than 100 ppmv over five cycles. Actual breakthrough time for formulation C6-2-1100 was as high as 73% of breakthrough time based on wt% Mn in sorbent at 600 o C. Regeneration tests determined that loaded pellets can be essentially completely regenerated in an air/steam mixture at 750 o C with minimal sulfate formation. The leading formulation (designated C6-2) from the fixed-bed tests was then further tested under varying sorbent induration temperature, sulfidation temperature and superficial gas velocity. Four tests were conducted with each test consisting of four cycles of sulfidation and regeneration. Results showed that the induration temperature of the sorbent and the reaction temperature greatly affected the H 2 S removal capacity of the sorbent while the superficial gas velocity between 1090 and 1635 cm/min had minimal affect on the sorbent's breakthrough capacity. Testing showed that the sorbent's strength was a strong function of the sorbent induration

  20. Hot embossed polyethylene through-hole chips for bead-based microfluidic devices.

    PubMed

    Chou, Jie; Du, Nan; Ou, Tina; Floriano, Pierre N; Christodoulides, Nicolaos; McDevitt, John T

    2013-04-15

    Over the past decade, there has been a growth of interest in the translation of microfluidic systems into real-world clinical practice, especially for use in point-of-care or near patient settings. While initial fabrication advances in microfluidics involved mainly the etching of silicon and glass, the economics of scaling of these materials is not amendable for point-of-care usage where single-test applications force cost considerations to be kept low and throughput high. As such, materials base more consistent with point-of-care needs is required. In this manuscript, the fabrication of a hot embossed, through-hole low-density polyethylene ensembles derived from an anisotropically etched silicon wafer is discussed. This semi-opaque polymer that can be easily sterilized and recycled provides low background noise for fluorescence measurements and yields more affordable cost than other thermoplastics commonly used for microfluidic applications such as cyclic olefin copolymer (COC). To fabrication through-hole microchips from this alternative material for microfluidics, a fabrication technique that uses a high-temperature, high-pressure resistant mold is described. This aluminum-based epoxy mold, serving as the positive master mold for embossing, is casted over etched arrays of pyramidal pits in a silicon wafer. Methods of surface treatment of the wafer prior to casting and PDMS casting of the epoxy are discussed to preserve the silicon wafer for future use. Changes in the thickness of polyethylene are observed for varying embossing temperatures. The methodology described herein can quickly fabricate 20 disposable, single use chips in less than 30 min with the ability to scale up 4 times by using multiple molds simultaneously. When coupled as a platform supporting porous bead sensors, as in the recently developed Programmable Bio-Nano-Chip, this bead chip system can achieve limits of detection, for the cardiac biomarker C-reactive protein, of 0.3 ng/mL, thereby

  1. Combined visualization for noise mapping of industrial facilities based on ray-tracing and thin plate splines

    NASA Astrophysics Data System (ADS)

    Ovsiannikov, Mikhail; Ovsiannikov, Sergei

    2017-01-01

    The paper presents the combined approach to noise mapping and visualizing of industrial facilities sound pollution using forward ray tracing method and thin-plate spline interpolation. It is suggested to cauterize industrial area in separate zones with similar sound levels. Equivalent local source is defined for range computation of sanitary zones based on ray tracing algorithm. Computation of sound pressure levels within clustered zones are based on two-dimension spline interpolation of measured data on perimeter and inside the zone.

  2. Convenient microtiter plate-based, oxygen-independent activity assays for flavin-dependent oxidoreductases based on different redox dyes.

    PubMed

    Brugger, Dagmar; Krondorfer, Iris; Zahma, Kawah; Stoisser, Thomas; Bolivar, Juan M; Nidetzky, Bernd; Peterbauer, Clemens K; Haltrich, Dietmar

    2014-04-01

    Flavin-dependent oxidoreductases are increasingly recognized as important biocatalysts for various industrial applications. In order to identify novel activities and to improve these enzymes in engineering approaches, suitable screening methods are necessary. We developed novel microtiter-plate-based assays for flavin-dependent oxidases and dehydrogenases using redox dyes as electron acceptors for these enzymes. 2,6-dichlorophenol-indophenol, methylene green, and thionine show absorption changes between their oxidized and reduced forms in the visible range, making it easy to judge visually changes in activity. A sample set of enzymes containing both flavoprotein oxidases and dehydrogenases - pyranose 2-oxidase, pyranose dehydrogenase, cellobiose dehydrogenase, D-amino acid oxidase, and L-lactate oxidase - was selected. Assays for these enzymes are based on a direct enzymatic reduction of the redox dyes and not on the coupled detection of a reaction product as in the frequently used assays based on hydrogen peroxide formation. The different flavoproteins show low Michaelis constants with these electron acceptor substrates, and therefore these dyes need to be added in only low concentrations to assure substrate saturation. In conclusion, these electron acceptors are useful in selective, reliable and cheap MTP-based screening assays for a range of flavin-dependent oxidoreductases, and offer a robust method for library screening, which could find applications in enzyme engineering programs.

  3. Convenient microtiter plate-based, oxygen-independent activity assays for flavin-dependent oxidoreductases based on different redox dyes

    PubMed Central

    Brugger, Dagmar; Krondorfer, Iris; Zahma, Kawah; Stoisser, Thomas; Bolivar, Juan M; Nidetzky, Bernd; Peterbauer, Clemens K; Haltrich, Dietmar

    2014-01-01

    Flavin-dependent oxidoreductases are increasingly recognized as important biocatalysts for various industrial applications. In order to identify novel activities and to improve these enzymes in engineering approaches, suitable screening methods are necessary. We developed novel microtiter-plate-based assays for flavin-dependent oxidases and dehydrogenases using redox dyes as electron acceptors for these enzymes. 2,6-dichlorophenol-indophenol, methylene green, and thionine show absorption changes between their oxidized and reduced forms in the visible range, making it easy to judge visually changes in activity. A sample set of enzymes containing both flavoprotein oxidases and dehydrogenases – pyranose 2-oxidase, pyranose dehydrogenase, cellobiose dehydrogenase, d-amino acid oxidase, and l-lactate oxidase – was selected. Assays for these enzymes are based on a direct enzymatic reduction of the redox dyes and not on the coupled detection of a reaction product as in the frequently used assays based on hydrogen peroxide formation. The different flavoproteins show low Michaelis constants with these electron acceptor substrates, and therefore these dyes need to be added in only low concentrations to assure substrate saturation. In conclusion, these electron acceptors are useful in selective, reliable and cheap MTP-based screening assays for a range of flavin-dependent oxidoreductases, and offer a robust method for library screening, which could find applications in enzyme engineering programs. PMID:24376171

  4. Hot Coal Gas Desulfurization with manganese-based sorbents. Second [quarterly] technical report, December 1, 1992--March 1, 1993

    SciTech Connect

    Hepworth, M.T.

    1993-03-01

    At present, the focus of work being performed on Hot Coal Gas Desulfurization is primarily in the use of zinc ferrite and zinc titanate sorbents; however studies at the US Steel Fundamental Research Laboratories in Monroeville, PA, by E. T. Turkdogan indicate that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt % ore + 25 wt % Al{sub 2}O{sub 3}) may be a preferable alternative to zinc-based sorbents. A significant domestic source of manganese in Minnesota is being explored for an in situ leach process which has potential for producing large tonnages of solutions which may be ideal for precipitation and recovery of pure manganese as a carbonate in a reactive form. In the current program the following studies will be addressed: Preparation of manganese sorbent pellets and characterization tests on pellets for strength and surface area; analysis of the thermodynamics and kinetics of sulfur removal from hot fuel gases by individual sorbent pellets (loading tests) by thermogravimetric testing; regeneration tests via TGA on individual sorbent pellets by oxidation; and bench-scale testing on sorbent beds in a two-inch diameter reactor. The developed information will be of value to METC in its determination of whether or not a manganese-based regenerable sorbent holds real promise for sulfur cleanup of hot fuel gases. This information is necessary prior to pilot-scale testing leading to commercial development is undertaken.

  5. High gas velocity oxidation and hot corrosion testing of oxide dispersion-strengthened nickel-base alloys

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Lowell, C. E.

    1975-01-01

    Several oxide dispersion strengthened (ODS) nickel-base alloys were tested in high velocity gases for cyclic oxidation resistance at temperatures to 1200 C and times to 500 hours and for hot corrosion resistance at 900 C for 200 hours. Nickel-chromium-aluminum ODS alloys were found to have superior resistance to oxidation and hot corrosion when compared to bare and coated nickel-chromium ODS alloys. The best of the alloys tested had compositions of nickel - 15.5 to 16 weight percent chromium with aluminum weight percents between 4.5 and 5.0. All of the nickel-chromium-aluminum ODS materials experienced small weight losses (less than 16 mg/sq cm).

  6. Fiber optic hot-wire flowmeter based on a metallic coated hybrid long period grating/fiber Bragg grating structure.

    PubMed

    Caldas, Paulo; Jorge, Pedro A S; Rego, Gaspar; Frazão, Orlando; Santos, José Luís; Ferreira, Luís Alberto; Araújo, Francisco

    2011-06-10

    In this work an all-optical hot-wire flowmeter based on a silver coated fiber combining a long period grating and a fiber Bragg grating (FBG) structure is proposed. Light from a pump laser at 1480  nm propagating down the fiber is coupled by the long period grating into the fiber cladding and is absorbed by the silver coating deposited on the fiber surface over the Bragg grating structure. This absorption acts like a hot wire raising the fiber temperature locally, which is effectively detected by the FBG resonance shift. The temperature increase depends on the flow speed of the surrounding air, which has the effect of cooling the fiber. It is demonstrated that the Bragg wavelength shift can be related to the flow speed. A flow speed resolution of 0.08  m/s is achieved using this new configuration.

  7. A multiple linear regression analysis of hot corrosion attack on a series of nickel base turbine alloys

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.

    1985-01-01

    Multiple linear regression analysis was used to determine an equation for estimating hot corrosion attack for a series of Ni base cast turbine alloys. The U transform (i.e., 1/sin (% A/100) to the 1/2) was shown to give the best estimate of the dependent variable, y. A complete second degree equation is described for the centered" weight chemistries for the elements Cr, Al, Ti, Mo, W, Cb, Ta, and Co. In addition linear terms for the minor elements C, B, and Zr were added for a basic 47 term equation. The best reduced equation was determined by the stepwise selection method with essentially 13 terms. The Cr term was found to be the most important accounting for 60 percent of the explained variability hot corrosion attack.

  8. SMA spring-based artificial muscle actuated by hot and cool water using faucet-like valve

    NASA Astrophysics Data System (ADS)

    Park, Cheol Hoon; Son, Young Su

    2017-04-01

    An artificial muscle for a human arm-like manipulator with high strain and high power density are under development, and an SMA(Shape memory alloy) spring is a good actuator for this application. In this study, an artificial muscle composed of a silicon tube and a bundle of SMA(Shape memory alloy) springs is evaluated. A bundle of SMA springs consists of five SMA springs which are fabricated by using SMA wires with a diameter of 0.5 mm, and hot and cool water actuates it by heating and cooling SMA springs. A faucet-like valve was also developed to mix hot water and cool water and control the water temperature. The mass of silicon tube and a bundle of SMA springs is only 3.3 g and 2.25 g, respectively, and the total mass of artificial muscle is 5.55 g. It showed good actuating performance for a load with a mass of 2.3 kg and the power density was more than 800 W/kg for continuous valve switching with a cycle of 0.6 s. The faucet-like valve can switch a water output from hot water to cold water within 0.3s, and the artificial muscle is actuated well in response to the valve position and speed. It is also presented that the temperature of the mixed water can be controlled depending on the valve position, and the displacement of the artificial muscle can be controlled well by the mixed water. Based on these results, SMA spring-based artificial muscle actuated by hot and cool water could be applicable to the human arm-like robot manipulators.

  9. Development of a plate-based optical biosensor fragment screening methodology to identify phosphodiesterase 10A inhibitors.

    PubMed

    Geschwindner, Stefan; Dekker, Niek; Horsefield, Rob; Tigerström, Anna; Johansson, Patrik; Scott, Clay W; Albert, Jeffrey S

    2013-04-25

    We describe the development of a novel fragment screening methodology employing a plate-based optical biosensor system that can operate in a 384-well format. The method is based on the "inhibition in solution assay" (ISA) approach using an immobilized target definition compound (TDC) that has been specifically designed for this purpose by making use of available structural information. We demonstrate that this method is robust and is sufficiently sensitive to detect fragment hits as weak as KD 500 μM when confirmed in a conventional surface plasmon resonance approach. The application of the plate-based screen, the identification of fragment inhibitors of PDE10A, and their structural characterization are all discussed in a forthcoming paper.

  10. Hierarchical and successive approximate registration of the non-rigid medical image based on thin-plate splines

    NASA Astrophysics Data System (ADS)

    Hu, Jinyan; Li, Li; Yang, Yunfeng

    2017-06-01

    The hierarchical and successive approximate registration method of non-rigid medical image based on the thin-plate splines is proposed in the paper. There are two major novelties in the proposed method. First, the hierarchical registration based on Wavelet transform is used. The approximate image of Wavelet transform is selected as the registered object. Second, the successive approximation registration method is used to accomplish the non-rigid medical images registration, i.e. the local regions of the couple images are registered roughly based on the thin-plate splines, then, the current rough registration result is selected as the object to be registered in the following registration procedure. Experiments show that the proposed method is effective in the registration process of the non-rigid medical images.

  11. A High-Throughput Microtiter Plate Based Method for the Determination of Peracetic Acid and Hydrogen Peroxide

    PubMed Central

    Putt, Karson S.; Pugh, Randall B.

    2013-01-01

    Peracetic acid is gaining usage in numerous industries who have found a myriad of uses for its antimicrobial activity. However, rapid high throughput quantitation methods for peracetic acid and hydrogen peroxide are lacking. Herein, we describe the development of a high-throughput microtiter plate based assay based upon the well known and trusted titration chemical reactions. The adaptation of these titration chemistries to rapid plate based absorbance methods for the sequential determination of hydrogen peroxide specifically and the total amount of peroxides present in solution are described. The results of these methods were compared to those of a standard titration and found to be in good agreement. Additionally, the utility of the developed method is demonstrated through the generation of degradation curves of both peracetic acid and hydrogen peroxide in a mixed solution. PMID:24260173

  12. A high-throughput microtiter plate based method for the determination of peracetic acid and hydrogen peroxide.

    PubMed

    Putt, Karson S; Pugh, Randall B

    2013-01-01

    Peracetic acid is gaining usage in numerous industries who have found a myriad of uses for its antimicrobial activity. However, rapid high throughput quantitation methods for peracetic acid and hydrogen peroxide are lacking. Herein, we describe the development of a high-throughput microtiter plate based assay based upon the well known and trusted titration chemical reactions. The adaptation of these titration chemistries to rapid plate based absorbance methods for the sequential determination of hydrogen peroxide specifically and the total amount of peroxides present in solution are described. The results of these methods were compared to those of a standard titration and found to be in good agreement. Additionally, the utility of the developed method is demonstrated through the generation of degradation curves of both peracetic acid and hydrogen peroxide in a mixed solution.

  13. A cost-effective plate-based sample preparation for antibody N-glycan analysis.

    PubMed

    Burnina, Irina; Hoyt, Erik; Lynaugh, Heather; Li, Huijuan; Gong, Bing

    2013-09-13

    During early cell line and process development of therapeutic antibodies, a cost-effective high-throughput approach to characterize the N-linked glycans is highly desired given that a large number of samples need to be analyzed. Using commercially available, low cost 96-well plates, we developed a practical procedure to prepare fluorescently labeled N-linked glycans for both qualitative and quantitative analysis by mass spectrometry (MS) and ultrahigh performance liquid chromatography (UPLC). Antibody samples were continuously denatured, reduced, and deglycosylated in a single 96-well hydrophobic membrane filter plate. Subsequently, released glycans were fluorescently labeled in a collection plate, and cleaned-up using a hydrophilic membrane filter plate. Carried out entirely in ready-to-use 96-well plates with simple buffer systems, this procedure requires less than 90min to finish. We applied the optimized procedure to examine the N-linked glycosylation of trastuzumab and were able to quantify ten major N-linked glycans. The results from different amounts of starting materials (10-200μg) were highly similar and showed the robustness of this procedure. Compared to other methods, this new procedure is simple to implement, economically more affordable, and could be very valuable for early screenings of antibody development.

  14. Molecular network and chemical fragment-based characteristics of medicinal herbs with cold and hot properties from Chinese medicine.

    PubMed

    Liang, Fei; Li, Li; Wang, Maolin; Niu, Xuyan; Zhan, Junping; He, Xiaojuan; Yu, Changyuan; Jiang, Miao; Lu, Aiping

    2013-07-30

    Chinese herbal medicines (HMs) is one of the great herbal systems of the world, which play an important role in current health care system in many countries. In the view of tradition Chinese medicine (TCM) theory, Yin-yang and five-elements theory is the central theory, which is used to explain how the world and body work. Under the guidance of such philosophy, TCM considers that HMs have different properties, which are the important factors for prescribing herbal formulae; such prescriptions are based on TCM pattern classification in clinical practice. The cold and hot property are commonly defined for HM property identification; however, the biological activities that are related to the HM property remain a mystery because of a lack of appropriate methods. A bioinformatics approach was applied to identify the distinguishing biological activities of HMs that have these cold and hot properties. Twenty HMs with typical cold and hot properties (10 cold and 10 hot) were selected based on TCM clinical application records and Chinese pharmacopeia. The active target proteins of each HM were searched in the PubChem database and were analyzed in Ingenuity Pathway Analysis (IPA) platform to find out the HM property-related biological activities. In addition, the main compounds of the HMs were fragmented using a fragment-based approach and were analyzed for the purpose of deciphering the properties. The main biological networks of HMs with cold and hot properties include cell cycle, cellular growth, proliferation and development, cancer, cytokine signaling, and intracellular and second messenger signaling; 11 specific pathways are presented to be perturbed only by HMs with the hot property, and the 27 specific target protein molecules include PRKACA, PRKCA, PRKCB, PRKCD, PRKCE, PRKCG, PRKD1, TLR4, TLR7, TLR8, TLR9, HTR4, HTR6, HTR7, HTR2A, HTR1B, HTR2B, GNAO1, GNAI1, TNF, IL8, ROCK2, AKT1, MAPK1, RPS6KA1, RPS6KA3 and JAK2, which are involved in the biological network. One

  15. Development of a novel bead-based 96-well filtration plate competitive immunoassay for the detection of Gentamycin.

    PubMed

    Ho, Tien Yu Jessica; Chan, Chia-Chung; Chan, KinGho; Wang, Yu Chieh; Lin, Jing-Tang; Chang, Cheng-Ming; Chen, Chien-Sheng

    2013-11-15

    We developed a sensitive, simple, inexpensive and rapid bead-based immunoassay platform, composed of liposomal nanovesicle amplification system, Gentamycin sulfate beads and 96-well filtration plates. In the beginning of the assay, Gentamycin sulfate beads, Gentamycin sulfate and Gentamycin specific antibody were incubated in a bottom-sealed 96-well filtration plate. After incubation, washing was done by running washing buffer through the unsealed filtration plate with only gravity and the antibody-Gentamycin bead complexes were retained in the plate. Fluorescent dye-loaded protein G-liposomal nanovesicles were then added to specifically bind to antibodies on the retained beads. After washing unbound nanovesicles, millions of fluorescent dye molecules were released by adding a detergent solution to lyse liposomal nanovesicles. The limit of detection (LOD) of this novel detection platform in TBS and in skim milk were 52.65 ng/mL and 14.16 ng/mL, which are both sufficient for detecting the 200 ng/mL Codex maximum residual level (MRL). The dynamic ranges were both from each of their LODs to 100 μg/mL. The 50% inhibition concentrations (IC50) in TBS and skim milk were 199.66 ng/mL and 360.81 ng/mL, respectively. We also demonstrated the good specificity of this platform by comparing detection results between pure Gentamycin solution and a mixture solution of 6 different antibiotics including Gentamycin in skim milk. The entire assay with 60 samples was conducted within 2h. In sum, this novel biosensing platform not only fulfilled most benefits of magnetic bead-based assays, but also was inexpensive and convenient by replacing the magnetic separation with filtration plate separation.

  16. Solar Hot Water Heater

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The solar panels pictured below, mounted on a Moscow, Idaho home, are part of a domestic hot water heating system capable of providing up to 100 percent of home or small business hot water needs. Produced by Lennox Industries Inc., Marshalltown, Iowa, the panels are commercial versions of a collector co-developed by NASA. In an effort to conserve energy, NASA has installed solar collectors at a number of its own facilities and is conducting research to develop the most efficient systems. Lewis Research Center teamed with Honeywell Inc., Minneapolis, Minnesota to develop the flat plate collector shown. Key to the collector's efficiency is black chrome coating on the plate developed for use on spacecraft solar cells, the coating prevents sun heat from "reradiating," or escaping outward. The design proved the most effective heat absorber among 23 different types of collectors evaluated in a Lewis test program. The Lennox solar domestic hot water heating system has three main components: the array of collectors, a "solar module" (blue unit pictured) and a conventional water heater. A fluid-ethylene glycol and water-is circulated through the collectors to absorb solar heat. The fluid is then piped to a double-walled jacket around a water tank within the solar module.

  17. Hot Groups.

    ERIC Educational Resources Information Center

    Vail, Kathleen

    1996-01-01

    Collaborators sparked by creative ideas and obsessed by a common task may not realize they're part of a "hot group"--a term coined by business professors Harold J. Leavitt and Jean Lipman-Blumen. Spawned by group decision making and employee empowerment, hot groups can flourish in education settings. They're typically small, short lived,…

  18. Wetting reaction of Sn-Ag based solder systems on Cu substrates plated with Au and/or Pd layer

    NASA Astrophysics Data System (ADS)

    Liu, C. Y.; Li, Jian; Vandentop, G. J.; Choi, W. J.; Tu, K. N.

    2001-05-01

    The wetting behavior of SnAg based Pb-free solders on Cu and Cu substrates plated with Au, Pd, and Au/Pd thin films have been studied. The wetting angle and kinetics of interfacial reaction were measured. The Au-plated substrates exhibit better wetting than the Pd-plated substrates. In the case of SnAg on Pd-plated Cu, SEM observation revealed that the solder cap was surrounded by an innerring of Cu-Sn compound and an outer ring of Pd-Sn compound. This implies that the molten SnAg solder had removed the Pd and wetted the Cu directly in the equilibrium state. The effects of pre-doping Cu in the SnAg solder on wetting behavior were also investigated. We found that wettability decreases with increasing Cu content in the solder. We also observed that the SnAgCu solders have a lower Cu consumption rate than the SnAg solder.

  19. Two-dimensional curvature mode shape method based on wavelets and Teager energy for damage detection in plates

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Cao, Maosen; Ostachowicz, Wiesław; Radzieński, Maciej; Xia, Ning

    2015-07-01

    Vibration-based damage detection in plates has been investigated by various methods relying on mode shapes, among which the 2D curvature mode shape is a damage feature attracting much attention of researchers. Unlike the sound understanding of the use of the 1D curvature mode shape for detecting damage in beams, however, use of the 2D curvature mode shape to detect damage in plates is not yet well elucidated, major unresolved issues including lack of clarity about the mechanism of characterizing damage, susceptibility to noise, and insensitivity to sight damage. These deficiencies severely hamper use of the 2D curvature mode shape to portray damage in plates. To deal with these deficiencies, the mechanism of using 2D curvature mode shape to depict damage is analytically clarified in light of thin plate theory. On the basis of this clarification, a synergy between wavelet transform and a Teager energy operator is proposed to tackle the other deficiencies of susceptibility to noise and insensitivity to sight damage, leading an enhanced 2D curvature mode shape. The efficacy of the enhanced 2D curvature mode shape is numerically demonstrated using finite element simulations and experimentally validated through noncontact measurement by a scanning laser vibrometer, whereby its advances of clear mechanism of characterizing damage, robustness against noise, and sensitivity to slight damage are sufficiently corroborated.

  20. The estimation of material and patch parameters in a PDE-based circular plate model

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Smith, Ralph C.; Brown, D. E.; Metcalf, Vern L.; Silcox, R. J.

    1995-01-01

    The estimation of material and patch parameters for a system involving a circular plate, to which piezoceramic patches are bonded, is considered. A partial differential equation (PDE) model for the thin circular plate is used with the passive and active contributions form the patches included in the internal and external bending moments. This model contains piecewise constant parameters describing the density, flexural rigidity, Poisson ratio, and Kelvin-Voigt damping for the system as well as patch constants and a coefficient for viscous air damping. Examples demonstrating the estimation of these parameters with experimental acceleration data and a variety of inputs to the experimental plate are presented. By using a physically-derived PDE model to describe the system, parameter sets consistent across experiments are obtained, even when phenomena such as damping due to electric circuits affect the system dynamics.

  1. An automatic system for measurement of retardation of wave plates based on phase-shifted method

    NASA Astrophysics Data System (ADS)

    Gao, Zhishan; Yan, Ming

    2005-02-01

    A practical system is described to measure the retardation of wave plates with phase-shifted method. The tested wave plate is put in and the original angle between the axis of it and the analyzer is random, not 45 degree. For the measurement is made rapidly and automatically, a standard wave plate act as a compensator, the stepping motor is used to drive the analyzer to realize phase shifting and a grating encoder is used to measure its rotating angle. At the same time, while the beam comes out from the analyzer, the photoelectric detector gets its intensity, and then the signals is magnified, filtered and sent to computer through its serial port. The results show the system has the advantages of costing little time and high accuracy.

  2. Characterization and fixed-bed testing of a nickel-based hot gas desulfurization sorbent

    SciTech Connect

    Gasper-Galvin, L.D.; Swisher, J.H.; Hammerbeck, K.

    1994-10-01

    The objective of this project was to (1) extend a preliminary investigation completed earlier on dispersed nickel sorbents by developing new processing methods, characterizing sorbent materials more extensively, and evaluating the materials in fixed bed reactor tests, and (2) to determine the feasibility of using dispersed nickel sorbents with reductive regeneration for hot gas desulfurization. One of the properties of nickel that is somewhat unique is that it forms a liquid sulfide at sufficiently high temperatures with high sulfur potentials or H{sub 2}S levels. A eutectic exists in the Ni-S phase diagram at 637 C and a composition of 33.4 wt% or 21.5 wt% S. Under controlled conditions, the formation of a liquid phase can be used to advantage in hot gas desulfurization. Sorbent preparation, the experimental unit, and experimental procedure are described. Results from the sorbent, 24Ni-7Cu-Al{sub 2}O{sub 3}, are given.

  3. Homogeneous plate based antibody internalization assay using pH sensor fluorescent dye.

    PubMed

    Nath, Nidhi; Godat, Becky; Zimprich, Chad; Dwight, Stephen J; Corona, Cesear; McDougall, Mark; Urh, Marjeta

    2016-04-01

    Receptor-mediated antibody internalization is a key mechanism underlying several anti-cancer antibody therapeutics. Delivering highly toxic drugs to cancer cells, as in the case of antibody drug conjugates (ADCs), efficient removal of surface receptors from cancer cells and changing the pharmacokinetics profile of the antibody drugs are some of key ways that internalization impacts the therapeutic efficacy of the antibodies. Over the years, several techniques have been used to study antibody internalization including radiolabels, fluorescent microscopy, flow cytometry and cellular toxicity assays. While these methods allow analysis of internalization, they have limitations including a multistep process and limited throughput and are generally endpoint assays. Here, we present a new homogeneous method that enables time and concentration dependent measurements of antibody internalization. The method uses a new hydrophilic and bright pH sensor dye (pHAb dye), which is not fluorescent at neutral pH but becomes highly fluorescent at acidic pH. For receptor mediated antibody internalization studies, antibodies against receptors are conjugated with the pHAb dye and incubated with the cells expressing the receptors. Upon binding to the receptor, the dyes conjugated to the antibody are not fluorescent because of the neutral pH of the media, but upon internalization and trafficking into endosomal and lysosomal vesicles the pH drops and dyes become fluorescent. The enabling attributes of the pHAb dyes are the hydrophilic nature to minimize antibody aggregation and bright fluorescence at acidic pH which allows development of simple plate based assays using a fluorescent reader. Using two different therapeutic antibodies--Trastuzumab (anti-HER2) and Cetuximab (anti-EGFR)--we show labeling with pHAb dye using amine and thiol chemistries and impact of chemistry and dye to antibody ration on internalization. We finally present two new approaches using the pHAb dye, which will be

  4. Early state damage detection of aluminum 7075-T6 plate based on acoustic emission

    NASA Astrophysics Data System (ADS)

    Ozevin, Didem; Li, Zhong; Heidary, Zahra

    2011-04-01

    Aluminum alloy 7075-T6 is a commonly used material in aircraft industry. A crack usually initiates at the edge of a fastener hole, and it can affect the maintenance schedule and reduce the life of an aircraft structure significantly. The fatigue property of the material has been researched widely to develop methods and models for predicting fatigue crack growth under random loading. From the point of damage tolerance design, the inspection technique of a crack for an aircraft structure is very important because it can be used to determine the inspection period of the aircraft structure. The acoustic emission (AE) technique is a nondestructive testing (NDT) method that is able to monitor damage initiation and progression in real time. Understanding the early stage of AE signature due to the damage progression using small scale laboratory samples requires non-traditional data analysis approaches. In this study, 1mm thick Al-7075-T6 plates were tested under monotonic and fatigue loading. The initiation of damage progression using AE data was identified based on improved linear location algorithm and the result was verified using elasto-plastic finite element model. The improved location algorithm integrates dispersive characteristics of flexural waves and threshold independent approach to pick up the wave arrival time. In this paper, AE results in comparison with FE model under monotonic and fatigue loading will be presented. The comparison of traditional and improved location approaches will be shown. The approach for implementing the laboratory scale results in the large scale field testing will be discussed.

  5. Saturn's Hot Plasma Explosions

    NASA Image and Video Library

    This animation based on data obtained by NASA's Cassini Spacecraft shows how the "explosions" of hot plasma on the night side (orange and white) periodically inflate Saturn's magnetic field (white ...

  6. Saturn Hot Plasma Explosions

    NASA Image and Video Library

    2010-12-14

    This frame from an animation based on data obtained by NASA Cassini spacecraft shows how the explosions of hot plasma on the night side orange and white periodically inflate Saturn magnetic field white lines.

  7. Durable superamphiphobic coatings repelling both cool and hot liquids based on carbon nanotubes.

    PubMed

    Zhai, Naihua; Fan, Ling; Li, Lingxiao; Zhang, Junping

    2017-11-01

    Superamphiphobic coatings have wide potential applications in many fields, however, preparation of superamphiphobic coatings with low sliding angles and high durability is very challenging. Here, we report a facile spray-coating method for the preparation of durable superamphiphobic coatings repelling both cool and hot liquids from polyperfluoroalkylsilane-modified multiwalled carbon nanotubes (MWCNTs@fluoroPOS). The MWCNTs@fluoroPOS suspensions were preparation by hydrolytic condensation of 1H,1H,2H,2H-perfluorodecyltrichlorosilane (PFDTES) and tetraethoxysilane (TEOS) on the surface of MWCNTs. The suspensions and the superamphiphobic coatings were characterized using a variety of analytical techniques such as scanning electron microscopy, transmitting electron microscopy and X-ray photoelectron spectroscopy. The effects of the diameter of MWCNTs, and the concentrations of MWCNTs, TEOS and PFDTES on wettability and microstructure of the coatings were also investigated. The coatings show high contact angles and low sliding angles for water and organic liquids of low surface tension such as n-hexadecane, toluene and n-decane. The coatings even exhibit excellent superamphiphobicity for hot water and hot organic liquids up to 80°C, which is seldom achieved according to the previous literatures. Moreover, the coatings feature high mechanical, chemical and environmental durability, and are applicable onto various substrates. The simple method, the high superamphiphobicity to both cool and hot liquids, and the excellent durability of the coatings have paved the way for their practical applications in various fields, e.g., anti-icing, anti-oil climbing and oil transportation, etc. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Surface-plasmon enhanced photodetection at communication band based on hot electrons

    SciTech Connect

    Wu, Kai; Zhan, Yaohui E-mail: xfli@suda.edu.cn; Wu, Shaolong; Deng, Jiajia; Li, Xiaofeng E-mail: xfli@suda.edu.cn

    2015-08-14

    Surface plasmons can squeeze light into a deep-subwavelength space and generate abundant hot electrons in the nearby metallic regions, enabling a new paradigm of photoconversion by the way of hot electron collection. Unlike the visible spectral range concerned in previous literatures, we focus on the communication band and design the infrared hot-electron photodetectors with plasmonic metal-insulator-metal configuration by using full-wave finite-element method. Titanium dioxide-silver Schottky interface is employed to boost the low-energy infrared photodetection. The photodetection sensitivity is strongly improved by enhancing the plasmonic excitation from a rationally engineered metallic grating, which enables a strong unidirectional photocurrent. With a five-step electrical simulation, the optimized device exhibits an unbiased responsivity of ∼0.1 mA/W and an ultra-narrow response band (FWHM = 4.66 meV), which promises to be a candidate as the compact photodetector operating in communication band.

  9. Exploring the hot Neptune / super-Earth transition via ground-based transmission spectroscopy

    NASA Astrophysics Data System (ADS)

    Rackham, B.; Espinoza, N.; Apai, D.; Jordán, A.; López-Morales, M.; Fraine, J.; Lewis, N.; Rodler, F.; Fortney, J.; Osip, D.

    2014-03-01

    One of the most surprising results of the Kepler mission has been the abundance of super-Earths (1.25-2 R⊕) and Neptune-sized planets (2-6 R⊕), including the close-in “hot” Neptunes. Understanding the characteristics of these common exoplanets and the transition between them has important implications for astrobiology, as super-Earths may be suitable hosts for life, but Neptune-sized ice and gas giants are not. Distinguishing between the diversity of worlds that may exist at this transition requires measurements of the transmission spectra of their atmospheres. The recently launched Arizona-CfA-Católica Exoplanet Spectroscopy Survey (ACCESS) is addressing this need by compiling a uniform sample of exoplanet optical transmission spectra from hot Jupiters through hot Neptunes to super-Earths, enabling comparative studies of exoplanets over a wide range of masses, radii, and irradiation conditions. Here we present our first results from a planet at the hot Neptune / super-Earth transition: an optical transmission spectrum of GJ 1214b obtained during two transits with Magellan/IMACS. We discuss the experimental techniques used to collect the spectrum, the statistical methods employed in the data analysis, and the application of the optical spectrum to proposed models of GJ 1214b’s atmosphere.

  10. Heat loss research of hot bath based on time and space

    NASA Astrophysics Data System (ADS)

    Zhou, Jixiang

    2017-05-01

    We get a model of the amount of waste water related to time and space, which improve the model of process of mixing water with different temperature and process of heat loss of tub. In order to keep the water temperature close to the initial temperature, we need to continue adding hot water to the bathtub to make up the heat loss of system. We analyzed the natural cooling process of the bathtub full of water. Then we develop a model of the condition of bathtub with water flows in. In the problem of mixing hot water and cold water, the mathematical model, which controls the temperature of hot spring water, describes the energy conversion and the relationship between water temperature and time. Our model considers the first and last state to analysis energy conversion during the process. Considering actual condition, it includes the distribution of temperature in space and influences surface area of tub makes on condition of heat loss. If the volume of tub is fixed, the total amount of overflow water is a primary function of time. So the rate of water is related to the volume of tub. We can get the functional correlation for the total amount of overflow water by getting the relationship between rate of water and volume of tub.

  11. Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity

    NASA Astrophysics Data System (ADS)

    Mendis, Rajind; Astley, Victoria; Liu, Jingbo; Mittleman, Daniel M.

    2009-10-01

    We describe a terahertz optical resonator that is ideally suited for highly sensitive and noninvasive refractive-index monitoring. The resonator is formed by machining a rectangular groove into one plate of a parallel-plate waveguide, and is excited using the lowest-order transverse-electric (TE1) waveguide mode. Since the resonator can act as a channel for fluid flow, it can be easily integrated into a microfluidics platform for real-time monitoring. Using this resonator with only a few microliters of liquid, we demonstrate a refractive-index sensitivity of 3.7×105 nm/refractive-index-unit, the highest ever reported in any frequency range.

  12. [Research on the temperature field detection method of hot forging based on long-wavelength infrared spectrum].

    PubMed

    Zhang, Yu-Cun; Wei, Bin; Fu, Xian-Bin

    2014-02-01

    A temperature field detection method based on long-wavelength infrared spectrum for hot forging is proposed in the present paper. This method combines primary spectrum pyrometry and three-stage FP-cavity LCTF. By optimizing the solutions of three group nonlinear equations in the mathematical model of temperature detection, the errors are reduced, thus measuring results will be more objective and accurate. Then the system of three-stage FP-cavity LCTF was designed on the principle of crystal birefringence. The system realized rapid selection of any wavelength in a certain wavelength range. It makes the response of the temperature measuring system rapid and accurate. As a result, without the emissivity of hot forging, the method can acquire exact information of temperature field and effectively suppress the background light radiation around the hot forging and ambient light that impact the temperature detection accuracy. Finally, the results of MATLAB showed that the infrared spectroscopy through the three-stage FP-cavity LCTF could meet the requirements of design. And experiments verified the feasibility of temperature measuring method. Compared with traditional single-band thermal infrared imager, the accuracy of measuring result was improved.

  13. A comparison of field-dependent rheological properties between spherical and plate-like carbonyl iron particles-based magneto-rheological fluids

    NASA Astrophysics Data System (ADS)

    Tan Shilan, Salihah; Amri Mazlan, Saiful; Ido, Yasushi; Hajalilou, Abdollah; Jeyadevan, Balachandran; Choi, Seung-Bok; Azhani Yunus, Nurul

    2016-09-01

    This work proposes different sizes of the plate-like particles from conventional spherical carbonyl iron (CI) particles by adjusting milling time in the ball mill process. The ball mill process to make the plate-like particles is called a solid-state powder processing technique which involves repeated welding, fracturing and re-welding of powder particles in a high-energy ball mill. The effect of ball milling process on the magnetic behavior of CI particles is firstly investigated by vibrating sample magnetometer. It is found form this investigation that the plate-like particles have higher saturation magnetization (about 8%) than that of the spherical particles. Subsequently, for the investigation on the sedimentation behavior the cylindrical measurement technique is used. It is observed from this measurement that the plate-like particles show slower sedimentation rate compared to the spherical particles indicating higher stability of the MR fluid. The field-dependent rheological properties of MR fluids based on the plate-like particles are then investigated with respect to the milling time which is directly connected to the size of the plate-like particles. In addition, the field-dependent rheological properties such as the yield stress are evaluated and compared between the plate-like particles based MR fluids and the spherical particles based MR fluid. It is found that the yield shear stress of the plate-like particles based MR fluid is increased up to 270% compared to the spherical particles based MR fluid.

  14. Hot corrosion behavior of low pressure plasma sprayed NiCoCrAlY+Ta coatings on nickel base superalloys

    SciTech Connect

    Frances, M.; Steinmetz, P.; Steinmetz, J.; Duret, C.; Mevrel, R.

    1985-11-01

    The hot corrosion behavior of NiCoCrAlY+Ta coatings obtained by low-pressure plasma spraying has been investigated (type I hot corrosion with T = 850/sup 0/C). These coatings have been deposited on two nickel-base superalloys and on a cast alloy of the same composition as the coating. Comparison of the cyclic oxidation behavior at 850/sup 0/C between the sprayed coating and the cast alloy shows that the sprayed material exhibits a satisfactory and higher resistance than the cast alloy. In the latter case, repeated spalling of the oxide scale results from fractures often associated with Y-rich oxide protrusions. Hot corrosion experiments (salt-spraying test with T = 850/sup 0/C and thermal cycling in air every hour) have been conducted on two cast alloys, NiCoCrAl+Ta and NiCoCrAlY+Ta. The Y-containing alloy has a better corrosion resistance than the other alloy which is subject to extensive oxide spallation. In both cases, morphologies typical of basic fluxing processes, involving Cr, Al, Y, and Ta can be observed in highly attacked zones. Finally, tests on plasma sprayed coatings show a high resistance to hot corrosion of these coatings, regardless of the substrate used: a fine adherent alumina layer is formed, and only a limited fluxing of Cr, Al, and Y takes place. The quite different results obtained on cast and sprayed alloys imply that data relative to cast alloys can be unreliable when one wants to predict high temperature behavior and especially lifetimes of overlay coatings.

  15. MStern Blotting–High Throughput Polyvinylidene Fluoride (PVDF) Membrane-Based Proteomic Sample Preparation for 96-Well Plates*

    PubMed Central

    Berger, Sebastian T.; Ahmed, Saima; Muntel, Jan; Cuevas Polo, Nerea; Bachur, Richard; Kentsis, Alex; Steen, Judith; Steen, Hanno

    2015-01-01

    We describe a 96-well plate compatible membrane-based proteomic sample processing method, which enables the complete processing of 96 samples (or multiples thereof) within a single workday. This method uses a large-pore hydrophobic PVDF membrane that efficiently adsorbs proteins, resulting in fast liquid transfer through the membrane and significantly reduced sample processing times. Low liquid transfer speeds have prevented the useful 96-well plate implementation of FASP as a widely used membrane-based proteomic sample processing method. We validated our approach on whole-cell lysate and urine and cerebrospinal fluid as clinically relevant body fluids. Without compromising peptide and protein identification, our method uses a vacuum manifold and circumvents the need for digest desalting, making our processing method compatible with standard liquid handling robots. In summary, our new method maintains the strengths of FASP and simultaneously overcomes one of the major limitations of FASP without compromising protein identification and quantification. PMID:26223766

  16. Air-coupled detection of the S1-ZGV lamb mode in a concrete plate based on backward wave propagation

    NASA Astrophysics Data System (ADS)

    Bjurström, H.; Ryden, N.

    2013-01-01

    Impact Echo is commonly used to determine thickness of concrete plate like structures. The method is based on the generation and detection of the plate thickness resonance frequency, where the group velocity of the first higher symmetric Lamb mode goes to zero (S1-ZGV). When using air-coupled microphones as receivers it is hard to determine the correct resonance frequency due to low signal to noise ratio. In this study multichannel signal processing is used to identify the S1-ZGV frequency, based on backward wave propagation instead of the conventional amplitude spectrum approach. The original PDF file of this article, as supplied to AIP Publishing, contained some minor font problems within Figures 1, 4, 7, 8, and 9. An updated PDF file using the correct font within those figures was issued on June 3, 2013. There are no other changes to the scientific content.

  17. High loading uranium fuel plate

    DOEpatents

    Wiencek, Thomas C.; Domagala, Robert F.; Thresh, Henry R.

    1990-01-01

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pair of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat having a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process.

  18. Development of a fluorometric microtiter plate based enzyme assay for MPS IVA (Morquio type A) using dried blood spots.

    PubMed

    Ullal, Anirudh J; Millington, David S; Bali, Deeksha S

    2014-01-01

    Mucopolysaccharidosis type IVA or Morquio type-A disease is a hereditary lysosomal storage disorder caused by deficient activity of the lysosomal enzyme N-acetylgalactosamine-6-sulfate sulfatase (GALNS). The disease is caused by lysosomal accumulation of unprocessed glycosaminoglycans (GAGs) that manifests with severe to mild skeletal and cardiopulmonary abnormalities. We have developed a modified microtiter plate-based enzyme activity assay using dried blood spots and a fluorescent substrate for measuring specific GALNS activity to identify patients with MPS IVA.

  19. Protection of carbon steel against hot corrosion using thermal spray Si- and Cr-base coatings

    SciTech Connect

    Porcayo-Calderon, J.; Gonzalez-Rodriguez, J.G.; Martinez, L.

    1998-02-01

    A Fe75Si thermal spray coating was applied on the surface of a plain carbon steel baffle plate. Beneath this coating, a Ni20Cr coating was applied to give better adherence to the silicon coating. The baffle was installed in the high-temperature, fireside, corrosion zone of a steam generator. At the same time, an uncoated 304 stainless steel baffle was installed nearby for comparison. For 13 months the boiler burned heavy fuel oil with high contents of vanadium. The samples were studied employing scanning electron microscopy, x-ray microanalysis, and x-ray diffraction techniques. After that, it was possible to inspect the structural state of the components, and it was found that the stainless steel baffle plates were destroyed almost completely by corrosion, whereas the carbon steel coated baffle plate did not suffer a significant attack, showing that the performance of the thermal spray coating was outstanding and that the coating was not attacked by vanadium salts of the molten slag.

  20. Flat plate solar collector design and performance. Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Hundemann, A. S.

    1980-09-01

    Federally funded research on the design and thermal efficiency of air and liquid type flat plate collectors is discussed. Topic areas cover convection characteristics, methods to reduce heat loss, optical coatings, and corrosion control. Emphasis of the bibliography is on basic research studies. This updated bibliography contains 196 citations, 36 of which are new entries to the previous edition.

  1. When Less is More: Like Humans, Chimpanzees (Pan troglodytes) Misperceive Food Amounts Based on Plate Size

    PubMed Central

    Parrish, Audrey E.; Beran, Michael J.

    2013-01-01

    We investigated whether chimpanzees (Pan troglodytes) misperceived food portion sizes depending upon the context in which they were presented, something that often affects how much humans serve themselves and subsequently consume. Chimpanzees judged same-sized and smaller food portions to be larger in amount when presented on a small plate compared to an equal or larger food portion presented on a large plate, and did so despite clearly being able to tell the difference in portions when plate size was identical. These results are consistent with data from the human literature in which people misperceive food portion sizes as a function of plate size. This misperception is attributed to the Delboeuf illusion which occurs when the size of a central item is misperceived on the basis of its surrounding context. These results demonstrate a cross-species shared visual misperception of portion size that affects choice behavior, here in a nonhuman species for which there is little experience with tests that involve choosing between food amounts on dinnerware. The biases resulting in this form of misperception of food portions appear to have a deep-rooted evolutionary history which we share with, at minimum, our closest living nonhuman relative, the chimpanzee. PMID:23949698

  2. When less is more: like humans, chimpanzees (Pan troglodytes) misperceive food amounts based on plate size.

    PubMed

    Parrish, Audrey E; Beran, Michael J

    2014-03-01

    We investigated whether chimpanzees (Pan troglodytes) misperceived food portion sizes depending upon the context in which they were presented, something that often affects how much humans serve themselves and subsequently consume. Chimpanzees judged same-sized and smaller food portions to be larger in amount when presented on a small plate compared to an equal or larger food portion presented on a large plate and did so despite clearly being able to tell the difference in portions when plate size was identical. These results are consistent with data from the human literature in which people misperceive food portion sizes as a function of plate size. This misperception is attributed to the Delboeuf illusion which occurs when the size of a central item is misperceived on the basis of its surrounding context. These results demonstrate a cross-species shared visual misperception of portion size that affects choice behavior, here in a nonhuman species for which there is little experience with tests that involve choosing between food amounts on dinnerware. The biases resulting in this form of misperception of food portions appear to have a deep-rooted evolutionary history which we share with, at minimum, our closest living nonhuman relative, the chimpanzee.

  3. Profiling of microbial community of Odisha hot spring based on metagenomic sequencing.

    PubMed

    Singh, Archana; Subudhi, Enketeswara

    2016-03-01

    Deulajhari hot spring has diverse temperature and pH range varying from 43 °C to 65 °C and 7.83 to 8.10 respectively. Dense foliage around Deulajhari hot spring contributes to the high total organic carbon content (TOC). In our experiment we took sediment samples from the two Deulajhari hot springs (S1 and S2) out of the cluster having temperature of 43 °C and 55 °C and pH of 7.83 and 7.14 respectively. Sediment samples were analysed using 16S rRNA of V3-V4 region by amplicon metagenome sequencing. Over 34 phyla were detected in cluster S1 and 32 phyla in cluster S2 at the existing physiochemical parameters temperature 43 °C, pH 7.83, electroconductivity 0.019 dSm(- 1), and total organic carbon (TOC) 3.80% for S1 and temperature 55 °C, pH 7.14, electroconductivity 0.019 dSm(- 1), and total organic carbon (TOC) 0.97% for S2. Existence of a vast number of unresolved sequences 179 out of 292 in S1 and 186 out of 314 in S2 at the genus level emphasizes the significance of our study. Metagenome sequence information for the both clusters S1 and S2 of Deulajhari is available at NCBI, SRA database with accession number SRX1459732 and SRX1459733 respectively. Direct link to the deposited data: www.ncbi.nlm.nih.gov/sra/SRX1459732 www.ncbi.nlm.nih.gov/sra/SRX1459733.

  4. On 3-D inelastic analysis methods for hot section components (base program)

    NASA Technical Reports Server (NTRS)

    Wilson, R. B.; Bak, M. J.; Nakazawa, S.; Banerjee, P. K.

    1986-01-01

    A 3-D Inelastic Analysis Method program is described. This program consists of a series of new computer codes embodying a progression of mathematical models (mechanics of materials, special finite element, boundary element) for streamlined analysis of: (1) combustor liners, (2) turbine blades, and (3) turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain)and global (dynamics, buckling) structural behavior of the three selected components. Three computer codes, referred to as MOMM (Mechanics of Materials Model), MHOST (Marc-Hot Section Technology), and BEST (Boundary Element Stress Technology), have been developed and are briefly described in this report.

  5. Effect of filler content on the properties of expanded- graphite-based composite bipolar plates for application in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Masand, Aakash; Borah, Munu; Pathak, Abhishek K.; Dhakate, Sanjay R.

    2017-09-01

    Minimization of the weight and volume of a hydrogen-based PEM fuel cell stack is an essential area of research for the development and commercialization of PEMFCs for various applications. Graphite-based composite bipolar plates have significant advantages over conventional metallic bipolar plates due to their corrosion resistivity and low cost. On the other hand, expanded graphite is seen to be a potential candidate for facilitating the required electrical, thermal and mechanical properties of bipolar plates with a low density. Therefore, in the present study, the focus is on minimization of the high loading of graphite and optimizes its composition to meet the target properties of bipolar plates as per the USDOE target. Three types of expanded graphite (EG)-phenolic-resin-based composite bipolar plates were developed by partially replacing the expanded graphite content with natural graphite (NG) and carbon black as an additional filler. The three types of composite plate with the reinforcing constituent ratio EG:NG:R (25:25:50) give a bending strength of 49 MPa, a modulus of ~6 GPa, electrical conductivity  >100 S cm‑1, a shore hardness of 55 and a bulk density of 1.55 g/cc. The 50 wt% loading of resin is sufficient to wet the 50 wt% filler content in the composite plate. This study gives an insight into using hybrid reinforcements in order to achieve the desired properties of bipolar plates.

  6. Modelling and control of Base Plate Loading subsystem for The Motorized Adjustable Vertical Platform

    NASA Astrophysics Data System (ADS)

    Norsahperi, N. M. H.; Ahmad, S.; Fuad, A. F. M.; Mahmood, I. A.; Toha, S. F.; Akmeliawati, R.; Darsivan, F. J.

    2017-03-01

    Malaysia National Space Agency, ANGKASA is an organization that intensively undergoes many researches especially on space. On 2011, ANGKASA had built Satellite Assembly, Integration and Test Centre (AITC) for spacecraft development and test. Satellite will undergo numerous tests and one of it is Thermal test in Thermal Vacuum Chamber (TVC). In fact, TVC is located in cleanroom and on a platform. The only available facilities for loading and unloading the satellite is overhead crane. By utilizing the overhead crane can jeopardize the safety of the satellite. Therefore, Motorized vertical platform (MAVeP) for transferring the satellite into the TVC with capability to operate under cleanroom condition and limited space is proposed to facilitate the test. MAVeP is the combination of several mechanisms to produce horizontal and vertical motions with the ability to transfer the satellite from loading bay into TVC. The integration of both motions to elevate and transfer heavy loads with high precision capability will deliver major contributions in various industries such as aerospace and automotive. Base plate subsystem is capable to translate the horizontal motion by converting the angular motion from motor to linear motion by using rack and pinion mechanism. Generally a system can be modelled by performing physical modelling from schematic diagram or through system identification techniques. Both techniques are time consuming and required comprehensive understanding about the system, which may expose to error prone especially for complex mechanism. Therefore, a 3D virtual modelling technique has been implemented to represent the system in real world environment i.e. gravity to simulate control performance. The main purpose of this technique is to provide better model to analyse the system performance and capable to evaluate the dynamic behaviour of the system with visualization of the system performance, where a 3D prototype was designed and assembled in Solidworks

  7. Cool Runnings - an app-based intervention for reducing hot drink scalds: study protocol for a randomised controlled trial.

    PubMed

    Burgess, J D; Cameron, C M; Watt, K; Kimble, R M

    2016-08-03

    Globally, burns are the fifth leading cause of non-fatal children's injuries, and the leading cause of childhood burns is hot beverage scalds. Although there have been a number of programmes aimed at preventing scalds in children, very few have specifically addressed hot beverage scalds, and fewer have reported a reduction in injury rates. In Australia, hot beverage scalds account for 18 % of all childhood burns - a figure that has remained constant for the past decade. Innovative new technologies, such as Smartphone applications (apps), present a novel way for delivering individual-level injury prevention messages. The low cost, scalability and broad reach make this technology an ideal channel for health interventions. One of the latest methods being used in health-related apps aimed at behaviour change is gamification. Gamification uses the gaming principles of rewards, competition and personalisation to engage participants and motivate them towards preferred behaviours. This intervention will use a Smartphone app-based platform that combines gamification and behaviour-change strategies to increase knowledge and awareness of hot beverage scald risks and burn first aid among mothers of young children. This is a two-group, parallel, single-blinded randomised control trial (RCT) to evaluate the efficacy of a Smartphone app-based injury prevention intervention. The primary outcome measure is change in knowledge. Change in knowledge is measured in three components: knowledge of correct burns first aid; knowledge of the main cause of burns/scalds in children aged 0-15yrs; knowledge of the main age group at risk for burns/scalds. The secondary outcome measures relate to the gamification methods, measuring participants frequency of engagement with the Cool Runnings app. Queensland-based mothers aged 18+ years who own a Smartphone and have at least one child aged 5-12 months are eligible to participate. To our knowledge, this is the first study to evaluate an app-based

  8. Wheelspace windage cover plate for turbine

    DOEpatents

    Lathrop, Norman Douglas

    2002-01-01

    Windage cover plates are secured between the wheels and spacer of a turbine rotor to prevent hot flow path gas ingestion into the wheelspace cavities. Each cover plate includes a linear, axially extending body curved circumferentially with a radially outwardly directed wall at one axial end. The wall defines a axially opening recess for receiving a dovetail lug. The cover plate includes an axially extending tongue received in a circumferential groove of the spacer. The cover plate is secured with the tongue in the groove and dovetail lug in the recess. Lap joints between circumferentially adjacent cover plates are provided.

  9. Acoustic emission source localization in thin metallic plates: A single-sensor approach based on multimodal edge reflections.

    PubMed

    Ebrahimkhanlou, A; Salamone, S

    2017-03-14

    This paper presents a new acoustic emission (AE) source localization for isotropic plates with reflecting boundaries. This approach that has no blind spot leverages multimodal edge reflections to identify AE sources with only a single sensor. The implementation of the proposed approach involves three main steps. First, the continuous wavelet transform (CWT) and the dispersion curves of the fundamental Lamb wave modes are utilized to estimate the distance between an AE source and a sensor. This step uses a modal acoustic emission approach. Then, an analytical model is proposed that uses the estimated distances to simulate the edge-reflected waves. Finally, the correlation between the experimental and the simulated waveforms is used to estimate the location of AE sources. Hsu-Nielsen pencil lead break (PLB) tests were performed on an aluminum plate to validate this algorithm and promising results were achieved. Based on these results, the paper reports the statistics of the localization errors.

  10. Detailed measurements and shaping of gate profiles for microchannel-plate-based X-ray framing cameras

    SciTech Connect

    Landen, O.L.; Hammel, B.A.; Bell, P.M.; Abare, A. |; Bradley, D.K. |

    1994-10-03

    Gated, microchannel-plate-based (MCP) framing cameras are increasingly used worldwide for x-ray imaging of subnanosecond laser-plasma phenomena. Large dynamic range (> 1,000) measurements of gain profiles for gated microchannel plates (MCP) are presented. Temporal profiles are reconstructed for any point on the microstrip transmission line from data acquired over many shots with variable delay. No evidence for significant pulse distortion by voltage reflections at the ends of the microstrip is observed. The measured profiles compare well to predictions by a time-dependent discrete dynode model down to the 1% level. The calculations do overestimate the contrast further into the temporal wings. The role of electron transit time dispersion in limiting the minimum achievable gate duration is then investigated by using variable duration flattop gating pulses. A minimum gate duration of 50 ps is achieved with flattop gating, consistent with a fractional transit time spread of {approx} 15%.

  11. A revised kinematic model for the relative motion between Pacific oceanic plates and North America since the Late Cretaceous

    NASA Astrophysics Data System (ADS)

    Doubrovine, Pavel V.; Tarduno, John A.

    2008-12-01

    The convergence between the Pacific, Farallon, and Kula oceanic plates and the North American plate has provided a driving force for tectonic processes that have shaped the western margin of North America. Yet reconstructions of plate motion in the Pacific basin have traditionally relied on the assumption of fixed hot spots. In the last decade, substantial Cretaceous to Paleogene motion between the Pacific and Atlantic hot spots has been recognized, providing motivation to reevaluate the history of relative motion between Pacific oceanic plates and North America by means of plate circuit reconstructions. This paper presents new kinematic models based on two alternative plate circuits linking the Pacific plate to North America since Late Cretaceous time. When compared to models relying on fixity of Pacific and Indo-Atlantic hot spots, our reconstructions suggest that the Pacific-Kula and Pacific-Farallon ridges were ˜600-1000 km closer to the western margin of North America and hence that the Farallon and Kula plates were smaller in Late Cretaceous to middle Eocene time. These findings cast significant doubt on the viability of a configuration of the Farallon-Kula ridge that juxtaposes the Kula plate with the southern part of the paleo-North American margin during this time interval. The results of our new reconstructions also suggest more oblique convergence between the Farallon (or Kula) plate and North America from the Late Cretaceous to the middle Eocene related to the combination of dominantly northwest motion of the Pacific plate and steady southwest motion of North America. This provides an efficient mechanism for the coast-parallel translation of some accreted terranes of North America. It may also explain the structure of geological units in western North America, such as the Central Belt of the Franciscan Complex, which show a dominant coast-parallel fabric formed during an interval coeval with the episode of oblique convergence.

  12. A taylor model based description of the proof stress of magnesium AZ31 during hot working

    NASA Astrophysics Data System (ADS)

    Barnett, M. R.

    2003-09-01

    A series of hot-compression tests and Taylor-model simulations were carried out with the intention of developing a simple expression for the proof stress of magnesium alloy AZ31 during hot working. A crude approximation of wrought textures as a mixture of a single ideal texture component and a random background was employed. The shears carried by each deformation system were calculated using a full-constraint Taylor model for a selection of ideal orientations as well as for random textures. These shears, in combination with the measured proof stresses, were employed to estimate the critical resolved shear stresses for basal slip, prismatic slip, < c+ a> second-order pyramidal slip, and {10bar 12} twinning. The model thus established provides a semianalytical estimation of the proof stress (a one-off Taylor simulation is required) and also indicates whether or not twinning is expected. The approach is valid for temperatures between ˜150 °C and ˜450 °C, depending on the texture, strain rate, and strain path.

  13. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation

    PubMed Central

    Lu, Yuhua; Dong, Wen; Chen, Zhuo; Pors, Anders; Wang, Zhenlin; Bozhevolnyi, Sergey I.

    2016-01-01

    Plasmonic hot-electron generation has recently come into focus as a new scheme for solar energy conversion. So far, however, due to the relatively narrow bandwidth of the surface plasmon resonances and the insufficient resonant light absorption, most of plasmonic photocatalysts show narrow-band spectral responsivities and small solar energy conversion efficiencies. Here we experimentally demonstrate that a three-layered nanostructure, consisting of a monolayer gold-nanoparticles and a gold film separated by a TiO2 gap layer (Au-NPs/TiO2/Au-film), is capable of near-completely absorbing light within the whole visible region. We show that the Au-NPs/TiO2/Au-film device can take advantage of such strong and broadband light absorption to enhance the generation of hot electrons and thus the photocurrent under visible irradiation. As compared to conventional plasmonic photocatalysts such as Au-NPs/TiO2 nanostructures, a 5-fold-enhanced incident photon-to-current conversion efficiency is achieved within the entire wavelength range 450–850 nm in the Au-NPs/TiO2/Au-film device. Simulations show good agreements with the experimental results, demonstrating that only the plasmon-induced losses contribute to the enhanced photocurrent generation of the Au-NPs/TiO2/Au-film device. PMID:27470207

  14. [Effect of ensilage on bioconversion of switchgrass to ethanol based on liquid hot water pretreatment].

    PubMed

    Wu, Wentao; Ju, Meiting; Liu, Jinpeng; Liu, Boqun

    2016-04-25

    Ensilage is a traditional way of preserving fresh biomass. However, in order to apply ensilage to the ethanol biorefinery, two parameters need to be evaluated: quantity and quality changes of the biomass; and its effects on bioconversion process. To study these two aspects, switchgrass harvested on three different time points (Early, mid and late fall) were used as feedstock. The early fall harvested biomass was ensiled at 5 moisture levels ranging from 30% to 70%. Silage of 40% moisture and 3 other raw switchgrass were pretreated with liquid hot water, followed by enzymatic hydrolysis as well as simultaneous saccharification and fermentation. After 21 days storage pH values of all silages decreased below 4.0 and the dry matter losses were less than 2.0%, and structural sugars contents did not change dramatically. Liquid hot water caused more hemicellulose dissolution in the silage than in unensiled switchgrass. However, ensilage also increased the risk of releasing more sugar degradation products; After enzymatic hydrolysis, silage obtained higher total glucose, xylose and galactose yields than raw materials; After simultaneous saccharification and fermentation, ethanol concentration in silage was 12.1 g/L, higher than the unensiled switchgrass (10.3 g/L, 9.7 g/L and 10.6 g/L for early, mid and late fall respectively). Our results suggest that ensilage helps increase pretreatment efficiency and sugar yield, which increases final ethanol production.

  15. Highly stable and regenerable Mn-based/SBA-15 sorbents for desulfurization of hot coal gas.

    PubMed

    Zhang, F M; Liu, B S; Zhang, Y; Guo, Y H; Wan, Z Y; Subhan, Fazle

    2012-09-30

    A series of mesoporous xCuyMn/SBA-15 sorbents with different Cu/Mn atomic ratios were prepared by wet impregnation method and their desulfurization performance in hot coal gas was investigated in a fixed-bed quartz reactor in the range of 700-850°C. The successive nine desulfurization-regeneration cycles at 800°C revealed that 1Cu9Mn/SBA-15 presented high performance with durable regeneration ability due to the high dispersion of Mn(2)O(3) particles incorporated with a certain amount of copper oxides. The breakthrough sulfur capacity of 1Cu9Mn/SBA-15 observed 800°C is 13.8 g S/100g sorbents, which is remarkably higher than these of 40 wt%LaFeO(3)/SBA-15 (4.8 g S/100g sorbents) and 50 wt%LaFe(2)O(x)/MCM-41 (5.58 g S/100g sorbents) used only at 500-550°C. This suggested that the loading of Mn(2)O(3) active species with high thermal stability to SBA-15 support significantly increased sulfur capacity at relatively higher sulfidation temperature. The fresh and used xCuyMn/SBA-15 sorbents were characterized by means of BET, XRD, XPS, XAES, TG/DSC and HRTEM techniques, confirmed that the structure of the sorbents remained intact before and after hot coal gas desulfurization.

  16. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation

    NASA Astrophysics Data System (ADS)

    Lu, Yuhua; Dong, Wen; Chen, Zhuo; Pors, Anders; Wang, Zhenlin; Bozhevolnyi, Sergey I.

    2016-07-01

    Plasmonic hot-electron generation has recently come into focus as a new scheme for solar energy conversion. So far, however, due to the relatively narrow bandwidth of the surface plasmon resonances and the insufficient resonant light absorption, most of plasmonic photocatalysts show narrow-band spectral responsivities and small solar energy conversion efficiencies. Here we experimentally demonstrate that a three-layered nanostructure, consisting of a monolayer gold-nanoparticles and a gold film separated by a TiO2 gap layer (Au-NPs/TiO2/Au-film), is capable of near-completely absorbing light within the whole visible region. We show that the Au-NPs/TiO2/Au-film device can take advantage of such strong and broadband light absorption to enhance the generation of hot electrons and thus the photocurrent under visible irradiation. As compared to conventional plasmonic photocatalysts such as Au-NPs/TiO2 nanostructures, a 5-fold-enhanced incident photon-to-current conversion efficiency is achieved within the entire wavelength range 450–850 nm in the Au-NPs/TiO2/Au-film device. Simulations show good agreements with the experimental results, demonstrating that only the plasmon-induced losses contribute to the enhanced photocurrent generation of the Au-NPs/TiO2/Au-film device.

  17. Current gain above 10 in sub-10 nm base III-Nitride tunneling hot electron transistors with GaN/AlN emitter

    SciTech Connect

    Yang, Zhichao Zhang, Yuewei; Krishnamoorthy, Sriram; Nath, Digbijoy N.; Khurgin, Jacob B.; Rajan, Siddharth

    2016-05-09

    We report on a tunneling hot electron transistor amplifier with common-emitter current gain greater than 10 at a collector current density in excess of 40 kA/cm{sup 2}. The use of a wide-bandgap GaN/AlN (111 nm/2.5 nm) emitter was found to greatly improve injection efficiency of the emitter and reduce cold electron leakage. With an ultra-thin (8 nm) base, 93% of the injected hot electrons were collected, enabling a common-emitter current gain up to 14.5. This work improves understanding of the quasi-ballistic hot electron transport and may impact the development of high speed devices based on unipolar hot electron transport.

  18. Current gain above 10 in sub-10 nm base III-Nitride tunneling hot electron transistors with GaN/AlN emitter

    NASA Astrophysics Data System (ADS)

    Yang, Zhichao; Zhang, Yuewei; Krishnamoorthy, Sriram; Nath, Digbijoy N.; Khurgin, Jacob B.; Rajan, Siddharth

    2016-05-01

    We report on a tunneling hot electron transistor amplifier with common-emitter current gain greater than 10 at a collector current density in excess of 40 kA/cm2. The use of a wide-bandgap GaN/AlN (111 nm/2.5 nm) emitter was found to greatly improve injection efficiency of the emitter and reduce cold electron leakage. With an ultra-thin (8 nm) base, 93% of the injected hot electrons were collected, enabling a common-emitter current gain up to 14.5. This work improves understanding of the quasi-ballistic hot electron transport and may impact the development of high speed devices based on unipolar hot electron transport.

  19. Hot microelectrodes.

    PubMed

    Baranski, Andrzej S

    2002-03-15

    Heat generation at disk microelectrodes by a high-amplitude (few volt) and high-frequency (0.1-2 GHz) alternating voltage is described. This method allows changing electrode temperature very rapidly and maintaining it well above the boiling point of solution for a very long time without any indication of boiling. The size of the hot zone in solution is determined by the radius of the electrode. There is no obvious limit in regard to the electrode size, so theoretically, by this method, it should be possible to create hot spots that are much smaller than those created with laser beams. That could lead to potential applications in medicine and biology. The heat-generating waveform does not electrically interfere with normal electroanalytical measurements. The noise level at hot microelectrodes is only slightly higher, as compared to normal microelectodes, but diffusion-controlled currents at hot microelectrodes may be up to 7 times higher, and an enhancement of kinetically controlled currents may be even larger. Hot microelectrodes can be used for end-column detection in capillary electrophoresis and for in-line or in vivo analyses. Temperature gradients at hot microelectrodes may exceed 1.5 x 10(5) K/cm, which makes them useful in studies of Soret diffusion and thermoelectric phenomena.

  20. Analysis of non linear thermo-mechanical behavior of thin rectangular plates

    NASA Astrophysics Data System (ADS)

    Kaveri, M.; Anvesh, Ch. Venkata; Babu, R. Art; Vinutha, A.

    2017-07-01

    A theoretical model is developed for geometrically and materially nonlinear analysis of thin rectangular plates subjected to transverse mechanical loads and exposed to non-uniform thermal gradients over their depth. Two types of support conditions are considered for the plate based on assuming that in-plane displacements are either restrained or unrestrained against lateral translation. Several numerical examples including two examples for rectangular plates are presented to assess the accuracy and performance of the proposed method. The evolution of the true shape of the compressive zone supporting tensile membrane action in laterally unrestrained plates under large displacements is graphically illustrated for the two non-uniform thermal gradients. It is shown that the effect of the short hot fire on the plate behavior is more pronounced.