Science.gov

Sample records for based hybrid system

  1. Model-Based Prognostics of Hybrid Systems

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Roychoudhury, Indranil; Bregon, Anibal

    2015-01-01

    Model-based prognostics has become a popular approach to solving the prognostics problem. However, almost all work has focused on prognostics of systems with continuous dynamics. In this paper, we extend the model-based prognostics framework to hybrid systems models that combine both continuous and discrete dynamics. In general, most systems are hybrid in nature, including those that combine physical processes with software. We generalize the model-based prognostics formulation to hybrid systems, and describe the challenges involved. We present a general approach for modeling hybrid systems, and overview methods for solving estimation and prediction in hybrid systems. As a case study, we consider the problem of conflict (i.e., loss of separation) prediction in the National Airspace System, in which the aircraft models are hybrid dynamical systems.

  2. Sodium borohydride based hybrid power system

    NASA Astrophysics Data System (ADS)

    Richardson, Bradley S.; Birdwell, Joseph F.; Pin, François G.; Jansen, John F.; Lind, Randall F.

    Sodium borohydride's properties make it a good source of hydrogen for use with a fuel cell for an on-demand system that is easily controllable and has no idle costs. Previous work, as described in the literature, indicated that ruthenium (Ru) is an efficient catalyst for generating hydrogen from sodium borohydride. Tests were conducted to evaluate catalyst loading with the results of these tests indicating that the hydrolysis rate is affected by the loading of the catalyst. It was also apparent that the substrate surface is not completely occupied by Ru at the lower loadings, and that increased loadings are needed to optimize the reaction rate. A differential rate test with a fixed bed reactor was also conducted. It was observed that temperature has a significant effect on the rate of reaction. Feed rate also affected the rate of reaction with lower feed rates (longer residence time in the reactor) having higher reaction rates. A bench-top hybrid system was also developed and tested. This test bed demonstrated how a system based on a chemically generated hydrogen-fed proton exchange membrane fuel cell could be integrated with batteries to provide a hybrid power system that can meet the demands of a highly varying electrical load up to four times the rated output of the fuel cell.

  3. A hybrid agent-based approach for modeling microbiological systems.

    PubMed

    Guo, Zaiyi; Sloot, Peter M A; Tay, Joc Cing

    2008-11-21

    Models for systems biology commonly adopt Differential Equations or Agent-Based modeling approaches for simulating the processes as a whole. Models based on differential equations presuppose phenomenological intracellular behavioral mechanisms, while models based on Multi-Agent approach often use directly translated, and quantitatively less precise if-then logical rule constructs. We propose an extendible systems model based on a hybrid agent-based approach where biological cells are modeled as individuals (agents) while molecules are represented by quantities. This hybridization in entity representation entails a combined modeling strategy with agent-based behavioral rules and differential equations, thereby balancing the requirements of extendible model granularity with computational tractability. We demonstrate the efficacy of this approach with models of chemotaxis involving an assay of 10(3) cells and 1.2x10(6) molecules. The model produces cell migration patterns that are comparable to laboratory observations.

  4. An online hybrid BCI system based on SSVEP and EMG

    NASA Astrophysics Data System (ADS)

    Lin, Ke; Cinetto, Andrea; Wang, Yijun; Chen, Xiaogang; Gao, Shangkai; Gao, Xiaorong

    2016-04-01

    Objective. A hybrid brain-computer interface (BCI) is a device combined with at least one other communication system that takes advantage of both parts to build a link between humans and machines. To increase the number of targets and the information transfer rate (ITR), electromyogram (EMG) and steady-state visual evoked potential (SSVEP) were combined to implement a hybrid BCI. A multi-choice selection method based on EMG was developed to enhance the system performance. Approach. A 60-target hybrid BCI speller was built in this study. A single trial was divided into two stages: a stimulation stage and an output selection stage. In the stimulation stage, SSVEP and EMG were used together. Every stimulus flickered at its given frequency to elicit SSVEP. All of the stimuli were divided equally into four sections with the same frequency set. The frequency of each stimulus in a section was different. SSVEPs were used to discriminate targets in the same section. Different sections were classified using EMG signals from the forearm. Subjects were asked to make different number of fists according to the target section. Canonical Correlation Analysis (CCA) and mean filtering was used to classify SSVEP and EMG separately. In the output selection stage, the top two optimal choices were given. The first choice with the highest probability of an accurate classification was the default output of the system. Subjects were required to make a fist to select the second choice only if the second choice was correct. Main results. The online results obtained from ten subjects showed that the mean accurate classification rate and ITR were 81.0% and 83.6 bits min-1 respectively only using the first choice selection. The ITR of the hybrid system was significantly higher than the ITR of any of the two single modalities (EMG: 30.7 bits min-1, SSVEP: 60.2 bits min-1). After the addition of the second choice selection and the correction task, the accurate classification rate and ITR was

  5. Coil system for a mirror-based hybrid reactor

    SciTech Connect

    Hagnestal, A.; Agren, O.; Moiseenko, V. E.

    2012-06-19

    Two different superconducting coil systems for the SFLM Hybrid study - a quadrupolar mirror based fusion-fission reactor study - are presented. One coil system is for a magnetic field with 2 T at the midplane and a mirror ratio of four. This coil set consists of semiplanar coils in two layers. The alternative coil system is for a downscaled magnetic field of 1.25 T at the midplane and a mirror ratio of four, where a higher {beta} is required to achieve sufficient the neutron production. This coil set has one layer of twisted 3D coils. The 3D coils are expected to be considerably cheaper than the semiplanar, since NbTi superconductors can be used for most coils instead of Nb3Sn due to the lower magnetic field.

  6. Hybrid flagellar motor/MEMS based TNT detection system

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Woo; Tung, Steve

    2006-05-01

    Effective and rapid detection of nitroaromatic explosive compounds, especially trinitrotoluene (TNT), is very important to homeland security as well as to environmental monitoring of contaminants in soil and water, and landmine detection. In this research, we explore a novel nanoscale flagellar motor based TNT detection system (nFMTNT). The nFMTNT is a bio-hybrid MEMS system which combines genetically engineered flagellar motors and MEMS devices. The system consists of three major components: (1) a non-pathogenic, genetically modified Escherichia coli strain KAF95 with a rotating flagellar filament, (2) a microchannel with tethered cells, and (3) a sub-micron bead attached to a rotating flagellar filament. The operational principle of nFMTNT is based on detecting the change in the rotational behavior of the nanoscale flagellar filament in the presence of TNT. The rotational behavior of flagellar filaments of E. coli KAF95 was shown to be extremely sensitive to the presence of nitrate or nitrite. Normally, the flagellar filaments were locked in to rotate in the counterclockwise direction. However, when a nitrate or nitrite was present in the immediate environment, the filaments cease to rotate. Our results indicate that the threshold concentrations required for this response were 10 -4 M for nitrate and 10 -3 M for nitrite. This is equivalent to around 10 pg of nitrate and 100 pg of nitrite, based on the dimension of the MEMS-based reaction system used for the experiment (400 μm × 100 μm × 40 μm). These detection limits can be even lower when the size of the system is reduced.

  7. Hybrid diagnostic system: beacon-based exception analysis for multimissions - Livingstone integration

    NASA Technical Reports Server (NTRS)

    Park, Han G.; Cannon, Howard; Bajwa, Anupa; Mackey, Ryan; James, Mark; Maul, William

    2004-01-01

    This paper describes the initial integration of a hybrid reasoning system utilizing a continuous domain feature-based detector, Beacon-based Exceptions Analysis for Multimissions (BEAM), and a discrete domain model-based reasoner, Livingstone.

  8. A Hybrid Template-Based Composite Classification System

    DTIC Science & Technology

    2009-02-01

    5.5.1 OOL Background . . . . . . . . . . . . . . . . 131 5.5.2 OOL Methodology Improvements . . . . . . . 133 5.5.3 Artificial Neural Networks as OOL...a combined system that composes the hybrid clas- sifier with an out-of-library OOL detector. This OOL detector uses artificial neural networks as a...the in-library classes. 5.5.3 Artificial Neural Networks as OOL Detectors The main idea of the Leap OOL Detector, that of finding a reasonably low

  9. Passivity-Based Adaptive Hybrid Synchronization of a New Hyperchaotic System with Uncertain Parameters

    PubMed Central

    2012-01-01

    We investigate the adaptive hybrid synchronization problem for a new hyperchaotic system with uncertain parameters. Based on the passivity theory and the adaptive control theory, corresponding controllers and parameter estimation update laws are proposed to achieve hybrid synchronization between two identical uncertain hyperchaotic systems with different initial values, respectively. Numerical simulation indicates that the presented methods work effectively. PMID:23365538

  10. Passivity-based adaptive hybrid synchronization of a new hyperchaotic system with uncertain parameters.

    PubMed

    Zhou, Xiaobing; Fan, Zhangbiao; Zhou, Dongming; Cai, Xiaomei

    2012-01-01

    We investigate the adaptive hybrid synchronization problem for a new hyperchaotic system with uncertain parameters. Based on the passivity theory and the adaptive control theory, corresponding controllers and parameter estimation update laws are proposed to achieve hybrid synchronization between two identical uncertain hyperchaotic systems with different initial values, respectively. Numerical simulation indicates that the presented methods work effectively.

  11. Nanoscale hybrid systems based on carbon nanotubes for biological sensing and control.

    PubMed

    Cho, Youngtak; Shin, Narae; Kim, Daesan; Park, Jae Yeol; Hong, Seunghun

    2017-04-30

    This paper provides a concise review on the recent development of nanoscale hybrid systems based on carbon nanotubes (CNTs) for biological sensing and control. CNT-based hybrid systems have been intensively studied for versatile applications of biological interfaces such as sensing, cell therapy and tissue regeneration. Recent advances in nanobiotechnology not only enable the fabrication of highly sensitive biosensors at nanoscale but also allow the applications in the controls of cell growth and differentiation. This review describes the fabrication methods of such CNT-based hybrid systems and their applications in biosensing and cell controls.

  12. A hybrid lightwave transport system based on a BLS with an OSNR enhancement scheme

    NASA Astrophysics Data System (ADS)

    Ying, Cheng-Ling; Lu, Hai-Han; Li, Chung-Yi; Lin, Chun-Yu; Wu, Chang-Jen; Lin, Hung-Hsien

    2016-04-01

    A hybrid lightwave transport system based on a broadband light source (BLS) with an optical signal-to-noise ratio (OSNR) enhancement scheme for millimeter-wave (MMW)/radio-over-fiber (RoF)/cable television (CATV) signal transmission is proposed and experimentally demonstrated. Unlike traditional hybrid lightwave transport systems for signal transmission, in which a transmitting site needs multiple wavelength-selected distributed feedback laser diodes (DFB LDs) to support various services, such proposed systems employ a phase modulator to provide multiple optical carriers for various applications. Over an 80 km single-mode fiber (SMF) transmission, the bit error rate (BER)/carrier-to-noise ratio (CNR)/composite second-order (CSO)/composite triple-beat (CTB) perform brilliantly for hybrid 100 GHz MMW/50 GHz MMW/10 GHz RoF/550 MHz CATV signal transmission. Such a hybrid lightwave transport system would be attractive for fiber trunk applications to provide broadband integrated services.

  13. Systems for hybrid cars

    NASA Astrophysics Data System (ADS)

    Bitsche, Otmar; Gutmann, Guenter

    Not only sharp competition but also legislation are pushing development of hybrid drive trains. Based on conventional internal combustion engine (ICE) vehicles, these drive trains offer a wide range of benefits from reduced fuel consumption and emission to multifaceted performance improvements. Hybrid electric drive trains may also facilitate the introduction of fuel cells (FC). The battery is the key component for all hybrid drive trains, as it dominates cost and performance issues. The selection of the right battery technology for the specific automotive application is an important task with an impact on costs of development and use. Safety, power, and high cycle life are a must for all hybrid applications. The greatest pressure to reduce cost is in soft hybrids, where lead-acid embedded in a considerate management presents the cheapest solution, with a considerable improvement in performance needed. From mild to full hybridization, an improvement in specific power makes higher costs more acceptable, provided that the battery's service life is equivalent to the vehicle's lifetime. Today, this is proven for the nickel-metal hydride system. Lithium ion batteries, which make use of a multiple safety concept, and with some development anticipated, provide even better prospects in terms of performance and costs. Also, their scalability permits their application in battery electric vehicles—the basis for better performance and enhanced user acceptance. Development targets for the batteries are discussed with a focus on system aspects such as electrical and thermal management and safety.

  14. Hybrid knowledge systems

    NASA Technical Reports Server (NTRS)

    Subrahmanian, V. S.

    1994-01-01

    An architecture called hybrid knowledge system (HKS) is described that can be used to interoperate between a specification of the control laws describing a physical system, a collection of databases, knowledge bases and/or other data structures reflecting information about the world in which the physical system controlled resides, observations (e.g. sensor information) from the external world, and actions that must be taken in response to external observations.

  15. Hessian matrix estimation in hybrid systems based on an embedded FFNN.

    PubMed

    Baek, Seung-Mook; Park, Jung-Wook

    2010-10-01

    This paper describes the Hessian matrix estimation of nonsmooth nonlinear parameters by the identifier based on a feedforward neural network (FFNN) embedded in a hybrid system, which is modeled by the differential-algebraic-impulsive-switched (DAIS) structure. After identifying full dynamics of the hybrid system, the FFNN is used to estimate second-order derivatives of an objective function J with respect to the nonlinear parameters from the gradient information, which are trajectory sensitivities. Then, the estimated Hessian matrix is applied to the optimal tuning of a saturation limiter used in a practical engineering system.

  16. Hybrid Energy System Design of Micro Hydro-PV-biogas Based Micro-grid

    NASA Astrophysics Data System (ADS)

    Nishrina; Abdullah, A. G.; Risdiyanto, A.; Nandiyanto, ABD

    2017-03-01

    Hybrid renewable energy system is an arrangement of one or more sources of renewable energy and also conventional energy. This paper describes a simulation results of hybrid renewable power system based on the available potential in an educational institution in Indonesia. HOMER software was used to simulate and analyse both in terms of optimization and economic terms. This software was developed through 3 main principles; simulation, optimization, and sensitivity analysis. Generally, the presented results show that the software can demonstrate a feasible hybrid power system as well to be realized. The entire demand in case study area can be supplied by the system configuration and can be met by ¾ of electricity production. So, there are ¼ of generated energy became an excess electricity.

  17. Hybrid Resource Allocation Scheme with Proportional Fairness in OFDMA-Based Cognitive Radio Systems

    NASA Astrophysics Data System (ADS)

    Li, Li; Xu, Changqing; Fan, Pingzhi; He, Jian

    In this paper, the resource allocation problem for proportional fairness in hybrid Cognitive Radio (CR) systems is studied. In OFDMA-based CR systems, traditional resource allocation algorithms can not guarantee proportional rates among CR users (CRU) in each OFDM symbol because the number of available subchannels might be smaller than that of CRUs in some OFDM symbols. To deal with this time-varying nature of available spectrum resource, a hybrid CR scheme in which CRUs are allowed to use subchannels in both spectrum holes and primary users (PU) bands is adopted and a resource allocation algorithm is proposed to guarantee proportional rates among CRUs with no undue interference to PUs.

  18. Hybrid PID and PSO-based control for electric power assist steering system for electric vehicle

    NASA Astrophysics Data System (ADS)

    Hanifah, R. A.; Toha, S. F.; Ahmad, S.

    2013-12-01

    Electric power assist steering (EPAS) system provides an important significance in enhancing the driving performance of a vehicle with its energy-conserving features. This paper presents a hybrid PID (Proportional-Integral-Derivative) and particle swarm optimization (PSO) based control scheme to minimize energy consumption for EPAS. This single objective optimization scheme is realized using the PSO technique in searching for best gain parameters of the PID controller. The fast tuning feature of this optimum PID controller produced high-quality solutions. Simulation results show the performance and effectiveness of the hybrid PSO-PID based controller as opposed to the conventional PID controller.

  19. Qualitative Fault Isolation of Hybrid Systems: A Structural Model Decomposition-Based Approach

    NASA Technical Reports Server (NTRS)

    Bregon, Anibal; Daigle, Matthew; Roychoudhury, Indranil

    2016-01-01

    Quick and robust fault diagnosis is critical to ensuring safe operation of complex engineering systems. A large number of techniques are available to provide fault diagnosis in systems with continuous dynamics. However, many systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete behavioral modes, each with its own continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task computationally more complex due to the large number of possible system modes and the existence of autonomous mode transitions. This paper presents a qualitative fault isolation framework for hybrid systems based on structural model decomposition. The fault isolation is performed by analyzing the qualitative information of the residual deviations. However, in hybrid systems this process becomes complex due to possible existence of observation delays, which can cause observed deviations to be inconsistent with the expected deviations for the current mode in the system. The great advantage of structural model decomposition is that (i) it allows to design residuals that respond to only a subset of the faults, and (ii) every time a mode change occurs, only a subset of the residuals will need to be reconfigured, thus reducing the complexity of the reasoning process for isolation purposes. To demonstrate and test the validity of our approach, we use an electric circuit simulation as the case study.

  20. An Efficient Model-based Diagnosis Engine for Hybrid Systems Using Structural Model Decomposition

    NASA Technical Reports Server (NTRS)

    Bregon, Anibal; Narasimhan, Sriram; Roychoudhury, Indranil; Daigle, Matthew; Pulido, Belarmino

    2013-01-01

    Complex hybrid systems are present in a large range of engineering applications, like mechanical systems, electrical circuits, or embedded computation systems. The behavior of these systems is made up of continuous and discrete event dynamics that increase the difficulties for accurate and timely online fault diagnosis. The Hybrid Diagnosis Engine (HyDE) offers flexibility to the diagnosis application designer to choose the modeling paradigm and the reasoning algorithms. The HyDE architecture supports the use of multiple modeling paradigms at the component and system level. However, HyDE faces some problems regarding performance in terms of complexity and time. Our focus in this paper is on developing efficient model-based methodologies for online fault diagnosis in complex hybrid systems. To do this, we propose a diagnosis framework where structural model decomposition is integrated within the HyDE diagnosis framework to reduce the computational complexity associated with the fault diagnosis of hybrid systems. As a case study, we apply our approach to a diagnostic testbed, the Advanced Diagnostics and Prognostics Testbed (ADAPT), using real data.

  1. Hybrid wireless-over-fiber transmission system based on multiple injection-locked FP LDs.

    PubMed

    Li, Chung-Yi; Lu, Hai-Han; Chu, Chien-An; Ying, Cheng-Ling; Lu, Ting-Chien; Peng, Peng-Chun

    2015-07-27

    A hybrid wireless-over-fiber (WoF) transmission system based on multiple injection-locked Fabry-Perot laser diodes (FP LDs) is proposed and experimentally demonstrated. Unlike the traditional hybrid WoF transmission systems that require multiple distributed feedback (DFB) LDs to support different kinds of services, the proposed system employs multiple injection-locked FP LDs to provide different kinds of applications. Such a hybrid WoF transmission system delivers downstream intensity-modulated 20-GHz microwave (MW)/60-GHz millimeter-wave (MMW)/550-MHz cable television (CATV) signals and upstream phase-remodulated 20-GHz MW signal. Excellent bit error rate (BER), carrier-to-noise ratio (CNR), composite second-order (CSO), and composite triple-beat (CTB) are observed over a 40-km single-mode fiber (SMF) and a 4-m radio frequency (RF) wireless transport. Such a hybrid WoF transmission system has practical applications for fiber-wireless convergence to provide broadband integrated services, including telecommunication, data communication, and CATV services.

  2. Managing hybrid marketing systems.

    PubMed

    Moriarty, R T; Moran, U

    1990-01-01

    As competition increases and costs become critical, companies that once went to market only one way are adding new channels and using new methods - creating hybrid marketing systems. These hybrid marketing systems hold the promise of greater coverage and reduced costs. But they are also hard to manage; they inevitably raise questions of conflict and control: conflict because marketing units compete for customers; control because new indirect channels are less subject to management authority. Hard as they are to manage, however, hybrid marketing systems promise to become the dominant design, replacing the "purebred" channel strategy in all kinds of businesses. The trick to managing the hybrid is to analyze tasks and channels within and across a marketing system. A map - the hybrid grid - can help managers make sense of their hybrid system. What the chart reveals is that channels are not the basic building blocks of a marketing system; marketing tasks are. The hybrid grid forces managers to consider various combinations of channels and tasks that will optimize both cost and coverage. Managing conflict is also an important element of a successful hybrid system. Managers should first acknowledge the inevitability of conflict. Then they should move to bound it by creating guidelines that spell out which customers to serve through which methods. Finally, a marketing and sales productivity (MSP) system, consisting of a central marketing database, can act as the central nervous system of a hybrid marketing system, helping managers create customized channels and service for specific customer segments.

  3. A Self-Powered Hybrid Energy Scavenging System Utilizing RF and Vibration Based Electromagnetic Harvesters

    NASA Astrophysics Data System (ADS)

    Uluşan, H.; Gharehbaghi, K.; Zorlu, Ö.; Muhtaroğlu, A.; Külah, H.

    2015-12-01

    This study presents a novel hybrid system that combines the power generated simultaneously by a vibration-based Electromagnetic (EM) harvester and a UHF band RF harvester. The novel hybrid scavenger interface uses a power management circuit in 180 nm CMOS technology to step-up and to regulate the combined output. At the first stage of the system, the RF harvester generates positive DC output with a 7-stage threshold compensated rectifier, while the EM harvester generates negative DC output with a self-powered AC/DC negative doubler circuit. At the second stage, the generated voltages are serially added, stepped-up with an on-chip charge pump circuit, and regulated to a typical battery voltage of 3 V. Test results indicate that the hybrid operation enables generation of 9 μW at 3 V output for a wide range of input stimulations, which could not be attained with either harvesting mode by itself. Moreover the hybrid system behaves as a typical battery, and keeps the output voltage stable at 3 V up to 18 μW of output power. The presented system is the first battery-like harvester to our knowledge that generates energy from two independent sources and regulates the output to a stable DC voltage.

  4. Hybrid neural network and rule-based pattern recognition system capable of self-modification

    SciTech Connect

    Glover, C.W.; Silliman, M.; Walker, M.; Spelt, P.F. ); Rao, N.S.V. . Dept. of Computer Science)

    1990-01-01

    This paper describes a hybrid neural network and rule-based pattern recognition system architecture which is capable of self-modification or learning. The central research issue to be addressed for a multiclassifier hybrid system is whether such a system can perform better than the two classifiers taken by themselves. The hybrid system employs a hierarchical architecture, and it can be interfaced with one or more sensors. Feature extraction routines operating on raw sensor data produce feature vectors which serve as inputs to neural network classifiers at the next level in the hierarchy. These low-level neural networks are trained to provide further discrimination of the sensor data. A set of feature vectors is formed from a concatenation of information from the feature extraction routines and the low-level neural network results. A rule-based classifier system uses this feature set to determine if certain expected environmental states, conditions, or objects are present in the sensors' current data stream. The rule-based system has been given an a priori set of models of the expected environmental states, conditions, or objects which it is expected to identify. The rule-based system forms many candidate directed graphs of various combinations of incoming features vectors, and it uses a suitably chosen metric to measure the similarity between candidate and model directed graphs. The rule-based system must decide if there is a match between one of the candidate graphs and a model graph. If a match is found, then the rule-based system invokes a routine to create and train a new high-level neural network from the appropriate feature vector data to recognize when this model state is present in future sensor data streams. 12 refs., 3 figs.

  5. Characterisation of a hybrid, fuel-cell-based propulsion system for small unmanned aircraft

    NASA Astrophysics Data System (ADS)

    Verstraete, D.; Lehmkuehler, K.; Gong, A.; Harvey, J. R.; Brian, G.; Palmer, J. L.

    2014-03-01

    Advanced hybrid powerplants combining a fuel cell and battery can enable significantly higher endurance for small, electrically powered unmanned aircraft systems, compared with batteries alone. However, detailed investigations of the static and dynamic performance of such systems are required to address integration challenges. This article describes a series of tests used to characterise the Horizon Energy Systems' AeroStack hybrid, fuel-cell-based powertrain. The results demonstrate that a significant difference can exist between the dynamic performance of the fuel-cell system and its static polarisation curve, confirming the need for detailed measurements. The results also confirm that the AeroStack's lithium-polymer battery plays a crucial role in its response to dynamic load changes and protects the fuel cell from membrane dehydration and fuel starvation. At low static loads, the AeroStack fuel cell recharges the battery with currents up to 1 A, which leads to further differences with the polarisation curve.

  6. Functional hybrid systems based on large-area high-quality graphene.

    PubMed

    Coraux, Johann; Marty, Laëtitia; Bendiab, Nedjma; Bouchiat, Vincent

    2013-10-15

    states such as superconductivity and explore quantum phase transitions controlled by electrostatic back gates. We finally discuss the optical properties of hybrids in which graphene is decorated with optically active molecules. Depending on how close these molecules are to the graphene's electromechanical systems, the interaction of the system with light can be changed. Fields such as spintronics and catalysis could benefit from high-quality graphene based hybrid systems, which have not been fully explored.

  7. Sampling-based algorithms for analysis and design of hybrid and embedded systems

    NASA Astrophysics Data System (ADS)

    Bhatia, Amit

    This dissertation considers the problem of safety analysis of hybrid and embedded systems using sampling-based incremental search algorithms. The safety specifications are a set of conditions that the states (or the trajectories) of the system must satisfy for the system to be considered safe. The safety analysis problem is known to be undecidable for dynamical systems. Most of the existing approaches for analyzing the safety specifications of a dynamical system are liable to give inconclusive results in general. This is because of the fact that each of these approaches can either only construct a safety certificate for a safe system, or, a feasible counterexample for an unsafe system. Sampling-based incremental search algorithms have been very successful for motion planning problems in robotics and the counterexample generation problem for dynamical systems. In this dissertation, we propose a novel approach that uses sampling-based incremental search algorithms to search for feasible counterexamples to safety and uses the sampled trajectories to construct a safety certificate in case no counterexample is found. We do so by introducing a notion of completeness for such algorithms that we call as resolution completeness. A sampling-based algorithm is called resolution-complete for safety analysis of a given system, if for any given resolution of controls it is guaranteed to terminate, producing, either a feasible counterexample to safety or a certificate that guarantees safe behavior of the system at the given resolution. We propose a variety of sampling-based resolution-complete algorithms for safety analysis of hybrid and embedded systems. The algorithms construct feasible trajectories at increasing levels of resolution of the controls and use structural properties of the system to make reachability claims for states in the neighborhood of the constructed trajectories. Conditions guaranteeing completeness of the proposed algorithms are derived for the case of

  8. A hybrid WDM transport system based on mutually injection-locked Fabry Perot laser diodes

    NASA Astrophysics Data System (ADS)

    Ying, Cheng-Ling; Lu, Hai-Han; Tzeng, Shah-Jye; Ma, Hsien-Li; Chuang, Yao-Wei

    2007-08-01

    A hybrid wavelength-division-multiplexing (WDM) transport system based on mutually injection-locked Fabry-Perot laser diodes (FP LDs) for CATV, 256-QAM and OC-48 transmission is proposed and demonstrated. Mutually injection-locked FP LDs as broadband light source could be relatively simple and cost-effective compared with other demonstrated light source schemes. The proposed hybrid WDM transport system employs four filtered wavelengths (modes) to transmit 111 AM-VSB channels, four 256-QAM digital passband channels, and one OC-48 digital baseband channel simultaneously. Since our proposed system does not use multiple distributed feedback (DFB) LDs, it reveals a prominent one with simpler and more economic advantages.

  9. A Hybrid Classification System for Heart Disease Diagnosis Based on the RFRS Method

    PubMed Central

    Su, Qiang; Zhang, Mo; Zhu, Yanhong; Wang, Qiugen; Wang, Qian

    2017-01-01

    Heart disease is one of the most common diseases in the world. The objective of this study is to aid the diagnosis of heart disease using a hybrid classification system based on the ReliefF and Rough Set (RFRS) method. The proposed system contains two subsystems: the RFRS feature selection system and a classification system with an ensemble classifier. The first system includes three stages: (i) data discretization, (ii) feature extraction using the ReliefF algorithm, and (iii) feature reduction using the heuristic Rough Set reduction algorithm that we developed. In the second system, an ensemble classifier is proposed based on the C4.5 classifier. The Statlog (Heart) dataset, obtained from the UCI database, was used for experiments. A maximum classification accuracy of 92.59% was achieved according to a jackknife cross-validation scheme. The results demonstrate that the performance of the proposed system is superior to the performances of previously reported classification techniques. PMID:28127385

  10. Hybrid microdosing system

    NASA Astrophysics Data System (ADS)

    Nguyen, Nam-Trung; Richter, Stefan; Mehner, Jan; Schubert, Steffen; Doetzel, Wolfram; Gessner, Thomas

    1998-09-01

    Based on an article in print this paper presents a hybrid assembled bi-directional micro dosing system for a water flow range of -40 (mu) l/min to 80 (mu) l/min. The system consists of a silicon micropump/valve chip (9 mm X 9 mm) and a silicon flow sensor (6 mm X 12 mm). The valve/pump can be driven by either a piezoelectric disk or an electrostatic actuator. Both, piezoelectric and electrostatic actuation for the pump/valve, the technology of each component and the hybrid assembling of the whole system are described. Results of transient numerical simulation of the pump and the mass flow sensor are presented and compared with experimental results. Descriptions of two different operational modes of the micro dosing system are given. The new pulse-width modulated control method for the actuator makes controlling the system easier. It allows an open-loop control of the pump rates without changing the driving frequency. All reported micropumps were driven by a square-wave signal which causes a relatively high noise level. In contrast to this, sawtooth and sinusoidal signals generate a smooth and quiet operation because of the small drag force on the fluid ports. Results of different driving methods are presented and compared.

  11. A system-on-chip and paper-based inkjet printed electrodes for a hybrid wearable bio-sensing system.

    PubMed

    Xie, Li; Yang, Geng; Mäntysalo, Matti; Jonsson, Fredrik; Zheng, Li-Rong

    2012-01-01

    This paper presents a hybrid wearable bio-sensing system, which combines traditional small-area low-power and high-performance System-on-Chip (SoC), flexible paper substrate and cost-effective Printed Electronics. Differential bio-signals are measured, digitized, stored and transmitted by the SoC. The total area of the chip is 1.5 × 3.0 mm(2). This enables the miniaturization of the wearable system. The electrodes and interconnects are inkjet printed on paper substrate and the performance is verified in in-vivo tests. The quality of electrocardiogram signal sensed by printed electrodes is comparable with commercial electrodes, with noise level slightly increased. The paper-based inkjet printed system is flexible, light and thin, which makes the final system comfortable for end-users. The hybrid bio-sensing system offers a potential solution to the next generation wearable healthcare technology.

  12. A Multi-Stage Hybrid Scheduler for Codebook-Based MU-MIMO System

    NASA Astrophysics Data System (ADS)

    Liu, Jingxiu; She, Xiaoming; Chen, Lan; Taoka, Hidekazu

    In this paper, we propose a multi-stage hybrid scheduling scheme for codebook-based precoding systems, which provides a framework to apply different scheduling criterions at different scheduling stages for selecting user equipment (UEs). Numerical simulation results show that the proposed scheme effectively fills the performance gap between maximum carrier-to-interference (Max C/I) power ratio and Proportional Fairness (PF) methods, and provides an important means at the media access control (MAC) layer to lever between aggregate cellular throughput and geometry-specific per-user fairness, in order to meet the requirements of more precise quality of service (QoS) provision for future mobile communication systems.

  13. A PDMS-Based Cylindrical Hybrid Lens for Enhanced Fluorescence Detection in Microfluidic Systems

    PubMed Central

    Lin, Bor-Shyh; Yang, Yu-Ching; Ho, Chong-Yi; Yang, Han-Yu; Wang, Hsiang-Yu

    2014-01-01

    Microfluidic systems based on fluorescence detection have been developed and applied for many biological and chemical applications. Because of the tiny amount of sample in the system; the induced fluorescence can be weak. Therefore, most microfluidic systems deploy multiple optical components or sophisticated equipment to enhance the efficiency of fluorescence detection. However, these strategies encounter common issues of complex manufacturing processes and high costs. In this study; a miniature, cylindrical and hybrid lens made of polydimethylsiloxane (PDMS) to improve the fluorescence detection in microfluidic systems is proposed. The hybrid lens integrates a laser focusing lens and a fluorescence collecting lens to achieve dual functions and simplify optical setup. Moreover, PDMS has advantages of low-cost and straightforward fabrication compared with conventional optical components. The performance of the proposed lens is first examined with two fluorescent dyes and the results show that the lens provides satisfactory enhancement for fluorescence detection of Rhodamine 6G and Nile Red. The overall increments in collected fluorescence signal and detection sensitivity are more than 220% of those without lens, and the detection limits of Rhodamine 6G and Nile red are lowered to 0.01 μg/mL and 0.05 μg/mL, respectively. The hybrid lens is further applied to the detection of Nile red-labeled Chlorella vulgaris cells and it increases both signal intensity and detection sensitivity by more than 520%. The proposed hybrid lens also dramatically reduces the variation in detected signal caused by the deviation in incident angle of excitation light. PMID:24531300

  14. Thermally conductive polyamide 6/carbon filler composites based on a hybrid filler system

    PubMed Central

    Ha, Sung Min; Kwon, O Hwan; Oh, Yu Gyeong; Kim, Yong Seok; Lee, Sung-Goo; Won, Jong Chan; Cho, Kwang Soo; Kim, Byoung Gak; Yoo, Youngjae

    2015-01-01

    We explored the use of a hybrid filler consisting of graphite nanoplatelets (GNPs) and single walled carbon nanotubes (SWCNTs) in a polyamide 6 (PA 6) matrix. The composites containing PA 6, powdered GNP, and SWCNT were melt-processed and the effect of filler content in the single filler and hybrid filler systems on the thermal conductivity of the composites was examined. The thermal diffusivities of the composites were measured by the standard laser flash method. Composites containing the hybrid filler system showed enhanced thermal conductivity with values as high as 8.8 W (m · K)−1, which is a 35-fold increase compared to the thermal conductivity of pure PA 6. Thermographic images of heat conduction and heat release behaviors were consistent with the thermal conductivity results, and showed rapid temperature jumps and drops, respectively, for the composites. A composite model based on the Lewis–Nielsen theory was developed to treat GNP and SWCNT as two separate types of fillers. Two approaches, the additive and multiplicative approaches, give rather good quantitative agreement between the predicted values of thermal conductivity and those measured experimentally. PMID:27877843

  15. Thermally conductive polyamide 6/carbon filler composites based on a hybrid filler system.

    PubMed

    Ha, Sung Min; Kwon, O Hwan; Oh, Yu Gyeong; Kim, Yong Seok; Lee, Sung-Goo; Won, Jong Chan; Cho, Kwang Soo; Kim, Byoung Gak; Yoo, Youngjae

    2015-12-01

    We explored the use of a hybrid filler consisting of graphite nanoplatelets (GNPs) and single walled carbon nanotubes (SWCNTs) in a polyamide 6 (PA 6) matrix. The composites containing PA 6, powdered GNP, and SWCNT were melt-processed and the effect of filler content in the single filler and hybrid filler systems on the thermal conductivity of the composites was examined. The thermal diffusivities of the composites were measured by the standard laser flash method. Composites containing the hybrid filler system showed enhanced thermal conductivity with values as high as 8.8 W (m · K)(-1), which is a 35-fold increase compared to the thermal conductivity of pure PA 6. Thermographic images of heat conduction and heat release behaviors were consistent with the thermal conductivity results, and showed rapid temperature jumps and drops, respectively, for the composites. A composite model based on the Lewis-Nielsen theory was developed to treat GNP and SWCNT as two separate types of fillers. Two approaches, the additive and multiplicative approaches, give rather good quantitative agreement between the predicted values of thermal conductivity and those measured experimentally.

  16. Integrated ion sensor device applications based on printed hybrid material systems (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    List-Kratochvil, Emil J. W.

    2016-09-01

    Comfortable, wearable sensors and computers will enhance every person's awareness of his or her health condition, environment, chemical pollutants, potential hazards, and information of interest. In agriculture and in the food industry there is a need for a constant control of the condition and needs of plants, animals, and farm products. Yet many of these applications depend upon the development of novel, cheap devices and sensors that are easy to implement and to integrate. Organic semiconductors as well as several inorganic materials and hybrid material systems have proven to combine a number of intriguing optical and electronic properties with simple processing methods. As it will be reviewed in this contribution, these materials are believed to find their application in printed electronic devices allowing for the development of smart disposable devices in food-, health-, and environmental monitoring, diagnostics and control, possibly integrated into arrays of sensor elements for multi-parameter detection. In this contribution we review past and recent achievements in the field. Followed by a brief introduction, we will focus on two topics being on the agenda recently: a) the use of electrolyte-gated organic field-effect transistor (EGOFET) and ion-selective membrane based sensors for in-situ sensing of ions and biological substances and b) the development of hybrid material based resistive switches and their integration into fully functional, printed hybrid crossbar sensor array structures.

  17. Exact hybrid particle/population simulation of rule-based models of biochemical systems.

    PubMed

    Hogg, Justin S; Harris, Leonard A; Stover, Lori J; Nair, Niketh S; Faeder, James R

    2014-04-01

    Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This "network-free" approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of "partial network expansion" into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings

  18. Supervisory control design based on hybrid systems and fuzzy events detection. Application to an oxichlorination reactor.

    PubMed

    Altamiranda, Edmary; Torres, Horacio; Colina, Eliezer; Chacón, Edgar

    2002-10-01

    This paper presents a supervisory control scheme based on hybrid systems theory and fuzzy events detection. The fuzzy event detector is a linguistic model, which synthesizes complex relations between process variables and process events incorporating experts' knowledge about the process operation. This kind of detection allows the anticipation of appropriate control actions, which depend upon the selected membership functions used to characterize the process under scrutiny. The proposed supervisory control scheme was successfully implemented for an oxichlorination reactor in a vinyl monomer plant. This implementation has allowed improvement of reactor stability and reduction of raw material consumption.

  19. Photodetectors based on graphene, other two-dimensional materials and hybrid systems.

    PubMed

    Koppens, F H L; Mueller, T; Avouris, Ph; Ferrari, A C; Vitiello, M S; Polini, M

    2014-10-01

    Graphene and other two-dimensional materials, such as transition metal dichalcogenides, have rapidly established themselves as intriguing building blocks for optoelectronic applications, with a strong focus on various photodetection platforms. The versatility of these material systems enables their application in areas including ultrafast and ultrasensitive detection of light in the ultraviolet, visible, infrared and terahertz frequency ranges. These detectors can be integrated with other photonic components based on the same material, as well as with silicon photonic and electronic technologies. Here, we provide an overview and evaluation of state-of-the-art photodetectors based on graphene, other two-dimensional materials, and hybrid systems based on the combination of different two-dimensional crystals or of two-dimensional crystals and other (nano)materials, such as plasmonic nanoparticles, semiconductors, quantum dots, or their integration with (silicon) waveguides.

  20. Cavity QED based on collective magnetic dipole coupling: spin ensembles as hybrid two-level systems.

    PubMed

    Imamoğlu, Atac

    2009-02-27

    We analyze the magnetic dipole coupling of an ensemble of spins to a superconducting microwave stripline structure, incorporating a Josephson junction based transmon qubit. We show that this system is described by an embedded Jaynes-Cummings model: in the strong coupling regime, collective spin-wave excitations of the ensemble of spins pick up the nonlinearity of the cavity mode, such that the two lowest eigenstates of the coupled spin wave-microwave cavity-Josephson junction system define a hybrid two-level system. The proposal described here enables new avenues for nonlinear optics using optical photons coupled to spin ensembles via Raman transitions. The possibility of strong coupling cavity QED with magnetic dipole transitions also opens up the possibility of extending quantum information processing protocols to spins in silicon or graphene, without the need for single-spin confinement.

  1. N-Screen Aware Multicriteria Hybrid Recommender System Using Weight Based Subspace Clustering

    PubMed Central

    Ullah, Farman; Lee, Sungchang

    2014-01-01

    This paper presents a recommender system for N-screen services in which users have multiple devices with different capabilities. In N-screen services, a user can use various devices in different locations and time and can change a device while the service is running. N-screen aware recommendation seeks to improve the user experience with recommended content by considering the user N-screen device attributes such as screen resolution, media codec, remaining battery time, and access network and the user temporal usage pattern information that are not considered in existing recommender systems. For N-screen aware recommendation support, this work introduces a user device profile collaboration agent, manager, and N-screen control server to acquire and manage the user N-screen devices profile. Furthermore, a multicriteria hybrid framework is suggested that incorporates the N-screen devices information with user preferences and demographics. In addition, we propose an individual feature and subspace weight based clustering (IFSWC) to assign different weights to each subspace and each feature within a subspace in the hybrid framework. The proposed system improves the accuracy, precision, scalability, sparsity, and cold start issues. The simulation results demonstrate the effectiveness and prove the aforementioned statements. PMID:25152921

  2. Cellular Decomposition Based Hybrid-Hierarchical Control Systems with Applications to Flight Management Systems

    NASA Technical Reports Server (NTRS)

    Caines, P. E.

    1999-01-01

    The work in this research project has been focused on the construction of a hierarchical hybrid control theory which is applicable to flight management systems. The motivation and underlying philosophical position for this work has been that the scale, inherent complexity and the large number of agents (aircraft) involved in an air traffic system imply that a hierarchical modelling and control methodology is required for its management and real time control. In the current work the complex discrete or continuous state space of a system with a small number of agents is aggregated in such a way that discrete (finite state machine or supervisory automaton) controlled dynamics are abstracted from the system's behaviour. High level control may then be either directly applied at this abstracted level, or, if this is in itself of significant complexity, further layers of abstractions may be created to produce a system with an acceptable degree of complexity at each level. By the nature of this construction, high level commands are necessarily realizable at lower levels in the system.

  3. A Hybrid Multiuser Detector Based on MMSE and AFSA for TDRS System Forward Link

    PubMed Central

    Yin, Zhendong; Liu, Xiaohui

    2014-01-01

    This study mainly focuses on multiuser detection in tracking and data relay satellite (TDRS) system forward link. Minimum mean square error (MMSE) is a low complexity multiuser detection method, but MMSE detector cannot achieve satisfactory bit error ratio and near-far resistance, whereas artificial fish swarm algorithm (AFSA) is expert in optimization and it can realize the global convergence efficiently. Therefore, a hybrid multiuser detector based on MMSE and AFSA (MMSE-AFSA) is proposed in this paper. The result of MMSE and its modified formations are used as the initial values of artificial fishes to accelerate the speed of global convergence and reduce the iteration times for AFSA. The simulation results show that the bit error ratio and near-far resistance performances of the proposed detector are much better, compared with MF, DEC, and MMSE, and are quite close to OMD. Furthermore, the proposed MMSE-AFSA detector also has a large system capacity. PMID:24883418

  4. A hybrid mobile-based patient location tracking system for personal healthcare applications.

    PubMed

    Chew, S H; Chong, P A; Gunawan, E; Goh, K W; Kim, Y; Soh, C B

    2006-01-01

    In the next generation of Infocommunications, mobile Internet-enabled devices and third generation mobile communication networks have become reality, location based services (LBS) are expected to be a major area of growth. Providing information, content and services through positioning technologies forms the platform for new services for users and developers, as well as creating new revenue channels for service providers. These crucial advances in location based services have opened up new opportunities in real time patient tracking for personal healthcare applications. In this paper, a hybrid mobile-based location technique using the global positioning system (GPS) and cellular mobile network infrastructure is employed to provide the location tracking capability. This function will be integrated into the patient location tracking system (PLTS) to assist caregivers or family members in locating patients such as elderly or dependents when required, especially in emergencies. The capability of this PLTS is demonstrated through a series of location detection tests conducted over different operating conditions. Although the model is at its initial stage of development, it has shown relatively good accuracy for position tracking and potential of using integrated wireless technology to enhance the existing personal healthcare communication system through location based services.

  5. Power Management Based Current Control Technique for Photovoltaic-Battery Assisted Wind-Hydro Hybrid System

    NASA Astrophysics Data System (ADS)

    Ram Prabhakar, J.; Ragavan, K.

    2013-07-01

    This article proposes new power management based current control strategy for integrated wind-solar-hydro system equipped with battery storage mechanism. In this control technique, an indirect estimation of load current is done, through energy balance model, DC-link voltage control and droop control. This system features simpler energy management strategy and necessitates few power electronic converters, thereby minimizing the cost of the system. The generation-demand (G-D) management diagram is formulated based on the stochastic weather conditions and demand, which would likely moderate the gap between both. The features of management strategy deploying energy balance model include (1) regulating DC-link voltage within specified tolerances, (2) isolated operation without relying on external electric power transmission network, (3) indirect current control of hydro turbine driven induction generator and (4) seamless transition between grid-connected and off-grid operation modes. Furthermore, structuring of the hybrid system with appropriate selection of control variables enables power sharing among each energy conversion systems and battery storage mechanism. By addressing these intricacies, it is viable to regulate the frequency and voltage of the remote network at load end. The performance of the proposed composite scheme is demonstrated through time-domain simulation in MATLAB/Simulink environment.

  6. An advanced environment for hybrid modeling of biological systems based on modelica.

    PubMed

    Pross, Sabrina; Bachmann, Bernhard

    2011-01-20

    Biological systems are often very complex so that an appropriate formalism is needed for modeling their behavior. Hybrid Petri Nets, consisting of time-discrete Petri Net elements as well as continuous ones, have proven to be ideal for this task. Therefore, a new Petri Net library was implemented based on the object-oriented modeling language Modelica which allows the modeling of discrete, stochastic and continuous Petri Net elements by differential, algebraic and discrete equations. An appropriate Modelica-tool performs the hybrid simulation with discrete events and the solution of continuous differential equations. A special sub-library contains so-called wrappers for specific reactions to simplify the modeling process. The Modelica-models can be connected to Simulink-models for parameter optimization, sensitivity analysis and stochastic simulation in Matlab. The present paper illustrates the implementation of the Petri Net component models, their usage within the modeling process and the coupling between the Modelica-tool Dymola and Matlab/Simulink. The application is demonstrated by modeling the metabolism of Chinese Hamster Ovary Cells.

  7. Performance of OVERFLOW-D Applications based on Hybrid and MPI Paradigms on IBM Power4 System

    NASA Technical Reports Server (NTRS)

    Djomehri, M. Jahed; Biegel, Bryan (Technical Monitor)

    2002-01-01

    This report briefly discusses our preliminary performance experiments with parallel versions of OVERFLOW-D applications. These applications are based on MPI and hybrid paradigms on the IBM Power4 system here at the NAS Division. This work is part of an effort to determine the suitability of the system and its parallel libraries (MPI/OpenMP) for specific scientific computing objectives.

  8. A stochastic hybrid systems based framework for modeling dependent failure processes.

    PubMed

    Fan, Mengfei; Zeng, Zhiguo; Zio, Enrico; Kang, Rui; Chen, Ying

    2017-01-01

    In this paper, we develop a framework to model and analyze systems that are subject to dependent, competing degradation processes and random shocks. The degradation processes are described by stochastic differential equations, whereas transitions between the system discrete states are triggered by random shocks. The modeling is, then, based on Stochastic Hybrid Systems (SHS), whose state space is comprised of a continuous state determined by stochastic differential equations and a discrete state driven by stochastic transitions and reset maps. A set of differential equations are derived to characterize the conditional moments of the state variables. System reliability and its lower bounds are estimated from these conditional moments, using the First Order Second Moment (FOSM) method and Markov inequality, respectively. The developed framework is applied to model three dependent failure processes from literature and a comparison is made to Monte Carlo simulations. The results demonstrate that the developed framework is able to yield an accurate estimation of reliability with less computational costs compared to traditional Monte Carlo-based methods.

  9. PSO-Based Smart Grid Application for Sizing and Optimization of Hybrid Renewable Energy Systems

    PubMed Central

    Mohamed, Mohamed A.; Eltamaly, Ali M.; Alolah, Abdulrahman I.

    2016-01-01

    This paper introduces an optimal sizing algorithm for a hybrid renewable energy system using smart grid load management application based on the available generation. This algorithm aims to maximize the system energy production and meet the load demand with minimum cost and highest reliability. This system is formed by photovoltaic array, wind turbines, storage batteries, and diesel generator as a backup source of energy. Demand profile shaping as one of the smart grid applications is introduced in this paper using load shifting-based load priority. Particle swarm optimization is used in this algorithm to determine the optimum size of the system components. The results obtained from this algorithm are compared with those from the iterative optimization technique to assess the adequacy of the proposed algorithm. The study in this paper is performed in some of the remote areas in Saudi Arabia and can be expanded to any similar regions around the world. Numerous valuable results are extracted from this study that could help researchers and decision makers. PMID:27513000

  10. PSO-Based Smart Grid Application for Sizing and Optimization of Hybrid Renewable Energy Systems.

    PubMed

    Mohamed, Mohamed A; Eltamaly, Ali M; Alolah, Abdulrahman I

    2016-01-01

    This paper introduces an optimal sizing algorithm for a hybrid renewable energy system using smart grid load management application based on the available generation. This algorithm aims to maximize the system energy production and meet the load demand with minimum cost and highest reliability. This system is formed by photovoltaic array, wind turbines, storage batteries, and diesel generator as a backup source of energy. Demand profile shaping as one of the smart grid applications is introduced in this paper using load shifting-based load priority. Particle swarm optimization is used in this algorithm to determine the optimum size of the system components. The results obtained from this algorithm are compared with those from the iterative optimization technique to assess the adequacy of the proposed algorithm. The study in this paper is performed in some of the remote areas in Saudi Arabia and can be expanded to any similar regions around the world. Numerous valuable results are extracted from this study that could help researchers and decision makers.

  11. A stochastic hybrid systems based framework for modeling dependent failure processes

    PubMed Central

    Fan, Mengfei; Zeng, Zhiguo; Zio, Enrico; Kang, Rui; Chen, Ying

    2017-01-01

    In this paper, we develop a framework to model and analyze systems that are subject to dependent, competing degradation processes and random shocks. The degradation processes are described by stochastic differential equations, whereas transitions between the system discrete states are triggered by random shocks. The modeling is, then, based on Stochastic Hybrid Systems (SHS), whose state space is comprised of a continuous state determined by stochastic differential equations and a discrete state driven by stochastic transitions and reset maps. A set of differential equations are derived to characterize the conditional moments of the state variables. System reliability and its lower bounds are estimated from these conditional moments, using the First Order Second Moment (FOSM) method and Markov inequality, respectively. The developed framework is applied to model three dependent failure processes from literature and a comparison is made to Monte Carlo simulations. The results demonstrate that the developed framework is able to yield an accurate estimation of reliability with less computational costs compared to traditional Monte Carlo-based methods. PMID:28231313

  12. Development of a magneto-rheological fluid based hybrid actuation system

    NASA Astrophysics Data System (ADS)

    John, Shaju

    A hybrid hydraulic actuation system is proposed as an active pitch link for rotorcraft applications. Such an active pitch link can be used to implement Individual Blade Control (IBC) techniques for vibration and noise reduction, in addition to providing primary control for the helicopter. Conventional technologies like electric motors and hydraulic actuators have major disadvantages when it come to applications on a rotating environment. Centralized hydraulic system require the use of mechanically complex hydraulic slip rings and electric motors have high precision mechanical moving parts that make them unattractive in application with high centrifugal load. The high energy density of smart materials can be used to design hydraulic actuators in a compact package. MagnetoRheological (MR) fluids can be used as the working fluid in such a hybrid hydraulic actuation system to implement a valving system with no moving parts. Thus, such an actuation system can be theoretically well-suited for application in a rotating environment. To develop an actuation system based on an active material stack and MR fluidic valves, a fundamental understanding of the hydraulic circuit is essential. In order to address this issue, a theoretical model was developed to understand the effect of pumping chamber geometry on the pressure losses in the pumping chamber. Three dimensional analytical models were developed for steady and unsteady flow and the results were correlated to results obtained from Computation Fluid Dynamic simulation of fluid flow inside the pumping chamber. Fundamental understanding regarding the pressure losses in a pumping chamber are obtained from the modeling process. Vortices that form in the pumping chamber (during intake) and the discharge tube (during discharge) are identified as a major cause of pressure loss in the chamber. The role of vortices during dynamic operation is also captured through a frequency domain model. Extensive experimental studies were

  13. Hybrid grammar-based approach to nonlinear dynamical system identification from biological time series.

    PubMed

    McKinney, B A; Crowe, J E; Voss, H U; Crooke, P S; Barney, N; Moore, J H

    2006-02-01

    We introduce a grammar-based hybrid approach to reverse engineering nonlinear ordinary differential equation models from observed time series. This hybrid approach combines a genetic algorithm to search the space of model architectures with a Kalman filter to estimate the model parameters. Domain-specific knowledge is used in a context-free grammar to restrict the search space for the functional form of the target model. We find that the hybrid approach outperforms a pure evolutionary algorithm method, and we observe features in the evolution of the dynamical models that correspond with the emergence of favorable model components. We apply the hybrid method to both artificially generated time series and experimentally observed protein levels from subjects who received the smallpox vaccine. From the observed data, we infer a cytokine protein interaction network for an individual's response to the smallpox vaccine.

  14. Hybrid grammar-based approach to nonlinear dynamical system identification from biological time series

    NASA Astrophysics Data System (ADS)

    McKinney, B. A.; Crowe, J. E., Jr.; Voss, H. U.; Crooke, P. S.; Barney, N.; Moore, J. H.

    2006-02-01

    We introduce a grammar-based hybrid approach to reverse engineering nonlinear ordinary differential equation models from observed time series. This hybrid approach combines a genetic algorithm to search the space of model architectures with a Kalman filter to estimate the model parameters. Domain-specific knowledge is used in a context-free grammar to restrict the search space for the functional form of the target model. We find that the hybrid approach outperforms a pure evolutionary algorithm method, and we observe features in the evolution of the dynamical models that correspond with the emergence of favorable model components. We apply the hybrid method to both artificially generated time series and experimentally observed protein levels from subjects who received the smallpox vaccine. From the observed data, we infer a cytokine protein interaction network for an individual’s response to the smallpox vaccine.

  15. Hybrid systems based on gold nanostructures and porphyrins as promising photosensitizers for photodynamic therapy.

    PubMed

    Ferreira, Daniele C; Monteiro, Camila S; Chaves, Claudilene R; Sáfar, Gustavo A M; Moreira, Roberto L; Pinheiro, Maurício V B; Martins, Dayse C S; Ladeira, Luiz Orlando; Krambrock, Klaus

    2017-02-01

    Gold nanostructures of two different shapes (spheres and rods) were synthesized to form a colloidal hybrid system with 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)porphyrin tosylate salt (H2TM4PyP(OTs)4) (POR) for applications in photodynamic therapy (PDT) using light in the visible spectral range. Electron paramagnetic resonance (EPR) experiments in combination with spin trapping were used for the detection of reactive oxygen species (ROS) and evaluation of the efficiency of these novel hybrid systems as photosensitizers. It is shown that the hybrid system consisting of gold nanorods (AuNR) and porphyrin (POR) is by far more efficient than its isolated components. This enhanced efficiency is explained by a synergetic effect between the AuNR and the porphyrin, wherein a rapid energy transfer from the former to the latter produces a large amount of singlet oxygen followed by its conversion into hydroxyl radicals. The mechanism was investigated using different spin traps and different ROS inhibitors. On the other hand, spherical gold nanoparticles (AuNP) do not show this synergetic effect. The synergetic effect for gold nanorods/POR hybrid is attributed to a larger field enhancement close to the gold nanorod surface in addition to the electrostatic attraction between the components of the hybrid system.

  16. Hybrid Automaton Based Controller Design for Damage Mitigation of Islanded Power Systems

    NASA Astrophysics Data System (ADS)

    Lahiri, Sudipta

    some of these limitations, we derive a hybrid automaton model of a power system as a Discrete Event System (DES) plant and controller. The DES plant consists of a switched continuous system with an interface. The system state space is categorized based on safety criteria and discrete control specifications are embedded as transition rules within the DES controller. The DES controller searches for feasible control policies that drive the system trajectories from unsafe states to safe states. We define metrics to quantify the performance of these policies, thus allowing the derivation of the most suitable policy for a set of design specifications and disturbance type. Applications in voltage control, frequency control and dynamic service restoration is presented on a benchmark power system with approximately forty continuous states and eighteen thousand discrete states. To enable the analysis, we build a computational framework based on efficient symbolic computation tools in Mathematica and numerical integration tools in Matlab / Simulink so that the methodology can be replicated for a wide variety of applications. The framework is quite general, and may be expanded to problems beyond power systems.

  17. A miniature batteryless health and usage monitoring system based on hybrid energy harvesting

    NASA Astrophysics Data System (ADS)

    Huang, Chenling; Chakrabartty, Shantanu

    2011-04-01

    The cost and size of the state-of-the-art health and usage monitoring systems (HUMS) are determined by capacity of on-board energy storage which limits their large scale deployment. In this paper, we present a miniature low-cost mechanical HUMS integrated circuit (IC) based on the concept of hybrid energy harvesting where continuous monitoring is achieved by self-powering, where as the programming, localization and communication with the sensor is achieved using remote RF powering. The self-powered component of the proposed HUMS is based on our previous result which used a controllable hot electron injection on floatinggate transistor as an ultra-low power signal processor. We show that the HUMS IC can seamlessly switch between different energy harvesting modes based on the availability of ambient RF power and that the configuration, programming and communication functions can be remotely performed without physically accessing the HUMS device. All the measured results presented in this paper have been obtained from prototypes fabricated in a 0.5 micron standard CMOS process and the entire system has been successfully integrated on a 1.5cm x 1.5cm package.

  18. A Novel Mittag-Leffler Kernel Based Hybrid Fault Diagnosis Method for Wheeled Robot Driving System.

    PubMed

    Yuan, Xianfeng; Song, Mumin; Zhou, Fengyu; Chen, Zhumin; Li, Yan

    2015-01-01

    The wheeled robots have been successfully applied in many aspects, such as industrial handling vehicles, and wheeled service robots. To improve the safety and reliability of wheeled robots, this paper presents a novel hybrid fault diagnosis framework based on Mittag-Leffler kernel (ML-kernel) support vector machine (SVM) and Dempster-Shafer (D-S) fusion. Using sensor data sampled under different running conditions, the proposed approach initially establishes multiple principal component analysis (PCA) models for fault feature extraction. The fault feature vectors are then applied to train the probabilistic SVM (PSVM) classifiers that arrive at a preliminary fault diagnosis. To improve the accuracy of preliminary results, a novel ML-kernel based PSVM classifier is proposed in this paper, and the positive definiteness of the ML-kernel is proved as well. The basic probability assignments (BPAs) are defined based on the preliminary fault diagnosis results and their confidence values. Eventually, the final fault diagnosis result is archived by the fusion of the BPAs. Experimental results show that the proposed framework not only is capable of detecting and identifying the faults in the robot driving system, but also has better performance in stability and diagnosis accuracy compared with the traditional methods.

  19. A Novel Mittag-Leffler Kernel Based Hybrid Fault Diagnosis Method for Wheeled Robot Driving System

    PubMed Central

    Yuan, Xianfeng; Song, Mumin; Zhou, Fengyu; Chen, Zhumin; Li, Yan

    2015-01-01

    The wheeled robots have been successfully applied in many aspects, such as industrial handling vehicles, and wheeled service robots. To improve the safety and reliability of wheeled robots, this paper presents a novel hybrid fault diagnosis framework based on Mittag-Leffler kernel (ML-kernel) support vector machine (SVM) and Dempster-Shafer (D-S) fusion. Using sensor data sampled under different running conditions, the proposed approach initially establishes multiple principal component analysis (PCA) models for fault feature extraction. The fault feature vectors are then applied to train the probabilistic SVM (PSVM) classifiers that arrive at a preliminary fault diagnosis. To improve the accuracy of preliminary results, a novel ML-kernel based PSVM classifier is proposed in this paper, and the positive definiteness of the ML-kernel is proved as well. The basic probability assignments (BPAs) are defined based on the preliminary fault diagnosis results and their confidence values. Eventually, the final fault diagnosis result is archived by the fusion of the BPAs. Experimental results show that the proposed framework not only is capable of detecting and identifying the faults in the robot driving system, but also has better performance in stability and diagnosis accuracy compared with the traditional methods. PMID:26229526

  20. Printed hybrid systems

    NASA Astrophysics Data System (ADS)

    Karioja, Pentti; Mäkinen, Jukka-Tapani; Keränen, Kimmo; Aikio, Janne; Alajoki, Teemu; Jaakola, Tuomo; Koponen, Matti; Keränen, Antti; Heikkinen, Mikko; Tuomikoski, Markus; Suhonen, Riikka; Hakalahti, Leena; Kopola, Pälvi; Hast, Jukka; Liedert, Ralf; Hiltunen, Jussi; Masuda, Noriyuki; Kemppainen, Antti; Rönkä, Kari; Korhonen, Raimo

    2012-04-01

    This paper presents research activities carried out at VTT Technical Research Centre of Finland in the field of hybrid integration of optics, electronics and mechanics. Main focus area in our research is the manufacturing of electronic modules and product structures with printed electronics, film-over-molding and polymer sheet lamination technologies and the goal is in the next generation of smart systems utilizing monolithic polymer packages. The combination of manufacturing technologies such as roll-to-roll -printing, injection molding and traditional component assembly is called Printed Hybrid Systems (PHS). Several demonstrator structures have been made, which show the potential of polymer packaging technology. One demonstrator example is a laminated structure with embedded LED chips. Element thickness is only 0.3mm and the flexible stack of foils can be bent in two directions after assembly process and was shaped curved using heat and pressure. The combination of printed flexible circuit boards and injection molding has also been demonstrated with several functional modules. The demonstrators illustrate the potential of origami electronics, which can be cut and folded to 3D shapes. It shows that several manufacturing process steps can be eliminated by Printed Hybrid Systems technology. The main benefits of this combination are small size, ruggedness and conformality. The devices are ideally suited for medical applications as the sensitive electronic components are well protected inside the plastic and the structures can be cleaned easily due to the fact that they have no joints or seams that can accumulate dirt or bacteria.

  1. A Packaged Self-Powered System with Universal Connectors Based on Hybridized Nanogenerators.

    PubMed

    Shi, Bojing; Zheng, Qiang; Jiang, Wen; Yan, Ling; Wang, Xinxin; Liu, Hong; Yao, Yan; Li, Zhou; Wang, Zhong Lin

    2016-02-03

    A packaged self-powered system by hybridizing nanogenerators (PSNGS) is demonstrated. The performance of the PSNGS is tested in a biofluid and used for powering an electronic thermometer. Select waterproof universal connectors are designed and fabricated for energy and signal transmission. This PSNGS and the connectors can significantly advance the development of self-powered implanted medical devices and wearable/portable electronics.

  2. Combining Particle Filters and Consistency-Based Approaches for Monitoring and Diagnosis of Stochastic Hybrid Systems

    NASA Technical Reports Server (NTRS)

    Narasimhan, Sriram; Dearden, Richard; Benazera, Emmanuel

    2004-01-01

    Fault detection and isolation are critical tasks to ensure correct operation of systems. When we consider stochastic hybrid systems, diagnosis algorithms need to track both the discrete mode and the continuous state of the system in the presence of noise. Deterministic techniques like Livingstone cannot deal with the stochasticity in the system and models. Conversely Bayesian belief update techniques such as particle filters may require many computational resources to get a good approximation of the true belief state. In this paper we propose a fault detection and isolation architecture for stochastic hybrid systems that combines look-ahead Rao-Blackwellized Particle Filters (RBPF) with the Livingstone 3 (L3) diagnosis engine. In this approach RBPF is used to track the nominal behavior, a novel n-step prediction scheme is used for fault detection and L3 is used to generate a set of candidates that are consistent with the discrepant observations which then continue to be tracked by the RBPF scheme.

  3. Consensus of Hybrid Multi-Agent Systems.

    PubMed

    Zheng, Yuanshi; Ma, Jingying; Wang, Long

    2017-01-27

    In this brief, we consider the consensus problem of hybrid multiagent systems. First, the hybrid multiagent system is proposed, which is composed of continuous-time and discrete-time dynamic agents. Then, three kinds of consensus protocols are presented for the hybrid multiagent system. The analysis tool developed in this brief is based on the matrix theory and graph theory. With different restrictions of the sampling period, some necessary and sufficient conditions are established for solving the consensus of the hybrid multiagent system. The consensus states are also obtained under different protocols. Finally, simulation examples are provided to demonstrate the effectiveness of our theoretical results.

  4. Measurement of optical system aberrations based on randomly encoded hybrid grating

    NASA Astrophysics Data System (ADS)

    Jiang, Jiabin; Ling, Tong; Yang, Yongying; Zhang, Rui

    2016-10-01

    A lateral shearing interferometer based on randomly encoded hybrid grating (REHG) is proposed to measure the optical system aberrations. According to the theory of Fraunhofer diffraction, the REHG is designed to be a combination of a randomly encoded binary amplitude grating and a phase chessboard. Compared with the conventional cross-grating lateral shearing interferometer, the REHG is more suitable for the general aberration testing since no order selection mask is needed. Collimated beam for aberration measurement will converge after passing through the optics system under test. Then the quadriwave lateral shearing interferogram containing the wave-front aberration information is then recorded by the CCD. By selecting its +1 order of the Fourier spectrum in both X and Y directions, the shearing wavefronts in both two orthogonal directions can be obtained employing phase unwarping algorithm. Zernike polynomials are used as basic functions for the original wave-front, and the coefficients of Zernike polynomials can be obtained with shearing wave-fronts. In the experiment, we employed a REHG with a grating pitch of 240μm to test a cemented doublet optics with an aperture of 50mm and a focal lengths of 90mm. The test results showed the peak-to-valley (PTV) aberration is 0.242λ while the root-mean-square (RMS) is 0.064λ. The test results by the REHG are very close to the results by the ZYGO GPI interferometer while the error of PTV is 0.003λ and the error of RMS is 0.007λ. The measurement of optical system aberrations by REHG can reach high precision and exhibit good immunity to environmental disturbance. The REHG can be applied to the optical testing of beam quality, optical system aberration and biomedical research.

  5. Prediction of protein secondary structure using probability based features and a hybrid system.

    PubMed

    Ghanty, Pradip; Pal, Nikhil R; Mudi, Rajani K

    2013-10-01

    In this paper, we propose some co-occurrence probability-based features for prediction of protein secondary structure. The features are extracted using occurrence/nonoccurrence of secondary structures in the protein sequences. We explore two types of features: position-specific (based on position of amino acid on fragments of protein sequences) as well as position-independent (independent of amino acid position on fragments of protein sequences). We use a hybrid system, NEUROSVM, consisting of neural networks and support vector machines for classification of secondary structures. We propose two schemes NSVMps and NSVM for protein secondary structure prediction. The NSVMps uses position-specific probability-based features and NEUROSVM classifier whereas NSVM uses the same classifier with position-independent probability-based features. The proposed method falls in the single-sequence category of methods because it does not use any sequence profile information such as position specific scoring matrices (PSSM) derived from PSI-BLAST. Two widely used datasets RS126 and CB513 are used in the experiments. The results obtained using the proposed features and NEUROSVM classifier are better than most of the existing single-sequence prediction methods. Most importantly, the results using NSVMps that are obtained using lower dimensional features, are comparable to those by other existing methods. The NSVMps and NSVM are finally tested on target proteins of the critical assessment of protein structure prediction experiment-9 (CASP9). A larger dataset is used to compare the performance of the proposed methods with that of two recent single-sequence prediction methods. We also investigate the impact of presence of different amino acid residues (in protein sequences) that are responsible for the formation of different secondary structures.

  6. Barcoded materials based on photoluminescent hybrid system of lanthanide ions-doped metal organic framework and silica via ion exchange.

    PubMed

    Shen, Xiang; Yan, Bing

    2016-04-15

    A multicolored photoluminescent hybrid system based on lanthanide ions-doped metal organic frameworks/silica composite host has potential in display and barcode applications. By controlling the stoichiometry of the lanthanides via cation exchange, proportional various lanthanide ions are successfully introduced into metal organic frameworks, whose emission intensity is correspondingly proportional to its amount. The resulting luminescent barcodes depend on the lanthanide ions ratios and compositions. Subsequently, the lanthanide ions located in the channels of metal organic frameworks are protected from any interaction with the environment after the modification of silica on the surface. The optical and thermal stability of the hybrid materials are improved for technological application.

  7. Development of energy management system based on a power sharing strategy for a fuel cell-battery-supercapacitor hybrid tramway

    NASA Astrophysics Data System (ADS)

    Li, Qi; Chen, Weirong; Liu, Zhixiang; Li, Ming; Ma, Lei

    2015-04-01

    A hybrid powertrain configuration based on a proton exchange membrane (PEMFC), a battery and a supercapacitor (SC) is designed without grid connection for the LF-LRV tramway. In order to avoid rapid changes of power demand and achieve high efficiency without degrading the mechanism performance, a power sharing strategy based on a combination of fuzzy logic control (FLC) and Haar wavelet transform (Haar-WT) is proposed for an energy management system of the hybrid tramway. The results demonstrate that the proposed energy management system is able to ensure the major positive portion of the low frequency components of power demand can be deals with the PEMFC. The battery can help provide a portion of the positive low frequency components of power demand to reduce the PEMFC burden while the SC bank can supply all the high frequency components which could damage the PEMFC membrane. Therefore, the energy management system of high-power hybrid tramway is able to guarantee a safe operating condition with transient free for the PEMFC and extend the lifetime of each power source. Finally, the comparisons with other control strategies verify that the proposed energy management system can achieve better energy efficiency of the overall hybrid tramway.

  8. Strategies for efficient numerical implementation of hybrid multi-scale agent-based models to describe biological systems

    PubMed Central

    Cilfone, Nicholas A.; Kirschner, Denise E.; Linderman, Jennifer J.

    2015-01-01

    Biologically related processes operate across multiple spatiotemporal scales. For computational modeling methodologies to mimic this biological complexity, individual scale models must be linked in ways that allow for dynamic exchange of information across scales. A powerful methodology is to combine a discrete modeling approach, agent-based models (ABMs), with continuum models to form hybrid models. Hybrid multi-scale ABMs have been used to simulate emergent responses of biological systems. Here, we review two aspects of hybrid multi-scale ABMs: linking individual scale models and efficiently solving the resulting model. We discuss the computational choices associated with aspects of linking individual scale models while simultaneously maintaining model tractability. We demonstrate implementations of existing numerical methods in the context of hybrid multi-scale ABMs. Using an example model describing Mycobacterium tuberculosis infection, we show relative computational speeds of various combinations of numerical methods. Efficient linking and solution of hybrid multi-scale ABMs is key to model portability, modularity, and their use in understanding biological phenomena at a systems level. PMID:26366228

  9. Technical Study of a Standalone Photovoltaic-Wind Energy Based Hybrid Power Supply Systems for Island Electrification in Malaysia.

    PubMed

    Samrat, Nahidul Hoque; Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Taha, Zahari

    2015-01-01

    Energy is one of the most important factors in the socioeconomic development of a country. In a developing country like Malaysia, the development of islands is mostly related to the availability of electric power. Power generated by renewable energy sources has recently become one of the most promising solutions for the electrification of islands and remote rural areas. But high dependency on weather conditions and the unpredictable nature of these renewable energy sources are the main drawbacks. To overcome this weakness, different green energy sources and power electronic converters need to be integrated with each other. This study presents a battery storage hybrid standalone photovoltaic-wind energy power supply system. In the proposed standalone hybrid system, a DC-DC buck-boost bidirectional converter controller is used to accumulates the surplus hybrid power in the battery bank and supplies this power to the load during the hybrid power shortage by maintaining the constant dc-link voltage. A three-phase voltage source inverter complex vector control scheme is used to control the load side voltage in terms of the voltage amplitude and frequency. Based on the simulation results obtained from MATLAB/Simulink, it has been found that the overall hybrid framework is capable of working under variable weather and load conditions.

  10. Technical Study of a Standalone Photovoltaic–Wind Energy Based Hybrid Power Supply Systems for Island Electrification in Malaysia

    PubMed Central

    Samrat, Nahidul Hoque; Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Taha, Zahari

    2015-01-01

    Energy is one of the most important factors in the socioeconomic development of a country. In a developing country like Malaysia, the development of islands is mostly related to the availability of electric power. Power generated by renewable energy sources has recently become one of the most promising solutions for the electrification of islands and remote rural areas. But high dependency on weather conditions and the unpredictable nature of these renewable energy sources are the main drawbacks. To overcome this weakness, different green energy sources and power electronic converters need to be integrated with each other. This study presents a battery storage hybrid standalone photovoltaic-wind energy power supply system. In the proposed standalone hybrid system, a DC-DC buck-boost bidirectional converter controller is used to accumulates the surplus hybrid power in the battery bank and supplies this power to the load during the hybrid power shortage by maintaining the constant dc-link voltage. A three-phase voltage source inverter complex vector control scheme is used to control the load side voltage in terms of the voltage amplitude and frequency. Based on the simulation results obtained from MATLAB/Simulink, it has been found that the overall hybrid framework is capable of working under variable weather and load conditions. PMID:26121032

  11. An arc control and protection system for the JET lower hybrid antenna based on an imaging system.

    PubMed

    Figueiredo, J; Mailloux, J; Kirov, K; Kinna, D; Stamp, M; Devaux, S; Arnoux, G; Edwards, J S; Stephen, A V; McCullen, P; Hogben, C

    2014-11-01

    Arcs are the potentially most dangerous events related to Lower Hybrid (LH) antenna operation. If left uncontrolled they can produce damage and cause plasma disruption by impurity influx. To address this issue an arc real time control and protection imaging system for the Joint European Torus (JET) LH antenna has been implemented. The LH system is one of the additional heating systems at JET. It comprises 24 microwave generators (klystrons, operating at 3.7 GHz) providing up to 5 MW of heating and current drive to the JET plasma. This is done through an antenna composed of an array of waveguides facing the plasma. The protection system presented here is based primarily on an imaging arc detection and real time control system. It has adapted the ITER like wall hotspot protection system using an identical CCD camera and real time image processing unit. A filter has been installed to avoid saturation and spurious system triggers caused by ionization light. The antenna is divided in 24 Regions Of Interest (ROIs) each one corresponding to one klystron. If an arc precursor is detected in a ROI, power is reduced locally with subsequent potential damage and plasma disruption avoided. The power is subsequently reinstated if, during a defined interval of time, arcing is confirmed not to be present by image analysis. This system was successfully commissioned during the restart phase and beginning of the 2013 scientific campaign. Since its installation and commissioning, arcs and related phenomena have been prevented. In this contribution we briefly describe the camera, image processing, and real time control systems. Most importantly, we demonstrate that an LH antenna arc protection system based on CCD camera imaging systems works. Examples of both controlled and uncontrolled LH arc events and their consequences are shown.

  12. An arc control and protection system for the JET lower hybrid antenna based on an imaging system

    NASA Astrophysics Data System (ADS)

    Figueiredo, J.; Mailloux, J.; Kirov, K.; Kinna, D.; Stamp, M.; Devaux, S.; Arnoux, G.; Edwards, J. S.; Stephen, A. V.; McCullen, P.; Hogben, C.

    2014-11-01

    Arcs are the potentially most dangerous events related to Lower Hybrid (LH) antenna operation. If left uncontrolled they can produce damage and cause plasma disruption by impurity influx. To address this issue an arc real time control and protection imaging system for the Joint European Torus (JET) LH antenna has been implemented. The LH system is one of the additional heating systems at JET. It comprises 24 microwave generators (klystrons, operating at 3.7 GHz) providing up to 5 MW of heating and current drive to the JET plasma. This is done through an antenna composed of an array of waveguides facing the plasma. The protection system presented here is based primarily on an imaging arc detection and real time control system. It has adapted the ITER like wall hotspot protection system using an identical CCD camera and real time image processing unit. A filter has been installed to avoid saturation and spurious system triggers caused by ionization light. The antenna is divided in 24 Regions Of Interest (ROIs) each one corresponding to one klystron. If an arc precursor is detected in a ROI, power is reduced locally with subsequent potential damage and plasma disruption avoided. The power is subsequently reinstated if, during a defined interval of time, arcing is confirmed not to be present by image analysis. This system was successfully commissioned during the restart phase and beginning of the 2013 scientific campaign. Since its installation and commissioning, arcs and related phenomena have been prevented. In this contribution we briefly describe the camera, image processing, and real time control systems. Most importantly, we demonstrate that an LH antenna arc protection system based on CCD camera imaging systems works. Examples of both controlled and uncontrolled LH arc events and their consequences are shown.

  13. An arc control and protection system for the JET lower hybrid antenna based on an imaging system

    SciTech Connect

    Figueiredo, J.

    2014-11-15

    Arcs are the potentially most dangerous events related to Lower Hybrid (LH) antenna operation. If left uncontrolled they can produce damage and cause plasma disruption by impurity influx. To address this issue an arc real time control and protection imaging system for the Joint European Torus (JET) LH antenna has been implemented. The LH system is one of the additional heating systems at JET. It comprises 24 microwave generators (klystrons, operating at 3.7 GHz) providing up to 5 MW of heating and current drive to the JET plasma. This is done through an antenna composed of an array of waveguides facing the plasma. The protection system presented here is based primarily on an imaging arc detection and real time control system. It has adapted the ITER like wall hotspot protection system using an identical CCD camera and real time image processing unit. A filter has been installed to avoid saturation and spurious system triggers caused by ionization light. The antenna is divided in 24 Regions Of Interest (ROIs) each one corresponding to one klystron. If an arc precursor is detected in a ROI, power is reduced locally with subsequent potential damage and plasma disruption avoided. The power is subsequently reinstated if, during a defined interval of time, arcing is confirmed not to be present by image analysis. This system was successfully commissioned during the restart phase and beginning of the 2013 scientific campaign. Since its installation and commissioning, arcs and related phenomena have been prevented. In this contribution we briefly describe the camera, image processing, and real time control systems. Most importantly, we demonstrate that an LH antenna arc protection system based on CCD camera imaging systems works. Examples of both controlled and uncontrolled LH arc events and their consequences are shown.

  14. Graph-Switching Based Modeling of Mode Transition Constraints for Model Predictive Control of Hybrid Systems

    NASA Astrophysics Data System (ADS)

    Kobayashi, Koichi; Hiraishi, Kunihiko

    The model predictive/optimal control problem for hybrid systems is reduced to a mixed integer quadratic programming (MIQP) problem. However, the MIQP problem has one serious weakness, i.e., the computation time to solve the MIQP problem is too long for practical plants. For overcoming this technical issue, there are several approaches. In this paper, a modeling of mode transition constraints, which are expressed by a directed graph, is focused, and a new method to represent a directed graph is proposed. The effectiveness of the proposed method is shown by numerical examples on linear switched systems and piecewise linear systems.

  15. Hybrid Systems Diagnosis

    NASA Technical Reports Server (NTRS)

    McIlraith, Sheila; Biswas, Gautam; Clancy, Dan; Gupta, Vineet

    2005-01-01

    This paper reports on an on-going Project to investigate techniques to diagnose complex dynamical systems that are modeled as hybrid systems. In particular, we examine continuous systems with embedded supervisory controllers that experience abrupt, partial or full failure of component devices. We cast the diagnosis problem as a model selection problem. To reduce the space of potential models under consideration, we exploit techniques from qualitative reasoning to conjecture an initial set of qualitative candidate diagnoses, which induce a smaller set of models. We refine these diagnoses using parameter estimation and model fitting techniques. As a motivating case study, we have examined the problem of diagnosing NASA's Sprint AERCam, a small spherical robotic camera unit with 12 thrusters that enable both linear and rotational motion.

  16. A preliminary study on improving the recognition of esophageal speech using a hybrid system based on statistical voice conversion.

    PubMed

    Lachhab, Othman; Di Martino, Joseph; Elhaj, Elhassane Ibn; Hammouch, Ahmed

    2015-01-01

    In this paper, we propose a hybrid system based on a modified statistical GMM voice conversion algorithm for improving the recognition of esophageal speech. This hybrid system aims to compensate for the distorted information present in the esophageal acoustic features by using a voice conversion method. The esophageal speech is converted into a "target" laryngeal speech using an iterative statistical estimation of a transformation function. We did not apply a speech synthesizer for reconstructing the converted speech signal, given that the converted Mel cepstral vectors are used directly as input of our speech recognition system. Furthermore the feature vectors are linearly transformed by the HLDA (heteroscedastic linear discriminant analysis) method to reduce their size in a smaller space having good discriminative properties. The experimental results demonstrate that our proposed system provides an improvement of the phone recognition accuracy with an absolute increase of 3.40 % when compared with the phone recognition accuracy obtained with neither HLDA nor voice conversion.

  17. Control Synthesis for a Class of Hybrid Systems Subject to Configuration-Based Safety Constraints

    NASA Technical Reports Server (NTRS)

    Heymann, Michael; Lin, Feng; Meyer, George

    1997-01-01

    We examine a class of hybrid systems which we call Composite Hybrid Machines (CHM's) that consists of the concurrent (and partially synchronized) operation of Elementary Hybrid Machines (EHM's). Legal behavior, specified by a set of illegal configurations that the CHM may not enter, is to be achieved by the concurrent operation of the CHM with a suitably designed legal controller. In the present paper we focus on the problem of synthesizing a legal controller, whenever such a controller exists. More specifically, we address the problem of synthesizing the minimally restrictive legal controller. A controller is minimally restrictive if, when composed to operate concurrently with another legal controller, it will never interfere with the operation of the other controller and, therefore, can be composed to operate concurrently with any other controller that may be designed to achieve liveness specifications or optimality requirements without the need to reinvestigate or reverify legality of the composite controller. We confine our attention to a special class of CHM's where system dynamics is rate-limited and legal guards are conjunctions or disjunctions of atomic formulas in the dynamic variables (of the type x less than or equal to x(sub 0), or x greater than or equal to x(sub 0)). We present an algorithm for synthesis of the minimally restrictive legal controller. We demonstrate our approach by synthesizing a minimally restrictive controller for a steam boiler (the verification of which recently received a great deal of attention).

  18. Probabilistic Analysis of Solid Oxide Fuel Cell Based Hybrid Gas Turbine System

    NASA Technical Reports Server (NTRS)

    Gorla, Rama S. R.; Pai, Shantaram S.; Rusick, Jeffrey J.

    2003-01-01

    The emergence of fuel cell systems and hybrid fuel cell systems requires the evolution of analysis strategies for evaluating thermodynamic performance. A gas turbine thermodynamic cycle integrated with a fuel cell was computationally simulated and probabilistically evaluated in view of the several uncertainties in the thermodynamic performance parameters. Cumulative distribution functions and sensitivity factors were computed for the overall thermal efficiency and net specific power output due to the uncertainties in the thermodynamic random variables. These results can be used to quickly identify the most critical design variables in order to optimize the design and make it cost effective. The analysis leads to the selection of criteria for gas turbine performance.

  19. A Novel Integrated Magnetic Structure Based DC/DC Converter for Hybrid Battery/Ultracapacitor Energy Storage Systems

    SciTech Connect

    Onar, Omer C

    2012-01-01

    This manuscript focuses on a novel actively controlled hybrid magnetic battery/ultracapacitor based energy storage system (ESS) for vehicular propulsion systems. A stand-alone battery system might not be sufficient to satisfy peak power demand and transient load variations in hybrid and plug-in hybrid electric vehicles (HEV, PHEV). Active battery/ultracapacitor hybrid ESS provides a better solution in terms of efficient power management and control flexibility. Moreover, the voltage of the battery pack can be selected to be different than that of the ultracapacitor, which will result in flexibility of design as well as cost and size reduction of the battery pack. In addition, the ultracapacitor bank can supply or recapture a large burst of power and it can be used with high C-rates. Hence, the battery is not subjected to supply peak and sharp power variations, and the stress on the battery will be reduced and the battery lifetime would be increased. Utilizing ultracapacitor results in effective capturing of the braking energy, especially in sudden braking conditions.

  20. Hybrid Energy Storage System Based on Compressed Air and Super-Capacitors with Maximum Efficiency Point Tracking (MEPT)

    NASA Astrophysics Data System (ADS)

    Lemofouet, Sylvain; Rufer, Alfred

    This paper presents a hybrid energy storage system mainly based on Compressed Air, where the storage and withdrawal of energy are done within maximum efficiency conditions. As these maximum efficiency conditions impose the level of converted power, an intermittent time-modulated operation mode is applied to the thermodynamic converter to obtain a variable converted power. A smoothly variable output power is achieved with the help of a supercapacitive auxiliary storage device used as a filter. The paper describes the concept of the system, the power-electronic interfaces and especially the Maximum Efficiency Point Tracking (MEPT) algorithm and the strategy used to vary the output power. In addition, the paper introduces more efficient hybrid storage systems where the volumetric air machine is replaced by an oil-hydraulics and pneumatics converter, used under isothermal conditions. Practical results are also presented, recorded from a low-power air motor coupled to a small DC generator, as well as from a first prototype of the hydro-pneumatic system. Some economical considerations are also made, through a comparative cost evaluation of the presented hydro-pneumatic systems and a lead acid batteries system, in the context of a stand alone photovoltaic home application. This evaluation confirms the cost effectiveness of the presented hybrid storage systems.

  1. Cloth-based hybridization array system for the detection of Clostridium botulinum type A, B, E, and F neurotoxin genes.

    PubMed

    Gauthier, M; Cadieux, B; Austin, J W; Blais, B W

    2005-07-01

    A simple cloth-based hybridization array system was developed for the characterization of Clostridium botulinum isolates based on the botulinum neurotoxin serotype. Bacterial isolates were subjected to a multiplex PCR incorporating digoxigenin-dUTP and primers targeting the four botulinum neurotoxin gene serotypes (A, B, E, and F) predominantly involved in human illness, followed by hybridization of the amplicons with an array of toxin gene-specific oligonucleotide probes immobilized on polyester cloth and subsequent immunoenzymatic assay of the bound digoxigenin label. This system provided sensitive and specific detection of the different botulinum neurotoxin gene markers in a variety of C. botulinum strains, exhibiting the expected patterns of reactivity with a panel of target and nontarget organisms.

  2. A hybrid lightwave transmission system based on light injection/optoelectronic feedback techniques and fiber-VLLC integration

    NASA Astrophysics Data System (ADS)

    Tsai, Wen-Shing; Lu, Hai-Han; Li, Chung-Yi; Chen, Bo-Rui; Lin, Hung-Hsien; Lin, Dai-Hua

    2016-04-01

    A hybrid lightwave transmission system based on light injection/optoelectronic feedback techniques and fiber-visible laser light communication (VLLC) integration is proposed and experimentally demonstrated. To be the first one of its kind in employing light injection and optoelectronic feedback techniques in a fiber-VLLC integration lightwave transmission system, the light is successfully directly modulated with Community Access Television (CATV), 16-QAM, and 16-QAM-OFDM signals. Over a 40 km SMF and a 10 m free-space VLLC transport, good performances of carrier-to-noise ratio (CNR)/composite second-order (CSO)/composite triple-beat (CTB)/bit error rate (BER) are achieved for CATV/16-QAM/16-QAM-OFDM signals transmission. Such a hybrid lightwave transmission system would be very useful since it can provide broadband integrated services including CATV, Internet, and telecommunication services over both distribute fiber and in-building networks.

  3. Bandwidth based methodology for designing a hybrid energy storage system for a series hybrid electric vehicle with limited all electric mode

    NASA Astrophysics Data System (ADS)

    Shahverdi, Masood

    The cost and fuel economy of hybrid electrical vehicles (HEVs) are significantly dependent on the power-train energy storage system (ESS). A series HEV with a minimal all-electric mode (AEM) permits minimizing the size and cost of the ESS. This manuscript, pursuing the minimal size tactic, introduces a bandwidth based methodology for designing an efficient ESS. First, for a mid-size reference vehicle, a parametric study is carried out over various minimal-size ESSs, both hybrid (HESS) and non-hybrid (ESS), for finding the highest fuel economy. The results show that a specific type of high power battery with 4.5 kWh capacity can be selected as the winning candidate to study for further minimization. In a second study, following the twin goals of maximizing Fuel Economy (FE) and improving consumer acceptance, a sports car class Series-HEV (SHEV) was considered as a potential application which requires even more ESS minimization. The challenge with this vehicle is to reduce the ESS size compared to 4.5 kWh, because the available space allocation is only one fourth of the allowed battery size in the mid-size study by volume. Therefore, an advanced bandwidth-based controller is developed that allows a hybridized Subaru BRZ model to be realized with a light ESS. The result allows a SHEV to be realized with 1.13 kWh ESS capacity. In a third study, the objective is to find optimum SHEV designs with minimal AEM assumption which cover the design space between the fuel economies in the mid-size car study and the sports car study. Maximizing FE while minimizing ESS cost is more aligned with customer acceptance in the current state of market. The techniques applied to manage the power flow between energy sources of the power-train significantly affect the results of this optimization. A Pareto Frontier, including ESS cost and FE, for a SHEV with limited AEM, is introduced using an advanced bandwidth-based control strategy teamed up with duty ratio control. This controller

  4. Development of a fully automated CFD system for three-dimensional flow simulations based on hybrid prismatic-tetrahedral grids

    SciTech Connect

    Berg, J.W. van der; Maseland, J.E.J.; Oskam, B.

    1996-12-31

    In this paper an assessment of CFD methods based on the underlying grid type is made. It is safe to say that emerging CFD methods based on hybrid body-fitted grids of tetrahedral and prismatic cells using unstructured data storage schemes have the potential to satisfy the basic requirements of problem-turnaround-time and accuracy for complex geometries. The CFD system described in this paper is based on the hybrid prismatic-tetrahedral grid approach. In an analysis it is shown that the cells in the prismatic layer have to satisfy a central symmetry property in order to obtain a second-order accurate approximation of the viscous terms in the Reynolds-averaged Navier-Stokes equations. Prismatic grid generation is demonstrated for the ONERA M6 wing-alone configuration and the AS28G wing/body configuration.

  5. Hybrid powertrain system

    SciTech Connect

    Grillo, Ricardo C.; O'Neil, Walter K.; Preston, David M.

    2005-09-20

    A hybrid powertrain system is provided that includes a first prime mover having a rotational output, a second prime mover having a rotational output, and a transmission having a main shaft supporting at least two main shaft gears thereon. The transmission includes a first independent countershaft drivingly connected to the first prime mover and including at least one ratio gear supported thereon that meshes with a respective main shaft gear. A second independent countershaft is drivingly connected to the second prime mover and includes at least one ratio gear supported thereon that meshes with a respective main shaft gear. The ratio gears on the first and second countershafts cooperate with the main shaft gears to provide at least one gear ratio between the first and second countershafts and the main shaft. A shift control mechanism selectively engages and disengages the first and second countershafts for rotation with the main shaft.

  6. An observer based approach for achieving fault diagnosis and fault tolerant control of systems modeled as hybrid Petri nets.

    PubMed

    Renganathan, K; Bhaskar, VidhyaCharan

    2011-07-01

    In this paper, we propose an approach for achieving detection and identification of faults, and provide fault tolerant control for systems that are modeled using timed hybrid Petri nets. For this purpose, an observer based technique is adopted which is useful in detection of faults, such as sensor faults, actuator faults, signal conditioning faults, etc. The concepts of estimation, reachability and diagnosability have been considered for analyzing faulty behaviors, and based on the detected faults, different schemes are proposed for achieving fault tolerant control using optimization techniques. These concepts are applied to a typical three tank system and numerical results are obtained.

  7. In Vitro Spine Testing Using a Robot-Based Testing System: Comparison of Displacement Control and “Hybrid Control”

    PubMed Central

    Bell, Kevin M.; Hartman, Robert A.; Gilbertson, Lars G.; Kang, James D.

    2013-01-01

    The two leading control algorithms for in-vitro spine biomechanical testing—“load control” and “displacement control”— are limited in their lack of adaptation to changes in the load-displacement response of a spine specimen—pointing to the need for sufficiently sophisticated control algorithms that are able to govern the application of loads/motions to a spine specimen in a more realistic, adaptive manner. A robotics-based spine testing system was programmed with a novel hybrid control algorithm combining “load control” and “displacement control” into a single, robust algorithm. Prior to in-vitro cadaveric testing, preliminary testing of the new algorithm was performed using a rigid-body-spring model with known structural properties. The present study also offers a direct comparison between “hybrid control” and “displacement control”. The hybrid control algorithm enabled the robotics-based spine testing system to apply pure moments to an FSU (in flexion/extension, lateral bending, or axial rotation) in an unconstrained manner through active control of secondary translational/rotational degrees-of-freedom—successfully minimizing coupled forces/moments. The characteristic nonlinear S-shaped curves of the primary moment-rotation responses were consistent with previous reports of the FSU having a region of low stiffness (neutral zone) bounded by regions of increasing stiffness (elastic zone). Direct comparison of “displacement control” and “hybrid control” showed that hybrid control was able to actively minimize off-axis forces and resulted in larger neutral zone and range of motion. PMID:23702044

  8. Hybrid solid state laser system using a neodymium-based master oscillator and an ytterbium-based power amplifier

    DOEpatents

    Payne, Stephen A.; Marshall, Christopher D.; Powell, Howard T.; Krupke, William F.

    2001-01-01

    In a master oscillator-power amplifier (MOPA) hybrid laser system, the master oscillator (MO) utilizes a Nd.sup.3+ -doped gain medium and the power amplifier (PA) utilizes a diode-pumped Yb.sup.3+ -doped material. The use of two different laser gain media in the hybrid MOPA system provides advantages that are otherwise not available. The Nd-doped gain medium preferably serves as the MO because such gain media offer the lowest threshold of operation and have already been engineered as practical systems. The Yb-doped gain medium preferably serves in the diode-pumped PA to store pump energy effectively and efficiently by virtue of the long emission lifetime, thereby reducing diode pump costs. One crucial constraint on the MO and PA gain media is that the Nd and Yb lasers must operate at nearly the same wavelength. The 1.047 .mu.m Nd:YLF/Yb:S-FAP [Nd:LiYF.sub.4 /Yb:Sr.sub.5 (PO.sub.4).sub.3 F] hybrid MOPA system is a preferred embodiment of the hybrid Nd/Yb MOPA.

  9. Hybrid optical-digital encryption system based on wavefront coding paradigm

    NASA Astrophysics Data System (ADS)

    Konnik, Mikhail V.

    2012-04-01

    The wavefront coding is a widely used in the optical systems to compensate aberrations and increase the depth of field. This paper presents experimental results on application of the wavefront coding paradigm for data encryption. We use a synthesised diffractive optical element (DOE) to deliberately introduce a phase distortion during the images registration process to encode the acquired image. In this case, an optical convolution of the input image with the point spread function (PSF) of the DOE is registered. The encryption is performed optically, and is therefore is fast and secure. Since the introduced distortion is the same across the image, the decryption is performed digitally using deconvolution methods. However, due to noise and finite accuracy of a photosensor, the reconstructed image is degraded but still readable. The experimental results, which are presented in this paper, indicate that the proposed hybrid optical-digital system can be implemented as a portable device using inexpensive off-the-shelf components. We present the results of optical encryption and digital restoration with quantitative estimations of the images quality. Details of hardware optical implementation of the hybrid optical-digital encryption system are discussed.

  10. Hybrid spread spectrum radio system

    DOEpatents

    Smith, Stephen F [London, TN; Dress, William B [Camas, WA

    2010-02-09

    Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.

  11. Hybrid radiator cooling system

    SciTech Connect

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  12. Molecular photovoltaic system based on fullerenes and carotenoids co-assembled in lipid/alkanethiol hybrid bilayers.

    PubMed

    Liu, Lixia; Zhan, Wei

    2012-03-13

    A hybrid molecular photovoltaic system, based on fullerene C(60) and lutein (a natural photosynthetic carotenoid pigment) that are assembled in a phospholipid/alkanethiol bilayer matrix, is described here. The assembly and photoconversion behaviors of such a system were studied by UV-vis spectroscopy, cyclic voltammetry, impedance spectroscopy, photoelectrochemical action spectroscopy, and photocurrent generation. While lutein itself is inefficient in generating photocurrent, it can strongly modulate photocurrents produced by fullerenes when coassembled in the lipid bilayer matrix presumably via photoinduced electron transfer. Our results thus provide a successful example of combining both synthetic and natural photoactive components in building molecular photovoltaic systems.

  13. Design and Implementation of a Set-Top Box–Based Homecare System Using Hybrid Cloud

    PubMed Central

    Lin, Bor-Shing; Hsiao, Pei-Chi; Cheng, Po-Hsun; Jan, Gene Eu

    2015-01-01

    Abstract Introduction: Telemedicine has become a prevalent topic in recent years, and several telemedicine systems have been proposed; however, such systems are an unsuitable fit for the daily requirements of users. Materials and Methods: The system proposed in this study was developed as a set-top box integrated with the Android™ (Google, Mountain View, CA) operating system to provide a convenient and user-friendly interface. The proposed system can assist with family healthcare management, telemedicine service delivery, and information exchange among hospitals. To manage the system, a novel type of hybrid cloud architecture was also developed. Results: Updated information is stored on a public cloud, enabling medical staff members to rapidly access information when diagnosing patients. In the long term, the stored data can be reduced to improve the efficiency of the database. Conclusions: The proposed design offers a robust architecture for storing data in a homecare system and can thus resolve network overload and congestion resulting from accumulating data, which are inherent problems in centralized architectures, thereby improving system efficiency. PMID:26075333

  14. Optimization-based power management of hybrid power systems with applications in advanced hybrid electric vehicles and wind farms with battery storage

    NASA Astrophysics Data System (ADS)

    Borhan, Hoseinali

    Modern hybrid electric vehicles and many stationary renewable power generation systems combine multiple power generating and energy storage devices to achieve an overall system-level efficiency and flexibility which is higher than their individual components. The power or energy management control, "brain" of these "hybrid" systems, determines adaptively and based on the power demand the power split between multiple subsystems and plays a critical role in overall system-level efficiency. This dissertation proposes that a receding horizon optimal control (aka Model Predictive Control) approach can be a natural and systematic framework for formulating this type of power management controls. More importantly the dissertation develops new results based on the classical theory of optimal control that allow solving the resulting optimal control problem in real-time, in spite of the complexities that arise due to several system nonlinearities and constraints. The dissertation focus is on two classes of hybrid systems: hybrid electric vehicles in the first part and wind farms with battery storage in the second part. The first part of the dissertation proposes and fully develops a real-time optimization-based power management strategy for hybrid electric vehicles. Current industry practice uses rule-based control techniques with "else-then-if" logic and look-up maps and tables in the power management of production hybrid vehicles. These algorithms are not guaranteed to result in the best possible fuel economy and there exists a gap between their performance and a minimum possible fuel economy benchmark. Furthermore, considerable time and effort are spent calibrating the control system in the vehicle development phase, and there is little flexibility in real-time handling of constraints and re-optimization of the system operation in the event of changing operating conditions and varying parameters. In addition, a proliferation of different powertrain configurations may

  15. Use of localized performance-based functions for the specification and correction of hybrid imaging systems

    NASA Astrophysics Data System (ADS)

    Lisson, Jerold B.; Mounts, Darryl I.; Fehniger, Michael J.

    1992-08-01

    Localized wavefront performance analysis (LWPA) is a system that allows the full utilization of the system optical transfer function (OTF) for the specification and acceptance of hybrid imaging systems. We show that LWPA dictates the correction of wavefront errors with the greatest impact on critical imaging spatial frequencies. This is accomplished by the generation of an imaging performance map-analogous to a map of the optic pupil error-using a local OTF. The resulting performance map a function of transfer function spatial frequency is directly relatable to the primary viewing condition of the end-user. In addition to optimizing quality for the viewer it will be seen that the system has the potential for an improved matching of the optical and electronic bandpass of the imager and for the development of more realistic acceptance specifications. 1. LOCAL WAVEFRONT PERFORMANCE ANALYSIS The LWPA system generates a local optical quality factor (LOQF) in the form of a map analogous to that used for the presentation and evaluation of wavefront errors. In conjunction with the local phase transfer function (LPTF) it can be used for maximally efficient specification and correction of imaging system pupil errors. The LOQF and LPTF are respectively equivalent to the global modulation transfer function (MTF) and phase transfer function (PTF) parts of the OTF. The LPTF is related to difference of the average of the errors in separated regions of the pupil. Figure

  16. Particle filter based hybrid prognostics for health monitoring of uncertain systems in bond graph framework

    NASA Astrophysics Data System (ADS)

    Jha, Mayank Shekhar; Dauphin-Tanguy, G.; Ould-Bouamama, B.

    2016-06-01

    The paper's main objective is to address the problem of health monitoring of system parameters in Bond Graph (BG) modeling framework, by exploiting its structural and causal properties. The system in feedback control loop is considered uncertain globally. Parametric uncertainty is modeled in interval form. The system parameter is undergoing degradation (prognostic candidate) and its degradation model is assumed to be known a priori. The detection of degradation commencement is done in a passive manner which involves interval valued robust adaptive thresholds over the nominal part of the uncertain BG-derived interval valued analytical redundancy relations (I-ARRs). The latter forms an efficient diagnostic module. The prognostics problem is cast as joint state-parameter estimation problem, a hybrid prognostic approach, wherein the fault model is constructed by considering the statistical degradation model of the system parameter (prognostic candidate). The observation equation is constructed from nominal part of the I-ARR. Using particle filter (PF) algorithms; the estimation of state of health (state of prognostic candidate) and associated hidden time-varying degradation progression parameters is achieved in probabilistic terms. A simplified variance adaptation scheme is proposed. Associated uncertainties which arise out of noisy measurements, parametric degradation process, environmental conditions etc. are effectively managed by PF. This allows the production of effective predictions of the remaining useful life of the prognostic candidate with suitable confidence bounds. The effectiveness of the novel methodology is demonstrated through simulations and experiments on a mechatronic system.

  17. A modular molecular photovoltaic system based on phospholipid/alkanethiol hybrid bilayers: photocurrent generation and modulation.

    PubMed

    Xie, Hong; Jiang, Kai; Zhan, Wei

    2011-10-21

    Monolayer quantities of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), incorporated with either fullerenes or ruthenium tris(bipyridyl) (Ru(bpy)(3)(2+)) complexes, were formed on ferrocene-terminated C11-alkanethiol self-assembled monolayers (SAMs) through lipid fusion. Thus formed hybrid structures are characterized by quartz crystal microbalance, UV-vis spectroscopy, cyclic voltammetry and impedance analysis. In comparison to lipid monolayers deposited on C12-alkanethiol SAMs, photocurrent generation from these ferrocene-based structures is significantly modulated, displaying attenuated anodic photocurrents and enhanced cathodic photocurrents. While a similar trend was observed for the two photoagents studied, the degree of such modulations was always found to be greater in fullerene-incorporated bilayers. These findings are evaluated in the context of the film structure, energetics of the involved photo(electrochemical) species and cross-membrane electron-transfer processes.

  18. Fuzzy logic, PSO based fuzzy logic algorithm and current controls comparative for grid-connected hybrid system

    NASA Astrophysics Data System (ADS)

    Borni, A.; Abdelkrim, T.; Zaghba, L.; Bouchakour, A.; Lakhdari, A.; Zarour, L.

    2017-02-01

    In this paper the model of a grid connected hybrid system is presented. The hybrid system includes a variable speed wind turbine controlled by aFuzzy MPPT control, and a photovoltaic generator controlled with PSO Fuzzy MPPT control to compensate the power fluctuations caused by the wind in a short and long term, the inverter currents injected to the grid is controlled by a decoupled PI current control. In the first phase, we start by modeling of the conversion system components; the wind system is consisted of a turbine coupled to a gearless permanent magnet generator (PMG), the AC/DC and DC-DC (Boost) converter are responsible to feed the electric energy produced by the PMG to the DC-link. The solar system consists of a photovoltaic generator (GPV) connected to a DC/DC boost converter controlled by a PSO fuzzy MPPT control to extract at any moment the maximum available power at the GPV terminals, the system is based on maximum utilization of both of sources because of their complementary. At the end. The active power reached to the DC-link is injected to the grid through a DC/AC inverter, this function is achieved by controlling the DC bus voltage to keep it constant and close to its reference value, The simulation studies have been performed using Matlab/Simulink. It can be concluded that a good control system performance can be achieved.

  19. Compact monolithically-integrated hybrid (de)multiplexer based on silicon-on-insulator nanowires for PDM-WDM systems.

    PubMed

    Chen, Sitao; Shi, Yaocheng; He, Sailing; Dai, Daoxin

    2015-05-18

    A compact silicon hybrid (de)multiplexer is designed and demonstrated by integrating a single bi-directional AWG with a polarization diversity circuit, which consists of an ultra-short polarization-beam splitter (PBS) based on a bent coupler and a polarization rotator (PR) based on a silicon-on-insulator nanowire with a cut corner. The present hybrid (de)multiplexer can operate for both TE- and TM- polarizations and thus is available for PDM-WDM systems. An 18-channel hybrid (de)multiplexer is realized with 9 wavelengths as an example. The wavelength-channel spacing is 400GHz (i.e., Δλ(ch) = 3.2nm) and the footprint of the device is about 530μm × 210μm. The channel crosstalk is about -13dB and the total excess loss is about 7dB. The excess loss increases by about 1~2dB due to the cascaded polarization diversity circuit in comparison with a single bi-directional AWG.

  20. Hybrid-Vehicle Transmission System

    NASA Technical Reports Server (NTRS)

    Lupo, G.; Dotti, G.

    1985-01-01

    Continuously-variable transmission system for hybrid vehicles couples internal-combustion engine and electric motor section, either individually or in parallel, to power vehicle wheels during steering and braking.

  1. Hybrid solar lighting systems and components

    DOEpatents

    Muhs, Jeffrey D.; Earl, Dennis D.; Beshears, David L.; Maxey, Lonnie C.; Jordan, John K.; Lind, Randall F.

    2007-06-12

    A hybrid solar lighting system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates each component.

  2. Hybrid solar lighting distribution systems and components

    DOEpatents

    Muhs, Jeffrey D.; Earl, Dennis D.; Beshears, David L.; Maxey, Lonnie C.; Jordan, John K.; Lind, Randall F.

    2011-07-05

    A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

  3. Measurement based controlled not gate for topological qubits in a Majorana fermion and quantum-dot hybrid system

    NASA Astrophysics Data System (ADS)

    Xue, Zheng-Yuan

    2013-04-01

    We propose a scheme to implement controlled not gate for topological qubits in a quantum-dot and Majorana fermion hybrid system. Quantum information is encoded on pairs of Majorana fermions, which live on the the interface between topologically trivial and nontrivial sections of a quantum nanowire deposited on an s-wave superconductor. A measurement based two-qubit controlled not gate is produced with the help of parity measurements assisted by the quantum-dot and followed by prescribed single-qubit gates. The parity measurement, on the quantum-dot and a topological qubit, is achieved by the Aharonov-Casher effect.

  4. Hybrid CATV/MMW/BB lightwave transmission system based on fiber-wired/fiber-wireless/fiber-VLLC integrations.

    PubMed

    Li, Chung-Yi; Lu, Hai-Han; Lu, Ting-Chieh; Chu, Chien-An; Chen, Bo-Rui; Lin, Chun-Yu; Peng, Peng-Chun

    2015-12-14

    A hybrid lightwave transmission system for cable television (CATV)/millimeter-wave (MMW)/baseband (BB) signal transmission based on fiber-wired/fiber-wireless/fiber-visible laser light communication (VLLC) integrations is proposed and demonstrated. For down-link transmission, the light is intensity-modulated with 50-550 MHz CATV signal and optically promoted from 25 GHz radio frequency (RF) signal to 10 Gbps/50 GHz and 20 Gbps/100 GHz MMW data signals based on fiber-wired and fiber-wireless integrations. Good performances of carrier-to-noise ratio (CNR), composite second-order (CSO), composite triple-beat (CTB), and bit error rate (BER) are obtained over a 40-km single-mode fiber (SMF) and a 10-m RF wireless transport. For up-link transmission, the light is successfully intensity-remodulated with 5-Gbps BB data stream based on fiber-VLLC integration. Good BER performance is achieved over a 40-km SMF and a 10-m free-space VLLC transport. Such a hybrid CATV/MMW/BB lightwave transmission system is an attractive alternative, it gives the benefits of a communication link for broader bandwidth and higher transmission rate.

  5. Prodiag--a hybrid artificial intelligence based reactor diagnostic system for process faults

    SciTech Connect

    Reifman, J.; Wei, T.Y.C.; Vitela, J.E.; Applequist, C. A.; Chasensky, T.M.

    1996-03-01

    Commonwealth Research Corporation (CRC) and Argonne National Laboratory (ANL) are collaborating on a DOE-sponsored Cooperative Research and Development Agreement (CRADA), project to perform feasibility studies on a novel approach to Artificial Intelligence (Al) based diagnostics for component faults in nuclear power plants. Investigations are being performed in the construction of a first-principles physics-based plant level process diagnostic expert system (ES) and the identification of component-level fault patterns through operating component characteristics using artificial neural networks (ANNs). The purpose of the proof-of-concept project is to develop a computer-based system using this Al approach to assist process plant operators during off-normal plant conditions. The proposed computer-based system will use thermal hydraulic (T-H) signals complemented by other non-T-H signals available in the data stream to provide the process operator with the component which most likely caused the observed process disturbance.To demonstrate the scale-up feasibility of the proposed diagnostic system it is being developed for use with the Chemical Volume Control System (CVCS) of a nuclear power plant. A full-scope operator training simulator representing the Commonwealth Edison Braidwood nuclear power plant is being used both as the source of development data and as the means to evaluate the advantages of the proposed diagnostic system. This is an ongoing multi-year project and this paper presents the results to date of the CRADA phase.

  6. The conceptual Design of a hybrid Life Support System based on the Evaluation and Comparison of Terrestrial Testbeds

    NASA Astrophysics Data System (ADS)

    Czupalla, M.; Horneck, G.; Blome, H. J.

    This report summarizes a trade study which was conducted at the DLR in Cologne as part of an Aerospace Engineering Thesis for the University of Applied Sciences at Aachen. The goal of this study was the evaluation of bioregenerative options of a Life Support System (LSS) and a subsequent conceptual design of a hybrid LSS. This concept is supported by previous work on P/C LSS. Baseline for the evaluation of bioregenerative options were the terrestrial experiments in the LSS area. The experiments considered for the study were as follows. MELISSA (ESA's Microbial LSS Approach) BIOS (Russia experiments on CELSS) ALS Project (American practical and theoretical work on LSS) Computer models including mass flows were established for each of the systems with the goal of closing system loops to the extent possible. The terrestrial test initiatives achieved different levels of maturity as of supported crew size and the provided nutrition. For comparison, all systems were scaled for supporting a crew of six as given in the NASA Design Reference Mission Scenario (DRM). In addition one uniform nutritional baseline, as of calories, was applied to all models. Equivalent System Mass analysis was used to compare the scaled terrestrial designs against each other. Following the comparison of the terrestrial systems, the system specific subsystem options for Food Supply, Waste Processing, Water Management and Atmosphere Revitalization were evaluated separately in a trade study. Resulting technologies were integrated into an overall design solution based on mass flow relationships. The bioregenerative part of the LSS was hereby supplemented with P/C LSS technologies in order to enhance system performance and to minimize re-supply requirements. Eventually an iterated conceptual hybrid LSS for DRM type mission was designed and will be presented.

  7. Mammalian two-hybrid system: a complementary approach to the yeast two-hybrid system.

    PubMed

    Luo, Y; Batalao, A; Zhou, H; Zhu, L

    1997-02-01

    Here we demonstrate the use of a mammalian two-hybrid system to study protein-protein interactions. Like the yeast two-hybrid system, this is a genetic, in vivo assay based on the reconstitution of the function of a transcriptional activator. In this system, one protein of interest is expressed as a fusion to the Gal4 DNA-binding domain and another protein is expressed as a fusion to the activation domain of the VP16 protein of the herpes simplex virus. The vectors that express these fusion proteins are cotransfected with a reporter chloramphenicol acetyltransferase (CAT) vector into a mammalian cell line. The reporter plasmid contains a cat gene under the control of five consensus Gal4 binding sites. If the two fusion proteins interact, there will be a significant increase in expression of the cat reporter gene. Previously, it was reported that mouse p53 antitumor protein and simian virus 40 large T antigen interact in a yeast two-hybrid system. Using a mammalian two-hybrid system, we were able to independently confirm this interaction. The mammalian two-hybrid system can be used as a complementary approach to verify protein-protein interactions detected by a yeast two-hybrid system screening. In addition, the mammalian two-hybrid system has two main advantages: (i) Assay results can be obtained within 48 h of transfection, and (ii) protein interactions in mammalian cells may better mimic actual in vivo interactions.

  8. DNA-based hybrid catalysis.

    PubMed

    Rioz-Martínez, Ana; Roelfes, Gerard

    2015-04-01

    In the past decade, DNA-based hybrid catalysis has merged as a promising novel approach to homogeneous (asymmetric) catalysis. A DNA hybrid catalysts comprises a transition metal complex that is covalently or supramolecularly bound to DNA. The chiral microenvironment and the second coordination sphere interactions provided by the DNA are key to achieve high enantioselectivities and, often, additional rate accelerations in catalysis. Nowadays, current efforts are focused on improved designs, understanding the origin of the enantioselectivity and DNA-induced rate accelerations, expanding the catalytic scope of the concept and further increasing the practicality of the method for applications in synthesis. Herein, the recent developments will be reviewed and the perspectives for the emerging field of DNA-based hybrid catalysis will be discussed.

  9. Design and Integration for High Performance Robotic Systems Based on Decomposition and Hybridization Approaches

    PubMed Central

    Zhang, Dan; Wei, Bin

    2017-01-01

    Currently, the uses of robotics are limited with respect to performance capabilities. Improving the performance of robotic mechanisms is and still will be the main research topic in the next decade. In this paper, design and integration for improving performance of robotic systems are achieved through three different approaches, i.e., structure synthesis design approach, dynamic balancing approach, and adaptive control approach. The purpose of robotic mechanism structure synthesis design is to propose certain mechanism that has better kinematic and dynamic performance as compared to the old ones. For the dynamic balancing design approach, it is normally accomplished based on employing counterweights or counter-rotations. The potential issue is that more weight and inertia will be included in the system. Here, reactionless based on the reconfiguration concept is put forward, which can address the mentioned problem. With the mechanism reconfiguration, the control system needs to be adapted thereafter. One way to address control system adaptation is by applying the “divide and conquer” methodology. It entails modularizing the functionalities: breaking up the control functions into small functional modules, and from those modules assembling the control system according to the changing needs of the mechanism. PMID:28075360

  10. Power quality control of an autonomous wind-diesel power system based on hybrid intelligent controller.

    PubMed

    Ko, Hee-Sang; Lee, Kwang Y; Kang, Min-Jae; Kim, Ho-Chan

    2008-12-01

    Wind power generation is gaining popularity as the power industry in the world is moving toward more liberalized trade of energy along with public concerns of more environmentally friendly mode of electricity generation. The weakness of wind power generation is its dependence on nature-the power output varies in quite a wide range due to the change of wind speed, which is difficult to model and predict. The excess fluctuation of power output and voltages can influence negatively the quality of electricity in the distribution system connected to the wind power generation plant. In this paper, the authors propose an intelligent adaptive system to control the output of a wind power generation plant to maintain the quality of electricity in the distribution system. The target wind generator is a cost-effective induction generator, while the plant is equipped with a small capacity energy storage based on conventional batteries, heater load for co-generation and braking, and a voltage smoothing device such as a static Var compensator (SVC). Fuzzy logic controller provides a flexible controller covering a wide range of energy/voltage compensation. A neural network inverse model is designed to provide compensating control amount for a system. The system can be optimized to cope with the fluctuating market-based electricity price conditions to lower the cost of electricity consumption or to maximize the power sales opportunities from the wind generation plant.

  11. Hybrid Power Management System and Method

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J. (Inventor)

    2008-01-01

    A system and method for hybrid power management. The system includes photovoltaic cells, ultracapacitors, and pulse generators. In one embodiment, the hybrid power management system is used to provide power for a highway safety flasher.

  12. Hybrid power management system and method

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J. (Inventor)

    2007-01-01

    A system and method for hybrid power management. The system includes photovoltaic cells, ultracapacitors, and pulse generators. In one embodiment, the hybrid power management system is used to provide power for a highway safety flasher.

  13. A wavelet-fuzzy logic based energy management strategy for a fuel cell/battery/ultra-capacitor hybrid vehicular power system

    NASA Astrophysics Data System (ADS)

    Erdinc, O.; Vural, B.; Uzunoglu, M.

    Due to increasing concerns on environmental pollution and depleting fossil fuels, fuel cell (FC) vehicle technology has received considerable attention as an alternative to the conventional vehicular systems. However, a FC system combined with an energy storage system (ESS) can display a preferable performance for vehicle propulsion. As the additional ESS can fulfill the transient power demand fluctuations, the fuel cell can be downsized to fit the average power demand without facing peak loads. Besides, braking energy can be recovered by the ESS. This study focuses on a vehicular system powered by a fuel cell and equipped with two secondary energy storage devices: battery and ultra-capacitor (UC). However, an advanced energy management strategy is quite necessary to split the power demand of a vehicle in a suitable way for the on-board power sources in order to maximize the performance while promoting the fuel economy and endurance of hybrid system components. In this study, a wavelet and fuzzy logic based energy management strategy is proposed for the developed hybrid vehicular system. Wavelet transform has great capability for analyzing signals consisting of instantaneous changes like a hybrid electric vehicle (HEV) power demand. Besides, fuzzy logic has a quite suitable structure for the control of hybrid systems. The mathematical and electrical models of the hybrid vehicular system are developed in detail and simulated using MATLAB ®, Simulink ® and SimPowerSystems ® environments.

  14. Healthcare information exchange system based on a hybrid central/federated model.

    PubMed

    Ghane, Kamran

    2014-01-01

    The quality of care can be significantly enhanced and healthcare cost can be substantially reduced if healthcare providers can have access to patient records that are scattered among several paper and electronic based systems. Major challenges of Healthcare Information Exchange result from patient's medical records being kept in several healthcare provider offices, clinics and hospitals in different formats. There are two major problems with healthcare information retrieval. The first problem is lack of visibility and knowledge as to where patient's medical records reside. The second problem is lack of access to information and also incompatibility of data formats. A considerable coverage of Electronic Information Exchange among Electronic Health Record (EHR) systems remains to be implemented despite extensive standardization efforts toward providing solutions. The adoption pace of available standards and solutions has been slow with the exception of some public/government entities. This paper describes a comprehensive and practical solution based on a distributed system with independent subsystems that control and manage processes and data flow of information exchange. The Registrar Subsystem creates a directory of healthcare providers and patients. The Security Subsystem provides authentication and authorization services across all subsystems. The Locators address patient and medical location lookup. The Agents act on behalf of healthcare providers to communicate with other subsystems. The Mediators facilitate information retrieval. The Solution comprises of three levels of participation that allows healthcare providers to join the system easily by starting from basic semi-manual information exchange level and then migrating to a fully electronic and automated information exchange. The Solution is modeled based on variety of standards and protocols used in Internet and other application fields as well as healthcare specific standards and proposals.

  15. Plaque-based competitive hybridization.

    PubMed

    Villányi, Zoltán; Gyurján, István; Stéger, Viktor; Orosz, László

    2008-01-01

    The authors have developed a simple, cost-saving experimental design, plaque-based competitive hybridization (PBCH), for genome-wide identification of genes differentially expressed in different tissues. PBCH offers advantages in comparison with other methods used in comparative genomics by combining the principles of differential hybridization with the subtractive hybridization. PBCH is particularly advantageous when libraries with few differences are to be analyzed. The authors demonstrate the use of PBCH by identifying 3 genes, up-regulated in the developing velvet antler of red deer (Cervus elaphus): ApoD, C011A2, and S100a1. The fidelity and sensitivity of PBCH is also shown: 1 specific clone among a library sample of 15,000 can be recognized. Possibilities for further utilizations are discussed.

  16. The conceptual design of a hybrid life support system based on the evaluation and comparison of terrestrial testbeds

    NASA Astrophysics Data System (ADS)

    Czupalla, M.; Horneck, G.; Blome, H. J.

    This report summarizes a trade study of different options of a bioregenerative Life Support System (LSS) and a subsequent conceptual design of a hybrid LSS. The evaluation was based mainly on the terrestrial testbed projects MELISSA (ESA) and BIOS (Russia). In addition, some methods suggested by the Advanced Life Support Project (NASA) were considered. Computer models, including mass flows were established for each of the systems with the goal of closing system loops to the extent possible. In order to cope with the differences in the supported crew size and provided nutrition, all systems were scaled for supporting a crew of six for a 780 day Mars mission (180 days transport to Mars; 600 days surface period) as given in the NASA Design Reference Mission Scenario [Hoffman, S.J., Kaplan, D.L. Human exploration of Mars: the Reference Mission of the NASA Mars Exploratory Study, 1997]. All models were scaled to provide the same daily allowances, as of calories, to the crew. Equivalent System Mass (ESM) analysis was used to compare the investigated system models against each other. Following the comparison of the terrestrial systems, the system specific subsystem options for Food Supply, Solid Waste Processing, Water Management and Atmosphere Revitalization were evaluated in a separate trade study. The best subsystem technologies from the trade study were integrated into an overall design solution based on mass flow relationships. The optimized LSS is mainly a bioregenerative system, complemented by a few physico-chemical elements, with a total ESM of 18,088 kg, which is about 4 times higher than that of a pure physico-chemical LSS, as designed in an earlier study.

  17. The conceptual design of a hybrid life support system based on the evaluation and comparison of terrestrial testbeds.

    PubMed

    Czupalla, M; Horneck, G; Blome, H J

    2005-01-01

    This report summarizes a trade study of different options of a bioregenerative Life Support System (LSS) and a subsequent conceptual design of a hybrid LSS. The evaluation was based mainly on the terrestrial testbed projects MELISSA (ESA) and BIOS (Russia). In addition, some methods suggested by the Advanced Life Support Project (NASA) were considered. Computer models, including mass flows were established for each of the systems with the goal of closing system loops to the extent possible. In order to cope with the differences in the supported crew size and provided nutrition, all systems were scaled for supporting a crew of six for a 780 day Mars mission (180 days transport to Mars; 600 days surface period) as given in the NASA Design Reference Mission Scenario [Hoffman, S.J., Kaplan, D.L. Human exploration of Mars: the Reference Mission of the NASA Mars Exploratory Study, 1997]. All models were scaled to provide the same daily allowances, as of calories, to the crew. Equivalent System Mass (ESM) analysis was used to compare the investigated system models against each other. Following the comparison of the terrestrial systems, the system specific subsystem options for Food Supply, Solid Waste Processing, Water Management and Atmosphere Revitalization were evaluated in a separate trade study. The best subsystem technologies from the trade study were integrated into an overall design solution based on mass flow relationships. The optimized LSS is mainly a bioregenerative system, complemented by a few physico-chemical elements, with a total ESM of 18,088 kg, which is about 4 times higher than that of a pure physico-chemical LSS, as designed in an earlier study.

  18. Witnessing entanglement in hybrid systems

    NASA Astrophysics Data System (ADS)

    Borrelli, Massimo; Rossi, Matteo; Macchiavello, Chiara; Maniscalco, Sabrina

    2014-08-01

    We extend the definition of entanglement witnesses based on spin structure factors to the case of scatterers with quantum mechanical motion. We show that this allows for hybrid entanglement detection and specialize the witness for a chain of trapped ions. Within this framework, we also show how the collective vibronic state of the chain can act as an undesired quantum environment affecting the spin-spin-entanglement detection. Furthermore, we investigate several specific cases where these witness operators allow us to detect hybrid entanglement.

  19. Hybrid2 - The hybrid power system simulation model

    SciTech Connect

    Baring-Gould, E.I.; Green, H.J.; Dijk, V.A.P. van; Manwell, J.F.

    1996-12-31

    There is a large-scale need and desire for energy in remote communities, especially in the developing world; however the lack of a user friendly, flexible performance prediction model for hybrid power systems incorporating renewables hindered the analysis of hybrids as options to conventional solutions. A user friendly model was needed with the versatility to simulate the many system locations, widely varying hardware configurations, and differing control options for potential hybrid power systems. To meet these ends, researchers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) developed the Hybrid2 software. This paper provides an overview of the capabilities, features, and functionality of the Hybrid2 code, discusses its validation and future plans. Model availability and technical support provided to Hybrid2 users are also discussed. 12 refs., 3 figs., 4 tabs.

  20. Hybrid2: The hybrid power system simulation model

    SciTech Connect

    Baring-Gould, E I; Green, H J; van Dijk, V A.P.; Manwell, J F

    1996-07-01

    There is a large-scale need and desire for energy in remote communities, especially in the developing world; however the lack of a user friendly, flexible performance prediction model for hybrid power systems incorporating renewables hindered the analysis of hybrids (including wind turbines, PV, diesel generators, AC/DC energy storage) as options to conventional solutions. A user friendly model was needed with the versatility to simulate the many system locations, widely varying hardware configurations, and differing control options for potential hybrid power systems. To meet these ends, NREL and U. Mass. researchers developed the Hybrid2 software. This paper provides an overview of the capabilities, features, and functionality of the Hybrid2 code, discusses its validation and future plans. Model availability and technical support provided to Hybrid2 users are also discussed.

  1. Framework for the Economic Analysis of Hybrid Systems Based on Exergy Consumption

    SciTech Connect

    Rabiti, Cristian; Cherry, Robert S.; Deason, Wesley R.; Sabharwall, Piyush; Bragg-Sitton, Shannon M.; Boardman, Richard D.

    2014-08-01

    Starting from an overview of the dynamic behavior of the electricity market the need of the introduction of energy users that will provide a damping capability to the system is derived as also a qualitative analysis of the impact of uncertainty, both in the demand and supply side, is performed. Then it follows an introduction to the investment analysis methodologies based on the discounting of the cash flow, and then work concludes with the illustration and application of the exergonomic principles to provide a sound methodology for the cost accounting of the plant components to be used in the cash flow analysis.

  2. Hybrid2: The hybrid system simulation model, Version 1.0, user manual

    SciTech Connect

    Baring-Gould, E.I.

    1996-06-01

    In light of the large scale desire for energy in remote communities, especially in the developing world, the need for a detailed long term performance prediction model for hybrid power systems was seen. To meet these ends, engineers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) have spent the last three years developing the Hybrid2 software. The Hybrid2 code provides a means to conduct long term, detailed simulations of the performance of a large array of hybrid power systems. This work acts as an introduction and users manual to the Hybrid2 software. The manual describes the Hybrid2 code, what is included with the software and instructs the user on the structure of the code. The manual also describes some of the major features of the Hybrid2 code as well as how to create projects and run hybrid system simulations. The Hybrid2 code test program is also discussed. Although every attempt has been made to make the Hybrid2 code easy to understand and use, this manual will allow many organizations to consider the long term advantages of using hybrid power systems instead of conventional petroleum based systems for remote power generation.

  3. Hybrid cable television and orthogonal-frequency-division-multiplexing transport system basing on single wavelength polarization and amplitude remodulation schemes.

    PubMed

    Chang, Ching-Hung; Liu, Wei-Chen; Peng, Peng-Chun; Lu, Hai-Han; Wu, Po-Yi; Wang, Jyun-Bo

    2011-05-01

    A hybrid community antenna television (CATV) and orthogonal-frequency-division-multiplexing (OFDM) transport system is proposed and experimentally demonstrated to transmit multiple CATV channels and bi-directional radio frequency signals on a single optical carrier. By polarization remodulating an optical CATV signal with downstream OFDM signals and then amplitude remodulating upstream OFDM signals with the hybrid CATV/OFDM signals, this architecture can efficiently utilize only one optical carrier to support optical analog/digital CATV transmission and bi-directional wireless broadband services for each client. Good experimental results prove that this architecture provides a proper wavelength utilization scheme for future multiwavelength optical transport systems.

  4. In vivo nanotoxicology of hybrid systems based on copolymer/silica/anticancer drug

    NASA Astrophysics Data System (ADS)

    Silveira, C. P.; Paula, A. J.; Apolinário, L. M.; Fávaro, W. J.; Durán, N.

    2015-05-01

    One of the major problems in cancer therapies is the high occurrence of side effects intrinsic of anticancer drugs. Doxorrubicin is a conventional anticancer molecule used to treat a wide range of cancer, such as breast, ovarian and prostate. However, its use is associated with a number of side effects like multidrug resistance and cardiotoxicity. The association with nanomaterials has been considered in the past decade to overcome the high toxicity of these drugs. In this context, mesoporous silica nanoparticles are great candidates to be used as carriers once they are very biocompatible. Taking into account the combination of nanoparticles and doxorrubicin, we treated rats with chemically induced prostate cancer with systems based on mesoporous silica nanoparticles and a thermoreversible block copolymer (Pluronic F-127) containing doxorrubicin. Preliminary results show a possible improvement in tumor conditions proportional to the concentration of the nanoparticles, opening a perspective to use mesoporous silica nanoparticles as carrier for doxorrubicin in prostate cancer treatment.

  5. Hybrid powertrain system

    DOEpatents

    Hughes, Douglas A.

    2006-08-01

    A powertrain system is provided that includes a first prime mover and change-gear transmission having a first input shaft and a second input shaft. A twin clutch is disposed between the first prime mover and the transmission. The twin clutch includes a first main clutch positioned between the first prime mover and the first input shaft and a second main clutch positioned between the first prime mover and the second input shaft. The powertrain system also includes a second prime mover operably connected to one of the first and second input shafts.

  6. Hybrid powertrain system

    DOEpatents

    Hughes, Douglas A.

    2007-09-25

    A powertrain system is provided that includes a first prime mover and change-gear transmission having a first input shaft and a second input shaft. A twin clutch is disposed between the first prime mover and the transmission. The twin clutch includes a first main clutch positioned between the first prime mover and the first input shaft and a second main clutch positioned between the first prime mover and the second input shaft. The powertrain system also includes a second prime mover operably connected to one of the first and second input shafts.

  7. Smell Nanobiosensors: Hybrid systems based on the electrical response to odorant capture Theory And Experiment

    NASA Astrophysics Data System (ADS)

    Alfinito, Eleonora; Pennetta, Cecilia; Reggiani, Lino

    2009-05-01

    Mammalian olfactory system is the bio-archetype of smell sensor devices. It is based on a very articulated mechanism which translate the odorant capture information performed by the olfactory receptors (ORs) into a code. Finally, the code is sent to the brain for aroma recognition. Our aim is to partially mimick this system to produce a biosensor on nanometric scale. The active part of the device is constituted of nanosomes containing specific ORs. Each nanosome is interfaced with nanoelectrodes and the odorant capture is converted into an electric signal. Specifically, the electrical response is correlated with the conformational change that a single OR undergoes when it captures a specific odorant molecule. An array of nanodevices should be able to produce specific response profiles. In this paper we present a possible theoretical framework in which the experimental results should be embedded. It consists of the description of the protein in terms of an impedance network able to simulate the electrical characteristics associated with the protein topology.

  8. Data-driven reinforcement learning–based real-time energy management system for plug-in hybrid electric vehicles

    SciTech Connect

    Qi, Xuewei; Wu, Guoyuan; Boriboonsomsin, Kanok; Barth, Matthew J.; Gonder, Jeffrey

    2016-01-01

    Plug-in hybrid electric vehicles (PHEVs) show great promise in reducing transportation-related fossil fuel consumption and greenhouse gas emissions. Designing an efficient energy management system (EMS) for PHEVs to achieve better fuel economy has been an active research topic for decades. Most of the advanced systems rely either on a priori knowledge of future driving conditions to achieve the optimal but not real-time solution (e.g., using a dynamic programming strategy) or on only current driving situations to achieve a real-time but nonoptimal solution (e.g., rule-based strategy). This paper proposes a reinforcement learning–based real-time EMS for PHEVs to address the trade-off between real-time performance and optimal energy savings. The proposed model can optimize the power-split control in real time while learning the optimal decisions from historical driving cycles. Here, a case study on a real-world commute trip shows that about a 12% fuel saving can be achieved without considering charging opportunities; further, an 8% fuel saving can be achieved when charging opportunities are considered, compared with the standard binary mode control strategy.

  9. Data-driven reinforcement learning–based real-time energy management system for plug-in hybrid electric vehicles

    DOE PAGES

    Qi, Xuewei; Wu, Guoyuan; Boriboonsomsin, Kanok; ...

    2016-01-01

    Plug-in hybrid electric vehicles (PHEVs) show great promise in reducing transportation-related fossil fuel consumption and greenhouse gas emissions. Designing an efficient energy management system (EMS) for PHEVs to achieve better fuel economy has been an active research topic for decades. Most of the advanced systems rely either on a priori knowledge of future driving conditions to achieve the optimal but not real-time solution (e.g., using a dynamic programming strategy) or on only current driving situations to achieve a real-time but nonoptimal solution (e.g., rule-based strategy). This paper proposes a reinforcement learning–based real-time EMS for PHEVs to address the trade-off betweenmore » real-time performance and optimal energy savings. The proposed model can optimize the power-split control in real time while learning the optimal decisions from historical driving cycles. Here, a case study on a real-world commute trip shows that about a 12% fuel saving can be achieved without considering charging opportunities; further, an 8% fuel saving can be achieved when charging opportunities are considered, compared with the standard binary mode control strategy.« less

  10. Monitoring and fault diagnosis of hybrid systems.

    PubMed

    Zhao, Feng; Koutsoukos, Xenofon; Haussecker, Horst; Reich, Jim; Cheung, Patrick

    2005-12-01

    Many networked embedded sensing and control systems can be modeled as hybrid systems with interacting continuous and discrete dynamics. These systems present significant challenges for monitoring and diagnosis. Many existing model-based approaches focus on diagnostic reasoning assuming appropriate fault signatures have been generated. However, an important missing piece is the integration of model-based techniques with the acquisition and processing of sensor signals and the modeling of faults to support diagnostic reasoning. This paper addresses key modeling and computational problems at the interface between model-based diagnosis techniques and signature analysis to enable the efficient detection and isolation of incipient and abrupt faults in hybrid systems. A hybrid automata model that parameterizes abrupt and incipient faults is introduced. Based on this model, an approach for diagnoser design is presented. The paper also develops a novel mode estimation algorithm that uses model-based prediction to focus distributed processing signal algorithms. Finally, the paper describes a diagnostic system architecture that integrates the modeling, prediction, and diagnosis components. The implemented architecture is applied to fault diagnosis of a complex electro-mechanical machine, the Xerox DC265 printer, and the experimental results presented validate the approach. A number of design trade-offs that were made to support implementation of the algorithms for online applications are also described.

  11. Hybrid Microgrid Model based on Solar Photovoltaics with Batteries and Fuel Cells system for intermittent applications

    NASA Astrophysics Data System (ADS)

    Patterson, Maxx

    Microgrids are a subset of the modern power structure; using distributed generation (DG) to supply power to communities rather than vast regions. The reduced scale mitigates loss allowing the power produced to do more with better control, giving greater security, reliability, and design flexibility. This paper explores the performance and cost viability of a hybrid grid-tied microgrid that utilizes Photovoltaic (PV), batteries, and fuel cell (FC) technology. The concept proposes that each community home is equipped with more PV than is required for normal operation. As the homes are part of a microgrid, excess or unused energy from one home is collected for use elsewhere within the microgrid footprint. The surplus power that would have been discarded becomes a community asset, and is used to run intermittent services. In this paper, the modeled community does not have parking adjacent to each home allowing for the installment of a privately owned slower Level 2 charger, making EV ownership option untenable. A solution is to provide a Level 3 DC Quick Charger (DCQC) as the intermittent service. The addition of batteries and Fuel Cells are meant to increase load leveling, reliability, and instill limited island capability.

  12. Hybrid lipid-based nanostructures

    NASA Astrophysics Data System (ADS)

    Dayani, Yasaman

    Biological membranes serve several important roles, such as structural support of cells and organelles, regulation of ionic and molecular transport, barriers to non-mediated transport, contact between cells within tissues, and accommodation of membrane proteins. Membrane proteins and other vital biomolecules incorporated into the membrane need a lipid membrane to function. Due to importance of lipid bilayers and their vital function in governing many processes in the cell, the development of various models as artificial lipid membranes that can mimic cell membranes has become a subject of great interest. Using different models of artificial lipid membranes, such as liposomes, planar lipid bilayers and supported or tethered lipid bilayers, we are able to study many biophysical processes in biological membranes. The ability of different molecules to interact with and change the structure of lipid membranes can be also investigated in artificial lipid membranes. An important application of lipid bilayer-containing interfaces is characterization of novel membrane proteins for high throughput drug screening studies to investigate receptor-drug interactions and develop biosensor systems. Membrane proteins need a lipid bilayer environment to preserve their stability and functionality. Fabrication of materials that can interact with biomolecules like proteins necessitates the use of lipid bilayers as a mimic of cell membranes. The objective of this research is to develop novel hybrid lipid-based nanostructures mimicking biological membranes. Toward this aim, two hybrid biocompatible structures are introduced: lipid bilayer-coated multi-walled carbon nanotubes (MWCNTs) and hydrogel-anchored liposomes with double-stranded DNA anchors. These structures have potential applications in biosensing, drug targeting, drug delivery, and biophysical studies of cell membranes. In the first developed nanostructure, lipid molecules are covalently attached to the surfaces of MWCNTs, and

  13. Desiccant-Based Combined Systems: Integrated Active Desiccant Rooftop Hybrid System Development and Testing Final Report- Phase 4

    SciTech Connect

    Fischer, J

    2005-05-06

    This report summarizes the results of a research and development (R&D) program to design and optimize an active desiccant-vapor compression hybrid rooftop system. The primary objective was to combine the strengths of both technologies to produce a compact, high-performing, energy-efficient system that could accommodate any percentage of outdoor air and deliver essentially any required combination of temperature and humidity, or sensible heat ratio (SHR). In doing so, such a product would address the significant challenges imposed on the performance capabilities of conventional packaged rooftop equipment by standards 62 and 90.1 of the American Society of Heating, Refrigerating and Air-Conditioning Engineers. The body of work completed as part of this program built upon previous R&D efforts supported by the U.S. Department of Energy and summarized by the Phase 3b report ''Active Desiccant Dehumidification Module Integration with Rooftop Packaged HVAC Units'' (Fischer and Sand 2002), in addition to Fischer, Hallstrom, and Sand 2000; Fischer 2000; and Fischer and Sand 2004. All initial design objectives established for this development program were successfully achieved. The performance flexibility desired was accomplished by a down-sized active desiccant wheel that processes only a portion of the supply airflow, which is pre-conditioned by a novel vapor compression cycle. Variable-speed compressors are used to deliver the capacity control required by a system handling a high percentage of outdoor air. An integrated direct digital control system allows for control capabilities not generally offered by conventional packaged rooftop systems. A 3000-cfm prototype system was constructed and tested in the SEMCO engineering test laboratory in Columbia, MO, and was found to operate in an energy-efficient fashion relative to more conventional systems. Most important, the system offered the capability to independently control the supply air temperature and humidity content to

  14. A Photogrammetry-Based Hybrid System for Dynamic Tracking and Measurement

    DTIC Science & Technology

    2010-06-01

    24 3.8 Targeted object used for camera location. Retroreflective and coded targets ...categories: target -based and texture-based. Target -based photogrammetry requires the use of physical or pro- jected marks on an object to aid in point...or projected texture of the object to correlate points between a set of images. This process produces a denser set of point data than target -based

  15. A novel integrated thermal-/membrane-based solar energy-driven hybrid desalination system: Concept description and simulation results.

    PubMed

    Kim, Young-Deuk; Thu, Kyaw; Ng, Kim Choon; Amy, Gary L; Ghaffour, Noreddine

    2016-09-01

    In this paper, a hybrid desalination system consisting of vacuum membrane distillation (VMD) and adsorption desalination (AD) units, designated as VMD-AD cycle, is proposed. The synergetic integration of the VMD and AD is demonstrated where a useful effect of the AD cycle is channelled to boost the operation of the VMD process, namely the low vacuum environment to maintain the high pressure gradient across the microporous hydrophobic membrane. A solar-assisted multi-stage VMD-AD hybrid desalination system with temperature modulating unit is first designed, and its performance is then examined with a mathematical model of each component in the system and compared with the VMD-only system with temperature modulating and heat recovery units. The total water production and water recovery ratio of a solar-assisted 24-stage VMD-AD hybrid system are found to be about 21% and 23% higher, respectively, as compared to the VMD-only system. For the solar-assisted 24-stage VMD-AD desalination system having 150 m(2) of evacuated-tube collectors and 10 m(3) seawater storage tanks, both annual collector efficiency and solar fraction are close to 60%.

  16. Hybrid chirped pulse amplification system

    SciTech Connect

    Barty, Christopher P.; Jovanovic, Igor

    2005-03-29

    A hybrid chirped pulse amplification system wherein a short-pulse oscillator generates an oscillator pulse. The oscillator pulse is stretched to produce a stretched oscillator seed pulse. A pump laser generates a pump laser pulse. The stretched oscillator seed pulse and the pump laser pulse are directed into an optical parametric amplifier producing an optical parametric amplifier output amplified signal pulse and an optical parametric amplifier output unconverted pump pulse. The optical parametric amplifier output amplified signal pulse and the optical parametric amplifier output laser pulse are directed into a laser amplifier producing a laser amplifier output pulse. The laser amplifier output pulse is compressed to produce a recompressed hybrid chirped pulse amplification pulse.

  17. Hybrid spread spectrum radio system

    DOEpatents

    Smith, Stephen F.; Dress, William B.

    2010-02-02

    Systems and methods are described for hybrid spread spectrum radio systems. A method includes modulating a signal by utilizing a subset of bits from a pseudo-random code generator to control an amplification circuit that provides a gain to the signal. Another method includes: modulating a signal by utilizing a subset of bits from a pseudo-random code generator to control a fast hopping frequency synthesizer; and fast frequency hopping the signal with the fast hopping frequency synthesizer, wherein multiple frequency hops occur within a single data-bit time.

  18. A Lymph Node Staging System for Gastric Cancer: A Hybrid Type Based on Topographic and Numeric Systems

    PubMed Central

    Katai, Hitoshi; Seto, Yasuyuki; Fukagawa, Takeo; Okumura, Yasuhiro; Kim, Dong Wook; Kim, Hyoung-Il; Cheong, Jae-Ho; Hyung, Woo Jin; Noh, Sung Hoon

    2016-01-01

    Although changing a lymph node staging system from an anatomically based system to a numerically based system in gastric cancer offers better prognostic performance, several problems can arise: it does not offer information on the anatomical extent of disease and cannot represent the extent of lymph node dissection. The purpose of this study was to discover an alternative lymph node staging system for gastric cancer. Data from 6025 patients who underwent gastrectomy for primary gastric cancer between January 2000 and December 2010 were reviewed. The lymph node groups were reclassified into lesser-curvature, greater-curvature, and extra-perigastric groups. Presence of any metastatic lymph node in one group was considered positive. Lymph node groups were further stratified into four (new N0–new N3) according to the number of positive lymph node groups. Survival outcomes with this new N staging were compared with those of the current TNM system. For validation, two centers in Japan (large center, n = 3443; medium center, n = 560) were invited. Even among the same pN stages, the more advanced new N stage showed worse prognosis, indicating that the anatomical extent of metastatic lymph nodes is important. The prognostic performance of the new staging system was as good as that of the current TNM system for overall advanced gastric cancer as well as lymph node—positive gastric cancer (Harrell C-index was 0.799, 0.726, and 0.703 in current TNM and 0.799, 0.727, and 0.703 in new TNM stage). Validation sets supported these outcomes. The new N staging system demonstrated prognostic performance equal to that of the current TNM system and could thus be used as an alternative. PMID:26967161

  19. Hybrid slab-microchannel gel electrophoresis system

    DOEpatents

    Balch, Joseph W.; Carrano, Anthony V.; Davidson, James C.; Koo, Jackson C.

    1998-01-01

    A hybrid slab-microchannel gel electrophoresis system. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate.

  20. A Rule-Based System for Hybrid Search and Delivery of Learning Objects to Learners

    ERIC Educational Resources Information Center

    Biletskiy, Yevgen; Baghi, Hamidreza; Steele, Jarrett; Vovk, Ruslan

    2012-01-01

    Purpose: Presently, searching the internet for learning material relevant to ones own interest continues to be a time-consuming task. Systems that can suggest learning material (learning objects) to a learner would reduce time spent searching for material, and enable the learner to spend more time for actual learning. The purpose of this paper is…

  1. A VLF-based technique in applications to digital control of nonlinear hybrid multirate systems

    NASA Astrophysics Data System (ADS)

    Vassilyev, Stanislav; Ulyanov, Sergey; Maksimkin, Nikolay

    2017-01-01

    In this paper, a technique for rigorous analysis and design of nonlinear multirate digital control systems on the basis of the reduction method and sublinear vector Lyapunov functions is proposed. The control system model under consideration incorporates continuous-time dynamics of the plant and discrete-time dynamics of the controller and takes into account uncertainties of the plant, bounded disturbances, nonlinear characteristics of sensors and actuators. We consider a class of multirate systems where the control update rate is slower than the measurement sampling rates and periodic non-uniform sampling is admitted. The proposed technique does not use the preliminary discretization of the system, and, hence, allows one to eliminate the errors associated with the discretization and improve the accuracy of analysis. The technique is applied to synthesis of digital controller for a flexible spacecraft in the fine stabilization mode and decentralized controller for a formation of autonomous underwater vehicles. Simulation results are provided to validate the good performance of the designed controllers.

  2. Quantum technologies with hybrid systems

    PubMed Central

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-01-01

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field. PMID:25737558

  3. Quantum technologies with hybrid systems

    NASA Astrophysics Data System (ADS)

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-03-01

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.

  4. Quantum technologies with hybrid systems.

    PubMed

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-03-31

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.

  5. Discrete mechanics, "time machines" and hybrid systems

    NASA Astrophysics Data System (ADS)

    Elze, Hans-Thomas

    2013-09-01

    Modifying the discrete mechanics proposed by T.D. Lee, we construct a class of discrete classical Hamiltonian systems, in which time is one of the dynamical variables. This includes a toy model of "time machines" which can travel forward and backward in time and which differ from models based on closed timelike curves (CTCs). In the continuum limit, we explore the interaction between such time reversing machines and quantum mechanical objects, employing a recent description of quantum-classical hybrids.

  6. Ultrasensitive immunoassay based on a pseudobienzyme amplifying system of choline oxidase and luminol-reduced Pt@Au hybrid nanoflowers.

    PubMed

    Zhou, Ying; Zhuo, Ying; Liao, Ni; Chai, Yaqin; Yuan, Ruo

    2014-12-04

    A multi-functional luminol-reduced Pt@Au hybrid flower-like nanocomposite (luminol-Pt@AuNF) which not only acts as an efficient signal probe but also constitutes a pseudobienzyme amplifying system with choline oxidase (ChOx) was firstly synthesized and applied to the construction of a solid-state luminol electrochemiluminescence (ECL) immunosensor for cardiac troponin I (cTnI) detection.

  7. Hybrid quantum systems with trapped charged particles

    NASA Astrophysics Data System (ADS)

    Kotler, Shlomi; Simmonds, Raymond W.; Leibfried, Dietrich; Wineland, David J.

    2017-02-01

    Trapped charged particles have been at the forefront of quantum information processing (QIP) for a few decades now, with deterministic two-qubit logic gates reaching record fidelities of 99.9 % and single-qubit operations of much higher fidelity. In a hybrid system involving trapped charges, quantum degrees of freedom of macroscopic objects such as bulk acoustic resonators, superconducting circuits, or nanomechanical membranes, couple to the trapped charges and ideally inherit the coherent properties of the charges. The hybrid system therefore implements a "quantum transducer," where the quantum reality (i.e., superpositions and entanglement) of small objects is extended to include the larger object. Although a hybrid quantum system with trapped charges could be valuable both for fundamental research and for QIP applications, no such system exists today. Here we study theoretically the possibilities of coupling the quantum-mechanical motion of a trapped charged particle (e.g., an ion or electron) to the quantum degrees of freedom of superconducting devices, nanomechanical resonators, and quartz bulk acoustic wave resonators. For each case, we estimate the coupling rate between the charged particle and its macroscopic counterpart and compare it to the decoherence rate, i.e., the rate at which quantum superposition decays. A hybrid system can only be considered quantum if the coupling rate significantly exceeds all decoherence rates. Our approach is to examine specific examples by using parameters that are experimentally attainable in the foreseeable future. We conclude that hybrid quantum systems involving a single atomic ion are unfavorable compared with the use of a single electron because the coupling rates between the ion and its counterpart are slower than the expected decoherence rates. A system based on trapped electrons, on the other hand, might have coupling rates that significantly exceed decoherence rates. Moreover, it might have appealing properties such

  8. Color image encryption based on hybrid hyper-chaotic system and cellular automata

    NASA Astrophysics Data System (ADS)

    Yaghouti Niyat, Abolfazl; Moattar, Mohammad Hossein; Niazi Torshiz, Masood

    2017-03-01

    This paper proposes an image encryption scheme based on Cellular Automata (CA). CA is a self-organizing structure with a set of cells in which each cell is updated by certain rules that are dependent on a limited number of neighboring cells. The major disadvantages of cellular automata in cryptography include limited number of reversal rules and inability to produce long sequences of states by these rules. In this paper, a non-uniform cellular automata framework is proposed to solve this problem. This proposed scheme consists of confusion and diffusion steps. In confusion step, the positions of the original image pixels are replaced by chaos mapping. Key image is created using non-uniform cellular automata and then the hyper-chaotic mapping is used to select random numbers from the image key for encryption. The main contribution of the paper is the application of hyper chaotic functions and non-uniform CA for robust key image generation. Security analysis and experimental results show that the proposed method has a very large key space and is resistive against noise and attacks. The correlation between adjacent pixels in the encrypted image is reduced and the amount of entropy is equal to 7.9991 which is very close to 8 which is ideal.

  9. HOPIS: Hybrid Omnidirectional and Perspective Imaging System for Mobile Robots

    PubMed Central

    Lin, Huei-Yung.; Wang, Min-Liang.

    2014-01-01

    In this paper, we present a framework for the hybrid omnidirectional and perspective robot vision system. Based on the hybrid imaging geometry, a generalized stereo approach is developed via the construction of virtual cameras. It is then used to rectify the hybrid image pair using the perspective projection model. The proposed method not only simplifies the computation of epipolar geometry for the hybrid imaging system, but also facilitates the stereo matching between the heterogeneous image formation. Experimental results for both the synthetic data and real scene images have demonstrated the feasibility of our approach. PMID:25192317

  10. System for controlling a hybrid energy system

    DOEpatents

    Hoff, Brian D.; Akasam, Sivaprasad

    2013-01-29

    A method includes identifying a first operating sequence of a repeated operation of at least one non-traction load. The method also includes determining first and second parameters respectively indicative of a requested energy and output energy of the at least one non-traction load and comparing the determined first and second parameters at a plurality of time increments of the first operating sequence. The method also includes determining a third parameter of the hybrid energy system indicative of energy regenerated from the at least one non-traction load and monitoring the third parameter at the plurality of time increments of the first operating sequence. The method also includes determining at least one of an energy deficiency or an energy surplus associated with the non-traction load of the hybrid energy system and selectively adjusting energy stored within the storage device during at least a portion of a second operating sequence.

  11. Using a Hybrid of Student-Sourced Data and Web-Based Data for an Undergraduate Earth System Science Course

    NASA Astrophysics Data System (ADS)

    Sinton, C.

    2014-12-01

    In an undergraduate Earth System Science (ESS) course, students learn about the processes in which material and energy move between the different earth spheres. It is critical that quantitative analysis be part of the class in order to have students understand rates and magnitudes of these processes. It is even better if the students generate the data and research questions. At Ithaca College, ESS is a requirement for all Environmental Science majors and is their introduction into earth science. The majority of the lab periods for the class are devoted to research-based exercises in which students are asked to generate research questions and working hypotheses prior to data gathering. Several exercises use a hybrid of student-generated data and information available from on-line sources such as NOAA and USGS. For example, student groups gather water data from four water bodies on the campus over the course of the semester (e.g., temperature, pH, turbidity, conductivity) while at the same time accessing NOAA climatic data from a nearby weather station. The advantages of this approach include student ownership (and responsibility) and rich, diverse datasets that can be used to answer a variety of questions. Disadvantages include the inability of the instructor to fully anticipate the results, which can make planning difficult. In addition, considerable time is required to have students wade through the data, make mistakes, and then correct the mistakes. Nevertheless, the overall approach results in a richer and more effective learning experience compared to lab exercises that use data sets provided by the instructor.

  12. Complex Dynamical Behavior in Hybrid Systems

    DTIC Science & Technology

    2012-09-29

    multiple mode switching and other high-level supervisory control architectures, give rise to complicated hybrid dynamical systems with behaviors... switching and other high-level supervisory control architectures, give rise to complicated hybrid dynamical systems with behaviors that can be difficult...Teel, ``Analytical and numerical Lyapunov functions for SISO linear control systems with first-order reset elements”, International Journal of

  13. Effects of oriented surface dipole on photoconversion efficiency in an alkane/lipid-hybrid-bilayer-based photovoltaic model system.

    PubMed

    Liu, Lixia; Xie, Hong; Bostic, Heidi E; Jin, Limei; Best, Michael D; Zhang, X Peter; Zhan, Wei

    2013-08-26

    When a phospholipid monolayer containing a zinc-coordinated porphyrin species formed atop a self-assembled monolayer of heptadecafluoro-1-decanethiol (CF3(CF2)7(CH2)2SH) is subjected to photoelectrochemical current generation, a significant modulation effect is observed. Compared with devices that contain similar photoactive lipid monolayers but formed on 1-dodecanethiol SAMs, these fluorinated hybrid bilayers produce a >60% increase in cathodic currents and a similar decrease in anodic currents. Photovoltages recorded from these hybrid bilayers are found to vary in the same fashion. The modulation of photovoltaic responses in these hybrid-bilayer-based devices is explained by the opposite surface dipoles associated with the thiols employed in this study, which in one case (fluorothiol) increase and in another (alkanethiol) decrease the work function of the underlying gold substrates. A similar trend of photovoltage/photocurrent modulation is also observed if fullerene is used as the photoagent in these devices. Our results reveal the intricacy of orientated surface dipole in influencing the photovoltaic processes, and its subtle interplay with other factors related to the photoagents, such as their location and orientation within the organic matrix.

  14. Low-cost bidirectional hybrid fiber-visible laser light communication system based on carrier-less amplitude phase modulation

    NASA Astrophysics Data System (ADS)

    He, Jing; Dong, Huan; Deng, Rui; Chen, Lin

    2016-08-01

    We propose a bidirectional hybrid fiber-visible laser light communication (fiber-VLC) system. To reduce the cost of the system, the cheap and easy integration red vertical cavity surface emitting lasers, low-complexity carrier-less amplitude phase modulation format, and wavelength reuse technique are utilized. Meanwhile, the automatic gain control amplifier voltage and bias voltage for downlink and uplink are optimized. The simulation results show that, by using the proposed system, the bit error rate of 3.8×10-3 can be achieved for 16-Gbps CAP signal after 30-km standard single mode fiber and 8-m VLC bidirectional transmission. Therefore, it indicates the feasibility and potential of proposed system for indoor access network.

  15. Electro-optic chaotic system based on the reverse-time chaos theory and a nonlinear hybrid feedback loop.

    PubMed

    Jiang, Xingxing; Cheng, Mengfan; Luo, Fengguang; Deng, Lei; Fu, Songnian; Ke, Changjian; Zhang, Minming; Tang, Ming; Shum, Ping; Liu, Deming

    2016-12-12

    A novel electro-optic chaos source is proposed on the basis of the reverse-time chaos theory and an analog-digital hybrid feedback loop. The analog output of the system can be determined by the numeric states of shift registers, which makes the system robust and easy to control. The dynamical properties as well as the complexity dependence on the feedback parameters are investigated in detail. The correlation characteristics of the system are also studied. Two improving strategies which were established in digital field and analog field are proposed to conceal the time-delay signature. The proposed scheme has the potential to be used in radar and optical secure communication systems.

  16. Innovative sponge-based moving bed-osmotic membrane bioreactor hybrid system using a new class of draw solution for municipal wastewater treatment.

    PubMed

    Nguyen, Nguyen Cong; Chen, Shiao-Shing; Nguyen, Hau Thi; Ray, Saikat Sinha; Ngo, Huu Hao; Guo, Wenshan; Lin, Po-Hsun

    2016-03-15

    For the first time, an innovative concept of combining sponge-based moving bed (SMB) and an osmotic membrane bioreactor (OsMBR), known as the SMB-OsMBR hybrid system, were investigated using Triton X-114 surfactant coupled with MgCl2 salt as the draw solution. Compared to traditional activated sludge OsMBR, the SMB-OsMBR system was able to remove more nutrients due to the thick-biofilm layer on sponge carriers. Subsequently less membrane fouling was observed during the wastewater treatment process. A water flux of 11.38 L/(m(2) h) and a negligible reverse salt flux were documented when deionized water served as the feed solution and a mixture of 1.5 M MgCl2 and 1.5 mM Triton X-114 was used as the draw solution. The SMB-OsMBR hybrid system indicated that a stable water flux of 10.5 L/(m(2) h) and low salt accumulation were achieved in a 90-day operation. Moreover, the nutrient removal efficiency of the proposed system was close to 100%, confirming the effectiveness of simultaneous nitrification and denitrification in the biofilm layer on sponge carriers. The overall performance of the SMB-OsMBR hybrid system using MgCl2 coupled with Triton X-114 as the draw solution demonstrates its potential application in wastewater treatment.

  17. Advanced propulsion system for hybrid vehicles

    NASA Technical Reports Server (NTRS)

    Norrup, L. V.; Lintz, A. T.

    1980-01-01

    A number of hybrid propulsion systems were evaluated for application in several different vehicle sizes. A conceptual design was prepared for the most promising configuration. Various system configurations were parametrically evaluated and compared, design tradeoffs performed, and a conceptual design produced. Fifteen vehicle/propulsion systems concepts were parametrically evaluated to select two systems and one vehicle for detailed design tradeoff studies. A single hybrid propulsion system concept and vehicle (five passenger family sedan)were selected for optimization based on the results of the tradeoff studies. The final propulsion system consists of a 65 kW spark-ignition heat engine, a mechanical continuously variable traction transmission, a 20 kW permanent magnet axial-gap traction motor, a variable frequency inverter, a 386 kg lead-acid improved state-of-the-art battery, and a transaxle. The system was configured with a parallel power path between the heat engine and battery. It has two automatic operational modes: electric mode and heat engine mode. Power is always shared between the heat engine and battery during acceleration periods. In both modes, regenerative braking energy is absorbed by the battery.

  18. Hybrid systems process mixed wastes

    SciTech Connect

    Chertow, M.R.

    1989-10-01

    Some technologies, developed recently in Europe, combine several processes to separate and reuse materials from solid waste. These plants have in common, generally, that they are reasonably small, have a composting component for the organic portion, and often have a refuse-derived fuel component for combustible waste. Many European communities also have very effective drop-off center programs for recyclables such as bottles and cans. By maintaining the integrity of several different fractions of the waste, there is a less to landfill and less to burn. The importance of these hybrid systems is that they introduce in one plant an approach that encompasses the key concept of today's solid waste planning; recover as much as possible and landfill as little as possible. The plants also introduce various risks, particularly of finding secure markets. There are a number of companies offering various combinations of materials recovery, composting, and waste combustion. Four examples are included: multiple materials recovery and refuse-derived fuel production in Eden Prairie, Minnesota; multiple materials recovery, composting and refuse-derived fuel production in Perugia, Italy; composting, refuse-derived fuel, and gasification in Tolmezzo, Italy; and a front-end system on a mass burning waste-to-energy plant in Neuchatel, Switzerland.

  19. Advanced propulsion system concept for hybrid vehicles

    NASA Technical Reports Server (NTRS)

    Bhate, S.; Chen, H.; Dochat, G.

    1980-01-01

    A series hybrid system, utilizing a free piston Stirling engine with a linear alternator, and a parallel hybrid system, incorporating a kinematic Stirling engine, are analyzed for various specified reference missions/vehicles ranging from a small two passenger commuter vehicle to a van. Parametric studies for each configuration, detail tradeoff studies to determine engine, battery and system definition, short term energy storage evaluation, and detail life cycle cost studies were performed. Results indicate that the selection of a parallel Stirling engine/electric, hybrid propulsion system can significantly reduce petroleum consumption by 70 percent over present conventional vehicles.

  20. Hybrid slab-microchannel gel electrophoresis system

    DOEpatents

    Balch, J.W.; Carrano, A.V.; Davidson, J.C.; Koo, J.C.

    1998-05-05

    A hybrid slab-microchannel gel electrophoresis system is described. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate. 4 figs.

  1. Hybrid high power femtosecond laser system

    NASA Astrophysics Data System (ADS)

    Trunov, V. I.; Petrov, V. V.; Pestryakov, E. V.; Kirpichnikov, A. V.

    2006-01-01

    Design of a high-power femtosecond laser system based on hybrid chirped pulse amplification (CPA) technique developed by us is presented. The goal of the hybrid principle is the use of the parametric and laser amplification methods in chirped pulse amplifiers. It makes it possible to amplify the low-cycle pulses with a duration of <= fs to terawatt power with a high contrast and high conversion efficiency of the pump radiation. In a created system the Ti:Sapphire laser with 10 fs pulses at 810 nm and output energy about 1-3 nJ will be used like seed source. The oscillator pulses were stretched to duration of about 500 ps by an all-reflective grating stretcher. Then the stretched pulses are injected into a nondegenerate noncollinear optical parametric amplifier (NOPA) on the two BBO crystals. After amplification in NOPA the residual pump was used in a bow-tie four pass amplifier with hybrid active medium (based on Al II0 3:Ti 3+ and BeAl IIO 4:Ti 3+ crystals). The final stage of the amplification system consists of two channels, namely NIR (820 nm) and short-VIS (410 nm). Numerical simulation has shown that the terawatt level of output power can be achieved also in a short-VIS channel at the pumping of the double-crystal BBO NOPA by the radiation of the fourth harmonic of the Nd:YAG laser at 266 nm. Experimentally parametric amplification in BBO crystals of 30-50 fs pulses were investigated and optimized using SPIDER technique and single-shot autocomelator for the realization of shortest duration 40 fs.

  2. High power battery systems for hybrid vehicles

    NASA Astrophysics Data System (ADS)

    Corson, Donald W.

    Pure electric and hybrid vehicles have differing demands on the battery system of a vehicle. This results in correspondingly different demands on the battery management of a hybrid vehicle. Examples show the differing usage patterns. The consequences for the battery cells and the battery management are discussed. The importance of good thermal management is underlined.

  3. A Structural Model Decomposition Framework for Hybrid Systems Diagnosis

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Bregon, Anibal; Roychoudhury, Indranil

    2015-01-01

    Nowadays, a large number of practical systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete modes of behavior, each defined by a set of continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task very challenging. In this work, we present a new modeling and diagnosis framework for hybrid systems. Models are composed from sets of user-defined components using a compositional modeling approach. Submodels for residual generation are then generated for a given mode, and reconfigured efficiently when the mode changes. Efficient reconfiguration is established by exploiting causality information within the hybrid system models. The submodels can then be used for fault diagnosis based on residual generation and analysis. We demonstrate the efficient causality reassignment, submodel reconfiguration, and residual generation for fault diagnosis using an electrical circuit case study.

  4. Powertrain system for a hybrid electric vehicle

    DOEpatents

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  5. Powertrain system for a hybrid electric vehicle

    DOEpatents

    Reed, Jr., Richard G.; Boberg, Evan S.; Lawrie, Robert E.; Castaing, Francois J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  6. Analysis of Hybrid Hydrogen Systems: Final Report

    SciTech Connect

    Dean, J.; Braun, R.; Munoz, D.; Penev, M.; Kinchin, C.

    2010-01-01

    Report on biomass pathways for hydrogen production and how they can be hybridized to support renewable electricity generation. Two hybrid systems were studied in detail for process feasibility and economic performance. The best-performing system was estimated to produce hydrogen at costs ($1.67/kg) within Department of Energy targets ($2.10/kg) for central biomass-derived hydrogen production while also providing value-added energy services to the electric grid.

  7. Nuclear Hybrid Energy Systems FY16 Modeling Efforts at ORNL

    SciTech Connect

    Cetiner, Sacit M.; Greenwood, Michael Scott; Harrison, Thomas J.; Qualls, A. L.; Guler Yigitoglu, Askin; Fugate, David W.

    2016-09-01

    A nuclear hybrid system uses a nuclear reactor as the basic power generation unit. The power generated by the nuclear reactor is utilized by one or more power customers as either thermal power, electrical power, or both. In general, a nuclear hybrid system will couple the nuclear reactor to at least one thermal power user in addition to the power conversion system. The definition and architecture of a particular nuclear hybrid system is flexible depending on local markets needs and opportunities. For example, locations in need of potable water may be best served by coupling a desalination plant to the nuclear system. Similarly, an area near oil refineries may have a need for emission free hydrogen production. A nuclear hybrid system expands the nuclear power plant from its more familiar central power station role by diversifying its immediately and directly connected customer base. The definition, design, analysis, and optimization work currently performed with respect to the nuclear hybrid systems represents the work of three national laboratories. Idaho National Laboratory (INL) is the lead lab working with Argonne National Laboratory (ANL) and Oak Ridge National Laboratory. Each laboratory is providing modeling and simulation expertise for the integration of the hybrid system.

  8. Quasi-3DOF Active / Passive Hybrid Rehabilitation System for Upper Limbs: "Hybrid-PLEMO"

    NASA Astrophysics Data System (ADS)

    Kikuchi, Takehito; Furusho, Junji; Jin, Ying; Fukushima, Kazuki; Akai, Hiroki

    Many kinds of actuator-based (active type) haptic device have developed and utilized as rehabilitation robots. These systems have great advantages for rehabilitative activities, for example assistive forces and so on. However, from the view point of safety, we have room to consider utilizing brake-based (passive type) haptic devices as rehabilitation-tools. The effects and roles of active / passive force feedback for rehabilitative trainings have not been clarified yet. In this study, we have developed an active / passive switchable rehabilitation system for upper limbs (Hybrid-PLEMO) to address these questions. In this paper, we describe the force-feedback mechanism of the Hybrid-PLEMO.

  9. A modified NARMAX model-based self-tuner with fault tolerance for unknown nonlinear stochastic hybrid systems with an input-output direct feed-through term.

    PubMed

    Tsai, Jason S-H; Hsu, Wen-Teng; Lin, Long-Guei; Guo, Shu-Mei; Tann, Joseph W

    2014-01-01

    A modified nonlinear autoregressive moving average with exogenous inputs (NARMAX) model-based state-space self-tuner with fault tolerance is proposed in this paper for the unknown nonlinear stochastic hybrid system with a direct transmission matrix from input to output. Through the off-line observer/Kalman filter identification method, one has a good initial guess of modified NARMAX model to reduce the on-line system identification process time. Then, based on the modified NARMAX-based system identification, a corresponding adaptive digital control scheme is presented for the unknown continuous-time nonlinear system, with an input-output direct transmission term, which also has measurement and system noises and inaccessible system states. Besides, an effective state space self-turner with fault tolerance scheme is presented for the unknown multivariable stochastic system. A quantitative criterion is suggested by comparing the innovation process error estimated by the Kalman filter estimation algorithm, so that a weighting matrix resetting technique by adjusting and resetting the covariance matrices of parameter estimate obtained by the Kalman filter estimation algorithm is utilized to achieve the parameter estimation for faulty system recovery. Consequently, the proposed method can effectively cope with partially abrupt and/or gradual system faults and input failures by the fault detection.

  10. An Ensemble System Based on Hybrid EGARCH-ANN with Different Distributional Assumptions to Predict S&P 500 Intraday Volatility

    NASA Astrophysics Data System (ADS)

    Lahmiri, S.; Boukadoum, M.

    2015-10-01

    Accurate forecasting of stock market volatility is an important issue in portfolio risk management. In this paper, an ensemble system for stock market volatility is presented. It is composed of three different models that hybridize the exponential generalized autoregressive conditional heteroscedasticity (GARCH) process and the artificial neural network trained with the backpropagation algorithm (BPNN) to forecast stock market volatility under normal, t-Student, and generalized error distribution (GED) assumption separately. The goal is to design an ensemble system where each single hybrid model is capable to capture normality, excess skewness, or excess kurtosis in the data to achieve complementarity. The performance of each EGARCH-BPNN and the ensemble system is evaluated by the closeness of the volatility forecasts to realized volatility. Based on mean absolute error and mean of squared errors, the experimental results show that proposed ensemble model used to capture normality, skewness, and kurtosis in data is more accurate than the individual EGARCH-BPNN models in forecasting the S&P 500 intra-day volatility based on one and five-minute time horizons data.

  11. Manzanita Hybrid Power system Project Final Report

    SciTech Connect

    Trisha Frank

    2005-03-31

    The Manzanita Indian Reservation is located in southeastern San Diego County, California. The Tribe has long recognized that the Reservation has an abundant wind resource that could be commercially utilized to its benefit, and in 1995 the Tribe established the Manzanita Renewable Energy Office. Through the U.S. Department of Energy's Tribal Energy Program the Band received funds to install a hybrid renewable power system to provide electricity to one of the tribal community buildings, the Manzanita Activities Center (MAC building). The project began September 30, 1999 and was completed March 31, 2005. The system was designed and the equipment supplied by Northern Power Systems, Inc, an engineering company with expertise in renewable hybrid system design and development. Personnel of the National Renewable Energy Laboratory provided technical assistance in system design, and continued to provide technical assistance in system monitoring. The grid-connected renewable hybrid wind/photovoltaic system provides a demonstration of a solar/wind energy hybrid power-generating project on Manzanita Tribal land. During the system design phase, the National Renewable Energy Lab estimated that the wind turbine is expected to produce 10,000-kilowatt hours per year and the solar array 2,000-kilowatt hours per year. The hybrid system was designed to provide approximately 80 percent of the electricity used annually in the MAC building. The project proposed to demonstrate that this kind of a system design would provide highly reliable renewable power for community uses.

  12. Validation of double-hybrid density functionals for electric response properties of transition-metal systems: a new paradigm based on physical considerations.

    PubMed

    Alipour, Mojtaba

    2013-04-04

    Double-hybrid density functional approximations are increasingly popular for electronic structure calculations within density functional theory. However, despite much progress in numerous interesting efforts in this respect, further extension of this approach to the chemistry and physics of transition-metal compounds poses major challenges that remain to be addressed. In the present article, without the use of any empirical fitting to experimental or high-level ab initio data, we propose a new parameter-free double-hybrid density functional, called mPWPW91DH, for the electric response properties of transition-metal-containing molecules. It is based on a mixing of modified Perdew-Wang (mPW) and Perdew-Wang91 (PW91) generalized gradient approximations for exchange and correlation, respectively, along with Hartree-Fock (HF) exchange and a perturbative correlation term obtained from the Kohn-Sham orbitals and eigenvalues. The performance of this functional was tested on a number of representative test sets of static dipole polarizabilities and dipole moments of molecules containing transition metals and main-group elements. From our analysis, mPWPW91DH seems to represent a significant improvement in comparison to functionals on the different rungs of Jacob's ladder. Moreover, scrutinizing the role of exchange and correlation and their contributions in the functionals shows evidence of the superiority of this new functional with respect to other parameter-free and parametrized double-hybrid functionals. The results of the present study are encouraging in terms of further improvements in double-hybrid approximations for investigating the response properties of more complex transition-metal systems.

  13. A hybrid reconfigurable solar and wind energy system

    NASA Astrophysics Data System (ADS)

    Gadkari, Sagar A.

    We study the feasibility of a novel hybrid solar-wind hybrid system that shares most of its infrastructure and components. During periods of clear sunny days the system will generate electricity from the sun using a parabolic concentrator. The concentrator is formed by individual mirror elements and focuses the light onto high intensity vertical multi-junction (VMJ) cells. During periods of high wind speeds and at night, the same concentrator setup will be reconfigured to channel the wind into a wind turbine which will be used to harness wind energy. In this study we report on the feasibility of this type of solar/wind hybrid energy system. The key mechanisms; optics, cooling mechanism of VMJ cells and air flow through the system were investigated using simulation tools. The results from these simulations, along with a simple economic analysis giving the levelized cost of energy for such a system are presented. An iterative method of design refinement based on the simulation results was used to work towards a prototype design. The levelized cost of the system achieved in the economic analysis shows the system to be a good alternative for a grid isolated site and could be used as a standalone system in regions of lower demand. The new approach to solar wind hybrid system reported herein will pave way for newer generation of hybrid systems that share common infrastructure in addition to the storage and distribution of energy.

  14. New hybrid peak-to-average power ratio reduction technique based on carrier interferometry codes and companding technique for optical direct-detection orthogonal frequency division multiplexing system

    NASA Astrophysics Data System (ADS)

    Maivan, Lap; He, Jing; Chen, Ming; Mangone, Fall; Chen, Lin

    2014-08-01

    In direct-detection optical orthogonal frequency division multiplexing (OFDM) systems, the high peak-to-average power ratio (PAPR) will cause nonlinear effects in both electrical and optical devices and optical fiber transmission when the nonlinear amplifiers are employed. A new hybrid technique based on carrier interferometry codes and companding transform has been proposed and experimentally demonstrated to reduce the high PAPR in an optical direct-detection optical OFDM system. The proposed technique is then experimentally demonstrated and the results show the effectiveness of the new method. The PAPR of the hybrid signal has been reduced by about 5.7 dB when compared to the regular system at a complementary cumulative distribution function of 10-4. At a bit error rate of 10-4, after transmission over 100-km single-mode fiber with a μ of 2, the receiver sensitivity is improved by 3.7, 4.2, and 5 dB with launch powers of 3, 6, and 9 dBm, respectively.

  15. Economic analysis of PV hybrid power system: Pinnacles National Monument

    SciTech Connect

    Rosenthal, A.; Durand, S.; Thomas, M.; Post, H.

    1997-11-01

    PV hybrid electric power systems can offer an economically competitive alternative to engine generator (genset) systems in many off-grid applications. Besides the obvious `green` advantages of producing less noise and emissions, the PV hybrid can, in some cases, offer a lower life-cycle cost (LCC) then the genset. This paper evaluates the LCC of the 9.6 kWp PV hybrid power system installed by the National Park Services (NPS) at Pinnacles National Monument, CA. NPS motivation for installation of this hybrid was not based on economics, but rather the need to replace two aging diesel gensets with an alternative that would be quieter, fuel efficient, and more in keeping with new NPS emphasis on sustainable design and operations. In fact, economic analysis shows a lower 20-year LCC for the installed PV hybrid than for simple replacement of the two gensets. The analysis projects are net savings by the PV hybrid system of $83,561 and over 162,000 gallons of propane when compared with the genset-only system. This net savings is independent of the costs associated with environmental emissions. The effects of including emissions costs, according to NPS guidelines, is also discussed. 5 refs., 2 figs., 3 tabs.

  16. Split-gene system for hybrid wheat seed production

    PubMed Central

    Kempe, Katja; Rubtsova, Myroslava; Gils, Mario

    2014-01-01

    Hybrid wheat plants are superior in yield and growth characteristics compared with their homozygous parents. The commercial production of wheat hybrids is difficult because of the inbreeding nature of wheat and the lack of a practical fertility control that enforces outcrossing. We describe a hybrid wheat system that relies on the expression of a phytotoxic barnase and provides for male sterility. The barnase coding information is divided and distributed at two loci that are located on allelic positions of the host chromosome and are therefore “linked in repulsion.” Functional complementation of the loci is achieved through coexpression of the barnase fragments and intein-mediated ligation of the barnase protein fragments. This system allows for growth and maintenance of male-sterile female crossing partners, whereas the hybrids are fertile. The technology does not require fertility restorers and is based solely on the genetic modification of the female crossing partner. PMID:24821800

  17. Split-gene system for hybrid wheat seed production.

    PubMed

    Kempe, Katja; Rubtsova, Myroslava; Gils, Mario

    2014-06-24

    Hybrid wheat plants are superior in yield and growth characteristics compared with their homozygous parents. The commercial production of wheat hybrids is difficult because of the inbreeding nature of wheat and the lack of a practical fertility control that enforces outcrossing. We describe a hybrid wheat system that relies on the expression of a phytotoxic barnase and provides for male sterility. The barnase coding information is divided and distributed at two loci that are located on allelic positions of the host chromosome and are therefore "linked in repulsion." Functional complementation of the loci is achieved through coexpression of the barnase fragments and intein-mediated ligation of the barnase protein fragments. This system allows for growth and maintenance of male-sterile female crossing partners, whereas the hybrids are fertile. The technology does not require fertility restorers and is based solely on the genetic modification of the female crossing partner.

  18. Laser inertial fusion-based energy: Neutronic design aspects of a hybrid fusion-fission nuclear energy system

    NASA Astrophysics Data System (ADS)

    Kramer, Kevin James

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 mum of tungsten to mitigate x-ray damage. The first wall is cooled by Li17Pb83 eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li17Pb 83 flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li17Pb83, separated from the Li17Pb83 by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF2), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles having a packing fraction of 20% in 2 cm diameter fuel pebbles. The fission blanket is cooled by

  19. Enhancing dissolved oxygen control using an on-line hybrid fuzzy-neural soft-sensing model-based control system in an anaerobic/anoxic/oxic process.

    PubMed

    Huang, Mingzhi; Wan, Jinquan; Hu, Kang; Ma, Yongwen; Wang, Yan

    2013-12-01

    An on-line hybrid fuzzy-neural soft-sensing model-based control system was developed to optimize dissolved oxygen concentration in a bench-scale anaerobic/anoxic/oxic (A(2)/O) process. In order to improve the performance of the control system, a self-adapted fuzzy c-means clustering algorithm and adaptive network-based fuzzy inference system (ANFIS) models were employed. The proposed control system permits the on-line implementation of every operating strategy of the experimental system. A set of experiments involving variable hydraulic retention time (HRT), influent pH (pH), dissolved oxygen in the aerobic reactor (DO), and mixed-liquid return ratio (r) was carried out. Using the proposed system, the amount of COD in the effluent stabilized at the set-point and below. The improvement was achieved with optimum dissolved oxygen concentration because the performance of the treatment process was optimized using operating rules implemented in real time. The system allows various expert operational approaches to be deployed with the goal of minimizing organic substances in the outlet while using the minimum amount of energy.

  20. Lewis hybrid computing system, users manual

    NASA Technical Reports Server (NTRS)

    Bruton, W. M.; Cwynar, D. S.

    1979-01-01

    The Lewis Research Center's Hybrid Simulation Lab contains a collection of analog, digital, and hybrid (combined analog and digital) computing equipment suitable for the dynamic simulation and analysis of complex systems. This report is intended as a guide to users of these computing systems. The report describes the available equipment' and outlines procedures for its use. Particular is given to the operation of the PACER 100 digital processor. System software to accomplish the usual digital tasks such as compiling, editing, etc. and Lewis-developed special purpose software are described.

  1. Control system for a hybrid powertrain system

    SciTech Connect

    Naqvi, Ali K.; Demirovic, Besim; Gupta, Pinaki; Kaminsky, Lawrence A.

    2014-09-09

    A vehicle includes a powertrain with an engine, first and second torque machines, and a hybrid transmission. A method for operating the vehicle includes operating the engine in an unfueled state, releasing an off-going clutch which when engaged effects operation of the hybrid transmission in a first continuously variable mode, and applying a friction braking torque to a wheel of the vehicle to compensate for an increase in an output torque of the hybrid transmission resulting from releasing the off-going clutch. Subsequent to releasing the off-going clutch, an oncoming clutch which when engaged effects operation of the hybrid transmission in a second continuously variable mode is synchronized. Subsequent to synchronization of the oncoming clutch, the oncoming clutch is engaged.

  2. User-interfaces for hybrid systems: Analysis and design through hybrid reachability

    NASA Astrophysics Data System (ADS)

    Oishi, Meeko Mitsuko Karen

    Hybrid systems combine discrete state dynamics, which model mode switching, with continuous state dynamics, which model the physical processes themselves. Applications of hybrid system theory to automated systems have traditionally assumed that the controller itself is an automaton which runs in parallel with the system under control. We model human interaction with hybrid systems, which involves the user; the automation's discrete mode-logic, and the underlying continuous dynamics of the physical system. Often in safety-critical systems, user-interfaces display a reduced set of information about the entire system, however must still provide adequate information and must not confuse the user. We present (1) a method of designing a discrete event system abstraction of the hybrid system, in order to verify or design user-interfaces for hybrid human-automation systems, and (2) the relationship between user-interfaces and discrete observability properties. Using a hybrid computational tool for reachability, we find the largest region in which the system can always remain---this is the safe region of operation. By implementing a controller which arises from this computation, we mathematically guarantee that this safe region is invariant. Assigning discrete states to the computed invariant regions, we create a discrete event system from this hybrid system with safety restrictions. This abstraction can then be used in existing interface verification and design methods. A user-interface, modeled as a discrete system, must, not only be reduced (extraneous information has been eliminated), but also "immediately observable". We derive conditions for immediate observability, in which the current state can be constructed from the current output and last occurring event. Based on finite state machine state-reduction techniques, we synthesize an output for remote user-interfaces which fulfills this property. Aircraft are prime examples of complex, safety-critical systems. In

  3. Hybrid and transflective system based on digital holographic microscope and low coherent interferometer for high gradient shape measurement

    NASA Astrophysics Data System (ADS)

    LiŻewski, K.; Tomczewski, S.; Kostencka, J.; Kozacki, T.

    2013-04-01

    The most suited techniques for quantitative and accurate determination of the phase distribution in a phase photonic microstructures are based on the interferometry, especially the digital holography (DH) in microscopic configuration. However there is well known limitation of the coherent full- field interferometric measurements: the phase difference between the neighboring samples cannot be larger than 2π, or objects shape have to generate light that can be collected by used optical system. This limitation might be overcame by use of a well-known technique called low-coherence interferometry (LCI) which allows for absolute shape measurements with a nanometer resolution and does not have 2π limitation of coherent interferometric techniques. In this work a dual channel measurement system for characterization of a high numerical aperture objects is presented. The system combines functionalities of the LCI system based on Twyman-Green configuration and the DHM system based on Mach-Zehnder configuration. The DHM allows to measure sample in transmission while LCI setup provides reflective measurement data and, therefore, provides a more complete tool for topography characterization. In presented paper we focus on the measurement of high gradient objects were both methods fail if applied independently: the LCI gives measurement only in the object area of low NA while the DHM cannot provide absolute shape characterization due to limited NA of imaging system. The dual channel system extends capabilities of both methods. In our paper we present experimental results for topography measurement of high NA microlenses. The accuracy of the development method is discussed and both simulation and experimental data are provided.

  4. Controlled unknown quantum operations on hybrid systems

    NASA Astrophysics Data System (ADS)

    He, Yong; Luo, Ming-Xing

    2016-12-01

    Any unknown unitary operations conditioned on a control system can be deterministically performed if ancillary subspaces are available for the target systems [Zhou X Q, et al. 2011 Nat. Commun. 2 413]. In this paper, we show that previous optical schemes may be extended to general hybrid systems if unknown operations are provided by optical instruments. Moreover, a probabilistic scheme is proposed when the unknown operation may be performed on the subspaces of ancillary high-dimensional systems. Furthermore, the unknown operations conditioned on the multi-control system may be reduced to the case with a control system using additional linear circuit complexity. The new schemes may be more flexible for different systems or hybrid systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 61303039 and 61201253), Chunying Fellowship, and Fundamental Research Funds for the Central Universities, China (Grant No. 2682014CX095).

  5. Hybrid Power Management-Based Vehicle Architecture

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2011-01-01

    Hybrid Power Management (HPM) is the integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications (s ee figure). The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The basic vehicle architecture consists of a primary power source, and possibly other power sources, that provides all power to a common energy storage system that is used to power the drive motors and vehicle accessory systems. This architecture also provides power as an emergency power system. Each component is independent, permitting it to be optimized for its intended purpose. The key element of HPM is the energy storage system. All generated power is sent to the energy storage system, and all loads derive their power from that system. This can significantly reduce the power requirement of the primary power source, while increasing the vehicle reliability. Ultracapacitors are ideal for an HPM-based energy storage system due to their exceptionally long cycle life, high reliability, high efficiency, high power density, and excellent low-temperature performance. Multiple power sources and multiple loads are easily incorporated into an HPM-based vehicle. A gas turbine is a good primary power source because of its high efficiency, high power density, long life, high reliability, and ability to operate on a wide range of fuels. An HPM controller maintains optimal control over each vehicle component. This flexible operating system can be applied to all vehicles to considerably improve vehicle efficiency, reliability, safety, security, and performance. The HPM-based vehicle architecture has many advantages over conventional vehicle architectures. Ultracapacitors have a much longer cycle life than batteries, which greatly improves system reliability, reduces life-of-system costs, and reduces environmental impact as ultracapacitors will probably never need to be

  6. Hybrid piezoelectric energy harvesting transducer system

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor); Rehrig, Paul W. (Inventor); Hackenberger, Wesley S. (Inventor)

    2008-01-01

    A hybrid piezoelectric energy harvesting transducer system includes: (a) first and second symmetric, pre-curved piezoelectric elements mounted separately on a frame so that their concave major surfaces are positioned opposite to each other; and (b) a linear piezoelectric element mounted separately on the frame and positioned between the pre-curved piezoelectric elements. The pre-curved piezoelectric elements and the linear piezoelectric element are spaced from one another and communicate with energy harvesting circuitry having contact points on the frame. The hybrid piezoelectric energy harvesting transducer system has a higher electromechanical energy conversion efficiency than any known piezoelectric transducer.

  7. Systems Engineering of Electric and Hybrid Vehicles

    NASA Technical Reports Server (NTRS)

    Kurtz, D. W.; Levin, R. R.

    1986-01-01

    Technical paper notes systems engineering principles applied to development of electric and hybrid vehicles such that system performance requirements support overall program goal of reduced petroleum consumption. Paper discusses iterative design approach dictated by systems analyses. In addition to obvious peformance parameters of range, acceleration rate, and energy consumption, systems engineering also considers such major factors as cost, safety, reliability, comfort, necessary supporting infrastructure, and availability of materials.

  8. Formal methods for modeling and analysis of hybrid systems

    NASA Technical Reports Server (NTRS)

    Tiwari, Ashish (Inventor); Lincoln, Patrick D. (Inventor)

    2009-01-01

    A technique based on the use of a quantifier elimination decision procedure for real closed fields and simple theorem proving to construct a series of successively finer qualitative abstractions of hybrid automata is taught. The resulting abstractions are always discrete transition systems which can then be used by any traditional analysis tool. The constructed abstractions are conservative and can be used to establish safety properties of the original system. The technique works on linear and non-linear polynomial hybrid systems: the guards on discrete transitions and the continuous flows in all modes can be specified using arbitrary polynomial expressions over the continuous variables. An exemplar tool in the SAL environment built over the theorem prover PVS is detailed. The technique scales well to large and complex hybrid systems.

  9. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    Nguyen Minh

    2004-07-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the January to June 2004 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  10. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    Faress Rahman; Nguyen Minh

    2004-01-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  11. Status and modeling improvements of hybrid wind/PV/diesel power systems for Brazilian applications

    SciTech Connect

    McGowan, J.G.; Manwell, J.F.; Avelar, C.; Taylor, R.

    1997-12-31

    This paper present a summary of the ongoing work on the modeling and system design of hybrid wind/PV/diesel systems for two different sites in the Amazonia region of Brazil. The work incorporates the latest resource data and is based on the use of the Hybrid2 simulation code developed by the University of Massachusetts and NREL. Details of the baseline operating hybrid systems are reviewed, and the results of the latest detailed hybrid system evaluation for each site are summarized. Based on the system modeling results, separate recommendations for system modification and improvements are made.

  12. Hybrid Control Systems: Design and Analysis for Aerospace Applications

    DTIC Science & Technology

    2009-02-28

    COVERED (From - To) 15-02-2006 - 30-11-200! 4. TITLE AND SUBTITLE Hybrid control systems : Design and analysis for aerospace applications 5a...of this research was to contribute to the fundamental understanding of hybrid control systems and to explore the use of hybrid feedback in problems...of interest to the Air Force. We aimed to provide a solid, foundational understanding of hybrid systems that will enable the vast potential of hybrid

  13. Polyester based hybrid organic coatings

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojiang

    Polyesters are a class of polymers widely used in organic coatings applications. In this work, four types of organic coatings based on polyester polyols were prepared: UV-curable polyester/poly(meth)acrylate coatings, thermal curable polyester polyurethane-urea coatings, thermal curable non-isocyanate polyurethane coatings, and UV-curable non-isocyanate polyurethane coatings. Polyester/poly(meth)acrylate block copolymers are synthesized using a combination of polycondensation and Atom-Transfer Radical Polymerization (ATRP). All block copolymers are characterized by means of Nuclear Magnetic Resonance (NMR) and Gel Permeation Chromatography (GPC). In the case of unsaturated-polyester-based block copolymers the main chain double bond in the polyester backbone remains almost unaffected during ATRP. The unsaturated block copolymers are crosslinkable and can form networks upon photo-irradiation in the presence of a suitable photoinitiator. These copolymers might be interesting candidates for coatings with better overall properties than those based on neat polyesters. Thermal curable polyester polyol based Polyurethane-Urea (PUU) coatings were formulated using Partially Blocked HDI isocyanurate (PBH), Isophorone Diamine (IPDA), and polyester polyol. As a comparison, the polyurethane coatings (PU) without adding IPDA were also prepared. The mechanical and viscoelastic properties of the PUU and PU coating were investigated by using tensile test and Dynamic Mechanical Thermal Analyzer (DMTA). It was found that PUU coating exhibited higher crosslink density, Tg, tensile modulus and strength than the corresponding PU coating. Thermal curable non-isocyanate polyurethane coatings were prepared by using polyamine and cyclic carbonate terminated polyester. Cyclic carbonate terminated polyester was synthesized from the reaction of the carbon dioxide and epoxidized polyester which was prepared from the polyester polyol. The properties of the epoxidized and cyclic carbonate

  14. Efficient synthesis of a maghemite/gold hybrid nanoparticle system as a magnetic carrier for the transport of platinum-based metallotherapeutics.

    PubMed

    Štarha, Pavel; Smola, David; Tuček, Jiří; Trávníček, Zdeněk

    2015-01-16

    The preparation and thorough characterization of a hybrid magnetic carrier system for the possible transport of activated platinum-based anticancer drugs, as demonstrated for cisplatin (cis-[Pt(NH3)2Cl2], CDDP), are described. The final functionalized mag/Au-LA-CDDP* system consists of maghemite/gold nanoparticles (mag/Au) coated by lipoic acid (HLA; LA stands for deprotonated form of lipoic acid) and functionalized by activated cisplatin in the form of cis-[Pt(NH3)2(H2O)2]2+ (CDDP*). The relevant techniques (XPS, EDS, ICP-MS) proved the incorporation of the platinum-containing species on the surface of the studied hybrid system. HRTEM, TEM and SEM images showed the nanoparticles as spherical with an average size of 12 nm, while their superparamagnetic feature was proven by 57Fe Mössbauer spectroscopy. In the case of mag/Au, mag/Au-HLA and mag/Au-LA-CDDP*, weaker magnetic interactions among the Fe3+ centers of maghemite, as compared to maghemite nanoparticles (mag), were detected, which can be associated with the non-covalent coating of the maghemite surface by gold. The pH and time-dependent stability of the mag/Au-LA-CDDP* system in different media, represented by acetate (pH 5.0), phosphate (pH 7.0) and carbonate (pH 9.0) buffers and connected with the release of the platinum-containing species, showed the ability of CDDP* to be released from the functionalized nanosystem.

  15. MobileRF: A Robust Device-Free Tracking System Based On a Hybrid Neural Network HMM Classifier

    PubMed Central

    Paul, Anindya S.; Wan, Eric A.; Adenwala, Fatema; Schafermeyer, Erich; Preiser, Nick; Kaye, Jeffrey; Jacobs, Peter G.

    2014-01-01

    We present a device-free indoor tracking system that uses received signal strength (RSS) from radio frequency (RF) transceivers to estimate the location of a person. While many RSS-based tracking systems use a body-worn device or tag, this approach requires no such tag. The approach is based on the key principle that RF signals between wall-mounted transceivers reflect and absorb differently depending on a person’s movement within their home. A hierarchical neural network hidden Markov model (NN-HMM) classifier estimates both movement patterns and stand vs. walk conditions to perform tracking accurately. The algorithm and features used are specifically robust to changes in RSS mean shifts in the environment over time allowing for greater than 90% region level classification accuracy over an extended testing period. In addition to tracking, the system also estimates the number of people in different regions. It is currently being developed to support independent living and long-term monitoring of seniors. PMID:25544964

  16. Weather forecasting based on hybrid neural model

    NASA Astrophysics Data System (ADS)

    Saba, Tanzila; Rehman, Amjad; AlGhamdi, Jarallah S.

    2017-02-01

    Making deductions and expectations about climate has been a challenge all through mankind's history. Challenges with exact meteorological directions assist to foresee and handle problems well in time. Different strategies have been investigated using various machine learning techniques in reported forecasting systems. Current research investigates climate as a major challenge for machine information mining and deduction. Accordingly, this paper presents a hybrid neural model (MLP and RBF) to enhance the accuracy of weather forecasting. Proposed hybrid model ensure precise forecasting due to the specialty of climate anticipating frameworks. The study concentrates on the data representing Saudi Arabia weather forecasting. The main input features employed to train individual and hybrid neural networks that include average dew point, minimum temperature, maximum temperature, mean temperature, average relative moistness, precipitation, normal wind speed, high wind speed and average cloudiness. The output layer composed of two neurons to represent rainy and dry weathers. Moreover, trial and error approach is adopted to select an appropriate number of inputs to the hybrid neural network. Correlation coefficient, RMSE and scatter index are the standard yard sticks adopted for forecast accuracy measurement. On individual standing MLP forecasting results are better than RBF, however, the proposed simplified hybrid neural model comes out with better forecasting accuracy as compared to both individual networks. Additionally, results are better than reported in the state of art, using a simple neural structure that reduces training time and complexity.

  17. POWER (power optimization for wireless energy requirements): A MATLAB based algorithm for design of hybrid energy systems

    NASA Astrophysics Data System (ADS)

    Cook, K. A.; Albano, F.; Nevius, P. E.; Sastry, A. M.

    We have expanded and implemented an algorithm for selecting power supplies into a turnkey MATLAB code, "POWER" (power optimization for wireless energy requirements). Our algorithm uses three approaches to system design, specifying either: (1) a single, aggregate power profile; (2) a power system designed to satisfy several power ranges (micro-, milli- and Watt); or (3) a power system designed to be housed within specified spaces within the system. POWER was verified by conducting two case studies on hearing prosthetics: the TICA (LZ 3001) (Baumann group at the Tübingen University) and Amadeus cochlear implant (CI) (WIMS-ERC at the University of Michigan) based on a volume constraint of 2 cm 3. The most suitable solution identified by POWER for the TICA device came from Approach 1, wherein one secondary cell provided 26,000 cycles of 16 h operation. POWER identified Approach 2 as the solution for the WIMS-ERC Amadeus CI, which consisted of 1 cell for the microWatt power range and 1 cell for the milliWatt range (4.43 cm 3, ∼55% higher than the target volume), and provided 3280 cycles of 16 h operation (including re-charge of the batteries). Future work will be focused on continuously improving our present tool.

  18. Diagnosing Hybrid Systems: a Bayesian Model Selection Approach

    NASA Technical Reports Server (NTRS)

    McIlraith, Sheila A.

    2005-01-01

    In this paper we examine the problem of monitoring and diagnosing noisy complex dynamical systems that are modeled as hybrid systems-models of continuous behavior, interleaved by discrete transitions. In particular, we examine continuous systems with embedded supervisory controllers that experience abrupt, partial or full failure of component devices. Building on our previous work in this area (MBCG99;MBCG00), our specific focus in this paper ins on the mathematical formulation of the hybrid monitoring and diagnosis task as a Bayesian model tracking algorithm. The nonlinear dynamics of many hybrid systems present challenges to probabilistic tracking. Further, probabilistic tracking of a system for the purposes of diagnosis is problematic because the models of the system corresponding to failure modes are numerous and generally very unlikely. To focus tracking on these unlikely models and to reduce the number of potential models under consideration, we exploit logic-based techniques for qualitative model-based diagnosis to conjecture a limited initial set of consistent candidate models. In this paper we discuss alternative tracking techniques that are relevant to different classes of hybrid systems, focusing specifically on a method for tracking multiple models of nonlinear behavior simultaneously using factored sampling and conditional density propagation. To illustrate and motivate the approach described in this paper we examine the problem of monitoring and diganosing NASA's Sprint AERCam, a small spherical robotic camera unit with 12 thrusters that enable both linear and rotational motion.

  19. Hybrid Molten Salt Reactor (HMSR) System Study

    SciTech Connect

    Woolley, Robert D; Miller, Laurence F

    2014-04-01

    Can the hybrid system combination of (1) a critical fission Molten Salt Reactor (MSR) having a thermal spectrum and a high Conversion Ratio (CR) with (2) an external source of high energy neutrons provide an attractive solution to the world's expanding demand for energy? The present study indicates the answer is an emphatic yes.

  20. Assume-Guarantee Abstraction Refinement Meets Hybrid Systems

    NASA Technical Reports Server (NTRS)

    Bogomolov, Sergiy; Frehse, Goran; Greitschus, Marius; Grosu, Radu; Pasareanu, Corina S.; Podelski, Andreas; Strump, Thomas

    2014-01-01

    Compositional verification techniques in the assume- guarantee style have been successfully applied to transition systems to efficiently reduce the search space by leveraging the compositional nature of the systems under consideration. We adapt these techniques to the domain of hybrid systems with affine dynamics. To build assumptions we introduce an abstraction based on location merging. We integrate the assume-guarantee style analysis with automatic abstraction refinement. We have implemented our approach in the symbolic hybrid model checker SpaceEx. The evaluation shows its practical potential. To the best of our knowledge, this is the first work combining assume-guarantee reasoning with automatic abstraction-refinement in the context of hybrid automata.

  1. Hybrid Energy System Modeling in Modelica

    SciTech Connect

    William R. Binder; Christiaan J. J. Paredis; Humberto E. Garcia

    2014-03-01

    In this paper, a Hybrid Energy System (HES) configuration is modeled in Modelica. Hybrid Energy Systems (HES) have as their defining characteristic the use of one or more energy inputs, combined with the potential for multiple energy outputs. Compared to traditional energy systems, HES provide additional operational flexibility so that high variability in both energy production and consumption levels can be absorbed more effectively. This is particularly important when including renewable energy sources, whose output levels are inherently variable, determined by nature. The specific HES configuration modeled in this paper include two energy inputs: a nuclear plant, and a series of wind turbines. In addition, the system produces two energy outputs: electricity and synthetic fuel. The models are verified through simulations of the individual components, and the system as a whole. The simulations are performed for a range of component sizes, operating conditions, and control schemes.

  2. A Hybrid Activity System as Educational Innovation

    ERIC Educational Resources Information Center

    Yamazumi, Katsuhiro

    2008-01-01

    This article analyzes a hybrid after-school learning activity for children called "New School" (NS). NS is an inter-institutional, collaborative project based on a partnership between a university and local elementary schools that also involves other social actors and institutions. Using a framework of third generation activity theory, the article…

  3. HybridPlan: A Capacity Planning Technique for Projecting Storage Requirements in Hybrid Storage Systems

    SciTech Connect

    Kim, Youngjae; Gupta, Aayush; Urgaonkar, Bhuvan; Piotr, Berman; Sivasubramaniam, Anand

    2014-01-01

    Economic forces, driven by the desire to introduce flash into the high-end storage market without changing existing software-base, have resulted in the emergence of solid-state drives (SSDs), flash packaged in HDD form factors and capable of working with device drivers and I/O buses designed for HDDs. Unlike the use of DRAM for caching or buffering, however, certain idiosyncrasies of NAND Flash-based solid-state drives (SSDs) make their integration into hard disk drive (HDD)-based storage systems nontrivial. Flash memory suffers from limits on its reliability, is an order of magnitude more expensive than the magnetic hard disk drives (HDDs), and can sometimes be as slow as the HDD (due to excessive garbage collection (GC) induced by high intensity of random writes). Given the complementary properties of HDDs and SSDs in terms of cost, performance, and lifetime, the current consensus among several storage experts is to view SSDs not as a replacement for HDD, but rather as a complementary device within the high-performance storage hierarchy. Thus, we design and evaluate such a hybrid storage system with HybridPlan that is an improved capacity planning technique to administrators with the overall goal of operating within cost-budgets. HybridPlan is able to find the most cost-effective hybrid storage configuration with different types of SSDs and HDDs

  4. Compact Hybrid Automotive Propulsion System

    NASA Technical Reports Server (NTRS)

    Lupo, G.

    1986-01-01

    Power train proposed for experimental vehicle powered by internal combustion engine and electric motor. Intended for front-wheel drive automobile, power train mass produced using existing technology. System includes internal-combustion engine, electric motor, continuously variable transmission, torque converter, differential, and control and adjustment systems for electric motor and transmission. Continuously variable transmission integrated into hydraulic system that also handles power steering and power brakes. Batteries for electric motor mounted elsewhere in vehicle.

  5. Hybrid clustering based fuzzy structure for vibration control - Part 1: A novel algorithm for building neuro-fuzzy system

    NASA Astrophysics Data System (ADS)

    Nguyen, Sy Dzung; Nguyen, Quoc Hung; Choi, Seung-Bok

    2015-01-01

    This paper presents a new algorithm for building an adaptive neuro-fuzzy inference system (ANFIS) from a training data set called B-ANFIS. In order to increase accuracy of the model, the following issues are executed. Firstly, a data merging rule is proposed to build and perform a data-clustering strategy. Subsequently, a combination of clustering processes in the input data space and in the joint input-output data space is presented. Crucial reason of this task is to overcome problems related to initialization and contradictory fuzzy rules, which usually happen when building ANFIS. The clustering process in the input data space is accomplished based on a proposed merging-possibilistic clustering (MPC) algorithm. The effectiveness of this process is evaluated to resume a clustering process in the joint input-output data space. The optimal parameters obtained after completion of the clustering process are used to build ANFIS. Simulations based on a numerical data, 'Daily Data of Stock A', and measured data sets of a smart damper are performed to analyze and estimate accuracy. In addition, convergence and robustness of the proposed algorithm are investigated based on both theoretical and testing approaches.

  6. DOE/EPRI hybrid power system

    SciTech Connect

    Stiger, S.G.; Taylor, K.J.; Hughes, E.E.

    1988-01-01

    One of the primary objectives of the DOE Geopressured Geothermal Program is to improve methods for optimum energy extraction from geopressured reservoirs. Hybrid power systems which take advantage of the chemical and thermal energy content of geopressured fluids could improve conversion efficiency by 15 to 20% over the same amount of fuel and geothermal fluid processed separately. In a joint DOE/EPRI effort, equipment from the Direct Contact heat Exchange test facility at East Mesa is being modified for use in a unique geopressured hybrid power plant located at the Pleasant Bayou wellsite in Brazoria County, TX. Natural gas separated at the wellhead will fuel a gas turbine, and exhaust heat from the engine will be used with the geothermal brine to vaporize isobutane in a binary power cycle. The hybrid power system is designed for 10,000 bbl/day brine flow, with estimated power production of 980 kW (net). In addition to evaluating the enhanced performance resulting from the combined power generation cycles, operation of the hybrid unit will provide a demonstration of fuel flexibility in an individual plant. This approach would allow a resource developer to reduce costs and risks by optimizing production for various economic climates and would improve the mix in a utility's generating system. 5 refs., 2 figs.

  7. Hybrid system for magnetic and acoustic measurement.

    PubMed

    Bruno, A C; Baffa, O; Carneiro, A O

    2009-01-01

    In order to improve the spatial resolution of Biosusceptometry of Alternate Current (BAC), we are suggesting the coupling of a Doppler ultrasonic transducer with the BAC system. The Doppler transducer obtains information from the vibration of ferromagnetic particles immersed in a visco-elastic medium when it is excited by an alternating magnetic field. In this case, the same magnetic particles used as contrast for susceptometric measurement also will work as contrast for the Doppler measurement. In this work, we present the characterization of the hybrid system for susceptometric and acoustic measurements simultaneously. It was observed that the susceptometric and Doppler ultrasound signal have the same profile and maximum amplitude for frequency of magnetizing field about 200 Hz. When using ferrite particles as magnetic contrast mixed with yogurt as based material, the susceptometric and Doppler measurement have sensitivity for concentration of particles as low as 1%. The sensitivity of the Doppler is dependent of the gradient of magnetic field over the sample. In this work, the magnetic field 5 cm far from the face of the transducer was 70 microT/volts.

  8. Overview of a hybrid underwater camera system

    NASA Astrophysics Data System (ADS)

    Church, Philip; Hou, Weilin; Fournier, Georges; Dalgleish, Fraser; Butler, Derek; Pari, Sergio; Jamieson, Michael; Pike, David

    2014-05-01

    The paper provides an overview of a Hybrid Underwater Camera (HUC) system combining sonar with a range-gated laser camera system. The sonar is the BlueView P900-45, operating at 900kHz with a field of view of 45 degrees and ranging capability of 60m. The range-gated laser camera system is based on the third generation LUCIE (Laser Underwater Camera Image Enhancer) sensor originally developed by the Defence Research and Development Canada. LUCIE uses an eye-safe laser generating 1ns pulses at a wavelength of 532nm and at the rate of 25kHz. An intensified CCD camera operates with a gating mechanism synchronized with the laser pulse. The gate opens to let the camera capture photons from a given range of interest and can be set from a minimum delay of 5ns with increments of 200ps. The output of the sensor is a 30Hz video signal. Automatic ranging is achieved using a sonar altimeter. The BlueView sonar and LUCIE sensors are integrated with an underwater computer that controls the sensors parameters and displays the real-time data for the sonar and the laser camera. As an initial step for data integration, graphics overlays representing the laser camera field-of-view along with the gate position and width are overlaid on the sonar display. The HUC system can be manually handled by a diver and can also be controlled from a surface vessel through an umbilical cord. Recent test data obtained from the HUC system operated in a controlled underwater environment will be presented along with measured performance characteristics.

  9. Hybrid system of semiconductor and photosynthetic protein

    NASA Astrophysics Data System (ADS)

    Kim, Younghye; Shin, Seon Ae; Lee, Jaehun; Yang, Ki Dong; Nam, Ki Tae

    2014-08-01

    Photosynthetic protein has the potential to be a new attractive material for solar energy absorption and conversion. The development of semiconductor/photosynthetic protein hybrids is an example of recent progress toward efficient, clean and nanostructured photoelectric systems. In the review, two biohybrid systems interacting through different communicating methods are addressed: (1) a photosynthetic protein immobilized semiconductor electrode operating via electron transfer and (2) a hybrid of semiconductor quantum dots and photosynthetic protein operating via energy transfer. The proper selection of materials and functional and structural modification of the components and optimal conjugation between them are the main issues discussed in the review. In conclusion, we propose the direction of future biohybrid systems for solar energy conversion systems, optical biosensors and photoelectric devices.

  10. Hybrid system of semiconductor and photosynthetic protein.

    PubMed

    Kim, Younghye; Shin, Seon Ae; Lee, Jaehun; Yang, Ki Dong; Nam, Ki Tae

    2014-08-29

    Photosynthetic protein has the potential to be a new attractive material for solar energy absorption and conversion. The development of semiconductor/photosynthetic protein hybrids is an example of recent progress toward efficient, clean and nanostructured photoelectric systems. In the review, two biohybrid systems interacting through different communicating methods are addressed: (1) a photosynthetic protein immobilized semiconductor electrode operating via electron transfer and (2) a hybrid of semiconductor quantum dots and photosynthetic protein operating via energy transfer. The proper selection of materials and functional and structural modification of the components and optimal conjugation between them are the main issues discussed in the review. In conclusion, we propose the direction of future biohybrid systems for solar energy conversion systems, optical biosensors and photoelectric devices.

  11. Overview of a Hybrid Underwater Camera System

    DTIC Science & Technology

    2014-07-01

    298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 Overview of a Hybrid Underwater Camera System Philip Church*, WeiHn Hou’*, Georges Fournier ...2678-2686, 2012 [3] Fournier G. R.,Bonnier D., Forand J. L., Pace P., "Range-gated underwater laser imaging system", Optical Engineering 32(9...pp. 2185-2190, Sept. 1993. [4] A. D. Weidemann, G. R. Fournier , J. L. Forand and P. Mathieu, 2005. In harbor underwater threat

  12. Biomolecule/nanomaterial hybrid systems for nanobiotechnology.

    PubMed

    Tel-Vered, Ran; Yehezkeli, Omer; Willner, Itamar

    2012-01-01

    The integration of biomolecules with metallic or semiconductor nanoparticles or carbon nanotubes yields new hybrid nanostructures of unique features that combine the properties of the biomolecules and of the nano-elements. These unique features of the hybrid biomolecule/nanoparticle systems provide the basis for the rapid development of the area of nanobiotechnology. Recent advances in the implementation of hybrid materials consisting of biomolecules and metallic nanoparticles or semiconductor quantum dots will be discussed. The following topics will be exemplified: (i) The electrical wiring of redox enzymes with electrodes by means of metallic nanoparticles or carbon nanotubes, and the application of the modified electrodes as amperometric biosensors or for the construction of biofuel cells. (ii) The biocatalytic growth of metallic nanoparticles as a means to construct optical or electrical sensors. (iii) The functionalization of semiconductor quantum dots with biomolecules and the application of the hybrid nanostructures for developing different optical sensors, including intracellular sensor systems. (iv) The use of biomolecule-metallic nanoparticle nanostructures as templates for growing metallic nanowires, and the construction of fuel-driven nano-transporters.

  13. Optimization strategy for element sizing in hybrid power systems

    NASA Astrophysics Data System (ADS)

    del Real, Alejandro J.; Arce, Alicia; Bordons, Carlos

    This paper presents a procedure to evaluate the optimal element sizing of hybrid power systems. In order to generalize the problem, this work exploits the "energy hub" formulation previously presented in the literature, defining an energy hub as an interface among energy producers, consumers and the transportation infrastructure. The resulting optimization minimizes an objective function which is based on costs and efficiencies of the system elements, while taking into account the hub model, energy and power constraints and estimated operational conditions, such as energy prices, input power flow availability and output energy demand. The resulting optimal architecture also constitutes a framework for further real-time control designs. Moreover, an example of a hybrid storage system is considered. In particular, the architecture of a hybrid plant incorporating a wind generator, batteries and intermediate hydrogen storage is optimized, based on real wind data and averaged residential demands, also taking into account possible estimation errors. The hydrogen system integrates an electrolyzer, a fuel cell stack and hydrogen tanks. The resulting optimal cost of such hybrid power plant is compared with the equivalent hydrogen-only and battery-only systems, showing improvements in investment costs of almost 30% in the worst case.

  14. Hybrid sodium heat pipe receivers for dish/Stirling systems

    SciTech Connect

    Laing, D.; Reusch, M.

    1997-12-31

    The design of a hybrid solar/gas heat pipe receiver for the SBP 9 kW dish/Stirling system using a United Stirling AB V160 Stirling engine and the results of on-sun testing in alternative and parallel mode will be reported. The receiver is designed to transfer a thermal power of 35 kW. The heat pipe operates at around 800 C, working fluid is sodium. Operational options are solar-only, gas augmented and gas-only mode. Also the design of a second generation hybrid heat pipe receiver currently developed under a EU-funded project, based on the experience gained with the first hybrid receiver, will be reported. This receiver is designed for the improved SPB/L. and C.-10 kW dish/Stirling system with the reworked SOLO V161 Stirling engine.

  15. Progress on lanthanide-based organic-inorganic hybrid phosphors.

    PubMed

    Carlos, Luís D; Ferreira, Rute A S; de Zea Bermudez, Verónica; Julián-López, Beatriz; Escribano, Purificación

    2011-02-01

    Research on organic-inorganic hybrid materials containing trivalent lanthanide ions (Ln(3+)) is a very active field that has rapidly shifted in the last couple of years to the development of eco-friendly, versatile and multifunctional systems, stimulated by the challenging requirements of technological applications spanning domains as diverse as optics, environment, energy, and biomedicine. This tutorial review offers a general overview of the myriad of advanced Ln(3+)-based organic-inorganic hybrid materials recently synthesised, which may be viewed as a major innovation in areas of phosphors, lighting, integrated optics and optical telecommunications, solar cells, and biomedicine.

  16. Bioinspired near-infrared-excited sensing platform for in vitro antioxidant capacity assay based on upconversion nanoparticles and a dopamine-melanin hybrid system.

    PubMed

    Wang, Dong; Chen, Chuan; Ke, Xuebin; Kang, Ning; Shen, Yuqing; Liu, Yongliang; Zhou, Xi; Wang, Hongjun; Chen, Changqing; Ren, Lei

    2015-02-11

    A novel core-shell structure based on upconversion fluorescent nanoparticles (UCNPs) and dopamine-melanin has been developed for evaluation of the antioxidant capacity of biological fluids. In this approach, dopamine-melanin nanoshells facilely formed on the surface of UCNPs act as ultraefficient quenchers for upconversion fluorescence, contributing to a photoinduced electron-transfer mechanism. This spontaneous oxidative polymerization of the dopamine-induced quenching effect could be effectively prevented by the presence of various antioxidants (typically biothiols, ascorbic acid (Vitamin C), and Trolox). The chemical response of the UCNPs@dopamine-melanin hybrid system exhibited great selectivity and sensitivity toward antioxidants relative to other compounds at 100-fold higher concentration. A satisfactory correlation was established between the ratio of the "anti-quenching" fluorescence intensity and the concentration of antioxidants. Besides the response of the upconversion fluorescence signal, a specific evaluation process for antioxidants could be visualized by the color change from colorless to dark gray accompanied by the spontaneous oxidation of dopamine. The near-infrared (NIR)-excited UCNP-based antioxidant capacity assay platform was further used to evaluate the antioxidant capacity of cell extracts and human plasma, and satisfactory sensitivity, repeatability, and recovery rate were obtained. This approach features easy preparation, fluorescence/visual dual mode detection, high specificity to antioxidants, and enhanced sensitivity with NIR excitation, showing great potential for screening and quantitative evaluation of antioxidants in biological systems.

  17. ICDTag: A Prototype for a Web-Based System for Organizing Physician-Written Blog Posts Using a Hybrid Taxonomy-Folksonomy Approach

    PubMed Central

    2013-01-01

    Background Medical blogs have emerged as new media, extending to a wider range of medical audiences, including health professionals and patients to share health-related information. However, extraction of quality health-related information from medical blogs is challenging primarily because these blogs lack systematic methods to organize their posts. Medical blogs can be categorized according to their author into (1) physician-written blogs, (2) nurse-written blogs, and (3) patient-written blogs. This study focuses on how to organize physician-written blog posts that discuss disease-related issues and how to extract quality information from these posts. Objective The goal of this study was to create and implement a prototype for a Web-based system, called ICDTag, based on a hybrid taxonomy–folksonomy approach that follows a combination of a taxonomy classification schemes and user-generated tags to organize physician-written blog posts and extract information from these posts. Methods First, the design specifications for the Web-based system were identified. This system included two modules: (1) a blogging module that was implemented as one or more blogs, and (2) an aggregator module that aggregated posts from different blogs into an aggregator website. We then developed a prototype for this system in which the blogging module included two blogs, the cardiology blog and the gastroenterology blog. To analyze the usage patterns of the prototype, we conducted an experiment with data provided by cardiologists and gastroenterologists. Next, we conducted two evaluation types: (1) an evaluation of the ICDTag blog, in which the browsing functionalities of the blogging module were evaluated from the end-user’s perspective using an online questionnaire, and (2) an evaluation of information quality, in which the quality of the content on the aggregator website was assessed from the perspective of medical experts using an emailed questionnaire. Results Participants of this

  18. Fuzzy-PI-based centralised control of semi-isolated FP-SEPIC/ZETA BDC in a PV/battery hybrid system

    NASA Astrophysics Data System (ADS)

    Mahendran, Venmathi; Ramabadran, Ramaprabha

    2016-11-01

    Multiport converters with centralised controller have been most commonly used in stand-alone photovoltaic (PV)/battery hybrid system to supply the load smoothly without any disturbances. This study presents the performance analysis of four-port SEPIC/ZETA bidirectional converter (FP-SEPIC/ZETA BDC) using various types of centralised control schemes like Fuzzy tuned proportional integral controller (Fuzzy-PI), fuzzy logic controller (FLC) and conventional proportional integral (PI) controller. The proposed FP-SEPIC/ZETA BDC with various control strategy is derived for simultaneous power management of a PV source using distributed maximum power point tracking (DMPPT) algorithm, a rechargeable battery, and a load by means of centralised controller. The steady state and the dynamic response of the FP-SEPIC/ZETA BDC are analysed using three different types of controllers under line and load regulation. The Fuzzy-PI-based control scheme improves the dynamic response of the system when compared with the FLC and the conventional PI controller. The power balance between the ports is achieved by pseudorandom carrier modulation scheme. The response of the FP-SEPIC/ZETA BDC is also validated experimentally using hardware prototype model of 500 W system. The effectiveness of the control strategy is validated using simulation and experimental results.

  19. A methodology for risk analysis based on hybrid Bayesian networks: application to the regasification system of liquefied natural gas onboard a floating storage and regasification unit.

    PubMed

    Martins, Marcelo Ramos; Schleder, Adriana Miralles; Droguett, Enrique López

    2014-12-01

    This article presents an iterative six-step risk analysis methodology based on hybrid Bayesian networks (BNs). In typical risk analysis, systems are usually modeled as discrete and Boolean variables with constant failure rates via fault trees. Nevertheless, in many cases, it is not possible to perform an efficient analysis using only discrete and Boolean variables. The approach put forward by the proposed methodology makes use of BNs and incorporates recent developments that facilitate the use of continuous variables whose values may have any probability distributions. Thus, this approach makes the methodology particularly useful in cases where the available data for quantification of hazardous events probabilities are scarce or nonexistent, there is dependence among events, or when nonbinary events are involved. The methodology is applied to the risk analysis of a regasification system of liquefied natural gas (LNG) on board an FSRU (floating, storage, and regasification unit). LNG is becoming an important energy source option and the world's capacity to produce LNG is surging. Large reserves of natural gas exist worldwide, particularly in areas where the resources exceed the demand. Thus, this natural gas is liquefied for shipping and the storage and regasification process usually occurs at onshore plants. However, a new option for LNG storage and regasification has been proposed: the FSRU. As very few FSRUs have been put into operation, relevant failure data on FSRU systems are scarce. The results show the usefulness of the proposed methodology for cases where the risk analysis must be performed under considerable uncertainty.

  20. Evaluation of a Compact Hybrid Brain-Computer Interface System

    PubMed Central

    Müller, Klaus-Robert; Schmitz, Christoph H.

    2017-01-01

    We realized a compact hybrid brain-computer interface (BCI) system by integrating a portable near-infrared spectroscopy (NIRS) device with an economical electroencephalography (EEG) system. The NIRS array was located on the subjects' forehead, covering the prefrontal area. The EEG electrodes were distributed over the frontal, motor/temporal, and parietal areas. The experimental paradigm involved a Stroop word-picture matching test in combination with mental arithmetic (MA) and baseline (BL) tasks, in which the subjects were asked to perform either MA or BL in response to congruent or incongruent conditions, respectively. We compared the classification accuracies of each of the modalities (NIRS or EEG) with that of the hybrid system. We showed that the hybrid system outperforms the unimodal EEG and NIRS systems by 6.2% and 2.5%, respectively. Since the proposed hybrid system is based on portable platforms, it is not confined to a laboratory environment and has the potential to be used in real-life situations, such as in neurorehabilitation. PMID:28373984

  1. Polymer hybrid materials for planar optronic systems

    NASA Astrophysics Data System (ADS)

    Körner, Martin; Prucker, Oswald; Rühe, Jürgen

    2015-09-01

    Planar optronic systems made entirely from polymeric functional materials on polymeric foils are interesting architectures for monitoring and sensing applications. Key components in this regard are polymer hybrid materials with adjustable optical properties. These materials can then be processed into optical components such as waveguides for example by using embossing techniques. However, the resulting microstructures have often low mechanical or thermal stability which quickly leads to a degradation of the microstructures accompanied often by a complete loss of function. A simple and versatile way to increase the thermal and mechanical stability of polymers is to connect the individual chains to a polymer network by using thermally or photochemically reactive groups. Upon excitation, these groups form reactive intermediates such as radicals or nitrenes which then crosslink with adjacent C-H-groups through a C,H insertion reaction (CHic = C,H insertion based crosslinking). To generate waveguide structures a PDMS stamp is filled with the waveguide core material e.g. poly(methylmethacrylate) (PMMA), which is modified with a few mol% of the thermal crosslinker and hot embossed onto a foil substrate e.g. PMMA. In this one-step hot embossing process polymer ridge waveguides are formed and simultaneously the polymer becomes crosslinked. Due to the reaction across the boundary between waveguide and substrate it is also possible to combine initially incompatible polymers for the waveguide and the substrate foil. The thermomechanical properties of the obtained materials are studied.

  2. GATE Monte Carlo simulations for variations of an integrated PET/MR hybrid imaging system based on the Biograph mMR model

    NASA Astrophysics Data System (ADS)

    Aklan, B.; Jakoby, B. W.; Watson, C. C.; Braun, H.; Ritt, P.; Quick, H. H.

    2015-06-01

    A simulation toolkit, GATE (Geant4 Application for Tomographic Emission), was used to develop an accurate Monte Carlo (MC) simulation of a fully integrated 3T PET/MR hybrid imaging system (Siemens Biograph mMR). The PET/MR components of the Biograph mMR were simulated in order to allow a detailed study of variations of the system design on the PET performance, which are not easy to access and measure on a real PET/MR system. The 3T static magnetic field of the MR system was taken into account in all Monte Carlo simulations. The validation of the MC model was carried out against actual measurements performed on the PET/MR system by following the NEMA (National Electrical Manufacturers Association) NU 2-2007 standard. The comparison of simulated and experimental performance measurements included spatial resolution, sensitivity, scatter fraction, and count rate capability. The validated system model was then used for two different applications. The first application focused on investigating the effect of an extension of the PET field-of-view on the PET performance of the PET/MR system. The second application deals with simulating a modified system timing resolution and coincidence time window of the PET detector electronics in order to simulate time-of-flight (TOF) PET detection. A dedicated phantom was modeled to investigate the impact of TOF on overall PET image quality. Simulation results showed that the overall divergence between simulated and measured data was found to be less than 10%. Varying the detector geometry showed that the system sensitivity and noise equivalent count rate of the PET/MR system increased progressively with an increasing number of axial detector block rings, as to be expected. TOF-based PET reconstructions of the modeled phantom showed an improvement in signal-to-noise ratio and image contrast to the conventional non-TOF PET reconstructions. In conclusion, the validated MC simulation model of an integrated PET/MR system with an overall

  3. Viewing hybrid systems as products of control systems and automata

    NASA Technical Reports Server (NTRS)

    Grossman, R. L.; Larson, R. G.

    1992-01-01

    The purpose of this note is to show how hybrid systems may be modeled as products of nonlinear control systems and finite state automata. By a hybrid system, we mean a network of consisting of continuous, nonlinear control system connected to discrete, finite state automata. Our point of view is that the automata switches between the control systems, and that this switching is a function of the discrete input symbols or letters that it receives. We show how a nonlinear control system may be viewed as a pair consisting of a bialgebra of operators coding the dynamics, and an algebra of observations coding the state space. We also show that a finite automata has a similar representation. A hybrid system is then modeled by taking suitable products of the bialgebras coding the dynamics and the observation algebras coding the state spaces.

  4. The Hybrid Orthodontic Treatment System (HOTS).

    PubMed

    Ikegami, Tomio; Wong, Ricky Wing-Kit; Hägg, Urban; Lee, Wilson; Hibino, Kyoko

    2010-01-01

    This paper describes the Hybrid Orthodontic Treatment System (HOTS), an innovative method used in first premolar extraction cases. It comprises the following three components: (1) a miniscrew, (2) dual-dimension wires, and (3) multiloop edgewise archwires. HOTS consists of four clearly defined treatment steps: (1) setup, (2) leveling, (3) separate but simultaneous anterior and canine teeth retraction, and (4) final adjustment. HOTS achieves a predictable treatment outcome with a shorter treatment time.

  5. Nested observer for linear hybrid dynamical systems

    SciTech Connect

    Abdi, M.; Bensalah, H.; Cherki, B.

    2009-03-05

    The synthesis of observers for linear hybrid dynamical systems ''HDS,'' is significant from the point of view of the applications (control, diagnoses...); it is still, largely open. We proposed a new approach inspired from a new method of identification, where we could obtain better results with respect to discrimination between the discrete states in conflicts and time necessary to this latter. The results of the suggested technique proved to be satisfactory.

  6. Plant hybrid zones affect biodiversity: Tools for a genetic-based understanding of community structure

    SciTech Connect

    Whitham, T.G.; Martinsen, G.D.; Keim, P.; Floate, K.D.; Dungey, H.S. |; Potts, B.M.

    1999-03-01

    Plant hybrid zones are dynamic centers of ecological and evolutionary processes for plants and their associated communities. Studies in the wild and in gardens with synthetic crosses showed that hybrid eucalypts supports the greatest species richness and abundances of insect and fungal taxa. In an updated review of 152 case studies of taxa associated with diverse hybridizing systems, there were 43 (28%) cases of hybrids being more susceptible than their parent species, 7 (5%) resistant, 35 (23%) additive, 35 (23%) dominant, and 32 (21%) showed no response to hybridization. Thus, most taxa respond to hybrids in ways that result in equal or greater abundance, and hybrids tend to accumulate the taxa of their parent species. These studies suggest that genetic-based plant traits affect the distribution of many species and that the variation in hybrids can be used as tools to examine the genetic components of community structure and biodiversity.

  7. Improving long-term operation of power sources in off-grid hybrid systems based on renewable energy, hydrogen and battery

    NASA Astrophysics Data System (ADS)

    García, Pablo; Torreglosa, Juan P.; Fernández, Luis M.; Jurado, Francisco

    2014-11-01

    This paper presents two novel hourly energy supervisory controls (ESC) for improving long-term operation of off-grid hybrid systems (HS) integrating renewable energy sources (wind turbine and photovoltaic solar panels), hydrogen system (fuel cell, hydrogen tank and electrolyzer) and battery. The first ESC tries to improve the power supplied by the HS and the power stored in the battery and/or in the hydrogen tank, whereas the second one tries to minimize the number of needed elements (batteries, fuel cells and electrolyzers) throughout the expected life of the HS (25 years). Moreover, in both ESC, the battery state-of-charge (SOC) and the hydrogen tank level are controlled and maintained between optimum operating margins. Finally, a comparative study between the controls is carried out by models of the commercially available components used in the HS under study in this work. These ESC are also compared with a third ESC, already published by the authors, and based on reducing the utilization costs of the energy storage devices. The comparative study proves the right performance of the ESC and their differences.

  8. Invariance of the Hybrid System in Microbial Fermentation

    NASA Astrophysics Data System (ADS)

    Gao, Caixia; Feng, Enmin

    In this study, we propose a nonlinear hybrid dynamical system to describe the concentrations of extracellular and intracellular substances in the process of bio-dissimilation of glycerol to 1,3-propanediol. An invariance principle is established for the hybrid dynamical system. At the same time, we state and prove new stability criteria for the nonlinear hybrid system. These results provide less conservative stability conditions for hybrid system as compared to classical results in the literature and allow us to characterize the invariance of a class of nonlinear hybrid dynamical systems.

  9. New, hybrid pectin-based biosorbents

    PubMed Central

    Jakóbik-Kolon, Agata; Milewski, Andrzej K.; Karoń, Krzysztof; Bok-Badura, Joanna

    2016-01-01

    ABSTRACT In this work hybrid pectin-based biosorbents with secondary polysaccharide additives (gellan, carob and xanthan gum, ratio to pectin 1:1, 1:1 and 1:3, respectively) were obtained at two temperatures. The presence of these additives in prepared beads was confirmed by Raman spectra. The SEM micrographs show better homogeneity of blends and grater differences between structures of beads with various additives obtained at higher temperature. The sorption capacity of our hybrid biosorbents as well as sole pectin sorbent is rather the same, and equals 0.85 and 0.70 mmol/g for lead and cadmium, respectively, in pH 4–6. PMID:27812233

  10. A general purpose characterization system for rooftop hybrid microconcentrators

    NASA Astrophysics Data System (ADS)

    Middleton, Robert; Jones, Christopher; Thomsen, Elizabeth; Diez, Vicente Munoz; Harvey, J.; Everett, Vernie; Blakers, Andrew

    2014-09-01

    A versatile characterization system for hybrid thermal and photovoltaic solar receivers is presented and demonstrated. The characterization of the thermal loss and effective area of a novel hybrid receiver is presented.

  11. Analysis of UAS hybrid propulsion systems

    NASA Astrophysics Data System (ADS)

    Rupe, Ryan M.

    Hybrid propulsion technology has been growing over last several years. With the steadily increasing cost of fuel and demand for unmanned aircraft systems to meet an ever expanding variety of responsibilities, research must be conducted into the development of alternative propulsion systems to reduce operating costs and optimize for strategic missions. One of the primary roles of unmanned aircraft systems is to provide aerial surveillance without detection. While electric propulsion systems provide a great option for lower acoustic signatures due to the lack of combustion and exhaust noise, they typically have low flight endurance due to battery limitations. Gas burning propulsion systems are ideal for long range/endurance missions due to the high energy density of hydrocarbon fuel, but can be much easier to detect. Research is conducted into the feasibility of gas/electric hybrid propulsion systems and the tradeoffs involved for reconnaissance mission scenarios. An analysis program is developed to optimize each component of the system and examine their effects on the overall performance of the aircraft. Each subsystem is parameterized and simulated within the program and tradeoffs between payload weight, range, and endurance are tested and evaluated to fulfill mission requirements.

  12. CPV hybrid system in ISFOC building, first results

    NASA Astrophysics Data System (ADS)

    Trujillo, Pablo; Alamillo, César; Gil, Eduardo; de la Rubia, Óscar; Martínez, María; Rubio, Francisca; Cadavid, Andros; Navarro, José; Hillenbrand, Sascha; Ballesteros-Sánchez, Isabel; Castillo-Cagigal, Manuel; Masa-Bote, Daniel; Matallanas, Eduardo; Caamaño-Martín, Estefanía; Gutiérrez, Álvaro

    2012-10-01

    PV Off-Grid systems have demonstrated to be a good solution for the electrification of remote areas [1]. A hybrid system is one kind of these systems. The principal characteristic is that it uses PV as the main generator and has a backup power supply, like a diesel generator, for instance, that is used when the CPV generation is not enough to meet demand. To study the use of CPV in these systems, ISFOC has installed a demonstration hybrid system at its headquarters. This hybrid system uses CPV technology as main generator and the utility grid as the backup generator. A group of batteries have been mounted as well to store the remaining energy from the CPV generator when nedeed. The energy flows are managed by a SMA system based on Sunny Island inverters and a Multicluster-Box (figure 1). The Load is the air-conditioning system of the building, as it has a consumption profile higher than the CPV generator and can be controlled by software [2]. The first results of this system, as well as the first chances of improvement, as the need of a bigger CPV generator and a better management of the energy stored in the batteries, are presented in this paper.

  13. Parametric systems analysis for tandem mirror hybrids

    SciTech Connect

    Lee, J.D.; Chapin, D.L.; Chi, J.W.H.

    1980-09-01

    Fusion fission systems, consisting of fissile producing fusion hybrids combining a tandem mirror fusion driver with various blanket types and net fissile consuming LWR's, have been modeled and analyzed parametrically. Analysis to date indicates that hybrids can be competitive with mined uranium when U/sub 3/O/sub 8/ cost is about 100 $/lb., adding less than 25% to present day cost of power from LWR's. Of the three blanket types considered, uranium fast fission (UFF), thorium fast fission (ThFF), and thorium fission supressed (ThFS), the ThFS blanket has a modest economic advantage under most conditions but has higher support ratios and potential safety advantages under all conditions.

  14. A new hybrid algorithm for analysis of HVdc and FACTs systems

    SciTech Connect

    Anderson, G.W.J.; Watson, N.R.; Arnold, C.P.; Arrillaga, J.

    1995-12-31

    Hybrid stability programs use a transient stability analysis for ac systems, in conjunction with detailed state variable or EMTP type modelling for fast dynamic devices. This paper presents a new hybrid algorithm that uses optimized techniques based on previously proposed methods. The hybrid provides a useful analysis tool to examine systems incorporating fast dynamic non-linear components such as HVdc links and FACTs devices.

  15. Advanced hybrid vehicle propulsion system study

    NASA Technical Reports Server (NTRS)

    Schwarz, R.

    1982-01-01

    Results are presented of a study of an advanced heat engine/electric automotive hybrid propulsion system. The system uses a rotary stratified charge engine and ac motor/controller in a parallel hybrid configuration. The three tasks of the study were (1) parametric studies involving five different vehicle types, (2) design trade-off studies to determine the influence of various vehicle and propulsion system paramaters on system performance fuel economy and cost, and (3) a conceptual design establishing feasibility at the selected approach. Energy consumption for the selected system was .034 1/km (61.3 mpg) for the heat engine and .221 kWh/km (.356 kWh/mi) for the electric power system over a modified J227 a schedule D driving cycle. Life cycle costs were 7.13 cents/km (11.5 cents/mi) at $2/gal gasoline and 7 cents/kWh electricity for 160,000 km (100,000 mi) life.

  16. Initial Lab and Sky Test Results for the Teledyne Imaging System’s H4RG-10 CMOS-Hybrid 4k Visible Array for Use in Ground- and Space-based Astronomical and SSA Applications

    DTIC Science & Technology

    2007-01-01

    Initial Lab and Sky Test Results for the Teledyne Imaging System’s H4RG -10 CMOS-Hybrid 4k Visible Array for Use in Ground- and Space-based...00-00-2007 to 00-00-2007 4. TITLE AND SUBTITLE Initial Lab And Sky Test Results For The Teledyne Imaging System’s H4RG -10 CMOS-Hybrid 4k Visible...relative strengths and weaknesses. 5. DESCRIPTION OF THE H4RG -10 FPA AND GROUND TEST CAMERA During the J-MAPS concept study and subsequent risk

  17. Hybrid electric vehicle power management system

    SciTech Connect

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  18. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    SciTech Connect

    Faress Rahman; Nguyen Minh

    2003-07-01

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the January 2003 to June 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. This report summarizes the results obtained to date on: System performance analysis and model optimization; Reliability and cost model development; System control including dynamic model development; Heat exchanger material tests and life analysis; Pressurized SOFC evaluation; and Pre-baseline system definition for coal gasification fuel cell system concept.

  19. Spatial Self-Organization of Vegetation Subject to Climatic Stress-Insights from a System Dynamics-Individual-Based Hybrid Model.

    PubMed

    Vincenot, Christian E; Carteni, Fabrizio; Mazzoleni, Stefano; Rietkerk, Max; Giannino, Francesco

    2016-01-01

    In simulation models of populations or communities, individual plants have often been obfuscated in favor of aggregated vegetation. This simplification comes with a loss of biological detail and a smoothing out of the demographic noise engendered by stochastic individual-scale processes and heterogeneities, which is significant among others when studying the viability of small populations facing challenging fluctuating environmental conditions. This consideration has motivated the development of precise plant-centered models. The accuracy gained in the representation of plant biology has then, however, often been balanced by the disappearance in models of important plant-soil interactions (esp. water dynamics) due to the inability of most individual-based frameworks to simulate complex continuous processes. In this study, we used a hybrid modeling approach, namely integrated System Dynamics (SD)-Individual-based (IB), to illustrate the importance of individual plant dynamics to explain spatial self-organization of vegetation in arid environments. We analyzed the behavior of this model under different parameter sets either related to individual plant properties (such as seed dispersal distance and reproductive age) or the environment (such as intensity and yearly distribution of precipitation events). While the results of this work confirmed the prevailing theory on vegetation patterning, they also revealed the importance therein of plant-level processes that cannot be rendered by reaction-diffusion models. Initial spatial distribution of plants, reproductive age, and average seed dispersal distance, by impacting patch size and vegetation aggregation, affected pattern formation and population survival under climatic variations. Besides, changes in precipitation regime altered the demographic structure and spatial organization of vegetation patches by affecting plants differentially depending on their age and biomass. Water availability influenced non-linearly total

  20. Spatial Self-Organization of Vegetation Subject to Climatic Stress—Insights from a System Dynamics—Individual-Based Hybrid Model

    PubMed Central

    Vincenot, Christian E.; Carteni, Fabrizio; Mazzoleni, Stefano; Rietkerk, Max; Giannino, Francesco

    2016-01-01

    In simulation models of populations or communities, individual plants have often been obfuscated in favor of aggregated vegetation. This simplification comes with a loss of biological detail and a smoothing out of the demographic noise engendered by stochastic individual-scale processes and heterogeneities, which is significant among others when studying the viability of small populations facing challenging fluctuating environmental conditions. This consideration has motivated the development of precise plant-centered models. The accuracy gained in the representation of plant biology has then, however, often been balanced by the disappearance in models of important plant-soil interactions (esp. water dynamics) due to the inability of most individual-based frameworks to simulate complex continuous processes. In this study, we used a hybrid modeling approach, namely integrated System Dynamics (SD)—Individual-based (IB), to illustrate the importance of individual plant dynamics to explain spatial self-organization of vegetation in arid environments. We analyzed the behavior of this model under different parameter sets either related to individual plant properties (such as seed dispersal distance and reproductive age) or the environment (such as intensity and yearly distribution of precipitation events). While the results of this work confirmed the prevailing theory on vegetation patterning, they also revealed the importance therein of plant-level processes that cannot be rendered by reaction-diffusion models. Initial spatial distribution of plants, reproductive age, and average seed dispersal distance, by impacting patch size and vegetation aggregation, affected pattern formation and population survival under climatic variations. Besides, changes in precipitation regime altered the demographic structure and spatial organization of vegetation patches by affecting plants differentially depending on their age and biomass. Water availability influenced non

  1. pH-responsive drug delivery system based on luminescent CaF(2):Ce(3+)/Tb(3+)-poly(acrylic acid) hybrid microspheres.

    PubMed

    Dai, Yunlu; Zhang, Cuimiao; Cheng, Ziyong; Ma, Ping'an; Li, Chunxia; Kang, Xiaojiao; Yang, Dongmei; Lin, Jun

    2012-03-01

    In this study, we design a controlled release system based on CaF(2):Ce(3+)/Tb(3+)-poly(acrylic acid) (PAA) composite microspheres, which were fabricated by filling the pH-responsive PAA inside CaF(2):Ce(3+)/Tb(3+) hollow spheres via photopolymerization route. The CaF(2):Ce(3+)/Tb(3+) hollow spheres prepared by hydrothermal route possess mesoporous structure and show strong green fluorescence from Tb(3+) under UV excitation. Doxorubicin hydrochloride (DOX), a widely used anti-cancer drug, was used as a model drug to evaluate the loading and controlled release behaviors of the composite microspheres due to the good biocompatibility of the samples using MTT assay. The composite carriers provide a strongly pH-dependent drug release behavior owing to the intrinsic property of PAA and its interactions with DOX. The endocytosis process of drug-loaded microspheres was observed using confocal laser scanning microscopy (CLSM) and the in vitro cytotoxic effect against SKOV3 ovarian cancer cells of the DOX-loaded carriers was investigated. In addition, the extent of drug release could be monitored by the altering of photoluminescence (PL) intensity of CaF(2):Ce(3+)/Tb(3+). Considering the good biocompatibility, high drug loading content and pH-dependent drug release of the materials, these hybrid luminescent microspheres have potential applications in drug controlled release and disease therapy.

  2. Electrically heated particulate filter regeneration methods and systems for hybrid vehicles

    DOEpatents

    Gonze, Eugene V.; Paratore, Jr., Michael J.

    2010-10-12

    A control system for controlling regeneration of a particulate filter for a hybrid vehicle is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate regeneration. An engine control module controls operation of an engine of the hybrid vehicle based on the control of the current to the particulate filter.

  3. Flexible substructure online hybrid test system using conventional testing devices

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Nakashima, Masayoshi

    2013-09-01

    This paper presents a substructure online hybrid test system that is extensible for geographically distributed tests. This system consists of a set of devices conventionally used for cyclic tests to load the tested substructures onto the target displacement or the target force. Due to their robustness and portability, individual sets of conventional loading devices can be transported and reconfigured to realize physical loading in geographically remote laboratories. Another appealing feature is the flexible displacement-force mixed control that is particularly suitable for specimens having large disparities in stiffness during various performance stages. To conduct a substructure online hybrid test, an extensible framework is developed, which is equipped with a generalized interface to encapsulate each substructure. Multiple tested substructures and analyzed substructures using various structural program codes can be accommodated within the single framework, simply interfaced with the boundary displacements and forces. A coordinator program is developed to keep the boundaries among all substructures compatible and equilibrated. An Internet-based data exchange scheme is also devised to transfer data among computers equipped with different software environments. A series of online hybrid tests are introduced, and the portability, flexibility, and extensibility of the online hybrid test system are demonstrated.

  4. Performance Analysis of Hybrid Solar-Hydrogen Energy System

    NASA Astrophysics Data System (ADS)

    Xiao, Jinsheng; Guan, Xuehua

    The system of solar thermoelectric-photovoltaic hybrid generation for hydrogen production is designed in this paper. The mathematical model of the hybrid system using MATLAB/SIMULINK software is carried out. And the logic control system is designed. The current of the various sub-systems and the energy of the hydrogen storage tank are simulated and analyzed, this paper proves the solar hybrid system can be reliable and effective.

  5. Hybrid-Based Dense Stereo Matching

    NASA Astrophysics Data System (ADS)

    Chuang, T. Y.; Ting, H. W.; Jaw, J. J.

    2016-06-01

    Stereo matching generating accurate and dense disparity maps is an indispensable technique for 3D exploitation of imagery in the fields of Computer vision and Photogrammetry. Although numerous solutions and advances have been proposed in the literature, occlusions, disparity discontinuities, sparse texture, image distortion, and illumination changes still lead to problematic issues and await better treatment. In this paper, a hybrid-based method based on semi-global matching is presented to tackle the challenges on dense stereo matching. To ease the sensitiveness of SGM cost aggregation towards penalty parameters, a formal way to provide proper penalty estimates is proposed. To this end, the study manipulates a shape-adaptive cross-based matching with an edge constraint to generate an initial disparity map for penalty estimation. Image edges, indicating the potential locations of occlusions as well as disparity discontinuities, are approved by the edge drawing algorithm to ensure the local support regions not to cover significant disparity changes. Besides, an additional penalty parameter 𝑃𝑒 is imposed onto the energy function of SGM cost aggregation to specifically handle edge pixels. Furthermore, the final disparities of edge pixels are found by weighting both values derived from the SGM cost aggregation and the U-SURF matching, providing more reliable estimates at disparity discontinuity areas. Evaluations on Middlebury stereo benchmarks demonstrate satisfactory performance and reveal the potency of the hybrid-based dense stereo matching method.

  6. Hybrid holographic non-destructive test system

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L. (Inventor)

    1978-01-01

    An automatic hybrid holographic non-destructive testing (HNDT) method and system capable of detecting flaws or debonds contained within certain materials are described. This system incorporates the techniques of optical holography, acoustical/optical holography and holographic correlation in determining the structural integrity of a test object. An automatic processing system including a detector and automatic data processor is used in conjunction with the three holographic techniques for correlating and interpreting the information supplied by the non-destructive systems. The automatic system also includes a sensor which directly translates an optical data format produced by the holographic techniques into electrical signals and then transmits this information to a digital computer for indicating the structural properties of the test object. The computer interprets the data gathered and determines whether further testing is necessary as well as the format of this new testing procedure.

  7. An Energy-Based Thermodynamic Stabilization Framework for Hybrid Control Design of Large-Scale Aerospace Systems

    DTIC Science & Technology

    2009-02-27

    exchanged by means of line-of-sight sensors that experience periodic communication dropouts due to agent motion. Variation in network topology in...respiratory, and cardiovascular function by man- ual control based on the clinician’s experience and intuition. Open-loop control by clinical personnel can be...to ap- pear. [29] W. M. Haddad and J. M. Bailey, "Closed-Loop Control for Intensive Care Unit Seda- tion," Best Prac. Res. Clinical Anaesthesiology

  8. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  9. Nuclear-renewable hybrid energy systems: Opportunities, interconnections, and needs

    SciTech Connect

    Mark F. Ruth; Owen R. Zinaman; Mark Antkowiak; Richard D. Boardman; Robert S. Cherry; Morgan D. Bazilian

    2014-02-01

    As the U.S. energy system evolves, the amount of electricity from variable-generation sources is likely to increase, which could result in additional times when electricity demand is lower than available production. Thus, purveyors of technologies that traditionally have provided base-load electricity—such as nuclear power plants—can explore new operating procedures to deal with the associated market signals. Concurrently, innovations in nuclear reactor design coupled with sophisticated control systems now allow for more complex apportionment of heat within an integrated system such as one linked to energy-intensive chemical processes. This paper explores one opportunity – nuclear-renewable hybrid energy systems. These are defined as integrated facilities comprised of nuclear reactors, renewable energy generation, and industrial processes that can simultaneously address the need for grid flexibility, greenhouse gas emission reductions, and optimal use of investment capital. Six aspects of interaction (interconnections) between elements of nuclear-renewable hybrid energy systems are identified: Thermal, electrical, chemical, hydrogen, mechanical, and information. Additionally, system-level aspects affect selection, design, and operation of this hybrid system type. Throughout the paper, gaps and research needs are identified to promote further exploration of the topic.

  10. Neural-network hybrid control for antilock braking systems.

    PubMed

    Lin, Chih-Min; Hsu, C F

    2003-01-01

    The antilock braking systems are designed to maximize wheel traction by preventing the wheels from locking during braking, while also maintaining adequate vehicle steerability; however, the performance is often degraded under harsh road conditions. In this paper, a hybrid control system with a recurrent neural network (RNN) observer is developed for antilock braking systems. This hybrid control system is comprised of an ideal controller and a compensation controller. The ideal controller, containing an RNN uncertainty observer, is the principal controller; and the compensation controller is a compensator for the difference between the system uncertainty and the estimated uncertainty. Since for dynamic response the RNN has capabilities superior to the feedforward NN, it is utilized for the uncertainty observer. The Taylor linearization technique is employed to increase the learning ability of the RNN. In addition, the on-line parameter adaptation laws are derived based on a Lyapunov function, so the stability of the system can be guaranteed. Simulations are performed to demonstrate the effectiveness of the proposed NN hybrid control system for antilock braking control under various road conditions.

  11. Controllability in Hybrid Kinetic Equations Modeling Nonequilibrium Multicellular Systems

    PubMed Central

    Bianca, Carlo

    2013-01-01

    This paper is concerned with the derivation of hybrid kinetic partial integrodifferential equations that can be proposed for the mathematical modeling of multicellular systems subjected to external force fields and characterized by nonconservative interactions. In order to prevent an uncontrolled time evolution of the moments of the solution, a control operator is introduced which is based on the Gaussian thermostat. Specifically, the analysis shows that the moments are solution of a Riccati-type differential equation. PMID:24191137

  12. Nuclear Hybrid Energy Systems Regional Studies: West Texas & Northeastern Arizona

    SciTech Connect

    Garcia, Humberto E.; Chen, Jun; Kim, Jong Suk; McKellar, Michael George; Deason, Wesley R; Richard B. Vilim; Bragg-Sitton, Shannon M.; Boardman, Richard D.

    2015-04-01

    The primary objective of this study is to conduct a preliminary dynamic analysis of two realistic hybrid energy systems (HES) including a nuclear reactor as the main baseload heat generator (denoted as nuclear HES or nuclear hybrid energy systems [[NHES]) and to assess the local (e.g., HES owners) and system (e.g., the electric grid) benefits attainable by the application of NHES in scenarios with multiple commodity production and high penetration of renewable energy. It is performed for regional cases not generic examples based on available resources, existing infrastructure, and markets within the selected regions. This study also briefly addresses the computational capabilities developed to conduct such analyses, reviews technical gaps, and suggests some research paths forward.

  13. Economic Dispatch Using Genetic Algorithm Based Hybrid Approach

    SciTech Connect

    Tahir Nadeem Malik; Aftab Ahmad; Shahab Khushnood

    2006-07-01

    Power Economic Dispatch (ED) is vital and essential daily optimization procedure in the system operation. Present day large power generating units with multi-valves steam turbines exhibit a large variation in the input-output characteristic functions, thus non-convexity appears in the characteristic curves. Various mathematical and optimization techniques have been developed, applied to solve economic dispatch (ED) problem. Most of these are calculus-based optimization algorithms that are based on successive linearization and use the first and second order differentiations of objective function and its constraint equations as the search direction. They usually require heat input, power output characteristics of generators to be of monotonically increasing nature or of piecewise linearity. These simplifying assumptions result in an inaccurate dispatch. Genetic algorithms have used to solve the economic dispatch problem independently and in conjunction with other AI tools and mathematical programming approaches. Genetic algorithms have inherent ability to reach the global minimum region of search space in a short time, but then take longer time to converge the solution. GA based hybrid approaches get around this problem and produce encouraging results. This paper presents brief survey on hybrid approaches for economic dispatch, an architecture of extensible computational framework as common environment for conventional, genetic algorithm and hybrid approaches based solution for power economic dispatch, the implementation of three algorithms in the developed framework. The framework tested on standard test systems for its performance evaluation. (authors)

  14. Concepts leading to the IMAGE-100 hybrid interactive system

    NASA Technical Reports Server (NTRS)

    Mackin, T. F.; Sulester, J. M. (Principal Investigator)

    1979-01-01

    As LACIE Procedure 1 evolved from the Classification and Mensuration Subsystem smallfields procedures, it became evident that two computational systems would have merit-the LACIE/Earth Resources Interactive Processing System based on a large IBM-360 computer oriented for operational use with high computational throughput, and a smaller, highly interactive system based on a PDP 11-45 minicomputer and its display system, the IMAGE-100. The latter had advantages for certain phases; notably, interactive spectral aids could be implemented quite rapidly. This would allow testing and development of Procedure 1 before its implementation on the LACIE/Earth Resources Interactive Processing System. The resulting minicomputer system, called the Classification and Mensuration Subsystem IMAGE-100 Hybrid System, allowed Procedure-1 operations to be performed interactively, except for clustering, classification, and automatic selection of best acquisitions, which were offloaded to the LACIE/Earth Resources Interactive Processing System.

  15. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    DOEpatents

    Bockelmann, Thomas R.; Beaty, Kevin D.; Zou, Zhanijang; Kang, Xiaosong

    2009-07-21

    A battery control system for controlling a state of charge of a hybrid vehicle battery includes a detecting arrangement for determining a vehicle operating state or an intended vehicle operating state and a controller for setting a target state of charge level of the battery based on the vehicle operating state or the intended vehicle operating state. The controller is operable to set a target state of charge level at a first level during a mobile vehicle operating state and at a second level during a stationary vehicle operating state or in anticipation of the vehicle operating in the stationary vehicle operating state. The invention further includes a method for controlling a state of charge of a hybrid vehicle battery.

  16. Quantitative rRNA-targeted solution-based hybridization assay using peptide nucleic acid molecular beacons.

    PubMed

    Li, Xu; Morgenroth, Eberhard; Raskin, Lutgarde

    2008-12-01

    The potential of a solution-based hybridization assay using peptide nucleic acid (PNA) molecular beacon (MB) probes to quantify 16S rRNA of specific populations in RNA extracts of environmental samples was evaluated by designing PNA MB probes for the genera Dechloromonas and Dechlorosoma. In a kinetic study with 16S rRNA from pure cultures, the hybridization of PNA MB to target 16S rRNA exhibited a higher final hybridization signal and a lower apparent rate constant than the hybridizations to nontarget 16S rRNAs. A concentration of 10 mM NaCl in the hybridization buffer was found to be optimal for maximizing the difference between final hybridization signals from target and nontarget 16S rRNAs. Hybridization temperatures and formamide concentrations in hybridization buffers were optimized to minimize signals from hybridizations of PNA MB to nontarget 16S rRNAs. The detection limit of the PNA MB hybridization assay was determined to be 1.6 nM of 16S rRNA. To establish proof for the application of PNA MB hybridization assays in complex systems, target 16S rRNA from Dechlorosoma suillum was spiked at different levels to RNA isolated from an environmental (bioreactor) sample, and the PNA MB assay enabled effective quantification of the D. suillum RNA in this complex mixture. For another environmental sample, the quantitative results from the PNA MB hybridization assay were compared with those from clone libraries.

  17. A hybrid approach for detecting and isolating faults in nuclear power plant interacting systems

    SciTech Connect

    Hines, J.W.; Miller, D.W.; Hajek, B.K.

    1996-09-01

    A fault detection and isolation (FDI) system is presented that can detect and isolate nuclear power plant (NPP) faults occurring in interacting systems. The proposed methodology combines two tools, observer-based residual generation and neural network pattern matching, into a powerful, hybrid diagnostic system. A computer-based model of a commercial boiling water reactor (BWR) is used as the reference plant. Two FDI methods are implemented on each of two BWR systems, and their performance characteristics are compared. One method uses conventional neural network techniques that use parameter values for input, and a second, hybrid methodology uses system models to create residuals for input to a neural network. Both FDI systems show good generalization abilities, but only the hybrid system decouples system interactions. Although implementation is impractical for all NPP systems, this hybrid technique is most useful in specific applications where operators have difficulty diagnosing faults in strongly interacting systems.

  18. Renewable Electricity Generation via Solar-Powered Methanol Reforming: Hybrid Proton Exchange Membrane Fuel Cell Systems Based on Novel Non-Concentrating, Intermediate-Temperature Solar Collectors

    NASA Astrophysics Data System (ADS)

    Real, Daniel J.

    Tremendous research efforts have been conducted studying the capturing and conversion of solar energy. Solar thermal power systems offer a compelling opportunity for renewable energy utilization with high efficiencies and excellent cost-effectiveness. The goal of this work was to design a non-concentrating collector capable of reaching temperatures above 250 °C, use this collector to power methanol steam reforming, and operate a proton exchange membrane (PEM) fuel cell using the generated hydrogen. The study presents the construction and characterization of a non-concentrating, intermediate-temperature, fin-in-tube evacuated solar collector, made of copper and capable of reaching stagnation temperatures of 268.5 °C at 1000 W/m2 irradiance. The collector was used to power methanol steam reforming, including the initial heating and vaporization of liquid reactants and the final heating of the gaseous reactants. A preferential oxidation (PROX) catalyst was used to remove CO from simulated reformate gas, and this product gas was used to operate a PEM fuel cell. The results show 1) that the outlet temperature is not limited by heat transfer from the absorber coating to the heat transfer fluid, but by the amount of solar energy absorbed. This implicates a constant heat flux description of the heat transfer process and allows for the usage of materials with lower thermal conductivity than copper. 2) It is possible to operate a PEM fuel cell from reformate gas if a PROX catalyst is used to remove CO from the gas. 3) The performance of the fuel cell is only slightly decreased (~4%) by CO2 dilution present in the reformate and PROX gas. These results provide a foundation for the first renewable electricity generation via solar-powered methanol reforming through a hybrid PEM fuel cell system based on novel non-concentrating, intermediate-temperature solar collectors.

  19. A comparison of high-speed flywheels, batteries, and ultracapacitors on the bases of cost and fuel economy as the energy storage system in a fuel cell based hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Doucette, Reed T.; McCulloch, Malcolm D.

    Fuel cells aboard hybrid electric vehicles (HEVs) are often hybridized with an energy storage system (ESS). Batteries and ultracapacitors are the most common technologies used in ESSs aboard HEVs. High-speed flywheels are an emerging technology with traits that have the potential to make them competitive with more established battery and ultracapacitor technologies in certain vehicular applications. This study compares high-speed flywheels, ultracapacitors, and batteries functioning as the ESS in a fuel cell based HEV on the bases of cost and fuel economy. In this study, computer models were built to simulate the powertrain of a fuel cell based HEV where high-speed flywheels, batteries, and ultracapacitors of a range of sizes were used as the ESS. A simulated vehicle with a powertrain using each of these technologies was run over two different drive cycles in order to see how the different ESSs performed under different driving patterns. The results showed that when cost and fuel economy were both considered, high-speed flywheels were competitive with batteries and ultracapacitors.

  20. Nuclear Hybrid Energy Systems: Challenges and Opportunities

    SciTech Connect

    P. Sabharwall; S.B. Sitton; S.J. Yoon; C. Stoots

    2014-07-01

    With growing demand of energy and costs of the fossil fuels, coupled with the environmental concerns have resulted in an increased interest in alternative energy sources. Nuclear hybrid energy systems (NHES) are being considered which incorporates renewable energy sources such as solar and wind energy combined with nuclear reactor and energy storage to meet the peak hours demand imposed on the grid, along with providing process heat for other potential industrial applications. This concept could potentially satisfy various energy demands and improve reliability, robustness and resilience for the entire system as a whole, along with economic and net efficiency gains. This paper provides a brief understanding of potential NHES system and architecture along with the challenges

  1. Ultra-broadband hybrid infrared laser system

    NASA Astrophysics Data System (ADS)

    Budilova, O. V.; Ionin, A. A.; Kinyaevskiy, I. O.; Klimachev, Yu. M.; Kotkov, A. A.; Kozlov, A. Yu.

    2016-03-01

    A hybrid IR laser system consisting of molecular gas lasers with frequency conversion of laser radiation in a solid-state converter (nonlinear crystal) was developed. One of these gas lasers is a carbon monoxide laser operating in multi-line or single-line mode. Another one is a carbon dioxide laser operating in multi-line mode. The two lasers operate under Q-switching with a joint rotating mirror. Due to sum- and difference-frequency generation in nonlinear crystals, the laser system emits within wavelength range from 2.5 to 16.6 μm. The laser system emitting radiation over such an extremely wide wavelength range (2.7 octaves) is of interest for remote sensing and other applications connected with laser beam propagation in the atmosphere.

  2. Control of a simulated wheelchair based on a hybrid brain computer interface.

    PubMed

    Long, Jinyi; Li, Yuanqing; Wang, Hongtao; Yu, Tianyou; Pan, Jiahui

    2012-01-01

    In this paper, a hybrid BCI system was described for the control of a simulated wheelchair. This hybrid BCI was based on the motor imagery-based mu rhythm and the P300 potential. With our paradigm, the user may perform left- or right-hand imagery to control the direction (left or right turn) of the simulated wheelchair. Furthermore, a hybrid manner was used for speed control: e.g., foot imagery without button attention for deceleration and a specific button attention without any motor imagery for acceleration. An experiment based on a simulated wheelchair in virtual environment was conducted to assess the BCI control. Subjects effectively steered the simulated wheelchairs by controlling the direction and speed with our hybrid BCI system. Data analysis validated that our hybrid BCI system can be used to control the direction and speed of a simulated wheelchair.

  3. A modular and hybrid connectionist system for speaker identification.

    PubMed

    Bennani, Y

    1995-07-01

    This paper presents and evaluates a modular/hybrid connectionist system for speaker identification. Modularity has emerged as a powerful technique for reducing the complexity of connectionist systems, and allowing a priori knowledge to be incorporated into their design. Text-independent speaker identification is an inherently complex task where the amount of training data is often limited. It thus provides an ideal domain to test the validity of the modular/hybrid connectionist approach. To achieve such identification, we develop, in this paper, an architecture based upon the cooperation of several connectionist modules, and a Hidden Markov Model module. When tested on a population of 102 speakers extracted from the DARPA-TIMIT database, perfect identification was obtained.

  4. Type selection and design of hybrid propulsion system of ship

    NASA Astrophysics Data System (ADS)

    Xiao, Nengqi; Zhou, Riping; Lin, Xichen

    2016-11-01

    Hybrid propulsion system is a new type of dynamic form. It has the characteristic structural complexity and the diversity of operating conditions. Due to the different vessel functions, different sailing areas or different control performance requirements of the ship, types of hybrid propulsion systems are not the same. In this paper, 6000HP platform supply vessel is an example. Hybrid propulsion the system is selected by the fuzzy comprehensive evaluation method.

  5. Implementation of an Open-Loop Rule-Based Control Strategy for a Hybrid-Electric Propulsion System On a Small RPA

    DTIC Science & Technology

    2011-03-01

    ix List of Figures Figure 1: Series hybrid configuration [12... Electromotive Force (V) Um Electric Motor Open Circuit Voltage (V) u Clutch Displacement Angle (rad) Vbat Battery Voltage (V) Vd Cylinder Displacement...of three areas: series hybrid, parallel hybrid, and the power-split hybrid. A great number of these designs incorporate the gasoline internal

  6. Evaluation of a hybrid artificial liver module based on a spheroid culture system of embryonic stem cell-derived hepatic cells.

    PubMed

    Mizumoto, Hiroshi; Hayashi, Shunsuke; Matsumoto, Kinya; Ikeda, Kaoru; Kusumi, Tomoaki; Inamori, Masakazu; Nakazawa, Kohji; Ijima, Hiroyuki; Funatsu, Kazumori; Kajiwara, Toshihisa

    2012-01-01

    Hybrid artificial liver (HAL) is an extracorporeal circulation system comprised of a bioreactor containing immobilized functional liver cells. It is expected to not only serve as a temporary liver function support system, but also to accelerate liver regeneration in recovery from hepatic failure. One of the most difficult problems in developing a hybrid artificial liver is obtaining an adequate cell source. In this study, we attempt to differentiate embryonic stem (ES) cells by hepatic lineage using a polyurethane foam (PUF)/spheroid culture in which the cultured cells spontaneously form spherical multicellular aggregates (spheroids) in the pores of the PUF. We also demonstrate the feasibility of the PUF-HAL system by comparing ES cells to primary hepatocytes in in vitro and ex vivo experiments. Mouse ES cells formed multicellular spheroids in the pores of PUF. ES cells expressed liver-specific functions (ammonia removal and albumin secretion) after treatment with the differentiation-promoting agent, sodium butyrate (SB). We designed a PUF-HAL module comprised of a cylindrical PUF block with many medium-flow capillaries for hepatic differentiation of ES cells. The PUF-HAL module cells expressed ammonia removal and albumin secretion functions after 2 weeks of SB culture. Because of high proliferative activity of ES cells and high cell density, the maximum expression level of albumin secretion function per unit volume of module was comparable to that seen in primary mouse hepatocyte culture. In the animal experiments with rats, the PUF-HAL differentiating ES cells appeared to partially contribute to recovery from liver failure. This outcome indicates that the PUF module containing differentiating ES cells may be a useful biocomponent of a hybrid artificial liver support system.

  7. A Novel Energy Recovery System for Parallel Hybrid Hydraulic Excavator

    PubMed Central

    Li, Wei; Cao, Baoyu; Zhu, Zhencai; Chen, Guoan

    2014-01-01

    Hydraulic excavator energy saving is important to relieve source shortage and protect environment. This paper mainly discusses the energy saving for the hybrid hydraulic excavator. By analyzing the excess energy of three hydraulic cylinders in the conventional hydraulic excavator, a new boom potential energy recovery system is proposed. The mathematical models of the main components including boom cylinder, hydraulic motor, and hydraulic accumulator are built. The natural frequency of the proposed energy recovery system is calculated based on the mathematical models. Meanwhile, the simulation models of the proposed system and a conventional energy recovery system are built by AMESim software. The results show that the proposed system is more effective than the conventional energy saving system. At last, the main components of the proposed energy recovery system including accumulator and hydraulic motor are analyzed for improving the energy recovery efficiency. The measures to improve the energy recovery efficiency of the proposed system are presented. PMID:25405215

  8. A novel energy recovery system for parallel hybrid hydraulic excavator.

    PubMed

    Li, Wei; Cao, Baoyu; Zhu, Zhencai; Chen, Guoan

    2014-01-01

    Hydraulic excavator energy saving is important to relieve source shortage and protect environment. This paper mainly discusses the energy saving for the hybrid hydraulic excavator. By analyzing the excess energy of three hydraulic cylinders in the conventional hydraulic excavator, a new boom potential energy recovery system is proposed. The mathematical models of the main components including boom cylinder, hydraulic motor, and hydraulic accumulator are built. The natural frequency of the proposed energy recovery system is calculated based on the mathematical models. Meanwhile, the simulation models of the proposed system and a conventional energy recovery system are built by AMESim software. The results show that the proposed system is more effective than the conventional energy saving system. At last, the main components of the proposed energy recovery system including accumulator and hydraulic motor are analyzed for improving the energy recovery efficiency. The measures to improve the energy recovery efficiency of the proposed system are presented.

  9. Monitoring of beer fermentation based on hybrid electronic tongue.

    PubMed

    Kutyła-Olesiuk, Anna; Zaborowski, Michał; Prokaryn, Piotr; Ciosek, Patrycja

    2012-10-01

    Monitoring of biotechnological processes, including fermentation is extremely important because of the rapidly occurring changes in the composition of the samples during the production. In the case of beer, the analysis of physicochemical parameters allows for the determination of the stage of fermentation process and the control of its possible perturbations. As a tool to control the beer production process a sensor array can be used, composed of potentiometric and voltammetric sensors (so-called hybrid Electronic Tongue, h-ET). The aim of this study is to apply electronic tongue system to distinguish samples obtained during alcoholic fermentation. The samples originate from batch of homemade beer fermentation and from two stages of the process: fermentation reaction and maturation of beer. The applied sensor array consists of 10 miniaturized ion-selective electrodes (potentiometric ET) and silicon based 3-electrode voltammetric transducers (voltammetric ET). The obtained results were processed using Partial Least Squares (PLS) and Partial Least Squares-Discriminant Analysis (PLS-DA). For potentiometric data, voltammetric data, and combined potentiometric and voltammetric data, comparison of the classification ability was conducted based on Root Mean Squared Error (RMSE), sensitivity, specificity, and coefficient F calculation. It is shown, that in the contrast to the separately used techniques, the developed hybrid system allowed for a better characterization of the beer samples. Data fusion in hybrid ET enables to obtain better results both in qualitative analysis (RMSE, specificity, sensitivity) and in quantitative analysis (RMSE, R(2), a, b).

  10. Development of Traction Drive Motors for the Toyota Hybrid System

    NASA Astrophysics Data System (ADS)

    Kamiya, Munehiro

    Toyota Motor Corporation developed in 2005 a new hybrid system for a large SUV. This system included the new development of a high-speed traction drive motor achieving a significant increase in power weight ratio. This paper provides an overview of the hybrid system, discusses the characteristics required of a traction drive motor, and presents the technologies employed in the developed motor.

  11. An EEG/EOG-based hybrid brain-neural computer interaction (BNCI) system to control an exoskeleton for the paralyzed hand.

    PubMed

    Soekadar, Surjo R; Witkowski, Matthias; Vitiello, Nicola; Birbaumer, Niels

    2015-06-01

    The loss of hand function can result in severe physical and psychosocial impairment. Thus, compensation of a lost hand function using assistive robotics that can be operated in daily life is very desirable. However, versatile, intuitive, and reliable control of assistive robotics is still an unsolved challenge. Here, we introduce a novel brain/neural-computer interaction (BNCI) system that integrates electroencephalography (EEG) and electrooculography (EOG) to improve control of assistive robotics in daily life environments. To evaluate the applicability and performance of this hybrid approach, five healthy volunteers (HV) (four men, average age 26.5 ± 3.8 years) and a 34-year-old patient with complete finger paralysis due to a brachial plexus injury (BPI) used EEG (condition 1) and EEG/EOG (condition 2) to control grasping motions of a hand exoskeleton. All participants were able to control the BNCI system (BNCI control performance HV: 70.24 ± 16.71%, BPI: 65.93 ± 24.27%), but inclusion of EOG significantly improved performance across all participants (HV: 80.65 ± 11.28, BPI: 76.03 ± 18.32%). This suggests that hybrid BNCI systems can achieve substantially better control over assistive devices, e.g., a hand exoskeleton, than systems using brain signals alone and thus may increase applicability of brain-controlled assistive devices in daily life environments.

  12. Biocomposites and hybrid biomaterials based on calcium orthophosphates

    PubMed Central

    Dorozhkin, Sergey V.

    2011-01-01

    The state-of-the-art of biocomposites and hybrid biomaterials based on calcium orthophosphates that are suitable for biomedical applications is presented in this review. Since these types of biomaterials offer many significant and exciting possibilities for hard tissue regeneration, this subject belongs to a rapidly expanding area of biomedical research. Through successful combinations of the desired properties of matrix materials with those of fillers (in such systems, calcium orthophosphates might play either role), innovative bone graft biomaterials can be designed. Various types of biocomposites and hybrid biomaterials based on calcium orthophosphates, either those already in use or being investigated for biomedical applications, are extensively discussed. Many different formulations, in terms of the material constituents, fabrication technologies, structural and bioactive properties as well as both in vitro and in vivo characteristics, have already been proposed. Among the others, the nanostructurally controlled biocomposites, those containing nanodimensional compounds, biomimetically fabricated formulations with collagen, chitin and/or gelatin as well as various functionally graded structures seem to be the most promising candidates for clinical applications. The specific advantages of using biocomposites and hybrid biomaterials based on calcium orthophosphates in the selected applications are highlighted. As the way from the laboratory to the hospital is a long one, and the prospective biomedical candidates have to meet many different necessities, this review also examines the critical issues and scientific challenges that require further research and development. PMID:23507726

  13. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    PubMed Central

    Rahman, Md. Mahbubur; Li, Xiao-Bo; Lopa, Nasrin Siraj; Ahn, Sang Jung; Lee, Jae-Joon

    2015-01-01

    Conducting polymers (CPs) are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective. PMID:25664436

  14. Hybrid Concurrent Constraint Simulation Models of Several Systems

    NASA Technical Reports Server (NTRS)

    Sweet, Adam

    2003-01-01

    This distribution contains several simulation models created for the hybrid simulation language, Hybrid Concurrent Constraint (HCC). An HCC model contains the information specified in the widely-accepted academic definition of a hybrid system: this includes expressions for the modes of the systems to be simulated and the differential equations that apply in each mode. These expressions are written in the HCC syntax. The models included here were created by either applying basic physical laws or implementing equations listed in previously published papers.

  15. Investigation of a hybrid PVT air collector system

    NASA Astrophysics Data System (ADS)

    Haddad, S.; Touafek, K.; Mordjaoui, M.; Khelifa, A.; Tabet, I.

    2017-02-01

    The photovoltaic thermal hybrid (PVT) collectors, which simultaneously produce electricity and heat, are an alternative to photovoltaic modules and thermal collectors installed separately. Indeed, the heat extracted from the solar cell is used to heat water or air, thereby cooling the cell, and thus increasing its energy efficiency. This paper deals with a hybrid PVT air collector in which a new design has been proposed and tested. Its principle is based on the return of the preheating air to a second heating. The air thus passes twice under the solar cells before being evacuated to the outside of the collector (for space heating). The system is modular and expandable to cover large spaces to be heated. The experimental results of this novel design are presented and discussed under both normal and forced circulation. This technique of air return shows favorable results in terms of the quality of the heated air and electric power generation.

  16. A Future with Hybrid Electric Propulsion Systems: A NASA Perspective

    NASA Technical Reports Server (NTRS)

    DelRosario, Ruben

    2014-01-01

    The presentation highlights a NASA perspective on Hybrid Electric Propulsion Systems for aeronautical applications. Discussed are results from NASA Advance Concepts Study for Aircraft Entering service in 2030 and beyond and the potential use of hybrid electric propulsion systems as a potential solution to the requirements for energy efficiency and environmental compatibility. Current progress and notional potential NASA research plans are presented.

  17. Parallel Hybrid Vehicle Optimal Storage System

    NASA Technical Reports Server (NTRS)

    Bloomfield, Aaron P.

    2009-01-01

    A paper reports the results of a Hybrid Diesel Vehicle Project focused on a parallel hybrid configuration suitable for diesel-powered, medium-sized, commercial vehicles commonly used for parcel delivery and shuttle buses, as the missions of these types of vehicles require frequent stops. During these stops, electric hybridization can effectively recover the vehicle's kinetic energy during the deceleration, store it onboard, and then use that energy to assist in the subsequent acceleration.

  18. SCAN-based hybrid and double-hybrid density functionals from models without fitted parameters

    NASA Astrophysics Data System (ADS)

    Hui, Kerwin; Chai, Jeng-Da

    2016-01-01

    By incorporating the nonempirical strongly constrained and appropriately normed (SCAN) semilocal density functional [J. Sun, A. Ruzsinszky, and J. P. Perdew, Phys. Rev. Lett. 115, 036402 (2015)] in the underlying expression of four existing hybrid and double-hybrid models, we propose one hybrid (SCAN0) and three double-hybrid (SCAN0-DH, SCAN-QIDH, and SCAN0-2) density functionals, which are free from any fitted parameters. The SCAN-based double-hybrid functionals consistently outperform their parent SCAN semilocal functional for self-interaction problems and noncovalent interactions. In particular, SCAN0-2, which includes about 79% of Hartree-Fock exchange and 50% of second-order Møller-Plesset correlation, is shown to be reliably accurate for a very diverse range of applications, such as thermochemistry, kinetics, noncovalent interactions, and self-interaction problems.

  19. PV-hybrid village power systems in Amazonia

    SciTech Connect

    Warner, C.L.; Taylor, R.W.; Ribeiro, C.M.; Moszkowicz, M.; Borba, A.J.V.

    1996-09-01

    The Brazilian Amazon region is an ideal location for isolated mini-grid systems. Hundreds of diesel systems have been installed to supply electricity to this sparsely populated region. However, the availability of renewable energy resources makes the Amazon well-suited to renewable energy systems. This paper describes the technical aspects of two hybrid systems being installed in this region through the cooperative effort of multiple partners: US Department of Energy, through NREL, and Brazilian CEPEL/Eletrobras and state electric utilities. The first system is a 50-kW photovoltaic-wind-battery hybrid and the second is a 50-kW photovoltaic-diesel-battery hybrid.

  20. System Modeling and Diagnostics for Liquefying-Fuel Hybrid Rockets

    NASA Technical Reports Server (NTRS)

    Poll, Scott; Iverson, David; Ou, Jeremy; Sanderfer, Dwight; Patterson-Hine, Ann

    2003-01-01

    A Hybrid Combustion Facility (HCF) was recently built at NASA Ames Research Center to study the combustion properties of a new fuel formulation that burns approximately three times faster than conventional hybrid fuels. Researchers at Ames working in the area of Integrated Vehicle Health Management recognized a good opportunity to apply IVHM techniques to a candidate technology for next generation launch systems. Five tools were selected to examine various IVHM techniques for the HCF. Three of the tools, TEAMS (Testability Engineering and Maintenance System), L2 (Livingstone2), and RODON, are model-based reasoning (or diagnostic) systems. Two other tools in this study, ICS (Interval Constraint Simulator) and IMS (Inductive Monitoring System) do not attempt to isolate the cause of the failure but may be used for fault detection. Models of varying scope and completeness were created, both qualitative and quantitative. In each of the models, the structure and behavior of the physical system are captured. In the qualitative models, the temporal aspects of the system behavior and the abstraction of sensor data are handled outside of the model and require the development of additional code. In the quantitative model, less extensive processing code is also necessary. Examples of fault diagnoses are given.

  1. Hybrid Model for Cascading Outage in a Power System: A Numerical Study

    NASA Astrophysics Data System (ADS)

    Susuki, Yoshihiko; Takatsuji, Yu; Hikihara, Takashi

    Analysis of cascading outages in power systems is important for understanding why large blackouts emerge and how to prevent them. Cascading outages are complex dynamics of power systems, and one cause of them is the interaction between swing dynamics of synchronous machines and protection operation of relays and circuit breakers. This paper uses hybrid dynamical systems as a mathematical model for cascading outages caused by the interaction. Hybrid dynamical systems can combine families of flows describing swing dynamics with switching rules that are based on protection operation. This paper refers to data on a cascading outage in the September 2003 blackout in Italy and shows a hybrid dynamical system by which propagation of outages reproduced is consistent with the data. This result suggests that hybrid dynamical systems can provide an effective model for the analysis of cascading outages in power systems.

  2. Real-time hybrid computer simulation of a small turboshaft engine and control system

    NASA Technical Reports Server (NTRS)

    Hart, C. E.; Wenzel, L. M.

    1984-01-01

    The development of an analytical model of a small turboshaft engine designed for helicopter propulsion systems is described. The model equations were implemented on a hybrid computer system to provide a real time nonlinear simulation of the engine performance over a wide operating range. The real time hybrid simulation of the engine was used to evaluate a microprocessor based digital control module. This digital control module was developed as part of an advanced rotorcraft control program. After tests with the hybrid engine simulation the digital control module was used to control a real engine in an experimental program. A hybrid simulation of the engine's electrical hydromechanical control system was developed. This allowed to vary the fuel flow and torque load inputs to the hybrid engine simulation for simulating transient operation. A steady-state data and the experimental tests are compared. Analytical model equations, analog computer diagrams, and a digital computer flow chart are included.

  3. Comparison of metallization systems for thin film hybrid microcircuits

    SciTech Connect

    Hines, R.A.; Raut, M.K.

    1980-08-01

    Five metallization systems were evaluated for fabricating thin film hybrid microcircuits. The titanium/palladium/electroplated gold system proved superior in terms of thermocompression bondability, corrosion resistance, and solderability.

  4. Design of time interval generator based on hybrid counting method

    NASA Astrophysics Data System (ADS)

    Yao, Yuan; Wang, Zhaoqi; Lu, Houbing; Chen, Lian; Jin, Ge

    2016-10-01

    Time Interval Generators (TIGs) are frequently used for the characterizations or timing operations of instruments in particle physics experiments. Though some "off-the-shelf" TIGs can be employed, the necessity of a custom test system or control system makes the TIGs, being implemented in a programmable device desirable. Nowadays, the feasibility of using Field Programmable Gate Arrays (FPGAs) to implement particle physics instrumentation has been validated in the design of Time-to-Digital Converters (TDCs) for precise time measurement. The FPGA-TDC technique is based on the architectures of Tapped Delay Line (TDL), whose delay cells are down to few tens of picosecond. In this case, FPGA-based TIGs with high delay step are preferable allowing the implementation of customized particle physics instrumentations and other utilities on the same FPGA device. A hybrid counting method for designing TIGs with both high resolution and wide range is presented in this paper. The combination of two different counting methods realizing an integratable TIG is described in detail. A specially designed multiplexer for tap selection is emphatically introduced. The special structure of the multiplexer is devised for minimizing the different additional delays caused by the unpredictable routings from different taps to the output. A Kintex-7 FPGA is used for the hybrid counting-based implementation of a TIG, providing a resolution up to 11 ps and an interval range up to 8 s.

  5. Agent-based power sharing scheme for active hybrid power sources

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenhua

    The active hybridization technique provides an effective approach to combining the best properties of a heterogeneous set of power sources to achieve higher energy density, power density and fuel efficiency. Active hybrid power sources can be used to power hybrid electric vehicles with selected combinations of internal combustion engines, fuel cells, batteries, and/or supercapacitors. They can be deployed in all-electric ships to build a distributed electric power system. They can also be used in a bulk power system to construct an autonomous distributed energy system. An important aspect in designing an active hybrid power source is to find a suitable control strategy that can manage the active power sharing and take advantage of the inherent scalability and robustness benefits of the hybrid system. This paper presents an agent-based power sharing scheme for active hybrid power sources. To demonstrate the effectiveness of the proposed agent-based power sharing scheme, simulation studies are performed for a hybrid power source that can be used in a solar car as the main propulsion power module. Simulation results clearly indicate that the agent-based control framework is effective to coordinate the various energy sources and manage the power/voltage profiles.

  6. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    SciTech Connect

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  7. Performance analysis of a tubular solid oxide fuel cell/micro gas turbine hybrid power system based on a quasi-two dimensional model

    NASA Astrophysics Data System (ADS)

    Song, Tae Won; Sohn, Jeong Lak; Kim, Jae Hwan; Kim, Tong Seop; Ro, Sung Tack; Suzuki, Kenjiro

    A quasi-two dimensional (quasi-2D) model is proposed as a tool to predict the performance of solid oxide fuel cell (SOFC) system composed of bundles of tubular SOFCs and internal reformers. The model is developed by considering heat and mass transfer characteristics mainly along the longitudinal direction of the system, and the electrochemical reaction in its perpendicular direction. With this model, the temperature distribution in the fuel and the air streams along the longitudinal direction of the bundles of tubular SOFCs and internal reformers can be easily predicted. The predicted cell temperature along the longitudinal direction of the tubular SOFC shows important phenomena, which include the temperature rise near the entrance of the fuel cell by the electrochemical reaction and its decrease due to heat transferred from the fuel cell to the internal reformer that absorbs heat in reforming reactions. Also, it is found that different system arrangements and component characteristics influence significantly the heat-transfer characteristics, and possibly the system performance. The results from the quasi-2D model are applied to the performance analysis of a tubular SOFC/micro gas turbine (MGT) hybrid system.

  8. Carbon nanotube based hybrid nanocarbon foam

    NASA Astrophysics Data System (ADS)

    Shahrizan Jamal, M.; Zhang, Mei

    2017-03-01

    Carbon nanotube (CNT) based nanocarbon foams (NFs) and the hybrid nanocarbon foams (HNFs) are fabricated in this work. The NFs are formed by using poly(methyl methacrylate) microspheres as a template to create micro-scaled pores. The cell walls are made of CNT networks with nano-scaled pores. The interconnections among CNTs are secured using graphene and nanographite generated via carbonization of polyacrylonitrile. The resulting NFs are ultra-lightweight, highly elastic, electrically and thermally conductive, and robust in structure. The HNFs are made by infiltrating thermoplastic polymer into the NFs in a controllable procedure. Compared to NFs, the HNFs have much higher strength, same electrical conductivity, and limited increase in density. The compressive strength of the HNF increased more than 50 times while the density was changed less than 10 times due to the polymer infiltration. It is found that the deformed HNFs can recover in both structure and property when they are heated over the glass transition temperature of the infiltrated polymer. Such remarkable healing capability could broaden the applications of the HNFs.

  9. Hybrid Automated Diagnosis of Discrete/Continuous Systems

    NASA Technical Reports Server (NTRS)

    Park, Han; James, Mark; MacKey, Ryan; Cannon, Howard; Bajwa, Anapa; Maul, William

    2007-01-01

    A recently conceived method of automated diagnosis of a complex electromechanical system affords a complete set of capabilities for hybrid diagnosis in the case in which the state of the electromechanical system is characterized by both continuous and discrete values (as represented by analog and digital signals, respectively). The method is an integration of two complementary diagnostic systems: (1) beacon-based exception analysis for multi-missions (BEAM), which is primarily useful in the continuous domain and easily performs diagnoses in the presence of transients; and (2) Livingstone, which is primarily useful in the discrete domain and is typically restricted to quasi-steady conditions. BEAM has been described in several prior NASA Tech Briefs articles: "Software for Autonomous Diagnosis of Complex Systems" (NPO-20803), Vol. 26, No. 3 (March 2002), page 33; "Beacon-Based Exception Analysis for Multimissions" (NPO-20827), Vol. 26, No. 9 (September 2002), page 32; "Wavelet-Based Real-Time Diagnosis of Complex Systems" (NPO-20830), Vol. 27, No. 1 (January 2003), page 67; and "Integrated Formulation of Beacon-Based Exception Analysis for Multimissions" (NPO-21126), Vol. 27, No. 3 (March 2003), page 74. Briefly, BEAM is a complete data-analysis method, implemented in software, for real-time or off-line detection and characterization of faults. The basic premise of BEAM is to characterize a system from all available observations and train the characterization with respect to normal phases of operation. The observations are primarily continuous in nature. BEAM isolates anomalies by analyzing the deviations from nominal for each phase of operation. Livingstone is a model-based reasoner that uses a model of a system, controller commands, and sensor observations to track the system s state, and detect and diagnose faults. Livingstone models a system within the discrete domain. Therefore, continuous sensor readings, as well as time, must be discretized. To reason about

  10. Energy transfer versus charge separation in hybrid systems of semiconductor quantum dots and Ru-dyes as potential co-sensitizers of TiO2-based solar cells

    NASA Astrophysics Data System (ADS)

    Giménez, Sixto; Rogach, Andrey L.; Lutich, Andrey A.; Gross, Dieter; Poeschl, Andreas; Susha, Andrei S.; Mora-Seró, Ivan; Lana-Villarreal, Teresa; Bisquert, Juan

    2011-07-01

    Hybrid structures of colloidal quantum dots (QDs) with Ru-dyes have been studied as candidates for panchromatic sensitizers for TiO2-based solar cells. Steady-state and time resolved photoluminescence spectroscopy and photocurrent measurements have been employed to identify the prevailing transfer mechanisms for photogenerated excitons between CdSe QDs capped with a traditional bulky organic ligand trioctylphosphine and Ru-dyes (N3 or Ru505) deposited onto inert glass or mesoporous TiO2 substrates. The type II energy level alignment between the QDs and both N3 and Ru505 offers a possibility for the directional charge separation, with electrons transferred to the QDs and holes to the dye. This scenario is indeed valid for the QD/Ru505 and TiO2/QD/Ru505 hybrid systems, with the negligible spectral overlap between the emission of the QDs and the absorption of the Ru505 dye. For the QD/N3 and TiO2/QD/N3 hybrid systems, the spectral overlap favors the longer range energy transfer from the QDs to N3, independently of the presence of the electron acceptor TiO2.

  11. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    DOEpatents

    Bockelmann, Thomas R.; Hope, Mark E.; Zou, Zhanjiang; Kang, Xiaosong

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  12. Vector/dyad notation in computer symbolic modeling of hybrid parameter mechanical systems

    SciTech Connect

    Barhorst, A.A.

    1996-11-01

    In this paper, computer symbolic algebra based algorithms written to take advantage of engineering vector notation, as applied to hybrid parameter mechanical systems, are demonstrated. The symbolic manipulation tools are utilized to implement a hybrid parameter system modeling algorithm previously developed by the author. The modeling algorithm produces minimal holonomic and nonholonomic equations of motion for hybrid systems of any continuum dimension and kinematic topology. Boundary conditions are rigorously supplied by the modeling method. The system model presented as an example is a hybrid parameter planar two link model of a robot manipulator. A complete analysis from model to simulation and animation in a Mathematica notebook is presented. The modeling tools presented herein are applicable for researchers, practicing engineers, and students in advanced dynamic system modeling and control courses.

  13. Design and evaluation of hybrid wind/PV/diesel power systems for Brazilian applications

    SciTech Connect

    McGowan, J.G.; Manwell, J.F.; Avelar, C.; Warner, C.

    1996-12-31

    This paper presents a summary of a study centered on the design and evaluation of hybrid wind/PV/diesel systems for remote locations in Brazil. The objective of this work was to evaluate high reliability hybrid power systems that have been designed for the lowest life cycle costs. The technical and economic analysis of the hybrid wind/PV/diesel systems was carried out using HYBRID2, a computational code developed at the University of Massachusetts in conjunction with the National Renewable Energy Laboratory (NREL). After a summary of a generalized design procedure for such systems based on the use of this code, a systematic parametric evaluation of a representative design case for a village power system in Brazil is presented. As summarized in the paper, the performance and economic effects of key design parameters are illustrated. 8 refs., 10 figs.

  14. Investigation of the photovoltaic cell/ thermoelectric element hybrid system performance

    NASA Astrophysics Data System (ADS)

    Cotfas, D. T.; Cotfas, P. A.; Machidon, O. M.; Ciobanu, D.

    2016-06-01

    The PV/TEG hybrid system, consisting of the photovoltaic cells and thermoelectric element, is presented in the paper. The dependence of the PV/TEG hybrid system parameters on the illumination levels and the temperature is analysed. The maxim power values of the photovoltaic cell, of the thermoelectric element and of the PV/TEG system are calculated and a comparison between them is presented and analysed. An economic analysis is also presented.

  15. A simulation approach to sizing hybrid photovoltaic and wind systems

    NASA Astrophysics Data System (ADS)

    Anderson, L. A.

    1983-12-01

    A simulation approach to sizing hybrid photovoltaic and wind systems provides a combination of components to realize zero downtime and minimum initial or life-cycle cost. Using Dayton, OH as a test site for weather data, cost advantages in the neighborhood of four are predicted for a hybrid system with battery storage when compared to a wind-energy-only system for the same electrical load.

  16. An experimental distribution of analog and digital information in a hybrid wireless visible light communication system based on acousto-optic modulation and sinusoidal gratings

    NASA Astrophysics Data System (ADS)

    Gómez Colín, R.; García Juárez, A.; Zaldívar Huerta, I. E.; Marquina, A. Vera; García Delgado, L. A.; Leal Cruz, A. L.; Gómez Fuentes, R.

    2016-03-01

    In this paper we propose a photonic architecture as an alternative tool to distribute point to multipoint analog and digital information over a hybrid wireless visible optical communication system. The experimental set-up is composed of a red laser pointer, an acousto-optic modulator, a sinusoidal grating and a photo-detector array. By using a simple and variable interferometric system, diffraction gratings with different spatial frequencies are generated and recorded on a photoemulsion which is composed of vanilla with dichromate gelatin. Analog video and digital information are first transmitted and recovered over a wireless communication system using a microwave carrier at 4.52 GHz which is generated by distributed feedback lasers operating in the low laser threshold current region. Separately, the recovered video information and digital data are combined with a radio frequency signal of 80 MHz, obtaining a subcarrier of information that is imposed on the optical carrier of the pointer laser using an acousto-optic modulator which is operated with an angle of incident light that satisfies the Bragg condition. The modulated optical carrier is sent to a sinusoidal grating, the diffraction pattern is photo-detected using an array of PIN photo-detectors. The use of sinusoidal gratings with acousto-optic modulators allows that number of channels to be increased when both components are placed in cascade.

  17. Hybrid modelling framework by using mathematics-based and information-based methods

    NASA Astrophysics Data System (ADS)

    Ghaboussi, J.; Kim, J.; Elnashai, A.

    2010-06-01

    Mathematics-based computational mechanics involves idealization in going from the observed behaviour of a system into mathematical equations representing the underlying mechanics of that behaviour. Idealization may lead mathematical models that exclude certain aspects of the complex behaviour that may be significant. An alternative approach is data-centric modelling that constitutes a fundamental shift from mathematical equations to data that contain the required information about the underlying mechanics. However, purely data-centric methods often fail for infrequent events and large state changes. In this article, a new hybrid modelling framework is proposed to improve accuracy in simulation of real-world systems. In the hybrid framework, a mathematical model is complemented by information-based components. The role of informational components is to model aspects which the mathematical model leaves out. The missing aspects are extracted and identified through Autoprogressive Algorithms. The proposed hybrid modelling framework has a wide range of potential applications for natural and engineered systems. The potential of the hybrid methodology is illustrated through modelling highly pinched hysteretic behaviour of beam-to-column connections in steel frames.

  18. Input coding for neuro-electronic hybrid systems.

    PubMed

    George, Jude Baby; Abraham, Grace Mathew; Singh, Katyayani; Ankolekar, Shreya M; Amrutur, Bharadwaj; Sikdar, Sujit Kumar

    2014-12-01

    Liquid State Machines have been proposed as a framework to explore the computational properties of neuro-electronic hybrid systems (Maass et al., 2002). Here the neuronal culture implements a recurrent network and is followed by an array of linear discriminants implemented using perceptrons in electronics/software. Thus in this framework, it is desired that the outputs of the neuronal network, corresponding to different inputs, be linearly separable. Previous studies have demonstrated this by either using only a small set of input stimulus patterns to the culture (Hafizovic et al., 2007), large number of input electrodes (Dockendorf et al., 2009) or by using complex schemes to post-process the outputs of the neuronal culture prior to linear discriminance (Ortman et al., 2011). In this study we explore ways to temporally encode inputs into stimulus patterns using a small set of electrodes such that the neuronal culture's output can be directly decoded by simple linear discriminants based on perceptrons. We demonstrate that network can detect the timing and order of firing of inputs on multiple electrodes. Based on this, we demonstrate that the neuronal culture can be used as a kernel to transform inputs which are not linearly separable in a low dimensional space, into outputs in a high dimension where they are linearly separable. Thus simple linear discriminants can now be directly connected to outputs of the neuronal culture and allow for implementation of any function for such a hybrid system.

  19. IMPLEMENTATION OF A HYBRID CONTROLLER FOR CRITICAL BUILDING HVAC SYSTEMS

    SciTech Connect

    Craig Rieger

    2008-11-01

    Many industrial facilities utilize pressure control gradients to prevent migration of hazardous species from containment areas to occupied zones, often using Proportional-Integral-Derivative (PID) control systems. When operators rebalance the plant, variation from the desired gradients can occur and the operating conditions can change enough that the PID parameters are no longer adequate to maintain a stable system. As the goal of the ventilation control system is to optimize the pressure gradients and associated flows for the plant, Linear Quadratic Tracking (LQT) is a method that provides a time-based approach to guiding plant interactions. However, LQT methods are susceptible to modeling and measurement errors, and therefore the additional use of soft computing methods is proposed for implementation to account for these errors and nonlinearities. The performance of the resulting hybrid controller is demonstrated through simulation and experimental testing as compared to a representative PID controller.

  20. Renewable energy systems in Mexico: Installation of a hybrid system

    NASA Astrophysics Data System (ADS)

    Pate, Ronald C.

    1993-05-01

    Sandia has been providing technical leadership on behalf of DOE and CORECT on a working level cooperative program with Mexico on renewable energy (PROCER). As part of this effort, the Sandia Design Assistance Center (DAC) and the solar energy program staff at Instituto de Investigaciones Electricas (IIE) in Cuernavaca, Mexico, recently reached agreement on a framework for mutually beneficial technical collaboration on the monitoring and field evaluation of renewable energy systems in Mexico, particularly village-scale hybrid systems. This trip was made for the purpose of planning the details for the joint installation of a data acquisition system (DAS) on a recently completed PV/Wind/Diesel hybrid system in the village of Xcalac on the Southeast coast of the state of Quintana Roo, Mexico. The DAS installation will be made during the week of March 15, 1993. While in Mexico, discussions were also held with personnel from.the National Autonomous University of Mexico (UNAM) Solar Energy Laboratory and several private sector companies with regard to renewable energy project activities and technical and educational support needs in Mexico.

  1. Integration of hybrid wireless networks in cloud services oriented enterprise information systems

    NASA Astrophysics Data System (ADS)

    Li, Shancang; Xu, Lida; Wang, Xinheng; Wang, Jue

    2012-05-01

    This article presents a hybrid wireless network integration scheme in cloud services-based enterprise information systems (EISs). With the emerging hybrid wireless networks and cloud computing technologies, it is necessary to develop a scheme that can seamlessly integrate these new technologies into existing EISs. By combining the hybrid wireless networks and computing in EIS, a new framework is proposed, which includes frontend layer, middle layer and backend layers connected to IP EISs. Based on a collaborative architecture, cloud services management framework and process diagram are presented. As a key feature, the proposed approach integrates access control functionalities within the hybrid framework that provide users with filtered views on available cloud services based on cloud service access requirements and user security credentials. In future work, we will implement the proposed framework over SwanMesh platform by integrating the UPnP standard into an enterprise information system.

  2. Direct hydrogen fuel cell systems for hybrid vehicles

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Rajesh K.; Wang, X.

    Hybridizing a fuel cell system with an energy storage system offers an opportunity to improve the fuel economy of the vehicle through regenerative braking and possibly to increase the specific power and decrease the cost of the combined energy conversion and storage systems. Even in a hybrid configuration it is advantageous to operate the fuel cell system in a load-following mode and use the power from the energy storage system when the fuel cell alone cannot meet the power demand. This paper discusses an approach for designing load-following fuel cell systems for hybrid vehicles and illustrates it by applying it to pressurized, direct hydrogen, polymer-electrolyte fuel cell (PEFC) systems for a mid-size family sedan. The vehicle level requirements relative to traction power, response time, start-up time and energy conversion efficiency are used to select the important parameters for the PEFC stack, air management system, heat rejection system and the water management system.

  3. Constraint-based Hybrid Cellular Automaton Topology Optimization for Advanced Lightweight Blast Resistant Structure Development

    DTIC Science & Technology

    2011-11-01

    2 1.3 Hybrid Cellular Automata (HCA...1. Hybrid cellular automata based topology optimization example (3, 4). .........................1 Figure 2. Topometry optimization (6...3 Figure 4. Hybrid cellular automata -based topology optimization flowchart (3, 4, 9

  4. System design of a large fuel cell hybrid locomotive

    NASA Astrophysics Data System (ADS)

    Miller, A. R.; Hess, K. S.; Barnes, D. L.; Erickson, T. L.

    Fuel cell power for locomotives combines the environmental benefits of a catenary-electric locomotive with the higher overall energy efficiency and lower infrastructure costs of a diesel-electric. A North American consortium, a public-private partnership, is developing a prototype hydrogen-fueled fuel cell-battery hybrid switcher locomotive for urban and military-base rail applications. Switcher locomotives are used in rail yards for assembling and disassembling trains and moving trains from one point to another. At 127 tonnes (280,000 lb), continuous power of 250 kW from its (proton exchange membrane) PEM fuel cell prime mover, and transient power well in excess of 1 MW, the hybrid locomotive will be the heaviest and most powerful fuel cell land vehicle yet. This fast-paced project calls for completion of the vehicle itself near the end of 2007. Several technical challenges not found in the development of smaller vehicles arise when designing and developing such a large fuel cell vehicle. Weight, center of gravity, packaging, and safety were design factors leading to, among other features, the roof location of the lightweight 350 bar compressed hydrogen storage system. Harsh operating conditions, especially shock loads during coupling to railcars, require component mounting systems capable of absorbing high energy. Vehicle scale-up by increasing mass, density, or power presents new challenges primarily related to issues of system layout, hydrogen storage, heat transfer, and shock loads.

  5. Route-Based Control of Hybrid Electric Vehicles: Preprint

    SciTech Connect

    Gonder, J. D.

    2008-01-01

    Today's hybrid electric vehicle controls cannot always provide maximum fuel savings over all drive cycles. Route-based controls could improve HEV fuel efficiency by 2%-4% and help save nearly 6.5 million gallons of fuel annually.

  6. Compensation of Reactive Power of Isolated Wind-Diesel Hybrid Power Systems

    NASA Astrophysics Data System (ADS)

    Sharma, P.; Bhatti, T. S.; Ramakrishna, K. S. S.

    2012-03-01

    This paper presents the automatic reactive power control of an isolated wind-diesel hybrid power system with a synchronous generator (SG) for a diesel genset and an induction generator (IG) with wind energy conversion systems (WECS) to generate electricity. To reduce the gap between reactive power generation and demand, a variable source of reactive power is used such as static synchronous compensator (STATCOM). The mathematical model of the system based on reactive power flow equations is developed. Three examples of the wind-diesel hybrid power systems are considered with different wind power generation capacities to study the effect of the wind power generation on the system performance. The study is based on small signal analysis by considering IEEE type-1 excitation system for the SG. The paper also shows the transient performance of the hybrid systems for 1 % step increase in reactive power load and 1 % step increase in reactive power load plus 1 % step increase in input wind power.

  7. Hybrid Vapor Compression Adsorption System: Thermal Storage Using Hybrid Vapor Compression Adsorption System

    SciTech Connect

    2012-01-04

    HEATS Project: UTRC is developing a new climate-control system for EVs that uses a hybrid vapor compression adsorption system with thermal energy storage. The targeted, closed system will use energy during the battery-charging step to recharge the thermal storage, and it will use minimal power to provide cooling or heating to the cabin during a drive cycle. The team will use a unique approach of absorbing a refrigerant on a metal salt, which will create a lightweight, high-energy-density refrigerant. This unique working pair can operate indefinitely as a traditional vapor compression heat pump using electrical energy, if desired. The project will deliver a hot-and-cold battery that provides comfort to the passengers using minimal power, substantially extending the driving range of EVs.

  8. Hybrid Wing Body Configuration System Studies

    NASA Technical Reports Server (NTRS)

    Nickol, Craig L.; McCullers, Arnie

    2009-01-01

    The objective of this study was to develop a hybrid wing body (HWB) sizing and analysis capability, apply that capability to estimate the fuel burn potential for an HWB concept, and identify associated technology requirements. An advanced tube with wings concept was also developed for comparison purposes. NASA s Flight Optimization System (FLOPS) conceptual aircraft sizing and synthesis software was modified to enable the sizing and analysis of HWB concepts. The noncircular pressurized centerbody of the HWB concept was modeled, and several options were created for defining the outboard wing sections. Weight and drag estimation routines were modified to accommodate the unique aspects of an HWB configuration. The resulting capability was then utilized to model a proprietary Boeing blended wing body (BWB) concept for comparison purposes. FLOPS predicted approximately a 15 percent greater drag, mainly caused by differences in compressibility drag estimation, and approximately a 5 percent greater takeoff gross weight, mainly caused by the additional fuel required, as compared with the Boeing data. Next, a 777-like reference vehicle was modeled in FLOPS and calibrated to published Boeing performance data; the same mission definition was used to size an HWB in FLOPS. Advanced airframe and propulsion technology assumptions were applied to the HWB to develop an estimate for potential fuel burn savings from such a concept. The same technology assumptions, where applicable, were then applied to an advanced tube-with-wings concept. The HWB concept had a 39 percent lower block fuel burn than the reference vehicle and a 12 percent lower block fuel burn than the advanced tube-with-wings configuration. However, this fuel burn advantage is partially derived from assuming the high-risk technology of embedded engines with boundary-layer-ingesting inlets. The HWB concept does have the potential for significantly reduced noise as a result of the shielding advantages that are inherent

  9. A reference governor-based hierarchical control for failure mode power management of hybrid power systems for all-electric ships

    NASA Astrophysics Data System (ADS)

    Seenumani, Gayathri; Peng, Huei; Sun, Jing

    This paper deals with the design of failure mode power management (PM) of hybrid power systems (HPS) during a shipboard power source failure, which is an important scenario that the all-electric ships (AES) targeting military applications have to deal with. The control objective is to manage the power flow from working power sources and battery to ensure survivability, namely, ensuring system safety and maximizing the load support. The on-demand nature of the problem due to unpredictable failure times makes real-time control a key requirement. The survivability mandates, along with large scale, nonlinear HPS dynamics and long warmup times of the backup power sources, make most of the existing control strategies ineffective to meet the real-time requirements. With the focus on achieving real-time computational efficiency, a novel hierarchical control approach using reference governor is proposed. A top level controller determines a sub-optimal power split between the battery and working source to meet the demand on the HPS and the local controllers govern the power demands for the individual power sources to enforce constraints. A case study of the proposed controller on a scaled HPS test-bed illustrates the real-time computational efficiency and improved HPS survivability.

  10. Titanium dioxide-cellulose hybrid nanocomposite based conductometric glucose biosensor

    NASA Astrophysics Data System (ADS)

    Maniruzzaman, Mohammad; Mahadeva, Suresha K.; Khondoker, Abu Hasan; Kim, Jaehwan

    2012-04-01

    This paper investigates the feasibility of conductometric glucose biosensor based on glucose oxidase (GOx) immobilized TiO2-cellulose hybrid nanocomposite. TiO2 nanoparticles were blended with cellulose solution prepared by dissolving cotton pulp with lithium chloride/N, N-dimethylacetamide solvent to fabricate TiO2-cellulose hybrid nanocomposite. The enzyme (GOx) was immobilized into this hybrid material by physical adsorption method. The successful immobilization of GOx into TiO2-cellulose hybrid nanocomposite via covalent bonding between TiO2 and GOx was confirmed by X-ray photoelectron analysis. The linear response of our propose glucose biosensor is obtained in the range of 1-10mM with correlation coefficient of 0.93. Our study demonstrates TiO2-cellulose hybrid material as a potential candidate for an inexpensive, flexible and disposable glucose biosensor.

  11. Impact of 3D Var GSI-ENKF hybrid data assimilation system

    NASA Astrophysics Data System (ADS)

    Prasad, V. S.; Johny, C. J.; Sodhi, Jagdeep Singh

    2016-12-01

    The hybrid two-way coupled 3DEnsVar assimilation system was tested with the NCMRWF global data assimilation forecasting system. At present, this system consists of T574L64 deterministic model and the grid-point statistical interpolation analysis scheme. In this experiment, the analysis system is modified with a two-way coupling with an 80 member Ensemble Kalman Filter of T254L64 resolution and runs are carried out in parallel to the operational system for the Indian summer monsoon season (June-September) for the year 2015 to study its impact. Both the assimilation systems are based on NCEP GFS system. It is found that hybrid assimilation marginally improved the quality of the forecasts of all variables over the deterministic 3D Var system, in terms of statistical skill scores and also in terms of circulation features. The impact of the hybrid system in prediction of extreme rainfall and cyclone track is discussed.

  12. Hybrid Photovoltaic-Hydrogen Power Conditioning System

    NASA Astrophysics Data System (ADS)

    Garrigos, A.; Blanes, J. M.; Carrasco, J. A.; Maset, E.; Ejea, J. B.; Ferreres, A.; Sanchis, E.

    2011-10-01

    This paper explores a power conditioning unit for photovoltaic/hydrogen based energy systems. Similar power conversion techniques, compared to traditional space power systems, are applied. An S4R regulator is devised with an unregulated battery bus as primary output and a secondary path to feed and electrolyser. A modular fuel cell converter completes the system and it operates when photovoltaic energy is not available or load demand exceeds solar power, i. e. like a traditional BDR. An ancillary battery keeps the unregulated bus voltage distributed in the system and it also aids the fuel cell during transients or start-up due to its limited speed. A 1kW breadboard has been designed and implemented to corroborate the proposed system.

  13. Hybrid architecture active wavefront sensing and control system, and method

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee D. (Inventor); Dean, Bruce H. (Inventor); Hyde, Tristram T. (Inventor)

    2011-01-01

    According to various embodiments, provided herein is an optical system and method that can be configured to perform image analysis. The optical system can comprise a telescope assembly and one or more hybrid instruments. The one or more hybrid instruments can be configured to receive image data from the telescope assembly and perform a fine guidance operation and a wavefront sensing operation, simultaneously, on the image data received from the telescope assembly.

  14. A hybrid joint based controller for an upper extremity exoskeleton

    NASA Astrophysics Data System (ADS)

    Mohd Khairuddin, Ismail; Taha, Zahari; Majeed, Anwar P. P. Abdul; Hakeem Deboucha, Abdel; Azraai Mohd Razman, Mohd; Aziz Jaafar, Abdul; Mohamed, Zulkifli

    2016-02-01

    This paper presents the modelling and control of a two degree of freedom upper extremity exoskeleton. The Euler-Lagrange formulation was used in deriving the dynamic modelling of both the human upper limb as well as the exoskeleton that consists of the upper arm and the forearm. The human model is based on anthropometrical measurements of the upper limb. The proportional-derivative (PD) computed torque control (CTC) architecture is employed in this study to investigate its efficacy performing joint-space control objectives specifically in rehabilitating the elbow and shoulder joints along the sagittal plane. An active force control (AFC) algorithm is also incorporated into the PD-CTC to investigate the effectiveness of this hybrid system in compensating disturbances. It was found that the AFC- PD-CTC performs well against the disturbances introduced into the system whilst achieving acceptable trajectory tracking as compared to the conventional PD-CTC control architecture.

  15. User Controllability in a Hybrid Recommender System

    ERIC Educational Resources Information Center

    Parra Santander, Denis Alejandro

    2013-01-01

    Since the introduction of Tapestry in 1990, research on recommender systems has traditionally focused on the development of algorithms whose goal is to increase the accuracy of predicting users' taste based on historical data. In the last decade, this research has diversified, with "human factors" being one area that has received…

  16. Model-on-Demand Predictive Control for Nonlinear Hybrid Systems With Application to Adaptive Behavioral Interventions

    PubMed Central

    Nandola, Naresh N.; Rivera, Daniel E.

    2011-01-01

    This paper presents a data-centric modeling and predictive control approach for nonlinear hybrid systems. System identification of hybrid systems represents a challenging problem because model parameters depend on the mode or operating point of the system. The proposed algorithm applies Model-on-Demand (MoD) estimation to generate a local linear approximation of the nonlinear hybrid system at each time step, using a small subset of data selected by an adaptive bandwidth selector. The appeal of the MoD approach lies in the fact that model parameters are estimated based on a current operating point; hence estimation of locations or modes governed by autonomous discrete events is achieved automatically. The local MoD model is then converted into a mixed logical dynamical (MLD) system representation which can be used directly in a model predictive control (MPC) law for hybrid systems using multiple-degree-of-freedom tuning. The effectiveness of the proposed MoD predictive control algorithm for nonlinear hybrid systems is demonstrated on a hypothetical adaptive behavioral intervention problem inspired by Fast Track, a real-life preventive intervention for improving parental function and reducing conduct disorder in at-risk children. Simulation results demonstrate that the proposed algorithm can be useful for adaptive intervention problems exhibiting both nonlinear and hybrid character. PMID:21874087

  17. Active media for tunable lasers based on hybrid polymers

    SciTech Connect

    Kopylova, T N; Eremina, N S; Vaitulevich, E A; Samsonova, L G; Maier, G V; Tel'minov, E N; Solodova, T A; Solodov, A M

    2008-02-28

    The lasing properties of rhodamine 6G (chloride and perchlorate) in synthesised hybrid polymers based on an organic polymer (methyl methacrylate with hydroxyethyl methacrylate) and an inorganic precursor (tetraethoxysilane) are studied. Rhodamine 6G samples were transversely pumped by the second harmonic of a Nd{sup 3+}:YAG laser. It is found that the active media based on hybrid polymers have a considerably longer service life compared to the active media based on organic polymers. The structure of the hybrid polymer is studied by the methods of IR Fourier spectroscopy, X-ray diffraction, and thermogravimetry. It is shown that the longer service life of hybrid-polymer active media is explained by the formation of an inorganic nanostructure network in them, which improves the thermooptic properties of the material and reduces the efficiency of thermal decomposition of active molecules. (lasers. amplifiers)

  18. Predicting System Accidents with Model Analysis During Hybrid Simulation

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Fleming, Land D.; Throop, David R.

    2002-01-01

    Standard discrete event simulation is commonly used to identify system bottlenecks and starving and blocking conditions in resources and services. The CONFIG hybrid discrete/continuous simulation tool can simulate such conditions in combination with inputs external to the simulation. This provides a means for evaluating the vulnerability to system accidents of a system's design, operating procedures, and control software. System accidents are brought about by complex unexpected interactions among multiple system failures , faulty or misleading sensor data, and inappropriate responses of human operators or software. The flows of resource and product materials play a central role in the hazardous situations that may arise in fluid transport and processing systems. We describe the capabilities of CONFIG for simulation-time linear circuit analysis of fluid flows in the context of model-based hazard analysis. We focus on how CONFIG simulates the static stresses in systems of flow. Unlike other flow-related properties, static stresses (or static potentials) cannot be represented by a set of state equations. The distribution of static stresses is dependent on the specific history of operations performed on a system. We discuss the use of this type of information in hazard analysis of system designs.

  19. Mars Hybrid Propulsion System Trajectory Analysis. Part II; Cargo Missions

    NASA Technical Reports Server (NTRS)

    Chai, Patrick R.; Merrill, Raymond G.; Qu, Min

    2015-01-01

    NASA's Human Spaceflight Architecture Team is developing a reusable hybrid transportation architecture in which both chemical and electric propulsion systems are used to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By combining chemical and electrical propulsion into a single spaceship and applying each where it is more effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper shows the feasibility of the hybrid transportation architecture to pre-deploy cargo to Mars and Phobos in support of the Evolvable Mars Campaign crew missions. The analysis shows that the hybrid propulsion stage is able to deliver all of the current manifested payload to Phobos and Mars through the first three crew missions. The conjunction class trajectory also allows the hybrid propulsion stage to return to Earth in a timely fashion so it can be reused for additional cargo deployment. The 1,100 days total trip time allows the hybrid propulsion stage to deliver cargo to Mars every other Earth-Mars transit opportunity. For the first two Mars surface mission in the Evolvable Mars Campaign, the short trip time allows the hybrid propulsion stage to be reused for three round-trip journeys to Mars, which matches the hybrid propulsion stage's designed lifetime for three round-trip crew missions to the Martian sphere of influence.

  20. Graphene based nanocomposite hybrid electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Aphale, Ashish N.

    There is an unmet need to develop high performance energy storage systems (ESS), capable of storing energy from both renewable and non-renewable sources to meet the current energy crisis and depletion of non-renewable sources. Amongst many available ESS, supercapacitors (ECs) are the most promising because they exhibit a high charge/discharge rate and power density, along with a long cycle life. The possibility of exploring the use of atomically thin carbon allotropes like graphene, carbon nanotubes (CNTs) and electrically conducting polymers (ECPs) such as polypyrrole (PPy) has been studied as a high performance conducting electrodes in supercapacitor application. A novel templated sustainable nanocomposite electrode has been fabricated using cellulose extracted from Cladophora c. aegagropila algae as component of the assembled supercapacitor device which later has been transitioned to a unique template-less freestanding nanocomposite supercapacitor electrode. The specific capacitance of polypyrrole-graphene-cellulose nanocomposite as calculated from cyclic voltammetry curve is 91.5 F g -1 at the scan rate 50 m Vs-1 in the presence of 1M NaCl electrolyte. The open circuit voltage of the device with polypyrrole -graphene-cellulose electrode was found to be around 225 m V and that of the polypyrrole -cellulose device is only 53 m V without the presence of graphene in the nanocomposite electrode. Understanding the fundamentals by fabricating template nanocomposite electrode, it led to fabricate a unique nanocomposite template-less freestanding film which comprises of polypyrrole-graphene-CNT hybrid. Various experiments have been performed using different electrolytes such ascorbic acid, sodium sulfate and sulfuric acid in different scan rates. The specific capacitance of polypyrrole-graphene-CNT nanocomposite with 0.1 wt% of graphene-CNT, as calculated from cyclic voltammetry curve is 450 F g-1 at the scan rate 5 m V s-1. For the first time a nanofibrous membrane has

  1. Feynman-Kac formula for stochastic hybrid systems.

    PubMed

    Bressloff, Paul C

    2017-01-01

    We derive a Feynman-Kac formula for functionals of a stochastic hybrid system evolving according to a piecewise deterministic Markov process. We first derive a stochastic Liouville equation for the moment generator of the stochastic functional, given a particular realization of the underlying discrete Markov process; the latter generates transitions between different dynamical equations for the continuous process. We then analyze the stochastic Liouville equation using methods recently developed for diffusion processes in randomly switching environments. In particular, we obtain dynamical equations for the moment generating function, averaged with respect to realizations of the discrete Markov process. The resulting Feynman-Kac formula takes the form of a differential Chapman-Kolmogorov equation. We illustrate the theory by calculating the occupation time for a one-dimensional velocity jump process on the infinite or semi-infinite real line. Finally, we present an alternative derivation of the Feynman-Kac formula based on a recent path-integral formulation of stochastic hybrid systems.

  2. Feynman-Kac formula for stochastic hybrid systems

    NASA Astrophysics Data System (ADS)

    Bressloff, Paul C.

    2017-01-01

    We derive a Feynman-Kac formula for functionals of a stochastic hybrid system evolving according to a piecewise deterministic Markov process. We first derive a stochastic Liouville equation for the moment generator of the stochastic functional, given a particular realization of the underlying discrete Markov process; the latter generates transitions between different dynamical equations for the continuous process. We then analyze the stochastic Liouville equation using methods recently developed for diffusion processes in randomly switching environments. In particular, we obtain dynamical equations for the moment generating function, averaged with respect to realizations of the discrete Markov process. The resulting Feynman-Kac formula takes the form of a differential Chapman-Kolmogorov equation. We illustrate the theory by calculating the occupation time for a one-dimensional velocity jump process on the infinite or semi-infinite real line. Finally, we present an alternative derivation of the Feynman-Kac formula based on a recent path-integral formulation of stochastic hybrid systems.

  3. Efficient Hybrid DFE Algorithms in Spatial Multiplexing Systems

    NASA Astrophysics Data System (ADS)

    Jiang, Wenjie; Asai, Yusuke; Aikawa, Satoru; Ogawa, Yasutaka

    The wireless systems that establish multiple input multiple output (MIMO) channels through multiple antennas at both ends of the communication link, have been proved to have tremendous potential to linearly lift the capacity of conventional scalar channel. In this paper, we present two efficient decision feedback equalization algorithms that achieve optimal and suboptimal detection order in MIMO spatial multiplexing systems. The new algorithms combine the recursive matrix inversion and ordered QR decomposition approaches, which are developed for nulling cancellation interaface Bell Labs layered space time (BLAST) and back substitution interface BLAST. As a result, new algorithms achieve total reduced complexities in frame based transmission with various payload lengths compared with the earlier methods. In addition, they enable shorter detection delay by carrying out a fast hybrid preprocessing. Moreover, the operation precision insensitivity of order optimization greatly relaxes the word length of matrix inversion, which is the most computational intensive part within the MIMO detection task.

  4. Ultrasensitive nanomechanical mass sensor using hybrid opto-electromechanical systems.

    PubMed

    Jiang, Cheng; Cui, Yuanshun; Zhu, Ka-Di

    2014-06-02

    Nanomechanical resonators provide an unparalleled mass sensitivity sufficient to detect single biomolecules, viruses and nanoparticles. In this work we propose a scheme for mass sensing based on the hybrid opto-electromechanical system, where a mechanical resonator is coupled to an optical cavity and a microwave cavity simultaneously. When the two cavities are driven by two pump fields with proper frequencies and powers, a weak probe field is used to scan across the optical cavity resonance frequency. The mass of a single baculovirus landing onto the surface of the mechanical resonator can be measured by tracking the resonance frequency shift in the probe transmission spectrum before and after the deposition. We also propose a nonlinear mass sensor based on the measurement of the four-wave mixing (FWM) spectrum, which can be used to weigh a single 20-nm-diameter gold nanoparticle with sub-femtogram resolution.

  5. Hybrid integration platform based on silica-on-silicon planar lightwave circuit

    NASA Astrophysics Data System (ADS)

    Lin, Wenhua; Sun, C. Jacob; Schmidt, Kevin M.

    2007-02-01

    While silica waveguide PLC products have been deployed in various systems and applications, hybrid integration of semiconductor opto-electronic devices on silica-based planar lightwave circuit (PLC) has become the mainstream platform for small form factor, low-cost and high volume integrated transceiver modules. One of the main benefits of hybrid integration is the wafer-scale process, which greatly reduces chip/module size and assembly cost. This paper reviews the development of this technology, and as an example, presents a hybrid integrated transmitter with four wavelengths on silica PLC chip for LX4 and 10GbE applications.

  6. Hybrid rocket propulsion systems for outer planet exploration missions

    NASA Astrophysics Data System (ADS)

    Jens, Elizabeth T.; Cantwell, Brian J.; Hubbard, G. Scott

    2016-11-01

    Outer planet exploration missions require significant propulsive capability, particularly to achieve orbit insertion. Missions to explore the moons of outer planets place even more demanding requirements on propulsion systems, since they involve multiple large ΔV maneuvers. Hybrid rockets present a favorable alternative to conventional propulsion systems for many of these missions. They typically enjoy higher specific impulse than solids, can be throttled, stopped/restarted, and have more flexibility in their packaging configuration. Hybrids are more compact and easier to throttle than liquids and have similar performance levels. In order to investigate the suitability of these propulsion systems for exploration missions, this paper presents novel hybrid motor designs for two interplanetary missions. Hybrid propulsion systems for missions to Europa and Uranus are presented and compared to conventional in-space propulsion systems. The hybrid motor design for each of these missions is optimized across a range of parameters, including propellant selection, O/F ratio, nozzle area ratio, and chamber pressure. Details of the design process are described in order to provide guidance for researchers wishing to evaluate hybrid rocket motor designs for other missions and applications.

  7. Hybrid structures based on quantum dots and graphene nanobelts

    NASA Astrophysics Data System (ADS)

    Reznik, I. A.; Gromova, Yu. A.; Zlatov, A. S.; Baranov, M. A.; Orlova, A. O.; Moshkalev, S. A.; Maslov, V. G.; Baranov, A. V.; Fedorov, A. V.

    2017-01-01

    Luminescence and photoelectric properties of hybrid structures based on CdSe/ZnS quantum dots (QDs) and multilayer graphene have been investigated. A correlation between the luminescence quantum yield of QDs and their photoelectric properties in hybrid structures is established. It is shown that a decrease in the QD luminescence quantum yield due to adsorption of 1-(2-pyridylazo)-2-naphtol azo dye molecules onto the QD surface and a photoinduced increase in the QD luminescence quantum yield are accompanied by a symbate change in the hybrid structure photoconductivity.

  8. Three-Dimensional Printing Based Hybrid Manufacturing of Microfluidic Devices.

    PubMed

    Alapan, Yunus; Hasan, Muhammad Noman; Shen, Richang; Gurkan, Umut A

    2015-05-01

    Microfluidic platforms offer revolutionary and practical solutions to challenging problems in biology and medicine. Even though traditional micro/nanofabrication technologies expedited the emergence of the microfluidics field, recent advances in advanced additive manufacturing hold significant potential for single-step, stand-alone microfluidic device fabrication. One such technology, which holds a significant promise for next generation microsystem fabrication is three-dimensional (3D) printing. Presently, building 3D printed stand-alone microfluidic devices with fully embedded microchannels for applications in biology and medicine has the following challenges: (i) limitations in achievable design complexity, (ii) need for a wider variety of transparent materials, (iii) limited z-resolution, (iv) absence of extremely smooth surface finish, and (v) limitations in precision fabrication of hollow and void sections with extremely high surface area to volume ratio. We developed a new way to fabricate stand-alone microfluidic devices with integrated manifolds and embedded microchannels by utilizing a 3D printing and laser micromachined lamination based hybrid manufacturing approach. In this new fabrication method, we exploit the minimized fabrication steps enabled by 3D printing, and reduced assembly complexities facilitated by laser micromachined lamination method. The new hybrid fabrication method enables key features for advanced microfluidic system architecture: (i) increased design complexity in 3D, (ii) improved control over microflow behavior in all three directions and in multiple layers, (iii) transverse multilayer flow and precisely integrated flow distribution, and (iv) enhanced transparency for high resolution imaging and analysis. Hybrid manufacturing approaches hold great potential in advancing microfluidic device fabrication in terms of standardization, fast production, and user-independent manufacturing.

  9. An intelligent hybrid behavior coordination system for an autonomous mobile robot

    NASA Astrophysics Data System (ADS)

    Luo, Chaomin; Krishnan, Mohan; Paulik, Mark; Fallouh, Samer

    2013-12-01

    In this paper, development of a low-cost PID controller with an intelligent behavior coordination system for an autonomous mobile robot is described that is equipped with IR sensors, ultrasonic sensors, regulator, and RC filters on the robot platform based on HCS12 microcontroller and embedded systems. A novel hybrid PID controller and behavior coordination system is developed for wall-following navigation and obstacle avoidance of an autonomous mobile robot. Adaptive control used in this robot is a hybrid PID algorithm associated with template and behavior coordination models. Software development contains motor control, behavior coordination intelligent system and sensor fusion. In addition, the module-based programming technique is adopted to improve the efficiency of integrating the hybrid PID and template as well as behavior coordination model algorithms. The hybrid model is developed to synthesize PID control algorithms, template and behavior coordination technique for wall-following navigation with obstacle avoidance systems. The motor control, obstacle avoidance, and wall-following navigation algorithms are developed to propel and steer the autonomous mobile robot. Experiments validate how this PID controller and behavior coordination system directs an autonomous mobile robot to perform wall-following navigation with obstacle avoidance. Hardware configuration and module-based technique are described in this paper. Experimental results demonstrate that the robot is successfully capable of being guided by the hybrid PID controller and behavior coordination system for wall-following navigation with obstacle avoidance.

  10. The First Experiment with VLBI-GPS Hybrid System

    NASA Technical Reports Server (NTRS)

    Kwak, Younghee; Kondo, Tetsuro; Gotoh, Tadahiro; Amagai, Jun; Takiguchi, Hiroshi; Sekido, Mamoru; Ichikawa, Ryuichi; Sasao, Tetsuo; Cho, Jungho; Kim, Tuhwan

    2010-01-01

    In this paper, we introduce our GPS-VLBI hybrid system and show the results of the first experiment which is now under way. In this hybrid system, GPS signals are captured by a normal GPS antenna, down-converted to IF signals, and then sampled by the VLBI sampler VSSP32 developed by NICT. The sampled GPS data are recorded and correlated in the same way as VLBI observation data. The correlator outputs are the group delay and the delay rate. Since the whole system uses the same frequency standard, many sources of systematic errors are common between the VLBI system and the GPS system. In this hybrid system, the GPS antenna can be regarded as an additional VLBI antenna having multiple beams towards GPS satellites. Therefore, we expect that this approach will provide enough data to improve zenith delay estimates and geodetic results.

  11. Development of Hybrid Product Breakdown Structure for NASA Ground Systems

    NASA Technical Reports Server (NTRS)

    Monaghan, Mark W.; Henry, Robert J.

    2013-01-01

    The Product Breakdown Structure is traditionally a method of identification of the products of a project in a tree structure. It is a tool used to assess, plan, document, and display the equipment requirements for a project. It is part of a product based planning technique, and attempts to break down all components of a project in as much detail as possible, so that nothing is overlooked. The PBS for ground systems at the Kennedy Space Center is being developed to encompass the traditional requirements including the alignment of facility, systems, and components to the organizational hierarchy. The Ground Operations Product Breakdown Structure is a hybrid in nature in that some aspects of a work breakdown structure will be incorporated and merged with the Architecture Concept of Operations, Master Subsystem List, customer interface, and assigned management responsibility. The Ground Operations Product Breakdown Structure needs to be able to identify the flexibility of support differing customers (internal and external) usage of ground support equipment within the Kennedy Space Center launch and processing complex. The development of the Product Breakdown Structure is an iterative activity Initially documenting the organization hierarchy structure and relationships. The Product Breakdown Structure identifies the linkage between the customer program requirements, allocation of system resources, development of design goals, and identification logistics products. As the Product Breakdown Structure progresses the incorporation of the results of requirement planning for the customer occurs identifying facility needs and systems. The mature Product Breakdown Structure is baselined with a hierarchical drawing, the Product Breakdown Structure database, and an associated document identifying the verification of the data through the life cycle of the program/product line. This paper will document, demonstrate, and identify key aspects of the life cycle of a Hybrid Product

  12. Compact silicon hybrid plasmonic microring resonator-based polarization demultiplexer

    NASA Astrophysics Data System (ADS)

    Xu, Yin; Xiao, Jinbiao

    2015-08-01

    A compact silicon-based polarization demultiplexer (P-DEMUX) composed of a microring resonator in hybrid plasmonic waveguides and two bus channels in silicon wires is proposed and characterized. The modal analysis shows that the behaviors of TE modes for the hybrid plasmonic microring and silicon wire are similar, while those of TM modes illustrate significant difference, leading to strong polarization-dependence. As a result, the input TE mode can output from the drop port at the resonant wavelength while the input TM mode directly outputs from the through port with nearly neglected coupling. The present P-DEMUX can be easily applied to construct on-chip wavelength/polarization division multiplexing, further increasing the capacity of the interconnect system. Results show that a compact P-DEMUX is achieved, where the radius of the microring in the center is only 2.042 µm, and the extinction ratio and insertion loss are, respectively, ∼18.04 (19.89) and ∼0.61 (0.42) dB for TE (TM) mode, at the wavelength of 1550 nm. In addition, fabrication tolerances to the structural parameters are analyzed in detail and the evolution of the input field through the proposed P-DEMUX is also presented.

  13. Hybrid electromechanical actuator and actuation system

    NASA Technical Reports Server (NTRS)

    Su, Ji (Inventor); Xu, Tian-Bing (Inventor)

    2008-01-01

    A hybrid electromechanical actuator has two different types of electromechanical elements, one that expands in a transverse direction when electric power is applied thereto and one that contracts in a transverse direction when electric power is applied thereto. The two electromechanical elements are (i) disposed in relation to one another such that the transverse directions thereof are parallel to one another, and (ii) mechanically coupled to one another at least at two opposing edges thereof. Electric power is applied simultaneously to the elements.

  14. A Hybrid Power Management (HPM) Based Vehicle Architecture

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2011-01-01

    Society desires vehicles with reduced fuel consumption and reduced emissions. This presents a challenge and an opportunity for industry and the government. The NASA John H. Glenn Research Center (GRC) has developed a Hybrid Power Management (HPM) based vehicle architecture for space and terrestrial vehicles. GRC's Electrical and Electromagnetics Branch of the Avionics and Electrical Systems Division initiated the HPM Program for the GRC Technology Transfer and Partnership Office. HPM is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The basic vehicle architecture consists of a primary power source, and possibly other power sources, providing all power to a common energy storage system, which is used to power the drive motors and vehicle accessory systems, as well as provide power as an emergency power system. Each component is independent, permitting it to be optimized for its intended purpose. This flexible vehicle architecture can be applied to all vehicles to considerably improve system efficiency, reliability, safety, security, and performance. This unique vehicle architecture has the potential to alleviate global energy concerns, improve the environment, stimulate the economy, and enable new missions.

  15. A hybrid clustering based fuzzy structure for vibration control - Part 2: An application to semi-active vehicle seat-suspension system

    NASA Astrophysics Data System (ADS)

    Nguyen, Sy Dzung; Nguyen, Quoc Hung; Choi, Seung-Bok

    2015-05-01

    This work presents a novel neuro-fuzzy controller (NFC) for car-driver's seat-suspension system featuring magnetorheological (MR) dampers. The NFC is built based on the algorithm for building adaptive neuro-fuzzy inference systems (ANFISs) named B-ANFIS, which has been developed in Part 1, and fuzzy logic inference systems (FISs). In order to create the NFC, the following steps are performed. Firstly, a control strategy based on a ride-comfort-oriented tendency (RCOT) is established. Subsequently, optimal FISs are built based on a genetic algorithm (GA) to estimate the desired damping force that satisfies the RCOT corresponding to the road status at each time. The B-ANFIS is then used to build ANFISs for inverse dynamic models of the suspension system (I-ANFIS). Based on the FISs, the desired force values are calculated according to the status of road at each time. The corresponding exciting current value to be applied to the MR damper is then determined by the I-ANFIS. In order to validate the effectiveness of the developed neuro-fuzzy controller, control performances of the seat-suspension systems featuring MR dampers are evaluated under different road conditions. In addition, a comparative work between conventional skyhook controller and the proposed NFC is undertaken in order to demonstrate superior control performances of the proposed methodology.

  16. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    Nguyen Minh; Faress Rahman

    2002-12-31

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the October 2002 to December 2002 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The following activities have been carried out during this reporting period: {lg_bullet} Conceptual system design trade studies were performed {lg_bullet} Part-load performance analysis was conducted {lg_bullet} Primary system concept was down-selected {lg_bullet} Dynamic control model has been developed {lg_bullet} Preliminary heat exchanger designs were prepared {lg_bullet} Pressurized SOFC endurance testing was performed

  17. Fuzzy control based engine sizing optimization for a fuel cell/battery hybrid mini-bus

    NASA Astrophysics Data System (ADS)

    Kim, Minjin; Sohn, Young-Jun; Lee, Won-Yong; Kim, Chang-Soo

    The fuel cell/battery hybrid vehicle has been focused for the alternative engine of the existing internal-combustion engine due to the following advantages of the fuel cell and the battery. Firstly, the fuel cell is highly efficient and eco-friendly. Secondly, the battery has the fast response for the changeable power demand. However, the competitive efficiency of the hybrid fuel cell vehicle is necessary to successfully alternate the conventional vehicles with the fuel cell hybrid vehicle. The most relevant factor which affects the overall efficiency of the hybrid fuel cell vehicle is the relative engine sizing between the fuel cell and the battery. Therefore the design method to optimize the engine sizing of the fuel cell hybrid vehicle has been proposed. The target system is the fuel cell/battery hybrid mini-bus and its power distribution is controlled based on the fuzzy logic. The optimal engine sizes are determined based on the simulator developed in this paper. The simulator includes the several models for the fuel cell, the battery, and the major balance of plants. After the engine sizing, the system efficiency and the stability of the power distribution are verified based on the well-known driving schedule. Consequently, the optimally designed mini-bus shows good performance.

  18. The Use of Mapping in Child Welfare Investigations: A Strength-Based Hybrid Intervention

    ERIC Educational Resources Information Center

    Lwin, Kristen; Versanov, Avi; Cheung, Connie; Goodman, Deborah; Andrews, Nancy

    2014-01-01

    To enhance strengths-based service, a large urban child welfare agency in Ontario, Canada implemented part of the Signs of Safety (SOS) model in 2010. SOS was created to engage families involved with the child welfare system, and is rooted in the beliefs of collaboration, strengths-based practice, and safety. The hybrid of the full SOS model…

  19. Exploration of aziridine- and β-lactam-based hybrids as both bioactive substances and synthetic intermediates in medicinal chemistry.

    PubMed

    Vandekerckhove, Stéphanie; D'hooghe, Matthias

    2013-07-01

    The concept of pharmacophore hybridization is attracting an increasing interest from medicinal chemists. Whereas the main motivation for the application of this methodology relates to the pharmacological advantages associated with hybrid molecules, molecular hybridization can also deliver a synthetic advantage through selective chemical modification of the more reactive entity within hybrid systems. Moreover, if both features are combined, new hybrid structures result displaying both a biological and a synthetic benefit, and elaboration of this methodology might culminate in structural diversity and chemical novelty. In this perspective, a new approach based on hybrid structures combining a biologically interesting yet rather chemically reactive nucleus with a privileged heterocyclic scaffold is discussed by means of β-lactam-purine chimeras useful in antiviral research and aziridine-(iso)quinoline hybrids for antimalarial purposes.

  20. Discrete Abstractions of Hybrid Systems: Verification of Safety and Application to User-Interface Design

    NASA Technical Reports Server (NTRS)

    Oishi, Meeko; Tomlin, Claire; Degani, Asaf

    2003-01-01

    Human interaction with complex hybrid systems involves the user, the automation's discrete mode logic, and the underlying continuous dynamics of the physical system. Often the user-interface of such systems displays a reduced set of information about the entire system. In safety-critical systems, how can we identify user-interface designs which do not have adequate information, or which may confuse the user? Here we describe a methodology, based on hybrid system analysis, to verify that a user-interface contains information necessary to safely complete a desired procedure or task. Verification within a hybrid framework allows us to account for the continuous dynamics underlying the simple, discrete representations displayed to the user. We provide two examples: a car traveling through a yellow light at an intersection and an aircraft autopilot in a landing/go-around maneuver. The examples demonstrate the general nature of this methodology, which is applicable to hybrid systems (not fully automated) which have operational constraints we can pose in terms of safety. This methodology differs from existing work in hybrid system verification in that we directly account for the user's interactions with the system.

  1. Quantifying signal dispersion in a hybrid ice core melting system.

    PubMed

    Breton, Daniel J; Koffman, Bess G; Kurbatov, Andrei V; Kreutz, Karl J; Hamilton, Gordon S

    2012-11-06

    We describe a microcontroller-based ice core melting and data logging system allowing simultaneous depth coregistration of a continuous flow analysis (CFA) system (for microparticle and conductivity measurement) and a discrete sample analysis system (for geochemistry and microparticles), both supplied from the same melted ice core section. This hybrid melting system employs an ice parcel tracking algorithm which calculates real-time sample transport through all portions of the meltwater handling system, enabling accurate (1 mm) depth coregistration of all measurements. Signal dispersion is analyzed using residence time theory, experimental results of tracer injection tests and antiparallel melting of replicate cores to rigorously quantify the signal dispersion in our system. Our dispersion-limited resolution is 1.0 cm in ice and ~2 cm in firn. We experimentally observe the peak lead phenomenon, where signal dispersion causes the measured CFA peak associated with a given event to be depth assigned ~1 cm shallower than the true event depth. Dispersion effects on resolution and signal depth assignment are discussed in detail. Our results have implications for comparisons of chemistry and physical properties data recorded using multiple instruments and for deconvolution methods of enhancing CFA depth resolution.

  2. Analysis of a model of fuel cell - gas turbine hybrid power system for enhanced energy efficiency

    NASA Astrophysics Data System (ADS)

    Calay, Rajnish K.; Mustafa, Mohamad Y.; Virk, Mohammad S.; Mustafa, Mahmoud F.

    2012-11-01

    A simple mathematical model to evaluate the performance of FC-GT hybrid system is presented in this paper. The model is used to analyse the influence of various parameters on the performance of a typical hybrid system, where excess heat rejected from the solid-oxide fuel cell stack is utilised to generate additional power through a gas turbine system and to provide heat energy for space heating. The model is based on thermodynamic analysis of various components of the plant and can be adapted for various configurations of the plant components. Because there are many parameters defining the efficiency and work output of the hybrid system, the technique is based on mathematical and graphical optimisation of various parameters; to obtain the maximum efficiency for a given plant configuration.

  3. DSBCS modulation scheme for hybrid wireless and cable television system.

    PubMed

    Peng, P C; Wang, H Y; Chang, C H; Hu, H L; Yang, W Y; Wu, F K

    2014-01-13

    This work develops and demonstrates a double sideband with optical carrier suppression (DSBCS) modulation scheme for a hybrid wireless and cable television system based on a phase modulator (PM) and a polarization beam splitter (PBS). A carrier suppression ratio greater than 20 dB is achieved between two sidebands. In addition, the values of carrier-to-noise ratio, composite second-order and composite triple beat in various channels after 25 km of transmission are higher than the threshold value, and the power penalty of microwave signal in back-to-back and 25 km transmission perform well. Additionally, the constellation diagram of upstream signal is successfully recovered. Above results demonstrate that the proposed scheme is highly promising for practical applications.

  4. Alginate-based hybrid aerogel microparticles for mucosal drug delivery.

    PubMed

    Gonçalves, V S S; Gurikov, P; Poejo, J; Matias, A A; Heinrich, S; Duarte, C M M; Smirnova, I

    2016-10-01

    The application of biopolymer aerogels as drug delivery systems (DDS) has gained increased interest during the last decade since these structures have large surface area and accessible pores allowing for high drug loadings. Being biocompatible, biodegradable and presenting low toxicity, polysaccharide-based aerogels are an attractive carrier to be applied in pharmaceutical industry. Moreover, some polysaccharides (e.g. alginate and chitosan) present mucoadhesive properties, an important feature for mucosal drug delivery. This feature allows to extend the contact of DDS with biological membranes, thereby increasing the absorption of drugs through the mucosa. Alginate-based hybrid aerogels in the form of microparticles (<50μm) were investigated in this work as carriers for mucosal administration of drugs. Low methoxyl pectin and κ-carrageenan were co-gelled with alginate and further dried with supercritical CO2 (sc-CO2). Spherical mesoporous aerogel microparticles were obtained for alginate, hybrid alginate/pectin and alginate/κ-carrageenan aerogels, presenting high specific surface area (370-548m(2)g(-1)) and mucoadhesive properties. The microparticles were loaded with ketoprofen via adsorption from its solution in sc-CO2, and with quercetin via supercritical anti-solvent precipitation. Loading of ketoprofen was in the range between 17 and 22wt% whereas quercetin demonstrated loadings of 3.1-5.4wt%. Both the drugs were present in amorphous state. Loading procedure allowed the preservation of antioxidant activity of quercetin. Release of both drugs from alginate/κ-carrageenan aerogel was slightly faster compared to alginate/pectin. The results indicate that alginate-based aerogel microparticles can be viewed as promising matrices for mucosal drug delivery applications.

  5. Toward a sub-terawatt mid-IR (4-5 μm) femtosecond hybrid laser system based on parametric seed pulse generation and amplification in Fe2+:ZnSe

    NASA Astrophysics Data System (ADS)

    Potemkin, F. V.; Bravy, B. G.; Kozlovsky, V. I.; Korostelin, Yu V.; Migal, E. A.; Podmar'kov, Yu P.; Podshivalov, A. A.; Platonenko, V. T.; Firsov, V. V.; Frolov, M. P.; Gordienko, V. M.

    2016-01-01

    For the first time, an experimentally measured seed pulse gain of about 2 cm-1 allows possibilities in the scaling power of such a femtosecond laser system in terawatts. The concept of a subterawatt power level hybrid femtosecond mid-IR (4-5 μm) laser system, based on a weak pulse from an optical parametric mid-IR seeder that is amplified in chalcogenide monocrystalline Fe2+:ZnSe, to gain medium has been proposed and designed. The method and approach for optimizing the choice of nonlinear medium, its length, and the required light intensity for the efficient non-linear self-compression of an ultrashort pulse has also been proposed and considered.

  6. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    SciTech Connect

    Staunton, R. H.; Ayers, C. W.; Marlino, L. D.; Chiasson, J. N.; Burress, B. A.

    2006-05-01

    if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available. This report summarizes vehicle-level and subsystem-level test results obtained for the 2004 Prius and various electrical and mechanical subassemblies of its hybrid electric drive system. The primary objective of these tests was to (1) characterize the electrical and mechanical performance of the 2004 Prius, and (2) map the performance of the inverter/motor system over the full design speed and load ranges.

  7. Hybrid energy system cost analysis: San Nicolas Island, California

    SciTech Connect

    Olsen, T.L.; McKenna, E.

    1996-07-01

    This report analyzes the local wind resource and evaluates the costs and benefits of supplementing the current diesel-powered energy system on San Nicolas Island, California (SNI), with wind turbines. In Section 2.0 the SNI site, naval operations, and current energy system are described, as are the data collection and analysis procedures. Section 3.0 summarizes the wind resource data and analyses that were presented in NREL/TP 442-20231. Sections 4.0 and 5.0 present the conceptual design and cost analysis of a hybrid wind and diesel energy system on SNI, with conclusions following in Section 6. Appendix A presents summary pages of the hybrid system spreadsheet model, and Appendix B contains input and output files for the HYBRID2 program.

  8. Hybrid simulation theory for a classical nonlinear dynamical system

    NASA Astrophysics Data System (ADS)

    Drazin, Paul L.; Govindjee, Sanjay

    2017-03-01

    Hybrid simulation is an experimental and computational technique which allows one to study the time evolution of a system by physically testing a subset of it while the remainder is represented by a numerical model that is attached to the physical portion via sensors and actuators. The technique allows one to study large or complicated mechanical systems while only requiring a subset of the complete system to be present in the laboratory. This results in vast cost savings as well as the ability to study systems that simply can not be tested due to scale. However, the errors that arise from splitting the system in two requires careful attention, if a valid simulation is to be guaranteed. To date, efforts to understand the theoretical limitations of hybrid simulation have been restricted to linear dynamical systems. In this work we consider the behavior of hybrid simulation when applied to nonlinear dynamical systems. As a model problem, we focus on the damped, harmonically-driven nonlinear pendulum. This system offers complex nonlinear characteristics, in particular periodic and chaotic motions. We are able to show that the application of hybrid simulation to nonlinear systems requires a careful understanding of what one expects from such an experiment. In particular, when system response is chaotic we advocate the need for the use of multiple metrics to characterize the difference between two chaotic systems via Lyapunov exponents and Lyapunov dimensions, as well as correlation exponents. When system response is periodic we advocate the use of L2 norms. Further, we are able to show that hybrid simulation can falsely predict chaotic or periodic response when the true system has the opposite characteristic. In certain cases, we are able to show that control system parameters can mitigate this issue.

  9. INEXPENSIVE, OFF THE SHELF HYBRID MICROWAVE SYSTEM

    SciTech Connect

    Walters, T; Paul Burket, P; John Scogin, J

    2007-06-21

    A hybrid-heating microwave oven provides the energy to heat small 10-gram samples of spent metal tritide storage bed material to release tenaciously held decay product {sup 3}He. Complete mass balance procedures require direct measurement of added or produced gases on a tritide bed, and over 1100 C is necessary to release deep trapped {sup 3}He. The decomposition of non-radioactive CaCO{sub 3} and the quantitative measurement of CO{sub 2} within 3% of stoichiometry demonstrate the capabilities of the apparatus to capture generated (released) gases.

  10. Entanglement detection in hybrid optomechanical systems

    SciTech Connect

    De Chiara, Gabriele; Paternostro, Mauro; Palma, G. Massimo

    2011-05-15

    We study a device formed by a Bose-Einstein condensate (BEC) coupled to the field of a cavity with a moving end mirror and find a working point such that the mirror-light entanglement is reproduced by the BEC-light quantum correlations. This provides an experimentally viable tool for inferring mirror-light entanglement with only a limited set of assumptions. We prove the existence of tripartite entanglement in the hybrid device, persisting up to temperatures of a few milli-Kelvin, and discuss a scheme to detect it.

  11. Benefits of solar/fossil hybrid gas turbine systems

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.

    1978-01-01

    The potential benefits of solar/fossil hybrid gas turbine power systems were assessed. Both retrofit and new systems were considered from the aspects of; cost of electricity, fuel conservation, operational mode, technology requirements, and fuels flexibility. Hybrid retrofit (repowering) of existing combustion (simple Brayton cycle) turbines can provide near-term fuel savings and solar experience, while new and advanced recuperated or combined cycle systems may be an attractive fuel saving and economically competitive vehicle to transition from today's gas and oil-fired powerplants to other more abundant fuels.

  12. Benefits of solar/fossil hybrid gas turbine systems

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.

    1979-01-01

    The potential benefits of solar/fossil hybrid gas turbine power systems were assessed. Both retrofit and new systems were considered from the aspects of cost of electricity, fuel conservation, operational mode, technology requirements, and fuels flexibility. Hybrid retrofit (repowering) of existing combustion (simple Brayton cycle) turbines can provide near-term fuel savings and solar experience, while new and advanced recuperated or combined cycle systems may be an attractive fuel saving and economically competitive vehicle to transition from today's gas and oil-fired powerplants to other more abundant fuels.

  13. A hybrid continuous-wave terahertz imaging system

    SciTech Connect

    Dolganova, Irina N. Zaytsev, Kirill I. Metelkina, Anna A.; Karasik, Valeriy E.; Yurchenko, Stanislav O.

    2015-11-15

    A hybrid (active-passive mode) terahertz (THz) imaging system and an algorithm for imaging synthesis are proposed to enhance the THz image quality. The concept of image contrast is used to compare active and passive THz imaging. Combining the measurement of the self-emitted radiation of the object with the back-scattered source radiation measurement, it becomes possible to use the THz image to retrieve maximum information about the object. The experimental results confirm the advantages of hybrid THz imaging systems, which can be generalized for a wide range of applications in the material sciences, chemical physics, bio-systems, etc.

  14. Fuel cell-gas turbine hybrid system design part II: Dynamics and control

    NASA Astrophysics Data System (ADS)

    McLarty, Dustin; Brouwer, Jack; Samuelsen, Scott

    2014-05-01

    Fuel cell gas turbine hybrid systems have achieved ultra-high efficiency and ultra-low emissions at small scales, but have yet to demonstrate effective dynamic responsiveness or base-load cost savings. Fuel cell systems and hybrid prototypes have not utilized controls to address thermal cycling during load following operation, and have thus been relegated to the less valuable base-load and peak shaving power market. Additionally, pressurized hybrid topping cycles have exhibited increased stall/surge characteristics particularly during off-design operation. This paper evaluates additional control actuators with simple control methods capable of mitigating spatial temperature variation and stall/surge risk during load following operation of hybrid fuel cell systems. The novel use of detailed, spatially resolved, physical fuel cell and turbine models in an integrated system simulation enables the development and evaluation of these additional control methods. It is shown that the hybrid system can achieve greater dynamic response over a larger operating envelope than either individual sub-system; the fuel cell or gas turbine. Results indicate that a combined feed-forward, P-I and cascade control strategy is capable of handling moderate perturbations and achieving a 2:1 (MCFC) or 4:1 (SOFC) turndown ratio while retaining >65% fuel-to-electricity efficiency, while maintaining an acceptable stack temperature profile and stall/surge margin.

  15. Ionic liquid and nanoparticle hybrid systems: Emerging applications.

    PubMed

    He, Zhiqi; Alexandridis, Paschalis

    2016-08-09

    Having novel electronic and optical properties that emanate from their nano-scale dimensions, nanoparticles are central to numerous applications. Ionic liquids can confer to nanoparticle chemical protection and physicochemical property enhancement through intermolecular interactions and can consequently improve the stability and reusability of nanoparticle for various operations. With an aim to combine the novel properties of nanoparticles and ionic liquids, different structures have been generated, based on a balance of several intermolecular interactions. Such ionic liquid and nanoparticle hybrids are showing great potential in diverse applications. In this review, we first introduce various types of ionic liquid and nanoparticle hybrids, including nanoparticle colloidal dispersions in ionic liquids, ionic liquid-grafted nanoparticles, and nanoparticle-stabilized ionic liquid-based emulsions. Such hybrid materials exhibit interesting synergisms. We then highlight representative applications of ionic liquid and nanoparticle hybrids in the catalysis, electrochemistry and separations fields. Such hybrids can attain better stability and higher efficiency under a broad range of conditions. Novel and enhanced performance can be achieved in these applications by combining desired properties of ionic liquids and of nanoparticles within an appropriate hybrid nanostructure.

  16. A PEMFC hybrid electric vehicle real time control system

    NASA Astrophysics Data System (ADS)

    Sun, Hongqiao

    In recent years, environmental friendly technologies and alternative energy solutions have drawn a lot of public attentions due to global energy crisis and pollution issues. Fuel cell (FC), a technology invented almost at the same time as the internal combustion (IC) engine, is now the focus of the automotive industry again. The fuel cell vehicle (FCV) has zero emission and its efficiency is significantly higher than the conventional IC engine power vehicles. Among a variety of FCV technologies, proton exchange membrane (PEM) FC vehicle appears to be far more attractive and mature. The prototype PEMFC vehicle has been developed and demonstrated to the public by nearly all the major automotive manufacturers in recent years. However, to the interest of the public research, publications and documentations on the PEMFC vehicle technology are rarely available due to its proprietary nature, which essentially makes it a secured technology. This dissertation demonstrates a real world application of a PEMFC hybrid electric vehicle. Through presenting the vehicle design concept, developing the real time control system and generating generic operation principles, this dissertation targets at establishing the public knowledge base on this new technology. A complete PEMFC hybrid electric vehicle design, including vehicle components layout, process flow diagram, real time control system architecture, subsystem structures and control algorithms, is presented in order to help understand the whole vehicle system. The design concept is validated through the vehicle demonstration. Generic operating principles are established along with the validation process, which helps populate this emerging technology. Thereafter, further improvements and future research directions are discussed.

  17. A hybrid LSSVR/HMM-based prognostic approach.

    PubMed

    Liu, Zhijuan; Li, Qing; Liu, Xianhui; Mu, Chundi

    2013-04-26

    n a health management system, prognostics, which is an engineering discipline that predicts a system's future health, is an important aspect yet there is currently limited research in this field. In this paper, a hybrid approach for prognostics is proposed. The approach combines the least squares support vector regression (LSSVR) with the hidden Markov model (HMM). Features extracted from sensor signals are used to train HMMs, which represent different health levels. A LSSVR algorithm is used to predict the feature trends. The LSSVR training and prediction algorithms are modified by adding new data and deleting old data and the probabilities of the predicted features for each HMM are calculated based on forward or backward algorithms. Based on these probabilities, one can determine a system's future health state and estimate the remaining useful life (RUL). To evaluate the proposed approach, a test was carried out using bearing vibration signals. Simulation results show that the LSSVR/HMM approach can forecast faults long before they occur and can predict the RUL. Therefore, the LSSVR/HMM approach is very promising in the field of prognostics.

  18. Rangefinding system using hybrid pattern projections

    NASA Astrophysics Data System (ADS)

    Kagiyama, Osamu; Sato, Yukio; Saito, Hideo

    2008-02-01

    The practical three-dimensional measurement system with a high resolution based on a space code light pattern projection and a phase-shifted light pattern projection is presented. Three-dimensional measurement device's so-called, rangefinder, are expected to be applied in the apparel, medical and various fields. The performance of a rangefinder is evaluated by the measurements of time, depth, size, etc. The system using a space code technique can stably acquire the depth of an object although the resolution of the depth is not good because an object's space is coded in the shape of a wedge. On the other hand, in a phase shift technique, the high resolution depth of an object is able to be theoretically acquired because the object's space is divided finely by phase shifted light projection. But it is difficult to stably acquire the depth of an object because of the phase connection problem. In this paper, these problems (which are high resolution and phase connection problem) are able to be solved by both the space code technique and the phase shift technique. The effectiveness of this system is also described.

  19. Control system and method for a hybrid electric vehicle

    DOEpatents

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2001-01-01

    A vehicle system controller (20) is presented for a LSR parallel hybrid electric vehicle having an engine (10), a motor (12), wheels (14), a transmission (16) and a battery (18). The vehicle system controller (20) has a state machine having a plurality of predefined states (22-32) that represent operating modes for the vehicle. A set of rules is defined for controlling the transition between any two states in the state machine. The states (22-32) are prioritized according to driver demands, energy management concerns and system fault occurrences. The vehicle system controller (20) controls the transitions from a lower priority state to a higher priority state based on the set of rules. In addition, the vehicle system controller (20) will control a transition to a lower state from a higher state when the conditions no longer warrant staying in the current state. A unique set of output commands is defined for each state for the purpose of controlling lower level subsystem controllers. These commands serve to achieve the desire vehicle functionality within each state and insure smooth transitions between states.

  20. Maze learning by a hybrid brain-computer system.

    PubMed

    Wu, Zhaohui; Zheng, Nenggan; Zhang, Shaowu; Zheng, Xiaoxiang; Gao, Liqiang; Su, Lijuan

    2016-09-13

    The combination of biological and artificial intelligence is particularly driven by two major strands of research: one involves the control of mechanical, usually prosthetic, devices by conscious biological subjects, whereas the other involves the control of animal behaviour by stimulating nervous systems electrically or optically. However, to our knowledge, no study has demonstrated that spatial learning in a computer-based system can affect the learning and decision making behaviour of the biological component, namely a rat, when these two types of intelligence are wired together to form a new intelligent entity. Here, we show how rule operations conducted by computing components contribute to a novel hybrid brain-computer system, i.e., ratbots, exhibit superior learning abilities in a maze learning task, even when their vision and whisker sensation were blocked. We anticipate that our study will encourage other researchers to investigate combinations of various rule operations and other artificial intelligence algorithms with the learning and memory processes of organic brains to develop more powerful cyborg intelligence systems. Our results potentially have profound implications for a variety of applications in intelligent systems and neural rehabilitation.

  1. Machine vision system for inspecting characteristics of hybrid rice seed

    NASA Astrophysics Data System (ADS)

    Cheng, Fang; Ying, Yibin

    2004-03-01

    Obtaining clear images advantaged of improving the classification accuracy involves many factors, light source, lens extender and background were discussed in this paper. The analysis of rice seed reflectance curves showed that the wavelength of light source for discrimination of the diseased seeds from normal rice seeds in the monochromic image recognition mode was about 815nm for jinyou402 and shanyou10. To determine optimizing conditions for acquiring digital images of rice seed using a computer vision system, an adjustable color machine vision system was developed. The machine vision system with 20mm to 25mm lens extender produce close-up images which made it easy to object recognition of characteristics in hybrid rice seeds. White background was proved to be better than black background for inspecting rice seeds infected by disease and using the algorithms based on shape. Experimental results indicated good classification for most of the characteristics with the machine vision system. The same algorithm yielded better results in optimizing condition for quality inspection of rice seed. Specifically, the image processing can correct for details such as fine fissure with the machine vision system.

  2. Maze learning by a hybrid brain-computer system

    NASA Astrophysics Data System (ADS)

    Wu, Zhaohui; Zheng, Nenggan; Zhang, Shaowu; Zheng, Xiaoxiang; Gao, Liqiang; Su, Lijuan

    2016-09-01

    The combination of biological and artificial intelligence is particularly driven by two major strands of research: one involves the control of mechanical, usually prosthetic, devices by conscious biological subjects, whereas the other involves the control of animal behaviour by stimulating nervous systems electrically or optically. However, to our knowledge, no study has demonstrated that spatial learning in a computer-based system can affect the learning and decision making behaviour of the biological component, namely a rat, when these two types of intelligence are wired together to form a new intelligent entity. Here, we show how rule operations conducted by computing components contribute to a novel hybrid brain-computer system, i.e., ratbots, exhibit superior learning abilities in a maze learning task, even when their vision and whisker sensation were blocked. We anticipate that our study will encourage other researchers to investigate combinations of various rule operations and other artificial intelligence algorithms with the learning and memory processes of organic brains to develop more powerful cyborg intelligence systems. Our results potentially have profound implications for a variety of applications in intelligent systems and neural rehabilitation.

  3. Maze learning by a hybrid brain-computer system

    PubMed Central

    Wu, Zhaohui; Zheng, Nenggan; Zhang, Shaowu; Zheng, Xiaoxiang; Gao, Liqiang; Su, Lijuan

    2016-01-01

    The combination of biological and artificial intelligence is particularly driven by two major strands of research: one involves the control of mechanical, usually prosthetic, devices by conscious biological subjects, whereas the other involves the control of animal behaviour by stimulating nervous systems electrically or optically. However, to our knowledge, no study has demonstrated that spatial learning in a computer-based system can affect the learning and decision making behaviour of the biological component, namely a rat, when these two types of intelligence are wired together to form a new intelligent entity. Here, we show how rule operations conducted by computing components contribute to a novel hybrid brain-computer system, i.e., ratbots, exhibit superior learning abilities in a maze learning task, even when their vision and whisker sensation were blocked. We anticipate that our study will encourage other researchers to investigate combinations of various rule operations and other artificial intelligence algorithms with the learning and memory processes of organic brains to develop more powerful cyborg intelligence systems. Our results potentially have profound implications for a variety of applications in intelligent systems and neural rehabilitation. PMID:27619326

  4. Elements of the Theory of Stability of Hybrid Systems (Review)

    NASA Astrophysics Data System (ADS)

    Martynyuk, A. A.

    2015-05-01

    The sufficient conditions for different types of stability of three classes of hybrid systems modeled by dynamic equations on a time scale, impulsive hereditary systems, and equations in the Banach space are discussed. Some general results are illustrated by examples and applications in mechanics and theory of neural networks

  5. Energy transfer in hybrid systems quantum dot-plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Chaplik, A. V.

    2016-06-01

    Radiationless relaxation in hybrid systems quantum dot (QD)-plasmonic nanostructure is considered. For the system QD-2D plasma the relaxation rate extremely steeply depends on the radius of quantum dot while in the pair QD-cylindrical wire contacting each other this dependence is logarithmic weak.

  6. Computing Differential Invariants of Hybrid Systems as Fixedpoints

    DTIC Science & Technology

    2008-02-01

    Davoren and Anil Nerode. Logics for hybrid systems. Proc. IEEE, 88(7), July 2000. [9] Alexandre Donzé and Oded Maler. Systematic simulation using... Mishra . Algorithmic algebraic model checking I: Challenges from systems biology. In Kousha Etessami and Sriram K. Rajamani, editors, CAV, volume 3576 of

  7. Recovery Act: Hybrid Geothermal Heat Pump Systems Research

    SciTech Connect

    Hackel, Scott Paul; Pertzborn, Amanda

    2011-06-30

    One innovation to ground-source heat pump (GSHP, or geothermal systems is the hybrid GSHP (HyGSHP) system. A HyGSHP system can dramatically decrease the first cost of GSHP systems by using conventional technology (such as a cooling tower or a boiler) to meet a portion of the peak heating or cooling load. We monitored and analyzed three buildings employing HyGSHP systems (two cooling-dominated, one heating-dominated) to demonstrate the performance of the hybrid approach. The buildings were monitored for a year and the measured data was used to validate models of each system. Additionally, we used the models to analyze further improvements to the hybrid approach and established that it has positive impacts, both economically and environmentally. We also documented the lessons learned by those who design and operate the three systems, including discussions of equipment sizing, pump operation, and cooling tower control. Finally, we described the measured data sets and models from this work and have made them freely available for further study of hybrid systems.

  8. A MEMS Based Hybrid Preconcentrator/Chemiresistor Chemical Sensor

    SciTech Connect

    HUGHES,ROBERT C.; PATEL,SANJAY V.; MANGINELL,RONALD P.

    2000-06-12

    A hybrid of a microfabricated planar preconcentrator and a four element chemiresistor array chip has been fabricated and the performance as a chemical sensor system has been demonstrated. The close proximity of the chemiresistor sensor to the preconcentrator absorbent layer allows for fast transfer of the preconcentrated molecules during the heating and resorption step. The hybrid can be used in a conventional flow sampling system for detection of low concentrations of analyte molecules or in a pumpless/valveless mode with a grooved lid to confine the desorption plume from the preconcentrator during heating.

  9. Diagnosis without repair for hybrid fault situations. [in computer systems

    NASA Technical Reports Server (NTRS)

    Mallela, S.; Masson, G. M.

    1980-01-01

    In the present paper, the concept of a hybrid fault situation is introduced, which specifies bounded combinations of permanently faulty and intermittently faulty units in a system. The general class of hybrid fault situations includes, as special cases, the all permanent fault case and the unrestricted intermittent fault case, which have been previously considered with PMC models. An approach compatible with the diagnosis of permanent fault situations is then applied to the diagnosis of hybrid fault situation. The motivation for doing so is the common practice of testing for the presence of intermittent faults in systems by means of repeated applications of tests that are designed for the detection of permanent faults. The testing assignment of PMC models of system is characterized, and interrelationships between the number of intermittently and permanently faulty units that can be diagnosed is established.

  10. Electric and hybrid vehicle systems assessment seminar: proceedings

    SciTech Connect

    Not Available

    1984-03-15

    The following twenty papers are included in these proceedings: (1) electric and hybrid vehicle assessment overview, (2) electric and hybrid vehicle systems considerations, (3) advanced vehicle assessment, (4) hybrid vehicle assessment, (5) battery optimization considerations, (6) alkaline battery technology, (7) lead-acid batteries, (8) nickel-iron batteries, (9) zinc-chloride batteries, (10) zinc-bromine batteries, (11) sodium-sulfur batteries, (12) system/battery design interaction for a lithium-method sulfide van battery, (13) iorn-air batteries, (14) aluminium-air cells, (15) fuel cell overview, (16) variable-reluctance motor drives, (17) electric vehicle design, (18) advanced electric vehicle powertrain program, (19) Eaton ac drivetrains, and (20) JET Propulsion Laboratory ac power system. (MOW)

  11. Life cycle assessment on microalgal biodiesel production using a hybrid cultivation system.

    PubMed

    Adesanya, Victoria O; Cadena, Erasmo; Scott, Stuart A; Smith, Alison G

    2014-07-01

    A life cycle assessment (LCA) was performed on a putative biodiesel production plant in which the freshwater alga Chlorella vulgaris, was grown using an existing system similar to a published commercial-scale hybrid cultivation. The hybrid system couples airlift tubular photobioreactors with raceway ponds in a two-stage process for high biomass growth and lipid accumulation. The results show that microalgal biodiesel production would have a significantly lower environmental impact than fossil-derived diesel. Based on the functional unit of 1 ton of biodiesel produced, the hybrid cultivation system and hypothetical downstream process (base case) would have 42% and 38% savings in global warming potential (GWP) and fossil-energy requirements (FER) when compared to fossil-derived diesel, respectively. Sensitivity analysis was performed to identify the most influential process parameters on the LCA results. The maximum reduction in GWP and FER was observed under mixotrophic growth conditions with savings of 76% and 75% when compared to conventional diesel, respectively.

  12. A CORBA server for the Radiation Hybrid DataBase.

    PubMed

    Rodriguez-Tomé, P; Helgesen, C; Lijnzaad, P; Jungfer, K

    1997-01-01

    Modern biology depends on a wide range of software interacting with a large number of data sources, varying both in size, complexity and structure. The range of important databases in molecular biology and genetics makes it crucial to overcome the problems which this multiplicity presents. At EMBL-EBI we have started to use CORBA technology to support interoperability between a variety of databases, as well as to facilitate the integration of tools that access these databases. Within the Radiation Hybrid DataBase project we are confronted daily with the interoperation and linking issues. In this paper we present a CORBA infrastructure implemented to access the Radiation Hybrid DataBase.

  13. Chemically bonded hybrid systems from functionalized hydroxypyridine molecular bridge: characterization and photophysical properties.

    PubMed

    Yan, Bing; Qian, Kai

    2009-01-01

    A series of novel photoactive hybrid materials with organic parts covalently linked to inorganic parts via the acylamino group have been assembled by sol-gel process. The organic parts as molecular bridge derive from alpha-hydroxypyridine (HP) functionalized by 3-(triethoxysilyl)-propyl isocyanate (TESPIC). Finally homogeneous, molecular-based hybrid materials with different microstructure (uniform spherical or clubbed) are obtained, in which no phase separation is observed. This may be ascribed as the different coordination behavior of metal ions (Eu3+ (Tb3+) or Zn2+). Red emission of Eu-HP-Si, green emission of Tb-HP-Si and violet-blue luminescence of Zn-HP-Si hybrids can be achieved within these molecular-based hybrid materials. Besides, both Eu(Tb) and Zn are introduced into the same hybrid systems (Eu(Zn)-HP-Si or Tb(Zn)-HP-Si) through the covalent Si-O bond, whose sphere particle size can be modified. Especially the photoluminescence behavior can be enhanced, suggesting that intramolecular energy transfer takes place between inert Zn2+ and Eu3+ (Tb3+) in the covalently bonded hybrid systems.

  14. Photovoltaic/diesel hybrid systems: The design process

    NASA Astrophysics Data System (ADS)

    Jones, G. J.; Chapman, R. N.

    A photovoltaic/storage system by itself may be uneconomical for stand-alone applications with large energy demands. However, by combining the PV system with a back-up energy source, such as a diesel, gasoline, or propane/thermoelectric generator, system economics can be improved. Such PV/fossil hybrid systems are being used, but their design has required detailed modeling to determine the optimal mix of photovoltaics and back-up energy. Recent data on diesel field reliability and a new design technique for stand-alone systems have overcome this problem. The approach provides the means for sizing the photovoltaic system to obtain a near optimal hybrid system, with about a 90% savings in back-up fuel costs. System economics are determined by comparing PV capital cost to the present value of the displaced diesel operation and maintenance costs.

  15. Hybrid vehicle system studies and optimized hydrogen engine design

    NASA Astrophysics Data System (ADS)

    Smith, J. R.; Aceves, S.

    1995-04-01

    We have done system studies of series hydrogen hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. We have evaluated the impact of various on-board storage options on fuel economy. Experiments in an available engine at the Sandia CRF demonstrated NO(x) emissions of 10 to 20 ppM at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid simulation studies indicate that exhaust NO(x) concentrations must be less than 180 ppM to meet the 0.2 g/mile ULEV or Federal Tier II emissions regulations. LLNL has designed and fabricated a first generation optimized hydrogen engine head for use on an existing Onan engine. This head features 15:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses. Initial testing shows promise of achieving an indicated efficiency of nearly 50% and emissions of less than 100 ppM NO(x). Hydrocarbons and CO are to be measured, but are expected to be very low since their only source is engine lubricating oil. A successful friction reduction program on the Onan engine should result in a brake thermal efficiency of about 42% compared to today's gasoline engines of 32%. Based on system studies requirements, the next generation engine will be about 2 liter displacement and is projected to achieve 46% brake thermal efficiency with outputs of 15 kW for cruise and 40 kW for hill climb.

  16. Development and testing of the GRAPES regional ensemble-3DVAR hybrid data assimilation system

    NASA Astrophysics Data System (ADS)

    Chen, Lianglü; Chen, Jing; Xue, Jishan; Xia, Yu

    2015-12-01

    Based on the GRAPES (Global/Regional Assimilation and Prediction System) regional ensemble prediction system and 3DVAR (three-dimensional variational) data assimilation system, which are implemented operationally at the Numerical Weather Prediction Center of the China Meteorological Administration, an ensemble-based 3DVAR (En-3DVAR) hybrid data assimilation system for GRAPES_Meso (the regional mesoscale numerical prediction system of GRAPES) was developed by using the extended control variable technique to implement a hybrid background error covariance that combines the climatological covariance and ensemble-estimated covariance. Considering the problems of the ensemble-based data assimilation part of the system, including the reduction in the degree of geostrophic balance between variables, and the non-smooth analysis increment and its obviously smaller size compared with the 3DVAR data assimilation, corresponding measures were taken to optimize and ameliorate the system. Accordingly, a single pressure observation ensemble-based data assimilation experiment was conducted to ensure that the ensemble-based data assimilation part of the system is correct and reasonable. A number of localization-scale sensitivity tests of the ensemble-based data assimilation were also conducted to determine the most appropriate localization scale. Then, a number of hybrid data assimilation experiments were carried out. The results showed that it was most appropriate to set the weight factor of the ensemble-estimated covariance in the experiments to be 0.8. Compared with the 3DVAR data assimilation, the geopotential height forecast of the hybrid data assimilation experiments improved very little, but the wind forecast improved slightly at each forecast time, especially over 300 hPa. Overall, the hybrid data assimilation demonstrates some advantages over the 3DVAR data assimilation.

  17. Optical-digital hybrid image search system in cloud environment

    NASA Astrophysics Data System (ADS)

    Ikeda, Kanami; Kodate, Kashiko; Watanabe, Eriko

    2016-09-01

    To improve the versatility and usability of optical correlators, we developed an optical-digital hybrid image search system consisting of digital servers and an optical correlator that can be used to perform image searches in the cloud environment via a web browser. This hybrid system employs a simple method to obtain correlation signals and has a distributed network design. The correlation signals are acquired by using an encoder timing signal generated by a rotating disk, and the distributed network design facilitates the replacement and combination of the digital correlation server and the optical correlator.

  18. Initial Lab and Sky Test Results for the Teledyne Imaging System's H4RG-10 CMOS-Hybrid 4k Visible Array for Use in Ground- and Space-based Astronomical and SSA Applications

    NASA Astrophysics Data System (ADS)

    Dorland, B.; Hennessy, G.; Zacharias, N.; Gaume, R.; Shu, P.; Miko, L.; Rollins, C.; Waczynski, A.

    We report on the first set of laboratory and telescope tests of the Teledyne Imaging System's (TIS) H4RG-10 CMOS-Hybrid visible focal plane array (FPA). This family of detectors has been chosen as the baseline for USNO's proposed J-MAPS space astrometry mission to close a number of capability gaps. While this FPA has been designed for precision astrometry, it has potentially significant Space Situational Awareness (SSA) applications. Because of the hybrid design, which consists of separate readout and detector layers connected by Indium bump-bonds, this FPA has the readout flexibility of advanced CMOS readout integrated circuits (ROICs), including non-destructive readout, random access windowing and selective reset, and near-CCD performance in terms of fill factor, quantum efficiency, read noise and dark current. Our laboratory testing, performed at Goddard Space Flight Center's Detector Characterization Lab, includes measures of absolute spectral quantum efficiency, flat-field response uniformity, read noise, dark current as a function of operating temperature, inter-pixel crosstalk, and persistence. Sky testing, performed at Naval Observatory Flagstaff Station, consists of astrometric and photometric performance characterization. We discuss implications for the use of this detector in future ground- and space-based astrometric, astronomical and SSA applications.

  19. Conceptual design of distillation-based hybrid separation processes.

    PubMed

    Skiborowski, Mirko; Harwardt, Andreas; Marquardt, Wolfgang

    2013-01-01

    Hybrid separation processes combine different separation principles and constitute a promising design option for the separation of complex mixtures. Particularly, the integration of distillation with other unit operations can significantly improve the separation of close-boiling or azeotropic mixtures. Although the design of single-unit operations is well understood and supported by computational methods, the optimal design of flowsheets of hybrid separation processes is still a challenging task. The large number of operational and design degrees of freedom requires a systematic and optimization-based design approach. To this end, a structured approach, the so-called process synthesis framework, is proposed. This article reviews available computational methods for the conceptual design of distillation-based hybrid processes for the separation of liquid mixtures. Open problems are identified that must be addressed to finally establish a structured process synthesis framework for such processes.

  20. Novel hybrid materials based on the vanadium oxide nanobelts

    NASA Astrophysics Data System (ADS)

    Zabrodina, G. S.; Makarov, S. G.; Kremlev, K. V.; Yunin, P. A.; Gusev, S. A.; Kaverin, B. S.; Kaverina, L. B.; Ketkov, S. Yu.

    2016-04-01

    Novel hybrid materials based on zinc phthalocyanine and nanostructured vanadium oxides have attracted extensive attention for the development of academic research and innovative industrial applications such as flexible electronics, optical sensors and heterogeneous catalysts. Vanadium oxides nanobelts were synthesized via a hydrothermal treatment V2O5·nH2O gel with surfactants (TBAB, CTAB) used as structure-directing agents, where CTAB - cetyltrimethylammonium bromide, TBAB - tetrabutylammonium bromide. Hybrid materials were prepared decoration of (CTA)0.33V2O5 flexible nanobelts with cationic zinc phthalocyanine by the ion-exchange route. Investigations of the thermal stability, morphologies and structures of the (CTA)0.33V2O5, (TBA)0.16V2O5 nanobelts and zinc phthalocyanine exchange product were carried out. The hybrid materials based on the nanostructured vanadium oxide and zinc phthalocyanine were tested as photocatalysts for oxidation of citronellol and 2-mercaptoethanol by dioxygen.

  1. A survey on evolutionary algorithm based hybrid intelligence in bioinformatics.

    PubMed

    Li, Shan; Kang, Liying; Zhao, Xing-Ming

    2014-01-01

    With the rapid advance in genomics, proteomics, metabolomics, and other types of omics technologies during the past decades, a tremendous amount of data related to molecular biology has been produced. It is becoming a big challenge for the bioinformatists to analyze and interpret these data with conventional intelligent techniques, for example, support vector machines. Recently, the hybrid intelligent methods, which integrate several standard intelligent approaches, are becoming more and more popular due to their robustness and efficiency. Specifically, the hybrid intelligent approaches based on evolutionary algorithms (EAs) are widely used in various fields due to the efficiency and robustness of EAs. In this review, we give an introduction about the applications of hybrid intelligent methods, in particular those based on evolutionary algorithm, in bioinformatics. In particular, we focus on their applications to three common problems that arise in bioinformatics, that is, feature selection, parameter estimation, and reconstruction of biological networks.

  2. A Survey on Evolutionary Algorithm Based Hybrid Intelligence in Bioinformatics

    PubMed Central

    Li, Shan; Zhao, Xing-Ming

    2014-01-01

    With the rapid advance in genomics, proteomics, metabolomics, and other types of omics technologies during the past decades, a tremendous amount of data related to molecular biology has been produced. It is becoming a big challenge for the bioinformatists to analyze and interpret these data with conventional intelligent techniques, for example, support vector machines. Recently, the hybrid intelligent methods, which integrate several standard intelligent approaches, are becoming more and more popular due to their robustness and efficiency. Specifically, the hybrid intelligent approaches based on evolutionary algorithms (EAs) are widely used in various fields due to the efficiency and robustness of EAs. In this review, we give an introduction about the applications of hybrid intelligent methods, in particular those based on evolutionary algorithm, in bioinformatics. In particular, we focus on their applications to three common problems that arise in bioinformatics, that is, feature selection, parameter estimation, and reconstruction of biological networks. PMID:24729969

  3. Mesoscale hybrid calibration artifact

    DOEpatents

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  4. A Hybrid Authentication and Authorization Process for Control System Networks

    SciTech Connect

    Manz, David O.; Edgar, Thomas W.; Fink, Glenn A.

    2010-08-25

    Convergence of control system and IT networks require that security, privacy, and trust be addressed. Trust management continues to plague traditional IT managers and is even more complex when extended into control system networks, with potentially millions of entities, a mission that requires 100% availability. Yet these very networks necessitate a trusted secure environment where controllers and managers can be assured that the systems are secure and functioning properly. We propose a hybrid authentication management protocol that addresses the unique issues inherent within control system networks, while leveraging the considerable research and momentum in existing IT authentication schemes. Our hybrid authentication protocol for control systems provides end device to end device authentication within a remote station and between remote stations and control centers. Additionally, the hybrid protocol is failsafe and will not interrupt communication or control of vital systems in a network partition or device failure. Finally, the hybrid protocol is resilient to transitory link loss and can operate in an island mode until connectivity is reestablished.

  5. Applied estimation for hybrid dynamical systems using perceptional information

    NASA Astrophysics Data System (ADS)

    Plotnik, Aaron M.

    This dissertation uses the motivating example of robotic tracking of mobile deep ocean animals to present innovations in robotic perception and estimation for hybrid dynamical systems. An approach to estimation for hybrid systems is presented that utilizes uncertain perceptional information about the system's mode to improve tracking of its mode and continuous states. This results in significant improvements in situations where previously reported methods of estimation for hybrid systems perform poorly due to poor distinguishability of the modes. The specific application that motivates this research is an automatic underwater robotic observation system that follows and films individual deep ocean animals. A first version of such a system has been developed jointly by the Stanford Aerospace Robotics Laboratory and Monterey Bay Aquarium Research Institute (MBARI). This robotic observation system is successfully fielded on MBARI's ROVs, but agile specimens often evade the system. When a human ROV pilot performs this task, one advantage that he has over the robotic observation system in these situations is the ability to use visual perceptional information about the target, immediately recognizing any changes in the specimen's behavior mode. With the approach of the human pilot in mind, a new version of the robotic observation system is proposed which is extended to (a) derive perceptional information (visual cues) about the behavior mode of the tracked specimen, and (b) merge this dissimilar, discrete and uncertain information with more traditional continuous noisy sensor data by extending existing algorithms for hybrid estimation. These performance enhancements are enabled by integrating techniques in hybrid estimation, computer vision and machine learning. First, real-time computer vision and classification algorithms extract a visual observation of the target's behavior mode. Existing hybrid estimation algorithms are extended to admit this uncertain but discrete

  6. A novel cement-based hybrid material

    NASA Astrophysics Data System (ADS)

    Nasibulin, Albert G.; Shandakov, Sergey D.; Nasibulina, Larisa I.; Cwirzen, Andrzej; Mudimela, Prasantha R.; Habermehl-Cwirzen, Karin; Grishin, Dmitrii A.; Gavrilov, Yuriy V.; Malm, Jari E. M.; Tapper, Unto; Tian, Ying; Penttala, Vesa; Karppinen, Maarit J.; Kauppinen, Esko I.

    2009-02-01

    Carbon nanotubes (CNTs) and carbon nanofibers (CNFs) are known to possess exceptional tensile strength, elastic modulus and electrical and thermal conductivity. They are promising candidates for the next-generation high-performance structural and multi-functional composite materials. However, one of the largest obstacles to creating strong, electrically or thermally conductive CNT/CNF composites is the difficulty of getting a good dispersion of the carbon nanomaterials in a matrix. Typically, time-consuming steps of purification and functionalization of the carbon nanomaterial are required. We propose a new approach to grow CNTs/CNFs directly on the surface of matrix particles. As the matrix we selected cement, the most important construction material. We synthesized in a simple one-step process a novel cement hybrid material (CHM), wherein CNTs and CNFs are attached to the cement particles. The CHM has been proven to increase 2 times the compressive strength and 40 times the electrical conductivity of the hardened paste, i.e. concrete without sand.

  7. A Lie algebraic condition for exponential stability of discrete hybrid systems and application to hybrid synchronization.

    PubMed

    Zhao, Shouwei

    2011-06-01

    A Lie algebraic condition for global exponential stability of linear discrete switched impulsive systems is presented in this paper. By considering a Lie algebra generated by all subsystem matrices and impulsive matrices, when not all of these matrices are Schur stable, we derive new criteria for global exponential stability of linear discrete switched impulsive systems. Moreover, simple sufficient conditions in terms of Lie algebra are established for the synchronization of nonlinear discrete systems using a hybrid switching and impulsive control. As an application, discrete chaotic system's synchronization is investigated by the proposed method.

  8. A Lie algebraic condition for exponential stability of discrete hybrid systems and application to hybrid synchronization

    NASA Astrophysics Data System (ADS)

    Zhao, Shouwei

    2011-06-01

    A Lie algebraic condition for global exponential stability of linear discrete switched impulsive systems is presented in this paper. By considering a Lie algebra generated by all subsystem matrices and impulsive matrices, when not all of these matrices are Schur stable, we derive new criteria for global exponential stability of linear discrete switched impulsive systems. Moreover, simple sufficient conditions in terms of Lie algebra are established for the synchronization of nonlinear discrete systems using a hybrid switching and impulsive control. As an application, discrete chaotic system's synchronization is investigated by the proposed method.

  9. Hybrid Integrated Silicon Microfluidic Platform for Fluorescence Based Biodetection

    PubMed Central

    Chandrasekaran, Arvind; Acharya, Ashwin; You, Jian Liang; Soo, Kim Young; Packirisamy, Muthukumaran; Stiharu, Ion; Darveau, Andre

    2007-01-01

    The desideratum to develop a fully integrated Lab-on-a-chip device capable of rapid specimen detection for high throughput in-situ biomedical diagnoses and Point-of-Care testing applications has called for the integration of some of the novel technologies such as the microfluidics, microphotonics, immunoproteomics and Micro Electro Mechanical Systems (MEMS). In the present work, a silicon based microfluidic device has been developed for carrying out fluorescence based immunoassay. By hybrid attachment of the microfluidic device with a Spectrometer-on-chip, the feasibility of synthesizing an integrated Lab-on-a-chip type device for fluorescence based biosensing has been demonstrated. Biodetection using the microfluidic device has been carried out using antigen sheep IgG and Alexafluor-647 tagged antibody particles and the experimental results prove that silicon is a compatible material for the present application given the various advantages it offers such as cost-effectiveness, ease of bulk microfabrication, superior surface affinity to biomolecules, ease of disposability of the device etc., and is thus suitable for fabricating Lab-on-a-chip type devices.

  10. Versatile protein-based bifunctional nano-systems (encapsulation and directed assembly): Selective nanoscale positioning of gold nanoparticle-viral protein hybrids

    NASA Astrophysics Data System (ADS)

    Zheng, Bin; Zettsu, Nobuyuki; Fukuta, Megumi; Uenuma, Mutsunori; Hashimoto, Tatsuya; Gamo, Kentaro; Uraoka, Yukiharu; Yamashita, Ichiro; Watanabe, Heiji

    2011-04-01

    We demonstrate a selective nanoscale positioning of targeted Au nanoparticles (NPs) through a bifunctional protein-based encapsulation/delivery system. The newly designed recombinant bifunctional protein, appended with both gold-binding peptide (GBP) and Ti/Si-binding peptide (TBP) at the C- and N-termini efficiently encapsulated 15-20 nm-diameter Au NPs during the pH-controlled reversible reassembly process, and showed the ability of the internalized Au NPs in selective binding to nanometer-scale Ti islands without overshooting. This highly controlled placement of the Au NPs on substrates can be employed to make both large scale devices and point-contact devices.

  11. NASA chooses hybrid power system for Space Station

    SciTech Connect

    Holt, D.J.

    1986-06-01

    The hybrid solar power system being developed for the Space Station is characterized. Major components of the 75-kW system required for the initial operational phase of the Station are 25-kW photovoltaic arrays (with Ni-H storage batteries for eclipse-phase power and some means of conversion to ac for distribution) and a 50-kW solar dynamic system comprising a reflecting concentrator, a thermal-energy storage unit, and a heat engine based either on an organic Rankine cycle (described by Holt, 1985) or on a closed Brayton cycle. The design and operating principle of a Brayton-cycle engine using an He-Xe mixture as the working fluid, gas-foil journal bearings, an LiF/MgF2 thermal-storage unit, and a 95-percent-effectiveness plate-fin-type recuperator are described and illustrated with drawings. This engine is designed to operate at 25,000-50,000 rpm with overall day/night cycle efficiency 27.6 percent for 95-min orbits, and to be restartable under zero-g conditions.

  12. Optimization of a stand-alone Solar PV-Wind-DG Hybrid System for Distributed Power Generation at Sagar Island

    NASA Astrophysics Data System (ADS)

    Roy, P. C.; Majumder, A.; Chakraborty, N.

    2010-10-01

    An estimation of a stand-alone solar PV and wind hybrid system for distributed power generation has been made based on the resources available at Sagar island, a remote area distant to grid operation. Optimization and sensitivity analysis has been made to evaluate the feasibility and size of the power generation unit. A comparison of the different modes of hybrid system has been studied. It has been estimated that Solar PV-Wind-DG hybrid system provides lesser per unit electricity cost. Capital investment is observed to be lesser when the system run with Wind-DG compared to Solar PV-DG.

  13. Energy management strategy based on fuzzy logic for a fuel cell hybrid bus

    NASA Astrophysics Data System (ADS)

    Gao, Dawei; Jin, Zhenhua; Lu, Qingchun

    Fuel cell vehicles, as a substitute for internal-combustion-engine vehicles, have become a research hotspot for most automobile manufacturers all over the world. Fuel cell systems have disadvantages, such as high cost, slow response and no regenerative energy recovery during braking; hybridization can be a solution to these drawbacks. This paper presents a fuel cell hybrid bus which is equipped with a fuel cell system and two energy storage devices, i.e., a battery and an ultracapacitor. An energy management strategy based on fuzzy logic, which is employed to control the power flow of the vehicular power train, is described. This strategy is capable of determining the desired output power of the fuel cell system, battery and ultracapacitor according to the propulsion power and recuperated braking power. Some tests to verify the strategy were developed, and the results of the tests show the effectiveness of the proposed energy management strategy and the good performance of the fuel cell hybrid bus.

  14. Photonic applications based on biological/inorganic nano hybrids

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Wu, Pengfei; Yelleswarapu, Chandra

    2016-02-01

    Biological Retinal is an effective and efficient photochromic compounds and one of the best candidates for photon conversion, transmission and storage, from the view of bionics and natural selection. We observed large optical nonlinearity by using new fabricated films of photoactive Retinol hybrid materials. Based on reversible photoinduced anisotropy and transient optical characteristics, the Retinol hybrids can be used to design novel photonic devices, such as holographic elements, all-optical switch and spatial light modulator. Also, the study is important for further understanding the photochemical mechanism of vision process.

  15. Cluster-based inorganic-organic hybrid materials.

    PubMed

    Schubert, Ulrich

    2011-02-01

    Clusters as building blocks have been used for two types of inorganic-organic hybrid materials. The first are hybrid polymers, with polymer-like properties and structures, where the cluster units crosslink the polymer chains. They are prepared by co-polymerization of organic monomers with functional ligands attached to the clusters. The second type is crystalline metal-organic framework structures which are obtained by coordination chemistry approaches, i.e. by coordinating multifunctional organic ligands to cluster units. This tutorial review shows that both types of cluster-based materials are limiting cases with many options for varying both the cluster units as well as the connecting organic entities.

  16. Hybrid statistics-simulations based method for atom-counting from ADF STEM images.

    PubMed

    De Wael, Annelies; De Backer, Annick; Jones, Lewys; Nellist, Peter D; Van Aert, Sandra

    2017-01-25

    A hybrid statistics-simulations based method for atom-counting from annular dark field scanning transmission electron microscopy (ADF STEM) images of monotype crystalline nanostructures is presented. Different atom-counting methods already exist for model-like systems. However, the increasing relevance of radiation damage in the study of nanostructures demands a method that allows atom-counting from low dose images with a low signal-to-noise ratio. Therefore, the hybrid method directly includes prior knowledge from image simulations into the existing statistics-based method for atom-counting, and accounts in this manner for possible discrepancies between actual and simulated experimental conditions. It is shown by means of simulations and experiments that this hybrid method outperforms the statistics-based method, especially for low electron doses and small nanoparticles. The analysis of a simulated low dose image of a small nanoparticle suggests that this method allows for far more reliable quantitative analysis of beam-sensitive materials.

  17. Techno-economic evaluation of hybrid energy storage technologies for a solar-wind generation system

    NASA Astrophysics Data System (ADS)

    Ren, L.; Tang, Y.; Shi, J.; Dou, J.; Zhou, S.; Jin, T.

    2013-01-01

    Huazhong University of Science and Technology is planning to establish a hybrid solar-wind generation dynamic simulation laboratory. Energy storage technologies will be vital to this system for load leveling, power quality control and stable output. In this paper, the technical feasibility of energy storage technologies for renewable intermittent sources like wind and solar generation is analyzed. Furthermore, the different combination modes of energy storage technologies are proposed. The involved energy storage technologies include superconducting magnetic energy storage systems (SMESs), flywheels (FWs), electrochemical super-capacitors (SCs) and redox flow batteries (RFBs). Based on that, the economic analysis of hybrid energy storage technologies is conducted.

  18. A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications.

    PubMed

    Kim, Kuk-Hwan; Gaba, Siddharth; Wheeler, Dana; Cruz-Albrecht, Jose M; Hussain, Tahir; Srinivasa, Narayan; Lu, Wei

    2012-01-11

    Crossbar arrays based on two-terminal resistive switches have been proposed as a leading candidate for future memory and logic applications. Here we demonstrate a high-density, fully operational hybrid crossbar/CMOS system composed of a transistor- and diode-less memristor crossbar array vertically integrated on top of a CMOS chip by taking advantage of the intrinsic nonlinear characteristics of the memristor element. The hybrid crossbar/CMOS system can reliably store complex binary and multilevel 1600 pixel bitmap images using a new programming scheme.

  19. Photosensitizer methylene blue-semiconductor nanocrystals hybrid system for photodynamic therapy.

    PubMed

    Rakovich, Aliaksandra; Rakovich, Tatsiana; Kelly, Vincent; Lesnyak, Vladimir; Eychmüller, Alexander; Rakovich, Yury P; Donegan, John F

    2010-04-01

    In this work we report on the development of novel hybrid material with enhanced photodynamic properties based on methylene blue and CdTe nanocrystals. Absorption spectroscopy, visible photoluminescence spectroscopy and fluorescence lifetime imaging of this system reveal efficient charge transfer between nanocrystals and the methylene blue dye. Near infra-red photoluminescence measurements provide evidence for an increased efficiency of singlet oxygen production by the methylene blue dye. In vitro studies on the growth of HepG2 and HeLa cancerous cells were also performed, they point towards an improvement in the cell kill efficiency for the methylene blue-semiconductor nanocrystals hybrid system.

  20. Hybridization assay based on evanescent fluorescence excitation and collection

    NASA Astrophysics Data System (ADS)

    Sumner, James J.; Mmerole, Robert U.; Stratis-Cullum, Dimitra N.; Yi, Hyunmin; Bentley, William E.; Gillespie, James B.

    2003-08-01

    There is a great need for high throughput and sensitive sensors for genetic analysis. These sensors can be used for varied purposes from monitoring gene expression in organims to speciation of possible pathogens. Consequently, an instrument capable of these tasks would be a great benefit for food and water safety, medical diagnostics and defense of military and civilian populations from biological threats. This work examines the development of a hybridization-based biosensor using a novel tapered fiber optic rpobe. The immobilization of single-stranded, synthetic ologinucleotides utilizing aminoproplytriethoxysilane and glutaraldehyde was implemented on the fiber optic sensor. Hybridization takes place with a complementary analyte sequence followed by a fluorescent, labeled signaling probe to form a sandwich assay. Following hybridization, the fiber is interrogated with a diode laser source and the resulting fluorescence signal is detected using a miniature spectrometer.

  1. Hybrid two fuel system nozzle with a bypass connecting the two fuel systems

    DOEpatents

    Varatharajan, Balachandar [Cincinnati, OH; Ziminsky, Willy Steve [Simpsonville, SC; Yilmaz, Ertan [Albany, NY; Lacy, Benjamin [Greer, SC; Zuo, Baifang [Simpsonville, SC; York, William David [Greer, SC

    2012-05-29

    A hybrid fuel combustion nozzle for use with natural gas, syngas, or other types of fuels. The hybrid fuel combustion nozzle may include a natural gas system with a number of swozzle vanes and a syngas system with a number of co-annular fuel tubes.

  2. Quantified Differential Dynamic Logic for Distributed Hybrid Systems

    DTIC Science & Technology

    2010-05-01

    in modeling languages SHIFT [6] and R- Charon [15]. They focused on simulation / compilation [6] or the development of a semantics [15], so that no...Kratz, Oleg Sokolsky, George J. Pappas, and Insup Lee. R- Charon , a modeling lan- guage for reconfigurable hybrid systems. In Hespanha and Tiwari [12

  3. Nuclear-Renewable Hybrid Energy System Market Analysis Plans

    SciTech Connect

    Ruth, Mark

    2016-06-09

    This presentation describes nuclear-renewable hybrid energy systems (N-R HESs), states their potential benefits, provides figures for the four tightly coupled N-R HESs that NREL is currently analyzing, and outlines the analysis process that is underway.

  4. Borazine-boron nitride hybrid hydrogen storage system

    DOEpatents

    Narula, Chaitanya K [Knoxville, TN; Simonson, J Michael [Knoxville, TN; Maya, Leon [Knoxville, TN; Paine, Robert T [Albuquerque, NM

    2008-04-22

    A hybrid hydrogen storage composition includes a first phase and a second phase adsorbed on the first phase, the first phase including BN for storing hydrogen by physisorption and the second phase including a borazane-borazine system for storing hydrogen in combined form as a hydride.

  5. Sensory properties of hybrid composites based on poly(3,4-ethylenedioxythiophene)-porous silicon-carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Olenych, Igor B.; Aksimentyeva, Olena I.; Monastyrskii, Liubomyr S.; Horbenko, Yulia Yu; Yarytska, Lidia I.

    2015-04-01

    In this work, we have prepared film sensor elements based on a hybrid system poly(3,4-ethylenedioxythiophene)-porous silicon nanocrystals-carbon nanotubes on flexible polymer substrates. Our FTIR spectroscopy-based studies for the molecular structure of the materials obtained suggest some interaction of their components in the hybrid layer. The influence of adsorption of water molecules on the conductivity and capacitance of the hybrid composites has been investigated in the temperature range of 20°C to 40°C. We have detected essential changes in the electrical conductivity and capacitance which depend on the humidity of the surrounding atmosphere. For estimating the sensing properties of our composites, we have analyzed the sensing abilities of the hybrid systems and their dynamic characteristics. The hybrid composites as working materials for the sensors provide improved performance of the latter. In particular, the response time is reduced by 3 to 5 times.

  6. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    SciTech Connect

    Kurt Montgomery; Nguyen Minh

    2003-08-01

    This report summarizes the work performed by Honeywell during the October 2001 to December 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The conceptual and demonstration system designs were proposed and analyzed, and these systems have been modeled in Aspen Plus. Work has also started on the assembly of dynamic component models and the development of the top-level controls requirements for the system. SOFC stacks have been fabricated and performance mapping initiated.

  7. Hybrid microfluidic systems: combining a polymer microfluidic toolbox with biosensors

    NASA Astrophysics Data System (ADS)

    Gärtner, Claudia; Kirsch, Stefanie; Anton, Birgit; Becker, Holger

    2007-01-01

    In this paper we present polymer based microfluidic chips which contain functional elements (electrodes, biosensors) made out of a different material (metals, silicon, organic semiconductors). These hybrid microfluidic devices allow the integration of additional functionality other than the simple manipulation of liquids in the chip and have been developed as a reaction to the increasing requirement for functional integration in microfluidics.

  8. Hybrid Network Defense Model Based on Fuzzy Evaluation

    PubMed Central

    2014-01-01

    With sustained and rapid developments in the field of information technology, the issue of network security has become increasingly prominent. The theme of this study is network data security, with the test subject being a classified and sensitive network laboratory that belongs to the academic network. The analysis is based on the deficiencies and potential risks of the network's existing defense technology, characteristics of cyber attacks, and network security technologies. Subsequently, a distributed network security architecture using the technology of an intrusion prevention system is designed and implemented. In this paper, first, the overall design approach is presented. This design is used as the basis to establish a network defense model, an improvement over the traditional single-technology model that addresses the latter's inadequacies. Next, a distributed network security architecture is implemented, comprising a hybrid firewall, intrusion detection, virtual honeynet projects, and connectivity and interactivity between these three components. Finally, the proposed security system is tested. A statistical analysis of the test results verifies the feasibility and reliability of the proposed architecture. The findings of this study will potentially provide new ideas and stimuli for future designs of network security architecture. PMID:24574870

  9. Hybrid network defense model based on fuzzy evaluation.

    PubMed

    Cho, Ying-Chiang; Pan, Jen-Yi

    2014-01-01

    With sustained and rapid developments in the field of information technology, the issue of network security has become increasingly prominent. The theme of this study is network data security, with the test subject being a classified and sensitive network laboratory that belongs to the academic network. The analysis is based on the deficiencies and potential risks of the network's existing defense technology, characteristics of cyber attacks, and network security technologies. Subsequently, a distributed network security architecture using the technology of an intrusion prevention system is designed and implemented. In this paper, first, the overall design approach is presented. This design is used as the basis to establish a network defense model, an improvement over the traditional single-technology model that addresses the latter's inadequacies. Next, a distributed network security architecture is implemented, comprising a hybrid firewall, intrusion detection, virtual honeynet projects, and connectivity and interactivity between these three components. Finally, the proposed security system is tested. A statistical analysis of the test results verifies the feasibility and reliability of the proposed architecture. The findings of this study will potentially provide new ideas and stimuli for future designs of network security architecture.

  10. Hybrid 1x2 WDM components based on polymer mountings

    NASA Astrophysics Data System (ADS)

    Klotzbuecher, Thomas; Sprzagala, M.; Koch, Anne; Teubner, Ulrich

    2004-08-01

    In future airplanes optical data networks are expected to be state of the art. The advantages of optical technology compared to wire-based systems are higher data rates, smaller sensitivity against electromagnetic interference (EMI) and less weight. Today avionics full duplex switched ethernet (AFDX) is realised on duplex copper wires connecting two switches. An optical version of AFDX could be realised on a simplex fibre, using a two-wavelength transmission over one fibre. This would require a wavelength selective coupler, allowing a bi-directional data transmission with two wavelengths. In this work a simple WDM module is introduced, based on the principle of a micro-optical bench made of a polymer with hybrid integration of lenses and filters and allowing both multiplexing as well as de-multiplexing of wavelengths 850 nm and 1310 nm. Two different designs have been realised, one with ball lenses and one with GRIN lenses, both using edge filters for wavelength separation. The fabrication and optical performance of such couplers is described and discussed.

  11. Raman soliton generation in microstructured tellurite fiber pumped by hybrid Erbium/Thulium fiber laser system

    NASA Astrophysics Data System (ADS)

    Anashkina, E. A.; Koptev, M. Y.; Muravyev, S. V.; Dorofeev, V. V.; Andrianov, A. V.; Kim, A. V.

    2016-08-01

    We demonstrate a fibre laser source generating ultrashort pulses tunable in the range 2-2.5 μm. The source is based on a hybrid Er/Tm fiber laser system and microstructured suspended-core tellurite fiber where Raman soliton shifting occurs. Nonlinear soliton dynamics is studied and possibility of tuning beyond 3 μm is shown.

  12. [Study on method of maize hybrid purity identification based on hyperspectral image technology].

    PubMed

    Jia, Shi-Qiang; Liu, Zhe; Li, Shao-Ming; Li, Lin; Ma, Qin; Zhang, Xiao-Dong; Zhu, De-Hai; Yan, Yan-Lu; An, Dong

    2013-10-01

    The feasibility of employing hyperspectral image technology to identify maize hybrid purity was studied by analyzing the spectral information of maize hyperspectral image. The hyperspectral images of hybrid and female parent of maize variety NH101 in the range of 871-1 699 nm including 308 wavelengths were collected by hyperspectral imaging system. We extracted average spectral information of interested region on maize seed and built identification models of hybrid and female parent of maize variety NH101 based on processed spectral data. The influences of different sample laying modes (seed embryo facing the light source, seed embryo backward light source, and seed put in different locations on sample stage) and experimental environments on the performance of identification models were discussed. Spectral collected under different sample laying modes and experimental environments were used to test the robustness of identification models. The average correct acceptance rates and average correct rejection rates are more than 90%. The feature spectral bands (1 195-1 246 nm) with which the differences between hybrid and female parent are the largest were extracted by a wavelength selection method based on standard deviations, called Qs. The performance of identification models built based on spectral data in feature spectral bands reached the same level of models built based on spectral data in the full range of 925-1 597 nm. The results demonstrated the feasibility of using hyperspectral image technology as an objective and rapid method for the identification of maize hybrid purity.

  13. Robust Power Management Control for Stand-Alone Hybrid Power Generation System

    NASA Astrophysics Data System (ADS)

    Kamal, Elkhatib; Adouane, Lounis; Aitouche, Abdel; Mohammed, Walaa

    2017-01-01

    This paper presents a new robust fuzzy control of energy management strategy for the stand-alone hybrid power systems. It consists of two levels named centralized fuzzy supervisory control which generates the power references for each decentralized robust fuzzy control. Hybrid power systems comprises: a photovoltaic panel and wind turbine as renewable sources, a micro turbine generator and a battery storage system. The proposed control strategy is able to satisfy the load requirements based on a fuzzy supervisor controller and manage power flows between the different energy sources and the storage unit by respecting the state of charge and the variation of wind speed and irradiance. Centralized controller is designed based on If-Then fuzzy rules to manage and optimize the hybrid power system production by generating the reference power for photovoltaic panel and wind turbine. Decentralized controller is based on the Takagi-Sugeno fuzzy model and permits us to stabilize each photovoltaic panel and wind turbine in presence of disturbances and parametric uncertainties and to optimize the tracking reference which is given by the centralized controller level. The sufficient conditions stability are formulated in the format of linear matrix inequalities using the Lyapunov stability theory. The effectiveness of the proposed Strategy is finally demonstrated through a SAHPS (stand-alone hybrid power systems) to illustrate the effectiveness of the overall proposed method.

  14. HybridStore: A Cost-Efficient, High-Performance Storage System Combining SSDs and HDDs

    SciTech Connect

    Kim, Youngjae; Gupta, Aayush; Urgaonkar, Bhuvan; Piotr, Berman; Sivasubramaniam, Anand

    2011-01-01

    Unlike the use of DRAM for caching or buffering, certain idiosyncrasies of NAND Flash-based solid-state drives (SSDs) make their integration into existing systems non-trivial. Flash memory suffers from limits on its reliability, is an order of magnitude more expensive than the magnetic hard disk drives (HDDs), and can sometimes be as slow as the HDD (due to excessive garbage collection (GC) induced by high intensity of random writes). Given these trade-offs between HDDs and SSDs in terms of cost, performance, and lifetime, the current consensus among several storage experts is to view SSDs not as a replacement for HDD but rather as a complementary device within the high-performance storage hierarchy. We design and evaluate such a hybrid system called HybridStore to provide: (a) HybridPlan: improved capacity planning technique to administrators with the overall goal of operating within cost-budgets and (b) HybridDyn: improved performance/lifetime guarantees during episodes of deviations from expected workloads through two novel mechanisms: write-regulation and fragmentation busting. As an illustrative example of HybridStore s ef cacy, HybridPlan is able to nd the most cost-effective storage con guration for a large scale workload of Microsoft Research and suggest one MLC SSD with ten 7.2K RPM HDDs instead of fourteen 7.2K RPM HDDs only. HybridDyn is able to reduce the average response time for an enterprise scale random-write dominant workload by about 71% as compared to a HDD-based system.

  15. A hybrid job-shop scheduling system

    NASA Technical Reports Server (NTRS)

    Hellingrath, Bernd; Robbach, Peter; Bayat-Sarmadi, Fahid; Marx, Andreas

    1992-01-01

    The intention of the scheduling system developed at the Fraunhofer-Institute for Material Flow and Logistics is the support of a scheduler working in a job-shop. Due to the existing requirements for a job-shop scheduling system the usage of flexible knowledge representation and processing techniques is necessary. Within this system the attempt was made to combine the advantages of symbolic AI-techniques with those of neural networks.

  16. Mars Hybrid Propulsion System Trajectory Analysis. Part I; Crew Missions

    NASA Technical Reports Server (NTRS)

    Chai, Patrick R.; Merrill, Raymond G.; Qu, Min

    2015-01-01

    NASAs Human spaceflight Architecture team is developing a reusable hybrid transportation architecture in which both chemical and electric propulsion systems are used to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By combining chemical and electrical propulsion into a single space- ship and applying each where it is more effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper provides the analysis of the interplanetary segments of the three Evolvable Mars Campaign crew missions to Mars using the hybrid transportation architecture. The trajectory analysis provides departure and arrival dates and propellant needs for the three crew missions that are used by the campaign analysis team for campaign build-up and logistics aggregation analysis. Sensitivity analyses were performed to investigate the impact of mass growth, departure window, and propulsion system performance on the hybrid transportation architecture. The results and system analysis from this paper contribute to analyses of the other human spaceflight architecture team tasks and feed into the definition of the Evolvable Mars Campaign.

  17. XLPE based Al2O3-clay binary and ternary hybrid nanocomposites: self-assembly of nanoscale hybrid fillers, polymer chain confinement and transport characteristics.

    PubMed

    Jose, Josmin P; Thomas, Sabu

    2014-10-07

    Transport properties of hybrid nanoparticle based cross-linked polyethylene (XLPE)-Al2O3-clay binary and ternary nanocomposites have been investigated with special significance to the hybrid effect and synergism of hybrid nanofillers. Compiling the temperature and filler effects demonstrates the self-assembly of hybrid nanofillers in confining the polymer chain dynamics. Studies on transport mechanisms, transport coefficients, and swelling parameters confirm the superior solvent resistant properties of hybrid filler reinforced nanocomposites. Experiments confirmed the extra stability of the ternary hybrid nanocomposites against the process of solvent penetration. Thermodynamic and kinetic investigations reveal that the nanofillers are competent to alter the thermodynamic feasibility and rate constant parameters. Theoretical predictions by the Peppas-Sahlin model suggest that the diffusion process is well thought-out to be a combination of diffusion into the swollen polymer and the polymer chain relaxation process. The morphology and the network density estimation confirm the presence of filler networks and the trapped polymer chains inside them, in ternary systems, which elucidate the microstructure assisted solvent resistant properties of the ternary hybrid nanocomposites. The amount of polymer chains immobilized by the filler surface was computed from dynamic mechanical analysis and a nice correlation was established between transport characteristics and the polymer chain confinement.

  18. The Analysis of A Hybrid Cooling System - Phase 2,

    NASA Astrophysics Data System (ADS)

    Yang, Kuan-Hsiung

    During the first phase of study, the mathematical modelling and the performance of the hybrid cooling system using solid desiccants were analyzed numerically. During this phase of study, the experimental investigation was conducted which yielded successful results with 5 % deviation as compared with the operational data of available commerical dehumidifiers. Furthmore, a prototype hybrid cooling system was actually constructed in the Refrigeration & Air-Conditioning Lab of National Sun Yat-Sen University (NSYSU), which generated good correlations with 7% deviation only, as compared with the analytical results. In other words, the good correlations obtained among the math modeling, the commercial unit operational data, and the NSYSU prototype system warrant the potential applications of this system for many industrial dehumidification and drying processes.

  19. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    Nguyen Minh

    2002-03-31

    This report summarizes the work performed by Honeywell during the January 2002 to March 2002 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. For this reporting period the following activities have been carried out: {lg_bullet} Conceptual system design trade studies were performed {lg_bullet} System-level performance model was created {lg_bullet} Dynamic control models are being developed {lg_bullet} Mechanical properties of candidate heat exchanger materials were investigated {lg_bullet} SOFC performance mapping as a function of flow rate and pressure was completed

  20. Nuclear Hybrid Energy Systems: Molten Salt Energy Storage

    SciTech Connect

    P. Sabharwall; M. Green; S.J. Yoon; S.M. Bragg-Sitton; C. Stoots

    2014-07-01

    With growing concerns in the production of reliable energy sources, the next generation in reliable power generation, hybrid energy systems, are being developed to stabilize these growing energy needs. The hybrid energy system incorporates multiple inputs and multiple outputs. The vitality and efficiency of these systems resides in the energy storage application. Energy storage is necessary for grid stabilizing and storing the overproduction of energy to meet peak demands of energy at the time of need. With high thermal energy production of the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct properties. This paper will discuss the different energy storage options with the criteria for efficient energy storage set forth, and will primarily focus on different molten salt energy storage system options through a thermodynamic analysis

  1. Wind hybrid electrical supply system: behaviour simulation and sizing optimization

    NASA Astrophysics Data System (ADS)

    Notton, G.; Cristofari, C.; Poggi, P.; Muselli, M.

    2001-04-01

    Using a global approach, a wind hybrid system operation is simulated and the evolution of several parameters is analysed, such as the wasted energy, the fuel consumption and the role of the wind turbine subsystem in the global production. This analysis shows that all the energies which take part in the system operation are more dependent on the wind turbine size than on the battery storage capacity. A storage of 2 or 3 days is sufficient, because an increase in storage beyond these values does not have a notable impact on the performance of the wind hybrid system. Finally, a cost study is performed to determine the optimal configuration of the system conducive to the lowest cost of electricity production.

  2. Photovoltaic-wind hybrid system for permanent magnet DC motor

    NASA Astrophysics Data System (ADS)

    Nasir, M. N. M.; Lada, M. Y.; Baharom, M. F.; Jaafar, H. I.; Ramani, A. N.; Sulaima, M. F.

    2015-05-01

    Hybrid system of Photovoltaic (PV) - Wind turbine (WT) generation has more advantages and reliable compared to PV or wind turbine system alone. The aim of this paper is to model and design hybrid system of PV-WT supplying 100W permanent-magnet dc motor. To achieve the objective, both of PV and WT are connected to converter in order to get the same source of DC supply. Then both sources were combined and straightly connected to 100W permanent magnet dc motor. All the works in this paper is only applied in circuit simulator by using Matlab Simulink. The output produced from each converter is expected to be suit to the motor specification. The output produced from each renewable energy system is as expected to be high as it can support the motor if one of them is breakdown

  3. Method and apparatus for controlling hybrid powertrain system in response to engine temperature

    SciTech Connect

    Martini, Ryan D; Spohn, Brian L; Lehmen, Allen J; Cerbolles, Teresa L

    2014-10-07

    A method for controlling a hybrid powertrain system including an internal combustion engine includes controlling operation of the hybrid powertrain system in response to a preferred minimum coolant temperature trajectory for the internal combustion engine.

  4. Synthesis from Design Requirements of a Hybrid System for Transport Aircraft Longitudinal Control. Volume 2

    NASA Technical Reports Server (NTRS)

    Hynes, Charles S.; Hardy, Gordon H.; Sherry, Lance

    2007-01-01

    Volume I of this report presents a new method for synthesizing hybrid systems directly from desi gn requirements, and applies the method to design of a hybrid system for longitudinal control of transport aircraft. The resulting system satisfies general requirement for safety and effectiveness specified a priori, enabling formal validation to be achieved. Volume II contains seven appendices intended to make the report accessible to readers with backgrounds in human factors, flight dynamics and control, and formal logic. Major design goals are (1) system design integrity based on proof of correctness at the design level, (2) significant simplification and cost reduction in system development and certification, and (3) improved operational efficiency, with significant alleviation of human-factors problems encountered by pilots in current transport aircraft. This report provides for the first time a firm technical basis for criteria governing design and certification of avionic systems for transport aircraft. It should be of primary interest to designers of next-generation avionic systems.

  5. Graphene-based transparent electrodes for hybrid solar cells

    NASA Astrophysics Data System (ADS)

    Li, Pengfei; Chen, Caiyun; Zhang, Jie; Li, Shaojuan; Sun, Baoquan; Bao, Qiaoliang

    2014-11-01

    The graphene-based transparent and conductive films were demonstrated to be cost-effective electrodes working in organic-inorganic hybrid Schottky solar cells. Large area graphene films were produced by chemical vapor deposition (CVD) on copper foils and transferred onto glass as transparent electrodes. The hybrid solar cell devices consist of solution processed poly (3, 4-ethlenedioxythiophene): poly (styrenesulfonate) (PEDOT: PSS) which is sandwiched between silicon wafer and graphene electrode. The solar cells based on graphene electrodes, especially those doped with HNO3, has comparable performance to the reference devices using commercial indium tin oxide (ITO). Our work suggests that graphene-based transparent electrode is a promising candidate to replace ITO.

  6. Chip-scale hybrid optical sensing systems using digital signal processing.

    PubMed

    Cho, Sang-Yeon; Borah, Deva K

    2009-01-05

    We propose a novel hybrid optical sensing system for standalone, chip-scale sensing applications. The hybrid optical sensing system detects any spectral shift of the microresonator sensor output by estimating the effective refractive index using maximum likelihood estimation. The performance evaluation of the proposed hybrid sensing system in the Gaussian-noise dominant environment shows excellent estimation accuracy. This innovative approach allows fully functional integrated hybrid sensing systems, offering great potential in various chip-scale sensing applications.

  7. Monolithic formulation of electromechanical systems within the context of hybrid finite elements

    NASA Astrophysics Data System (ADS)

    Agrawal, Manish; Jog, C. S.

    2017-03-01

    In electromechanical devices, a strong coupling exists between the electromagnetic and displacement field. Due to this strong interaction, a need arises to develop a robust, fully coupled scheme for modeling electromechanical phenomena. With this goal in view, we present a monolithic numerical scheme for modeling fully coupled electromechanical systems. It is shown in the literature that for structural problems, hybrid elements that are based on a two-field variational formulation are less susceptible to locking and provide a robust numerical strategy especially for shell-type structures. Hence, we extend our monolithic formulation to the hybrid finite element framework. Our monolithic formulation is based on a total Lagrangian framework, where the eddy current and structural equations are solved on the reference configuration. Consistent linearization is performed to ensure a quadratic rate of convergence. The efficacy of the presented algorithm, and especially that of the hybrid formulation is demonstrated with the help of numerical examples.

  8. Multi-loop control strategy of a solid oxide fuel cell and micro gas turbine hybrid system

    NASA Astrophysics Data System (ADS)

    Wu, Xiao-Juan; Zhu, Xin-Jian

    2011-10-01

    Solid oxide fuel cell and micro gas turbine (SOFC/MGT) hybrid system is a promising distributed power technology. In order to ensure the system safe operation as well as long lifetime of the fuel cell, an effective control manner is expected to regulate the temperature and fuel utilization at the desired level, and track the desired power output. Thus, a multi-loop control strategy for the hybrid system is investigated in this paper. A mathematical model for the SOFC/MGT hybrid system is built firstly. Based on the mathematical model, control cycles are introduced and their design is discussed. Part load operation condition is employed to investigate the control strategies for the system. The dynamic modeling and control implementation are realized in the MATLAB/SIMULINK environment, and the simulation results show that it is feasible to build the multi-loop control methods for the SOFC/MGT hybrid system with regard to load disturbances.

  9. Experiences from the Roadrunner petascale hybrid systems

    SciTech Connect

    Kerbyson, Darren J; Pakin, Scott; Lang, Mike; Sancho Pitarch, Jose C; Davis, Kei; Barker, Kevin J; Peraza, Josh

    2010-01-01

    The combination of flexible microprocessors (AMD Opterons) with high-performing accelerators (IBM PowerXCell 8i) resulted in the extremely powerful Roadrunner system. Many challenges in both hardware and software were overcome to achieve its goals. In this talk we detail some of the experiences in achieving performance on the Roadrunner system. In particular we examine several implementations of the kernel application, Sweep3D, using a work-queue approach, a more portable Thread-building-blocks approach, and an MPI on the accelerator approach.

  10. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    SciTech Connect

    Unknown

    2002-03-01

    This report summarizes the work performed by Honeywell during the July 2001 to September 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. An internal program kickoff was held at Honeywell in Torrance, CA. The program structure was outlined and the overall technical approach for the program was presented to the team members. Detail program schedules were developed and detailed objectives were defined. Initial work has begun on the system design and pressurized SOFC operation.

  11. Gas sensors based on polyaniline/zinc oxide hybrid film for ammonia detection at room temperature

    NASA Astrophysics Data System (ADS)

    Zhu, Guotao; Zhang, Qiuping; Xie, Guangzhong; Su, Yuanjie; Zhao, Kang; Du, Hongfei; Jiang, Yadong

    2016-11-01

    Polyaniline/zinc oxide (PANI/ZnO) hybrid film based sensors have been developed for ammonia (NH3) detection at room temperature (RT). Results shows that hybrid film sensor exhibits a p-type semiconductor behavior and larger response than that of pure PANI film sensor. In the system, ZnO nanorod arrays can not only create nanoscale gap for gas diffusion but also provide abundant adsorption sites, thus leading to enhancement of response. Besides, hydrothermal time is proportional to the length of nanorods, Longer nanorods will provide efficient gap for gas diffusion, which leads to better sensitivity. This work offers a promising way to optimize sensor performance.

  12. A Shared-Electrode-Based Hybridized Electromagnetic-Triboelectric Nanogenerator.

    PubMed

    Quan, Ting; Wang, Zhong Lin; Yang, Ya

    2016-08-03

    Integration of electromagnetic generators (EMGs) and triboelectric nanogenerators (TENGs) can increase the total energy conversion efficiency from one mechanical motion by connecting the two devices in parallel after using power management circuits. A critical issue is how to realize the integration of the EMG and TENG in the same current circuits. Here, a hybridized nanogenerator, including an EMG and a TENG with the same set of electrodes, has been utilized to simultaneously scavenge mechanical energy. The hybridized nanogenerator can deliver a high output current of about 3.8 mA and a high output voltage of about 245 V when the switch in the device circuit was turned on and off, respectively. A acceleration sensor can be achieved by using the hybridized nanogenerator, where the detection sensitivities are about 143.2 V/(m/s(2)) for TENG and 291.7 μA/(m/s(2)) for EMG. The fabricated hybridized nanogenerator may have practical use for scavenging mechanical energy and self-powered acceleration sensor systems.

  13. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    SciTech Connect

    Staunton, Robert H; Ayers, Curtis William; Chiasson, J. N.; Burress, Timothy A; Marlino, Laura D

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE) - Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if

  14. Hybrid Power System for Remote Communications Stations

    DTIC Science & Technology

    1993-09-01

    hours or solar eclipse ). Furthermore, the power system should have the capability to start up and shut down smoothly. For these reasons, a storage...Research Institute, SERI/SP-755-789, Insolation Data Manual, by C.L. Knapp, October, 1980 . 25. Solar Energy Research Institute, SERI/SP-642-1037, Solar ...Energy Conference, D. Reidel Publishing Co., October 1980 . 33. Mabie, K.T., Solar Simulation Laboratory Description and Manual, Master’s Thesis, Naval

  15. Electric and hybrid vehicle system R/D

    NASA Technical Reports Server (NTRS)

    Schwartz, H. J.

    1980-01-01

    The work being done to characterize the level of current propulsion technology through component testing is described. Important interactions between the battery and the propulsion system will be discussed. Component development work, involving traction motors, motor controllers and transmissions are described and current results are presented. Studies of advanced electric and hybrid propulsion system studies are summarized and the status of propulsion system development work supported by the project is described. A strategy for fostering joint industry/government projects for commercialization of propulsion components and systems is described briefly.

  16. PV-hybrid village power systems in Amazonia

    SciTech Connect

    Warner, C.L.; Taylor, R.W.; Ribeiro, C.M.

    1996-05-01

    The Brazilian Amazon region is an ideal location for isolated mini-grid systems. Hundreds of diesel systems have been installed to supply electricity to this sparsely populated region. However, the availability of renewable energy resources makes the Amazon well-suited to renewable energy systems. This paper describes the technical aspects of two hybrid systems being installed in this region through the cooperative effort of multiple partners: U.S. Department of Energy, through NREL, and Brazilian CEPEL/Eletrobras and state electric utilities.

  17. Backstepping fuzzy-neural-network control design for hybrid maglev transportation system.

    PubMed

    Wai, Rong-Jong; Yao, Jing-Xiang; Lee, Jeng-Dao

    2015-02-01

    This paper focuses on the design of a backstepping fuzzy-neural-network control (BFNNC) for the online levitated balancing and propulsive positioning of a hybrid magnetic levitation (maglev) transportation system. The dynamic model of the hybrid maglev transportation system including levitated hybrid electromagnets to reduce the suspension power loss and the friction force during linear movement and a propulsive linear induction motor based on the concepts of mechanical geometry and motion dynamics is first constructed. The ultimate goal is to design an online fuzzy neural network (FNN) control methodology to cope with the problem of the complicated control transformation and the chattering control effort in backstepping control (BSC) design, and to directly ensure the stability of the controlled system without the requirement of strict constraints, detailed system information, and auxiliary compensated controllers despite the existence of uncertainties. In the proposed BFNNC scheme, an FNN control is utilized to be the major control role by imitating the BSC strategy, and adaptation laws for network parameters are derived in the sense of projection algorithm and Lyapunov stability theorem to ensure the network convergence as well as stable control performance. The effectiveness of the proposed control strategy for the hybrid maglev transportation system is verified by experimental results, and the superiority of the BFNNC scheme is indicated in comparison with the BSC strategy and the backstepping particle-swarm-optimization control system in previous research.

  18. Multiple model predictive control for a hybrid proton exchange membrane fuel cell system

    NASA Astrophysics Data System (ADS)

    Chen, Qihong; Gao, Lijun; Dougal, Roger A.; Quan, Shuhai

    This paper presents a hierarchical predictive control strategy to optimize both power utilization and oxygen control simultaneously for a hybrid proton exchange membrane fuel cell/ultracapacitor system. The control employs fuzzy clustering-based modeling, constrained model predictive control, and adaptive switching among multiple models. The strategy has three major advantages. First, by employing multiple piecewise linear models of the nonlinear system, we are able to use linear models in the model predictive control, which significantly simplifies implementation and can handle multiple constraints. Second, the control algorithm is able to perform global optimization for both the power allocation and oxygen control. As a result, we can achieve the optimization from the entire system viewpoint, and a good tradeoff between transient performance of the fuel cell and the ultracapacitor can be obtained. Third, models of the hybrid system are identified using real-world data from the hybrid fuel cell system, and models are updated online. Therefore, the modeling mismatch is minimized and high control accuracy is achieved. Study results demonstrate that the control strategy is able to appropriately split power between fuel cell and ultracapacitor, avoid oxygen starvation, and so enhance the transient performance and extend the operating life of the hybrid system.

  19. Bidirectional neural interface: Closed-loop feedback control for hybrid neural systems.

    PubMed

    Chou, Zane; Lim, Jeffrey; Brown, Sophie; Keller, Melissa; Bugbee, Joseph; Broccard, Frédéric D; Khraiche, Massoud L; Silva, Gabriel A; Cauwenberghs, Gert

    2015-01-01

    Closed-loop neural prostheses enable bidirectional communication between the biological and artificial components of a hybrid system. However, a major challenge in this field is the limited understanding of how these components, the two separate neural networks, interact with each other. In this paper, we propose an in vitro model of a closed-loop system that allows for easy experimental testing and modification of both biological and artificial network parameters. The interface closes the system loop in real time by stimulating each network based on recorded activity of the other network, within preset parameters. As a proof of concept we demonstrate that the bidirectional interface is able to establish and control network properties, such as synchrony, in a hybrid system of two neural networks more significantly more effectively than the same system without the interface or with unidirectional alternatives. This success holds promise for the application of closed-loop systems in neural prostheses, brain-machine interfaces, and drug testing.

  20. Systems biology by the rules: hybrid intelligent systems for pathway modeling and discovery

    PubMed Central

    Bosl, William J

    2007-01-01

    Background Expert knowledge in journal articles is an important source of data for reconstructing biological pathways and creating new hypotheses. An important need for medical research is to integrate this data with high throughput sources to build useful models that span several scales. Researchers traditionally use mental models of pathways to integrate information and development new hypotheses. Unfortunately, the amount of information is often overwhelming and these are inadequate for predicting the dynamic response of complex pathways. Hierarchical computational models that allow exploration of semi-quantitative dynamics are useful systems biology tools for theoreticians, experimentalists and clinicians and may provide a means for cross-communication. Results A novel approach for biological pathway modeling based on hybrid intelligent systems or soft computing technologies is presented here. Intelligent hybrid systems, which refers to several related computing methods such as fuzzy logic, neural nets, genetic algorithms, and statistical analysis, has become ubiquitous in engineering applications for complex control system modeling and design. Biological pathways may be considered to be complex control systems, which medicine tries to manipulate to achieve desired results. Thus, hybrid intelligent systems may provide a useful tool for modeling biological system dynamics and computational exploration of new drug targets. A new modeling approach based on these methods is presented in the context of hedgehog regulation of the cell cycle in granule cells. Code and input files can be found at the Bionet website: www.chip.ord/~wbosl/Software/Bionet. Conclusion This paper presents the algorithmic methods needed for modeling complicated biochemical dynamics using rule-based models to represent expert knowledge in the context of cell cycle regulation and tumor growth. A notable feature of this modeling approach is that it allows biologists to build complex models from

  1. Strategy and gaps for modeling, simulation, and control of hybrid systems

    SciTech Connect

    Rabiti, Cristian; Garcia, Humberto E.; Hovsapian, Rob; Kinoshita, Robert; Mesina, George L.; Bragg-Sitton, Shannon M.; Boardman, Richard D.

    2015-04-01

    The purpose of this report is to establish a strategy for modeling and simulation of candidate hybrid energy systems. Modeling and simulation is necessary to design, evaluate, and optimize the system technical and economic performance. Accordingly, this report first establishes the simulation requirements to analysis candidate hybrid systems. Simulation fidelity levels are established based on the temporal scale, real and synthetic data availability or needs, solution accuracy, and output parameters needed to evaluate case-specific figures of merit. Accordingly, the associated computational and co-simulation resources needed are established; including physical models when needed, code assembly and integrated solutions platforms, mathematical solvers, and data processing. This report first attempts to describe the figures of merit, systems requirements, and constraints that are necessary and sufficient to characterize the grid and hybrid systems behavior and market interactions. Loss of Load Probability (LOLP) and effective cost of Effective Cost of Energy (ECE), as opposed to the standard Levelized Cost of Electricty (LCOE), are introduced as technical and economical indices for integrated energy system evaluations. Financial assessment methods are subsequently introduced for evaluation of non-traditional, hybrid energy systems. Algorithms for coupled and iterative evaluation of the technical and economic performance are subsequently discussed. This report further defines modeling objectives, computational tools, solution approaches, and real-time data collection and processing (in some cases using real test units) that will be required to model, co-simulate, and optimize; (a) an energy system components (e.g., power generation unit, chemical process, electricity management unit), (b) system domains (e.g., thermal, electrical or chemical energy generation, conversion, and transport), and (c) systems control modules. Co-simulation of complex, tightly coupled

  2. Optimization of PV/WIND/DIESEL Hybrid Power System in HOMER for Rural Electrification

    NASA Astrophysics Data System (ADS)

    Hassan, Q.; Jaszczur, M.; Abdulateef, J.

    2016-09-01

    A large proportion of the world's population lives in remote rural areas that are geographically isolated and sparsely populated. The present study is based on modeling, computer simulation and optimization of hybrid power generation system in the rural area in Muqdadiyah district of Diyala state, Iraq. Two renewable resources, namely, solar photovoltaic (PV) and wind turbine (WT) are considered. The HOMER software is used to study and design the proposed hybrid energy system model. Based on simulation results, it has been found that renewable energy sources perhaps replace the conventional energy sources and would be a feasible solution for the generation of electric power at remote locations with a reasonable investment. The hybrid power system solution to electrify the selected area resulted in a least-cost combination of the hybrid power system that can meet the demand in a dependable manner at a cost about (0.321/kWh). If the wind resources in the study area at the lower stage, it's not economically viable for a wind turbine to generate the electricity.

  3. A 6-DOF vibration isolation system for hydraulic hybrid vehicles

    NASA Astrophysics Data System (ADS)

    Nguyen, The; Elahinia, Mohammad; Olson, Walter W.; Fontaine, Paul

    2006-03-01

    This paper presents the results of vibration isolation analysis for the pump/motor component of hydraulic hybrid vehicles (HHVs). The HHVs are designed to combine gasoline/diesel engine and hydraulic power in order to improve the fuel efficiency and reduce the pollution. Electric hybrid technology is being applied to passenger cars with small and medium engines to improve the fuel economy. However, for heavy duty vehicles such as large SUVs, trucks, and buses, which require more power, the hydraulic hybridization is a more efficient choice. In function, the hydraulic hybrid subsystem improves the fuel efficiency of the vehicle by recovering some of the energy that is otherwise wasted in friction brakes. Since the operation of the main component of HHVs involves with rotating parts and moving fluid, noise and vibration are an issue that affects both passengers (ride comfort) as well as surrounding people (drive-by noise). This study looks into the possibility of reducing the transmitted noise and vibration from the hydraulic subsystem to the vehicle's chassis by using magnetorheological (MR) fluid mounts. To this end, the hydraulic subsystem is modeled as a six degree of freedom (6-DOF) rigid body. A 6-DOF isolation system, consisting of five mounts connected to the pump/motor at five different locations, is modeled and simulated. The mounts are designed by combining regular elastomer components with MR fluids. In the simulation, the real loading and working conditions of the hydraulic subsystem are considered and the effects of both shock and vibration are analyzed. The transmissibility of the isolation system is monitored in a wide range of frequencies. The geometry of the isolation system is considered in order to sustain the weight of the hydraulic system without affecting the design of the chassis and the effectiveness of the vibration isolating ability. The simulation results shows reduction in the transmitted vibration force for different working cycles of

  4. SMR Handbook: Hybrid Energy Systems Involving SMRs

    SciTech Connect

    Shannon M. Bragg-Sitton

    2014-09-01

    Large-scale nuclear reactors are traditionally operated for a singular purpose: steady-state production of dispatchable baseload electricity that is distributed broadly on the electric grid. While this implementation is key to a sustainable, reliable energy grid, SMRs offer new opportunities for increased use of clean nuclear energy for both electric and thermal applications in more locations – while still accommodating the desire to support renewable production sources. This chapter considers a scenario in which renewable generation would be tightly coupled with the nuclear generation source – behind the grid – to meet the grid demand as an integrated energy system while simultaneously producing other commodities with the available thermal energy.

  5. Integrated Hybrid System Architecture for Risk Analysis

    NASA Technical Reports Server (NTRS)

    Moynihan, Gary P.; Fonseca, Daniel J.; Ray, Paul S.

    2010-01-01

    A conceptual design has been announced of an expert-system computer program, and the development of a prototype of the program, intended for use as a project-management tool. The program integrates schedule and risk data for the purpose of determining the schedule applications of safety risks and, somewhat conversely, the effects of changes in schedules on changes on safety. It is noted that the design has been delivered to a NASA client and that it is planned to disclose the design in a conference presentation.

  6. Superconducting and hybrid systems for magnetic field shielding

    NASA Astrophysics Data System (ADS)

    Gozzelino, L.; Gerbaldo, R.; Ghigo, G.; Laviano, F.; Truccato, M.; Agostino, A.

    2016-03-01

    In this paper we investigate and compare the shielding properties of superconducting and hybrid superconducting/ferromagnetic systems, consisting of cylindrical cups with an aspect ratio of height/radius close to unity. First, we reproduced, by finite-element calculations, the induction magnetic field values measured along the symmetry axis in a superconducting (MgB2) and in a hybrid configuration (MgB2/Fe) as a function of the applied magnetic field and of the position. The calculations are carried out using the vector potential formalism, taking into account simultaneously the non-linear properties of both the superconducting and the ferromagnetic material. On the basis of the good agreement between the experimental and the computed data we apply the same model to study the influence of the geometric parameters of the ferromagnetic cup as well as of the thickness of the lateral gap between the two cups on the shielding properties of the superconducting cup. The results show that in the considered non-ideal geometry, where the edge effect in the flux penetration cannot be disregarded, the superconducting shield is always the most efficient solution at low magnetic fields. However, a partial recovery of the shielding capability of the hybrid configuration occurs if a mismatch in the open edges of the two cups is considered. In contrast, at high magnetic fields the hybrid configurations are always the most effective. In particular, the highest shielding factor was found for solutions with the ferromagnetic cup protruding over the superconducting one.

  7. Hybrid silicon plasmonic organic directional coupler-based modulator

    NASA Astrophysics Data System (ADS)

    Abdelatty, M. Y.; Zaki, A. O.; Swillam, M. A.

    2017-01-01

    An optical directional coupler (ODC)-based hybrid plasmonic waveguide is designed and demonstrated with a power splitting mechanism that can be tuned by applying an external electric field. The tuning mechanism takes the advantage of electro-optic properties of the embedded polymer layer. The ODC operates under 1550 nm telecommunication wavelength. A finite element method with a perfect matching layer, absorbing boundary condition, is taken up to simulate and analyze the ODC.

  8. Nonimaging optics maximizing exergy for hybrid solar system

    NASA Astrophysics Data System (ADS)

    Winston, Roland; Jiang, Lun; Abdelhamid, Mahmoud; Widyolar, Bennett K.; Ferry, Jonathan; Cygan, David; Abbasi, Hamid; Kozlov, Alexandr; Kirk, Alexander; Elarde, Victor; Osowski, Mark

    2016-09-01

    The project team of University of California at Merced (UC-Merced), Gas Technology Institute (GTI) and MicroLink Devices Inc. (MicroLink) are developing a hybrid solar system using a nonimaging compound parabolic concentrator (CPC) that maximizes the exergy by delivering direct electricity and on-demand heat. The hybrid solar system technology uses secondary optics in a solar receiver to achieve high efficiency at high temperature, collects heat in particles and uses reflective liftoff cooled double junction (2J) InGaP/GaAs solar cells with backside infrared (IR) reflectors on the secondary optical element to raise exergy efficiency. The nonimaging optics provides additional concentration towards the high temperature thermal stream and enables it to operate efficiently at 650 °C while the solar cell is maintained at 40 °C to operate as efficiently as possible.

  9. Short-Term Planning of Hybrid Power System

    NASA Astrophysics Data System (ADS)

    Knežević, Goran; Baus, Zoran; Nikolovski, Srete

    2016-07-01

    In this paper short-term planning algorithm for hybrid power system consist of different types of cascade hydropower plants (run-of-the river, pumped storage, conventional), thermal power plants (coal-fired power plants, combined cycle gas-fired power plants) and wind farms is presented. The optimization process provides a joint bid of the hybrid system, and thus making the operation schedule of hydro and thermal power plants, the operation condition of pumped-storage hydropower plants with the aim of maximizing profits on day ahead market, according to expected hourly electricity prices, the expected local water inflow in certain hydropower plants, and the expected production of electrical energy from the wind farm, taking into account previously contracted bilateral agreement for electricity generation. Optimization process is formulated as hourly-discretized mixed integer linear optimization problem. Optimization model is applied on the case study in order to show general features of the developed model.

  10. Hybrid hydrostatic-pneumatic power generation system

    SciTech Connect

    Cassidy, J.

    1980-07-08

    A description is given of a method of utilizing the kinetic energy associated with the hydraulic head created by a dam having fluid stored behind its upstream side and open on its downstream side, comprising: (A) providing a transfer tank proximate the base of said dam, having air inlet means passing out of said fluid; (B) emptying the fluid from said transfer tank on the downstream side of said dam while simultaneously filling said transfer tank with air through said air inlet means; (C) refilling said transfer tank with fluid from the upstream side of the dam, through a water inlet in said transfer tank while isolating said air inlet means, thereby pressurizing the air located in said tansfer tank; (D) storing said pressurized air in storage tank which is interconnected to said transfer tank; and (E) withdrawing said pressurized air from said storage tank to perform work.

  11. Experimental analysis of SiC-based refractory concrete in hybrid rocket nozzles

    NASA Astrophysics Data System (ADS)

    D'Elia, Raffaele; Bernhart, Gérard; Hijlkema, Jouke; Cutard, Thierry

    2016-09-01

    Hybrid propulsion represents a good alternative to the more widely used liquid and solid systems. This technology combines some important specifications of the latters, as the possibility of re-ignition, thrust modulation, a higher specific impulse than solid systems, a greater simplicity and a lower cost than liquid systems. Nevertheless the highly oxidizing environment represents a major problem as regards the thermo-oxidation and ablative behavior of nozzle materials. The main goal of this research is to characterize a silicon carbide based micro-concrete with a maximum aggregates size of 800 μm, in a hybrid propulsion environment. The nozzle throat has to resist to a highly oxidizing polyethylene/nitrous oxide hybrid environment, under temperatures up to 2900 K. Three tests were performed on concrete-based nozzles in HERA Hybrid Rocket Motor (HRM) test bench at ONERA. Pressure chamber evolution and observations before and after tests are used to investigate the ablated surface at nozzle throat. Ablation behavior and crack generation are discussed and some improvements are proposed.

  12. A hybrid electromagnetic shock absorber for active vehicle suspension systems

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Babak; Bolandhemmat, Hamidreza; Behrad Khamesee, Mir; Golnaraghi, Farid

    2011-02-01

    The use of electromagnetic dampers (ED) in vehicle active suspension systems has drawn considerable attention in the past few years, attributed to the fact that active suspension systems have shown superior performance in improving ride comfort and road handling of terrain vehicles, compared with their passive and semi-active counterparts. Although demonstrating superb performance, active suspensions still have some shortcomings that must be overcome. They have high energy consumption, weight, and cost and are not fail-safe in case of a power breakdown. The novel hybrid ED, which is proposed in this paper, is a potential solution to the above-mentioned drawbacks of conventional active suspension systems. The proposed hybrid ED is designed to inherit the high-performance characteristics of an active ED with the reliability of a passive damper in a single package. The eddy current damping effect is utilised as a source of the passive damping. First, a prototype ED is designed and fabricated. The prototype ED is then utilised to experimentally establish the design requirements for a real-size active ED. This is accomplished by comparing its vibration isolation performance in a 1-DOF quarter-car test rig with that of a same-class semi-active damper. Then, after a real-size active ED is designed, the concept of hybrid damper is introduced to the damper design to address the drawbacks of the active ED. Finally, the finite-element method is used to accurately model and analyse the designed hybrid damper. It is demonstrated that by introducing the eddy current damping effect to the active part, a passive damping of approximately 1570 Ns/m is achieved. This amount of passive damping guarantees that the damper is fail-safe and reduces the power consumption more than 70%, compared with an active ED in an automotive active suspension system.

  13. Catalog of components for electric and hybrid vehicle propulsion systems

    NASA Technical Reports Server (NTRS)

    Eissler, H. C.

    1981-01-01

    This catalog of commercially available electric and hybrid vehicle propulsion system components is intended for designers and builders of these vehicles and contains 50 categories of components. These categories include those components used between the battery terminals and the output axle hub, as well as some auxiliary equipment. An index of the components and a listing of the suppliers and their addresses and phone numbers are included.

  14. Self-assembled Nanomaterials for Hybrid Electronic and Photonic Systems

    DTIC Science & Technology

    2015-05-15

    Self-assembled Nanomaterials for Hybrid Electronic and Photonic Systems This grant studied DNA nanostructures and their applications in a variety of...MONITORING AGENCY NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 DNA , nanoscience, self-assembly...Title This grant studied DNA nanostructures and their applications in a variety of ways, including: (1) the development of thermo-mechanical models, (2

  15. Recovery act. Development of design and simulation tool for hybrid geothermal heat pump system

    SciTech Connect

    Wang, Shaojie; Ellis, Dan

    2014-05-29

    The ground source heat pump (GSHP) system is one of the most energy efficient HVAC technologies in the current market. However, the heat imbalance may degrade the ability of the ground loop heat exchanger (GLHX) to absorb or reject heat. The hybrid GSHP system, which combines a geothermal well field with a supplemental boiler or cooling tower, can balance the loads imposed on the ground loop heat exchangers to minimize its size while retaining superior energy efficiency. This paper presents a recent simulation-based study with an intention to compare multiple common control strategies used in hybrid GSHP systems, including fixed setpoint, outside air reset, load reset, and wetbulb reset. A small office in Oklahoma City conditioned by a hybrid GSHP system was simulated with the latest version of eQUEST 3.7[1]. The simulation results reveal that the hybrid GSHP system has the excellent capability to meet the cooling and heating setpoints during the occupied hours, balance thermal loads on the ground loop, as well as improve the thermal comfort of the occupants with the undersized well field.

  16. Comparative study of control strategies for hybrid GSHP system in the cooling dominated climate

    SciTech Connect

    Wang, Shaojie; Liu, Xiaobing; Gates, Steve

    2015-01-06

    The ground source heat pump (GSHP) system is one of the most energy efficient HVAC technologies in the current market. However, the heat imbalance may degrade the ability of the ground loop heat exchanger (GLHX) to absorb or reject heat. The hybrid GSHP system, which combines a geothermal well field with a supplemental boiler or cooling tower, can balance the loads imposed on the ground loop heat exchangers to minimize its size while retaining superior energy efficiency. This paper presents a recent simulation-based study with an intention to compare multiple common control strategies used in hybrid GSHP systems, including fixed setpoint, outside air reset, load reset, and wetbulb reset. A small office in Oklahoma City conditioned by a hybrid GSHP system was simulated with the latest version of eQUEST 3.7 [1]. In the end, the simulation results reveal that the hybrid GSHP system has the excellent capability to meet the cooling and heating setpoints during the occupied hours, balance thermal loads on the ground loop, as well as improve the thermal comfort of the occupants with the reduced size well field.

  17. Comparative study of control strategies for hybrid GSHP system in the cooling dominated climate

    DOE PAGES

    Wang, Shaojie; Liu, Xiaobing; Gates, Steve

    2015-01-06

    The ground source heat pump (GSHP) system is one of the most energy efficient HVAC technologies in the current market. However, the heat imbalance may degrade the ability of the ground loop heat exchanger (GLHX) to absorb or reject heat. The hybrid GSHP system, which combines a geothermal well field with a supplemental boiler or cooling tower, can balance the loads imposed on the ground loop heat exchangers to minimize its size while retaining superior energy efficiency. This paper presents a recent simulation-based study with an intention to compare multiple common control strategies used in hybrid GSHP systems, including fixedmore » setpoint, outside air reset, load reset, and wetbulb reset. A small office in Oklahoma City conditioned by a hybrid GSHP system was simulated with the latest version of eQUEST 3.7 [1]. In the end, the simulation results reveal that the hybrid GSHP system has the excellent capability to meet the cooling and heating setpoints during the occupied hours, balance thermal loads on the ground loop, as well as improve the thermal comfort of the occupants with the reduced size well field.« less

  18. Core shell hybrids based on noble metal nanoparticles and conjugated polymers: synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Fratoddi, Ilaria; Venditti, Iole; Battocchio, Chiara; Polzonetti, Giovanni; Cametti, Cesare; Russo, Maria Vittoria

    2011-12-01

    Noble metal nanoparticles of different sizes and shapes combined with conjugated functional polymers give rise to advanced core shell hybrids with interesting physical characteristics and potential applications in sensors or cancer therapy. In this paper, a versatile and facile synthesis of core shell systems based on noble metal nanoparticles (AuNPs, AgNPs, PtNPs), coated by copolymers belonging to the class of substituted polyacetylenes has been developed. The polymeric shells containing functionalities such as phenyl, ammonium, or thiol pending groups have been chosen in order to tune hydrophilic and hydrophobic properties and solubility of the target core shell hybrids. The Au, Ag, or Pt nanoparticles coated by poly(dimethylpropargylamonium chloride), or poly(phenylacetylene-co-allylmercaptan). The chemical structure of polymeric shell, size and size distribution and optical properties of hybrids have been assessed. The mean diameter of the metal core has been measured (about 10-30 nm) with polymeric shell of about 2 nm.

  19. [Human vital function monitoring as a system with hybrid intelligence].

    PubMed

    Popov, Iu B

    2005-01-01

    Monitoring system is considered in this work as a reanimatologist-monitor-patient-medium system. This work is an upgrade to the previous concept of monitoring systems as systems with hybrid intelligence acting under variable conditions of object and medium. Human cardiorespiratory system was considered within the framework of the P. K. Anokhin theory of functional systems. The problem of resuscitation was formulated for this system and volume of required information was determined. Environment characteristics in resuscitation and surgery departments were considered. The requirements for monitor were formulated on the basis of analysis of these systems. The law of mutual adaptation of reanimatologist and monitor was put forward and safety problems associated with human factor were considered. Implementation of these principles in the MITAR 01-R-D is described.

  20. Hybrid and electric advanced vehicle systems (heavy) simulation

    NASA Technical Reports Server (NTRS)

    Hammond, R. A.; Mcgehee, R. K.

    1981-01-01

    A computer program to simulate hybrid and electric advanced vehicle systems (HEAVY) is described. It is intended for use early in the design process: concept evaluation, alternative comparison, preliminary design, control and management strategy development, component sizing, and sensitivity studies. It allows the designer to quickly, conveniently, and economically predict the performance of a proposed drive train. The user defines the system to be simulated using a library of predefined component models that may be connected to represent a wide variety of propulsion systems. The development of three models are discussed as examples.

  1. Hybrid Damping System for an Electronic Equipment Mounting Shelf

    NASA Technical Reports Server (NTRS)

    Voracek, David; Kolkailah, Faysal A.; Cavalli, J. R.; Elghandour, Eltahry

    1997-01-01

    The objective of this study was to design and construct a vibration control system for an electronic equipment shelf to be evaluated in the NASA Dryden FTF-11. The vibration control system was a hybrid system which included passive and active damping techniques. Passive damping was fabricated into the equipment shelf using ScothDamp(trademark) damping film and aluminum constraining layers. Active damping was achieved using a two channel active control circuit employing QuickPack(trademark) sensors and actuators. Preliminary Chirp test results indicated passive damping smoothed the frequency response while active damping reduced amplitudes of the frequency response for most frequencies below 500Hz.

  2. Hybrid Damping System for an Electronic Equipment Mounting Shelf

    NASA Technical Reports Server (NTRS)

    Voracek, David; Kolkailah, Faysal A.; Cavalli, J. R.; Elghandour, Eltahry

    1997-01-01

    The objective of this study was to design and construct a vibration control system for an electronic equipment shelf to be evaluated in the NASA Dryden FTF-II. The vibration control system was a hybrid system which included passive and active damping techniques. Passive damping was fabricated into the equipment shelf using ScothDamp(trademark) damping film and aluminum constraining layers. Active damping was achieved using a two channel active control circuit employing QuickPack(trademark) sensors and actuators. Preliminary Chirp test results indicated passive damping smoothed the frequency response while active damping reduced amplitudes of the frequency response for most frequencies below 500Hz.

  3. Hybrid regenerative fuel cell systems for space applications

    NASA Technical Reports Server (NTRS)

    Saucier, David R.

    1988-01-01

    This paper describes a hybrid regenerative fuel cell (RFC) system for space application, which is made up of an alkaline fuel cell (Space Shuttle fuel cell) and an acid electrolysis unit (solid polymer electrolyte). In the RFC, gas produced from the acid electrolysis unit and water produced by the alkaline fuel cell are repeatedly reacted in the other unit. The results of RFC's tests indicate that the system is feasible in terms of fluid/unit compatibility. In addition, the fuel cell thermal-control system proved capable of controlling fuel cell temperatures throughout long open-circuit periods. Diagrams of the RFC and its subsystems are included.

  4. Evaluation of the 2007 Toyota Camry Hybrid Synergy Drive System

    SciTech Connect

    Burress, T A; Coomer, C L; Campbell, S L; Seiber, L E; Marlino, L D; Staunton, R H; Cunningham, J P

    2008-04-15

    The U.S. Department of Energy (DOE) and American automotive manufacturers General Motors, Ford, and DaimlerChrysler began a five-year, cost-shared partnership in 1993. Currently, hybrid electric vehicle (HEV) research and development is conducted by DOE through its FreedomCAR and Vehicle Technologies (FCVT) program. The mission of the FCVT program is to develop more energy efficient and environmentally friendly highway transportation technologies. Program activities include research, development, demonstration, testing, technology validation, and technology transfer. These activities are aimed at developing technologies that can be domestically produced in a clean and cost-competitive manner. Under the FCVT program, support is provided through a three-phase approach [1] which is intended to: • Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry’s recommendations and requirements, then develop the appropriate technical targets for systems, subsystems, and component research and development activities; • Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and • Determine how well the components and subassemblies work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed in this area will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid electric, plug-in hybrid electric, electric, and fuel-cell-powered vehicles.

  5. Path integrals and large deviations in stochastic hybrid systems

    NASA Astrophysics Data System (ADS)

    Bressloff, Paul C.; Newby, Jay M.

    2014-04-01

    We construct a path-integral representation of solutions to a stochastic hybrid system, consisting of one or more continuous variables evolving according to a piecewise-deterministic dynamics. The differential equations for the continuous variables are coupled to a set of discrete variables that satisfy a continuous-time Markov process, which means that the differential equations are only valid between jumps in the discrete variables. Examples of stochastic hybrid systems arise in biophysical models of stochastic ion channels, motor-driven intracellular transport, gene networks, and stochastic neural networks. We use the path-integral representation to derive a large deviation action principle for a stochastic hybrid system. Minimizing the associated action functional with respect to the set of all trajectories emanating from a metastable state (assuming that such a minimization scheme exists) then determines the most probable paths of escape. Moreover, evaluating the action functional along a most probable path generates the so-called quasipotential used in the calculation of mean first passage times. We illustrate the theory by considering the optimal paths of escape from a metastable state in a bistable neural network.

  6. Design of miniature hybrid target recognition system with combination of FPGA+DSP

    NASA Astrophysics Data System (ADS)

    Luo, Shishang; Li, Xiujian; Jia, Hui; Hu, Wenhua; Nie, Yongming; Chang, Shengli

    2010-10-01

    With advantages of flexibility, high bandwidth, high spatial resolution and high-speed parallel operation, the opto-electronic hybrid target recognition system can be applied in many civil and military areas, such as video surveillance, intelligent navigation and robot vision. A miniature opto-electronic hybrid target recognition system based on FPGA+DSP is designed, which only employs single Fourier lens and with a focal length. With the precise timing control of the FPGA and images pretreatment of the DSP, the system performs both Fourier transform and inverse Fourier transform with all optical process, which can improve recognition speed and reduce the system volume remarkably. We analyzed the system performance, and a method to achieve scale invariant pattern recognition was proposed on the basis of lots of experiments.

  7. Biaxially stretchable supercapacitors based on the buckled hybrid fiber electrode array

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Zhou, Weiya; Zhang, Qiang; Luan, Pingshan; Cai, Le; Yang, Feng; Zhang, Xiao; Fan, Qingxia; Zhou, Wenbin; Xiao, Zhuojian; Gu, Xiaogang; Chen, Huiliang; Li, Kewei; Xiao, Shiqi; Wang, Yanchun; Liu, Huaping; Xie, Sishen

    2015-07-01

    In order to meet the growing need for smart bionic devices and epidermal electronic systems, biaxial stretchability is essential for energy storage units. Based on porous single-walled carbon nanotube/poly(3,4-ethylenedioxythiophene) (SWCNT/PEDOT) hybrid fiber, we designed and fabricated a biaxially stretchable supercapacitor, which possesses a unique configuration of the parallel buckled hybrid fiber array. Owing to the reticulate SWCNT film and the improved fabrication technique, the hybrid fiber retained its porous architecture both outwardly and inwardly, manifesting a superior capacity of 215 F g-1. H3PO4-polyvinyl alcohol gel with an optimized component ratio was introduced as both binder and stretchable electrolyte, which contributed to the regularity and stability of the buckled fiber array. The buckled structure and the quasi one-dimensional character of the fibers endow the supercapacitor with 100% stretchability along all directions. In addition, the supercapacitor exhibited good transparency, as well as excellent electrochemical properties and stability after being stretched 5000 times.In order to meet the growing need for smart bionic devices and epidermal electronic systems, biaxial stretchability is essential for energy storage units. Based on porous single-walled carbon nanotube/poly(3,4-ethylenedioxythiophene) (SWCNT/PEDOT) hybrid fiber, we designed and fabricated a biaxially stretchable supercapacitor, which possesses a unique configuration of the parallel buckled hybrid fiber array. Owing to the reticulate SWCNT film and the improved fabrication technique, the hybrid fiber retained its porous architecture both outwardly and inwardly, manifesting a superior capacity of 215 F g-1. H3PO4-polyvinyl alcohol gel with an optimized component ratio was introduced as both binder and stretchable electrolyte, which contributed to the regularity and stability of the buckled fiber array. The buckled structure and the quasi one-dimensional character of the

  8. Life Cycle Cost of Solar Biomass Hybrid Dryer Systems for Cashew Drying of Nuts in India

    NASA Astrophysics Data System (ADS)

    Dhanushkodi, Saravanan; Wilson, Vincent H.; Sudhakar, Kumarasamy

    2015-12-01

    Cashew nut farming in India is mostly carried out in small and marginal holdings. Energy consumption in the small scale cashew nut processing industry is very high and is mainly due to the high energy consumption of the drying process. The drying operation provides a lot of scope for energy saving and substitutions of other renewable energy sources. Renewable energy-based drying systems with loading capacity of 40 kg were proposed for application in small scale cashew nut processing industries. The main objective of this work is to perform economic feasibility of substituting solar, biomass and hybrid dryer in place of conventional steam drying for cashew drying. Four economic indicators were used to assess the feasibility of three renewable based drying technologies. The payback time was 1.58 yr. for solar, 1.32 for biomass and 1.99 for the hybrid drying system, whereas as the cost-benefit estimates were 5.23 for solar, 4.15 for biomass and 3.32 for the hybrid system. It was found that it is of paramount importance to develop solar biomass hybrid dryer for small scale processing industries.

  9. Bio-hybrid cell-based actuators for microsystems.

    PubMed

    Carlsen, Rika Wright; Sitti, Metin

    2014-10-15

    As we move towards the miniaturization of devices to perform tasks at the nano and microscale, it has become increasingly important to develop new methods for actuation, sensing, and control. Over the past decade, bio-hybrid methods have been investigated as a promising new approach to overcome the challenges of scaling down robotic and other functional devices. These methods integrate biological cells with artificial components and therefore, can take advantage of the intrinsic actuation and sensing functionalities of biological cells. Here, the recent advancements in bio-hybrid actuation are reviewed, and the challenges associated with the design, fabrication, and control of bio-hybrid microsystems are discussed. As a case study, focus is put on the development of bacteria-driven microswimmers, which has been investigated as a targeted drug delivery carrier. Finally, a future outlook for the development of these systems is provided. The continued integration of biological and artificial components is envisioned to enable the performance of tasks at a smaller and smaller scale in the future, leading to the parallel and distributed operation of functional systems at the microscale.

  10. A Novel Hybrid Statistical Particle Swarm Optimization for Multimodal Functions and Frequency Control of Hybrid Wind-Solar System

    NASA Astrophysics Data System (ADS)

    Verma, Harish Kumar; Jain, Cheshta

    2016-09-01

    In this article, a hybrid algorithm of particle swarm optimization (PSO) with statistical parameter (HSPSO) is proposed. Basic PSO for shifted multimodal problems have low searching precision due to falling into a number of local minima. The proposed approach uses statistical characteristics to update the velocity of the particle to avoid local minima and help particles to search global optimum with improved convergence. The performance of the newly developed algorithm is verified using various standard multimodal, multivariable, shifted hybrid composition benchmark problems. Further, the comparative analysis of HSPSO with variants of PSO is tested to control frequency of hybrid renewable energy system which comprises solar system, wind system, diesel generator, aqua electrolyzer and ultra capacitor. A significant improvement in convergence characteristic of HSPSO algorithm over other variants of PSO is observed in solving benchmark optimization and renewable hybrid system problems.

  11. Visual, base-specific detection of nucleic acid hybridization using polymerization-based amplification.

    PubMed

    Hansen, Ryan R; Johnson, Leah M; Bowman, Christopher N

    2009-03-15

    Polymerization-based signal amplification offers sensitive visualization of biotinylated biomolecules functionalized to glass microarrays in a manner suitable for point-of-care use. Here we report using this method for visual detection of multiplexed nucleic acid hybridizations from complex media and develop an application toward point mutation detection and single nucleotide polymorphism (SNP) typing. Primer extension reactions were employed to label selectively and universally all complementary surface DNA hybrids with photoinitiators, permitting simultaneous and dynamic photopolymerization from positive sites to 0.5-nM target concentrations. Dramatic improvements in signal ratios between complementary and mismatched hybrids enabled visual discrimination of single base differences in KRAS codon-12 biomarkers.

  12. Design and synthesis of novel polyglycerol hybrid nanomaterials for potential applications in drug delivery systems.

    PubMed

    Zarrabi, Ali; Adeli, Mohsen; Vossoughi, Manouchehr; Shokrgozar, Mohammad Ali

    2011-03-10

    The synthesis of a new drug delivery system based on hybrid nanomaterials containing a β-CD core and hyperbranched PG is described. Conjugating PG branches onto β-CD not only increases its water solubility but also affects its host/guest properties deeply. It can form molecular inclusion complexes with small hydrophobic guest molecules such as ferrocene or FITC with reasonable release. In addition, the achievable payloads are significantly higher as for carriers such as hyperbranched PGs. Short-term in vitro cytotoxicity and hemocompatibility tests on L929 cell lines show that the hybrid nanomaterial is highly biocompatible. Due to their outstanding properties, β-CD-g-PG hybrid nanomaterials are introduced as promising materials for nanomedicine, e.g., for drug delivery issues.

  13. An optimal control strategy for standalone PV system with Battery-Supercapacitor Hybrid Energy Storage System

    NASA Astrophysics Data System (ADS)

    Chong, Lee Wai; Wong, Yee Wan; Rajkumar, Rajprasad Kumar; Isa, Dino

    2016-11-01

    This paper proposes an optimal control strategy for a standalone PV system with Battery-Supercapacitor Hybrid Energy Storage System to prolong battery lifespan by reducing the dynamic stress and peak current demand of the battery. Unlike the conventional methods which only use either filtration based controller (FBC) or fuzzy logic controller (FLC), the proposed control strategy comprises of a low-pass filter (LPF) and FLC. Firstly, LPF removes the high dynamic components from the battery demand. FLC minimizes the battery peak current demand while constantly considering the state-of-charge of the supercapacitor. Particle swarm optimization (PSO) algorithm optimizes the membership functions of the FLC to achieve optimal battery peak current reduction. The proposed system is compared to the conventional system with battery-only storage and the systems with conventional control strategies (Rule Based Controller and FBC). The proposed system reduces the battery peak current, battery peak power, maximum absolute value of the rate of change of power and average absolute value of the rate of change of power by 16.05%, 15.19%, 77.01%, and 95.59%, respectively as compared to the conventional system with battery-only storage. Moreover, he proposed system increases the level of supercapacitor utilization up to 687.122% in comparison to the conventional control strategies.

  14. Issues regarding the modelling and simulation of hybrid micro grid systems

    NASA Astrophysics Data System (ADS)

    Szeidert, I.; Filip, I.; Prostean, O.

    2016-02-01

    The main followed objectives within control strategies dedicated to hybrid micro grid systems (wind/hydro/solar), that operate based on maximum power point tracking (MPPT) techniques are to improve the conversion systems efficiency and to maintain the quality of the produced electrical energy (the voltage and power factor control). One of the main goals of maximum power point tracking strategy is to achieve the harvesting of the maximal possible energy within a pre-set time period. In order to implement the control strategies for micro grid systems that operate at time variable parameter, there are usually required specific transducers (anemometer for wind speed measurement, optical rotational transducers, taco generators, etc.). In the technical literature there are presented several variants of the MPPT techniques, which are particularized at several applications (wind energy conversion systems, solar systems, hydro plants and micro grid hybrid systems). The maximum power point tracking implementations are mainly based on two-level architecture. The inferior level controls the primary variables, while the superior level represents the MPPT control structure. In the paper, authors present some micro grid structures proposed at Politehnica University Timisoara within the frame of a research grant. The paper is focused on the application of MPPT strategies on hybrid micro grid systems. There are presented several structures and control strategies and are highlighted their advantages and disadvantages, together with practical implementation guidelines.

  15. Development of a PET/Cerenkov-light hybrid imaging system

    SciTech Connect

    Yamamoto, Seiichi Hamamura, Fuka; Kato, Katsuhiko; Ogata, Yoshimune; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Hatazawa, Jun; Watabe, Hiroshi

    2014-09-15

    Purpose: Cerenkov-light imaging is a new molecular imaging technology that detects visible photons from high-speed electrons using a high sensitivity optical camera. However, the merit of Cerenkov-light imaging remains unclear. If a PET/Cerenkov-light hybrid imaging system were developed, the merit of Cerenkov-light imaging would be clarified by directly comparing these two imaging modalities. Methods: The authors developed and tested a PET/Cerenkov-light hybrid imaging system that consists of a dual-head PET system, a reflection mirror located above the subject, and a high sensitivity charge coupled device (CCD) camera. The authors installed these systems inside a black box for imaging the Cerenkov-light. The dual-head PET system employed a 1.2 × 1.2 × 10 mm{sup 3} GSO arranged in a 33 × 33 matrix that was optically coupled to a position sensitive photomultiplier tube to form a GSO block detector. The authors arranged two GSO block detectors 10 cm apart and positioned the subject between them. The Cerenkov-light above the subject is reflected by the mirror and changes its direction to the side of the PET system and is imaged by the high sensitivity CCD camera. Results: The dual-head PET system had a spatial resolution of ∼1.2 mm FWHM and sensitivity of ∼0.31% at the center of the FOV. The Cerenkov-light imaging system's spatial resolution was ∼275μm for a {sup 22}Na point source. Using the combined PET/Cerenkov-light hybrid imaging system, the authors successfully obtained fused images from simultaneously acquired images. The image distributions are sometimes different due to the light transmission and absorption in the body of the subject in the Cerenkov-light images. In simultaneous imaging of rat, the authors found that {sup 18}F-FDG accumulation was observed mainly in the Harderian gland on the PET image, while the distribution of Cerenkov-light was observed in the eyes. Conclusions: The authors conclude that their developed PET/Cerenkov-light hybrid

  16. Intelligent uninterruptible power supply system with back-up fuel cell/battery hybrid power source

    NASA Astrophysics Data System (ADS)

    Zhan, Yuedong; Guo, Youguang; Zhu, Jianguo; Wang, Hua

    2008-05-01

    This paper presents the development of an intelligent uninterruptible power supply (UPS) system with a hybrid power source that comprises a proton-exchange membrane fuel cell (PEMFC) and a battery. Attention is focused on the architecture of the UPS hybrid system and the data acquisition and control of the PEMFC. Specifically, the hybrid UPS system consists of a low-cost 60-cell 300 W PEMFC stack, a 3-cell lead-acid battery, an active power factor correction ac-dc rectifier, a half-bridge dc-ac inverter, a dc-dc converter, an ac-dc charger and their control units based on a digital signal processor TMS320F240, other integrated circuit chips, and a simple network management protocol adapter. Experimental tests and theoretical studies are conducted. First, the major parameters of the PEMFC are experimentally obtained and evaluated. Then an intelligent control strategy for the PEMFC stack is proposed and implemented. Finally, the performance of the hybrid UPS system is measured and analyzed.

  17. Quantum dot-based organic-inorganic hybrid materials for optoelectronic applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, Kwang-Sup

    2016-10-01

    Our recent research involves the design, characterization and testing of devices constituting low bandgap conjugated polymers, surface-engineered quantum dots (QDs), carbon nanotube (CNT)-QDs, QDs decorated nanowires, and QD coupled conjugated polymers. The resulting hybrid materials can be used for facilitating the charge/energy transfer and enhancing the charge carrier mobility in highly efficient optoelectronic and photonic devices. Exploiting the full potential of quantum dots (QDs) in optoelectronic devices require efficient mechanisms for transfer of energy or electrons produced in the optically excited QDs. We propose semiconducting π-conjugated molecules as ligands to achieve energy or charge transfer. The hybridization of p-type π-conjugated molecules to the surface of n-type QDs can induce distinct luminescence and charge transport characteristics due to energy and/or charge transfer effects. QDs and π-conjugated molecule hybrids with controlled luminescent properties can be used for new active materials for light-emitting diodes and flexible displays. In addition, such hybrid systems with enhanced charge transfer efficiency can be used for nanoscale photovoltaic devices. We have also explored single nanoparticle based electronics using QDs and π-conjugated molecule hybrids with molecular-scale n-p or n-insulating (ins)-p-heterojunction structures.

  18. Characterization of hybrid lighting systems of the Electrical Engineering Building in the Industrial University of Santander

    NASA Astrophysics Data System (ADS)

    Galvis, D.; Exposito, C.; Osma, G.; Amado, L.; Ordóñez, G.

    2016-07-01

    This paper presents an analysis of hybrid lighting systems of Electrical Engineering Building in the Industrial University of Santander, which is a pilot of green building for warm- tropical conditions. Analysis of lighting performance of inner spaces is based on lighting curves obtained from characterization of daylighting systems of these spaces. A computation tool was made in Excel-Visual Basic to simulate the behaviour of artificial lighting system considering artificial control system, user behaviour and solar condition. Also, this tool allows to estimate the electrical energy consumption of the lighting system for a day, a month and a year.

  19. Hybrid Plasma Reactor/Filter for Transportable Collective Protection Systems

    SciTech Connect

    Josephson, Gary B.; Tonkyn, Russell G.; Frye, J. G.; Riley, Brian J.; Rappe, Kenneth G.

    2011-04-06

    Pacific Northwest National Laboratory (PNNL) has performed an assessment of a Hybrid Plasma/Filter system as an alternative to conventional methods for collective protection. The key premise of the hybrid system is to couple a nonthermal plasma (NTP) reactor with reactive adsorption to provide a broader envelope of protection than can be provided through a single-solution approach. The first step uses highly reactive species (e.g. oxygen radicals, hydroxyl radicals, etc.) created in a nonthermal plasma (NTP) reactor to destroy the majority (~75% - 90%) of an incoming threat. Following the NTP reactor an O3 reactor/filter uses the O3 created in the NTP reactor to further destroy the remaining organic materials. This report summarizes the laboratory development of the Hybrid Plasma Reactor/Filter to protect against a ‘worst-case’ simulant, methyl bromide (CH3Br), and presents a preliminary engineering assessment of the technology to Joint Expeditionary Collective Protection performance specifications for chemical vapor air purification technologies.

  20. Hybrid architecture for encoded measurement-based quantum computation

    PubMed Central

    Zwerger, M.; Briegel, H. J.; Dür, W.

    2014-01-01

    We present a hybrid scheme for quantum computation that combines the modular structure of elementary building blocks used in the circuit model with the advantages of a measurement-based approach to quantum computation. We show how to construct optimal resource states of minimal size to implement elementary building blocks for encoded quantum computation in a measurement-based way, including states for error correction and encoded gates. The performance of the scheme is determined by the quality of the resource states, where within the considered error model a threshold of the order of 10% local noise per particle for fault-tolerant quantum computation and quantum communication. PMID:24946906

  1. Hybridizing Gravitationl Waveforms of Inspiralling Binary Neutron Star Systems

    NASA Astrophysics Data System (ADS)

    Cullen, Torrey; LIGO Collaboration

    2016-03-01

    Gravitational waves are ripples in space and time and were predicted to be produced by astrophysical systems such as binary neutron stars by Albert Einstein. These are key targets for Laser Interferometer and Gravitational Wave Observatory (LIGO), which uses template waveforms to find weak signals. The simplified template models are known to break down at high frequency, so I wrote code that constructs hybrid waveforms from numerical simulations to accurately cover a large range of frequencies. These hybrid waveforms use Post Newtonian template models at low frequencies and numerical data from simulations at high frequencies. They are constructed by reading in existing Post Newtonian models with the same masses as simulated stars, reading in the numerical data from simulations, and finding the ideal frequency and alignment to ``stitch'' these waveforms together.

  2. Research and application of a hybrid model based on dynamic fuzzy synthetic evaluation for establishing air quality forecasting and early warning system: A case study in China.

    PubMed

    Xu, Yunzhen; Du, Pei; Wang, Jianzhou

    2017-04-01

    As the atmospheric environment pollution has been becoming more and more serious in China, it is highly desirable to develop a scientific and effective early warning system that plays a great significant role in analyzing and monitoring air quality. However, establishing a robust early warning system for warning the public in advance and ameliorating air quality is not only an extremely challenging task but also a public concerned problem for human health. Most previous studies are focused on improving the prediction accuracy, which usually ignore the significance of uncertainty information and comprehensive evaluation concerning air pollutants. Therefore, in this paper a novel robust early warning system was successfully developed, which consists of three modules: evaluation module, forecasting module and characteristics estimating module. In this system, a new dynamic fuzzy synthetic evaluation is proposed and applied to determine air quality levels and primary pollutants, which can be regarded as the research objectives; Moreover, to further mine and analyze the characteristics of air pollutants, four different distribution functions and interval forecasting method are also employed that can not only provide predictive range, confidence level and the other uncertain information of the pollutants future values, but also assist decision-makers in reducing and controlling the emissions of atmospheric pollutants. Case studies utilizing hourly PM2.5, PM10 and SO2 data collected from Tianjin and Shanghai in China are applied as illustrative examples to estimate the effectiveness and efficiency of the proposed system. Experimental results obviously indicated that the developed novel early warning system is much suitable for analyzing and monitoring air pollution, which can also add a novel viable option for decision-makers.

  3. Hybrid-integrated prism array optoelectronic targeting system

    NASA Astrophysics Data System (ADS)

    Chang, C. C.; Chang, H. C.; Tang, L. C.; Young, W. K.; Wang, J. C.; Huang, K. L.

    2005-11-01

    This investigation proposes a cost-effective, compact, and robust optoelectronic targeting system for measuring ballistic impact velocity and the distribution of projectile motion. The major elements of this system are four photo-gates hybridized by compound one-dimensional prism array and analog/digital electronic components. The number of light sources and photodetectors used in a photo-gate was reduced to one pair of light source and photodetector. The average velocity and location of the projectile are determined according to the measured time intervals ( ˜10 -8 s) passing each pair. The system can accurately measure the velocity of a bullet as it leaves a gun barrel, as well as the velocity at specific points along the trajectory outside the firearm. Additionally, the system uses a widespread low-powered laser pointer as a light source. Compared with other optoelectronic targeting systems that use high-powered lasers, the proposed system is both economical and safe.

  4. Nuclear Hybrid Energy Systems: Imperatives, Prospects, and Challenges

    SciTech Connect

    Steven E. Aumeier

    2010-10-01

    As global population reaches an expected 8 billion people by 2030, primary energy consumption is expected to increase by almost 40% from approximately 520 exajoules consumed today to almost 740 exajoules. Much of this increase is expected to come from non-Organization for Economic Cooperation and Development (OECD) nations, and Asia specifically. In these economies, energy used for transportation is expected to grow substantially, as is industrial, commercial and to a lesser degree residential energy use, creating considerable pressure on global and local energy markets. The magnitude and timing of growth in energy consumption likely will create a global imperative to deploy energy production technologies that balance the three pillars of energy security: • economic stability – related to the affordability of energy products, stability and predictability in their price, and the efficient and effective deployment of global capital resources in their development; • environmental sustainability – related to minimizing the negative impacts of energy production to air, land, and water systems and advancing the long-term viability of using a particular resource in a way that does not limit future generations ability to prosper; • resource security – related to the ability to access energy resources and products where and when necessary, in an affordable and predictable manner. One approach to meeting these objectives is hybrid energy systems (HES). Broadly described, HES are energy product production plants that take two or more energy resource inputs (typically includes both carbon and non-carbon based sources) and produce two or more energy products (e.g. electricity, liquid transportation fuels, industrial chemicals) in an integrated plant. Nuclear energy integration into HES offers intriguing potential, particularly if smaller (<300 MWe) reactors are available. Although the concept of using nuclear energy in a variety of non-electrical process

  5. Efficiency and Loss Models for Key Electronic Components of Hybrid and Plug-in Hybrid Electric Vehicles' Electrical Propulsion Systems

    SciTech Connect

    Cao, J.; Bharathan, D.; Emadi, A.

    2007-01-01

    Isolated gate bipolar transistors (IGBTs) are widely used in power electronic applications including electric, hybrid electric, and plug-in hybrid electric vehicles (EVs, HEVs, and PHEVs). The trend towards more electric vehicles (MEVs) has demanded the need for power electronic devices capable of handling power in the range of 10-100 kW. However, the converter losses in this power range are of critical importance. Therefore, thermal management of the power electronic devices/converters is crucial for the reliability and longevity of the advanced vehicles. To aid the design of heat exchangers for the IGBT modules used in propulsion motor drives, a loss model for the IGBTs is necessary. The loss model of the IGBTs will help in the process of developing new heat exchangers and advanced thermal interface materials by reducing cost and time. This paper deals with the detailed loss modeling of IGBTs for advanced electrical propulsion systems. An experimental based loss model is proposed. The proposed loss calculation method utilizes the experimental data to reconstruct the loss surface of the power electronic devices by means of curve fitting and linear extrapolating. This enables the calculation of thermal losses in different voltage, current, and temperature conditions of operation. To verify the calculation method, an experimental test set-up was designed and built. The experimental set-up is an IGBT based bi-directional DC/DC converter. In addition, simulation results are presented to verify the proposed calculation method.

  6. Polyionic hybrid nano-engineered systems comprising alginate and chitosan for antihypertensive therapeutics.

    PubMed

    Niaz, Taskeen; Nasir, Habib; Shabbir, Saima; Rehman, Asma; Imran, Muhammad

    2016-10-01

    Hydrophobic nature of virtually all antihypertensive (AHT) drugs is the major hindrance towards their oral administration. Current study focuses on the development of polyionic hybrid nano drug delivery systems comprising sodium alginate and chitosan, loaded with distinct AHT drugs (captopril, amlodipine and valsartan). Encapsulation efficiency of hybrid NCS increased in the order of amlodipine>valsartan>captopril with average value of 42±0.9%, 91±1.5% and 96±1.9%, respectively. Scanning electron microscopy revealed hybrid NCS with smooth topography and round appearance in case of captopril. FTIR analysis confirmed the cross-linking between amino and carboxylate group of chitosan and alginate to form polyionic structures at nano-scale. Zeta-sizer experiments revealed that particle size distribution had increased from 197±12nm to 341±15nm for void and captopril loaded NCS. However, highly positive zeta potential of +32±1.6mV was not decreased significantly. In vitro sustained release assays reflected excellent retention of AHT drug in hybrid nanoparticles at 4°C and 37°C in physiological buffer, as less than 8% of the total drug was released in first 24h. Thus, carbohydrate-based hybrid NCS offering high loading capacity, stability and sustained release of hydrophobic drugs can be excellent alternative to current AHT therapeutics.

  7. The establishment of a library screening method based on yeast two-hybrid system and its use to determine the potential interactions of liver proteins in ayu, Plecoglossus altivelis.

    PubMed

    Shi, Y H; Chen, J; Li, C H; Yang, H Y; Lu, X J

    2011-01-01

    Knowledge of specific protein-protein interaction (PPI) is an important component in understanding biological processes and regulatory mechanisms. A library to library screening method (LLS) was established based on yeast two-hybrid (YTH) system in this research, and applied to study the PPIs in ayu liver. In total, 23 out of 55 interaction pairs were found positive through phenotypic identification, with a positive rate of 41.8%. Of the 11 unique PPIs, 9 interactions including FGB/FGG, CaM/Spna2, C9/Apo-AI-1, α₂M/Ft, RPL10/RPL5, C8α/C9, FGG/Apo-AI-1, LECT2/Tf, and Apo-AI-2/C9 were previously reported. The other two PPIs including FGG/CLR and Wap65/C3 are novel, and in vitro co-immunoprecipitation (co-IP) experiments further confirmed these interactions. FGG/CLR interaction might play a role in regulating the inflammatory response. The interaction between Wap65 and C3 hints that Wap65 might function through the complement activation pathways when microbial infection occurs.

  8. Periodic orbits of hybrid systems and parameter estimation via AD.

    SciTech Connect

    Guckenheimer, John.; Phipps, Eric Todd; Casey, Richard

    2004-07-01

    a definition of hybrid systems that is the basis for modeling systems with discontinuities or discrete transitions. Sections 2, 3, and 4 briefly describe the Taylor series integration, periodic orbit tracking, and parameter estimation algorithms. For full treatments of these algorithms, we refer the reader to [Phi03, Cas04, CPG04]. The software implementation of these algorithms is briefly described in Section 5 with particular emphasis on the automatic differentiation software ADMC++. Finally, these algorithms are applied to the bipedal walking and Hodgkin-Huxley based neural oscillation problems discussed above in Section 6.

  9. Hybrid integrated photonic components based on a polymer platform

    NASA Astrophysics Data System (ADS)

    Eldada, Louay A.

    2003-06-01

    We report on a polymer-on-silicon optical bench platform that enables the hybrid integration of elemental passive and active optical functions. Planar polymer circuits are produced photolithographically, and slots are formed in them for the insertion of chips and films of a variety of materials. The polymer circuits provide interconnects, static routing elements such as couplers, taps, and multi/demultiplexers, as well as thermo-optically dynamic elements such as switches, variable optical attenuators, and tunable notch filters. Crystal-ion-sliced thin films of lithium niobate are inserted in the polymer circuit for polarization control or for electro-optic modulation. Films of yttrium iron garnet and neodymium iron boron magnets are inserted in order to magneto-optically achieve non-reciprocal operation for isolation and circulation. Indium phosphide and gallium arsenide chips are inserted for light generation, amplification, and detection, as well as wavelength conversion. The functions enabled by this multi-material platform span the range of the building blocks needed in optical circuits, while using the highest-performance material system for each function. We demonstrated complex-functionality photonic components based on this technology, including a metro ring node module and a tunable optical transmitter. The metro ring node chip includes switches, variable optical attenuators, taps, and detectors; it enables optical add/drop multiplexing, power monitoring, and automatic load balancing, and it supports shared and dedicated protection protocols in two-fiber metro ring optical networks. The tunable optical transmitter chip includes a tunable external cavity laser, an isolator, and a high-speed modulator.

  10. Hybrid photovoltaic-thermoelectric system for concentrated solar energy conversion: Experimental realization and modeling

    NASA Astrophysics Data System (ADS)

    Beeri, Ofer; Rotem, Oded; Hazan, Eden; Katz, Eugene A.; Braun, Avi; Gelbstein, Yaniv

    2015-09-01

    An experimental demonstration of the combined photovoltaic (PV) and thermoelectric conversion of concentrated sunlight (with concentration factor, X, up to ˜300) into electricity is presented. The hybrid system is based on a multi-junction PV cell and a thermoelectric generator (TEG). The latter increases the electric power of the system and dissipates some of the excessive heat. For X ≤ 200, the system's maximal efficiency, ˜32%, was mostly due to the contribution from the PV cell. With increasing X and system temperature, the PV cell's efficiency decreased while that of the TEG increased. Accordingly, the direct electrical contribution of the TEG started to dominate in the total system power, reaching ˜20% at X ≈ 290. Using a simple steady state finite element modeling, the cooling effect of the TEG on the hybrid system's efficiency was proved to be even more significant than its direct electrical contribution for high solar concentrations. As a result, the total efficiency contribution of the TEG reached ˜40% at X ≈ 200. This suggests a new system optimization concept that takes into account the PV cell's temperature dependence and the trade-off between the direct electrical generation and cooling capabilities of the TEG. It is shown that the hybrid system has a real potential to exceed 50% total efficiency by using more advanced PV cells and TE materials.

  11. Hybrid photovoltaics based on semiconductor nanocrystals and amorphous silicon.

    PubMed

    Sun, Baoquan; Findikoglu, Alp T; Sykora, Milan; Werder, Donald J; Klimov, Victor I

    2009-03-01

    Semiconductor nanocrystals (NCs) are promising materials for applications in photovoltaic (PV) structures that could benefit from size-controlled tunability of absorption spectra, the ease of realization of various tandem architectures, and, perhaps, increased conversion efficiency in the ultraviolet region through carrier multiplication. The first practical step toward utilization of the unique properties of NCs in PV technologies could be through their integration into traditional silicon-based solar cells. Here, we demonstrate an example of such hybrid PV structures that combine colloidal NCs with amorphous silicon. In these structures, NCs and silicon are electronically coupled, and the regime of this coupling can be tuned by altering the alignment of NC energy states with regard to silicon band edges. For example, using wide-gap CdSe NCs we demonstrate a photoresponse which is exclusively due to the NCs. On the other hand, in devices comprising narrow-gap PbS NCs, both the NCs and silicon contribute to photocurrent, which results in PV response extending from the visible to the near-infrared region. The hybrid silicon/PbS NC solar cells show external quantum efficiencies of approximately 7% at infrared energies and 50% in the visible and a power conversion efficiency of up to 0.9%. This work demonstrates the feasibility of hybrid PV devices that combine advantages of mature silicon fabrication technologies with the unique electronic properties of semiconductor NCs.

  12. Hybrid Thin Films Based Upon Polyoxometalates-Polymer Assembly

    NASA Astrophysics Data System (ADS)

    Qi, Na; Jing, Benxin; Zhu, Yingxi

    2014-03-01

    Block copolymers (BCPs) and polyoxometalates (POMs) have been used individually as building blocks for design and synthesis of novel functional materials. POM nanoclusters, the assemblies of transition metal oxides with well-defined atomic coordination structure, have been recently explored as novel nanomaterials... for catalysis, semiconductors, and even anti-cancer treatment due to their unique chemical, optical and electrical characteristics. We have explored the blending of inorganic POM nanocluster with BCPs into hierarchaically structured inorganic-organic hybrid nanocomposites. Using polystyrene-b-poly(ethylene oxide) (PS-b-PEO) thin films as the template, we have observed that the spatial organization of BCP thin films is modified by molybdenum based POM nanocluster to form 2D in-plane hexagonal ordered or 3D ordered network of POM-BCP assemblies, depending on the concentration ratio of POM to PS-b-PEO. The dielectric properties of such hybrid thin films can be enhanced by embedded POMs but show a strong dependence on the supramolecular structures of POM-polymer complexes. The assembly of nanoclusters in BCP-templated thin films could pave a new path to design new hybrid nanocomposites with uniquely combined functionality and material properties.

  13. Polymer waveguide based hybrid opto-electric integration technology

    NASA Astrophysics Data System (ADS)

    Mao, Jinbin; Deng, Lingling; Jiang, Xiyan; Ren, Rong; Zhai, Yumeng; Wang, Jin

    2014-10-01

    While monolithic integration especially based on InP appears to be quite an expensive solution for optical devices, hybrid integration solutions using cheaper material platforms are considered powerful competitors because of the high freedom of design, yield optimization and relative cost-efficiency. Among them, the polymer planar-lightwave circuit (PLC) technology is regarded attractive as polymer offers the potential of fairly simple and low-cost fabrication, and of low-cost packaging. In our work, polymer PLC was fabricated by using the standard reactive ion etching (RIE) technique, while other active and passive devices can be integrated on the polymer PLC platform. Exemplary polymer waveguide devices was a 13-channel arrayed waveguide grating (AWG) chip, where the central channel cross-talk was below -30dB and the polarization dependent frequency shift was mitigated by inserting a half wave plate. An optical 900 hybrid was also realized with one 2×4 multi-mode interferometer (MMI). The excess insertion losses are below 4dB for the C-band, while the transmission imbalance is below 1.2dB. When such an optical hybrid was integrated vertically with mesa-type photodiodes, the responsivity of the individual PD was around 0.06 A/W, while the 3 dB bandwidth reaches 24 ~ 27 GHz, which is sufficient for 100Gbit/s receivers. Another example of the hybrid integration was to couple the polymer waveguides to fiber by applying fiber grooves, whose typical loss value was 0.2 dB per-facet over a broad spectral range from 1200-1600 nm.

  14. Hybrid control and acquisition system for remote control systems for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Garufi, Fabio; Acernese, Fausto; Boiano, Alfonso; De Rosa, Rosario; Romano, Rocco; Barone, Fabrizio

    2008-10-01

    In this paper we describe the architecture and the performances of a hybrid modular acquisition and control system prototype for environmental monitoring and geophysics. The system, an alternative to a VME-UDP/IP based system, is based on a dual-channel 18-bit low noise ADC and a 16-bit DAC module at 1 MHz. The module can be configured as stand-alone or mounted on a motherboard as mezzanine. Both the modules and the motherboard can send/receive the configuration and the acquired/correction data for control through a standard EPP parallel port to a standard PC for the real-time computation. The tests have demonstrated that a distributed control systems based on this architecture exhibits a delay time of less than 25 us on a single channel, i.e a sustained sampling frequency of more than 40 kHz (and up to 80 kHz). The system is now under extensive test in the remote controls of seismic sensors (to simulate a geophysics networks of sensors) of a large baseline suspended Michelson interferometer.

  15. Hybrid control and acquisition system for remote control systems for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Garufi, Fabio; Acernese, Fausto; Boiano, Alfonso; De Rosa, Rosario; Romano, Rocco; Barone, Fabrizio

    2008-03-01

    In this paper we describe the architecture and the performances of a hybrid modular acquisition and control system prototype for environmental monitoring and geophysics. The system, an alternative to a VME-UDP/IP based system, is based on a dual-channel 18-bit low noise ADC and a 16-bit DAC module at 1 MHz. The module can be configured as stand-alone or mounted on a motherboard as mezzanine. Both the modules and the motherboard can send/receive the configuration and the acquired/correction data for control through a standard EPP parallel port to a standard PC for the real-time computation. The tests have demonstrated that a distributed control systems based on this architecture exhibits a delay time of less than 25 us on a single channel, i.e a sustained sampling frequency of more than 40 kHz (and up to 80 kHz). The system is now under extensive test in the remote controls of seismic sensors (to simulate a geophysics networks of sensors) of a large baseline suspended Michelson interferometer.

  16. Controlling Chaos of Hybrid Systems by Variable Threshold Values

    NASA Astrophysics Data System (ADS)

    Ito, Daisuke; Ueta, Tetsushi; Kousaka, Takuji; Imura, Jun'ichi; Aihara, Kazuyuki

    We try to stabilize unstable periodic orbits embedded in a given chaotic hybrid dynamical system by a perturbation of a threshold value. In conventional chaos control methods, a control input is designed by state-feedback, which is proportional to the difference between the target orbit and the current state, and it is applied to a specific system parameter or the state as a small perturbation. During a transition state, the control system consumes a certain control energy given by the integration of such perturbations. In our method, we change the threshold value dynamically to control the chaotic orbit. Unlike the OGY method and the delayed feedback control, no actual control input is added into the system. The state-feedback is utilized only to determine the dynamic threshold value, thus the orbit starting from the current threshold value reaches the next controlled threshold value without any control energy. We obtain the variation of the threshold value from the composite Poincaré map, and the controller is designed by the linear feedback theory with this variation. We demonstrate this method in simple hybrid chaotic systems and show its control performances by evaluating basins of attraction.

  17. A novel male sterility-fertility restoration system in plants for hybrid seed production.

    PubMed

    Singh, Surendra Pratap; Singh, Sudhir P; Pandey, Tripti; Singh, Ram Rakshpal; Sawant, Samir V

    2015-06-15

    Hybrid seeds are used for stimulated crop production, as they harness heterosis. The achievement of complete male-sterility in the female-parent and the restored-fertility in F1-hybrids are the major bottlenecks in the commercial hybrid seed production. Here, we report a male sterility-fertility restoration system by engineering the in most nutritive anther wall layer tapetum of female and male parents. In the female parent, high-level, and stringent expression of Arabidopsis autophagy-related gene BECLIN1 was achieved in the tapetum, which altered the tapetal degeneration program, leading to male sterility. This works on our previously demonstrated expression cassette based on functional complementation of TATA-box mutant (TGTA) promoter and TATA-binding protein mutant3 (TBPm3), with modification by conjugating Long Hypocotyle in Far-Red1 fragment (HFR1(NT131)) with TBPm3 (HFR1(NT131)-TBPm3) to exercise regulatory control over it. In the male parent, tapetum-specific Constitutive photo-morphogenesis1 (COP1) was expressed. The F1 obtained by crossing these engineered parents showed decreased BECLIN1 expression, which was further completely abolished when COP1-mutant (COP1(L105A)) was used as a male parent, leading to normal tapetal development and restored fertility. The system works on COP1-HFR1 interaction and COP1-mediated degradation of TBPm3 pool (HFR1(NT131)-TBPm3). The system can be deployed for hybrid seed production in agricultural crops.

  18. Lifetime of biomolecules in polymer-based hybrid nanodevices

    NASA Astrophysics Data System (ADS)

    Brunner, Christian; Ernst, Karl-Heinz; Hess, Henry; Vogel, Viola

    2004-10-01

    Prolonging the lifetime of biomolecules in their functional states is critical for many applications where biomolecules are integrated into synthetic materials or devices. A simplified molecular shuttle system, which consists of fluorescently labelled microtubules propelled by kinesin motor proteins bound to the surface of a flowcell, served here as a model system to probe the lifetime of a hybrid device. In this system, the functional decay can easily be assayed by utilizing optical microscopy to detect motility and disintegration of microtubules. We found that the lifetimes of these hybrid systems were mainly limited by the stability of microtubules (MTs), rather than of kinesin. To determine the biocompatibility of polymers widely used in microfabrication, we assembled flowcells with glass bottom surfaces and covers fabricated from glass, poly(urethane) (PU), poly(methyl-methacrylate) (PMMA), poly(dimethylsiloxane) (PDMS) and ethylene-vinyl alcohol copolymer (EVOH). Without illumination, only PU had a substantial negative impact on MT stability, while PMMA, PDMS and EVOH showed stabilities comparable to glass. Under the influence of light, however, the MTs degraded rapidly in the presence of PDMS or PMMA, even in the presence of oxygen scavengers. A similar effect was observed on glass if oxygen scavengers were not added to the medium. Strong bleaching of the fluorophores was again only found on the polymer substrates and photobleaching coincided with an accelerated depolymerization of the MTs.

  19. A PSO-based hybrid metaheuristic for permutation flowshop scheduling problems.

    PubMed

    Zhang, Le; Wu, Jinnan

    2014-01-01

    This paper investigates the permutation flowshop scheduling problem (PFSP) with the objectives of minimizing the makespan and the total flowtime and proposes a hybrid metaheuristic based on the particle swarm optimization (PSO). To enhance the exploration ability of the hybrid metaheuristic, a simulated annealing hybrid with a stochastic variable neighborhood search is incorporated. To improve the search diversification of the hybrid metaheuristic, a solution replacement strategy based on the pathrelinking is presented to replace the particles that have been trapped in local optimum. Computational results on benchmark instances show that the proposed PSO-based hybrid metaheuristic is competitive with other powerful metaheuristics in the literature.

  20. Breaking and Fixing Origin-Based Access Control in Hybrid Web/Mobile Application Frameworks

    PubMed Central

    Georgiev, Martin; Jana, Suman; Shmatikov, Vitaly

    2014-01-01

    Hybrid mobile applications (apps) combine the features of Web applications and “native” mobile apps. Like Web applications, they are implemented in portable, platform-independent languages such as HTML and JavaScript. Like native apps, they have direct access to local device resources—file system, location, camera, contacts, etc. Hybrid apps are typically developed using hybrid application frameworks such as PhoneGap. The purpose of the framework is twofold. First, it provides an embedded Web browser (for example, WebView on Android) that executes the app's Web code. Second, it supplies “bridges” that allow Web code to escape the browser and access local resources on the device. We analyze the software stack created by hybrid frameworks and demonstrate that it does not properly compose the access-control policies governing Web code and local code, respectively. Web code is governed by the same origin policy, whereas local code is governed by the access-control policy of the operating system (for example, user-granted permissions in Android). The bridges added by the framework to the browser have the same local access rights as the entire application, but are not correctly protected by the same origin policy. This opens the door to fracking attacks, which allow foreign-origin Web content included into a hybrid app (e.g., ads confined in iframes) to drill through the layers and directly access device resources. Fracking vulnerabilities are generic: they affect all hybrid frameworks, all embedded Web browsers, all bridge mechanisms, and all platforms on which these frameworks are deployed. We study the prevalence of fracking vulnerabilities in free Android apps based on the PhoneGap framework. Each vulnerability exposes sensitive local resources—the ability to read and write contacts list, local files, etc.—to dozens of potentially malicious Web domains. We also analyze the defenses deployed by hybrid frameworks to prevent resource access by foreign