Sample records for based irrigation scheduling

  1. Development of an irrigation scheduling software based on model predicted crop water stress

    USDA-ARS?s Scientific Manuscript database

    Modern irrigation scheduling methods are generally based on sensor-monitored soil moisture regimes rather than crop water stress which is difficult to measure in real-time, but can be computed using agricultural system models. In this study, an irrigation scheduling software based on RZWQM2 model pr...

  2. Irrigation scheduling by ET and soil water sensing

    USDA-ARS?s Scientific Manuscript database

    Irrigation scheduling is the process of deciding when, where and how much to irrigate, usually with the goal of optimizing economic return on investment in land, equipment, inputs and personnel. This hour-long seminar presents methods of irrigation scheduling based, on the one hand on estimates of t...

  3. How do current irrigation practices perform? Evaluation of different irrigation scheduling approaches based on experiements and crop model simulations

    NASA Astrophysics Data System (ADS)

    Seidel, Sabine J.; Werisch, Stefan; Barfus, Klemens; Wagner, Michael; Schütze, Niels; Laber, Hermann

    2014-05-01

    The increasing worldwide water scarcity, costs and negative off-site effects of irrigation are leading to the necessity of developing methods of irrigation that increase water productivity. Various approaches are available for irrigation scheduling. Traditionally schedules are calculated based on soil water balance (SWB) calculations using some measure of reference evaporation and empirical crop coeffcients. These crop-specific coefficients are provided by the FAO but are also available for different regions (e.g. Germany). The approach is simple but there are several inaccuracies due to simplifications and limitations such as poor transferability. Crop growth models - which simulate the main physiological plant processes through a set of assumptions and calibration parameter - are widely used to support decision making, but also for yield gap or scenario analyses. One major advantage of mechanistic models compared to empirical approaches is their spatial and temporal transferability. Irrigation scheduling can also be based on measurements of soil water tension which is closely related to plant stress. Advantages of precise and easy measurements are able to be automated but face difficulties of finding the place where to probe especially in heterogenous soils. In this study, a two-year field experiment was used to extensively evaluate the three mentioned irrigation scheduling approaches regarding their efficiency on irrigation water application with the aim to promote better agronomic practices in irrigated horticulture. To evaluate the tested irrigation scheduling approaches, an extensive plant and soil water data collection was used to precisely calibrate the mechanistic crop model Daisy. The experiment was conducted with white cabbage (Brassica oleracea L.) on a sandy loamy field in 2012/13 near Dresden, Germany. Hereby, three irrigation scheduling approaches were tested: (i) two schedules were estimated based on SWB calculations using different crop coefficients, and (ii) one treatment was automatically drip irrigated using tensiometers (irrigation of 15 mm at a soil tension of -250 hPa at 30 cm soil depth). In treatment (iii), the irrigation schedule was estimated (using the same critera as in the tension-based treatment) applying the model Daisy partially calibrated against data of 2012. Moreover, one control treatment was minimally irrigated. Measured yield was highest for the tension-based treatment with a low irrigation water input (8.5 DM t/ha, 120 mm). Both SWB treatments showed lower yields and higher irrigation water input (both 8.3 DM t/ha, 306 and 410 mm). The simulation model based treatment yielded lower (7.5 DM t/ha, 106 mm) mainly due to drought stress caused by inaccurate simulation of the soil water dynamics and thus an overestimation of the soil moisture. The evaluation using the calibrated model estimated heavy deep percolation under both SWB treatments. Targeting the challenge to increase water productivity, soil water tension-based irrigation should be favoured. Irrigation scheduling based on SWB calculation requires accurate estimates of crop coefficients. A robust calibration of mechanistic crop models implies a high effort and can be recommended to farmers only to some extent but enables comprehensive crop growth and site analyses.

  4. Irrigation scheduling and controlling crop water use efficiency with Infrared Thermometry

    USDA-ARS?s Scientific Manuscript database

    Scientific methods for irrigation scheduling include weather, soil and plant-based techniques. Infrared thermometers can be used a non-invasive practice to monitor canopy temperature and better manage irrigation scheduling. This presentation will discuss the theoretical basis for monitoring crop can...

  5. Evapotranspiration-based Irrigation Scheduling for Container-grown Viburnum odoratissium (L.) Ker Gawl

    USDA-ARS?s Scientific Manuscript database

    The capacity for evapotranspiration (ET)-based irrigation scheduling to reduce runoff volume and nutrient leaching was tested in Fall 2004 and Spring 2005. Runoff (container leachate plus unintercepted irrigation and precipitation) was collected continuously for 17 weeks during production of sweet ...

  6. Optimization of irrigation scheduling for spring wheat with mulching and limited irrigation water in an arid climate

    NASA Astrophysics Data System (ADS)

    Wen, Y.

    2017-12-01

    Combining mulch and irrigation scheduling may lead to an increase of crop yield and water use efficiency (WUE = crop yield/evapotranspiration) with limited irrigation water, especially in arid regions. Based on 2 years' field experiments with ten irrigation-mulching treatments of spring wheat (Triticum aestivum L.) in the Shiyang River Basin Experiment Station in Gansu Province of Northwest China, a simulation-based optimization model for deficit irrigation scheduling of plastic mulching spring wheat was used to analyze an optimal irrigation scheduling for different deficit irrigation scenarios. Results revealed that mulching may increase maximum grain yield without water stress by 0.4-0.6 t ha-1 in different years and WUE by 0.2-0.3 kg m-3 for different irrigation amounts compared with no mulching. Yield of plastic mulching spring wheat was more sensitive to water stress in the early and development growth stages with an increase of cumulative crop water sensitive index (CCWSI) by 42%, and less sensitive to water stress in the mid and late growth stages with a reduction of CCWSI by 24%. For a relative wet year, when irrigation water is only applied once it should be at the mid to end of booting growth stage. Two irrigations should be applied at the beginning of booting and heading growth stages. The irrigation date can be extended to the beginning of jointing and grain formation growth stages with more water available for irrigation. For a normal or a dry year, the first irrigation should be applied 5-8 days earlier than the wet year. The highest WUE of 3.6 kg m-3 was achieved with 180 mm of irrigation applied twice for mulching in a wet year. Combining mulch and an optimal deficit irrigation scheduling is an effective way to increase crop yield and WUE in arid regions.

  7. Enhancing Adoption of Irrigation Scheduling to Sustain the Viability of Fruit and Nut Crops in California

    NASA Astrophysics Data System (ADS)

    Fulton, A.; Snyder, R.; Hillyer, C.; English, M.; Sanden, B.; Munk, D.

    2012-04-01

    Enhancing Adoption of Irrigation Scheduling to Sustain the Viability of Fruit and Nut Crops in California Allan Fulton, Richard Snyder, Charles Hillyer, Marshall English, Blake Sanden, and Dan Munk Adoption of scientific methods to decide when to irrigate and how much water to apply to a crop has increased over the last three decades in California. In 1988, less than 4.3 percent of US farmers employed some type of science-based technique to assist in making irrigation scheduling decisions (USDA, 1995). An ongoing survey in California, representing an industry irrigating nearly 0.4 million planted almond hectares, indicates adoption rates ranging from 38 to 55 percent of either crop evapotranspiration (ETc), soil moisture monitoring, plant water status, or some combination of these irrigation scheduling techniques to assist with making irrigation management decisions (California Almond Board, 2011). High capital investment to establish fruit and nut crops, sensitivity to over and under-irrigation on crop performance and longevity, and increasing costs and competition for water have all contributed to increased adoption of scientific irrigation scheduling methods. These trends in adoption are encouraging and more opportunities exist to develop improved irrigation scheduling tools, especially computer decision-making models. In 2009 and 2010, an "On-line Irrigation Scheduling Advisory Service" (OISO, 2012), also referred to as Online Irrigation Management (IMO), was used and evaluated in commercial walnut, almond, and French prune orchards in the northern Sacramento Valley of California. This specific model has many features described as the "Next Generation of Irrigation Schedulers" (Hillyer, 2010). While conventional irrigation management involves simply irrigating as needed to avoid crop stress, this IMO is designed to control crop stress, which requires: (i) precise control of crop water availability (rather than controlling applied water); (ii) quantifying crop stress in order to manage it in heterogeneous fields; and (iii) predicting crop responses to water stress. The capacities of this IMO include: 1. Modeling of the disposition of applied water in spatially variable fields; 2. Conjunctive scheduling for multiple fields, rather than scheduling each field independently; 3. Long range forecasting of crop water requirements to better utilize limited water or limited delivery system capacity: and 4. Explicit modeling of the uncertainties of water use and crop yield. This was one of the first efforts to employ a "Next Generation" type computer irrigation scheduling advisory model or IMO in orchard crops. This paper discusses experiences with introducing this model to fruit and nut growers of various size and scale in the northern Sacramento Valley of California and the accuracy of its forecasts of irrigation needs in fruit and nut crops. Strengths and opportunities to forge ahead in the development of a "Next Generation" irrigation scheduler were identified from this on-farm evaluation.

  8. Operational ET remote sensing (RS) program for irrigation scheduling and management: challenges and opportunities

    Treesearch

    Prasanna Gowda

    2016-01-01

    Evapotranspiration (ET) is an essential component of the water balance and a major consumptive use of irrigation water and precipitation on cropland. Any attempt to improve water use efficiency must be based on reliable estimates of ET for irrigation scheduling purposes.

  9. Integrating Growth Stage Deficit Irrigation into a Process Based Crop Model

    NASA Technical Reports Server (NTRS)

    Lopez, Jose R.; Winter, Jonathan M.; Elliott, Joshua; Ruane, Alex C.; Porter, Cheryl; Hoogenboom, Gerrit

    2017-01-01

    Current rates of agricultural water use are unsustainable in many regions, creating an urgent need to identify improved irrigation strategies for water limited areas. Crop models can be used to quantify plant water requirements, predict the impact of water shortages on yield, and calculate water productivity (WP) to link water availability and crop yields for economic analyses. Many simulations of crop growth and development, especially in regional and global assessments, rely on automatic irrigation algorithms to estimate irrigation dates and amounts. However, these algorithms are not well suited for water limited regions because they have simplistic irrigation rules, such as a single soil-moisture based threshold, and assume unlimited water. To address this constraint, a new modeling framework to simulate agricultural production in water limited areas was developed. The framework consists of a new automatic irrigation algorithm for the simulation of growth stage based deficit irrigation under limited seasonal water availability; and optimization of growth stage specific parameters. The new automatic irrigation algorithm was used to simulate maize and soybean in Gainesville, Florida, and first used to evaluate the sensitivity of maize and soybean simulations to irrigation at different growth stages and then to test the hypothesis that water productivity calculated using simplistic irrigation rules underestimates WP. In the first experiment, the effect of irrigating at specific growth stages on yield and irrigation water use efficiency (IWUE) in maize and soybean was evaluated. In the reproductive stages, IWUE tended to be higher than in the vegetative stages (e.g. IWUE was 18% higher than the well watered treatment when irrigating only during R3 in soybean), and when rainfall events were less frequent. In the second experiment, water productivity (WP) was significantly greater with optimized irrigation schedules compared to non-optimized irrigation schedules in water restricted scenarios. For example, the mean WP across 38 years of maize production was 1.1 kg/cu m for non-optimized irrigation schedules with 50 mm of seasonal available water and 2.1 kg/cu m optimized ion schedules, a 91% improvement in WP with optimized irrigation schedules. The framework described in this work could be used to estimate WP for regional to global assessments, as well as derive location specific irrigation guidance.

  10. Irrigation scheduling as affected by field capacity and wilting point water content from different data sources

    USDA-ARS?s Scientific Manuscript database

    Soil water content at field capacity and wilting point water content is critical information for irrigation scheduling, regardless of soil water sensor-based method (SM) or evapotranspiration (ET)-based method. Both methods require knowledge on site-specific and soil-specific Management Allowable De...

  11. Irrigation scheduling based on crop canopy temperature for humid environments

    USDA-ARS?s Scientific Manuscript database

    The use of infrared thermometers (IR) to measure canopy temperatures for irrigation scheduling has been successfully applied in arid environments. Functionality of this technique in humid areas has been limited due to the presence of low vapor pressure deficits (VPD) and intermittent cloud cover. T...

  12. Evaluating the accuracy of soil water sensors for irrigation scheduling to conserve freshwater

    NASA Astrophysics Data System (ADS)

    Ganjegunte, Girisha K.; Sheng, Zhuping; Clark, John A.

    2012-06-01

    In the Trans-Pecos area, pecan [ Carya illinoinensis (Wangenh) C. Koch] is a major irrigated cash crop. Pecan trees require large amounts of water for their growth and flood (border) irrigation is the most common method of irrigation. Pecan crop is often over irrigated using traditional method of irrigation scheduling by counting number of calendar days since the previous irrigation. Studies in other pecan growing areas have shown that the water use efficiency can be improved significantly and precious freshwater can be saved by scheduling irrigation based on soil moisture conditions. This study evaluated the accuracy of three recent low cost soil water sensors (ECH2O-5TE, Watermark 200SS and Tensiometer model R) to monitor volumetric soil water content (θv) to develop improved irrigation scheduling in a mature pecan orchard in El Paso, Texas. Results indicated that while all three sensors were successful in following the general trends of soil moisture conditions during the growing season, actual measurements differed significantly. Statistical analyses of results indicated that Tensiometer provided relatively accurate soil moisture data than ECH2O-5TE and Watermark without site-specific calibration. While ECH2O-5TE overestimated the soil water content, Watermark and Tensiometer underestimated. Results of this study suggested poor accuracy of all three sensors if factory calibration and reported soil water retention curve for study site soil texture were used. This indicated that sensors needed site-specific calibration to improve their accuracy in estimating soil water content data.

  13. Long-term simulation of growth stage-based irrigation scheduling in maize under various water constraints in Colorado, USA

    USDA-ARS?s Scientific Manuscript database

    Due to the differential crop responses to water stress at different growth stages, scheduling irrigation within a crop season is a challenge facing agricultural producers, especially when water availability varies on a monthly, seasonal and yearly basis. The objective of this study was to optimize i...

  14. Gaussian processes-based predictive models to estimate reference ET from alternative meteorological data sources for irrigation scheduling

    USDA-ARS?s Scientific Manuscript database

    Accurate estimates of daily crop evapotranspiration (ET) are needed for efficient irrigation management, especially in arid and semi-arid irrigated regions where crop water demand exceeds rainfall. The impact of inaccurate ET estimates can be tremendous in both irrigation cost and the increased dema...

  15. EQUITY EVALUATION OF PADDY IRRIGATION WATER DISTRIBUTION BY SOCIETY-JUSTICE-WATER DISTRIBUTION RULE HYPOTHESIS

    NASA Astrophysics Data System (ADS)

    Tanji, Hajime; Kiri, Hirohide; Kobayashi, Shintaro

    When total supply is smaller than total demand, it is difficult to apply the paddy irrigation water distribution rule. The gap must be narrowed by decreasing demand. Historically, the upstream served rule, rotation schedule, or central schedule weight to irrigated area was adopted. This paper proposes the hypothesis that these rules are dependent on social justice, a hypothesis called the "Society-Justice-Water Distribution Rule Hypothesis". Justice, which means a balance of efficiency and equity of distribution, is discussed under the political philosophy of utilitarianism, liberalism (Rawls), libertarianism, and communitarianism. The upstream served rule can be derived from libertarianism. The rotation schedule and central schedule can be derived from communitarianism. Liberalism can provide arranged schedule to adjust supply and demand based on "the Difference Principle". The authors conclude that to achieve efficiency and equity, liberalism may provide the best solution after modernization.

  16. Improving Agricultural Water Resources Management Using Ground-based Infrared Thermometry

    NASA Astrophysics Data System (ADS)

    Taghvaeian, S.

    2014-12-01

    Irrigated agriculture is the largest user of freshwater resources in arid/semi-arid parts of the world. Meeting rapidly growing demands in food, feed, fiber, and fuel while minimizing environmental pollution under a changing climate requires significant improvements in agricultural water management and irrigation scheduling. Although recent advances in remote sensing techniques and hydrological modeling has provided valuable information on agricultural water resources and their management, real improvements will only occur if farmers, the decision makers on the ground, are provided with simple, affordable, and practical tools to schedule irrigation events. This presentation reviews efforts in developing methods based on ground-based infrared thermometry and thermography for day-to-day management of irrigation systems. The results of research studies conducted in Colorado and Oklahoma show that ground-based remote sensing methods can be used effectively in quantifying water stress and consequently triggering irrigation events. Crop water use estimates based on stress indices have also showed to be in good agreement with estimates based on other methods (e.g. surface energy balance, root zone soil water balance, etc.). Major challenges toward the adoption of this approach by agricultural producers include the reduced accuracy under cloudy and humid conditions and its inability to forecast irrigation date, which is a critical knowledge since many irrigators need to decide about irrigations a few days in advance.

  17. Root Zone Sensors for Irrigation Management in Intensive Agriculture

    PubMed Central

    Pardossi, Alberto; Incrocci, Luca; Incrocci, Giorgio; Malorgio, Fernando; Battista, Piero; Bacci, Laura; Rapi, Bernardo; Marzialetti, Paolo; Hemming, Jochen; Balendonck, Jos

    2009-01-01

    Crop irrigation uses more than 70% of the world’s water, and thus, improving irrigation efficiency is decisive to sustain the food demand from a fast-growing world population. This objective may be accomplished by cultivating more water-efficient crop species and/or through the application of efficient irrigation systems, which includes the implementation of a suitable method for precise scheduling. At the farm level, irrigation is generally scheduled based on the grower’s experience or on the determination of soil water balance (weather-based method). An alternative approach entails the measurement of soil water status. Expensive and sophisticated root zone sensors (RZS), such as neutron probes, are available for the use of soil and plant scientists, while cheap and practical devices are needed for irrigation management in commercial crops. The paper illustrates the main features of RZS’ (for both soil moisture and salinity) marketed for the irrigation industry and discusses how such sensors may be integrated in a wireless network for computer-controlled irrigation and used for innovative irrigation strategies, such as deficit or dual-water irrigation. The paper also consider the main results of recent or current research works conducted by the authors in Tuscany (Italy) on the irrigation management of container-grown ornamental plants, which is an important agricultural sector in Italy. PMID:22574047

  18. Intelligent irrigation performance: evaluation and quantifying its ability for conserving water in arid region

    NASA Astrophysics Data System (ADS)

    Al-Ghobari, Hussein M.; Mohammad, Fawzi S.

    2011-12-01

    Intelligent irrigation technologies have been developed in recent years to apply irrigation to turf and landscape plants. These technologies are an evapotranspiration (ET)-based irrigation controller, which calculates ET for local microclimate. Then, the controller creates a program for loading and communicating automatically with drip or sprinkler system controllers. The main objective of this study was to evaluate the effectiveness of the new ET sensors in ability to irrigate agricultural crops and to conserve water use for crop in arid climatic conditions. This paper presents the case for water conservation using intelligent irrigation system (IIS) application technology. The IIS for automating irrigation scheduling was implemented and tested with sprinkle and drip irrigation systems to irrigate wheat and tomato crops. Another irrigation scheduling system was also installed and operated as another treatment, which is based on weather data that retrieved from an automatic weather station. This irrigation control system was running in parallel to the former system (IIS) to be control experiments for comparison purposes. However, this article discusses the implementation of IIS, its installation, testing and calibration of various components. The experiments conducted for one growing season 2009-2010 and the results were represented and discussed herein. Data from all plots were analyzed, which were including soil water status, water consumption, and crop yield. The initial results indicate that up to 25% water saving by intelligent irrigation compared to control method, while maintaining competing yield. Results show that the crop evapotranspiration values for control experiments were higher than that of ET-System in consistent trend during whole growth season. The analysis points out that the values of the two treatments were somewhat close to each other's only in the initial development stages. Generally, the ET-System, with some modification was precise in controlling irrigation water and has been proven to be a good mean to determine the water requirements for crops and to schedule irrigation automatically.

  19. The Value of Weather Forecast in Irrigation

    NASA Astrophysics Data System (ADS)

    Cai, X.; Wang, D.

    2007-12-01

    This paper studies irrigation scheduling (when and how much water to apply during the crop growth season) in the Havana Lowlands region, Illinois, using meteorological, agronomic and agricultural production data from 2002. Irrigation scheduling determines the timing and amount of water applied to an irrigated cropland during the crop growing season. In this study a hydrologic-agronomic simulation is coupled with an optimization algorithm to search for the optimal irrigation schedule under various weather forecast horizons. The economic profit of irrigated corn from an optimized scheduling is compared to that from and the actual schedule, which is adopted from a pervious study. Extended and reliable climate prediction and weather forecast are found to be significantly valuable. If a weather forecast horizon is long enough to include the critical crop growth stage, in which crop yield bears the maximum loss over all stages, much economic loss can be avoided. Climate predictions of one to two months, which can cover the critical period, might be even more beneficial during a dry year. The other purpose of this paper is to analyze farmers' behavior in irrigation scheduling by comparing the "actual" schedule to the "optimized" ones. The ultimate goal of irrigation schedule optimization is to provide information to farmers so that they may modify their behavior. In practice, farmers' decision may not follow an optimal irrigation schedule due to the impact of various factors such as natural conditions, policies, farmers' habits and empirical knowledge, and the uncertain or inexact information that they receive. In this study farmers' behavior in irrigation decision making is analyzed by comparing the "actual" schedule to the "optimized" ones. This study finds that the identification of the crop growth stage with the most severe water stress is critical for irrigation scheduling. For the case study site in the year of 2002, framers' response to water stress was found to be late; they did not even respond appropriately to a major rainfall just 3 days ahead, which might be due to either an unreliable weather forecast or farmer's ignorance of the forecast.

  20. Optimizing ET-based irrigation scheduling for wheat and maize with water constraints

    USDA-ARS?s Scientific Manuscript database

    Deficit irrigation is proved to increase crop water use efficiency (WUE) in water limited areas, but effective irrigation required better understanding of crop responses to water stress intensity and timing. In this study, the Root Zone Water Quality Model (RZWQM) was first calibrated and validated ...

  1. Irrigation scheduling of green areas based on soil moisture estimation by the active heated fiber optic distributed temperature sensing AHFO

    NASA Astrophysics Data System (ADS)

    Zubelzu, Sergio; Rodriguez-Sinobas, Leonor; Sobrino, Fernando; Sánchez, Raúl

    2017-04-01

    Irrigation programing determines when and how much water apply to fulfill the plant water requirements depending of its phenology stage and location, and soil water content. Thus, the amount of water, the irrigation time and the irrigation frequency are variables that must be estimated. Likewise, irrigation programing has been based in approaches such as: the determination of plant evapotranspiration and the maintenance of soil water status between a given interval or soil matrix potential. Most of these approaches are based on the measurements of soil water sensors (or tensiometers) located at specific points within the study area which lack of the spatial information of the monitor variable. The information provided in such as few points might not be adequate to characterize the soil water distribution in irrigation systems with poor water application uniformity and thus, it would lead to wrong decisions in irrigation scheduling. Nevertheless, it can be overcome if the active heating pulses distributed fiber optic temperature measurement (AHFO) is used. This estimates the temperature variation along a cable of fiber optic and then, it is correlated with the soil water content. This method applies a known amount of heat to the soil and monitors the temperature evolution, which mainly depends on the soil moisture content. Thus, it allows estimations of soil water content every 12.5 cm along the fiber optic cable, as long as 1500 m (with 2 % accuracy) , every second. This study presents the results obtained in a green area located at the ETSI Agronómica, Agroalimentaria y Biosistesmas in Madrid. The area is irrigated by an sprinkler irrigation system which applies water with low uniformity. Also, it has deployed and installation of 147 m of fiber optic cable at 15 cm depth. The Distribute Temperature Sensing unit was a SILIXA ULTIMA SR (Silixa Ltd, UK) with spatial and temporal resolution of 0.29 m and 1 s, respectively. In this study, heat pulses of 7 W/m for 2 min were applied uniformly along the fiber optic cable and the thermal response on an adjacent cable was monitored prior, during and after the irrigation event. Data was logged every 0.3 m and every 5 s then, the heating and drying phase integer (called Tcum) was determined following the approach of Sayde et al., (2010). Thus, the infiltration and redistribution of soil water content was fully characterized. The results are promising since the water spatial variability within the soil is known and it can be correlated with the water distribution in the irrigation unit to make better irrigation scheduling in the green area improving water/nutrient/energy efficiency.. Reference Létourneau, G., Caron, J., Anderson, L., & Cormier, J. (2015). Matric potential-based irrigation management of field-grown strawberry: Effects on yield and water use efficiency. Agricultural Water Management, 161, 102-113. Liang, X., Liakos, V., Wendroth, O., & Vellidis, G. (2016). Scheduling irrigation using an approach based on the van Genuchten model. Agricultural Water Management, 176, 170-179. Sayde,C., Gregory, C., Gil-Rodriguez, M., Tufillaro, N., Tyler, S., van de Giesen, N., English, M. Cuenca, R. and Selker, J. S.. 2010. Feasibility of soil moisture monitoring with heated fiber optics. Water Resources Research. Vol.46 (6). DOI: 10.1029/2009WR007846 Stirzaker, R. J., Maeko, T. C., Annandale, J. G., Steyn, J. M., Adhanom, G. T., & Mpuisang, T. (2017). Scheduling irrigation from wetting front depth. Agricultural Water Management, 179, 306-313.

  2. Integration of wireless sensor networks into automatic irrigation scheduling of a center pivot

    USDA-ARS?s Scientific Manuscript database

    A six-span center pivot system was used as a platform for testing two wireless sensor networks (WSN) of infrared thermometers. The cropped field was a semi-circle, divided into six pie shaped sections of which three were irrigated manually and three were irrigated automatically based on the time tem...

  3. Evapotranspiration-based irrigation scheduling of lettuce and broccoli

    USDA-ARS?s Scientific Manuscript database

    Estimation of crop evapotranspiration supports efficient irrigation water management, which in turn supports water conservation, mitigation of groundwater depletion/degradation, energy savings, and crop quality maintenance. Past research in California has revealed strong relationships between fract...

  4. Remote sensing based water-use efficiency evaluation in sub-surface irrigated wine grape vines

    NASA Astrophysics Data System (ADS)

    Zúñiga, Carlos Espinoza; Khot, Lav R.; Jacoby, Pete; Sankaran, Sindhuja

    2016-05-01

    Increased water demands have forced agriculture industry to investigate better irrigation management strategies in crop production. Efficient irrigation systems, improved irrigation scheduling, and selection of crop varieties with better water-use efficiencies can aid towards conserving water. In an ongoing experiment carried on in Red Mountain American Viticulture area near Benton City, Washington, subsurface drip irrigation treatments at 30, 60 and 90 cm depth, and 15, 30 and 60% irrigation were applied to satisfy evapotranspiration demand using pulse and continuous irrigation. These treatments were compared to continuous surface irrigation applied at 100% evapotranspiration demand. Thermal infrared and multispectral images were acquired using unmanned aerial vehicle during the growing season. Obtained results indicated no difference in yield among treatments (p<0.05), however there was statistical difference in leaf temperature comparing surface and subsurface irrigation (p<0.05). Normalized vegetation index obtained from the analysis of multispectral images showed statistical difference among treatments when surface and subsurface irrigation methods were compared. Similar differences in vegetation index values were observed, when irrigation rates were compared. Obtained results show the applicability of aerial thermal infrared and multispectral images to characterize plant responses to different irrigation treatments and use of such information in irrigation scheduling or high-throughput selection of water-use efficient crop varieties in plant breeding.

  5. Soil water sensors for irrigation scheduling:Can they deliver a management allowed depletion?

    USDA-ARS?s Scientific Manuscript database

    Soil water sensors are widely marketed in the farming sector as aids for irrigation scheduling. Sensors report either volumetric water content (theta-v, m**3 m**-3) or soil water potential, with theta-v sensors being by far the most common. To obtain yield and quality goals, irrigations are schedule...

  6. WaterSense Labeled Weather-Based Irrigation Controller Fact Sheet

    EPA Pesticide Factsheets

    WaterSense labeled irrigation controllers, which act like a thermostat for your sprinkler system by telling it when to turn on and off, use local weather and landscape conditions to tailor watering schedules to actual conditions on the site.

  7. Tree Canopy Light Interception Estimates in Almond and a Walnut Orchards Using Ground, Low Flying Aircraft, and Satellite Based Methods to Improve Irrigation Scheduling Programs

    NASA Technical Reports Server (NTRS)

    Rosecrance, Richard C.; Johnson, Lee; Soderstrom, Dominic

    2016-01-01

    Canopy light interception is a main driver of water use and crop yield in almond and walnut production. Fractional green canopy cover (Fc) is a good indicator of light interception and can be estimated remotely from satellite using the normalized difference vegetation index (NDVI) data. Satellite-based Fc estimates could be used to inform crop evapotranspiration models, and hence support improvements in irrigation evaluation and management capabilities. Satellite estimates of Fc in almond and walnut orchards, however, need to be verified before incorporating them into irrigation scheduling or other crop water management programs. In this study, Landsat-based NDVI and Fc from NASA's Satellite Irrigation Management Support (SIMS) were compared with four estimates of canopy cover: 1. light bar measurement, 2. in-situ and image-based dimensional tree-crown analyses, 3. high-resolution NDVI data from low flying aircraft, and 4. orchard photos obtained via Google Earth and processed by an Image J thresholding routine. Correlations between the various estimates are discussed.

  8. Tree canopy light interception estimates in almond and a walnut orchards using ground, low flying aircraft, and satellite based methods to improve irrigation scheduling programs.

    NASA Astrophysics Data System (ADS)

    Rosecrance, R. C.; Johnson, L.; Soderstrom, D.

    2016-12-01

    Canopy light interception is a main driver of water use and crop yield in almond and walnut production. Fractional green canopy cover (Fc) is a good indicator of light interception and can be estimated remotely from satellite using the normalized difference vegetation index (NDVI) data. Satellite-based Fc estimates could be used to inform crop evapotranspiration models, and hence support improvements in irrigation evaluation and management capabilities. Satellite estimates of Fc in almond and walnut orchards, however, need to be verified before incorporating them into irrigation scheduling or other crop water management programs. In this study, Landsat-based NDVI and Fc from NASA's Satellite Irrigation Management Support (SIMS) were compared with four estimates of canopy cover: 1. light bar measurement, 2. in-situ and image-based dimensional tree-crown analyses, 3. high-resolution NDVI data from low flying aircraft, and 4. orchard photos obtained via Google Earth and processed by an Image J thresholding routine. Correlations between the various estimates are discussed.

  9. Advanced tools for irrigation scheduling

    USDA-ARS?s Scientific Manuscript database

    Irrigated agriculture is needed to meet demands for agricultural products, but farmers are challenged with limited quality water supplies, environmental and regulatory policies climate variability, and competition for water from other sectors. Scientific irrigation scheduling could help allay these ...

  10. Methods to estimate irrigated reference crop evapotranspiration - a review.

    PubMed

    Kumar, R; Jat, M K; Shankar, V

    2012-01-01

    Efficient water management of crops requires accurate irrigation scheduling which, in turn, requires the accurate measurement of crop water requirement. Irrigation is applied to replenish depleted moisture for optimum plant growth. Reference evapotranspiration plays an important role for the determination of water requirements for crops and irrigation scheduling. Various models/approaches varying from empirical to physically base distributed are available for the estimation of reference evapotranspiration. Mathematical models are useful tools to estimate the evapotranspiration and water requirement of crops, which is essential information required to design or choose best water management practices. In this paper the most commonly used models/approaches, which are suitable for the estimation of daily water requirement for agricultural crops grown in different agro-climatic regions, are reviewed. Further, an effort has been made to compare the accuracy of various widely used methods under different climatic conditions.

  11. Irrigation scheduling: When, where, and how much?

    USDA-ARS?s Scientific Manuscript database

    Irrigation scheduling, a key element of proper water management, is the accurate forecasting of water application (amount and timing) for optimal crop production (yield and fruit quality). The goal is to apply the correct amount of water at the right time to minimize irrigation costs and maximize cr...

  12. Declining groundwater level caused by irrigation to row crops in the Lower Mississippi River Basin, Current Situation and Trends

    NASA Astrophysics Data System (ADS)

    Feng, G.; Gao, F.; Ouyang, Y.

    2017-12-01

    The Mississippi River is North America's largest river and the second largest watershed in the world. It flows over 3,700 km through America's heartland to the Gulf of Mexico. Over 3 million hectares in the Lower Mississippi River Basin represent irrigated cropland and 90 percent of those lands currently rely on the groundwater supply. The primary crops grown in this region are soybean, corn, cotton, and rice. Increased water withdrawals for irrigating those crops and stagnant recharging jeopardize the long-term availability of the aquifer and place irrigation agriculture in the region on an unsustainable path. The objectives of this study were to: 1) analyze the current groundwater level in the Lower Mississippi River Basin based on the water table depth observed by Yazoo Mississippi Delta Joint Water Management District from 2000 and 2016; 2) determine trends of change in groundwater level under conventional and groundwater saving irrigation management practices (ET or soil moisture based full irrigation scheduling using all groundwater or different percentages of ground and surface water). The coupled SWAT and MODFLOW model was applied to investigate the trends. Observed results showed that the groundwater level has declined from 33 to 26 m at an annual decrease rate of 0.4 m in the past 17 years. Simulated results revealed that the groundwater storage was decreased by 26 cm/month due to irrigation in crop season. It is promising that the groundwater storage was increased by 23 cm/month, sometimes even 60 cm/month in crop off-growing season because of recharge from rainfall. Our results suggest that alternative ET or soil moisture based groundwater saving irrigation scheduling with conjunctive use of surface water is a sustainable practice for irrigated agriculture in in the Lower Mississippi River Basin.

  13. Soil water sensors for irrigation management-What works, what doesn't, and why

    USDA-ARS?s Scientific Manuscript database

    Irrigation scheduling can be greatly improved if accurate soil water content data are available. There are a plethora of available soil water sensing systems, but those that are practical for irrigation scheduling are divided into two major types: the frequency domain (capacitance) sensors and the t...

  14. Model development for prediction of soil water dynamics in plant production.

    PubMed

    Hu, Zhengfeng; Jin, Huixia; Zhang, Kefeng

    2015-09-01

    Optimizing water use in agriculture and medicinal plants is crucially important worldwide. Soil sensor-controlled irrigation systems are increasingly becoming available. However it is questionable whether irrigation scheduling based on soil measurements in the top soil could make best use of water for deep-rooted crops. In this study a mechanistic model was employed to investigate water extraction by a deep-rooted cabbage crop from the soil profile throughout crop growth. The model accounts all key processes governing water dynamics in the soil-plant-atmosphere system. Results show that the subsoil provides a significant proportion of the seasonal transpiration, about a third of water transpired over the whole growing season. This suggests that soil water in the entire root zone should be taken into consideration in irrigation scheduling, and for sensor-controlled irrigation systems sensors in the subsoil are essential for detecting soil water status for deep-rooted crops.

  15. [Effects of irrigation and planting pattern on winter wheat water consumption characteristics and dry matter production].

    PubMed

    Dong, Hao; Chen, Yu-Hai; Zhou, Xun-Bo

    2013-07-01

    Taking high-yield winter wheat cultivar 'Jimai 22' as test material, a field experiment was conducted in 2008-2010 to study the effects of different irrigation and planting modes on the water consumption characteristics and dry matter accumulation and distribution of winter wheat. Three planting patterns (uniform row, wide-narrow row, and furrow) and four irrigation schedules (no irrigation, W0; irrigation at jointing stage, W1; irrigation at jointing and anthesis stages, W2; and irrigation at jointing, anthesis, and milking stages, W3; with 60 mm per irrigation) were installed. With increasing amount of irrigation, the total water consumption and the ratio of irrigation water to total water consumption under different planting patterns all increased, while the soil water consumption and its ratio to total water consumption decreased significantly. As compared with W0, the other three irrigation schedules had a higher dry matter accumulation after anthesis and a higher grain yield, but a lower water use efficiency (WUE). Under the same irrigation schedules, furrow pattern had higher water consumption ratio, grain yield, and WUE. Taking the grain yield and WUE into consideration, furrow pattern combined with irrigation at jointing and anthesis stages would be the optimal water-saving and planting modes for the winter wheat production in North China Plain.

  16. Reduction in a commercial potato irrigation schedule during tuber bulking in Florida: Physiological, Yield, and Quality effects

    USDA-ARS?s Scientific Manuscript database

    Proper irrigation scheduling in potato (Solanum tuberosum L.) can lead to higher returns and more sustainable production practices when compared to systems that do not take plant water demand into account. In an attempt to reduce irrigation applications while minimizing yield reduction, we evaluated...

  17. Irrigation Trials for ET Estimation and Water Management in California Specialty Crops

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Cahn, M.; Martin, F.; Lund, C.; Melton, F. S.

    2012-12-01

    Accurate estimation of crop evapotranspiration (ETc) can support efficient irrigation water management, which in turn brings benefits including surface water conservation, mitigation of groundwater depletion/degradation, energy savings, and crop quality assurance. Past research in California has revealed strong relationships between canopy fractional cover (Fc) and ETc of certain specialty crops, while additional research has shown the potential of monitoring Fc by satellite remote sensing. California's Central Coast is the leading region of cool season vegetable production in the U.S. Monterey County alone produces more than 80,000 ha of lettuce and broccoli (about half of U.S. production), valued at $1.5 billion in 2009. Under this study, we are conducting ongoing irrigation trials on these crops at the USDA Agricultural Research Station (Salinas) to compare irrigation scheduling via plant-based ETc approaches, by way of Fc, with current industry standard-practice. The following two monitoring approaches are being evaluated - 1) a remote sensing model employed by NASA's prototype Satellite Irrigation Management System, and 2) an online irrigation scheduling tool, CropManage, recently developed by U.C. Cooperative Extension. Both approaches utilize daily grass-reference ETo data as provided by the California Irrigation Management Irrigation System (CIMIS). A sensor network is deployed to monitor applied irrigation, volumetric soil water content, soil water potential, deep drainage, and standard meteorologic variables in order to derive ETc by a water balance approach. Evaluations of crop yield and crop quality are performed by the research team and by commercial growers. Initial results to-date indicate that applied water reductions based on Fc measurements are possible with little-to-no impact on yield of crisphead lettuce (Lactuca sativa). Additional results for both lettuce and broccoli trials, conducted during summer-fall 2012, are presented with respect to nutrient management and crop viability.

  18. Improving irrigation management in L'Horta Nord (Valencia, Spain)

    NASA Astrophysics Data System (ADS)

    Pascual-Seva, Nuria; San Bautista, Alberto; López-Galarza, Salvador; Maroto, Jose Vicente; Pascual, Bernardo

    2014-05-01

    L'Horta Nord is an important irrigation district in Valencia (Spain), especially for vegetable crops. The traditional cropping pattern in the region consists of a rotation of chufa with crops such as potato, onion, lettuce, escarole and red cabbage, being all these crops furrow irrigated. Currently, the quality of the water used is acceptable, water is not expensive and there are no limitations on supply. Consequently, growers are not aware of the volumes of water used, application efficiencies, nor water productivity for any of the crops cited. The European Framework Directive 2000/60, based on the precautionary principle, considers preventive action for measures to be taken; moreover, drought periods are becoming more frequent and extended, and water is being diverted to other uses. Thus, water use is an issue to improve. In this sense, the current situation of the irrigation in the area is analysed using chufa (Cyperus esculentus L. var. sativus Boeck.) as representative of the crops, since most of the crops in the area have shallow root systems, as chufa, which are irrigated in similar patterns. In order to analyse the irrigation performance of the traditional chufa crop as well as to achieve more sustainable results, different studies have been carried out, during the last decade. Efforts have been directed to increase water productivity, increasing yield and minimising the volumes of water applied. Different planting configurations and different irrigation thresholds, not only in furrow irrigation but also in drip irrigation, are examples of how the irrigation performance could be improved. Herein is presented a two-year study, comparing, in both furrow and drip irrigation, two irrigation schedules based on the volumetric soil water content, which was continuously monitored using capacitance sensors. Yield was significantly affected by the growing season, the irrigation system and by the irrigation schedule, and by the second order interactions of the irrigation system with the other studied variables. Greater yields (p≤0.01) were obtained in the first growing season, drip irrigation and maintaining a higher soil moisture level. When considering the irrigation water use efficiency, the irrigation system showed significant differences (p≤0.01) with greater efficiencies for drip irrigation. Considering the homogeneity of the plots in the area and the similarities of the irrigation managements of chufa with the other crops, the results could be extended to most of the plots and crops in the area.

  19. Research on the autumn irrigation schedule of Hetao Irrigation District of China

    NASA Astrophysics Data System (ADS)

    Han, Y.

    2016-12-01

    Salinization of soil has great influence on the function of crop land, leading to the crop failure to some extent. One of the inducement of salinization is that the water pressure of frozen soil is lower than that of unfrozen, salt is drew up to the frozen layer along with water during the freezing process. To prevent the salinization of soil, people carry out the autumn irrigation in Hetao Irrigation District which located is located in Bayannur City, Inner Mongolia, north of China. Autumn irrigation is an irrigation event before the freezing of soil, the function of autumn irrigation includes soil moisture conservation, loosening the soil and leaching the salt. Among all the crop models, none is designed to simulate the water and salt movement during freezing and thawing progress. So In this study, SWAP (Soil Water Atmosphere Plant) model is modified by adding the freezing and thawing module which enable the model to take into consideration the effect of freezing and thawing on water and salt movement. After validating the modified model using field data and lab test results, the model was used to simulate the results of various autumn irrigation schedules, exploring the influence of different autumn irrigation amounts on the water, salt and heat condition and transportation of soil. Finally, proper autumn irrigation schedule was obtained to instruct the production of Hetao Irrigation District.

  20. Wireless sensor networks for irrigation management

    USDA-ARS?s Scientific Manuscript database

    Sustaining an adequate food supply for the world's population will require advancements in irrigation technology and improved irrigation management. Site-specific irrigation and automatic irrigation scheduling are examples of strategies to deal with declining arable land and limited fresh water reso...

  1. WaterSense Soil Moisture-Based Control Technologies Notice of Intent (NOI)

    EPA Pesticide Factsheets

    By directly measuring the amount of moisture in the soil, soil moisture-based control technologies tailor irrigation schedules to meet landscape water needs based on seasonal patterns, as well as prevailing conditions in the landscape.

  2. Framework for computationally efficient optimal irrigation scheduling using ant colony optimization

    USDA-ARS?s Scientific Manuscript database

    A general optimization framework is introduced with the overall goal of reducing search space size and increasing the computational efficiency of evolutionary algorithm application for optimal irrigation scheduling. The framework achieves this goal by representing the problem in the form of a decisi...

  3. Impact of potential large-scale and medium-scale irrigation on the West African Monsoon and its dependence on location of irrigated area

    NASA Astrophysics Data System (ADS)

    Eltahir, E. A. B.; IM, E. S.

    2014-12-01

    This study investigates the impact of potential large-scale (about 400,000 km2) and medium-scale (about 60,000 km2) irrigation on the climate of West Africa using the MIT Regional Climate Model. A new irrigation module is implemented to assess the impact of location and scheduling of irrigation on rainfall distribution over West Africa. A control simulation (without irrigation) and various sensitivity experiments (with irrigation) are performed and compared to discern the effects of irrigation location, size and scheduling. In general, the irrigation-induced surface cooling due to anomalously wet soil tends to suppress moist convection and rainfall, which in turn induces local subsidence and low level anti-cyclonic circulation. These local effects are dominated by a consistent reduction of local rainfall over the irrigated land, irrespective of its location. However, the remote response of rainfall distribution to irrigation exhibits a significant sensitivity to the latitudinal position of irrigation. The low-level northeasterly flow associated with anti-cyclonic circulation centered over the irrigation area can enhance the extent of low level convergence through interaction with the prevailing monsoon flow, leading to significant increase in rainfall. Despite much reduced forcing of irrigation water, the medium-scale irrigation seems to draw the same response as large-scale irrigation, which supports the robustness of the response to irrigation in our modeling system. Both large-scale and medium-scale irrigation experiments show that an optimal irrigation location and scheduling exists that would lead to a more efficient use of irrigation water. The approach of using a regional climate model to investigate the impact of location and size of irrigation schemes may be the first step in incorporating land-atmosphere interactions in the design of location and size of irrigation projects. However, this theoretical approach is still in early stages of development and further research is needed before any practical application in water resources planning. Acknowledgements.This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's Center for Environmental Sensing and Modeling interdisciplinary research program.

  4. Integrating Satellite and Surface Sensor Networks for Irrigation Management Applications in California

    NASA Astrophysics Data System (ADS)

    Melton, F. S.; Johnson, L.; Post, K. M.; Guzman, A.; Zaragoza, I.; Spellenberg, R.; Rosevelt, C.; Michaelis, A.; Nemani, R. R.; Cahn, M.; Frame, K.; Temesgen, B.; Eching, S.

    2016-12-01

    Satellite mapping of evapotranspiration (ET) from irrigated agricultural lands can provide agricultural producers and water managers with information that can be used to optimize agricultural water use, especially in regions with limited water supplies. The timely delivery of information on agricultural crop water requirements has the potential to make irrigation scheduling more practical, convenient, and accurate. We present a system for irrigation scheduling and management support in California and describe lessons learned from the development and implementation of the system. The Satellite Irrigation Management Support (SIMS) framework integrates satellite data with information from agricultural weather networks to map crop canopy development, basal crop coefficients (Kcb), and basal crop evapotranspiration (ETcb) at the scale of individual fields. Information is distributed to agricultural producers and water managers via a web-based irrigation management decision support system and web data services. SIMS also provides an application programming interface (API) that facilitates integration with other irrigation decision support tools, estimation of total crop evapotranspiration (ETc) and calculation of on-farm water use efficiency metrics. Accuracy assessments conducted in commercial fields for more than a dozen crop types to date have shown that SIMS seasonal ETcb estimates are within 10% mean absolute error (MAE) for well-watered crops and within 15% across all crop types studied, and closely track daily ETc and running totals of ETc measured in each field. Use of a soil water balance model to correct for soil evaporation and crop water stress reduces this error to less than 8% MAE across all crop types studied to date relative to field measurements of ETc. Results from irrigation trials conducted by the project for four vegetable crops have also demonstrated the potential for use of ET-based irrigation management strategies to reduce total applied water by 20-40% relative to grower standard practices while maintaining crop yields and quality.

  5. Irrigation scheduling using soil moisture sensors

    USDA-ARS?s Scientific Manuscript database

    Soil moisture sensors were evaluated and used for irrigation scheduling in humid region. Soil moisture sensors were installed in soil at depths of 15cm, 30cm, and 61cm belowground. Soil volumetric water content was automatically measured by the sensors in a time interval of an hour during the crop g...

  6. Planning for deficit irrigation

    USDA-ARS?s Scientific Manuscript database

    Irrigators with limited water supplies that lead to deficit irrigation management need to make decisions about crop selection, water allocations to each crop, and irrigation schedules. Many of these decisions need to occur before the crop is planted and depend on yield-evapotranspiration (ET) and yi...

  7. An integrated modeling framework for real-time irrigation scheduling: the benefit of spectroscopy and weather forecasts

    NASA Astrophysics Data System (ADS)

    Brook, Anna; Polinova, Maria; Housh, Mashor

    2016-04-01

    Agriculture and agricultural landscapes are increasingly under pressure to meet the demands of a constantly increasing human population and globally changing food patterns. At the same time, there is rising concern that climate change and food security will harm agriculture in many regions of the world (Nelson et al., 2009). Facing those treats, majority of Mediterranean countries had chosen irrigated agriculture. For crop plants water is one of the most important inputs, as it is responsible for crop growth, production and it ensures the efficiency of other inputs (e.g. seeds, fertilizers and pesticide) but its use is in competition with other local sectors (e.g. industry, urban human use). Thus, well-timed availability of water is vital to agriculture for ensured yields. The increasing demand for irrigation has necessitated the need for optimal irrigation scheduling techniques that coordinate the timing and amount of irrigation to optimally manage the water use in agriculture systems. The irrigation scheduling problem can be challenging as farmers try to deal with different conflicting objectives of maximizing their yield while minimizing irrigation water use. Another challenge in the irrigation scheduling problem is attributed to the uncertain factors involved in the plant growth process during the growing season. Most notable, the climatic factors such as evapotranspiration and rainfall, these uncertain factors add a third objective to the farmer perspective, namely, minimizing the risk associated with these uncertain factors. Nevertheless, advancements in weather forecasting reduced the uncertainty level associated with future climatic data. Thus, climatic forecasts can be reliably employed to guide optimal irrigation schedule scheme when coupled with stochastic optimization models (Housh et al., 2012). Many studies have concluded that optimal irrigation decisions can provide substantial economic value over conventional irrigation decisions (Wang and Cai 2009). These studies have only incorporated short-term (weekly) forecasts, missing the potential benefit of the mid-term (seasonal) climate forecasts The latest progress in new data acquisition technologies (mainly in the field of Earth observation by remote sensing and imaging spectroscopy systems) as well as the state-of-the-art achievements in the fields of geographical information systems (GIS), computer science and climate and climate impact modelling enable to develop both integrated modelling and realistic spatial simulations. The present method is the use of field spectroscopy technology to keep constant monitoring of the field. The majority of previously developed decision support systems use satellite remote sensing data that provide very limited capabilities (conventional and basic parameters). The alternative is to use a more progressive technology of hyperspectral airborne or ground-based imagery data that provide an exhaustive description of the field. Nevertheless, this alternative is known to be very costly and complex. As such, we will present a low-cost imaging spectroscopy technology supported by detailed and fine-resolution field spectroscopy as a cost effective option for near field real-time monitoring tool. In order to solve the soil water balance and to predict the water irrigation volume a pedological survey is realized in the evaluation study areas.The remote sensing and field spectroscopy were applied to integrate continuous feedbacks from the field (e.g. soil moisture, organic/inorganic carbon, nitrogen, salinity, fertilizers, sulphur acid, texture; crop water-stress, plant stage, LAI , chlorophyll, biomass, yield prediction applying PROSPECT+SILT ; Fraction of Absorbed Photosynthetically Active Radiation FAPAR) estimated based on remote sensing information to minimize the errors associated with crop simulation process. A stochastic optimization model will be formulated that take into account both mid-term seasonal probabilistic climate prediction and short-term weekly forecasts. In order to optimize the water resource use, the irrigation scheduling will be defined by use a simulation model of soil-plant and atmosphere system (e.g. SWAP model, Van Dam et al., 2008). The use of this tool is necessary to: i) take into account the soil spatial variability; ii) to predict the system behaviour under the forecasted climate; iii) define the optimized irrigation water volumes. Given this knowledge in the three domains of optimization under uncertainty, spectroscopy/remote sensing and climate forecasting, we will be presented as an integrated framework for deriving optimal irrigation decisions. References Nelson, Gerald C., et al. Climate change: Impact on agriculture and costs of adaptation. Vol. 21. Intl Food Policy Res Inst, 2009. Housh, Mashor, Avi Ostfeld, and Uri Shamir. "Seasonal multi-year optimal management of quantities and salinities in regional water supply systems." Environmental Modelling & Software 37 (2012): 55-67. Wang, Dingbao, and Ximing Cai. "Irrigation scheduling - Role of weather forecasting and farmers' behavior." Journal of Water Resources Planning and Management 135.5 (2009): 364-372. Van Dam, J. C., et al. SWAP version 3.2: Theory description and user manual. No. 1649. Wageningen, The Netherlands: Alterra, 2008.

  8. Irrigation system management assisted by thermal imagery and spatial statistics

    USDA-ARS?s Scientific Manuscript database

    Thermal imaging has the potential to assist with many aspects of irrigation management including scheduling water application, detecting leaky irrigation canals, and gauging the overall effectiveness of water distribution networks used in furrow irrigation. Many challenges exist for the use of therm...

  9. Uncertainty analysis of an irrigation scheduling model for water management in crop production

    USDA-ARS?s Scientific Manuscript database

    Irrigation scheduling tools are critical to allow producers to manage water resources for crop production in an accurate and timely manner. To be useful, these tools need to be accurate, complete, and relatively reliable. The current work presents the uncertainty analysis and its results for the Mis...

  10. Using Satellite Imagery with ET Weather Station Networks to Map Crop Water Use for Irrigation Scheduling: TOPS-SIMS.

    USDA-ARS?s Scientific Manuscript database

    Evapotranspiration estimates for scheduling irrigation must be field specific and real time. Weather station networks provide daily reference ET values, but users need to select crop coefficients for their particular crop and field. A prototype system has been developed that combines satellite image...

  11. Potential and challenges in use of thermal imaging for humid region irrigation system management

    USDA-ARS?s Scientific Manuscript database

    Thermal imaging has shown potential to assist with many aspects of irrigation management including scheduling water application, detecting leaky irrigation canals, and gauging the overall effectiveness of water distribution networks used in furrow irrigation. Many challenges exist for the use of the...

  12. Operational Space-Assisted Irrigation Advisory Services: Overview Of And Lessons Learned From The Project DEMETER

    NASA Astrophysics Data System (ADS)

    Osann Jochum, M. A.; Demeter Partners

    2006-08-01

    The project DEMETER (DEMonstration of Earth observation TEchnologies in Routine irrigation advisory services) was dedicated to assessing and demonstrating improvements introduced by Earth observation (EO) and Information and Communication Technologies (ICT) in farm and Irrigation Advisory Service (IAS) day-to-day operations. The DEMETER concept of near-real-time delivery of EO-based irrigation scheduling information to IAS and farmers has proven to be valid. The operationality of the space segment was demonstrated for Landsat 5-TM in the Barrax pilot zone during the 2004 and 2005 irrigation campaigns. Extra-fast image delivery and quality controlled operational processing make the EO-based crop coefficient maps available at the same speed and quality as ground-based data (point samples), while significantly extending the spatial coverage and reducing service cost. Leading-edge online analysis and visualization tools provide easy, intuitive access to the information and personalized service to users. First feedback of users at IAS and farmer level is encouraging. The paper gives an overview of the project and its main achievements.

  13. Precision irrigation for improving crop water management

    USDA-ARS?s Scientific Manuscript database

    Precision irrigation is gaining attention by the agricultural industry as a means to optimize water inputs, reduce environmental degradation from runoff or deep percolation and maintain crop yields. This presenation will discuss the mechanical and software framework of the irrigation scheduling sup...

  14. Wireless sensor networks for canopy temperature sensing and irrigation management

    USDA-ARS?s Scientific Manuscript database

    For researchers, canopy temperature measurements have proven useful in characterizing crop water stress and developing protocols for irrigation management. Today, there is heightened interest in using remote canopy temperature measurements for real-time irrigation scheduling. However, without the us...

  15. Practical implications of applied irrigation research

    USDA-ARS?s Scientific Manuscript database

    Groundwater is essential to irrigated agriculture in the semi-arid Texas High Plains. Concerns over groundwater depletion have led to increased emphasis on water conservation. Irrigation scheduling coupled with accurate crop water use (ET) estimation is one of the most effective means to both conser...

  16. Comparison of crop stress and soil maps to enhance variable rate irrigation prescriptions

    USDA-ARS?s Scientific Manuscript database

    Soil textural variability within many irrigated fields diminishes the effectiveness of conventional irrigation management, and scheduling methods that assume uniform soil conditions may produce less than satisfactory results. Furthermore, benefits of variable-rate application of agrochemicals, seeds...

  17. ARS irrigation research priorities and projects-An update

    USDA-ARS?s Scientific Manuscript database

    The USDA Agricultural Research Service focuses on six areas of research that are crucial to safe and effective use of all water resources for agricultural production: 1) Irrigation Scheduling Technologies for Water Productivity; 2) Water Productivity (WP) at Multiple Scales; 3) Irrigation Applicatio...

  18. Gain-scheduling multivariable LPV control of an irrigation canal system.

    PubMed

    Bolea, Yolanda; Puig, Vicenç

    2016-07-01

    The purpose of this paper is to present a multivariable linear parameter varying (LPV) controller with a gain scheduling Smith Predictor (SP) scheme applicable to open-flow canal systems. This LPV controller based on SP is designed taking into account the uncertainty in the estimation of delay and the variation of plant parameters according to the operating point. This new methodology can be applied to a class of delay systems that can be represented by a set of models that can be factorized into a rational multivariable model in series with left/right diagonal (multiple) delays, such as, the case of irrigation canals. A multiple pool canal system is used to test and validate the proposed control approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Influence of crop load on almond tree water status and its importance in irrigation scheduling

    NASA Astrophysics Data System (ADS)

    Puerto Conesa, Pablo; Domingo Miguel, Rafael; Torres Sánchez, Roque; Pérez Pastor, Alejandro

    2014-05-01

    In the Mediterranean area water is the main factor limiting crop production and therefore irrigation is essential to achieve economically viable yields. One of the fundamental techniques to ensure that irrigation water is managed efficiently with maximum productivity and minimum environmental impact is irrigation scheduling. The fact that the plant water status integrates atmospheric demand and soil water content conditions encourages the use of plant-based water status indicators. Some researchers have successfully scheduled irrigation in certain fruit trees by maintaining the maximum daily trunk diameter shrinkage (MDS) signal intensity at threshold values to generate (or not) water stress. However MDS not only depends on the climate and soil water content, but may be affected by tree factors such as age, size, phenological stage and fruit load. There is therefore a need to quantify the influence of these factors on MDS. The main objective of this work was to study the effects of crop load on tree water relations for scheduling purposes. We particularly focused on MDS vs VPD10-15 (mean air vapor pressure deficit during the period 10.00-15.00 h solar time) for different loads and phenological phases under non-limiting soil water conditions. The experiment was carried out in 2011 in a 1 ha plot in SE Spain with almond trees (Prunus dulcis (Mill.) D.A. Webb cv. 'Marta'). Three crop load treatments were studied according to three crop load levels, i) T100, high crop load, characteristic crop load, ii) T50, medium crop load, in which 50% of the fruits were removed and iii) T0, practically without fruits. Fruits were manually thinned. Each treatment, randomly distributed in blocks, was run in triplicate. Plant water status was assessed from midday stem water potential (Ψs), MDS, daily trunk growth rate (TGR), leaf turgor potential Ψp, fruit water potential (Ψf), stomatal conductance (gs) and photosynthesis (Pn) and transpiration rates (E). Yield, pruning weights and reserve sugar concentration were also evaluated. Trees were drip irrigated in order to satisfy the maximum crop water requirements. Variations in MDS were compared with changes in Ψs and VPD10-15 in the three treatments at the end of fruit growth stage (stage III), kernel filling stage (stage IV) and postharvest (stage V). Our results highlighted that crop load affects almond tree water status. We observed a greater effect of crop load on MDS and TGR than on Ψs. In T0 trees, Ψs was 16% higher than in T50 and T100. MDS was 36% and 49% lower in the low (T50) and almost nil-cropping trees (T0) than in the high-cropping trees (T100). The slope of MDS vs VPD10-15 forced to the origin increased with crop load, suggesting that different relationships are needed to estimate tree water status. TGR was 33% higher in T0 than in the cropping trees. In the same way, the presence of fruits, as reflected by the source/sink relationship, increased gas exchange parameters. Also pruning weights reflected competition between fruits and shoots for photoassimilates. Nevertheless the reserve sugar concentration at the base of the main branches was unaffected by the crop load. All this implies that it is necessary to consider the crop load in irrigation scheduling based on MDS signal intensity.

  20. Application of future remote sensing systems to irrigation

    NASA Technical Reports Server (NTRS)

    Miller, L. D.

    1982-01-01

    Area estimates of irrigated crops and knowledge of crop type are required for modeling water consumption to assist farmers, rangers, and agricultural consultants in scheduling irrigation for distributed management of crop yields. Information on canopy physiology and soil moisture status on a spatial basis is potentially available from remote sensors, so the questions to be addressed relate to: (1) timing (data frequency, instantaneous and integrated measurement); and scheduling (widely distributed spatial demands); (2) spatial resolution; (3) radiometric and geometric accuracy and geoencoding; and (4) information/data distribution. This latter should be overnight, with no central storage, onsite capture, and low cost.

  1. Development of deficit irrigation scheduling strategies for 'Prime Giant' sweet cherry

    NASA Astrophysics Data System (ADS)

    Blanco, Víctor; Domingo, Rafael; Torres, Roque; Pérez Pastor, Alejandro; García, Manuel; López, Juan Antonio

    2016-04-01

    Precision regulated deficit irrigation scheduling is useful for improving water productivity and ensuring crop production sustainability. This form of water management requires continuous monitoring in order to know soil and/or plant water status at all times. Water status sensors are key tools for modulating irrigation water amounts. The objective of this work was to study the physiological and agronomic response of cherry trees to different irrigation treatments based on crop evapotranspiration (ETc). However, the final purpose was to establish threshold values of water stress indicators, which can be considered of practical applicability in automatic irrigation scheduling. The experiment was carried out in 2015 in a 0.5 ha commercial plot of 'Prime Giant' cherry [Prunus avium (L.)] in SE Spain. Three treatments were studied i) T110, irrigated above the maximum crop water requirements (110% of ETc), ii) T85, sustained deficit irrigation, irrigated to satisfy 85% of ETc, throughout the growing season, and iii) T100-55, regulated deficit irrigation with different water deficit levels: 100% and 55% of ETc during pre- and postharvest, respectively. Each treatment was randomly distributed in blocks and run in triplicate. Soil and plant water status were assessed from the soil matric potential and volumetric water content (Ym and Ov), midday stem and fruit water potential (Ys and Yf), maximum daily trunk shrinkage (MDS), daily trunk growth rate (TGR), stomatal conductance (gs), photosynthesis (Pn) and transpiration rates (E). Vegetative growth, yield and the quality of the fruit were also evaluated. Ys and MDS signal intensity were used as the main indicators of water stress. The water applied during the 2015 growing season was 7190, 5425 and 4225 m3 ha-1 for T110, T85 and T100-55, respectively. The mean values of Ys during pre- and postharvest were -0.51, -0.57, -0.54 and -0.65, -0.77 and -0.97 MPa in T110, T85 and T100-55, respectively, while Yf was -1.20, -1.36, -1.27 MPa, during the preharvest period, respectively. The deficit irrigation strategies tested, T85 and T100-55, corresponded to equivalent signal intensities of Ys, 1.1 and 1.05, and of MDS 1.40 and 1.25, respectively, which would denote that the treatment irrigated to satisfy 100% of ETc during preharvest (T100-55) was slightly stressed. Our results show that the water regime applied generated statistically significance differences between treatments both in plant (Ys, Yf, MDS, TGR, gs, Pn, E) and soil (Ym, Ov) water relations. There were no differences in vegetative growth, trunk cross-sectional area or summer pruning values. The irrigation strategies followed did not cause any difference in total production (16.1 t ha-1). Moreover, fruit quality at harvest did not differ between treatments, except for the solid soluble content and unitary cherry weight, when significant differences were obtained. The results confirm the usefulness of support deficit irrigation scheduling in sweet cherry trees. However, these good results need to be followed up in subsequent growing seasons. This study was funded by the Spanish Ministry for Economy and Competitiveness (MINECO) and the European Agricultural Funds for Rural Development. Reference: AGL2013-49047-C2-1-R.

  2. Efficient irrigation management with conventional and VRI sprinkler systems

    USDA-ARS?s Scientific Manuscript database

    In Alabama, there is a ploitical push towards irrigated agriculture, as reduction in water resources for agriculture in the West becomes more limited. Some farmers have invested in center pivot systems but have little experience with irrigation scheduling methods. ARS scientists at Bushland have e...

  3. Wireless sensor network effectively controls center pivot irrigation of sorghum

    USDA-ARS?s Scientific Manuscript database

    Robust automatic irrigation scheduling has been demonstrated using wired sensors and sensor network systems with subsurface drip and moving irrigation systems. However, there are limited studies that report on crop yield and water use efficiency resulting from the use of wireless networks to automat...

  4. Nambe Pueblo Water Budget and Forecasting model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brainard, James Robert

    2009-10-01

    This report documents The Nambe Pueblo Water Budget and Water Forecasting model. The model has been constructed using Powersim Studio (PS), a software package designed to investigate complex systems where flows and accumulations are central to the system. Here PS has been used as a platform for modeling various aspects of Nambe Pueblo's current and future water use. The model contains three major components, the Water Forecast Component, Irrigation Scheduling Component, and the Reservoir Model Component. In each of the components, the user can change variables to investigate the impacts of water management scenarios on future water use. The Watermore » Forecast Component includes forecasting for industrial, commercial, and livestock use. Domestic demand is also forecasted based on user specified current population, population growth rates, and per capita water consumption. Irrigation efficiencies are quantified in the Irrigated Agriculture component using critical information concerning diversion rates, acreages, ditch dimensions and seepage rates. Results from this section are used in the Water Demand Forecast, Irrigation Scheduling, and the Reservoir Model components. The Reservoir Component contains two sections, (1) Storage and Inflow Accumulations by Categories and (2) Release, Diversion and Shortages. Results from both sections are derived from the calibrated Nambe Reservoir model where historic, pre-dam or above dam USGS stream flow data is fed into the model and releases are calculated.« less

  5. Evaluating tensiometers and moisture sensors for cranberry irrigation

    USDA-ARS?s Scientific Manuscript database

    Irrigation scheduling continues to be a major challenge in cranberry (Vaccinium marcrocarpon Ait.) production. Many growers tend to rely on the 25 mm per week “rule” from rain and irrigation despite evidence that in most years this results in some weeks with inadequate water and others with excess. ...

  6. Performance of a wireless sensor network for crop monitoring and irrigation control

    USDA-ARS?s Scientific Manuscript database

    Robust automatic irrigation scheduling has been demonstrated using wired sensors and sensor network systems with subsurface drip and moving irrigation systems. However, there are limited studies that report on crop yield and water use efficiency resulting from the use of wireless networks to automat...

  7. Monitoring crop coefficient of orange orchards using energy balance and the remote sensed NDVI

    NASA Astrophysics Data System (ADS)

    Consoli, Simona; Cirelli, Giuseppe Luigi; Toscano, Attilio

    2006-09-01

    The structure of vegetation is paramount in regulating the exchange of mass and energy across the biosphereatmosphere interface. In particular, changes in vegetation density affected the partitioning of incoming solar energy into sensible and latent heat fluxes that may result in persistent drought through reductions in agricultural productivity and in the water resources availability. Limited research with citrus orchards has shown improvements to irrigation scheduling due to better water-use estimation and more appropriate timing of irrigation when crop coefficient (Kc) estimate, derived from remotely sensed multispectral vegetation indices (VIs), are incorporated into irrigation-scheduling algorithms. The purpose of this article is the application of an empirical reflectance-based model for the estimation of Kc and evapotranspiration fluxes (ET) using ground observations on climatic data and high-resolution VIs from ASTER TERRA satellite imagery. The remote sensed Kc data were used in developing the relationship with the normalized difference vegetation index (NDVI) for orange orchards during summer periods. Validation of remote sensed data on ET, Kc and vegetation features was deal through ground data observations and the resolution of the energy balance to derive latent heat flux density (λE), using measures of net radiation (Rn) and soil heat flux density (G) and estimate of sensible heat flux density (H) from high frequency temperature measurements (Surface Renewal technique). The chosen case study is that of an irrigation area covered by orange orchards located in Eastern Sicily, Italy) during the irrigation seasons 2005 and 2006.

  8. Evaluation of an operational real-time irrigation scheduling scheme for drip irrigated citrus fields in Picassent, Spain

    NASA Astrophysics Data System (ADS)

    Li, Dazhi; Hendricks-Franssen, Harrie-Jan; Han, Xujun; Jiménez Bello, Miguel Angel; Martínez Alzamora, Fernando; Vereecken, Harry

    2017-04-01

    Irrigated agriculture accounts worldwide for 40% of food production and 70% of fresh water withdrawals. Irrigation scheduling aims to minimize water use while maintaining the agricultural production. In this study we were concerned with the real-time automatic control of irrigation, which calculates daily water allocation by combining information from soil moisture sensors and a land surface model. The combination of soil moisture measurements and predictions by the Community Land Model (CLM) using sequential data assimilation (DA) is a promising alternative to improve the estimate of soil and plant water status. The LETKF (Local Ensemble Transform Kalman Filter) was chosen to assimilate soil water content measured by FDR (Frequency Domain Reflectometry) into CLM and improve the initial (soil moisture) conditions for the next model run. In addition, predictions by the GFS (Global Forecast System) atmospheric simulation model were used as atmospheric input data for CLM to predict an ensemble of possible soil moisture evolutions for the next days. The difference between predicted and target soil water content is defined as the water deficit, and the irrigation amount was calculated by the integrated water deficit over the root zone. The corresponding irrigation time to apply the required water was introduced in SCADA (supervisory control and data acquisition system) for each citrus field. In total 6 fields were irrigated according our optimization approach including data assimilation (CLM-DA) and there were also 2 fields following the FAO (Food and Agriculture Organization) water balance method and 4 fields controlled by farmers as reference. During the real-time irrigation campaign in Valencia from July to October in 2015 and June to October in 2016, the applied irrigation amount, stem water potential and soil moisture content were recorded. The data indicated that 5% 20% less irrigation water was needed for the CLM-DA scheduled fields than for the other fields following the FAO or farmers' method. Stem water potential data indicated that the CLM-DA fields were not suffering from water stress during most of the irrigation period. Even though the CLM-DA fields received the least irrigation water, the orange production was not suppressed either. Our results show the water saving potential of the CLM-DA method compared to other traditional irrigation methods.

  9. Use of soil moisture sensors for irrigation scheduling

    USDA-ARS?s Scientific Manuscript database

    Various types of soil moisture sensing devices have been developed and are commercially available for water management applications. Each type of soil moisture sensors has its advantages and shortcomings in terms of accuracy, reliability, and cost. Resistive and capacitive based sensors, and time-d...

  10. Phosphorus dynamics and phosphatase acitivity of soils under corn production with supplemental irrigation in humid coastal plain region, USA

    USDA-ARS?s Scientific Manuscript database

    A three-year (2013-2015) field study was conducted to evaluate the effect of integrated nutrient management (NM) and three irrigation scheduling methods (IS): irrigator pro (IPro); normalized difference vegetative index (NDVI) and soil water potentials (SWP) on phosphorus (P) dynamics and phosphatas...

  11. Implementation of efficient irrigation management for a sustainable agriculture. LIFE+ project IRRIMAN

    NASA Astrophysics Data System (ADS)

    Pérez-Pastor, Alejandro; Garcia-Vila, Margarita; Gamero-Ojeda, Pedro; Ascensión Carmona, M.°; Hernandez, David; José Alarcón, Juan; Nicolás, Emilio; Nortes, Pedro; Aroca, Antonio; María de la Rosa, Jose; Zornoza, Raúl; Faz, Ángel; Molina, Angel; Torres, Roque; Ruiz, Manuel; Calatrava, Javier

    2016-04-01

    In water scarcity areas, it must be highlighted that the maximum productions of the crops do not necessarily imply maximum profitability. Therefore, during the last years a special interest in the development of deficit irrigation strategies based on significant reductions of the seasonal ET without affecting production or quality has been observed. The strategies of regulated deficit irrigation (RDI) are based on the reduction of water supply during non critical periods, the covering of water needs during critical periods and maximizing, at the same time, the production by unit of applied water. But its success greatly depends on the adequate application of the water deficit and requires a continuous and precise control of the plant and soil water status to adjust the water supplies at every crop phenological period. The main objective of this project is to implement, demonstrate and disseminate a sustainable irrigation strategy based on deficit irrigation to promote its large scale acceptance and use in woody crops in Mediterranean agroecosystems, characterized by water scarcity, without affecting the quality standards demanded by exportation markets. With the adoption of this irrigation management we mean to ensure efficient use of water resources, improving quantitative water management, preserving high level of water quality and avoiding misuse and deterioration of water resources. The adoption of efficient irrigation will also lead to increments in water productivity, increments in the potential carbon fixation of the agroecosystem, and decrease energy costs of pressurized irrigation, together with mitigation and adaptation to climate change. The project will achieve the general objective by implication of farmers, irrigation communities, agronomists, industry, consultants, associations and public administration, by increments in social awareness for sustainable irrigation benefits, optimization of irrigation scheduling, improvements in technology, and dissemination of sustainable irrigation guidelines. Acknowledgements This work has been funded by the European Union LIFE+ project IRRIMAN (LIFE13 ENV/ES/000539).

  12. Irrigation Controllers Specification and Certification

    EPA Pesticide Factsheets

    WaterSense labeled irrigation controllers, which act like a thermostat for your sprinkler system telling it when to turn on and off, use local weather and landscape conditions to tailor watering schedules to actual conditions on the site.

  13. Water saving at the field scale with Irrig-OH, an open-hardware environment device for soil water potential monitoring and irrigation management

    NASA Astrophysics Data System (ADS)

    Masseroni, Daniele; Facchi, Arianna; Gandolfi, Claudio

    2015-04-01

    Sustainability of irrigation practices is an important objective which should be pursued in many countries, especially in areas where water scarcity causes strong conflicts among the different water uses. The efficient use of water is a key factor in coping with the food demand of an increasing world population and with the negative effects of the climate change on water resources availability in many areas. In this complex context, it is important that farmers adopt instruments and practices that enable a better management of water at the field scale, whatever the irrigation method they adopt. This work presents the hardware structure and the functioning of an open-hardware microstation based on the Arduino technology, called Irrig-OH, which allows the continuous and low-cost monitoring of the soil water potential (SWP) in the root zone for supporting the irrigation scheduling at the field scale. In order to test the microstation, an experiment was carried out during the agricultural season 2014 at Lodi (Italy), with the purpose of comparing the farmers' traditional management of irrigation of a peach variety and the scheduling based on the SWP measurements provided by the microstation. Additional measurements of leaf water potential (LWP), stomatal resistance, transpiration (T), crop water stress index (CWSI) and fruit size evolution were performed respectively on leafs and fruits for verifying the plant physiological responses on different SWP levels in soil. At the harvesting time, the peach production in term of quantity and quality (sucrose content was measured by a rifractometer over a sample of one hundred fruits) of the two rows were compared. Irrigation criteria was changed with respect to three macro-periods: up to the endocarp hardening phase (begin of May) soil was kept well watered fixing the SWP threshold in the first 35 cm of the soil profile at -20 kPa, during the pit hardening period (about the entire month of May) the allowed SWP threshold was -30 kPa and, finally, from the end of May to the harvesting time (maturation process), irrigation was applied when SWP reached -25 kPa. Every time irrigation events were stopped when SWP at the field capacity (-10 kPa) was restored in the upper part of the root zone. Results showed a water saving of nearly 50% using the Irrig-OH device, without consequences on the quantity and quality of the production. Plant physiological status based on LWP, T and CWSI measurements showed that despite the different irrigation treatments adopted, no considerable plant stress was found in both rows. In particular, maximum values of the previous indices, performed at midday, were respectively -2 MPa, 1.4 mm h-1 and 0.6, which were in good agreement with those observed by many researches for no-stressed peach orchards in Mediterranean areas.

  14. Utilizing on-farm best management practices: Managing Nitrate Leaching Using Evapotranspiration Based Irrigation Methods

    NASA Astrophysics Data System (ADS)

    Zaragosa, I.; Melton, F. S.; Dexter, J.; Post, K.; Haffa, A.; Kortman, S.; Spellenberg, R.; Cahn, M.

    2017-12-01

    In efforts to provide tools to allow farmers to optimize and quantify water usage and fertilizer applications, University of California Cooperative Extension (UCCE) developed the CropManage irrigation and nitrogen scheduling tool that provides real time evapotranspiration (ETc) based irrigation recommendations and fertilizer recommendations on a per field basis. CropManage incorporates satellite based estimates of fractional cover from web data services from the Satellite Irrigation Management Information Support (SIMS) system developed by NASA Ames Research Center in collaboration with California State University Monterey Bay (CSUMB). In this study, we conducted field trials to quantify the benefits of using these tools to support best management practices (BMPs) for irrigation and nutrient management in strawberries and lettuce in the Salinas Valley, California. We applied two different irrigation treatments based on full replacement (100%) of crop evapotranspiration (ETc), and irrigation at 130% of ETc replacement to approximate irrigation under business as usual irrigation management. Both field studies used a randomized block design with four replicates each. We used CropManage to calculate the 100% and 130% ETc replacement requirements prior to each irrigation event. We collected drainage volume and samples and analyzed them for 8500 to nitrate as (NO3-) concentrations. Experimental results for both strawberries and lettuce showed a significant decrease in the percentage of applied nitrogen leached for the 100% ETc replacement treatment against the 130% ETc replacement treatment. For strawberries, we observed that 24% of applied nitrogen was leached under the 100% ETc replacement treatment, versus 51% of applied nitrogen that was leached under the 130% ETc replacement treatment. For lettuce, we observe that 2% of the applied nitrogen leached bellow the soil profile, versus 6% of the applied nitrogen for the 130%ETc replacement treatment. In both experiments, we observed significant differences in the amount of leached nitrogen, both as in terms of total volume and as a percent of nitrogen applied, with no significant differences in yield.

  15. Decision Support system- DSS- for irrigation management in greenhouses: a case study in Campania Region

    NASA Astrophysics Data System (ADS)

    Monaco, Eugenia; De Mascellis, Roberto; Riccardi, Maria; Basile, Angelo; D'Urso, Guido; Magliulo, Vincenzo; Tedeschi, Anna

    2016-04-01

    In Mediterranean Countries the proper management of water resources is important for the preservation of actual production systems. The possibility to manage water resources is possible especially in the greenhouses systems. The challenge to manage the soil in greenhouse farm can be a strategy to maintain both current production systems both soil conservation. In Campania region protected crops (greenhouses and tunnels) have a considerable economic importance both for their extension in terms of surface harvested and also for their production in terms of yields. Agricultural production in greenhouse is closely related to the micro-climatic condition but also to the physical and agronomic characteristics of the soil-crop system. The protected crops have an high level of technology compare to the other production systems, but the irrigation management is still carried out according to empirical criteria. The rational management of the production process requires an appropriate control of climatic parameters (temperature, humidity, wind) and agronomical inputs (irrigation, fertilization,). All these factors need to be monitored as well is possible, in order to identify the optimal irrigation schedule. The aim of this work is to implement a Decision Support system -DSS- for irrigation management in greenhouses focused on a smart irrigation control based on observation of the agro-climatic parameters monitored with an advanced wireless sensors network. The study is conducted in a greenhouse farm of 6 ha located in the district of Salerno were seven plots were cropped with rocket. Preliminary a study of soils proprieties was conducted in order to identify spatial variability of the soil in the farm. So undisturbed soil samples were collected to define chemical and physical proprieties; moreover soil hydraulic properties were determined for two soils profiles deemed representation of the farm. Then the wireless sensors, installed at different depth in the soils, determined volumetric water content (VWC) by measuring the dielectric constant of the soil using frequency domain technology (FDR). The data acquired real time were used to determine water balance with a physically based model Hydrus 1D. The results show how the model is able to identify the optimal irrigation schedule as function of soil proprieties and crop needs. Keywords: irrigation, DSS, rocket, water content

  16. The importance of timing of precipitation for irrigation scheduling

    NASA Astrophysics Data System (ADS)

    Franz, T.; Hunt, E. D.; Wardlow, B.

    2016-12-01

    Irrigated agriculture, like rainfed agriculture, continues to serve an important role in the production of cereal crops, with increasing importance in the developing world. Many areas however, including the U.S. High Plains region, are faced with the daunting task of increasing crop production with less water, as groundwater reserves become further depleted. Climate change could further exacerbate limited supplies of groundwater in these regions. Thus, monitoring soil moisture under cereal crops is critical for determining the best irrigation strategies. The results obtained during an eight-year period from an irrigated field in eastern Nebraska demonstrated the importance of the timing of precipitation and soil moisture response for irrigation scheduling. The years with the fewest irrigation applications for both maize and soybeans were not the wettest years during the study period. Paradoxically, the year with the fewest irrigation treatments when soybeans were the common crop at the irrigated field and a nearby rainfed field was in 2006, which had below average growing season precipitation. The year with the most irrigation treatments (2008) when soybeans were also the common crop occurred during one of the wettest growing seasons over the past 30 years at Mead. The primary difference between the below average 2006 growing season and the wet 2008 growing season was that precipitation fell at regular intervals during critical reproductive stages for soybeans in 2006 keeping the soil profile moist. Conversely, the only dry spell of the 2008 growing season occurred during that same critical period, thus necessitating irrigation applications that prevented depletion of soil profile.

  17. Evaluation of Irrigation Water Use Efficiency and Water-saving in the Middle Oasis of Heihe River Basin Using a Distributed Agro-hydrological Model

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Huang, G., Sr.; Xu, X.; Huang, Q.; Huo, Z.

    2015-12-01

    Severe water scarcity and unreasonable allocation are threatening the eco-environment in the Heihe River basin (HRB), an arid and semi-arid watershed in Northwest China. The water use in the middle oasis accounts for about 70% of the total water use in the HRB, in which over 85% are consumed by irrigated agriculture. Thus the regional assessment and improvement of irrigation water use are quite essential for water-saving and eco-environmental sustainability. This paper applied a distributed agro-hydrological model (SWAP-EPIC) integrated with ArcGIS to investigate the irrigation water use efficiency (WUE) in the middle oasis. The detailed distributed data in 2012, including soil properties, irrigation schedules, crop pattern and calendar, were collected and used in the regional simulation. The spatial-temporal distribution of LAI and evapotranspiration (ETa) from remote sensing were used as observations to calibrate the model. Results showed that the simulation data was in a good agreement with the observation one. The relative WUE (i.e. divided by the mean value) ranged from 0.77 to 1.33 in different canal command areas. Large spatial variations of WUE were mainly caused by the non-uniform distribution of irrigation water. The present irrigation performance was poor, and only 50% of total irrigation amount was finally utilized through evapotranspiration in the whole district. While nearly 24% of the irrigation water were lost through field deep percolation and 26% were wasted in canal conveyance. Further analysis of water-saving scenarios was conducted through applying the improved irrigation schedule for each crop-soil unites and increasing the canal conveyance efficiency. Prediction showed that 15% of total irrigation amount can be saved without reduction of crop yield.

  18. Measuring short-crop reference evapotranspiration in a humid region using electronic atmometers

    USDA-ARS?s Scientific Manuscript database

    The Crop Water Use phone app is a weather-based program developed by the Missouri Extension Service to help farmers with irrigation scheduling. A limitation of the program is that it only works on Missouri fields. The app is linked to the state agricultural weather station network, which supplies da...

  19. Irrigation management strategies to improve Water Use Efficiency of potatoes crop in Central Tunisia

    NASA Astrophysics Data System (ADS)

    Ghazouani, Hiba; Provenzano, Giuseppe; Rallo, Giovanni; Mguidiche, Amel; Douh, Boutheina; Boujelben, Abdelhamid

    2015-04-01

    In Tunisia, the expansion of irrigated area and the semiarid climate make it compulsory to adopt strategies of water management to increase water use efficiency. Subsurface drip irrigation (SDI), providing the application of high frequency small irrigation volumes below the soil surface have been increasingly used to enhance irrigation efficiency. At the same time, deficit irrigation (DI) has shown successful results with a large number of crop in various countries. However, for some crops like potatoes, DI is difficult to manage due to the rapid effect of water stress on tuber yield. Irrigation frequency is a key factor to schedule subsurface drip irrigation because, even maintaining the total seasonal volume, soil wetting patterns can result different during the growth period, with consequence on crop yield. Despite the need to enhance water use efficiency, only a few studies related to deficit irrigation of horticultural crops have been made in Tunisia. Objective of the paper was to assess the effects of different on-farm irrigation strategies on water use efficiency of potatoes crop irrigated with subsurface drip irrigation in a semiarid area of central Tunisia. After validation, Hydrus-2D model was used to simulate soil water status in the root zone, to evaluate actual crop evapotranspiration and then to estimate indirectly water use efficiency (IWUE), defined as the ratio between crop yield and total amount of water supplied with irrigation. Field experiments, were carried out in Central Tunisia (10° 33' 47.0" E, 35° 58' 8.1° N, 19 m a.s.l) on a potatoes crop planted in a sandy loam soil, during the growing season 2014, from January 15 (plantation of tubers) to May 6 (harvesting). Soil water status was monitored in two plots (T1 and T2) maintained under the same management, but different irrigation volumes, provided by a SDI system. In particular, irrigation was scheduled according to the average water content measured in the root zone, with a total of 8 watering, with timing ranging between one and three hours in T1, and between about half-an-hour and one-hour and a-half, in T2. The validity of Hydrus-2D model was initially assessed based on the comparison between measured and estimated soil water content at different distances from the emitter (RMSE values were not higher than 0.036). Then, model simulations allowed to verify that it is possible to enhance irrigation water use efficiency by increasing the frequency of irrigation even maintaining limited water deficit conditions during the full development stage subsequent the crop tuberization. Experimental results, joined to model simulations can therefore provide useful guidelines for a more sustainable use of irrigation water in countries characterised by semi-arid environments and limited availability of water resources.

  20. Using a System Model for Irrigation Management

    NASA Astrophysics Data System (ADS)

    de Souza, Leonardo; de Miranda, Eu; Sánchez-Román, Rodrigo; Orellana-González, Alba

    2014-05-01

    When using Systems Thinking variables involved in any process have a dynamic behavior, according to nonstatic relationships with the environment. In this paper it is presented a system dynamics model developed to be used as an irrigation management tool. The model involves several parameters related to irrigation such as: soil characteristics, climate data and culture's physiological parameters. The water availability for plants in the soil is defined as a stock in the model, and this soil water content will define the right moment to irrigate and the water depth required to be applied. The crop water consumption will reduce soil water content; it is defined by the potential evapotranspiration (ET) that acts as an outflow from the stock (soil water content). ET can be estimated by three methods: a) FAO Penman-Monteith (ETPM), b) Hargreaves-Samani (ETHS) method, based on air temperature data and c) Class A pan (ETTCA) method. To validate the model were used data from the States of Ceará and Minas Gerais, Brazil, and the culture was bean. Keyword: System Dynamics, soil moisture content, agricultural water balance, irrigation scheduling.

  1. Soil water sensor-based and evapotranspiration-based irrigation scheduling for soybean production on a Blackland Prairie soil in humid climate

    USDA-ARS?s Scientific Manuscript database

    In east-central Mississippi, annual rainfall was 1307 mm and reference evapotranspiration (ETo) was 1210 mm for the 120-year period from 1894 to 2014. From May to October, when major crops are typically grown in this area, monthly rainfall ranged from 72 to 118 mm, and monthly ETo from 94 to 146 mm ...

  2. Simulating spatial and temporal variation of corn canopy temperature during an irrigation cycle

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Federer, C. A.

    1983-01-01

    The canopy air temperature difference (delta T) which provides an index for scheduling irrigation was examined. The Monteith transpiration equation was combined with both uptake from a single layered root zone and change in internal storage of the plant and the continuity equation for water flux in the soil plant atmosphere system was solved. The model indicates that both daily total transpiration and soil induced depression of plant water potential may be inferred from mid-day delta T. It is suggested that for the soil plant weather data used in the simulation, either a mid day spatial variability of about 0.8K in canopy temperatures or a field averaged delta T of 2 to 4K may be a suitable criterion for irrigation scheduling.

  3. Development of a coupled model of a distributed hydrological model and a rice growth model for optimizing irrigation schedule

    NASA Astrophysics Data System (ADS)

    Tsujimoto, Kumiko; Homma, Koki; Koike, Toshio; Ohta, Tetsu

    2013-04-01

    A coupled model of a distributed hydrological model and a rice growth model was developed in this study. The distributed hydrological model used in this study is the Water and Energy Budget-based Distributed Hydrological Model (WEB-DHM) developed by Wang et al. (2009). This model includes a modified SiB2 (Simple Biosphere Model, Sellers et al., 1996) and the Geomorphology-Based Hydrological Model (GBHM) and thus it can physically calculate both water and energy fluxes. The rice growth model used in this study is the Simulation Model for Rice-Weather relations (SIMRIW) - rainfed developed by Homma et al. (2009). This is an updated version of the original SIMRIW (Horie et al., 1987) and can calculate rice growth by considering the yield reduction due to water stress. The purpose of the coupling is the integration of hydrology and crop science to develop a tool to support decision making 1) for determining the necessary agricultural water resources and 2) for allocating limited water resources to various sectors. The efficient water use and optimal water allocation in the agricultural sector are necessary to balance supply and demand of limited water resources. In addition, variations in available soil moisture are the main reasons of variations in rice yield. In our model, soil moisture and the Leaf Area Index (LAI) are calculated inside SIMRIW-rainfed so that these variables can be simulated dynamically and more precisely based on the rice than the more general calculations is the original WEB-DHM. At the same time by coupling SIMRIW-rainfed with WEB-DHM, lateral flow of soil water, increases in soil moisture and reduction of river discharge due to the irrigation, and its effects on the rice growth can be calculated. Agricultural information such as planting date, rice cultivar, fertilization amount are given in a fully distributed manner. The coupled model was validated using LAI and soil moisture in a small basin in western Cambodia (Sangker River Basin). This basin is mostly rainfed paddy so that irrigation scheme was firstly switched off. Several simulations with varying irrigation scheme were performed to determine the optimal irrigation schedule in this basin.

  4. Information Technology Supports Integration of Satellite Imagery with Irrigation Management in California's Central Valley

    USDA-ARS?s Scientific Manuscript database

    Remotely sensed data can potentially be used to develop crop coefficient estimates over large areas and make irrigation scheduling more practical, convenient, and accurate. A demonstration system is being developed under NASA's Terrestrial Observation and Prediction System (TOPS) to automatically r...

  5. Quantifying the Usefulness of Ensemble-Based Precipitation Forecasts with Respect to Water Use and Yield during a Field Trial

    NASA Astrophysics Data System (ADS)

    Christ, E.; Webster, P. J.; Collins, G.; Byrd, S.

    2014-12-01

    Recent droughts and the continuing water wars between the states of Georgia, Alabama and Florida have made agricultural producers more aware of the importance of managing their irrigation systems more efficiently. Many southeastern states are beginning to consider laws that will require monitoring and regulation of water used for irrigation. Recently, Georgia suspended issuing irrigation permits in some areas of the southwestern portion of the state to try and limit the amount of water being used in irrigation. However, even in southern Georgia, which receives on average between 23 and 33 inches of rain during the growing season, irrigation can significantly impact crop yields. In fact, studies have shown that when fields do not receive rainfall at the most critical stages in the life of cotton, yield for irrigated fields can be up to twice as much as fields for non-irrigated cotton. This leads to the motivation for this study, which is to produce a forecast tool that will enable producers to make more efficient irrigation management decisions. We will use the ECMWF (European Centre for Medium-Range Weather Forecasts) vars EPS (Ensemble Prediction System) model precipitation forecasts for the grid points included in the 1◦ x 1◦ lat/lon square surrounding the point of interest. We will then apply q-to-q bias corrections to the forecasts. Once we have applied the bias corrections, we will use the check-book method of irrigation scheduling to determine the probability of receiving the required amount of rainfall for each week of the growing season. These forecasts will be used during a field trial conducted at the CM Stripling Irrigation Research Park in Camilla, Georgia. This research will compare differences in yield and water use among the standard checkbook method of irrigation, which uses no precipitation forecast knowledge, the weather.com forecast, a dry land plot, and the ensemble-based forecasts mentioned above.

  6. Deficit irrigation: Arriving at the crop water stress index via gas exchange measurements

    USDA-ARS?s Scientific Manuscript database

    Plant gas exchange provides a highly sensitive measure of the degree of drought stress. Canopy temperature (Tc) provides a much easier to acquire indication of crop water deficit that has been used in irrigation scheduling systems, but interpretation of this measurement has proven difficult. Our goa...

  7. An index for plant water deficit based on root-weighted soil water content

    NASA Astrophysics Data System (ADS)

    Shi, Jianchu; Li, Sen; Zuo, Qiang; Ben-Gal, Alon

    2015-03-01

    Governed by atmospheric demand, soil water conditions and plant characteristics, plant water status is dynamic, complex, and fundamental to efficient agricultural water management. To explore a centralized signal for the evaluation of plant water status based on soil water status, two greenhouse experiments investigating the effect of the relative distribution between soil water and roots on wheat and rice were conducted. Due to the significant offset between the distributions of soil water and roots, wheat receiving subsurface irrigation suffered more from drought than wheat under surface irrigation, even when the arithmetic averaged soil water content (SWC) in the root zone was higher. A significant relationship was found between the plant water deficit index (PWDI) and the root-weighted (rather than the arithmetic) average SWC over root zone. The traditional soil-based approach for the estimation of PWDI was improved by replacing the arithmetic averaged SWC with the root-weighted SWC to take the effect of the relative distribution between soil water and roots into consideration. These results should be beneficial for scheduling irrigation, as well as for evaluating plant water consumption and root density profile.

  8. Minimizing Erosion and Agro-Pollutants Transport from Furrow Irrigated Fields to the Nearby Water Body Using Spatially-Explicit Agent Based Model and Decision Optimization Platform

    NASA Astrophysics Data System (ADS)

    Ghoveisi, H.; Al Dughaishi, U.; Kiker, G.

    2017-12-01

    Maintaining water quality in agricultural watersheds is a worldwide challenge, especially where furrow irrigation is being practiced. The Yakima River Basin watershed in south central Washington State, (USA) is an example of these impacted areas with elevated load of sediments and other agricultural products due to runoff from furrow-irrigated fields. Within the Yakima basin, the Granger Drain watershed (area of 75 km2) is particularly challenged in this regard with more than 400 flood-irrigated individual parcels (area of 21 km2) growing a variety of crops from maize to grapes. Alternatives for improving water quality from furrow-irrigated parcels include vegetated filter strip (VFS) implementation, furrow water application efficiency, polyacrylamide (PAM) application and irrigation scheduling. These alternatives were simulated separately and in combinations to explore potential Best Management Practices (BMPs) for runoff-related-pollution reduction in a spatially explicit, agent based modeling system (QnD:GrangerDrain). Two regulatory scenarios were tested to BMP adoption within individual parcels. A blanket-style regulatory scenario simulated a total of 60 BMP combinations implemented in all 409 furrow-irrigated parcels. A second regulatory scenario simulated the BMPs in 119 furrow-irrigated parcels designated as "hotspots" based on a standard 12 Mg ha-1 seasonal sediment load. The simulated cumulative runoff and sediment loading from all BMP alternatives were ranked using Multiple Criteria Decision Analysis (MCDA), specifically the Stochastic Multi-Attribute Acceptability Analysis (SMAA) method. Several BMP combinations proved successful in reducing loads below a 25 NTU (91 mg L-1) regulatory sediment concentration. The QnD:GrangerDrain simulations and subsequent MCDA ranking revealed that the BMP combinations of 5 m-VFS and high furrow water efficiency were highly ranked alternatives for both the blanket and hotspot scenarios.

  9. Impact of irrigation scheduling on pore water nitrate and phosphate in coastal plains soils with corn production

    USDA-ARS?s Scientific Manuscript database

    Agriculture is one of the most important sources of nutrient contamination, mainly inorganic nitrogen (N) fertilization of intensive crops, such as corn (Zea mays L). Proper irrigation and nutrient management can reduce nutrient leaching while maintaining crop yield, which is critical in enhancing t...

  10. Cotton irrigation scheduling using a crop growth model and FAO-56 methods: Field and simulation studies

    USDA-ARS?s Scientific Manuscript database

    Crop growth simulation models can address a variety of agricultural problems, but their use to directly assist in-season irrigation management decisions is less common. Confidence in model reliability can be increased if models are shown to provide improved in-season management recommendations, whi...

  11. Influence of irrigation scheduling using thermometry on peach tree water status and yield under different irrigation systems

    USDA-ARS?s Scientific Manuscript database

    Remotely-sensed canopy temperature from infrared thermometer (IRT) sensors has long been shown to be effective for detecting plant water stress. To help alleviate water shortage, a field study was conducted at the USDA-ARS San Joaquin Valley Agricultural Sciences Center in Parlier, California USA to...

  12. Crop water use measurement using a weighing lysimeter at the Dayr Alla Research Station in the Jordan Valley, Jordan

    USDA-ARS?s Scientific Manuscript database

    Since 2003, a regional project funded by USDA-ARS-OIRP has focused on improving irrigation scheduling in Jordan, Palestine and Israel. The Middle Eastern Regional Irrigation Management Information Systems (MERMIS) project involves cooperators from Palestine, Jordan, Israel and the United States, all...

  13. The relationship between sap flow and commercial soil water sensor readings in irrigated potato (Solanum tuberosum L.) production

    USDA-ARS?s Scientific Manuscript database

    Many irrigation scheduling methods utilized in commercial production settings rely on soil water sensors that are normally purchased as off-the-shelf technology or through contracted services that install and monitor readings throughout the season. These systems often assume a direct relationship be...

  14. Soil Water Sensing-Focus on Variable Rate Irrigation

    USDA-ARS?s Scientific Manuscript database

    Irrigation scheduling using soil water sensors is an exercise in maintaining the water content of the crop root zone soil above a lower limit defined by the management allowed depletion (MAD) for that soil and crop, but not so wet that too much water is lost to deep percolation. The management allow...

  15. Soil water sensors:Problems, advances and potential for irrigation scheduling

    USDA-ARS?s Scientific Manuscript database

    Irrigation water management has to do with the appropriate application of water to soils, in terms of amounts, rates, and timing to satisfy crop water demands, while protecting the soil and water resources from degradation. In this regard, sensors can be used to monitor the soil water status; and so...

  16. Estimating preseason irrigation losses by characterizing evaporation of effective precipitation under bare soil conditions using large weighing lysimeters

    USDA-ARS?s Scientific Manuscript database

    Irrigation scheduling is one of the most cost effective means of conserving limited groundwater resources, particularly in semi-arid regions. Effective precipitation, or the net amount of water from precipitation that can be used in field water balance equations, is essential to accurate and effecti...

  17. Management Strategies to Sustain Irrigated Agriculture with Combination of Remote Sensing, Weather Monitoring & Forecasting and SWAP Modeling

    NASA Astrophysics Data System (ADS)

    Ermolaeva, Olga; Zeyliger, Anatoly

    2017-04-01

    Today world's water systems face formidable threats due to climate change and increasing water withdraw for agriculture, industry and domestic use. Projected in many parts of the earth increases in temperature, evaporation, and drought frequency shrunk water availability and magnify water scarcity. Declining irrigation water supplies threaten the sustainability of irrigated agricultural production which plays a critical role in meeting global food needs. In irrigated agriculture there is a strong call for deep efforts in order on the one hand to improve water efficiency use and on the other to maximize yields. The aim of this research is to provide tool to optimize water application with crop irrigation by sprinkling in order to sustain irrigated agriculture under limited water supply by increasing net returns per unit of water. For this aim some field experimental results of 2012 year growing season of alfalfa, corn and soya irrigated by sprinkling machines crops at left bank of Volga River at Saratov Region of Russia. Additionally a combination of data sets was used which includes MODIS images, local meteorological station and results of SWAP (Soil-Water-Atmosphere-Plant) modeling. This combination was used to estimate crop water stress defined as ratio between actual (ETa) and potential (ETc) evapotranspiration. By this way it was determined the effect of applied irrigation scheduling and water application depths on evapotranspiration, crop productivity and water stress coefficient. Aggregation of actual values of crop water stress and biomass data predicted by SWAP agrohydrological model with weather forecasting and irrigation scheduling was used to indicate of both rational timing and amount of irrigation water allocation. This type of analysis facilitating an efficient water management can be extended to irrigated areas by developing maps of water efficiency application serving as an irrigation advice system for farmers at his fields and as a decision support tool for the authorities on the large perimeter irrigation management. The authors would like to express their gratitude to the Russian Foundation of Basic Research for providing financial support of the project 16-05-01097

  18. A Smart Irrigation Approach Aided by Monitoring Surface Soil Moisture using Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Wienhold, K. J.; Li, D.; Fang, N. Z.

    2017-12-01

    Soil moisture is a critical component in the optimization of irrigation scheduling in water resources management. Unmanned Aerial Vehicles (UAV) equipped with multispectral sensors represent an emerging technology capable of detecting and estimating soil moisture for irrigation and crop management. This study demonstrates a method of using a UAV as an optical and thermal remote sensing platform combined with genetic programming to derive high-resolution, surface soil moisture (SSM) estimates. The objective is to evaluate the feasibility of spatially-variable irrigation management for a golf course (about 50 acres) in North Central Texas. Multispectral data is collected over the course of one month in the visible, near infrared and longwave infrared spectrums using a UAV capable of rapid and safe deployment for daily estimates. The accuracy of the model predictions is quantified using a time domain reflectometry (TDR) soil moisture sensor and a holdout validation test set. The model produces reasonable estimates for SSM with an average coefficient of correlation (r) = 0.87 and coefficient of determination of (R2) = 0.76. The study suggests that the derived SSM estimates be used to better inform irrigation scheduling decisions for lightly vegetated areas such as the turf or native roughs found on golf courses.

  19. Influence of irrigation during the growth stage on yield and quality in mango (Mangifera indica L)

    PubMed Central

    Wei, Junya; Liu, Guoyin; Liu, Debing; Chen, Yeyuan

    2017-01-01

    Although being one of the few drought-tolerant plants, mango trees are irrigated to ensure optimum and consistent productivity in China. In order to better understand the effects of soil water content on mango yield and fruit quality at fruit growth stage, irrigation experiments were investigated and the object was to determine the soil water content criteria at which growth and quality of mango would be optimal based on soil water measured by RHD-JS water-saving irrigation system through micro-sprinkling irrigation. Five soil water content treatments (relative to the percentage of field water capacity) for irrigation (T1:79%-82%, T2:75%-78%, T3:71%-74%, T4: 65%-70%, T5:63%-66%) were compared in 2013. Amount of applied irrigation water for different treatments varied from 2.93m3 to 1.08 m3. The results showed that mango fruit production and quality at fruit growth stage were significantly affected under different irrigation water amounts. Variation in soil water content not only had effects on fruit size, but also on fruit yield. The highest fruit yield and irrigation water use efficiency were obtained from the T4 treatment. Irrigation water amount also affected fruit quality parameters like fruit total soluble solids, soluble sugar, starch, titratable acid and vitamin C content. Comprehensive evaluation of the effect of indexs of correlation on irrigation treatment by subordinate function showed that when the soil moisture content were controlled at about 65–70% of the field water moisture capacity, water demand in the growth and development of mango could be ensured, and maximum production efficiency of irrigation and the best quality of fruit could be achieved. In conclusion, treatment T4 was the optimum irrigation schedule for growing mango, thus achieving efficient production of mango in consideration of the compromise among mango yield, fruit quality and water use efficiency. PMID:28384647

  20. Influence of irrigation during the growth stage on yield and quality in mango (Mangifera indica L).

    PubMed

    Wei, Junya; Liu, Guoyin; Liu, Debing; Chen, Yeyuan

    2017-01-01

    Although being one of the few drought-tolerant plants, mango trees are irrigated to ensure optimum and consistent productivity in China. In order to better understand the effects of soil water content on mango yield and fruit quality at fruit growth stage, irrigation experiments were investigated and the object was to determine the soil water content criteria at which growth and quality of mango would be optimal based on soil water measured by RHD-JS water-saving irrigation system through micro-sprinkling irrigation. Five soil water content treatments (relative to the percentage of field water capacity) for irrigation (T1:79%-82%, T2:75%-78%, T3:71%-74%, T4: 65%-70%, T5:63%-66%) were compared in 2013. Amount of applied irrigation water for different treatments varied from 2.93m3 to 1.08 m3. The results showed that mango fruit production and quality at fruit growth stage were significantly affected under different irrigation water amounts. Variation in soil water content not only had effects on fruit size, but also on fruit yield. The highest fruit yield and irrigation water use efficiency were obtained from the T4 treatment. Irrigation water amount also affected fruit quality parameters like fruit total soluble solids, soluble sugar, starch, titratable acid and vitamin C content. Comprehensive evaluation of the effect of indexs of correlation on irrigation treatment by subordinate function showed that when the soil moisture content were controlled at about 65-70% of the field water moisture capacity, water demand in the growth and development of mango could be ensured, and maximum production efficiency of irrigation and the best quality of fruit could be achieved. In conclusion, treatment T4 was the optimum irrigation schedule for growing mango, thus achieving efficient production of mango in consideration of the compromise among mango yield, fruit quality and water use efficiency.

  1. Evaluation of aqua crop simulation of early season evaporation and water flux in a semiarid environment

    USDA-ARS?s Scientific Manuscript database

    The AquaCrop model of crop growth, water use, yield and water use efficiency (WUE) is intended for use by extension personnel, farm and irrigation managers, planners and other less advanced users of simulation models in irrigation planning and scheduling. It could be useful in estimating changes in ...

  2. Soil water sensing: Implications of sensor capabilities for variable rate irrigation management

    USDA-ARS?s Scientific Manuscript database

    Irrigation scheduling using soil water sensors aims at maintaining the soil water content in the crop root zone above a lower limit defined by the management allowed depletion (MAD) for that soil and crop, but not so wet that too much water is lost to deep percolation, evaporation and runoff or that...

  3. Climate and ET: Does Plant Water Requirements Increase during Droughts?

    NASA Astrophysics Data System (ADS)

    Fipps, G.

    2015-12-01

    Municipalities, engineering consultants and State agencies use reference evapotranspiration (ETo) data (directly and indirectly) for long-term water planning, for designing hydraulic structures, and for establishing regulatory guidance and conservation programs intended to reduce water waste. The use ETo data for agricultural and landscape irrigation scheduling is becoming more common in Texas as ETo-based controllers and automation technologies become more affordable. Until recently, most ETo data has been available as monthly values averaged over many years. Today, automated weather stations and irrigation controllers equipped with specialized instrumentation allow for real-time ETo measurements. With the expected rise in global warming and increased frequency of extreme climate variability in the coming decades, conservation and efficient use of water resources is essential and must make use of the most accurate and representative data available. 2011 marked the driest year on record in the State of Texas. Compounding the lack of rainfall was record heat during the Summer of 2011. An analysis of real time ETo (reference evapotranspiration) data in Texas found that ET was 30 to 50% higher than historic averages during the 2011 Summer. The implications are quite serious, as most current water planning and drought contingency plans do not take into consideration increases in ET during such periods, and irrigation planning and capacity sizing are based on historic averages of consumptive use. This paper examines the relationship between ET and climate during this extreme climatic event. While the solar radiation was near normal levels, temperature and wind was much higher and dew points much lower than norms. The variability and statistical difference between average monthly ETo data and daily, monthly and seasonal ETo measurements (from 2006 to 2014) for selected weather stations of the Texas ET Network. This study will also examine the suitability of using average ETo rates for use in regional water planning and in irrigation scheduling.

  4. Nitrogen and water management strategies to reduce nitrate leaching under irrigated maize

    NASA Astrophysics Data System (ADS)

    Schepers, J. S.; Varvel, G. E.; Watts, D. G.

    1995-12-01

    Cropping systems that fail to integrate nitrogen (N) water management are frequently associated with elevated concentrations of nitrate-N in soil and groundwater. Examples of poorly integrated management practices are abundant, especially where irrigation is used to minimize the effects of drought and N fertilizer is inexpensive. Two maize fields under improved water and N management practices at the Nebraska Management Systems Evaluation Area (MSEA) project were compared with an adjacent field under conventional furrow irrigation that followed management guidelines mandated by the local Natural Resources District. Surge-flow furrow irrigation with laser grading and a runoff-water recovery system reduced water application by 45-69% compared to conventional furrow irrigation over the three years of this study. Center-pivot sprinkler irrigation reduced water application by 60-72% compared to conventional furrow irrigation. Uniformity of water application was improved with the surge-flow and sprinkler irrigation systems, which made it reasonable to consider adding fertilizer N in the water (fertigation) to meet crop needs. The spoon-feeding strategy, based on chlorophyll meter readings to schedule fertigation, saved 168 kg ha t1¯ N the first year and 105 kg ha -1 N the second year without reducing yields. Near total reliance of fertigation to meet crop N needs resulted in a 15% yield reduction the second year because spatial variability in soil N status made it difficult to collect representative chlorophyll meter data. Plot studies showed chlorophyll meter readings and yields were consistently higher for maize following soybean than where maize was grown in monoculture.

  5. Does colostomy irrigation affect functional outcomes and quality of life in persons with a colostomy?

    PubMed

    Kent, Dea J; Long, Mary Arnold; Bauer, Carole

    2015-01-01

    Colostomy irrigation may be used by patients with colostomies to regulate bowel evacuations by stimulating emptying of the colon at regularly scheduled times. This Evidence-Based Report Card reviews the effect of colostomy irrigation on frequency of bowel evacuation, flatus production, odor, and health-related quality of life. We systematically reviewed the literature for studies that evaluated health-related quality of life in persons aged 18 years or older with colostomies of the sigmoid or descending left colon. A professional librarian performed the literature search, which yielded 499 articles using the search terms "colostomy," "colostomies," "therapeutic irrigation," "irrigation," and "irrigator." Following title and abstract reviews, we identified and retrieved 4 studies that met inclusion criteria. Colostomy irrigation reduces the frequency of bowel evacuations when compared to spontaneous evacuation and containment using a pouching system. Regular irrigation is associated with reductions in pouch usage. This change in bowel evacuation function frequently results in absence of bowel evacuations for 24 hours or longer, enabling some to discontinue ongoing use of a pouching system. Subjects using CI report reductions in flatus and odors associated with presence of a colostomy. One study was identified that found persons using CI reported higher health-related quality of life than did those who managed their colostomies with spontaneous evacuation using the Digestive Disease Quality of Life-15, but no differences were found when health-related quality of life was measured using the more generic instrument, the Medical Outcomes Study: Short Form-36. Instruction on principles and techniques of colostomy irrigation should be considered when managing patients with a permanent, left-sided colostomy.

  6. A field and statistical modeling study to estimate irrigation water use at Benchmark Farms study sites in southwestern Georgia, 1995-96

    USGS Publications Warehouse

    Fanning, Julia L.; Schwarz, Gregory E.; Lewis, William C.

    2001-01-01

    A benchmark irrigation monitoring network of farms located in a 32-county area in southwestern Georgia was established in 1995 to improve estimates of irrigation water use. A stratified random sample of 500 permitted irrigators was selected from a data base--maintained by the Georgia Department of Natural Resources, Georgia Environmental Protection Division, Water Resources Management Branch--to obtain 180 voluntary participants in the study area. Site-specific irrigation data were collected at each farm using running-time totalizers and noninvasive flowmeters. Data were collected and compiled for 50 farms for 1995 and 130 additional farms for the 1996 growing season--a total of 180 farms. Irrigation data collected during the 1996 growing season were compiled for 180 benchmark farms and used to develop a statistical model to estimate irrigation water use in 32 counties in southwestern Georgia. The estimates derived were developed from using a statistical approach know as "bootstrap analysis" that allows for the estimation of precision. Five model components--whether-to-irrigate, acres irrigated, crop selected, seasonal-irrigation scheduling, and the amount of irrigation applied--compose the irrigation model and were developed to reflect patterns in the data collected at Benchmark Farms Study area sites. The model estimated that peak irrigation for all counties in the study area occurred during July with significant irrigation also occurring during May, June, and August. Irwin and Tift were the most irrigated and Schley and Houston were the least irrigated counties in the study area. High irrigation intensity primarily was located along the eastern border of the study area; whereas, low irrigation intensity was located in the southwestern quadrant where ground water was the dominant irrigation source. Crop-level estimates showed sizable variations across crops and considerable uncertainty for all crops other than peanuts and pecans. Counties having the most irrigated acres showed higher variations in annual irrigation than counties having the least irrigated acres. The Benchmark Farms Study model estimates were higher than previous irrigation estimates, with 20 percent of the bias a result of underestimating irrigation acreage in earlier studies. Model estimates showed evidence of an upward bias of about 15 percent with the likely cause being a misrepresented inches-applied model. A better understanding of the causes of bias in the model could be determined with a larger irrigation sample size and increased substantially by automating the reporting of monthly totalizer amounts.

  7. Airborne monitoring of crop canopy temperatures for irrigation scheduling and yield prediction

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Jackson, R. D.; Goettelman, R. C.; Reginato, R. J.; Idso, S. B.; Lapado, R. L.

    1977-01-01

    Airborne and ground measurements were made on April 1 and 29, 1976, over a USDA test site consisting mostly of wheat in various stages of water stress, but also including alfalfa and bare soil. These measurements were made to evaluate the feasibility of measuring crop temperatures from aircraft so that a parameter termed stress degree day, SDD, could be computed. Ground studies have shown that SDD is a valuable indicator of a crop's water needs, and that it can be related to irrigation scheduling and yield. The aircraft measurement program required predawn and afternoon flights coincident with minimum and maximum crop temperatures. Airborne measurements were made with an infrared line scanner and with color IR photography. The scanner data were registered, subtracted, and color-coded to yield pseudo-colored temperature-difference images. Pseudo-colored images reading directly in daily SDD increments were also produced. These maps enable a user to assess plant water status and thus determine irrigation needs and crop yield potentials.

  8. Assessing the adaptive capacity of maize hybrids to climate change in an irrigated district of Southern Italy

    NASA Astrophysics Data System (ADS)

    Monaco, Eugenia; Bonfante, Antonello; De Mascellis, Roberto; Alfieri, Silvia Maria; Menenti, Massimo; De Lorenzi, Francesca

    2013-04-01

    Climate change will cause significant changes in water distribution and availability; as a consequence the water resources in some areas (like Mediterranean regions) will be limiting factors to the cultivation of some species, included cereals. So the perspective of climate change requires an analysis of the adaptation possibilities of food and fiber species currently cultivated. A powerful tool for adaptation is the relevant intra-specific biodiversity of crops. The knowledge, for different crop cultivars, of the responses to different environmental conditions (e.g. yield response functions to water regime) can be a tool to identify adaptation options to future climate. Moreover, simulation models of water flow in the soil-plant-atmosphere system can be coupled with future climate scenarios to predict the soil water regime also accounting for different irrigation scheduling options. In this work the adaptive capacity of maize hybrids (Zea mays L.) was evaluated in an irrigated district of Southern Italy (the "Destra Sele" plain, an area of about 18.000 ha), where maize is extensively grown for water buffalo feeding. Horticultural crops (tomato, fennel, artichoke) are grown, as well. The methodology applied is based on two complementary elements: - a database on climatic requirements of 30 maize hybrids: the yield response functions to water availability were determined from experimental data derived both from scientific literature and from field trials carried out by ISAFOM-CNR. These functions were applied to describe the behaviour of the hybrids with respect to the relative evapotranspiration deficit; - the simulation performed by the agro-hydrological model SWAP (soil-water-plant and atmosphere), to determine the future soil water regime at landscape scale. Two climate scenarios were studied: "past" (1961-1990) and "future" (2021-2050). Future climate scenarios were generated within the Italian National Project AGROSCENARI. Climate scenarios at low spatial resolution generated with general circulation models (AOGCMs) were down-scaled by means of a statistical model (Tomozeiu et al., 2007). The downscaled climate scenario includes 50 realizations of daily minimum, maximum temperature and precipitation data, on a regular grid with a spatial resolution of 35 km. The hydraulic properties of 25 representative soils of the "Destra Sele" area were estimated with HYPRES pedo-transfer function previously tested in the area. The model SWAP was run to determine the soil water balance with different irrigation strategies: optimal irrigation, no irrigation, and deficit irrigation, in both climate periods. Deficit irrigation was scheduled applying water volumes equal to 20%, 40%, 60% and 80% of optimal ones. From the outputs of the model runs the relative evapotranspiration deficit (or Crop Water Stress Index - CWSI) was calculated and compared with the yield response functions of the hybrids. By means of these functions, for each hybrid a critical value of CWSI was identified, namely a CWSI value corresponding to a relative yield of 0.9. By comparing the CWSI of soil units with hybrid's critical values, cultivar's adaptability to future water regime was determined, both as a function of irrigation scheduling and of soils' physical properties. The case study shows how, in the future climate scenario, with limited water resources, the intra-specific variability will allow to maintain current crop production system. The work was carried out within the Italian national project AGROSCENARI funded by the Ministry for Agricultural, Food and Forest Policies (MIPAAF, D.M. 8608/7303/2008)

  9. The use of surrogates for an optimal management of coupled groundwater-agriculture hydrosystems

    NASA Astrophysics Data System (ADS)

    Grundmann, J.; Schütze, N.; Brettschneider, M.; Schmitz, G. H.; Lennartz, F.

    2012-04-01

    For ensuring an optimal sustainable water resources management in arid coastal environments, we develop a new simulation based integrated water management system. It aims at achieving best possible solutions for groundwater withdrawals for agricultural and municipal water use including saline water management together with a substantial increase of the water use efficiency in irrigated agriculture. To achieve a robust and fast operation of the management system regarding water quality and water quantity we develop appropriate surrogate models by combining physically based process modelling with methods of artificial intelligence. Thereby we use an artificial neural network for modelling the aquifer response, inclusive the seawater interface, which was trained on a scenario database generated by a numerical density depended groundwater flow model. For simulating the behaviour of high productive agricultural farms crop water production functions are generated by means of soil-vegetation-atmosphere-transport (SVAT)-models, adapted to the regional climate conditions, and a novel evolutionary optimisation algorithm for optimal irrigation scheduling and control. We apply both surrogates exemplarily within a simulation based optimisation environment using the characteristics of the south Batinah region in the Sultanate of Oman which is affected by saltwater intrusion into the coastal aquifer due to excessive groundwater withdrawal for irrigated agriculture. We demonstrate the effectiveness of our methodology for the evaluation and optimisation of different irrigation practices, cropping pattern and resulting abstraction scenarios. Due to contradicting objectives like profit-oriented agriculture vs. aquifer sustainability a multi-criterial optimisation is performed.

  10. Ancestral irrigation method by kanis in Bolivia

    NASA Astrophysics Data System (ADS)

    Roldán-Cañas, José; Chipana, René; Fátima Moreno-Pérez, María

    2015-04-01

    Irrigation in the Andean region is an ancient practice. For centuries, farmers were able to use the waters of rivers, lakes and springs to complement or supplement the scarce rainfall regime. The inter-Andean valleys of the Department of La Paz are the best areas for the study of traditional irrigation systems. This work has been carried out in the community of Jatichulaya located in te town of Charazani, 300 km from the city of La Paz, which lies 3250 meters above sea level. The annual rainfall ranges around 450 mm distributed mainly between the months of December to March. Therefore, water is needed to achieve adequate crop yields. The traditional irrigation system is done by the method of Kanis, consisting of a surface irrigation already developed by traditional Andean cultures of the country, in harmony with the ecological and productive characteristics of the area. Water enters the irrigation plot through a main channel (mama kani) from which the secondary channels (juchuy kanis) are derived. The fundamental characteristic of this irrigation is that these channels are open at the same time the water enters into the plot. The system works properly, adapting to the topography of the area. The irrigation method practiced in this community does not cause water erosion of soils because water management within the plot is based on the ancient knowledge of farmers following the contour lines. This practice allows good irrigation development and soil protection without causing any problems. However, it was evident a high use of labor in irrigation practice. Irrigation scheduling is done according to requests made by the irrigators in a given period. Delivering of water to the farmers is made by the so-called Water Agent (Agente de Aguas) or person in charge of the distribution of water. The Water Agent is elected annually and its functions include the maintenance and care of all system waterworks. The period between August and January is the highest water demand and, therefore, the water is distributed by turns among irrigators. Turns usually depend on water availability. Water Agent distributes water equitably without giving preference to anyone.

  11. Spatial decision supporting for winter wheat irrigation and fertilizer optimizing in North China Plain

    NASA Astrophysics Data System (ADS)

    Yang, Xiaodong; Yang, Hao; Dong, Yansheng; Yu, Haiyang

    2014-11-01

    Production management of winter wheat is more complicated than other crops since its growth period is covered all four seasons and growth environment is very complex with frozen injury, drought, insect or disease injury and others. In traditional irrigation and fertilizer management, agricultural technicians or farmers mainly make decision based on phenology, planting experience to carry out artificial fertilizer and irrigation management. For example, wheat needs more nitrogen fertilizer in jointing and booting stage by experience, then when the wheat grow to the two growth periods, the farmer will fertilize to the wheat whether it needs or not. We developed a spatial decision support system for optimizing irrigation and fertilizer measures based on WebGIS, which monitoring winter wheat growth and soil moisture content by combining a crop model, remote sensing data and wireless sensors data, then reasoning professional management schedule from expert knowledge warehouse. This system is developed by ArcIMS, IDL in server-side and JQuery, Google Maps API, ASP.NET in client-side. All computing tasks are run on server-side, such as computing 11 normal vegetable indexes (NDVI/ NDWI/ NDWI2/ NRI/ NSI/ WI/ G_SWIR/ G_SWIR2/ SPSI/ TVDI/ VSWI) and custom VI of remote sensing image by IDL; while real-time building map configuration file and generating thematic map by ArcIMS.

  12. Adaptive management of irrigation and crops' biodiversity: a case study on tomato

    NASA Astrophysics Data System (ADS)

    De Lorenzi, Francesca; Alfieri, Silvia Maria; Basile, Angelo; Bonfante, Antonello; Monaco, Eugenia; Riccardi, Maria; Menenti, Massimo

    2013-04-01

    We have assessed the impacts of climate change and evaluated options to adapt irrigation management in the face of predicted changes of agricultural water demand. We have evaluated irrigation scheduling and its effectiveness (versus crop transpiration), and cultivars' adaptability. The spatial and temporal variations of effectiveness and adaptability were studied in an irrigated district of Southern Italy. Two climate scenarios were considered: reference (1961-90) and future (2021-2050) climate, the former from climatic statistics, and the latter from statistical downscaling of general circulation models (AOGCM). Climatic data consist of daily time series of maximum and minimum temperature, and daily rainfall on a grid with a spatial resolution of 35 km. The work was carried out in the Destra Sele irrigation scheme (18.000 ha. Twenty-five soil units were identified and their hydrological properties were determined (measured or estimated from texture through pedo-transfer functions). A tomato crop, in a rotation typical of the area, was considered. A mechanistic model of water flow in the soil-plant-atmosphere system (SWAP) was used to study crop water requirements and water consumption. The model was calibrated and validated in the same area for many different crops. Tomato crop input data and model parameters were estimated on the basis of scientific literature and assumed to be generically representative of the species. Simulations were performed for reference and future climate, and for different irrigation scheduling options. In all soil units, six levels of irrigation volumes were applied: full irrigation (100%), deficit irrigation (80%, 60%, 40%, 20%), no irrigation. From simulation runs, indicators of soil water availability were calculated, moreover the marginal increases of transpiration per unit of irrigation volume, i.e. the effectiveness of irrigation (ΔT/I), were computed, in both climate scenarios. Indicators and marginal increases were used to evaluate the tomato crop adaptability to future climate. To this purpose, for several tomato cultivars, threshold values of their yield responses to soil water availability were determined (data from scientific literature). Cultivars' threshold values were evaluated, in all soil units, against the indicators' values, for irrigation levels with different ΔT/I. Less water intensive cultivars and irrigation volumes that optimize transpiration (and yield) could thus be identified in both climate scenarios, and irrigation management scenarios were determined taking into account soils' hydrological properties, crop biodiversity, and efficient use of water resource. The work was carried out within the Italian national project AGROSCENARI funded by the Ministry for Agricultural, Food and Forest Policies (MIPAAF, D.M. 8608/7303/2008) Keywords: climate change, adaptation, simulation models, deficit irrigation, water resource efficiency, SWAP

  13. Extensive investigation of the sap flow of maize plants in an oasis farmland in the middle reach of the Heihe River, Northwest China.

    PubMed

    Zhao, Liwen; He, Zhibin; Zhao, Wenzhi; Yang, Qiyue

    2016-09-01

    A better understanding of the sap flow characteristics of maize plants is critical for improving irrigation water-use efficiency, especially for regions facing water resource shortages. In this study, sap flow rates, related soil-physics and plant-growth parameters, and meteorological factors, were simultaneously monitored in a maize field in two consecutive years, 2011 and 2012, and the sap flow rates of the maize plants were extensively analyzed based on the monitored data. Seasonal and daily variational characteristics were identified at different growth stages and under different weather conditions, respectively. The analyses on the relationships between sap flow rate and reference evapotranspiration (ET0), as well as several plant-growth parameters, indicate that the irrigation schedule can exert an influence on sap flow, and can consequently affect crop yield. The ranking of the main meteorological factors affecting the sap flow rate was: net radiation > air temperature > vapor pressure deficit > wind speed. For a quick estimation of sap flow rates, an empirical formula based on the two top influencing factors was put forward and verified to be reliable. The sap flow rate appeared to show little response to irrigation when the water content was relatively high, implying that some of the irrigation in recent years may have been wasted. These results may help to reveal the bio-physical processes of maize plants related to plant transpiration, which could be beneficial for establishing an efficient irrigation management system in this region and also for providing a reference for other maize-planting regions.

  14. Thermal scanner data for studying freeze conditions and for aiding irrigation scheduling

    NASA Technical Reports Server (NTRS)

    Bartholic, J. F.; Wiegand, C. L.; Leamer, R. W.; Namken, L. N.

    1970-01-01

    The use of thermal imagery in connection with plant water stress appears to hold considerable potential, particularly with scanners such as the RS-14 where internal calibration sources can be adjusted to bracket the temperatures of interest. The data from the thermal film are fairly easy to reduce; however, data reduction in 3 days or less would be required before it could be used in irrigation timing.

  15. Testing an Irrigation Decision Support Tool for California Specialty Crops

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Cahn, M.; Benzen, S.; Zaragoza, I.; Murphy, L.; Melton, F. S.; Martin, F.; Quackenbush, A.; Lockhart, T.

    2015-12-01

    Estimation of crop evapotranspiration supports efficiency of irrigation water management, which in turn can mitigate nitrate leaching, groundwater depletion, and provide energy savings. Past research in California and elsewhere has revealed strong relationships between photosynthetically active vegetation fraction (Fc) and crop evapotranspiration (ETc). Additional research has shown the potential of monitoring Fc by satellite remote sensing. The U.C. Cooperative Extension developed and operates CropManage (CM) as on-line database irrigation (and nitrogen) scheduling tool. CM accounts for the rapid growth and typically brief cycle of cool-season vegetables, where Fc and fraction of reference ET can change daily during canopy development. The model automates crop water requirement calculations based on reference ET data collected by California Dept. Water Resources. Empirically-derived equations are used to estimate daily Fc time-series for a given crop type primarily as a function of planting date and expected harvest date. An application programming interface (API) is under development to provide a check on modeled Fc of current crops and facilitate CM expansion to new crops. The API will enable CM to extract field scale Fc observations from NASA's Satellite Irrigation Management Support (SIMS). SIMS is mainly Landsat based and currently monitors Fc over about 8 million irrigation acres statewide, with potential for adding data from ESA/Sentinel for improved temporal resolution. In the current study, a replicated irrigation trial was performed on romaine lettuce at the USDA Agricultural Research Station in Salinas, CA. CropManage recommendations were used to guide water treatments by drip irrigation at 50%, 75%, 100% ETc replacement levels, with an added treatment at 150% ET representing grower standard practice. Experimental results indicate that yields from the 100% and 150% treatments were not significantly different and were in-line with industry average, while yields from the 75% and 50% treatments were significantly lower. Additional results will be presented with respect to a subsequent cabbage trial harvested October 2015.

  16. [Effects of irrigation and planting patterns on photosynthetic characteristics of flag leaf and yield at late growth stages of winter wheat].

    PubMed

    Dong, Hao; Bi, Jun; Xia, Guang-Li; Zhou, Xun-Bo; Chen, Yu-Hai

    2014-08-01

    High-yield winter wheat cultivar Jimai 22 was used to study effects of irrigation and planting patterns on water consumption characteristics and photosynthetic characteristics of winter wheat in field from 2009 to 2011. Three different planting patterns (uniform row, wide-narrow row and furrow) and four irrigation schedules (W0, no irrigation; W1, irrigation at jointing stage; W2, irrigations at jointing and anthesis stages; W3, irrigation at jointing, anthesis and milking stages. Each irrigation rate was 60 mm) were designed in the experiment. Results showed that, with the increasing of irrigation amount, flag leaf area, net photosynthesis rate, maximum photochemical efficiency and actual light transformation efficiency at late growth stages of winter wheat increased. Compared with W0 treatment, the other irrigation treatments had higher grain yields, but lower water use efficiencies. Under the same irrigation condition, the flag leaf net photosynthesis, maximum photochemical efficiency and actual light transformation efficiency were much higher in furrow pattern. Grain yields of winter wheat under furrow pattern and W2 treatment were significantly higher than that of the other treatments. Taking grain yield and WUE into consideration, furrow pattern combined with irrigation at jointing and anthesis stages might be the optimal water-saving and planting mode for the winter wheat production in North China Plain.

  17. Evaluation of the effects of mulch on optimum sowing date and irrigation management of zero till wheat in central Punjab, India using APSIM.

    PubMed

    Balwinder-Singh; Humphreys, E; Gaydon, D S; Eberbach, P L

    2016-10-01

    Machinery for sowing wheat directly into rice residues has become more common in the rice-wheat systems of the north-west Indo-Gangetic Plains of South Asia, with increasing numbers of farmers now potentially able to access the benefits of residue retention. However, surface residue retention affects soil water and temperature dynamics, thus the optimum sowing date and irrigation management for a mulched crop may vary from those of a traditional non-mulched crop. Furthermore, the effects of sowing date and irrigation management are likely to vary with soil type and seasonal conditions. Therefore, a simulation study was conducted using the APSIM model and 40 years of weather data to evaluate the effects of mulch, sowing date and irrigation management and their interactions on wheat grain yield, irrigation requirement (I) and water productivity with respect to irrigation (WP I ) and evapotranspiration (WP ET ). The results suggest that the optimum wheat sowing date in central Punjab depends on both soil type and the presence or absence of mulch. On the sandy loam, with irrigation scheduled at 50% soil water deficit (SWD), the optimum sowing date was late October to early November for maximising yield, WP I and WP ET . On the clay loam, the optimum date was about one week later. The effect of mulch on yield varied with seasonal conditions and sowing date. With irrigation at 50% SWD, mulching of wheat sown at the optimum time increased average yield by up to 0.5 t ha -1 . The beneficial effect of mulch on yield increased to averages of 1.2-1.3 t ha -1 as sowing was advanced to 15 October. With irrigation at 50% SWD and 7 November sowing, mulch reduced the number of irrigations by one in almost 50% of years, a reduction of about 50 mm on the sandy loam and 60 mm on the clay loam. The reduction in irrigation amount was mainly due to reduced soil evaporation. Mulch reduced irrigation requirement by more as sowing was delayed, more so on the sandy loam than the clay loam soil. There was little effect of mulch on irrigation requirement for late October sowings. There were large trade-offs between irrigation input, yield, WP ET and WP I on the sandy loam with regard to the optimum irrigation schedule. Maximum yield occurred with very frequent irrigation (10-20% SWD) which also had the greatest irrigation input, while WP I was highest with least frequent irrigation (70% SWD), and WP ET was highest with irrigation at 40-50% SWD. This was the case with and without mulch. On the clay loam, the trade-offs were not so pronounced, as maximum yield was reached with irrigation at 50% SWD, with and without mulch. However, both WP ET and WP I were maximum and irrigation input least at the lowest irrigation frequency (70% SWD). On both soils, maximum yield, WP ET and WP I were higher with mulch, while irrigation input was slightly lower, but mulch had very little effect on the irrigation thresholds at which each parameter was maximised.

  18. Development of an Irrigation Scheduling Tool for the High Plains Region

    NASA Astrophysics Data System (ADS)

    Shulski, M.; Hubbard, K. G.; You, J.

    2009-12-01

    The High Plains Regional Climate Center (HPRCC) at the University of Nebraska is one of NOAA’s six regional climate centers in the U.S. Primary objectives of the HPRCC are to conduct applied climate research, engage in climate education and outreach, and increase the use and availability of climate information by developing value-added products. Scientists at the center are engaged in utilizing regional weather data to develop tools that can be used directly by area stakeholders, particularly for agricultural sectors. A new study is proposed that will combine NOAA products (short-term forecasts and seasonal outlooks of temperature and precipitation) with existing capabilities to construct an irrigation scheduling tool that can be used by producers in the region. This tool will make use of weather observations from the regional mesonet (specifically the AWDN, Automated Weather Data Network) and the nation-wide relational database and web portal (ACIS, Applied Climate Information System). The primary benefit to stakeholders will be a more efficient use of water and energy resources owing to the reduction of uncertainty in the timing of irrigation.

  19. Simulating Crop Evapotranspiration Response under Different Planting Scenarios by Modified SWAT Model in an Irrigation District, Northwest China.

    PubMed

    Liu, Xin; Wang, Sufen; Xue, Han; Singh, Vijay P

    2015-01-01

    Modelling crop evapotranspiration (ET) response to different planting scenarios in an irrigation district plays a significant role in optimizing crop planting patterns, resolving agricultural water scarcity and facilitating the sustainable use of water resources. In this study, the SWAT model was improved by transforming the evapotranspiration module. Then, the improved model was applied in Qingyuan Irrigation District of northwest China as a case study. Land use, soil, meteorology, irrigation scheduling and crop coefficient were considered as input data, and the irrigation district was divided into subdivisions based on the DEM and local canal systems. On the basis of model calibration and verification, the improved model showed better simulation efficiency than did the original model. Therefore, the improved model was used to simulate the crop evapotranspiration response under different planting scenarios in the irrigation district. Results indicated that crop evapotranspiration decreased by 2.94% and 6.01% under the scenarios of reducing the planting proportion of spring wheat (scenario 1) and summer maize (scenario 2) by keeping the total cultivated area unchanged. However, the total net output values presented an opposite trend under different scenarios. The values decreased by 3.28% under scenario 1, while it increased by 7.79% under scenario 2, compared with the current situation. This study presents a novel method to estimate crop evapotranspiration response under different planting scenarios using the SWAT model, and makes recommendations for strategic agricultural water management planning for the rational utilization of water resources and development of local economy by studying the impact of planting scenario changes on crop evapotranspiration and output values in the irrigation district of northwest China.

  20. Simulating Crop Evapotranspiration Response under Different Planting Scenarios by Modified SWAT Model in an Irrigation District, Northwest China

    PubMed Central

    Liu, Xin; Wang, Sufen; Xue, Han; Singh, Vijay P.

    2015-01-01

    Modelling crop evapotranspiration (ET) response to different planting scenarios in an irrigation district plays a significant role in optimizing crop planting patterns, resolving agricultural water scarcity and facilitating the sustainable use of water resources. In this study, the SWAT model was improved by transforming the evapotranspiration module. Then, the improved model was applied in Qingyuan Irrigation District of northwest China as a case study. Land use, soil, meteorology, irrigation scheduling and crop coefficient were considered as input data, and the irrigation district was divided into subdivisions based on the DEM and local canal systems. On the basis of model calibration and verification, the improved model showed better simulation efficiency than did the original model. Therefore, the improved model was used to simulate the crop evapotranspiration response under different planting scenarios in the irrigation district. Results indicated that crop evapotranspiration decreased by 2.94% and 6.01% under the scenarios of reducing the planting proportion of spring wheat (scenario 1) and summer maize (scenario 2) by keeping the total cultivated area unchanged. However, the total net output values presented an opposite trend under different scenarios. The values decreased by 3.28% under scenario 1, while it increased by 7.79% under scenario 2, compared with the current situation. This study presents a novel method to estimate crop evapotranspiration response under different planting scenarios using the SWAT model, and makes recommendations for strategic agricultural water management planning for the rational utilization of water resources and development of local economy by studying the impact of planting scenario changes on crop evapotranspiration and output values in the irrigation district of northwest China. PMID:26439928

  1. Applications of Satellite Data to Support Improvements in Irrigation and Groundwater Management in California

    NASA Technical Reports Server (NTRS)

    Melton, Forrest S.

    2017-01-01

    In agricultural regions around the world, threats to water supplies from drought and groundwater depletion are driving increased demand for tools to advance agricultural water use efficiency and support sustainable groundwater management. Satellite mapping of evapotranspiration (ET) from irrigated agricultural lands can provide agricultural producers and water resource managers with information that can be used to both optimize ag water use and improve estimates of groundwater withdrawals for irrigation. We describe the development of two remote sensing-based tools for ET mapping in California, including important lessons in terms of system design, partnership development, and transition to operations. For irrigation management, the integration of satellite data and surface sensor networks to provide timely delivery of information on crop water requirements can make irrigation scheduling more practical, convenient, and accurate.Developed through a partnership between NASA and the CA Department of Water Resources, the Satellite Irrigation Management Support (SIMS) framework integrates satellite data with information from agricultural weather networks to map crop canopy development and crop water requirements at the scale of individual fields. Information is distributed to agricultural producers and water managers via a web-based interface and web data services. SIMS also provides an API that facilitates integration with other irrigation decision support tools, such as CropManage and IrriQuest. Field trials using these integrated tools have shown that they can be used to sustain yields while improving water use efficiency and nutrient management. For sustainable groundwater management, the combination of satellite-derived estimates of ET and data on surface water deliveries for irrigation can increase the accuracy of estimates of groundwater pumping. We are developing an OpenET platform to facilitate access to ET data from multiple models and accelerate operational use of ET data in support of a range of water management applications, including implementation of the Sustainable Groundwater Management Act in CA. By providing a shared basis for decision making, we anticipate that the OpenET platform will accelerate implementation of solutions for sustainable groundwater management.

  2. Applications of Satellite Data to Support Improvements in Irrigation and Groundwater Management in California

    NASA Astrophysics Data System (ADS)

    Melton, F. S.; Huntington, J. L.; Johnson, L.; Guzman, A.; Morton, C.; Zaragoza, I.; Dexter, J.; Rosevelt, C.; Michaelis, A.; Nemani, R. R.; Cahn, M.; Temesgen, B.; Trezza, R.; Frame, K.; Eching, S.; Grimm, R.; Hall, M.

    2017-12-01

    In agricultural regions around the world, threats to water supplies from drought and groundwater depletion are driving increased demand for tools to advance agricultural water use efficiency and support sustainable groundwater management. Satellite mapping of evapotranspiration (ET) from irrigated agricultural lands can provide agricultural producers and water resource managers with information that can be used to both optimize ag water use and improve estimates of groundwater withdrawals for irrigation. We describe the development of two remote sensing-based tools for ET mapping in California, including important lessons in terms of system design, partnership development, and transition to operations. For irrigation management, the integration of satellite data and surface sensor networks to provide timely delivery of information on crop water requirements can make irrigation scheduling more practical, convenient, and accurate. Developed through a partnership between NASA and the CA Department of Water Resources, the Satellite Irrigation Management Support (SIMS) framework integrates satellite data with information from agricultural weather networks to map crop canopy development and crop water requirements at the scale of individual fields. Information is distributed to agricultural producers and water managers via a web-based interface and web data services. SIMS also provides an API that facilitates integration with other irrigation decision support tools, such as CropManage and IrriQuest. Field trials using these integrated tools have shown that they can be used to sustain yields while improving water use efficiency and nutrient management. For sustainable groundwater management, the combination of satellite-derived estimates of ET and data on surface water deliveries for irrigation can increase the accuracy of estimates of groundwater pumping. We are developing an OpenET platform to facilitate access to ET data from multiple models and accelerate operational use of ET data in support of a range of water management applications, including implementation of the Sustainable Groundwater Management Act in CA. By providing a shared basis for decision making, we anticipate that the OpenET platform will accelerate implementation of solutions for sustainable groundwater management.

  3. Simulation and optimization model for irrigation planning and management

    NASA Astrophysics Data System (ADS)

    Kuo, Sheng-Feng; Liu, Chen-Wuing

    2003-10-01

    A simulation and optimization model was developed and applied to an irrigated area in Delta, Utah to optimize the economic benefit, simulate the water demand, and search the related crop area percentages with specified water supply and planted area constraints. The user interface model begins with the weather generation submodel, which produces daily weather data, which is based on long-term monthly average and standard deviation data from Delta, Utah. To simulate the daily crop water demand and relative crop yield for seven crops in two command areas, the information provided by this submodel was applied to the on-farm irrigation scheduling submodel. Furthermore, to optimize the project benefit by searching for the best allocation of planted crop areas given the constraints of projected water supply, the results were employed in the genetic algorithm submodel. Optimal planning for the 394·6-ha area of the Delta irrigation project is projected to produce the maximum economic benefit. That is, projected profit equals US$113 826 and projected water demand equals 3·03 × 106 m3. Also, area percentages of crops within UCA#2 command area are 70·1%, 19% and 10·9% for alfalfa, barley and corn, respectively, and within UCA#4 command area are 41·5%, 38·9%, 14·4% and 5·2% for alfalfa, barley, corn and wheat, respectively. As this model can plan irrigation application depths and allocate crop areas for optimal economic benefit, it can thus be applied to many irrigation projects. Copyright

  4. Estimating the own-price elasticity of demand for irrigation water in the Musi catchment of India

    NASA Astrophysics Data System (ADS)

    Davidson, Brian; Hellegers, Petra

    2011-10-01

    SummaryAs irrigation water is an input into a production process, its demand must be 'derived'. According to theory, a derived demand schedule should be downward sloping and dependent on the outputs produced from it, the prices of other inputs and the price of the water itself. Problems arise when an attempt is made to estimate the demand for irrigation water and the resulting own-price elasticity of demand, as the uses to which water is put are spatially, temporarily and geographically diverse. Because water is not generally freely traded, what normally passes for an estimate of the own-price elasticity of demand for irrigation water is usually a well argued assumption or an estimate that is derived from a simulation model of a hypothesized producer. Such approaches tend to provide an inadequate explanation of what is an extremely complex and important relationship. An adequate explanation of the relationship between the price and the quantity demanded of water should be one that not only accords with the theoretical expectations, but also accounts for the diversity of products produced from water (which includes the management practices of farmers), the seasons in which it is used and over the region within which it is used. The objective in this article is to present a method of estimating the demand curve for irrigation water. The method uses actual field data which is collated using the Residual Method to determine the value of the marginal product of water deployed over a wide range of crops, seasons and regions. These values of the marginal products, all which must lie of the input demand schedule for water, are then ordered from the highest value to the lowest. Then, the amount of irrigation water used for each product, in each season and in each region is cumulatively summed over the range of uses according to the order of the values of the marginal products. This data, once ordered, is then used to econometrically estimate the demand schedule from which the own-price elasticity of demand for irrigation water can be derived. To illustrate the method, the values of the marginal product of water deployed in the Musi catchment in India are used to determine an own-price elasticity of demand for irrigation water which has some positive value to producers of approximately -0.64. For water that is most highly valued, the elasticity was found to be highly elastic at -2.12, while less valued water used in agriculture was far more inelastic at -0.44. Finally, for almost 36% of water deployed in the catchment the elasticity was logically determined to be perfectly elastic.

  5. Electrophysiological assessment of water stress in fruit-bearing woody plants.

    PubMed

    Ríos-Rojas, Liliana; Tapia, Franco; Gurovich, Luis A

    2014-06-15

    Development and evaluation of a real-time plant water stress sensor, based on the electrophysiological behavior of fruit-bearing woody plants is presented. Continuous electric potentials are measured in tree trunks for different irrigation schedules, inducing variable water stress conditions; results are discussed in relation to soil water content and micro-atmospheric evaporative demand, determined continuously by conventional sensors, correlating this information with tree electric potential measurements. Systematic and differentiable patterns of electric potentials for water-stressed and no-stressed trees in 2 fruit species are presented. Early detection and recovery dynamics of water stress conditions can also be monitored with these electrophysiology sensors, which enable continuous and non-destructive measurements for efficient irrigation scheduling throughout the year. The experiment is developed under controlled conditions, in Faraday cages located at a greenhouse area, both in Persea americana and Prunus domestica plants. Soil moisture evolution is controlled using capacitance sensors and solar radiation, temperature, relative humidity, wind intensity and direction are continuously registered with accurate weather sensors, in a micro-agrometeorological automatic station located at the experimental site. The electrophysiological sensor has two stainless steel electrodes (measuring/reference), inserted on the stem; a high precision Keithley 2701 digital multimeter is used to measure plant electrical signals; an algorithm written in MatLab(®), allows correlating the signal to environmental variables. An electric cyclic behavior is observed (circadian cycle) in the experimental plants. For non-irrigated plants, the electrical signal shows a time positive slope and then, a negative slope after restarting irrigation throughout a rather extended recovery process, before reaching a stable electrical signal with zero slope. Well-watered plants presented a continuous signal with daily maximum and a minimum EP of similar magnitude in time, with zero slope. This plant electrical behavior is proposed for the development of a sensor measuring real-time plant water status. Copyright © 2014 Elsevier GmbH. All rights reserved.

  6. Development of a Wireless Computer Vision Instrument to Detect Biotic Stress in Wheat

    PubMed Central

    Casanova, Joaquin J.; O'Shaughnessy, Susan A.; Evett, Steven R.; Rush, Charles M.

    2014-01-01

    Knowledge of crop abiotic and biotic stress is important for optimal irrigation management. While spectral reflectance and infrared thermometry provide a means to quantify crop stress remotely, these measurements can be cumbersome. Computer vision offers an inexpensive way to remotely detect crop stress independent of vegetation cover. This paper presents a technique using computer vision to detect disease stress in wheat. Digital images of differentially stressed wheat were segmented into soil and vegetation pixels using expectation maximization (EM). In the first season, the algorithm to segment vegetation from soil and distinguish between healthy and stressed wheat was developed and tested using digital images taken in the field and later processed on a desktop computer. In the second season, a wireless camera with near real-time computer vision capabilities was tested in conjunction with the conventional camera and desktop computer. For wheat irrigated at different levels and inoculated with wheat streak mosaic virus (WSMV), vegetation hue determined by the EM algorithm showed significant effects from irrigation level and infection. Unstressed wheat had a higher hue (118.32) than stressed wheat (111.34). In the second season, the hue and cover measured by the wireless computer vision sensor showed significant effects from infection (p = 0.0014), as did the conventional camera (p < 0.0001). Vegetation hue obtained through a wireless computer vision system in this study is a viable option for determining biotic crop stress in irrigation scheduling. Such a low-cost system could be suitable for use in the field in automated irrigation scheduling applications. PMID:25251410

  7. Deficit irrigation of a landscape halophyte for reuse of saline waste water in a desert city

    USGS Publications Warehouse

    Glenn, E.P.; Mckeon, C.; Gerhart, V.; Nagler, P.L.; Jordan, F.; Artiola, J.

    2009-01-01

    Saline waste waters from industrial and water treatment processes are an under-utilized resource in desert urban environments. Management practices to safely use these water sources are still in development. We used a deeprooted native halophyte, Atriplex lentiformis (quailbush), to absorb mildly saline effluent (1800 mg l-1 total dissolved solids, mainly sodium sulfate) from a water treatment plant in the desert community of Twentynine Palms, California. We developed a deficit irrigation strategy to avoid discharging water past the root zone to the aquifer. The plants were irrigated at about one-third the rate of reference evapotranspiration (ETo) calculated from meteorological data over five years and soil moisture levels were monitored to a soil depth of 4.7 m at monthly intervals with a neutron hydroprobe. The deficit irrigation schedule maintained the soil below field capacity throughout the study. Water was presented on a more or less constant schedule, so that the application rates were less than ETo in summer and equal to or slightly greater than ETo in winter, but the plants were able to consume water stored in the profile in winter to support summer ET. Sodium salts gradually increased in the soil profile over the study but sulfate levels remained low, due to formation of gypsum in the calcic soil. The high salt tolerance, deep roots, and drought tolerance of desert halophytes such as A. lentiformis lend these plants to use as deficit-irrigated landscape plants for disposal of effluents in urban setting when protection of the aquifer is important. ?? 2008 Elsevier B.V.

  8. Inhibition of tomato shoot growth by over-irrigation is linked to nitrogen deficiency and ethylene.

    PubMed

    Fiebig, Antje; Dodd, Ian C

    2016-01-01

    Although physiological effects of acute flooding have been well studied, chronic effects of suboptimal soil aeration caused by over-irrigation of containerized plants have not, despite its likely commercial significance. By automatically scheduling irrigation according to soil moisture thresholds, effects of over-irrigation on soil properties (oxygen concentration, temperature and moisture), leaf growth, gas exchange, phytohormone [abscisic acid (ABA) and ethylene] relations and nutrient status of tomato (Solanum lycopersicum Mill. cv. Ailsa Craig) were studied. Over-irrigation slowly increased soil moisture and decreased soil oxygen concentration by 4%. Soil temperature was approximately 1°C lower in the over-irrigated substrate. Over-irrigating tomato plants for 2 weeks significantly reduced shoot height (by 25%) and fresh weight and total leaf area (by 60-70%) compared with well-drained plants. Over-irrigation did not alter stomatal conductance, leaf water potential or foliar ABA concentrations, suggesting that growth inhibition was not hydraulically regulated or dependent on stomatal closure or changes in ABA. However, over-irrigation significantly increased foliar ethylene emission. Ethylene seemed to inhibit growth, as the partially ethylene-insensitive genotype Never ripe (Nr) was much less sensitive to over-irrigation than the wild type. Over-irrigation induced significant foliar nitrogen deficiency and daily supplementation of small volumes of 10 mM Ca(NO3 )2 to over-irrigated soil restored foliar nitrogen concentrations, ethylene emission and shoot fresh weight of over-irrigated plants to control levels. Thus reduced nitrogen uptake plays an important role in inhibiting growth of over-irrigated plants, in part by stimulating foliar ethylene emission. © 2015 Scandinavian Plant Physiology Society.

  9. Predicting deep percolation with eddy covariance under mulch drip irrigation

    NASA Astrophysics Data System (ADS)

    Ming, Guanghui; Tian, Fuqiang; Hu, Hongchang

    2016-04-01

    Water is essential for the agricultural development and ecological sustainability of the arid and semi-arid oasis with rare precipitation input and high evaporation demand. Deep percolation (DP) defined as excess irrigation water percolating below the plant root zone will reduce irrigation water use efficiency (WUE). But the DP was often ignored in mulch drip irrigation (MDI) which has reached the area of 1.6 million hectares in Xinjiang, the northwest of China. In this study DP experiments were conducted at an agricultural experiment station located within an irrigation district in the Tarim River Basin for four cotton growing periods. First it was detected the irrigation water infiltrated into the soil layers below 100cm and the groundwater level responded to the irrigation events well. Then DP below 100cm soil layers was calculated using the soil water balance method with the aid of eddy covariance (with the energy balance closure of 0.72). The negative DP (groundwater contribution to the crop-water use through capillary rising) at the seedling and harvesting stages can reach 77mm and has a good negative correlation with the groundwater level and positive correlation with potential evaporation. During the drip irrigation stage approximately 45% of the irrigation became DP and resulted in the low irrigation WUE of 0.6. The DP can be 164mm to 270mm per year which was positive linearly correlated to irrigation depth and negative linear correlated to irrigation interval. It is better to establish the irrigation schedule with small irrigation depth and given frequently to reduce deep percolation and meet crop needs.

  10. Modeling sustainable reuse of nitrogen-laden wastewater by poplar.

    PubMed

    Wang, Yusong; Licht, Louis; Just, Craig

    2016-01-01

    Numerical modeling was used to simulate the leaching of nitrogen (N) to groundwater as a consequence of irrigating food processing wastewater onto grass and poplar under various management scenarios. Under current management practices for a large food processor, a simulated annual N loading of 540 kg ha(-1) yielded 93 kg ha(-1) of N leaching for grass and no N leaching for poplar during the growing season. Increasing the annual growing season N loading to approximately 1,550 kg ha(-1) for poplar only, using "weekly", "daily" and "calculated" irrigation scenarios, yielded N leaching of 17 kg ha(-1), 6 kg ha(-1), and 4 kg ha(-1), respectively. Constraining the simulated irrigation schedule by the current onsite wastewater storage capacity of approximately 757 megaliters (Ml) yielded N leaching of 146 kg ha(-1) yr(-1) while storage capacity scenarios of 3,024 and 4,536 Ml yielded N leaching of 65 and 13 kg ha(-1) yr(-1), respectively, for a loading of 1,550 kg ha(-1) yr(-1). Further constraining the model by the current wastewater storage volume and the available land area (approximately 1,000 hectares) required a "diverse" irrigation schedule that was predicted to leach a weighted average of 13 kg-N ha(-1) yr(-1) when dosed with 1,063 kg-N ha(-1) yr(-1).

  11. Advances in Irrigation

    NASA Astrophysics Data System (ADS)

    Gardner, W. R.

    This is the first volume of Advances in Irrigation, a new serial publication by the publishers of Advances in Agronomy and Advances in Hydroscience and designed to follow the same format. The editor is a well-known researcher and writer on irrigation and related subjects and has assembled a collection of highly regarded and respected authors for the initial volume. The readership for this volume will probably be mainly specialists and students interested in irrigation and an occasional design engineer.The seven contributions in this volume fall roughly into two classes: research and practice. Three papers (“Conjunctive Use of Rainfall and Irrigation in Semi-arid Regions,” by Stewart and Musik, “Irrigation Scheduling Using Soil Moisture Measurements: Theory and Practice,” by G. S. and M. D. Campbell, and “Use of Solute Transport Models to Estimate Salt Balance Below Irrigated Cropland,” by Jury) cover topics that have been the subject of a number of reviews. The contributions here provide brief, well-written, and authoritative summaries of the chosen topics and serve as good introductions or reviews. They should lend themselves well to classroom use in various ways. They also should be helpful to the nonspecialist interested in getting a sense of the subject without going into great detail.

  12. Container volume and subirrigation schedule influence Quercus variabilis seedling growth and nutrient status in the nursery and field

    Treesearch

    Qiaoyu Sun; R. Kasten Dumroese; Yong Liu

    2018-01-01

    Container volume and irrigation management affect seedling growth in the nursery and field. We evaluated the effects of container volumes (D40, 656 ml; D60, 983 ml) and subirrigation schedules (85%, 75%, 65%, and 55% of 100% total substrate moisture content, TSMC) on seedling growth in a greenhouse and outplanting performance of Chinese cork oak (Quercus variabilis...

  13. Rainfall and irrigation controls on groundwater rise and salinity risk in the Ord River Irrigation Area, northern Australia

    NASA Astrophysics Data System (ADS)

    Smith, Anthony J.

    2008-09-01

    Groundwater beneath the Ord River Irrigation Area (ORIA) in northern Australia has risen in elevation by 10-20 m during the past 40 years with attendant concerns about water logging and soil salinization. Persistent groundwater accession has been attributed to excessive irrigation and surface water leakage; however, analysis of daily water-table records from the past 10 years yielded a contrary result. On a seasonal basis, water-table elevation typically fell during irrigation (dry) seasons and rose during fallow (wet) seasons, conflicting with the conventional view that irrigation and not rainfall must be the dominant control on groundwater accession. Previous investigations of unexpectedly large infiltration losses through the cracking clay soils provide a plausible explanation for the apparent conundrum. Because rainfall is uncontrolled and occurs independently of the soil moisture condition, there is greater opportunity for incipient ponding and rapid infiltration through preferred flow pathways. In contrast, irrigation is scheduled when needed and applications are stopped after soil wetting is achieved. Contemporary groundwater management in the ORIA is focused on improving irrigation efficiency during dry seasons but additional opportunities may exist to improve groundwater conditions and salinity risk through giving equal attention to the wet-season water balance.

  14. Partial root-zone drying and conventional deficit irrigation applied during the whole berry growth maintain yield and berry quality in 'Crimson Seedless' table grapes

    NASA Astrophysics Data System (ADS)

    Pérez-Pastor, Alejandro; Domingo, Rafael; De la Rosa, Jose M.°; Rosario Conesa Saura, M.°

    2016-04-01

    To compare the effects of partial root-zone drying and conventional deficit irrigation applied during post-veraison and the whole berry growth on water relations, yield and berry quality, one experiment was conducted in a commercial vineyard of 'Crimson Seedless' table grapes. Five irrigation treatments were imposed: (i) Control (CTL) irrigated to 110% of crop evapotranspiration (ETc), (ii) regulated deficit irrigation (RDI) irrigated at 50% of CTL during the non- critical period of post-verasion, (iii) continuous deficit irrigation (DIc), irrigated at 50% of CTL throughout the whole berry growing season, (iv) partial root-zone drying (PRD), irrigated similar to RDI, but alternating the irrigation applied in the dry side every 10-14 days; and (v) continuous partial root-zone drying (PRDc), irrigated as DIc but alternating the irrigation in the dry side every 10-14 days. RDI and PRD received 24% and 28% less water than CTL, respectively. These reductions were higher in DIc and PRDc (65% and 53%, respectively). Total yield was not affected by any DI strategy. Only significantly lower values were observed in the weight and height's berries in respect to CTL. However, the colour parameters evaluated increased in all DI treatments, being slightly higher in DIc and PRDc compared with RDI and PRD. In addition, total soluble solids (TSS) were significantly higher in DIc, compared to other irrigated counterparts. Our findings showed that the application of water deficit during the whole berry growth through the use of DIc and PRDc, can be considered for irrigation scheduling in 'Crimson Seedless' table grapes. Acknowledgements This work has been funded by the European Union LIFE+ project IRRIMAN (LIFE13 ENV/ES/000539).

  15. Development of a decision support system for small reservoir irrigation systems in rainfed and drought prone areas.

    PubMed

    Balderama, Orlando F

    2010-01-01

    An integrated computer program called Cropping System and Water Management Model (CSWM) with a three-step feature (expert system-simulation-optimization) was developed to address a range of decision support for rainfed farming, i.e. crop selection, scheduling and optimisation. The system was used for agricultural planning with emphasis on sustainable agriculture in the rainfed areas through the use of small farm reservoirs for increased production and resource conservation and management. The application of the model was carried out using crop, soil, and climate and water resource data from the Philippines. Primarily, four sets of data representing the different rainfall classification of the country were collected, analysed, and used as input in the model. Simulations were also done on date of planting, probabilities of wet and dry period and with various capacities of the water reservoir used for supplemental irrigation. Through the analysis, useful information was obtained to determine suitable crops in the region, cropping schedule and pattern appropriate to the specific climate conditions. In addition, optimisation of the use of the land and water resources can be achieved in areas partly irrigated by small reservoirs.

  16. Spatial variability of surface temperature as related to cropping practice with implications for irrigation management

    NASA Technical Reports Server (NTRS)

    Hatfield, J. L.; Millard, J. P.; Reginato, R. J.; Jackson, R. D.; Idso, S. B.; Pinter, P. J., Jr.; Goettelman, R. C.

    1980-01-01

    Crop stress measured using thermal infrared emission is evaluated with the stress-degree-day (SDD) concept. Throughout the season, the accumulation of SDD during the reproductive stage of growth is inversely related to yield. This relationship is shown for durum wheat, hard red winter wheat, barley, grain sorghum and soybeans. It is noted that SDD can be used to schedule irrigations for maximizing yields and for applying remotely sensed data to management of water resources. An airborne flight with a thermal-IR scanner was used to examine the variability in temperature that may exist from one field to another and to determine realistic within-field temperature variations. It was found that the airborne and the ground-based data agreed very well and that there was less variability in the fields that were completely covered with crops than those of bare soil.

  17. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching

    PubMed Central

    Zhai, Yaming; Yang, Qian; Wu, Yunyu

    2016-01-01

    To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt), quality, irrigation water use efficiency (IWUE) and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1), 320 mm (W2) and 360 mm (W3), and the salinity levels were 1.0 dS/m (F), 3.0 dS/m (S1) and 5.0 dS/m (S2). Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm) of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym). After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual), and was recommended as the saline water irrigation scheme for tomatoes in northern China. PMID:27806098

  18. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching.

    PubMed

    Zhai, Yaming; Yang, Qian; Wu, Yunyu

    2016-01-01

    To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt), quality, irrigation water use efficiency (IWUE) and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1), 320 mm (W2) and 360 mm (W3), and the salinity levels were 1.0 dS/m (F), 3.0 dS/m (S1) and 5.0 dS/m (S2). Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm) of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym). After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual), and was recommended as the saline water irrigation scheme for tomatoes in northern China.

  19. Remote sensing as a tool in assessing soil moisture

    NASA Technical Reports Server (NTRS)

    Carlson, C. W.

    1978-01-01

    The effects of soil moisture as it relates to agriculture is briefly discussed. The use of remote sensing to predict scheduling of irrigation, runoff and soil erosion which contributes to the prediction of crop yield is also discussed.

  20. Minimum Irrigation Requirements for Cottonwood (Populus fremontii and P. deltoides) and Willow (Salix gooddingii) Grown in a Desert Environment

    NASA Astrophysics Data System (ADS)

    Glenn, E. P.; Hartwell, S.; Morino, K.; Nagler, P. L.

    2009-12-01

    Native tree plots have been established in riverine irrigation districts in the western U.S. to provide habitat for threatened and endangered birds. Information is needed on the minimum effective irrigation requirements of the target species. We summarize preliminary (or unpublished) findings of a study or cottonwood (Populus spp.) and willow (Salix gooddingii) trees that were grown for seven years in an outdoor plot in a desert environment in Tucson, Arizona to determine plant water use. Plants were allowed to achieve a nearly complete canopy cover over the first four years, then were subjected to three summer irrigation schedules: 6.2 mm d-1; 8.26 mm d-1 and 15.7 mm d-1. The lowest irrigation rate was sufficient to maintain growth and high leaf area index for cottonwoods over three years, but willows suffered partial die-back on this rate, and required 8.26 mm d-1 to maintain growth. These irrigation rates were required April 15 - September 15, but only 0.88 mm d-1 was required during the dormant periods of the year. Expressed as a fraction of reference crop evapotranspiration (ET/ETo), annual water requirements were 0.83 ETo for cottonwood and 1.01 ETo for willow, which includes irrigation plus precipitation. Current practices tend to over-irrigate restoration plots, and this study can provide guidelines for more efficient water use.

  1. Adapting FAO-56 Spreadsheet Program to estimate olive orchard transpiration fluxes under soil water stress condition

    NASA Astrophysics Data System (ADS)

    Rallo, G.; Provenzano, G.; Manzano-Juárez, J.

    2012-04-01

    In the Mediterranean environment, where the period of crops growth does not coincide with the rainy season, the crop is subject to water stress periods that may be amplified with improper irrigation management. Agro-hydrological models can be considered an economic and simple tool to optimize irrigation water use, mainly when water represents a limiting factor for crop production. In the last two decades, agro-hydrological physically based models have been developed to simulate mass and energy exchange processes in the soil-plant-atmosphere system (Feddes et al., 1978; Bastiaanssen et al., 2007). Unfortunately these models, although very reliable, as a consequence of the high number of required variables and the complex computational analysis, cannot often be used. Therefore, simplified agro-hydrological models may represent an useful and simple tool for practical irrigation scheduling. The main objective of the work is to assess, for an olive orchard, the suitability of FAO-56 spreadsheet agro-hydrological model to estimate a long time series of field transpiration, soil water content and crop water stress dynamic. A modification of the spreadsheet is suggested in order to adapt the simulations to a crop tolerant to water stress. In particular, by implementing a new crop water stress function, actual transpiration fluxes and an ecophysiological stress indicator, i. e. the relative transpiration, are computed in order to evaluate a plant-based irrigation scheduling parameter. Validation of the proposed amendment is carried out by means of measured sap fluxes, measured on different plants and up-scaled to plot level. Spatial and temporal variability of soil water contents in the plot was measured, at several depths, using the Diviner 2000 capacitance probe (Sentek Environmental Technologies, 2000) and TDR-100 (Campbell scientific, Inc.) system. The detailed measurements of soil water content, allowed to explore the high spatial variability of soil water content due to the combined effect of the punctual irrigation and the non-uniform root density distribution. A further validation of the plant-based irrigation-timing indicator will be carried out by considering another ecophysiological stress variable like the predawn leaf water potential. Accuracy of the model output was assessed using the Mean Absolute Difference, the Root Mean Square Difference and the efficiency index of Nash and Sutcliffe. Experimental data, recorded during three years of field observation, allowed, with a great level of detail, to investigate on the dynamic of water fluxes from the soil to atmosphere as well as to validate the proposed amendment of the FAO-56 spreadsheet. The modified model simulated with a satisfactory approximation the measured values of average soil water content in the root zone, with error of estimation equal to about 2.0%. These differences can be considered acceptable for practical applications taking into account the intrinsic variability of the data especially in the soil moisture point measurements. An error less than 1 mm was calculated in the daily transpiration estimation. A good performance was observed in the estimation of the cumulate transpiration fluxes.

  2. Effects of different on-farm management on yield and water use efficiency of Potato crop cultivated in semiarid environments under subsurface drip irrigation

    NASA Astrophysics Data System (ADS)

    Ghazouani, Hiba; Provenzano, Giuseppe; Rallo, Giovanni; Mguidiche, Amel; Douh, Boutheina; Boujelben, Abdelhamid

    2016-04-01

    In Tunisia the amount of water for irrigated agriculture is higher than about 80% of the total resource.The increasing population and the rising food demand, associated to the negative effects of climate change,make it crucial to adopt strategies aiming to improve water use efficiency (WUE). Moreover, the absence of an effective public policy for water management amplifies the imbalance between water supply and its demand. Despite improved irrigation technologies can enhance the efficiency of water distribution systems, to achieve environmental goals it is also necessaryto identify on-farm management strategies accounting for actual crop water requirement. The main objective of the paper was to assess the effects of different on-farm managementstrategies (irrigation scheduling and planting date) on yield and water use efficiency of Potato crop (Solanumtuberosum L.) irrigated with a subsurface drip system, under the semi-arid climate of central Tunisia. Experiments were carried out during three growing seasons (2012, 2014 and 2015) at the High Agronomic Institute of ChottMariem in Sousse, by considering different planting dates and irrigation depths, the latter scheduled according to the climate observed during the season. All the considered treatments received the same pesticide and fertilizer management. Experiments evidenced that the climatic variability characterizing the examined seasons (photoperiod, solar radiation and average temperature) affects considerably the crop phenological stages, and the late sowing shortens the crop cycle.It has also been demonstrated that Leaf Area Index (LAI) and crop yield resulted relatively higher for those treatments receiving larger amounts of seasonal water. Crop yield varied between 16.3 t/ha and 39.1 t/ha, with a trend linearly related to the ratio between the seasonal amount of water supplied (Irrigation, I and Precipitation, P) and the maximum crop evapotranspiration (ETm). The maximum crop yield was in particular obtained for a value of this ratio equal to 1.45. Moreover, when increasing the seasonal pluviometric deficit (P-ETm) and therefore the irrigation depth (I), standard deviations of crop yield tended to decrease, as a consequence ofthe more uniform soil water content in the root zone. In terms of agronomic water use efficiency (AWUE),differences among the investigated treatments varied in a quite narrow range,due to thecombined effects of seasonal precipitation and atmospheric water demand on irrigation depths and crop yield.On the other hand, when considering irrigation water use efficiency (IWUE), more relevant differences between treatments were observed,being the higher values of IWUEgenerally associated to the lower irrigation depths. However, to define the best irrigation management strategy it is necessary, from one side, to consider the availability of water and from the other, to perform aneconomic analysis accounting for the cost of water and the related benefits achievable by the farmer.

  3. Supplemental irrigation as an initiative to support water and food security: A global evaluation of the potential to support and increase precipitation-fed wheat production

    NASA Astrophysics Data System (ADS)

    Smilovic, M.; Gleeson, T. P.; Adamowski, J. F.; Langhorn, C.; Kienzle, S. W.

    2016-12-01

    Supplemental irrigation is the practice of supporting precipitation-fed agriculture with limited irrigation. Precipitation-fed agriculture dominates the agricultural landscape, but is vulnerable to intraseasonal and interannual variability in precipitation and climate. The interplay between food security, water resources, ecosystem health, energy, and livelihoods necessitates evaluating and integrating initiatives that increase agricultural production while reducing demands on water resources. Supplemental irrigation is the practice of minimally irrigating in an effort to stabilize and increase agricultural production, as well as increase water productivity - the amount of crop produced per unit of water. The potential of supplemental irrigation to support both water and food security has yet to be evaluated at regional and global scales. We evaluate whether supplemental irrigation could stabilize and increase agricultural production of wheat by determining locally-calibrated water use-crop yield relationships, known as crop-water production functions. Crop-water production functions are functions of seasonal water use and crop yield, and previous efforts have largely ignored the effects of the temporal distribution of water use throughout the growing season. We significantly improve upon these efforts and provide an opportunity to evaluate supplemental irrigation that appropriately acknowledges the effects of irrigation scheduling. Integrating agroclimatic and crop data with the crop-water model Aquacrop, we determine the increases in wheat production achieved by maximizing water productivity, sharing limited water between different years, and other irrigation scenarios. The methodology presented and evaluation of supplemental irrigation provides water mangers, policy makers, governments, and non-governmental organizations the tools to appropriately understand and determine the potential of this initiative to support precipitation-fed agriculture.

  4. Effects of soil water holding capacity on evapotranspiration and irrigation scheduling

    USDA-ARS?s Scientific Manuscript database

    The USDA Natural Resources Conservation Service (NRCS), through the National Cooperative Soil Survey, developed three soil geographic databases that are appropriate for acquiring soil information at the national, regional, and local scales. These relational databases include the National Soil Geogra...

  5. Crop evapotranspiration and irrigation scheduling in blueberry

    USDA-ARS?s Scientific Manuscript database

    There are currently 139,000 ha of blueberry worldwide, including 66,000 ha of highbush [comprises northern highbush (Vaccinium corymbosum), southern highbush (Vaccinium sp.), and rabbiteye (V. virgatum formerly V. asheii) cultivars] and 73,000 ha of lowbush blueberry (V. angustifolium). The majority...

  6. Policies, economic incentives and the adoption of modern irrigation technology in China

    NASA Astrophysics Data System (ADS)

    Cremades, R.; Wang, J.; Morris, J.

    2015-07-01

    The challenges China faces in terms of water availability in the agricultural sector are exacerbated by the sector's low irrigation efficiency. To increase irrigation efficiency, promoting modern irrigation technology has been emphasized by policy makers in the country. The overall goal of this paper is to understand the effect of governmental support and economic incentives on the adoption of modern irrigation technology in China, with a focus on household-based irrigation technology and community-based irrigation technology. Based on a unique data set collected at household and village levels from seven provinces, the results indicated that household-based irrigation technology has become noticeable in almost every Chinese village. In contrast, only about half of Chinese villages have adopted community-based irrigation technology. Despite the relatively high adoption level of household-based irrigation technology at the village level, its actual adoption in crop sown areas was not high, even lower for community-based irrigation technology. The econometric analysis results revealed that governmental support instruments like subsidies and extension services policies have played an important role in promoting the adoption of modern irrigation technology. Strikingly, the present irrigation pricing policy has played a significant but contradictory role in promoting the adoption of different types of modern irrigation technology. Irrigation pricing showed a positive impact on household-based irrigation technology, and a negative impact on community-based irrigation technology, possibly related to the substitution effect that is, the higher rate of adoption of household-based irrigation technology leads to lower incentives for investment in community-based irrigation technology. The paper finally concludes and discusses some policy implications.

  7. Modeling and assessing field irrigation water use in a canal system of Hetao, upper Yellow River basin: Application to maize, sunflower and watermelon

    NASA Astrophysics Data System (ADS)

    Ren, Dongyang; Xu, Xu; Hao, Yuanyuan; Huang, Guanhua

    2016-01-01

    Water saving in irrigation is a key issue in the upper Yellow River basin. Excessive irrigation leads to water waste, water table rising and increased salinity. Land fragmentation associated with a large dispersion of crops adds to the agro-hydrological complexity of the irrigation system. The model HYDRUS-1D, coupled with the FAO-56 dual crop coefficient approach (dualKc), was applied to simulate the water and salt movement processes. Field experiments were conducted for maize, sunflower and watermelon crops in the command area of a typical irrigation canal system in Hetao Irrigation District during 2012 and 2013. The model was calibrated and validated in three crop fields using two-year experimental data. Simulations of soil moisture, salinity concentration and crop yield fitted well with the observations. The irrigation water use was then evaluated and results showed that large amounts of irrigation water percolated due to over-irrigation but their reuse through capillary rise was also quite large. That reuse was facilitated by the dispersion of crops throughout largely fragmented field, thus with fields reusing water percolated from nearby areas due to the rapid lateral migration of groundwater. Beneficial water use could be improved when taking this aspect into account, which was not considered in previous researches. The non-beneficial evaporation and salt accumulation into the root zone were found to significantly increase during non-growth periods due to the shallow water tables. It could be concluded that when applying water saving measures, close attention should be paid to cropping pattern distribution and groundwater control in association with irrigation scheduling and technique improvement.

  8. Modeling contribution of shallow groundwater to evapotranspiration and yield of maize in an arid area

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoyu; Huo, Zailin; Qu, Zhongyi; Xu, Xu; Huang, Guanhua; Steenhuis, Tammo S.

    2017-02-01

    Capillary rise from shallow groundwater can decrease the need for irrigation water. However, simple techniques do not exist to quantify the contribution of capillary flux to crop water use. In this study we develop the Agricultural Water Productivity Model for Shallow Groundwater (AWPM-SG) for calculating capillary fluxes from shallow groundwater using readily available data. The model combines an analytical solution of upward flux from groundwater with the EPIC crop growth model. AWPM-SG was calibrated and validated with 2-year lysimetric experiment with maize. Predicted soil moisture, groundwater depth and leaf area index agreed with the observations. To investigate the response of model, various scenarios were run in which the irrigation amount and groundwater depth were varied. Simulations shows that at groundwater depth of 1 m capillary upward supplied 41% of the evapotranspiration. This reduced to 6% at groundwater depth of 2 m. The yield per unit water consumed (water productivity) was nearly constant for 2.3 kg/m3. The yield per unit water applied (irrigation water productivity) increased with decreasing irrigation water because capillary rise made up in part for the lack of irrigation water. Consequently, using AWPM-SG in irrigation scheduling will be beneficial to save more water in areas with shallow groundwater.

  9. In situ colloid mobilization in Hanford sediments under unsaturated transient flow conditions: effect of irrigation pattern.

    PubMed

    Zhuang, Jie; McCarthy, John F; Tyner, John S; Perfect, Edmund; Flury, Markus

    2007-05-01

    Colloid transport may facilitate off-site transport of radioactive wastes at the Hanford site, Washington State. In this study, column experiments were conducted to examine the effect of irrigation schedule on releases of in situ colloids from two Hanford sediments during saturated and unsaturated transientflow and its dependence on solution ionic strength, irrigation rate, and sediment texture. Results show that transient flow mobilized more colloids than steady-state flow. The number of short-term hydrological pulses was more important than total irrigation volume for increasing the amount of mobilized colloids. This effect increased with decreasing ionic strength. At an irrigation rate equal to 5% of the saturated hydraulic conductivity, a transient multipulse flow in 100 mM NaNO3 was equivalent to a 50-fold reduction of ionic strength (from 100 mM to 2 mM) with a single-pulse flow in terms of their positive effects on colloid mobilization. Irrigation rate was more important for the initial release of colloids. In addition to water velocity, mechanical straining of colloids was partly responsible for the smaller colloid mobilization in the fine than in the coarse sands, although the fine sand contained much larger concentrations of colloids than the coarse sand.

  10. Leaching of N-nitrosodimethylamine (NDMA) in turfgrass soils during wastewater irrigation.

    PubMed

    Gan, J; Bondarenko, S; Ernst, F; Yang, W; Ries, S B; Sedlak, D L

    2006-01-01

    N-nitrosodimethylamine (NDMA) is a carcinogenic by-product of chlorination that is frequently found in municipal wastewater effluent. NDMA is miscible in water and negligibly adsorbed to soil, and therefore may pose a threat to ground water when treated wastewater is used for landscape irrigation. A field study was performed in the summer months under arid Southern California weather conditions to evaluate the leaching potential of NDMA in turfgrass soils during wastewater irrigation. Wastewater was used to irrigate multiple turfgrass plots at 110 to 160% evapotranspiration rate for about 4 mo, and leachate was continuously collected and analyzed for NDMA. The treated wastewater contained relatively high levels of NDMA (114-1820 ng L(-1); mean 930 ng L(-1)). NDMA was detected infrequently in the leachate regardless of the soil type or irrigation schedule. At a method detection limit of 2 ng L(-1), NDMA was only detected in 9 out of 400 leachate samples and when it was detected, the NDMA concentration was less than 5 ng L(-1). NDMA was relatively persistent in the turfgrass soils during laboratory incubation, indicating that mechanisms other than biotransformation, likely volatilization and/or plant uptake, contributed to the rapid dissipation. Under conditions typical of turfgrass irrigation with wastewater effluent it is unlikely that NDMA will contaminate ground water.

  11. Modeling contribution of shallow groundwater to evapotranspiration and yield of maize in an arid area

    PubMed Central

    Gao, Xiaoyu; Huo, Zailin; Qu, Zhongyi; Xu, Xu; Huang, Guanhua; Steenhuis, Tammo S.

    2017-01-01

    Capillary rise from shallow groundwater can decrease the need for irrigation water. However, simple techniques do not exist to quantify the contribution of capillary flux to crop water use. In this study we develop the Agricultural Water Productivity Model for Shallow Groundwater (AWPM-SG) for calculating capillary fluxes from shallow groundwater using readily available data. The model combines an analytical solution of upward flux from groundwater with the EPIC crop growth model. AWPM-SG was calibrated and validated with 2-year lysimetric experiment with maize. Predicted soil moisture, groundwater depth and leaf area index agreed with the observations. To investigate the response of model, various scenarios were run in which the irrigation amount and groundwater depth were varied. Simulations shows that at groundwater depth of 1 m capillary upward supplied 41% of the evapotranspiration. This reduced to 6% at groundwater depth of 2 m. The yield per unit water consumed (water productivity) was nearly constant for 2.3 kg/m3. The yield per unit water applied (irrigation water productivity) increased with decreasing irrigation water because capillary rise made up in part for the lack of irrigation water. Consequently, using AWPM-SG in irrigation scheduling will be beneficial to save more water in areas with shallow groundwater. PMID:28220874

  12. Modeling contribution of shallow groundwater to evapotranspiration and yield of maize in an arid area.

    PubMed

    Gao, Xiaoyu; Huo, Zailin; Qu, Zhongyi; Xu, Xu; Huang, Guanhua; Steenhuis, Tammo S

    2017-02-21

    Capillary rise from shallow groundwater can decrease the need for irrigation water. However, simple techniques do not exist to quantify the contribution of capillary flux to crop water use. In this study we develop the Agricultural Water Productivity Model for Shallow Groundwater (AWPM-SG) for calculating capillary fluxes from shallow groundwater using readily available data. The model combines an analytical solution of upward flux from groundwater with the EPIC crop growth model. AWPM-SG was calibrated and validated with 2-year lysimetric experiment with maize. Predicted soil moisture, groundwater depth and leaf area index agreed with the observations. To investigate the response of model, various scenarios were run in which the irrigation amount and groundwater depth were varied. Simulations shows that at groundwater depth of 1 m capillary upward supplied 41% of the evapotranspiration. This reduced to 6% at groundwater depth of 2 m. The yield per unit water consumed (water productivity) was nearly constant for 2.3 kg/m 3 . The yield per unit water applied (irrigation water productivity) increased with decreasing irrigation water because capillary rise made up in part for the lack of irrigation water. Consequently, using AWPM-SG in irrigation scheduling will be beneficial to save more water in areas with shallow groundwater.

  13. Untangling the effects of shallow groundwater and deficit irrigation on irrigation water productivity in arid region: New conceptual model.

    PubMed

    Xue, Jingyuan; Huo, Zailin; Wang, Fengxin; Kang, Shaozhong; Huang, Guanhua

    2018-04-01

    Water scarcity and salt stress are two main limitations for agricultural production. Groundwater evapotranspiration (ET g ) with upward salt movement plays an important role in crop water use and water productivity in arid regions, and it can compensate the impact of deficit irrigation on crop production. Thus, comprehensive impacts of shallow groundwater and deficit irrigation on crop water use results in an improvement of irrigation water productivity (IWP). However, it is difficult to quantify the effects of groundwater and deficit irrigation on IWP. In this study, we built an IWP evaluation model coupled with a water and salt balance model and a crop yield estimation model. As a valuable tool of IWP simulation, the calibrated model was used to investigate the coupling response of sunflower IWP to irrigation water depths (IWDs), groundwater table depth (GTDs) and groundwater salinities (GSs). A total of 210 scenarios were run in which five irrigation water depths (IWDs) and seven groundwater table depths (GTDs) and six groundwater salinities (GSs) were used. Results indicate that increasing GS clearly increases the negative effect on a crop's actual evapotranspiration (ET a ) as salt accumulation in root zone. When GS is low (0.5-1g/L), increasing GTD produces more positive effect than negative effect. In regard to relatively high GS (2-5g/L), the negative effect of shallow-saline groundwater reaches a maximum at 2m GTD. Additionally, the salt concentration in the root zone maximizes its value at 2.0m GTD. In most cases, increasing GTD and GS reduces the benefits of irrigation water and IWP. The IWP increases with decreasing irrigation water. Overall, in arid regions, capillary rise of shallow groundwater can compensate for the lack of irrigation water and improve IWP. By improving irrigation schedules and taking advantages of shallow saline groundwater, we can obtain higher IWP. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. New alternatives for reference evapotranspiration estimation in West Africa using limited weather data and ancillary data supply strategies.

    NASA Astrophysics Data System (ADS)

    Landeras, Gorka; Bekoe, Emmanuel; Ampofo, Joseph; Logah, Frederick; Diop, Mbaye; Cisse, Madiama; Shiri, Jalal

    2018-05-01

    Accurate estimation of reference evapotranspiration ( ET 0 ) is essential for the computation of crop water requirements, irrigation scheduling, and water resources management. In this context, having a battery of alternative local calibrated ET 0 estimation methods is of great interest for any irrigation advisory service. The development of irrigation advisory services will be a major breakthrough for West African agriculture. In the case of many West African countries, the high number of meteorological inputs required by the Penman-Monteith equation has been indicated as constraining. The present paper investigates for the first time in Ghana, the estimation ability of artificial intelligence-based models (Artificial Neural Networks (ANNs) and Gene Expression Programing (GEPs)), and ancillary/external approaches for modeling reference evapotranspiration ( ET 0 ) using limited weather data. According to the results of this study, GEPs have emerged as a very interesting alternative for ET 0 estimation at all the locations of Ghana which have been evaluated in this study under different scenarios of meteorological data availability. The adoption of ancillary/external approaches has been also successful, moreover in the southern locations. The interesting results obtained in this study using GEPs and some ancillary approaches could be a reference for future studies about ET 0 estimation in West Africa.

  15. Policy support, economic incentives and the adoption of irrigation technology in China

    NASA Astrophysics Data System (ADS)

    Cremades, R.; Wang, J.; Morris, J.

    2014-11-01

    The challenges China faces in terms of water availability in the agricultural sector are exacerbated by the sector's low irrigation efficiency. To increase irrigation efficiency, promoting irrigation technology has been emphasized by policy makers in China. The overall goal of this paper is to understand the effect of policy support and economic incentives on the adoption of irrigation technology in China. Based on a unique dataset collected at household and village levels from seven provinces in China, results indicated that household-based irrigation technology has become noticeable in almost every Chinese village. In contrast, only about half of Chinese villages have adopted community-based irrigation technology. Despite the relatively high adoption level of household-based irrigation technology at the village level, its actual adoption on crop-sown areas was not high, and it was even lower for community-based irrigation technology. The econometric analyses results revealed that policy supports via subsidies and extension services have played an important role in promoting the adoption of irrigation technology. Strikingly, the present irrigation pricing policy has played significant but contradictory roles in promoting the adoption of different types of irrigation technology. Irrigation pricing showed a positive impact on household-based irrigation technology, and a negative impact on community-based irrigation technology, possibly related to their substitution relationship, because having higher adoption of household-based irrigation technology reduce the incentives to invest in community-based irrigation technology. The paper finally concludes and discusses some policy implications.

  16. Streamflow Prediction in Ungauged, Irrigated Basins

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Thompson, S. E.

    2016-12-01

    The international "predictions in ungauged basins" or "PUB" effort has broadened and improved the tools available to support water resources management in sparsely observed regions. These tools have, however, been primarily focused on regions with limited diversion of surface or shallow groundwater resources. Incorporating anthropogenic activity into PUB methods is essential given the high level of development of many basins. We extended an existing stochastic framework used to predict the flow duration curve to explore the effects of irrigation on streamflow dynamics. Four canonical scenarios were considered in which irrigation water was (i) primarily sourced from water imports, (ii) primarily sourced from direct in-channel diversions, (iii) sourced from shallow groundwater with direct connectivity to stream channels, or (iv) sourced from deep groundwater that is indirectly connected to surface flow via a shallow aquifer. By comparing the predicted flow duration curves to those predicted by accounting for climate and geomorphic factors in isolation, specific "fingerprints" of human water withdrawals could be identified for the different irrigation scenarios, and shown to be sensitive to irrigation volumes and scheduling. The results provide a first insight into PUB methodologies that could be employed in heavily managed basins.

  17. Evaporation from irrigated crops: Its measurement, modeling and estimation from remotely sensed data

    NASA Astrophysics Data System (ADS)

    Garatuza-Payan, Jaime

    The research described in this dissertation is predicated on the hypothesis that remotely sensed information from climatological satellites can be used to estimate the actual evapotranspiration from agricultural crops to improve irrigation scheduling and water use efficiency. The goal of the enabling research program described here was to facilitate and demonstrate the potential use of satellite data for the rapid and routine estimation of water use by irrigated crops in the Yaqui Valley irrigation scheme, an extensive irrigated area in Sonora, Mexico. The approach taken was first, to measure and model the evapotranspiration and crop factors for wheat and cotton, the most common irrigated crops in the Yaqui Valley scheme. Second, to develop and test a high-resolution (4 km x 4 km) method for determining cloud cover and solar radiation from GOES satellite data. Then third, to demonstrate the application of satellite data to calculate the actual evaporation for sample crops in the Yaqui Valley scheme by combining estimates of potential rate with relevant crop factors and information on crop management. Results show that it is feasible to provide routine estimates of evaporation for the most common crops in the Yaqui Valley irrigation scheme from satellite data. Accordingly, a system to provide such estimates has been established and the Water Users Association, the entity responsible for water distribution in Yaqui Valley, can now use them to decide whether specific fields need irrigation. A Web site (teka-pucem.itson.mx) is also being created which will allow individual farmers to have direct access to the evaporation estimates via the Internet.

  18. Ground penetrating radar water content mapping of golf course green sand layers

    USDA-ARS?s Scientific Manuscript database

    Information on the spatial distribution of water content across the sand layer component of a golf course green can be important to golf course superintendents for evaluating drainage effectiveness and scheduling irrigation. To estimate the bulk water content of the sand layer at point locations ac...

  19. Non-invasive measurements of soil water content using a pulsed 14 MeV neutron generator

    USDA-ARS?s Scientific Manuscript database

    Most current techniques of setting crop irrigation schedules use invasive, labor-intensive soil-water content measurements. We developed a cart-mounted neutron probe capable of non-invasive measurements of volumetric soil moisture contents. The instrument emits neutrons which are captured by hydroge...

  20. Lysimetric evaluation of eddy covariance and scitillometer systems for the Texas High Plains

    USDA-ARS?s Scientific Manuscript database

    Evapotranspiration (ET) is an important component in the water budget and used extensively in water planning and irrigation scheduling. Although lysimetry is considered the most accurate method for crop water use measurements, large precision weighing lysimeters are expensive to build and operate. A...

  1. Assessing FAO-56 dual crop coefficients using eddy covariance flux partitioning

    USDA-ARS?s Scientific Manuscript database

    Current approaches to scheduling crop irrigation using reference evapotranspiration (ET0) recommend using a dual-coefficient approach using basal (Kcb) and soil (Ke) coefficients along with a stress coefficient (Ks) to model crop evapotranspiration (ETc), [e.g. ETc=(Ks*Kcb+Ke)*ET0]. However, determi...

  2. Wireless sensor network for monitoring soil moisture and weather conditions

    USDA-ARS?s Scientific Manuscript database

    A wireless sensor network (WSN) was developed and deployed in three fields to monitor soil water status and collect weather data for irrigation scheduling. The WSN consists of soil-water sensors, weather sensors, wireless data loggers, and a wireless modem. Soil-water sensors were installed at three...

  3. Use of Peristeen® transanal colonic irrigation for bowel management in children: a single-center experience.

    PubMed

    Pacilli, Maurizio; Pallot, David; Andrews, Afiya; Downer, Angela; Dale, Louiza; Willetts, Ian

    2014-02-01

    Transanal colonic irrigation has been shown to be effective in bowel management program in adults. However, there exist limited data in children. We appraised the effectiveness of this technique in a series of children with incontinence or constipation and overflow soiling. Following ethical approval, a review of children with incontinence or constipation on a bowel management program with Peristeen® transanal colonic irrigation treated between 2007 and 2012 was performed. Irrigations were performed with a volume of 10-20 ml/kg of water with schedules depending on patient response. Data are reported as median (range). Twenty-three patients were reviewed. Median age at commencement of irrigations was 7 (2-15) years. Median follow-up is 2 (0.7-3.4) years. Diagnoses include the following: spina bifida (n=11), anorectal anomaly (n=6), Hirschsprung's (n=1), and other complex anomalies (n=5). Sixteen (70%) patients had associated anomalies. Twelve (52%) had constipation and overflow soiling, and 11 (48%) had fecal incontinence. Twenty (87%) had associated urinary wetting. Sixteen (70%) children used alternate-day irrigations, 4 (17%) daily irrigations, and 3 (13%) every third-day irrigations. Nine (39%) patients were taking oral laxatives. Sixteen (70%) reported to be clean and 3 (13%) reported a significant improvement, although were having occasional soiling. Four patients (17%) did not tolerate the irrigations and underwent subsequent colostomy formation for intractable soiling. In our experience, Peristeen® transanal colonic irrigation is an effective method of managing patients with focal soiling in childhood. Majority (83%) of children achieve social fecal continence or a significant improvement with occasional soiling. This was accompanied by high parental satisfaction. Peristeen® transanal colonic irrigation is a valid alternative to invasive surgical procedures and should be considered the first line of treatment for bowel management in children with soiling where simple pharmacological maneuvers failed to be effective. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Environmental impact of irrigation in La Violada District (Spain): II. Nitrogen fertilization and nitrate export patterns in drainage water.

    PubMed

    Isidoro, D; Quílez, D; Aragüés, R

    2006-01-01

    Fertilizer leaching affects farm profitability and contributes to nonpoint-source pollution of receiving waters. This work aimed to establish nitrate nitrogen export from La Violada Gully in relation to nitrogen fertilization practices in its basin (La Violada Gully watershed, VGW, 19,637 ha) and especially in La Violada Irrigation District (VID, 5282 ha). Nitrogen (N) fertilization in VID (and VGW) was determined through interviews with local farmers for the hydrologic years 1995 and 1996 and NO3-N load in the gully was monitored from 1995 to 1998. The N fertilizer applied in VGW was 2175 Mg in 1995 and 2795 Mg in 1996. About 43% was applied in VID (945 Mg in 1995 and 1161 Mg in 1996). The most fertilized crop was corn: 398 kg N ha-1 (665 Mg) in 1995 and 453 kg N ha-1 (911 Mg) in 1996. Nitrogen fertilization was higher than N uptake for irrigated crops, especially for corn and rice. Nitrate N load in La Violada Gully averaged 427.4 Mg yr-1. Seventy-five percent of the exports took place during the irrigation season (321.8 Mg). During the non-irrigation season maximum NO3-N loads (3.1 Mg NO3-N d-1) were found after heavy rains following the N side-dressing of wheat in the rain-fed area of VGW (February). During the irrigation season NO3-N load was determined by outflow from the district (caused by irrigation) and to a lesser extent by changes in NO3 concentration (caused by fertilization), showing peaks in April (pre-sowing corn N fertilization and first irrigations) and June to August (highest irrigation months and corn side-dress N applications, maximum 6.3 Mg NO3-N d-1 in July). Adjusting N fertilization to crops' needs, improving irrigation efficiencies, and better scheduling N fertilization and irrigation in corn could reduce N export from VID.

  5. Opportunities for Automated Demand Response in California Agricultural Irrigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, Daniel; Aghajanzadeh, Arian; McKane, Aimee

    Pumping water for agricultural irrigation represents a significant share of California’s annual electricity use and peak demand. It also represents a large source of potential flexibility, as farms possess a form of storage in their wetted soil. By carefully modifying their irrigation schedules, growers can participate in demand response without adverse effects on their crops. This report describes the potential for participation in demand response and automated demand response by agricultural irrigators in California, as well as barriers to widespread participation. The report first describes the magnitude, timing, location, purpose, and manner of energy use in California. Typical on-­farm controlsmore » are discussed, as well as common impediments to participation in demand response and automated demand response programs. Case studies of demand response programs in California and across the country are reviewed, and their results along with overall California demand estimates are used to estimate statewide demand response potential. Finally, recommendations are made for future research that can enhance the understanding of demand response potential in this industry.« less

  6. A Comparison of One-Dimensional Hydrologic Models Using Soil Moisture Observations under Urban Irrigation in a Desert Climate

    NASA Astrophysics Data System (ADS)

    Volo, T. J.; Vivoni, E. R.; Martin, C. A.; Wang, Z.; Ruddell, B.

    2012-12-01

    Through the past several decades, rapid population growth in the arid American Southwest has dramatically changed patterns of plant-available water through municipal and residential irrigation systems that provide supplemental water to designed and managed urban landscape vegetation. Urban irrigation, including diversion of rainwater and addition of imported water, has thereby enabled the transformation of areas once covered by bare soil and low water-use, native desert plant species to large tracts of exotic, high water-use turf grass and shade trees. Despite the large percentage of residential water appropriated to irrigation purposes, models of urban hydrology often fail to include the impact that this anthropogenic input has on water, energy, and biomass conditions. This study utilizes two one-dimensional soil moisture models to examine the importance of representing different processes in a quantitative urban ecohydrology model under irrigation scenarios. Such processes include sub-daily energy fluxes, vertical redistribution of soil moisture, saturation- and infiltration-excess runoff mechanisms, seasonally variable irrigation scheduling, and soil moisture control on evapotranspiration rates. The analysis is informed by soil moisture observations from an experimental sensor network in the Phoenix, Arizona metropolitan area. The network includes data from several different landscape and irrigation treatments representative of pre- and post-development conditions in the region. By interpreting soil moisture levels in terms of plant water stress, this study analyzes the effectiveness of urban irrigation practices in arid climates. Furthermore, by identifying the necessary hydrologic processes to represent in an urban ecohydrology model, our results inform future work in adapting a distributed hydrologic model to desert urban settings where irrigation plays a significant role in minimizing plant water stress. An appropriate model of water and energy balances, calibrated using local meteorological forcing, can facilitate discussions with water managers and homeowners regarding optimal irrigation frequency, volume, duration, and seasonality for individual landscapes, while also aiding in water-efficient landscape design for growing cities in desert regions.

  7. Sustainability of irrigated crops under future climate: the interplay of irrigation strategies and cultivar responses

    NASA Astrophysics Data System (ADS)

    De Lorenzi, F.; Bonfante, A.; Alfieri, S.; Patanè, C.; Basile, A.; Di Tommasi, P.; Monaco, E.; Menenti, M.

    2012-04-01

    Climate evolution will cause significant changes in the quality and availability of water resources, affecting many sectors including food production, where available water resources for irrigation play a crucial role. Strategies focused on managing and conserving water are one way to deal with the impact; moreover concurring adaptation measurements will be needed to cope with the foreseen decline of water resource. This work deals with i) the impacts of climate change on water requirements of an horticultural crop, determined in an irrigated district in Southern Italy, ii) the possible irrigation scheduling options and their sustainability in the future, iii) the adaptation measurements that can be undertaken to protect production, relying on intra-specific biodiversity of agricultural crops. Two climate scenarios were considered: present climate (1961-90) and future climate (2021-2050), the former from climatic statistics, and the latter from statistical downscaling of general circulation models (AOGCM). Climatic data set consists of daily time series of maximum and minimum temperature, and rainfall on a grid with spatial resolution of 35 km. The analysis of climate scenarios showed that significant increases in summer maximum daily temperature could be expected in 2021-2050 period. Soil water regime was determined by means of a mechanistic model (SWAP) of water flow in the soil-plant-atmosphere system. Twenty? soil units were identified in the district (in Sele Plain, Campania Region) and simulations were performed accounting for hydro-pedological properties of different soil units. Parameters of a generic tomato crop, in a rotation typical of the area, were used in simulations. Soil water balance was simulated in the present and future climate, both with optimal water availability and under constrains that irrigation schemes will pose. Indicators of soil water availability were calculated, in terms of soil water or evapotranspiration deficit. For several tomato cultivars, quantitative yield response functions to water availability were determined through the re-analysis of experimental data, derived from scientific literature. Variety-specific threshold values of yield reduction in dependence of soil water and evapotranspiration deficit were determined. The spatial pattern of soil water availability indicators was calculated., for present and future climate scenarios and for different irrigation scheduling options. Cultivars' threshold values were matched with indicators' values in all soil units. The future adaptability of the crop in the area is thus evaluated, and adaptation options that exploit the intra-specific biodiversity of the crop are indicated. The work was carried out within the Italian national project AGROSCENARI funded by the Ministry for Agricultural, Food and Forest Policies (MIPAAF, D.M. 8608/7303/2008) Keywords: climate change, tomato, deficit irrigation, biodiversity

  8. Stomatal closure of Pelargonium × hortorum in response to soil water deficit is associated with decreased leaf water potential only under rapid soil drying.

    PubMed

    Boyle, Richard K A; McAinsh, Martin; Dodd, Ian C

    2016-01-01

    Soil water deficits applied at different rates and for different durations can decrease both stomatal conductance (gs ) and leaf water potential (Ψleaf ). Understanding the physiological mechanisms regulating these responses is important in sustainable irrigation scheduling. Glasshouse-grown, containerized Pelargonium × hortorum BullsEye plants were irrigated either daily at various fractions of plant evapotranspiration (100, 75 and 50% ET) for 20 days or irrigation was withheld for 4 days. Xylem sap was collected and gs and Ψleaf were measured on days 15 and 20, and on days 16-19 for the respective treatments. Xylem sap pH and NO3 (-) and Ca(2+) concentrations did not differ between irrigation treatments. Xylem abscisic acid (ABA) concentrations ([ABA]xyl ) increased within 24 h of irrigation being withheld whilst gs and Ψleaf decreased. Supplying irrigation at a fraction of daily ET produced a similar relationship between [ABA]xyl and gs , but did not change Ψleaf . Treatment differences occurred independently of whether Ψleaf was measured in whole leaves with a pressure chamber, or in the lamina with a thermocouple psychrometer. Plants that were irrigated daily showed lower [ABA]xyl than plants from which irrigation was withheld, even at comparable soil moisture content. This implies that regular re-watering attenuates ABA signaling due to maintenance of soil moisture in the upper soil levels. Crucially, detached leaves supplied with synthetic ABA showed a similar relationship between [ABA]xyl and gs as intact plants, suggesting that stomatal closure of P. hortorum in response to soil water deficit is primarily an ABA-induced response, independent of changes in Ψleaf . © 2015 Scandinavian Plant Physiology Society.

  9. In-situ field capacity and soil water retention measurements in two contrasting soil textures

    USDA-ARS?s Scientific Manuscript database

    Knowledge of the in-situ field capacity and soil-water retention curve for soils is important for effective irrigation management and scheduling. The primary objective of this study was to estimate in-situ field capacity and soil water retention curves in the field using continually monitoring soil ...

  10. In-situ Field Capacity and Soil Water Retention Measurements in Two Contrasting Soil Textures

    USDA-ARS?s Scientific Manuscript database

    Knowledge of the in-situ field capacity and soil-water retention curve for soils is important for effective irrigation management and scheduling. The primary objective of this study was to estimate in-situ field capacity and soil water retention curves in the field using continually monitoring soil ...

  11. COSMOS soil water sensor compared with EM sensor network & weighing lysimeter

    USDA-ARS?s Scientific Manuscript database

    Soil water sensing methods are widely used to characterize the root zone and below, but only a few are capable of delivering water content data with accuracy for the entire soil profile such that evapotranspiration (ET) can be determined by soil water balance and irrigations can be scheduled with mi...

  12. Using eddy covariance and flux partitioning to assess basal, soil, and stress coefficients for crop evapotranspiration models

    USDA-ARS?s Scientific Manuscript database

    Current approaches to scheduling crop irrigation using reference evapotranspiration (ET0) recommend using a dual-coefficient approach using basal (Kcb) and soil (Ke) coefficients along with a stress coefficient (Ks) to model crop evapotranspiration (ETc), [e.g. ETc=(Ks*Kcb+Ke)*ET0]. However, indepe...

  13. Tensiometer-Based Irrigation Management of Subirrigated Soilless Tomato: Effects of Substrate Matric Potential Control on Crop Performance

    PubMed Central

    Montesano, Francesco F.; Serio, Francesco; Mininni, Carlo; Signore, Angelo; Parente, Angelo; Santamaria, Pietro

    2015-01-01

    Automatic irrigation scheduling based on real-time measurement of soilless substrate water status has been recognized as a promising approach for efficient greenhouse irrigation management. Identification of proper irrigation set points is crucial for optimal crop performance, both in terms of yield and quality, and optimal use of water resources. The objective of the present study was to determine the effects of irrigation management based on matric potential control on growth, plant–water relations, yield, fruit quality traits, and water-use efficiency of subirrigated (through bench system) soilless tomato. Tensiometers were used for automatic irrigation control. Two cultivars, “Kabiria” (cocktail type) and “Diana” (intermediate type), and substrate water potential set-points (−30 and −60 hPa, for “Diana,” and −30, −60, and −90 hPa for “Kabiria”), were compared. Compared with −30 hPa, water stress (corresponding to a −60 hPa irrigation set-point) reduced water consumption (14%), leaf area (18%), specific leaf area (19%), total yield (10%), and mean fruit weight (13%), irrespective of the cultivars. At −60 hPa, leaf-water status of plants, irrespective of the cultivars, showed an osmotic adjustment corresponding to a 9% average osmotic potential decrease. Total yield, mean fruit weight, plant water, and osmotic potential decreased linearly when −30, −60, and −90 hPa irrigation set-points were used in “Kabiria.” Unmarketable yield in “Diana” increased when water stress was imposed (187 vs. 349 g·plant−1, respectively, at −30 and −60 hPa), whereas the opposite effect was observed in “Kabiria,” where marketable yield loss decreased linearly [by 1.05 g·plant−1 per unit of substrate water potential (in the tested range from −30 to −90 hPa)]. In the second cluster, total soluble solids of the fruit and dry matter increased irrespective of the cultivars. In the seventh cluster, in “Diana,” only a slight increase was observed from −30 vs. −60 hPa (3.3 and 1.3%, respectively, for TSS and dry matter), whereas in “Kabiria,” the increase was more pronounced (8.7 and 12.0%, respectively, for TSS and dry matter), and further reduction in matric potential from −60 to −90 hPa confirmed the linear increase for both parameters. Both glucose and fructose concentrations increased linearly in “Kabiria” fruits on decreasing the substrate matric potential, whereas in “Diana,” there was no increase. It is feasible to act on matric potential irrigation set-points to control plant response in terms of fruit quality parameters. Precise control of substrate water status may offer the possibility to steer crop response by enhancing different crop-performance components, namely yield and fruit quality, in subirrigated tomato. Small-sized fruit varieties benefit more from controlled water stress in terms of reduced unmarketable yield loss and fruit quality improvements. PMID:26779189

  14. Impact of climate change on irrigation management for olive orchards at southern Spain

    NASA Astrophysics Data System (ADS)

    Lorite, Ignacio; Gabaldón-Leal, Clara; Santos, Cristina; Belaj, Angjelina; de la Rosa, Raul; Leon, Lorenzo; Ruiz-Ramos, Margarita

    2017-04-01

    The irrigation management for olive orchards under future weather conditions requires the development of advanced tools for considering specific physiological and phenological components affected by the foreseen changes in climate and atmospheric [CO2]. In this study a new simulation model named AdaptaOlive has been considered to develop controlled deficit irrigation and full irrigation scheduling for the traditional olive orchards located in Andalusia region (southern Spain) under the projected climate generated by an ensemble of 11 climate models from the ENSEMBLES European project corresponding to the SRES A1B scenario. Irrigation requirements, irrigation water productivity (IWP) and net margin (NM) were evaluated for three periods (baseline, near future and far future) and three irrigation strategies (rainfed, RF, controlled deficit irrigation, CDI, and full irrigation, FI). For irrigation requirements, a very limited average increase for far future compared with baseline period was found (2.6 and 1.3%, for CDI and FI, respectively). Equally, when IWP was analyzed, significant increases were identified for both irrigation strategies (77.4 and 72.2%, for CDI and FI, respectively) due to the high simulated increase in yield. Finally, when net margin was analyzed, the irrigation water cost had a key significance. For low water costs FI provided higher net margin values than for CDI. However, for high water costs (expected in the future due to the foreseen reduction in rainfall and the increase of the competence for the available water resources), net margin is reduced significantly, generating a very elevated number of years with negative net margin. All the described results are affected by a high level of uncertainty as the projections from the ensemble of 11 climate models show large spread. Thus, for a representative location within Andalusia region as Baeza, a reduction of irrigation requirements under full irrigation strategy was found for the ensemble mean (equal to 0.5%). However, when the individual projections from the 11 climate models were considered the variation of irrigation requirements for far future compared with baseline period ranged from increases of 8.5% to reductions of 10.7%. This fact demonstrates the necessity to consider ensembles of climate models for identifying averaged impacts and the range of variability of these impacts, quantifying the uncertainty in the estimates related with water management in the future. The study concludes that the promotion of controlled deficit irrigation strategies is an excellent adaptation strategy. However, this strategy must be supported with the enhance of farmers' training by the implementation of local or regional irrigation advisory services.

  15. Effect of long-term irrigation patterns on phosphorus forms and distribution in the brown soil zone.

    PubMed

    Liu, Chang; Dang, Xiuli; Mayes, Melanie A; Chen, Leilei; Zhang, Yulong

    2017-01-01

    Continuous application of P fertilizers under different irrigation patterns can change soil phosphorus (P) chemical behavior and increase soil P levels that are of environmental concern. To assess the effect of long-term different irrigation patterns on soil P fractions and availability, this study examined sequential changes in soil organic P and inorganic P from furrow irrigation (FI), surface drip irrigation (SUR), and subsurface drip irrigation (SDI) in the brown soil zone (0-60 cm) during 1998 to 2011. Analyses of soil P behavior showed that the levels of total P are frequently high on top soil layers. The total P (TP) contents of the entire soil profiles under three irrigation treatments were 830.2-3180.1 mg/kg. The contents of available P (AP) were 72.6-319.3 mg P/kg soil through soil profiles. The greatest TP and AP contents were obtained within the upper soil layers in FI. Results of Hedley's P fractionation indicate that HCl-P is a dominant form and the proportion to TP ranges from 29% to 43% in all three methods. The contents of various fractions of P were positively correlated with the levels of total carbon (TC), total inorganic carbon (TIC), and calcium (Ca), whereas the P fractions had negative correlation with pH in all soil samples. Regression models proved that NaHCO3-Po was an important factor in determining the amount of AP in FI. H2O-Po, NaHCO3-Po, and NaOH-Pi were related to available P values in SUR. NaHCO3-Po and NaOH-Po played important roles in SDI. The tomato yield under SUR was higher than SDI and FI. The difference of P availability was also controlled by the physicochemical soil properties under different irrigation schedule. SUR was a reasonable irrigation pattern to improve the utilization efficiency of water and fertilizer.

  16. Fertigation - Injecting soluble fertilizers into the irrigation system: Part 2

    Treesearch

    Thomas D. Landis; Jeremy R. Pinto; Anthony S. Davis

    2010-01-01

    The first part of this article in the Summer 2009 issue covered basic mineral nutrition, the 3 components of a fertigation system, and the chemical calculations forformulating your own custom fertigation solutions. In this second and final part, we'll discuss types of fertilizer injectors, fertigation scheduling, and how to check injector function and determine...

  17. Roles of the combined irrigation, drainage, and storage of the canal network in improving water reuse in the irrigation districts along the lower Yellow River, China

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Luo, Yi; He, Chansheng; Lai, Jianbin; Li, Xiubin

    2010-09-01

    SummaryThe commonly used irrigation system in the irrigation districts (with a combined irrigation area of 3.334 × 10 6 ha) along the lower Yellow River of China is canal network. It delivers water from the Yellow River to the fields, collects surface runoff and drainage from cropland, and stores both of them for subsequent irrigation uses. This paper developed a new combined irrigation, drainage, and storage (CIDS) module for the SWAT2000 model, simulated the multiple roles of the CIDS canal system, and estimated its performance in improving water reuse in the irrigation districts under different irrigation and water diversion scenarios. The simulation results show that the annual evapotranspiration (ET) of the double-cropping winter wheat and summer maize was the highest under the full irrigation scenario (automatic irrigation), and the lowest under the no irrigation scenario. It varied between these two values when different irrigation schedules were adopted. Precipitation could only meet the water requirement of the double-cropping system by 62-96% on an annual basis; that of the winter wheat by 32-36%, summer maize by 92-123%, and cotton by 87-98% on a seasonal basis. Hence, effective irrigation management for winter wheat is critical to ensure high wheat yield in the study area. Runoff generation was closely related to precipitation and influenced by irrigation. The highest and lowest annual runoff accounted for 19% and 11% of the annual precipitation under the full irrigation and no irrigation scenarios, respectively. Nearly 70% of the annual runoff occurred during months of July and August due to the concentrated precipitation in these 2 months. The CIDS canals play an important role in delivering the diversion water from the Yellow River, intercepting the surface runoff and drainage from cropland (inflow of the CIDS canal) and recharging the shallow aquifer for later use. Roughly 14-26% of the simulated total flow in the CIDS canal system recharged shallow aquifer through canal seepage. The water flowing out of the canal system accounted for approximately 32% of the water in the CIDS canals. The storage capacity of the CIDS canals is negatively correlated to the precipitation. In years with abundant precipitation, the volume of the surface runoff and drainage from the cropland may surpass the storage capacities of the CIDS canals, while in years with less precipitation, partial storage capacity of the CIDS canal may be occupied by the diversion water from the Yellow River. Proper maintenance of the storage capacity of the CIDS has the potential in improving the efficiency of reusing the surface runoff and field drainage for irrigation practices to mitigate the increasing water shortage along the lower Yellow River.

  18. Smart Irrigation From Soil Moisture Forecast Using Satellite And Hydro -Meteorological Modelling

    NASA Astrophysics Data System (ADS)

    Corbari, Chiara; Mancini, Marco; Ravazzani, Giovanni; Ceppi, Alessandro; Salerno, Raffaele; Sobrino, Josè

    2017-04-01

    Increased water demand and climate change impacts have recently enhanced the need to improve water resources management, even in those areas which traditionally have an abundant supply of water. The highest consumption of water is devoted to irrigation for agricultural production, and so it is in this area that efforts have to be focused to study possible interventions. The SIM project funded by EU in the framework of the WaterWorks2014 - Water Joint Programming Initiative aims at developing an operational tool for real-time forecast of crops irrigation water requirements to support parsimonious water management and to optimize irrigation scheduling providing real-time and forecasted soil moisture behavior at high spatial and temporal resolutions with forecast horizons from few up to thirty days. This study discusses advances in coupling satellite driven soil water balance model and meteorological forecast as support for precision irrigation use comparing different case studies in Italy, in the Netherlands, in China and Spain, characterized by different climatic conditions, water availability, crop types and irrigation techniques and water distribution rules. Herein, the applications in two operative farms in vegetables production in the South of Italy where semi-arid climatic conditions holds, two maize fields in Northern Italy in a more water reach environment with flood irrigation will be presented. This system combines state of the art mathematical models and new technologies for environmental monitoring, merging ground observed data with Earth observations. Discussion on the methodology approach is presented, comparing for a reanalysis periods the forecast system outputs with observed soil moisture and crop water needs proving the reliability of the forecasting system and its benefits. The real-time visualization of the implemented system is also presented through web-dashboards.

  19. Evaluating the impacts of farmers' behaviors on a hypothetical agricultural water market based on double auction

    NASA Astrophysics Data System (ADS)

    Du, Erhu; Cai, Ximing; Brozović, Nicholas; Minsker, Barbara

    2017-05-01

    Agricultural water markets are considered effective instruments to mitigate the impacts of water scarcity and to increase crop production. However, previous studies have limited understanding of how farmers' behaviors affect the performance of water markets. This study develops an agent-based model to explicitly incorporate farmers' behaviors, namely irrigation behavior (represented by farmers' sensitivity to soil water deficit λ) and bidding behavior (represented by farmers' rent seeking μ and learning rate β), in a hypothetical water market based on a double auction. The model is applied to the Guadalupe River Basin in Texas to simulate a hypothetical agricultural water market under various hydrological conditions. It is found that the joint impacts of the behavioral parameters on the water market are strong and complex. In particular, among the three behavioral parameters, λ affects the water market potential and its impacts on the performance of the water market are significant under most scenarios. The impacts of μ or β on the performance of the water market depend on the other two parameters. The water market could significantly increase crop production only when the following conditions are satisfied: (1) λ is small and (2) μ is small and/or β is large. The first condition requires efficient irrigation scheduling, and the second requires well-developed water market institutions that provide incentives to bid true valuation of water permits.

  20. Assessment of irrigation performance: contribution to improve water management in a small catchment in the Brazilian savannas

    NASA Astrophysics Data System (ADS)

    Rodrigues, Lineu; Marioti, Juliana; Steenhuis, Tammo; Wallender, Wesley

    2010-05-01

    Irrigated agriculture is the major consumer of surface water in Brazil using over 70% of the total supply. Due to the growing competition for water among different sectors of the economy, sustainable water use can only be achieved by decreasing the portion of water used by the irrigated agriculture. Thus, in order to maintain yield, farmers need to irrigate more efficiently. There is little known on irrigation efficiency in Brazil. Therefore a study was carried out in the Buriti Vermelho basin to assess the irrigation performance of existing system. The experimental basin has a drainage area of 940 hectares and is located in the eastern part of the Federal District, in the Brazilian savanna region. Agriculture is the main activity. There is a dominance of red latosols. Several types of land use and crop cover are encountered in the basin. Conflicts among farmers for water are increasing. As water, in quality and quantity, is crucial to maintain the livelihood of the population in the basin, concern about risk of water lack due to climatic and land use change is in place. Once irrigation is the main water user in the basin, to increase water availability and reduce conflicts a water resource management plan has to be established. For this purpose, irrigation system performance has to be understood. The objective of this work was to assess the performance and the management of irrigation (small and big) that has been carried out by farmers in the Buriti Vermelho experimental watershed. A survey undertaken in 2007 was used to identify the irrigation systems in the basin. It was verified that irrigation is practiced by both small (area up to 6 hectare) and big farmers. Small farmers usually crop limes and vegetables and use micro-irrigation, drip, sprinkler, guns or furrow to irrigate them. Big farmers plant annual crops and use center pivot as irrigation system. In this first assessment 13 irrigation systems were evaluated: five conventional sprinklers, four drip systems, one microirrigation system and three center pivots schemes. Field evaluations used the method advocated by Keller and Bliesner and conducted during farmer scheduled irrigation. Soil samples were taken before irrigations to investigate adequacy of water applied. Since the irrigation water management and the uniformity of water distribution are the two major factors used to define the quality of irrigation, the following criteria for uniformity was used: i) Localized irrigations (distribution uniformity - UD) - excellent (90% < UD), acceptable (70% < UD < 90%), not acceptable (UD < 70); ii) Center pivots and conventional sprinkler irrigations (Christiansen coefficient - UC) - excellent (85% < UC), acceptable (85% < UC < 75%), not acceptable (UC < 75%). The water stored in the root zone after an irrigation event was compared with the real necessity. The results showed that: i) Localized irrigations - Three systems had UD < 70% and all systems presented deficit or excess of irrigation; ii) Conventional sprinkler system - Three system had UD smaller than 75% and all systems applied less water than the minimum necessary to keep an amount of water in the soil that don't cause plant stress; iii) Center pivot - In two system were observed UC < 75%. In one of the center pivots the depth applied was about 42% higher than the required and in the other two it was 39% and 47% lower. The study demonstrated the importance of adopting irrigation management criteria, in agricultural basins, once irrigation water becomes limiting and reduces basin water productivity.

  1. Soil moisture and evapotranspiration predictions using Skylab data

    NASA Technical Reports Server (NTRS)

    Myers, V. I. (Principal Investigator); Moore, D. G.; Horton, M. L.; Russell, M. J.

    1975-01-01

    The author has identified the following significant results. Multispectral reflectance and emittance data from the Skylab workshop were evaluated for prediction of evapotranspiration and soil moisture for an irrigated region of southern Texas. Wavelengths greater than 2.1 microns were required to spectrally distinguish between wet and dry fallow surfaces. Thermal data provided a better estimate of soil moisture than did data from the reflective bands. Thermal data were dependent on soil moisture but not on the type of agricultural land use. The emittance map, when used in conjunction with existing models, did provide an estimate of evapotranspiration rates. Surveys of areas of high soil moisture can be accomplished with space altitude thermal data. Thermal data will provide a reliable input into irrigation scheduling.

  2. Efficient operation of a multi-purpose reservoir in Chile: Tradeoffs between irrigation and hydropower production

    NASA Astrophysics Data System (ADS)

    Gonzalez Cabrera, J. M., Sr.; Olivares, M. A.

    2015-12-01

    This study proposes a method to develop efficient operational policies for a reservoir the southern Chile. The main water uses in this system are hydropower and irrigation, with conflicting seasonal demands. The conflict between these two uses is currently managed through a so-called "irrigation agreement" which defines a series of operational conditions on the reservoir by restricting volumes used for power production depending on reservoir storage level. Other than that, the reservoir operation is driven by cost-minimization over the power grid. Recent evidence shows an increasing degree of conflict in this basin, which suggests that the static approach of irrigation agreements, might no longer be appropriate. Moreover, this agreement could be revised in light of decreased water availability. This problem poses a challenge related to the spatial scope of analysis. Thus, irrigation benefits are driven by decisions made within the basin, whereas hydropower benefits depend on the operation of the entire power grid. Exploring the tradeoffs between these two water uses involves modeling both scales. The proposed methodology integrates information from both a grid-wide power operations model and a basin-wide agro-economic model into a decision model for optimal reservoir operation. The first model, a hydrothermal coordination tool, schedules power production by each plant in the grid, and allows capturing technical and economic aspects to the operation of hydropower reservoirs. The agro-economic model incorporates economic features of irrigation in the basin, and allows obtaining irrigation water demand functions. Finally, the results of both models are integrated into a single model for optimal reservoir operation considering the tradeoffs between the two uses. The result of the joint operation of water resources, show a flexible coordination of uses, revealing the opportunity cost of irrigation, which it gives the possibility of negotiating transfers of water to hydropower in dry years, with the aim of obtaining greater benefits from water use in the basin

  3. Sunflower N2O emissions under two different water regimes in Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Monaco, Eugenia; Vitale, Luca; Di Tommasi, Paul; Tedeschi, Anna; Tosca, Maurizio; Magliulo, Vincenzo

    2017-04-01

    Human activities are altering the atmospheric greenhouse gases (GHGs) concentration with negative effects on global climate and environment. Cropland represents about 12 % of earth's surface and largely contribute to GHGs production, in particular N2O, due to a massive use of nitrogen fertilization. In particular, agriculture and intensive livestock farming may significantly affect biogeochemical cycles included nitrogen cycle. However, it is often difficult to predict the total amount of fluxes caused by agricultural management, which impact on both the whole agro-ecosystem. The objective of the experiment was to evaluate soil N2O fluxes under two different irrigation managements. The experimental trial was conducted in a farm in surrounding of Naples, southern Italy. The crop monitored was sunflower for biomass uses. Two irrigation levels were performed: returning 100% (optimal irrigation) and 50% (deficit irrigation) of soil field capacity for the layer 0.0-0.50 m. 314 Kg ha-1 of urea fertilizer was supplied in two times: at sowing and 40 days later. Before sowing, six autochambers were inserted 3 cm into the soil and connected to a gas chromatograph and a scanning apparatus. A program for chambers' management was implemented to monitor soil N2O fluxes measured different times of the day. Biometric parameters such as LAI, root depth, above- and below-ground biomass were monitored during the experiment. Results shows that soil N2O fluxes were affected by irrigation regime; in particular, the deficit irrigation determined lower N2O fluxes compared to optimal irrigation but the total biomass production and yield were comparable between the two water regimes. So low input farm management could be take in account to reduce the total N2O emission and maintain at the same time high productivity level in terms of biomass and yield. Keywords: N2O fluxes, Irrigation schedule, sunflower

  4. Developing Soil Moisture Profiles Utilizing Remotely Sensed MW and TIR Based SM Estimates Through Principle of Maximum Entropy

    NASA Astrophysics Data System (ADS)

    Mishra, V.; Cruise, J. F.; Mecikalski, J. R.

    2015-12-01

    Developing accurate vertical soil moisture profiles with minimum input requirements is important to agricultural as well as land surface modeling. Earlier studies show that the principle of maximum entropy (POME) can be utilized to develop vertical soil moisture profiles with accuracy (MAE of about 1% for a monotonically dry profile; nearly 2% for monotonically wet profiles and 3.8% for mixed profiles) with minimum constraints (surface, mean and bottom soil moisture contents). In this study, the constraints for the vertical soil moisture profiles were obtained from remotely sensed data. Low resolution (25 km) MW soil moisture estimates (AMSR-E) were downscaled to 4 km using a soil evaporation efficiency index based disaggregation approach. The downscaled MW soil moisture estimates served as a surface boundary condition, while 4 km resolution TIR based Atmospheric Land Exchange Inverse (ALEXI) estimates provided the required mean root-zone soil moisture content. Bottom soil moisture content is assumed to be a soil dependent constant. Mulit-year (2002-2011) gridded profiles were developed for the southeastern United States using the POME method. The soil moisture profiles were compared to those generated in land surface models (Land Information System (LIS) and an agricultural model DSSAT) along with available NRCS SCAN sites in the study region. The end product, spatial soil moisture profiles, can be assimilated into agricultural and hydrologic models in lieu of precipitation for data scarce regions.Developing accurate vertical soil moisture profiles with minimum input requirements is important to agricultural as well as land surface modeling. Previous studies have shown that the principle of maximum entropy (POME) can be utilized with minimal constraints to develop vertical soil moisture profiles with accuracy (MAE = 1% for monotonically dry profiles; MAE = 2% for monotonically wet profiles and MAE = 3.8% for mixed profiles) when compared to laboratory and field data. In this study, vertical soil moisture profiles were developed using the POME model to evaluate an irrigation schedule over a maze field in north central Alabama (USA). The model was validated using both field data and a physically based mathematical model. The results demonstrate that a simple two-constraint entropy model under the assumption of a uniform initial soil moisture distribution can simulate most soil moisture profiles within the field area for 6 different soil types. The results of the irrigation simulation demonstrated that the POME model produced a very efficient irrigation strategy with loss of about 1.9% of the total applied irrigation water. However, areas of fine-textured soil (i.e. silty clay) resulted in plant stress of nearly 30% of the available moisture content due to insufficient water supply on the last day of the drying phase of the irrigation cycle. Overall, the POME approach showed promise as a general strategy to guide irrigation in humid environments, with minimum input requirements.

  5. Detection of crop water status in mature olive orchards using vegetation spectral measurements

    NASA Astrophysics Data System (ADS)

    Rallo, Giovanni; Ciraolo, Giuseppe; Farina, Giuseppe; Minacapilli, Mario; Provenzano, Giuseppe

    2013-04-01

    Leaf/stem water potentials are generally considered the most accurate indicators of crop water status (CWS) and they are quite often used for irrigation scheduling, even if costly and time-consuming. For this reason, in the last decade vegetation spectral measurements have been proposed, not only for environmental monitoring, but also in precision agriculture, to evaluate crop parameters and consequently for irrigation scheduling. Objective of the study was to assess the potential of hyperspectral reflectance (450-2400 nm) data to predict the crop water status (CWS) of a Mediterranean olive orchard. Different approaches were tested and particularly, (i) several standard broad- and narrow-band vegetation indices (VIs), (ii) specific VIs computed on the basis of some key wavelengths, predetermined by simple correlations and finally, (iii) using partial least squares (PLS) regression technique. To this aim, an intensive experimental campaign was carried out in 2010 and a total of 201 reflectance spectra, at leaf and canopy level, were collected with an ASD FieldSpec Pro (Analytical Spectral Devices, Inc.) handheld field spectroradiometer. CWS was contemporarily determined by measuring leaf and stem water potentials with the Scholander chamber. The results indicated that the considered standard vegetation indices were weakly correlated with CWS. On the other side, the prediction of CWS can be improved using VIs pointed to key-specific wavelengths, predetermined with a correlation analysis. The best prediction accuracy, however, can be achieved with models based on PLS regressions. The results confirmed the dependence of leaf/canopy optical features from CWS so that, for the examined crop, the proposed methodology can be considered a promising tool that could also be extended for operational applications using multispectral aerial sensors.

  6. The simulation of cropping pattern to improve the performance of irrigation network in Cau irrigation area

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, Retno; Rintis Hadiani, RR; Sobriyah

    2017-01-01

    Cau irrigation area located in Madiun district, East Java Province, irrigates 1.232 Ha of land which covers Cau primary channel irrigation network, Wungu Secondary channel irrigation network, and Grape secondary channel irrigation network. The problems in Cau irrigation area are limited availability of water especially during the dry season (planting season II and III) and non-compliance to cropping patterns. The evaluation of irrigation system performance of Cau irrigation area needs to be done in order to know how far the irrigation system performance is, especially based on planting productivity aspect. The improvement of irrigation network performance through cropping pattern optimization is based on the increase of water necessity fulfillment (k factor), the realization of planting area and rice productivity. The research method of irrigation system performance is by analyzing the secondary data based on the Regulation of Ministry of Public Work and State Minister for Public Housing Number: 12/PRT/M/2015. The analysis of water necessity fulfillment (k factor) uses Public Work Plan Criteria Method. The performance level of planting productivity aspect in existing condition is 87.10%, alternative 1 is 93.90% dan alternative 2 is 96.90%. It means that the performance of the irrigation network from productivity aspect increases 6.80% for alternative 1 and 9.80% for alternative 2.

  7. Assessing the Crop-Water Status in Almond (Prunus dulcis Mill.) Trees via Thermal Imaging Camera Connected to Smartphone.

    PubMed

    García-Tejero, Iván Francisco; Ortega-Arévalo, Carlos José; Iglesias-Contreras, Manuel; Moreno, José Manuel; Souza, Luciene; Tavira, Simón Cuadros; Durán-Zuazo, Víctor Hugo

    2018-03-31

    Different tools are being implemented in order to improve the water management in agricultural irrigated areas of semiarid environments. Thermography has been progressively introduced as a promising technique for irrigation scheduling and the assessing of crop-water status, especially when deficit irrigation is being implemented. However, an important limitation is related to the cost of the actual cameras, this being a severe limitation to its practical usage by farmers and technicians. This work evaluates the potential and the robustness of a thermal imaging camera that is connected to smartphone (Flir One) recently developed by Flir Systems Inc. as a first step to assess the crop water status. The trial was developed in mature almond ( Prunus dulcis Mill.) trees that are subjected to different irrigation treatments. Thermal information obtained by the Flir One camera was deal with the thermal information obtained with a conventional Thermal Camera (Flir SC660) with a high resolution, and subsequently, confronted with other related plant physiological parameters (leaf water potential, Ψ leaf , and stomatal conductance, g s ). Thermal imaging camera connected to smartphone provided useful information in estimating the crop-water status in almond trees, being a potential promising tool to accelerate the monitoring process and thereby enhance water-stress management of almond orchards.

  8. Assessing the Crop-Water Status in Almond (Prunus dulcis Mill.) Trees via Thermal Imaging Camera Connected to Smartphone

    PubMed Central

    García-Tejero, Iván Francisco; Ortega-Arévalo, Carlos José; Iglesias-Contreras, Manuel; Moreno, José Manuel; Souza, Luciene; Tavira, Simón Cuadros; Durán-Zuazo, Víctor Hugo

    2018-01-01

    Different tools are being implemented in order to improve the water management in agricultural irrigated areas of semiarid environments. Thermography has been progressively introduced as a promising technique for irrigation scheduling and the assessing of crop-water status, especially when deficit irrigation is being implemented. However, an important limitation is related to the cost of the actual cameras, this being a severe limitation to its practical usage by farmers and technicians. This work evaluates the potential and the robustness of a thermal imaging camera that is connected to smartphone (Flir One) recently developed by Flir Systems Inc. as a first step to assess the crop water status. The trial was developed in mature almond (Prunus dulcis Mill.) trees that are subjected to different irrigation treatments. Thermal information obtained by the Flir One camera was deal with the thermal information obtained with a conventional Thermal Camera (Flir SC660) with a high resolution, and subsequently, confronted with other related plant physiological parameters (leaf water potential, Ψleaf, and stomatal conductance, gs). Thermal imaging camera connected to smartphone provided useful information in estimating the crop-water status in almond trees, being a potential promising tool to accelerate the monitoring process and thereby enhance water-stress management of almond orchards. PMID:29614740

  9. Mapping the rainfall distribution for irrigation planning in dry season at pineapple plantation, Lampung Province, Indonesia (Study case at Great Giant Pineapple Co. Ltd.)

    NASA Astrophysics Data System (ADS)

    Cahyono, P.; Astuti, N. K.; Purwito; Rahmat, A.

    2018-03-01

    One of the problems caused by climate change is unpredictable of the dry season. Understanding when the dry season will start is very important to planning the irrigation schedule especially on large plantation. Data of rainfall for 30 years in Lampung, especially in Pineapple Plantation show that dry month occurs from June to October. If in two decadals (ten days period) rainfall less than 100 mm then it is predicted that next decadal will be dry season. Great Giant Pineapple Co. Ltd. has 32,000 hectares plantation area and located in three regencies at Lampung Province, Indonesia with varies rainfall between regions within a plantation. Therefore, monitoring the rainfall distribution by using ombrometer installed at 10 representative location points can be used to determine irrigation period at the beginning of dry season. Mapping method using the server program and data source is from 10 monitoring rainfall stations installed at the observed points. Preparation of rainfall distribution mapping is important to know the beginning of the dry season and thus planning the irrigation. The results show that 2nd decadal of April is indicated as the starting time of dry season, which is similar with Indonesian government for climate agency’s result.

  10. High throughput field plant phenotyping facility at University of Nebraska-Lincoln and the first year experience

    NASA Astrophysics Data System (ADS)

    Ge, Y.; Bai, G.; Irmak, S.; Awada, T.; Stoerger, V.; Graef, G.; Scoby, D.; Schnable, J.

    2017-12-01

    University of Nebraska - Lincoln's high throughput field plant phenotyping facility is a cable robot based system built on a 1-ac field. The sensor platform is tethered with eight cables via four poles at the corners of the field for its precise control and positioning. The sensor modules on the platform include a 4-band RGB-NIR camera, a thermal infrared camera, a 3D LiDAR, VNIR spectrometers, and environmental sensors. These sensors are used to collect multifaceted physiological, structural and chemical properties of plants from the field plots. A subsurface drip irrigation system is established in this field which allows a controlled amount of water and fertilizers to be delivered to individual plots. An extensive soil moisture sensor network is also established to monitor soil water status, and serve as a feedback loop for irrigation scheduling. In the first year of operation, the field is planted maize and soybean. Weekly ground truth data were collected from the plots to validate image and sensor data from the phenotyping system. This presentation will provide an overview of this state-of-the-art field plant phenotyping facility, and present preliminary data from the first year operation of the system.

  11. The influence of irrigating solutions on the accuracy of the electronic apex locator facility in the Tri Auto ZX handpiece.

    PubMed

    Erdemir, A; Eldeniz, A U; Ari, H; Belli, S; Esener, T

    2007-05-01

    To determine the influence of various irrigating solutions on the accuracy of the electronic apex locator facility in the Tri Auto ZX handpiece. One hundred and forty teeth with single canals and mature apices, scheduled for extraction for either periodontal or prosthetic reasons in 76 patients were used. Following informed written consent local anaesthesia was administered, access cavities were prepared and pulp tissue removed. The teeth were then randomly divided into seven groups according to the irrigating solutions used. The root canal length measurements were completed using the Tri Auto ZX handpiece with automatic reverse function in the presence of one or other of the following solutions: 0.9% saline, 2.5% NaOCl, 3% H(2)O(2), 0.2% chlorhexidine, 17% EDTA, Ultracaine D-S or in the absence of an irrigating solution (control). Files were immobilized in the access cavity with composite resin. After extraction, the apical regions of the teeth were exposed and the file tips examined under a stereomicroscope. Distances between the file tips and the apical constriction were measured (mm) and analysed using a one-way anova and post hoc Tukey test. Mean distances from the apical constriction to the file tip were longer in the 0.9% saline group (P<0.05). There was no statistically significant difference on file tip position between the other solutions. Tri Auto ZX gave reliable results with all irrigating solutions apart from in the presence of 0.9% saline.

  12. A comparison of numerical and machine-learning modeling of soil water content with limited input data

    NASA Astrophysics Data System (ADS)

    Karandish, Fatemeh; Šimůnek, Jiří

    2016-12-01

    Soil water content (SWC) is a key factor in optimizing the usage of water resources in agriculture since it provides information to make an accurate estimation of crop water demand. Methods for predicting SWC that have simple data requirements are needed to achieve an optimal irrigation schedule, especially for various water-saving irrigation strategies that are required to resolve both food and water security issues under conditions of water shortages. Thus, a two-year field investigation was carried out to provide a dataset to compare the effectiveness of HYDRUS-2D, a physically-based numerical model, with various machine-learning models, including Multiple Linear Regressions (MLR), Adaptive Neuro-Fuzzy Inference Systems (ANFIS), and Support Vector Machines (SVM), for simulating time series of SWC data under water stress conditions. SWC was monitored using TDRs during the maize growing seasons of 2010 and 2011. Eight combinations of six, simple, independent parameters, including pan evaporation and average air temperature as atmospheric parameters, cumulative growth degree days (cGDD) and crop coefficient (Kc) as crop factors, and water deficit (WD) and irrigation depth (In) as crop stress factors, were adopted for the estimation of SWCs in the machine-learning models. Having Root Mean Square Errors (RMSE) in the range of 0.54-2.07 mm, HYDRUS-2D ranked first for the SWC estimation, while the ANFIS and SVM models with input datasets of cGDD, Kc, WD and In ranked next with RMSEs ranging from 1.27 to 1.9 mm and mean bias errors of -0.07 to 0.27 mm, respectively. However, the MLR models did not perform well for SWC forecasting, mainly due to non-linear changes of SWCs under the irrigation process. The results demonstrated that despite requiring only simple input data, the ANFIS and SVM models could be favorably used for SWC predictions under water stress conditions, especially when there is a lack of data. However, process-based numerical models are undoubtedly a better choice for predicting SWCs with lower uncertainties when required data are available, and thus for designing water saving strategies for agriculture and for other environmental applications requiring estimates of SWCs.

  13. Development of Strategies for Sustainable Irrigation Water Management in Russia

    NASA Astrophysics Data System (ADS)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2013-04-01

    During 1960 - 1990 years irrigated areas in Russia have increased rapidly, helping to boost agricultural output. Although the impressive achievements of irrigation in this period its large experience indicates problems and failures of irrigation water management. In addition to large water use and low irrigation water efficiency, environmental concerns (excessive water depletion, water quality reduction, water logging, soil degradation) are usually considered like the most significant problem of the irrigation sector. Despite of considerable shrinking of irrigated areas in Russia and decreasing of water withdrawal for irrigation purposes during two last decades a degradation of environment as well as degradation of soil and water resources in irrigated areas was prolonged and will probably continue if current irrigation practices are maintained. Nowadays, in different regions of Russia there are societal demand to restore agricultural irrigation in Russia as answer to challenges from climate pattern changes and degradation of land & water resources. In the respect of these demands there is a need to develop strategies for sustainability of agricultural irrigation in Russia that should be based on three main societal objectives: costeffective use of water in irrigated agriculture at farm level, and satisfactory preserving the natural environment. Therefore sustainable irrigation water management is not only an objective at farm level but also an overall goal at the local and regional as well. A way to achieve sustainability in irrigation water management is to solve the local conflicts arising from the interactions between water use at irrigation areas and surrounding environment. Thus should be based on the development of irrigation framework program including on the irrigation water management issues, policies & decisions making at federal and regional levels should be based on the indicators of environment & irrigation water efficiency monitoring promoting the use of the appropriate irrigation technologies confined to a field scale and local environmental conditions. In presented contribution a case studies of large and small irrigation schemes based on sprinklers at Saratov Region will be discussed. Analyze is focused on the identification of main causes of groundwater logging, following soil salinization and impact to surrounding environment at irrigation areas. This analyze is based on plot and field scales experimentations as well as time series about 40 years long monitoring of ground water and soils. Main conclusion from this analyze accuses current irrigation practice at this region using high irrigation dozes & intensities as well as uniformity of water application within the irrigated perimeter promoting chain of processes starting by ponding of applied water at mezodepression of soil surface, preferential flow through out macropores-cracks, wormholes, or decayed root channels and groundwater rising. Special attention is done to simulate relationships between uniform technology of water application by sprinkler and spatial nonuniformity of moisture storage (zoning of high soil moisture in depressions) in soil and as consequence of infiltration capacity. Technological alternative aimed at reducing these problems is analysed by the use of SWAP model application to uniform and nonuniform irrigation water applications. Model results indicate that use nonuniform water application technology is increasing an irrigation efficiency, increasing yield and stopping rising of groundwater. ACKNOWLEDGMENTS. This study was financially supported by FP6 DESIRE project 037046

  14. Ceres model application for increasing preparedness to climate variability in agricultural planning

    NASA Astrophysics Data System (ADS)

    Popova, Z.; Kercheva, M.

    2003-04-01

    The paper should demonstrate how knowledge of climate variability and simulation analyses over 30 years could be used to study the vulnerability of maize and wheat ecosystems in the region of Sofia. The procedure of stepwise calibration and validation of agricultural simulation CERES-maize and CERES-wheat models was used at two fields of contrastive soil conditions (Chromic Luvisol and Vertisol). Lysimeters observations under "Chromic Luvisol-maize" combination enabled to test integrally the prediction capacity of CERES-maize, including water and nitrogen fluxes at the boundaries of this vulnerable system over "1.05.1997-1.10.1999" period. The role of soil, crop, climate and irrigation scheduling (under maize only) on drought consequences and groundwater pollution was quantified for four "soil-crop" combinations by CERES models. Four water supply treatments of maize were considered on both soils: one under rainfed conditions and three with varied irrigation application. Water application in initial, development, and mid season growth stages was scheduled by CROPWAT model at any day that soil matrix suction fell to 3.0-3.2 pF with one irrigation scenario and 2.4-2.6 pF with another one. The third drainage-controlling scenario was developed on the basis of 50-75% of the required irrigation depth by satisfying most sensible phases of maize. It was established that "Chromic Luvisol -maize - dry land" combination was associated with the greatest coefficient of variability of yields (Cv=42%) and drought frequency (75% of the years with yield losses more than 20%). Average yield losses in dry vegetation seasons were 60% of the productivity potential under sufficient soil moisture. As a consequence maize cultivation under these conditions was inefficient in 20% of the years when production expenses were greater than losses. Any irrigation practice, even the drainage controlling scenario, mitigated drought consequences on risky soils as Chromic Luvisol by reducing year-to-year variability of yield (CV=5.6-6%). Long-term wheat yields were much more stable (CV=17-23% on Chromic Luvisol) than those of maize. In this case droughts covered 40% of the years when yield losses were 25-30% on the average. Soils of high water holding capacity (as Vertisol) provided additionally 50-150mm-water storage for evapotranspiration and thus reduced frequency of drought under both crops to 20-25% of the years. Agriculture on this soil should be more sustainable (CV=8-8.5% for yield under wheat and CV=14.6% respectively under maize). Reduction of yield during dry vegetation periods was 10-15% under wheat and 22% under maize if compared with productivity under sufficient soil water. Risk assessment of groundwater pollution showed that N-leaching hazards were associated mostly with moderately permeable Chromic Luvisol and high precipitation during the periods of low transpiration rate of both crops. Frequency analyses of seasonal N- losses, proved that half of the wheat and 3% of maize vegetation seasons were susceptible to significant N-leaching (10-45 kg N/ha for "N200" fertilization level) on Chromic Luvisol. Simulated irrigation scenarios did not influence vegetation drainage. Another risky situations occurred in 3% of the years of wet fallow after dry rainfed maize vegetation when up to 30% of fertilization dose might be leached on Chromic Luvisol. Earlier wheat sowing (on the 1st of October) and adjusted fertilization rates and timing to maximum N-uptake under both crops mitigated environmental hazards. Drainage-controlling irrigation scheduling decreased maize fallow state drainage by 30-40 % in half of the years and proved to be economically optimal. Such measure though may tend to increase vulnerability of ecosystem to climate variability by increasing residual soil nitrogen at the end of vegetation.

  15. Improving medium-range and seasonal hydroclimate forecasts in the southeast USA

    NASA Astrophysics Data System (ADS)

    Tian, Di

    Accurate hydro-climate forecasts are important for decision making by water managers, agricultural producers, and other stake holders. Numerical weather prediction models and general circulation models may have potential for improving hydro-climate forecasts at different scales. In this study, forecast analogs of the Global Forecast System (GFS) and Global Ensemble Forecast System (GEFS) based on different approaches were evaluated for medium-range reference evapotranspiration (ETo), irrigation scheduling, and urban water demand forecasts in the southeast United States; the Climate Forecast System version 2 (CFSv2) and the North American national multi-model ensemble (NMME) were statistically downscaled for seasonal forecasts of ETo, precipitation (P) and 2-m temperature (T2M) at the regional level. The GFS mean temperature (Tmean), relative humidity, and wind speed (Wind) reforecasts combined with the climatology of Reanalysis 2 solar radiation (Rs) produced higher skill than using the direct GFS output only. Constructed analogs showed slightly higher skill than natural analogs for deterministic forecasts. Both irrigation scheduling driven by the GEFS-based ETo forecasts and GEFS-based ETo forecast skill were generally positive up to one week throughout the year. The GEFS improved ETo forecast skill compared to the GFS. The GEFS-based analog forecasts for the input variables of an operational urban water demand model were skillful when applied in the Tampa Bay area. The modified operational models driven by GEFS analog forecasts showed higher forecast skill than the operational model based on persistence. The results for CFSv2 seasonal forecasts showed maximum temperature (Tmax) and Rs had the greatest influence on ETo. The downscaled Tmax showed the highest predictability, followed by Tmean, Tmin, Rs, and Wind. The CFSv2 model could better predict ETo in cold seasons during El Nino Southern Oscillation (ENSO) events only when the forecast initial condition was in ENSO. Downscaled P and T2M forecasts were produced by directly downscaling the NMME P and T2M output or indirectly using the NMME forecasts of Nino3.4 sea surface temperatures to predict local-scale P and T2M. The indirect method generally showed the highest forecast skill which occurs in cold seasons. The bias-corrected NMME ensemble forecast skill did not outperform the best single model.

  16. Final Technical Report for DOE Award SC0006616

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Andrew

    2015-08-01

    This report summarizes research carried out by the project "Collaborative Research, Type 1: Decadal Prediction and Stochastic Simulation of Hydroclimate Over Monsoonal Asia. This collaborative project brought together climate dynamicists (UCLA, IRI), dendroclimatologists (LDEO Tree Ring Laboratory), computer scientists (UCI), and hydrologists (Columbia Water Center, CWC), together with applied scientists in climate risk management (IRI) to create new scientific approaches to quantify and exploit the role of climate variability and change in the growing water crisis across southern and eastern Asia. This project developed new tree-ring based streamflow reconstructions for rivers in monsoonal Asia; improved understanding of hydrologic spatio-temporal modesmore » of variability over monsoonal Asia on interannual-to-centennial time scales; assessed decadal predictability of hydrologic spatio-temporal modes; developed stochastic simulation tools for creating downscaled future climate scenarios based on historical/proxy data and GCM climate change; and developed stochastic reservoir simulation and optimization for scheduling hydropower, irrigation and navigation releases.« less

  17. Remote Sensing of Vineyard FPAR, with Implications for Irrigation Scheduling

    NASA Technical Reports Server (NTRS)

    Johnson, Lee F.; Scholasch, Thibaut

    2004-01-01

    Normalized difference vegetation index (NDVI) data, acquired at two-meter resolution by an airborne ADAR System 5500, were compared with fraction of photosynthetically active radiation (FPAR) absorbed by commercial vineyards in Napa Valley, California. An empirical line correction was used to transform image digital counts to surface reflectance. "Apparent" NDVI (generated from digital counts) and "corrected" NDVI (from reflectance) were both strongly related to FPAR of range 0.14-0.50 (both r(sup 2) = 0.97, P < 0.01). By suppressing noise, corrected NDVI should form a more spatially and temporally stable relationship with FPAR, reducing the need for repeated field support. Study results suggest the possibility of using optical remote sensing to monitor the transpiration crop coefficient, thus providing an enhanced spatial resolution component to crop water budget calculations and irrigation management.

  18. Colostomy irrigation: are we offering it enough?

    PubMed

    Woodhouse, Fran

    This article discusses the use of irrigation for suitable colostomists and reasons why it can have a very positive effect on lifestyle. While it is evidence-based it also includes anecdotal tips from patients who irrigate. The suitability of patients to irrigate and ways to 'get started' with irrigation are discussed.

  19. Plant, soil and weather based cues for irrigation timing in soybean production 2014

    USDA-ARS?s Scientific Manuscript database

    Expanded use of irrigation management tools are needed to improve irrigation and water use efficiency in eastern Arkansas soybean production. In 2014 we initiated an Arkansas Soybean Promotion Board supported project to examine irrigation initiation timing on a sandy loam soil in a furrow-irrigated ...

  20. Remote-Sensing-Based Evaluation of Relative Consumptive Use Between Flood- and Drip-Irrigated Fields

    NASA Astrophysics Data System (ADS)

    Martinez Baquero, G. F.; Jordan, D. L.; Whittaker, A. T.; Allen, R. G.

    2013-12-01

    Governments and water authorities are compelled to evaluate the impacts of agricultural irrigation on economic development and sustainability as water supply shortages continue to increase in many communities. One of the strategies commonly used to reduce such impacts is the conversion of traditional irrigation methods towards more water-efficient practices. As part of a larger effort by the New Mexico Interstate Stream Commission to understand the environmental and economic impact of converting from flood irrigation to drip irrigation, this study evaluates the water-saving effectiveness of drip irrigation in Deming, New Mexico, using a remote-sensing-based technique combined with ground data collection. The remote-sensing-based technique used relative temperature differences as a proxy for water use to show relative differences in crop consumptive use between flood- and drip-irrigated fields. Temperature analysis showed that, on average, drip-irrigated fields were cooler than flood-irrigated fields, indicating higher water use. The higher consumption of water by drip-irrigated fields was supported by a determination of evapotranspiration (ET) from all fields using the METRIC Landsat-based surface energy balance model. METRIC analysis yielded higher instantaneous ET for drip-irrigated fields when compared to flood-irrigated fields and confirmed that drip-irrigated fields consumed more water than flood-irrigated fields planted with the same crop. More water use generally results in more biomass and hence higher crop yield, and this too was confirmed by greater relative Normalized Difference Vegetation Index for the drip irrigated fields. Results from this study confirm previous estimates regarding the impacts of increased efficiency of drip irrigation on higher water consumption in the area (Ward and Pulido-Velazquez, 2008). The higher water consumption occurs with drip because, with the limited water supplies and regulated maximum limits on pumping amounts, the higher efficiency of drip enables producers to convert larger percentages of pumped ground-water into evapotranspiration and reduces the ';return' of percolation ';losses' back to the ground-water system that previously re-recharged the aquifer. This study illustrates the usefulness of remote sensing techniques to evaluate spatial patterns of ET by different irrigation methods. These results illustrate a first-step quantitative tool that can be used by water resources managers in formulation of policy to limit net water consumption and maintain reliable water supply sources.

  1. Sustainable Irrigation Allocation Model for Dry and Wet Periods using Reservoir Storage and Inflow

    NASA Astrophysics Data System (ADS)

    Surianarayanan, S.; Suribabu, C. R.; Ramakrishnan, K.

    2017-07-01

    The dry period agriculture is inevitable both for the farmers for their earning, and for the soil for its fertility by crop-rotation. In tropical countries like INDIA, dry period agriculture becomes difficult because of less (or) no rain fall. Hence a simple water balancing model for irrigation scheduling, using the measure “Volumetric Reliability” is prepared in this paper, with the storage and inflow of a reservoir both for the dry and wet periods. The case-study is done for a reservoir in INDIA with thirty one years of hydrological data(from 1982 to 2012). The objective of this paper is to prepare a simple water balance model taking 10 days periods of demand and supply for ID crop(Irrigated Dry crop, ground nut) with usage of volumetric reliability concept for the periods of deficiency and adoption of less water requirement crops to reduce the water-stress during critical periods of crop growth, and finally arrive at a feasible allocation schedule for the success of agriculture and the yield throughout the year both for wet and dry crops with the available storage on the start of irrigation for a particular year. The reservoir is divided for storages such as full, deficient and critical storages. The starting storage for the dry period from January is used after adequate allocation for wet crops, the quantity for riparian rights and for drinking water, for the sustainability. By the water-balancing, the time-series for thirty one years, it is found that for twenty two years the demand for the ID crops is satisfied with the storage in the reservoir, and in the remaining years of deficient inflows, for three years (1986,1996,2004)the demand is managed by using the safe reliability factor for demand which can nullify the deficit in demand for the whole supply period. But it is genuine to assure that the reduction in the amount of water for each 10 days periods should not exceed the survival limit of the crop. Necessary soil-moisture must be ensured in the crop in its root zone.. A safe volumetric reliability factor of 0.75 is taken in this attempt to extend the success of dry period agriculture. The soil moisture balance in the clayey loam soil due to continuous irrigation can manage the deficiency, so that the soil-water does not go below the wilting point but must be checked with the soil-moisture sensors. The methods to reduce the evaporation from the soil, such as usage of drip irrigation and the mulching, which can reduce the crop water requirements in comparison with the conventional irrigation which is being followed at present in the spot of the case-study is suggested. In addition to these methods less water requirement crops like flowers, vegetables having less crop-period and provision of windbreak to reduce evapo-transpiration rates and other efficient methods of water management can make success of dry period agriculture even in the years critical storage level in the reservoir. The rainfall is not taken in this model which if in a year with ample quantity can be used for pre-sowing and for managing the water-stress. Augmentation of water with ground water, percolation tank can boost the level of success of agriculture. As the irrigation water allocation for the whole year, particularly for the ID crops is prepared for the full, deficient and critical storages, this paper can help to achieve sustainable growth of crops throughout the year.

  2. A Real-time Irrigation Forecasting System in Jiefangzha Irrigation District, China

    NASA Astrophysics Data System (ADS)

    Cong, Z.

    2015-12-01

    In order to improve the irrigation efficiency, we need to know when and how much to irrigate in real time. If we know the soil moisture content at this time, we can forecast the soil moisture content in the next days based on the rainfall forecasting and the crop evapotranspiration forecasting. Then the irrigation should be considered when the forecasting soil moisture content reaches to a threshold. Jiefangzha Irrigation District, a part of Hetao Irrigation District, is located in Inner Mongolia, China. The irrigated area of this irrigation district is about 140,000 ha mainly planting wheat, maize and sunflower. The annual precipitation is below 200mm, so the irrigation is necessary and the irrigation water comes from the Yellow river. We set up 10 sites with 4 TDR sensors at each site (20cm, 40cm, 60cm and 80cm depth) to monitor the soil moisture content. The weather forecasting data are downloaded from the website of European Centre for Medium-Range Weather Forecasts (ECMWF). The reference evapotranspiration is estimated based on FAO-Blaney-Criddle equation with only the air temperature from ECMWF. Then the crop water requirement is forecasted by the crop coefficient multiplying the reference evapotranspiration. Finally, the soil moisture content is forecasted based on soil water balance with the initial condition is set as the monitoring soil moisture content. When the soil moisture content reaches to a threshold, the irrigation warning will be announced. The irrigation mount can be estimated through three ways: (1) making the soil moisture content be equal to the field capacity; (2) making the soil moisture saturated; or (3) according to the irrigation quota. The forecasting period is 10 days. The system is developed according to B2C model with Java language. All the databases and the data analysis are carried out in the server. The customers can log in the website with their own username and password then get the information about the irrigation forecasting and other information about the irrigation. This system can be expanded in other irrigation districts. In future, it is even possible to upgrade the system for the mobile user.

  3. Simple agrometeorological models for estimating Guineagrass yield in Southeast Brazil.

    PubMed

    Pezzopane, José Ricardo Macedo; da Cruz, Pedro Gomes; Santos, Patricia Menezes; Bosi, Cristiam; de Araujo, Leandro Coelho

    2014-09-01

    The objective of this work was to develop and evaluate agrometeorological models to simulate the production of Guineagrass. For this purpose, we used forage yield from 54 growing periods between December 2004-January 2007 and April 2010-March 2012 in irrigated and non-irrigated pastures in São Carlos, São Paulo state, Brazil (latitude 21°57'42″ S, longitude 47°50'28″ W and altitude 860 m). Initially we performed linear regressions between the agrometeorological variables and the average dry matter accumulation rate for irrigated conditions. Then we determined the effect of soil water availability on the relative forage yield considering irrigated and non-irrigated pastures, by means of segmented linear regression among water balance and relative production variables (dry matter accumulation rates with and without irrigation). The models generated were evaluated with independent data related to 21 growing periods without irrigation in the same location, from eight growing periods in 2000 and 13 growing periods between December 2004-January 2007 and April 2010-March 2012. The results obtained show the satisfactory predictive capacity of the agrometeorological models under irrigated conditions based on univariate regression (mean temperature, minimum temperature and potential evapotranspiration or degreedays) or multivariate regression. The response of irrigation on production was well correlated with the climatological water balance variables (ratio between actual and potential evapotranspiration or between actual and maximum soil water storage). The models that performed best for estimating Guineagrass yield without irrigation were based on minimum temperature corrected by relative soil water storage, determined by the ratio between the actual soil water storage and the soil water holding capacity.irrigation in the same location, in 2000, 2010 and 2011. The results obtained show the satisfactory predictive capacity of the agrometeorological models under irrigated conditions based on univariate regression (mean temperature, potential evapotranspiration or degree-days) or multivariate regression. The response of irrigation on production was well correlated with the climatological water balance variables (ratio between actual and potential evapotranspiration or between actual and maximum soil water storage). The models that performed best for estimating Guineagrass yield without irrigation were based on degree-days corrected by the water deficit factor.

  4. Irrigation of human prepared root canal – ex vivo based computational fluid dynamics analysis

    PubMed Central

    Šnjarić, Damir; Čarija, Zoran; Braut, Alen; Halaji, Adelaida; Kovačević, Maja; Kuiš, Davor

    2012-01-01

    Aim To analyze the influence of the needle type, insertion depth, and irrigant flow rate on irrigant flow pattern, flow velocity, and apical pressure by ex-vivo based endodontic irrigation computational fluid dynamics (CFD) analysis. Methods Human upper canine root canal was prepared using rotary files. Contrast fluid was introduced in the root canal and scanned by computed tomography (CT) providing a three-dimensional object that was exported to the computer-assisted design (CAD) software. Two probe points were established in the apical portion of the root canal model for flow velocity and pressure measurement. Three different CAD models of 27G irrigation needles (closed-end side-vented, notched open-end, and bevel open-end) were created and placed at 25, 50, 75, and 95% of the working length (WL). Flow rates of 0.05, 0.1, 0.2, 0.3, and 0.4 mL/s were simulated. A total of 60 irrigation simulations were performed by CFD fluid flow solver. Results Closed-end side-vented needle required insertion depth closer to WL, regarding efficient irrigant replacement, compared to open-end irrigation needle types, which besides increased velocity produced increased irrigant apical pressure. For all irrigation needle types and needle insertion depths, the increase of flow rate was followed by an increased irrigant apical pressure. Conclusions The human root canal shape obtained by CT is applicable in the CFD analysis of endodontic irrigation. All the analyzed values –irrigant flow pattern, velocity, and pressure – were influenced by irrigation needle type, as well as needle insertion depth and irrigant flow rate. PMID:23100209

  5. Irrigation of human prepared root canal--ex vivo based computational fluid dynamics analysis.

    PubMed

    Snjaric, Damir; Carija, Zoran; Braut, Alen; Halaji, Adelaida; Kovacevic, Maja; Kuis, Davor

    2012-10-01

    To analyze the influence of the needle type, insertion depth, and irrigant flow rate on irrigant flow pattern, flow velocity, and apical pressure by ex-vivo based endodontic irrigation computational fluid dynamics (CFD) analysis. Human upper canine root canal was prepared using rotary files. Contrast fluid was introduced in the root canal and scanned by computed tomography (CT) providing a three-dimensional object that was exported to the computer-assisted design (CAD) software. Two probe points were established in the apical portion of the root canal model for flow velocity and pressure measurement. Three different CAD models of 27G irrigation needles (closed-end side-vented, notched open-end, and bevel open-end) were created and placed at 25, 50, 75, and 95% of the working length (WL). Flow rates of 0.05, 0.1, 0.2, 0.3, and 0.4 mL/s were simulated. A total of 60 irrigation simulations were performed by CFD fluid flow solver. Closed-end side-vented needle required insertion depth closer to WL, regarding efficient irrigant replacement, compared to open-end irrigation needle types, which besides increased velocity produced increased irrigant apical pressure. For all irrigation needle types and needle insertion depths, the increase of flow rate was followed by an increased irrigant apical pressure. The human root canal shape obtained by CT is applicable in the CFD analysis of endodontic irrigation. All the analyzed values -irrigant flow pattern, velocity, and pressure - were influenced by irrigation needle type, as well as needle insertion depth and irrigant flow rate.

  6. Soil water movement in the unsaturated zone of an inland arid region: Mulched drip irrigation experiment

    NASA Astrophysics Data System (ADS)

    Han, Dongmei; Zhou, Tiantian

    2018-04-01

    Agricultural irrigation with trans-basin water diversion can effectively relieve the water paucity in arid and semi-arid regions, however, this may be accompanied by eco-environmental problems (e.g., saline soils, rising groundwater levels, water quality problems). The mechanism of soil water movement under irrigation in the unsaturated zone of arid regions is a key scientific problem that should be solved in order to evaluate agricultural water management and further improve current irrigation practices. This study investigated the impact of drip irrigation on soil water movement in the unsaturated zone of a cotton field in an inland arid region (the Karamay Agricultural Development Area), northwest China. Combining in situ observational physical data with temporal variation in stable isotopic compositions of soil water, we described the soil water flow system and mechanism in severe (Plot 1) and mild (Plot 2) saline-alkali cotton fields. The infiltration depths are 0-150 cm for both plots. Drip irrigation scheduling makes no significant contribution to local groundwater recharge, however, groundwater can move into the unsaturated zone through capillary rise during cotton flowering and boll periods. Plot 2 is less prone to having secondary soil salinization than Plot 1 due to the existence of a middle layer (approximately 100 cm thick), which elongated the distance between the root zone and aquifer. Rise in the water table (approximately 60 cm for Plot 1 and 50 cm for Plot 2) could be caused by lateral groundwater flow instead of vertical infiltration. We estimated the soil water storage changes in the unsaturated zone and proposed a conceptual model for deciphering the movement process of soil water. This study provides a scientific basis for determining the rise of groundwater levels and potential development of saline soils and improving agricultural water management in arid regions.

  7. Observed Local Impacts of Global Irrigation on Surface Temperature

    NASA Astrophysics Data System (ADS)

    Chen, L.; Dirmeyer, P.

    2017-12-01

    Agricultural irrigation has significant potential for altering local climate through reducing soil albedo, increasing evapotranspiration, and enabling greater leaf area. Numerous studies using regional or global climate models have demonstrated the cooling effects of irrigation on mean and extreme temperature, especially over regions where irrigation is extensive. However, these model-based results have not been validated due to the limitations of observational datasets. In this study, multiple satellite-based products, including the Moderate Resolution Imaging Spectroradiometer (MODIS) and Soil Moisture Active Passive (SMAP) data sets, are used to isolate and quantify the local impacts of irrigation on surface climate over the irrigated regions, which are derived from the Global Map of Irrigation Areas (GMIA). The relationships among soil moisture, albedo, evapotranspiration, and surface temperature are explored. Strong evaporative cooling of irrigation on daytime surface temperature is found over the arid and semi-arid regions, such as California's Central Valley, the Great Plains, and central Asia. However, the cooling effects are less evident in most areas of eastern China, India, and the Lower Mississippi River Basin in spite of extensive irrigation over these regions. Results are also compared with irrigation experiments using the Community Earth System Model (CESM) to assess the model's ability to represent land-atmosphere interactions in regards to irrigation.

  8. Quasi 3D modelling of water flow in the sandy soil

    NASA Astrophysics Data System (ADS)

    Rezaei, Meisam; Seuntjens, Piet; Joris, Ingeborg; Boënne, Wesley; De Pue, Jan; Cornelis, Wim

    2016-04-01

    Monitoring and modeling tools may improve irrigation strategies in precision agriculture. Spatial interpolation is required for analyzing the effects of soil hydraulic parameters, soil layer thickness and groundwater level on irrigation management using hydrological models at field scale. We used non-invasive soil sensor, a crop growth (LINGRA-N) and a soil hydrological model (Hydrus-1D) to predict soil-water content fluctuations and crop yield in a heterogeneous sandy grassland soil under supplementary irrigation. In the first step, the sensitivity of the soil hydrological model to hydraulic parameters, water stress, crop yield and lower boundary conditions was assessed after integrating models at one soil column. Free drainage and incremental constant head conditions were implemented in a lower boundary sensitivity analysis. In the second step, to predict Ks over the whole field, the spatial distributions of Ks and its relationship between co-located soil ECa measured by a DUALEM-21S sensor were investigated. Measured groundwater levels and soil layer thickness were interpolated using ordinary point kriging (OK) to a 0.5 by 0.5 m in aim of digital elevation maps. In the third step, a quasi 3D modelling approach was conducted using interpolated data as input hydraulic parameter, geometric information and boundary conditions in the integrated model. In addition, three different irrigation scenarios namely current, no irrigation and optimized irrigations were carried out to find out the most efficient irrigation regime. In this approach, detailed field scale maps of soil water stress, water storage and crop yield were produced at each specific time interval to evaluate the best and most efficient distribution of water using standard gun sprinkler irrigation. The results show that the effect of the position of the groundwater level was dominant in soil-water content prediction and associated water stress. A time-dependent sensitivity analysis of the hydraulic parameters showed that changes in soil water content are mainly affected by the soil saturated hydraulic conductivity Ks in a two-layered soil. Results demonstrated the large spatial variability of Ks (CV = 86.21%). A significant negative correlation was found between ln Ks and ECa (r = 0.83; P≤0.01). This site-specific relation between ln Ks and ECa was used to predict Ks for the whole field after validation using an independent dataset of measured Ks. Result showed that this approach can accurately determine the field scale irrigation requirements, taking into account variations in boundary conditions and spatial variations of model parameters across the field. We found that uniform distribution of water using standard gun sprinkler irrigation is not an efficient approach since at locations with shallow groundwater, the amount of water applied will be excessive as compared to the crop requirements, while in locations with a deeper groundwater table, the crop irrigation requirements will not be met during crop water stress. Numerical results showed that optimal irrigation scheduling using the aforementioned water stress calculations can save up to ~25% irrigation water as compared to the current irrigation regime. This resulted in a yield increase of ~7%, simulated by the crop growth model.

  9. Irrigation analysis based on long-term weather data

    USDA-ARS?s Scientific Manuscript database

    Irrigation-management is based upon delivery of water to a crop in the correct amount and time, and the crop’s water need is determined by calculating evapotranspiration (ET) using weather data. In 1994 an ET-network was established in the Texas High Plains to manage irrigation on a regional scale. ...

  10. A modeling study of irrigation effects on global surface water and groundwater resources under a changing climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leng, Guoyong; Huang, Maoyi; Tang, Qiuhong

    In this paper, the effects of irrigation on global surface water (SW) and groundwater (GW) resources are investigated by performing simulations using Community Land Model 4.0 (CLM4) at 0.5-degree resolution driven by downscaled/bias-corrected historical simulations and future projections from five General Circulation Models (GCMs) for 1950-2099. For each climate scenario, three sets of numerical experiments were configured: (1) a control experiment (CTRL) in which all crops are assumed to be rainfed; (2) an irrigation experiment (IRRIG) in which the irrigation module using only SW for irrigation is activated; and (3) a groundwater pumping experiment (PUMP) in which a groundwater pumpingmore » scheme coupled with the irrigation module is activated for conjunctive use of SW and GW for irrigation. The parameters associated with irrigation and groundwater pumping are calibrated based on a global inventory of census-based SW and GW use compiled by the Food and Agricultural Organization (FAO). Our results suggest that irrigation could lead to two major opposing effects: SW depletion/GW accumulation in regions with irrigation primarily fed by SW, and SW accumulation/GW depletion in regions with irrigation fed primarily by GW. Furthermore, irrigation depending primarily on SW tends to have larger impacts on low-flow than high-flow conditions, suggesting the potential to increase vulnerability to drought. By the end of the 21st century (2070-2099), climate change significantly increases (relative to 1971-2000) irrigation water demand across the world. Combined with the increased temporal-spatial variability of water supply, this may lead to severe issues of local water scarcity for irrigation. Regionally, irrigation has the potential to aggravate/alleviate climate-induced changes of SW/GW although such effects are negligible when averaged globally. Our results emphasize the importance of accounting for irrigation effects and irrigation sources in regional climate change impact assessment.« less

  11. A modeling study of irrigation effects on global surface water and groundwater resources under a changing climate

    DOE PAGES

    Leng, Guoyong; Huang, Maoyi; Tang, Qiuhong; ...

    2015-08-25

    In this paper, the effects of irrigation on global surface water (SW) and groundwater (GW) resources are investigated by performing simulations using Community Land Model 4.0 (CLM4) at 0.5-degree resolution driven by downscaled/bias-corrected historical simulations and future projections from five General Circulation Models (GCMs) for 1950-2099. For each climate scenario, three sets of numerical experiments were configured: (1) a control experiment (CTRL) in which all crops are assumed to be rainfed; (2) an irrigation experiment (IRRIG) in which the irrigation module using only SW for irrigation is activated; and (3) a groundwater pumping experiment (PUMP) in which a groundwater pumpingmore » scheme coupled with the irrigation module is activated for conjunctive use of SW and GW for irrigation. The parameters associated with irrigation and groundwater pumping are calibrated based on a global inventory of census-based SW and GW use compiled by the Food and Agricultural Organization (FAO). Our results suggest that irrigation could lead to two major opposing effects: SW depletion/GW accumulation in regions with irrigation primarily fed by SW, and SW accumulation/GW depletion in regions with irrigation fed primarily by GW. Furthermore, irrigation depending primarily on SW tends to have larger impacts on low-flow than high-flow conditions, suggesting the potential to increase vulnerability to drought. By the end of the 21st century (2070-2099), climate change significantly increases (relative to 1971-2000) irrigation water demand across the world. Combined with the increased temporal-spatial variability of water supply, this may lead to severe issues of local water scarcity for irrigation. Regionally, irrigation has the potential to aggravate/alleviate climate-induced changes of SW/GW although such effects are negligible when averaged globally. Our results emphasize the importance of accounting for irrigation effects and irrigation sources in regional climate change impact assessment.« less

  12. Comparison of SVAT models for simulating and optimizing deficit irrigation systems in arid and semi-arid countries under climate variability

    NASA Astrophysics Data System (ADS)

    Kloss, Sebastian; Schuetze, Niels; Schmitz, Gerd H.

    2010-05-01

    The strong competition for fresh water in order to fulfill the increased demand for food worldwide has led to a renewed interest in techniques to improve water use efficiency (WUE) such as controlled deficit irrigation. Furthermore, as the implementation of crop models into complex decision support systems becomes more and more common, it is imperative to reliably predict the WUE as ratio of water consumption and yield. The objective of this paper is the assessment of the problems the crop models - such as FAO-33, DAISY, and APSIM in this study - face when maximizing the WUE. We applied these crop models for calculating the risk in yield reduction in view of different sources of uncertainty (e.g. climate) employing a stochastic framework for decision support for the planning of water supply in irrigation. The stochastic framework consists of: (i) a weather generator for simulating regional impacts of climate change; (ii) a new tailor-made evolutionary optimization algorithm for optimal irrigation scheduling with limited water supply; and (iii) the above mentioned models for simulating water transport and crop growth in a sound manner. The results present stochastic crop water production functions (SCWPF) for different crops which can be used as basic tools for assessing the impact of climate variability on the risk for the potential yield. Case studies from India, Oman, Malawi, and France are presented to assess the differences in modeling water stress and yield response for the different crop models.

  13. The strategies of local farmers' water management and the eco-hydrological effects of irrigation-drainage engineering systems in world heritage of Honghe Hani Rice Terraces

    NASA Astrophysics Data System (ADS)

    Gao, Xuan

    2017-04-01

    Terraces are built in mountainous regions to provide larger area for cultivation,in which the hydrological and geomorphological processes are impacted by local farmers' water management strategies and are modified by manmade irrigation-drainage engineering systems.The Honghe Hani Rice Terraces is a 1300a history of traditional agricultural landscape that was inscribed in the 2013 World Heritage List.The local farmers had developed systematic water management strategies and built perfect irrigation-drainage engineering systems to adapt the local rainfall pattern and rice farming activities.Through field investigation,interviews,combined with Geographic Information Systems,Remote Sensing images and Global Positioning Systems technology,the water management strategies as well as the irrigation-drainage systems and their impacts on eco-hydrological process were studied,the results indicate:Firstly,the local people created and maintained an unique woodcarving allocating management system of irrigating water over hundreds years,which aids distributing water and natural nutrition to each terrace field evenly,and regularly according to cultivation schedule.Secondly,the management of local people play an essential role in effective irrigation-drainage engineering system.A ditch leader takes charge of managing the ditch of their village,keeping ample amount of irrigation water,repairing broken parts of ditches,dealing with unfair water using issues,and so on.Meanwhile,some traditional leaders of minority also take part in.Thus, this traditional way of irrigation-drainage engineering has bringed Hani people around 1300 years of rice harvest for its eco-hydrological effects.Lastly we discuss the future of Honghe Hani Rice Terraces,the traditional cultivation pattern has been influenced by the rapid development of modern civilization,in which some related changes such as the new equipment of county roads and plastic channels and the water overusing by tourism are not totally rely on eco-hydrological engineering rules,which broke the ecosystem stability of agricultural terraces.The current situation of Honghe Hani Rice Terraces heritage cannot completely meets the purpose of sustainability development and appropriate conservation of Honghe Hani Rice Terraces heritage.This study of traditional cultivation pattern can help us to propose rational solutions for future development of terraces heritages. Key words:Honghe Hani Rice Terraces,water management,eco-hydrological effects,heritage conservation

  14. Understanding the hydrologic control of N cycle: Effect of water filled pore space on heterotrophic nitrification, denitrification and dissimilatory nitrate reduction to ammonium mechanisms in unsaturated soils

    NASA Astrophysics Data System (ADS)

    Mekala, C.; Nambi, Indumathi M.

    2017-07-01

    Irrigation practice will be effective if it supplies optimal water and nutrients to crops and act as a filter for contaminants leaching to ground water. There is always a scope for improving the fertilizer use efficiency and scheduling of wastewater irrigation if the fate and transport of nutrients particularly nitrogenous compounds in the soil are well understood. In the present study, nitrogen transport experiments for two different agricultural soils are performed under varying saturation 33, 57, 78% water filled pore space for sandy soil 1 and 52, 81 and 96% for loam soil 2. A HYDRUS 2D model with constructed wetland (CW2D) module could simulate aerobic nitrification and anoxic denitrification well for both soils and estimated the reaction kinetics. A hot spot of Dissimilatory Nitrate Reduction to Ammonium (DNRA) pathway has been observed at 81% moisture content for a loamy sand soil. The presence of high organic content and reductive soil environment (5.53 C/NO3- ratio; ORP = - 125 mV) results in ammonium accumulation of 16.85 mg in the soil. The overall observation from this study is nitrification occurs in a wide range of saturations 33-78% with highest at 57% whereas denitrification is significant at higher water saturations 57-78% for sandy soil texture. For a loamy sand soil, denitrification is dominant at 96% saturation with least nitrification at all saturation studies. The greatest nitrogen losses (> 90%) was observed for soil 2 while 30-70% for soil1. The slow dispersive subsurface transport with varying oxygen dynamics enhanced nitrogen losses from soil2 due to lesser soil permeability. This in turn, prevents NO3- leaching and groundwater contamination. This type of modeling study should be used before planning field experiments for designing optimal irrigation and fertigation schedules.

  15. Adaptation of irrigation infrastructure on irrigation demands under future drought in the USA

    USDA-ARS?s Scientific Manuscript database

    More severe droughts in the United States will bring great challenges to irrigation water supply. Here, the authors assessed the potential adaptive effects of irrigation infrastructure under present and more extensive droughts. Based on data over 1985–2005, this study established a statistical model...

  16. Plant, soil and weather-based cues for irrigation termination timing in soybean.

    USDA-ARS?s Scientific Manuscript database

    Irrigation termination timing was evaluated on Mississippi County commercial farms in 2014 and 2015 in furrow-irrigated fields with Sharkey clay soils. A major objective was to validate and expand irrigation timing recommendations that pair plant growth measures with weather cues including use of lo...

  17. A review of future remote sensing satellite capabilities

    NASA Technical Reports Server (NTRS)

    Calabrese, M. A.

    1980-01-01

    Existing, planned and future NASA capabilities in the field of remote sensing satellites are reviewed in relation to the use of remote sensing techniques for the identification of irrigated lands. The status of the currently operational Landsat 2 and 3 satellites is indicated, and it is noted that Landsat D is scheduled to be in operation in two years. The orbital configuration and instrumentation of Landsat D are discussed, with particular attention given to the thematic mapper, which is expected to improve capabilities for small field identification and crop discrimination and classification. Future possibilities are then considered, including a multi-spectral resource sampler supplying high spatial and temporal resolution data possibly based on push-broom scanning, Shuttle-maintained Landsat follow-on missions, a satellite to obtain high-resolution stereoscopic data, further satellites providing all-weather radar capability and the Large Format Camera.

  18. Comparing the Palmer Drought Index and the Standardized Precipitation Index for Zagreb Gric Observatory

    NASA Astrophysics Data System (ADS)

    Pandzic, K.; Likso, T.

    2012-04-01

    Conventional Palmer Drought Index (PDI) and recent Standardized Precipitation Index (SPI) for Zagreb Gric Observatory are compared by spectral analysis technique. Data for a period 1862-2010 are used. The results indicate that SPI is simpler for interpretation but PDI more comprehensive index. On the other side, lack of temperature within SPI, make impossible application of it on climate change interpretation. Possible applications of them in irrigation scheduling system is considered as well for drought risk assessment.

  19. Estimation of Infiltration Parameters and the Irrigation Coefficients with the Surface Irrigation Advance Distance

    PubMed Central

    Beibei, Zhou; Quanjiu, Wang; Shuai, Tan

    2014-01-01

    A theory based on Manning roughness equation, Philip equation and water balance equation was developed which only employed the advance distance in the calculation of the infiltration parameters and irrigation coefficients in both the border irrigation and the surge irrigation. The improved procedure was validated with both the border irrigation and surge irrigation experiments. The main results are shown as follows. Infiltration parameters of the Philip equation could be calculated accurately only using water advance distance in the irrigation process comparing to the experimental data. With the calculated parameters and the water balance equation, the irrigation coefficients were also estimated. The water advance velocity should be measured at about 0.5 m to 1.0 m far from the water advance in the experimental corn fields. PMID:25061664

  20. Quantitative microbial risk assessment for spray irrigation of dairy manure based on an empirical fate and transport model

    USDA-ARS?s Scientific Manuscript database

    Background: Spray irrigation for land-applying livestock manure is increasing in the United States as farms become larger and economies of scale make manure irrigation affordable. However, human health risks from exposure to zoonotic pathogens aerosolized during manure irrigation are not well-unders...

  1. Improving nitrogen fertilizer use efficiency in surface- and overhead sprinkler-irrigated cotton in the desert southwest

    USDA-ARS?s Scientific Manuscript database

    Nitrogen fertilizer use efficiency (NUE) is low in surface-irrigated cotton (Gossypium hirsutum L.), especially when adding N to irrigation water. A NO3 soil-test algorithm was compared with canopy reflectance-based N management with surface- overhead sprinkler-irrigation in Central AZ. The surfac...

  2. Impact of Soil Resistance to Penetration in the Irrigation Interval of Supplementary Irrigation Systems at the Humid Pampa, Argentina

    NASA Astrophysics Data System (ADS)

    Hernández J., P.; Befani M., R.; Boschetti N., G.; Quintero C., E.; Díaz E., L.; Lado, M.; Paz-González, A.

    2015-04-01

    The Avellaneda District, located in northeastern of Santa Fe Province, Argentina, has an average annual rainfall of 1250 mm per year, but with a high variability in their seasonal distribution. Generally, the occurrence of precipitation in winter is low, while summer droughts are frequent. The yearly hydrological cycle shows a water deficit, given that the annual potential evapotranspiration is estimated at 1330 mm. Field crops such as soybean, corn, sunflower and cotton, which are affected by water stress during their critical growth periods, are dominant in this area. Therefore, a supplemental irrigation project has been developed in order to identify workable solutions. This project pumps water from Paraná River to provide a water supply to the target area under irrigation. A pressurized irrigation system operating on demand provides water to a network of channels, which in turn deliver water to farms. The scheduled surface of irrigation is 8800 hectares. The maximum flow rate was designed to be 8.25 m3/second. The soils have been classified as Aquic Argiudolls in areas of very gentle slopes, and Vertic Argiudolls in flat and concave reliefs; neither salinity nor excess sodium affect the soils of the study are. The objective of this study was to provide a quantitative data set to manage the irrigation project, through the determination of available water (AW), easily available water (EAw) and optimal water range (or interval) of the soil horizons. The study has been conducted in a text area of 1500 hectares in surface. Five soil profiles were sampled to determine physical properties (structure stability, effective root depth, infiltration, bulk density, penetration resistance and water holding capacity), chemical properties (pH, cation exchange capacity, base saturation, salinity, and sodium content ) and morphological characteristics of the successive horizons. Also several environmental characteristics were evaluated, including: climate, topographic conditions, relief, general and slope position, erosion, natural vegetation and agricultural crops. Indeed the computed available water (AW) content and easily available water (EAw) content values depended on bulk density, field capacity and permanent wilting point, but also they were affected by the soil penetration resistance measured to a depth of 80 cm; this parameter limits the extent of the soil volume explored by plant roots and therefore EAw content. Moreover, soil penetration resistance enables to take into account the concept of optimal water interval, which indicates how soil compaction limits the levels of easily available water that really can be extracted by the crop. The estimated values of EAw water ranged from 74 to 133 mm for the profiles studies. When including the concept of mechanical resistance to penetration to obtain the value of the optimal water interval, the above values decreased, ranging between 34 and 57 mm; this was mainly explained on the basis of the true depth of exploration by plant roots of the soil profiles. Based on the recorded values of the soil mechanical resistance to penetration, it was concluded that sunflower and corn crops will be mostly affected on their growth and root development. Subsequently, and for a maximum consumptive use of 10 mm/day, the commonly used irrigation interval of 13 days, should decrease to 6 days, if the new methodology is used i.e. if the limitations of soil depth exploration by crop roots are taken into account. This result is consistent with those from current practices under non irrigated conditions, where it has been shown that crop yields are affected by water shortage provided that an important precipitation doesn't occur among such interval.

  3. Simulation of Ground-Water Flow and Effects of Ground-Water Irrigation on Base Flow in the Elkhorn and Loup River Basins, Nebraska

    USGS Publications Warehouse

    Peterson, Steven M.; Stanton, Jennifer S.; Saunders, Amanda T.; Bradley, Jesse R.

    2008-01-01

    Irrigated agriculture is vital to the livelihood of communities in the Elkhorn and Loup River Basins in Nebraska, and ground water is used to irrigate most of the cropland. Concerns about the sustainability of ground-water and surface-water resources have prompted State and regional agencies to evaluate the cumulative effects of ground-water irrigation in this area. To facilitate understanding of the effects of ground-water irrigation, a numerical computer model was developed to simulate ground-water flow and assess the effects of ground-water irrigation (including ground-water withdrawals, hereinafter referred to as pumpage, and enhanced recharge) on stream base flow. The study area covers approximately 30,800 square miles, and includes the Elkhorn River Basin upstream from Norfolk, Nebraska, and the Loup River Basin upstream from Columbus, Nebraska. The water-table aquifer consists of Quaternary-age sands and gravels and Tertiary-age silts, sands, and gravels. The simulation was constructed using one layer with 2-mile by 2-mile cell size. Simulations were constructed to represent the ground-water system before 1940 and from 1940 through 2005, and to simulate hypothetical conditions from 2006 through 2045 or 2055. The first simulation represents steady-state conditions of the system before anthropogenic effects, and then simulates the effects of early surface-water development activities and recharge of water leaking from canals during 1895 to 1940. The first simulation ends at 1940 because before that time, very little pumpage for irrigation occurred, but after that time it became increasingly commonplace. The pre-1940 simulation was calibrated against measured water levels and estimated long-term base flow, and the 1940 through 2005 simulation was calibrated against measured water-level changes and estimated long-term base flow. The calibrated 1940 through 2005 simulation was used as the basis for analyzing hypothetical scenarios to evaluate the effects of ground-water irrigation on stream base flow for 1940 through 2005 and for 2006 through 2045. Simulated base flows were compared for scenarios that alternately did or did not include a representation of the effects of ground-water irrigation. The difference between simulated base flows for the two scenarios represents the predicted effects of ground-water irrigation on base flow. Comparison of base flows between simulations with ground-water irrigation and no ground-water irrigation indicated that ground-water irrigation has cumulatively reduced streamflows from 1940 through 2005 by 888,000 acre-feet in the Elkhorn River Basin and by 2,273,000 acre-feet in the Loup River Basin. Generally, predicted cumulative effects of ground-water irrigation on base flow were 5 to 10 times larger from 2006 through 2045 than from 1940 through 2005, and were 7,678,000 acre-feet for the Elkhorn River Basin and 14,784,000 acre-feet for the Loup River Basin. The calibrated simulation also was used to estimate base-flow depletion as a percentage of pumping volumes for a 50-year future time period, because base-flow depletion percentages are used to guide the placement of management boundaries in Nebraska. Mapped results of the base-flow depletion analysis conducted for most of the interior of the study area indicated that pumpage of one additional theoretical well simulated for a future 50-year period generally would result in more than 80 percent depletion when it was located close to the stream, except in areas where depletion was partly offset by reduced ground-water discharge to evapotranspiration in wetland areas. In many areas, depletion for the 50-year future period composed greater than 10 percent of the pumped water volume for theoretical wells placed less than 7 or 8 miles from the stream, though considerable variations existed because of the heterogeneity of the natural system represented in the simulation. For a few streams, predicted future simulated base flows dec

  4. Maximum Plant Uptakes for Water, Nutrients, and Oxygen Are Not Always Met by Irrigation Rate and Distribution in Water-based Cultivation Systems.

    PubMed

    Blok, Chris; Jackson, Brian E; Guo, Xianfeng; de Visser, Pieter H B; Marcelis, Leo F M

    2017-01-01

    Growing on rooting media other than soils in situ -i.e., substrate-based growing- allows for higher yields than soil-based growing as transport rates of water, nutrients, and oxygen in substrate surpass those in soil. Possibly water-based growing allows for even higher yields as transport rates of water and nutrients in water surpass those in substrate, even though the transport of oxygen may be more complex. Transport rates can only limit growth when they are below a rate corresponding to maximum plant uptake. Our first objective was to compare Chrysanthemum growth performance for three water-based growing systems with different irrigation. We compared; multi-point irrigation into a pond (DeepFlow); one-point irrigation resulting in a thin film of running water (NutrientFlow) and multi-point irrigation as droplets through air (Aeroponic). Second objective was to compare press pots as propagation medium with nutrient solution as propagation medium. The comparison included DeepFlow water-rooted cuttings with either the stem 1 cm into the nutrient solution or with the stem 1 cm above the nutrient solution. Measurements included fresh weight, dry weight, length, water supply, nutrient supply, and oxygen levels. To account for differences in radiation sum received, crop performance was evaluated with Radiation Use Efficiency (RUE) expressed as dry weight over sum of Photosynthetically Active Radiation. The reference, DeepFlow with substrate-based propagation, showed the highest RUE, even while the oxygen supply provided by irrigation was potentially growth limiting. DeepFlow with water-based propagation showed 15-17% lower RUEs than the reference. NutrientFlow showed 8% lower RUE than the reference, in combination with potentially limiting irrigation supply of nutrients and oxygen. Aeroponic showed RUE levels similar to the reference and Aeroponic had non-limiting irrigation supply of water, nutrients, and oxygen. Water-based propagation affected the subsequent cultivation in the DeepFlow negatively compared to substrate-based propagation. Water-based propagation resulted in frequent transient discolorations after transplanting in all cultivation systems, indicating a factor, other than irrigation supply of water, nutrients, and oxygen, influencing plant uptake. Plant uptake rates for water, nutrients, and oxygen are offered as a more fundamental way to compare and improve growing systems.

  5. Maximum Plant Uptakes for Water, Nutrients, and Oxygen Are Not Always Met by Irrigation Rate and Distribution in Water-based Cultivation Systems

    PubMed Central

    Blok, Chris; Jackson, Brian E.; Guo, Xianfeng; de Visser, Pieter H. B.; Marcelis, Leo F. M.

    2017-01-01

    Growing on rooting media other than soils in situ -i.e., substrate-based growing- allows for higher yields than soil-based growing as transport rates of water, nutrients, and oxygen in substrate surpass those in soil. Possibly water-based growing allows for even higher yields as transport rates of water and nutrients in water surpass those in substrate, even though the transport of oxygen may be more complex. Transport rates can only limit growth when they are below a rate corresponding to maximum plant uptake. Our first objective was to compare Chrysanthemum growth performance for three water-based growing systems with different irrigation. We compared; multi-point irrigation into a pond (DeepFlow); one-point irrigation resulting in a thin film of running water (NutrientFlow) and multi-point irrigation as droplets through air (Aeroponic). Second objective was to compare press pots as propagation medium with nutrient solution as propagation medium. The comparison included DeepFlow water-rooted cuttings with either the stem 1 cm into the nutrient solution or with the stem 1 cm above the nutrient solution. Measurements included fresh weight, dry weight, length, water supply, nutrient supply, and oxygen levels. To account for differences in radiation sum received, crop performance was evaluated with Radiation Use Efficiency (RUE) expressed as dry weight over sum of Photosynthetically Active Radiation. The reference, DeepFlow with substrate-based propagation, showed the highest RUE, even while the oxygen supply provided by irrigation was potentially growth limiting. DeepFlow with water-based propagation showed 15–17% lower RUEs than the reference. NutrientFlow showed 8% lower RUE than the reference, in combination with potentially limiting irrigation supply of nutrients and oxygen. Aeroponic showed RUE levels similar to the reference and Aeroponic had non-limiting irrigation supply of water, nutrients, and oxygen. Water-based propagation affected the subsequent cultivation in the DeepFlow negatively compared to substrate-based propagation. Water-based propagation resulted in frequent transient discolorations after transplanting in all cultivation systems, indicating a factor, other than irrigation supply of water, nutrients, and oxygen, influencing plant uptake. Plant uptake rates for water, nutrients, and oxygen are offered as a more fundamental way to compare and improve growing systems. PMID:28443129

  6. [Real-time irrigation forecast of cotton mulched with plastic film under drip irrigation based on meteorological date].

    PubMed

    Shen, Xiao-jun; Sun, Jing-sheng; Li, Ming-si; Zhang, Ji-yang; Wang, Jing-lei; Li, Dong-wei

    2015-02-01

    It is important to improve the real-time irrigation forecasting precision by predicting real-time water consumption of cotton mulched with plastic film under drip irrigation based on meteorological data and cotton growth status. The model parameters for calculating ET0 based on Hargreaves formula were determined using historical meteorological data from 1953 to 2008 in Shihezi reclamation area. According to the field experimental data of growing season in 2009-2010, the model of computing crop coefficient Kc was established based on accumulated temperature. On the basis of crop water requirement (ET0) and Kc, a real-time irrigation forecast model was finally constructed, and it was verified by the field experimental data in 2011. The results showed that the forecast model had high forecasting precision, and the average absolute values of relative error between the predicted value and measured value were about 3.7%, 2.4% and 1.6% during seedling, squaring and blossom-boll forming stages, respectively. The forecast model could be used to modify the predicted values in time according to the real-time meteorological data and to guide the water management in local film-mulched cotton field under drip irrigation.

  7. Greenhouse irrigation control system design based on ZigBee and fuzzy PID technology

    NASA Astrophysics Data System (ADS)

    Zhou, Bing; Yang, Qiliang; Liu, Kenan; Li, Peiqing; Zhang, Jing; Wang, Qijian

    In order to achieve the water demand information accurately detect of the greenhouse crop and its precision irrigation automatic control, this article has designed a set of the irrigated control system based on ZigBee and fuzzy PID technology, which composed by the soil water potential sensor, CC2530F256 wireless microprocessor, IAR Embedded Workbench software development platform. And the time of Irrigation as the output .while the amount of soil water potential and crop growth cycle as the input. The article depended on Greenhouse-grown Jatropha to verify the object, the results show that the system can irrigate timely and appropriately according to the soil water potential and water demend of the different stages of Jatropha growth , which basically meet the design requirements. Therefore, the system has broad application prospects in the amount of greenhouse crop of fine control irrigation.

  8. Detecting moisture status of pecan orchards and the potential of remotely-sensed surface reflectance data

    NASA Astrophysics Data System (ADS)

    Othman, Yahia Abdelrahman

    Demand for New Mexico's limited water resources coupled with periodic drought has increased the need to schedule irrigation of pecan orchards based on tree water status. The overall goal of this research was to develop advanced tree water status sensing techniques to optimize irrigation scheduling of pecan orchards. To achieve this goal, I conducted three studies in the La Mancha and Leyendecker orchards, both mature pecan orchards located in the Mesilla Valley, New Mexico. In the first study, I screened leaf-level physiological changes that occurred during cyclic irrigation to determine parameters that best represented changes in plant moisture status. Then, I linked plant physiological changes to remotely-sensed surface reflectance data derived from Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+). In the second study, I assessed the impact of water deficits that developed during the flood irrigation dry-down cycles on photosynthesis (A) and gas exchange and established preliminary water deficit thresholds of midday stem water potential (Psi smd) critical to A and gas exchange of pecans. In a third study, I investigated whether hyperspectral data obtained from a handheld spectroradiometer and multispectral remotely-sensed data derived from Landsat 7 ETM+ and Landsat 8 Operational Land Imager (OLI) could detect moisture status in pecans during cyclic flood irrigations. I conducted the first study simultaneously in both orchards. Leaf-level physiological responses and remotely-sensed surface reflectance data were collected from trees that were either well watered or in water deficit. Midday stem water potential was the best leaf-level physiological response to detect moisture status in pecans. Multiple linear regression between Psismd and vegetation indices revealed a significant relationship (R 2 = 0.54) in both orchards. Accordingly, I concluded that remotely-sensed multispectral data form Landsat TMETM+ holds promise for detecting the moisture status of pecans. I conducted the second study simultaneously on the same mature pecan orchards that were used in the first study. Photosynthesis and gas exchange were assessed at Psismd of -0.4 to -2.0 MPa. This study established preliminary values of Psismd that significantly impacted A and gas exchange of field-grown pecans. I recommended that pecan orchards be maintained at Psismd that ranged between -0.80 to -0.90 MPa to prevent significant reductions in A and gas exchange. Broken-line analysis revealed that A remained relatively constant when Psismd was above -0.65 MPa. Conversely, there was linear positive relationship between Psi smd and A when Psismd was less than -0.65 MPa. In the third study, again conducted on both orchards, leaf-level physiological measurements and remotely-sensed data were taken at Psismd levels of -0.40 to -0.85 MPa, -0.95 to -1.45 MPa , and -1.5 to -2.0 MPa. Hyperspectral reflectance indices (from handheld spectroradiometer) detected moisture status in pecan trees better than multispectral reflectance indices (from Landsat ETM+OLI). Vegetation moisture index-I (VMI-I) and vegetation moisture index-II (VMI-II) significantly correlated with Psismd (VMI-I, 0.88 > r > 0.87; VMI-II, -0.68 > r > -0.65). Vegetation moisture index-I Boxplot analysis did not clearly separate moderate water status (-0.95 to -1.45 MPa) at La Mancha, but did so at Leyendecker. However, multispectral reflectance indices had a limited capacity to precisely detect the moderate water status at both orchards (the time when A declined by 15 - 40 %). Given that Psi smd of-0.90 to -1.45 MPa is a critical range for irrigating pecans, I concluded that vegetation indices derived only from hyperspectral reflectance data could be used to detect plant physiological responses that are related to plant water status.

  9. Determinants of farmers' participation in collective maintenance of irrigation infrastructure in KwaZulu-Natal

    NASA Astrophysics Data System (ADS)

    Sharaunga, S.; Mudhara, M.

    2018-06-01

    The decentralization framework and the Dublin Principles on Integrated Water Resource Management (IWRM) emphasize the need for a participatory approach to irrigation water management. This study identifies the factors influencing farmers' decision to, and extent of participation in the maintenance of irrigation infrastructure in KwaZulu-Natal province, South Africa based on cross-section data collected from 320 randomly selected smallholder irrigating farmers. A two-step Heckman regression model was applied in the analysis. It was established that households whose heads were older, block committee members, with larger irrigation plots, good soil quality and experiencing severe irrigation water shortages are more likely to participate in maintenance of irrigation infrastructure. On the other hand, farmers with insecure land tenure and with no access to irrigation water were less likely to make the decision to participate. Farmers who were members of the farming cooperative as well as block committee members and those paying irrigation water costs were likely to intensively participate in maintaining irrigation infrastructure. Therefore, decentralization alone cannot lead to improved irrigation outcomes. Several factors are necessary for households to participate intensively in the maintenance of irrigation infrastructure. Governments should address these challenges before handing irrigation schemes to their beneficiaries.

  10. Development of an Improved Irrigation Subroutine in SWAT to Simulate the Hydrology of Rice Paddy Grown under Submerged Conditions

    NASA Astrophysics Data System (ADS)

    Muraleedharan, B. V.; Kathirvel, K.; Narasimhan, B.; Nallasamy, N. D.

    2014-12-01

    Soil Water Assessment Tool (SWAT) is a basin scale, distributed hydrological model commonly used to predict the effect of management decisions on the hydrologic response of watersheds. Hydrologic response is decided by the various components of water balance. In the case of watersheds located in south India as well as in several other tropical countries around the world, paddy is one of the dominant crop controlling the hydrologic response of a watershed. Hence, the suitability of SWAT in replicating the hydrology of paddy fields needs to be verified. Rice paddy fields are subjected to flooding method of irrigation, while the irrigation subroutines in SWAT are developed to simulate crops grown under non flooding conditions. Moreover irrigation is represented well in field scale models, while it is poorly represented within watershed models like SWAT. Reliable simulation of flooding method of irrigation and hydrology of the fields will assist in effective water resources management of rice paddy fields which are one of the major consumers of surface and ground water resources. The current study attempts to modify the irrigation subroutine in SWAT so as to simulate flooded irrigation condition. A field water balance study was conducted on representative fields located within Gadana, a subbasin located in Tamil Nadu (southern part of India) and dominated by rice paddy based irrigation systems. The water balance of irrigated paddy fields simulated with SWAT was compared with the water balance derived by rice paddy based crop growth model named ORYZA. The variation in water levels along with the soil moisture variation predicted by SWAT was evaluated with respect to the estimates derived from ORYZA. The water levels were further validated with field based water balance measurements taken on a daily scale. It was observed that the modified irrigation subroutine was able to simulate irrigation of rice paddy within SWAT in a realistic way compared to the existing method.

  11. Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR)

    NASA Astrophysics Data System (ADS)

    Cary, L.; Kloppmann, W.; Battilani, A.; Bertaki, M.; Blagojevic, S.; Chartzoulakis, K.; Dalsgaard, A.; Forslund, A.; Jovanovic, Z.; Kasapakis, I.

    2009-04-01

    The safe use of treated domestic wastewater for irrigation needs to address the risks for humans (workers, exposed via contact with irrigation water, soil, crops and food, consumers, exposed via ingestion of fresh and processed food), for animals (via ingestion of crops an soil), for the crops and agricultural productivity (via salinity and trace element uptake), for soil (via accumulation or release of pollutants) as well as for surface, groundwaters and the associated ecosystems (via runoff and infiltration, Kass et al., 2005, Bouwer, 2000). A work package in the EU FP5 project SAFIR is dedicated to study the impact of wastewater irrigation on the soil-water-plant-product system. Its monitoring program comprises pathogens and inorganic pollutants, including both geogenic and potentially anthropogenic trace elements in the aim to better understand soil-irrigation water interactions. The SAFIR field study sites are found in China, Italy, Crete, and Serbia. A performance evaluation of SAFIR-specific treatment technology through the monitoring of waste water and irrigation water quality was made through waste water chemical and microbiological qualities, which were investigated upstream and downstream of the SAFIR specific treatment three times per season. Irrigation water transits through the uppermost soil decimetres to the crop roots. The latter will become, in the course of the irrigation season, the major sink of percolating water, together with evaporation. The water saving irrigation techniques used in SAFIR are surface and subsurface drip irrigation. The investigation of the solid soil phase concentrates on the root zone as main transit and storage compartment for pollutants and, eventually, pathogens. The initial soil quality was assessed through a sampling campaign before the onset of the first year irrigation; the soil quality has been monitored throughout three years under cultivation of tomatoes or potatoes. The plot layout for each of the study sites allows comparing different combinations of (1) water quality, including tap water as a reference, (2) irrigation techniques, and (3) irrigation strategies (including full irrigation, partial root drying, RDI). The replication of each of the combinations on three different plots takes into account the local variations of soil properties and allows a proper statistical treatment. Reactions of the infiltrating water with the soil solid phase are important for the solute cycling, temporary fixation and remobilisation of trace pollutants. The type of reaction (sorption, co-precipitation…) and the reactive mineral phases will also determine the availability of trace elements for the plant and determine the passage towards crops and products. Therefore it is important to assess the soil water quality, directly or indirectly. Direct measurements of soil water imply soil water sampling through an appropriate system; porous cups were installed on the Cretan, Italian and Chinese sites. Indirect evaluation of water-soil interactions can be obtained through sequential extractions. The combination of a variable input function (through diffuse pollution, irrigation, fertigation) and of variable MTE mobility in soils can be expected to lead to short term variations in soil metal concentrations even if such short term variations have been rarely investigated (Féder, 2001; Cary and Trolard, 2008). The sampling focused upon the fully irrigated plots given that the potential impact of irrigation water quality on soil and plant quality can be expected higher for fully irrigated soils compared to other irrigation strategies. Samples were taken within the soil volume of potential influence around each of the drip emitters. This volume varies depending on the nature of the soil and the irrigation system so that each site adopted a specific protocol. For all experiments, three sampling campaigns were scheduled for each irrigation season: at pre-planting, at the end of irrigation, at harvest. The geochemical evolution of soil properties over the 3 years shows significant variations in major and minor elements, especially trace metallic elements. It implies the role of the cultivated plant as a sink of elements which leads to direct loss of elements in the soil system. Bouwer, H., 2000. Groundwater problems caused by irrigation with sewage effluent. Journal of Environmental Health 63, 17-20. Cary L., Trolard F. (2008). Metal mobility in the ground water of a paddy field in Camargue (South eastern France). Journal of Geochemical Exploration 96/2-3 : 132-143. Féder, 2001. Dynamique des processus d'oxydo-reduction dans les sols hydromorphes, These de l'Universite Aix Marseille III. Kass, A. Gavrieli, I. Yechieli, Y. Vengosh A.and Starinsky, A., 2005. The impact of freshwater and wastewater irrigation on the chemistry of shallow groundwater: a case study from the Israeli Coastal Aquifer, Journal of Hydrology, 300, 314-331.

  12. Monitoring and Evaluation of Cultivated Land Irrigation Guarantee Capability with Remote Sensing

    NASA Astrophysics Data System (ADS)

    Zhang, C., Sr.; Huang, J.; Li, L.; Wang, H.; Zhu, D.

    2015-12-01

    Abstract: Cultivated Land Quality Grade monitoring and evaluation is an important way to improve the land production capability and ensure the country food safety. Irrigation guarantee capability is one of important aspects in the cultivated land quality monitoring and evaluation. In the current cultivated land quality monitoring processing based on field survey, the irrigation rate need much human resources investment in long investigation process. This study choses Beijing-Tianjin-Hebei as study region, taking the 1 km × 1 km grid size of cultivated land unit with a winter wheat-summer maize double cropping system as study object. A new irrigation capacity evaluation index based on the ratio of the annual irrigation requirement retrieved from MODIS data and the actual quantity of irrigation was proposed. With the years of monitoring results the irrigation guarantee capability of study area was evaluated comprehensively. The change trend of the irrigation guarantee capability index (IGCI) with the agricultural drought disaster area in rural statistical yearbook of Beijing-Tianjin-Hebei area was generally consistent. The average of IGCI value, the probability of irrigation-guaranteed year and the weighted average which controlled by the irrigation demand index were used and compared in this paper. The experiment results indicate that the classification result from the present method was close to that from irrigation probability in the gradation on agriculture land quality in 2012, with overlap of 73% similar units. The method of monitoring and evaluation of cultivated land IGCI proposed in this paper has a potential in cultivated land quality level monitoring and evaluation in China. Key words: remote sensing, evapotranspiration, MODIS cultivated land quality, irrigation guarantee capability Authors: Chao Zhang, Jianxi Huang, Li Li, Hongshuo Wang, Dehai Zhu China Agricultural University zhangchaobj@gmail.com

  13. Irrigation dynamics associated with positive pressure, apical negative pressure and passive ultrasonic irrigations: a computational fluid dynamics analysis.

    PubMed

    Chen, José Enrique; Nurbakhsh, Babak; Layton, Gillian; Bussmann, Markus; Kishen, Anil

    2014-08-01

    Complexities in root canal anatomy and surface adherent biofilm structures remain as challenges in endodontic disinfection. The ability of an irrigant to penetrate into the apical region of a canal, along with its interaction with the root canal walls, will aid in endodontic disinfection. The aim of this study was to qualitatively examine the irrigation dynamics of syringe irrigation with different needle tip designs (open-ended and closed-ended), apical negative pressure irrigation with the EndoVac® system, and passive ultrasonic-assisted irrigation, using a computational fluid dynamics model. Syringe-based irrigation with a side-vented needle showed a higher wall shear stress than the open-ended but was localised to a small region of the canal wall. The apical negative pressure mode of irrigation generated the lowest wall shear stress, while the passive-ultrasonic irrigation group showed the highest wall shear stress along with the greatest magnitude of velocity. © 2013 The Authors. Australian Endodontic Journal © 2013 Australian Society of Endodontology.

  14. Irrigated areas of India derived using MODIS 500 m time series for the years 2001-2003

    USGS Publications Warehouse

    Dheeravath, V.; Thenkabail, P.S.; Chandrakantha, G.; Noojipady, P.; Reddy, G.P.O.; Biradar, C.M.; Gumma, M.K.; Velpuri, M.

    2010-01-01

    The overarching goal of this research was to develop methods and protocols for mapping irrigated areas using a Moderate Resolution Imaging Spectroradiometer (MODIS) 500 m time series, to generate irrigated area statistics, and to compare these with ground- and census-based statistics. The primary mega-file data-cube (MFDC), comparable to a hyper-spectral data cube, used in this study consisted of 952 bands of data in a single file that were derived from MODIS 500 m, 7-band reflectance data acquired every 8-days during 2001-2003. The methods consisted of (a) segmenting the 952-band MFDC based not only on elevation-precipitation-temperature zones but on major and minor irrigated command area boundaries obtained from India's Central Board of Irrigation and Power (CBIP), (b) developing a large ideal spectral data bank (ISDB) of irrigated areas for India, (c) adopting quantitative spectral matching techniques (SMTs) such as the spectral correlation similarity (SCS) R2-value, (d) establishing a comprehensive set of protocols for class identification and labeling, and (e) comparing the results with the National Census data of India and field-plot data gathered during this project for determining accuracies, uncertainties and errors. The study produced irrigated area maps and statistics of India at the national and the subnational (e.g., state, district) levels based on MODIS data from 2001-2003. The Total Area Available for Irrigation (TAAI) and Annualized Irrigated Areas (AIAs) were 113 and 147 million hectares (MHa), respectively. The TAAI does not consider the intensity of irrigation, and its nearest equivalent is the net irrigated areas in the Indian National Statistics. The AIA considers intensity of irrigation and is the equivalent of "irrigated potential utilized (IPU)" reported by India's Ministry of Water Resources (MoWR). The field-plot data collected during this project showed that the accuracy of TAAI classes was 88% with a 12% error of omission and 32% of error of commission. Comparisons between the AIA and IPU produced an R2-value of 0.84. However, AIA was consistently higher than IPU. The causes for differences were both in traditional approaches and remote sensing. The causes of uncertainties unique to traditional approaches were (a) inadequate accounting of minor irrigation (groundwater, small reservoirs and tanks), (b) unwillingness to share irrigated area statistics by the individual Indian states because of their stakes, (c) absence of comprehensive statistical analyses of reported data, and (d) subjectivity involved in observation-based data collection process. The causes of uncertainties unique to remote sensing approaches were (a) irrigated area fraction estimate and related sub-pixel area computations and (b) resolution of the imagery. The causes of uncertainties common in both traditional and remote sensing approaches were definitions and methodological issues. ?? 2009 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS).

  15. Online decision support based on modeling with the aim of increased irrigation efficiency

    NASA Astrophysics Data System (ADS)

    Dövényi-Nagy, Tamás; Bakó, Károly; Molnár, Krisztina; Rácz, Csaba; Vasvári, Gyula; Nagy, János; Dobos, Attila

    2015-04-01

    The significant changes in the structure of ownership and control of irrigation infrastructure in the past decades resultted in the decrease of total irrigable and irrigated area (Szilárd, 1999). In this paper, the development of a model-based online service is described whose aim is to aid reasonable irrigation practice and increase water use efficiency. In order to establish a scientific background for irrigation, an agrometeorological station network has been built up by the Agrometeorological and Agroecological Monitoring Centre. A website has been launched in order to provide direct access for local agricultural producers to both the measured weather parameters and results of model based calculations. The public site provides information for general use, registered partners get a handy model based toolkit for decision support at the plot level concerning irrigation, plant protection or frost forecast. The agrometeorological reference station network was established in the recent years by the Agrometeorological and Agroecological Monitoring Centre and is distributed to cover most of the irrigated cropland areas of Hungary. From the spatial aspect, the stations have been deployed mainly in Eastern Hungary with concentrated irrigation infrastructure. The meteorological stations' locations have been carefully chosen to represent their environment in terms of soil, climatic and topographic factors, thereby assuring relevant and up-to-date input data for the models. The measured parameters range from classic meteorological data (air temperature, relative humidity, solar irradiation, wind speed etc.) to specific data which are not available from other services in the region, such as soil temperature, soil water content in multiple depths and leaf wetness. In addition to the basic grid of reference stations, specific stations under irrigated conditions have been deployed to calibrate and validate the models. A specific modeling framework (MetAgro) has been developed to allow the integration of several public available models and algorithms adapted to local climate (Rácz et al., 2013). The service, the server side framework, scripts and the front-end, providing access to the measured and modeled data, are based on own developments or free available and/or open source softwares and services like Apache, PHP, MySQL and Google Maps API. MetAgro intends to accomplish functionalities of three different areas of usage: research, education and practice. The members differ in educational background, knowledge of models and possibilities to access relevant input data. The system and interfaces must reflect these differences that is accomplished by the degradation of modeling: choosing the place of the farm and the crop already gives some general results, but with every additional parameter given the results are more reliable. The system 'MetAgro' provides a basis for improved decision-making with regard to irrigation on cropland. Based on experiences and feedback, the online application was proved to be useful in the design and practice of reasonable irrigation. In addition to its use in irrigation practice, MetAgro is also a valuable tool for research and education.

  16. A farm-level precision land management framework based on integer programming

    PubMed Central

    Li, Qi; Hu, Guiping; Jubery, Talukder Zaki; Ganapathysubramanian, Baskar

    2017-01-01

    Farmland management involves several planning and decision making tasks including seed selection and irrigation management. A farm-level precision farmland management model based on mixed integer linear programming is proposed in this study. Optimal decisions are designed for pre-season planning of crops and irrigation water allocation. The model captures the effect of size and shape of decision scale as well as special irrigation patterns. The authors illustrate the model with a case study on a farm in the state of California in the U.S. and show the model can capture the impact of precision farm management on profitability. The results show that threefold increase of annual net profit for farmers could be achieved by carefully choosing irrigation and seed selection. Although farmers could increase profits by applying precision management to seed or irrigation alone, profit increase is more significant if farmers apply precision management on seed and irrigation simultaneously. The proposed model can also serve as a risk analysis tool for farmers facing seasonal irrigation water limits as well as a quantitative tool to explore the impact of precision agriculture. PMID:28346499

  17. A global approach to estimate irrigated areas - a comparison between different data and statistics

    NASA Astrophysics Data System (ADS)

    Meier, Jonas; Zabel, Florian; Mauser, Wolfram

    2018-02-01

    Agriculture is the largest global consumer of water. Irrigated areas constitute 40 % of the total area used for agricultural production (FAO, 2014a) Information on their spatial distribution is highly relevant for regional water management and food security. Spatial information on irrigation is highly important for policy and decision makers, who are facing the transition towards more efficient sustainable agriculture. However, the mapping of irrigated areas still represents a challenge for land use classifications, and existing global data sets differ strongly in their results. The following study tests an existing irrigation map based on statistics and extends the irrigated area using ancillary data. The approach processes and analyzes multi-temporal normalized difference vegetation index (NDVI) SPOT-VGT data and agricultural suitability data - both at a spatial resolution of 30 arcsec - incrementally in a multiple decision tree. It covers the period from 1999 to 2012. The results globally show a 18 % larger irrigated area than existing approaches based on statistical data. The largest differences compared to the official national statistics are found in Asia and particularly in China and India. The additional areas are mainly identified within already known irrigated regions where irrigation is more dense than previously estimated. The validation with global and regional products shows the large divergence of existing data sets with respect to size and distribution of irrigated areas caused by spatial resolution, the considered time period and the input data and assumption made.

  18. A GIS-based assessment of groundwater suitability for irrigation purposes in flat areas of the wet Pampa plain, Argentina.

    PubMed

    Romanelli, Asunción; Lima, María Lourdes; Quiroz Londoño, Orlando Mauricio; Martínez, Daniel Emilio; Massone, Héctor Enrique

    2012-09-01

    The Pampa in Argentina is a large plain with a quite obvious dependence on agriculture, water availability and its quality. It is a sensitive environment due to weather changes and slope variations. Supplementary irrigation is a useful practice for compensating the production in the zone. However, potential negative impacts of this type of irrigation in salinization and sodification of soils are evident. Most conventional methodologies for assessing water irrigation quality have difficulties in their application in the region because they do not adjust to the defined assumptions for them. Consequently, a new GIS-based methodology integrating multiparametric data was proposed for evaluating and delineating groundwater suitability zones for irrigation purposes in flat areas. Hydrogeological surveys including water level measurements, groundwater samples for chemical analysis and electrical conductivity (EC) measurements were performed. The combination of EC, sodium adsorption ratio, residual sodium carbonate, slopes and hydraulic gradient parameters generated an irrigation water index (IWI). With the integration of the IWI 1 to 3 classes (categories of suitable waters for irrigation) and the aquifer thickness the restricted irrigation water index (RIWI) was obtained. The IWI's index application showed that 61.3 % of the area has "Very high" to "Moderate" potential for irrigation, while the 31.4 % of it has unsuitable waters. Approximately, 46 % of the tested area has high suitability for irrigation and moderate groundwater availability. This proposed methodology has advantages over traditional methods because it allows for better discrimination in homogeneous areas.

  19. Mapping Irrigated Areas in the Tunisian Semi-Arid Context with Landsat Thermal and VNIR Data Imagery

    NASA Astrophysics Data System (ADS)

    Rivalland, Vincent; Drissi, Hsan; Simonneaux, Vincent; Tardy, Benjamin; Boulet, Gilles

    2016-04-01

    Our study area is the Merguellil semi-arid irrigated plain in Tunisia, where the water resource management is an important stake for governmental institutions, farmer communities and more generally for the environment. Indeed, groundwater abstraction for irrigation is the primary cause of aquifer depletion. Moreover, unregistered pumping practices are widespread and very difficult to survey by authorities. Thus, the identification of areas actually irrigated in the whole plain is of major interest. In order to map the irrigated areas, we tried out a methodology based on the use of Landsat 7 and 8 Land Surface Temperature (LST) data issued from atmospherically corrected thermal band using the LANDARTs Tool jointly with the NDVI vegetation indices obtained from visible ane near infrared (VNIR) bands. For each Landsat acquisition during the years 2012 to 2014, we computed a probability of irrigation based on the location of the pixel in the NDVI - LST space. Basically for a given NDVI value, the cooler the pixel the higher its probability to be irrigated is. For each date, pixels were classified in seven bins of irrigation probability ranges. Pixel probabilities for each date were then summed over the study period resulting in a probability map of irrigation. Comparison with ground data shows a consistent identification of irrigated plots and supports the potential operational interest of the method. However, results were hampered by the low Landsat LST data availability due to clouds and the inadequate revisit frequency of the sensor.

  20. Phenolic compounds and vitamins in wild and cultivated apricot (Prunus armeniaca L.) fruits grown in irrigated and dry farming conditions.

    PubMed

    Kan, Tuncay; Gundogdu, Muttalip; Ercisli, Sezai; Muradoglu, Ferhad; Celik, Ferit; Gecer, Mustafa Kenan; Kodad, Ossama; Zia-Ul-Haq, Muhammad

    2014-09-23

    Turkey is the main apricot producer in the world and apricots have been produced under both dry and irrigated conditions in the country. In this study, phenolic compounds and vitamins in fruits of one wild (Zerdali) and three main apricot cultivars ('Cataloglu', 'Hacihaliloglu' and 'Kabaasi') grown in both dry and irrigated conditions in Malatya provinces in Turkey were investigated. The findings indicated that higher content of phenolic compounds and vitamins was found in apricot fruits grown in irrigated conditions. Among the cultivars, 'Cataloglu' had the highest rutin contents both in irrigated and dry farming conditions as 2855 μg in irrigated and 6952 μg per 100 g dried weight base in dry conditions and the highest chlorogenic acid content in irrigated and dry farming conditions were measured in fruits of 'Hacıhaliloglu' cultivar as 7542 μg and 15251 μg per 100 g dried weight base. Vitamin C contents in homogenates of fruit flesh and skin was found to be higher than β-caroten, retinol, vitamin E and lycopen contents in apricot fruits both in irrigated and dry farming conditions. The results suggested that apricot fruits grown in both dry and irrigated conditions had high health benefits phytochemicals and phytochemical content varied among cultivars and irrigation conditions as well. However, more detailed biological and pharmacological studies are needed for the demonstration and clarification of health benefits of apricot fruits.

  1. Design and implementation of expert decision system in Yellow River Irrigation

    NASA Astrophysics Data System (ADS)

    Fuping, Wang; Bingbing, Lei; Jie, Pan

    2018-03-01

    How to make full use of water resources in the Yellow River irrigation is a problem needed to be solved urgently. On account of the different irrigation strategies in various growth stages of wheat, this paper proposes a novel irrigation expert decision system basing on fuzzy control technique. According to the control experience, expert knowledge and MATLAB simulation optimization, we obtain the irrigation fuzzy control table stored in the computer memory. The controlling irrigation is accomplished by reading the data from fuzzy control table. The experimental results show that the expert system can be used in the production of wheat to achieve timely and appropriate irrigation, and ensure that wheat growth cycle is always in the best growth environment.

  2. Sub-pixel Area Calculation Methods for Estimating Irrigated Areas.

    PubMed

    Thenkabailc, Prasad S; Biradar, Chandrashekar M; Noojipady, Praveen; Cai, Xueliang; Dheeravath, Venkateswarlu; Li, Yuanjie; Velpuri, Manohar; Gumma, Muralikrishna; Pandey, Suraj

    2007-10-31

    The goal of this paper was to develop and demonstrate practical methods forcomputing sub-pixel areas (SPAs) from coarse-resolution satellite sensor data. Themethods were tested and verified using: (a) global irrigated area map (GIAM) at 10-kmresolution based, primarily, on AVHRR data, and (b) irrigated area map for India at 500-mbased, primarily, on MODIS data. The sub-pixel irrigated areas (SPIAs) from coarse-resolution satellite sensor data were estimated by multiplying the full pixel irrigated areas(FPIAs) with irrigated area fractions (IAFs). Three methods were presented for IAFcomputation: (a) Google Earth Estimate (IAF-GEE); (b) High resolution imagery (IAF-HRI); and (c) Sub-pixel de-composition technique (IAF-SPDT). The IAF-GEE involvedthe use of "zoom-in-views" of sub-meter to 4-meter very high resolution imagery (VHRI)from Google Earth and helped determine total area available for irrigation (TAAI) or netirrigated areas that does not consider intensity or seasonality of irrigation. The IAF-HRI isa well known method that uses finer-resolution data to determine SPAs of the coarser-resolution imagery. The IAF-SPDT is a unique and innovative method wherein SPAs aredetermined based on the precise location of every pixel of a class in 2-dimensionalbrightness-greenness-wetness (BGW) feature-space plot of red band versus near-infraredband spectral reflectivity. The SPIAs computed using IAF-SPDT for the GIAM was within2 % of the SPIA computed using well known IAF-HRI. Further the fractions from the 2 methods were significantly correlated. The IAF-HRI and IAF-SPDT help to determine annualized or gross irrigated areas (AIA) that does consider intensity or seasonality (e.g., sum of areas from season 1, season 2, and continuous year-round crops). The national census based irrigated areas for the top 40 irrigated nations (which covers about 90% of global irrigation) was significantly better related (and had lesser uncertainties and errors) when compared to SPIAs than FPIAs derived using 10-km and 500-m data. The SPIAs were closer to actual areas whereas FPIAs grossly over-estimate areas. The research clearly demonstrated the value and the importance of sub-pixel areas as opposed to full pixel areas and presented 3 innovative methods for computing the same.

  3. A wireless soil moisture sensor powered by solar energy.

    PubMed

    Jiang, Mingliang; Lv, Mouchao; Deng, Zhong; Zhai, Guoliang

    2017-01-01

    In a variety of agricultural activities, such as irrigation scheduling and nutrient management, soil water content is regarded as an essential parameter. Either power supply or long-distance cable is hardly available within field scale. For the necessity of monitoring soil water dynamics at field scale, this study presents a wireless soil moisture sensor based on the impedance transform of the frequency domain. The sensor system is powered by solar energy, and the data can be instantly transmitted by wireless communication. The sensor electrodes are embedded into the bottom of a supporting rod so that the sensor can measure soil water contents at different depths. An optimal design with time executing sequence is considered to reduce the energy consumption. The experimental results showed that the sensor is a promising tool for monitoring moisture in large-scale farmland using solar power and wireless communication.

  4. Soil CO2 emissions in terms of irrigation management in an agricultural soil

    NASA Astrophysics Data System (ADS)

    Zornoza, Raúl; Acosta, José A.; María de la Rosa, José; Faz, Ángel; Domingo, Rafael; Pérez-Pastor, Alejandro; Ángeles Muñoz, María

    2014-05-01

    Irrigation water restrictions in the Mediterranean area are reaching worrying proportions and represent a serious threat to traditional crops and encourage the movement of people who choose to work in other activities. This situation has created a growing interest in water conservation, particularly among practitioners of irrigated agriculture, the main recipient of water resources (>80%). For these and other reasons, the scientific and technical irrigation scheduling of water use to maintain and even improve harvest yield and quality has been and will remain a major challenge for irrigated agriculture. Apart from environmental and economic benefits by water savings, deficit irrigation may contribute to reduce soil CO2 emissions and enhance C sequestration in soils. The reduction of soil moisture levels decreases microbial activity, with the resulting slowing down of organic matter mineralization. Besides, the application of water by irrigation may increment the precipitation rate of carbonates, favoring the storage of C, but depending on the source of calcium or bicarbonate, the net reaction can be either storage or release of C. Thus, the objective of this study was to assess if deficit irrigation, besides contributing to water savings, can reduce soil CO2 emissions and favor the accumulation of C in soils in stable forms. The experiment was carried out along 2012 in a commercial orchard from southeast Spain cultivated with nectarine trees (Prunus persica cv. 'Viowhite'). The irrigation system was drip localized. Three irrigation treatments were assayed: a control (CT), irrigated to satisfy the total hydric needs of the crop; a first deficit irrigation (DI1), irrigated as CT except for postharvest period (16 June - 28 October) were 50% of CT was applied; and a second deficit irrigation (DI2), irrigated as DI1, except for two periods in which irrigation was suppressed (16 June-6 July and 21 July-17 August). Each treatment was setup in triplicate, randomly distributed in blocks. Each repetition had 15 rows with 15 trees per row. Soil CO2 emissions, moisture and temperature were monitored every 15 days. A soil sampling (0-30 cm) was carried out every three months, to determine the evolution of organic carbon, recalcitrant carbon, labile and soluble carbon, inorganic carbon, microbial biomass carbon, β-glucosidase and arylesterase enzyme activities, and organic functional groups measured by Fourier transform infrared spectroscopy (FTIR). A soil fractionation was carried out in all samples (<50, 50-250, 250-850, >2000 µm) to assess the weight and carbon content of each particles fraction in terms of irrigation treatments. Results showed that the application of deficit caused a significant decrease in CO2 emission rates, mainly in DI2, with rates 10 µg CO2-C m-2 s-1 lower than CT during this deficit period. When cumulative CO2-C released during one year was estimated, it was verified that water deficit contributed to decreases in the release of CO2, with a total release of 410 g CO2-C m-2 in CT, 355 g CO2-C m-2 in DI1, and 251 g CO2-C m-2 in DI2. This last treatment has supposed an annual reduction of 159 g CO2-C m-2 regarding CT. Soil properties, contrarily, showed no significant differences among treatments, with similar values in the C fractions and organic carbon quality, with an average organic C content of 4.5 kg m-2, 30 kg m-2 of inorganic C, a recalcitrance index of 57%, 1.40% of organic compounds solubility index and 160 g m-2 of microbial biomass C. There were no differences among particle sizes weigh and organic or inorganic carbon contents either. Thus, since no differences in quantity and quality of organic carbon was assess in soil with regard to irrigation treatment, it seems that longer periods are needed to assess shifts in soil properties related to carbon sequestration. Key words: carbon sequestration, CO2 emissions, organic carbon quality, irrigation

  5. Optimization of irrigation water in stone fruit and table grapes

    NASA Astrophysics Data System (ADS)

    de la Rosa, Jose Mª; Castillo, Cristina; Temnani, Abdel; Pérez-Pastor, Alejandro

    2017-04-01

    In water scarcity areas, it must be highlighted that the maximum productions of the crops do not necessarily imply maximum profitability. Therefore, during the last years a special interest in the development of deficit irrigation strategies based on significant reductions of the seasonal ET without affecting production or quality has been observed. The strategies of regulated deficit irrigation (RDI) are based on the reduction of water supply during non critical periods, the covering of water needs during critical periods and maximizing, at the same time, the production by unit of applied water. The main objective of this experiment was to implement, demonstrate and disseminate a sustainable irrigation strategy based on deficit irrigation to promote its large scale acceptance and use in woody crops in Mediterranean agroecosystems, characterized by water scarcity, without affecting the quality standards demanded by exportation markets. Five demonstration plots were established in representative crops of the irrigating community of Campotejar (Murcia, Spain): i) Peach trees, cv. catherina in the "Periquitos" farm; ii) Apricot trees, cv. "Red Carlet" in "La Hoya del Fenazar" farm; iii) Nectarine trees, cv. Viowhite in "Agrícola Don Fernando" farm; iv) Table grape, cv "Crimson Seedless" in "La Hornera" farm; and v) Paraguayan cv. carioca in "The Hornera" farm. In each demonstration plot, at least two irrigation treatments were established: i) Control (CTL), irrigated to ensure non-limiting water conditions (120% of crop evapotranspiration) and ii) Regulated deficit irrigation (RDI) irrigated as CTL during critical periods and decreasing irrigation in non-critical periods. The plant water status indicators evaluated were midday stem water potential and Trunk Diameter Fluctuation derived indices: maximum daily shrinkage (MDS) and trunk daily growth rate (TGR); vegetative growth of the different crops from trunk diameter and pruning dry weight, fruit growth and fruit fresh weight, yield and quality of the harvest were also measured. The irrigation applied in CTL during the 2015-16 was 6770, 7691, 6673, 6774 and 7020 m3 ha-1 year-1 while the decrease in irrigation in RDIs was 28, 40, 12, 34 and 25% for nectarine, peach, apricot, paraguayan and table grapes, respectively. The plant water status indicators used were sensitive to water deficit and showed moderate water stress in RDI. The water deficit affected, to a greater or lesser extent, the vegetative growth of the crop. On the other hand, the yield and fruit quality parameters (size, firmness, total soluble solids, acidity and maturity index) at harvest were not affected by the deficit irrigation. In this way, the water use efficiency increased significantly in RDI treatments. From the information obtained in the demonstration plots irrigation recommendations were made to the farmers of the irrigation community through the project web page. Farmers in the irrigation community are using this information to manage irrigation on their farms, thus improving the profitability of their crops. Acknowledgements This work has been funded by the European Union LIFE+ project IRRIMAN (LIFE13 ENV/ES/000539).

  6. Water Stress & Biomass Monitoring and SWAP Modeling of Irrigated Crops in Saratov Region of Russia

    NASA Astrophysics Data System (ADS)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2016-04-01

    Development of modern irrigation technologies are balanced between the need to maximize production and the need to minimize water use which provides harmonious interaction of irrigated systems with closely-spaced environment. Thus requires an understanding of complex interrelationships between landscape and underground of irrigated and adjacent areas in present and future conditions aiming to minimize development of negative scenarios. In this way in each irrigated areas a combination of specific factors and drivers must be recognized and evaluated. Much can be obtained by improving the efficiency use of water applied for irrigation. Modern RS monitoring technologies offers the opportunity to develop and implement an effective irrigation control program permitting today to increase efficiency of irrigation water use. These technologies provide parameters with both high temporal and adequate spatial needed to monitor agrohydrological parameters of irrigated agricultural crops. Combination of these parameters with meteorological and biophysical parameters can be used to estimate crop water stress defined as ratio between actual (ETa) and potential (ETc) evapotranspiration. Aggregation of actual values of crop water stress with biomass (yield) data predicted by agrohydrological model based on weather forecasting and scenarios of irrigation water application may be used for indication of both rational timing and amount of irrigation water allocation. This type of analysis facilitating an efficient water management can be easily extended to irrigated areas by developing maps of water efficiency application serving as an irrigation advice system for farmers at his fields and as a decision support tool for the authorities on the large perimeter irrigation management. This contribution aims to communicate an illustrative explanation about the practical application of a data combination of agrohydrological modeling and ground & space based monitoring. For this aim some results of analyzing water stress during growing season of 2012 and yielded biomass of crops three types of crops alfalfa, corn and soya irrigated by sprinkling machines at left bank of Volga River at Saratov Region of Russia are presented and analyzed. For that a combination of data received from satellite, local meteorological station and farmers as well as SWAP model was used. Analyze of data sets of monitored water deficit of each crop averaged for irrigation period was done by linear regression with yielded biomass values. Following analyze of effectiveness of irrigation water application was done by SWAP agrohydrological model.

  7. Temporal and spatial water use on irrigated and nonirrigated pasture-based dairy farms.

    PubMed

    Higham, C D; Horne, D; Singh, R; Kuhn-Sherlock, B; Scarsbrook, M R

    2017-08-01

    Robust information for water use on pasture-based dairy farms is critical to farmers' attempts to use water more efficiently and the improved allocation of freshwater resources to dairy farmers. To quantify the water requirements of dairy farms across regions in a practicable manner, it will be necessary to develop predictive models. The objectives of this study were to compare water use on a group of irrigated and nonirrigated farms, validate existing water use models using the data measured on the group of nonirrigated farms, and modify the model so that it can be used to predict water use on irrigated dairy farms. Water use data were collected on a group of irrigated dairy farms located in the Canterbury, New Zealand, region with the largest area under irrigation. The nonirrigated farms were located in the Manawatu region. The amount of water used for irrigation was almost 52-fold greater than the amount of all other forms of water use combined. There were large differences in measured milking parlor water use, stock drinking water, and leakage rates between the irrigated and nonirrigated farms. As expected, stock drinking water was lower on irrigated dairy farms. Irrigation lowers the dry matter percentage of pasture, ensuring that the amount of water ingested from pasture remains high throughout the year, thereby reducing the demand for drinking water. Leakage rates were different between the 2 groups of farms; 47% of stock drinking water was lost as leakage on nonirrigated farms, whereas leakage on the irrigated farms equated to only 13% of stock drinking water. These differences in leakage were thought to be related to regional differences rather than differences in irrigated versus nonirrigated farms. Existing models developed to predict milking parlor, corrected stock drinking water, and total water use on nonirrigated pasture-based dairy farms in a previous related study were tested on the data measured in the present research. As expected, these models performed well for nonirrigated dairy farms but provided poor predictive power for irrigated farms. Partial least squares regression models were developed specifically to simulate corrected stock drinking water, milking parlor water, and total water use on irrigated dairy farms. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Comparison of Irrigation Water Use Estimates Calculated from Remotely Sensed Irrigated Acres and State Reported Irrigated Acres in the Lake Altus Drainage Basin, Oklahoma and Texas, 2000 Growing Season

    USGS Publications Warehouse

    Masoner, J.R.; Mladinich, C.S.; Konduris, A.M.; Smith, S. Jerrod

    2003-01-01

    Increased demand for water in the Lake Altus drainage basin requires more accurate estimates of water use for irrigation. The U.S. Geological Survey, in cooperation with the U.S. Bureau of Reclamation, is investigating new techniques to improve water-use estimates for irrigation purposes in the Lake Altus drainage basin. Empirical estimates of reference evapotranspiration, crop evapotranspiration, and crop irrigation water requirements for nine major crops were calculated from September 1999 to October 2000 using a solar radiation-based evapotranspiration model. Estimates of irrigation water use were calculated using remotely sensed irrigated crop acres derived from Landsat 7 Enhanced Thematic Mapper Plus imagery and were compared with irrigation water-use estimates calculated from irrigated crop acres reported by the Oklahoma Water Resources Board and the Texas Water Development Board for the 2000 growing season. The techniques presented will help manage water resources in the Lake Altus drainage basin and may be transferable to other areas with similar water management needs. Irrigation water use calculated from the remotely sensed irrigated acres was estimated at 154,920 acre-feet; whereas, irrigation water use calculated from state reported irrigated crop acres was 196,026 acre-feet, a 23 percent difference. The greatest difference in irrigation water use was in Carson County, Texas. Irrigation water use for Carson County, Texas, calculated from the remotely sensed irrigated acres was 58,555 acrefeet; whereas, irrigation water use calculated from state reported irrigated acres was 138,180 acre-feet, an 81 percent difference. The second greatest difference in irrigation water use occurred in Beckham County, Oklahoma. Differences between the two irrigation water use estimates are due to the differences of irrigated crop acres derived from the mapping process and those reported by the Oklahoma Water Resources Board and Texas Water Development Board.

  9. Overview of advances in water management in agricultural production:Sensor based irrigation management

    USDA-ARS?s Scientific Manuscript database

    Technological advances in irrigated agriculture are crucial to meeting the challenge of increasing demand for agricultural products given limited quality and quantity of water resources for irrigation, impacts of climate variability, and the need to reduce environmental impacts. Multidisciplinary ap...

  10. Irrigation depth far exceeds water uptake depth in an oasis cropland in the middle reaches of Heihe River Basin

    PubMed Central

    Yang, Bin; Wen, Xuefa; Sun, Xiaomin

    2015-01-01

    Agricultural irrigation in the middle reaches of the Heihe River Basin consumes approximately 80% of the total river water. Whether the irrigation depth matches the water uptake depth of crops is one of the most important factors affecting the efficiency of irrigation water use. Our results indicated that the influence of plastic film on soil water δ18O was restricted to 0–30 cm soil depth. Based on a Bayesian model (MixSIR), we found that irrigated maize acquired water preferentially from 0–10 cm soil layer, with a median uptake proportion of 87 ± 15%. Additionally, maize utilised a mixture of irrigation and shallow soil water instead of absorbing the irrigation water directly. However, only 24.7 ± 5.5% of irrigation water remained in 0–10 cm soil layer, whereas 29.5 ± 2.8% and 38.4 ± 3.3% of the irrigation water infiltrated into 10–40 cm and 40–80 cm layers. During the 4 irrigation events, approximately 39% of the irrigation and rainwater infiltrated into soil layers below 80 cm. Reducing irrigation amount and developing water-saving irrigation methods will be important strategies for improving the efficiency of irrigation water use in this area. PMID:26463010

  11. Water rights of the head reach farmers in view of a water supply scenario at the extension area of the Babai Irrigation Project, Nepal

    NASA Astrophysics Data System (ADS)

    Adhikari, B.; Verhoeven, R.; Troch, P.

    The farmer managed irrigation systems (FMIS) represent those systems which are constructed and operated solely by the farmers applying their indigenous technology. The FMIS generally outperform the modern irrigation systems constructed and operated by the government agencies with regard to the water delivery effectiveness, agricultural productivity etc., and the presence of a sound organization responsible to run the FMIS, often referred to as the ‘social capital’, is the key to this success. This paper studies another important aspect residing in the FMIS: potentials to expand the irrigation area by means of their proper rehabilitation and modernization. Taking the case study of the Babai Irrigation Project in Nepal, it is demonstrated that the flow, which in the past was used to irrigate the 5400 ha area covered by three FMIS, can provide irrigation to an additional 8100 ha in the summer, 4180 ha vegetables in the winter and 1100 ha maize in the spring season after the FMIS rehabilitation. The “priority water rights” of the FMIS part have been evaluated based on relevant crop water requirement calculations and is found to be equal to 85.4 million m 3 per year. Consequently, the dry season irrigation strategy at the extension area could be worked out based on the remaining flow. By storing the surplus discharge of the monsoon and autumn in local ponds, and by consuming them in dry period combined with nominal partial irrigation practice, wheat and mustard can be cultivated over about 4000 ha of the extension area. Furthermore, storage and surface irrigation both contribute to the groundwater recharge. The conjunctive use of ground, surface and harvested water might be the mainstream in the future for a sustainable irrigation water management in the region.

  12. Asian irrigation, African rain: Remote impacts of irrigation

    NASA Astrophysics Data System (ADS)

    Vrese, Philipp; Hagemann, Stefan; Claussen, Martin

    2016-04-01

    Irrigation is not only vital for global food security but also constitutes an anthropogenic land use change, known to have strong effects on local hydrological and energy cycles. Using the Max Planck Institute for Meteorology's Earth System Model, we show that related impacts are not confined regionally but that possibly as much as 40% of the present-day precipitation in some of the arid regions in Eastern Africa are related to irrigation-based agriculture in Asia. Irrigation in South Asia also substantially influences the climate throughout Southeast Asia and China via the advection of water vapor and by altering the Asian monsoon. The simulated impact of irrigation on remote regions is sensitive to the magnitude of the irrigation-induced moisture flux. Therefore, it is likely that a future extension or decline of irrigated areas due to increasing food demand or declining fresh water resources will also affect precipitation and temperatures in remote regions.

  13. Grower demand for sensor-controlled irrigation

    NASA Astrophysics Data System (ADS)

    Lichtenberg, Erik; Majsztrik, John; Saavoss, Monica

    2015-01-01

    Water scarcity is likely to increase in the coming years, making improvements in irrigation efficiency increasingly important. An emerging technology that promises to increase irrigation efficiency substantially is a wireless irrigation sensor network that uploads sensor data into irrigation management software, creating an integrated system that allows real-time monitoring and control of moisture status that has been shown in experimental settings to reduce irrigation costs, lower plant loss rates, shorten production times, decrease pesticide application, and increase yield, quality, and profit. We use an original survey to investigate likely initial acceptance, ceiling adoption rates, and profitability of this new sensor network technology in the nursery and greenhouse industry. We find that adoption rates for a base system and demand for expansion components are decreasing in price, as expected. The price elasticity of the probability of adoption suggests that sensor networks are likely to diffuse at a rate somewhat greater than that of drip irrigation. Adoption rates for a base system and demand for expansion components are increasing in specialization in ornamental production: growers earning greater shares of revenue from greenhouse and nursery operations are willing to pay more for a base system and are willing to purchase larger numbers of expansion components at any given price. We estimate that growers who are willing to purchase a sensor network expect investment in this technology to generate significant profit, consistent with findings from experimental studies.

  14. Irrigated Agriculture in Morocco: An Agent-Based Model of Adaptation and Decision Making Amid Increasingly Frequent Drought Events

    NASA Astrophysics Data System (ADS)

    Norton, M.

    2015-12-01

    In the past 100 years, Morocco has undertaken a heavy investment in developing water infrastructure that has led to a dramatic expansion of irrigated agriculture. Irrigated agriculture is the primary user of water in many arid countries, often accounting for 80-90% of total water usage. Irrigation is adopted by farmers not only because it leads to increased production, but also because it improves resilience to an uncertain climate. However, the Mediterranean region as a whole has also seen an increase in the frequency and severity of drought events. These droughts have had a dramatic impact on farmer livelihoods and have led to a number of coping strategies, including the adoption or disadoption of irrigation. In this study, we use a record of the annual extent of irrigated agriculture in Morocco to model the effect of drought on the extent of irrigated agriculture. Using an agent-based socioeconomic model, we seek to answer the following questions: 1) Do farmers expand irrigated agriculture in response to droughts? 2) Do drought events entail the removal of perennial crops like orchards? 3) Can we detect the retreat of irrigated agriculture in the more fragile watersheds of Morocco? Understanding the determinants of irrigated crop expansion and contractions will help us understand how agro-ecological systems transition from 20th century paradigms of expansion of water supply to a 21st century paradigm of water use efficiency. The answers will become important as countries learn how to manage water in new climate regimes characterized by less reliable and available precipitation.

  15. Design of Remote Monitoring System of Irrigation based on GSM and ZigBee Technology

    NASA Astrophysics Data System (ADS)

    Xiao xi, Zheng; Fang, Zhao; Shuaifei, Shao

    2018-03-01

    To solve the problems of low level of irrigation and waste of water resources, a remote monitoring system for farmland irrigation based on GSM communication technology and ZigBee technology was designed. The system is composed of sensors, GSM communication module, ZigBee module, host computer, valve and so on. The system detects and closes the pump and the electromagnetic valve according to the need of the system, and transmits the monitoring information to the host computer or the user’s Mobile phone through the GSM communication network. Experiments show that the system has low power consumption, friendly man-machine interface, convenient and simple. It can monitor agricultural environment remotely and control related irrigation equipment at any time and place, and can better meet the needs of remote monitoring of farmland irrigation.

  16. Improving irrigation and groundwater parameterizations in the Community Land Model (CLM) using in-situ observations and satellite data

    NASA Astrophysics Data System (ADS)

    Felfelani, F.; Pokhrel, Y. N.

    2017-12-01

    In this study, we use in-situ observations and satellite data of soil moisture and groundwater to improve irrigation and groundwater parameterizations in the version 4.5 of the Community Land Model (CLM). The irrigation application trigger, which is based on the soil moisture deficit mechanism, is enhanced by integrating soil moisture observations and the data from the Soil Moisture Active Passive (SMAP) mission which is available since 2015. Further, we incorporate different irrigation application mechanisms based on schemes used in various other land surface models (LSMs) and carry out a sensitivity analysis using point simulations at two different irrigated sites in Mead, Nebraska where data from the AmeriFlux observational network are available. We then conduct regional simulations over the entire High Plains region and evaluate model results with the available irrigation water use data at the county-scale. Finally, we present results of groundwater simulations by implementing a simple pumping scheme based on our previous studies. Results from the implementation of current irrigation parameterization used in various LSMs show relatively large difference in vertical soil moisture content profile (e.g., 0.2 mm3/mm3) at point scale which is mostly decreased when averaged over relatively large regions (e.g., 0.04 mm3/mm3 in the High Plains region). It is found that original irrigation module in CLM 4.5 tends to overestimate the soil moisture content compared to both point observations and SMAP, and the results from the improved scheme linked with the groundwater pumping scheme show better agreement with the observations.

  17. Modeling irrigation behavior in groundwater systems

    NASA Astrophysics Data System (ADS)

    Foster, Timothy; Brozović, Nicholas; Butler, Adrian P.

    2014-08-01

    Integrated hydro-economic models have been widely applied to water management problems in regions of intensive groundwater-fed irrigation. However, policy interpretations may be limited as most existing models do not explicitly consider two important aspects of observed irrigation decision making, namely the limits on instantaneous irrigation rates imposed by well yield and the intraseasonal structure of irrigation planning. We develop a new modeling approach for determining irrigation demand that is based on observed farmer behavior and captures the impacts on production and water use of both well yield and climate. Through a case study of irrigated corn production in the Texas High Plains region of the United States we predict optimal irrigation strategies under variable levels of groundwater supply, and assess the limits of existing models for predicting land and groundwater use decisions by farmers. Our results show that irrigation behavior exhibits complex nonlinear responses to changes in groundwater availability. Declining well yields induce large reductions in the optimal size of irrigated area and irrigation use as constraints on instantaneous application rates limit the ability to maintain sufficient soil moisture to avoid negative impacts on crop yield. We demonstrate that this important behavioral response to limited groundwater availability is not captured by existing modeling approaches, which therefore may be unreliable predictors of irrigation demand, agricultural profitability, and resilience to climate change and aquifer depletion.

  18. IRRIMET: a web 2.0 advisory service for irrigation water management

    NASA Astrophysics Data System (ADS)

    De Michele, Carlo; Anzano, Enrico; Colandrea, Marco; Marotta, Luigi; Mula, Ileana; Pelosi, Anna; D'Urso, Guido; Battista Chirico, Giovanni

    2016-04-01

    Irrigation agriculture is one the biggest consumer of water in Europe, especially in southern regions, where it accounts for up to 70% of the total water consumption. The EU Common Agricultural Policy, combined with the Water Framework Directive, imposes to farmers and irrigation managers a substantial increase of the efficiency in the use of water in agriculture for the next decade. Irrigating according to reliable crop water requirement estimates is one of the most convincing solution to decrease agricultural water use. Here we present an innovative irrigation advisory service, applied in Campania region (Southern Italy), where a satellite assisted irrigation advisory service has been operating since 2006. The advisory service is based on the optimal combination of VIS-NIR high resolution satellite images (Landsat, Deimos, Rapideye) to map crop vigour, and high resolution numerical weather prediction for assessing the meteorological variables driving the crop water needs in the short-medium range. The advisory service is broadcasted with a simple and intuitive web app interface which makes daily real time irrigation and evapotranspiration maps and customized weather forecasts (based on Cosmo Leps model) accessible from desktop computers, tablets and smartphones.

  19. A risk assessment framework for irrigated agriculture under climate change

    NASA Astrophysics Data System (ADS)

    Ronco, P.; Zennaro, F.; Torresan, S.; Critto, A.; Santini, M.; Trabucco, A.; Zollo, A. L.; Galluccio, G.; Marcomini, A.

    2017-12-01

    In several regions, but especially in semi-arid areas, raising frequency, duration and intensity of drought events, mainly driven by climate change dynamics, are expected to dramatically reduce the current stocks of freshwater resources, limiting crop development and yield especially where agriculture largely depends on irrigation. The achievement of an affordable and sustainable equilibrium between available water resources and irrigation demand is essentially related to the planning and implementation of evidence-based adaptation strategies and actions. The present study proposed a state-of-the art conceptual framework and computational methodology to assess the potential water scarcity risk, due to changes in climate trends and variability, on irrigated croplands. The model has been tested over the irrigated agriculture of Puglia Region, a semi-arid territory with the largest agricultural production in Southern Italy. The methodology, based on the Regional Risk Assessment (RRA) approach, has been applied within a scenario-based hazard framework. Regional climate projections, under alternative greenhouse gas concentration scenarios (RCP4.5 and RCP8.5) and for two different timeframes, 2021-2050 and 2041-2070 compared to the baseline 1976-2005 period, have been used to drive hydrological simulations of river inflow to the most important reservoirs serving irrigation purposes in Puglia. The novelty of the proposed RRA-based approach does not simply rely on the concept of risk as combination of hazard, exposure and vulnerability, but rather elaborates detailed (scientific and conceptual) framing and computational description of these factors, to produce risk spatial pattern maps and related statistics distinguishing the most critical areas (risk hot spots).. The application supported the identification of the most affected areas (i.e. Capitanata Reclamation Consortia under RCP8.5 2041-2070 scenario), crops (fruit trees and vineyards), and, finally, the vulnerability pattern of irrigation systems and networks. The implemented assessment singled out future perspectives of water scarcity risk levels for irrigated agriculture by the administrative extent where individual bodies are in charge of the coordination of public and private irrigation activities (i.e. Reclamation Consortia). Based on the outcomes of the proposed methodology, tailored and knowledge-based adaptation strategies and related actions can be developed, to reduce the risk at both agronomic level (i.e. preferring crops with low vulnerability score, as olive groves) and at structural level (i.e. differentiating the water stocks and supplies and reducing losses and inefficiencies).

  20. Dynamic prescription maps for site-specific variable rate irrigation of cotton

    USDA-ARS?s Scientific Manuscript database

    A prescription map is a set of instructions that controls a variable rate irrigation (VRI) system. These maps, which may be based on prior yield, soil texture, topography, or soil electrical conductivity data, are often manually applied at the beginning of an irrigation season and remain static. The...

  1. Assessing wheat yield, Biomass, and water productivity responses to growth stage based irrigation water allocation

    USDA-ARS?s Scientific Manuscript database

    Increasing irrigated wheat yields is important to the overall profitability of limited-irrigation cropping systems in western Kansas. A simulation study was conducted to (1) validate APSIM's (Agricultural Production Systems sIMulator) ability to simulate wheat growth and yield in Kansas, and (2) app...

  2. The Utility of Discriminant Analysis for Predicting Farmers' Intentions to Participate in Farmer-Managed Irrigation Systems in Iran

    NASA Astrophysics Data System (ADS)

    Zarafshani, Kiumars; Hossien Alibaygi, Amir; Afshar, Nasrin

    Participatory irrigation management has been problematic in most parts of the world and Iran has been no exception. The purpose of this study was to assess farmers' intentions to participate in irrigation management based on selected variables using discriminant analysis. A survey questionnaire was used to collect information from a sample of Water Cooperatives in Javanrood Townships using stratified random sampling (n = 106). Results indicated that age, educational level, attitude towards PIM, irrigation performance, landholding size, agricultural and non-agricultural income affected farmers' intentions to participate in irrigation management.

  3. The role of remotely sensed and other special data for predictive modeling: the Umatilla, Oregon example

    USGS Publications Warehouse

    Loveland, Thomas R.; Johnson, Gary E.

    1983-01-01

    Landsat data and 1:24 000-scale aerial photographs were initially used to map the expansion of irrigation from 1973 to 1979 and to identify crops under irrigation in 1979. The crop data were then used with historical water requirement figures and digital topographic and hydrographic data to estimate water and power use for the 1979 irrigation season. The final project task involved production of a composite map of land suitability for irrigation development based on land cover (from Landsat), landownership, soil irrigability, slope gradient, and potential energy costs.

  4. Updates on Water Use of Pistachio Orchards Grown in the San Joaquin Valley of California on Saline Soils

    NASA Astrophysics Data System (ADS)

    Zaccaria, Daniele; Marino, Giulia; Whiting, Michael; Sanden, Blake; Ferguson, Louise; Lampinen, Bruce; Kent, Eric; Snyder, Richard; Grattan, Stephen; Little, Cayle

    2017-04-01

    Pistachio acreage is rapidly expanding in California thanks to its economic profitability and capacity to grow and produce in salt-affected soils. Our team at University of California is updating information on actual water use (ET) of mature pistachio orchards grown on saline soils under micro-irrigation methods. Actual Evapotranspiration (ETa) and Crop Coefficients (Ka) were determined for the 2015 and 2016 crop seasons on four pistachio orchards grown in the San Joaquin Valley (SJV) on grounds with increasing levels of soil-water salinity, using the residual of energy balance method with a combination of eddy covariance and surface renewal equipment. Tree canopy cover, light interception, and plant water status across the orchards were also measured and evaluated. Our preliminary results show that salinity strongly affects the tree water use, resulting in 10-30% less ET for medium to high salt-affected soils. Salinity also showed a strong effect on tree water status and light interception, as suggested by values of the Midday Stem Water Potential (ΨSWP) around 10 to 15-bar lower in salt-affected than in the control orchard, and by the intercepted Photosynthetic Active Radiation (PAR) decreasing from 75% in the control orchard to 25% in the severely salt affected grounds. The crop coefficient values we observed in this study are lower than those commonly used for irrigation scheduling in the SJV, suggesting that pistachio growers could better tailor irrigation management to the actual site-specific orchard conditions (e.g. canopy features and soil-water salinity) if they are provided updated information. Improved irrigation practices could likely lead to significant water savings and thus improve the resource-efficiency and competitiveness of pistachio production in the SJV. Keywords: Pistacia vera L., salinity, stem water potential, surface renewal, canopy cover.

  5. Satellite Estimation of Fractional Cover in Several California Specialty Crops

    NASA Technical Reports Server (NTRS)

    Johnson, Lee; Cahn, Michael; Rosevelt, Carolyn; Guzman, Alberto; Farrara, Barry; Melton, Forrest S.

    2016-01-01

    Past research in California and elsewhere has revealed strong relationships between satellite NDVI, photosynthetically active vegetation fraction (Fc), and crop evapotranspiration (ETc). Estimation of ETc can support efficiency of irrigation practice, which enhances water security and may mitigate nitrate leaching. The U.C. Cooperative Extension previously developed the CropManage (CM) web application for evaluation of crop water requirement and irrigation scheduling for several high-value specialty crops. CM currently uses empirical equations to predict daily Fc as a function of crop type, planting date and expected harvest date. The Fc prediction is transformed to fraction of reference ET and combined with reference data from the California Irrigation Management Information System to estimate daily ETc. In the current study, atmospherically-corrected Landsat NDVI data were compared with in-situ Fc estimates on several crops in the Salinas Valley during 2011-2014. The satellite data were observed on day of ground collection or were linearly interpolated across no more than an 8-day revisit period. Results will be presented for lettuce, spinach, celery, broccoli, cauliflower, cabbage, peppers, and strawberry. An application programming interface (API) allows CM and other clients to automatically retrieve NDVI and associated data from NASA's Satellite Irrigation Management Support (SIMS) web service. The SIMS API allows for queries both by individual points or user-defined polygons, and provides data for individual days or annual timeseries. Updates to the CM web app will convert these NDVI data to Fc on a crop-specific basis. The satellite observations are expected to play a support role in Salinas Valley, and may eventually serve as a primary data source as CM is extended to crop systems or regions where Fc is less predictable.

  6. Satellite Estimation of Fractional Cover in Several California Specialty Crops

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Cahn, M.; Rosevelt, C.; Guzman, A.; Lockhart, T.; Farrara, B.; Melton, F. S.

    2016-12-01

    Past research in California and elsewhere has revealed strong relationships between satellite NDVI, photosynthetically active vegetation fraction (Fc), and crop evapotranspiration (ETc). Estimation of ETc can support efficiency of irrigation practice, which enhances water security and may mitigate nitrate leaching. The U.C. Cooperative Extension previously developed the CropManage (CM) web application for evaluation of crop water requirement and irrigation scheduling for several high-value specialty crops. CM currently uses empirical equations to predict daily Fc as a function of crop type, planting date and expected harvest date. The Fc prediction is transformed to fraction of reference ET and combined with reference data from the California Irrigation Management Information System to estimate daily ETc. In the current study, atmospherically-corrected Landsat NDVI data were compared with in-situ Fc estimates on several crops in the Salinas Valley during 2011-2014. The satellite data were observed on day of ground collection or were linearly interpolated across no more than an 8-day revisit period. Results will be presented for lettuce, spinach, celery, broccoli, cauliflower, cabbage, peppers, and strawberry. An application programming interface (API) allows CM and other clients to automatically retrieve NDVI and associated data from NASA's Satellite Irrigation Management Support (SIMS) web service. The SIMS API allows for queries both by individual points or user-defined polygons, and provides data for individual days or annual timeseries. Updates to the CM web app will convert these NDVI data to Fc on a crop-specific basis. The satellite observations are expected to play a support role in Salinas Valley, and may eventually serve as a primary data source as CM is extended to crop systems or regions where Fc is less predictable.

  7. Accounting for sap flow from different parts of the root system improves the prediction of xylem ABA concentration in plants grown with heterogeneous soil moisture.

    PubMed

    Dodd, Ian C; Egea, Gregorio; Davies, William J

    2008-01-01

    When soil moisture is heterogeneous, sap flow from, and ABA status of, different parts of the root system impact on leaf xylem ABA concentration ([X-ABA]leaf). The robustness of a model for predicting [X-ABA]leaf was assessed. 'Two root-one shoot' grafted sunflower (Helianthus annuus L.) plants received either deficit irrigation (DI, each root system received the same irrigation volumes) or partial rootzone drying (PRD, only one root system was watered and the other dried the soil). Irrespective of whether relative sap flow was assessed using sap flow sensors in vivo or by pressurization of de-topped roots, each root system contributed similarly to total sap flow during DI, while sap flow from roots in drying soil declined linearly with soil water potential (Psisoil) during PRD. Although Psisoil of the irrigated pot determined the threshold Psisoil at which sap flow from roots in drying soil decreased, the slope of this decrease was independent of the wet pot Psisoil. Irrespective of whether sap was collected from the wet or dry root system of PRD plants, or a DI plant, root xylem ABA concentration increased as Psisoil declined. The model, which weighted ABA contributions of each root system according to the sap flow from each, almost perfectly explained [X-ABA] immediately above the graft union. That the model overestimated measured [X-ABA]leaf may result from changes in [X-ABA] along the transport pathway or an artefact of collecting xylem sap from detached leaves. The implications of declining sap flow through partially dry roots during PRD for the control of stomatal behaviour and irrigation scheduling are discussed.

  8. Assessing the performance of surface and subsurface drip systems on irrigation water use efficiency of citrus orchards in Spain

    NASA Astrophysics Data System (ADS)

    Amparo Martinez-Gimeno, Maria; Provenzano, Giuseppe; Bonet, Luis; Intrigliolo, Diego S.; Badal, Eduardo; Ballestrer, Carlos

    2017-04-01

    In Mediterranean countries, water scarcity represents a real environmental concern at present and, according to the current climate change models predictions, the problem will be amplified in the future. In order to deal with this issue, application of strategies aimed to optimize the water resources in agriculture and to increase water use efficiency have become essential. On the one hand, it is important the election of the appropriate irrigation system for each particular case. On the other hand, identify the best management options for that specific irrigation system is crucial to optimize the available water resources without affecting yield. When using water saving strategies, however, it is a must to monitor the soil and/or crop water status in order to know the level of stress reached by the plants and to avoid levels that could lead to detrimental effects on yield. Stem water potential, ψstem, expressing the instantaneous condition of crop water stress, is considered a robust indicator of crop water status. The main objective of this study was to assess the performance of a surface (DI) and subsurface (SDI) drip irrigation system in a citrus orchard with 7 (DI7, SDI7) or 14 emitters (DI14, SDI14) per plant, in terms of irrigation water use efficiency (IWUE) and possible amount of water saving. The experiment was carried out in 2014 and 2015 in Alberique, Spain, (39˚ 7'31" N, 0˚ 33'17" W), in a commercial orchard (Citrus clementina, Hort. ex Tan. 'Arrufatina') in which four different treatments with three replications (12 sub-plots) were prepared according to a complete randomized block design. Irrigation doses and timing were scheduled based on the estimated maximum crop evapotranspiration corrected according to measurements of ψstem and soil water content, and weather forecasts. In order to limit the maximum crop water stress, the thresholds of ψstem were assumed in the range between -0.8 and -1.0 MPa from January to June and between -1.0 and -1.2 MPa in the remaining period of the year. In each sub-plot, soil water contents at different depths were monitored with a Frequency Domain Reflectometry probe (EnviroScan, Sentek, Stepney, Australia.), whereas ψstem values were acquired approximately weekly, with a Scholander chamber (Model 600 Pressure Chamber Instrument), on leaves wrapped in bags at least one hour before measurements. At the end of each season, the number of fruit per plant, the average fruit weight, the total yield and their corresponding variability were determined for each treatment. The results showed that within both DI and SDI, treatments with the double number of emitters per plant had the highest yield, number of fruit, fruit weight and IWUE, although with no statistically significant differences. IWUE associated to DI and SDI was, on average for the two years, 6.5 and 7.4 kg/m3, respectively. The best management option was achieved with the SDI14, to which corresponded the minimum seasonal irrigation volumes, with water savings compared to DI7 of about 23% and 28% in 2014 and 2015, respectively.

  9. A comprehensive guide for designing more efficient irrigation systems with respect to application control

    NASA Astrophysics Data System (ADS)

    Khaddam, Issam; Schuetze, Niels

    2017-04-01

    The worldwide water scarcity problems are expected to aggravate due to the increasing population and the need to produce more food. Irrigated agriculture is considered the highest consumer of fresh water resources with a rate exceeds 70% of global consumption. Consequently, an improvement in the efficiency of all irrigation methods, such as furrow or drip irrigation, becomes more necessary and urgent. Therefore, a more precise knowledge about soil water distribution in the root zone and the water balance components is required. For this purpose and as a part of the SAPHIR project (Saxonian Platform for high Performance Irrigation), a 2D simulation- based study was performed with virtual field conditions. The study investigates the most important design parameters of many irrigation systems, such as irrigation intensity and duration, and shows there influence on the water distribution efficiency. Furthermore, three main soil textures are used to test the impact of the soil hydraulic properties on irrigation effectiveness. A numerous number of irrigation scenarios of each irrigation system was simulated using HYDRUS 2D. Thereafter, the results were digitally calculated, compiled and made available online in the so called "Irrigation Atlases". The irrigation atlases provide graphical results of the soil moisture and pressure head distributions in the root zone. Moreover, they contain detailed information of the water balance for all simulated scenarios. The most studies evaluate the irrigation water demands on local, regional or global scales and for that an efficient water distribution is required. In this context, the irrigation atlases can serve as a valuable tool for the implementation of planned irrigation measures.

  10. Remote Sensing for Crop Water Management: From ET Modelling to Services for the End Users

    PubMed Central

    Calera, Alfonso; Campos, Isidro; Osann, Anna; D’Urso, Guido; Menenti, Massimo

    2017-01-01

    The experiences gathered during the past 30 years support the operational use of irrigation scheduling based on frequent multi-spectral image data. Currently, the operational use of dense time series of multispectral imagery at high spatial resolution makes monitoring of crop biophysical parameters feasible, capturing crop water use across the growing season, with suitable temporal and spatial resolutions. These achievements, and the availability of accurate forecasting of meteorological data, allow for precise predictions of crop water requirements with unprecedented spatial resolution. This information is greatly appreciated by the end users, i.e., professional farmers or decision-makers, and can be provided in an easy-to-use manner and in near-real-time by using the improvements achieved in web-GIS methodologies (Geographic Information Systems based on web technologies). This paper reviews the most operational and explored methods based on optical remote sensing for the assessment of crop water requirements, identifying strengths and weaknesses and proposing alternatives to advance towards full operational application of this methodology. In addition, we provide a general overview of the tools, which facilitates co-creation and collaboration with stakeholders, paying special attention to these approaches based on web-GIS tools. PMID:28492515

  11. Remote Sensing for Crop Water Management: From ET Modelling to Services for the End Users.

    PubMed

    Calera, Alfonso; Campos, Isidro; Osann, Anna; D'Urso, Guido; Menenti, Massimo

    2017-05-11

    The experiences gathered during the past 30 years support the operational use of irrigation scheduling based on frequent multi-spectral image data. Currently, the operational use of dense time series of multispectral imagery at high spatial resolution makes monitoring of crop biophysical parameters feasible, capturing crop water use across the growing season, with suitable temporal and spatial resolutions. These achievements, and the availability of accurate forecasting of meteorological data, allow for precise predictions of crop water requirements with unprecedented spatial resolution. This information is greatly appreciated by the end users, i.e., professional farmers or decision-makers, and can be provided in an easy-to-use manner and in near-real-time by using the improvements achieved in web-GIS methodologies (Geographic Information Systems based on web technologies). This paper reviews the most operational and explored methods based on optical remote sensing for the assessment of crop water requirements, identifying strengths and weaknesses and proposing alternatives to advance towards full operational application of this methodology. In addition, we provide a general overview of the tools, which facilitates co-creation and collaboration with stakeholders, paying special attention to these approaches based on web-GIS tools.

  12. A Fuzzy analytical hierarchy process approach in irrigation networks maintenance

    NASA Astrophysics Data System (ADS)

    Riza Permana, Angga; Rintis Hadiani, Rr.; Syafi'i

    2017-11-01

    Ponorogo Regency has 440 Irrigation Area with a total area of 17,950 Ha. Due to the limited budget and lack of maintenance cause decreased function on the irrigation. The aim of this study is to make an appropriate system to determine the indices weighted of the rank prioritization criteria for irrigation network maintenance using a fuzzy-based methodology. The criteria that are used such as the physical condition of irrigation networks, area of service, estimated maintenance cost, and efficiency of irrigation water distribution. 26 experts in the field of water resources in the Dinas Pekerjaan Umum were asked to fill out the questionnaire, and the result will be used as a benchmark to determine the rank of irrigation network maintenance priority. The results demonstrate that the physical condition of irrigation networks criterion (W1) = 0,279 has the greatest impact on the assessment process. The area of service (W2) = 0,270, efficiency of irrigation water distribution (W4) = 0,249, and estimated maintenance cost (W3) = 0,202 criteria rank next in effectiveness, respectively. The proposed methodology deals with uncertainty and vague data using triangular fuzzy numbers, and, moreover, it provides a comprehensive decision-making technique to assess maintenance priority on irrigation network.

  13. The Lower Sevier River Basin Crop Monitor and Forecast Decision Support System: Exploiting Landsat Imagery to Provide Continuous Information to Farmers and Water Managers

    NASA Astrophysics Data System (ADS)

    Torres-Rua, A. F.; Walker, W. R.; McKee, M.

    2013-12-01

    The last century has seen a large number of innovations in agriculture such as better policies for water control and management, upgraded water conveyance, irrigation, distribution, and monitoring systems, and better weather forecasting products. In spite of this, irrigation management and irrigation water deliveries by farmers/water managers is still based on factors like water share amounts, tradition, and past experience on irrigation. These factors are not necessarily related to the actual crop water use; they are followed because of the absence of related information provided in a timely manner at an affordable cost. Thus, it is necessary to develop means to deliver continuous and personalized information about crop water requirements to water users/managers at the field and irrigation system levels so managers at these levels can better quantify the required versus available water for irrigation during the irrigation season. This study presents a new decision support system (DSS) platform that addresses the absence of information on actual crop water requirements and crop performance by providing continuous updated farm-based crop water use along with other farm performance indicators such as crop yield and farm management to irrigators and water managers. This DSS exploits the periodicity of the Landsat Satellite Mission (8 to 16 days, depending on the period of interest) to provide remote monitoring at the individual field and irrigation system levels. The Landsat satellite images are converted into information about crop water use, yield performance and field management through application of state-of-the-art semi-physical and statistical algorithms that provide this information at a pixel basis that are ultimately aggregated to field and irrigation system levels. A version of the DSS has been implemented for the agricultural lands in the Lower Sevier River, Utah, and has been operational since the beginning of the 2013 irrigation season. The main goal of this DSS implementation is to provide continuous and personalized information to farmers and water managers regarding crops in fields and the irrigation delivery system throughout the irrigation season so that decisions related to agricultural water use can result in water savings while not diminishing crop yields.

  14. Irrigation water sources and irrigation application methods used by U.S. plant nursery producers

    NASA Astrophysics Data System (ADS)

    Paudel, Krishna P.; Pandit, Mahesh; Hinson, Roger

    2016-02-01

    We examine irrigation water sources and irrigation methods used by U.S. nursery plant producers using nested multinomial fractional regression models. We use data collected from the National Nursery Survey (2009) to identify effects of different firm and sales characteristics on the fraction of water sources and irrigation methods used. We find that regions, sales of plants types, farm income, and farm age have significant roles in what water source is used. Given the fraction of alternative water sources used, results indicated that use of computer, annual sales, region, and the number of IPM practices adopted play an important role in the choice of irrigation method. Based on the findings from this study, government can provide subsidies to nursery producers in water deficit regions to adopt drip irrigation method or use recycled water or combination of both. Additionally, encouraging farmers to adopt IPM may enhance the use of drip irrigation and recycled water in nursery plant production.

  15. Stakeholder analysis in the management of irrigation in Kampili area

    NASA Astrophysics Data System (ADS)

    Jumiati; Ali, M. S. S.; Fahmid, I. M.; Mahyuddin

    2018-05-01

    Irrigation has appreciable contribution in building food security, particularly rice crops. This study aims to analyze the role of stakeholders involved in distributing of irrigation water. The study was conducted in the Kampili Irrigation Area in South Sulawesi Province Indonesia, the data were obtained through observation and interviews with stakeholders involved, and analysed by stakeholder analysis, based on the interests and power held by the actors. This analysis is intended to provide an optimal picture of the expected role of each stakeholder in the management of irrigation resources. The results show that there were many stakeholders involved in irrigation management. In the arrangement of irrigation distribution there was overlapping authority of the stakeholders to its management, every stakeholder had different interests and power between each other. The existence have given positive and negative values in distributing irrigation water management, then in the stakeholder collaboration there was contestation between them. This contestation took place between the agriculture department, PSDA province, the Jeneberang River Region Hall, the Farmers Group and the P3A.

  16. The power of the bubble: comparing ultrasonic and laser activated irrigation

    NASA Astrophysics Data System (ADS)

    De Moor, Roeland J. G.; Meire, Maarten A.; Verdaasdonk, Rudolf M.

    2014-01-01

    The major problem of irrigation is the fluid motion within the confined geometry of the root canal : efficient dispersion of the liquid is difficult, conventional irrigation is limited due to the absence of turbulence over much of the canal volume, vapour lock may limit apical cleaning and disinfection, there is also a stagnation plane beyond the needle tip. The best way to improve irrigant penetration and biofilm removal is achieved by means of the agitation of the fluid. Today ultrasonic activation appears to be the best way to activate and potentiate irrigants among the present-day used means and marketed systems. Another way to activate irrigation solutions is the use of lasers: laser activated irrigation or photon-initiated acoustic streaming have been investigated. Based on present-day research it appears that the efficacy of laser activation (especially with Erbium lasers) can be more efficient thanks to the induction of specific cavitation phenomena and acoustic streaming. Other wavelengths are now explored to be used for laser activated irrigation.

  17. Web/smart phone based control and feedback systems for irrigation systems

    USDA-ARS?s Scientific Manuscript database

    The role of the internet and mobile devices in the control and feedback of irrigation systems is reviewed. This role is placed in the larger context of four distinct components required for irrigation management, including 1. the control panel; 2. remote control; 3. soil, plant, and weather (SPW) se...

  18. HYDRUS-1D Modeling of an Irrigated Agricultural Plot with Application to Aquifer Recharge Estimation

    USDA-ARS?s Scientific Manuscript database

    A variety of methods are available for estimating aquifer recharge in semi-arid regions, each with advantages and disadvantages. We are investigating a procedure for estimating recharge in an irrigated basin. The method involves computing irrigation return flows based on HYDRUS-1D modeling of root z...

  19. Mapping irrigated lands at 250-m scale by merging MODIS data and National Agricultural Statistics

    USGS Publications Warehouse

    Pervez, Md Shahriar; Brown, Jesslyn F.

    2010-01-01

    Accurate geospatial information on the extent of irrigated land improves our understanding of agricultural water use, local land surface processes, conservation or depletion of water resources, and components of the hydrologic budget. We have developed a method in a geospatial modeling framework that assimilates irrigation statistics with remotely sensed parameters describing vegetation growth conditions in areas with agricultural land cover to spatially identify irrigated lands at 250-m cell size across the conterminous United States for 2002. The geospatial model result, known as the Moderate Resolution Imaging Spectroradiometer (MODIS) Irrigated Agriculture Dataset (MIrAD-US), identified irrigated lands with reasonable accuracy in California and semiarid Great Plains states with overall accuracies of 92% and 75% and kappa statistics of 0.75 and 0.51, respectively. A quantitative accuracy assessment of MIrAD-US for the eastern region has not yet been conducted, and qualitative assessment shows that model improvements are needed for the humid eastern regions where the distinction in annual peak NDVI between irrigated and non-irrigated crops is minimal and county sizes are relatively small. This modeling approach enables consistent mapping of irrigated lands based upon USDA irrigation statistics and should lead to better understanding of spatial trends in irrigated lands across the conterminous United States. An improved version of the model with revised datasets is planned and will employ 2007 USDA irrigation statistics.

  20. The maximum economic depth of groundwater abstraction for irrigation

    NASA Astrophysics Data System (ADS)

    Bierkens, M. F.; Van Beek, L. P.; de Graaf, I. E. M.; Gleeson, T. P.

    2017-12-01

    Over recent decades, groundwater has become increasingly important for agriculture. Irrigation accounts for 40% of the global food production and its importance is expected to grow further in the near future. Already, about 70% of the globally abstracted water is used for irrigation, and nearly half of that is pumped groundwater. In many irrigated areas where groundwater is the primary source of irrigation water, groundwater abstraction is larger than recharge and we see massive groundwater head decline in these areas. An important question then is: to what maximum depth can groundwater be pumped for it to be still economically recoverable? The objective of this study is therefore to create a global map of the maximum depth of economically recoverable groundwater when used for irrigation. The maximum economic depth is the maximum depth at which revenues are still larger than pumping costs or the maximum depth at which initial investments become too large compared to yearly revenues. To this end we set up a simple economic model where costs of well drilling and the energy costs of pumping, which are a function of well depth and static head depth respectively, are compared with the revenues obtained for the irrigated crops. Parameters for the cost sub-model are obtained from several US-based studies and applied to other countries based on GDP/capita as an index of labour costs. The revenue sub-model is based on gross irrigation water demand calculated with a global hydrological and water resources model, areal coverage of crop types from MIRCA2000 and FAO-based statistics on crop yield and market price. We applied our method to irrigated areas in the world overlying productive aquifers. Estimated maximum economic depths range between 50 and 500 m. Most important factors explaining the maximum economic depth are the dominant crop type in the area and whether or not initial investments in well infrastructure are limiting. In subsequent research, our estimates of maximum economic depth will be combined with estimates of groundwater depth and storage coefficients to estimate economically attainable groundwater volumes worldwide.

  1. Development of a regionally consistent geospatial dataset of agricultural lands in the Upper Colorado River Basin, 2007-10

    USGS Publications Warehouse

    Buto, Susan G.; Gold, Brittany L.; Jones, Kimberly A.

    2014-01-01

    Irrigation in arid environments can alter the natural rate at which salts are dissolved and transported to streams. Irrigated agricultural lands are the major anthropogenic source of dissolved solids in the Upper Colorado River Basin (UCRB). Understanding the location, spatial distribution, and irrigation status of agricultural lands and the method used to deliver water to agricultural lands are important to help improve the understanding of agriculturally derived dissolved-solids loading to surface water in the UCRB. Irrigation status is the presence or absence of irrigation on an agricultural field during the selected growing season or seasons. Irrigation method is the system used to irrigate a field. Irrigation method can broadly be grouped into sprinkler or flood methods, although other techniques such as drip irrigation are used in the UCRB. Flood irrigation generally causes greater dissolved-solids loading to streams than sprinkler irrigation. Agricultural lands in the UCRB mapped by state agencies at varying spatial and temporal resolutions were assembled and edited to represent conditions in the UCRB between 2007 and 2010. Edits were based on examination of 1-meter resolution aerial imagery collected between 2009 and 2011. Remote sensing classification techniques were used to classify irrigation status for the June to September growing seasons between 2007 and 2010. The final dataset contains polygons representing approximately 1,759,900 acres of agricultural lands in the UCRB. Approximately 66 percent of the mapped agricultural lands were likely irrigated during the study period.

  2. Local irrigation management institutions mediate changes driven by external policy and market pressures in Nepal and Thailand.

    PubMed

    Bastakoti, Ram C; Shivakoti, Ganesh P; Lebel, Louis

    2010-09-01

    This article assesses the role of local institutions in managing irrigation water use. Fifty irrigation systems in each country were studied in Nepal and Thailand to compare the influence of local institutions on performance of irrigation systems amid changes in external policy and market pressures. Nepal's new irrigation policy after the re-instatement of multiparty democracy in 1990 emphasized participatory irrigation management transferring the management responsibility from state authorities to water users. The water user associations of traditional farmer-managed irrigation systems were formally recognized by requiring registration with related state authorities. In Thailand also government policies encouraged people's participation in irrigation management. Today water users are directly involved in management of even some large irrigation systems at the level of tertiary canals. Traditional communal irrigation systems in northern Thailand received support for system infrastructure improvement but have faced increased interference from government. In Thailand market development supported diversification in farming practices resulting in increased areas under high water-demanding commercial crops in the dry season. In contrast, the command areas of most irrigation systems in Nepal include cereal-based subsistence farming with only one-third having commercial farming. Cropping intensities are higher in Nepal than in Thailand reflecting, in part, differences in availability of land and management. In both countries local institutions play an important role in maintaining the performance of irrigation systems as external drivers and local contexts change. Local institutions have provided alternative options for irrigation water use by mediating external pressures.

  3. Comparison of Irrigation Times Using Gravity and High-Pressure Lavage.

    PubMed

    Muscatelli, Stefano; Howe, Andrea; O'Hara, Nathan N; O'Toole, Robert V; Sprague, Sheila A; Slobogean, Gerard P

    2017-05-01

    The benefits of high-pressure pulsatile lavage for open fracture irrigation have been controversial based on conflicting experimental animal research. Recently published data definitively demonstrated that irrigation pressure does not affect the incidence of reoperation for the treatment of open fractures. However, proponents of pulsatile lavage argue a faster irrigation time is an important benefit of the high-pressure treatment. The purpose of this study was to determine the difference in irrigation time between gravity and high-pressure lavage. The experimental setup was designed to mimic clinical practice and compared mean irrigation flow times for high-pressure pulsatile lavage and gravity flow with 2 commonly used tube diameters. Each irrigation setup was tested 5 times at 3 different irrigation bag heights. Analysis of variance and Student's t tests were used to compare the mean flow times of 3 irrigation methods at each height and among the 3 heights for each irrigation method. The mean irrigation flow time in the various experimental models ranged from 161 to 243 seconds. Gravity irrigation with wide tubing was significantly faster than pulsatile lavage or gravity with narrow tubing (P<.001). Increasing irrigation bag height had only a marginal effect on the overall flow times (<9% difference). The difference in mean flow time among the testing techniques was slightly longer than 1 minute, which is unlikely to have a material impact on procedural costs, operating times, and subsequent gains in patient safety. [Orthopedics. 2017; 40(3):e413-e416.]. Copyright 2017, SLACK Incorporated.

  4. Online irrigation service for fruit und vegetable crops at farmers site

    NASA Astrophysics Data System (ADS)

    Janssen, W.

    2009-09-01

    Online irrigation service for fruit und vegetable crops at farmers site by W. Janssen, German Weather Service, 63067 Offenbach Agrowetter irrigation advice is a product which calculates the present soil moisture as well as the soil moisture to be expected over the next 5 days for over 30 different crops. It's based on a water balance model and provides targeted recommendations for irrigation. Irrigation inputs according to the soil in order to avoid infiltration and, as a consequence thereof, the undesired movement of nitrate and plant protectants into the groundwater. This interactive 'online system' takes into account the user's individual circumstances such as crop and soil characteristics and the precipitation and irrigation amounts at the user's site. Each user may calculate up to 16 different enquiries simultaneously (different crops or different emergence dates). The user can calculate the individual soil moistures for his fields with a maximum effort of 5 minutes per week only. The sources of water are precipitation and irrigation whereas water losses occur due to evapotranspiration and infiltration of water into the ground. The evapotranspiration is calculated by multiplying a reference evapotranspiration (maximum evapotranspiration over grass) with the so-called crop coefficients (kc values) that have been developed by the Geisenheim Research Centre, Vegetable Crops Branch. Kc values depending on the crop and the individual plant development stage. The reference evapotranspiration is calculated from a base weather station user has chosen (out of around 500 weather stations) using Penman method based on daily values. After chosen a crop and soil type the user must manually enter the precipitation data measured at the site, the irrigation water inputs and the dates for a few phenological stages. Economical aspects can be considered by changing the values of soil moisture from which recommendations for irrigation start from optimal to necessary plant supply. Previous comparative measurements carried out by the Agricultural Administration of Baden-Württemberg relating to potatoes, onions, vine stocks, and strawberries agreed very well with the calculations.

  5. Intra-Operative Surgical Irrigation of the Surgical Incision: What Does the Future Hold-Saline, Antibiotic Agents, or Antiseptic Agents?

    PubMed

    Edmiston, Charles E; Leaper, David J

    2016-12-01

    Intra-operative surgical site irrigation (lavage) is common practice in surgical procedures in general, with all disciplines advocating some form of irrigation before incision closure. This practice, however, has been neither standardized nor is there compelling evidence that it effectively reduces the risk of surgical site infection (SSI). This narrative review addresses the laboratory and clinical evidence that is available to support the practice of irrigation of the abdominal cavity and superficial/deep incisional tissues, using specific irrigation solutions at the end of an operative procedure to reduce the microbial burden at wound closure. Review of PubMed and OVID for pertinent, scientific, and clinical publications in the English language was performed. Incision irrigation was found to afford a three-fold benefit: First, to hydrate the bed; second, to assist in allowing better examination of the area immediately before closure; and finally, by removing superficial and deep incisional contamination and lowering the bioburden, expedite the healing process. The clinical practice of intra-operative peritoneal lavage is highly variable and is dependent solely on surgeon preference. By contrast, intra-operative irrigation after device-related procedures has become a standard of care for the prophylaxis of acute peri-prosthetic infection. The clinical evidence that supports the use of antibiotic irrigation is limited and based on retrospective analysis and few acceptable randomized controlled trials. The results of laboratory and animal studies using aqueous 0.05% chlorhexidine gluconate are favorable, suggesting that further studies are justified to determine its clinical efficacy. The adoption of appropriate and standardized intra-operative irrigation practices into peri-operative care bundles, which include other evidence-based strategies (weight-based antimicrobial prophylaxis, antimicrobial sutures, maintenance of normothermia, and glycemic control), offers an inexpensive and effective method to reduce the risk of post-operative SSI and deserves further evaluation.

  6. A simulation-based suitability index of the quality and quantity of agricultural drainage water for reuse in irrigation.

    PubMed

    Allam, Ayman; Fleifle, Amr; Tawfik, Ahmed; Yoshimura, Chihiro; El-Saadi, Aiman

    2015-12-01

    The suitability of agricultural drainage water (ADW) for reuse in irrigation was indexed based on a simulation of quality and quantity. The ADW reuse index (DWRI) has two components; the first one indicates the suitability of water quality (QLT) for reuse in irrigation based on the mixing ratio of ADW to canal irrigation water without violating the standards of using mixed water in irrigation, while the second indicates the available water quantity (QNT) based on the ratio of the available ADW to the required reuse discharge to meet the irrigation requirements alongside the drain. The QLT and QNT values ranged from 0 to ≥3 and from 0 to ≥0.40, respectively. Correspondingly, five classes from excellent to poor and from high scarcity to no scarcity were proposed to classify the QLT and QNT values, respectively. This approach was then applied to the Gharbia drain in the Nile Delta, Egypt, combined with QUAL2Kw simulations in the summer and winter of 2012. The QLT values along the drain ranged from 1.11 to 2.91 and 0.68 to 1.73 for summer and winter, respectively. Correspondingly, the QLT classes ranged from good to very good and from fair to good, respectively. In regard to QNT, values ranged from 0.10 to 0.62 and from 0.10 to 0.88 for summer and winter, respectively. Correspondingly, the QNT classes ranged from medium scarcity to no scarcity for both seasons. The demonstration of DWRI in the Gharbia drain suggests that the proposed index presents a simple tool for spatially evaluating the suitability of ADW for reuse in irrigation. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Incentives and technologies for improving irrigation water use efficiency

    NASA Astrophysics Data System (ADS)

    Bruggeman, Adriana; Djuma, Hakan; Giannakis, Elias; Eliades, Marinos

    2014-05-01

    The European Water Framework Directive requires Member States to set water prices that provide adequate incentives for users to use water resources efficiently. These new water pricing policies need to consider cost recovery of water services, including financial, environmental and resource cost. Prices were supposed to have been set by 2010. So far the record has been mixed. The European Commission has sent reasoned opinions to a number of countries (Austria, Belgium, Denmark, Estonia, Finland, Germany, Hungary, Netherlands, Sweden) requesting them to adjust their national legislation to include all water services. Unbalanced water pricing may negatively affect the agricultural sector, especially in the southern EU countries, which are more dependent on irrigation water for production. The European Commission is funding several projects that aim to reduce the burden of increasing water prices on farmers by developing innovative technologies and decision support systems that will save water and increase productivity. The FP7 ENORASIS project (grant 282949) has developed a new integrated irrigation management decision support platform, which include high-resolution, ensemble weather forecasting, a GIS widget for the location of fields and sensors and a comprehensive decision support and database management software package to optimize irrigation water management. The field component includes wireless, solar-powered soil moisture sensors, small weather stations, and remotely controlled irrigation valves. A mobile App and a web-package are providing user-friendly interfaces for farmers, water companies and environmental consultants. In Cyprus, agricultural water prices have been set to achieve a cost recovery rate of 54% (2010). The pricing policy takes in consideration the social importance and financial viability of the agricultural sector, an important flexibility provided by the Water Framework Directive. The new price was set at 0.24 euro per m3 for water supply from the government irrigation network, with an additional fixed fee of 66.10 euro per ha per season. This is a substantial increase from the 0.17 euro per3 and 17.10 euro per ha fixed fee. The price for individual abstractions has been set at 0.11 euro per m^3. However, these new prices have not yet been approved by the Parliament. Agriculture in Cyprus is highly fragmented. The average farm size is 3.5 ha, while each farm holds on average 5 parcels (agricultural census of 2003). Stakeholder interviews indicated that, in general, small farmers in Cyprus have not considered investments in advanced irrigation scheduling technologies to counter balance the loom of higher water prices. However, the picture is different for large producers. A large citrus producer was interested in testing the ENORASIS technology. The first season of measurements indicated that water can be used more efficiently and that the ENORASIS system provides an important tool for reducing on-farm irrigation water use.

  8. Drylands soil bacterial community is affected by land use change and different irrigation practices in the Mezquital Valley, Mexico.

    PubMed

    Lüneberg, Kathia; Schneider, Dominik; Siebe, Christina; Daniel, Rolf

    2018-01-23

    Dryland agriculture nourishes one third of global population, although crop irrigation is often mandatory. As freshwater sources are scarce, treated and untreated wastewater is increasingly used for irrigation. Here, we investigated how the transformation of semiarid shrubland into rainfed farming or irrigated agriculture with freshwater, dam-stored or untreated wastewater affects the total (DNA-based) and active (RNA-based) soil bacterial community composition, diversity, and functionality. To do this we collected soil samples during the dry and rainy seasons and isolated DNA and RNA. Soil moisture, sodium content and pH were the strongest drivers of the bacterial community composition. We found lineage-specific adaptations to drought and sodium content in specific land use systems. Predicted functionality profiles revealed gene abundances involved in nitrogen, carbon and phosphorous cycles differed among land use systems and season. Freshwater irrigated bacterial community is taxonomically and functionally susceptible to seasonal environmental changes, while wastewater irrigated ones are taxonomically susceptible but functionally resistant to them. Additionally, we identified potentially harmful human and phytopathogens. The analyses of 16 S rRNA genes, its transcripts and deduced functional profiles provided extensive understanding of the short-term and long-term responses of bacterial communities associated to land use, seasonality, and water quality used for irrigation in drylands.

  9. Dissemination of sustainable irrigation strategies for almond and olive orchards via a participatory approach. Project LIFE+IRRIMAN

    NASA Astrophysics Data System (ADS)

    Garcia-Vila, Margarita; Gamero-Ojeda, Pablo; Ascension Carmona, Maria; Berlanga, Jose; Fereres, Elias

    2017-04-01

    Dissemination of sustainable irrigation strategies for almond and olive orchards via a participatory approach. Project LIFE+IRRIMAN Spain is the world's first and third largest producer of olive oil and almond, respectively. Despite huge efforts in the last years by the production sector towards intensification, cultural issues relative to the traditional rain-fed crop management know how, prevent farmers from adoption of sustainable irrigation management practices. Consequently, even though there has been progress in irrigation management research for these two crops, adoption of modern irrigation techniques by farmers has been slow. Sustainable irrigation strategies for olive and almond orchards are being designed, implemented, validated and disseminated under the framework of the LIFE+ IRRIMAN project, through a participatory approach. The implementation of the LIFE+ IRRIMAN innovative and demonstrative actions has been carried out in an irrigation district of Southern Spain (Genil-Cabra Irrigation Scheme, Andalusia). The approach designed has four phases: i) design and implementation of sustainable irrigation strategies in demonstration farms; ii) dissemination of best irrigation practices which were tested in the initial year throughout the irrigation scheme by the irrigation advisory service; iii) assessment of degree of adoption and re-design of the dissemination strategies; and, iv) based on the results obtained, elaboration of sustainable irrigation guidelines for knowledge transfer in the district at regional and national levels to promote changes in irrigation practices. Participatory approaches have proven to be effective tools for successful irrigation strategies design and diffusion, especially in traditional rain fed crops such as olive and almond trees in the Mediterranean countries. Acknowledgements This work has been funded by the European Union LIFE+ project IRRIMAN (LIFE13 ENV/ES/000539).

  10. Hood River Fish Habitat Project; Confederated Tribes of the Warm Springs Reservation of Oregon, Annual Report 2001-2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaivoda, Alexis

    2003-11-01

    This report summarizes the project implementation and monitoring of all habitat activities that occurred over Fiscal Year 2002 (FY 02). Some of the objectives in the corresponding statement of work for this contract were not completed within FY 02. A description of the progress during FY 02 and reasoning for deviation from the original tasks and timeline are given. OBJECTIVE 1--Provide coordination of all activities, administrative oversight and assist in project implementation and monitoring activities. Administration oversight and coordination of the habitat statement of work, budget, subcontracts and personnel was provided. OBJECTIVE 2--Develop, coordinate, and implement the Hood River Fishmore » Habitat Protection, Restoration, and Monitoring Plan. The Hood River Fish Habitat Protection, Restoration, and Monitoring Plan was completed in 2000 (Coccoli et al., 2000). This document is utilized for many purposes including: drafting the Watershed Action Plan, ranking projects for funding, and prioritizing projects to target in the future. This document was updated and revised to reflect changes to fish habitat and needs in the Hood River basin based upon other documents and actions taken in the basin. OBJECTIVE 3--Assist Middle Fork Irrigation District in developing an alternative irrigation water source on Evans Creek (Hutson pond and Evans Creek diversion), eliminating the need for irrigation diversion dams which happen to be partial fish barriers. Upon completion, this project will restore 2.5 miles of access for winter steelhead, coho salmon, and resident trout habitat. This objective was revised and included in the FY 03 Statement of Work for Project No. 1998-021-00. During FY 02 the final engineering was completed on this project. However, due to a lengthy permitting process and NMFS consultation, this project was inadvertently delayed. Project completion is expected in July 2003. OBJECTIVE 4--Assist the Farmers Irrigation District (FID) in construction and installation of a new fish screen and bypass system on the mainstem Hood River (Farmers Canal). Final engineering and design for the horizontal screen was completed during the winter of 2001. In December 2001 and January 2002, the concrete work was completed and the head gates were mounted. During the spring the secondary head level control gates were installed. In September 2002, the jersey barriers and vortex tubes were installed. These are located upstream of the old drum screen, and are the primary means of dealing with bedload and suspended load from the diversion. The screen surface was also installed in September 2002 and the system accommodated water soon after. Monitoring of these structures in regards to efficiency and possible effects to fish migration is scheduled to occur in spring 2003. The transition from the old canal to the new screen is smooth and currently does not present any problems. The old drum screen is going to remain in place until all the biological and hydrological monitoring is complete to ensure compliance and satisfaction of all agencies involved. OBJECTIVE 5--Assist the East Fork Irrigation District (EFID) in final engineering design and construction of the Central Lateral Canal upgrade and invert siphon. This objective was revised and included in the FY 03 Statement of Work for Project No. 1998-021-00. During FY 02, a significant portion of the engineering and design work was completed on the EFID Central Lateral Canal upgrade and invert siphon. There were some changes in canal alignment that required further design work and easement acquisition. Time was also spent looking for matching funds and securing a loan by the EFID. Construction initiation is now scheduled for summer 2003. OBJECTIVE 6--Modify and/or eliminate five culverts, three on Baldwin Creek, one on Graham Creek, and one on Evans Creek, which function as barriers to upstream and downstream fish migration. This objective was revised and included in the FY 03 Statement of Work for Project No. 1998-021-00. There are only two culverts on Baldwin Creek that will be eliminated or modified. Work was initiated on the removal of one of these culverts, and the replacement of the other. The landowner was agreeable and NEPA was initiated. The modification/elimination of these culverts is scheduled for FY 04. The culvert on Graham Creek is a county road, and will be addressed as a fish passage barrier by Hood River County. The Evans Creek culvert was prepared for modification in FY 02, however due to a lengthy permitting process the instream work period was missed. This project is on the schedule for the instream work period of 2003. OBJECTIVE 7--Construct riparian fence to stabilize and improve the riparian zone along the East Fork Hood River and tributaries. Two riparian fencing projects were completed on East Fork Hood River tributaries. The first was on Baldwin Creek, and the second was on Shelly Creek.« less

  11. Coordinating management of water, salinity and trace elements for cotton under mulched drip irrigation with brackish water

    NASA Astrophysics Data System (ADS)

    Jin, M.; Chen, W.; Liang, X.

    2016-12-01

    Rational irrigation with brackish water can increase crop production, but irrational use may cause soil salinization. In order to understand the relationships among water, salt, and nutrient (including trace elements) and find rational schemes to manage water, salinity and nutrient in cotton fields, field and pot experiments were conducted in an arid area of southern Xinjiang, northwest China. Field experiments were performed from 2008 to 2015, and involved mulched drip irrigation during the growing season and flood irrigation afterwards. The average cotton yield of seven years varied between 3,575 and 5,095 kg/ha, and the irrigation water productivity between 0.91 and 1.16 kg/m3. With the progress of brackish water irrigation, Cu, Fe, Mn, and Na showed strong aggregation in topsoil at the narrow row, whereas the contents of Ca and K decreased in the order of inter-mulch gap, the wide inter row, and the narrow row. The contents of Cu, Fe, Mn, Ca and K in root soil reduced with cotton growth, whereas Na increased. Although mulched drip irrigation during the growing season resulted in an increase in salinity in the root zone, flood irrigation after harvesting leached the accumulated salts below background levels. Based on experiments a scheme for coordinating management of soil water, salt, and nutrient is proposed, that is, under the planting pattern of one mulch, two drip lines and four rows, the alternative irrigation plus a flood irrigation after harvesting or before seeding was the ideal scheme. Numerical simulations using solute transport model coupled with the root solute uptake based on the experiments and extended by another 20 years, suggest that the mulched drip irrigation using alternatively fresh and brackish water during the growing season and flood irrigation with fresh water after harvesting, is a sustainable irrigation practice that should not lead to soil salinization. Pot experiments with trace elements and different saline water showed significantly antagonistic effects on cotton growth and yield between NaCl and Mn or Zn or B. Zn concentration in irrigation water under salinity stress affected the uptake of nutrient elements and caused the different contents of nutrient elements in cotton, and influenced cotton growth and yields.

  12. Irrigation scheduling, freeze warning and soil salinity detecting. [in Cameron County Texas

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Correlations of multispectral scanner (MSS) digital data differences between vegetated and bare soil areas with salinity levels from the eight saline areas using MSS bands seven and ten in the infrared region were significant. Correlations were derived for Cameron County, Texas. Detection of saline soils may be possible, using either film density readings or multispectral scanner data, when the lower reflectance of vegetation on highly saline soil and the higher reflectance of vegetation on lower saline soil are considered by using film on MSS contrasts between vegetation and bare soil.

  13. Shortwave Radiation

    NASA Technical Reports Server (NTRS)

    Klassen, Steve; Bugbee, Bruce

    2005-01-01

    Accurate shortwave radiation data is critical to evapotranspiration (ET) models used for developing irrigation schedules to optimize crop production while saving water, minimizing fertilizer, herbicide, and pesticide applications, reducing soil erosion, and protecting surface and ground water quality. Low cost silicon cell pyranometers have proven to be sufficiently accurate and robust for widespread use in agricultural applications under unobstructed daylight conditions. More expensive thermopile pyranometers are required for use as calibration standards and measurements under light with unique spectral properties (electric lights, under vegetation, in greenhouses and growth chambers). Routine cleaning, leveling, and annual calibration checks will help to ensure the integrity of long-term data.

  14. Opportunity for peri-urban Perth groundwater trade

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Connor, Jeff; Doble, Rebecca; Ali, Riasat; McFarlane, Don

    2013-07-01

    Groundwater trade is widely advocated for reallocating scarce groundwater resources between competing users, and managing over-allocated and declining aquifers. However, groundwater markets are still in their infancy, and the potential benefits and opportunities need investigation, particularly where there is a need to reduce the extraction from declining aquifers. This article evaluates economic impacts of reducing groundwater extraction for irrigation use in peri-urban Perth, Australia, where irrigation, a lake-based ecosystem, and public water supply are highly dependent on a declining groundwater resource. We present an assessment of market-based water trading approaches to reduce groundwater extraction with an economic model representing diversity in returns to groundwater use across a population of irrigators. The results indicate that potential economic costs of a proportional reduction in available groundwater for irrigation are 18-21% less if groundwater trade is possible. We also evaluate a water buyback from irrigation to provide public water supply as an alternative to new infrastructure. We find that buying back up to around 50% of current irrigation allocations could create new public water supply only at the cost of 0.32-0.39 million per GL, which is less than one fifth of the costs of new desalinisation or recycled water supply options (2-3 million per GL). We conclude that, with rapid development of computer and internet based trading platforms that allows fast, efficient and low cost multiple party trading, it is increasingly feasible to realise the economic potentials of market-based trade approaches for managing overexploited aquifers.

  15. A Web Application for Cotton Irrigation Management on The US Southern High Plains. Part I: Crop Yield Modeling and Profit Analysis

    USDA-ARS?s Scientific Manuscript database

    Irrigated cotton (Gossypium Hirsutum L.) production is a central part of west Texas agriculture that depends on the essentially non-renewable water resource of the Ogallala aquifer. Web-based decision support tools that estimate the profit effects of irrigation for cotton under varying lint price, p...

  16. Expanding the Annual Irrigation Maps (AIM) Product to the entire High Plains Aquifer (HPA): Addressing the Challenges of Cotton and Deficit-Irrigated Fields

    NASA Astrophysics Data System (ADS)

    Rapp, J. R.; Deines, J. M.; Kendall, A. D.; Hyndman, D. W.

    2017-12-01

    The High Plains Aquifer (HPA) is the most extensively irrigated aquifer in the continental United States and is the largest major aquifer in North America with an area of 500,000 km2. Increased demand for agricultural products has led to expanded irrigation extent, but brought with it declining groundwater levels that have made irrigation unsustainable in some locations. Understanding these irrigation dynamics and mapping irrigated areas through time are essential for future sustainable agricultural practices and hydrological modeling. Map products using remote sensing have only recently been able to track annual dynamics at relatively high spatial resolution (30 m) for a large portion of the northern HPA. However follow-on efforts to expand these maps to the entire HPA have met with difficulty due to the challenge of distinguishing irrigation in crop types that are commonly deficit- or partially-irrigated. Expanding these maps to the full HPA requires addressing unique features of partially irrigated fields and irrigated cotton, a major water user in the southern HPA. Working in Google Earth Engine, we used all available Landsat imagery to generate annual time series of vegetation indices. We combined this information with climate covariables, planting dates, and crop specific training data to algorithmically separate fully irrigated, partially irrigated, and non-irrigated field locations. The classification scheme was then applied to produce annual maps of irrigation across the entire HPA. The extensive use of ancillary data and the "greenness" time series for the algorithmic classification generally increased accuracy relative to previous efforts. High-accuracy, representative map products of irrigation extent capable of detecting crop type and irrigation intensity within aquifers will be an essential tool to monitor the sustainability of global aquifers and to provide a scientific bases for political and economic decisions affecting those aquifers.

  17. Real-time data acquisition and telemetry based irrigation control system

    DOEpatents

    Slater, John M.; Svoboda, John M.

    2005-12-13

    A data acquisition and telemetry based control system for use in facilitating substantially real time management of an agricultural irrigation system. The soil moisture sensor includes a reader and a plurality of probes. The probes each include an electronic circuit having a moisture sensing capacitor in operative communication with the soil whose moisture is to be measured. Each probe also includes a receive/transmit antenna and the reader includes a transmit/receive antenna, so that as the reader passes near the probe, the reader transmits a digital excitation signal to the electronic circuit of the biodegradable probe via an inductive couple formed between the transmit/receive antenna of the reader and the receive/transmit coil of the probe. The electronic circuit uses an energy component of the excitation signal to generate a digital data signal which indicates the moisture content of the soil adjacent to the moisture sensing capacitor. The probe sends the data signal to the reader which then uses the data signal to develop a corresponding set of watering instructions which are then transmitted to a control module in communication with the irrigation system. The control module sends corresponding control signals to nozzles of the irrigation system causing the irrigation system to disperse water in a manner consistent with the moisture content data transmitted by the probes to the reader. Because the irrigation system moves continuously through the field to be irrigated, the moisture content data acquisition and resultant water dispersal by the irrigation system occur substantially in real time.

  18. The comparison between two irrigation regimens on the dentine wettability for an epoxy resin based sealer by measuring its contact angle formed to the irrigated dentine.

    PubMed

    Mohan, Rayapudi Phani; Pai, Annappa Raghavendra Vivekananda

    2015-01-01

    The aim was to assess the influence of two irrigation regimens having ethylenediaminetetraacetic acid (EDTA) and ethylenediaminetetraacetic acid with cetrimide (EDTAC) as final irrigants, respectively, on the dentine wettability for AH Plus sealer by comparing its contact angle formed to the irrigated dentine. Study samples were divided into two groups (n = 10). The groups were irrigated with 3% sodium hypochlorite (NaOCl) solution followed by either 17% EDTA or 17% EDTAC solution. AH Plus was mixed, and controlled volume droplet (0.1 mL) of the sealer was placed on the dried samples. The contact angle was measured using a Dynamic Contact Angle Analyzer and results were analyzed using SPSS 21.0 and 2 sample t-test. There was a significant difference in the contact angle of AH Plus formed to the dentine irrigated with the above two regimens. AH Plus showed significantly lower contact angle with the regimen having EDTAC as a final irrigant than the one with EDTA (P < 0.05). An irrigation regimen consisting of NaOCl with either EDTA or EDTAC solution as a final irrigant influences the dentine wettability and contact angle of a sealer. EDTAC as a final irrigant facilitates better dentin wettability than EDTA for AH Plus to promote its better flow and adhesion.

  19. A GIS based watershed information system for water resources management and planning in semi-arid areas

    NASA Astrophysics Data System (ADS)

    Tzabiras, John; Spiliotopoulos, Marios; Kokkinos, Kostantinos; Fafoutis, Chrysostomos; Sidiropoulos, Pantelis; Vasiliades, Lampros; Papaioannou, George; Loukas, Athanasios; Mylopoulos, Nikitas

    2015-04-01

    The overall objective of this work is the development of an Information System which could be used by stakeholders for the purposes of water management as well as for planning and strategic decision-making in semi-arid areas. An integrated modeling system has been developed and applied to evaluate the sustainability of water resources management strategies in Lake Karla watershed, Greece. The modeling system, developed in the framework of "HYDROMENTOR" research project, is based on a GIS modelling approach which uses remote sensing data and includes coupled models for the simulation of surface water and groundwater resources, the operation of hydrotechnical projects (reservoir operation and irrigation works) and the estimation of water demands at several spatial scales. Lake Karla basin was the region where the system was tested but the methodology may be the basis for future analysis elsewhere. Τwo (2) base and three (3) management scenarios were investigated. In total, eight (8) water management scenarios were evaluated: i) Base scenario without operation of the reservoir and the designed Lake Karla district irrigation network (actual situation) • Reduction of channel losses • Alteration of irrigation methods • Introduction of greenhouse cultivation ii) Base scenario including the operation of the reservoir and the Lake Karla district irrigation network • Reduction of channel losses • Alteration of irrigation methods • Introduction of greenhouse cultivation The results show that, under the existing water resources management, the water deficit of Lake Karla watershed is very large. However, the operation of the reservoir and the cooperative Lake Karla district irrigation network coupled with water demand management measures, like reduction of water distribution system losses and alteration of irrigation methods, could alleviate the problem and lead to sustainable and ecological use of water resources in the study area. Acknowledgements: This study has been supported by the research project "Hydromentor" funded by the Greek General Secretariat of Research and Technology in the framework of the E.U. co-funded National Action "Cooperation"

  20. Local Irrigation Management Institutions Mediate Changes Driven by External Policy and Market Pressures in Nepal and Thailand

    NASA Astrophysics Data System (ADS)

    Bastakoti, Ram C.; Shivakoti, Ganesh P.; Lebel, Louis

    2010-09-01

    This article assesses the role of local institutions in managing irrigation water use. Fifty irrigation systems in each country were studied in Nepal and Thailand to compare the influence of local institutions on performance of irrigation systems amid changes in external policy and market pressures. Nepal’s new irrigation policy after the re-instatement of multiparty democracy in 1990 emphasized participatory irrigation management transferring the management responsibility from state authorities to water users. The water user associations of traditional farmer-managed irrigation systems were formally recognized by requiring registration with related state authorities. In Thailand also government policies encouraged people’s participation in irrigation management. Today water users are directly involved in management of even some large irrigation systems at the level of tertiary canals. Traditional communal irrigation systems in northern Thailand received support for system infrastructure improvement but have faced increased interference from government. In Thailand market development supported diversification in farming practices resulting in increased areas under high water-demanding commercial crops in the dry season. In contrast, the command areas of most irrigation systems in Nepal include cereal-based subsistence farming with only one-third having commercial farming. Cropping intensities are higher in Nepal than in Thailand reflecting, in part, differences in availability of land and management. In both countries local institutions play an important role in maintaining the performance of irrigation systems as external drivers and local contexts change. Local institutions have provided alternative options for irrigation water use by mediating external pressures.

  1. The limit of irrigation adaption due to the inter-crop conflict of water use under changing climate and landuse

    NASA Astrophysics Data System (ADS)

    Okada, M.; Iizumi, T.; Sakamoto, T.; Kotoku, M.; Sakurai, G.; Nishimori, M.

    2017-12-01

    Replacing rainfed cropping system by irrigated one is assumed to be an effective measure for climate change adaptation in agriculture. However, in many agricultural impact assessments, future irrigation scenarios are externally given and do not consider variations in the availability of irrigation water under changing climate and land use. Therefore, we assess the potential effects of adaption measure expanding irrigated area under climate change by using a large-scale crop-river coupled model, CROVER [Okada et al. 2015, JAMES]. The CROVER model simulates the large-scale terrestrial hydrological cycle and crop growth depending on climate, soil properties, landuse, crop cultivation management, socio-economic water demand, and reservoir operation management. The bias-corrected GCMs outputs under the RCP 8.5 scenario were used. The future expansion of irrigation area was estimated by using the extrapolation method based on the historical change in irrigated and rainfed areas. As the results, the irrigation adaptation has only a limited effect on the rice production in East Asia due to the conflict of water use for irrigation with the other crops, whose farmlands require unsustainable water extraction with the excessively expanding irrigated area. In contrast, the irrigation adaptation benefits maize production in Europe due to the little conflict of water use for irrigation. Our findings suggest the importance of simulating the river water availability and crop production in a single model for the more realistic assessment in the irrigation adaptation potential effects of crop production under changing climate and land use.

  2. Identifying the interferences of irrigation on evapotranspiration variability over the Northern High Plains

    NASA Astrophysics Data System (ADS)

    Zeng, R.; Cai, X.

    2016-12-01

    Irrigation has considerably interfered with hydrological processes in arid and semi-arid areas with heavy irrigated agriculture. With the increasing demand for food production and evaporative demand due to climate change, irrigation water consumption is expected to increase, which would aggravate the interferences to hydrologic processes. Current studies focus on the impact of irrigation on the mean value of evapotranspiration (ET) at either local or regional scale, however, how irrigation changes the variability of ET has not been well understood. This study analyzes the impact of extensive irrigation on ET variability in the Northern High Plains. We apply an ET variance decomposition framework developed from our previous work to quantify the effects of both climate and irrigation on ET variance in the Northern High Plains watersheds. Based on climate and water table observations, we assess the monthly ET variance and its components for two periods: 1930s-1960s with less irrigation development 970s-2010s with more development. It is found that irrigation not only caused the well-recognized groundwater drawdown and stream depletion problems in the region, but also buffered ET variance from climatic fluctuations. In addition to increasing food productivity, irrigation also stabilizes crop yield by mitigating the impact of hydroclimatic variability. With complementary water supply from irrigation, ET often approaches to the potential ET, and thus the observed ET variance is more attributed to climatic variables especially temperature; meanwhile irrigation causes significant seasonal fluctuations to groundwater storage. For sustainable water resources management in the Northern High Plains, we argue that both the mean value and the variance of ET should be considered together for the regulation of irrigation in this region.

  3. Influence of resolution in irrigated area mapping and area estimation

    USGS Publications Warehouse

    Velpuri, N.M.; Thenkabail, P.S.; Gumma, M.K.; Biradar, C.; Dheeravath, V.; Noojipady, P.; Yuanjie, L.

    2009-01-01

    The overarching goal of this paper was to determine how irrigated areas change with resolution (or scale) of imagery. Specific objectives investigated were to (a) map irrigated areas using four distinct spatial resolutions (or scales), (b) determine how irrigated areas change with resolutions, and (c) establish the causes of differences in resolution-based irrigated areas. The study was conducted in the very large Krishna River basin (India), which has a high degree of formal contiguous, and informal fragmented irrigated areas. The irrigated areas were mapped using satellite sensor data at four distinct resolutions: (a) NOAA AVHRR Pathfinder 10,000 m, (b) Terra MODIS 500 m, (c) Terra MODIS 250 m, and (d) Landsat ETM+ 30 m. The proportion of irrigated areas relative to Landsat 30 m derived irrigated areas (9.36 million hectares for the Krishna basin) were (a) 95 percent using MODIS 250 m, (b) 93 percent using MODIS 500 m, and (c) 86 percent using AVHRR 10,000 m. In this study, it was found that the precise location of the irrigated areas were better established using finer spatial resolution data. A strong relationship (R2 = 0.74 to 0.95) was observed between irrigated areas determined using various resolutions. This study proved the hypotheses that "the finer the spatial resolution of the sensor used, greater was the irrigated area derived," since at finer spatial resolutions, fragmented areas are detected better. Accuracies and errors were established consistently for three classes (surface water irrigated, ground water/conjunctive use irrigated, and nonirrigated) across the four resolutions mentioned above. The results showed that the Landsat data provided significantly higher overall accuracies (84 percent) when compared to MODIS 500 m (77 percent), MODIS 250 m (79 percent), and AVHRR 10,000 m (63 percent). ?? 2009 American Society for Photogrammetry and Remote Sensing.

  4. Remote sensing based crop type mapping and evapotranspiration estimates at the farm level in arid regions of the globe

    NASA Astrophysics Data System (ADS)

    Ozdogan, M.; Serrat-Capdevila, A.; Anderson, M. C.

    2017-12-01

    Despite increasing scarcity of freshwater resources, there is dearth of spatially explicit information on irrigation water consumption through evapotranspiration, particularly in semi-arid and arid geographies. Remote sensing, either alone or in combination with ground surveys, is increasingly being used for irrigation water management by quantifying evaporative losses at the farm level. Increased availability of observations, sophisticated algorithms, and access to cloud-based computing is also helping this effort. This presentation will focus on crop-specific evapotranspiration estimates at the farm level derived from remote sensing in a number of water-scarce regions of the world. The work is part of a larger effort to quantify irrigation water use and improve use efficiencies associated with several World Bank projects. Examples will be drawn from India, where groundwater based irrigation withdrawals are monitored with the help of crop type mapping and evapotranspiration estimates from remote sensing. Another example will be provided from a northern irrigation district in Mexico, where remote sensing is used for detailed water accounting at the farm level. These locations exemplify the success stories in irrigation water management with the help of remote sensing with the hope that spatially disaggregated information on evapotranspiration can be used as inputs for various water management decisions as well as for better water allocation strategies in many other water scarce regions.

  5. Increasing water productivity on Vertisols: implications for environmental sustainability.

    PubMed

    Jiru, Mintesinot; Van Ranst, Eric

    2010-10-01

    The availability and quality of irrigation water have become a serious concern because of global climate change and an increased competition for water by industry, domestic users and the environment. Therefore, exploring environmentally friendly water-saving irrigation strategies is essential for achieving food and environmental security. In northern Ethiopia, where traditional furrow irrigation is widely practiced, water mismanagement and its undesirable environmental impact are rampant. A 2-year field study was undertaken to compare the traditional irrigation management with surge and deficit irrigation practices on a Vertisol plot. Results have shown that surge and deficit irrigation practices increase water productivity by 62% and 58%, respectively, when compared to traditional management. The study also found out that these practices reduce the adverse environmental impacts (waterlogging and salinity) of traditional management by minimizing deep percolation and tail water losses. Total irrigation depth was reduced by 12% (for surge) and 27% (for deficit) when compared to traditional management. Based on the results, the study concluded that surge and deficit irrigation technologies not only improve water productivity but also enhance environmental sustainability. Copyright © 2010 Society of Chemical Industry.

  6. Nasal irrigation: From empiricism to evidence-based medicine. A review.

    PubMed

    Bastier, P-L; Lechot, A; Bordenave, L; Durand, M; de Gabory, L

    2015-11-01

    Nasal irrigation plays a non-negligible role in the treatment of numerous sinonasal pathologies and postoperative care. There is, however, a wide variety of protocols. The present review of the evidence-based literature sought objective arguments for optimization and efficacy. It emerged that large-volume low-pressure nasal douche optimizes the distribution and cleansing power of the irrigation solution in the nasal cavity. Ionic composition and pH also influence mucociliary clearance and epithelium trophicity. Seawater is less rich in sodium ions and richer in bicarbonates, potassium, calcium and magnesium than is isotonic normal saline, while alkaline pH and elevated calcium concentration optimized ciliary motility in vitro. Bicarbonates reduce secretion viscosity. Potassium and magnesium promote healing and limit local inflammation. These results show that the efficacy of nasal irrigation is multifactorial. Large-volume low-pressure nasal irrigation using undiluted seawater seems, in the present state of knowledge, to be the most effective protocol. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. Using Cotton Model Simulations to Estimate Optimally Profitable Irrigation Strategies

    NASA Astrophysics Data System (ADS)

    Mauget, S. A.; Leiker, G.; Sapkota, P.; Johnson, J.; Maas, S.

    2011-12-01

    In recent decades irrigation pumping from the Ogallala Aquifer has led to declines in saturated thickness that have not been compensated for by natural recharge, which has led to questions about the long-term viability of agriculture in the cotton producing areas of west Texas. Adopting irrigation management strategies that optimize profitability while reducing irrigation waste is one way of conserving the aquifer's water resource. Here, a database of modeled cotton yields generated under drip and center pivot irrigated and dryland production scenarios is used in a stochastic dominance analysis that identifies such strategies under varying commodity price and pumping cost conditions. This database and analysis approach will serve as the foundation for a web-based decision support tool that will help producers identify optimal irrigation treatments under specified cotton price, electricity cost, and depth to water table conditions.

  8. A web application for cotton irrigation management on the U.S. southern high plains. Part I: Crop yield modeling and profit analysis

    USDA-ARS?s Scientific Manuscript database

    Irrigated cotton (Gossypium Hirsutum L.) production is a central part of west Texas agriculture that depends on the essentially non-renewable water resource of the Ogallala aquifer. Web-based decision support tools that estimate the profit effects of irrigation for cotton under varying lint price, p...

  9. Influence of irrigation method and container type on Northern red oak seedling growth and media electrical conductivity

    Treesearch

    Anthony S. Davis; Douglass F. Jacobs; Ronald P. Overton; R. Kasten Dumroese

    2008-01-01

    Container production of hardwood seedlings has not been extensively practiced. Efficient nursery production of hardwood seedlings in containers can be limited by formation of a broad foliar canopy, which limits irrigation uniformity. This study was established to investigate suitability of subirrigation, a method of irrigating seedlings from the container base that...

  10. Opportunities for woody crop production using treated wastewater in Egypt. II. Irrigation strategies

    Treesearch

    Steven R. Evett; Ronald S. Zalesny Jr.; Nabil F. Kandil; John A. Stanturf; Christopher Soriano

    2011-01-01

    An Egyptian national program targets annual reuse of 2.4 billion m3 of treated wastewater (TWW) to irrigate 84,000 ha of manmade forests in areas close to treatment plants and in the desert. To evaluate the feasibility of such afforestation efforts, we describe information about TWW irrigation strategies based on (1) water use of different tree...

  11. Decalcifying capability of irrigating solutions on root canal dentin mineral content

    PubMed Central

    Poggio, Claudio; Dagna, Alberto; Vinci, Andrea; Beltrami, Riccardo; Cucca, Lucia; Giardino, Luciano

    2015-01-01

    Background: Chelating agents are believed to aid root canal irrigation and to be able to remove the inorganic smear layer. Aims: The purpose of the present study was to evaluate and to compare the decalcifying capability of different irrigating solutions (Tubuliclean, Largal Ultra, ethylenediaminetetraacetic acid 17%, Tetraclean, Tetraclean NA). Materials and Methods: Sixty maxillary central incisors were used. Root canals were instrumented and irrigated. From each root, four comparable slices of cervical dentin were obtained. At three successive 5-min interval immersion times, the concentration of calcium extracted from root canal dentin was assessed with an inductively coupled plasma-atomic emission spectrometer. Statistical Analysis Used: Data were analyzed by means of Kruskal Wallis and Mann–Whitney tests. Significance was predetermined at P < 0.05. Results and Conclusions: For all irrigating solutions, the maximum amount of Ca2+ extracted from root canal dentin samples was reached after 10 min contact time except for citric acid-based agents (Tetraclean and Tetraclean NA) which induced a higher and still increasing calcium release even after 10 min contact time. In order to obtain an efficient decalcifying action on dentin and to facilitate the biomechanical procedures, citric acid-based irrigants can be applied. PMID:26097355

  12. Analytical Solution for Optimum Design of Furrow Irrigation Systems

    NASA Astrophysics Data System (ADS)

    Kiwan, M. E.

    1996-05-01

    An analytical solution for the optimum design of furrow irrigation systems is derived. The non-linear calculus optimization method is used to formulate a general form for designing the optimum system elements under circumstances of maximizing the water application efficiency of the system during irrigation. Different system bases and constraints are considered in the solution. A full irrigation water depth is considered to be achieved at the tail of the furrow line. The solution is based on neglecting the recession and depletion times after off-irrigation. This assumption is valid in the case of open-end (free gradient) furrow systems rather than closed-end (closed dike) systems. Illustrative examples for different systems are presented and the results are compared with the output obtained using an iterative numerical solution method. The final derived solution is expressed as a function of the furrow length ratio (the furrow length to the water travelling distance). The function of water travelling developed by Reddy et al. is considered for reaching the optimum solution. As practical results from the study, the optimum furrow elements for free gradient systems can be estimated to achieve the maximum application efficiency, i.e. furrow length, water inflow rate and cutoff irrigation time.

  13. Soil water nitrate and ammonium dynamics under a sewage effluent irrigated eucalypt plantation.

    PubMed

    Livesley, S J; Adams, M A; Grierson, P F

    2007-01-01

    Managed forests and plantations are appropriate ecosystems for land-based treatment of effluent, but concerns remain regarding nutrient contamination of ground- and surface waters. Monthly NO3-N and NH4-N concentrations in soil water, accumulated soil N, and gross ammonification and nitrification rates were measured in the second year of a second rotation of an effluent irrigated Eucalyptus globulus plantation in southern Western Australia to investigate the separate and interactive effects of drip and sprinkler irrigation, effluent and water irrigation, irrigation rate, and harvest residues retention. Nitrate concentrations of soil water were greater under effluent irrigation than water irrigation but remained <15 mg L(-1) when irrigated at the normal rate (1.5-2.0 mm d(-1)), and there was little evidence of downward movement. In contrast, NH4-N concentrations of soil water at 30 and 100 cm were generally greater under effluent irrigation than water irrigation when irrigated at the normal rate because of direct effluent NH4-N input and indirect ammonification of soil organic N. Drip irrigation of effluent approximately doubled peak NO3-N and NH4-N concentrations in soil water. Harvest residue retention reduced concentrations of soil water NO3-N at 30 cm during active sprinkler irrigation, but after 1 yr of irrigation there was no significant difference in the amount of N stored in the soil system, although harvest residue retention did enhance the "nitrate flush" in the following spring. Gross mineralization rates without irrigation increased with harvest residue retention and further increased with water irrigation. Irrigation with effluent further increased gross nitrification to 3.1 mg N kg(-1) d(-1) when harvest residues were retained but had no effect on gross ammonification, which suggested the importance of heterotrophic nitrification. The downward movement of N under effluent irrigation was dominated by NH4-N rather than NO3-N. Improving the capacity of forest soils to store and transform N inputs through organic matter management must consider the dynamic equilibrium between N input, uptake, and immobilization according to soil C status, and the effect changing microbial processes and environmental conditions can have on this equilibrium.

  14. Assessing environmental impacts of constructed wetland effluents for vegetable crop irrigation.

    PubMed

    Castorina, A; Consoli, S; Barbagallo, S; Branca, F; Farag, A; Licciardello, F; Cirelli, G L

    2016-01-01

    The objective of this study was to monitor and assess environmental impacts of reclaimed wastewater (RW), used for irrigation of vegetable crops, on soil, crop quality and irrigation equipment. During 2013, effluents of a horizontal sub-surface flow constructed treatment wetland (TW) system, used for tertiary treatment of sanitary wastewater from a small rural municipality located in Eastern Sicily (Italy), were reused by micro-irrigation techniques to irrigate vegetable crops. Monitoring programs, based on in situ and laboratory analyses were performed for assessing possible adverse effects on water-soil-plant systems caused by reclaimed wastewater reuse. In particular, experimental results evidenced that Escherichia coli content found in RW would not present a risk for rotavirus infection following WHO (2006) standards. Irrigated soil was characterized by a certain persistence of microbial contamination and among the studied vegetable crops, lettuce responds better, than zucchini and eggplants, to the irrigation with low quality water, evidencing a bettering of nutraceutical properties and production parameters.

  15. Economic risk assessment of drought impacts on irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Lopez-Nicolas, A.; Pulido-Velazquez, M.; Macian-Sorribes, H.

    2017-07-01

    In this paper we present an innovative framework for an economic risk analysis of drought impacts on irrigated agriculture. It consists on the integration of three components: stochastic time series modelling for prediction of inflows and future reservoir storages at the beginning of the irrigation season; statistical regression for the evaluation of water deliveries based on projected inflows and storages; and econometric modelling for economic assessment of the production value of agriculture based on irrigation water deliveries and crop prices. Therefore, the effect of the price volatility can be isolated from the losses due to water scarcity in the assessment of the drought impacts. Monte Carlo simulations are applied to generate probability functions of inflows, which are translated into probabilities of storages, deliveries, and finally, production value of agriculture. The framework also allows the assessment of the value of mitigation measures as reduction of economic losses during droughts. The approach was applied to the Jucar river basin, a complex system affected by multiannual severe droughts, with irrigated agriculture as the main consumptive demand. Probability distributions of deliveries and production value were obtained for each irrigation season. In the majority of the irrigation districts, drought causes a significant economic impact. The increase of crop prices can partially offset the losses from the reduction of production due to water scarcity in some districts. Emergency wells contribute to mitigating the droughts' impacts on the Jucar river system.

  16. Ultrasonic activation and chemical modification of photosensitizers enhances the effects of photodynamic therapy against Enterococcus faecalis root-canal isolates.

    PubMed

    Tennert, C; Drews, A M; Walther, V; Altenburger, M J; Karygianni, L; Wrbas, K T; Hellwig, E; Al-Ahmad, A

    2015-06-01

    The aim of this study was to evaluate the effect of photodynamic therapy (PDT) on Enterococcus faecalis biofilms in artificially infected root canals using modified photosensitizers and passive ultrasonic activation. Two hundred and seventy extracted human teeth with one root canal were instrumented utilizing ProTaper files, autoclaved, infected with E. faecalis T9 for 72 h and divided into different groups: irrigation with 3% sodium hypochlorite (NaOCl), 20% ethylenediaminetetraacetic acid (EDTA), or 20% citric acid, PDT without irrigation, PDT accompanied by irrigation with NaOCl, EDTA, or citric acid, PDT using an EDTA-based photosensitizer or a citric-acid-based photosensitizer and PDT with ultrasonic activation of the photosensitizer. A 15 mg/ml toluidine blue served as the photosensitizer, activated by a 100 mW LED light source. Sterile paper points were used for sampling the root canals and dentin chips were collected to assess the remaining contamination after treatment. Samples were cultured on blood agar plates and colony forming units were quantified. PDT alone achieved a reduction in E. faecalis counts by 92.7%, NaOCl irrigation alone and combined with PDT by 99.9%. The antibacterial effects increased by the combination of irrigation using EDTA or citric acid and PDT compared to irrigation alone. More than 99% of E. faecalis were killed using PDT with the modified photosensitizers and ultrasonic activation. NaOCl based disinfection achieved the highest antimicrobial effect. Using PDT with an EDTA-based or citric-acid-based phozosensitizer or activating the photosensitizer with ultrasound resulted in a significantly higher reduction in E. faecalis counts compared to conventional PDT. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Effect of Simultaneous Water Deficit Stress and Meloidogyne incognita Infection on Cotton Yield and Fiber Quality

    PubMed Central

    Davis, R. F.; Earl, H. J.; Timper, P.

    2014-01-01

    Both water deficit stress and Meloidogyne incognita infection can reduce cotton growth and yield, and drought can affect fiber quality, but the effect of nematodes on fiber quality is not well documented. To determine whether nematode parasitism affects fiber quality and whether the combined effects of nematode and drought stress on yield and quality are additive (independent effects), synergistic, or antagonistic, we conducted a study for 7 yr in a field infested with M. incognita. A split-plot design was used with the main plot factor as one of three irrigation treatments (low [nonirrigated], moderate irrigation, and high irrigation [water-replete]) and the subplot factor as 0 or 56 l/ha 1,3-dichloropropene. We prevented water deficit stress in plots designated as water-replete by supplementing rainfall with irrigation. Plots receiving moderate irrigation received half the water applied to the water-replete treatment. The severity of root galling was greater in nonfumigated plots and in plots receiving the least irrigation, but the amount of irrigation did not influence the effect of fumigation on root galling (no irrigation × fumigation interaction). The weights of lint and seed harvested were reduced in nonfumigated plots and also decreased as the level of irrigation decreased, but fumigation did not influence the effect of irrigation. Nematodes affected fiber quality by increasing micronaire readings but typically had little or no effect on percent lint, fiber length (measured by HVI), uniformity, strength, elongation, length (based on weight or number measured by AFIS), upper quartile length, or short fiber content (based on weight or number). Micronaire also was increased by water deficit stress, but the effects from nematodes and water stress were independent. We conclude that the detrimental effects caused to cotton yield and quality by nematode parasitism and water deficit stress are independent and therefore additive. PMID:24987162

  18. Quantitative Microbial Risk Assessment for Spray Irrigation of Dairy Manure Based on an Empirical Fate and Transport Model

    PubMed Central

    Burch, Tucker R.; Spencer, Susan K.; Stokdyk, Joel P.; Kieke, Burney A.; Larson, Rebecca A.; Firnstahl, Aaron D.; Rule, Ana M.

    2017-01-01

    Background: Spray irrigation for land-applying livestock manure is increasing in the United States as farms become larger and economies of scale make manure irrigation affordable. Human health risks from exposure to zoonotic pathogens aerosolized during manure irrigation are not well understood. Objectives: We aimed to a) estimate human health risks due to aerosolized zoonotic pathogens downwind of spray-irrigated dairy manure; and b) determine which factors (e.g., distance, weather conditions) have the greatest influence on risk estimates. Methods: We sampled downwind air concentrations of manure-borne fecal indicators and zoonotic pathogens during 21 full-scale dairy manure irrigation events at three farms. We fit these data to hierarchical empirical models and used model outputs in a quantitative microbial risk assessment (QMRA) to estimate risk [probability of acute gastrointestinal illness (AGI)] for individuals exposed to spray-irrigated dairy manure containing Campylobacter jejuni, enterohemorrhagic Escherichia coli (EHEC), or Salmonella spp. Results: Median risk estimates from Monte Carlo simulations ranged from 10−5 to 10−2 and decreased with distance from the source. Risk estimates for Salmonella or EHEC-related AGI were most sensitive to the assumed level of pathogen prevalence in dairy manure, while risk estimates for C. jejuni were not sensitive to any single variable. Airborne microbe concentrations were negatively associated with distance and positively associated with wind speed, both of which were retained in models as a significant predictor more often than relative humidity, solar irradiation, or temperature. Conclusions: Our model-based estimates suggest that reducing pathogen prevalence and concentration in source manure would reduce the risk of AGI from exposure to manure irrigation, and that increasing the distance from irrigated manure (i.e., setbacks) and limiting irrigation to times of low wind speed may also reduce risk. https://doi.org/10.1289/EHP283 PMID:28885976

  19. Evapotranspiration and Dual Crop Coefficients Sonisa Sharma1, Ayse Irmak12, Anne Parkhurst3, Elizabeth walter-Shea1 and Kenneth G. Hubbard1 1School of Natural Resources, 2Civil Engineering, 3Departments of Statistics, University of Nebraska-Lincoln

    NASA Astrophysics Data System (ADS)

    Sharma, S.

    2012-12-01

    Accurate estimation of water content in the crop root zone is most important for water conservation and management practices like irrigation. The objective of this study is to use the FA0-56 dual crop cefficients: basal crop coefficient Kcb and the soil evaporation coefficient Ke for a large corn/soybean field in the year 2005 at the Mead Turf Farm in the state of Nebraska, USA..Dual crop coefficients can be used to estimate both transpiration from crops and evaporation from soil. The Kcb has a low value of 0.15(K cb, in) during the initial period, increases rapidly to a maximum of 1.14 (K cb, mid) for the entire midseason and decreases rapidly to 0.5 at the end of the corn growing season (K cb,end). When examined together with precipitation, the dual crop coefficient was higher following rainfall or irrigation, as expected. The data suggests that the dual crop coefficient approach is a good estimation of water loss from well-watered crops. Irrigation can be scheduled to replace the loss of water from the crop/soil system. Similarly, when we compared the measured daily ET and the ET calculated from dual crop coefficients, it gives 98 % R2.; Comparision of calculated ET from dual crop coefficient appraoch with Weather Station ET

  20. Holistic irrigation water management approach based on stochastic soil water dynamics

    NASA Astrophysics Data System (ADS)

    Alizadeh, H.; Mousavi, S. J.

    2012-04-01

    Appreciating the essential gap between fundamental unsaturated zone transport processes and soil and water management due to low effectiveness of some of monitoring and modeling approaches, this study presents a mathematical programming model for irrigation management optimization based on stochastic soil water dynamics. The model is a nonlinear non-convex program with an economic objective function to address water productivity and profitability aspects in irrigation management through optimizing irrigation policy. Utilizing an optimization-simulation method, the model includes an eco-hydrological integrated simulation model consisting of an explicit stochastic module of soil moisture dynamics in the crop-root zone with shallow water table effects, a conceptual root-zone salt balance module, and the FAO crop yield module. Interdependent hydrology of soil unsaturated and saturated zones is treated in a semi-analytical approach in two steps. At first step analytical expressions are derived for the expected values of crop yield, total water requirement and soil water balance components assuming fixed level for shallow water table, while numerical Newton-Raphson procedure is employed at the second step to modify value of shallow water table level. Particle Swarm Optimization (PSO) algorithm, combined with the eco-hydrological simulation model, has been used to solve the non-convex program. Benefiting from semi-analytical framework of the simulation model, the optimization-simulation method with significantly better computational performance compared to a numerical Mote-Carlo simulation-based technique has led to an effective irrigation management tool that can contribute to bridging the gap between vadose zone theory and water management practice. In addition to precisely assessing the most influential processes at a growing season time scale, one can use the developed model in large scale systems such as irrigation districts and agricultural catchments. Accordingly, the model has been applied in Dasht-e-Abbas and Ein-khosh Fakkeh Irrigation Districts (DAID and EFID) of the Karkheh Basin in southwest of Iran. The area suffers from the water scarcity problem and therefore the trade-off between the level of deficit and economical profit should be assessed. Based on the results, while the maximum net benefit has been obtained for the stress-avoidance (SA) irrigation policy, the highest water profitability, defined by economical net benefit gained from unit irrigation water volume application, has been resulted when only about 60% of water used in the SA policy is applied.

  1. A comparative analysis of the impacts of climate change and irrigation on land surface and subsurface hydrology in the North China Plain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leng, Guoyong; Tang, Qiuhong; Huang, Maoyi

    The Community Land Model 4.0 (CLM4) was used to investigate and compare the effects of climate change and irrigation on terrestrial water cycle. Three climate change scenarios and one irrigation scenario (IRRIG) were simulated in the North China Plain (NCP), which is one of the most vulnerable regions to climate change and human perturbations in China. The climate change scenarios consist of (1) HOT (i.e. temperature increase by 2oC); (2) HOTWET (same with HOT but with an increase of precipitation by 15%); (3) HOTDRY (same with HOT but with a decrease of precipitation by 15%). In the IRRIG scenario, themore » irrigation scheme was calibrated to simulate irrigation amounts that match the actual irrigation amounts and irrigation was divided between surface water and groundwater withdrawals based on census data. Our results show that the impacts of climate change were more widespread while those of irrigation were concentrated only over the agricultural regions. Specifically, the mean water table depth was simulated to decline persistently by over 1 m annually due to groundwater exploitation during the period of 1980-2000, while much smaller effects were induced by climate change. Although irrigation has comparable effects on surface fluxes and surface soil moisture as climate change, it has much greater effects on water table depth and groundwater storage. Moreover, irrigation has much larger effects on the top layer soil moisture whereas increase in precipitation associated with climate change exerts more influence on lower layer soil moisture. This study emphasizes the need to accurately account for irrigation impacts in adapting to climate change.« less

  2. Effect of Passive Ultrasonic Irrigation on Enterococcus faecalis from Root Canals: An Ex Vivo Study.

    PubMed

    Guerreiro-Tanomaru, Juliane Maria; Chávez-Andrade, Gisselle Moraima; de Faria-Júnior, Norberto Batista; Watanabe, Evandro; Tanomaru-Filho, Mário

    2015-01-01

    Endodontic irrigation aims to clean and disinfect the root canal system. Passive ultrasonic irrigation (PUI) is based on the use of an ultrasound-activated instrument into the root canal filled with irrigant. The aim of this study was to evaluate, ex vivo, the effectiveness of PUI in eliminating Enterococcus faecalis from root canals. Seventy-five extracted human single-root teeth were used. After root canal preparation, specimens were inoculated with E. faecalis and incubated at 37 °C for 21 days. Specimens were distributed into five groups (n=15), according to the irrigation method: PUI + saline solution (PUI/SS); PUI + 1% NaOCl (PUI/NaOCl); conventional needle irrigation (CNI) + saline solution (CNI/SS); CNI + 1% NaOCl (CNI/NaOCl); No irrigation (control). Microbiological samples were collected at three time points: initial (21 days after inoculation), post-irrigation (immediately after irrigation), and final (7 days after irrigation). Data were obtained in CFU mL-1 and subjected to analysis by ANOVA and Tukey's tests at 5% significance level. The post-irrigation samples did not demonstrate statistical difference between PUI/SS and CNI/SS nor between PUI/NaOCl and CNI/NaOCl (p>0.05), but PUI/NaOCl and CNI/NaOCl had lower CFU mL-1 number than the other groups (p>0.05). Statistically significant difference was observed between the initial and post-irrigation samples and between the post-irrigation and final samples (p<0.05) in all groups, except in the control. The final samples of all groups presented bacterial counts similar to the initial samples. PUI or CNI with 1% NaOCl contribute to disinfection, but are unable to eradicate E. faecalis from the root canal system.

  3. More efficient irrigation may compensate for increases in irrigation water requirements due to climate change in the Mediterranean area

    NASA Astrophysics Data System (ADS)

    Fader, Marianela; Shi, Sinan; von Bloh, Werner; Bondeau, Alberte; Cramer, Wolfgang

    2017-04-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. We will present a recently published study1 that estimates the current level of water demand for Mediterranean agriculture and simulates the potential impacts of climate change, population growth and transitions to water-saving irrigation and conveyance technologies. The results indicate that, at present, Mediterranean region could save 35% of water by implementing more efficient irrigation and conveyance systems, with large differences in the saving potentials across countries. Under climate change, more efficient irrigation is of vital importance for counteracting increases in irrigation water requirements. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4% and 18% from climate change alone by the end of the century if irrigation systems and conveyance are not improved. Population growth increases these numbers to 22% and 74%, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean. Both the Eastern and the Southern Mediterranean would need around 35% more water than today if they could afford some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect. However, in some scenarios water scarcity may constrain the supply of the irrigation water needed in future in Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain. In this study, vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL ("Lund-Potsdam-Jena managed Land") after a large development2 that comprised the improved representation of Mediterranean crops.

  4. Where Does the Irrigation Water Go? An Estimate of the Contribution of Irrigation to Precipitation Using MERRA

    NASA Technical Reports Server (NTRS)

    Wei, Jiangfeng; Dirmeyer, Paul A.; Wisser, Dominik; Bosilovich, Michael G.; Mocko, David M.

    2013-01-01

    Irrigation is an important human activity that may impact local and regional climate, but current climate model simulations and data assimilation systems generally do not explicitly include it. The European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim) shows more irrigation signal in surface evapotranspiration (ET) than the Modern-Era Retrospective Analysis for Research and Applications (MERRA) because ERA-Interim adjusts soil moisture according to the observed surface temperature and humidity while MERRA has no explicit consideration of irrigation at the surface. But, when compared with the results from a hydrological model with detailed considerations of agriculture, the ET from both reanalyses show large deficiencies in capturing the impact of irrigation. Here, a back-trajectory method is used to estimate the contribution of irrigation to precipitation over local and surrounding regions, using MERRA with observation-based corrections and added irrigation-caused ET increase from the hydrological model. Results show substantial contributions of irrigation to precipitation over heavily irrigated regions in Asia, but the precipitation increase is much less than the ET increase over most areas, indicating that irrigation could lead to water deficits over these regions. For the same increase in ET, precipitation increases are larger over wetter areas where convection is more easily triggered, but the percentage increase in precipitation is similar for different areas. There are substantial regional differences in the patterns of irrigation impact, but, for all the studied regions, the highest percentage contribution to precipitation is over local land.

  5. Assessing the groundwater recharge under various irrigation schemes in Central Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Kai; Jang, Cheng-Shin; Lin, Zih-Ciao; Tsai, Cheng-Bin

    2014-05-01

    The flooded paddy fields can be considered as a major source of groundwater recharge in Central Taiwan. The risk of rice production has increased notably due to climate change in this area. To respond to agricultural water shortage caused by climate change without affecting rice yield in the future, the application of water-saving irrigation is the substantial resolution. The System of Rice Intensification (SRI) was developed as a set of insights and practices used in growing irrigated rice. Based on the water-saving irrigation practice of SRI, impacts of the new methodology on the reducing of groundwater recharge were assessed in central Taiwan. The three-dimensional finite element groundwater model (FEMWATER) with the variable boundary condition analog functions, was applied in simulating groundwater recharge under different irrigation schemes. According to local climatic and environmental characteristics associated with SRI methodology, the change of infiltration rate was evaluated and compared with the traditional irrigation schemes, including continuous irrigation and rotational irrigation scheme. The simulation results showed that the average infiltration rate in the rice growing season decreased when applying the SRI methodology, and the total groundwater recharge amount of SRI with a 5-day irrigation interval reduced 12% and 9% compared with continuous irrigation (6cm constant ponding water depth) and rotational scheme (5-day irrigation interval with 6 cm initial ponding water depth), respectively. The results could be used as basis for planning long-term adaptive water resource management strategies to climate change in Central Taiwan. Keywords: SRI, Irrigation schemes, Groundwater recharge, Infiltration

  6. Irrigation as an important anthropogenic forcing on the mean and intra-seasonal variability of Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Agrawal, Shubhi; Chakraborty, Arindam; Karmakar, Nirupam; Moulds, Simon; Mijic, Ana; Buytaert, Wouter

    2017-04-01

    Decreasing trend in rainfall in the last few decades over Indo-Gangetic Plains of northern India as seen from ground-based observations, parallels stressed ground water resources, with irrigation utilising up to 90%. The decrease in mean rainfall is co-incidental with an increasing trend in irrigation. In this work, we have analysed the effect of the extensive irrigation over Gangetic Plains (GP) on monsoon climate. In the first step, the effect of irrigation on soil moisture was accessed using a high-resolution land surface model (JULES). The model was run over Gangetic basin in two scenarios: with and without irrigation. It was seen that the mean soil moisture over GP in the irrigated scenario is higher as compared to non-irrigated scenario. These soil moisture fields were then used as forcing to a state-of-the-art general circulation model with realistic land-atmosphere coupling. A decrease in June-September precipitation over GP, significant at 95% level, is noted in the model simulation with irrigation as compared to simulation without irrigation. In specific, these changes show a remarkable similarity to the long-term trend in observed rainfall spatial pattern. Moreover, weakening of the variability of intra-seasonal oscillations in the high (10-20 days) and low (30-60 days) frequency bands is noted with irrigation. Our results suggest that with shrinking ground water resources in the GP region and a decline in the summer precipitation, the water crisis could exacerbate, with irrigation contributing in a positive feedback mechanism on these tendencies.

  7. Hyperspectral reflectance sensing to assess the growth and photosynthetic properties of wheat cultivars exposed to different irrigation rates in an irrigated arid region

    PubMed Central

    Al-Suhaibani, Nasser; Hassan, Wael; Tahir, Mohammad; Schmidhalter, Urs

    2017-01-01

    Simultaneous indirect assessment of multiple and diverse plant parameters in an exact and expeditious manner is becoming imperative in irrigated arid regions, with a view toward creating drought-tolerant genotypes or for the management of precision irrigation. This study aimed to evaluate whether spectral reflectance indices (SRIs) in three parts of the electromagnetic spectrum ((visible-infrared (VIS), near-infrared (NIR)), and shortwave-infrared (SWIR)) could be used to track changes in morphophysiological parameters of wheat cultivars exposed to 1.00, 0.75, and 0.50 of the estimated evapotranspiration (ETc). Significant differences were found in the parameters of growth and photosynthetic efficiency, and canopy spectral reflectance among the three cultivars subjected to different irrigation rates. All parameters were highly and significantly correlated with each other particularly under the 0.50 ETc treatment. The VIS/VIS- and NIR/VIS-based indices were sufficient and suitable for assessing the growth and photosynthetic properties of wheat cultivars similar to those indices based on NIR/NIR, SWIR/NIR, or SWIR/SWIR. Almost all tested SRIs proved to assess growth and photosynthetic parameters, including transpiration rate, more efficiently when regressions were analyzed for each water irrigation rate individually. This study, the type of which has rarely been conducted in irrigated arid regions, indicates that spectral reflectance data can be used as a rapid and non-destructive alternative method for assessment of the growth and photosynthetic efficiency of wheat under a range of water irrigation rates. PMID:28829809

  8. Study on the quantitative relationship between Agricultural water and fertilization process and non-point source pollution based on field experiments

    NASA Astrophysics Data System (ADS)

    Wang, H.; Chen, K.; Wu, Z.; Guan, X.

    2017-12-01

    In recent years, with the prominent of water environment problem and the relative increase of point source pollution governance, especially the agricultural non-point source pollution problem caused by the extensive use of fertilizers and pesticides has become increasingly aroused people's concern and attention. In order to reveal the quantitative relationship between agriculture water and fertilizer and non-point source pollution, on the basis of elm field experiment and combined with agricultural drainage irrigation model, the agricultural irrigation water and the relationship between fertilizer and fertilization scheme and non-point source pollution were analyzed and calculated by field emission intensity index. The results show that the variation of displacement varies greatly under different irrigation conditions. When the irrigation water increased from 22cm to 42cm, the irrigation water increased by 20 cm while the field displacement increased by 11.92 cm, about 66.22% of the added value of irrigation water. Then the irrigation water increased from 42 to 68, irrigation water increased 26 cm, and the field displacement increased by 22.48 cm, accounting for 86.46% of irrigation water. So there is an "inflection point" between the irrigation water amount and field displacement amount. The load intensity increases with the increase of irrigation water and shows a significant power correlation. Under the different irrigation condition, the increase amplitude of load intensity with the increase of irrigation water is different. When the irrigation water is smaller, the load intensity increase relatively less, and when the irrigation water increased to about 42 cm, the load intensity will increase considerably. In addition, there was a positive correlation between the fertilization and load intensity. The load intensity had obvious difference in different fertilization modes even with same fertilization level, in which the fertilizer field unit load intensity increased the most in July. The results provide some basis for the field control and management of agricultural non-point source pollution.

  9. Wiener-Hopf optimal control of a hydraulic canal prototype with fractional order dynamics.

    PubMed

    Feliu-Batlle, Vicente; Feliu-Talegón, Daniel; San-Millan, Andres; Rivas-Pérez, Raúl

    2017-06-26

    This article addresses the control of a laboratory hydraulic canal prototype that has fractional order dynamics and a time delay. Controlling this prototype is relevant since its dynamics closely resembles the dynamics of real main irrigation canals. Moreover, the dynamics of hydraulic canals vary largely when the operation regime changes since they are strongly nonlinear systems. All this makes difficult to design adequate controllers. The controller proposed in this article looks for a good time response to step commands. The design criterium for this controller is minimizing the integral performance index ISE. Then a new methodology to control fractional order processes with a time delay, based on the Wiener-Hopf control and the Padé approximation of the time delay, is developed. Moreover, in order to improve the robustness of the control system, a gain scheduling fractional order controller is proposed. Experiments show the adequate performance of the proposed controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  10. A process-based agricultural model for the irrigated agriculture sector in Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Ammar, M. E.; Davies, E. G.

    2015-12-01

    Connections between land and water, irrigation, agricultural productivity and profitability, policy alternatives, and climate change and variability are complex, poorly understood, and unpredictable. Policy assessment for agriculture presents a large potential for development of broad-based simulation models that can aid assessment and quantification of policy alternatives over longer temporal scales. The Canadian irrigated agriculture sector is concentrated in Alberta, where it represents two thirds of the irrigated land-base in Canada and is the largest consumer of surface water. Despite interest in irrigation expansion, its potential in Alberta is uncertain given a constrained water supply, significant social and economic development and increasing demands for both land and water, and climate change. This paper therefore introduces a system dynamics model as a decision support tool to provide insights into irrigation expansion in Alberta, and into trade-offs and risks associated with that expansion. It is intended to be used by a wide variety of users including researchers, policy analysts and planners, and irrigation managers. A process-based cropping system approach is at the core of the model and uses a water-driven crop growth mechanism described by AquaCrop. The tool goes beyond a representation of crop phenology and cropping systems by permitting assessment and quantification of the broader, long-term consequences of agricultural policies for Alberta's irrigation sector. It also encourages collaboration and provides a degree of transparency that gives confidence in simulation results. The paper focuses on the agricultural component of the systems model, describing the process involved; soil water and nutrients balance, crop growth, and water, temperature, salinity, and nutrients stresses, and how other disciplines can be integrated to account for the effects of interactions and feedbacks in the whole system. In later stages, other components such as livestock production systems and agricultural production economics will be integrated to the agricultural model to make the systems tool. It will capture feedback loops, time delays, and the nonlinearities of the system. Moreover, the model is designed for quick reconfiguration to different regions given parametrized crop data.

  11. Evaluation of limited irrigation strategies to improve water use efficiency and wheat yield in the North China Plain.

    PubMed

    Zhang, Di; Li, Ruiqi; Batchelor, William D; Ju, Hui; Li, Yanming

    2018-01-01

    The North China Plain is one of the most important grain production regions in China, but is facing serious water shortages. To achieve a balance between water use and the need for food self-sufficiency, new water efficient irrigation strategies need to be developed that balance water use with farmer net return. The Crop Environment Resource Synthesis Wheat (CERES-Wheat model) was calibrated and evaluated with two years of data which consisted of 3-4 irrigation treatments, and the model was used to investigate long-term winter wheat productivity and water use from irrigation management in the North China Plain. The calibrated model simulated accurately above-ground biomass, grain yield and evapotranspiration of winter wheat in response to irrigation management. The calibrated model was then run using weather data from 1994-2016 in order to evaluate different irrigation strategies. The simulated results using historical weather data showed that grain yield and water use was sensitive to different irrigation strategies including amounts and dates of irrigation applications. The model simulated the highest yield when irrigation was applied at jointing (T9) in normal and dry rainfall years, and gave the highest simulated yields for irrigation at double ridge (T8) in wet years. A single simulated irrigation at jointing (T9) produced yields that were 88% compared to using a double irrigation treatment at T1 and T9 in wet years, 86% of that in normal years, and 91% of that in dry years. A single irrigation at jointing or double ridge produced higher water use efficiency because it obtained higher evapotranspiration. The simulated farmer irrigation practices produced the highest yield and net income. When the cost of water was taken into account, limited irrigation was found to be more profitable based on assumptions about future water costs. In order to increase farmer income, a subsidy will likely be needed to compensate farmers for yield reductions due to water savings. These results showed that there is a cost to the farmer for water conservation, but limiting irrigation to a single irrigation at jointing would minimize impact on farmer net return in North China Plain.

  12. Uncertainties in modelling the climate impact of irrigation

    NASA Astrophysics Data System (ADS)

    de Vrese, Philipp; Hagemann, Stefan

    2017-11-01

    Irrigation-based agriculture constitutes an essential factor for food security as well as fresh water resources and has a distinct impact on regional and global climate. Many issues related to irrigation's climate impact are addressed in studies that apply a wide range of models. These involve substantial uncertainties related to differences in the model's structure and its parametrizations on the one hand and the need for simplifying assumptions for the representation of irrigation on the other hand. To address these uncertainties, we used the Max Planck Institute for Meteorology's Earth System model into which a simple irrigation scheme was implemented. In order to estimate possible uncertainties with regard to the model's more general structure, we compared the climate impact of irrigation between three simulations that use different schemes for the land-surface-atmosphere coupling. Here, it can be shown that the choice of coupling scheme does not only affect the magnitude of possible impacts but even their direction. For example, when using a scheme that does not explicitly resolve spatial subgrid scale heterogeneity at the surface, irrigation reduces the atmospheric water content, even in heavily irrigated regions. Contrarily, in simulations that use a coupling scheme that resolves heterogeneity at the surface or even within the lowest layers of the atmosphere, irrigation increases the average atmospheric specific humidity. A second experiment targeted possible uncertainties related to the representation of irrigation characteristics. Here, in four simulations the irrigation effectiveness (controlled by the target soil moisture and the non-vegetated fraction of the grid box that receives irrigation) and the timing of delivery were varied. The second experiment shows that uncertainties related to the modelled irrigation characteristics, especially the irrigation effectiveness, are also substantial. In general the impact of irrigation on the state of the land surface is more than three times larger when assuming a low irrigation effectiveness than when a high effectiveness is assumed. For certain variables, such as the vertically integrated water vapour, the impact is almost an order of magnitude larger. The timing of irrigation also has non-negligible effects on the simulated climate impacts and it can strongly alter their seasonality.

  13. Impacts of Irrigation and Climate Change on Water Security: Using Stakeholder Engagement to Inform a Process-based Crop Model

    NASA Astrophysics Data System (ADS)

    Leonard, A.; Flores, A. N.; Han, B.; Som Castellano, R.; Steimke, A.

    2016-12-01

    Irrigation is an essential component for agricultural production in arid and semi-arid regions, accounting for a majority of global freshwater withdrawals used for human consumption. Since climate change affects both the spatiotemporal demand and availability of water in irrigated areas, agricultural productivity and water efficiency depend critically on how producers adapt and respond to climate change. It is necessary, therefore, to understand the coevolution and feedbacks between humans and agricultural systems. Integration of social and hydrologic processes can be achieved by active engagement with local stakeholders and applying their expertise to models of coupled human-environment systems. Here, we use a process based crop simulation model (EPIC) informed by stakeholder engagement to determine how both farm management and climate change influence regional agricultural water use and production in the Lower Boise River Basin (LBRB) of southwest Idaho. Specifically, we investigate how a shift from flood to sprinkler fed irrigation would impact a watershed's overall agricultural water use under RCP 4.5 and RCP 8.5 climate scenarios. The LBRB comprises about 3500 km2, of which 20% is dedicated to irrigated crops and another 40% to grass/pasture grazing land. Via interviews of stakeholders in the LBRB, we have determined that approximately 70% of irrigated lands in the region are flood irrigated. We model four common crops produced in the LBRB (alfalfa, corn, winter wheat, and sugarbeets) to investigate both hydrologic and agricultural impacts of irrigation and climatic drivers. Factors influencing farmers' decision to switch from flood to sprinkler irrigation include potential economic benefits, external financial incentives, and providing a buffer against future water shortages. These two irrigation practices are associated with significantly different surface water and energy budgets, and large-scale shifts in practice could substantially impact regional hydrologic budgets. This study reports our methodology to integrate perspectives of irrigators into projections of future water use and crop growth in the LBRB. It also highlights the need for more robust social data collection methods in socio-hydrologic studies.

  14. Irrigated lands assessment for water management: Technique test. [California

    NASA Technical Reports Server (NTRS)

    Wall, S. L.; Brown, C. E.; Eriksson, M.; Grigg, C. A.; Thomas, R. W.; Colwell, R. N.; Estes, J. E.; Tinney, L. R.; Baggett, J. O.; Sawyer, G.

    1981-01-01

    A procedure for estimating irrigated land using full frame LANDSAT imagery was demonstrated. Relatively inexpensive interpretation of multidate LANDSAT photographic enlargements was used to produce a map of irrigated land in California. The LANDSAT and ground maps were then linked by regression equations to enable precise estimation of irrigated land area by county, basin, and statewide. Land irrigated at least once in California in 1979 was estimated to be 9.86 million acres, with an expected error of less than 1.75% at the 99% level of confidence. To achieve the same level of error with a ground-only sample would have required 3 to 5 times as many ground sample units statewide. A procedure for relatively inexpensive computer classification of LANDSAT digital data to irrigated land categories was also developed. This procedure is based on ratios of MSS band 7 and 5, and gave good results for several counties in the Central Valley.

  15. [Effects of supplemental irrigation based on the measurement of moisture content in different soil layers on the water consumption characteristics and grain yield of winter wheat].

    PubMed

    Yi, Li-Pan; Yu, Zhen-Wen; Zhang, Yong-Li; Wang, Dong; Shi, Yu; Zhao, Jun-Ye

    2013-05-01

    In 2010-2011, a field experiment with high-yielding winter wheat cultivar Jimai 22 was conducted to study the effects of supplemental irrigation based on the measurement of moisture content in different soil layers on the water consumption characteristics and grain yield of winter wheat. Four soil layers (0-20 cm, W1; 0-40 cm, W2; 0-60 cm, W3; and 0-140 cm, W4) were designed to make the supplemental irrigation at wintering stage (target soil relative moisture content = 75%), jointing stage (target soil relative moisture content = 70%), and anthesis stage (target soil relative moisture content = 70%), taking no irrigation (W0) during the whole growth season as the control. At the wintering, jointing, and anthesis stages, the required irrigation amount followed the order of W3 > W2 > W1. Treatment W4 required smaller irrigation amount at wintering and jointing stages, but significantly higher one at anthesis stage than the other treatments. The proportion of the irrigation amount relative to the total water consumption over the entire growth season followed the sequence of W4, W3 > W2 > W1. By contrast, the proportion of soil water consumption relative to the total water consumption followed the trend of W1 > W2 > W3 > W4. With the increase of the test soil depths, the soil water utilization ratio decreased. The water consumption in 80-140 cm and 160-200 cm soil layers was significantly higher in W2 than in W3 and W4. The required total irrigation amount was in the order of W3 > W4 > W2 > W1, the grain yield was in the order of W2, W3, W4 > W1 > W0, and the water use efficiency followed the order of W2, W4 > W0, W1 > W3. To consider the irrigation amount, grain yield, and water use efficiency comprehensively, treatment W2 under our experimental condition could be the optimal treatment, i. e., the required amount of supplemental irrigation based on the measurement of the moisture content in 0-40 cm soil layer should be feasible for the local winter wheat production.

  16. Effect of inter-annual variability in pasture growth and irrigation response on farm productivity and profitability based on biophysical and farm systems modelling.

    PubMed

    Vogeler, Iris; Mackay, Alec; Vibart, Ronaldo; Rendel, John; Beautrais, Josef; Dennis, Samuel

    2016-09-15

    Farm system and nutrient budget models are increasingly being used in analysis to inform on farm decision making and evaluate land use policy options at regional scales. These analyses are generally based on the use of average annual pasture yields. In New Zealand (NZ), like in many countries, there is considerable inter-annual variation in pasture growth rates, due to climate. In this study a modelling approach was used to (i) include inter-annual variability as an integral part of the analysis and (ii) test the approach in an economic analysis of irrigation in a case study within the Hawkes Bay Region of New Zealand. The Agricultural Production Systems Simulator (APSIM) was used to generate pasture dry matter yields (DMY) for 20 different years and under both dryland and irrigation. The generated DMY were linked to outputs from farm-scale modelling for both Sheep and Beef Systems (Farmaxx Pro) and Dairy Systems (Farmax® Dairy Pro) to calculate farm production over 20 different years. Variation in DMY and associated livestock production due to inter-annual variation in climate was large, with a coefficient of variations up to 20%. Irrigation decreased this inter-annual variation. On average irrigation, with unlimited available water, increased income by $831 to 1195/ha, but when irrigation was limited to 250mm/ha/year income only increased by $525 to 883/ha. Using pasture responses in individual years to capturing the inter-annual variation, rather than the pasture response averaged over 20years resulted in lower financial benefits. In the case study income from irrigation based on an average year were 10 to >20% higher compared with those obtained from individual years. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Online decision support system for surface irrigation management

    NASA Astrophysics Data System (ADS)

    Wang, Wenchao; Cui, Yuanlai

    2017-04-01

    Irrigation has played an important role in agricultural production. Irrigation decision support system is developed for irrigation water management, which can raise irrigation efficiency with few added engineering services. An online irrigation decision support system (OIDSS), in consist of in-field sensors and central computer system, is designed for surface irrigation management in large irrigation district. Many functions have acquired in OIDSS, such as data acquisition and detection, real-time irrigation forecast, water allocation decision and irrigation information management. The OIDSS contains four parts: Data acquisition terminals, Web server, Client browser and Communication system. Data acquisition terminals are designed to measure paddy water level, soil water content in dry land, ponds water level, underground water level, and canals water level. A web server is responsible for collecting meteorological data, weather forecast data, the real-time field data, and manager's feedback data. Water allocation decisions are made in the web server. Client browser is responsible for friendly displaying, interacting with managers, and collecting managers' irrigation intention. Communication system includes internet and the GPRS network used by monitoring stations. The OIDSS's model is based on water balance approach for both lowland paddy and upland crops. Considering basic database of different crops water demands in the whole growth stages and irrigation system engineering information, the OIDSS can make efficient decision of water allocation with the help of real-time field water detection and weather forecast. This system uses technical methods to reduce requirements of user's specialized knowledge and can also take user's managerial experience into account. As the system is developed by the Browser/Server model, it is possible to make full use of the internet resources, to facilitate users at any place where internet exists. The OIDSS has been applied in Zhanghe Irrigation District (Center China) to manage the required irrigation deliveries. Two years' application indicates that the proposed OIDSS can achieve promising performance for surface irrigation. Historical data of rice growing period in 2014 has been applied to test the OIDSS: it gives out 3 irrigation decisions, which is consistent with actual irrigation times and the forecast irrigation dates are well fit with the actual situations; the corresponding amount of total irrigation decreases by 15.13% compared to those without using the OIDSS.

  18. [Ecological risks of reclaimed water irrigation: a review].

    PubMed

    Chen, Wei-Ping; Zhang, Wei-Ling; Pan, Neng; Jiao, Wen-Tao

    2012-12-01

    Wastewater reclamation and reuse have become an important approach to alleviate the water crisis in China because of its social, economic and ecological benefits. The irrigation on urban green space and farmland is the primary utilization of reclaimed water, which has been practiced world widely. To understand the risk of reclaimed water irrigation, we summarized and reviewed the publications associated with typical pollutants in reclaimed water including salts, nitrogen, heavy metals, emerging pollutants and pathogens, systematically analyzed the ecological risk posed by reclaimed water irrigation regarding plant growth, groundwater quality and public health. Studies showed that salt and salt ions were the major risk sources of reclaimed water irrigation, spreading disease was another potential risk of using reclaimed water, and emerging pollutants was the hot topic in researches of ecological risk. Based on overseas experiences, risk control measures on reclaimed water irrigation in urban green space and farmland were proposed. Five recommendations were given to promote the safe use of reclaimed water irrigation including (1) strengthen long-term in situ monitoring, (2) promote the modeling studies, (3) build up the connections of reclaimed water quality, irrigation management and ecological risk, (4) evaluate the soil bearing capacity of reclaimed water irrigation, (5) and establish risk management system of reclaimed water reuse.

  19. WaterSense Specification for Weather-Based Irrigation Controllers Supporting Statement

    EPA Pesticide Factsheets

    The release of this final specification is the result of more than four years of collaboration between EPA and controller manufacturers, water utilities, irrigation industry representatives, and other stakeholders.

  20. Experimental evaluation of four infiltration models for calcareous soil irrigated with treated untreated grey water and fresh water

    NASA Astrophysics Data System (ADS)

    Gharaibeh, M. A.; Eltaif, N. I.; Alrababah, M. A.; Alhamad, M. N.

    2009-04-01

    Infiltration is vital for both irrigated and rainfed agriculture. The knowledge of infiltration characteristics of a soil is the basic information required for designing an efficient irrigation system. The objective of the present study was to model soil infiltration using four models: Green and Ampt, Horton, Kostaikov and modified Kostiakov. Infiltration tests were conducted on field plot irrigated with treated, untreated greywater and fresh water. The field water infiltration data used in these models were based on double ring infiltrometer tests conducted for 4 h. The algebraic parameters of the infiltration models and nonlinear least squares regression were fitted using measured infiltration time [I (t)] data. Among process-based infiltration models, the Horton model performed best and matched the measured I (t) data with lower sum of squares (SS).

  1. Optimization of planting pattern plan in Logung irrigation area using linear program

    NASA Astrophysics Data System (ADS)

    Wardoyo, Wasis; Setyono

    2018-03-01

    Logung irrigation area is located in Kudus Regency, Central Java Province, Indonesia. Irrigation area with 2810 Ha of extent is getting water supply from Logung dam. Yet, the utilization of water at Logung dam is not optimal and the distribution of water is still not evenly distributed. Therefore, this study will discuss about the optimization of irrigation water utilization based on the beginning of plant season. This optimization begins with the analysis of hydrology, climatology and river discharge in order to determine the irrigation water needs. After determining irrigation water needs, six alternatives of planting patterns with the different early planting periods, i.e. 1st November, 2nd November, 3rd November, 1st December, 2nd December, and 3rd December with the planting pattern of rice-secondary crop-sugarcane is introduced. It is continued by the analysis of water distribution conducted using linear program assisted by POM-Quantity method for Windows 3 with the reliable discharge limit and the available land area. Output of this calculation are to determine the land area that can be planted based on the type of plant and growing season, and to obtaine the profits of harvest yields. Based on the optimum area of each plant species with 6 alternatives, the most optimum area was obtained at the early planting periods on 3rd December with the production profit of Rp 113.397.338.854,- with the planting pattern of rice / beans / sugarcane-rice / beans / sugarcane-beans / sugarcane.

  2. Estimating irrigation water use in the humid eastern United States

    USGS Publications Warehouse

    Levin, Sara B.; Zarriello, Phillip J.

    2013-01-01

    Accurate accounting of irrigation water use is an important part of the U.S. Geological Survey National Water-Use Information Program and the WaterSMART initiative to help maintain sustainable water resources in the Nation. Irrigation water use in the humid eastern United States is not well characterized because of inadequate reporting and wide variability associated with climate, soils, crops, and farming practices. To better understand irrigation water use in the eastern United States, two types of predictive models were developed and compared by using metered irrigation water-use data for corn, cotton, peanut, and soybean crops in Georgia and turf farms in Rhode Island. Reliable metered irrigation data were limited to these areas. The first predictive model that was developed uses logistic regression to predict the occurrence of irrigation on the basis of antecedent climate conditions. Logistic regression equations were developed for corn, cotton, peanut, and soybean crops by using weekly irrigation water-use data from 36 metered sites in Georgia in 2009 and 2010 and turf farms in Rhode Island from 2000 to 2004. For the weeks when irrigation was predicted to take place, the irrigation water-use volume was estimated by multiplying the average metered irrigation application rate by the irrigated acreage for a given crop. The second predictive model that was developed is a crop-water-demand model that uses a daily soil water balance to estimate the water needs of a crop on a given day based on climate, soil, and plant properties. Crop-water-demand models were developed independently of reported irrigation water-use practices and relied on knowledge of plant properties that are available in the literature. Both modeling approaches require accurate accounting of irrigated area and crop type to estimate total irrigation water use. Water-use estimates from both modeling methods were compared to the metered irrigation data from Rhode Island and Georgia that were used to develop the models as well as two independent validation datasets from Georgia and Virginia that were not used in model development. Irrigation water-use estimates from the logistic regression method more closely matched mean reported irrigation rates than estimates from the crop-water-demand model when compared to the irrigation data used to develop the equations. The root mean squared errors (RMSEs) for the logistic regression estimates of mean annual irrigation ranged from 0.3 to 2.0 inches (in.) for the five crop types; RMSEs for the crop-water-demand models ranged from 1.4 to 3.9 in. However, when the models were applied and compared to the independent validation datasets from southwest Georgia from 2010, and from Virginia from 1999 to 2007, the crop-water-demand model estimates were as good as or better at predicting the mean irrigation volume than the logistic regression models for most crop types. RMSEs for logistic regression estimates of mean annual irrigation ranged from 1.0 to 7.0 in. for validation data from Georgia and from 1.8 to 4.9 in. for validation data from Virginia; RMSEs for crop-water-demand model estimates ranged from 2.1 to 5.8 in. for Georgia data and from 2.0 to 3.9 in. for Virginia data. In general, regression-based models performed better in areas that had quality daily or weekly irrigation data from which the regression equations were developed; however, the regression models were less reliable than the crop-water-demand models when applied outside the area for which they were developed. In most eastern coastal states that do not have quality irrigation data, the crop-water-demand model can be used more reliably. The development of predictive models of irrigation water use in this study was hindered by a lack of quality irrigation data. Many mid-Atlantic and New England states do not require irrigation water use to be reported. A survey of irrigation data from 14 eastern coastal states from Maine to Georgia indicated that, with the exception of the data in Georgia, irrigation data in the states that do require reporting commonly did not contain requisite ancillary information such as irrigated area or crop type, lacked precision, or were at an aggregated temporal scale making them unsuitable for use in the development of predictive models. Confidence in the reliability of either modeling method is affected by uncertainty in the reported data from which the models were developed or validated. Only through additional collection of quality data and further study can the accuracy and uncertainty of irrigation water-use estimates be improved in the humid eastern United States.

  3. Developing a Hybrid Solar/Wind Powered Drip Irrigation System for Dragon Fruit Yield

    NASA Astrophysics Data System (ADS)

    Widiastuti, I.; Wijayanto, D. S.

    2017-03-01

    Irrigation operations take a large amount of water and energy which impact to total costs of crop production. Development of an efficient irrigation supplying precise amount of water and conserving the use of energy can have benefits not only by reducing the operating costs but also by enhancing the farmland productivity. This article presents an irrigation method that promotes sustainable use of water and energy appropriate for a developing tropical country. It proposes a drip irrigation system supported by a combined solar-wind electric power generation system for efficient use of water in dragon fruit cultivation. The electric power generated is used to drive a water pump filling a storage tank for irrigating a 3000 m2 dragon fruit yield in Nguntoronadi, Wonogiri, Indonesia. In designing the irrigation system, the plant’s water requirement was identified based on the value of reference evapotranspiration of the area. A cost/benefit analysis was performed to evaluate the economic feasibility of the proposed scheme. The installation of this solar and wind drip irrigation helps provide sufficient quantity of water to each plant using renewable energy sources which reduce dependence on fossil fuel.

  4. Limited irrigation of corn-based no-till crop rotations in west central Great Plains.

    USDA-ARS?s Scientific Manuscript database

    Identifying the most profitable crop rotation for an area is a continuous research challenge. The objective of this study was to evaluate 2, 3, and 4 yr. limited irrigation corn (Zea mays L.) based crop rotations for grain yield, available soil water, crop water productivity, and profitability in co...

  5. Temperature profile in apricot tree canopies under the soil and climate conditions of the Romanian Black Sea Coast.

    PubMed

    Paltineanu, Cristian; Septar, Leinar; Chitu, Emil

    2016-03-01

    The paper describes the temperature profiles determined by thermal imagery in apricot tree canopies under the semi-arid conditions of the Black Sea Coast in a chernozem of Dobrogea Region, Romania. The study analyzes the thermal vertical profile of apricot orchards for three representative cultivars during summertime. Measurements were done when the soil water content (SWC) was at field capacity (FC) within the rooting depth, after intense sprinkler irrigation applications. Canopy temperature was measured during clear sky days at three heights for both sides of the apricot trees, sunlit (south), and shaded (north). For the SWC studied, i.e., FC, canopy height did not induce a significant difference between the temperature of apricot tree leaves (Tc) and the ambient air temperature (Ta) within the entire vertical tree profile, and temperature measurements by thermal imagery can therefore be taken at any height on the tree crown leaves. Differences between sunlit and shaded sides of the canopy were significant. Because of these differences for Tc-Ta among the apricot tree cultivars studied, lower base lines (LBLs) should be determined for each cultivar separately. The use of thermal imagery technique under the conditions of semi-arid coastal areas with low range of vapor pressure deficit could be useful in irrigation scheduling of apricot trees. The paper discusses the implications of the data obtained in the experiment under the conditions of the coastal area of the Black Sea, Romania, and neighboring countries with similar climate, such as Bulgaria and Turkey.

  6. Reuse potential of laundry greywater for irrigation based on growth, water and nutrient use of tomato

    NASA Astrophysics Data System (ADS)

    Misra, R. K.; Patel, J. H.; Baxi, V. R.

    2010-05-01

    SummaryGreywater is considered as a valuable resource with a high reuse potential for irrigation of household lawns and gardens. However, there are possibilities of surfactant and sodium accumulation in soil from reuse of greywater which may affect agricultural productivity and environmental sustainability adversely. We conducted a glasshouse experiment to examine variation in growth, water and nutrient use of tomato ( Lycopersicon esculentum Mill. cv. Grosse Lisse) using tap water (TW), laundry greywater (GW) and solutions of low and high concentration of a detergent surfactant (LC and HC, respectively) as irrigation treatments. Each treatment was replicated five times using a randomised block design. Measurements throughout the experiment showed greywater to be significantly more alkaline and saline than the other types of irrigation water. Although all plants received 16 irrigations over a period of 9 weeks until flowering, there were little or no significant effects of irrigation treatments on plant growth. Soil water retention following irrigation reduced significantly when plants were irrigated with GW or surfactant solutions on only three of 12 occasions. On one occasion, water use measured as evapotranspiration (ET) with GW irrigation was similar to TW, but it was significantly higher than the plants receiving HC irrigation. At harvest, various components of plant biomass and leaf area for GW irrigated plants were found to be similar or significantly higher than the TW irrigated plants with a common trend of GW ⩾ TW > LC ⩾ HC. Whole-plant concentration was measured for 12 essential plant nutrients (N, P, K, Ca, Mg, S, Fe, Cu, Mn, Zn, Mo and B) and Na (often considered as a beneficial nutrient). Irrigation treatments affected the concentration of four nutrients (P, Fe, Zn and Na) and uptake of seven nutrients (P, K, Ca, Mg, Na, Fe and B) significantly. Uptake of these seven nutrients by tomato was generally in the order GW ⩾ TW > HC ⩾ LC. GW irrigated plants had the highest concentration of P, Na and Fe which were 39-85% higher than the TW irrigated plants. Compared with tap water irrigated plants, greywater irrigated plants removed only 6% excess B, but substantially greater quantity of Na (83%) and Fe (86%). These results suggest that laundry greywater has a promising potential for reuse as irrigation water to grow tomato.

  7. Simulated effects of pumping irrigation wells on ground-water levels in western Saginaw County, Michigan

    USGS Publications Warehouse

    Hoard, Christopher J.; Westjohn, David B.

    2001-01-01

    Success of agriculture in many areas of Michigan relies on withdrawal of large quantities of ground water for irrigation. In some areas of the State, water-level declines associated with large ground-water withdrawals may adversely affect nearby residential wells. Residential wells in several areas of Saginaw County, in Michigan's east-central Lower Peninsula, recently went dry shortly after irrigation of crop lands commenced; many of these wells also went dry during last year's agricultural cycle (summer 2000). In September 2000, residential wells that had been dry returned to function after cessation of pumping from large-capacity irrigation wells. To evaluate possible effects of groundwater withdrawals from irrigation wells on residential wells, the U.S. Geological Survey used hydrogeologic data including aquifer tests, water-level records, geologic logs, and numerical models to determine whether water-level declines and the withdrawal of ground water for agricultural irrigation are related. Numerical simulations based on representative irrigation well pumping volumes and a 3-month irrigation period indicate water-level declines that range from 5.3 to 20 feet, 2.8 to 12 feet and 1.7 to 6.9 feet at distances of about 0.5, 1.5 and 3 miles from irrigation wells, respectively. Residential wells that are equipped with shallow jet pumps and that are within 0.5 miles of irrigation wells would likely experience reduced yield or loss of yield during peak periods of irrigation. The actual 1 extent that irrigation pumping cause reduced function of residential wells, however, cannot be fully predicted on the basis of the data analyzed because many _other factors may be adversely affecting the yield of residential wells.

  8. A comparative assessment of irrigation and drainage characteristics for commercially available urethral catheters

    PubMed Central

    Davis, Niall F.; McMahon, Barry P.; Walsh, Michael; McDermott, Thomas E.D.; Thornhill, John A.; Manecksha, Rustom P.

    2017-01-01

    Introduction We aimed to investigate irrigation and drainage characteristics of commercially available urethral catheters and determined which catheter offers the best flow characteristics. Material and methods Twelve different commercially available urethral catheters from three companies (Bard™, Rusch™ and Dover™) were investigated to compare their irrigation and drainage properties. Irrigation port, drainage port and overall cross-sectional areas for a 24Fr 3-way catheter was measured and compared. The maximum (Qmax) and average (Qavg) irrigation and drainage flow rates for each catheter was measured for 20–40 seconds using uroflowmetry. The primary endpoint was to determine which catheter offers optimal irrigation and drainage parameters. Results Overall cross-sectional area, irrigation port cross-sectional area, and drainage port cross-sectional area differed significantly for each 24Fr 3-way catheter assessed (p <0.001). The 24Fr 3-way Rusch Simplastic™ catheter consistently demonstrated the greatest maximal flow rate (Qmax: 5 ±0.3 ml/s) and average flow rate (Qavg: 4.6 ±0.2 ml/s) for irrigation. The 24Fr 3-way Dover™ catheter provided the greatest drainage properties (Qmax: 19.7 ±2 ml/s; Q avg: 15.9 ±5 ml/s). In the setting of continuous bladder irrigation, the 24Fr 3-way Rusch Simplastic™ catheter provided the highest irrigation rates (Qmax: 6.6 ±1.8 ml/s; Q avg: 4.6 ±0.9 ml/s). Conclusions Three-way catheters demonstrate significant differences in their irrigation and drainage characteristics. The type of catheter selected should be based on the appropriate prioritization of efficient bladder irrigation versus efficient bladder drainage. PMID:29410890

  9. Antimicrobial activity of sodium hypochlorite-based irrigating solutions.

    PubMed

    Poggio, Claudio; Arciola, Carla Renata; Dagna, Alberto; Chiesa, Marco; Sforza, Dario; Visai, Livia

    2010-09-01

    The objective of the present study was the in vitro evaluation of the antimicrobial activity of three different NaOCl-based endodontic irrigating solutions: a 5.25% conventional sodium hypochlorite solution; and two new irrigating solutions, a 5.25% sodium hypochlorite solution with the addition of a proteolytic enzyme and a surfactant; and a 5.25% sodium hypochlorite gel with inorganic silicate. Enterococcus faecalis, Staphylococcus aureus and Streptococcus mutans strains were selected to evaluate the antimicrobial activity of the endodontic irrigating solutions by the agar disc diffusion test. Paper disks were saturated with each one of the tested solutions (at room temperature and pre-warmed at 45°C) and placed onto culture agar-plates pre-adsorbed with bacterial cells and further incubated for 24 h at 37°C. The growth inhibition zones around each irrigating solution were recorded and compared for each bacterial strain. The results were significantly different among the tested irrigating solutions: 5.25% sodium hypochlorite solution produced the highest inhibition areas; 5.25% sodium hypochlorite solution with a proteolytic enzyme and a surfactant, and 5.25% sodium hypochlorite gel with inorganic silicate showed the lowest zones of inhibition. Even if all tested irrigating solution possessed antibacterial activity versus all tested bacterial strains, 5.25% sodium hypochlorite solution with a proteolytic enzyme and a surfactant, and 5.25% sodium hypochlorite gel with inorganic silicate showed lower in vitro efficacy than 5.25% conventional sodium hypochlorite solution.

  10. The key role of supply chain actors in groundwater irrigation development in North Africa

    NASA Astrophysics Data System (ADS)

    Lejars, Caroline; Daoudi, Ali; Amichi, Hichem

    2017-09-01

    The role played by supply chain actors in the rapid development of groundwater-based irrigated agriculture is analyzed. Agricultural groundwater use has increased tremendously in the past 50 years, leading to the decline of water tables. Groundwater use has enabled intensification of existing farming systems and ensured economic growth. This "groundwater economy" has been growing rapidly due to the initiative of farmers and the involvement of a wide range of supply chain actors, including suppliers of equipment, inputs retailers, and distributors of irrigated agricultural products. In North Africa, the actors in irrigated production chains often operate at the margin of public policies and are usually described as "informal", "unstructured", and as participating in "groundwater anarchy". This paper underlines the crucial role of supply chain actors in the development of groundwater irrigation, a role largely ignored by public policies and rarely studied. The analysis is based on three case studies in Morocco, Tunisia and Algeria, and focuses on the horticultural sub-sector, in particular on onions and tomatoes, which are irrigated high value crops. The study demonstrates that although supply chain actors are catalyzers of the expansion of groundwater irrigation, they could also become actors in adaptation to the declining water tables. Through their informal activities, they help reduce market risks, facilitate credit and access to subsidies, and disseminate innovation. The interest associated with making these actors visible to agricultural institutions is discussed, along with methods of getting them involved in the management of the resource on which they depend.

  11. Agricultural Water Use under Global Change

    NASA Astrophysics Data System (ADS)

    Zhu, T.; Ringler, C.; Rosegrant, M. W.

    2008-12-01

    Irrigation is by far the single largest user of water in the world and is projected to remain so in the foreseeable future. Globally, irrigated agricultural land comprises less than twenty percent of total cropland but produces about forty percent of the world's food. Increasing world population will require more food and this will lead to more irrigation in many areas. As demands increase and water becomes an increasingly scarce resource, agriculture's competition for water with other economic sectors will be intensified. This water picture is expected to become even more complex as climate change will impose substantial impacts on water availability and demand, in particular for agriculture. To better understand future water demand and supply under global change, including changes in demographic, economic and technological dimensions, the water simulation module of IMPACT, a global water and food projection model developed at the International Food Policy Research Institute, is used to analyze future water demand and supply in agricultural and several non-agricultural sectors using downscaled GCM scenarios, based on water availability simulation done with a recently developed semi-distributed global hydrological model. Risk analysis is conducted to identify countries and regions where future water supply reliability for irrigation is low, and food security may be threatened in the presence of climate change. Gridded shadow values of irrigation water are derived for global cropland based on an optimization framework, and they are used to illustrate potential irrigation development by incorporating gridded water availability and existing global map of irrigation areas.

  12. A hybrid Bayesian network approach for trade-offs between environmental flows and agricultural water using dynamic discretization

    NASA Astrophysics Data System (ADS)

    Xue, Jie; Gui, Dongwei; Lei, Jiaqiang; Sun, Huaiwei; Zeng, Fanjiang; Feng, Xinlong

    2017-12-01

    Agriculture and the eco-environment are increasingly competing for water. The extension of intensive farmland for ensuring food security has resulted in excessive water exploitation by agriculture. Consequently, this has led to a lack of water supply in natural ecosystems. This paper proposes a trade-off framework to coordinate the water-use conflict between agriculture and the eco-environment, based on economic compensation for irrigation stakeholders. A hybrid Bayesian network (HBN) is developed to implement the framework, including: (a) agricultural water shortage assessments after meeting environmental flows; (b) water-use tradeoff analysis between agricultural irrigation and environmental flows using the HBN; and (c) quantification of the agricultural economic compensation for different irrigation stakeholders. The constructed HBN is computed by dynamic discretization, which is a more robust and accurate propagation algorithm than general static discretization. A case study of the Qira oasis area in Northwest China demonstrates that the water trade-off based on economic compensation depends on the available water supply and environmental flows at different levels. Agricultural irrigation water extracted for grain crops should be preferentially guaranteed to ensure food security, in spite of higher economic compensation in other cash crops' irrigation for water coordination. Updating water-saving engineering and adopting drip irrigation technology in agricultural facilities after satisfying environmental flows would greatly relieve agricultural water shortage and save the economic compensation for different irrigation stakeholders. The approach in this study can be easily applied in water-stressed areas worldwide for dealing with water competition.

  13. Irrigation water policy analysis using a business simulation game

    NASA Astrophysics Data System (ADS)

    Buchholz, M.; Holst, G.; Musshoff, O.

    2016-10-01

    Despite numerous studies on farmers' responses to changing irrigation water policies, uncertainties remain about the potential of water pricing schemes and water quotas to reduce irrigation. Thus far, policy impact analysis is predominantly based upon rational choice models that assume behavioral assumptions, such as a perfectly rational profit-maximizing decision maker. Also, econometric techniques are applied which could lack internal validity due to uncontrolled field data. Furthermore, such techniques are not capable of identifying ill-designed policies prior to their implementation. With this in mind, we apply a business simulation game for ex ante policy impact analysis of irrigation water policies at the farm level. Our approach has the potential to reveal the policy-induced behavioral change of the participants in a controlled environment. To do so, we investigate how real farmers from Germany, in an economic experiment, respond to a water pricing scheme and a water quota intending to reduce irrigation. In the business simulation game, the participants manage a "virtual" cash-crop farm for which they make crop allocation and irrigation decisions during several production periods, while facing uncertain product prices and weather conditions. The results reveal that a water quota is able to reduce mean irrigation applications, while a water pricing scheme does not have an impact, even though both policies exhibit equal income effects for the farmers. However, both policies appear to increase the variation of irrigation applications. Compared to a perfectly rational profit-maximizing decision maker, the participants apply less irrigation on average, both when irrigation is not restricted and when a water pricing scheme applies. Moreover, the participants' risk attitude affects the irrigation decisions.

  14. [Model simulation of the transportation, transformation and accumulation of synthetic musks in soils input through recycle water irrigation].

    PubMed

    Wang, Mei-E; Chen, Wei-Ping; Jiao, Wen-Tao

    2012-12-01

    Environmental pollution of synthetic musks HHCB and AHTN, one type of PPCPs, have been attracted great attentions in latest years. One of the main input pathways of HHCB/AHTN to soils is reclaimed water irrigation. In this study, we monitored HHCB and AHTN in soils irrigated by reclaimed water and irrigation water and modeled the transportation and accumulation of HHCB and AHTN in soils using HYDRUS-1D. Results showed that concentrations of HHCB and AHTN in soils irrigated by recycling water were 5 times higher than tape water irrigation soils although both of the concentrations are trace. The temporal increase of accumulation was exponential when lgK(oc) value was 3.44, while linear when lgK(oc) were 4.12 and 4.86. Changes of half life of HHCB/AHTN did not affect their accumulation in surface soils. The downward transportation of HHCB and AHTN under recycling water irrigation was very slow. After 40 years of irrigation, it could only 53 cm at most favored conditionals. The downward movement was greatly impacted by the lgK(oc) values. The dissipation of those two synthetic musks through biological degradation and plant uptake were tiny. The highest dissipation rate through biological degradation and plant uptake was only 7.69% of the total input by reclaimed water irrigation after 40 years. The dissipation rate was increased with the decrease of lgK(oc) values and irrigation time. Results of this work may offer base for accurate assessing the ecological risks of HHCB and AHTN in soils caused by reclaimed water irrigation.

  15. Agricultural reuse of municipal wastewater through an integral water reclamation management.

    PubMed

    Intriago, Juan Carlo; López-Gálvez, Francisco; Allende, Ana; Vivaldi, Gaetano Alessandro; Camposeo, Salvatore; Nicolás Nicolás, Emilio; Alarcón, Juan José; Pedrero Salcedo, Francisco

    2018-05-01

    The DESERT-prototype, a state-of-the-art compact combination of water treatment technologies based on filtration and solar-based renewable energy, was employed to reclaim water for agricultural irrigation. Water reclaimed through the DESERT-prototype (PW) from a secondary effluent of a wastewater treatment plant, as well as conventional irrigation water (CW) and the secondary effluent (SW) itself, were employed to cultivate baby romaine lettuces in a greenhouse in Murcia (Spain), by means of drip and sprinkler irrigation methods, thus establishing six treatments. Assessments of physicochemical and microbiological quality of irrigation water, as well as agronomic and microbiological quality of crops from all treatments, showed that results associated to PW complied in all cases with relevant standards and guidelines. In contrast, results linked to SW and CW presented certain non-compliance cases of water and crop microbiological quality. These assessments lead to conclude that the DESERT-prototype is an appropriate technology for safe water reclamation oriented to agricultural production, that can be complemented by a proper irrigation method in reaching safety targets. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Simulating the Effects of Irrigation over the U.S. in a Land Surface Model Based on Satellite Derived Agricultural Data

    NASA Technical Reports Server (NTRS)

    Ozdogan, Mutlu; Rodell, Matthew; Beaudoing, Hiroko Kato; Toll, David L.

    2009-01-01

    A novel method is introduced for integrating satellite derived irrigation data and high-resolution crop type information into a land surface model (LSM). The objective is to improve the simulation of land surface states and fluxes through better representation of agricultural land use. Ultimately, this scheme could enable numerical weather prediction (NWP) models to capture land-atmosphere feedbacks in managed lands more accurately and thus improve forecast skill. Here we show that application of the new irrigation scheme over the continental US significantly influences the surface water and energy balances by modulating the partitioning of water between the surface and the atmosphere. In our experiment, irrigation caused a 12% increase in evapotranspiration (QLE) and an equivalent reduction in the sensible heat flux (QH) averaged over all irrigated areas in the continental US during the 2003 growing season. Local effects were more extreme: irrigation shifted more than 100 W/m from QH to QLE in many locations in California, eastern Idaho, southern Washington, and southern Colorado during peak crop growth. In these cases, the changes in ground heat flux (QG), net radiation (RNET), evapotranspiration (ET), runoff (R), and soil moisture (SM) were more than 3 W/m(sup 2), 20 W/m(sup 2), 5 mm/day, 0.3 mm/day, and 100 mm, respectively. These results are highly relevant to continental- to global-scale water and energy cycle studies that, to date, have struggled to quantify the effects of agricultural management practices such as irrigation. Based on the results presented here, we expect that better representation of managed lands will lead to improved weather and climate forecasting skill when the new irrigation scheme is incorporated into NWP models such as NOAA's Global Forecast System (GFS).

  17. An intuitionistic fuzzy multi-objective non-linear programming model for sustainable irrigation water allocation under the combination of dry and wet conditions

    NASA Astrophysics Data System (ADS)

    Li, Mo; Fu, Qiang; Singh, Vijay P.; Ma, Mingwei; Liu, Xiao

    2017-12-01

    Water scarcity causes conflicts among natural resources, society and economy and reinforces the need for optimal allocation of irrigation water resources in a sustainable way. Uncertainties caused by natural conditions and human activities make optimal allocation more complex. An intuitionistic fuzzy multi-objective non-linear programming (IFMONLP) model for irrigation water allocation under the combination of dry and wet conditions is developed to help decision makers mitigate water scarcity. The model is capable of quantitatively solving multiple problems including crop yield increase, blue water saving, and water supply cost reduction to obtain a balanced water allocation scheme using a multi-objective non-linear programming technique. Moreover, it can deal with uncertainty as well as hesitation based on the introduction of intuitionistic fuzzy numbers. Consideration of the combination of dry and wet conditions for water availability and precipitation makes it possible to gain insights into the various irrigation water allocations, and joint probabilities based on copula functions provide decision makers an average standard for irrigation. A case study on optimally allocating both surface water and groundwater to different growth periods of rice in different subareas in Heping irrigation area, Qing'an County, northeast China shows the potential and applicability of the developed model. Results show that the crop yield increase target especially in tillering and elongation stages is a prevailing concern when more water is available, and trading schemes can mitigate water supply cost and save water with an increased grain output. Results also reveal that the water allocation schemes are sensitive to the variation of water availability and precipitation with uncertain characteristics. The IFMONLP model is applicable for most irrigation areas with limited water supplies to determine irrigation water strategies under a fuzzy environment.

  18. Impacts of irrigation on groundwater depletion in the North China Plain

    NASA Astrophysics Data System (ADS)

    Ge, Yuqi; Lei, Huimin

    2017-04-01

    Groundwater resources is an essential water supply for agriculture in the North China Plain (NCP) which is one of the most important food production areas in China. In the past decades, excessive groundwater-fed irrigation in this area has caused sharp decline in groundwater table. However, accurate monitoring on the net groundwater exploitation is still difficult, mainly due to a lack of complete groundwater exploitation monitoring network. This hinders an accurate evaluation of the effects of agricultural managements on shallow groundwater table. In this study, we use an existing method to estimate the net irrigation amount at the county level, and evaluate the effects of current agricultural management on groundwater depletion. We apply this method in five typical counties in the NCP to estimate annual net irrigation amount from 2002 to 2015, based on meteorological data (2002-2015) and remote sensing ET data (2002-2015) . First, an agro-hydrological model (Soil-Water-Atmosphere-Plant, SWAP) is calibrated and validated at field scale based on the measured data from flux towers. Second, the model is established at reginal scale by spatial discretization. Third, we use an optimization tool (Parameter ESTimation, PEST) to optimize the irrigation parameter in SWAP so as the simulated evapotranspiration (ET) by SWAP is closest to the remote sensing ET. We expect that the simulated irrigation amount from the optimized parameter is the estimated net irrigation amount. Finally, the contribution of agricultural management to the observed groundwater depletion is assessed by calculating the groundwater balance which considers the estimated net irrigation amount, observed lateral groundwater, rainfall recharge, deep seepage, evaporation from phreatic water and domestic water use. The study is expected to give a scientific basis for alleviating the over-exploitation of groundwater resources in the area.

  19. [Effect of climate change on rice irrigation water requirement in Songnen Plain, Northeast China].

    PubMed

    Huang, Zhi-gang; Wang, Xiao-li; Xiao, Ye; Yang, Fei; Wang, Chen-xi

    2015-01-01

    Based on meteorological data from China national weather stations and climate scenario grid data through regional climate model provided by National Climate Center, rice water requirement was calculated by using McCloud model and Penman-Monteith model combined with crop coefficient approach. Then the rice irrigation water requirement was estimated by water balance model, and the changes of rice water requirement were analyzed. The results indicated that either in historical period or in climate scenario, rice irrigation water requirement contour lines during the whole growth period and Lmid period decreased along southwest to northeast, and the same irrigation water requirement contour line moved north with decade alternation. Rice irrigation water requirement during the whole growth period increased fluctuantly with decade alternation at 44.2 mm . 10 a-1 in historical period and 19.9 mm . 10 a-1 in climate scenario. The increase in rice irrigation water requirement during the Lmid period with decade alternation was significant in historical period, but not significant in climate scenario. Contribution rate of climate change to rice irrigation water requirement would be fluctuantly increased with decade alternation in climate scenario. Compared with 1970s, contribution rates of climate change to rice irrigation water requirement were 23.6% in 2000s and 34.4% in 2040s, which increased 14.8 x 10(8) m3 irrigation water in 2000s and would increase 21.2 x 10(8) m3 irrigation water in 2040s.

  20. Dynamic Predictions of Crop Yield and Irrigation in Sub-Saharan Africa Due to Climate Change Impacts

    NASA Astrophysics Data System (ADS)

    Foster-Wittig, T.

    2012-12-01

    The highest damages from climate change are predicted to be in the agricultural sector in sub-Saharan Africa. Agriculture is predicted to be especially vulnerable in this region because of its current state of high temperature and low precipitation and because it is usually rain-fed or relies on relatively basic technologies which therefore limit its ability to sustain in increased poor climatic conditions [1]. The goal of this research is to quantify the vulnerability of this ecosystem by projecting future changes in agriculture due to IPCC predicted climate change impacts on precipitation and temperature. This research will provide a better understanding of the relationship between precipitation and rain-fed agriculture in savannas. In order to quantify the effects of climate change on agriculture, the impacts of climate change are modeled through the use of a land surface vegetation dynamics model previously developed combined with a crop model [2,4]. In this project, it will be used to model yield for point cropland locations within sub-Saharan Africa between Kenya and Botswana with a range of annual rainfall. With this model, future projections are developed for what can be anticipated for the crop yield based on two precipitation climate change scenarios; (1) decreased depth and (2) decreased frequency as well as temperature change scenarios; (3) only temperature increased, (4) temperature increase dand decreased precipitation depth, and (5) temperature increased and decreased precipitation frequency. Therefore, this will allow conclusions to be drawn about how mean precipitation and a changing climate effect food security in sub-Saharan Africa. As an additional analysis, irrigation is added to the model as it is thought to be the solution to protect food security by maximizing on the potential of food production. In water-limited areas such as Sub-Saharan Africa, it is important to consider water efficient irrigation techniques such as demand-based micro-irrigation where less water is lost to evaporative demand. Demand-based irrigation is based on two main parameters; a trigger level, to initiate the irrigation, and a target level to calculate the amount of irrigation [3]. In order to understand the impact of these two parameters on amount of irrigated water and yield, irrigation is added to the model with variations of these two parameters considered. This analysis will provide the information needed to understand whether irrigation is a feasible and sustainable solution to the loss of food production due to climate change. Resources: [1]Kurukulasuriya, P., and Mendelsohn, Robert (2008). "A Ricardian analysis of the impact of climate change on African cropland." African Journal Agriculture and Resource Economics 02(1). [2]Raes, D., Steduto, P., Hsiao, T., and Fereres, E. (2011). Chapter 3: Calculation Procedure. . AquaCrop Reference Manual Version 3.1 Plus. [3]Vico, G. and A. Porporato (2011). "From rainfed agriculture to stress-avoidance irrigation: I. A generalized irrigation scheme with stochastic soil moisture." Advances in Water Resources 34(2): 263-271. [4]Williams, C., and Albertson, J. (2005). "Contrasting Short- and Long-Timescale Effects of Vegetation Dynamics on Water and Carbon Fluxes in Water-Limited Ecosystems." Water Resources Research. 41: 1-13

  1. Examining the evolution of an ancient irrigation system: the Middle Gila River Canals

    NASA Astrophysics Data System (ADS)

    Zhu, Tianduowa; Ertsen, Maurits

    2014-05-01

    Studying ancient irrigation systems reinforces to understand the co-evolution process between the society and water systems. In the prehistoric Southwest of America, the irrigation has been a crucial feature of human adaptation to the dry environment. The influences of social arrangements on irrigation managements, and implications of the irrigation organization in social developments are main issues that researchers have been exploring for a long time. The analysis of ceramics pattern and distribution has assisted to the reconstruction of prehistoric social networks. The existing study shows that, a few pottery fragments specially produced by the materials of the middle Gila River valley, were found in the Salt River valley; however, very few specialized ceramics of the Salt River valley occurred in the middle Gila River valley. It might indicate that there were trades or exchanges of potteries or raw materials from the middle Gila River valley to the Salt River valley. The most popular hypothesis of trading for the potteries is crop production. Based on this hypothesis, the ceramics trade was highly tied to the irrigation system change. Therefore, examining the changing relationship among the ceramics distribution along the middle Gila River, canals flow capacity, and available streamflows, can provide an insight into the evolutionary path among the social economy, irrigation and water environment. In this study, we reconstruct the flow capacity of canals along the middle Gila River valley. In combination with available streamflow from the middle Gila River, we can simulate how much water could be delivered to the main canals and lateral canals. Based on the variation and chronology of potteries distribution, we may identify that, the drama of the middle Gila River receiving insufficient flows for crop irrigation caused the development of ceramics exchange; or the rising of potteries exchange triggers the decline of irrigation in the study area.

  2. Integrated Modeling of Crop Growth and Water Resource Management to Project Climate Change Impacts on Crop Production and Irrigation Water Supply and Demand in African Nations

    NASA Astrophysics Data System (ADS)

    Dale, A. L.; Boehlert, B.; Reisenauer, M.; Strzepek, K. M.; Solomon, S.

    2017-12-01

    Climate change poses substantial risks to African agriculture. These risks are exacerbated by concurrent risks to water resources, with water demand for irrigation comprising 80 to 90% of water withdrawals across the continent. Process-based crop growth models are able to estimate both crop demand for irrigation water and crop yields, and are therefore well-suited to analyses of climate change impacts at the food-water nexus. Unfortunately, impact assessments based on these models generally focus on either yields or water demand, rarely both. For this work, we coupled a crop model to a water resource management model in order to predict national trends in the impact of climate change on crop production, irrigation water demand, and the availability of water for irrigation across Africa. The crop model FAO AquaCrop-OS was run at 2ox2o resolution for 17 different climate futures from the CMIP5 archive, nine for Representative Concentration Pathway (RCP) 4.5 and eight for RCP8.5. Percent changes in annual rainfed and irrigated crop production and temporal shifts in monthly irrigation water demand were estimated for the years 2030, 2050, 2070, and 2090 for maize, sorghum, rice, wheat, cotton, sugarcane, fruits & vegetables, roots & tubers, and legumes & soybeans. AquaCrop was then coupled to a water management model (WEAP) in order to project changes in the ability of seven major river basins (the Congo, Niger, Nile, Senegal, Upper Orange, Volta, and Zambezi) to meet irrigation water demand out to 2050 in both average and dry years in the face of both climate change and irrigation expansion. Spatial and temporal trends were identified and interpreted through the lens of potential risk management strategies. Uncertainty in model estimates is reported and discussed.

  3. Quantitative microbial risk assessment for spray irrigation of dairy manure based on an empirical fate and transport model

    USGS Publications Warehouse

    Burch, Tucker R; Spencer, Susan K.; Stokdyk, Joel; Kieke, Burney A; Larson, Rebecca A; Firnstahl, Aaron; Rule, Ana M; Borchardt, Mark A.

    2017-01-01

    BACKGROUND: Spray irrigation for land-applying livestock manure is increasing in the United States as farms become larger and economies of scale make manure irrigation affordable. Human health risks from exposure to zoonotic pathogens aerosolized during manure irrigation are not well understood. OBJECTIVES: We aimed to a) estimate human health risks due to aerosolized zoonotic pathogens downwind of spray-irrigated dairy manure; and b) determine which factors (e.g., distance, weather conditions) have the greatest influence on risk estimates. METHODS: We sampled downwind air concentrations of manure-borne fecal indicators and zoonotic pathogens during 21 full-scale dairy manure irri- gation events at three farms. We fit these data to hierarchical empirical models and used model outputs in a quantitative microbial risk assessment (QMRA) to estimate risk [probability of acute gastrointestinal illness (AGI)] for individuals exposed to spray-irrigated dairy manure containing Campylobacter jejuni, enterohemorrhagic Escherichia coli (EHEC), or Salmonella spp. RESULTS: Median risk estimates from Monte Carlo simulations ranged from 10−5 to 10−2 and decreased with distance from the source. Risk estimates for Salmonella or EHEC-related AGI were most sensitive to the assumed level of pathogen prevalence in dairy manure, while risk estimates for C. jejuni were not sensitive to any single variable. Airborne microbe concentrations were negatively associated with distance and positively associated with wind speed, both of which were retained in models as a significant predictor more often than relative humidity, solar irradiation, or temperature. CONCLUSIONS: Our model-based estimates suggest that reducing pathogen prevalence and concentration in source manure would reduce the risk of AGI from exposure to manure irrigation, and that increasing the distance from irrigated manure (i.e., setbacks) and limiting irrigation to times of low wind speed may also reduce risk.

  4. Limited irrigation of corn-based no-till crop rotations in West Central Great Plains

    USDA-ARS?s Scientific Manuscript database

    Due to numerous alternatives in crop sequence and changes in crop yield and price, finding the most profitable crop rotation for an area is a continuous research challenge. The objective of this study was to evaluate 1-, 2-, 3-, and 4-yr limited irrigation corn (Zea mays L.)-based crop rotations for...

  5. Mediterranean agriculture: More efficient irrigation needed to compensate increases in future irrigation water requirements

    NASA Astrophysics Data System (ADS)

    Fader, Marianela; Shi, Sinan; von Bloh, Werner; Bondeau, Alberte; Cramer, Wolfgang

    2016-04-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. Our research shows that, at present, Mediterranean region could save 35% of water by implementing more efficient irrigation and conveyance systems. Some countries like Syria, Egypt and Turkey have higher saving potentials than others. Currently some crops, especially sugar cane and agricultural trees, consume in average more irrigation water per hectare than annual crops (1). Also under climate change, more efficient irrigation is of vital importance for counteracting increases in irrigation water requirements. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4% and 18% from climate change alone by the end of the century if irrigation systems and conveyance are not improved. Population growth increases these numbers to 22% and 74%, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean, and may be able to compensate to some degree the increases due to climate change and population growth. Both subregions would need around 35% more water than today if they could afford some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect (1). However, in some scenarios (in this case as combinations of climate change, irrigation technology, influence of population growth and CO2-fertilization effect) water scarcity may constrain the supply of the irrigation water needed in future in Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain (1). In this study, vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL ("Lund-Potsdam-Jena managed Land") after a large development that comprised the improved representation of Mediterranean crops (2). References: (1) Fader, M., von Bloh, W., Shi, S., Bondeau, A., Cramer, W. (2015) : Mediterranean irrigation under climate change : More efficient irrigation needed to compensate increases in irrigation water requirements. HESSD 12, 8459-8504. (2) Fader, M., von Bloh, W., Shi, S., Bondeau, A., Cramer, W. (2015) : Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model. Geosci. Model Dev., 8, 3545-3561, 2015.

  6. Evaluation of limited irrigation strategies to improve water use efficiency and wheat yield in the North China Plain

    PubMed Central

    Zhang, Di; Li, Ruiqi; Batchelor, William D.; Ju, Hui

    2018-01-01

    The North China Plain is one of the most important grain production regions in China, but is facing serious water shortages. To achieve a balance between water use and the need for food self-sufficiency, new water efficient irrigation strategies need to be developed that balance water use with farmer net return. The Crop Environment Resource Synthesis Wheat (CERES-Wheat model) was calibrated and evaluated with two years of data which consisted of 3–4 irrigation treatments, and the model was used to investigate long-term winter wheat productivity and water use from irrigation management in the North China Plain. The calibrated model simulated accurately above-ground biomass, grain yield and evapotranspiration of winter wheat in response to irrigation management. The calibrated model was then run using weather data from 1994–2016 in order to evaluate different irrigation strategies. The simulated results using historical weather data showed that grain yield and water use was sensitive to different irrigation strategies including amounts and dates of irrigation applications. The model simulated the highest yield when irrigation was applied at jointing (T9) in normal and dry rainfall years, and gave the highest simulated yields for irrigation at double ridge (T8) in wet years. A single simulated irrigation at jointing (T9) produced yields that were 88% compared to using a double irrigation treatment at T1 and T9 in wet years, 86% of that in normal years, and 91% of that in dry years. A single irrigation at jointing or double ridge produced higher water use efficiency because it obtained higher evapotranspiration. The simulated farmer irrigation practices produced the highest yield and net income. When the cost of water was taken into account, limited irrigation was found to be more profitable based on assumptions about future water costs. In order to increase farmer income, a subsidy will likely be needed to compensate farmers for yield reductions due to water savings. These results showed that there is a cost to the farmer for water conservation, but limiting irrigation to a single irrigation at jointing would minimize impact on farmer net return in North China Plain. PMID:29370186

  7. A rule-based smart automated fertilization and irrigation systems

    NASA Astrophysics Data System (ADS)

    Yousif, Musab El-Rashid; Ghafar, Khairuddin; Zahari, Rahimi; Lim, Tiong Hoo

    2018-04-01

    Smart automation in industries has become very important as it can improve the reliability and efficiency of the systems. The use of smart technologies in agriculture have increased over the year to ensure and control the production of crop and address food security. However, it is important to use proper irrigation systems avoid water wastage and overfeeding of the plant. In this paper, a Smart Rule-based Automated Fertilization and Irrigation System is proposed and evaluated. We propose a rule based decision making algorithm to monitor and control the food supply to the plant and the soil quality. A build-in alert system is also used to update the farmer using a text message. The system is developed and evaluated using a real hardware.

  8. Effect of Peracetic Acid as A Final Rinse on Push Out Bond Strength of Root Canal Sealers to Root Dentin.

    PubMed

    Gaddala, Naresh; Veeramachineni, Chandrasekhar; Tummala, Muralidhar

    2015-05-01

    Smear layer which was formed during the instrumentation of root canals hinders the penetration of root canal sealers to root dentin and affect the bond strength of root canal sealers to root dentin. Final irrigant such as demineralizing agents are used to remove the inorganic portion of the smear layer. In the present study, peracetic acid used as a final rinse, to effect the bond strength of root canal sealers to root dentin. The purpose of the present study was to evaluate the efficacy of peracetic acid as a final irrigant on bond strength of root canal sealers to root dentin. Sixty six freshly extracted human single rooted mandibular premolars were used for this study. After decoronation the samples were instrumented with Protaper upto F3 and irrigated with 5.25% NaOcl. The teeth were then divided into three groups based on final irrigant used: Group-1(control group) Canals were irrigated with distilled water. Group-2: Canals were irrigated with peracetic acid. Group-3: Canals were irrigated with smear clear. Each group was further divided into three subgroups (n=30) based on the sealer used to obturate the canals. Subgroup-1: kerr, Subgroup-2: Apexit plus, Subgroup-3: AH PLUS. Each sealer was mixed and coated to master cone and placed in the canal. The bonding between sealer and dentin surface was evaluated using push out bond strength by universal testing machine. The mean bond strength values of each group were statistically evaluated using Two-way ANOVA followed by Tukey post-hoc test. Significant difference was found among the bond strength of the sealers. But, there is no statistically significant difference between the groups irrigated with peracetic acid and smear clear compared to control group. AH Plus showed highest bond strength irrespective of the final irrigant used. Peracetic acid when employed as final irrigant improved the bond strength of root canal sealers compared to control group but not statistically significant than smear clear.

  9. Effect of Peracetic Acid as A Final Rinse on Push Out Bond Strength of Root Canal Sealers to Root Dentin

    PubMed Central

    Gaddala, Naresh; Veeramachineni, Chandrasekhar

    2015-01-01

    Background Smear layer which was formed during the instrumentation of root canals hinders the penetration of root canal sealers to root dentin and affect the bond strength of root canal sealers to root dentin. Final irrigant such as demineralizing agents are used to remove the inorganic portion of the smear layer. In the present study, peracetic acid used as a final rinse, to effect the bond strength of root canal sealers to root dentin. Aim The purpose of the present study was to evaluate the efficacy of peracetic acid as a final irrigant on bond strength of root canal sealers to root dentin. Materials and Methods Sixty six freshly extracted human single rooted mandibular premolars were used for this study. After decoronation the samples were instrumented with Protaper upto F3 and irrigated with 5.25% NaOcl. The teeth were then divided into three groups based on final irrigant used: Group-1(control group) Canals were irrigated with distilled water. Group-2: Canals were irrigated with peracetic acid. Group-3: Canals were irrigated with smear clear. Each group was further divided into three subgroups (n=30) based on the sealer used to obturate the canals. Subgroup-1: kerr, Subgroup-2: Apexit plus, Subgroup-3: AH PLUS. Each sealer was mixed and coated to master cone and placed in the canal. The bonding between sealer and dentin surface was evaluated using push out bond strength by universal testing machine. The mean bond strength values of each group were statistically evaluated using Two-way ANOVA followed by Tukey post-hoc test. Results Significant difference was found among the bond strength of the sealers. But, there is no statistically significant difference between the groups irrigated with peracetic acid and smear clear compared to control group. AH Plus showed highest bond strength irrespective of the final irrigant used. Conclusion Peracetic acid when employed as final irrigant improved the bond strength of root canal sealers compared to control group but not statistically significant than smear clear. PMID:26155568

  10. [Modeling evapotranspiration of greenhouse tomato under different water conditions based on the dual crop coefficient method].

    PubMed

    Gong, Xue Wen; Liu, Hao; Sun, Jing Sheng; Ma, Xiao Jian; Wang, Wan Ning; Cui, Yong Sheng

    2017-04-18

    An experiment was conducted to investigate soil evaporation (E), crop transpiration (T), evapotranspiration (ET) and the ratio of evaporation to evapotranspiration (E/ET) of drip-irrigated tomato, which was planted in a typical solar greenhouse in the North China, under different water conditions [irrigation amount was determined based on accumulated pan evaporation (E p ) of 20 cm pan evaporation, and two treatments were designed with full irrigation (0.9E p ) and deficit irrigation (0.5E p )] at different growth stages in 2015 and 2016 at Xinxiang Comprehensive Experimental Station, Chinese Academy of Agricultural Sciences. Effects of deficit irrigation on crop coefficient (K c ) and variation of water stress coefficient (K s ) throughout the growing season were also discussed. E, T and ET of tomato were calculated with a dual crop coefficient approach, and compared with the measured data. Results indicated that E in the full irrigation was 21.5% and 20.4% higher than that in the deficit irrigation in 2015 and 2016, respectively, accounting for 24.0% and 25.0% of ET in the whole growing season. The maximum E/ET was measured in the initial stage of tomato, while the minimum obtained in the middle stage. The K c the full irrigation was 0.45, 0.89, 1.06 and 0.93 in the initial, development, middle, and late stage of tomato, and 0.45, 0.89, 0.87 and 0.41 the deficit irrigation. The K s the deficit irrigation was 0.98, 0.93, 0.78 and 0.39 in the initial, development, middle, and late stage, respectively. The dual crop coefficient method could accurately estimate ET of greenhouse tomato under different water conditions in 2015 and 2016 seasons with the mean absolute error (MAE) of 0.36-0.48 mm·d -1 , root mean square error (RMSE) of 0.44-0.65 mm·d -1 . The method also estimated E and T accurately with MAE of 0.15-0.19 and 0.26-0.56 mm·d -1 , and with RMSE of 0.20-0.24 and 0.33-0.72 mm·d -1 , respectively.

  11. Modeling applications for precision agriculture in the California Central Valley

    NASA Astrophysics Data System (ADS)

    Marklein, A. R.; Riley, W. J.; Grant, R. F.; Mezbahuddin, S.; Mekonnen, Z. A.; Liu, Y.; Ying, S.

    2017-12-01

    Drought in California has increased the motivation to develop precision agriculture, which uses observations to make site-specific management decisions throughout the growing season. In agricultural systems that are prone to drought, these efforts often focus on irrigation efficiency. Recent improvements in soil sensor technology allow the monitoring of plant and soil status in real-time, which can then inform models aimed at improving irrigation management. But even on farms with resources to deploy soil sensors across the landscape, leveraging that sensor data to design an efficient irrigation scheme remains a challenge. We conduct a modeling experiment aimed at simulating precision agriculture to address several questions: (1) how, when, and where does irrigation lead to optimal yield? and (2) What are the impacts of different precision irrigation schemes on yields, soil organic carbon (SOC), and total water use? We use the ecosys model to simulate precision agriculture in a conventional tomato-corn rotation in the California Central Valley with varying soil water content thresholds for irrigation and soil water sensor depths. This model is ideal for our question because it includes explicit process-based functions for the plant growth, plant water use, soil hydrology, and SOC, and has been tested extensively in agricultural ecosystems. Low irrigation thresholds allows the soil to become drier before irrigating compared to high irrigation thresholds; as such, we found that the high irrigation thresholds use more irrigation over the course of the season, have higher yields, and have lower water use efficiency. The irrigation threshold did not affect SOC. Yields and water use are highest at sensor depths of 0.5 to 0.15 m, but water use efficiency was also lowest at these depths. We found SOC to be significantly affected by sensor depth, with the highest SOC at the shallowest sensor depths. These results will help regulate irrigation water while maintaining yield in California, especially with uncertain precipitation regimes.

  12. Applications of digital image analysis capability in Idaho

    NASA Technical Reports Server (NTRS)

    Johnson, K. A.

    1981-01-01

    The use of digital image analysis of LANDSAT imagery in water resource assessment is discussed. The data processing systems employed are described. The determination of urban land use conversion of agricultural land in two southwestern Idaho counties involving estimation and mapping of crop types and of irrigated land is described. The system was also applied to an inventory of irrigated cropland in the Snake River basin and establishment of a digital irrigation water source/service area data base for the basin. Application of the system to a determination of irrigation development in the Big Lost River basin as part of a hydrologic survey of the basin is also described.

  13. Economics of wind energy for irrigation pumping

    NASA Astrophysics Data System (ADS)

    Lansford, R. R.; Supalla, R. J.; Gilley, J. R.; Martin, D. L.

    1980-07-01

    The economic questions associated with wind power as an energy source for irrigation under different situations with seven regions of the nation were studied. Target investment costs for wind turbines used for irrigation pumping and policy makers with bases for adjusting taxes to make alternative sources of energy investments more attractive are analyzed. Three types of wind systems are considered for each of the seven regions. The three types of wind powered irrigation systems evaluated for each region are: (1) wind assist combustion engines (diesel, natural gas, propane panel); (2) wind assist electric engines, with or without sale of surplus electricity; and (3) stand alone reservoir systems with gravity flow reservoirs.

  14. Monitoring irrigated land acreage using Landsat imagery: an application example

    USGS Publications Warehouse

    Draeger, William C.

    1976-01-01

    A demonstration of the utility of Landsat imagery for quickly and cheaply estimating irrigated land area was conducted in the Klamath River basin of Oregon. Landsat color composite images, at 1:250,000 scale and acquired on two dates during the 1975 growing season, were interpreted. Irrigated lands were delineated manually, and the irrigated area was estimated, based on dot-grid sampling of the manually delineated lands. The image interpretation estimate of irrigated area was then adjusted by a comparison of interpretation results with ground data on 45 sample plots, each 1 mi2 (2.6 km2) in size.Two interpreters independently estimated the irrigated area.  Their adjusted estimates were 285,000 acres (115,000 ha) and 267,000 acres (108,000 ha) respectively, with corresponding 95 percent confidence intervals of ±19,500 acres (7,880 ha) and ±34,700 acres (14,000 ha). The estimated cost of the survey, exclusive of management costs and training, was $1,500.

  15. Estimating the impacts of a reservoir for improved water use in irrigation in the Yarabamba region, Peru

    NASA Astrophysics Data System (ADS)

    Swiech, Theoclea; Ertsen, Maurits W.; Pererya, Carlos Machicao

    The pressure on irrigation is increasing worldwide, not only because of - perceived or real - high water consumption in the irrigated sector, but also because an increased world population puts stress on food production. Numerous irrigated areas around the world face similar issues of water scarcity, disparity in water distribution and deficient infrastructure. As a result, farmers are typically restricted in their production strategies. A general strategy in the irrigation sector is the introduction of so-called modern techniques in existing irrigation systems, with the aim to increase agricultural production. This paper discusses such a modernization effort in the sub-basin of Yarabamba, Arequipa, Peru, in which a reservoir is being constructed to improve water use and stimulate economic development. Based on fieldwork, including interviews and scenario modeling with WEAP, the relationships between water users, their irrigation systems and the water balances in the basin were studied. Scenario studies showed that the reservoir might alleviate the current water shortages in the sub-basin, but that restrictions in the current infrastructure and management of irrigation may be of more importance than the reservoir. Especially existing interests and actions of upstream and downstream areas appear to be important factors; these will not be automatically solved with the new reservoir.

  16. Decoupling factors affecting plant diversity and cover on extensive green roofs.

    PubMed

    MacIvor, J Scott; Margolis, Liat; Puncher, Curtis L; Carver Matthews, Benjamin J

    2013-11-30

    Supplemental irrigation systems are often specified on green roofs to ensure plant cover and growth, both important components of green roof performance and aesthetics. Properties of the growing media environment too can alter the assemblage of plant species able to thrive. In this study we determine how plant cover, above ground biomass and species diversity are influenced by irrigation and growing media. Grass and forb vegetative cover and biomass were significantly greater in organic based growing media but there was no effect of supplemental irrigation, with two warm season grasses dominating in those treatments receiving no supplemental irrigation. On the other hand, plant diversity declined without irrigation in organic media, and having no irrigation in inorganic growing media resulted in almost a complete loss of cover. Sedum biomass was less in inorganic growing media treatments and species dominance shifted when growing media organic content increased. Our results demonstrate that supplemental irrigation is required to maintain plant diversity on an extensive green roof, but not necessarily plant cover or biomass. These results provide evidence that planting extensive green roofs with a mix of plant species can ensure the survival of some species; maintaining cover and biomass when supplemental irrigation is turned off to conserve water, or during extreme drought. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  17. Effects of agricultural irrigation on water resources in the St. Joseph River basin, Indiana, and implications for aquifer yield

    USGS Publications Warehouse

    Peters, J.G.; Renn, D.E.

    1988-01-01

    During the past decade, the acreage of irrigated agricultural land in Indiana has tripled, causing public concern about competition for water and resulting in several State laws for regulating water withdrawals. The St. Joseph River basin represents less than one-tenth of the area of the State, but it contains one-third of the State 's irrigated land. Irrigated land in the basin is composed of permeable soils that are underlain by productive glacial aquifers. A computer model was used to analyze the effects of maximum irrigation withdrawals on aquifer drawdown and streamflow in a 16.5 sq mi area of intensive irrigation. Simulation of maximum pumping resulted in predicted aquifer drawdowns of one-fourth of the total available drawdown. Flow in a nearby stream was decreased by 40%. Areas of most intensive irrigation in the basin also are areas that have productive aquifers and well-sustained streamflows. Aquifer yield is based on the concept of capture - the volume of increased recharge to the aquifer or decreased discharge from the aquifer that results from pumping. The high rates of capture for aquifers in the basin supply ample water for present (1982) irrigation and for substantial future development. (USGS)

  18. Assessing hydrological drought risk for the irrigation sector in future climate scenarios: lessons learned from the Apulia case study (Italy)

    NASA Astrophysics Data System (ADS)

    Critto, Andrea; Torresan, Silvia; Ronco, Paolo; Zennaro, Federica; Santini, Monia; Trabucco, Antonio; Marcomini, Antonio

    2016-04-01

    Climate change is already affecting the frequency of drought events which may threaten the current stocks of water resources and thus the availability of freshwater for the irrigation. The achievement of a sustainable equilibrium between the availability of water resources and the irrigation demand is essentially related to the planning and implementation of evidence-based adaptation strategies and actions. In this sense, the improvement (of existing) and the development of (new) appropriate risk assessment methods and tools to evaluate the impact of drought events on irrigated crops is fundamental in order to assure that the agricultural yields are appropriate to meet the current and future food and market demand. This study evaluates the risk of hydrological drought on the irrigated agronomic compartment of Apulia, a semi-arid region in Southern Italy. We applied a stepwise Regional Risk Assessment (RRA) procedure, based on the consecutive analysis of hazards, exposure, vulnerability and risks, integrating the qualitative and quantitative available information. Future climate projections for the timeframes 2021-2050 and 2041-2070 were provided by COSMO-CLM under the radiative forcing RCP4.5 and RCP8.5. The run-off feeding the water stocks of the most important irrigation reservoirs in Apulia was then modeled with Arc-SWAT. Hence, the hazard analysis was carried out in order to estimate the degree of fulfillment of actual irrigation demand satisfied by water supply of different reservoirs in future scenarios. Vulnerability of exposed irrigated crops was evaluated depending on three factors accounting for crop yield variation vs water stress, water losses along the irrigation network, diversification of water supply. Resulting risk and vulnerability maps allowed: the identification of Reclamation Consortia at higher risk of not fulfilling their future irrigation demand (e.g. Capitanata Reclamation Consortia in RCP8.5 2041-2070 scenario); the ranking of most affected crops (e.g. fruit trees and vineyards); and finally, the characterization of vulnerability pattern of irrigation systems. Major achievements included the definition of a portfolio of science-driven adaptation strategies to reduce the risk pattern at both agronomic level (preferring crops with low vulnerability score, as olive groves) and at structural level (differentiating the water stocks and supplies and reducing losses and inefficiencies).

  19. Developing an automated water emitting-sensing system, based on integral tensiometers placed in homogenous environment.

    NASA Astrophysics Data System (ADS)

    Dabach, Sharon; Shani, Uri

    2010-05-01

    As the population grows, irrigated agriculture is using more water and fertilizers to supply the growing food demand. However, the uptake by various plants is only 30 to 50% of the water applied. The remaining water flows to surface water and groundwater and causes their contamination by fertilizers or other toxins such as herbicides or pesticides. To improve the water use efficiency of crops and decrease the drainage below the root zone, irrigation water should be applied according to the plant demand. The aim of this work is to develop an automated irrigation system based on real-time feedback from an inexpensive and reliable integrated sensing system. This system will supply water to plants according to their demand, without any user interference during the entire growth season. To achieve this goal a sensor (Geo-Tensiometer) was designed and tested. This sensor has better contact with the surrounding soil, is more reliable and much cheaper than the ceramic cup tensiometer. A lysimeter experiment was conducted to evaluate a subsurface drip irrigation regime based on the Geo-Tensiometer and compare it to a daily irrigation regime. All of the drippers were wrapped in Geo-textile. By integrating the Geo-Tensiometer within the Geo-textile which surrounds the drippers, we created a homogenous media in the entire lysimeter in which the reading of the matric potential takes place. This media, the properties of which are set and known to us, encourages root growth therein. Root density in this media is very high; therefore most of the plant water uptake is from this area. The irrigation system in treatment A irrigated when the matric potential reached a threshold which was set every morning automatically by the system. The daily treatment included a single irrigation each morning that was set to return 120% of the evapotranspiration of the previous day. All Geo-Tensiometers were connected to an automated washing system, that flushed air trapped in the Geo-Tensiometers. In treatment A, the system discharge changed according to the plant water demand. The discharge changes followed the water uptake changes during the day and during the entire growth period without any user interference. The integration of Geo-Tensiometer into the emitter system, together with the irrigation regime, maintained high and constant water content in the root zone in comparison to other irrigation methods, such as daily drip irrigation. Reading the matric potential in this media yielded better indication of water availability to the plants than sensors placed 3 cm from the emitters. In addition, the amount of water drainage below the root zone decreased significantly and therefore the threat of polluting groundwater. Furthermore, the automated flushing system eliminated the need for manual maintenance of the tensiometers creating a user friendly system.

  20. Spatial Irrigation Management Using Remote Sensing Water Balance Modeling and Soil Water Content Monitoring

    NASA Astrophysics Data System (ADS)

    Barker, J. Burdette

    Spatially informed irrigation management may improve the optimal use of water resources. Sub-field scale water balance modeling and measurement were studied in the context of irrigation management. A spatial remote-sensing-based evapotranspiration and soil water balance model was modified and validated for use in real-time irrigation management. The modeled ET compared well with eddy covariance data from eastern Nebraska. Placement and quantity of sub-field scale soil water content measurement locations was also studied. Variance reduction factor and temporal stability were used to analyze soil water content data from an eastern Nebraska field. No consistent predictor of soil water temporal stability patterns was identified. At least three monitoring locations were needed per irrigation management zone to adequately quantify the mean soil water content. The remote-sensing-based water balance model was used to manage irrigation in a field experiment. The research included an eastern Nebraska field in 2015 and 2016 and a western Nebraska field in 2016 for a total of 210 plot-years. The response of maize and soybean to irrigation using variations of the model were compared with responses from treatments using soil water content measurement and a rainfed treatment. The remote-sensing-based treatment prescribed more irrigation than the other treatments in all cases. Excessive modeled soil evaporation and insufficient drainage times were suspected causes of the model drift. Modifying evaporation and drainage reduced modeled soil water depletion error. None of the included response variables were significantly different between treatments in western Nebraska. In eastern Nebraska, treatment differences for maize and soybean included evapotranspiration and a combined variable including evapotranspiration and deep percolation. Both variables were greatest for the remote-sensing model when differences were found to be statistically significant. Differences in maize yield in 2015 were attributed to random error. Soybean yield was lowest for the remote-sensing-based treatment and greatest for rainfed, possibly because of overwatering and lodging. The model performed well considering that it did not include soil water content measurements during the season. Future work should improve the soil evaporation and drainage formulations, because of excessive precipitation and include aerial remote sensing imagery and soil water content measurement as model inputs.

  1. Low-volume versus high-volume initiated trans-anal irrigation therapy in adults with chronic constipation: study protocol for a randomised controlled trial.

    PubMed

    Emmett, Christopher; Close, Helen; Mason, James; Taheri, Shiva; Stevens, Natasha; Eldridge, Sandra; Norton, Christine; Knowles, Charles; Yiannakou, Yan

    2017-03-31

    Constipation is common in adults and up to 20% of the population report this symptom. Chronic constipation (CC), usually defined as more than 6 months of symptoms, is less common but results in 0.5 million UK GP consultations per annum. The effect of symptoms on measured quality of life (QOL) is significant, and CC consumes significant health care resources. In the UK, it is estimated that 10% of district nursing time is spent on constipation. Trans-anal irrigation therapy has become a widely used treatment despite a lack of robust efficacy data to support its use. The long-term outcome of treatment is also unclear. A randomised comparison of two different methods of irrigation (high- and low-volume) will provide valuable evidence of superiority of one system over the other, as well as providing efficacy data for the treatment as a whole. Participants will be recruited based on predetermined eligibility criteria. Following informed consent, they will be randomised to either high-volume (HV) or low-volume (LV) irrigation and undergo standardised radiological and physiological investigations. Following training, they will commence home irrigation with the allocated device. Data will be collected at 1, 3, 6 and 12 months according to a standardised outcomes framework. The primary outcome is PAC-QOL, measured at 3 months. The study is powered to detect a 10% difference in outcome between systems at 3 months; this means that 300 patients will need to be recruited. This study will be the first randomised comparison of two different methods of trans-anal irrigation. It will also be the largest prospective study of CC patients treated with irrigation. It will provide evidence for the effectiveness of irrigation in the treatment of CC, as well as the comparative effectiveness of the two methods. This will enable more cost-effective and evidence-based use of irrigation. Also, the results will be combined with the other studies in the CapaCiTY programme to generate an evidence-based treatment algorithm for CC in adults. ISRCTN, identifier: ISRCTN11093872 . Registered on 11 November 2015. Trial not retrospectively registered. Protocol version 3 (22 January 2016).

  2. Contribution of Wastewater Irrigation to Soil Transmitted Helminths Infection among Vegetable Farmers in Kumasi, Ghana.

    PubMed

    Amoah, Isaac Dennis; Abubakari, Amina; Stenström, Thor Axel; Abaidoo, Robert Clement; Seidu, Razak

    2016-12-01

    Wastewater irrigation is associated with several benefits but can also lead to significant health risks. The health risk for contracting infections from Soil Transmitted Helminths (STHs) among farmers has mainly been assessed indirectly through measured quantities in the wastewater or on the crops alone and only on a limited scale through epidemiological assessments. In this study we broadened the concept of infection risks in the exposure assessments by measurements of the concentration of STHs both in wastewater used for irrigation and the soil, as well as the actual load of STHs ova in the stool of farmers and their family members (165 and 127 in the wet and dry seasons respectively) and a control group of non-farmers (100 and 52 in the wet and dry seasons, respectively). Odds ratios were calculated for exposure and non-exposure to wastewater irrigation. The results obtained indicate positive correlation between STH concentrations in irrigation water/soil and STHs ova as measured in the stool of the exposed farmer population. The correlations are based on reinfection during a 3 months period after prior confirmed deworming. Farmers and family members exposed to irrigation water were three times more likely as compared to the control group of non-farmers to be infected with Ascaris (OR = 3.9, 95% CI, 1.15-13.86) and hookworm (OR = 3.07, 95% CI, 0.87-10.82). This study therefore contributes to the evidence-based conclusion that wastewater irrigation contributes to a higher incidence of STHs infection for farmers exposed annually, with higher odds of infection in the wet season.

  3. Crop phenology and LANDSAT-based irrigated lands inventory in the high plains. [United States of America

    NASA Technical Reports Server (NTRS)

    Martinko, E. A. (Principal Investigator); Poracsky, J.; Kipp, E. R.; Krieger, H.

    1980-01-01

    The activity concentrated on identifying crop and irrigation data sources for the eight states within the High Plains Aquifer and making contacts concerning the nature of these data. A mail questionnaire was developed to gather specific data not routinely reported through standard data collection channels. Input/output routines were designed for High Plains crop and irrigation data and initial statistical data on crops were input to computer files.

  4. An agricultural drought index to incorporate the irrigation process and reservoir operations: A case study in the Tarim River Basin

    NASA Astrophysics Data System (ADS)

    Li, Zehua; Hao, Zhenchun; Shi, Xiaogang; Déry, Stephen J.; Li, Jieyou; Chen, Sichun; Li, Yongkun

    2016-08-01

    To help the decision making process and reduce climate change impacts, hydrologically-based drought indices have been used to determine drought severity in the Tarim River Basin (TRB) over the past decades. As the major components of the surface water balance, however, the irrigation process and reservoir operations have not been incorporated into drought indices in previous studies. Therefore, efforts are needed to develop a new agricultural drought index, which is based on the Variable Infiltration Capacity (VIC) model coupled with an irrigation scheme and a reservoir module. The new drought index was derived from the simulated soil moisture data from a retrospective VIC simulation from 1961 to 2007 over the irrigated area in the TRB. The physical processes in the coupled VIC model allow the new agricultural drought index to take into account a wide range of hydrologic processes including the irrigation process and reservoir operations. Notably, the irrigation process was found to dominate the surface water balance and drought evolution in the TRB. Furthermore, the drought conditions identified by the new agricultural drought index presented a good agreement with the historical drought events that occurred in 1993-94, 2004, and 2006-07, respectively. Moreover, the spatial distribution of coupled VIC model outputs using the new drought index provided detailed information about where and to what extent droughts occurred.

  5. Crop modeling applications in agricultural water management

    USGS Publications Warehouse

    Kisekka, Isaya; DeJonge, Kendall C.; Ma, Liwang; Paz, Joel; Douglas-Mankin, Kyle R.

    2017-01-01

    This article introduces the fourteen articles that comprise the “Crop Modeling and Decision Support for Optimizing Use of Limited Water” collection. This collection was developed from a special session on crop modeling applications in agricultural water management held at the 2016 ASABE Annual International Meeting (AIM) in Orlando, Florida. In addition, other authors who were not able to attend the 2016 ASABE AIM were also invited to submit papers. The articles summarized in this introductory article demonstrate a wide array of applications in which crop models can be used to optimize agricultural water management. The following section titles indicate the topics covered in this collection: (1) evapotranspiration modeling (one article), (2) model development and parameterization (two articles), (3) application of crop models for irrigation scheduling (five articles), (4) coordinated water and nutrient management (one article), (5) soil water management (two articles), (6) risk assessment of water-limited irrigation management (one article), and (7) regional assessments of climate impact (two articles). Changing weather and climate, increasing population, and groundwater depletion will continue to stimulate innovations in agricultural water management, and crop models will play an important role in helping to optimize water use in agriculture.

  6. Estimating irrigated areas from satellite and model soil moisture data over the contiguous US

    NASA Astrophysics Data System (ADS)

    Zaussinger, Felix; Dorigo, Wouter; Gruber, Alexander

    2017-04-01

    Information about irrigation is crucial for a number of applications such as drought- and yield management and contributes to a better understanding of the water-cycle, land-atmosphere interactions as well as climate projections. Currently, irrigation is mainly quantified by national agricultural statistics, which do not include spatial information. The digital Global Map of Irrigated Areas (GMIA) has been the first effort to quantify irrigation at the global scale by merging these statistics with remote sensing data. Also, the MODIS-Irrigated Agriculture Dataset (MirAD-US) was created by merging annual peak MODIS-NDVI with US county level irrigation statistics. In this study we aim to map irrigated areas by confronting time series of various satellite soil moisture products with soil moisture from the ERA-Interim/Land reanalysis product. We follow the assumption that irrigation signals are not modelled in the reanalysis product, nor contributing to its forcing data, but affecting the spatially continuous remote sensing observations. Based on this assumption, spatial patterns of irrigation are derived from differences between the temporal slopes of the modelled and remotely sensed time series during the irrigation season. Results show that a combination of ASCAT and ERA-Interim/Land show spatial patterns which are in good agreement with the MIrAD-US, particularly within the Mississippi Delta, Texas and eastern Nebraska. In contrast, AMSRE shows weak agreements, plausibly due to a higher vegetation dependency of the soil moisture signal. There is no significant agreement to the MIrAD-US in California, which is possibly related to higher crop-diversity and lower field sizes. Also, a strong signal in the region of the Great Corn Belt is observed, which is generally not outlined as an irrigated area. It is not yet clear to what extent the signal obtained in the Mississippi Delta is related to re-reflection effects caused by standing water due to flood or furrow irrigation practices. Consequently, future research should focus on the specific effects of different irrigation practices and crop types. This study is supported by the European Union's FP7 EartH2Observe "Global Earth Observation for Integrated Water Resource Assessment" project (grant agreement number 331 603608).

  7. Validation and application of a two-dimensional model to simulate soil salt transport under mulched drip irrigation

    NASA Astrophysics Data System (ADS)

    Jiao, Huiqing; Zhao, Chengyi; Sheng, Yu; Chen, Yan; Shi, Jianchu; Li, Baoguo

    2017-04-01

    Water shortage and soil salinization increasingly become the main constraints for sustainable development of agriculture in Southern Xinjiang, China. Mulched drip irrigation, as a high-efficient water-saving irrigation method, has been widely applied in Southern Xinjiang for cotton production. In order to analyze the reasonability of describing the three-dimensional soil water and salt transport processes under mulched drip irrigation with a relatively simple two-dimensional model, a field experiment was conducted from 2007 to 2015 at Aksu of Southern Xinjiang, and soil water and salt transport processes were simulated through the three-dimensional and two-dimensional models based on COMSOL. Obvious differences were found between three-dimensional and two-dimensional simulations for soil water flow within the early 12 h of irrigation event and for soil salt transport in the area within 15 cm away from drip tubes during the whole irrigation event. The soil water and salt contents simulated by the two-dimensional model, however, agreed well with the mean values between two adjacent emitters simulated by the three-dimensional model, and also coincided with the measurements as corresponding RMSE less than 0.037 cm3 cm-3 and 1.80 g kg-1, indicating that the two-dimensional model was reliable for field irrigation management. Subsequently, the two-dimensional model was applied to simulate the dynamics of soil salinity for five numerical situations and for a widely adopted irrigation pattern in Southern Xinjiang (about 350 mm through mulched drip irrigation during growing season of cotton and total 400 mm through flooding irrigations before sowing and after harvesting). The simulation results indicated that the contribution of transpiration to salt accumulation in root layer was about 75% under mulched drip irrigation. Moreover, flooding irrigations before sowing and after harvesting were of great importance for salt leaching of arable layer, especially in bare strip where drip irrigation water hardly reached, and thus providing suitable root zone environment for cotton. Nevertheless, flooding irrigation should be further optimized to enhance water use efficiency.

  8. Towards Global Simulation of Irrigation in a Land Surface Model: Multiple Cropping and Rice Paddy in Southeast Asia

    NASA Technical Reports Server (NTRS)

    Beaudoing, Hiroko Kato; Rodell, Matthew; Ozdogan, Mutlu

    2010-01-01

    Agricultural land use significantly influences the surface water and energy balances. Effects of irrigation on land surface states and fluxes include repartitioning of latent and sensible heat fluxes, an increase in net radiation, and an increase in soil moisture and runoff. We are working on representing irrigation practices in continental- to global-scale land surface simulation in NASA's Global Land Data Assimilation System (GLDAS). Because agricultural practices across the nations are diverse, and complex, we are attempting to capture the first-order reality of the regional practices before achieving a global implementation. This study focuses on two issues in Southeast Asia: multiple cropping and rice paddy irrigation systems. We first characterize agricultural practices in the region (i.e., crop types, growing seasons, and irrigation) using the Global data set of monthly irrigated and rainfed crop areas around the year 2000 (MIRCA2000) dataset. Rice paddy extent is identified using remote sensing products. Whether irrigated or rainfed, flooded fields need to be represented and treated explicitly. By incorporating these properties and processes into a physically based land surface model, we are able to quantify the impacts on the simulated states and fluxes.

  9. A stochastic ensemble-based model to predict crop water requirements from numerical weather forecasts and VIS-NIR high resolution satellite images in Southern Italy

    NASA Astrophysics Data System (ADS)

    Pelosi, Anna; Falanga Bolognesi, Salvatore; De Michele, Carlo; Medina Gonzalez, Hanoi; Villani, Paolo; D'Urso, Guido; Battista Chirico, Giovanni

    2015-04-01

    Irrigation agriculture is one the biggest consumer of water in Europe, especially in southern regions, where it accounts for up to 70% of the total water consumption. The EU Common Agricultural Policy, combined with the Water Framework Directive, imposes to farmers and irrigation managers a substantial increase of the efficiency in the use of water in agriculture for the next decade. Ensemble numerical weather predictions can be valuable data for developing operational advisory irrigation services. We propose a stochastic ensemble-based model providing spatial and temporal estimates of crop water requirements, implemented within an advisory service offering detailed maps of irrigation water requirements and crop water consumption estimates, to be used by water irrigation managers and farmers. The stochastic model combines estimates of crop potential evapotranspiration retrieved from ensemble numerical weather forecasts (COSMO-LEPS, 16 members, 7 km resolution) and canopy parameters (LAI, albedo, fractional vegetation cover) derived from high resolution satellite images in the visible and near infrared wavelengths. The service provides users with daily estimates of crop water requirements for lead times up to five days. The temporal evolution of the crop potential evapotranspiration is simulated with autoregressive models. An ensemble Kalman filter is employed for updating model states by assimilating both ground based meteorological variables (where available) and numerical weather forecasts. The model has been applied in Campania region (Southern Italy), where a satellite assisted irrigation advisory service has been operating since 2006. This work presents the results of the system performance for one year of experimental service. The results suggest that the proposed model can be an effective support for a sustainable use and management of irrigation water, under conditions of water scarcity and drought. Since the evapotranspiration term represents a staple component in the water balance of a catchment, as outstanding future development, the model could also offer an advanced support for water resources management decisions at catchment scale.

  10. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    NASA Astrophysics Data System (ADS)

    Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.

    2014-12-01

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.

  11. Evaluating Outdoor Water Use Demand under Changing Climatic and Demographic Conditions: An Agent-based Modeling Approach

    NASA Astrophysics Data System (ADS)

    Kanta, L.

    2016-12-01

    Outdoor water use for landscape and irrigation constitutes a significant end use in residential water demand. In periods of water shortages, utilities may reduce garden demands by implementing irrigation system audits, rebate programs, local ordinances, and voluntary or mandatory water use restrictions. Because utilities do not typically record outdoor and indoor water uses separately, the effects of policies for reducing garden demands cannot be readily calculated. The volume of water required to meet garden demands depends on the housing density or lawn size, type of vegetation, climatic conditions, efficiency of garden irrigation systems, and consumer water-use behaviors. Many existing outdoor demand estimation methods are deterministic and do not include consumer responses to conservation campaigns. In addition, mandatory restrictions may have a substantial impact on reducing outdoor demands, but the effectiveness of mandatory restrictions depends on the timing and the frequency of restrictions, in addition to the distribution of housing density and consumer types within a community. This research investigates a garden end-use model by coupling an agent-based modeling approach and a mechanistic-stochastic water demand model to create a methodology for estimating garden demand and evaluating demand reduction policies. The garden demand model is developed for two water utilities, using a diverse data sets, including residential customer billing records, records of outdoor conservation programs, frequency and type of mandatory water use restrictions, lot size distribution, population growth, and climatic data. A set of garden irrigation parameter values, which are based on the efficiency of irrigation systems and irrigation habits of consumers, are determined for a set of conservation ordinances and restrictions. The model parameters are then validated using customer water usage data from the participating water utilities. A sensitivity analysis is conducted for garden irrigation parameters to determine the most significant factors that should be considered by water utilities to reduce outdoor demand. Data from multiple sources and the agent-based modeling methodology are integrated using a holistic approach to assist utilities in efficiently and sustainably managing outdoor demand.

  12. Evaluating Outdoor Water Use Demand under Changing Climatic and Demographic Conditions: An Agent-based Modeling Approach

    NASA Astrophysics Data System (ADS)

    Kanta, L.; Berglund, E. Z.; Soh, M. H.

    2017-12-01

    Outdoor water-use for landscape and irrigation constitutes a significant end-use in total residential water demand. In periods of water shortages, utilities may reduce garden demands by implementing irrigation system audits, rebate programs, local ordinances, and voluntary or mandatory water-use restrictions. Because utilities do not typically record outdoor and indoor water-uses separately, the effects of policies for reducing garden demands cannot be readily calculated. The volume of water required to meet garden demands depends on the housing density, lawn size, type of vegetation, climatic conditions, efficiency of garden irrigation systems, and consumer water-use behaviors. Many existing outdoor demand estimation methods are deterministic and do not include consumer responses to conservation campaigns. In addition, mandatory restrictions may have a substantial impact on reducing outdoor demands, but the effectiveness of mandatory restrictions depends on the timing and the frequency of restrictions, in addition to the distribution of housing density and consumer types within a community. This research investigates a garden end-use model by coupling an agent-based modeling approach and a mechanistic-stochastic water demand model to create a methodology for estimating garden demand and evaluating demand reduction policies. The garden demand model is developed for two water utilities, using a diverse data sets, including residential customer billing records, outdoor conservation programs, frequency and type of mandatory water-use restrictions, lot size distribution, population growth, and climatic data. A set of garden irrigation parameter values, which are based on the efficiency of irrigation systems and irrigation habits of consumers, are determined for a set of conservation ordinances and restrictions. The model parameters are then validated using customer water usage data from the participating water utilities. A sensitivity analysis is conducted for garden irrigation parameters to determine the most significant factors that should be considered by water utilities to reduce outdoor demand. Data from multiple sources and the agent-based modeling methodology are integrated using a holistic approach to assist utilities in efficiently and sustainably managing outdoor demand.

  13. Assessing the ecological risk of soil irrigated with wastewater using in vitro cell bioassays.

    PubMed

    Yu, Guo; Xiao, Ruiyang; Wang, Donghong; Zhou, Jun; Wang, Zijian

    2008-12-01

    In the most recent research work, the accumulation of toxicants in soil was always assessed through concentration level of the target contaminants. However, assessments based on chemical analysis were limited in numbers and in their unpredictable bioavailability. An alternative assessment could be based on toxicity assessment. It means that a screening bioassay is a necessary tool for identifying and defining contaminants at the sites, which should warrant further attention. In the present study, three in vitro cell bioassays, including the SOS/umu bioassay for genotoxic effects, human estrogen receptor recombinant yeast bioassay for estrogenic effects, and ethoxyresorfin O-deethylase (EROD) with H4IIE rat hepatoma cells bioassay for Ah-receptor agonistic effects, were used for the evaluation of the accumulation of toxicants in soils irrigated with wastewater in the suburb of Beijing, China. The results indicated that there were significant increases of genotoxic, estrogenic, and Ah-receptor agonistic effects in soils irrigated with wastewater, as compared with soils irrigated with groundwater. There was the decreased effect gradient following the increase of the distances from the inlet of the wastewater. It was concluded that wastewater irrigation could cause accumulation of genotoxic, estrogenic, and Ah-receptor agonistic chemicals in soil.

  14. Reconnaissance of water quality in the High Plains Aquifer beneath agricultural lands, south-central Kansas

    USGS Publications Warehouse

    Stullken, L.E.; Stamer, J.K.; Carr, J.E.

    1987-01-01

    The High Plains of western Kansas was one of 14 areas selected for preliminary groundwater quality reconnaissance by the U.S. Geological Survey 's Toxic Waste--Groundwater Contamination Program. The specific objective was to evaluate the effects of land used for agriculture (irrigated cropland and non-irrigated rangeland) on the water in the High Plains aquifer. Conceptual inferences, based on the information available, would lead one to expect groundwater beneath irrigated cropland to contain larger concentrations of sodium, sulfate, chloride, nitrite plus nitrate, and some water soluble pesticides than water beneath non-irrigated land (range-land) The central part of the Great Bend Prairie, an area of about 1,800 sq mi overlying the High Plains aquifer in south-central Kansas, was selected for the study of agricultural land use because it has sand soils, a shallow water table, relatively large annual precipitation, and includes large areas that are exclusively irrigated cropland or non-irrigated rangeland. As determined by a two-tailed Wilcoxon rank-sum test, concentrations of sodium and alkalinity were significantly larger at the 95% confidence level for water samples from beneath irrigated cropland than from beneath rangeland. No statistically significant difference in concentrations of sulfate, chloride, nitrite plus nitrate, and ammonia, was detected. Concentrations of 2,4-D found in water samples from beneath the rangeland were larger at the 99% confidence level as compared to concentrations of 2,4-D in samples from beneath irrigated cropland. Larger concentrations of sodium and alkalinity were found in water beneath irrigated cropland, and the largest concentration of the pesticide atrazine (triazines were found in three samples) was found in water from the only irrigation well sampled. The sodium and atrazine concentrations found in water from the irrigation well support the premise that water-level drawdown develops under irrigated fields. This diverts the natural groundwater flow patterns, so that pumpage may cause recycling and subsequent concentration of leachates from the land surface. (Author 's abstract)

  15. Effect of photon-initiated photoacoustic streaming, passive ultrasonic, and sonic irrigation techniques on dentinal tubule penetration of irrigation solution: a confocal microscopic study.

    PubMed

    Akcay, Merve; Arslan, Hakan; Mese, Merve; Durmus, Nazlı; Capar, Ismail Davut

    2017-09-01

    The aim of this in vitro study was to evaluate the efficacy of different irrigation techniques including laser-activated irrigation using an erbium:yttrium-aluminum-garnet (Er:YAG) laser with a novel tip design (photon-induced photoacoustic streaming (PIPS)), Er:YAG laser with Preciso tip, sonic activation, and passive ultrasonic activation on the final irrigation solution penetration into dentinal tubules by using a laser scanning confocal microscope. In this study, 65 extracted single-rooted human mandibular premolars were instrumented up to size 40 and randomly divided into 5 groups (n = 13) based on the activation technique of the final irrigation solution as follows: conventional irrigation (control group), sonic activation, passive ultrasonic activation, Er:YAG-PIPS tip activation, and Er:YAG-Preciso tip activation. In each group, 5 mL of 5% NaOCl labeled with fluorescent dye was used during the activation as the final irrigation solution. Specimens were sectioned at 2.5 and 8 mm from the apex and then examined under a confocal microscope to calculate the dentinal tubule penetration area. Data were analyzed using two-way analysis of variance (ANOVA) and Tukey's post hoc tests (P = 0.05). Both Er:YAG laser (Preciso/PIPS) activations exhibited a significantly higher penetration area than the other groups (P < 0.05). Additionally, passive ultrasonic activation had significantly higher penetration than the sonic activation group and the control group. Statistically significant differences were also found between each root canal third (coronal > middle > apical) (P < 0.001). The results from the present study support the use of Er:YAG laser activation (Preciso/PIPS) to improve the effectiveness of the final irrigation procedure by increasing the irrigant penetration area into the dentinal tubules. The activation of the irrigant and the creation of the streaming with the Er:YAG laser have a positive effect on the irrigant penetration.

  16. Sustainable water deliveries from the Colorado River in a changing climate.

    PubMed

    Barnett, Tim P; Pierce, David W

    2009-05-05

    The Colorado River supplies water to 27 million users in 7 states and 2 countries and irrigates over 3 million acres of farmland. Global climate models almost unanimously project that human-induced climate change will reduce runoff in this region by 10-30%. This work explores whether currently scheduled future water deliveries from the Colorado River system are sustainable under different climate-change scenarios. If climate change reduces runoff by 10%, scheduled deliveries will be missed approximately 58% of the time by 2050. If runoff reduces 20%, they will be missed approximately 88% of the time. The mean shortfall when full deliveries cannot be met increases from approximately 0.5-0.7 billion cubic meters per year (bcm/yr) in 2025 to approximately 1.2-1.9 bcm/yr by 2050 out of a request of approximately 17.3 bcm/yr. Such values are small enough to be manageable. The chance of a year with deliveries <14.5 bcm/yr increases to 21% by midcentury if runoff reduces 20%, but such low deliveries could be largely avoided by reducing scheduled deliveries. These results are computed by using estimates of Colorado River flow from the 20th century, which was unusually wet; if the river reverts to its long-term mean, shortfalls increase another 1-1.5 bcm/yr. With either climate-change or long-term mean flows, currently scheduled future water deliveries from the Colorado River are not sustainable. However, the ability of the system to mitigate droughts can be maintained if the various users of the river find a way to reduce average deliveries.

  17. [Optimal irrigation index for cotton drip irrigation under film mulching based on the evaporation from pan with constant water level].

    PubMed

    Shen, Xiao-Jun; Zhang, Ji-Yang; Sun, Jing-Sheng; Gao, Yang; Li, Ming-Si; Liu, Hao; Yang, Gui-Sen

    2013-11-01

    A field experiment with two irrigation cycles and two irrigating water quotas at squaring stage and blossoming-boll forming stage was conducted in Urumqi of Xinjiang Autonomous Region, Northwest China in 2008-2009, aimed to explore the high-efficient irrigation index of cotton drip irrigation under film mulching. The effects of different water treatments on the seed yield, water consumption, and water use efficiency (WUE) of cotton were analyzed. In all treatments, there was a high correlation between the cotton water use and the evaporation from pan installed above the plant canopy. In high-yield cotton field (including the treatment T4 which had 10 days and 7 days of irrigation cycle with 30.0 mm and 37.5 mm of irrigating water quota at squaring stage and blossoming-boll forming stage, respectively in 2008, and the treatment T1 having 7 days of irrigation cycle with 22.5 mm and 37.5 mm of irrigating water quota at squaring stage and blossoming-boll forming stage, respectively in 2009), the pan-crop coefficient (Kp) at seedling stage, squaring stage, blossoming-boll forming stage, and boll opening stage was 0.29-0.30, 0.52-0.53, 0.74-0.88, and 0.19-0.20, respectively. As compared with the other treatments, T4 had the highest seed cotton yield (5060 kg x hm(-2)) and the highest WUE (1.00 kg x m(-3)) in 2008, whereas T1 had the highest seed cotton yield (4467 kg x hm(-2)) and the highest WUE (0.99 kg x m(-3)) in 2009. The averaged cumulative pan evaporation in 7 days and 10 days at squaring stage was 40-50 mm and 60-70 mm, respectively, and that in 7 days at blossoming-boll forming stage was 40-50 mm. It was suggested that in Xinjiang cotton area, irrigating 45 mm water for seedling emergence, no irrigation both at seedling stage and at boll opening stage, and irrigation was started when the pan evaporation reached 45-65 mm and 45 mm at squaring stage and blossoming-boll stage, respectively, the irrigating water quota could be determined by multiplying cumulative pan evaporation with Kp (the Ko was taken as 0.5, 0.75, 0.85, and 0.75 at squaring stage, early blossoming, full-blossoming, and late blossoming stage, respectively), which could be the high efficient irrigation index to obtain high yield and WUE in drip irrigation cotton field and to save irrigation water resources.

  18. Irrigation Requirement Estimation using MODIS Vegetation Indices and Inverse Biophysical Modeling; A Case Study for Oran, Algeria

    NASA Technical Reports Server (NTRS)

    Bounoua, L.; Imhoff, M.L.; Franks, S.

    2008-01-01

    Human demand for food influences the water cycle through diversion and extraction of fresh water needed to support agriculture. Future population growth and economic development alone will substantially increase water demand and much of it for agricultural uses. For many semi-arid lands, socio-economic shifts are likely to exacerbate changes in climate as a driver of future water supply and demand. For these areas in particular, where the balance between water supply and demand is fragile, variations in regional climate can have potentially predictable effect on agricultural production. Satellite data and biophysically-based models provide a powerful method to quantify the interactions between local climate, plant growth and water resource requirements. In irrigated agricultural lands, satellite observations indicate high vegetation density while the precipitation amount indicates otherwise. This inconsistency between the observed precipitation and the observed canopy leaf density triggers the possibility that the observed high leaf density is due to an alternate source of water, irrigation. We explore an inverse process approach using observations from the Moderate Resolution Imaging Spectroradiometer (MODIS), climatological data, and the NASA's Simple Biosphere model, SiB2, to quantitatively assess water demand in a semi-arid agricultural land by constraining the carbon and water cycles modeled under both equilibrium (balance between vegetation and prevailing local climate) and nonequilibrium (water added through irrigation) conditions. We postulate that the degree to which irrigated lands vary from equilibrium conditions is related to the amount of irrigation water used. We added water using two distribution methods: The first method adds water on top of the canopy and is a proxy for the traditional spray irrigation. The second method allows water to be applied directly into the soil layer and serves as proxy for drip irrigation. Our approach indicates that over the study site, for the month of July, spray irrigation resulted in an irrigation amount of about 1.4 mm per occurrence with an average frequency of occurrence of 24.6 hours. The simulated total monthly irrigation for July was 34.85 mm. In contrast, the drip irrigation resulted in less frequent irrigation events with an average water requirement about 57% less than that simulated during the spray irrigation case. The efficiency of the drip irrigation method rests on its reduction of the canopy interception loss compared to the spray irrigation method. When compared to a country-wide average estimate of irrigation water use, our numbers are quite low. We would have to revise the reported country level estimates downward to 17% or less

  19. Water-power resources in upper Carson River basin, California-Nevada, A discussion of potential development of power and reservoir sites on east and west forks, Carson River

    USGS Publications Warehouse

    Pumphrey, Harold L.

    1955-01-01

    West Fork Carson River offers the best opportunity for power development in the Carson River basin. The Hope Valley reservoir site could be developed to provide adequate storage regulation and concentration of fall would permit utilization of 1,400 feet of head in 51h miles below the clam site, or 1,900 feet of head in about 972 miles below the dam site; however, the average annual runoff susceptible of development is only about 70,000 acre-feet which limits the power that could be developed continuously in an average year with regulation to about 8,700 kilowatts utilizing 1,400 feet of head, or 12,000 kilowatts utilizing 1,900 feet of head. The method and degree of development will be determined to large extent by the method devised to supplement regulated flows from the Hope Valley reservoir to supply the water already appropriated for irrigation. If the Hope Valley site and the Watasheamu site on East Fork Carson River were developed coordinately water could be transferred to the West Fork for distribution through canals leading from that stream thus satisfying the deficiency due to regulation at Hope Valley and release of stored water on a power schedule. This would permit utilization of the entire 1,900 feet of fall. Independent development of the West Fork for optimum power production would require re-regulation of releases from Hope Valley reservoir and storage of a considerable part of the fall and winter flow for use during the irrigation season. Adequate storage capacity is apparently not available on the West Fork below Hope Valley; but offstream storage may be available in Diamond Valley which could be utilized by diversion from the West Fork near Woodfords. This would limit the utilization of the stream for power purposes to the development of the 1,400 feet of head between the Hope Valley dam site and Wood fords. In a year of average discharge East Fork Carson River and three of its principal tributaries could be developed to produce about 13,500 kilowatts of firm power upstream of the Watasheamu site, which has been proposed as the location of a storage reservoir, the principal use of which would be for irrigation and flood control purposes. Substantial storage regulation would be required because of the seasonal variation in flow; and while sufficient storage capacity is available for such regulation, its value for power development is limited because of the lack of concentration of fall below the storage sites where head could be economically developed. The Watasheamu reservoir with a powerplant near the Horseshoe: Bend site could be operated to develop about 5,400 kilowatts of continuous power in a year of average discharge; however, priority to use of water for irrigation purposes would undoubtedly require operation of the Watasheamu reservoir on a schedule unfavorable to the production of firm power. It is estimated that 47 million kilowatt-hours represents the maximum generation capability of a plant at the Horseshoe Bend site in year of average discharge and a large proportion of this amount would be generated during the period of peak irrigation demand and would be seasonal in nature. Installation of about 7,000 kilowatts of capacity in a plant at the Horseshoe Bend site appears feasible. Annual energy generation would probably be less than the maximum represented by streamflow, depending on the magnitude of releases from the Watasheamu reservoir for irrigation and the demand for seasonal power. It is judged, from a general consideration of the probable cost of the required Structures in relation to the benefits which would accrue from the power that could be produced, that development of East and West Forks Carson River for power purposes only would not be feasible.

  20. New soil water sensors for irrigation management

    USDA-ARS?s Scientific Manuscript database

    Effective irrigation management is key to obtaining the most crop production per unit of water applied and increasing production in the face of competing demands on water resources. Management methods have included calculating crop water needs based on weather station measurements, calculating soil ...

  1. Passive Microwave Observation of Soil Water Infiltration

    NASA Technical Reports Server (NTRS)

    Jackson, Thomas J.; Schmugge, Thomas J.; Rawls, Walter J.; ONeill, Peggy E.; Parlange, Marc B.

    1997-01-01

    Infiltration is a time varying process of water entry into soil. Experiments were conducted here using truck based microwave radiometers to observe small plots during and following sprinkler irrigation. Experiments were conducted on a sandy loam soil in 1994 and a silt loam in 1995. Sandy loam soils typically have higher infiltration capabilities than clays. For the sandy loam the observed brightness temperature (TB) quickly reached a nominally constant value during irrigation. When the irrigation was stopped the TB began to increase as drainage took place. The irrigation rates in 1995 with the silt loam soil exceeded the saturated conductivity of the soil. During irrigation the TB values exhibited a pattern that suggests the occurrence of coherent reflection, a rarely observed phenomena under natural conditions. These results suggested the existence of a sharp dielectric boundary (wet over dry soil) that was increasing in depth with time.

  2. Integrating Water Supply Constraints into Irrigated Agricultural Simulations of California

    NASA Technical Reports Server (NTRS)

    Winter, Jonathan M.; Young, Charles A.; Mehta, Vishal K.; Ruane, Alex C.; Azarderakhsh, Marzieh; Davitt, Aaron; McDonald, Kyle; Haden, Van R.; Rosenzweig, Cynthia E.

    2017-01-01

    Simulations of irrigated croplands generally lack key interactions between water demand from plants and water supply from irrigation systems. We coupled the Water Evaluation and Planning system (WEAP) and Decision Support System for Agrotechnology Transfer (DSSAT) to link regional water supplies and management with field-level water demand and crop growth. WEAP-DSSAT was deployed and evaluated over Yolo County in California for corn, rice, and wheat. WEAP-DSSAT is able to reproduce the results of DSSAT under well-watered conditions and reasonably simulate observed mean yields, but has difficulty capturing yield interannual variability. Constraining irrigation supply to surface water alone reduces yields for all three crops during the 1987-1992 drought. Corn yields are reduced proportionally with water allocation, rice yield reductions are more binary based on sufficient water for flooding, and wheat yields are least sensitive to irrigation constraints as winter wheat is grown during the wet season.

  3. Observation and Modelling of Soil Water Content Towards Improved Performance Indicators of Large Irrigation Schemes

    NASA Astrophysics Data System (ADS)

    Labbassi, Kamal; Akdim, Nadia; Alfieri, Silvia Maria; Menenti, Massimo

    2014-05-01

    Irrigation performance may be evaluated for different objectives such as equity, adequacy, or effectiveness. We are using two performance indicators: IP2 measures the consistency of the allocation of the irrigation water with gross Crop Water requirements, while IP3 measures the effectiveness of irrigation by evaluating the increase in crop transpiration between the case of no irrigation and the case of different levels of irrigation. To evaluate IP3 we need to calculate the soil water balance for the two cases. We have developed a system based on the hydrological model SWAP (Soil Water atmosphere Plant) to calculate spatial and temporal patterns of crop transpiration T(x, y, t) and of the vertical distribution of soil water content θ(x, y, z, t). On one hand, in the absence of ground measurement of soil water content to validate and evaluate the precision of the estimated one, a possibility would be to use satellite retrievals of top soil water content, such as the data to be provided by SMAP. On the other hand, to calculate IP3 we need root zone rather than top soil water content. In principle, we could use the model SWAP to establish a relationship between the top soil and root zone water content. Such relationship could be a simple empirical one or a data assimilation procedure. In our study area (Doukkala- Morocco) we have assessed the consistency of the water allocation with the actual irrigated area and crop water requirements (CWR) by using a combination of multispectral satellite image time series (i,e RapidEye (REIS), SPOT4 (HRVIR1) and Landsat 8 (OLI) images acquired during the 2012/2013 agricultural season). To obtain IP2 (x, y, t) we need to determine ETc (x, y, t). We have applied two (semi)empirical approaches: the first one is the Kc-NDVI method, based on the correlation between the Near Difference Vegetation Index (NDVI) and the value of crop coefficient (kc); the second one is the analytical approach based on the direct application of Penman-Monteith equation with reflectance-based estimates of canopy biophysical variables, such as surface albedo (r), leaf area index (LAI) and crop height (hc). The validation of spatial results using the dual crop coefficient approach (kcb) showed that the satellite-based estimates of ETc corresponded well with ground-based ETc i.e, R²=0.75 and RMSE=0.79 versus R²=0.73 and RMSE=0.89 for respectively kc-NDVI and analytical approach. To monitor IP3 (x, y, t) with the SWAP model we mapped soil hydrological properties combining soil maps with grain size analysis of a number of samples, and agricultural crops using multi-temporal classification of NDVI time series. The assessment of irrigation performance in term of adequacy between requirement and allocation showed that CWR are much larger than water supply for entire area, this mismatch is improved in the beginning of the growing season by means of Irrigation water requirement (IWR) and even more using the net irrigation water requirement (NIWR) estimated using SWAP model. We expect that the availability of SMAP data products will significantly improve the reliability and temporal sampling of our indicators.

  4. Can deficit irrigation techniques be used to enhance phosphorus and water use efficiency and benefit crop yields?

    NASA Astrophysics Data System (ADS)

    Wright, Hannah R.; Dodd, Ian C.; Blackwell, Martin S. A.; Surridge, Ben W. J.

    2015-04-01

    Soil drying and rewetting (DRW) affects the forms and availability of phosphorus (P). Water soluble P has been reported to increase 1.8- to 19-fold after air-drying with the majority of the increase (56-100%) attributable to organic P. Similarly, in two contrasting soil types DRW increased concentrations of total P and reactive P in leachate, likely due to enhanced P mineralisation and physiochemical processes causing detachment of soil colloids, with faster rewetting rates related to higher concentrations of P. The intensity of drying as well as the rate of rewetting influences organic and inorganic P cycling. How these dynamics are driven by soil water status, and impact crop P acquisition and growth, remains unclear. Improving P and water use efficiencies and crop yields is globally important as both P and water resources become increasingly scarce, whilst demand for food increases. Irrigation supply below the water requirement for full crop evapotranspiration is employed by agricultural practitioners where water supply is limited. Regulated deficit irrigation describes the scheduling of water supply to correspond to the times of highest crop demand. Alternate wetting and drying (AWD) is applied in lowland irrigated rice production to avoid flooding at certain times of crop development, and has benefited P nutrition and yields. This research aims to optimise the benefits of P availability and uptake achieved by DRW by guiding deficit irrigation management strategies. Further determination of underlying processes driving P cycling at fluctuating soil moisture status is required. Presented here is a summary of the literature on DRW effects on soil P availability and plant P uptake and partitioning, in a range of soil types and cropping systems, with emphasis on alternate wetting and drying irrigation (AWD) compared to continuous flooding in lowland irrigated rice production. Soil water contents and matric potentials, and effects on P dynamics, are highly variable across studies (at laboratory, greenhouse and field scales). Aiming to understand this variation, two sets of results are presented. Firstly, the effects of soil type on responses to DRW, and relationships between soil gravimetric water content and matric potential and thresholds at which DRW increases P availability, are shown and physiological implications suggested (from laboratory experiments). Further evidence is given for the role of the microbial biomass in elevated P availability, and P increased in soil that was partially air-dried and maintained above -1.5 MPa, the permanent wilting point. Secondly, effects of DRW on soil P availability, plant P nutrition, water use and physiology in pot-grown plants are shown (from glasshouse experiments). Soil P availability has been quantified by water and sodium bicarbonate extracts, and plant P concentrations via ICP-OES. Further understanding the effects of soil water status on P cycling is needed to improve irrigation and other management strategies to optimise P and water use efficiencies and crop yields. Thus, future experiments will investigate how different sources of P (organic and inorganic) respond to DRW regimes (including field experiments).

  5. Landsat sattelite multi-spectral image classification of land cover and land use changes for GIS-based urbanization analysis in irrigation districts of lower Rio Grande Valley of Texas

    USDA-ARS?s Scientific Manuscript database

    The Lower Rio Grande Valley in the south of Texas is experiencing rapid increase of population to bring up urban growth that continues influencing on the irrigation districts in the region. This study evaluated the Landsat satellite multi-spectral imagery to provide information for GIS-based urbaniz...

  6. Irrigation waters and pipe-based biofilms as sources for antibiotic-resistant bacteria.

    PubMed

    Blaustein, Ryan A; Shelton, Daniel R; Van Kessel, Jo Ann S; Karns, Jeffrey S; Stocker, Matthew D; Pachepsky, Yakov A

    2016-01-01

    The presence of antibiotic-resistant bacteria in environmental surface waters has gained recent attention. Wastewater and drinking water distribution systems are known to disseminate antibiotic-resistant bacteria, with the biofilms that form on the inner-surfaces of the pipeline as a hot spot for proliferation and gene exchange. Pipe-based irrigation systems that utilize surface waters may contribute to the dissemination of antibiotic-resistant bacteria in a similar manner. We conducted irrigation events at a perennial stream on a weekly basis for 1 month, and the concentrations of total heterotrophic bacteria, total coliforms, and fecal coliforms, as well as the concentrations of these bacterial groups that were resistant to ampicillin and tetracycline, were monitored at the intake water. Prior to each of the latter three events, residual pipe water was sampled and 6-in. sections of pipeline (coupons) were detached from the system, and biofilm from the inner-wall was removed and analyzed for total protein content and the above bacteria. Isolates of biofilm-associated bacteria were screened for resistance to a panel of seven antibiotics, representing five antibiotic classes. All of the monitored bacteria grew substantially in the residual water between irrigation events, and the biomass of the biofilm steadily increased from week to week. The percentages of biofilm-associated isolates that were resistant to antibiotics on the panel sometimes increased between events. Multiple-drug resistance was observed for all bacterial groups, most often for fecal coliforms, and the distributions of the numbers of antibiotics that the total coliforms and fecal coliforms were resistant to were subject to change from week to week. Results from this study highlight irrigation waters as a potential source for antibiotic-resistant bacteria, which can subsequently become incorporated into and proliferate within irrigation pipe-based biofilms.

  7. A hybrid land-water-environment model for identification of ecological effect and risk under uncertain meteorological precipitation in an agroforestry ecosystem.

    PubMed

    Zeng, Xueting; Li, Tienan; Chen, Cong; Si, Zhenjiang; Huang, Guohe; Guo, Ping; Zhuang, Xiaowen

    2018-08-15

    In this study, a hybrid land-water-environment (LWE) model is developed for identifying ecological effect and risk under uncertain precipitation in an agroforestry ecosystem. A simulation-based fuzzy-stochastic programming with risk analysis (SFSR) method is used into LWE model to reflect the meteorological impacts; meanwhile, it also can quantify artificial fuzziness (e.g., risk attitude of policymaker) and natural vagueness (e.g., ecological function) in decision-making. The developed LWE model with SFSR method is applied to a practical agroforestry ecosystem in China. Results of optimized planting scale, irrigative water schedule, pollution mitigation scheme, and system benefit under changed rainfall, precise risk-adoption and vague ecological function are obtained; meanwhile their corresponding ecological effects and risks are analyzed. It found that current LWE plans could generate massive water deficits (e.g., 23.22×10 6 m 3 in crop irrigation and 26.32×10 6 m 3 in forest protection at highest) due to over-cultivation and excessive pollution discharges (e.g., the highest excessive TP and TN discharges would reach 460.64 and 15.30×10 3 ton) due to irrational fertilization, which would increase regional ecological risks. In addition, fifteen scenarios associated with withdrawing cultivation and recovering forest based on regional environment heterogeneity (such as soil types) have been discussed to adjust current agriculture-environment policies. It found that, the excessive pollution discharges (TN and TP) could be reduced 12.95% and 18.32% at highest through ecological expansions, which would generate higher system benefits than that without withdrawing farmland and recovering forest. All above can facilitate local policymakers to modulate a comprehensive LWE with more sustainable and robust manners, achieving regional harmony between socio-economy and eco-environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Determination of actual crop evapotranspiration (ETc) and dual crop coefficients (Kc) for cotton, wheat and maize in Fergana Valley: integration of the FAO-56 approach and BUDGET

    NASA Astrophysics Data System (ADS)

    Kenjabaev, Shavkat; Dernedde, Yvonne; Frede, Hans-Georg; Stulina, Galina

    2014-05-01

    Determination of the actual crop evapotranspiration (ETc) during the growing period is important for accurate irrigation scheduling in arid and semi-arid regions. Development of a crop coefficient (Kc) can enhance ETc estimations in relation to specific crop phenological development. This research was conducted to determine daily and growth-stage-specific Kc and ETc values for cotton (Gossypium hirsutum L.), winter wheat (Triticum aestivum L.) and maize (Zea mays L.) for silage at fields in Fergana Valley (Uzbekistan). The soil water balance model - Budget with integration of the dual crop procedure of the FAO-56 was used to estimate the ETc and separate it into evaporation (Ec) and transpiration (Tc) components. An empirical equation was developed to determine the daily Kc values based on the estimated Ec and Tc. The ETc, Kc determination and comparison to existing FAO Kc values were performed based on 10, 5 and 6 study cases for cotton, wheat and maize, respectively. Mean seasonal amounts of crop water consumption in terms of ETc were 560±50, 509±27 and 243±39 mm for cotton, wheat and maize, respectively. The growth-stage-specific Kc for cotton, wheat and maize was 0.15, 0.27 and 0.11 at initial; 1.15, 1.03 and 0.56 at mid; and 0.45, 0.89 and 0.53 at late season stages. These values correspond to those reported by the FAO-56. Development of site specific Kc helps tremendously in irrigation management and furthermore provides precise water applications in the region. The developed simple approach to estimate daily Kc for the three main crops grown in the Fergana region was a first attempt to meet this issue. Keywords: Actual crop evapotranspiration, evaporation and transpiration, crop coefficient, model BUDGET, Fergana Valley.

  9. Application of microbial risk assessment to the development of standards for enteric pathogens in water used to irrigate fresh produce.

    PubMed

    Stine, Scott W; Song, Inhong; Choi, Christopher Y; Gerba, Charles P

    2005-05-01

    Microbial contamination of the surfaces of cantaloupe, iceberg lettuce, and bell peppers via contact with irrigation water was investigated to aid in the development of irrigation water quality standards for enteric bacteria and viruses. Furrow and subsurface drip irrigation methods were evaluated with the use of nonpathogenic surrogates, coliphage PRD1, and Escherichia coli ATCC 25922. The concentrations of hepatitis A virus (HAV) and Salmonella in irrigation water necessary to achieve a 1:10,000 annual risk of infection, the acceptable level of risk used for drinking water by the U.S. Environmental Protection Agency, were calculated with a quantitative microbial risk assessment approach. These calculations were based on the transfer of the selected nonpathogenic surrogates to fresh produce via irrigation water, as well as previously determined preharvest inactivation rates of pathogenic microorganisms on the surfaces of fresh produce. The risk of infection was found to be variable depending on type of crop, irrigation method, and days between last irrigation event and harvest. The worst-case scenario, in which produce is harvested and consumed the day after the last irrigation event and maximum exposure is assumed, indicated that concentrations of 2.5 CFU/100 ml of Salmonella and 2.5 x 10(-5) most probable number per 100 ml of HAV in irrigation water would result in an annual risk of 1:10,000 when the crop was consumed. If 14 days elapsed before harvest, allowing for die-off of the pathogens, the concentrations were increased to 5.7 x 10(3) Salmonella per 100 ml and 9.9 x 10(-3) HAV per 100 ml.

  10. Modeling the Effects of Groundwater-fed Irrigation on Terrestrial Hydrology over the Conterminous United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leng, Guoyong; Huang, Maoyi; Tang, Qiuhong

    2014-06-01

    Human alteration of the land surface hydrologic cycle is substantial. Recent studies suggest that local water management practices including groundwater pumping and irrigation could significantly alter the quantity and distribution of water in the terrestrial system, with potential impacts on weather and climate through land-atmosphere feedbacks. In this study, we incorporated a groundwater withdrawal scheme into the Community Land Model version 4 (CLM4). To simulate the impact of irrigation realistically, we calibrated the CLM4 simulated irrigation amount against observations from agriculture census at the county scale over the conterminous United States (CONUS). The water used for irrigation was then removedmore » from the surface runoff and groundwater aquifer according to a ratio determined from the county-level agricultural census data. Based on the simulations, the impact of groundwater withdrawals for irrigation on land surface and subsurface fluxes were investigated. Our results suggest that the impacts of irrigation on latent heat flux and potential recharge when water is withdrawn from surface water alone or from both surface and groundwater are comparable and local to the irrigation areas. However, when water is withdrawn from groundwater for irrigation, greater effects on the subsurface water balance were found, leading to significant depletion of groundwater storage in regions with low recharge rate and high groundwater exploitation rate. Our results underscore the importance of local hydrologic feedbacks in governing hydrologic response to anthropogenic change in CLM4 and the need to more realistically simulate the two-way interactions among surface water, groundwater, and atmosphere to better understand the impacts of groundwater pumping on irrigation efficiency and climate.« less

  11. Biophysical indicators based on satellite images in an irrigated area at the São Francisco River Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Leivas, Janice F.; Teixeira, Antônio Heriberto C.; Bayma-Silva, Gustavo; Ronquim, Carlos Cesar; Ribeiro da Silva Reis, João. Batista

    2016-10-01

    The Jaíba Irrigated Perimeter is a large irrigated agriculture area, located in the region Forest Jaíba between the São Francisco and Verde Grande rivers, in the Brazilian semi-arid region. In 2014, irrigators this the region face losses in the interruption of new plantings in irrigated areas due to water scarcity. The objective of this study is combine the model to estimate the Monteith BIO with the SAFER algorithm in the case of obtaining ET, to analyze the dynamics of natural vegetation and irrigated crops in water scarcity period. For application of the model are necessary data from meteorological stations and satellite images. Were used 23 satellite images of MODIS with spatial resolution of 250m and temporal 16 days, of 2014 year. For analyze the results, we used central pivots irrigation mask of Minas Gerais state, Brazil. In areas with irrigated agriculture with central pivot, the mean values of BIO over the year 2014 were 88.96 kg.ha-1.d-1. The highest values occurred between April 23 and May 8, with BIO 139 kg.ha-1.d-1. For areas with natural vegetation, the average BIO was 88.34 kg.ha-1.d-1 with lower values in September. Estimates of ET varied with the lowest values of ET observed in natural vegetation 1.91+/-1.22 mm.d-1 and the highest values in irrigated area is observed 3.51+/-0.97 mm.d-1. Results of this study can assist in monitoring of river basins, contributing to the management irrigated agriculture, with the trend of scarcity of water resources and increasing conflicts for the water use.

  12. On the Control of Solute Mass Fluxes and Concentrations Below Fields Irrigated With Low-Quality Water: A Numerical Study

    NASA Astrophysics Data System (ADS)

    Russo, David

    2017-11-01

    The main goal of this study was to test the capability of irrigation water-based and soil-based approaches to control nitrate and chloride mass fluxes and concentrations below the root zone of agricultural fields irrigated with treated waste water (TWW). Using numerical simulations of flow and transport in relatively a fine-textured, unsaturated, spatially heterogeneous, flow domain, scenarios examined include: (i) irrigating with TWW only (REF); (ii) irrigation water is substituted between TWW and desalinized water (ADW); (iii) soil includes a capillary barrier (CB) and irrigating with TWW only (CB + TWW); and (iv) combination of (ii) and a CB (CB + ADW). Considering groundwater quality protection, plausible goals are: (i) to minimize solute discharges leaving the root zone, and, (ii) to maximize the probability that solute concentrations leaving the root zone will not exceed a prescribed, critical value. Results of the analyses suggest that in the case of a seasonal crop (a corn field) subject to irrigations only, with respect to the first goal, the CB + TWW and CB + ADW scenarios provide similar, excellent results, better than the ADW scenario; with respect to the second goal, however, the CB + ADW scenario gave substantially better results than the CB + TWW scenario. In the case a multiyear, perennial crop (a citrus orchard), subject to a sequence of irrigation and rainfall periods, for both solutes, and, particularly, nitrate, with respect to the two goals, both the ADW and CB + ADW scenarios perform better than the CB + TWW scenario. As compared with the REF and CB + TWW scenarios, the ADW and CB + ADW scenarios substantially reduce nitrogen mass fluxes to the groundwater and to the atmosphere, and, essentially, did not reduce nitrogen mass fluxes to the trees. Similar results, even better, were demonstrated for a relatively coarse-textured, spatially heterogeneous soil.

  13. Assessment of methods for methyl iodide emission reduction and pest control using a simulation model

    NASA Astrophysics Data System (ADS)

    Luo, Lifang; Ashworth, Daniel J.; Šimunek, Jirka; Xuan, Richeng; Yates, Scott R.

    2013-02-01

    The increasing registration of the fumigant methyl iodide within the USA has led to more concerns about its toxicity to workers and bystanders. Emission mitigation strategies are needed to protect the public and environmental health while providing effective pest control. The effectiveness of various methods on emissions reduction and pest control was assessed using a process-based mathematical model in this study. Firstly, comparisons between the simulated and laboratory measured emission fluxes and cumulative emissions were made for methyl iodide (MeI) under four emission reduction treatments: 1) control, 2) using soil with high organic matter content (HOM), 3) being covered by virtually impermeable film (VIF), and 4) irrigating soil surface following fumigation (Irrigation). Then the model was extended to simulate a broader range of emission reduction strategies for MeI, including 5) being covered by high density polyethylene (HDPE), 6) increasing injection depth from 30 cm to 46 cm (Deep), 7) HDPE + Deep, 8) adding a reagent at soil surface (Reagent), 9) Reagent + Irrigation, and 10) Reagent + HDPE. Furthermore, the survivability of three types of soil-borne pests (citrus nematodes [Tylenchulus semipenetrans], barnyard seeds [Echinochloa crus-galli], fungi [Fusarium oxysporum]) was also estimated for each scenario. Overall, the trend of the measured emission fluxes as well as total emission were reasonably reproduced by the model for treatments 1 through 4. Based on the numerical simulation, the ranking of effectiveness in total emission reduction was VIF (82.4%) > Reagent + HDPE (73.2%) > Reagent + Irrigation (43.0%) > Reagent (23.5%) > Deep + HDPE (19.3%) > HOM (17.6%) > Deep (13.0%) > Irrigation (11.9%) > HDPE (5.8%). The order for pest control efficacy suggests, VIF had the highest pest control efficacy, followed by Deep + HDPE, Irrigation, Reagent + Irrigation, HDPE, Deep, Reagent + HDPE, Reagent, and HOM. Therefore, VIF is the optimal method disregarding the cost of the film since it maximizes efficacy while minimizing volatility losses. Otherwise, the integrated methods such as Deep + HDPE and Reagent + Irrigation, are recommended.

  14. National Irrigation Water Quality Program data-synthesis data base

    USGS Publications Warehouse

    Seiler, Ralph L.; Skorupa, Joseph P.

    2001-01-01

    Under the National Irrigation Water Quality Program (NIWQP) of the U.S. Department of the Interior, researchers investigated contamination caused by irrigation drainage in 26 areas in the Western United States from 1986 to 1993. From 1992 to 1995, a comprehensive relational data base was built to organize data collected during the 26-area investigations. The data base provided the basis for analysis and synthesis of these data to identify common features of contaminated areas and hence dominant biologic, geologic, climatic, chemical, and physiographic factors that have resulted in contamination of water and biota in irrigated areas in the Western United States. Included in the data base are geologic, hydrologic, climatological, chemical, and cultural data that describe the 26 study areas in 14 Western States. The data base contains information on 1,264 sites from which water and bottom sediment were collected. It also contains chemical data from 6,903 analyses of surface water, 914 analyses of ground water, 707 analyses of inorganic constituents in bottom sediments, 223 analyses of organochlorine pesticides in bottom sediments, 8,217 analyses of inorganic constituents in biota, and 1,088 analyses for organic constituents in biota. The data base is available to the public and can be obtained at the NIWQP homepage http://www.usbr.gov/niwqp as dBase III tables for personal-computer systems or as American Standard Code for Information Exchange structured query language (SQL) command and data files for SQL data bases.

  15. Management of irrigation frequency and nitrogen fertilization to mitigate GHG and NO emissions from drip-fertigated crops.

    PubMed

    Abalos, Diego; Sanchez-Martin, Laura; Garcia-Torres, Lourdes; van Groenigen, Jan Willem; Vallejo, Antonio

    2014-08-15

    Drip irrigation combined with split application of fertilizer nitrogen (N) dissolved in the irrigation water (i.e. drip fertigation) is commonly considered best management practice for water and nutrient efficiency. As a consequence, its use is becoming widespread. Some of the main factors (water-filled pore space, NH4(+) and NO3(-)) regulating the emissions of greenhouse gases (i.e. N2O, CO2 and CH4) and NO from agroecosystems can easily be manipulated by drip fertigation without yield penalties. In this study, we tested management options to reduce these emissions in a field experiment with a melon (Cucumis melo L.) crop. Treatments included drip irrigation frequency (weekly/daily) and type of N fertilizer (urea/calcium nitrate) applied by fertigation. Crop yield, environmental parameters, soil mineral N concentrations and fluxes of N2O, NO, CH4 and CO2 were measured during 85 days. Fertigation with urea instead of calcium nitrate increased N2O and NO emissions by a factor of 2.4 and 2.9, respectively (P<0.005). Daily irrigation reduced NO emissions by 42% (P<0.005) but increased CO2 emissions by 21% (P<0.05) compared with weekly irrigation. We found no relation between irrigation frequency and N2O emissions. Based on yield-scaled Global Warming Potential as well as NO cumulative emissions, we conclude that weekly fertigation with a NO3(-)-based fertilizer is the best option to combine agronomic productivity with environmental sustainability. Our study shows that adequate management of drip fertigation, while contributing to the attainment of water and food security, may provide an opportunity for climate change mitigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Contribution of Wastewater Irrigation to Soil Transmitted Helminths Infection among Vegetable Farmers in Kumasi, Ghana

    PubMed Central

    Abubakari, Amina; Stenström, Thor Axel; Abaidoo, Robert Clement; Seidu, Razak

    2016-01-01

    Wastewater irrigation is associated with several benefits but can also lead to significant health risks. The health risk for contracting infections from Soil Transmitted Helminths (STHs) among farmers has mainly been assessed indirectly through measured quantities in the wastewater or on the crops alone and only on a limited scale through epidemiological assessments. In this study we broadened the concept of infection risks in the exposure assessments by measurements of the concentration of STHs both in wastewater used for irrigation and the soil, as well as the actual load of STHs ova in the stool of farmers and their family members (165 and 127 in the wet and dry seasons respectively) and a control group of non-farmers (100 and 52 in the wet and dry seasons, respectively). Odds ratios were calculated for exposure and non-exposure to wastewater irrigation. The results obtained indicate positive correlation between STH concentrations in irrigation water/soil and STHs ova as measured in the stool of the exposed farmer population. The correlations are based on reinfection during a 3 months period after prior confirmed deworming. Farmers and family members exposed to irrigation water were three times more likely as compared to the control group of non-farmers to be infected with Ascaris (OR = 3.9, 95% CI, 1.15–13.86) and hookworm (OR = 3.07, 95% CI, 0.87–10.82). This study therefore contributes to the evidence-based conclusion that wastewater irrigation contributes to a higher incidence of STHs infection for farmers exposed annually, with higher odds of infection in the wet season. PMID:27923048

  17. [Effects of intermittent irrigation on ecological and physiological water requirement of rice in north China].

    PubMed

    Wang, Xiaoying; Liang, Wenju; Wen, Dazhong

    2004-10-01

    The ecological and physiological water requirement of rice was studied in a paddy field of north China, and the field experiment was conducted at Shenyang Experimental Station of Ecology, Chinese Academy of Sciences. Under continuous flooding irrigation (CSF) and intermittent irrigation (IT) conditions, the evapotranspiration and soil evaporation of paddy fields were measured by non-weighing lysimeters and micro-lysimeters, respectively. The results showed that compared with continuous flooding irrigation, the transpiration under intermittent irrigation condition was not significantly reduced, but 16% and 24% of water amounts were reduced by decreasing the water losses through soil water evaporation and percolation, respectively. The water use efficiency of intermittent irrigation was increased 10%, without any adverse effects on biomass and grain yield of rice. Although the amount of water requirement under IT treatment was reduced significantly compared with CSF treatment, about 60% of total water requirement was still lost through deep percolation. Based on the results obtained, the corresponding countermeasures to reduce the amounts of soil water evaporation and percolation and to increase the water use efficiency were put forward in this paper.

  18. Colostomy irrigation in the elderly. Effective recovery regardless of age.

    PubMed

    Venturini, M; Bertelli, G; Forno, G; Grandi, G; Dini, D

    1990-12-01

    One hundred forty elderly cancer outpatients with colostomy in the authors' rehabilitation department were included in an analysis of the feasibility, effectiveness, and safety of periodic irrigation of remaining colon with lukewarm tap water with the aim of regaining full continence. Sixteen patients did not have a sufficiently long remaining bowel (cecostomy, transverse colostomy) and 17 were considered unsuitable to learn the technique because of advanced neoplastic disease with poor life expectancy, intercurrent disease, or stomal problems. One hundred seven patients were proposed to perform the irrigation: 17 refused to do so with the remaining 90 able to learn the method without problems. Nearly all patients achieved full continence for at least 24 hours. Three patients refused to continue, and nine interrupted for minor complications. The median duration of irrigation in the whole group is 257 days (range, 1 to 2669 days): 32 patients have been irrigating from one to five years, and 9 patients for more than 5 years. Based on these results, we recommend irrigation as standard rehabilitative treatment for elderly patients.

  19. Irrigation, risk aversion, and water right priority under water supply uncertainty

    NASA Astrophysics Data System (ADS)

    Li, Man; Xu, Wenchao; Rosegrant, Mark W.

    2017-09-01

    This paper explores the impacts of a water right's allocative priority—as an indicator of farmers' risk-bearing ability—on land irrigation under water supply uncertainty. We develop and use an economic model to simulate farmers' land irrigation decision and associated economic returns in eastern Idaho. Results indicate that the optimal acreage of land irrigated increases with water right priority when hydroclimate risk exhibits a negatively skewed or right-truncated distribution. Simulation results suggest that prior appropriation enables senior water rights holders to allocate a higher proportion of their land to irrigation, 6 times as much as junior rights holders do, creating a gap in the annual expected net revenue reaching up to 141.4 acre-1 or 55,800 per farm between the two groups. The optimal irrigated acreage, expected net revenue, and shadow value of a water right's priority are subject to substantial changes under a changing climate in the future, where temporal variation in water supply risks significantly affects the profitability of agricultural land use under the priority-based water sharing mechanism.

  20. Irrigation, risk aversion, and water right priority under water supply uncertainty.

    PubMed

    Li, Man; Xu, Wenchao; Rosegrant, Mark W

    2017-09-01

    This paper explores the impacts of a water right's allocative priority-as an indicator of farmers' risk-bearing ability-on land irrigation under water supply uncertainty. We develop and use an economic model to simulate farmers' land irrigation decision and associated economic returns in eastern Idaho. Results indicate that the optimal acreage of land irrigated increases with water right priority when hydroclimate risk exhibits a negatively skewed or right-truncated distribution. Simulation results suggest that prior appropriation enables senior water rights holders to allocate a higher proportion of their land to irrigation, 6 times as much as junior rights holders do, creating a gap in the annual expected net revenue reaching up to $141.4 acre -1 or $55,800 per farm between the two groups. The optimal irrigated acreage, expected net revenue, and shadow value of a water right's priority are subject to substantial changes under a changing climate in the future, where temporal variation in water supply risks significantly affects the profitability of agricultural land use under the priority-based water sharing mechanism.

  1. The role of remotely sensed and other spatial data for predictive modeling: the Umatilla, Oregon example

    USGS Publications Warehouse

    Loveland, Thomas R.; Johnson, Gary E.

    1981-01-01

    The U. S. Geological Survey's Earth Resources Observations Systems Data Center, in cooperation with the U.S. Army Corps of Engineers, Portland District, developed and tested techniques that used remotely sensed and other spatial data in predictive models to evaluate irrigation agriculture in the Umatilla River Basin of north-central Oregon. Landsat data and 1:24,000-scale aerial photographs were initially used to map he expansion of irrigate from 1973 to 1979 and to identify crops under irrigation in 1979. The crop data were then used with historical water requirement figures and digital topographic and hydrographic data to estimate water and power use for the 1979 irrigation season. The final project task involved production of a composite map of land suitability for irrigation development based on land cover (from Landsat), land-ownership, soil irrigability, slope gradient, and potential energy costs. The methods and data used in the study demonstrated the flexibility of remotely sensed and other spatial data as input for predictive models. When combined, they provided useful answers to complex questions facing resource managers.

  2. Irrigation, risk aversion, and water right priority under water supply uncertainty

    PubMed Central

    Xu, Wenchao; Rosegrant, Mark W.

    2017-01-01

    Abstract This paper explores the impacts of a water right's allocative priority—as an indicator of farmers' risk‐bearing ability—on land irrigation under water supply uncertainty. We develop and use an economic model to simulate farmers' land irrigation decision and associated economic returns in eastern Idaho. Results indicate that the optimal acreage of land irrigated increases with water right priority when hydroclimate risk exhibits a negatively skewed or right‐truncated distribution. Simulation results suggest that prior appropriation enables senior water rights holders to allocate a higher proportion of their land to irrigation, 6 times as much as junior rights holders do, creating a gap in the annual expected net revenue reaching up to $141.4 acre−1 or $55,800 per farm between the two groups. The optimal irrigated acreage, expected net revenue, and shadow value of a water right's priority are subject to substantial changes under a changing climate in the future, where temporal variation in water supply risks significantly affects the profitability of agricultural land use under the priority‐based water sharing mechanism. PMID:29200529

  3. Maximizing grain sorghum water use efficiency under deficit irrigation

    USDA-ARS?s Scientific Manuscript database

    Development and evaluation of sustainable and efficient irrigation strategies is a priority for producers faced with water shortages resulting from aquifer depletion, reduced base flows, and reallocation of water to non-agricultural sectors. Under a limited water supply, yield maximization may not b...

  4. A UAS-based remote sensing platform for crop water stress detection

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Wang, D.; Ayars, J. E.

    2014-12-01

    The remote detection of water stress in a biofuel crop field was investigated using canopy temperature measurements. An experimental trial was set up in the central valley of Maui, Hawaii, comprising different sugarcane varieties and irrigation regimes. An unmanned aerial system (UAS) was equipped with a FLIR A615 thermal camera to acquire canopy temperature imagery. Images were mosaicked and processed to show spatial temperature difference of entire field. A weather station was installed in a full irrigation plot to collect meteorological parameters. The sensitivity of canopy to air temperature difference and crop water stress index were investigated on detecting cop water stress levels. The results showed that low irrigation level treatment plots resulted in higher canopy temperatures compared to the high irrigation level treatment plots. Canopy temperatures also showed differences in water stress in different sugarcane varieties. The study demonstrated the feasibility of UAS-based thermal method to quantify plant water status of sugar canes used for biofuel crops.

  5. A model-based assessment of the potential role of irrigated cropland for biogas production in Europe

    NASA Astrophysics Data System (ADS)

    Schaldach, R.; Flörke, M.; Lapola, D.

    2009-08-01

    For the European Union, the increasing use of renewable energy sources is an important instrument to reduce its greenhouse gas emissions and to achieve greater independency from energy imports. Here, agriculture has the chance to become an important contributor by the cultivation of bio-energy crops. In this paper, the potential role of irrigated cropland for the cultivation of silage maize for biogas production is analyzed on the European level. A methodology is developed to identify suitable locations for maize cultivation and to evaluate their performance in respect of the amount of irrigation water and land needed for energy production. For this purpose, GIS analysis techniques are combined with simulation results from the process-based vegetation model LPJmL for maize yields and irrigation water requirements. The generated information can serve as input for the development of European-scale bio-energy policies and for further analysis of the water footprint and energy balance of bio-energy systems.

  6. Development and Validation of a New Methodology to Assess the Vineyard Water Status by On-the-Go Near Infrared Spectroscopy

    PubMed Central

    Diago, Maria P.; Fernández-Novales, Juan; Gutiérrez, Salvador; Marañón, Miguel; Tardaguila, Javier

    2018-01-01

    Assessing water status and optimizing irrigation is of utmost importance in most winegrowing countries, as the grapevine vegetative growth, yield, and grape quality can be impaired under certain water stress situations. Conventional plant-based methods for water status monitoring are either destructive or time and labor demanding, therefore unsuited to detect the spatial variation of moisten content within a vineyard plot. In this context, this work aims at the development and comprehensive validation of a novel, non-destructive methodology to assess the vineyard water status distribution using on-the-go, contactless, near infrared (NIR) spectroscopy. Likewise, plant water status prediction models were built and intensely validated using the stem water potential (ψs) as gold standard. Predictive models were developed making use of a vast number of measurements, acquired on 15 dates with diverse environmental conditions, at two different spatial scales, on both sides of vertical shoot positioned canopies, over two consecutive seasons. Different cross-validation strategies were also tested and compared. Predictive models built from east-acquired spectra yielded the best performance indicators in both seasons, with determination coefficient of prediction (RP2) ranging from 0.68 to 0.85, and sensitivity (expressed as prediction root mean square error) between 0.131 and 0.190 MPa, regardless the spatial scale. These predictive models were implemented to map the spatial variability of the vineyard water status at two different dates, and provided useful, practical information to help delineating specific irrigation schedules. The performance and the large amount of data that this on-the-go spectral solution provides, facilitates the exploitation of this non-destructive technology to monitor and map the vineyard water status variability with high spatial and temporal resolution, in the context of precision and sustainable viticulture. PMID:29441086

  7. Development and Validation of a New Methodology to Assess the Vineyard Water Status by On-the-Go Near Infrared Spectroscopy.

    PubMed

    Diago, Maria P; Fernández-Novales, Juan; Gutiérrez, Salvador; Marañón, Miguel; Tardaguila, Javier

    2018-01-01

    Assessing water status and optimizing irrigation is of utmost importance in most winegrowing countries, as the grapevine vegetative growth, yield, and grape quality can be impaired under certain water stress situations. Conventional plant-based methods for water status monitoring are either destructive or time and labor demanding, therefore unsuited to detect the spatial variation of moisten content within a vineyard plot. In this context, this work aims at the development and comprehensive validation of a novel, non-destructive methodology to assess the vineyard water status distribution using on-the-go, contactless, near infrared (NIR) spectroscopy. Likewise, plant water status prediction models were built and intensely validated using the stem water potential (ψ s ) as gold standard. Predictive models were developed making use of a vast number of measurements, acquired on 15 dates with diverse environmental conditions, at two different spatial scales, on both sides of vertical shoot positioned canopies, over two consecutive seasons. Different cross-validation strategies were also tested and compared. Predictive models built from east-acquired spectra yielded the best performance indicators in both seasons, with determination coefficient of prediction ([Formula: see text]) ranging from 0.68 to 0.85, and sensitivity (expressed as prediction root mean square error) between 0.131 and 0.190 MPa, regardless the spatial scale. These predictive models were implemented to map the spatial variability of the vineyard water status at two different dates, and provided useful, practical information to help delineating specific irrigation schedules. The performance and the large amount of data that this on-the-go spectral solution provides, facilitates the exploitation of this non-destructive technology to monitor and map the vineyard water status variability with high spatial and temporal resolution, in the context of precision and sustainable viticulture.

  8. Diel and seasonal nitrous oxide fluxes determined by floating chamber and gas transfer equation methods in agricultural irrigation watersheds in southeast China.

    PubMed

    Wu, Shuang; Chen, Jie; Li, Chen; Kong, Delei; Yu, Kai; Liu, Shuwei; Zou, Jianwen

    2018-02-07

    Agricultural nitrate leaching and runoff incurs high nitrogen loads in agricultural irrigation watersheds, constituting one of important sources of atmospheric nitrous oxide (N 2 O). Two independent sampling campaigns of N 2 O flux measurement over diel cycles and N 2 O flux measurements once a week over annual cycles were carried out in an agricultural irrigation watershed in southeast China using floating chamber (chamber-based) and gas transfer equation (model-based) methods. The diel and seasonal patterns of N 2 O fluxes did not differ between the two measurement methods. The diel variation in N 2 O fluxes was characterized by the pattern that N 2 O fluxes were greater during nighttime than daytime periods with a single flux peak at midnight. The diel variation in N 2 O fluxes was closely associated with water environment and chemistry. The time interval of 9:00-11:00 a.m. was identified to be the sampling time best representing daily N 2 O flux measurements in agricultural irrigation watersheds. Seasonal N 2 O fluxes showed large variation, with some flux peaks corresponding to agricultural irrigation and drainage episodes and heavy rainfall during the crop-growing period of May to November. On average, N 2 O fluxes calculated by model-based methods were 27% lower than those determined by the chamber-based techniques over diel or annual cycles. Overall, more measurement campaigns are highly needed to assess regional agricultural N 2 O budget with low uncertainties.

  9. Geophysical and Geochemical Characterization of Subsurface Drip Irrigation Sites, Powder River Basin, Wyoming

    NASA Astrophysics Data System (ADS)

    Burton, B. L.; Bern, C. R.; Sams, J. I., III; Veloski, G.; Minsley, B. J.; Smith, B. D.

    2010-12-01

    Coalbed natural gas (CBNG) production in the Powder River Basin (PRB) in northeastern Wyoming has increased rapidly since 1997. CBNG production involves the extraction of large amounts of water containing >2000 mg/L total dissolved solids, dominantly sodium bicarbonate. Subsurface drip irrigation (SDI) is a beneficial disposal method of produced waters, provided that waters and associated salts are managed properly. We are studying how water and solute distributions change in soils with progressive irrigation at two PRB sites using a combination of geophysical, geochemical, and mineralogical analyses. Perennial crops are grown at both sites, drip tapes are located at 92 cm depth, and water is applied year-round. The first SDI site is located at the confluence of Crazy Woman Creek and the Powder River. Baseline ground-based and helicopter-borne frequency domain electromagnetic induction (EMI) surveys were completed in 2007 and 2008, respectively, prior to the installation of the SDI system. Since installation, additional ground-based EMI, resistivity, and downhole geophysical log surveys have been completed along with soil geochemical and mineralogical analyses. Determining baseline physical, chemical, and electrical soil characteristics at this study site is an important step in linking the EMI measurements to the soil characteristics they are intended to assess. EMI surveys indicate that soil conductivity has generally increased with irrigation, but lateral migration of water away from the irrigated blocks is minimal. Median downhole electrical conductivity was positively correlated with soil mass wetness but not correlated with soil mineralogy. Soil-water extract results indicate existing salts are chemically heterogeneous throughout the site and in depth. The observed EMI conductivity variations are therefore primarily attributed to water content changes and secondarily to soil texture. The second SDI site, located northeast of Sheridan, WY, has been operating for six years and includes irrigated alfalfa and grass and adjacent non-irrigated grass fields. A single ground-based EMI survey was performed in Feb. 2010, which helped direct subsequent soil sampling. Gypsum distribution can be differentiated into two soil zones: an upper, gypsum-poor zone and a lower gypsum-rich zone. The break between zones is 30 cm deeper in the irrigated soil and is probably due to dissolution and displacement of gypsum by SDI waters infiltrating from the drip tape. Resistivity profiles were acquired in June 2010 over the soil sampling sites and are consistent with the EMI data, which show higher conductivity values in the irrigated fields. In the SDI alfalfa field, there is a strong negative correlation between mass wetness and resistivity with a 75% increase in mass wetness (0.2-0.35 g/g) at 3 m depth corresponding to a 30% resistivity decrease (15-10 ohm-m). When compared to the non-irrigated field profile, the SDI alfalfa field data show a 50% resistivity decrease (20-10 ohm-m) below 3 m depth, indicating a possible accumulation of irrigated waters below the SDI system.

  10. The benefit of using additional hydrological information from earth observations and reanalysis data on water allocation decisions in irrigation districts

    NASA Astrophysics Data System (ADS)

    Kaune, Alexander; López, Patricia; Werner, Micha; de Fraiture, Charlotte

    2017-04-01

    Hydrological information on water availability and demand is vital for sound water allocation decisions in irrigation districts, particularly in times of water scarcity. However, sub-optimal water allocation decisions are often taken with incomplete hydrological information, which may lead to agricultural production loss. In this study we evaluate the benefit of additional hydrological information from earth observations and reanalysis data in supporting decisions in irrigation districts. Current water allocation decisions were emulated through heuristic operational rules for water scarce and water abundant conditions in the selected irrigation districts. The Dynamic Water Balance Model based on the Budyko framework was forced with precipitation datasets from interpolated ground measurements, remote sensing and reanalysis data, to determine the water availability for irrigation. Irrigation demands were estimated based on estimates of potential evapotranspiration and coefficient for crops grown, adjusted with the interpolated precipitation data. Decisions made using both current and additional hydrological information were evaluated through the rate at which sub-optimal decisions were made. The decisions made using an amended set of decision rules that benefit from additional information on demand in the districts were also evaluated. Results show that sub-optimal decisions can be reduced in the planning phase through improved estimates of water availability. Where there are reliable observations of water availability through gauging stations, the benefit of the improved precipitation data is found in the improved estimates of demand, equally leading to a reduction of sub-optimal decisions.

  11. Efficacy of different irrigation regimes on the push-out bond strength of various resin-based sealers at different root levels: An in vitro study.

    PubMed

    Verma, Diksha; Taneja, Sonali; Kumari, Manju

    2018-01-01

    This study aims to evaluate and compare the efficacy of various irrigation regimens on push-out bond strength of AH Plus/gutta-percha, Real Seal/Resilon, and MetaSeal/gutta-percha at three different root levels. Single-rooted mandibular premolars ( n = 120) were prepared and divided into four groups ( n = 30) based on irrigation regimen used: I: 5.25% sodium hypochlorite (NaOCl)-17% ethylenediaminetetraacetic acid (EDTA); II: 5.25% NaOCl-2.25% Peracetic acid (PAA); III: 5.25% NaOCl-18% 1-hydroxyethylidene-1, 1-bisphosphonate (HEBP) (Etidronic Acid); and IV: Distilled Water. Each group was further divided into three subgroups ( n = 10); A: AH Plus/gutta-percha; B: MetaSEAL/gutta-percha; C: RealSeal/Resilon. After obturation, roots were sectioned at 3 levels and push-out tests were performed. One-way ANOVA with post hoc Tukey-honestly significant difference tests were applied to assess the significance among various groups. Among irrigants, 2.25% PAA showed significantly lower values when compared with rest of the irrigants. There was no significant difference found among EDTA and HEBP. The push-out bond strength of AH Plus was significantly higher among all sealers. The bond strength values were significantly decreased in apico-coronal direction. There was superior efficacy of EDTA and HEBP on the bond strength of AH Plus at apical root level when compared with other irrigants and sealers at various root levels.

  12. Using ISBA model for partitioning evapotranspiration into soil evaporation and plant transpiration of irrigated crops under semi-arid climate

    NASA Astrophysics Data System (ADS)

    Aouade, Ghizlane; Jarlan, Lionel; Ezzahar, Jamal; Er-raki, Salah; Napoly, Adrien; Benkaddour, Abdelfettah; Khabba, Said; Boulet, Gilles; Chehbouni, Abdelghani; Boone, Aaron

    2016-04-01

    The Haouz region, typical of southern Mediterranean basins, is characterized by a semi-arid climate, with average annual rainfall of 250, whilst evaporative demand is about 1600 mm per year. Under these conditions, crop irrigation is inevitable for growth and development. Irrigated agriculture currently consumes the majority of total available water (up to 85%), making it critical for more efficient water use. Flood irrigation is widely practiced by the majority of the farmers (more than 85 %) with an efficiency which does not exceed 50%. In this context, a good knowledge of the partitioning of evapotranspiration (ET) into soil evaporation and plant transpiration is of crucial need for improving the irrigation scheduling and thus water use efficiency. In this study, the ISBA (Interactions Soil-Biosphere-Atmosphere) model was used for estimating ET and its partition over an olive orchard and a wheat field located near to the Marrakech City (Centre of Morocco). Two versions were evaluated: standard version which simulates a single energy balance for the soil and vegetation and the recently developed multiple energy balance (MEB) version which solves a separate energy balance for each of the two sources. Eddy covariance system, which provides the sensible and latent heat fluxes and meteorological instruments were operated during years 2003-2004 for the Olive Orchard and during years 2013 for wheat. The transpiration component was measured using a Sap flow system during summer over the wheat crop and stable isotope samples were gathered over wheat. The comparison between ET estimated by ISBA model and that measured by the Eddy covariance system showed that MEB version yielded a remarkable improvement compared to the standard version. The root mean square error (RMSE) and the correlation coefficient (R²) were about 45wm-2 and 0.8 for MEB version. By contrast, for the standard version, the RMSE and R² were about 60wm-2 and 0.7, respectively. The result also showed that MEB version simulates more accurately the crop transpiration compared to the standard version. The RMSE and R² were about 0.79 mm and 0.67 for MEB and 1.37mm and 0.65 for standard version. An in-depth analysis of the results points out : (1) a deficiency of the standard version in simulating soil evaporation, in particular after an irrigation event, that directly impact the latent heat fluxes prediction because of two much energy reaching the soil and (2) a significant improvement of the surface temperature predictions with the double energy balance version; an interesting feature in the context of data assimilation; (3) a poor parameterization of the stomatal conductance in the A-gs photosynthetic module that is corrected thanks to a stochastic parameter identification approach. Results have direct implication for the prediction of evapotranspiration and its partition over irrigated crops in semi-arid areas of the South Mediterranean region.

  13. [Spatial and temporal characteristics of flue-cured tobacco water requirement and irrigation requirement index in Yunnan Province, China].

    PubMed

    Zheng, Dong-fang; Xu, Jia-yang; Lu, Xiu-ping; Xu, Zi-cheng; Li, Jun-ying; Pang, Tao; Zhang, Ya-jie; Wang, Pei-wen

    2015-07-01

    Based on the daily meteorological data of 124 agricultural meteorological sites during 1977-2010 in Yunnan Province, using recommended Penman-Monteith formula by FAO, water requirement and irrigation requirement index in the growth period of flue-cured tobacco were calculated to analyze their spatial and temporal characteristics and change patterns. The results showed that water requirements of flue-cured tobacco in root extending, vigorous, mature periods and field growth period during 1977-2010 were 76.73-174.73, 247.50-386.64, 180.28-258.14 and 528.18-764.08 mm, respectively, and the water requirement of vigorous period was the highest. The average irrigation demand index of each period was -0.02, 0.38, 0.17 and 0.26, respectively. Effective precipitation could meet the demand of flue-cured tobacco in root extending period. Water requirement of flue-cured tobacco in Yunnan Province decreased annually, and the rates of water requirement under the climate change trend in the four periods abovementioned were -12. 42, -21.46, -7.17 and -47.15 mm . (10 a)-1, respectively. The smallest irrigation demand index was observed in Dehong, and the largest in Diqing. The irrigation demand indexes of Dehong, Xishuangbanna and Puer regions were negative in flue-cured tobacco field growth period. The reference crop evapotranspiration, water requirement and effective precipitation decreased, but the irrigation requirement and irrigation requirement index increased with the increase of latitude. The effective precipitation decreased, but the irrigation requirement and irrigation requirement index increased with the increase of altitude.

  14. Climate change reduces water availability for agriculture by decreasing non-evaporative irrigation losses

    NASA Astrophysics Data System (ADS)

    Malek, Keyvan; Adam, Jennifer C.; Stöckle, Claudio O.; Peters, R. Troy

    2018-06-01

    Irrigation efficiency plays an important role in agricultural productivity; it affects farm-scale water demand, and the partitioning of irrigation losses into evaporative and non-evaporative components. This partitioning determines return flow generation and thus affects water availability. Over the last two decades, hydrologic and agricultural research communities have significantly improved our understanding of the impacts of climate change on water availability and food productivity. However, the impacts of climate change on the efficiency of irrigation systems, particularly on the partitioning between evaporative and non-evaporative losses, have received little attention. In this study, we incorporated a process-based irrigation module into a coupled hydrologic/agricultural modeling framework (VIC-CropSyst). To understand how climate change may impact irrigation losses, we applied VIC-CropSyst over the Yakima River basin, an important agricultural region in Washington State, U.S. We compared the historical period of 1980-2010 to an ensemble of ten projections of climate for two future periods: 2030-2060 and 2060-2090. Results averaged over the watershed showed that a 9% increase in evaporative losses will be compensated by a reduction of non-evaporative losses. Therefore, overall changes in future efficiency are negligible (-0.4%) while the Evaporative Loss Ratio (ELR) (defined as the ratio of evaporative to non-evaporative irrigation losses) is enhanced by 10%. This higher ELR is associated with a reduction in return flows, thus negatively impacting downstream water availability. Results also indicate that the impact of climate change on irrigation losses depend on irrigation type and climate scenarios.

  15. Small Scale Irrigation within Water, Energy and Food Nexus Framework in Ethiopia.

    NASA Astrophysics Data System (ADS)

    Gerik, T.; Worqlul, A. W.; Yihun, D.; Bizimana, J. C.; Jeong, J.; Schmitter, P.; Srinivasan, R.; Richardson, J. W.; Clark, N.

    2017-12-01

    This study presents the nexus of food, energy and water framework in the context of small scale irrigation for vegetable production during the dry season in an irrigated agriculture system in Ethiopia. The study is based on detailed data collected in three sites of the Innovation Lab for Small Scale Irrigation (ILSSI) project in Ethiopia. The sites were Robit, Dangishta and Lemo and detailed field data was collected in 18 households in each site. The field data collected includes crop management (such as irrigation amount and dates, fertilizer rates, tillage practices, irrigation technologies, etc.) and agricultural production (crop yield, biomass, etc.) on tomato, onion and cabbage during the dry season. Four different water lifting technologies - namely rope with pulley and bucket, rope and washer pump, solar pump and motor pump - were used for water withdrawal from shallow groundwater wells. The Soil and Water Assessment Tool (SWAT) and Agricultural Policy Environmental eXtender (APEX) models were used in an integrated manner to assess water resource potential and develop water use efficiency of vegetables, which is a relationship between amount of water applied and vegetable yield. The water use efficiency for each vegetable crops were translated into energy requirement as pumping hours and potential irrigable areas for the water lifting technologies. This integrated approach was found useful to optimize water and energy use for sustainable food production using small scale irrigation. The holistic approach will not only provide a significant contribution to achieving food self-sufficiency, but will also be effective for optimizing agricultural input. Keyword: small scale irrigation, integrated modeling, water lifting technology, East Africa

  16. Implications of changing spatial dynamics of irrigated pasture, California's third largest agricultural water use.

    PubMed

    Shapero, Matthew; Dronova, Iryna; Macaulay, Luke

    2017-12-15

    Irrigated agriculture is practiced on 680 million acres worldwide. Irrigated grazing land is likely a significant portion of that area but estimating an accurate figure has remained problematic. Due to its significant contribution to agricultural water use worldwide, we develop a methodology to remotely sense irrigated pasture using a California case study. Irrigated pasture is the third largest agricultural water use in California, yet its economic returns are low. As pressures mount for the agricultural sector to be more water efficient and for water to be directed towards its most economically valuable uses, there will likely be a reduction in irrigated pasture acreage. A first step in understanding the importance of irrigated pasture in California is establishing a methodology to quantify baseline information about its area, location, and current rate of loss. This study used a novel object-based image analysis and supervised classification on publicly-available, high resolution, remote sensing National Agriculture Imaging Program (NAIP) imagery to develop a highly accurate map of irrigated pasture in a rural county in California's Sierra foothills. Irrigated pasture was found to have decreased by 19% during the ten-year period, 2005-2014, from 4,273 to 3,470 acres. The implications of this loss include potential impacts to wetland-dependent species, groundwater recharge, game species, traditional ranching culture, livestock production, and land conservation. Overall accuracy in classification across years was consistently over 89%. Comparing these results against available measurements of irrigated pasture provided by state and federal agencies reveals that this method significantly improves upon existing metrics and methods of data collection and points to critical needs for new targeted research and monitoring efforts. Broadly, the analysis presented here provides an improved methodology for mapping irrigated pasture that can be extended to provide accurate and spatially-explicit data for other counties in California and other arid and semi-arid regions worldwide. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. IN VITRO COMPARISON OF MAXIMUM PRESSURE DEVELOPED BY IRRIGATION SYSTEMS IN A KIDNEY MODEL.

    PubMed

    Proietti, Silvia; Dragos, Laurian; Somani, Bhaskar K; Butticè, Salvatore; Talso, Michele; Emiliani, Esteban; Baghdadi, Mohammed; Giusti, Guido; Traxer, Olivier

    2017-04-05

    To evaluate in vitro the maximum pressure generated in an artificial kidney model when people of different levels of strengths used various irrigation systems. Fifteen people were enrolled and divided in 3 groups based on their strengths. Individual strength was evaluated according to the maximum pressure each participant was able to achieve using an Encore™ Inflator. The irrigation systems evaluated were: T-FlowTM Dual Port, HilineTM, continuous flow single action pumping system (SAPSTM) with the system close and open, Irri-flo IITM, a simple 60-ml syringe and PeditrolTM . Each irrigation system was connected to URF-V2 ureteroscope, which was inserted into an artificial kidney model. Each participant was asked to produce the maximum pressure possible with every irrigation device. Pressure was measured with the working channel (WC) empty, with a laser fiber and a basket inside. The highest pressure was achieved with the 60 ml-syringe system and the lowest with SAPS continuous version system (with continuous irrigation open), compared to the other irrigation devices (p< 0.0001). Irrespective of the irrigation system, there was a significant difference in the pressure between the WC empty and when occupied with the laser fiber or the basket inside it (p<0.0001). The stratification between the groups showed that the most powerful group could produce the highest pressure in the kidney model with all the irrigation devices in almost any situation. The exception to this was the T-Flow system, which was the only device where no statistical differences were detected among these groups. The use of irrigation systems can often generate excessive pressure in an artificial kidney model, especially with an unoccupied WC of the ureteroscope. Depending on the strength of force applied, very high pressure can be generated by most irrigation devices irrespective of whether the scope is occupied or not.

  18. Revisiting colostomy irrigation: a viable option for persons with permanent descending and sigmoid colostomies.

    PubMed

    Kent, Dea J; Arnold Long, Mary; Bauer, Carole

    2015-01-01

    Colostomy irrigation (CI) is the regular irrigation of the bowel for persons with a permanent colostomy of the descending or sigmoid colon. Although this technique was first described in the 1920s, a recent study of 985 WOC nurses found that almost half (47%) do not routinely teach CI to persons with colostomies. In a systematic review (Evidence-Based Report Card) published in this issue of the Journal, we summarized current best evidence concerning the effect of CI on bowel function and found that irrigation reduces the frequency of bowel elimination episodes and allows some patients to reduce or eliminate ongoing use of a pouching system. This article describes techniques for teaching CI and discussed additional findings associated with CI.

  19. Solute transport through a pine-bark based substrate under saturated and unsaturated conditions

    USDA-ARS?s Scientific Manuscript database

    An understanding of how dissolved mineral nutrient ions (solutes) move through pine bark substrates during the application of irrigation water is vital to better understand nutrient transport and leaching from containerized crops during an irrigation event. However, current theories on solute transp...

  20. Modeling flow and solute transport in irrigation furrows

    USDA-ARS?s Scientific Manuscript database

    This paper presents an internally coupled flow and solute transport model for free-draining irrigation furrows. Furrow hydraulics is simulated with a numerical zero-inertia model and solute transport is computed with a model based on a numerical solution of the cross-section averaged advection-dispe...

  1. Wireless sensor network for irrigation application in cotton

    USDA-ARS?s Scientific Manuscript database

    A wireless sensor network was deployed in a cotton field to monitor soil water status for irrigation. The network included two systems, a Decagon system and a microcontroller-based system. The Decagon system consists of soil volumetric water-content sensors, wireless data loggers, and a central data...

  2. Water saving in chufa cultivation using flat raised beds and drip irrigation

    NASA Astrophysics Data System (ADS)

    Pascual-Seva, N.; San Bautista, A.; López-Galarza, S.; Maroto, J. V.; Pascual, B.

    2012-04-01

    Chufa (Cyperus esculentus L. var. sativus), also known as tiger nut, is a typical crop in the Region of Valencia (Spain). Its tubers are used to produce a beverage called horchata. Chufa has been cultivated traditionally in ridges and furrow irrigated. Currently, the quality of water used is acceptable, there are no limitations on supply, and water is not expensive; therefore, large amounts of water are used. The European Water Framework Directive 2000/60 is based on the precautionary principle, considering preventive action for measures to be taken; thus, water use is an issue to improve. Moreover, drought periods are becoming more frequent and extended, and water is being diverted to other uses. In this two year study (2007-2008), we analysed how yield and irrigation water use efficiency (IWUE) are affected by two cultivation factors: planting strategy and irrigation system. Three planting strategies were analysed: ridges (R) and flat raised beds, with two (B2) and three (B3) plant rows along them, while two irrigation systems were compared, furrow (FI) and drip irrigation (DI). Within the beds, the effect of the position of the plant row was considered, differing among plants grown in the north (n), central (c), and south (s) rows. Distances between ridge and bed axes were 60, 80 and 120 cm for R, B2 and B3, respectively. Irrigation was based on the Volumetric Soil Water Content (VSWC), which was continuously monitored with capacitance sensors (ECH2O EC-5 in FI and multidepth capacitance sensors C-Probe in DI). Each irrigation session started when the VSWC in R dropped to 60% and 80% of field capacity in FI and DI, respectively. Each DI session lasted 60 min in 2007; while in 2008 the installation was automated, stopping each session when the sum of the VSWC at 10, 20, and 30 cm soil depth reached its corresponding field capacity value. With both irrigation systems, beds were irrigated simultaneously with ridges and with the same irrigation duration. Plants from the different plant rows were sampled periodically and later fractionated into leaves, roots, and tubers, to examine the evolution of the different plant organs. The results showed that there were no differences among planting strategies in 2007; however, in 2008, R produced lower yields than the two types of beds. The interaction between the experimental years and the irrigation strategy did affect the yield significantly, obtaining higher yields with DI than with FI, which led to higher yields in 2007 than in 2008. Regarding the IWUE, DI gave the highest values, especially in 2008. Ridges led to the highest IWUE with DI, and the lowest IWUE with FI. When comparing the different planting lines, the highest yield was obtained in the southern row. It can be concluded that modifications to the planting strategy and the irrigation system within the traditional cultivation practices of the chufa crop would increase IWUE and lead to major water savings.

  3. Bushland Evapotranspiration and Agricultural Remote Sensing System (BEARS) software

    NASA Astrophysics Data System (ADS)

    Gowda, P. H.; Moorhead, J.; Brauer, D. K.

    2017-12-01

    Evapotranspiration (ET) is a major component of the hydrologic cycle. ET data are used for a variety of water management and research purposes such as irrigation scheduling, water and crop modeling, streamflow, water availability, and many more. Remote sensing products have been widely used to create spatially representative ET data sets which provide important information from field to regional scales. As UAV capabilities increase, remote sensing use is likely to also increase. For that purpose, scientists at the USDA-ARS research laboratory in Bushland, TX developed the Bushland Evapotranspiration and Agricultural Remote Sensing System (BEARS) software. The BEARS software is a Java based software that allows users to process remote sensing data to generate ET outputs using predefined models, or enter custom equations and models. The capability to define new equations and build new models expands the applicability of the BEARS software beyond ET mapping to any remote sensing application. The software also includes an image viewing tool that allows users to visualize outputs, as well as draw an area of interest using various shapes. This software is freely available from the USDA-ARS Conservation and Production Research Laboratory website.

  4. Rice production with minimal irrigation and no nitrogen fertilizer by intensive use of treated municipal wastewater.

    PubMed

    Muramatsu, Ayumi; Watanabe, Toru; Sasaki, Atsushi; Ito, Hiroaki; Kajihara, Akihiko

    2014-01-01

    We designed a new cultivation system of rice with circulated irrigation to remove nitrogen from treated municipal wastewater effectively and assessed the possibility of nitrogen removal in the new system without any adverse effects on rice production through bench-scale experiments through two seasons. Overgrowth of the rice plant, which can lead to lodging and tasteless rice, was found in the first season probably because nitrogen supply based on standard practice in normal paddy fields was too much in the closed irrigation system. In the second season, therefore, the amount of treated wastewater initially applied to the system was reduced but this resulted in a considerably decreased yield. On the other hand, the taste of the rice was significantly improved. The two-season experiments revealed that the new system enabled rice production with minimal irrigation (approximately 50% on the yield base compared to normal paddy fields) and no nitrogen fertilizer. The system also achieved >95% removal of nitrogen from the treated wastewater used for circulated irrigation. The accumulation of harmful metals in the rice was not observed after one season of cultivation in the new system. The accumulation after cultivation using the same soil repeatedly for a longer time should be examined by further studies.

  5. Risk assessment of consuming agricultural products irrigated with reclaimed wastewater: An exposure model

    NASA Astrophysics Data System (ADS)

    van Ginneken, Meike; Oron, Gideon

    2000-09-01

    This study assesses health risks to consumers due to the use of agricultural products irrigated with reclaimed wastewater. The analysis is based on a definition of an exposure model which takes into account several parameters: (1) the quality of the applied wastewater, (2) the irrigation method, (3) the elapsed times between irrigation, harvest, and product consumption, and (4) the consumers' habits. The exposure model is used for numerical simulation of human consumers' risks using the Monte Carlo simulation method. The results of the numerical simulation show large deviations, probably caused by uncertainty (impreciseness in quality of input data) and variability due to diversity among populations. There is a 10-orders of magnitude difference in the risk of infection between the different exposure scenarios with the same water quality. This variation indicates the need for setting risk-based criteria for wastewater reclamation rather than single water quality guidelines. Extra data are required to decrease uncertainty in the risk assessment. Future research needs to include definition of acceptable risk criteria, more accurate dose-response modeling, information regarding pathogen survival in treated wastewater, additional data related to the passage of pathogens into and in the plants during irrigation, and information regarding the behavior patterns of the community of human consumers.

  6. A coupled remote sensing and simplified surface energy balance approach to estimate actual evapotranspiration from irrigated fields

    USGS Publications Warehouse

    Senay, G.B.; Budde, Michael; Verdin, J.P.; Melesse, Assefa M.

    2007-01-01

    Accurate crop performance monitoring and production estimation are critical for timely assessment of the food balance of several countries in the world. Since 2001, the Famine Early Warning Systems Network (FEWS NET) has been monitoring crop performance and relative production using satellite-derived data and simulation models in Africa, Central America, and Afghanistan where ground-based monitoring is limited because of a scarcity of weather stations. The commonly used crop monitoring models are based on a crop water-balance algorithm with inputs from satellite-derived rainfall estimates. These models are useful to monitor rainfed agriculture, but they are ineffective for irrigated areas. This study focused on Afghanistan, where over 80 percent of agricultural production comes from irrigated lands. We developed and implemented a Simplified Surface Energy Balance (SSEB) model to monitor and assess the performance of irrigated agriculture in Afghanistan using a combination of 1-km thermal data and 250m Normalized Difference Vegetation Index (NDVI) data, both from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. We estimated seasonal actual evapotranspiration (ETa) over a period of six years (2000-2005) for two major irrigated river basins in Afghanistan, the Kabul and the Helmand, by analyzing up to 19 cloud-free thermal and NDVI images from each year. These seasonal ETa estimates were used as relative indicators of year-to-year production magnitude differences. The temporal water-use pattern of the two irrigated basins was indicative of the cropping patterns specific to each region. Our results were comparable to field reports and to estimates based on watershed-wide crop water-balance model results. For example, both methods found that the 2003 seasonal ETa was the highest of all six years. The method also captured water management scenarios where a unique year-to-year variability was identified in addition to water-use differences between upstream and downstream basins. A major advantage of the energy-balance approach is that it can be used to quantify spatial extent of irrigated fields and their water-use dynamics without reference to source of water as opposed to a water-balance model which requires knowledge of both the magnitude and temporal distribution of rainfall and irrigation applied to fields. ?? 2007 by MDPI.

  7. A Coupled Remote Sensing and Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration from Irrigated Fields

    PubMed Central

    Senay, Gabriel B.; Budde, Michael; Verdin, James P.; Melesse, Assefa M.

    2007-01-01

    Accurate crop performance monitoring and production estimation are critical for timely assessment of the food balance of several countries in the world. Since 2001, the Famine Early Warning Systems Network (FEWS NET) has been monitoring crop performance and relative production using satellite-derived data and simulation models in Africa, Central America, and Afghanistan where ground-based monitoring is limited because of a scarcity of weather stations. The commonly used crop monitoring models are based on a crop water-balance algorithm with inputs from satellite-derived rainfall estimates. These models are useful to monitor rainfed agriculture, but they are ineffective for irrigated areas. This study focused on Afghanistan, where over 80 percent of agricultural production comes from irrigated lands. We developed and implemented a Simplified Surface Energy Balance (SSEB) model to monitor and assess the performance of irrigated agriculture in Afghanistan using a combination of 1-km thermal data and 250-m Normalized Difference Vegetation Index (NDVI) data, both from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. We estimated seasonal actual evapotranspiration (ETa) over a period of six years (2000-2005) for two major irrigated river basins in Afghanistan, the Kabul and the Helmand, by analyzing up to 19 cloud-free thermal and NDVI images from each year. These seasonal ETa estimates were used as relative indicators of year-to-year production magnitude differences. The temporal water-use pattern of the two irrigated basins was indicative of the cropping patterns specific to each region. Our results were comparable to field reports and to estimates based on watershed-wide crop water-balance model results. For example, both methods found that the 2003 seasonal ETa was the highest of all six years. The method also captured water management scenarios where a unique year-to-year variability was identified in addition to water-use differences between upstream and downstream basins. A major advantage of the energy-balance approach is that it can be used to quantify spatial extent of irrigated fields and their water-use dynamics without reference to source of water as opposed to a water-balance model which requires knowledge of both the magnitude and temporal distribution of rainfall and irrigation applied to fields.

  8. LandCaRe-DSS - model based tools for irrigation management under climate change

    NASA Astrophysics Data System (ADS)

    Dotterweich, Markus; Wilkinson, Kristina; Cassel, Martin; Scherzer, Jörg; Köstner, Barbara; Berg, Michael; Grocholl, Jürgen

    2015-04-01

    Climate change is expected to have a strong influence on agricultural systems in the future. It will be important for decision makers and stakeholders to assess the impact of climate change at the farm and regional level in order to facilitate and maintain a sustainable and profitable farming infrastructure. Climate change impact studies have to incorporate aspects of uncertainty and the underlying knowledge is constantly expanding and improving. Decision support systems (DSS) with flexible data bases are therefore a useful tool for management and planning: different models can be applied under varying boundary conditions within a conceptual framework and the results can be used e.g. to show the effects of climate change scenarios and different land management options. Within this project, the already existing LandCaRe DSS will be further enhanced and improved. A first prototype had been developed for two regions in eastern Germany, mainly to show the effects of climate change on yields, nutrient balances and farm economy. The new model version will be tested and applied for a region in north-western Germany (Landkreis Uelzen) where arable land makes up about 50% of overall land-use and where 80 % of the arable land is already irrigated. For local decision makers, it will be important to know how water demand and water availability are likely to change in the future: Is more water needed for irrigation? Is more water actually available for irrigation? Will the existing limits for ground water withdrawal be sufficient for farmers to irrigate their crops? How can the irrigation water demand be influenced by land management options like the use of different crops and varieties or different farming and irrigation techniques? The main tasks of the project are (I) the integration of an improved irrigation model, (II) the development of a standardized interface to apply the DSS in different regions, (III) to optimize the graphical user interface, (IV) to transfer and apply the DSS in an example region in north-west Germany and (V) to expand the underlying data base of climate change models and scenarios. The project is funded by the Bundesministeriums für Bildung und Forschung (BMBF), Förderkennzeichen Förderkennzeichen: 02WQ1304.

  9. How much water do we need for irrigation under Climate Change in the Mediterranean?

    NASA Astrophysics Data System (ADS)

    Fader, Marianela; Alberte, Bondeau; Wolfgang, Cramer; Simon, Decock; Sinan, Shi

    2014-05-01

    Anthropogenic climate change will very likely alter the hydrological system of already water-limited agricultural landscapes around the Mediterranean. This includes the need for, as well as the availability of irrigation water. On top of that Mediterranean agroecosystems are very likely to be under strong pressure in the near future through changes in consumer demands and diets, increasing urbanization, demographic change, and new markets for agricultural exportation. As a first step to assess the water demand of the agricultural sector, we use an ecohydrological model (the Lund-Potsdam-Jena managed land model, LPJmL) to estimate current and future irrigation water requirements of this region, considering various climate and socio-economic scenarios. LPJmL is a process-based, agricultural and water balance model, where plant growth is ecophysiologically coupled with hydrological variables. For these simulations, the model was adapted to the Mediterranean region in terms of agrosystems as well as crop parameters, and a sensitivity analysis for the irrigation system efficiency was performed. Patterns of current irrigation water requirements differ strongly spatially within the Mediterranean region depending mainly on potential evapotranspiration, the combination of crops cultivated and the extension of irrigated areas. The simulations for the future indicate that the Mediterranean may need considerable additional amounts of irrigation water. However, the regional patterns differ strongly depending on changes in length of growing periods, changes in transpirational rate (temperature and precipitation change, CO2-fertilization), and the consideration of potential improvements in irrigation system efficiency.

  10. Comparison and analysis of empirical equations for soil heat flux for different cropping systems and irrigation methods

    USGS Publications Warehouse

    Irmak, A.; Singh, Ramesh K.; Walter-Shea, Elizabeth; Verma, S.B.; Suyker, A.E.

    2011-01-01

    We evaluated the performance of four models for estimating soil heat flux density (G) in maize (Zea mays L.) and soybean (Glycine max L.) fields under different irrigation methods (center-pivot irrigated fields at Mead, Nebraska, and subsurface drip irrigated field at Clay Center, Nebraska) and rainfed conditions at Mead. The model estimates were compared against measurements made during growing seasons of 2003, 2004, and 2005 at Mead and during 2005, 2006, and 2007 at Clay Center. We observed a strong relationship between the G and net radiation (Rn) ratio (G/Rn) and the normalized difference vegetation index (NDVI). When a significant portion of the ground was bare soil, G/Rn ranged from 0.15 to 0.30 and decreased with increasing NDVI. In contrast to the NDVI progression, the G/Rn ratio decreased with crop growth and development. The G/Rn ratio for subsurface drip irrigated crops was smaller than for the center-pivot irrigated crops. The seasonal average G was 13.1%, 15.2%, 10.9%, and 12.8% of Rn for irrigated maize, rainfed maize, irrigated soybean, and rainfed soybean, respectively. Statistical analyses of the performance of the four models showed a wide range of variation in G estimation. The root mean square error (RMSE) of predictions ranged from 15 to 81.3 W m-2. Based on the wide range of RMSE, it is recommended that local calibration of the models should be carried out for remote estimation of soil heat flux.

  11. Crop-specific seasonal estimates of irrigation-water demand in South Asia

    NASA Astrophysics Data System (ADS)

    Biemans, Hester; Siderius, Christian; Mishra, Ashok; Ahmad, Bashir

    2016-05-01

    Especially in the Himalayan headwaters of the main rivers in South Asia, shifts in runoff are expected as a result of a rapidly changing climate. In recent years, our insight into these shifts and their impact on water availability has increased. However, a similar detailed understanding of the seasonal pattern in water demand is surprisingly absent. This hampers a proper assessment of water stress and ways to cope and adapt. In this study, the seasonal pattern of irrigation-water demand resulting from the typical practice of multiple cropping in South Asia was accounted for by introducing double cropping with monsoon-dependent planting dates in a hydrology and vegetation model. Crop yields were calibrated to the latest state-level statistics of India, Pakistan, Bangladesh and Nepal. The improvements in seasonal land use and cropping periods lead to lower estimates of irrigation-water demand compared to previous model-based studies, despite the net irrigated area being higher. Crop irrigation-water demand differs sharply between seasons and regions; in Pakistan, winter (rabi) and monsoon summer (kharif) irrigation demands are almost equal, whereas in Bangladesh the rabi demand is ~ 100 times higher. Moreover, the relative importance of irrigation supply versus rain decreases sharply from west to east. Given the size and importance of South Asia improved regional estimates of food production and its irrigation-water demand will also affect global estimates. In models used for global water resources and food-security assessments, processes like multiple cropping and monsoon-dependent planting dates should not be ignored.

  12. Sensor-Based Assessment of Soil Salinity during the First Years of Transition from Flood to Sprinkler Irrigation

    PubMed Central

    Herrero, Juan; Betrán, Jesús A.; Ritchie, Glen

    2018-01-01

    A key issue for agriculture in irrigated arid lands is the control of soil salinity, and this is one of the goals for irrigated districts when changing from flood to sprinkling irrigation. We combined soil sampling, proximal electromagnetic induction, and satellite data to appraise how soil salinity and its distribution along a previously flood-irrigated field evolved after its transformation to sprinkling. We also show that the relationship between NDVI (normalized difference vegetation index) and ECe (electrical conductivity of the soil saturation extracts) mimics the production function between yield and soil salinity. Under sprinkling, the field had a double crop of barley and then sunflower in 2009 and 2011. In both years, about 50% of the soil of the entire studied field—45 ha—had ECe < 8 dS m−1, i.e., allowing barley cultivation, while the percent of surface having ECe ≥ 16 dS m−1 increased from 8.4% in 2009 to 13.7% in 2011. Our methodology may help monitor the soil salinity oscillations associated with irrigation management. After quantifying and mapping the soil salinity in 2009 and 2011, we show that barley was stunted in places of the field where salinity was higher. Additionally, the areas of salinity persisted after the subsequent alfalfa cropping in 2013. Application of differential doses of water to the saline patches is a viable method to optimize irrigation water distribution and lessen soil salinity in sprinkler-irrigated agriculture. PMID:29462981

  13. Sensor-Based Assessment of Soil Salinity during the First Years of Transition from Flood to Sprinkler Irrigation.

    PubMed

    Casterad, Mª Auxiliadora; Herrero, Juan; Betrán, Jesús A; Ritchie, Glen

    2018-02-17

    A key issue for agriculture in irrigated arid lands is the control of soil salinity, and this is one of the goals for irrigated districts when changing from flood to sprinkling irrigation. We combined soil sampling, proximal electromagnetic induction, and satellite data to appraise how soil salinity and its distribution along a previously flood-irrigated field evolved after its transformation to sprinkling. We also show that the relationship between NDVI (normalized difference vegetation index) and ECe (electrical conductivity of the soil saturation extracts) mimics the production function between yield and soil salinity. Under sprinkling, the field had a double crop of barley and then sunflower in 2009 and 2011. In both years, about 50% of the soil of the entire studied field-45 ha-had ECe < 8 dS m-1, i.e., allowing barley cultivation, while the percent of surface having ECe ≥ 16 dS m-1 increased from 8.4% in 2009 to 13.7% in 2011. Our methodology may help monitor the soil salinity oscillations associated with irrigation management. After quantifying and mapping the soil salinity in 2009 and 2011, we show that barley was stunted in places of the field where salinity was higher. Additionally, the areas of salinity persisted after the subsequent alfalfa cropping in 2013. Application of differential doses of water to the saline patches is a viable method to optimize irrigation water distribution and lessen soil salinity in sprinkler-irrigated agriculture.

  14. Reduction of hard-tissue debris accumulation during rotary root canal instrumentation by etidronic acid in a sodium hypochlorite irrigant.

    PubMed

    Paqué, Frank; Rechenberg, Dan-Krister; Zehnder, Matthias

    2012-05-01

    Hard-tissue debris is accumulated during rotary instrumentation. This study investigated to what extent a calcium-complexing agent that has good short-term compatibility with sodium hypochlorite (NaOCl) could reduce debris accumulation when applied in an all-in-one irrigant during root canal instrumentation. Sixty extracted mandibular molars with isthmuses in the mesial root canal system were selected based on prescans using a micro-computed tomography system. Thirty teeth each were randomly assigned to be instrumented with a rotary system and irrigated with either 2.5% NaOCl or 2.5% NaOCl containing 9% (wt/vol) etidronic acid (HEBP). Using a side-vented irrigating tip, 2 mL of irrigant was applied by 1 blinded investigator to the mesial canals after each instrument. Five milliliters of irrigant was applied per canal as the final rinse. Mesial root canal systems were scanned at high resolution before and after treatment, and accumulated hard-tissue debris was calculated as vol% of the original canal anatomy. Values between groups were compared using the Student's t test (α < .05). Irrigation with 2.5% NaOCl resulted in 5.5 ± 3.6 vol% accumulated hard-tissue debris compared with 3.8 ± 1.8 vol% when HEBP was contained in the irrigant (P < .05). A hypochlorite-compatible chelator can reduce but not completely prevent hard-tissue debris accumulation during rotary root canal instrumentation. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Field Performance of an Indica x Tropical Japonica Rice Mapping Population under AWD Stress

    USDA-ARS?s Scientific Manuscript database

    Alternating-wetting-drying (AWD) is an emerging rice irrigation management system that has the potential ability to reduce both irrigation water use and emissions of the greenhouse gas, methane. Based on preliminary experiments, 15 (F10) recombinant inbred lines (RILs) showing diversity for root an...

  16. Growth, yield and ion relations of strawberry in response to irrigation with chloride-dominated waters

    USDA-ARS?s Scientific Manuscript database

    Strawberry is listed as the most salt sensitive fruit crop in comprehensive salt tolerance data bases. Recently, concerns have arisen regarding declining quality of irrigation waters available to coastal strawberry growers in southern and central California. Over time, the waters have become more ...

  17. Soil moisture and plant canopy temperature sensing for irrigation application in cotton

    USDA-ARS?s Scientific Manuscript database

    A wireless sensor network was deployed in a cotton field to monitor soil water status for irrigation. The network included two systems, a Decagon system and a microcontroller-based system. The Decagon system consists of soil volumetric water-content sensors, wireless data loggers, and a central data...

  18. Mediterranean irrigation under climate change: more efficient irrigation needed to compensate increases in irrigation water requirements

    NASA Astrophysics Data System (ADS)

    Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W.

    2015-08-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. This study systematically assesses how climate change and increases in atmospheric CO2 concentrations may affect irrigation requirements in the Mediterranean region by 2080-2090. Future demographic change and technological improvements in irrigation systems are accounted for, as is the spread of climate forcing, warming levels and potential realization of the CO2-fertilization effect. Vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL after a large development that comprised the improved representation of Mediterranean crops. At present the Mediterranean region could save 35 % of water by implementing more efficient irrigation and conveyance systems. Some countries like Syria, Egypt and Turkey have higher saving potentials than others. Currently some crops, especially sugar cane and agricultural trees, consume in average more irrigation water per hectare than annual crops. Different crops show different magnitude of changes in net irrigation requirements due to climate change, being the increases most pronounced in agricultural trees. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4 and 18 % from climate change alone if irrigation systems and conveyance are not improved (2 °C global warming combined with full CO2-fertilization effect, and 5 °C global warming combined with no CO2-fertilization effect, respectively). Population growth increases these numbers to 22 and 74 %, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean, and may be able to compensate to some degree the increases due to climate change and population growth. Both subregions would need around 35 % more water than today if they could afford some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect. Nevertheless, water scarcity might pose further challenges to the agricultural sector: Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain have a high risk of not being able to sustainably meet future irrigation water requirements in some scenarios. The results presented in this study point to the necessity of performing further research on climate-friendly agro-ecosystems in order to assess, on the one side, their degree of resilience to climate shocks, and on the other side, their adaptation potential when confronted with higher temperatures and changes in water availability.

  19. Transferability Of DEMETER. A Case Study Of The Irrigation Scheme Of Veiga De Chaves

    NASA Astrophysics Data System (ADS)

    Baptista, A.; Sousa, V.

    2006-08-01

    DEMETER is a research and demonstration project, designed to assess and demonstrate how the integration of Earth Observation techniques in routine Irrigation Advisory Services can improve efficiency in the use of irrigation water. The objectives of this paper are: (1) to analyze the interest in the feasibility of transferring the DEMETER technology to the irrigation scheme of Chaves: (2) to identify the factors that, in general, favour the usefulness of this technology. The irrigation infrastructure and methods, the size and number of irrigation parcels and the main crops grown at the irrigation scheme of Chaves have been recorded. Also a socio-economic description has been done. Field visits, interviews with the staff of water association, and an inquiry to a sample of 107 farmers were made. The main results are: each farmer pays an area based annual fee, independent of the amount of water used for irrigation; most of the irrigated parcels are of very small size, 0.3 ha in average, mostly irrigated by surface methods; the most representative crops grown are potato, forage maize, and several different horticultural crops; an important part of the production is for self-consumption. The farmers are aging and the new generations prefer other jobs than agriculture. A considerable number of farmers have another job in the nearby cities. The small size of the irrigated parcels limits the use of earth observation technologies to expensive high space resolution images. For the time being, farmers do not feel the need for an irrigation advisory service, manly because there is plenty of water which is not bought proportionally to its use. However, circumstances are changing rapidly and, relatively new for the region, environmental concerns related with irrigation, manly nitrate leaching by excess watering of crops prompts the need for an irrigation advisory service in order to maintain crop production with a more rational use of water. The DEMETER technology could be a suitable solution in certain contexts and types of irrigation systems, in particular in those regions that have (1) a growing agricultural sector, with large scale plots under monoculture, or with only 2 or 3 clearly market-oriented main crops with high potential value-added; (2) where water is scarce and relatively expensive; (3) where consumers pay for the water they use and are organized in a dynamic, well equipped, well-staffed, financially sound and empowering water users associations.

  20. Decentralising Zimbabwe’s water management: The case of Guyu-Chelesa irrigation scheme

    NASA Astrophysics Data System (ADS)

    Tambudzai, Rashirayi; Everisto, Mapedza; Gideon, Zhou

    Smallholder irrigation schemes are largely supply driven such that they exclude the beneficiaries on the management decisions and the choice of the irrigation schemes that would best suit their local needs. It is against this background that the decentralisation framework and the Dublin Principles on Integrated Water Resource Management (IWRM) emphasise the need for a participatory approach to water management. The Zimbabwean government has gone a step further in decentralising the management of irrigation schemes, that is promoting farmer managed irrigation schemes so as to ensure effective management of scarce community based land and water resources. The study set to investigate the way in which the Guyu-Chelesa irrigation scheme is managed with specific emphasis on the role of the Irrigation Management Committee (IMC), the level of accountability and the powers devolved to the IMC. Merrey’s 2008 critique of IWRM also informs this study which views irrigation as going beyond infrastructure by looking at how institutions and decision making processes play out at various levels including at the irrigation scheme level. The study was positioned on the hypothesis that ‘decentralised or autonomous irrigation management enhances the sustainability and effectiveness of irrigation schemes’. To validate or falsify the stated hypothesis, data was gathered using desk research in the form of reviewing articles, documents from within the scheme and field research in the form of questionnaire surveys, key informant interviews and field observation. The Statistical Package for Social Sciences was used to analyse data quantitatively, whilst content analysis was utilised to analyse qualitative data whereby data was analysed thematically. Comparative analysis was carried out as Guyu-Chelesa irrigation scheme was compared with other smallholder irrigation scheme’s experiences within Zimbabwe and the Sub Saharan African region at large. The findings were that whilst the scheme is a model of a decentralised entity whose importance lies at improving food security and employment creation within the community, it falls short in representing a downwardly accountable decentralised irrigation scheme. The scheme is faced with various challenges which include its operation which is below capacity utilisation, absence of specialised technical human personnel to address infrastructural breakdowns, uneven distribution of water pressure, incapacitated Irrigation Management Committee (IMC), absence of a locally legitimate constitution, compromised beneficiary participation and unclear lines of communication between various institutions involved in water management. Understanding decentralization is important since one of the key tenets of IWRM is stakeholder participation which the decentralization framework interrogates.

  1. Effect of irrigation return flow on groundwater recharge in an overexploited aquifer in Bangladesh

    NASA Astrophysics Data System (ADS)

    Touhidul Mustafa, Syed Md.; Shamsudduha, Mohammad; Huysmans, Marijke

    2016-04-01

    Irrigated agriculture has an important role in the food production to ensure food security of Bangladesh that is home to over 150 million people. However, overexploitation of groundwater for irrigation, particularly during the dry season, causes groundwater-level decline in areas where abstraction is high and surface geology inhibits direct recharge to underlying shallow aquifer. This is causing a number of potential adverse socio-economic, hydrogeological, and environmental problems in Bangladesh. Alluvial aquifers are primarily recharged during monsoon season from rainfall and surface sources. However, return flow from groundwater-fed irrigation can recharge during the dry months. Quantification of the effect of return flow from irrigation in the groundwater system is currently unclear but thought to be important to ensure sustainable management of the overexploited aquifer. The objective of the study is to investigate the effect of irrigation return flow on groundwater recharge in the north-western part of Bangladesh, also known as Barind Tract. A semi-physically based distributed water balance model (WetSpass-M) is used to simulate spatially distributed monthly groundwater recharge. Results show that, groundwater abstraction for irrigation in the study area has increased steadily over the last 29 years. During the monsoon season, local precipitation is the controlling factor of groundwater recharge; however, there is no trend in groundwater recharge during that period. During the dry season, however, irrigation return-flow plays a major role in recharging the aquifer in the irrigated area compared to local precipitation. Therefore, during the dry season, mean seasonal groundwater recharge has increased and almost doubled over the last 29 years as a result of increased abstraction for irrigation. The increase in groundwater recharge during dry season has however no significant effect in the improvement of groundwater levels. The relation between groundwater depth and groundwater recharge shows that the groundwater depth is continuously increasing with a little response to groundwater recharge. Groundwater abstraction for irrigation is not sustainable. Hence, more detailed studies on the effect of different irrigation scenarios on the groundwater system are recommended to strategize sustainable management of overexploited aquifer in Bangladesh.

  2. Are sustainable water resources possible in northwestern India?

    NASA Astrophysics Data System (ADS)

    Troy, T. J.; Devineni, N.; Perveen, S.; Robertson, A. W.; Lall, U.

    2012-12-01

    Sustainable water resources can have many definitions with the simplest as a supply-demand problem, with climate dictating the supply of water and human water use the demand. One sign of a system that is not sustainable would be falling groundwater tables, as is the case in northwest India. This region serves as the country's breadbasket, and irrigated agriculture is ubiquitous. The state of Punjab alone produces 22% of the country's wheat and 13% of all the country's grains while only accounting for 1.5% of the country's area. Although the region receives an average precipitation of 600mm per year, it is dominated by monsoonal rainfall with streamflow augmented by upstream snowmelt and glacial melt in spring and summer that is released from a large dam into canals. Large agricultural water demands occur both during the rainy season as well as during the drier winter season. Water and food security are inextricably linked here, and when considering how to manage water sustainably, the consequences on agriculture must also be considered. In this study, we evaluate what a sustainable water resources system would look like in this region, accounting for current climate, crop water demands, and available reservoir storage. The effects of multiple water-saving scenarios are considered, such as crop choice, cropped area, and the use of forecasts in irrigation scheduling. We find that the current system is untenable and hard decisions will have to be made by policymakers in order to halt the depletion of groundwater and manage the region's water resources in a sustainable, effective manner. This work serves as a prototype for evaluating water resources in other regions with high seasonal variability in rainfall and streamflow and large irrigation demands.

  3. The management of the Diama reservoir (Senegal River)

    NASA Astrophysics Data System (ADS)

    Duvail, S.; Hamerlynck, O.

    2003-04-01

    The Senegal River is regulated by 2 dams built in the 1980's by the "Organisation pour la Mise en Valeur du fleuve Sénégal" (OMVS), a river basin management organisation grouping Mali, Senegal and Mauritania. The initial objectives of OMVS, which were to regulate the Senegal flows in order to develop irrigated agriculture, produce hydropower and facilitate river navigation has been only partially met. The maintenance of the annual flood by the upstream dam (Manantali), initially to be phased out when irrigated agriculture would have replaced the traditional recession agriculture, is now scheduled to continue indefinitely on the basis of socio-economic and environmental concerns. This change of mindset has however not affected the management of the downstream dam (Diama). Initially conceived as a salt-wedge dam, its function evolved to a reservoir dam with a high and constant water level. During the dry season, the water level is maintained high and constant in order to reduce the pumping costs for the irrigated agriculture in the delta. During the flood season (July-October) the dam is primarily managed for risk avoidance: limit flooding downstream of the dam (especially the city of St. Louis) and secure the infrastructure of the dam itself. The permanent freshwater reservoir lake has adverse effects on ecosystems, on human and animal health and a high social cost for the traditional stakeholders of the deltaic floodplain (fishermen, livestock keepers and gatherers). Upstream of the reservoir there is an excess of stagnant freshwater and managers are confronted with the development of invasive species while substantial downstream flooding is essential for the estuarine ecosystems and local livelihoods. The presentation will review the different approaches to the management of the Diama reservoir and proposes different management scenarios and compares their economical, environmental, and social costs and benefits.

  4. Crop evapotranspiration estimation using remote sensing and the existing network of meteorological stations in Cyprus

    NASA Astrophysics Data System (ADS)

    Papadavid, G.; Hadjimitsis, D.; Michaelides, S.; Nisantzi, A.

    2011-05-01

    Cyprus is frequently confronted with severe droughts and the need for accurate and systematic data on crop evapotranspiration (ETc) is essential for decision making, regarding water irrigation management and scheduling. The aim of this paper is to highlight how data from meteorological stations in Cyprus can be used for monitoring and determining the country's irrigation demands. This paper shows how daily ETc can be estimated using FAO Penman-Monteith method adapted to satellite data and auxiliary meteorological parameters. This method is widely used in many countries for estimating crop evapotranspiration using auxiliary meteorological data (maximum and minimum temperatures, relative humidity, wind speed) as inputs. Two case studies were selected in order to determine evapotranspiration using meteorological and low resolution satellite data (MODIS - TERRA) and to compare it with the results of the reference method (FAO-56) which estimates the reference evapotranspiration (ETo) by using only meteorological data. The first approach corresponds to the FAO Penman-Monteith method adapted for using both meteorological and remotely sensed data. Furthermore, main automatic meteorological stations in Cyprus were mapped using Geographical Information System (GIS). All the agricultural areas of the island were categorized according to the nearest meteorological station which is considered as "representative" of the area. Thiessen polygons methodology was used for this purpose. The intended goal was to illustrate what can happen to a crop, in terms of water requirements, if meteorological data are retrieved from other than the representative stations. The use of inaccurate data can result in low yields or excessive irrigation which both lead to profit reduction. The results have shown that if inappropriate meteorological data are utilized, then deviations from correct ETc might be obtained, leading to water losses or crop water stress.

  5. Farm scale application of EMI and FDR sensors to measuring and mapping soil water content

    NASA Astrophysics Data System (ADS)

    Rallo, Giovanni; Provenzano, Giuseppe

    2017-04-01

    Soil water content (SWC) controls most water exchange processes within and between the soil-plants-atmosphere continuum and can therefore be considered as a practical variable for irrigation farmer choices. A better knowledge of spatial SWC patterns could improve farmer's awareness about critical crop water status conditions and enhance their capacity to characterize their behavior at the field or farm scale. However, accurate soil moisture measurement across spatial and temporal scales is still a challenging task and, specifically at intermediate spatial (0.1-100 ha) and temporal (minutes to days) scales, a data gap remains that limits our understanding over reliability of the SWC spatial measurements and its practical applicability in irrigation scheduling. In this work we compare the integrated EM38 (Geonics Ltd. Canada) response, collected at different sensor positions above ground to that obtained by integrating the depth profile of volumetric SWC measured with Diviner 2000 (Sentek) in conjunction with the depth response function of the EM38 when operated in both horizontal and vertical dipole configurations. On a 1.0-ha Olive grove site in Sicliy (Italy), 200 data points were collected before and after irrigation or precipitation events following a systematic sampling grid with focused measurements around the tree. Inside two different zone of the field, characterized from different soil physical properties, two Diviner 2000 access tube (1.2 m) were installed and used for the EM38 calibration. After calibration, the work aimed to propose the combined use of the FDR and EMI sensors to measuring and mapping root zone soil water content. We found strong correlations (R2 = 0.66) between Diviner 2000 SWC averaged to a depth of 1.2 m and ECa from an EM38 held in the vertical mode above the soil surface. The site-specific relationship between FDR-based SWC and ECa was linear for the purposes of estimating SWC over the explored range of ECa monitored at field levels. Volumetric SWC changes in the root zone were observed by differencing the maps, where differences in the observed ECa are primarily the result of changes in soil water status. As with the data showed in the research, more structured patterns occur after wetting event, indicating the presence of subsurface flow or root water uptake paths. A vision for the future at hydrological watershed scale is to combine EMI measurements with FDR-based sensor networks, the last with the scope to constrain calibration of the EMI measurements.

  6. Impacts of Change in Irrigation Water Availability on Food Production in the Yellow River Basin under Climate Change

    NASA Astrophysics Data System (ADS)

    Yin, Y. Y.; Tang, Q.

    2014-12-01

    Approximately 9 percent of China's population and 17 percent of its agricultural area are settled in the Yellow River Basins. Irrigation, which plays an important role in agricultural production, occupies the largest share of human consumptive water use in the basin. Given increasing water demands, the basin faces acute water scarcity. Previous studies have suggested that decrease in irrigation water availability under climate change might have an overall adverse impact on the food production of the basin. The timing and area that would face severe water stress are yet to be identified. We used a land surface hydrological model forced with the bias-corrected climatic variables from 5 climate models under 4 Representative Concentration Pathways (RCPs) to estimate total water availability in the sub-basins of the Yellow River basin. The future socioeconomic conditions, the Shared Socioeconomic Pathways (SSPs), were used to estimate the water requirement in the nonagricultural water use sectors. The irrigation water availability was estimated from the total water availability and nonagricultural water use, and the irrigation water demands were estimated based on the current irrigation project efficiencies. The timing and area of irrigation water shortage were shown and the implication of change in irrigation water availability on food production was assessed. The results show that the sub-basins with high population density and gross domestic product (GDP) are likely to confront severe water stress and reduction in food production earlier because irrigation water was to be appropriated by the rapid increase in nonagricultural water use sectors. The study stresses the need for adaptive management of water to balance agriculture and nonagricultural demands in northern China.

  7. Re-Assessing Leaching Requirements for the Salinity Control under New Irrigation Regimes

    NASA Astrophysics Data System (ADS)

    Wu, Laosheng; Yang, Ting; Šimůnek, Jirka

    2017-04-01

    Irrigation is essential to sustain agricultural production, but it adds dissolved salts (or salinity) to croplands. Leaching is thus necessary to keep the average rootzone salinity below the plant threshold EC levels in order to sustain crop production. Current leaching requirement (LR) calculation is based on steady-state, one-dimensional (1D), and water balance approaches, which often overestimates the LRs under transient field conditions. While in recent years, surface and sprinkler irrigated fields have been largely converted to drip or micro-spray systems and deficit irrigation has become more popular, currently accepted LRs may not be appropriate for these irrigation systems. Under point or line irrigation sources (e.g., drips or drip-lines), water and salts move both downwards and laterally, which may lead to highly saline areas on the edges of the wetted area. Under such circumstances, processes such as precipitation/dissolution of mineral phases and/or cation exchange may significantly affect the leaching requirement. The overall objective of this research was to use computer simulation models (i.e., Hydrus-2D and UnsatChem) to evaluate LRs under transient conditions and new irrigation regimes. Simulations were carried out using parameters for soils, climate zones, and major crops and their corresponding fertilization practices typical for California to: (1) Assess the effects of salt precipitation/dissolution on the leaching requirement (LR); (2) Evaluate localized water movement on average rootzone salinity and the leaching requirement (LR); (3) Evaluate leaching requirements for soils under deficit irrigation; and (4) Assess the effects of rainfall on the leaching requirement. Information from this research could significantly impact water management practices in irrigated croplands.

  8. Multidecadal Land Cover Change in the Los Angeles Basin and its Water Consumption Implications

    NASA Astrophysics Data System (ADS)

    Colombi, N. K.; Lettenmaier, D. P.; Marlier, M. E.

    2017-12-01

    Urban irrigation is an important component of the hydrologic cycle in areas with arid and semi-arid climates. In Los Angeles, outdoor irrigation has the largest potential for water conservation. However, there are significant uncertainties in predicting and quantifying irrigated water use due to unavailability of crucial landcover data. Irrigated vegetation must first be identified and mapped before irrigated water use can be modeled, and steps can be taken towards conservation. We utilized Landsat data at 30m spatial resolution from 1985 to present to quantify temporal dynamics of vegetation cover on a seasonal basis in the Los Angeles Basin based on the Normalized Difference Vegetation Index (NDVI). Previous vegetation surveys have estimated tree cover and other vegetation types as isolated "snapshots", but are of limited use in monitoring fine-scale temporal variations, and their implications for municipal water consumption in particular. When the temporal resolution of images is low, it becomes more difficult to distinguish between natural, as contrasted with irrigated, vegetation. Our work therefore should provide a better basis for identifying irrigated vegetation. In addition, we quantified NDVI changes within specific land cover classifications including, but not limited to, grassland, shrub, and developed land classes. These results will be useful in comparing natural and irrigated vegetation within urban and partially urban areas. They will also help us to understand relationships between NDVI and irrigated water use at fine temporal resolutions. Finally, we have created land cover change maps that allow us to examine the impact of historical urban ecosystem changes on the water balance of the Los Angeles Basin (LAB) over the last 30 years. Understanding historical changes is a first step in determining the most practical ways of improving water use sustainability in the Los Angeles urban area.

  9. Is irrigation water price an effective leverage for water management? An empirical study in the middle reaches of the Heihe River basin

    NASA Astrophysics Data System (ADS)

    Zhou, Qing; Wu, Feng; Zhang, Qian

    Serious water scarcity, low water-use efficiency, and over-exploitation of underground water have hindered socio-economic development and led to environmental degradation in the Heihe River basin, northwestern China. Price leveraging is an important tool in water demand management, and it is considered to be effective in promoting water conservation and improving water use efficiency on the premise that water demand is elastic. In the present study, we examine whether price is an effective and applicable instrument for restraining the increasing demand for agricultural irrigation water in the middle reaches of the Heihe River basin and how will it affect farmers' decisions on irrigation and crop structure. Specifically, the price elasticity of agricultural water demand was estimated based on the irrigation water demand function. The results show that the agricultural irrigation water price is statistically significant, but its elasticity is very low under current low water price. Price leverage cannot play a significant role in the context of the current pricing regime and farmers' response to price increase is intrinsically weak. To create incentives for conserving water and improving irrigation efficiency, price mechanism should be accompanied with clearly defined and legally enforceable water rights, restricted water quota measures, and reform of water authorities and water-user associations. Furthermore, increases of surface irrigation water price may lead to the over-withdrawal of groundwater, consequently, effective groundwater licensing and levying must take place to limit the total volume of groundwater withdrawal. In all, improving irrigation efficiency through better management and the adoption of water-saving technologies is the ultimate way to deal with the challenges facing irrigated agriculture in the middle reaches of the Heihe River basin.

  10. Evaluating gridded crop model simulations of evapotranspiration and irrigation using survey and remotely sensed data

    NASA Astrophysics Data System (ADS)

    Lopez Bobeda, J. R.

    2017-12-01

    The increasing use of groundwater for irrigation of crops has exacerbated groundwater sustainability issues faced by water limited regions. Gridded, process-based crop models have the potential to help farmers and policymakers asses the effects water shortages on yield and devise new strategies for sustainable water use. Gridded crop models are typically calibrated and evaluated using county-level survey data of yield, planting dates, and maturity dates. However, little is known about the ability of these models to reproduce observed crop evapotranspiration and water use at regional scales. The aim of this work is to evaluate a gridded version of the Decision Support System for Agrotechnology Transfer (DSSAT) crop model over the continental United States. We evaluated crop seasonal evapotranspiration over 5 arc-minute grids, and irrigation water use at the county level. Evapotranspiration was assessed only for rainfed agriculture to test the model evapotranspiration equations separate from the irrigation algorithm. Model evapotranspiration was evaluated against the Atmospheric Land Exchange Inverse (ALEXI) modeling product. Using a combination of the USDA crop land data layer (CDL) and the USGS Moderate Resolution Imaging Spectroradiometer Irrigated Agriculture Dataset for the United States (MIrAD-US), we selected only grids with more than 60% of their area planted with the simulated crops (corn, cotton, and soybean), and less than 20% of their area irrigated. Irrigation water use was compared against the USGS county level irrigated agriculture water use survey data. Simulated gridded data were aggregated to county level using USDA CDL and USGS MIrAD-US. Only counties where 70% or more of the irrigated land was corn, cotton, or soybean were selected for the evaluation. Our results suggest that gridded crop models can reasonably reproduce crop evapotranspiration at the country scale (RRMSE = 10%).

  11. Adaptability of Irrigation to a Changing Monsoon in India: How far can we go?

    NASA Astrophysics Data System (ADS)

    Zaveri, E.; Grogan, D. S.; Fisher-Vanden, K.; Frolking, S. E.; Wrenn, D. H.; Nicholas, R.

    2014-12-01

    Agriculture and the monsoon are inextricably linked in India. A large part of the steady rise in agricultural production since the onset of the Green Revolution in the 1960's has been attributed to irrigation. Irrigation is used to supplement and buffer crops against precipitation shocks, but water availability for such use is itself sensitive to the erratic, seasonal and spatially heterogeneous nature of the monsoon. We provide new evidence on the relationship between monsoon changes, irrigation variability and water availability by linking a process based hydrology model with an econometric model for one of the world's most water stressed countries. India uses more groundwater for irrigation than any other country, and there is substantial evidence that this has led to depletion of groundwater aquifers. First, we build an econometric model of historical irrigation decisions using detailed agriculture and weather data spanning 35 years. Multivariate regression models reveal that for crops grown in the wet season, irrigation is sensitive to distribution and total monsoon rainfall but not to ground or surface water availability. For crops grown in the dry season, total monsoon rainfall matters most, and its effect is sensitive to groundwater availability. The historical estimates from the econometric model are used to calculate future irrigated areas under three different climate model predictions of monsoon climate for the years 2010 - 2050. These projections are then used as input to a physical hydrology model, which quantifies supply of irrigation water from sustainable sources such as rechargeable shallow groundwater, rivers and reservoirs, to unsustainable sources such as non- rechargeable groundwater. We find that the significant variation in monsoon projections lead to very different results. Crops grown in the dry season show particularly divergent trends between model projections, leading to very different groundwater resource requirements.

  12. Multiple-use Management of Irrigation Systems: Technical Constraints and Challenges

    NASA Astrophysics Data System (ADS)

    Gowing, J.; Li, Q.; Mayilswami, C.; Gunawardhana, K.

    It is now widely recognised that many irrigation systems, originally planned only for irrigation supply, are de facto multiple-use systems. However, the importance of non- irrigation uses (such as bathing, laundry, livestock watering and fishing), to the liveli- hoods of the rural poor has generally been ignored. This has significant implications for irrigation engineers, water resources managers and other decision-makers. An im- proved understanding of competition and complementarity between these uses and irrigation demands is essential for effective multiple-use management of irrigation systems.This paper presents a study of multiple-use management, where the focus is on integrating aquaculture within irrigation systems with and without secondary storage. The Lower Bhavani scheme in South India and Mahaweli System H in Sri- Lanka were selected as representative smallholder irrigation schemes: - The Lower Bhavani scheme comprises a 200km contour canal serving a command area of 78,500ha. Apart from the main dam, there are no storage structures within the irriga- tion system. - Mahaweli System H comprises a command area of 43,000ha served by three main canals. The feature of particular interest in this scheme is the large number of secondary storage structures (known locally as tanks), which are in- tegrated within the canal network. It is apparent from these two sites and from studies elsewhere that non-irrigation uses are important to the livelihoods of the local peo- ple, but these uses are largely opportunistic. The failure to give explicit recognition to non-irrigation uses has important implications for assessments of economic per- formance and water productivity of irrigation systems. However, any attempt to give proper recognition to these alternative uses also has implication for irrigation project management. This paper describes a detailed study of water management in the two irrigation systems. The method of investigation involves in-depth studies in selected distributary commands combined with longitudinal studies based on available long- term data from the full command. The reliability and duration of flows and/or storages represent a constraint to effective integration of aquaculture within the case-study sys- tems. Although fish production is non-consumptive and can be seen as a complemen- tary use of irrigation water, the challenge is to devise operating procedures that will 1 guarantee reliability and duration of flows and/or storages for fish production without increasing total water-use within the system. This is a particular problem during the rainy season when irrigation demand fluctuates widely and rapidly. The problem is ex- acerbated by deficient information systems, which constrain the scope for responsive management in these extensive canal systems. 2

  13. Sorption, desorption and displacement of ibuprofen, estrone, and 17β estradiol in wastewater irrigated and rainfed agricultural soils.

    PubMed

    Durán-Álvarez, Juan C; Prado, Blanca; Ferroud, Anouck; Juayerk, Narcedalia; Jiménez-Cisneros, Blanca

    2014-03-01

    Sorption and leaching potential of ibuprofen, estrone and 17β estradiol were tested in two agricultural soils: one irrigated using municipal wastewater and the other used in rainfed agriculture. Batch sorption-desorption experiments and undisturbed soil column assays were carried out using both soils to which were added a mixture of the target compounds. The three compounds were sorbed to a different extent by both soils: estrone>17β estradiol>ibuprofen. Higher sorption was observed in the irrigated soil, which was attributed to the accumulation of organic matter caused by wastewater irrigation. Desorption of hormones was hysteretic in the irrigated soil, while ibuprofen showed low hysteresis in both soils. Retardation of the compounds' displacement was consistent with the sorption pattern observed in the batch tests. Retardation factor (RF) was similar for the three compounds in the two tested soils, indicating that the target compounds are much more mobile in the soil columns than would be predicted based on their equilibrium sorption parameters. The results obtained in the experiments clarify the role of wastewater irrigated soils as a filter and degradation media for the target micropollutants. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Comparative evaluation of postoperative pain after using endodontic needle and EndoActivator during root canal irrigation: A randomised controlled trial.

    PubMed

    Ramamoorthi, Surendar; Nivedhitha, Malli Sureshbabu; Divyanand, Madras Jeyaprakash

    2015-08-01

    The purpose of this study was to evaluate and compare the postoperative level of pain after activation of irrigants using EndoActivator with conventional needle irrigation during root canal therapy. In this prospective randomised clinical trial, 72 symptomatic irreversible pulpitis patients were selected. Based on block randomisation after routine root canal preparation, patients were assigned to two groups. In group EN, procedures were performed with endodontic irrigating needle (n = 36) while group EA received activation using EndoActivator (n = 36) in the final irrigation protocol. All the participants were called through phone at 8, 24 and 48 h to analyse pain score using visual analogue scale. Those patients who developed pain were prescribed ibuprofen 200 mg. Pain score and frequency of tablet intake were recorded and statistically analysed. Results showed that group EA resulted in significantly less postoperative pain and analgesics intake than group EN. In conclusion, within the limitations of this study, the activation of irrigants using EndoActivator can be considered an effective method for reducing postoperative pain. © 2014 Australian Society of Endodontology.

  15. Sustainable water deliveries from the Colorado River in a changing climate

    PubMed Central

    Barnett, Tim P.; Pierce, David W.

    2009-01-01

    The Colorado River supplies water to 27 million users in 7 states and 2 countries and irrigates over 3 million acres of farmland. Global climate models almost unanimously project that human-induced climate change will reduce runoff in this region by 10–30%. This work explores whether currently scheduled future water deliveries from the Colorado River system are sustainable under different climate-change scenarios. If climate change reduces runoff by 10%, scheduled deliveries will be missed ≈58% of the time by 2050. If runoff reduces 20%, they will be missed ≈88% of the time. The mean shortfall when full deliveries cannot be met increases from ≈0.5–0.7 billion cubic meters per year (bcm/yr) in 2025 to ≈1.2–1.9 bcm/yr by 2050 out of a request of ≈17.3 bcm/yr. Such values are small enough to be manageable. The chance of a year with deliveries <14.5 bcm/yr increases to 21% by midcentury if runoff reduces 20%, but such low deliveries could be largely avoided by reducing scheduled deliveries. These results are computed by using estimates of Colorado River flow from the 20th century, which was unusually wet; if the river reverts to its long-term mean, shortfalls increase another 1–1.5 bcm/yr. With either climate-change or long-term mean flows, currently scheduled future water deliveries from the Colorado River are not sustainable. However, the ability of the system to mitigate droughts can be maintained if the various users of the river find a way to reduce average deliveries. PMID:19380718

  16. Effectiveness of Morinda citrifolia juice as an intracanal irrigant in deciduous molars: An in vivo study

    PubMed Central

    Chandwani, Manisha; Mittal, Rakesh; Chandak, Shweta; Pimpale, Jitesh

    2017-01-01

    Background: The purpose of this study was to evaluate the microbial reduction in deciduous molars using Morinda citrifolia juice (MCJ) as irrigating solution. Materials and Methods: This was a randomized comparative study including 60 deciduous molars chosen among the patients belonging to the age group of 6–9 years based on the inclusion or exclusion criteria. The selected teeth were divided randomly into two groups based on irrigation solution used, that was, Group I (1% NaOCl) and Group II (MCJ). The microbial samples were collected both pre- and post-irrigation and were transferred for microbial assay. Paired t-test was used for intragroup analysis of pre- and post-operative mean reduction of bacterial colony forming unit (CFU)/ml, whereas Independent t-test was used to assess the intergroup, pre- and post-operative mean reduction of bacterial CFU/ml. Results: In the intragroup comparison, both of the groups showed statistically significant (P < 0.001) reduction in the mean CFU/ml; however, it did not show statistically significant reduction when intergroup comparison was carried out between the two groups. Both the study materials had clinically revealed decrease in the microbial count postirrigation. Conclusion: Both the irrigants, 1% NaOCl and MCJ, were significantly effective in the reduction of mean CFUs/ml postoperatively. The results of this study have confirmed the antibacterial effectiveness of MCJ in the root canals of deciduous teeth. Considering the low toxicity and antibacterial effectiveness of MCJ, it can be advocated as a root canal irrigant in endodontic treatment of primary teeth. PMID:28928778

  17. Assessment of village-wise groundwater draft for irrigation: a field-based study in hard-rock aquifers of central India

    NASA Astrophysics Data System (ADS)

    Ray, R. K.; Syed, T. H.; Saha, Dipankar; Sarkar, B. C.; Patre, A. K.

    2017-12-01

    Extracted groundwater, 90% of which is used for irrigated agriculture, is central to the socio-economic development of India. A lack of regulation or implementation of regulations, alongside unrecorded extraction, often leads to over exploitation of large-scale common-pool resources like groundwater. Inevitably, management of groundwater extraction (draft) for irrigation is critical for sustainability of aquifers and the society at large. However, existing assessments of groundwater draft, which are mostly available at large spatial scales, are inadequate for managing groundwater resources that are primarily exploited by stakeholders at much finer scales. This study presents an estimate, projection and analysis of fine-scale groundwater draft in the Seonath-Kharun interfluve of central India. Using field surveys of instantaneous discharge from irrigation wells and boreholes, annual groundwater draft for irrigation in this area is estimated to be 212 × 106 m3, most of which (89%) is withdrawn during non-monsoon season. However, the density of wells/boreholes, and consequent extraction of groundwater, is controlled by the existing hydrogeological conditions. Based on trends in the number of abstraction structures (1982-2011), groundwater draft for the year 2020 is projected to be approximately 307 × 106 m3; hence, groundwater draft for irrigation in the study area is predicted to increase by ˜44% within a span of 8 years. Central to the work presented here is the approach for estimation and prediction of groundwater draft at finer scales, which can be extended to critical groundwater zones of the country.

  18. Efficacy of different irrigation regimes on the push-out bond strength of various resin-based sealers at different root levels: An in vitro study

    PubMed Central

    Verma, Diksha; Taneja, Sonali; Kumari, Manju

    2018-01-01

    Aim: This study aims to evaluate and compare the efficacy of various irrigation regimens on push-out bond strength of AH Plus/gutta-percha, Real Seal/Resilon, and MetaSeal/gutta-percha at three different root levels. Materials and Methods: Single-rooted mandibular premolars (n = 120) were prepared and divided into four groups (n = 30) based on irrigation regimen used: I: 5.25% sodium hypochlorite (NaOCl)-17% ethylenediaminetetraacetic acid (EDTA); II: 5.25% NaOCl-2.25% Peracetic acid (PAA); III: 5.25% NaOCl-18% 1-hydroxyethylidene-1, 1-bisphosphonate (HEBP) (Etidronic Acid); and IV: Distilled Water. Each group was further divided into three subgroups (n = 10); A: AH Plus/gutta-percha; B: MetaSEAL/gutta-percha; C: RealSeal/Resilon. After obturation, roots were sectioned at 3 levels and push-out tests were performed. One-way ANOVA with post hoc Tukey-honestly significant difference tests were applied to assess the significance among various groups. Results: Among irrigants, 2.25% PAA showed significantly lower values when compared with rest of the irrigants. There was no significant difference found among EDTA and HEBP. The push-out bond strength of AH Plus was significantly higher among all sealers. The bond strength values were significantly decreased in apico-coronal direction. Conclusions: There was superior efficacy of EDTA and HEBP on the bond strength of AH Plus at apical root level when compared with other irrigants and sealers at various root levels. PMID:29674811

  19. Salinity trends in the Ebro River (Spain)

    NASA Astrophysics Data System (ADS)

    Lorenzo-Gonzalez, M.° Angeles; Isidoro, Daniel; Quilez, Dolores

    2016-04-01

    In the Ebro River Basin (Spain), the increase in water diversion for irrigation (following the increase in irrigated area) and the recovery of natural vegetation in the upper reaches, along with climate change have induced changes in the river flow and its associated salt loads. This study was supported by the Ebro River Basin Administration (CHE) and aimed to establish the trends in the salt concentrations and loads of the Ebro River at Tortosa (no 027, the extreme downstream gauging station). The CHE databases from 1972-73 to 2011-12, including mean monthly flows (Q) and concentration readings (electrical conductivity converted to total dissolved solids -TDS- by regression) from monthly grab samples, have been used. The trends were established by (i) harmonic regression analysis; (ii) linear regression by month; and (iii) the non-parametric Mann-Kendall method. Additionally, (iv) the regressions of TDS on Q in the current and previous months were established, allowing for analyzing separately the trends in TDS linked to- (TDSq) and independent of- (TDSaj) the observed changes in flow. In all cases, the trends were analyzed for different periods within the full span 1973-2012 (1973 to 2012, 1981 to 2012, 1990-2012 and 2001-2012), trying to account for periods with sensibly similar patterns of land use change. An increase in TDS was found for all the periods analyzed that was lower as shorter periods were used, suggesting that lower salinity changes might be taking place in the last years, possibly due to the reduction in the rate of irrigation development and to the on-going irrigation modernization process. The higher seasonal TDS increases were found in autumn and winter months and the increase in TDS was linked both to intrinsic changes in salinity (TDSaj) and to the observed decrease in flow (TDSq). On the other hand, the salt loads decreased, especially in autumn, as a result of the observed flow decrease. These results are based on the observed evolution of flows and salinity in 1973-2012 and can only be extrapolated into the future if the drivers of this evolution (climate and land use changes) remain unchanged in the following years, what is uncertain. A more comprehensive methodology to estimate the effects of irrigation on water salinity has been developed based on a mass balance approach. Using actual data on volumes and concentrations of return flows observed in the basin (dependent on the actual salinity of soils and waters and the irrigation systems, among other factors), the return flows of the irrigated areas are aggregated to match the actual flows and loads observed in the Ebro River. Once this balance is satisfied, the effect of new irrigated areas, drainage water reuse, irrigation modernization, or climate change would be incorporated to the balance yielding salinity forecasts based on planned irrigation developments and modernization or climate change predictions. A priori, irrigation modernization would produce lower, more concentrated volumes of return flows with lower salt loads that would result in lower TDS concentrations in the Ebro River.

  20. An index-based approach for the sustainability assessment of irrigation practice based on the water-energy-food nexus framework

    NASA Astrophysics Data System (ADS)

    de Vito, Rossella; Portoghese, Ivan; Pagano, Alessandro; Fratino, Umberto; Vurro, Michele

    2017-12-01

    Increasing pressure affects water resources, especially in the agricultural sector, with cascading impacts on energy consumption. This is particularly relevant in the Mediterranean area, showing significant water scarcity problems, further exacerbated by the crucial economic role of agricultural production. Assessing the sustainability of water resource use is thus essential to preserving ecosystems and maintaining high levels of agricultural productivity. This paper proposes an integrated methodology based on the Water-Energy-Food Nexus to evaluate the multi-dimensional implications of irrigation practices. Three different indices are introduced, based on an analysis of the most influential factors. The methodology is then implemented in a catchment located in Puglia (Italy) and a comparative analysis of the three indices is presented. The results mainly highlight that economic land productivity is a key driver of irrigated agriculture, and that groundwater is highly affordable compared to surface water, thus being often dangerously perceived as freely available.

  1. Significant impacts of irrigation water sources and methods on modeling irrigation effects in the ACME Land Model

    DOE PAGES

    Leng, Guoyong; Leung, L. Ruby; Huang, Maoyi

    2017-06-20

    An irrigation module that considers both irrigation water sources and irrigation methods has been incorporated into the ACME Land Model (ALM). Global numerical experiments were conducted to evaluate the impacts of irrigation water sources and irrigation methods on the simulated irrigation effects. All simulations shared the same irrigation soil moisture target constrained by a global census dataset of irrigation amounts. Irrigation has large impacts on terrestrial water balances especially in regions with extensive irrigation. Such effects depend on the irrigation water sources: surface-water-fed irrigation leads to decreases in runoff and water table depth, while groundwater-fed irrigation increases water table depth,more » with positive or negative effects on runoff depending on the pumping intensity. Irrigation effects also depend significantly on the irrigation methods. Flood irrigation applies water in large volumes within short durations, resulting in much larger impacts on runoff and water table depth than drip and sprinkler irrigations. Differentiating the irrigation water sources and methods is important not only for representing the distinct pathways of how irrigation influences the terrestrial water balances, but also for estimating irrigation water use efficiency. Specifically, groundwater pumping has lower irrigation water use efficiency due to enhanced recharge rates. Different irrigation methods also affect water use efficiency, with drip irrigation the most efficient followed by sprinkler and flood irrigation. Furthermore, our results highlight the importance of explicitly accounting for irrigation sources and irrigation methods, which are the least understood and constrained aspects in modeling irrigation water demand, water scarcity and irrigation effects in Earth System Models.« less

  2. Significant impacts of irrigation water sources and methods on modeling irrigation effects in the ACME Land Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leng, Guoyong; Leung, L. Ruby; Huang, Maoyi

    An irrigation module that considers both irrigation water sources and irrigation methods has been incorporated into the ACME Land Model (ALM). Global numerical experiments were conducted to evaluate the impacts of irrigation water sources and irrigation methods on the simulated irrigation effects. All simulations shared the same irrigation soil moisture target constrained by a global census dataset of irrigation amounts. Irrigation has large impacts on terrestrial water balances especially in regions with extensive irrigation. Such effects depend on the irrigation water sources: surface-water-fed irrigation leads to decreases in runoff and water table depth, while groundwater-fed irrigation increases water table depth,more » with positive or negative effects on runoff depending on the pumping intensity. Irrigation effects also depend significantly on the irrigation methods. Flood irrigation applies water in large volumes within short durations, resulting in much larger impacts on runoff and water table depth than drip and sprinkler irrigations. Differentiating the irrigation water sources and methods is important not only for representing the distinct pathways of how irrigation influences the terrestrial water balances, but also for estimating irrigation water use efficiency. Specifically, groundwater pumping has lower irrigation water use efficiency due to enhanced recharge rates. Different irrigation methods also affect water use efficiency, with drip irrigation the most efficient followed by sprinkler and flood irrigation. Furthermore, our results highlight the importance of explicitly accounting for irrigation sources and irrigation methods, which are the least understood and constrained aspects in modeling irrigation water demand, water scarcity and irrigation effects in Earth System Models.« less

  3. Heavy metals concentration in vegetables irrigated with contaminated and fresh water and estimation of their daily intakes in suburb areas of Hamadan, Iran.

    PubMed

    Seid-Mohammadi, Abdolmotaleb; Roshanaei, Ghodratollah; Asgari, Ghorban

    2014-01-01

    This study was conducted to estimate the level of heavy metals accumulate in vegetables irrigated with contaminated water compared with those irrigated with fresh water in Hamadan, west of Iran in 2012. Sixty samples of different vegetables i.e., parsley, tarragon, sweat basil and leek irrigated with contaminated water and thirty six samples from three different adjacent areas irrigated with fresh water as control were analyzed to determine heavy metals. The concentration of heavy metals i.e., lead, cadmium and chromium were achieved using atomic adsorption spectrophotometer. The mean concentration of lead, chromium and cadmium regardless of the kind of vegetables irrigated with contaminated water was 6.24, 1.57 and 0.15 mg/kg, respectively. Moreover, metals uptake differences by the vegetables were recognized to vegetable differences in tolerance to heavy metals. Based on the above concentrations the dietary intakes of metals through vegetables consumption were 0.004, 0.0008 and 6E-05 mg/day in infants for lead, chromium and cadmium, respectively. The high concentration of these heavy metals in some vegetables might be attributed due to the use of untreated sanitary and industrial wastewater by farmers for the irrigation of vegetable lands. Therefore, treating of these wastewater and bioremediation of excess metals from polluted vegetation land could be considered.

  4. Quantifying runoff water quality characteristics from nurseries and avocado groves subjected to altered irrigation and fertilizer regimes

    NASA Astrophysics Data System (ADS)

    Samant, S. A.; Beighley, R. E.

    2007-12-01

    In agriculture, improper, excessive or poorly timed irrigation and fertilizer applications can result in increased pollutants in runoff and degraded water quality. Specifically, the cultivation of salt sensitive plants and nurseries require significant irrigation and fertilizer that leads to high nutrient leaching. In southern California, a large producer of Avocados and nursery plant, waterways are often subjected to elevated nutrient concentrations, which stress the aquatic ecosystem. In this research, the specific objectives are to determine optimal irrigation and fertilizer application rates for minimizing nutrient and sediment export from avocado groves and nurseries. Altered irrigation and fertilizer application experiments will be implemented and monitored at the San Diego State University's Santa Margarita Ecological Reserve, which contains a 12 ha avocado grove and newly constructed 0.4 ha nursery. The study will last for twelve months, with runoff from natural rainfall or irrigation sampled and analyzed for nutrient concentrations on a monthly basis. The growth rate, leaf nutrient content and plant yield will also be monitored monthly. The nursery site is divided into eight plots (13.5-m x 13.5-m), with each plot containing 1200 plants consisting of four commonly used landscaping varieties in southern California. The avocado grove of the Hass variety is divided into four 1-ha plots. The experimental plots represent combinations of irrigation and fertilization practices with different methods and rates. In all cases, irrigation is fully automated based on soil moisture. To assess the effectiveness of the altered irrigation and fertilizer strategies, runoff water quality and plant yield will be compared to controlled treatments. This research is intended to provide a better understanding of how irrigation and fertilizer management can be used for the long-term reduction of nutrients in the Santa Margarita Watershed, which in turn will lead to improved surface water quality, aquatic habitats, and overall stream health. Preliminary results for runoff water quality (N and P) and plant growth characteristics from two months of monitoring are presented.

  5. Monitoring Food Security Indicators from Remote Sensing and Predicting Cereal Production in Afghanistan

    NASA Astrophysics Data System (ADS)

    Pervez, M. S.; Budde, M. E.; Rowland, J.

    2015-12-01

    We extract percent of basin snow covered areas above 2500m elevation from Moderate Resolution Imaging Spectroradiometer (MODIS) 500-meter 8-day snow cover composites to monitor accumulation and depletion of snow in the basin. While the accumulation and depletion of snow cover extent provides an indication of the temporal progression of the snow pack, it does not provide insight into available water for irrigation. Therefore, we use snow model results from the National Operational Hydrologic Remote Sensing Center to quantify snow water equivalent and volume of water available within the snowpack for irrigation. In an effort to understand how water availability, along with its inter-annual variability, relates to the food security of the country, we develop a simple, effective, and easy-to-implement model to identify irrigated areas across the country on both annual and mid-season basis. The model is based on applying thresholds to peak growing season vegetation indices—derived from 250-meter MODIS images—in a decision-tree classifier to separate irrigated crops from non-irrigated vegetation. The spatial distribution and areal estimates of irrigated areas from these maps compare well with irrigated areas classified from multiple snap shots of the landscape from Landsat 5 optical and thermal images over selected locations. We observed that the extents of irrigated areas varied depending on the availability of snowmelt and can be between 1.35 million hectares in a year with significant water deficit and 2.4 million hectares in a year with significant water surplus. The changes in the amount of available water generally can contribute up to a 30% change in irrigated areas. We also observed that the strong correlation between inter-annual variability of irrigated areas and the variability in the country's cereal production could be utilized to predict an annual estimate of cereal production, providing early indication of food security scenarios for the country.

  6. Abattoir Wastewater Irrigation Increases the Availability of Nutrients and Influences on Plant Growth and Development.

    PubMed

    Matheyarasu, Raghupathi; Bolan, Nanthi S; Naidu, Ravi

    This study evaluated the effects of abattoir wastewater irrigation on plant growth and development. The soils used in this study were collected from Primo Smallgoods Abattoir (Port Wakefield, South Australia) at different sites such as currently irrigated (CI), currently not irrigated (CNI) and soil outside the irrigation area as control (CTRL). A completely randomised block design was employed for the plant growth experiment, where four crops (Pennisetum purpureum , Medicago sativa , Sinapis alba and Helianthus annuus ) were grown separately on three different soils (CI, CNI and CTRL) in plastic pots. Two types of water (tap water and wastewater) and two loadings were applied throughout the planting period based on the field capacity (FC 100 and 150 %). The overall dry matter yield was compared between the soils and treatments. Under wastewater irrigation, among the four species grown in the CI soil, P. purpureum (171 g) and H. annuus (151 g) showed high biomass yields, followed by S. alba (115 g) and M. sativa (31 g). The plants grown under tap water showed about 70 % lower yields compared to the abattoir wastewater irrigation (AWW). Similar trends in the biomass yields were observed for CNI and CTRL soils under the two water treatments, with the biomass yields in the following order CI > CNI > CTRL soils. The results confirm the beneficial effects of AWW at the greenhouse level. However, a proper cropping pattern and wastewater irrigation management plan is essential to utilise the nutrients available in the wastewater-irrigated land treatment sites. The increase in fertility is evident from the effects of wastewater on biomass growth and also the abundance of nutrients accumulated in plants. A mass balance calculation on the applied, residual and the plant-accumulated nutrients over a few cropping periods will help us in understanding the nutrient cycling processes involved in the abattoir-irrigated land treatment sites, which will serve as an effective tool for the environmental management.

  7. A generic open-source toolbox to help long term irrigation monitoring for integrated water management in semi-arid Mediterranean areas.

    NASA Astrophysics Data System (ADS)

    Le Page, Michel; Gosset, Cindy; Oueslati, Ines; Calvez, Roger; Zribi, Mehrez; Lili Chabaane, Zohra

    2016-04-01

    In semi arid areas, irrigated plains are often the major consumer of water well beyond other water demands. Traditionally fed by surface water, irrigation has massively shifted to a more reliable resource: groundwater. This shift occurred in the late thirty years has also provoked an extension and intensification of irrigation, often translated into impressive groundwater table decreases. Integrated water management needs a systematic and robust way to estimate the water demands by the agricultural sector. We propose a generic toolbox based on the FAO-56 method and the Crop Coefficient/NDVI approach used in Remote Sensing. The toolbox can be separated in three main areas: 1) It facilitates the preparation of different input datasets: download, domain extraction, homogenization of formats, or spatial interpolation. 2) A collection of algorithms based on the analysis of NDVI time series is proposed: Separation of irrigated vs non-irrigated area, a simplified annual land cover classification, Crop Coefficient, Fraction Cover and Efficient Rainfall. 3) Synthesis against points or areas produces the output data at the desired spatial and temporal resolution for Integrated Water Modeling or data analysis and comparison. The toolbox has been used in order to build a WEAP21 model of the Merguellil basin in Tunisia for the period of 2000-2014. Different meteorological forcings were easily used and compared: WFDEI, AGRI4CAST, MED-CORDEX. A local rain gauges database was used to produce a daily rainfall gridded dataset. MODIS MOD13Q1 (16 days, 250m) data was used to produce the NDVI derived datasets (Kc, Fc, RainEff). Punctual evapotranspiration was compared to actual measurements obtained by flux towers on wheat and barley showing good agreements on a daily basis (r2=0.77). Finally, the comparison to monthly statistics of three irrigated commands was performed over 4 years. This late comparison showed a bad agreement which led us to suppose two things: First, the simple approach of (Evapotranspiration minus Efficient Rainfall) to estimate Irrigation at the monthly time step is not pertinent because only a subset of the irrigated commands is actually irrigated. Hence, a higher spatial resolution of remote sensing imagery is needed. Second, in this particular area, farmers have a different rationale about rainfall and irrigation water needs. Those two aspects need to be further investigated. The toolbox has proven to be an interesting tool to integrate different sources of data, efficiently process them and easily produce input data for the WEAP1 model on a long term range. Yet some new challenges have been raised.

  8. Modelling the influence of irrigation on the shrinking Aral Sea

    NASA Astrophysics Data System (ADS)

    Aus der Beek, Tim; Voss, Frank; Floerke, Martina

    2010-05-01

    The Aral Sea is fed by two tributaries, the Amu Darya and the Syr Darya, and often is considered as one of the most complex hydrological basins of the world. The shrinkage of the Aral Sea during the last 50 years, which has been caused by excessive irrigation projects, has led to numerous ecological, human and economical problems. This study focuses on historic modelling (1960-2002) of the Amu Darya (535,000 km²) and the Syr Darya (219,000 km²) to assess the influence of land-use change, i.e. conversion of non-cultivated land to irrigated crops, on the hydrological cycle and on the shrinkage of the Aral Sea. Therefore, we have compiled crop- and irrigation-specific land use maps in five year intervals from extensive literature and data base reviews. These maps are first applied within the WaterGAP irrigation model, which has been further developed to account for the seven major crops of Central Asia, to compute crop-specific net irrigation requirements. In combination with a newly set up data base on time series of irrigation project efficiencies for Iran, Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan we have also been able to depict crop-specific gross irrigation requirements. These results have then been applied within the WaterGAP hydrology model, where they alter the water balance of each affected grid cell, and thus, runoff generation. All irrigation and hydrology calculations have been conducted in daily time steps and five arc minutes spatial resolution (~ 8 x 10 km grid cells) for the entire Aral Sea basin. Climate forcing data for the 42 year period has been taken from the CRU TS2.1 data set. First results of this model experiment show that not only massive water abstractions have caused the changes in the hydrological regime of both rivers, but also poor land and water management has taken its toll. Between 1960 and 1990 a state driven land use conversion from locally adapted food crops, such as cereals, to water intensive cash crops, such as cotton, has taken place. This and other factors have led to nearly doubling of water withdrawals within the basin. One further example is the on-going construction of the Karakum Canal, which diverts about 18km³ per year from the Amu Darya to the Karakum Desert, causing immense changes in the hydrograph and inflow to the Aral Sea. Due to poor water management, i.e. transmission losses of up to ~12km³ per year and old irrigation systems, most of the diverted canal water cannot be used for irrigation purposes. The influence of climate change in the Aral Sea basin between 1960 and 2002 is evident. However, excessive water abstractions mask climate change induced hydrological regime changes.

  9. Can a canopy temperature-based stress index enhance water use efficiency in irrigated wine grape under arid conditions?

    USDA-ARS?s Scientific Manuscript database

    Enhancement of irrigation water use efficiency and water productivity in arid wine grape production regions is hindered by a lack of automated, real-time methods for monitoring and interpreting vine water status. A normalized, water stress index calculated from real-time vine canopy temperature meas...

  10. Estimating the ratio of pond size to irrigated soybeans land in Mississippi: A case study

    USDA-ARS?s Scientific Manuscript database

    Although more on-farm storage ponds have been constructed in recent years to mitigate groundwater resources depletion in Mississippi, little effort has been devoted to estimating the ratio of pond size to irrigated crop land based on pond matric and its hydrological conditions. Knowledge of this ra...

  11. The use of automated weather stations for irrigation management in the Jordan Valley

    USDA-ARS?s Scientific Manuscript database

    We discuss an irrigation management information system approach developed by NCARE researchers with the help of USDA-ARS. The system is capable of providing farmers with online crop water requirements based on automated meteorological data published on the internet (www.ncare.gov.jo/imis, and www.m...

  12. Bioenergy from coastal bermudagrass receiving subsurface drip irrigation with advance-treated swine wastewater

    USDA-ARS?s Scientific Manuscript database

    Coastal bermudagrass (Cynodon dactylon L.) may be a potentially important source of bio-based energy in the southern United States due to its vast acreage. It is often produced as part of a waste management plan with varying nutrient composition and energy characteristics on fields irrigated with li...

  13. 77 FR 42441 - Small Business Size Standards: Utilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-19

    ... Sector 22 that have receipt based size standards, namely--NAICS 221310, Water Supply and Irrigation...) ($ million) ($ million) 221310, Water supply and irrigation $2.2 $110.7 $7.5 46.5 $886.6 0.854 -15.0% systems... $19 million; and NAICS 221330, Steam and Air-conditioning Supply, from $12.5 million to $14 million...

  14. Manage postharvest deficit irrigation of peach trees using canopy to air temperature

    USDA-ARS?s Scientific Manuscript database

    A field study was conducted to use mid-day canopy to air temperature difference (delta T) to manage postharvest deficit irrigation of peach trees in San Joaquin Valley of California and its performance was evaluated. Delta T thresholds were selected, based on previous years’ stem water potential and...

  15. An intercomparison of evapotranspiration estimates derived using thermal-based satellite remote sensing for irrigation management in California vineyards

    USDA-ARS?s Scientific Manuscript database

    Irrigation in the central valley of California is essential for successful wine grape production, which represents nearly 1 million acres valued at approximately 6 billion dollars. With reductions in water availability and competing water use interests in much of California, there is a critical need...

  16. Effects of Irrigating Tree Seedlings with a Nutrient Solution

    Treesearch

    R. P. Belanger; C. B. Briscoe

    1963-01-01

    Subsurface irrigation with nutrient solution was found to be biologically feasible under the conditions tested. Growth of seedlings was satisfactory, but not unusually good. On the bases of total height growth, and growth in fresh weight, the various fertilizers tested produced statistically different results. The species tested, members of three different families and...

  17. Soil water balance calculation using a two source energy balance model and wireless sensor arrays aboard a center pivot

    USDA-ARS?s Scientific Manuscript database

    Recent developments in wireless sensor technology and remote sensing algorithms, coupled with increased use of center pivot irrigation systems, have removed several long-standing barriers to adoption of remote sensing for real-time irrigation management. One remote sensing-based algorithm is a two s...

  18. Using phyto-recurrent selection to choose Populus genotypes for phytoremediation of landfill leachate

    Treesearch

    Jill A. Zalesny; Ronald S., Jr. Zalesny; Adam H. Wiese; Richard B. Hall

    2006-01-01

    Information about the response of Populus genotypes to landfill leachate irrigation is needed, along with efficient methods for choosing genotypes based on leachate composition. We irrigated poplar clones during three cycles of phyto-recurrent selection to test whether genotypes responded differently to leachate and water, and to test whether our...

  19. Choosing tree genotypes for phytoremediation of landfill leachate using phyto-recurrent selection

    Treesearch

    Jill A. Zalesny; Ronald S., Jr. Zalesny; Adam H. Wiese; Richard B. Hall

    2007-01-01

    Information about the response of poplar (Populus spp.) genotypes to landfill leachate irrigation is needed, along with efficient methods for choosing genotypes based on leachate composition. Poplar clones were irrigated during three cycles of phyto-recurrent selection to test whether genotypes responded differently to leachate and water, and to test...

  20. Leaf temperature of maize and crop water stress index with variable irrigation and nitrogen supply

    USDA-ARS?s Scientific Manuscript database

    Water scarcity due to changing climate, population growth, and economic development is a major threat to the sustainability of irrigated agriculture in the Western United States and other regions around the world. Water stress indices based on crop canopy temperature can be useful for assessing plan...

Top