NASA Astrophysics Data System (ADS)
Qu, Yuanyuan; Li, Feng; Zhou, Hongcai; Zhao, Mingwen
2016-01-01
Light isotopes separation, such as 3He/4He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as 3He/4He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high 3He/4He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H2/D2, H2/T2. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hitchcock, D.; Colon-Mercado, H.; Krentz, T.
Hydrogen isotope separation is critical to the DOE’s mission in environmental remediation and nuclear nonproliferation. Isotope separation is also a critical technology for the NNSA, and the ability to perform the separations at room temperature with a relatively small amount of power and space would be a major advancement for their respective missions. Recent work has shown that 2-D materials such as graphene and hexagonal boron nitride can act as an isotopic sieve at room temperature; efficiently separating hydrogen isotopes in water with reported separation ratios of 10:1 for hydrogen: deuterium separation for a single pass. The work performed heremore » suggests that this technique has merit, and furthermore, we are investigating optimization and scale up of the required 2-D material based membranes.« less
Isotope separation by photodissociation of Van der Waal's molecules
Lee, Yuan T.
1977-01-01
A method of separating isotopes based on the dissociation of a Van der Waal's complex. A beam of molecules of a Van der Waal's complex containing, as one partner of the complex, a molecular species in which an element is present in a plurality of isotopes is subjected to radiation from a source tuned to a frequency which will selectively excite vibrational motion by a vibrational transition or through electronic transition of those complexed molecules of the molecular species which contain a desired isotope. Since the Van der Waal's binding energy is much smaller than the excitational energy of vibrational motion, the thus excited Van der Waal's complex dissociate into molecular components enriched in the desired isotope. The recoil velocity associated with vibrational to translational and rotational relaxation will send the separated molecules away from the beam whereupon the product enriched in the desired isotope can be separated from the constituents of the beam.
Schmarr, Hans-Georg; Wacker, Michael; Mathes, Maximilian
2017-01-20
An isotopic separation of acetaldehyde and acetaldehyde-2,2,2-d3 was achieved in a temperature programmed run on a porous layer open tubular (PLOT) capillary column coated with particles of divinylbenzene ethylene glycol/dimethylacrylate (Rt ® -U-BOND). This is the prerequisite for the development of quantitative analytical methods based on a stable isotope dilution assay (SIDA) without a mass spectrometric detection (non-MS SIDA). For routine analysis a flame ionization detector (FID) can thus be applied as a robust and low-cost alternative. In a preliminary study, static headspace extraction and gas chromatographic separation (HS-GC-FID) of acetaldehyde in aqueous solutions was shown as an application. Good linearity was obtained in a calibration range from 0.4 to 40mgL -1 , with peak integration benefitting from the inverse isotope effect encountered on the specific porous polymer. Furthermore, separation of methanol and deuterated methanol (d3) could also be achieved under the same chromatographic conditions. The achieved isotopic separation of these important volatile compounds now allows non-MS SIDA-based methods that are still to be developed. Copyright © 2016 Elsevier B.V. All rights reserved.
Isotope separation by photoselective dissociative electron capture
Stevens, C.G.
1978-08-29
Disclosed is a method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, [sup 235]UF[sub 6] is separated from a UF[sub 6] mixture by selective excitation followed by dissociative electron capture into [sup 235]UF[sub 5]- and F. 2 figs.
Isotope separation by photoselective dissociative electron capture
Stevens, Charles G. [Pleasanton, CA
1978-08-29
A method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, .sup.235 UF.sub.6 is separated from a UF.sub.6 mixture by selective excitation followed by dissociative electron capture into .sup.235 UF.sub.5 - and F.
Can the waiting-point nucleus 78Ni be studied at an on-line mass-separator?
NASA Astrophysics Data System (ADS)
Wöhr, A.; Andreyev, A.; Bijnens, N.; Breitenbach, J.; Franchoo, S.; Huyse, M.; Kudryavtsev, Y. A.; Piechaczek, A.; Raabe, R. R.; Reusen, I.; Vermeeren, L.; Van Duppen, P.
1997-02-01
Short-lived nickel isotopes have been studied using a chemically selective Ion Guide Laser Ion Source (IGLIS) based on resonance ionisation of atoms at the Leuven Isotope Separator On-Line (LISOL) separator. The decay properties of different Ni isotopes have been studied using β-γ-coincidences. Experimental production rates of proton induced fission of 238U are obtained for 69,71Ni. These numbers are in a strong disagreement with Silberg-Tsao calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarov, G N; Petin, A N
2016-03-31
We report the results of studies on the isotope-selective infrared multiphoton dissociation (IR MFD) of SF{sub 6} and CF{sub 3}I molecules in a pulsed, gas-dynamically cooled molecular flow interacting with a solid surface. The productivity of this method in the conditions of a specific experiment (by the example of SF{sub 6} molecules) is evaluated. A number of low-energy methods of molecular laser isotope separation based on the use of infrared lasers for selective excitation of molecules are analysed and their productivity is estimated. The methods are compared with those of selective dissociation of molecules in the flow interacting with amore » surface. The advantages of this method compared to the low-energy methods of molecular laser isotope separation and the IR MPD method in the unperturbed jets and flows are shown. It is concluded that this method could be a promising alternative to the low-energy methods of molecular laser isotope separation. (laser separation of isotopes)« less
Penning, Holger; Elsner, Martin
2007-11-01
Potentially, compound-specific isotope analysis may provide unique information on source and fate of pesticides in natural systems. Yet for isotope analysis, LC-based methods that are based on the use of organic solvents often cannot be used and GC-based analysis is frequently not possible due to thermolability of the analyte. A typical example of a compound with such properties is isoproturon (3-(4-isopropylphenyl)-1,1-dimethylurea), belonging to the worldwide extensively used phenylurea herbicides. To make isoproturon accessible to carbon and nitrogen isotope analysis, we developed a GC-based method during which isoproturon was quantitatively fragmented to dimethylamine and 4-isopropylphenylisocyanate. Fragmentation occurred only partially in the injector but was mainly achieved on a heated capillary column. The fragments were then chromatographically separated and individually measured by isotope ratio mass spectrometry. The reliability of the method was tested in hydrolysis experiments with three isotopically different batches of isoproturon. For all three products, the same isotope fractionation factors were observed during conversion and the difference in isotope composition between the batches was preserved. This study demonstrates that fragmentation of phenylurea herbicides does not only make them accessible to isotope analysis but even enables determination of intramolecular isotope fractionation.
Stable Isotope Quantitative N-Glycan Analysis by Liquid Separation Techniques and Mass Spectrometry.
Mittermayr, Stefan; Albrecht, Simone; Váradi, Csaba; Millán-Martín, Silvia; Bones, Jonathan
2017-01-01
Liquid phase separation analysis and subsequent quantitation remains a challenging task for protein-derived oligosaccharides due to their inherent structural complexity and diversity. Incomplete resolution or co-detection of multiple glycan species complicates peak area-based quantitation and associated statistical analysis when optical detection methods are used. The approach outlined herein describes the utilization of stable isotope variants of commonly used fluorescent tags that allow for mass-based glycan identification and relative quantitation following separation by liquid chromatography (LC) or capillary electrophoresis (CE). Comparability assessment of glycoprotein-derived oligosaccharides is performed by derivatization with commercially available isotope variants of 2-aminobenzoic acid or aniline and analysis by LC- and CE-mass spectrometry. Quantitative information is attained from the extracted ion chromatogram/electropherogram ratios generated from the light and heavy isotope clusters.
Stormflow-hydrograph separation based on isotopes: the thrill is gone--what's next?
Burns, Douglas A.
2002-01-01
Beginning in the 1970s, the promise of a new method for separatingstormflow hydrographs using18O,2H, and3Hprovedanirresistibletemptation, and was a vast improvement over graphical separationand solute tracer methods that were prevalent at the time. Eventu-ally, hydrologists realized that this new method entailed a plethoraof assumptions about temporal and spatial homogeneity of isotopiccomposition (many of which were commonly violated). Nevertheless,hydrologists forged ahead with dozens of isotope-based hydrograph-separation studies that were published in the 1970s and 1980s.Hortonian overland flow was presumed dead. By the late 1980s,the new isotope-based hydrograph separation technique had movedinto adolescence, accompanied by typical adolescent problems suchas confusion and a search for identity. As experienced hydrologistscontinued to use the isotope technique to study stormflow hydrol-ogy in forested catchments in humid climates, their younger peersfollowed obligingly—again and again. Was Hortonian overland flowreally dead and forgotten, though? What about catchments in whichpeople live and work? And what about catchments in dry climatesand the tropics? How useful were study results when several of theassumptions about the homogeneity of source waters were commonlyviolated? What if two components could not explain the variation ofisotopic composition measured in the stream during stormflow? Andwhat about uncertainty? As with many new tools, once the initialshine wore off, the limitations of the method became a concern—oneof which was that isotope-based hydrograph separations alone couldnot reveal much about the flow paths by which water arrives at astream channel during storms.
Pin, Christian; Gannoun, Abdelmouhcine
2017-02-21
A fast and efficient sample preparation method in view of isotope ratio measurements is described, allowing the separation of 11 elements involved, either as "parent" or as "daughter" isotopes, in six radiogenic isotope systems used as chronometers and tracers in earth, planetary, and environmental sciences. The protocol is based on small extraction chromatographic columns, used either alone or in tandem, through which a single nitric acid solution is passed, without any intervening evaporation step. The columns use commercially available extraction resins (Sr resin, TRU resin, Ln resin, RE resin, and again Ln resin for isolating Sr and Pb, LREE then La-Ce-Nd-Sm, Lu(Yb), and Hf, Th, and U, respectively) along with an additional, in-house prepared resin for separating Rb. A simplified scheme is proposed for samples requiring the separation of Sr, Pb, Nd, and Hf only. Adverse effects of troublesome major elements (Fe 3+ , Ti) are circumvented by masking with ascorbic acid and hydrofluoric acid, respectively. Typical recoveries in the 85-95% range are achieved, with procedural blanks of 10-100 pg, negligible with regard to the amounts of analytes processed. The fractions separated are suitable for high precision isotope ratio measurements by TIMS or MC-ICP-MS, as demonstrated by the repeat analyses of several international reference materials of basaltic composition for 87 Sr/ 86 Sr, 208,207,206 Pb/ 204 Pb, 143 Nd/ 144 Nd, 176 Hf/ 177 Hf, and 230 Th/ 232 Th. Concentration data could be obtained by spiking and equilibrating the sample with appropriate isotopic tracers before the onset of the separation process and, finally, measuring the isotope ratios modified by the isotope dilution process.
Isotope separation by photochromatography
Suslick, Kenneth S.
1977-01-01
An isotope separation method which comprises physically adsorbing an isotopically mixed molecular species on an adsorptive surface and irradiating the adsorbed molecules with radiation of a predetermined wavelength which will selectively excite a desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thereby separate them from the unexcited undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes.
Analysis and simulation of industrial distillation processes using a graphical system design model
NASA Astrophysics Data System (ADS)
Boca, Maria Loredana; Dobra, Remus; Dragos, Pasculescu; Ahmad, Mohammad Ayaz
2016-12-01
The separation column used for experimentations one model can be configured in two ways: one - two columns of different diameters placed one within the other extension, and second way, one column with set diameter [1], [2]. The column separates the carbon isotopes based on the cryogenic distillation of pure carbon monoxide, which is fed at a constant flow rate as a gas through the feeding system [1],[2]. Based on numerical control systems used in virtual instrumentation was done some simulations of the distillation process in order to obtain of the isotope 13C at high concentrations. The experimental installation for cryogenic separation can be configured from the point of view of the separation column in two ways: Cascade - two columns of different diameters and placed one in the extension of the other column, and second one column with a set diameter. It is proposed that this installation is controlled to achieve data using a data acquisition tool and professional software that will process information from the isotopic column based on a logical dedicated algorithm. Classical isotopic column will be controlled automatically, and information about the main parameters will be monitored and properly display using one program. Take in consideration the very-low operating temperature, an efficient thermal isolation vacuum jacket is necessary. Since the "elementary separation ratio" [2] is very close to unity in order to raise the (13C) isotope concentration up to a desired level, a permanent counter current of the liquid-gaseous phases of the carbon monoxide is created by the main elements of the equipment: the boiler in the bottom-side of the column and the condenser in the top-side.
Isotope separation by photochromatography
Suslick, K.S.
1975-10-03
A photochromatographic method for isotope separation is described. An isotopically mixed molecular species is adsorbed on an adsorptive surface, and the adsorbed molecules are irradiated with radiation of a predetermined wavelength which will selectively excite desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thus separate them from the undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes. (BLM)
Method for separating isotopes
Jepson, B.E.
1975-10-21
Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether.
Wei, Rongfei; Guo, Qingjun; Wen, Hanjie; Peters, Marc; Yang, Junxing; Tian, Liyan; Han, Xiaokun
2017-01-01
In this study, key factors affecting the chromatographic separation of Cd from plants, such as the resin column, digestion and purification procedures, were experimentally investigated. A technique for separating Cd from plant samples based on single ion-exchange chromatography has been developed, which is suitable for the high-precision analysis of Cd isotopes by multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The robustness of the technique was assessed by replicate analyses of Cd standard solutions and plant samples. The Cd yields of the whole separation process were higher than 95%, and the 114/110 Cd values of three Cd second standard solutions (Münster Cd, Spex Cd, Spex-1 Cd solutions) relative to the NIST SRM 3108 were measured accurately, which enabled the comparisons of Cd isotope results obtained in other laboratories. Hence, stable Cd isotope analyses represent a powerful tool for fingerprinting specific Cd sources and/or examining biogeochemical reactions in ecological and environmental systems.
[Baseflow separation methods in hydrological process research: a review].
Xu, Lei-Lei; Liu, Jing-Lin; Jin, Chang-Jie; Wang, An-Zhi; Guan, De-Xin; Wu, Jia-Bing; Yuan, Feng-Hui
2011-11-01
Baseflow separation research is regarded as one of the most important and difficult issues in hydrology and ecohydrology, but lacked of unified standards in the concepts and methods. This paper introduced the theories of baseflow separation based on the definitions of baseflow components, and analyzed the development course of different baseflow separation methods. Among the methods developed, graph separation method is simple and applicable but arbitrary, balance method accords with hydrological mechanism but is difficult in application, whereas time series separation method and isotopic method can overcome the subjective and arbitrary defects caused by graph separation method, and thus can obtain the baseflow procedure quickly and efficiently. In recent years, hydrological modeling, digital filtering, and isotopic method are the main methods used for baseflow separation.
Apparatus and process for separating hydrogen isotopes
Heung, Leung K; Sessions, Henry T; Xiao, Xin
2013-06-25
The apparatus and process for separating hydrogen isotopes is provided using dual columns, each column having an opposite hydrogen isotopic effect such that when a hydrogen isotope mixture feedstock is cycled between the two respective columns, two different hydrogen isotopes are separated from the feedstock.
Attomole quantitation of protein separations with accelerator mass spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogel, J S; Grant, P G; Buccholz, B A
2000-12-15
Quantification of specific proteins depends on separation by chromatography or electrophoresis followed by chemical detection schemes such as staining and fluorophore adhesion. Chemical exchange of short-lived isotopes, particularly sulfur, is also prevalent despite the inconveniences of counting radioactivity. Physical methods based on isotopic and elemental analyses offer highly sensitive protein quantitation that has linear response over wide dynamic ranges and is independent of protein conformation. Accelerator mass spectrometry quantifies long-lived isotopes such as 14C to sub-attomole sensitivity. We quantified protein interactions with small molecules such as toxins, vitamins, and natural biochemicals at precisions of 1-5% . Micro-proton-induced-xray-emission quantifies elemental abundancesmore » in separated metalloprotein samples to nanogram amounts and is capable of quantifying phosphorylated loci in gels. Accelerator-based quantitation is a possible tool for quantifying the genome translation into proteome.« less
Method for separating boron isotopes
Rockwood, Stephen D.
1978-01-01
A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.
Future Opportunities at the Facility for Rare Isotope Beams
NASA Astrophysics Data System (ADS)
Sherrill, Bradley M.
2018-05-01
This paper overviews the Facility for Rare Isotope Beams, FRIB, its construction status at the time of the conference, and its scientific program. FRIB is based on a high-power, heavy-ion, superconducting linear accelerator that is designed to deliver at least 400kW at 200 MeV/u for all stable-ion beams and produce a large fraction of all possible isotopes of the elements. A three-stage fragment separator will separate rare isotope beams for use in experiments at high energy or stopped and reaccelerated to up to 10MeV/u. The facility is expected to have first beams in 2021. An overview of the planned scientific program, experimental capabilities, and equipment initiatives are presented.
Quantum tunneling of thermal protons through pristine graphene.
Poltavsky, Igor; Zheng, Limin; Mortazavi, Majid; Tkatchenko, Alexandre
2018-05-28
Engineering of atomically thin membranes for hydrogen isotope separation is an actual challenge which has a broad range of applications. Recent experiments [M. Lozada-Hidalgo et al., Science 351, 68 (2016)] unambiguously demonstrate an order-of-magnitude difference in permeabilities of graphene-based membranes to protons and deuterons at ambient conditions, making such materials promising for novel separation technologies. Here we demonstrate that the permeability mechanism in such systems changes from quantum tunneling for protons to quasi-classical transport for heavier isotopes. Quantum nuclear effects exhibit large temperature and mass dependence, modifying the Arrhenius activation energy and Arrhenius prefactor for protons by more than 0.5 eV and by seven orders of magnitude correspondingly. Our findings not only shed light on the separation process for hydrogen isotope ions passing through pristine graphene but also offer new insights for controlling ion transport mechanisms in nanostructured separation membranes by manipulating the shape of the barrier and transport process conditions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Illustrative List of Lithium Isotope Separation Facilities... Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's Export Licensing Authority a. Facilities or plants for the separation of lithium isotopes. b...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Illustrative List of Lithium Isotope Separation Facilities... Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's Export Licensing Authority a. Facilities or plants for the separation of lithium isotopes. b...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Illustrative List of Lithium Isotope Separation Facilities... Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's Export Licensing Authority a. Facilities or plants for the separation of lithium isotopes. b...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Illustrative List of Lithium Isotope Separation Facilities... Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's Export Licensing Authority a. Facilities or plants for the separation of lithium isotopes. b...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Illustrative List of Lithium Isotope Separation Facilities... Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's Export Licensing Authority a. Facilities or plants for the separation of lithium isotopes. b...
Conformational effect of dicyclo-hexano-18-crown-6 on isotopic fractionation of zinc: DFT approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boda, A.; Singha Deb, A. K.; Ali, Sk. M.
2014-04-24
Generalized gradient approximated BP86 density functional employing triple zeta valence plus polarization (TZVP) basis set has been used to compute the reduced partition function ratio and isotopic separation factor for zinc isotopes. The isotopic separation factor was found to be in good agreement with the experimental results. The isotopic separation factor was found to depend on the conformation of the crown ether ligand. The trans-trans conformation shows the highest fractionation compared to cis-cis conformer. The present theoretical results can thus be used to plan the isotope separation experiments.
Kim, Jin Yeong; Balderas-Xicohténcatl, Rafael; Zhang, Linda; Kang, Sung Gu; Hirscher, Michael; Oh, Hyunchul; Moon, Hoi Ri
2017-10-25
Deuterium plays a pivotal role in industrial and scientific research, and is irreplaceable for various applications such as isotope tracing, neutron moderation, and neutron scattering. In addition, deuterium is a key energy source for fusion reactions. Thus, the isolation of deuterium from a physico-chemically almost identical isotopic mixture is a seminal challenge in modern separation technology. However, current commercial approaches suffer from extremely low separation efficiency (i.e., cryogenic distillation, selectivity of 1.5 at 24 K), requiring a cost-effective and large-scale separation technique. Herein, we report a highly effective hydrogen isotope separation system based on metal-organic frameworks (MOFs) having the highest reported separation factor as high as ∼26 at 77 K by maximizing synergistic effects of the chemical affinity quantum sieving (CAQS) and kinetic quantum sieving (KQS). For this purpose, the MOF-74 system having high hydrogen adsorption enthalpies due to strong open metal sites is chosen for CAQS functionality, and imidazole molecules (IM) are employed to the system for enhancing the KQS effect. To the best of our knowledge, this work is not only the first attempt to implement two quantum sieving effects, KQS and CAQS, in one system, but also provides experimental validation of the utility of this system for practical industrial usage by isolating high-purity D 2 through direct selective separation studies using 1:1 D 2 /H 2 mixtures.
NASA Astrophysics Data System (ADS)
Orlov, A. A.; Ushakov, A. A.; Sovach, V. P.
2017-03-01
We have developed and realized on software a mathematical model of the nonstationary separation processes proceeding in the cascades of gas centrifuges in the process of separation of multicomponent isotope mixtures. With the use of this model the parameters of the separation process of germanium isotopes have been calculated. It has been shown that the model adequately describes the nonstationary processes in the cascade and is suitable for calculating their parameters in the process of separation of multicomponent isotope mixtures.
Scalable and efficient separation of hydrogen isotopes using graphene-based electrochemical pumping
NASA Astrophysics Data System (ADS)
Lozada-Hidalgo, M.; Zhang, S.; Hu, S.; Esfandiar, A.; Grigorieva, I. V.; Geim, A. K.
2017-05-01
Thousands of tons of isotopic mixtures are processed annually for heavy-water production and tritium decontamination. The existing technologies remain extremely energy intensive and require large capital investments. New approaches are needed to reduce the industry's footprint. Recently, micrometre-size crystals of graphene are shown to act as efficient sieves for hydrogen isotopes pumped through graphene electrochemically. Here we report a fully-scalable approach, using graphene obtained by chemical vapour deposition, which allows a proton-deuteron separation factor of around 8, despite cracks and imperfections. The energy consumption is projected to be orders of magnitude smaller with respect to existing technologies. A membrane based on 30 m2 of graphene, a readily accessible amount, could provide a heavy-water output comparable to that of modern plants. Even higher efficiency is expected for tritium separation. With no fundamental obstacles for scaling up, the technology's simplicity, efficiency and green credentials call for consideration by the nuclear and related industries.
Laser isotope separation of erbium and other isotopes
Haynam, Christopher A.; Worden, Earl F.
1995-01-01
Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of .sup.167 Er. The hyperfine structure of .sup.167 Er was used to find two three-step photoionization pathways having a common upper energy level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menes, F.
1961-12-01
A process is given for the separation of isotopes by reflux electromigration of fused salts. The process is carried out in a countercurrent manner on a fused mixture of a salt containing the isotopic cations with a salt having the same anion and a cation with a mobility as near as possible to that of the isotopic cations. An electrolytic cell for carrying out the process is described. Examples are presented of the process in which lithium-6 and lithium-7 are separated in a LiBr-KBr mixture, and calcium isotopes are separated in CaBr/sub 2/-KBr and CaBr/sub 2/- LiBr systems. (N.W.R.)
Vogl, Jochen; Paz, Boaz; Koenig, Maren; Pritzkow, Wolfgang
2013-03-01
A modified Pb-matrix separation procedure using NH4HCO3 solution as eluent has been developed and validated for determination of Pb isotope amount ratios by thermal ionization mass spectrometry. The procedure is based on chromatographic separation using the Pb·Spec resin and an in-house-prepared NH4HCO3 solution serving as eluent. The advantages of this eluent are low Pb blanks (<40 pg mL(-1)) and the property that NH4HCO3 can be easily removed by use of a heating step (>60 °C). Pb recovery is >95 % for water samples. For archaeological silver samples, however, the Pb recovery is reduced to approximately 50 %, but causes no bias in the determination of Pb isotope amount ratios. The validated procedure was used to determine lead isotope amount ratios in Trojan silver artefacts with expanded uncertainties (k = 2) <0.09 %.
The chemical and isotopic differentiation of an epizonal magma body: Organ Needle pluton, New Mexico
Verplanck, P.L.; Farmer, G.L.; McCurry, M.; Mertzman, S.A.
1999-01-01
Major and trace element, and Nd and Sr isotopic compositions of whole rocks and mineral separates from the Oligocene, alkaline Organ Needle pluton (ONP), southern New Mexico, constrain models for the differentiation of the magma body parental to this compositionally zoned and layered epizonal intrusive body. The data reveal that the pluton is rimmed by lower ??(Nd) (~-5) and higher 87Sr/86Sr (~0.7085) syenitic rocks than those in its interior (??(Nd) ~ 2, 87Sr/86Sr ~0.7060) and that the bulk compositions of the marginal rocks become more felsic with decreasing structural depth. At the deepest exposed levels of the pluton, the ??(Nd)~-5 lithology is a compositionally heterogeneous inequigranular syenite. Modal, compositional and isotopic data from separates of rare earth element (REE)-bearing major and accesory mineral phases (hornblende, titanite, apatite, zircon) demonstrate that this decoupling of trace and major elements in the inequigranular syenite results from accumulation of light REE (LREE)-bearing minerals that were evidently separated from silicic magmas as the latter rose along the sides of the magma chamber. Chemical and isotopic data for microgranular mafic enclaves, as well as for restite xenoliths of Precambrian granite wall rock, indicate that the isotopic distinction between the marginal and interior facies of the ONP probably reflects assimilation of the wall rock by ??(Nd) ~-2 mafic magmas near the base of the magma system. Fractional crystallization and crystal liquid separation of the crystally contaminated magma at the base and along the margins of the chamber generated the highly silicic magmas that ultimately pooled at the chamber top.
Method of isotope separation by chemi-ionization
Wexler, Sol; Young, Charles E.
1977-05-17
A method for separating specific isotopes present in an isotopic mixture by aerodynamically accelerating a gaseous compound to form a jet of molecules, and passing the jet through a stream of electron donor atoms whereby an electron transfer takes place, thus forming negative ions of the molecules. The molecular ions are then passed through a radiofrequency quadrupole mass filter to separate the specific isotopes. This method may be used for any compounds having a sufficiently high electron affinity to permit negative ion formation, and is especially useful for the separation of plutonium and uranium isotopes.
Laser isotope separation of erbium and other isotopes
Haynam, C.A.; Worden, E.F.
1995-08-22
Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of {sup 167}Er. The hyperfine structure of {sup 167}Er was used to find two three-step photoionization pathways having a common upper energy level. 3 figs.
NASA Astrophysics Data System (ADS)
Ma, J.; Zhang, Z.; Wei, G.; Zhang, L.
2017-12-01
A method including a novel column Rb separation procedure and high-precision Rb isotope measurement in geological materials by using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) in standard-sample-bracketing (SSB) mode has been developed. Sr-Spec resin was employed, in which the distribution coefficients for Rb, K, Ba and Sr are different in nitric acid, to sequentially separate them from the matrix. The dissolved samples were loaded on the column in 3 M HNO3, the main matrix such as Al, Ca, Fe, Mg, Mn and Na were removed by rinsing with 4.5 mL HNO3, Rb and K were then sequentially eluted by 3 M HNO3 in different volumes. After that, Ba was eluted by 8 M HNO3, and Sr was finally eluted by Milli-Q water. This enable us to collect the pure Rb, K, Ba and Sr one by one with recovery close to 100% for their isotopic compositions measurement on MC-ICP-MS. We here focus on Rb isotope measurement. The measurement using MC-ICP-MS yielded an internal precision for δ87Rb of < ± 0.03‰ (2SE), and the external precision was generally better than ± 0.06‰ (2SD) based on the long-term results of the Rb standard solutions NIST SRM 984. A series of geological rock standards, were analyzed using this method, and the results indicate significant Rb isotope differences in different geologic materials. This will provide a powerful tool to investigate Rb isotope fractionation during geological processes.Based on this method, Rb isotope compositions from a basaltic weathering profile were carried out. The data show the lighter Rb (85Rb) isotope is preferentially leached from the weathering profile and remains heavy Rb isotope (87Rb) in the weathered residues during the incipient weathering stage. From the moderate to advanced weathering stage, the significant variations of Rb isotope were observed and multiple factors, such as leaching, adsorption, desorption, and precipitation, should play important role in fractionating Rb isotope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menes, F.; Dirian, G.; Roth, E.
1962-01-01
The method of counter-current electromigration in molten salts was applied to CaBr/sub 2/ with an alkali metal bromide added to the cathode compartment. Enrichments on Ca/sup 46/ greater than a factor of two were obtained at the anode. The mass effect was found to be about 0.06. An estimation of the cost of energy for a process based on this method was made. (auth)
NASA Technical Reports Server (NTRS)
Pizzarello, S.; Feng, X.; Epstein, S.; Cronin, J. R.
1994-01-01
The combined volatile bases (ammonia, aliphatic amines, and possibly other bases), ammonia, amino acids, and polar hydrocarbons were prepared from the Murchison meteorite for isotopic analyses. The volatile bases were obtained by cryogenic transfer after acid-hydrolysis of a hot-water extract and analyzed by combined gas chromatography-mass spectrometry of pentafluoropropionyl derivatives. The aliphatic amines present in this preparation comprise a mixture that includes both primary and secondary isomers through C5 at a total concentration of > or = 100 nmoles g-1. As commonly observed for meteoritic organic compounds, almost all isomers through C5 are present, and the concentrations within homologous series decrease with increasing chain length. Ammonia was chromatographically separated from the other volatile bases and found at a concentration of 1.1-1.3 micromoles g-1 meteorite. The ammonia analyzed includes contributions from ammonium salts and the hydrolysis of extractable organic compounds, e.g., carboxamides. Stable isotope analyses showed the volatile bases to be substantially enriched in the heavier isotopes, relative to comparable terrestrial compounds delta D < or = +1221%; delta 13C = +22%; delta 15N = +93%). Ammonia, per se, was found to have a somewhat lower delta 15N value (+69%) than the total volatile bases; consequently, a higher delta 15N (>93%) can be inferred for the other bases, which include the amines. Solvent-extractable polar hydrocarbons obtained separately were found to be enriched in 15N (delta 15N = +104%). Total amino acids, prepared from a hydrolyzed hot-water extract by cation exchange chromatography, gave a delta 15N of +94%, a value in good agreement with that obtained previously. Nitrogen isotopic data are also given for amino acid fractions separated chromatographically. The delta 15N values of the Murchison soluble organic compounds analyzed to date fall within a rather narrow range (delta 15N = +94 +/- 8%), an observation consistent with their formation, or formation of their precursors, by interstellar chemistry.
The current status of the MASHA setup
NASA Astrophysics Data System (ADS)
Vedeneev, V. Yu.; Rodin, A. M.; Krupa, L.; Belozerov, A. V.; Chernysheva, E. V.; Dmitriev, S. N.; Gulyaev, A. V.; Gulyaeva, A. V.; Kamas, D.; Kliman, J.; Komarov, A. B.; Motycak, S.; Novoselov, A. S.; Salamatin, V. S.; Stepantsov, S. V.; Podshibyakin, A. V.; Yukhimchuk, S. A.; Granja, C.; Pospisil, S.
2017-11-01
The MASHA setup designed as the mass-separator with the resolving power of about 1700, which allows mass identification of superheavy nuclides is described. The setup uses solid ISOL (Isotope Separation On-Line) method. In the present article the upgrade of some parts of MASHA are described: target box (rotating target + hot catcher), ion source based on electron cyclotron resonance, data acquisition, beam diagnostics and control systems. The upgrade is undertaken in order to increase the total separation efficiency, reduce the separation time, of the installation and working stability and make possible continuous measurements at high beam currents. Ion source efficiency was measured in autonomous regime with using calibrated gas leaks of Kr and Xe injected directly to ion source. Some results of the first experiments for production of radon isotopes using the multi-nucleon transfer reaction 48Ca+242Pu are described in the present article. The using of TIMEPIX detector with MASHA setup for neutron-rich Rn isotopes identification is also described.
Method for discriminative particle selection
Post, Richard F.
1992-01-01
The invention is a method and means for separating ions or providing an ion beam. The invention generates ions of the isotopes to be separated, and then provides a traveling electric potential hill created by a sequential series of quasi static electric potential hills. By regulating the velocity and potential amplitude of the traveling electric potential hill ionized isotopes are selectively positively or negatively accelerated. Since the ionized isotopes have differing final velocities, the isotopes may be collected separately or used to produce an ion beam of a selected isotope.
Method and apparatus for separation of heavy and tritiated water
Lee, Myung W.
2001-01-01
The present invention is a bi-thermal membrane process for separating and recovering hydrogen isotopes from a fluid containing hydrogen isotopes, such as water and hydrogen gas. The process in accordance with the present invention provides counter-current cold and hot streams of the fluid separated with a thermally insulating and chemically transparent proton exchange membrane (PEM). The two streams exchange hydrogen isotopes through the membrane: the heavier isotopes migrate into the cold stream, while the lighter isotopes migrate into the hot stream. The heavy and light isotopes are continuously withdrawn from the cold and hot streams respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Ray
Y-12 separated isotopes to win the war, then during the 1950s separated isotopes to save lives. Y-12's calutrons were used for a peacetime mission in the stable isotope program. Y-12 provided stable isotopes for research in medicine, agriculture, industry and biology.
Smith, Ray
2018-06-04
Y-12 separated isotopes to win the war, then during the 1950s separated isotopes to save lives. Y-12's calutrons were used for a peacetime mission in the stable isotope program. Y-12 provided stable isotopes for research in medicine, agriculture, industry and biology.
Basic features of boron isotope separation by SILARC method in the two-step iterative static model
NASA Astrophysics Data System (ADS)
Lyakhov, K. A.; Lee, H. J.
2013-05-01
In this paper we develop a new static model for boron isotope separation by the laser assisted retardation of condensation method (SILARC) on the basis of model proposed by Jeff Eerkens. Our model is thought to be adequate to so-called two-step iterative scheme for isotope separation. This rather simple model helps to understand combined action on boron separation by SILARC method of all important parameters and relations between them. These parameters include carrier gas, molar fraction of BCl3 molecules in carrier gas, laser pulse intensity, gas pulse duration, gas pressure and temperature in reservoir and irradiation cells, optimal irradiation cell and skimmer chamber volumes, and optimal nozzle throughput. A method for finding optimal values of these parameters based on some objective function global minimum search was suggested. It turns out that minimum of this objective function is directly related to the minimum of total energy consumed, and total setup volume. Relations between nozzle throat area, IC volume, laser intensity, number of nozzles, number of vacuum pumps, and required isotope production rate were derived. Two types of industrial scale irradiation cells are compared. The first one has one large throughput slit nozzle, while the second one has numerous small nozzles arranged in parallel arrays for better overlap with laser beam. It is shown that the last one outperforms the former one significantly. It is argued that NO2 is the best carrier gas for boron isotope separation from the point of view of energy efficiency and Ar from the point of view of setup compactness.
Tripp, Jennifer A; McCullagh, James S O; Hedges, Robert E M
2006-01-01
Analysis of stable and radioactive isotopes from bone collagen provides useful information to archaeologists about the origin and age of bone artifacts. Isolation and analysis of single amino acids from the proteins can provide additional and more accurate information by removing contamination and separating a bulk isotope signal into its constituent parts. In this paper, we report a new method for the separation and isolation of underivatized amino acids from bone collagen, and their analysis by isotope ratio MS and accelerator MS. RP chromatography is used to separate the amino acids with nonpolar side chains, followed by an ion pair separation to isolate the remaining amino acids. The method produces single amino acids with little or no contamination from the separation process and allows for the measurement of accurate stable isotope ratios and pure samples for radiocarbon dating.
New Fragment Separation Technology for Superheavy Element Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaughnessy, D A; Moody, K J; Henderson, R A
2008-01-28
This project consisted of three major research areas: (1) development of a solid Pu ceramic target for the MASHA separator, (2) chemical separation of nuclear decay products, and (3) production of new isotopes and elements through nuclear reactions. There have been 16 publications as a result of this project, and this collection of papers summarizes our accomplishments in each of the three areas of research listed above. The MASHA (Mass Analyzer for Super-Heavy Atoms) separator is being constructed at the U400 Cyclotron at the Flerov Laboratory of Nuclear Reactions in Dubna, Russia. The purpose of the separator is to physicallymore » separate the products from nuclear reactions based on their isotopic masses rather than their decay characteristics. The separator was designed to have a separation between isotopic masses of {+-}0.25 amu, which would enable the mass of element 114 isotopes to be measured with outstanding resolution, thereby confirming their discovery. In order to increase the production rate of element 114 nuclides produced via the {sup 244}Pu+{sup 48}Ca reaction, a new target technology was required. Instead of a traditional thin actinide target, the MASHA separator required a thick, ceramic-based Pu target that was thick enough to increase element 114 production while still being porous enough to allow reaction products to migrate out of the target and travel through the separator to the detector array located at the back end. In collaboration with UNLV, we began work on development of the Pu target for MASHA. Using waste-form synthesis technology, we began by creating zirconia-based matrices that would form a ceramic with plutonium oxide. We used samarium oxide as a surrogate for Pu and created ceramics that had varying amounts of the starting materials in order to establish trends in material density and porosity. The results from this work are described in more detail in Refs. [1,4,10]. Unfortunately, work on MASHA was delayed in Russia because it was found that the efficiency of transporting products from the target chamber to the detector array was much too low for applications in heavy element experiments where production rates are on the order of one atom per day or less. Work continues on the MASHA separator, and once the efficiency has been improved, we plan to continue our work on the Pu target for future element 114 experiments. Due to the delays of the MASHA separator, work on establishing the identity of heavy element species produced through nuclear reactions focused instead on chemical separations. In particular, element 115 decays through a series of alpha decays, terminating with an element 105 isotope with a long half-life ({approx} 1 day). By chemically separating the element 105 daughter and observing its subsequent fission decay, the identity of the original parent nucleus can be established through the genetic correlation of the initial series of alpha decays. Chemical separations of element 105 were developed in Switzerland, Russia, and at LLNL. Over the course of two experiments, reaction products from the {sup 243}Am+{sup 48}Ca reaction were collected in a copper block and subsequently processed for chemical separation of the Group Five elements [8,9,13,15]. The Group Five elements were initially separated from the Group Four species, and then the samples were sub-divided into tantalum and niobium fractions. All of the fission events were observed in the tantalum fractions, which implied that element 105 behaved more like tantalum under the chemical conditions of these experiments. These experiments were very successful, and not only demonstrated that chemical separation could be performed on single atoms of interest, but also lent proof to the identity of the parent nucleus as element 115. Subsequent analysis of the alpha spectra taken during the experiment further prove that the fission events observed during the two experiments came from element 105 as the decay daughter of element 115 and could not attributed to interference from other background species [16]. The final aspect of this project was the production of new isotopes and elements. All of the experiments were performed in Dubna at the U400 Cyclotron and the results are described in more detail in Refs. [2,3,5-8,11,12,14]. The first experiments were designed to establish the decay properties of isotopes of elements 112, 114, and 116 [5]. Because these isotopic signatures were established through these initial experiments, the discovery of element 118 [11] was possible, since the 118 nuclides decayed into these previously studied isotopes. This was the first successful report of the discovery of element 118, which was reported by the media to a large extent. The last experiment that was performed for this project was the production and detection of a new isotope of element 113 [14].« less
Laser-induced separation of hydrogen isotopes in the liquid phase
Freund, Samuel M.; Maier, II, William B.; Beattie, Willard H.; Holland, Redus F.
1980-01-01
Hydrogen isotope separation is achieved by either (a) dissolving a hydrogen-bearing feedstock compound in a liquid solvent, or (b) liquefying a hydrogen-bearing feedstock compound, the liquid phase thus resulting being kept at a temperature at which spectral features of the feedstock relating to a particular hydrogen isotope are resolved, i.e., a clear-cut isotope shift is delineated, irradiating the liquid phase with monochromatic radiation of a wavelength which at least preferentially excites those molecules of the feedstock containing a first hydrogen isotope, inducing photochemical reaction in the excited molecules, and separating the reaction product containing the first isotope from the liquid phase.
Asara, John M; Zhang, Xiang; Zheng, Bin; Christofk, Heather H; Wu, Ning; Cantley, Lewis C
2006-01-01
Most proteomics approaches for relative quantification of protein expression use a combination of stable-isotope labeling and mass spectrometry. Traditionally, researchers have used difference gel electrophoresis (DIGE) from stained 1D and 2D gels for relative quantification. While differences in protein staining intensity can often be visualized, abundant proteins can obscure less abundant proteins, and quantification of post-translational modifications is difficult. A method is presented for quantifying changes in the abundance of a specific protein or changes in specific modifications of a protein using In-gel Stable-Isotope Labeling (ISIL). Proteins extracted from any source (tissue, cell line, immunoprecipitate, etc.), treated under two experimental conditions, are resolved in separate lanes by gel electrophoresis. The regions of interest (visualized by staining) are reacted separately with light versus heavy isotope-labeled reagents, and the gel slices are then mixed and digested with proteases. The resulting peptides are then analyzed by LC-MS to determine relative abundance of light/heavy isotope pairs and analyzed by LC-MS/MS for identification of sequence and modifications. The strategy compares well with other relative quantification strategies, and in silico calculations reveal its effectiveness as a global relative quantification strategy. An advantage of ISIL is that visualization of gel differences can be used as a first quantification step followed by accurate and sensitive protein level stable-isotope labeling and mass spectrometry-based relative quantification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liezers, Martin; Lehn, Scott A; Olsen, Khris B
2009-10-01
Electrochemically modulated separations (EMS) are shown to be a rapid and selective means of extracting and concentrating Pu from complex solutions prior to isotopic analysis by inductively coupled plasma mass spectrometry (ICP-MS). This separation is performed in a flow injection mode, on-line with the ICP-MS. A three-electrode, flow-by electrochemical cell is used to accumulate Pu at an anodized glassy carbon electrode by redox conversion of Pu(III) to Pu (IV&VI). The entire process takes place in 2% v/v (0.46M) HNO 3. No redox chemicals or acid concentration changes are required. Plutonium accumulation and release is redox dependent and controlled by themore » applied cell potential. Thus large transient volumetric concentration enhancements can be achieved. Based on more negative U(IV) potentials relative to Pu(IV), separation of Pu from uranium is efficient, thereby eliminating uranium hydride interferences. EMS-ICP-MS isotope ratio measurement performance will be presented for femtogram to attogram level plutonium concentrations.« less
Photochemical isotope separation
Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith
1987-01-01
A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.
Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Boyer, Keith; Greiner, Norman R.
1988-01-01
A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.
Isotope separation by laser means
Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith
1982-06-15
A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.
DeWitt, Robert; Jepson, Bernhart E.; Schwind, Roger A.
1976-06-22
Sulfur isotopes are continuously separated and enriched using a closed loop reflux system wherein sulfur dioxide (SO.sub.2) is reacted with sodium hydroxide (NaOH) or the like to form sodium hydrogen sulfite (NaHSO.sub.3). Heavier sulfur isotopes are preferentially attracted to the NaHSO.sub.3, and subsequently reacted with sulfuric acid (H.sub.2 SO.sub.4) forming sodium hydrogen sulfate (NaHSO.sub.4) and SO.sub.2 gas which contains increased concentrations of the heavier sulfur isotopes. This heavy isotope enriched SO.sub.2 gas is subsequently separated and the NaHSO.sub.4 is reacted with NaOH to form sodium sulfate (Na.sub.2 SO.sub.4) which is subsequently decomposed in an electrodialysis unit to form the NaOH and H.sub.2 SO.sub.4 components which are used in the aforesaid reactions thereby effecting sulfur isotope separation and enrichment without objectionable loss of feed materials.
Aspects regarding at 13C isotope separation column control using Petri nets system
NASA Astrophysics Data System (ADS)
Boca, M. L.; Ciortea, M. E.
2015-11-01
This paper is intended to show that Petri nets can be also applicable in the chemical industry. It used linear programming, modeling underlying Petri nets, especially discrete event systems for isotopic separation, the purpose of considering and control events in real-time through graphical representations. In this paper it is simulate the control of 13C Isotope Separation column using Petri nets. The major problem with 13C comes from the difficulty of obtaining it and raising its natural fraction. Carbon isotopes can be obtained using many methods, one of them being the cryogenic distillation of carbon monoxide. Some few aspects regarding operating conditions and the construction of such cryogenic plants are known today, and even less information are available as far as the separation process modeling and control are concerned. In fact, the efficient control of the carbon monoxide distillation process represents a necessity for large-scale 13C production. Referring to a classic distillation process, some models for carbon isotope separation have been proposed, some based on mass, component and energy balance equations, some on the nonlinear wave theory or the Cohen equations. For modeling the system it was used Petri nets because in this case it is deal with discrete event systems. In use of the non-timed and with auxiliary times Petri model, the transport stream was divided into sections and these sections will be analyzed successively. Because of the complexity of the system and the large amount of calculations required it was not possible to analyze the system as a unitary whole. A first attempt to model the system as a unitary whole led to the blocking of the model during simulation, because of the large processing times.
NASA Astrophysics Data System (ADS)
Watkins, James M.; DePaolo, Donald J.; Ryerson, Frederick J.; Peterson, Brook T.
2011-06-01
Molecular diffusion in natural volcanic liquids discriminates between isotopes of major ions (e.g., Fe, Mg, Ca, and Li). Although isotope separation by diffusion is expected on theoretical grounds, the dependence on mass is highly variable for different elements and in different media. Silicate liquid diffusion experiments using simple liquid compositions were carried out to further probe the compositional dependence of diffusive isotopic discrimination and its relationship to liquid structure. Two diffusion couples consisting of the mineral constituents anorthite (CaAl 2Si 2O 8; denoted AN), albite (NaAlSi 3O 8; denoted AB), and diopside (CaMgSi 2O 6; denoted DI) were held at 1450 °C for 2 h and then quenched to ambient pressure and temperature. Major-element as well as Ca and Mg isotope profiles were measured on the recovered quenched glasses. In both experiments, Ca diffuses rapidly with respect to Si. In the AB-AN experiment, D Ca/ D Si ≈ 20 and the efficiency of isotope separation for Ca is much greater than in natural liquid experiments where D Ca/ D Si ≈ 1. In the AB-DI experiment, D Ca/ D Si ≈ 6 and the efficiency of isotope separation is between that of the natural liquid experiments and the AB-AN experiment. In the AB-DI experiment, D Mg/ D Si ≈ 1 and the efficiency of isotope separation for Mg is smaller than it is for Ca yet similar to that observed for Mg in natural liquids. The results from the experiments reported here, in combination with results from natural volcanic liquids, show clearly that the efficiency of diffusive separation of Ca isotopes is systematically related to the solvent-normalized diffusivity - the ratio of the diffusivity of the cation ( D Ca) to the diffusivity of silicon ( D Si). The results on Ca isotopes are consistent with available data on Fe, Li, and Mg isotopes in silicate liquids, when considered in terms of the parameter D cation/ D Si. Cations diffusing in aqueous solutions display a similar relationship between isotopic separation efficiency and Dcation/D, although the efficiencies are smaller than in silicate liquids. Our empirical relationship provides a tool for predicting the magnitude of diffusive isotopic effects in many geologic environments and a basis for a more comprehensive theory of isotope separation in liquid solutions. We present a conceptual model for the relationship between diffusivity and liquid structure that is consistent with available data.
Galler, Patrick; Limbeck, Andreas; Boulyga, Sergei F; Stingeder, Gerhard; Hirata, Takafumi; Prohaska, Thomas
2007-07-01
This work introduces a newly developed on-line flow injection (FI) Sr/Rb separation method as an alternative to the common, manual Sr/matrix batch separation procedure, since total analysis time is often limited by sample preparation despite the fast rate of data acquisition possible by inductively coupled plasma-mass spectrometers (ICPMS). Separation columns containing approximately 100 muL of Sr-specific resin were used for on-line FI Sr/matrix separation with subsequent determination of (87)Sr/(86)Sr isotope ratios by multiple collector ICPMS. The occurrence of memory effects exhibited by the Sr-specific resin, a major restriction to the repetitive use of this costly material, could successfully be overcome. The method was fully validated by means of certified reference materials. A set of two biological and six geological Sr- and Rb-bearing samples was successfully characterized for its (87)Sr/(86)Sr isotope ratios with precisions of 0.01-0.04% 2 RSD (n = 5-10). Based on our measurements we suggest (87)Sr/(86)Sr isotope ratios of 0.713 15 +/- 0.000 16 (2 SD) and 0.709 31 +/- 0.000 06 (2 SD) for the NIST SRM 1400 bone ash and the NIST SRM 1486 bone meal, respectively. Measured (87)Sr/(86)Sr isotope ratios for five basalt samples are in excellent agreement with published data with deviations from the published value ranging from 0 to 0.03%. A mica sample with a Rb/Sr ratio of approximately 1 was successfully characterized for its (87)Sr/(86)Sr isotope signature to be 0.718 24 +/- 0.000 29 (2 SD) by the proposed method. Synthetic samples with Rb/Sr ratios of up to 10/1 could successfully be measured without significant interferences on mass 87, which would otherwise bias the accuracy and uncertainty of the obtained data.
Method for sequential injection of liquid samples for radioisotope separations
Egorov, Oleg B.; Grate, Jay W.; Bray, Lane A.
2000-01-01
The present invention is a method of separating a short-lived daughter isotope from a longer lived parent isotope, with recovery of the parent isotope for further use. Using a system with a bi-directional pump and one or more valves, a solution of the parent isotope is processed to generate two separate solutions, one of which contains the daughter isotope, from which the parent has been removed with a high decontamination factor, and the other solution contains the recovered parent isotope. The process can be repeated on this solution of the parent isotope. The system with the fluid drive and one or more valves is controlled by a program on a microprocessor executing a series of steps to accomplish the operation. In one approach, the cow solution is passed through a separation medium that selectively retains the desired daughter isotope, while the parent isotope and the matrix pass through the medium. After washing this medium, the daughter is released from the separation medium using another solution. With the automated generator of the present invention, all solution handling steps necessary to perform a daughter/parent radionuclide separation, e.g. Bi-213 from Ac-225 "cow" solution, are performed in a consistent, enclosed, and remotely operated format. Operator exposure and spread of contamination are greatly minimized compared to the manual generator procedure described in U.S. patent application Ser. No. 08/789,973, now U.S. Pat. No. 5,749,042, herein incorporated by reference. Using 16 mCi of Ac-225 there was no detectable external contamination of the instrument components.
The influence of kinetics on the oxygen isotope composition of calcium carbonate
NASA Astrophysics Data System (ADS)
Watkins, James M.; Nielsen, Laura C.; Ryerson, Frederick J.; DePaolo, Donald J.
2013-08-01
Paleotemperature reconstructions rely on knowledge of the equilibrium separation of oxygen isotopes between aqueous solution and calcium carbonate. Although oxygen isotope separation is expected on theoretical grounds, the temperature-dependence remains uncertain because other factors, such as slow exchange of isotopes between dissolved CO2-species and water, can obscure the temperature signal. This is problematic for crystal growth experiments on laboratory timescales and for interpreting the oxygen isotope composition of crystals formed in natural settings. We present results from experiments in which inorganic calcite is precipitated in the presence of 0.25 μM dissolved bovine carbonic anhydrase (CA). The presence of dissolved CA accelerates oxygen isotope equilibration between the dissolved carbon species CO2, H2CO3, HCO3-, CO32- and water, thereby eliminating this source of isotopic disequilibrium during calcite growth. The experimental results allow us to isolate, for the first time, kinetic oxygen isotope effects occurring at the calcite-water interface. We present a framework of ion-by-ion growth of calcite that reconciles our new measurements with measurements of natural cave calcites that are the best candidate for having precipitated under near-equilibrium conditions. Our findings suggest that isotopic equilibrium between calcite and water is unlikely to have been established in laboratory experiments or in many natural settings. The use of CA in carbonate precipitation experiments offers new opportunities to refine oxygen isotope-based geothermometers and to interrogate environmental variables other than temperature that influence calcite growth rates.
Mass dependence of calcium isotope fractionations in crown-ether resin chromatography.
Fujii, Yasuhiko; Nomura, Masao; Kaneshiki, Tositaka; Sakuma, Yoichi; Suzuki, Tatsuya; Umehara, Saori; Kishimoto, Tadahumi
2010-06-01
Benzo 18-crown-6-ether resin was synthesised by the phenol condensation polymerisation process in porous silica beads, of which particle diameter was ca 60micro Calcium adsorption chromatography was performed with the synthesised resin packed in a glass column. The effluent was sampled in fractions, and the isotopic abundance ratios of (42)Ca, (43)Ca, (44)Ca, and (48)Ca against (40)Ca were measured by a thermo-ionisation mass spectrometer. The enrichment of heavier calcium isotopes was observed at the front boundary of calcium adsorption chromatogram. The mass dependence of mutual separation of calcium isotopes was analysed by using the three-isotope-plots method. The slopes of three-isotope-plots indicate the relative values of mutual separation coefficients for concerned isotopic pairs. The results have shown the normal mass dependence; isotope fractionation is proportional to the reduced mass difference, (M - M')/MM', where M and M' are masses of heavy and light isotope, respectively. The mass dependence clarifies that the isotope fractionations are originated from molecular vibration. The observed separation coefficient epsilon is 3.1x10(-3) for the pair of (40)Ca and (48)Ca. Productivity of enriched (48)Ca by crown-ether-resin was discussed as the function of the separation coefficient and the height equivalent to the theoretical plate.
Robinson, C.P.; Reed, J.J.; Cotter, T.P.; Boyer, K.; Greiner, N.R.
1975-11-26
A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light is described. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.
Photochemical isotope separation
Robinson, C.P.; Jensen, R.J.; Cotter, T.P.; Greiner, N.R.; Boyer, K.
1987-04-28
A process is described for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium. 8 figs.
NASA Astrophysics Data System (ADS)
Redondo, L. M.; Silva, J. Fernando; Canacsinh, H.; Ferrão, N.; Mendes, C.; Soares, R.; Schipper, J.; Fowler, A.
2010-07-01
A new circuit topology is proposed to replace the actual pulse transformer and thyratron based resonant modulator that supplies the 60 kV target potential for the ion acceleration of the On-Line Isotope Mass Separator accelerator, the stability of which is critical for the mass resolution downstream separator, at the European Organization for Nuclear Research. The improved modulator uses two solid-state switches working together, each one based on the Marx generator concept, operating as series and parallel switches, reducing the stress on the series stacked semiconductors, and also as auxiliary pulse generator in order to fulfill the target requirements. Preliminary results of a 10 kV prototype, using 1200 V insulated gate bipolar transistors and capacitors in the solid-state Marx circuits, ten stages each, with an electrical equivalent circuit of the target, are presented, demonstrating both the improved voltage stability and pulse flexibility potential wanted for this new modulator.
Oh, Hyunchul; Savchenko, Ievgeniia; Mavrandonakis, Andreas; Heine, Thomas; Hirscher, Michael
2014-01-28
Separating gaseous mixtures that consist of very similar size is one of the critical issues in modern separation technology. Especially, the separation of the isotopes hydrogen and deuterium requires special efforts, even though these isotopes show a very large mass ratio. Conventionally, H/D separation can be realized through cryogenic distillation of the molecular species or the Girdler-sulfide process, which are among the most energy-intensive separation techniques in the chemical industry. However, costs can be significantly reduced by using highly mass-selective nanoporous sorbents. Here, we describe a hydrogen isotope separation strategy exploiting the strongly attractive open metal sites present in nanoporous metal-organic frameworks of the CPO-27 family (also referred to as MOF-74). A theoretical analysis predicts an outstanding hydrogen isotopologue separation at open metal sites due to isotopal effects, which has been directly observed through cryogenic thermal desorption spectroscopy. For H2/D2 separation of an equimolar mixture at 60 K, the selectivity of 12 is the highest value ever measured, and this methodology shows extremely high separation efficiencies even above 77 K. Our theoretical results imply also a high selectivity for HD/H2 separation at similar temperatures, and together with catalytically active sites, we propose a mechanism to produce D2 from HD/H2 mixtures with natural or enriched deuterium content.
Liquid-phase thermal diffusion isotope separation apparatus and method having tapered column
Rutherford, William M.
1988-05-24
A thermal diffusion counterflow method and apparatus for separating isotopes in solution in which the solution is confined in a long, narrow, vertical slit which tapers from bottom to top. The variation in the width of the slit permits maintenance of a stable concentration distribution with relatively long columns, thus permitting isotopic separation superior to that obtainable in the prior art.
Liquid-phase thermal diffusion isotope separation apparatus and method having tapered column
Rutherford, W.M.
1985-12-04
A thermal diffusion counterflow method and apparatus for separating isotopes in solution in which the solution is confined in a long, narrow, vertical slit which tapers from bottom to top. The variation in the width of the slit permits maintenance of a stable concentration distribution with relatively long columns, thus permitting isotopic separation superior to that obtained in the prior art.
Eggenkamp, H G M; Louvat, P
2018-04-30
In natural samples bromine is present in trace amounts, and measurement of stable Br isotopes necessitates its separation from the matrix. Most methods described previously need large samples or samples with high Br/Cl ratios. The use of metals as reagents, proposed in previous Br distillation methods, must be avoided for multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) analyses, because of risk of cross-contamination, since the instrument is also used to measure stable isotopes of metals. Dedicated to water and evaporite samples with low Br/Cl ratios, the proposed method is a simple distillation that separates bromide from chloride for isotopic analyses by MC-ICP-MS. It is based on the difference in oxidation potential between chloride and bromide in the presence of nitric acid. The sample is mixed with dilute (1:5) nitric acid in a distillation flask and heated over a candle flame for 10 min. The distillate (bromine) is trapped in an ammonia solution and reduced to bromide. Chloride is only distilled to a very small extent. The obtained solution can be measured directly by MC-ICP-MS for stable Br isotopes. The method was tested for a variety of volumes, ammonia concentrations, pH values and distillation times and compared with the classic ion-exchange chromatography method. The method more efficiently separates Br from Cl, so that samples with lower Br/Cl ratios can be analysed, with Br isotope data in agreement with those obtained by previous methods. Unlike other Br extraction methods based on oxidation, the distillation method presented here does not use any metallic ion for redox reactions that could contaminate the mass spectrometer. It is efficient in separating Br from samples with low Br/Cl ratios. The method ensures reproducible recovery yields and a long-term reproducibility of ±0.11‰ (1 standard deviation). The distillation method was successfully applied to samples with low Br/Cl ratios and low Br amounts (down to 20 μg). Copyright © 2018 John Wiley & Sons, Ltd.
Method for isotope separation by photodeflection
Bernhardt, Anthony F.
1977-01-01
In the method of separating isotopes wherein a desired isotope species is selectively deflected out of a beam of mixed isotopes by irradiating the beam with a directed beam of light of narrowly defined frequency which is selectively absorbed by the desired species, the improvement comprising irradiating the deflected beam with light from other light sources whose frequencies are selected to cause the depopulation of any metastable excited states.
Fernández-Fernández, Mario; Rodríguez-González, Pablo; Añón Álvarez, M Elena; Rodríguez, Felix; Menéndez, Francisco V Álvarez; García Alonso, J Ignacio
2015-04-07
This work describes the first multiple spiking isotope dilution procedure for organic compounds using (13)C labeling. A double-spiking isotope dilution method capable of correcting and quantifying the creatine-creatinine interconversion occurring during the analytical determination of both compounds in human serum is presented. The determination of serum creatinine may be affected by the interconversion between creatine and creatinine during sample preparation or by inefficient chemical separation of those compounds by solid phase extraction (SPE). The methodology is based on the use differently labeled (13)C analogues ((13)C1-creatinine and (13)C2-creatine), the measurement of the isotopic distribution of creatine and creatinine by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and the application of multiple linear regression. Five different lyophilized serum-based controls and two certified human serum reference materials (ERM-DA252a and ERM-DA253a) were analyzed to evaluate the accuracy and precision of the proposed double-spike LC-MS/MS method. The methodology was applied to study the creatine-creatinine interconversion during LC-MS/MS and gas chromatography-mass spectrometry (GC-MS) analyses and the separation efficiency of the SPE step required in the traditional gas chromatography-isotope dilution mass spectrometry (GC-IDMS) reference methods employed for the determination of serum creatinine. The analysis of real serum samples by GC-MS showed that creatine-creatinine separation by SPE can be a nonquantitative step that may induce creatinine overestimations up to 28% in samples containing high amounts of creatine. Also, a detectable conversion of creatine into creatinine was observed during sample preparation for LC-MS/MS. The developed double-spike LC-MS/MS improves the current state of the art for the determination of creatinine in human serum by isotope dilution mass spectrometry (IDMS), because corrections are made for all the possible errors derived from the sample preparation step.
NASA Astrophysics Data System (ADS)
Ushakov, Anton; Orlov, Alexey; Sovach, Victor P.
2018-03-01
This article presents the results of research filling of gas centrifuge cascade for separation of the multicomponent isotope mixture with process gas by various feed flow rate. It has been used mathematical model of the nonstationary hydraulic and separation processes occurring in the gas centrifuge cascade. The research object is definition of the regularity transient of nickel isotopes into cascade during filling of the cascade. It is shown that isotope concentrations into cascade stages after its filling depend on variable parameters and are not equal to its concentration on initial isotope mixture (or feed flow of cascade). This assumption is used earlier any researchers for modeling such nonstationary process as set of steady-state concentration of isotopes into cascade. Article shows physical laws of isotope distribution into cascade stage after its filling. It's shown that varying each parameters of cascade (feed flow rate, feed stage number or cascade stage number) it is possible to change isotope concentration on output cascade flows (light or heavy fraction) for reduction of duration of further process to set of steady-state concentration of isotopes into cascade.
NASA Astrophysics Data System (ADS)
Ohkouchi, Naohiko; Ogawa, Nanako O.; Chikaraishi, Yoshito; Tanaka, Hiroyuki; Wada, Eitaro
2015-12-01
We review the biochemical and physiological bases of the use of carbon and nitrogen isotopic compositions as an approach for environmental and ecological studies. Biochemical processes commonly observed in the biosphere, including the decarboxylation and deamination of amino acids, are the key factors in this isotopic approach. The principles drawn from the isotopic distributions disentangle the complex dynamics of the biosphere and allow the interactions between the geosphere and biosphere to be analyzed in detail. We also summarize two recently examined topics with new datasets: the isotopic compositions of individual biosynthetic products (chlorophylls and amino acids) and those of animal organs for further pursuing the basis of the methodology. As a tool for investigating complex systems, compound-specific isotopic analysis compensates the intrinsic disadvantages of bulk isotopic signatures. Chlorophylls provide information about the particular processes of various photoautotrophs, whereas amino acids provide a precise measure of the trophic positions of heterotrophs. The isotopic distributions of carbon and nitrogen in a single organism as well as in the whole biosphere are strongly regulated, so that their major components such as amino acids are coordinated appropriately rather than controlled separately.
Development of Improved Burnable Poisons for Commercial Nuclear Power Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. L. Grossbeck J-P.A. Renier Tim Bigelow
2003-09-30
Burnable poisons are used in nuclear reactors to produce a more level distribution of power in the reactor core and to reduce to necessity for a large control system. An ideal burnable poison would burn at the same rate as the fuel. In this study, separation of neutron-absorbing isotopes was investigated in order to eliminate isotopes that remain as absorbers at the end of fuel life, thus reducing useful fuel life. The isotopes Gd-157, Dy-164, and Er-167 were found to have desirable properties. These isotopes were separated from naturally occurring elements by means of plasma separation to evaluate feasibility andmore » cost. It was found that pure Gd-157 could save approximately $6 million at the end of four years. However, the cost of separation, using the existing facility, made separation cost- ineffective. Using a magnet with three times the field strength is expected to reduce the cost by a factor of ten, making isotopically separated burnable poisons a favorable method of increasing fuel life in commercial reactors, in particular Generation-IV reactors. The project also investigated various burnable poison configurations, and studied incorporation of metallic burnable poisons into fuel cladding.« less
USDA-ARS?s Scientific Manuscript database
The doubly labeled water method is considered the reference method to measure energy expenditure. Conventional mass spectrometry requires a separate aliquot of the same sample to be prepared and analyzed separately. With continuous-flow isotope-ratio mass spectrometry, the same sample could be analy...
NASA Astrophysics Data System (ADS)
Granet, M.; Nonell, A.; Favre, G.; Chartier, F.; Isnard, H.; Moureau, J.; Caussignac, C.; Tran, B.
2008-11-01
In the general frameworks of the nuclear fuel cycle and environmental research field, the Cs isotopic composition must be known with high precision and accuracy. The direct determination of Cs isotopes by mass spectrometry techniques is generally hampered by the presence of Ba isobaric interferences however. Here we present a new method which takes advantage of the collision-reaction cell based Multiple Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS) and allows to analyse Cs isotopes in the presence of Ba without prior separation step. The addition of N 2O gas in the cell leads to an antagonistic behavior of Cs + and Ba + as the latter reacts with the gas to form BaO + and BaOH + products whereas Cs + remains unreactive. The efficiency of the method was demonstrated for an UOx sample by comparing the results obtained (1) from the measurements of pure Cs fractions and (2) from Fission Products fractions containing more than 30 ionisable elements in addition to Cs, Ba, and where U and Pu were previously removed by using ion exchange resin. An excellent agreement is achieved between each set of experiments with an external reproducibility always better than 0.5% (RSD, k = 2). This study confirms the strong potential of collision-reaction cell to measure Cs isotopes in presence of interfering Ba, precluding therefore former systematic chemical separations.
Nuclear spectroscopy of r-process nuclei around N = 126 using KISS
NASA Astrophysics Data System (ADS)
Hirayama, Y.; Watanabe, Y. X.; Miyatake, H.; Schury, P.; Wada, M.; Oyaizu, M.; Kakiguchi, Y.; Mukai, M.; Kimura, S.; Ahmed, M.; Jeong, S. C.; Moon, J. Y.; Park, J. H.
2017-09-01
The beta-decay properties and atomic mass of nuclei with neutron magic number of N = 126 are considered critical for understanding the production of heavy elements such as gold and platinum at astrophysical sites. We will produce and measure the half-lives and masses of the nuclei with Z = 74-77 around N = 126 by using the multinucleon transfer (MNT) reaction of ^{136} Xe/ ^{238} U beams and ^{198} Pt target system. For this purpose, we have constructed the KEK Isotope Separation System (KISS) at RIKEN RIBF facility. KISS consists of an argon gas cell based laser ion source (atomic number selection) and an isotope separation on-line (ISOL) (mass number selection), to produce pure low-energy beams of neutron-rich isotopes around N = 126 . We performed the on-line tests to study the basic properties of the KISS and, successfully extracted laser-ionized nuclei around N = 126.
Atomic vapor laser isotope separation process
Wyeth, R.W.; Paisner, J.A.; Story, T.
1990-08-21
A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique. 23 figs.
Advances in the measurement of sulfur isotopes by multi-collector ICP-MS (MC-ICP- MS)
NASA Astrophysics Data System (ADS)
Ridley, W. I.; Wilson, S. A.; Anthony, M. W.
2006-12-01
The demonstrated capability to measure 34S/32S by MC-ICP-MS with a precision (2ó) of ~0.2 per mil has many potential applications in geochemistry. However, a number of obstacles limit this potential. First, to achieve the precision indicated above requires sufficient mass resolution to separate isobaric interferences of 16O2 and 17O2 on 32S and 34S, respectively. These requirements for high resolution mean overall instrument sensitivity is reduced. Second, current methods preclude analysis of samples with complex matrices, a common characteristic of sulfur-bearing geologic materials. Here, we describe and discuss a method that provides both efficient removal of matrix constituents, and provides pre-concentration of S, thus overcoming these obstacles. The method involves the separation of sulfur from matrix constituents by high pressure (1000 psi) ion chromatography (HPIC), followed by isotope measurement using MC-ICP-MS. This combination allows for analysis of liquid samples with a wide range of S concentrations. A powerful advantage of this technique is the efficient separation of many sulfur species from matrix cations and anions (for instance in a seawater or acid mine drainage matrix), as well as the separation of sulfur species, e.g., sulfate, sulfite, thiosulfate, thiocynate, from each other for isotope analysis. The automated HPIC system uses a carbonate-bicarbonate eluent with eluent suppression, and has sufficient baseline separation to collect the various sulfur species as pure fractions. The individual fractions are collected over a specific time interval based upon a pre-determined elution profile and peak retention times. The addition of a second ion exchange column into the system allows pre-concentration of sulfur species by 2-3 orders of magnitude for samples that otherwise would have sulfur concentrations too low to provide precise isotopic ratios. The S isotope ratios are measured by MC-ICP-MS using a desolvating sample introduction system, a standard-sample bracketing method employing standards that are well characterized for sulfur isotope composition using stable isotope gas mass spectrometry. Data are collected in time-resolved mode, which reduces analytical time and allows for flexibility in data integration. Preliminary data indicates that sulfur species do not fractionate during the column chemistry.
Possible application of laser isotope separation
NASA Technical Reports Server (NTRS)
Delionback, L. M.
1975-01-01
The laser isotope separation process is described and its special economic features discussed. These features are its low cost electric power operation, capital investment costs, and the costs of process materials.
A Summary of Actinide Enrichment Technologies and Capability Gaps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patton, Bradley D.; Robinson, Sharon M.
2017-01-01
The evaluation performed in this study indicates that a new program is needed to efficiently provide a national actinide radioisotope enrichment capability to produce milligram-to-gram quantities of unique materials for user communities. This program should leverage past actinide enrichment, the recent advances in stable isotope enrichment, and assessments of the future requirements to cost effectively develop this capability while establishing an experience base for a new generation of researchers in this vital area. Preliminary evaluations indicate that an electromagnetic isotope separation (EMIS) device would have the capability to meet the future needs of the user community for enriched actinides. Themore » EMIS technology could be potentially coupled with other enrichment technologies, such as irradiation, as pre-enrichment and/or post-enrichment systems to increase the throughput, reduce losses of material, and/or reduce operational costs of the base EMIS system. Past actinide enrichment experience and advances in the EMIS technology applied in stable isotope separations should be leveraged with this new evaluation information to assist in the establishment of a domestic actinide radioisotope enrichment capability.« less
Isotope Separation in Concurrent Gas Centrifuges
NASA Astrophysics Data System (ADS)
Bogovalov, S. V.; Borman, V. D.
An analytical equation defining separative power of an optimized concurrent gas centrifuge is obtained for an arbitrary binary mixture of isotopes. In the case of the uranium isotopes the equation gives δU= 12.7(V/700 m/s)2(300 K/T)L, kg SWU/yr, where L and V are the length and linear velocity of the rotor of the gas centrifuge, T is the temperature. This formula well agrees with an empirical separative power of counter current gas centrifuges.
NASA Astrophysics Data System (ADS)
Palkin, V. A.; Igoshin, I. S.
2017-01-01
The separation potentials suggested by various researchers for separating multicomponent isotopic mixtures are considered. An estimation of their applicability to determining the parameters of the efficiency of enrichment of a ternary mixture in a cascade with an optimum scheme of connection of stages made up of elements with three takeoffs is carried out. The separation potential most precisely characterizing the separative power and other efficiency parameters of stages and cascade schemes has been selected based on the results of the estimation made.
NASA Astrophysics Data System (ADS)
Ferronskii, V. I.; Poliakov, V. A.
This book is concerned with the natural relations regarding the distribution of the stable isotopes of hydrogen and oxygen in the hydrosphere, taking into account the most important problems with respect to the dynamics and the origin of waters. The solution of these problems on an isotopic basis is considered. The physicochemical principles of isotope separation are discussed along with the isotopic composition of atmospheric moisture, the isotopic composition of surface continental waters, the hydrogen and oxygen isotopic composition of minerals of magmatic and metamorphic rocks and fluid inclusions, the isotopic composition of groundwaters of modern volcanic regions, and the origin of the earth's hydrosphere in the light of isotopic, cosmochemical, and theoretical studies. Attention is also given to the separation of hydrogen and oxygen isotopes of waters in the underground cycle, the isotopic composition of the deep-formation waters of sedimentary basins, the relationship between surface and ground waters, and the groundwater residence time in an aquifer.
Zare, Richard N.; Kuramoto, Douglas S.; Haase, Christa; Tan, Sze M.; Crosson, Eric R.; Saad, Nabil M. R.
2009-01-01
A continuous-flow cavity ring-down spectroscopy (CRDS) system integrating a chromatographic separation technique, a catalytic combustor, and an isotopic 13C/12C optical analyzer is described for the isotopic analysis of a mixture of organic compounds. A demonstration of its potential is made for the geochemically important class of short-chain hydrocarbons. The system proved to be linear over a 3-fold injection volume dynamic range with an average precision of 0.95‰ and 0.67‰ for ethane and propane, respectively. The calibrated accuracy for methane, ethane, and propane is within 3‰ of the values determined using isotope ratio mass spectrometry (IRMS), which is the current method of choice for compound-specific isotope analysis. With anticipated improvements, the low-cost, portable, and easy-to-use CRDS-based instrumental setup is poised to evolve into a credible challenge to the high-cost and complex IRMS-based technique. PMID:19564619
Isotopic generator for bismuth-212 and lead-212 based on radium
Hines, J.J.; Atcher, R.W.; Friedman, A.M.
1985-01-30
Disclosed are method and apparatus for providing radionuclides of bismuth-212 and lead-212. Thorium-228 and carrier solution starting material is input to a radiologically contained portion of an isotopic generator system, and radium-224 is separated from thorium-228 which is retained by a strongly basic anion exchange column. The separated radium-224 is transferred to an accessible, strongly acidic cationic exchange column. The cationic column retains the radium-224, and natural radioactive decay generates bismuth-212 and lead-212. The cationic exchange column can also be separated from the contained portion of the system and utilized without the extraordinary safety measures necessary in the contained portion. Furthermore, the cationic exchange column provides over a relatively long time period the short lived lead-212 and bismuth-212 radionuclides which are useful for a variety of medical therapies.
Methods for the separation of rhenium, osmium and molybdenum applicable to isotope geochemistry
Morgan, J.W.; Golightly, D.W.; Dorrzapf, A.F.
1991-01-01
Effective methods are described for the chemical separation of rhenium, osmium and molybdenum. The methods are based on distillation and anion-exchange chromatography, and have been the basis for rhenium-osmium isotope studies of ore deposits and meteorites. Successful anion-exchange separation of osmium requires both recognition and careful control of the osmium species in solution; thus, distillation of osmium tetroxide from a mixture of sulfuric acid and hydrogen peroxide is preferred to anion-exchange. Distribution coefficients measured for perrhenate in sulfuric acid media are sufficiently high (Kd > 500) for rhenium to be directly loaded onto an ion-exchange column from a distillation residue and subsequently eluted with nitric acid. Polymerization of molybdenum species during elution is prevented by use of a solution that is 1M in hydrochloric acid and 1M in sodium chloride. ?? 1991.
High Throughput Strontium Isotope Method for Monitoring Fluid Flow Related to Geological CO2 Storage
NASA Astrophysics Data System (ADS)
Capo, R. C.; Wall, A. J.; Stewart, B. W.; Phan, T. T.; Jain, J. C.; Hakala, J. A.; Guthrie, G. D.
2012-12-01
Natural isotope tracers, such as strontium (Sr), can be a unique and powerful component of a monitoring strategy at a CO2 storage site, facilitating both the quantification of reaction progress for fluid-rock interactions and the tracking of brine migration caused by CO2 injection. Several challenges must be overcome, however, to enable the routine use of isotopic tracers, including the ability to rapidly analyze numerous aqueous samples with potentially complex chemical compositions. In a field situation, it might be necessary to analyze tens of samples over a short period of time to identify subsurface reactions and respond to unexpected fluid movement in the host formation. These conditions require streamlined Sr separation chemistry for samples ranging from pristine groundwaters to those containing high total dissolved solids, followed by rapid measurement of isotope ratios with high analytical precision. We have optimized Sr separation chemistry and MC-ICP-MS methods to provide rapid and precise measurements of isotope ratios in geologic, hydrologic, and environmental samples. These improvements will allow an operator to independently prepare samples for Sr isotope analysis off-site using fast, low cost chemical separation procedures and commercially available components. Existing vacuum-assisted Sr separation procedures were modified by using inexpensive disposable parts to eliminate cross contamination. Experimental results indicate that the modified columns provide excellent separation of Sr from chemically complex samples and that Sr can be effectively isolated from problematic matrix elements (e.g., Ca, Ba, K) associated with oilfield brines and formation waters. The separation procedure is designed for high sample throughput in which batches of 24 samples can be processed in approximately 2 hours, and are ready for Sr isotope measurements by MC-ICP-MS immediately after collection from the columns. Precise Sr isotope results can be achieved by MC-ICP-MS with a throughput of 4 to 5 samples per hour. Our mean measured value of NIST Sr isotope standard SRM 987 is 0.710265 ± 0.000014 (2σ, n = 94). A range of brines and CO2-rich fluids analyzed by this method yielded results within the analytical uncertainty of 87Sr/86Sr ratios previously determined by standard column separation and thermal ionization mass spectrometry. This method provides a fast and effective way to use Sr isotopes for monitoring purposes related to geological CO2 storage.
Separation efficiency of the MASHA facility for short-lived mercury isotopes
NASA Astrophysics Data System (ADS)
Rodin, A. M.; Belozerov, A. V.; Chernysheva, E. V.; Dmitriev, S. N.; Gulyaev, A. V.; Gulyaeva, A. V.; Itkis, M. G.; Kliman, J.; Kondratiev, N. A.; Krupa, L.; Novoselov, A. S.; Oganessian, Yu. Ts.; Podshibyakin, A. V.; Salamatin, V. S.; Siváček, I.; Stepantsov, S. V.; Vanin, D. V.; Vedeneev, V. Yu.; Yukhimchuk, S. A.; Granja, C.; Pospisil, S.
2014-06-01
The mass-separator MASHA built to identify Super Heavy Elements by their mass-to-charge ratios is described. The results of the off- and on-line measurements of its separation efficiency are presented. In the former case four calibrated leaks of noble gases were used. In the latter the efficiency was measured via 284 MeV Ar beam and with using the hot catcher. The ECR ion source was used in both cases. The -radioactive isotopes of mercury produced in the complete fusion reaction Ar+SmHg+xn were detected at the mass-separator focal plane. The half-lives and the separation efficiency for the short-lived mercury isotopes were measured. Potentialities of the MEDIPIX detector system have been demonstrated for future use at the mass-separator MASHA.
VELOCITY SELECTOR METHOD FOR THE SEPARATION OF ISOTOPES
Britten, R.J.
1957-12-31
A velocity selector apparatus is described for separating and collecting an enriched fraction of the isotope of a particular element. The invention has the advantage over conventional mass spectrometers in that a magnetic field is not used, doing away with the attendant problems of magnetic field variation. The apparatus separates the isotopes by selectively accelerating the ionized constituents present in a beam of the polyisotopic substance that are of uniform kinetic energy, the acceleration being applied intermittently and at spaced points along the beam and in a direction normal to the direction of the propagation of the uniform energy beam whereby a transverse displacement of the isotopic constituents of different mass is obtained.
NASA Astrophysics Data System (ADS)
Saad, N.; Kuramoto, D. S.; Haase, C.; Crosson, E.; Tan, S.; Zare, R. N.
2009-12-01
Light stable isotope analysis, and in particular, compound specific isotopic analysis (CSIA), is a valuable tool to elucidate pathways and provide a better insight into biological, ecological, and geological systems. We present here the results of compound-specific isotopic carbon analysis of short chain hydrocarbons using the world’s first combination of gas chromatography, combustion interface, and cavity ring-down spectroscopy (GC-C-CRDS). Cavity ring-down spectroscopy (CRDS) is a highly sensitive optical spectroscopy, one application of which is to measure the stable isotopic ratios in small molecules. Because it uses a highly reflective optical cavity with many kilometers effective path length, CRDS provides some of the most sensitive and precise optical absorption measurements. Most optical spectroscopy isotopic analysis measures the quantities of each isotopologue independently using their distinct ro-vibrational spectra. The most common isotopes measured with optical spectroscopy are 13C and 12C in carbon dioxide. However, the isotopes of hydrogen, oxygen, and sulfur have also been measured. Unlike isotope ratio mass spectrometry (IRMS), optical spectroscopy can distinguish among isobars, which have essentially identical m/z ratios. The combination of chemical separation, chemical conversion, and CRDS makes a nearly universal tool for isotopic analysis of mixtures. In addition, CRDS can tolerate a variety of compounds mixed with the target. For example, CRDS can measure carbon dioxide and its isotopic 13C/12C ratio in the presence of oxygen. Using the novel GC-C-CRDS system, we injected a 75-microliter mixture of approximately equal quantities of methane, ethane, and propane into a gas chromatograph using helium as carrier gas. The methane, ethane, and propane were separated in time by 100 to 200 seconds after the chromatograph. Oxygen gas was added, and the hydrocarbons were combusted in a catalytic combustor with platinum and nickel, held at 1150oC. The combusted products were combined with dry nitrogen gas to provide sufficient gas flow for the CRDS analyzer, which measured the 13C/12C isotopic ratio of the separated methane, ethane, and propane, obtaining a precision of 0.95 permil or better. The calibration accuracy was within 3 permil of the values determined using IRMS. The current CRDS-based system is less expensive, does not require highly trained personnel to operate, and is portable, compared with IRMS. We anticipate that advances in spectroscopic analysis will improve the precision and accuracy of the CRDS isotopic measurement, making it comparable with IRMS.
System for recovery of daughter isotopes from a source material
Tranter, Troy J [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Lewis, Leroy C [Idaho Falls, ID; Henscheid, Joseph P [Idaho Falls, ID
2009-08-04
A method of separating isotopes from a mixture containing at least two isotopes in a solution is disclosed. A first isotope is precipitated and is collected from the solution. A daughter isotope is generated and collected from the first isotope. The invention includes a method of producing an actinium-225/bismuth-213 product from a material containing thorium-229 and thorium-232. A solution is formed containing nitric acid and the material containing thorium-229 and thorium-232, and iodate is added to form a thorium iodate precipitate. A supernatant is separated from the thorium iodate precipitate and a second volume of nitric acid is added to the thorium iodate precipitate. The thorium iodate precipitate is stored and a decay product comprising actinium-225 and bismuth-213 is generated in the second volume of nitric acid, which is then separated from the thorium iodate precipitate, filtered, and treated using at least one chromatographic procedure. A system for producing an actinium-225/bismuth-213 product is also disclosed.
NASA Astrophysics Data System (ADS)
Bowers, W.; Mercer, J.; Pleasants, M.; Williams, D. G.
2017-12-01
Isotopic partitioning of water within soil into tightly and loosely bound fractions has been proposed to explain differences between isotopic water sources used by plants and those that contribute to streams and ground water, the basis for the "two water worlds" hypothesis. We examined the isotope ratio values of water in trees, bulk soil, mobile water collected from soil lysimeters, stream water, and GW at three different hillslopes in a mixed conifer forest in southeastern Wyoming, USA. Hillslopes differed in aspect and topographic position with corresponding differences in surface energy balance, snowmelt timing, and duration of soil moisture during the dry summer. The isotopic results support the partitioning of water within the soil; trees apparently used a different pool of water for transpiration than that recovered from soil lysimeters and the source was not resolved with the isotopic signature of the water that was extracted from bulk soil via cryogenic vacuum distillation. Separating and measuring the isotope ratios values in these pools would test the assumption that the tightly bound water within the soil has the same isotopic signature as the water transpired by the trees. We employed a centrifugation approach to separate water within the soil held at different tensions by applying stepwise increases in rotational velocity and pressures to the bulk soil samples. Effluent and the remaining water (cryogenically extracted) at each step were compared. We first applied the centrifugation method in a simple lab experiment using sandy loam soil and separate introductions of two isotopically distinct waters. We then applied the method to soil collected from the montane hillslopes. For the lab experiment, we predicted that effluents would have distinct isotopic signatures, with the last effluent and extracted water more closely representing the isotopic signature of the first water applied. For our field samples, we predicted that the isotopic signature of the water discharged in the last centrifuge step and final extraction would more closely represent the isotopic signature of water extracted from trees. Understanding the isotopic partitioning of water within soil is important for interpreting plant water isotope values within the context of the "two water worlds" hypothesis.
NASA Astrophysics Data System (ADS)
Gibson, J. J.; Birks, S. J.; Stadnyk, T.; Delavau, C. J.
2017-12-01
Stable isotopes of water have been measured since the 1990's as part of hydrometric monitoring programs within Canada's Water Survey of Canada gauging network and Alberta's Long-Term River Network. These datasets are being applied for hydrograph separation of streamflow sources, including rain, snow, groundwater, and surface water, as well as for estimation of watershed evaporation losses and evaporation/transpiration partitioning. Here we describe an innovative isotope mass balance approach, discuss benefits and limitations of the method, and present selected results that illustrate important regional trends in the contemporary hydrology of Canada. Overall, isotopes are shown to be useful for constraining water balance variations across regions with low monitoring density. Recommendations for future activities are identified, including regional comparisons with outputs from isotope-capable distributed hydrologic models.
Equilibrium properties of dense hydrogen isotope gases based on the theory of simple fluids.
Kowalczyk, Piotr; MacElroy, J M D
2006-08-03
We present a new method for the prediction of the equilibrium properties of dense gases containing hydrogen isotopes. The proposed approach combines the Feynman-Hibbs effective potential method and a deconvolution scheme introduced by Weeks et al. The resulting equations of state and the chemical potentials as functions of pressure for each of the hydrogen isotope gases depend on a single set of Lennard-Jones parameters. In addition to its simplicity, the proposed method with optimized Lennard-Jones potential parameters accurately describes the equilibrium properties of hydrogen isotope fluids in the regime of moderate temperatures and pressures. The present approach should find applications in the nonlocal density functional theory of inhomogeneous quantum fluids and should also be of particular relevance to hydrogen (clean energy) storage and to the separation of quantum isotopes by novel nanomaterials.
Precision mass measurements of neutron-rich Co isotopes beyond N =40
NASA Astrophysics Data System (ADS)
Izzo, C.; Bollen, G.; Brodeur, M.; Eibach, M.; Gulyuz, K.; Holt, J. D.; Kelly, J. M.; Redshaw, M.; Ringle, R.; Sandler, R.; Schwarz, S.; Stroberg, S. R.; Sumithrarachchi, C. S.; Valverde, A. A.; Villari, A. C. C.
2018-01-01
The region near Z =28 and N =40 is a subject of great interest for nuclear structure studies due to spectroscopic signatures in 68Ni suggesting a subshell closure at N =40 . Trends in nuclear masses and their derivatives provide a complementary approach to shell structure investigations via separation energies. Penning trap mass spectrometry has provided precise measurements for a number of nuclei in this region; however, a complete picture of the mass surfaces has so far been limited by the large uncertainty remaining for nuclei with N >40 along the iron (Z =26 ) and cobalt (Z =27 ) chains because these species are not available from traditional isotope separator online rare isotope facilities. The Low-Energy Beam and Ion Trap Facility at the National Superconducting Cyclotron Laboratory is the first and only Penning trap mass spectrometer coupled to a fragmentation facility and therefore presents the unique opportunity to perform precise mass measurements of these elusive isotopes. Here we present the first Penning trap measurements of Co,6968, carried out at this facility. Some ambiguity remains as to whether the measured values are ground-state or isomeric-state masses. A detailed discussion is presented to evaluate this question and to motivate future work. In addition, we perform ab initio calculations of ground-state and two-neutron separation energies of cobalt isotopes with the valence-space in-medium similarity renormalization group approach based on a particular set of two- and three-nucleon forces that predict saturation in infinite matter. We discuss the importance of these measurements and calculations for understanding the evolution of nuclear structure near 68Ni.
EM reconstruction of dual isotope PET using staggered injections and prompt gamma positron emitters
Andreyev, Andriy; Sitek, Arkadiusz; Celler, Anna
2014-01-01
Purpose: The aim of dual isotope positron emission tomography (DIPET) is to create two separate images of two coinjected PET radiotracers. DIPET shortens the duration of the study, reduces patient discomfort, and produces perfectly coregistered images compared to the case when two radiotracers would be imaged independently (sequential PET studies). Reconstruction of data from such simultaneous acquisition of two PET radiotracers is difficult because positron decay of any isotope creates only 511 keV photons; therefore, the isotopes cannot be differentiated based on the detected energy. Methods: Recently, the authors have proposed a DIPET technique that uses a combination of radiotracer A which is a pure positron emitter (such as 18F or 11C) and radiotracer B in which positron decay is accompanied by the emission of a high-energy (HE) prompt gamma (such as 38K or 60Cu). Events that are detected as triple coincidences of HE gammas with the corresponding two 511 keV photons allow the authors to identify the lines-of-response (LORs) of isotope B. These LORs are used to separate the two intertwined distributions, using a dedicated image reconstruction algorithm. In this work the authors propose a new version of the DIPET EM-based reconstruction algorithm that allows the authors to include an additional, independent estimate of radiotracer A distribution which may be obtained if radioisotopes are administered using a staggered injections method. In this work the method is tested on simple simulations of static PET acquisitions. Results: The authors’ experiments performed using Monte-Carlo simulations with static acquisitions demonstrate that the combined method provides better results (crosstalk errors decrease by up to 50%) than the positron-gamma DIPET method or staggered injections alone. Conclusions: The authors demonstrate that the authors’ new EM algorithm which combines information from triple coincidences with prompt gammas and staggered injections improves the accuracy of DIPET reconstructions for static acquisitions so they reach almost the benchmark level calculated for perfectly separated tracers. PMID:24506645
ERIC Educational Resources Information Center
John, Phillip
1982-01-01
Selected infrared laser chemistry topics are discussed including carbon dioxide lasers, infrared quanta and molecules, laser-induced chemistry, structural isomerization (laser purification, sensitized reactions, and dielectric breakdown), and fundamental principles of laser isotope separation, focusing on uranium isotope separation. (JN)
Separation of the isotopes of boron by chemical exchange reactions
McCandless, Frank P.; Herbst, Ronald S.
1995-01-01
The isotopes of boron, .sup.10 B and .sup.11 B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF.sub.3 and a liquid BF.sub.3 . donor molecular addition complex formed between BF.sub.3 gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone.
Morgan, J.W.; Walker, R.J.
1989-01-01
A stable isotope-dilution method using resonance ionization mass spectrometry is suitable for the determination of rhenium and osmium abundances and osmium isotopic composition in carbonaceous chondrites and iron meteorites. The chemical procedure involves sodium peroxide fusion, followed by distillation of osmium from sulfuric acid/hydrogen peroxide and subsequent anion-exchange separation of rhenium from the same solution. ?? 1989.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Ji-Gwang; Kim, Eun-San, E-mail: eskim1@knu.ac.kr; Hatanaka, Kichiji
2015-03-15
The rare isotope beam separator with a large angular acceptance and energy acceptance is essential for examining the characteristics of unstable nuclei and exotic nuclear reactions. Careful design, however, is required to compensate for the effects of high order aberrations induced by large aperture magnets, which are used to collect rare isotopes obtained from a high energy primary heavy-ion beam hitting a target. In order to minimize the effect of the high order aberration, the optics was based on the mirror symmetry optics, which provides smaller high order aberrations, for the separation of {sup 132}Sn produced by a fission reactionmore » between the primary beam of {sup 238}U and a relatively thick Pb target. The designed optics provides energy acceptance (full), horizontal angular acceptance, and vertical acceptance of approximately 8%, 60 mrad, and 130 mrad, respectively.« less
Hwang, Ji-Gwang; Kim, Eun-San; Hatanaka, Kichiji
2015-03-01
The rare isotope beam separator with a large angular acceptance and energy acceptance is essential for examining the characteristics of unstable nuclei and exotic nuclear reactions. Careful design, however, is required to compensate for the effects of high order aberrations induced by large aperture magnets, which are used to collect rare isotopes obtained from a high energy primary heavy-ion beam hitting a target. In order to minimize the effect of the high order aberration, the optics was based on the mirror symmetry optics, which provides smaller high order aberrations, for the separation of (132)Sn produced by a fission reaction between the primary beam of (238)U and a relatively thick Pb target. The designed optics provides energy acceptance (full), horizontal angular acceptance, and vertical acceptance of approximately 8%, 60 mrad, and 130 mrad, respectively.
NASA Astrophysics Data System (ADS)
Hwang, Ji-Gwang; Kim, Eun-San; Hatanaka, Kichiji
2015-03-01
The rare isotope beam separator with a large angular acceptance and energy acceptance is essential for examining the characteristics of unstable nuclei and exotic nuclear reactions. Careful design, however, is required to compensate for the effects of high order aberrations induced by large aperture magnets, which are used to collect rare isotopes obtained from a high energy primary heavy-ion beam hitting a target. In order to minimize the effect of the high order aberration, the optics was based on the mirror symmetry optics, which provides smaller high order aberrations, for the separation of 132Sn produced by a fission reaction between the primary beam of 238U and a relatively thick Pb target. The designed optics provides energy acceptance (full), horizontal angular acceptance, and vertical acceptance of approximately 8%, 60 mrad, and 130 mrad, respectively.
Empirical calibration of the clinopyroxene-garnet magnesium isotope geothermometer and implications
NASA Astrophysics Data System (ADS)
Li, Wang-Ye; Teng, Fang-Zhen; Xiao, Yilin; Gu, Hai-Ou; Zha, Xiang-Ping; Huang, Jian
2016-07-01
The large equilibrium Mg isotope fractionation between clinopyroxene and garnet observed in eclogites makes it a potential high-precision geothermometer, but calibration of this thermometer by natural samples is still limited. Here, we report Mg isotopic compositions of eclogite whole rocks as well as Mg and O isotopic compositions of clinopyroxene and garnet separates from 16 eclogites that formed at different temperatures from the Dabie orogen, China. The whole-rock δ26Mg values vary from -1.20 to +0.10 ‰. Among them, 11 samples display limited δ26Mg variations from -0.36 to -0.17 ‰, similar to those of their protoliths. The mineral separates exhibit very different δ26Mg values, from -0.39 to +0.39 ‰ for clinopyroxenes and from -1.94 to -0.81 ‰ for garnets. The clinopyroxene-garnet Mg isotope fractionation (Δ26Mgclinopyroxene-garnet = δ26Mgclinopyroxene-δ26Mggarnet) varies from 1.05 to 2.15 ‰. The clinopyroxene-garnet O isotope fractionation (Δ18Oclinopyroxene-garnet = δ18Oclinopyroxene-δ18Ogarnet) varies from -1.01 to +0.98 ‰. Equilibrium Mg isotope fractionation between clinopyroxene and garnet in the investigated samples is selected based on both the δ26Mgclinopyroxene versus δ26Mggarnet plot and the state of O isotope equilibrium between clinopyroxene and garnet. The equilibrium Δ26Mgclinopyroxene-garnet and corresponding temperature data obtained in this study, together with those available so far in literatures for natural eclogites, are used to calibrate the clinopyroxene-garnet Mg isotope thermometer. This yields a function of Δ26Mgclinopyroxene-garnet = (0.99 ± 0.06) × 106/ T 2, where T is temperature in Kelvin. The refined function not only provides the best empirically calibrated clinopyroxene-garnet Mg isotope thermometer for precise constraints of temperatures of clinopyroxene- and garnet-bearing rocks, but also has potential applications in high-temperature Mg isotope geochemistry.
NASA Astrophysics Data System (ADS)
Lassen, J.; Li, R.; Raeder, S.; Zhao, X.; Dekker, T.; Heggen, H.; Kunz, P.; P. Levy, C. D.; Mostanmand, M.; Teigelhöfer, A.; Ames, F.
2017-11-01
Developments at TRIUMF's isotope separator and accelerator (ISAC) resonance ionization laser ion source (RILIS) in the past years have concentrated on increased reliability for on-line beam delivery of radioactive isotopes to experiments, as well as increasing the number of elements available through resonance ionization and searching for ionization schemes with improved efficiency. The current status of these developments is given with a list of two step laser ionization schemes implemented recently.
Device and method for separating oxygen isotopes
Rockwood, Stephen D.; Sander, Robert K.
1984-01-01
A device and method for separating oxygen isotopes with an ArF laser which produces coherent radiation at approximately 193 nm. The output of the ArF laser is filtered in natural air and applied to an irradiation cell where it preferentially photodissociates molecules of oxygen gas containing .sup.17 O or .sup.18 O oxygen nuclides. A scavenger such as O.sub.2, CO or ethylene is used to collect the preferentially dissociated oxygen atoms and recycled to produce isotopically enriched molecular oxygen gas. Other embodiments utilize an ArF laser which is narrowly tuned with a prism or diffraction grating to preferentially photodissociate desired isotopes. Similarly, desired mixtures of isotopic gas can be used as a filter to photodissociate enriched preselected isotopes of oxygen.
Separation of the isotopes of boron by chemical exchange reactions
McCandless, F.P.; Herbst, R.S.
1995-05-30
The isotopes of boron, {sup 10}B and {sup 11}B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF{sub 3} and a liquid BF{sub 3} donor molecular addition complex formed between BF{sub 3} gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone. 1 Fig.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menes, F.; Dirian, G.
1962-12-14
The results obtained up to June 25, 1962, on the separation of Ca isotopes by electromigration in fused salts have been reported in seven progress reports. The data given in these reports are summarized. Later study investigated the improvement of the diaphragm performance using nonclassical methods, preparation of an experiment confirming the performances of the high capacity U tube'' apparatus, and preparation of an installation designed for perfecting the dropping tube'' device. Only preliminary results on these studes are available. (J.S.R.)
Bacon, C.G.
1958-08-26
An improvement is presented in the structure of an isotope separation apparatus and, in particular, is concerned with a magnetically operated shutter associated with a window which is provided for the purpose of enabling the operator to view the processes going on within the interior of the apparatus. The shutier is mounted to close under the force of gravity in the absence of any other force. By closing an electrical circuit to a coil mouated on the shutter the magnetic field of the isotope separating apparatus coacts with the magnetic field of the coil to force the shutter to the open position.
The Alto Tandem and Isol Facility at IPN Orsay
NASA Astrophysics Data System (ADS)
Franchoo, Serge
Alto is an infrastructure for experimental nuclear physics in France that comprises both an on-line isotope-separation facility based on the photofission of uranium and a stable-ion beam facility based on a 14.5-MV tandem accelerator. The isotope-separation on-line section of Alto is dedicated to the production of neutron-rich radioactive ion beams (RIB) from the interaction of the γ-flux induced by a 50-MeV 10-µA electron beam in a uranium-carbide target. It is dimensioned for 1011 fissions per second. The RIB facility is exploited in alternating mode with the tandem-based section of Alto, capable of accelerating both light ions for nuclear astrophysics and heavy ions for γ-spectroscopy. The facility thereby offers the opportunity to deliver beams to a large range of physics programmes from nuclear to interdisciplinary physics. In this article, we present the Alto facility as well as some of the highlights and prospects of the experimental programme.
NASA Astrophysics Data System (ADS)
Ali, Arshad; Jabeen, Iffat; Gregory, David; Verish, Robert; Banerjee, Neil R.
2016-05-01
We report precise triple oxygen isotope data of bulk materials and separated fractions of several Shergotty-Nakhla-Chassigny (SNC) meteorites using enhanced laser-assisted fluorination technique. This study shows that SNCs have remarkably identical Δ17O and a narrow range in δ18O values suggesting that these meteorites have assimilated negligibly small surface materials (<5%), which is undetectable in the oxygen isotope compositions reported here. Also, fractionation factors in coexisting silicate mineral pairs (px-ol and mask-ol) further demonstrate isotopic equilibrium at magmatic temperatures. We present a mass-dependent fractionation line for bulk materials with a slope of 0.526 ± 0.016 (1SE) comparable to the slope obtained in an earlier study (0.526 ± 0.013; Franchi et al. 1999). We also present a new Martian fractionation line for SNCs constructed from separated fractions (i.e., pyroxene, olivine, and maskelynite) with a slope of 0.532 ± 0.009 (1SE). The identical fractionation lines run above and parallel to our terrestrial fractionation line with Δ17O = 0.318 ± 0.016‰ (SD) for bulk materials and 0.316 ± 0.009‰ (SD) for separated fractions. The conformity in slopes and Δ17O between bulk materials and separated fractions confirm oxygen isotope homogeneity in the Martian mantle though recent studies suggest that the Martian lithosphere may potentially have multiple oxygen isotope reservoirs.
Separation of copper, iron, and zinc from complex aqueous solutions for isotopic measurement
Borrok, D.M.; Wanty, R.B.; Ridley, W.I.; Wolf, R.; Lamothe, P.J.; Adams, M.
2007-01-01
The measurement of Cu, Fe, and Zn isotopes in natural samples may provide valuable information about biogeochemical processes in the environment. However, the widespread application of stable Cu, Fe, and Zn isotope chemistry to natural water systems remains limited by our ability to efficiently separate these trace elements from the greater concentrations of matrix elements. In this study, we present a new method for the isolation of Cu, Fe, and Zn from complex aqueous solutions using a single anion-exchange column with hydrochloric acid media. Using this method we are able to quantitatively separate Cu, Fe, and Zn from each other and from matrix elements in a single column elution. Elution of the elements of interest, as well as all other elements, through the anion-exchange column is a function of the speciation of each element in the various concentrations of HCl. We highlight the column chemistry by comparing our observations with published studies that have investigated the speciation of Cu, Fe, and Zn in chloride solutions. The functionality of the column procedure was tested by measuring Cu, Fe, and Zn isotopes in a variety of stream water samples impacted by acid mine drainage. The accuracy and precision of Zn isotopic measurements was tested by doping Zn-free stream water with the Zn isotopic standard. The reproducibility of the entire column separation process and the overall precision of the isotopic measurements were also evaluated. The isotopic results demonstrate that the Cu, Fe, and Zn column separates from the tested stream waters are of sufficient purity to be analyzed directly using a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS), and that the measurements are fully-reproducible, accurate, and precise. Although limited in scope, these isotopic measurements reveal significant variations in ??65Cu (- 1.41 to + 0.30???), ??56Fe (- 0.56 to + 0.34???), and ??66Zn (0.31 to 0.49???) among samples collected from different abandoned mines within a single watershed. Hence, Cu, Fe, and Zn isotopic measurements may be a powerful tool for fingerprinting specific metal sources and/or examining biogeochemical reactions within fresh water systems.
LU-HF Age of Martian Meteorite Larkman Nunatek 06319
NASA Technical Reports Server (NTRS)
Shafer, J. T.; Brandon, A. D.; Lapen, T. J.; Righter, M.; Beard, B.; Peslier, A. H.
2009-01-01
Lu-Hf isotopic data were collected on mineral separates and bulk rock powders of LAR 06319, yielding an age of 197+/- 29 Ma. Sm-Nd isotopic data and in-situ LA-ICP-MS data from a thin section of LAR 06319 are currently being collected and will be presented at the 2009 LPSC. These new data for LAR 06319 extend the existing data set for the enriched shergottite group. Martian meteorites represent the only opportunity for ground truth investigation of the geochemistry of Mars [1]. At present, approximately 80 meteorites have been classified as Martian based on young ages and distinctive isotopic signatures [2]. LAR 06319 is a newly discovered (as part of the 2006 ANSMET field season) martian meteorite that represents an important opportunity to further our understanding of the geochemical and petrological constraints on the origin of Martian magmas. Martian meteorites are traditionally categorized into the shergottite, nakhlite, and chassignite groups. The shergottites are further classified into three distinct isotopic groups designated depleted, intermediate, and enriched [3,4] based on the isotope systematics and compositions of their source(s).
Simulation and Analysis of Isotope Separation System for Fusion Fuel Recovery System
NASA Astrophysics Data System (ADS)
Senevirathna, Bathiya; Gentile, Charles
2011-10-01
This paper presents results of a simulation of the Fuel Recovery System (FRS) for the Laser Inertial Fusion Engine (LIFE) reactor. The LIFE reaction will produce exhaust gases that will need to be recycled in the FRS along with xenon, the chamber's intervention gas. Solids and liquids will first be removed and then vapor traps are used to remove large gas molecules such as lead. The gas will be reacted with lithium at high temperatures to extract the hydrogen isotopes, protium, deuterium, and tritium in hydride form. The hydrogen isotopes will be recovered using a lithium blanket processing system already in place and this product will be sent to the Isotope Separation System (ISS). The ISS will be modeled in software to analyze its effectiveness. Aspen HYSYS was chosen for this purpose for its widespread use industrial gas processing systems. Reactants and corresponding chemical reactions had to be initialized in the software. The ISS primarily consists of four cryogenic distillation columns and these were modeled in HYSYS based on design requirements. Fractional compositions of the distillate and liquid products were analyzed and used to optimize the overall system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugiyama, T.; Sugura, K.; Enokida, Y.
2015-03-15
Lithium-6 is used as a blanket material for sufficient tritium production in DT fueled fusion reactors. A core-shell type adsorbent was proposed for lithium isotope separation by chromatography. The mass transfer model in a chromatographic column consisted of 4 steps, such as convection and dispersion in the column, transfer through liquid films, intra-particle diffusion and and adsorption or desorption at the local adsorption sites. A model was developed and concentration profiles and time variation in the column were numerically simulated. It became clear that core-shell type adsorbents with thin porous shell were saturated rapidly relatively to fully porous one andmore » established a sharp edge of adsorption band. This is very important feature because lithium isotope separation requires long-distance development of adsorption band. The values of HETP (Height Equivalent of a Theoretical Plate) for core-shell adsorbent packed column were estimated by statistical moments of the step response curve. The value of HETP decreased with the thickness of the porous shell. A core-shell type adsorbent is, then, useful for lithium isotope separation. (authors)« less
Isotope separation apparatus and method
Cotter, Theodore P.
1982-12-28
The invention relates to a method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferable substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. The laser beam comprises .pi.-pulses of a selected wavelength which excite unexcited molecules, or cause stimulated emission of excited molecules of one of the isotopes. Excitation caused by first direction .pi.-pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning .pi.-pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement is accomplished by a large number of .pi.-pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balz, J.G.; Bernheim, R.A.; Gold, L.P.
1987-01-01
Multiphoton ionization spectra of /sup 7/Li/sub 2/, /sup 6/Li/sub 2/, and /sup 7/Li/sup 6/Li vapors have been measured in the 570--650 nm region using a single, low resolution, multimode cw dye laser. A number of wavelengths provide selective multiphoton ionization of one isotopic species demonstrating the possibility of efficient laser-driven isotopic separation in lithium in this wavelength region.
Code of Federal Regulations, 2011 CFR
2011-01-01
... to IAEA Safeguards) means the collection of environmental samples (e.g., air, water, vegetation, soil... uranium or enriching uranium in the isotope 235, zirconium tubes, heavy water or deuterium, nuclear-grade...); (3) A fuel fabrication plant; (4) An enrichment plant or isotope separation plant for the separation...
Protein-based stable isotope probing.
Jehmlich, Nico; Schmidt, Frank; Taubert, Martin; Seifert, Jana; Bastida, Felipe; von Bergen, Martin; Richnow, Hans-Hermann; Vogt, Carsten
2010-12-01
We describe a stable isotope probing (SIP) technique that was developed to link microbe-specific metabolic function to phylogenetic information. Carbon ((13)C)- or nitrogen ((15)N)-labeled substrates (typically with >98% heavy label) were used in cultivation experiments and the heavy isotope incorporation into proteins (protein-SIP) on growth was determined. The amount of incorporation provides a measure for assimilation of a substrate, and the sequence information from peptide analysis obtained by mass spectrometry delivers phylogenetic information about the microorganisms responsible for the metabolism of the particular substrate. In this article, we provide guidelines for incubating microbial cultures with labeled substrates and a protocol for protein-SIP. The protocol guides readers through the proteomics pipeline, including protein extraction, gel-free and gel-based protein separation, the subsequent mass spectrometric analysis of peptides and the calculation of the incorporation of stable isotopes into peptides. Extraction of proteins and the mass fingerprint measurements of unlabeled and labeled fractions can be performed in 2-3 d.
β-decay spectroscopy of r-process nuclei with N = 126 at KISS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirayama, Y.; Watanabe, Y. X.; Imai, N.
2014-05-02
The β-decay properties of nuclei with N = 126, which are believed to act as progenitors in the rapid neutron capture (r-) process path forming the third peak (A ∼ 195) in the observed r-abundance element distribution, are considered critical for understanding the production of heavy elements such as gold and platinum at astrophysical sites. We have constructed the KEK Isotope Separation System (KISS), which consists of a gas cell based laser ion source (atomic number selection) and an isotope separation on-line (ISOL) (mass number selection), to produce pure low-energy beams of neutron-rich isotopes around N = 126 and tomore » study their β-decay properties, which are also of interest for astrophysics. The isotopes of interest will be produced by multi-nucleon transfer reactions in heavy ion collisions (e.g. {sup 136}Xe projectile on {sup 198}Pt target). KISS will allow us to study unknown isotopes produced in weak reaction channels under low background conditions. We successfully extracted the stable {sup 56}Fe beam from KISS at the last commissioning on-line experiment with the extraction efficiency of 0.25% and beam purity of more than 98%. We can access the nuclei with N = 126 and measure their half-lives using the KISS in the case of the extraction efficiency of 0.1%.« less
The plasma separation process as a pre-cursor for large scale radioisotope production
NASA Astrophysics Data System (ADS)
Stevenson, Nigel R.
2001-07-01
Radioisotope production generally employs either accelerators or reactors to convert stable (usually enriched) isotopes into the desired product species. Radioisotopes have applications in industry, environmental sciences, and most significantly in medicine. The production of many potentially useful radioisotopes is significantly hindered by the lack of availability or by the high cost of key enriched stable isotopes. To try and meet this demand, certain niche enrichment processes have been developed and commercialized. Calutrons, centrifuges, and laser separation processes are some of the devices and techniques being employed to produce large quantities of selective enriched stable isotopes. Nevertheless, the list of enriched stable isotopes in sufficient quantities remains rather limited and this continues to restrict the availability of many radioisotopes that otherwise could have a significant impact on society. The Plasma Separation Process is a newly available commercial technique for producing large quantities of a wide range of enriched isotopes and thereby holds promise of being able to open the door to producing new and exciting applications of radioisotopes in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radchenko, Valery; Engle, Jonathan Ward; Medvedev, Dmitri G.
Scandium-44 g (half-life 3.97 h) shows promise for application in positron emission tomography (PET), due to favorable decay parameters. One of the sources of 44gSc is the 44Ti/ 44gSc generator, which can conveniently provide this radioisotope on a daily basis at a diagnostic facility. Titanium-44 (half-life 60.0 a), in turn, can be obtained via proton irradiation of scandium metal targets. A substantial 44Ti product batch, however, requires high beam currents, long irradiation times and an elaborate chemical procedure for 44Ti isolation and purification. This study describes the production of a combined 175 MBq (4.7 mCi) batch yield of 44Ti inmore » week long proton irradiations at the Los Alamos Isotope Production Facility (LANL-IPF) and the Brookhaven Linac Isotope Producer (BNL-BLIP). A two-step ion exchange chromatography based chemical separation method is introduced: first, a coarse separation of 44Ti via anion exchange sorption in concentrated HCl results in a 44Tc/Sc separation factor of 10 2–10 3. A second, cation exchange based step in HCl media is then applied for 44Ti fine purification from residual Sc mass. In conclusion, this method yields a 90–97% 44Ti recovery with an overall Ti/Sc separation factor of ≥10 6.« less
Meteoritic Sulfur Isotopic Analysis
NASA Technical Reports Server (NTRS)
Thiemens, Mark H.
1996-01-01
Funds were requested to continue our program in meteoritic sulfur isotopic analysis. We have recently detected a potential nucleosynthetic sulfur isotopic anomaly. We will search for potential carriers. The documentation of bulk systematics and the possible relation to nebular chemistry and oxygen isotopes will be explored. Analytical techniques for delta(sup 33), delta(sup 34)S, delta(sup 36)S isotopic analysis were improved. Analysis of sub milligram samples is now possible. A possible relation between sulfur isotopes and oxygen was detected, with similar group systematics noted, particularly in the case of aubrites, ureilites and entstatite chondrites. A possible nucleosynthetic excess S-33 has been noted in bulk ureilites and an oldhamite separate from Norton County. High energy proton (approximately 1 GeV) bombardments of iron foils were done to experimentally determine S-33, S-36 spallogenic yields for quantitation of isotopic measurements in iron meteorites. Techniques for measurement of mineral separates were perfected and an analysis program initiated. The systematic behavior of bulk sulfur isotopes will continue to be explored.
Enhancement of Identity in the Hydraulic Characteristics of a Gas Centrifuge for Isotope Separation
NASA Astrophysics Data System (ADS)
Yatsenko, D. V.; Borisevich, V. D.; Godisov, O. N.
The problem of non-identity in characteristics of the GCs for uranium isotope separation grows up with increase of a rotor speed of rotation. It may lead to noticeable decrease of the separative power of the centrifugal machines. The carried out assessments allowed to get the dependence of the relative separation performance losses on the non-identity in the hydraulic characteristics of the GCs connected in parallel. The results of calculation are compared with that of obtained in experiments.
Apparatus for separating and recovering hydrogen isotopes
Heung, Leung K.
1994-01-01
An apparatus for recovering hydrogen and separating its isotopes. The apparatus includes a housing bearing at least a fluid inlet and a fluid outlet. A baffle is disposed within the housing, attached thereto by a bracket. A hollow conduit is coiled about the baffle, in spaced relation to the baffle and the housing. The coiled conduit is at least partially filled with a hydride. The hydride can be heated to a high temperature and cooled to a low temperature quickly by circulating a heat transfer fluid in the housing. The spacing between the baffle and the housing maximizes the heat exchange rate between the fluid in the housing and the hydride in the conduit. The apparatus can be used to recover hydrogen isotopes (protium, deuterium and tritium) from gaseous mixtures, or to separate hydrogen isotopes from each other.
Investigation of the Photochemical Method for Uranium Isotope Separation
DOE R&D Accomplishments Database
Urey, H. C.
1943-07-10
To find a process for successful photochemical separation of isotopes several conditions have to be fulfilled. First, the different isotopes have to show some differences in the spectrum. Secondly, and equally important, this difference must be capable of being exploited in a photochemical process. Parts A and B outline the physical and chemical conditions, and the extent to which one might expect to find them fulfilled. Part C deals with the applicability of the process.
Exclusive quasi-free proton knockout from oxygen isotopes at intermediate energies
NASA Astrophysics Data System (ADS)
Kawase, Shoichiro; Uesaka, Tomohiro; Tang, Tsz Leung; Beaumel, Didier; Dozono, Masanori; Fukunaga, Taku; Fujii, Toshihiko; Fukuda, Naoki; Galindo-Uribarri, Alfredo; Hwang, Sanghoon; Inabe, Naoto; Kawabata, Takahiro; Kawahara, Tomomi; Kim, Wooyoung; Kisamori, Keiichi; Kobayashi, Motoki; Kubo, Toshiyuki; Kubota, Yuki; Kusaka, Kensuke; Lee, Cheongsoo; Maeda, Yukie; Matsubara, Hiroaki; Michimasa, Shin'ichiro; Miya, Hiroyuki; Noro, Tetsuo; Nozawa, Yuki; Obertelli, Alexandre; Ogata, Kazuyuki; Ota, Shinsuke; Padilla-Rodal, Elizabeth; Sakaguchi, Satoshi; Sakai, Hideyuki; Sasano, Masaki; Shimoura, Susumu; Stepanyan, Samvel; Suzuki, Hiroshi; Suzuki, Tomokazu; Takaki, Motonobu; Takeda, Hiroyuki; Tamii, Atsushi; Tokieda, Hiroshi; Wakasa, Tomotsugu; Wakui, Takashi; Yako, Kentaro; Yasuda, Jumpei; Yanagisawa, Yoshiyuki; Yokoyama, Rin; Yoshida, Kazuki; Yoshida, Koichi; Zenihiro, Juzo
2018-02-01
The dependence of the single-particle strength on the difference between proton and neutron separation energies is studied for oxygen isotopes in a wide range of isospins. The cross sections of the quasi-free (p,2p) reaction on ^{14,16,18,22,24}O were measured at intermediate energies. The measured cross sections are compared to predictions based on the distorted wave impulse approximation and shell-model psd valence-space spectroscopic factors. The reduction factors, which are the ratio of the experimental cross sections to the theoretical predictions, show no apparent dependence on the proton-neutron separation energy difference. The result is compatible with the result of the (e,e^'p) reaction on stable targets and with the predictions of recent ab initio calculations.
Chastagner, Philippe
1994-01-01
A system for continuously monitoring the concentration of tritium in an aqueous stream. The system pumps a sample of the stream to magnesium-filled combustion tube which reduces the sample to extract hydrogen gas. The hydrogen gas is then sent to an isotope separation device where it is separated into two groups of isotopes: a first group of isotopes containing concentrations of deuterium and tritium, and a second group of isotopes having substantially no deuterium and tritium. The first group of isotopes containing concentrations of deuterium and tritium is then passed through a tritium detector that produces an output proportional to the concentration of tritium detected. Preferably, the detection system also includes the necessary automation and data collection equipment and instrumentation for continuously monitoring an aqueous stream.
Chastagner, P.
1994-06-14
A system is described for continuously monitoring the concentration of tritium in an aqueous stream. The system pumps a sample of the stream to magnesium-filled combustion tube which reduces the sample to extract hydrogen gas. The hydrogen gas is then sent to an isotope separation device where it is separated into two groups of isotopes: a first group of isotopes containing concentrations of deuterium and tritium, and a second group of isotopes having substantially no deuterium and tritium. The first group of isotopes containing concentrations of deuterium and tritium is then passed through a tritium detector that produces an output proportional to the concentration of tritium detected. Preferably, the detection system also includes the necessary automation and data collection equipment and instrumentation for continuously monitoring an aqueous stream. 1 fig.
Method for laser induced isotope enrichment
Pronko, Peter P.; Vanrompay, Paul A.; Zhang, Zhiyu
2004-09-07
Methods for separating isotopes or chemical species of an element and causing enrichment of a desired isotope or chemical species of an element utilizing laser ablation plasmas to modify or fabricate a material containing such isotopes or chemical species are provided. This invention may be used for a wide variety of materials which contain elements having different isotopes or chemical species.
Measurement of plutonium isotope ratios in nuclear fuel samples by HPLC-MC-ICP-MS
NASA Astrophysics Data System (ADS)
Günther-Leopold, I.; Waldis, J. Kobler; Wernli, B.; Kopajtic, Z.
2005-04-01
Radioactive isotopes are traditionally quantified by means of radioactivity counting techniques ([alpha], [beta], [gamma]). However, these methods often require extensive matrix separation and sample purification before the identification of specific isotopes and their relative abundance is possible as it is necessary in the frame of post-irradiation examinations on nuclear fuel samples. The technique of multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is attracting much attention because it permits the precise measurement of the isotope compositions for a wide range of elements combined with excellent limits of detection due to high ionization efficiencies. The present paper describes one of the first applications of an online high-performance liquid chromatographic separation system coupled to a MC-ICP-MS in order to overcome isobaric interferences for the determination of the plutonium isotope composition and concentrations in irradiated nuclear fuels. The described chromatographic separation is sufficient to prevent any isobaric interference between 238Pu present at trace concentrations and 238U present as the main component of the fuel samples. The external reproducibility of the uncorrected plutonium isotope ratios was determined to be between 0.04 and 0.2% (2 s) resulting in a precision in the [per mille sign] range for the isotopic vectors of the irradiated fuel samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liezers, Martin; Olsen, Khris B.; Mitroshkov, Alexandre V.
2010-08-11
The most time consuming process in uranium or plutonium isotopic analyses is performing the requisite chromatographic separation of the actinides. Filament preparation for thermal ionization (TIMS) adds further delays, but is generally accepted due to the unmatched performance in trace isotopic analyses. Advances in Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) are beginning to rival the performance of TIMS. Methods, such as Electrochemically Modulated Separations (EMS) can efficiently pre-concentrate U or Pu quite selectively from small solution volumes in a matrix of 0.5 M nitric acid. When performed in-line with ICP-MS, the rapid analyte release from the electrode is fast,more » and large transient analyte signal enhancements of >100 fold can be achieved as compared to more conventional continuous nebulization of the original starting solution. This makes the approach ideal for very low level isotope ratio measurements. In this paper, some aspects of EMS performance are described. These include low level Pu isotope ratio behavior versus concentration by MC-ICP-MS and uranium rejection characteristics that are also important for reliable low level Pu isotope ratio determinations.« less
Method and apparatus for tritiated water separation
Nelson, David A.; Duncan, James B.; Jensen, George A.
1995-01-01
The present invention is a membrane method and apparatus for separating isotopic water constituents from light water. The method involves providing a supported membrane of an aromatic polyphosphazene and pressurizing the water on one side of the membrane thereby forcing the light water through the supported membrane while isotopic water constituents are retained or vice versa. The apparatus of the present invention includes an aromatic polyphosphazene placed on a porous support and means for pressurizing water through the membrane while certain isotopic water constituents are retained.
Method and apparatus for tritiated water separation
Nelson, D.A.; Duncan, J.B.; Jensen, G.A.
1995-09-19
The present invention is a membrane method and apparatus for separating isotopic water constituents from light water. The method involves providing a supported membrane of an aromatic polyphosphazene and pressurizing the water on one side of the membrane thereby forcing the light water through the supported membrane while isotopic water constituents are retained or vice versa. The apparatus of the present invention includes an aromatic polyphosphazene placed on a porous support and means for pressurizing water through the membrane while certain isotopic water constituents are retained. 1 fig.
Dry phase reactor for generating medical isotopes
Mackie, Thomas Rockwell; Heltemes, Thad Alexander
2016-05-03
An apparatus for generating medical isotopes provides for the irradiation of dry-phase, granular uranium compounds which are then dissolved in a solvent for separation of the medical isotope from the irradiated compound. Once the medical isotope is removed, the dissolved compound may be reconstituted in dry granular form for repeated irradiation.
NASA Astrophysics Data System (ADS)
Kaushik, A.; Berkelhammer, M. B.; O'Neill, M.; Noone, D.
2017-12-01
The partitioning of land surface latent heat flux into evaporation and transpiration remains a challenging problem despite a basic understanding of the underlying mechanisms. Water isotopes are useful tracers for separating evaporation and transpiration contributions because E and T have distinct isotopic ratios. Here we use the isotope-based partitioning method at a semi-arid grassland tall-tower site in Colorado. Our results suggest that under certain conditions evaporation cannot be isotopically distinguished from transpiration without modification of existing partitioning techniques. Over a 4-year period, we measured profiles of stable oxygen and hydrogen isotope ratios of water vapor from the surface to 300 m and soil water down to 1 m along with standard meteorological fluxes. Using these data, we evaluated the contributions of rainfall, equilibration, surface water vapor exchange and sub-surface vapor diffusion to the isotopic composition of evapotranspiration (ET). Applying the standard isotopic approach to find the transpiration portion of ET (i.e., T/ET), we see a significant discrepancy compared with a method to constrain T/ET based on gross primary productivity (GPP). By evaluating the kinetic fractionation associated with soil evaporation and vapor diffusion we find that a significant proportion (58-84%) of evaporation following precipitation is non-fractionating. This is possible when water from isolated soil layers is being nearly completely evaporated. Non-fractionating evaporation looks isotopically like transpiration and therefore leads to an overestimation of T/ET. Including non-fractionating evaporation reconciles the isotope-based partitioning estimates of T/ET with the GPP method, and may explain the overestimation of T/ET from isotopes compared to other methods. Finally, we examine the application of non-fractionating evaporation to other boundary layer moisture flux processes such as rain evaporation, where complete evaporation of smaller drop pools may produce a similarly weaker kinetic effect.
Novel hybrid isotope separation scheme and apparatus
Maya, Jakob
1991-01-01
A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which the specific isotope is to be isolated, radiating the gas with frequencies characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photoionization reaction of the desired isotope, and collecting the specific isotope ion by suitable ion collection means.
Particle Spectrometers for FRIB
NASA Astrophysics Data System (ADS)
Amthor, A. M.
2014-09-01
FRIB promises to dramatically expand the variety of nuclear systems available for direct experimental study by providing rates of many rare isotopes orders of magnitude higher than those currently available. A new generation of experimental systems, including new particle spectrometers will be critical to our ability to take full advantage of the scientific opportunities offered by FRIB. The High-Rigidity Spectrometer (HRS) will allow for experiments with the most neutron-rich and short-lived isotopes produced by in-flight fragmentation at FRIB. The bending capability of the HRS (8 Tm) matches to the rigidity for which rare isotopes are produced at the highest intensity in the FRIB fragment separator. The experimental program will be focused on nuclear structure and astrophysics, and allow for the use of other cutting-edge detection systems for gamma, neutron, and charged-particle detection. Stopped and reaccelerated beam studies will be an important compliment to in-flight techniques at FRIB, providing world-unique, high quality, intense rare isotope beams at low energies up to and beyond the Coulomb barrier--with the completion of ReA12--and serving many of the science goals of the broader facility, from nuclear structure and astrophysics to applications. Two specialized recoil spectrometers are being developed for studies with reaccelerated beams. SECAR, the Separator for Capture Reactions, will be built following ReA3, coupled to a windowless gas jet target, JENSA, and will focus on radiative capture reactions for astrophysics, particularly those needed to improve our understanding of novae and X-ray bursts. A recoil separator following ReA12 is proposed to address a variety of physics cases based on fusion-evaporation, Coulomb excitation, transfer, and deep-inelastic reactions by providing a large angular, momentum and charge state acceptance; a high mass resolving power; and the flexibility to couple to a variety of auxiliary detector systems. Two designs have been proposed to meet these needs, ISLA, the Isochronous Separator with Large Acceptance, and an electromagnetic M/Q separator SUPERB, the Separator for the Unique Products of Experiments with Radioactive Beams.
EM reconstruction of dual isotope PET using staggered injections and prompt gamma positron emitters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreyev, Andriy, E-mail: andriy.andreyev-1@philips.com; Sitek, Arkadiusz; Celler, Anna
2014-02-15
Purpose: The aim of dual isotope positron emission tomography (DIPET) is to create two separate images of two coinjected PET radiotracers. DIPET shortens the duration of the study, reduces patient discomfort, and produces perfectly coregistered images compared to the case when two radiotracers would be imaged independently (sequential PET studies). Reconstruction of data from such simultaneous acquisition of two PET radiotracers is difficult because positron decay of any isotope creates only 511 keV photons; therefore, the isotopes cannot be differentiated based on the detected energy. Methods: Recently, the authors have proposed a DIPET technique that uses a combination of radiotracermore » A which is a pure positron emitter (such as{sup 18}F or {sup 11}C) and radiotracer B in which positron decay is accompanied by the emission of a high-energy (HE) prompt gamma (such as {sup 38}K or {sup 60}Cu). Events that are detected as triple coincidences of HE gammas with the corresponding two 511 keV photons allow the authors to identify the lines-of-response (LORs) of isotope B. These LORs are used to separate the two intertwined distributions, using a dedicated image reconstruction algorithm. In this work the authors propose a new version of the DIPET EM-based reconstruction algorithm that allows the authors to include an additional, independent estimate of radiotracer A distribution which may be obtained if radioisotopes are administered using a staggered injections method. In this work the method is tested on simple simulations of static PET acquisitions. Results: The authors’ experiments performed using Monte-Carlo simulations with static acquisitions demonstrate that the combined method provides better results (crosstalk errors decrease by up to 50%) than the positron-gamma DIPET method or staggered injections alone. Conclusions: The authors demonstrate that the authors’ new EM algorithm which combines information from triple coincidences with prompt gammas and staggered injections improves the accuracy of DIPET reconstructions for static acquisitions so they reach almost the benchmark level calculated for perfectly separated tracers.« less
Modeling the Removal of Xenon from Lithium Hydrate with Aspen HYSYS
NASA Astrophysics Data System (ADS)
Efthimion, Phillip; Gentile, Charles
2011-10-01
The Laser Inertial Fusion Engine (LIFE) project mission is to provide a long-term, carbon-free source of sustainable energy, in the form of electricity. A conceptual xenon removal system has been modeled with the aid of Aspen HYSYS, a chemical process simulator. Aspen HYSYS provides excellent capability to model chemical flow processes, which generates outputs which includes specific variables such as temperature, pressure, and molar flow. The system is designed to strip out hydrogen isotopes deuterium and tritium. The base design bubbles plasma exhaust laden with x filled with liquid helium. The system separates the xenon from the hydrogen, deuterium, and tritium with a lithium hydrate and a lithium bubbler. After the removal of the hydrogen and its isotopes, the xenon is then purified by way of the process of cryogenic distillation. The pure hydrogen, deuterium, and tritium are then sent to the isotope separation system (ISS). The removal of xenon is an integral part of the laser inertial fusion engine and Aspen HYSYS is an excellent tool to calculate how to create pure xenon.
Novel hybrid isotope separation scheme and apparatus
Maya, J.
1991-06-18
A method is described for yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which the specific isotope is to be isolated, radiating the gas with frequencies characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photoionization reaction of the desired isotope, and collecting the specific isotope ion by suitable ion collection means. 3 figures.
NASA Astrophysics Data System (ADS)
Ghapanvari, M.; Ghorashi, A. H.; Ranjbar, Z.; Jafarizadeh, M. A.
2018-03-01
In this article, the negative-parity states in the odd-mass 103 - 109Rh isotopes in terms of the sd and sdg interacting-boson fermion models were studied. The transitional interacting boson-fermion model Hamiltonians in sd and sdg-IBFM versions based on affine SU (1 , 1) Lie Algebra were employed to describe the evolution from the spherical to deformed gamma unstable shapes along with the chain of Rh isotopes. In this method, sdg-IBFM Hamiltonian, which is a three level pairing Hamiltonian was determined easily via the exactly solvable method. Some observables of the shape phase transitions such as energy levels, the two neutron separation energies, signature splitting of the γ-vibrational band, the α-decay and double β--decay energies were calculated and examined for these isotopes. The present calculation correctly reproduces the spherical to gamma-soft phase transition in the Rh isotopes. Some comparisons were made with sd-IBFM.
NASA Astrophysics Data System (ADS)
Solarz, R. W.
1985-02-01
Atomic vapor laster isotope separation (AVLIS) represents the largest-scale potential application of tunable lasers that has received serious attention. The underlying physical principles were identified and optimized, the major technology components were developed, and the integrated enrichment performance of the process was tested. The central physical processes are outlined, progress to date on the technology elements is reviewed, and scaling laws are fomulated. Two primary applications are the production of light-water reactor fuel and the conversion of fuel-grade plutonium to weapons-grade material. A variety of applications exist that all potentially use a common base of AVLIS technology. These include missions such as the enrichment of mercury isotopes to improve fluorescent lamp efficiency, the enrichment of iodine isotopes for medical isotope use, and the cleanup of strontium from defense waste for recovering strontium isotopes for radiothermal mechanical generators. The ability to radidly assess the economic and technical feasibility of each mission is derived from the general applicability of AVLIS physics and AVLIS technology.
Keedakkadan, Habeeb Rahman; Abe, Osamu
2015-04-30
The separation and purification of oxygen-argon mixtures are critical in the high-precision analysis of Δ(17) O and δ(O2 /Ar) for geochemical applications. At present, chromatographic methods are used for the separation and purification of oxygen-argon mixtures or pure oxygen, but these methods require the use of high-purity helium as a carrier gas. Considerable interest has been expressed in the development of a helium-free cryogenic separation of oxygen-argon mixtures in natural air samples. The precise and simplified cryogenic separation of oxygen-argon mixtures from natural air samples presented here was made possible using a single 5A (30/60 mesh) molecular sieve column. The method involves the trapping of eluted gases using molecular sieves at liquid nitrogen temperature, which is associated with isotopic fractionation. We tested the proposed method for the determination of isotopic fractionations during the gas exchange between water and atmospheric air at equilibrium. The dependency of fractionation was studied at different water temperatures and for different methods of equilibration (bubbling and stirring). Isotopic and molecular fractionations during gas desorption from molecular sieves were studied for different amounts and types of molecular sieves. Repeated measurements of atmospheric air yielded a reproducibility (±SD) of 0.021 ‰, 0.044 ‰, 15 per meg and 1.9 ‰ for δ(17) O, δ(18) O, Δ(17) O and δ(O2 /Ar) values, respectively. We applied the method to determine equilibrium isotope fractionation during gas exchange between air and water. Consistent δ(18) O and Δ(17) O results were obtained with the latest two studies, whereas there was a significant difference in δ(18) O values between seawater and deionized water. We have revised a helium-free, cryogenic separation of oxygen-argon mixtures in natural air samples for isotopic and molecular ratio analysis. The use of a single 13X (1/8" pellet) molecular sieve yielded the smallest isotopic and molecular fractionations, and this fractionation by molecular sieves can be corrected by the amount of molecular sieve used in the experiment. The reproducibility of the method was tested by the measurement of the oxygen isotope ratios of dissolved oxygen at equilibrium with atmospheric air. We confirmed that the choice of methods for making air-equilibrated water was not related to the magnitude of isotope fractionation, whereas there was a difference between seawater and deionized water. Copyright © 2015 John Wiley & Sons, Ltd.
Seibert, Cathrin; Davidson, Brian R; Fuller, Barry J; Patterson, Laurence H; Griffiths, William J; Wang, Yuqin
2009-04-01
Here we report the identification and approximate quantification of cytochrome P450 (CYP) proteins in human liver microsomes as determined by nano-LC-MS/MS with application of the exponentially modified protein abundance index (emPAI) algorithm during database searching. Protocols based on 1D-gel protein separation and 2D-LC peptide separation gave comparable results. In total, 18 CYP isoforms were unambiguously identified based on unique peptide matches. Further, we have determined the absolute quantity of two CYP enzymes (2E1 and 1A2) in human liver microsomes using stable-isotope dilution mass spectrometry, where microsomal proteins were separated by 1D-gel electrophoresis, digested with trypsin in the presence of either a CYP2E1- or 1A2-specific stable-isotope labeled tryptic peptide and analyzed by LC-MS/MS. Using multiple reaction monitoring (MRM) for the isotope-labeled tryptic peptides and their natural unlabeled analogues quantification could be performed over the range of 0.1-1.5 pmol on column. Liver microsomes from four individuals were analyzed for CYP2E1 giving values of 88-200 pmol/mg microsomal protein. The CYP1A2 content of microsomes from a further three individuals ranged from 165 to 263 pmol/mg microsomal protein. Although, in this proof-of-concept study for CYP quantification, the two CYP isoforms were quantified from different samples, there are no practical reasons to prevent multiplexing the method to allow the quantification of multiple CYP isoforms in a single sample.
Seibert, Cathrin; Davidson, Brian R.; Fuller, Barry J.; Patterson, Laurence H.; Griffiths, William J.; Wang, Yuqin
2009-01-01
Here we report the identification and approximate quantification of cytochrome P450 (CYP) proteins in human liver microsomes as determined by nano-LC-MS/MS with application of the exponentially modified protein abundance index (emPAI) algorithm during database searching. Protocols based on 1D-gel protein separation and 2D-LC peptide separation gave comparable results. In total 18 CYP isoforms were unambiguously identified based on unique peptide matches. Further, we have determined the absolute quantity of two CYP enzymes (2E1 and 1A2) in human liver microsomes using stable-isotope dilution mass spectrometry, where microsomal proteins were separated by 1D-gel electrophoresis, digested with trypsin in the presence of either a CYP2E1- or 1A2-specific stable-isotope labelled tryptic peptide and analysed by LC-MS/MS. Using multiple reaction monitoring (MRM) for the isotope-labelled tryptic peptides and their natural unlabelled analogues quantification could be performed over the range of 0.1 – 1.5 pmol on column. Liver microsomes from four individuals were analysed for CYP2E1 giving values of 88 - 200 pmol/mg microsomal protein. The CYP1A2 content of microsomes from a further three individuals ranged from 165 – 263 pmol/mg microsomal protein. Although, in this proof-of-concept study for CYP quantification, the two CYP-isoforms were quantified from different samples, there are no practical reasons to prevent multiplexing the method to allow the quantification of multiple CYP-isoforms in a single sample. PMID:19714871
Isotope separation apparatus and method
Feldman, Barry J.
1985-01-01
The invention relates to an improved method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferably substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. Because the molecules in the beam occupy various degenerate energy levels, if the laser beam comprises chirped pulses comprising selected wavelengths, the laser beam will very efficiently excite substantially all unexcited molecules and will cause stimulated emission of substantially all excited molecules of a selected one of the isotopes in the beam which such pulses encounter. Excitation caused by first direction chirped pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning chirped pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement of essentially all the molecules containing the one isotope is accomplished by a large number of chirped pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.
Popov, L
2016-09-01
Method for determination of uranium isotopes in various environmental samples is presented. The major advantages of the method are the low cost of the analysis, high radiochemical yields and good decontamination factors from the matrix elements, natural and man-made radionuclides. The separation and purification of uranium is attained by adsorption with strong base anion exchange resin in sulfuric and hydrochloric acid media. Uranium is electrodeposited on a stainless steel disk and measured by alpha spectrometry. The analytical method has been applied for the determination of concentrations of uranium isotopes in mineral, spring and tap waters from Bulgaria. The analytical quality was checked by analyzing reference materials. Copyright © 2016 Elsevier Ltd. All rights reserved.
Arnush, Donald; MacKenzie, Kenneth R.; Wuerker, Ralph F.
1980-01-01
Isotope separation apparatus consisting of a plurality of cells disposed adjacent to each other in an evacuated container. A common magnetic field is established extending through all of the cells. A source of energetic electrons at one end of the container generates electrons which pass through the cells along the magnetic field lines. Each cell includes an array of collector plates arranged in parallel or in tandem within a common magnetic field. Sets of collector plates are disposed adjacent to each other in each cell. Means are provided for differentially energizing ions of a desired isotope by applying energy at the cyclotron resonant frequency of the desired isotope. As a result, the energized desired ions are preferentially collected by the collector plates.
Separation of isotopes by cyclical processes
Hamrin, Jr., Charles E.; Weaver, Kenny
1976-11-02
Various isotopes of hydrogen are separated by a cyclic sorption process in which a gas stream containing the isotopes is periodically passed through a high pressure column containing a palladium sorbent. A portion of the product from the high pressure column is passed through a second column at lower pressure to act as a purge. Before the sorbent in the high pressure column becomes saturated, the sequence is reversed with the stream flowing through the former low-pressure column now at high pressure, and a portion of the product purging the former high pressure column now at low pressure. The sequence is continued in cyclic manner with the product being enriched in a particular isotope.
NASA Astrophysics Data System (ADS)
D'yachkov, A. B.; Gorkunov, A. A.; Labozin, A. V.; Mironov, S. M.; Panchenko, V. Ya.; Firsov, V. A.; Tsvetkov, G. O.
2018-01-01
The use of atomic vapour laser isotope separation (AVLIS) for solving a number of urgent problems (formation of 177Lu radionuclides for medical applications, 63Ni radionuclides for betavoltaic power supplies and 150Nd isotope for searching for neutrinoless double β decay and neutrino mass) is considered. An efficient three-step scheme of photoionisation of neodymium atoms through the 50474-cm-1 autoionising state with radiation wavelengths of the corresponding stages of λ1 = 6289.7 Å, λ2 = 5609.4 Å and λ3 = 5972.1 Å is developed. The average saturation intensity of the autoionising transition is ˜6 W cm-2, a value consistent with the characteristics of the previously developed photoionisation schemes for lutetium and nickel. A compact laser system for the technological AVLIS complex, designed to produce radionuclides and isotopes under laboratory conditions, is developed based on the experimental results.
NASA Astrophysics Data System (ADS)
Zhang, Hao; Liu, Haijun; Blankenship, Robert E.; Gross, Michael L.
2016-01-01
We report an isotope-encoding method coupled with carboxyl-group footprinting to monitor protein conformational changes. The carboxyl groups of aspartic/glutamic acids and of the C-terminus of proteins can serve as reporters for protein conformational changes when labeled with glycine ethyl ester (GEE) mediated by carbodiimide. In the new development, isotope-encoded "heavy" and "light" GEE are used to label separately the two states of the orange carotenoid protein (OCP) from cyanobacteria. Two samples are mixed (1:1 ratio) and analyzed by a single LC-MS/MS experiment. The differences in labeling extent between the two states are represented by the ratio of the "heavy" and "light" peptides, providing information about protein conformational changes. Combining isotope-encoded MS quantitative analysis and carboxyl-group footprinting reduces the time of MS analysis and improves the sensitivity of GEE and other footprinting.
Zhang, Hao; Liu, Haijun; Blankenship, Robert E.; Gross, Michael L.
2015-01-01
We report an isotope-encoding method coupled with carboxyl-group footprinting to monitor protein conformational changes. The carboxyl groups of aspartic/glutamic acids and of the C-terminus of proteins can serve as reporters for protein conformational changes when labeled with glycine ethyl ester (GEE) mediated by carbodiimide. In the new development, isotope-encoded “heavy” and “light” GEE are used to label separately the two states of the Orange Carotenoid Protein (OCP) from cyanobacteria. Two samples are mixed (1:1 ratio) and analyzed by a single LC-MS/MS experiment. The differences in labeling extent between the two states are represented by the ratio of the “heavy” and “light” peptides, providing information about protein conformational changes. Combining isotope-encoded MS quantitative analysis and carboxyl-group footprinting reduces the time of MS analysis and improves the sensitivity of GEE and other footprinting. PMID:26384685
Nuclear quantum shape-phase transitions in odd-mass systems
NASA Astrophysics Data System (ADS)
Quan, S.; Li, Z. P.; Vretenar, D.; Meng, J.
2018-03-01
Microscopic signatures of nuclear ground-state shape-phase transitions in odd-mass Eu isotopes are explored starting from excitation spectra and collective wave functions obtained by diagonalization of a core-quasiparticle coupling Hamiltonian based on energy density functionals. As functions of the physical control parameter—the number of nucleons—theoretical low-energy spectra, two-neutron separation energies, charge isotope shifts, spectroscopic quadrupole moments, and E 2 reduced transition matrix elements accurately reproduce available data and exhibit more-pronounced discontinuities at neutron number N =90 compared with the adjacent even-even Sm and Gd isotopes. The enhancement of the first-order quantum phase transition in odd-mass systems can be attributed to a shape polarization effect of the unpaired proton which, at the critical neutron number, starts predominantly coupling to Gd core nuclei that are characterized by larger quadrupole deformation and weaker proton pairing correlations compared with the corresponding Sm isotopes.
Zhang, Hao; Liu, Haijun; Blankenship, Robert E.; ...
2015-09-18
Here, we report an isotope-encoding method coupled with carboxyl-group footprinting to monitor protein conformational changes. The carboxyl groups of aspartic/glutamic acids and of the C-terminus of proteins can serve as reporters for protein conformational changes when labeled with glycine ethyl ester (GEE) mediated by carbodiimide. In the new development, isotope-encoded “heavy” and “light” GEE are used to label separately the two states of the orange carotenoid protein (OCP) from cyanobacteria. Two samples are mixed (1:1 ratio) and analyzed by a single LC-MS/MS experiment. The differences in labeling extent between the two states are represented by the ratio of the “heavy”more » and “light” peptides, providing information about protein conformational changes. Combining isotope-encoded MS quantitative analysis and carboxyl-group footprinting reduces the time of MS analysis and improves the sensitivity of GEE and other footprinting.« less
Application of Stable Isotope-Assisted Metabolomics for Cell Metabolism Studies
You, Le; Zhang, Baichen; Tang, Yinjie J.
2014-01-01
The applications of stable isotopes in metabolomics have facilitated the study of cell metabolisms. Stable isotope-assisted metabolomics requires: (1) properly designed tracer experiments; (2) stringent sampling and quenching protocols to minimize isotopic alternations; (3) efficient metabolite separations; (4) high resolution mass spectrometry to resolve overlapping peaks and background noises; and (5) data analysis methods and databases to decipher isotopic clusters over a broad m/z range (mass-to-charge ratio). This paper overviews mass spectrometry based techniques for precise determination of metabolites and their isotopologues. It also discusses applications of isotopic approaches to track substrate utilization, identify unknown metabolites and their chemical formulas, measure metabolite concentrations, determine putative metabolic pathways, and investigate microbial community populations and their carbon assimilation patterns. In addition, 13C-metabolite fingerprinting and metabolic models can be integrated to quantify carbon fluxes (enzyme reaction rates). The fluxome, in combination with other “omics” analyses, may give systems-level insights into regulatory mechanisms underlying gene functions. More importantly, 13C-tracer experiments significantly improve the potential of low-resolution gas chromatography-mass spectrometry (GC-MS) for broad-scope metabolism studies. We foresee the isotope-assisted metabolomics to be an indispensable tool in industrial biotechnology, environmental microbiology, and medical research. PMID:24957020
Method of separating boron isotopes
Jensen, R.J.; Thorne, J.M.; Cluff, C.L.
1981-01-23
A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)-dichloroborane as the feed material. The photolysis can readily by achieved with CO/sub 2/ laser radiation and using fluences significantly below those required to dissociate BCl/sub 3/.
Method of separating boron isotopes
Jensen, Reed J.; Thorne, James M.; Cluff, Coran L.; Hayes, John K.
1984-01-01
A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)dichloroborane as the feed material. The photolysis can readily be achieved with CO.sub.2 laser radiation and using fluences significantly below those required to dissociate BCl.sub.3.
Radchenko, Valery; Engle, Jonathan W; Medvedev, Dmitri G; Maassen, Joel M; Naranjo, Cleo M; Unc, George A; Meyer, Catherine A L; Mastren, Tara; Brugh, Mark; Mausner, Leonard; Cutler, Cathy S; Birnbaum, Eva R; John, Kevin D; Nortier, F Meiring; Fassbender, Michael E
2017-07-01
Scandium-44g (half-life 3.97h) shows promise for application in positron emission tomography (PET), due to favorable decay parameters. One of the sources of 44g Sc is the 44 Ti/ 44g Sc generator, which can conveniently provide this radioisotope on a daily basis at a diagnostic facility. Titanium-44 (half-life 60.0 a), in turn, can be obtained via proton irradiation of scandium metal targets. A substantial 44 Ti product batch, however, requires high beam currents, long irradiation times and an elaborate chemical procedure for 44 Ti isolation and purification. This study describes the production of a combined 175MBq (4.7mCi) batch yield of 44 Ti in week long proton irradiations at the Los Alamos Isotope Production Facility (LANL-IPF) and the Brookhaven Linac Isotope Producer (BNL-BLIP). A two-step ion exchange chromatography based chemical separation method is introduced: first, a coarse separation of 44 Ti via anion exchange sorption in concentrated HCl results in a 44 Tc/Sc separation factor of 10 2 -10 3 . A second, cation exchange based step in HCl media is then applied for 44 Ti fine purification from residual Sc mass. In summary, this method yields a 90-97% 44 Ti recovery with an overall Ti/Sc separation factor of ≥10 6 . Copyright © 2017 Elsevier Inc. All rights reserved.
Radchenko, Valery; Engle, Jonathan Ward; Medvedev, Dmitri G.; ...
2017-04-07
Scandium-44 g (half-life 3.97 h) shows promise for application in positron emission tomography (PET), due to favorable decay parameters. One of the sources of 44gSc is the 44Ti/ 44gSc generator, which can conveniently provide this radioisotope on a daily basis at a diagnostic facility. Titanium-44 (half-life 60.0 a), in turn, can be obtained via proton irradiation of scandium metal targets. A substantial 44Ti product batch, however, requires high beam currents, long irradiation times and an elaborate chemical procedure for 44Ti isolation and purification. This study describes the production of a combined 175 MBq (4.7 mCi) batch yield of 44Ti inmore » week long proton irradiations at the Los Alamos Isotope Production Facility (LANL-IPF) and the Brookhaven Linac Isotope Producer (BNL-BLIP). A two-step ion exchange chromatography based chemical separation method is introduced: first, a coarse separation of 44Ti via anion exchange sorption in concentrated HCl results in a 44Tc/Sc separation factor of 10 2–10 3. A second, cation exchange based step in HCl media is then applied for 44Ti fine purification from residual Sc mass. In conclusion, this method yields a 90–97% 44Ti recovery with an overall Ti/Sc separation factor of ≥10 6.« less
An MS-DOS-based program for analyzing plutonium gamma-ray spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruhter, W.D.; Buckley, W.M.
1989-09-07
A plutonium gamma-ray analysis system that operates on MS-DOS-based computers has been developed for the International Atomic Energy Agency (IAEA) to perform in-field analysis of plutonium gamma-ray spectra for plutonium isotopics. The program titled IAEAPU consists of three separate applications: a data-transfer application for transferring spectral data from a CICERO multichannel analyzer to a binary data file, a data-analysis application to analyze plutonium gamma-ray spectra, for plutonium isotopic ratios and weight percents of total plutonium, and a data-quality assurance application to check spectral data for proper data-acquisition setup and performance. Volume 3 contains the software listings for these applications.
NASA Astrophysics Data System (ADS)
Kiczka, Mirjam; Wiederhold, Jan G.; Frommer, Jakob; Voegelin, Andreas; Kraemer, Stephan M.; Bourdon, Bernard; Kretzschmar, Ruben
2011-10-01
The chemical weathering of primary Fe-bearing minerals, such as biotite and chlorite, is a key step of soil formation and an important nutrient source for the establishment of plant and microbial life. The understanding of the relevant processes and the associated Fe isotope fractionation is therefore of major importance for the further development of stable Fe isotopes as a tracer of the biogeochemical Fe cycle in terrestrial environments. We investigated the Fe mineral transformations and associated Fe isotope fractionation in a soil chronosequence of the Swiss Alps covering 150 years of soil formation on granite. For this purpose, we combined for the first time stable Fe isotope analyses with synchrotron-based Fe-EXAFS spectroscopy, which allowed us to interpret changes in Fe isotopic composition of bulk soils, size fractions, and chemically separated Fe pools over time in terms of weathering processes. Bulk soils and rocks exhibited constant isotopic compositions along the chronosequence, whereas soil Fe pools in grain size fractions spanned a range of 0.4‰ in δ 56Fe. The clay fractions (<2 μm), in which newly formed Fe(III)-(hydr)oxides contributed up to 50% of the total Fe, were significantly enriched in light Fe isotopes, whereas the isotopic composition of silt and sand fractions, containing most of the soil Fe, remained in the range described by biotite/chlorite samples and bulk soils. Iron pools separated by a sequential extraction procedure covered a range of 0.8‰ in δ 56Fe. For all soils the lightest isotopic composition was observed in a 1 M NH 2OH-HCl-25% acetic acid extract, targeting poorly-crystalline Fe(III)-(hydr)oxides, compared with easily leachable Fe in primary phyllosilicates (0.5 M HCl extract) and Fe in residual silicates. The combination of the Fe isotope measurements with the speciation data obtained by Fe-EXAFS spectroscopy permitted to quantitatively relate the different isotope pools forming in the soils to the mineral weathering reactions which have taken place at the field site. A kinetic isotope effect during the Fe detachment from the phyllosilicates was identified as the dominant fractionation mechanism in young weathering environments, controlling not only the light isotope signature of secondary Fe(III)-(hydr)oxides but also significantly contributing to the isotope signature of plants. The present study further revealed that this kinetic fractionation effect can persist over considerable reaction advance during chemical weathering in field systems and is not only an initial transient phenomenon.
Absolute Calibration of Si iRMs used for Measurements of Si Paleo-nutrient proxies
NASA Astrophysics Data System (ADS)
Vocke, R. D., Jr.; Rabb, S. A.
2016-12-01
Silicon isotope variations (reported as δ30Si and δ29Si, relative to NBS28) in silicic acid dissolved in ocean waters, in biogenic silica and in diatoms are extremely informative paleo-nutrient proxies. The resolution and comparability of such measurements depend on the quality of the isotopic Reference Materials (iRMs) defining the delta scale. We report new absolute Si isotopic measurements on the iRMs NBS28 (RM 8546 - Silica Sand), Diatomite, and Big Batch using the Avogadro measurement approach and comparing them with prior assessments of these iRMs. The Avogadro Si measurement technique was developed by the German Physikalish-Technische Bundesanstalt (PTB) to provide a precise and highly accurate method to measure absolute isotopic ratios in highly enriched 28Si (99.996%) material. These measurements are part of an international effort to redefine the kg and mole based on the Planck constant h and the Avogadro constant NA, respectively (Vocke et al., 2014 Metrologia 51, 361, Azuma et al., 2015 Metrologia 52 360). This approach produces absolute Si isotope ratio data with lower levels of uncertainty when compared to the traditional "Atomic Weights" method of absolute isotope ratio measurement calibration. This is illustrated in Fig. 1 where absolute Si isotopic measurements on SRM 990, separated by 40+ years of advances in instrumentation, are compared. The availability of this new technique does not say that absolute Si isotopic ratios are or ever will be better for normal Si isotopic measurements when seeking isotopic variations in nature, because they are not. However, by determining the absolute isotopic ratios of all the Si iRM scale artifacts, such iRMs become traceable to the metric system (SI); thereby automatically conferring on all the artifact-based δ30Si and δ29Si measurements traceability to the base SI unit, the mole. Such traceability should help reduce the potential of bias between different iRMs and facilitate the replacement of delta-scale artefacts when they run out. Fig. 1 Comparison of absolute isotopic measurements of SRM 990 using two radically different approaches to absolute calibration and mass bias corrections.
Selective Detection of Peptide-Oligonucleotide Heteroconjugates Utilizing Capillary HPLC-ICPMS
NASA Astrophysics Data System (ADS)
Catron, Brittany; Caruso, Joseph A.; Limbach, Patrick A.
2012-06-01
A method for the selective detection and quantification of peptide:oligonucleotide heteroconjugates, such as those generated by protein:nucleic acid cross-links, using capillary reversed-phase high performance liquid chromatography (cap-RPHPLC) coupled with inductively coupled plasma mass spectrometry detection (ICPMS) is described. The selective detection of phosphorus as 31P+, the only natural isotope, in peptide-oligonucleotide heteroconjugates is enabled by the elemental detection capabilities of the ICPMS. Mobile phase conditions that allow separation of heteroconjugates while maintaining ICPMS compatibility were investigated. We found that trifluoroacetic acid (TFA) mobile phases, used in conventional peptide separations, and hexafluoroisopropanol/triethylamine (HFIP/TEA) mobile phases, used in conventional oligonucleotide separations, both are compatible with ICPMS and enable heteroconjugate separation. The TFA-based separations yielded limits of detection (LOD) of ~40 ppb phosphorus, which is nearly seven times lower than the LOD for HFIP/TEA-based separations. Using the TFA mobile phase, 1-2 pmol of a model heteroconjugate were routinely separated and detected by this optimized capLC-ICPMS method.
Chromatographic hydrogen isotope separation
Aldridge, Frederick T.
1981-01-01
Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.
Chromatographic hydrogen isotope separation
Aldridge, F.T.
Intermetallic compounds with the CaCu/sub 5/ type of crystal structure, particularly LaNiCo/sub 4/ and CaNi/sub 5/, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen cn produce large quantities of heavy water at an effective cost for use in heavy water reactors.
van Geldern, Robert; Nowak, Martin E; Zimmer, Martin; Szizybalski, Alexandra; Myrttinen, Anssi; Barth, Johannes A C; Jost, Hans-Jürg
2014-12-16
A newly developed isotope ratio laser spectrometer for CO2 analyses has been tested during a tracer experiment at the Ketzin pilot site (northern Germany) for CO2 storage. For the experiment, 500 tons of CO2 from a natural CO2 reservoir was injected in supercritical state into the reservoir. The carbon stable isotope value (δ(13)C) of injected CO2 was significantly different from background values. In order to observe the breakthrough of the isotope tracer continuously, the new instruments were connected to a stainless steel riser tube that was installed in an observation well. The laser instrument is based on tunable laser direct absorption in the mid-infrared. The instrument recorded a continuous 10 day carbon stable isotope data set with 30 min resolution directly on-site in a field-based laboratory container during a tracer experiment. To test the instruments performance and accuracy the monitoring campaign was accompanied by daily CO2 sampling for laboratory analyses with isotope ratio mass spectrometry (IRMS). The carbon stable isotope ratios measured by conventional IRMS technique and by the new mid-infrared laser spectrometer agree remarkably well within analytical precision. This proves the capability of the new mid-infrared direct absorption technique to measure high precision and accurate real-time stable isotope data directly in the field. The laser spectroscopy data revealed for the first time a prior to this experiment unknown, intensive dynamic with fast changing δ(13)C values. The arrival pattern of the tracer suggest that the observed fluctuations were probably caused by migration along separate and distinct preferential flow paths between injection well and observation well. The short-term variances as observed in this study might have been missed during previous works that applied laboratory-based IRMS analysis. The new technique could contribute to a better tracing of the migration of the underground CO2 plume and help to ensure the long-term integrity of the reservoir.
Horton, James A.; Hayden, Jr., Howard W.
1995-01-01
An uranium enrichment process capable of producing an enriched uranium, having a .sup.235 U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower .sup.235 U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF.sub.6 tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a .sup.235 U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % .sup.235 U; fluorinating this enriched metallic uranium isotopic mixture to form UF.sub.6 ; processing the resultant isotopic mixture of UF.sub.6 in a gaseous diffusion process to produce a final enriched uranium product having a .sup.235 U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low .sup.235 U content UF.sub.6 having a .sup.235 U content of about 0.71 wt. % of the total uranium content of the low .sup.235 U content UF.sub.6 ; and converting this low .sup.235 U content UF.sub.6 to metallic uranium for recycle to the atomic vapor laser isotope separation process.
Horton, J.A.; Hayden, H.W. Jr.
1995-05-30
An uranium enrichment process capable of producing an enriched uranium, having a {sup 235}U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower {sup 235}U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF{sub 6} tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a {sup 235} U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % {sup 235} U; fluorinating this enriched metallic uranium isotopic mixture to form UF{sub 6}; processing the resultant isotopic mixture of UF{sub 6} in a gaseous diffusion process to produce a final enriched uranium product having a {sup 235}U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low {sup 235}U content UF{sub 6} having a {sup 235}U content of about 0.71 wt. % of the total uranium content of the low {sup 235}U content UF{sub 6}; and converting this low {sup 235}U content UF{sub 6} to metallic uranium for recycle to the atomic vapor laser isotope separation process. 4 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polacco, Benjamin J.; Purvine, Samuel O.; Zink, Erika M.
2011-08-01
The identification of peptides that result from post-translational modifications is critical for understanding normal pathways of cellular regulation as well as identifying damage from, or exposures to xenobiotics, i.e. the exposome. However, because of their low abundance in proteomes, effective detection of modified peptides by mass spectrometry (MS) typically requires enrichment to eliminate false identifications. We present a new method for confidently identifying peptides with mercury (Hg)-containing adducts that is based on the influence of mercury’s seven stable isotopes on peptide isotope distributions detected by high-resolution MS. Using a pure protein and E. coli cultures exposed to phenyl mercuric acetate,more » we show the pattern of peak heights in isotope distributions from primary MS single scans efficiently identified Hg adducts in data from chromatographic separation coupled with tandem mass spectrometry with sensitivity and specificity greater than 90%. Isotope distributions are independent of peptide identifications based on peptide fragmentation (e.g. by SEQUEST), so both methods can be combined to eliminate false positives. Summing peptide isotope distributions across multiple scans improved specificity to 99.4% and sensitivity above 95%, affording identification of an unexpected Hg modification. We also illustrate the theoretical applicability of the method for detection of several less common elements including the essential element, selenium, as selenocysteine in peptides.« less
NASA Astrophysics Data System (ADS)
Pearson, A.; Bovee, R. J.; Mohr, W.; Tang, T.
2012-12-01
As metagenomics increases our insight into microbial community diversity and metabolic potential, new approaches are required to determine the biogeochemical expression of this potential within ecosystems. Because stable isotopic analysis of the major bioactive elements (C, N) has been used historically to map flows of substrates and energy among macroscopic food webs, similar principles may apply to microbes. To address this challenge, we have developed a new analytical approach called Protein Stable Isotope Fingerprinting (P-SIF). P-SIF generates natural stable isotopic fingerprints of microbial individual or community proteomes. The main advantage of P-SIF is the potential to bridge the gap between diversity and function, thereby providing a window into the "black box" of environmental microbiology and helping to decipher the roles of uncultivated species. Our method implements a three-way, orthogonal scheme to separate mixtures of whole proteins into subfractions dominated by single or closely-related proteins. Protein extracts first are isoelectrically focused in a gel-free technique that yields 12 fractions separated over a gradient of pH 3-10. Each fraction then is separated by size-exclusion chromatography into 20 pools, ranging from >100kD to ~10kD. Finally, each of these pools is subjected to HPLC and collected in 40 time-slices based on protein hydrophobicity. Theoretical calculation reveals that the true chromatographic resolution of the total scheme is 5000, somewhat less than the 9600 resulting fractions. High-yielding fractions are subjected to δ13C analysis by spooling-wire microcombustion irMS (SWiM-irMS) optimized for samples containing 1-5 nmol carbon. Here we will present the method, results for a variety of pure cultures, and preliminary data for a sample of mixed environmental proteins. The data show the promise of this method for unraveling the metabolic complexity hidden within microbial communities.
NASA Astrophysics Data System (ADS)
Sprenger, Matthias; Leistert, Hannes; Gimbel, Katharina; Weiler, Markus
2016-09-01
Water stable isotopes (18O and 2H) are widely used as ideal tracers to track water through the soil and to separate evaporation from transpiration. Due to the technical developments in the last two decades, soil water stable isotope data have become easier to collect. Thus, the application of isotope methods in soils is growing rapidly. Studies that make use of soil water stable isotopes often have a multidisciplinary character since an interplay of processes that take place in the vadose zone has to be considered. In this review, we provide an overview of the hydrological processes that alter the soil water stable isotopic composition and present studies utilizing pore water stable isotopes. The processes that are discussed include the water input as precipitation or throughfall, the output as evaporation, transpiration, or recharge, and specific flow and transport processes. Based on the review and supported by additional data and modeling results, we pose a different view on the recently proposed two water world hypothesis. As an alternative to two distinct pools of soil water, where one pool is enriched in heavy isotopes and used by the vegetation and the other pool does not undergo isotopic fractionation and becomes recharge, the water gets successively mixed with newly introduced rainwater during the percolation process. This way, water initially isotopically enriched in the topsoil loses the fractionation signal with increasing infiltration depth, leading to unfractionated isotopic signals in the groundwater.
Novel Tool for Simultaneous Carbon and Nitrogen Stable Isotope Analyses in Aqueous Samples
NASA Astrophysics Data System (ADS)
Federherr, E.; Schmidt, T. C.; Cerli, C.; Kalbitz, K.; Kupka, H. J.; Lange, L.; Dunsbach, R.; Panetta, R. J.; Kasson, A.
2014-12-01
Investigation of transformation and transport processes of carbon and nitrogen in ecosystems plays an important role to understand and predict their dynamics and role in biogeochemistry. Consequently, suitable and accurate methods for concentration as well as stable isotopic composition analysis of carbon and nitrogen in waters and aqueous solutions play a significant role. Traditionally dissolved carbon and nitrogen stable isotope analysis (SIA) is performed using either offline sample preparation followed by elemental analysis isotope ratio mass spectrometry (EA/IRMS) or modified wet chemical oxidation based device coupled to IRMS. Recently we presented a high temperature combustion system (HTC), which significantly improves upon these methods for dissolved organic carbon (DOC) SIA. The analysis of δ15N of dissolved nitrogen still has large limitations. Its low concentration makes EA/IRMS laborious, time and sample consuming. Systems based on wet chemical oxidation-IRMS bare the risk of sensitivity loss as well as of fractionation due to incomplete mineralization. In addition, the high solubility of molecular nitrogen in water remains a technical challenge, as it requires additional separation steps to distinguish between physically dissolved nitrogen and bound nitrogen. Further development of our HTC system lead to the implementation of the δ15N determination which now coupled, into a novel total organic carbon (TOC) analyzing system, especially designed for SIA of both, carbon and nitrogen. Integrated, innovative purge and trap technique (peak focusing) for nitrogen with aluminosilicate adsorber and peltier element based cooling system, in combination with high injection volume (up to 3 mL) as well as favorable carrier gas flow significantly improves sensitivity. Down to 1ppm and less total nitrogen can be measured with precision of ≤ 0.5‰. To lower the background caused by physically dissolved nitrogen new, membrane-vacuum based, degasser was designed for online separation of physically dissolved nitrogen. This novel HTC system, "iso TOC cube", provides an innovative tool with large potential in investigation of biogeochemical carbon and nitrogen cycles.
NASA Astrophysics Data System (ADS)
Bogovalov, S. V.; Borisevich, V. D.; Borman, V. D.; Tronin, I. V.; Tronin, V. N.
2016-06-01
Numerical modelling and optimization of the gas flow and isotope separation in the Iguasu gas centrifuge (GC) for uranium enrichment have been performed for different lengths of the rotor. The calculations show that the specific separative power of the GC reduces with the length of the rotor. We show that the reduction of the specific separative power is connected with the growth of the pressure in the optimal regime and corresponding growth of temperature to prevent the working gas sublimation. The specific separative power remains constant with the growth of the rotor length provided that the temperature of the gas is taken to be constant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogovalov, S. V.; Borisevich, V. D.; Borman, V. D.
Numerical modelling and optimization of the gas flow and isotope separation in the Iguasu gas centrifuge (GC) for uranium enrichment have been performed for different lengths of the rotor. The calculations show that the specific separative power of the GC reduces with the length of the rotor. We show that the reduction of the specific separative power is connected with the growth of the pressure in the optimal regime and corresponding growth of temperature to prevent the working gas sublimation. The specific separative power remains constant with the growth of the rotor length provided that the temperature of the gasmore » is taken to be constant.« less
Hydrogen isotope separation utilizing bulk getters
Knize, R.J.; Cecchi, J.L.
1991-08-20
Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen. 4 figures.
Hydrogen isotope separation utilizing bulk getters
Knize, Randall J.; Cecchi, Joseph L.
1991-01-01
Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.
Hydrogen isotope separation utilizing bulk getters
Knize, Randall J.; Cecchi, Joseph L.
1990-01-01
Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.
Harvey, Scott D; Jarman, Kristin H; Moran, James J; Sorensen, Christina M; Wright, Bob W
2012-09-15
The purpose of this study was to perform a preliminary investigation of compound-specific isotope analysis (CSIA) of diesel fuels to evaluate whether the technique could distinguish diesel samples from different sources/locations. The ability to differentiate or correlate diesel samples could be valuable for discovering fuel tax evasion schemes or for environmental forensic studies. Two urea adduction-based techniques were used to isolate the n-alkanes from the fuel. Both carbon isotope ratio (δ(13)C) and hydrogen isotope ratio (δD) values for the n-alkanes were then determined by CSIA in each sample. The samples investigated had δ(13)C values that ranged from -30.1‰ to -26.8‰, whereas δD values ranged from -83‰ to -156‰. Plots of δD versus δ(13)C with sample n-alkane points connected in order of increasing carbon number gave well-separated clusters with characteristic shapes for each sample. Principal components analysis (PCA) with δ(13)C, δD, or combined δ(13)C and δD data was applied to extract the maximum information content. PCA scores plots could clearly differentiate the samples, thereby demonstrating the potential of this approach for distinguishing (e.g., fingerprinting) fuel samples using δ(13)C and δD values. Copyright © 2012 Elsevier B.V. All rights reserved.
Chromatographic separation of radioactive noble gases from xenon
NASA Astrophysics Data System (ADS)
Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Bramante, R.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chiller, A. A.; Chiller, C.; Coffey, T.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Ihm, M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Pech, K.; Phelps, P.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Yazdani, K.; Young, S. K.; Zhang, C.
2018-01-01
The Large Underground Xenon (LUX) experiment operates at the Sanford Underground Research Facility to detect nuclear recoils from the hypothetical Weakly Interacting Massive Particles (WIMPs) on a liquid xenon target. Liquid xenon typically contains trace amounts of the noble radioactive isotopes 85Kr and 39Ar that are not removed by the in situ gas purification system. The decays of these isotopes at concentrations typical of research-grade xenon would be a dominant background for a WIMP search experiment. To remove these impurities from the liquid xenon, a chromatographic separation system based on adsorption on activated charcoal was built. 400 kg of xenon was processed, reducing the average concentration of krypton from 130 ppb to 3.5 ppt as measured by a cold-trap assisted mass spectroscopy system. A 50 kg batch spiked to 0.001 g/g of krypton was processed twice and reduced to an upper limit of 0.2 ppt.
Laser isotope separation by multiple photon absorption
Robinson, C. Paul; Rockwood, Stephen D.; Jensen, Reed J.; Lyman, John L.; Aldridge, III, Jack P.
1987-01-01
Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.
Laser isotope separation by multiple photon absorption
Robinson, C. Paul; Rockwood, Stephen D.; Jensen, Reed J.; Lyman, John L.; Aldridge, III, Jack P.
1977-01-01
Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, in the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.
Copper and Zinc isotope composition of CR, CB and CH-like meteorites.
NASA Astrophysics Data System (ADS)
Russell, S.; Zhu, X.; Guo, Y.; Mullane, E.; Gounelle, M.; Mason, T.; Coles, B.
2003-04-01
Copper and zinc isotopes have recently been shown to be variable in isotopic composi-tion among terrestrial and extraterrestrial materials [1-3]. For this study, we have se-lected samples (bulk meteorite and chondrule separates) from the CR meteorite clan: Bencubbin (CB), Renazzo (CR2), NWA 801 (CR2), and HaH237 (CH-like). These meteorites were selected because meteorites from this clan have experienced very little alteration since their initial formation [4] and for their extremely high refrac-tory/volatile element ratios. The latter characteristic may allow a test of the correlation observed by [2] between element ratios and Cu isotope composition. Measurements were performed on NHM/IC Micromass Isoprobe and Oxford Nu MC-ICP-MS using techniques described elsewhere [1,5]. Each of the meteorites measured so far for Cu and Zn are isotopically light compared to the terrestrial mantle. This suggests that the terrestrial value may have been altered from the pristine solar system value, or else there were multiple early solar system components. Zinc isotopic com-positions lie on a fractionation line and range from δ66ZnNIST = -1.4±0.1ppm (bulk NWA801) to -1.9±0.1ppm (separated chondrule, NWA 801). Copper isotope compositions vary from δ65CuNIST976 = -1.5±0.1ppm (bulk Renazzo) to -3.1±0.1ppm (separated chondrule, NWA 801). Two chondrules from NWA 801 have differing Cu isotope values (-3.1±0.1 and -2.0±0.1ppm) and both are lighter than the bulk meteorite (-1.9±0.1ppm), suggesting a lack of equilibration with respect to Cu in this meteorite. The light values for the two separated chondrules, compared the bulk meteorite, hints that chondrules may be isotopically lighter than co-existing matrix, metal and sulphides with respect to Cu. The copper isotope compositions are not as isotopically light as expected for the high refractory/volatile element ratio observed in these chondrites. Thus a model to account for the Cu isotopes in chondrites may require greater com-plexity than one involving simple mixing of two primordial components. References: [1] Zhu et al., Chem. Geol. 163,139-149 (2000). [2] Luck et al., GCA 67 143 (2002). [3] Luck et al., MAPS 35 A100 (2000) [4] Krot et al., MAPS 37 1451-1490 (2002) [5] Mason et al. EOS Trans. AGU abstract V21A-0966 82 (2001)
Ecohydrologic Separation of Plant Life Forms Across A Soil Moisture Gradient in a Montane Wetland
NASA Astrophysics Data System (ADS)
Mercer, J.; Millar, D.; Williams, D. G.
2016-12-01
Sources of water used by plants can differ from those that flow to groundwater and streams. Such ecohydrologic separation forms the basis for the "two water worlds hypothesis" that challenges commonly held notions of how water moves through terrestrial ecosystems. Yet, recent observations in a humid, low energy wetland environment did not support the presence of ecohydrologic separation. These contrasting results, in the context of general physical principles, suggest that energy gradients along the soil-plant-atmosphere continuum may play a role in defining the magnitude of ecohydrologic separation. We quantified ecohydrologic separation in a montane wetland with pronounced hummocks and hollows located in southeastern Wyoming. The rooting zone in this wetland is fully saturated during the spring, but is prone to water table draw-downs (> 1 m) during the summer, likely producing significant water potential differences between plant and soil water pools. We predict that wetland vegetation will express some degree of ecohydrologic separation, but such expression will differ based on microtopgraphic position and the rooting strategy of different plant life form (i.e., trees, shrubs, graminoids). For example, shallowly rooted graminoids on raised hummocks may use water that is distinctly different from that located in wetter hollows, with water in hollows being more isotopically similar to water leaving the wetland via surface water flows. We collected xylem water from dominant plant life forms in hummocks and hollows, free water (via piezometers) and bulk soil water at depths of 20 and 60 cm, as well as surface water and groundwater. Stable isotope ratios of H and O were determined from samples by either laser spectroscopy or isotope ratio mass spectrometry. Our expected results suggest that most of the water being used by wetland plants will be similar to that leaving the wetland via surface flow. In the context of their being two water worlds in the surrounding forested uplands, we suggest that mountain wetlands may play a more important role in provisioning streamflow than previously thought.
Numerical modeling and optimization of the Iguassu gas centrifuge
NASA Astrophysics Data System (ADS)
Bogovalov, S. V.; Borman, V. D.; Borisevich, V. D.; Tronin, V. N.; Tronin, I. V.
2017-07-01
The full procedure of the numerical calculation of the optimized parameters of the Iguassu gas centrifuge (GC) is under discussion. The procedure consists of a few steps. On the first step the problem of a hydrodynamical flow of the gas in the rotating rotor of the GC is solved numerically. On the second step the problem of diffusion of the binary mixture of isotopes is solved. The separation power of the gas centrifuge is calculated after that. On the last step the time consuming procedure of optimization of the GC is performed providing us the maximum of the separation power. The optimization is based on the BOBYQA method exploring the results of numerical simulations of the hydrodynamics and diffusion of the mixture of isotopes. Fast convergence of calculations is achieved due to exploring of a direct solver at the solution of the hydrodynamical and diffusion parts of the problem. Optimized separative power and optimal internal parameters of the Iguassu GC with 1 m rotor were calculated using the developed approach. Optimization procedure converges in 45 iterations taking 811 minutes.
NASA Astrophysics Data System (ADS)
van Geldern, Robert; Nowak, Martin; Zimmer, Martin; Szizybalski, Alexandra; Myrttinen, Anssi; Barth, Johannes A. C.; Jost, Hj
2016-04-01
A newly developed and commercially available isotope ratio laser spectrometer for CO2 analyses has been tested during a 10-day field monitoring campaign at the Ketzin pilot site for CO2 storage in northern Germany. The laser instrument is based on tunable laser direct absorption in the mid-infrared. The instrument recorded a continuous 10-day carbon stable isotope data set with 30 minutes resolution directly on-site in a field-based laboratory container during a tracer experiment. To test the instruments performance and accuracy the monitoring campaign was accompanied by daily CO2 sampling for laboratory analyses with isotope ratio mass spectrometry (IRMS). The carbon stable isotope ratios measured by conventional IRMS technique and by the new mid-infrared laser spectrometer agree remarkably well within 2σ analytical precision (<0.3 ‰). This proves the capability of the new mid-infrared direct absorption technique to measure high precision and accurate real-time table isotope data directly in the field. The injected CO2 tracer had a distinct δ13C value that was largely different from the reservoir background value. The laser spectroscopy data revealed a prior to this study unknown, intensive dynamic with fast changing δ13C values. The arrival pattern of the tracer suggest that the observed fluctuations were probably caused by migration along separate and distinct preferential flow paths between injection well and observation well. The new technique might contribute to a better tracing of the migration of the underground CO2 plume and help to ensure the long-term integrity of the reservoir.
Evaluating Snowmelt Runoff Processes Using Stable Isotopes in a Permafrost Hillslope
NASA Astrophysics Data System (ADS)
Carey, S. K.
2004-05-01
Conceptual understanding of runoff generation in permafrost regions have been derived primarily from hydrometric information, with isotope and hydrochemical data having only limited application in delineating sources and pathways of water. Furthermore, when stable isotope data are used to infer runoff processes, it often provides conflicting results from hydrometric measurements. In a small subarctic alpine catchment within the Wolf Creek Research Basin, Yukon, Canada, experiments were conducted during the melt period of 2002 and 2003 to trace the stable isotopic signature (d18O) of meltwater from a melting snowpack into permafrost soils and laterally to the stream to identify runoff processes and evaluate sources of error for traditional hydrograph separation studies in snowmelt-dominated permafrost basins. Isotopic variability in the snowpack was recorded at 0.1 m depth intervals during the melt period and compared with the meltwater isotopic signature at the snowpack base collected in lysimeters. Throughout the melt period in both years, there was an isotopic enrichment of meltwater as the season progressed. A downslope transect of wells and piezometers were used to evaluate the influence of infiltrating meltwater and thawing ground on the subsurface d18O signature. As melt began, meltwater infiltrated the frozen porous organic layer, leading to liquid water saturation in the unsaturated pore spaces. Water sampled during this initial melt stage show soil water d18O mirroring that of the meltwater signal. As the melt season progressed, frozen soil began to melt, mixing enriched pre-melt soil water with meltwater. This mixing increased the overall value of d18O obtained from the soil, which gradually increased as thaw progressed. At the end of snowmelt, soil water had a d18O value similar to values from the previous fall, suggesting that much of the initial snowmelt water had been flushed from the hillslope. Results from the hillslope scale are compared with two-component hydrograph separations and sources of error are discussed.
Interactions between surface waters in King George Island, Antarctica - a stable isotope perspective
NASA Astrophysics Data System (ADS)
Perşoiu, Aurel; Bădăluşă, Carmen
2017-04-01
In this paper we present a first study of the isotopic composition of surface waters in the southern peninsulas (Barton, Fildes, Weaver and Potter) of King George Island, Antarctica. We have collected > 200 samples of snow and snowmelt, water (lake, river and spring), ice (glacier ice and permafrost) from the four peninsulas in February 2016 and analyzed them for their oxygen and hydrogen stable isotopic composition. Samples from lake water (50+) indicate a clear west-east depletion trend, suggesting a rain-out process as air masses are moving westward (and are progressively depleted in heavy isotopes) from their origin in the Drake Passage. In both Fildes and Barton Peninsulas, permafrost samples have the heaviest isotopic composition, most probably due to preferential incorporation of heavy isotopes in the ice during freezing (and no fractionation during melting). As permafrost melts, the resulting water mixes with isotopically lighter infiltrated snowmelt, and thus the groundwater has a lower isotopic composition. Further, lake and river (the later fed by lakes) water has the lightest isotopic composition, being derived mostly from the melting of light snow and glacier ice. It seems feasible to separate isotopically water in lakes/rivers (largely fed by melting multi-year glaciers and snow) and water from melting of snow/ground ice This preliminary study suggests that it is possible to separate various water sources in the southern peninsulas of King George Island, and this separation could be used to study permafrost degradation, as well as feeding and migration patterns in the bird fauna, with implications for protection purposes. Acknowledgments. The National Institute of Research and Development for Biological Sciences (Bucharest, Romania) and the Korean polar institute financially supported fieldwork in King George Island. We thank the personal at King Sejong (South Korea), Belingshaussen (Russia) and Carlini (Argentina) stations in King George Island for logistic supports.
Köster, Daniel; Wolbert, Jens-Benjamin; Schulte, Marcel S; Jochmann, Maik A; Schmidt, Torsten C
2018-02-28
The sugar replacement compound xylitol has gained increasing attention because of its use in many commercial food products, dental-hygiene articles, and pharmaceuticals. It can be classified by the origin of the raw material used for its production. The traditional "birch xylitol" is considered a premium product, in contrast to xylitol produced from agriculture byproducts such as corn husks or sugar-cane straw. Bulk stable-isotope analysis (BSIA) and compound-specific stable-isotope analysis (CSIA) by liquid-chromatography isotope-ratio mass spectrometry (LC-IRMS) of chewing-gum extracts were used to determine the δ 13 C isotope signatures for xylitol. These were applied to elucidate the original plant type the xylitol was produced from on the basis of differences in isotope-fractionation processes of photosynthetic CO 2 fixation. For the LC-IRMS analysis, an organic-solvent-free extraction protocol and HPLC method for the separation of xylitol from different artificial sweeteners and sugar-replacement compounds was successfully developed and applied to the analysis of 21 samples of chewing gum, from which 18 could be clearly related to the raw-material plant class.
RECTIFIED ABSORPTION METHOD FOR THE SEPARATION OF HYDROGEN ISOTOPES
Hunt, C.D.; Hanson, D.N.
1961-10-17
A method is described for separating and recovering heavy hydrogen isotopes from gaseous mixtures by multiple stage cyclic absorption and rectification from an approximate solvent. In particular, it is useful for recovering such isoteoes from ammonia feedstock streams containing nitrogen solvent. Modifications of the process ranging from isobaric to isothermal are provided. Certain impurities are tolerated, giving advantages over conventional fractional distillation processes. (AEC)
New design studies for TRIUMF's ARIEL High Resolution Separator
NASA Astrophysics Data System (ADS)
Maloney, J. A.; Baartman, R.; Marchetto, M.
2016-06-01
As part of its new Advanced Rare IsotopE Laboratory (ARIEL), TRIUMF is designing a novel High Resolution Separator (HRS) (Maloney et al., 2015) to separate rare isotopes. The HRS has a 180° bend, separated into two 90° magnetic dipoles, bend radius 1.2 m, with an electrostatic multipole corrector between them. Second order correction comes mainly from the dipole edge curvatures, but is intended to be fine-tuned with a sextupole component and a small octupole component in the multipole. This combination is designed to achieve 1:20,000 resolution for a 3 μm (horizontal) and 6 μm (vertical) emittance. A design for the HRS dipole magnets achieves both radial and integral flatness goals of <10-5. A review of the optical design for the HRS is presented, including the study of limiting factors affecting separation, matching and aberration correction. Field simulations from the OPERA-3D (OPERA) [2] models of the dipole magnets are used in COSY Infinity (COSY) (Berz and Makino, 2005) [3] to find and optimize the transfer maps to 3rd order and study residual nonlinearities to 8th order.
Laser-assisted isotope separation of tritium
Herman, Irving P.; Marling, Jack B.
1983-01-01
Methods for laser-assisted isotope separation of tritium, using infrared multiple photon dissociation of tritium-bearing products in the gas phase. One such process involves the steps of (1) catalytic exchange of a deuterium-bearing molecule XYD with tritiated water DTO from sources such as a heavy water fission reactor, to produce the tritium-bearing working molecules XYT and (2) photoselective dissociation of XYT to form a tritium-rich product. By an analogous procedure, tritium is separated from tritium-bearing materials that contain predominately hydrogen such as a light water coolant from fission or fusion reactors.
Wigner, E.P.; Young, G.J.; Ohlinger, L.A.
1957-12-01
This patent relates to nuclear reactors of tbe type utilizing a liquid fuel and designed to convert a non-thermally fissionable isotope to a thermally fissionable isotope by neutron absorption. A tank containing a reactive composition of a thermally fissionable isotope dispersed in a liquid moderator is disposed within an outer tank containing a slurry of a non-thermally fissionable isotope convertible to a thermally fissionable isotope by neutron absorption. A control rod is used to control the chain reaction in the reactive composition and means are provided for circulating and cooling the reactive composition and slurry in separate circuits.
Münker, Carsten; Strub, Erik
2017-01-01
The 138La–138Ce decay system (half-life 1.02 × 1011 years) is a potentially highly useful tool to unravel information about the timing of geological processes and about the interaction of geological reservoirs on earth, complementing information from the more popular 147Sm–143Nd and 176Lu–176Hf isotope systems. Previously published analytical protocols were limited to TIMS. Here we present for the first time an analytical protocol that employs MC-ICPMS, with an improved precision and sensitivity. To perform sufficiently accurate La–Ce measurements, an efficient ion-chromatographic procedure is required to separate Ce from the other rare earth elements (REE) and Ba quantitatively. This study presents an improved ion-chromatographic procedure that separates La and Ce from rock samples using a three-step column separation. After REE separation by cation exchange, Ce is separated employing an Ln Spec column and selective oxidation. In the last step, a cation clean-up chemistry is performed to remove all remaining interferences. Our MC-ICPMS measurement protocol includes all stable Ce isotopes (136Ce, 138Ce, 140Ce and 142Ce), by employing a 1010 ohm amplifier for the most abundant isotope 140Ce. An external reproducibility of ±0.25ε-units (2 r.s.d) has been routinely achieved for 138Ce measurements for as little as 150–600 ng Ce, depending on the sample–skimmer cone combinations being used. Because the traditionally used JMC-304 Ce reference material is not commercially available anymore, a new reference material was prepared from AMES laboratory Ce metal (Cologne-AMES). In order to compare the new material with the previously reported isotopic composition of AMES material prepared at Mainz (Mainz-AMES), Cologne-AMES and JMC-304 were measured relative to each other in the same analytical session, demonstrating isotope heterogeneity between the two AMES and different JMC-304 batches used in the literature. To enable sufficiently precise age correction of radiogenic 138Ce and to perform isochron dating, a protocol was developed where La and Ce concentrations are determined by isotope dilution (ID), using an isotope tracer enriched in 138La and 142Ce. The new protocols were applied to determine the variations of Ce isotope compositions and La–Ce concentrations of certified geochemical reference materials (CRMs): BCR-2, BCR-1, BHVO-2, JR-1, JA-2, JB-3, JG-1, JR-1, JB-1b, AGV-1 and one in-house La Palma standard. PMID:29456283
NASA Astrophysics Data System (ADS)
Chassefiere, E.; Jambon, A.; Berthelier, J.-J.; Sarda, Ph.; Agrinier, P.
2003-04-01
The technique of GCMS analysis, which has been used with a great success on several past planetary missions, is not adapted for precise measurements of the isotopic composition of planetary atmospheres (noble gases, stable isotopes), and volatile outgassed products from solid sample pyrolysis. Static mass spectrometry, coupled with gas separation by cryo-separation, and chemical trapping, is commonly used in the laboratory to study volatiles extracted from terrestrial and meteoritic samples. This technique allows to reach a precision on isotopic ratios of the order of a few 0.1 ppm for a typical amount of gas of a few micromoles. We are presently studying an instrument based on the same principle for space exploration applications. The PALOMA instrument (PAyload for Local Observation of Mars Atmosphere) will be proposed in response to the AO for the instrumentation of the NASA Mars Smart Lander mission, planned to be launched in 2009. It might be part as well of the EXOMARS mission presently studied at ESA in the frame of the Aurora program. The miniaturization of major key elements, like the cryogenic device, the mass spectrometer, the line and its ensemble of valves, is presently led in our laboratories under CNES funding. The instrument consists of : (i) a gas purification and separation line, using techniques of cryogenic and chemical trapping, and possibly membrane permeation for molecular hydrogen analysis, (ii) a mass spectrometer working in static mode, without carrier gas (both time-of-flight and magnetic solutions are studied), (iii) a turbo-molecular pump that provides the required level of vacuum in the separation line and in the spectrometer. In the specific case of Mars, it is designed to work during typically 2 years (about 1000 measurement cycles), in order to perform accurate measurements of molecular, elemental and isotopic composition and of their diurnal/seasonal variations. The gas is sampled directly from the ambient atmosphere, without need for an external sample distribution system. The general characteristics of the instrument are as following . The mass is 6 kg, for a size of 30 x 30 x 20 cm. The required power, averaged over a complete measurement cycle, is 20 W (peak value : 30 W). The total energy required for one sequence is 100 Wh. This number must be considered as an upper limit, and corresponds to the most complex sequence (noble gas isotope analysis). Sequences used for stable isotopes measurement, and atmospheric molecular composition (trace gases of geological and/or astrobiological interest), are expected to be simpler, and less power-consuming. The anticipated volume of data produced by one observation sequence is estimated to be in the 3-6 kb range. The gas is sampled directly from the ambient atmosphere.
Using stable isotopes to associate migratory shorebirds with their wintering locations in Argentina
Farmer, A.H.; Abril, M.; Fernandez, M.; Torres, J.; Kester, C.; Bern, C.
2004-01-01
We are evaluating the use of stable isotopes to identify the wintering areas of Neotropical migratory shorebirds in Argentina. Our goal is to associate individual birds, captured on the breeding grounds or in migration with specific winter sites, thereby helping to identify distinct areas used by different subpopulations. In January and February 2002 and 2003, we collected flight feathers from shorebirds at 23 wintering sites distributed across seven province s in Argentina (n = 170). Feathers samples were pre- pared and analyzed for δ13C, δ15N, δ34S, δ18O and δD by continuous flow methods. A discriminant function based on deuterium alone was not an accurate predictor of a shorebird’s province of origin, ranging from 8% correct (Santiago del Estero) to 80% correct (San ta Cruz). When other isotopes were included, the prediction accuracy increased substantially (from 56% in Buenos Aires to 100% in Tucumán). The improvement in accuracy was due to C/N, which separated D-depleted sites in the Andes from those in the south, and the inclusion of S separated sites with respect to their distance from the Atlantic. We also were able to correctly discriminate shorebirds from among two closely spaced sites within the province of Tierra del Fuego. These results suggest the feasibility of identifying the origin of a shorebird at a provincial level of accuracy, as well as uniquely identifying birds from some closely spaced sites. There is a high degree of intra- and inter-bird variability, especially in the Pampas region, where there is wide variety of wetland/water conditions. In that important shorebird region, the variability itself may in fact be the “signature.” Future addition of trace elements to the analyses may improve predictions based solely on stable isotopes.
Isotope ratio mass spectrometry in nutrition research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luke, A.H.
Many of the biochemical pathways and processes that form the foundation of modern nutrition research was elucidated using stable isotopes as physiological tracers. Since the discovery of stable isotopes, improvements and innovations in mass spectrometry and chromatography have led to greatly expanded applications. This research project was designed to evaluate gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) as a tool for isotopic tracer studies and to delineate the operational parameters for the analysis of {sup 13}C-labeled cholesterol, leucine and {alpha}-ketoisocaproate. The same isotope ratio mass spectrometer was then used as the base instrument for the ratio mass spectrometer was then usedmore » as the base instrument for the development of two additional inlet systems: a continuous-flow inlet for the analyses of {sup 13}C and {sup 18}O as CO{sub 2} and a filament inlet for on-line combustion and isotopic analysis of non-volatile organic compounds. Each of these three inlets was evaluated and their utility in nutrition research illustrated. GC/C/IRMS was used to analyze cholesterol, leucine and {alpha}-ketoisocaproate with good accuracy, precision and little isotopic memory. For all three compounds the detection limits achieved well surpassed currently used technologies. For compounds that can be well separated by GC, GC/C/IRMS is a valuable analytical tool. The continuous-flow inlet provided good accuracy and precision for measurements of {sup 13}CO{sub 2} from breath tests and {sup 18}O as CO{sub 2} from total energy expenditure tests. Most importantly, the continuous-flow inlet increased sample throughput by at least a factor of three over conventional analytical techniques. The filament inlet provided accurate and precise {sup 13}C ratio measurements of both natural abundance and enriched standards of non-volatile organic compounds of physiological interest.« less
NASA Astrophysics Data System (ADS)
Savard, Martine M.; Cole, Amanda; Smirnoff, Anna; Vet, Robert
2017-08-01
The nitrogen isotope ratios (δ15N) of atmospheric N species are commonly suggested as indicators of N emission sources. Therefore, numerous research studies have developed analytical methodologies and characterized primary (gases) and secondary emission products (mostly precipitation and aerosols) from various emitters. These previous studies have generally collected either reduced or oxidized N forms, and sampled them separately prior to determining their δ15N values. Distinctive isotopic signals have been reported for emissions from various sources, and seasonality of the δ15N values has been frequently attributed to shifts in relative contributions from sources with different isotopic signals. However, theoretical concepts suggest that temperature effects on isotopic fractionation may also affect the δ15N values of atmospheric reaction products. Here we use a sector-based multi-stage filter system to simultaneously collect seven reduced and oxidized N species downwind from five different source types in Alberta, Canada. We report δ15N values obtained with a state-of-the-art gold-furnace pre-concentrator online with an isotope ratio mass spectrometer (IRMS) to provide representative results even for oxidized-N forms. We find that equilibrium isotope effects and their temperature dependence play significant roles in determining the δ15N values of the secondary emission products. In the end, seasonal δ15N changes here are mainly caused by temperature effects on fractionation, and the δ15N values of only two N species from one source type can be retained as potential fingerprints of emissions.
Berndt, M.E.; Seal, R.R.; Shanks, Wayne C.; Seyfried, W.E.
1996-01-01
Hydrogen isotope fractionation factors were measured for coexisting brines and vapors formed by phase separation of NaCl/H2O fluids at temperatures ranging from 399-450??C and pressures from 277-397 bars. It was found that brines are depleted in D compared to coexisting vapors at all conditions studied. The magnitude of hydrogen isotope fractionation is dependent on the relative amounts of Cl in the two phases and can be empirically correlated to pressure using the following relationship: 1000 ln ??(vap-brine) = 2.54(??0.83) + 2.87(??0.69) x log (??P), where ??(vap-brine) is the fractionation factor and ??P is a pressure term representing distance from the critical curve in the NaCl/H2O system. The effect of phase separation on hydrogen isotope distribution in subseafloor hydrothermal systems depends on a number of factors, including whether phase separation is induced by heating at depth or by decompression of hydrothermal fluids ascending to the seafloor. Phase separation in most subseafloor systems appears to be a simple process driven by heating of seawater to conditions within the two-phase region, followed by segregation and entrainment of brine or vapor into a seawater dominated system. Resulting vent fluids exhibit large ranges in Cl concentration with no measurable effect on ??D. Possible exceptions to this include hydrothermal fluids venting at Axial and 9??N on the East Pacific Rise. High ??D values of low Cl fluids venting at Axial are consistent with phase separation taking place at relatively shallow levels in the oceanic crust while negative ??D values in some low Cl fluids venting at 9??N suggest involvement of a magmatic fluid component or phase separation of D-depleted brines derived during previous hydrothermal activity.
Uranium isotope separation from 1941 to the present
NASA Astrophysics Data System (ADS)
Maier-Komor, Peter
2010-02-01
Uranium isotope separation was the key development for the preparation of highly enriched isotopes in general and thus became the seed for target development and preparation for nuclear and applied physics. In 1941 (year of birth of the author) large-scale development for uranium isotope separation was started after the US authorities were warned that NAZI Germany had started its program for enrichment of uranium and might have confiscated all uranium and uranium mines in their sphere of influence. Within the framework of the Manhattan Projects the first electromagnetic mass separators (Calutrons) were installed and further developed for high throughput. The military aim of the Navy Department was to develop nuclear propulsion for submarines with practically unlimited range. Parallel to this the army worked on the development of the atomic bomb. Also in 1941 plutonium was discovered and the production of 239Pu was included into the atomic bomb program. 235U enrichment starting with natural uranium was performed in two steps with different techniques of mass separation in Oak Ridge. The first step was gas diffusion which was limited to low enrichment. The second step for high enrichment was performed with electromagnetic mass spectrometers (Calutrons). The theory for the much more effective enrichment with centrifugal separation was developed also during the Second World War, but technical problems e.g. development of high speed ball and needle bearings could not be solved before the end of the war. Spying accelerated the development of uranium separation in the Soviet Union, but also later in China, India, Pakistan, Iran and Iraq. In this paper, the physical and chemical procedures are outlined which lead to the success of the project. Some security aspects and Non-Proliferation measures are discussed.
Misra, Sambuddha; Lloyd, Nicholas; Elderfield, Henry; Bickle, Mike J.
2017-01-01
Rationale Li and Mg isotopes are increasingly used as a combined tool within the geosciences. However, established methods require separate sample purification protocols utilising several column separation procedures. This study presents a single‐step cation‐exchange method for quantitative separation of trace levels of Li and Mg from multiple sample matrices. Methods The column method utilises the macro‐porous AGMP‐50 resin and a high‐aspect ratio column, allowing quantitative separation of Li and Mg from natural waters, sediments, rocks and carbonate matrices following the same elution protocol. High‐precision isotope determination was conducted by multi‐collector inductively coupled plasma mass spectrometry (MC‐ICPMS) on the Thermo Scientific™ NEPTUNE Plus™ fitted with 1013 Ω amplifiers which allow accurate and precise measurements at ion beams ≤0.51 V. Results Sub‐nanogram Li samples (0.3–0.5 ng) were regularly separated (yielding Mg masses of 1–70 μg) using the presented column method. The total sample consumption during isotopic analysis is <0.5 ng Li and <115 ng Mg with long‐term external 2σ precisions of ±0.39‰ for δ7Li and ±0.07‰ for δ26Mg. The results for geological reference standards and seawater analysed by our method are in excellent agreement with published values despite the order of magnitude lower sample consumption. Conclusions The possibility of eluting small sample masses and the low analytical sample consumption make this method ideal for samples of limited mass or low Li concentration, such as foraminifera, mineral separates or dilute river waters. PMID:29078008
Cyclotron Production of Radionuclides for Nuclear Medicine at Academic Centers
NASA Astrophysics Data System (ADS)
Lapi, Suzanne
2016-09-01
The increase in use of radioisotopes for medical imaging has led to the development of new accelerator targetry and separation techniques for isotope production. For example, the development of longer-lived position emitting radionuclides has been explored to allow for nuclear imaging agents based on peptides, antibodies and nanoparticles. These isotopes (64Cu, 89Zr, 86Y) are typically produced via irradiation of solid targets on smaller cyclotrons (10-25 MeV) at academic or hospital based facilities. Recent research has further expanded the toolbox of PET tracers to include additional isotopes such as 52Mn, 55Co, 76Br and others. The smaller scale of these types of facilities can enable the straightforward involvement of students, thus adding to the next generation of nuclear science leaders. Research pertaining to development of robust and larger scale production technologies including solid target systems and remote systems for transport and purification of these isotopes has enabled both preclinical and clinical imaging research for many diseases. In particular, our group has focused on the use of radiolabeled antibodies for imaging of receptor expression in preclinical models and in a clinical trial of metastatic breast cancer patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, Orville T.; Olsen, Khris B.; Thomas, May-Lin P.
2008-05-01
A method for the separation and determination of total and isotopic uranium and plutonium by ICP-MS was developed for IAEA samples on cellulose-based media. Preparation of the IAEA samples involved a series of redox chemistries and separations using TRU® resin (Eichrom). The sample introduction system, an APEX nebulizer (Elemental Scientific, Inc), provided enhanced nebulization for a several-fold increase in sensitivity and reduction in background. Application of mass bias (ALPHA) correction factors greatly improved the precision of the data. By combining the enhancements of chemical separation, instrumentation and data processing, detection levels for uranium and plutonium approached high attogram levels.
Cabañero, Ana I; Recio, Jose L; Rupérez, Mercedes
2008-10-01
Two new procedures for wine ethanol 13C/12C isotope ratio determination, using high-performance liquid chromatography and gas chromatography isotope ratio mass spectrometry (HPLC/IRMS and GC/IRMS), have been developed to improve isotopic methods dedicated to the study of wine authenticity. Parameters influencing separation of ethanol from wine matrix such as column, temperature, mobile phase, flow rates and injection mode were investigated. Twenty-three wine samples from various origins were analyzed for validation of the procedures. The analytical precision was better than 0.15 per thousand, and no significant isotopic fractionation was observed employing both separative techniques coupled to IRMS. No significant differences and a very strong correlation (r = 0.99) were observed between the 13C/12C ratios obtained by the official method (elemental analyzer/isotope ratio mass spectrometry) and the proposed new methodology. The potential advantages of the developed methods over the traditional one are speed (reducing time required from hours to minutes) and simplicity. In addition, these are the first isotopic methods that allow 13C/12C determination directly from a liquid sample with no previous ethanol isolation, overcoming technical difficulties associated with sample treatment.
NASA Astrophysics Data System (ADS)
Deloose, I.; Pace, A.
1994-12-01
The two CERN isotope separators named ISOLDE have been running on the new Personal Computer (PC) based control system since April 1992. The new architecture that makes heavy use of the commercial software and hardware of the PC market has been implemented on the 1700 geographically distributed control channels of the two separators and their experimental area. Eleven MSDOS Intel-based PCs with approximately 80 acquisition and control boards are used to access the equipment and are controlled from three PCs running Microsoft Windows used as consoles through a Novell Local Area Network. This paper describes the interesting solutions found and discusses the reduced programming workload and costs that have been obtained.
Reconstructed ancestral enzymes suggest long-term cooling of Earth's photic zone since the Archean
NASA Astrophysics Data System (ADS)
Garcia, Amanda K.; Schopf, J. William; Yokobori, Shin-ichi; Akanuma, Satoshi; Yamagishi, Akihiko
2017-05-01
Paleotemperatures inferred from the isotopic compositions (δ18O and δ30Si) of marine cherts suggest that Earth’s oceans cooled from 70 ± 15 °C in the Archean to the present ˜15 °C. This interpretation, however, has been subject to question due to uncertainties regarding oceanic isotopic compositions, diagenetic or metamorphic resetting of the isotopic record, and depositional environments. Analyses of the thermostability of reconstructed ancestral enzymes provide an independent method by which to assess the temperature history inferred from the isotopic evidence. Although previous studies have demonstrated extreme thermostability in reconstructed archaeal and bacterial proteins compatible with a hot early Earth, taxa investigated may have inhabited local thermal environments that differed significantly from average surface conditions. We here present thermostability measurements of reconstructed ancestral enzymatically active nucleoside diphosphate kinases (NDKs) derived from light-requiring prokaryotic and eukaryotic phototrophs having widely separated fossil-based divergence ages. The ancestral environmental temperatures thereby determined for these photic-zone organisms--shown in modern taxa to correlate strongly with NDK thermostability--are inferred to reflect ancient surface-environment paleotemperatures. Our results suggest that Earth's surface temperature decreased over geological time from ˜65-80 °C in the Archean, a finding consistent both with previous isotope-based and protein reconstruction-based interpretations. Interdisciplinary studies such as those reported here integrating genomic, geologic, and paleontologic data hold promise for providing new insight into the coevolution of life and environment over Earth history.
Reconstructed ancestral enzymes suggest long-term cooling of Earth's photic zone since the Archean.
Garcia, Amanda K; Schopf, J William; Yokobori, Shin-Ichi; Akanuma, Satoshi; Yamagishi, Akihiko
2017-05-02
Paleotemperatures inferred from the isotopic compositions (δ 18 O and δ 30 Si) of marine cherts suggest that Earth's oceans cooled from 70 ± 15 °C in the Archean to the present ∼15 °C. This interpretation, however, has been subject to question due to uncertainties regarding oceanic isotopic compositions, diagenetic or metamorphic resetting of the isotopic record, and depositional environments. Analyses of the thermostability of reconstructed ancestral enzymes provide an independent method by which to assess the temperature history inferred from the isotopic evidence. Although previous studies have demonstrated extreme thermostability in reconstructed archaeal and bacterial proteins compatible with a hot early Earth, taxa investigated may have inhabited local thermal environments that differed significantly from average surface conditions. We here present thermostability measurements of reconstructed ancestral enzymatically active nucleoside diphosphate kinases (NDKs) derived from light-requiring prokaryotic and eukaryotic phototrophs having widely separated fossil-based divergence ages. The ancestral environmental temperatures thereby determined for these photic-zone organisms--shown in modern taxa to correlate strongly with NDK thermostability--are inferred to reflect ancient surface-environment paleotemperatures. Our results suggest that Earth's surface temperature decreased over geological time from ∼65-80 °C in the Archean, a finding consistent both with previous isotope-based and protein reconstruction-based interpretations. Interdisciplinary studies such as those reported here integrating genomic, geologic, and paleontologic data hold promise for providing new insight into the coevolution of life and environment over Earth history.
Hybrid isotope separation scheme
Maya, Jakob
1991-01-01
A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus.
Improvement of Pt/C/PTFE catalyst type used for hydrogen isotope separation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasut, F.; Preda, A.; Zamfirache, M.
2008-07-15
The CANDU reactor from the Nuclear Power plant Cernavoda (Romania)) is the most powerful tritium source from Europe. This reactor is moderated and cooled by heavy water that becomes continuously contaminated with tritium. Because of this reason, the National R and amp;D Inst. for Cryogenic and Isotopic Technologies developed a detritiation technology based on catalytic isotopic exchange and cryogenic distillation. The main effort of our Inst. was focused on finding more efficient catalysts with a longer operational life. Some of the tritium removal processes involved in Fusion Science and Technology use this type of catalyst 1. Several Pt/C/PTFE hydrophobic catalystsmore » that could be used in isotopic exchange process 2,3,4 were produced. The present paper presents a comparative study between the physical and morphological properties of different catalysts manufactured by impregnation at our institute. The comparison consists of a survey of specific surface, pores volume and pores distribution. (authors)« less
Separation of uranium isotopes by chemical exchange
Ogle, P.R. Jr.
1974-02-26
A chemical exchange method is provided for separating /sup 235/U from / sup 238/U comprising contacting a first phase containing UF/sub 6/ with a second phase containing a compound selected from the group consisting of NOUF/sub 6/, NOUF/sub 7/, and NO/sub 2/UF/sub 7/ until the U Fsub 6/ in the first phase becomes enriched in the /sup 235/U isotope. (Official Gazette)
Laser isotope separation by multiple photon absorption
Robinson, C.P.; Rockwood, S.D.; Jensen, R.J.; Lyman, J.L.; Aldridge, J.P. III.
1987-04-07
Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO[sub 2] laser light may be used to highly enrich [sup 34]S in natural SF[sub 6] and [sup 11]B in natural BCl[sub 3]. 8 figs.
Isotope separation by selective photodissociation of glyoxal
Marling, John B.
1976-01-01
Dissociation products, mainly formaldehyde and carbon monoxide, enriched in a desired isotope of carbon, oxygen, or hydrogen are obtained by the selective photodissociation of glyoxal wherein glyoxal is subjected to electromagnetic radiation of a predetermined wavelength such that photon absorption excites and induces dissociation of only those molecules of glyoxal containing the desired isotope.
Esaka, Fumitaka; Magara, Masaaki; Suzuki, Daisuke; Miyamoto, Yutaka; Lee, Chi-Gyu; Kimura, Takaumi
2010-12-15
Information on plutonium isotope ratios in individual particles is of great importance for nuclear safeguards, nuclear forensics and so on. Although secondary ion mass spectrometry (SIMS) is successfully utilized for the analysis of individual uranium particles, the isobaric interference of americium-241 to plutonium-241 makes difficult to obtain accurate isotope ratios in individual plutonium particles. In the present work, an analytical technique by a combination of chemical separation and inductively coupled plasma mass spectrometry (ICP-MS) is developed and applied to isotope ratio analysis of individual sub-micrometer plutonium particles. The ICP-MS results for individual plutonium particles prepared from a standard reference material (NBL SRM-947) indicate that the use of a desolvation system for sample introduction improves the precision of isotope ratios. In addition, the accuracy of the (241)Pu/(239)Pu isotope ratio is much improved, owing to the chemical separation of plutonium and americium. In conclusion, the performance of the proposed ICP-MS technique is sufficient for the analysis of individual plutonium particles. Copyright © 2010 Elsevier B.V. All rights reserved.
Hydrogen isotope separation using molecular sieve of synthetic zeolite 3A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotoh, K.; Kimura, K.; Nakamura, Y.
2008-07-15
It is known that hydrogen isotope molecules can be adsorbed easily onto synthetic zeolite 4A, 5A, and 13X at the liquid-nitrogen temperature of 77.4 K. We show here that hydrogen and deuterium are not adsorptive onto zeolite 3A at the same temperature. This phenomenon is explained by assuming the molecular sieve function in zeolite-3A-crystalline lattice structure. From a series of pseudo-isobaric experiments, it is also shown that the sieving phenomenon appears in a range above 77.4 K. This behavior is interpreted as resulting on the dependence of sieve's mesh size on temperature, where the sieving effect is considered to appearmore » at a certain temperature. In this interpretation, an isotopic difference between hydrogen and deuterium is suggested to exist in the sieving effect appearance temperatures. This is endorsed in the result of pseudo-isobaric experiments. This temperature deference is very significant because that indicates the possibility of an effective method of hydrogen isotope separation. This possibility is verified through an experimental series of adsorption-desorption with a mixture of H{sub 2} and D{sub 2}, where the gas samples adsorbed through the sieve operated at intentionally selected temperatures are isolated and then analyzed. The result demonstrates remarkable values of isotope separation factor. (authors)« less
Prien, Justin M; Prater, Bradley D; Qin, Qiang; Cockrill, Steven L
2010-02-15
Fast, sensitive, robust methods for "high-level" glycan screening are necessary during various stages of a biotherapeutic product's lifecycle, including clone selection, process changes, and quality control for lot release testing. Traditional glycan screening involves chromatographic or electrophoretic separation-based methods, and, although reproducible, these methods can be time-consuming. Even ultrahigh-performance chromatographic and microfluidic integrated LC/MS systems, which work on the tens of minute time scale, become lengthy when hundreds of samples are to be analyzed. Comparatively, a direct infusion mass spectrometry (MS)-based glycan screening method acquires data on a millisecond time scale, exhibits exquisite sensitivity and reproducibility, and is amenable to automated peak annotation. In addition, characterization of glycan species via sequential mass spectrometry can be performed simultaneously. Here, we demonstrate a quantitative high-throughput MS-based mapping approach using stable isotope 2-aminobenzoic acid (2-AA) for rapid "high-level" glycan screening.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McHugh, M.G.; Coleman, G.H.
2006-07-01
The contents of a safety basis (SB) are based upon the facility's purpose of operation, radiological inventory, and safety systems in place to mitigate any releases to the employees, general public and environment. Specifically, the radiological inventory is used for facility categorizations (e.g., Category 2, Category 3) and determining the material at risk used in the associated nuclear safety analysis calculations. Radiological inventory discrepancies, referred to as 'mismatches', have the potential to adversely impact the SB. This paper summarizes a process developed to: 1) identify these 'mismatches' based on a facility's radiological inventory, 2) categorize these 'mismatches' according to availablemore » data, and then 3) determine if these 'mismatches' yield either trivial or significant cumulative impacts on credited assumptions associated with a particular facility's SB. The two facilities evaluated for 'mismatches' were the K-1065 Complex and the Above Grade Storage Facility (AGSF). The randomly selected containers from each facility were obtained along with screening the radiological inventories found in the Waste Information Tracking System (WITS) database and the Request for Disposal (RFD) forms. Ideally, the radiological inventory, which is comprised of isotopic data for each container, is maintained in the WITS database. However, the RFD is the official repository record for isotopic data for each container. Historically, neither WITS nor the RFDs were required to contain isotopic data. Based on the WITS and RFD data, the containers were then categorized into five (5) separate conditions: Condition 1) Isotopic data in the RFD matches the isotopic data in WITS; Condition 2) Isotopic data in the RFD does not match the isotopic data in WITS; Condition 3) Isotopic data are in the RFD, but are not in WITS; Condition 4) No isotopic data in the RFD, but isotopic data are found in WITS; Condition 5) No isotopic data found in either the RFD or WITS. The results show trivial cumulative impacts (i.e., no inherent data biases) on credited assumptions associated with the K-1065 Complex and AGSF SBs. Recent random comparisons of WITS and RFDs continue to verify and validate that the administrative and procedural controls are adequate to ensure compliance with the SB for these facilities, thus providing a useful model for evaluating other facilities located at the Department of Energy's Oak Ridge Reservation (DOE-ORR). (authors)« less
Isotopic Evidence of Unaccounted for Fe and Cu Erythropoietic Pathways
NASA Astrophysics Data System (ADS)
Albarede, F.; Telouk, P.; Lamboux, A.; Jaouen, K.; Balter, V.
2011-12-01
Despite its potential importance for understanding perturbations in the Fe-Cu homeostatic pathways, the natural isotopic variability of these metals in the human body remains unexplored. We measured the Fe, Cu, and Zn isotope compositions of total blood, serum, and red blood cells of ~50 young blood donors by multiple-collector ICP-MS after separation and purification by anion exchange chromatography. Zn is on average 0.2 permil heavier in erythrocytes (δ 66Zn=0.44±0.33 permil) with respect to serum but shows much less overall isotopic variability than Fe and Cu, which indicates that isotope fractionation depends more on redox conditions than on ligand coordination. On average, Fe in erythrocytes (δ 56Fe=-2.59±0.47 permil) is isotopically light by 1-2 permil with respect to serum, whereas Cu in erythrocytes (δ 65Cu=0.56±0.50 permil) is 0.8 percent heavier. Fe and Cu isotope compositions clearly separate erythrocytes of men and women. Fe and Cu from B-type men erythrocytes are visibly more fractionated than all the other blood types. Isotope compositions provide an original method for evaluating metal mass balance and homeostasis. Natural isotope variability shows that the current models of Fe and Cu erythropoiesis, which assume that erythropoiesis is restricted to bone marrow, violate mass balance requirements. It unveils unsuspected major pathways for Fe, with erythropoietic production of isotopically heavy ferritin and hemosiderin, and for Cu, with isotopically light Cu being largely channeled into blood and lymphatic circulation rather than into superoxide dismutase-laden erythrocytes. Iron isotopes provide an intrinsic measuring rod of the erythropoietic yield, while Cu isotopes seem to gauge the relative activity of erythropoiesis and lymphatics.
Precise and accurate isotope ratio measurements by ICP-MS.
Becker, J S; Dietze, H J
2000-09-01
The precise and accurate determination of isotope ratios by inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) is important for quite different application fields (e.g. for isotope ratio measurements of stable isotopes in nature, especially for the investigation of isotope variation in nature or age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, quality assurance of fuel material, for reprocessing plants, nuclear material accounting and radioactive waste control, for tracer experiments using stable isotopes or long-lived radionuclides in biological or medical studies). Thermal ionization mass spectrometry (TIMS), which used to be the dominant analytical technique for precise isotope ratio measurements, is being increasingly replaced for isotope ratio measurements by ICP-MS due to its excellent sensitivity, precision and good accuracy. Instrumental progress in ICP-MS was achieved by the introduction of the collision cell interface in order to dissociate many disturbing argon-based molecular ions, thermalize the ions and neutralize the disturbing argon ions of plasma gas (Ar+). The application of the collision cell in ICP-QMS results in a higher ion transmission, improved sensitivity and better precision of isotope ratio measurements compared to quadrupole ICP-MS without the collision cell [e.g., for 235U/238U approximately 1 (10 microg x L(-1) uranium) 0.07% relative standard deviation (RSD) vs. 0.2% RSD in short-term measurements (n = 5)]. A significant instrumental improvement for ICP-MS is the multicollector device (MC-ICP-MS) in order to obtain a better precision of isotope ratio measurements (with a precision of up to 0.002%, RSD). CE- and HPLC-ICP-MS are used for the separation of isobaric interferences of long-lived radionuclides and stable isotopes by determination of spallation nuclide abundances in an irradiated tantalum target.
The Most Useful Actinide Isotope: Americium-241.
ERIC Educational Resources Information Center
Navratil, James D.; And Others
1990-01-01
Reviewed is the discovery, nuclear and chemical properties, and uses of an isotope of Americium (Am-241). Production and separation techniques used in industry are emphasized. Processes are illustrated in flow sheets. (CW)
Stable-isotope customer list and summary of shipments, FY 1982
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, W.C.
1983-04-01
This compilation is published as an aid to those concerned with the separation and sale of stable isotopes. The inforamtion is divided into four sections: (1) alphabetical list of domestic and foreign customers, showing the stable isotopes purchased during the fiscal year; (2) alphabetical list of isotopes, cross-referenced to customer numbers and divided into domestic and foreign categories; (3) alphabetical list of states and countries, cross-referenced to customer numbers and indicating geographical concentrations of isotope users; and (4) tabulation of the shipments, quantities, and dollars for domestic, foreign, and project categories for each isotope.
A status of progress for the Laser Isotope Separation (LIS) process
NASA Technical Reports Server (NTRS)
Delionback, L. M.
1976-01-01
An overview of the Laser Isotope Separation (LIS) methodology is given together with illustrations showing a simplified version of the LIS technique, an example of the two-photon photoionization category, and a diagram depicting how the energy levels of various isotope influence the LIS process. Applications were proposed for the LIS system which, in addition to enriching uranium, could in themselves develop into programs of tremendous scope and breadth. These include the treatment of radioactive wastes from light-water nuclear reactors, enriching the deuterium isotope to make heavy-water, and enriching the light isotopes of such elements as titanium for aerospace weight-reducing programs. Economic comparisons of the LIS methodology with the current method of gaseous diffusion indicate an overwhelming advantage; the laser process promises to be 1000 times more efficient. The technique could also be utilized in chemical reactions with the tuned laser serving as a universal catalyst to determine the speed and direction of a chemical reaction.
Sensitivity and Uncertainty Analysis of the GFR MOX Fuel Subassembly
NASA Astrophysics Data System (ADS)
Lüley, J.; Vrban, B.; Čerba, Š.; Haščík, J.; Nečas, V.; Pelloni, S.
2014-04-01
We performed sensitivity and uncertainty analysis as well as benchmark similarity assessment of the MOX fuel subassembly designed for the Gas-Cooled Fast Reactor (GFR) as a representative material of the core. Material composition was defined for each assembly ring separately allowing us to decompose the sensitivities not only for isotopes and reactions but also for spatial regions. This approach was confirmed by direct perturbation calculations for chosen materials and isotopes. Similarity assessment identified only ten partly comparable benchmark experiments that can be utilized in the field of GFR development. Based on the determined uncertainties, we also identified main contributors to the calculation bias.
Hybrid isotope separation scheme
Maya, J.
1991-06-18
A method is described for yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus. 2 figures.
High-power CO laser with RF discharge for isotope separation employing condensation repression
NASA Astrophysics Data System (ADS)
Baranov, I. Ya.; Koptev, A. V.
2008-10-01
High-power CO laser can be the effective tool in such applications as isotope separation using the free-jet CRISLA method. The way of transfer from CO small-scale experimental installation to industrial high-power CO lasers is proposed through the use of a low-current radio-frequency (RF) electric discharge in a supersonic stream without an electron gun. The calculation model of scaling CO laser with RF discharge in supersonic stream was developed. The developed model allows to calculate parameters of laser installation and optimize them with the purpose of reception of high efficiency and low cost of installation as a whole. The technical decision of industrial CO laser for isotope separation employing condensation repression is considered. The estimated cost of laser is some hundred thousand dollars USA and small sizes of laser head give possibility to install it in any place.
A novel method for rapid in vitro radiobioassay
NASA Astrophysics Data System (ADS)
Crawford, Evan Bogert
Rapid and accurate analysis of internal human exposure to radionuclides is essential to the effective triage and treatment of citizens who have possibly been exposed to radioactive materials in the environment. The two most likely scenarios in which a large number of citizens would be exposed are the detonation of a radiation dispersal device (RDD, "dirty bomb") or the accidental release of an isotope from an industrial source such as a radioisotopic thermal generator (RTG). In the event of the release and dispersion of radioactive materials into the environment in a large city, the entire population of the city -- including all commuting workers and tourists -- would have to be rapidly tested, both to satisfy the psychological needs of the citizens who were exposed to the mental trauma of a possible radiation dose, and to satisfy the immediate medical needs of those who received the highest doses and greatest levels of internal contamination -- those who would best benefit from rapid, intensive medical care. In this research a prototype rapid screening method to screen urine samples for the presence of up to five isotopes, both individually and in a mixture, has been developed. The isotopes used to develop this method are Co-60, Sr-90, Cs-137, Pu-238, and Am-241. This method avoids time-intensive chemical separations via the preparation and counting of a single sample on multiple detectors, and analyzing the spectra for isotope-specific markers. A rapid liquid-liquid separation using an organic extractive scintillator can be used to help quantify the activity of the alpha-emitting isotopes. The method provides quantifiable results in less than five minutes for the activity of beta/gamma-emitting isotopes when present in the sample at the intervention level as defined by the Centers for Disease Control and Prevention (CDC), and quantifiable results for the activity levels of alpha-emitting isotopes present at their respective intervention levels in approximately 30 minutes of sample preparation and counting time. Radiation detector spectra -- e.g. those from high-purity germanium (HPGe) gamma detectors and liquid scintillation detectors -- which contain decay signals from multiple isotopes often have overlapping signals: the counts from one isotope's decay can appear in energy channels associated with another isotope's decay, complicating the calculation of each isotope's activity. The uncertainties associated with analyzing these spectra have been traced in order to determine the effects of one isotope's count rate on the sensitivity and uncertainty associated with each other isotope. The method that was developed takes advantage of activated carbon filtration to eliminate quenching effects and to make the liquid scintillation spectra from different urine samples comparable. The method uses pulse-shape analysis to reduce the interference from beta emitters in the liquid scintillation spectrum and improve the minimum detectable activity (MDA) and minimum quantifiable activity (MQA) for alpha emitters. The method uses an HPGe detector to quantify the activity of gamma emitters, and subtract their isotopes' contributions to the liquid scintillation spectra via a calibration factor, such that the pure beta and pure alpha emitters can be identified and quantified from the resulting liquid scintillation spectra. Finally, the method optionally uses extractive scintillators to rapidly separate the alpha emitters from the beta emitters when the activity from the beta emitters is too great to detect or quantify the activity from the alpha emitters without such a separation. The method is able to detect and quantify all five isotopes, with uncertainties and biases usually in the 10-40% range, depending upon the isotopic mixtures and the activity ratios between each of the isotopes.
NASA Astrophysics Data System (ADS)
Becker, J. Susanne; Zoriy, Miroslav; Pickhardt, Carola; Przybylski, Michael; Becker, J. Sabine
2005-04-01
Identification of metal-containing proteins and determination of Cu, Fe, Zn concentration in very small protein volumes is of increasing importance in protein research. Proteins containing metal ions were analyzed directly and simultaneously in separated protein spots in two-dimensional gels (2D gels) by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) as an element mass spectrometric technique. In order to study the formation of proteins containing Cu, Zn and Fe in a human brain sample, isotopic-enriched tracers (54Fe, 65Cu and 67Zn) were doped to two-dimensional gels of separated Alzheimer-diseased brain proteins after two-dimensional (2D) gel electrophoresis. The protein spots were screened systematically by LA-ICP-MS with respect to these metal ion intensities. 54Fe/56Fe, 65Cu/63Cu and 67Zn/64Zn isotope ratios in metal-containing proteins were measured directly by LA-ICP-MS. The isotope ratio measurements obtained by LA-ICP-MS indicate certain protein spots with a natural isotope composition of Cu, Zn and/or Fe. These proteins already contained the metal investigated in the original proteins and are stable enough to survive the reducing conditions during gel electrophoresis. On the other hand, proteins with a changed isotope ratio of metals in comparison to the isotope ratio in nature demonstrate the accumulation of tracers within the protein complexes during the tracer experiments in 2D gels. The identification of singular protein spots from Alzheimer-diseased brain separated by 2D gel electrophoresis was attempted by biopolymer mass spectrometry using MALDI-FTICR-MS after excision from the 2D gel and tryptic digestion.
NASA Astrophysics Data System (ADS)
Budde, Gerrit; Burkhardt, Christoph; Brennecka, Gregory A.; Fischer-Gödde, Mario; Kruijer, Thomas S.; Kleine, Thorsten
2016-11-01
Nucleosynthetic isotope anomalies are powerful tracers to determine the provenance of meteorites and their components, and to identify genetic links between these materials. Here we show that chondrules and matrix separated from the Allende CV3 chondrite have complementary nucleosynthetic Mo isotope anomalies. These anomalies result from the enrichment of a presolar carrier enriched in s-process Mo into the matrix, and the corresponding depletion of this carrier in the chondrules. This carrier most likely is a metal and so the uneven distribution of presolar material probably results from metal-silicate fractionation during chondrule formation. The Mo isotope anomalies correlate with those reported for W isotopes on the same samples in an earlier study, suggesting that the isotope variations for both Mo and W are caused by the heterogeneous distribution of the same carrier. The isotopic complementary of chondrules and matrix indicates that both components are genetically linked and formed together from one common reservoir of solar nebula dust. As such, the isotopic data require that most chondrules formed in the solar nebula and are not a product of protoplanetary impacts. Allende chondrules and matrix together with bulk carbonaceous chondrites and some iron meteorites (groups IID, IIIF, and IVB) show uniform excesses in 92Mo, 95Mo, and 97Mo that result from the addition of supernova material to the solar nebula region in which these carbonaceous meteorites formed. Non-carbonaceous meteorites (enstatite and ordinary chondrites as well as most iron meteorites) do not contain this material, demonstrating that two distinct Mo isotope reservoirs co-existed in the early solar nebula that remained spatially separated for several million years. This separation was most likely achieved through the formation of the gas giants, which cleared the disk between the inner and outer solar system regions parental to the non-carbonaceous and carbonaceous meteorites. The Mo isotope dichotomy of meteorites provides a new means to determine the provenance of meteoritic and planetary materials, and to assess genetic links between chondrites and differentiated meteorites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faye, S. A.; Shaughnessy, D. A.
The objective of this project is to provide a comprehensive study on the production routes and chemical separation requirements for activation products, fission products, and actinides required for the creation of realistic post-detonation surrogate debris. Isotopes that have been prioritized by debris diagnosticians will be examined for their ability to be produced at existing irradiation sources, production rates, and availability of target materials, and chemical separation procedures required to rapidly remove the products from the bulk target matrix for subsequent addition into synthetic debris samples. The characteristics and implications of the irradiation facilities on the isotopes of interest will bemore » addressed in addition to a summary of the isotopes that are already regularly produced. This is a planning document only.« less
Hydrogen Isotope Measurements of Organic Acids and Alcohols by Pyrolysis-GC-MS-TC-IRMS
NASA Technical Reports Server (NTRS)
Socki, Richard A.; Fu, Qi; Niles, Paul B.
2011-01-01
One possible process responsible for methane generation on Mars is abiotic formation by Fischer-Tropsch-type (FTT) synthesis during serpentinization reactions. Measurement of carbon and hydrogen isotopes of intermediary organic compounds can help constrain the origin of this methane by tracing the geochemical pathway during formation. Of particular interest within the context of this work is the isotopic composition of organic intermediaries produced on the surfaces of mineral catalysts (i.e. magnetite) during hydrothermal experiments, and the ability to make meaningful and reproducible hydrogen isotope measurements. Reported here are results of experiments to characterize the hydrogen isotope composition of low molecular weight organic acids and alcohols. The presence of these organic compounds has been suggested by others as intermeadiary products made during mineral surface catalyzed reactions. This work compliments our previous study characterizing the carbon isotope composition of similar low molecular weight intermediary organic compounds (Socki, et al, American Geophysical Union Fall meeting, Abstr. #V51B-2189, Dec., 2010). Our hydrogen isotope measurements utilize a unique analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-High Temperature Conversion-Isotope Ratio Mass Spectrometry (Py-GC-MS-TC-IRMS). Our technique is unique in that it carries a split of the pyrolyzed GC-separated product to a Thermo DSQ-II? quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of separated organic compounds, therefore both chemical and isotopic measurements can be carried out simultaneously on the same sample.
Hunt, Alison C; Ek, Mattias; Schönbächler, Maria
2017-12-01
This study presents a new measurement procedure for the isolation of Pt from iron meteorite samples. The method also allows for the separation of Pd from the same sample aliquot. The separation entails a two-stage anion-exchange procedure. In the first stage, Pt and Pd are separated from each other and from major matrix constituents including Fe and Ni. In the second stage, Ir is reduced with ascorbic acid and eluted from the column before Pt collection. Platinum yields for the total procedure were typically 50-70%. After purification, high-precision Pt isotope determinations were performed by multi-collector ICP-MS. The precision of the new method was assessed using the IIAB iron meteorite North Chile. Replicate analyses of multiple digestions of this material yielded an intermediate precision for the measurement results of 0.73 for ε 192 Pt, 0.15 for ε 194 Pt and 0.09 for ε 196 Pt (2 standard deviations). The NIST SRM 3140 Pt solution reference material was passed through the measurement procedure and yielded an isotopic composition that is identical to the unprocessed Pt reference material. This indicates that the new technique is unbiased within the limit of the estimated uncertainties. Data for three iron meteorites support that Pt isotope variations in these samples are due to exposure to galactic cosmic rays in space.
Compound-specific isotope analysis: Questioning the origins of a trichloroethene plume
Eberts, S.M.; Braun, C.; Jones, S.
2008-01-01
Stable carbon isotope ratios of trichloroethene (TCE), cis-1,2- dichloroethene, and trans-1,2-dichloroethene were determined by use of gas chromatography-combustion-isotope ratio mass spectroscopy to determine whether compound-specific stable carbon isotopes could be used to help understand the origin and history of a TCE groundwater plume in Fort Worth, TX. Calculated ??13C values for total chlorinated ethenes in groundwater samples, which can approximate the ??13C of a spilled solvent if all degradation products are accounted for, were useful for determining whether separate lobes of the plume resulted from different sources. Most notably, values for one lobe, where tetrachloroethene (PCE) has been detected periodically, were outside the range for manufactured TCE but within the range for manufactured PCE, whereas values for a separate lobe, which is downgradient of reported TCE spills, were within the range for manufactured TCE. Copyright ?? Taylor & Francis Group, LLC.
Volatile element depletion and K-39/K-41 fractionation in lunar soils
NASA Technical Reports Server (NTRS)
Church, S. E.; Tilton, G. R.; Wright, J. E.; Lee-Hu, C.-N.
1976-01-01
Evidence for selective loss and isotopic fractionation (in the case of K) of volatile elements during formation of agglutinates by micrometeoritic bombardment of lunar soils is presented. Concentrations and isotopic compositions of volatile elements (K, Rb, Pb) and nonvolatile elements (U, Th, Ba, Sr, rare earths) in separates taken from soils 14163, 14259, 15041, 68501, and 71500 are examined. Rayleigh fractionation calculations applied to K-39/K-41 isotopic data indicate ten-fold recycling of bulk soil, to account for observed isotopic anomalies. The lunar soil fines fraction seems to be a site of deposition for volatile or labile Pb produced during agglutination. Local fines (below 75 microns) are viewed as representative of the parent material for agglutinates formed in situ by micrometeoritic impact. Magnetic separation of agglutinates from soil 68501 revealed a bimodal population, with one class comprising welded blocky magnetic glasses.
Biomedical research applications of electromagnetically separated enriched stable isotopes
NASA Astrophysics Data System (ADS)
Lambrecht, R. M.
The current and projected annual requirements through 1985 for stable isotopes enriched by electromagnetic separation methods were reviewed for applications in various types of biomedical research: (1) medical radiosiotope production, labeled compounds, and potential radio-pharmaceuticals; (2) nutrition, food science, and pharmacology: (3) metallobiochemistry and environmental toxicology; (4) nuclear magnetic resonance, electron paramagnetic resonance, and moessbauer spectroscopy in biochemical, biophysical, and biomedical research; and (5) miscellaneous advances in radioactive and nonradioactive tracer technology. Radioisotopes available from commercial sources or routinely used in clinical nuclear medicine were excluded. Current requirements for enriched stable isotopes in biomedical research are not being satisfied. Severe shortages exist for Mg 26, Ca 43, Zn 70, Se 76, Se 77, Se 78, Pd 102, Cd 111, Cd 113, and Os 190. Many interesting and potentially important investigations in biomedical research require small quantities of specific elements at high isotopic enrichments.
Ullrich, Sebastian; Neef, Sylvia K; Schmarr, Hans-Georg
2018-02-01
Low-molecular-weight volatile sulfur compounds such as thiols, sulfides, disulfides as well as thioacetates cause a sulfidic off-flavor in wines even at low concentration levels. The proposed analytical method for quantification of these compounds in wine is based on headspace solid-phase microextraction, followed by gas chromatographic analysis with sulfur-specific detection using a pulsed flame photometric detector. Robust quantification was achieved via a stable isotope dilution assay using commercial and synthesized deuterated isotopic standards. The necessary chromatographic separation of analytes and isotopic standards benefits from the inverse isotope effect realized on an apolar polydimethylsiloxane stationary phase of increased film thickness. Interferences with sulfur-specific detection in wine caused by sulfur dioxide were minimized by addition of propanal. The method provides adequate validation data, with good repeatability and limits of detection and quantification. It suits the requirements of wine quality management, allowing the control of oenological treatments to counteract an eventual formation of excessively high concentration of such malodorous compounds. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Noble gases in Mars atmosphere: new precise analysis with Paloma
NASA Astrophysics Data System (ADS)
Sarda, Ph.; Paloma Team
2003-04-01
The Viking mission embarked a mass spectrometer designed by Alfred O. Nier that yielded the first determination of the elemental and isotopic composition of noble gases in Mars atmosphere. For example, the 40Ar/36Ar ratio in martian air is roughly 10 fold that in terrestrial air. This extraordinary accomplishment, however, has furnished only partial results with large analytical uncertainties. For example, we do not know the isotopic composition of helium, and only very poorly that of Ne, Kr and Xe. In planetary science, it is fundamental to have a good knowledge of the atmosphere because this serves as a reference for all further studies of volatiles. In addition, part of our present knowledge of Mars atmosphere is based on the SNC meteorites, and again points to important differences between the atmospheres of Earth and Mars. For example the 129Xe/132Xe ratio of martian atmosphere would be twice that of terrestrial air and the 36Ar/38Ar ratio strongly different from the terrestrial or solar value. There is a need for confirming that the atmospheric components found in SNC meteorites actually represents the atmosphere of Mars, or to determine how different they are. Paloma is an instrument designed to generate elemental and isotopic data for He, Ne, Ar, Kr and Xe (and other gases) using a mass spectrometer with a purification and separation line. Gas purification and separation did not exist on the Vicking instrument. Because Paloma includes purification and separation, we expect strong improvement in precision. Ne, Ar and Xe isotope ratios should be obtained with an accuracy of better than 1%. Determination of the presently unknown ^3He/^4He ratio is also awaited from this experiment. Knowledge of noble gas isotopes in Mars atmosphere will allow some insight into major planetary processes such as degassing (^3He/^4He, 40Ar/36Ar, 129Xe/130Xe, 136Xe/130Xe), gravitational escape to space (^3He/^4He, 20Ne/22Ne), hydrodynamic escape and/or impact erosion of the atmosphere (20Ne/22Ne, 21Ne/22Ne, 38Ar/36Ar, Xe isotopes), input of solar wind and galactic comic rays (^3He/^4He, 20Ne/22Ne, 21Ne/22Ne). Comparison with the Earth may also shed light on long standing problems such as the large isotopic mass fractionation of the Xe isotopes and the so-called missing xenon problem. Possible variations of Kr and Xe abundances due to adsorption phenomena related to the climatic cycle will be searched for by measuring along at least one martian year.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dion, Michael; Eiden, Greg; Farmer, Orville
2016-07-22
A developed technique that uses the intrinsic mass-based separation capability of a quadrupole mass spectrometer has been used to resolve spectral radiometric interference of two isotopes of the same element. In this work the starting sample was a combination of 137Cs and 134Cs and was (activity) dominated by 137Cs and this methodology separated and “implanted” 134Cs that was later quantified for spectral features and ac- tivity with traditional radiometric techniques. This work demonstrated a 134Cs/137Cs activity ratio enhancement of >4 orders of magnitude and complete removal of 137Cs spectral features from the implanted target mass (i.e., 134).
Segregation of isotopes of heavy metals due to light-induced drift: results and problems
NASA Astrophysics Data System (ADS)
Sapar, A.; Aret, A.; Poolamäe, R.; Sapar, L.
2008-04-01
Atutov and Shalagin (1988) proposed light-induced drift (LID) as a physically well understandable mechanism to explain the formation of isotopic anomalies observed in CP stars. We have generalized the theory of LID and applied it to diffusion of heavy elements and their isotopes in quiescent atmospheres of CP stars. Diffusional segregation of isotopes of chemical elements is described by the equations of continuity and diffusion velocity. Computations of evolutionary sequences for the abundances of mercury isotopes in several model atmospheres have been made, using the Fortran 90 program SMART composed by the authors. Results confirm predominant role of LID in separation of isotopes.
NASA Astrophysics Data System (ADS)
Burnik Šturm, Martina; Ganbaatar, Oyunsaikhan; Voigt, Christian C.; Kaczensky, Petra
2017-04-01
Hydrogen (δ2H) and oxygen (δ18O) isotope values of water are widely used to track the global hydrological cycle and the global δ2H and δ18O patterns of precipitation are increasingly used in studies on animal migration, forensics, food authentication and traceability studies. However, δ2H and δ18O values of precipitation spanning one or more years are available for only a few 100 locations worldwide and for many remote areas such as Mongolia data are still scarce. We obtained the first field-based δ2H and δ18O isotope data of event-based precipitation, rivers and other water bodies in the extreme environment of the Dzungarian Gobi desert in SW Mongolia, covering a period of 16 months (1). Our study area is located over 450 km north-east from the nearest IAEA GNIP station (Fukang station, China) from which it is separated by a mountain range at the international border between China and Mongolia. Isotope values of the collected event-based precipitation showed and extreme range and a high seasonal variability with higher and more variable values in summer and lower in winter. The high variability could not be explained by different origin of air masses alone (i.e. NW polar winds over Russia or westerlies over Central Asia; analyzed using back-trajectory HYSPLIT model), but is likely a result of a combination of different processes affecting the isotope values of precipitation in this area. The calculated field-based local meteoric water line (LMWL, δ2H=(7.42±0.16)δ18O-(23.87±3.27)) showed isotopic characteristics of precipitation in an arid region. We observed a slight discrepancy between the filed based and modelled (Online Isotope in Precipitation Calculator, OIPC) LMWL which highlighted the difficulty of modelling the δ2H and δ18O values for areas with extreme climatic conditions and thus emphasized the importance of collecting long-term field-based data. The collected isotopic data of precipitation and other water bodies provide a basis for future studies in this largely understudied region. (1)Burnik Šturm M., Ganbaatar O., Voigt C.C., Kaczensky P. (2016) First field-based observations of δ2H and δ18O values of precipitation, rivers and other water bodies in the Dzungarian Gobi, SW Mongolia. Isotopes in Environmental and Health Studies, doi: 10.1080/10256016.2016.1231184
NASA Astrophysics Data System (ADS)
Mazzuca, James W.; Haut, Nathaniel K.
2018-06-01
It has been recently shown that in the presence of an applied voltage, hydrogen and deuterium nuclei can be separated from one another using graphene membranes as a nuclear sieve, resulting in a 10-fold enhancement in the concentration of the lighter isotope. While previous studies, both experimental and theoretical, have attributed this effect mostly to differences in vibrational zero point energy (ZPE) of the various isotopes near the membrane surface, we propose that multi-dimensional quantum mechanical tunneling of nuclei through the graphene membrane influences this proton permeation process in a fundamental way. We perform ring polymer molecular dynamics calculations in which we include both ZPE and tunneling effects of various hydrogen isotopes as they permeate the graphene membrane and compute rate constants across a range of temperatures near 300 K. While capturing the experimentally observed separation factor, our calculations indicate that the transverse motion of the various isotopes across the surface of the graphene membrane is an essential part of this sieving mechanism. An understanding of the multi-dimensional quantum mechanical nature of this process could serve to guide the design of other such isotopic enrichment processes for a variety of atomic and molecular species of interest.
Mazzuca, James W; Haut, Nathaniel K
2018-06-14
It has been recently shown that in the presence of an applied voltage, hydrogen and deuterium nuclei can be separated from one another using graphene membranes as a nuclear sieve, resulting in a 10-fold enhancement in the concentration of the lighter isotope. While previous studies, both experimental and theoretical, have attributed this effect mostly to differences in vibrational zero point energy (ZPE) of the various isotopes near the membrane surface, we propose that multi-dimensional quantum mechanical tunneling of nuclei through the graphene membrane influences this proton permeation process in a fundamental way. We perform ring polymer molecular dynamics calculations in which we include both ZPE and tunneling effects of various hydrogen isotopes as they permeate the graphene membrane and compute rate constants across a range of temperatures near 300 K. While capturing the experimentally observed separation factor, our calculations indicate that the transverse motion of the various isotopes across the surface of the graphene membrane is an essential part of this sieving mechanism. An understanding of the multi-dimensional quantum mechanical nature of this process could serve to guide the design of other such isotopic enrichment processes for a variety of atomic and molecular species of interest.
East Asian origin of central Greenland last glacial dust: just one possible scenario?
NASA Astrophysics Data System (ADS)
Újvári, Gábor; Stevens, Thomas; Svensson, Anders; Klötzli, Urs Stephan; Manning, Christina; Németh, Tibor; Kovács, János
2016-04-01
Dust in Greenland ice cores is used to reconstruct the activity of dust emitting regions and atmospheric circulation for the last glacial period. However, the source dust material to Greenland over this period is the subject of considerable uncertainty. Here we use new clay mineral and Sr-Nd isotopic data from eleven loess samples collected around the Northern Hemisphere and compare the 87Sr/86Sr and 143Nd/144Nd isotopic signatures of fine (<10 μm) separates to existing Greenland ice core dust data (GISP2, GRIP; [1]; [2]). Smectite contents and kaolinite/chlorite (K/C) ratios allow exclusion of continental US dust emitting regions as potential sources, because of the very high (>3.6) K/C ratios and extremely high (>~70%) smectite contents. At the same time, Sr-Nd isotopic compositions demonstrate that ice core dust isotopic compositions can be explained by East Asian (Chinese loess) and/or Central/East Central European dust contributions. Central/East Central European loess Sr-Nd isotopic compositions overlap most with ice core dust, while the Sr isotopic signature of Chinese loess is slightly more radiogenic. Nevertheless, an admixture of 90‒10 % from Chinese loess and circum-Pacific volcanic material would also account for the Sr‒Nd isotopic ratios of central Greenland LGM dust. At the same time, sourcing of ice core dust from Alaska, continental US and NE Siberia seems less likely based on Sr and Nd isotopic signatures. The data demonstrate that currently no unique source discrimination for Greenland dust is possible using both published and our new data [3]. Thus, there is a need to identify more diagnostic tracers. Based on initial Hf isotope analyses of fine separates of three loess samples (continental US, Central Europe, China), an apparent dependence of Hf isotopic signatures on the relative proportions of radiogenic clay minerals (primarily illite) was found, as these fine dust fractions are apparently zircon-free. The observed difference between major potential source regions in 176Hf/177Hf that reach several ɛHf units and the first order clay mineralogy dependence of Hf isotopic signatures means there is strong potential for distinguishing between the two hypothesized Greenland dust sources using Hf isotopes [3]. [1] Biscaye P.E., Grousset F.E., Revel M., Van der Gaast S., Zielinski G.A., Vaars A., Kukla G. (1997). Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 Ice Core, Summit, Greenland. Journal of Geophysical Research 102, 26765-26781. [2] Svensson A., Biscaye P.E., Grousset F.E. (2000) Characterization of late glacial continental dust in the Greenland Ice Core Project ice core. Journal of Geophysical Research 105, 4637-4656. [3] Újvári G., Stevens T., Svensson A., Klötzli U.S., Manning, C., Németh T., Kovács J., Sweeney M.R., Gocke M., Wiesenberg G.L.B., Markovic S.B., Zech M. (in press). Two possible source regions for Central Greenland last glacial dust. Geophysical Research Letters, doi: 10.1002/2015GL066153.
NASA Astrophysics Data System (ADS)
Monz, L.; Hohmann, R.; Kluge, H.-J.; Kunze, S.; Lantzsch, J.; Otten, E. W.; Passler, G.; Senne, P.; Stenner, J.; Stratmann, K.; Swendt, K.; Zimmer, K.; Herrmann, G.; Trautmann, N.; Walter, K.
1993-12-01
Environmental assessment in the wake of a nuclear accident requires the rapid determination of the radiotoxic isotopes 89Sr and 90Sr. Useful measurements must be able to detect 10 8 atoms in the presence of about 10 18 atoms of the stable, naturally occurring isotopes. This paper describes a new approach to this problem using resonance ionization spectroscopy in collinear geometry, combined with classical mass separation. After collection and chemical separation, the strontium from a sample is surface-ionized and the ions are accelerated to an energy of about 30 keV. Initially, a magnetic mass separator provides an isotopic selectivity of about 10 6. The ions are then neutralized by charge exchange and the resulting fast strontium atoms are selectively excited into high-lying atomic Rydberg states by narrow-band cw laser light in collinear geometry. The Rydberg atoms are then field-ionized and detected. Thus far, a total isotopic selectivity of S > 10 10 and an overall efficiency of ξ = 5 × 10 -6 have been achieved. The desired detection limit of 10 8 atoms 90Sr has been demonstrated with synthetic samples.
Nelson, Kimberly J.; Day, Amanda E.; Zeng, Bubing B.; King, S. Bruce; Poole, Leslie B.
2008-01-01
Cysteine reactivity in enzymes is imparted to a large extent by the stabilization of the deprotonated form of the reduced cysteine (i.e. the thiolate) within the active site. While this is likely to be an important chemical attribute of many thiol-based enzymes including cysteine-dependent peroxidases (peroxiredoxins) and proteases, only relatively few pKa values have been determined experimentally. Presented here is a new technique for determining the pKa value of cysteine residues through quantitative mass spectrometry following chemical modification with an iodoacetamide-based reagent over a range of pH buffers. This isotope-coded reagent, N-phenyl iodoacetamide (iodoacetanilide), is readily prepared in deuterated (d5) and protiated (d0) versions and is more reactive toward free cysteine than is iodoacetamide. Using this approach, the pKa values for the two cysteine residues in Escherichia coli thioredoxin were determined to be 6.5 and > 10, in good agreement with previous reports using chemical modification approaches. This technique allows the pKa of specific cysteine residues to be determined in a clear, fast, and simple manner and, because cysteine residues on separate tryptic peptides are measured separately, is not complicated by the presence of multiple cysteines within the protein of interest. PMID:18162165
NASA Technical Reports Server (NTRS)
Boering, Kristie A.; Connell, Peter; Rotman, Douglas
2004-01-01
We investigated the isotopic fractionation of CH4 and hydrogen (H2) in the stratosphere by incorporating isotope-specific rate coefficients into the Lawrence Livermore National Laboratory (LLNL) 2D model and comparing the model results with new observations from the NASA ER-2 aircraft (funded through a separate task under the Upper Atmosphere Research Program). The model results reveal that fractionation which occurs in the stratosphere has a significant influence on isotope compositions in the free troposphere, an important point which had previously been ignored, unrecognized or unquantified for many long-lived trace gases, including CH4 and H2 which we have focused our efforts on to date. Our analyses of the model results and new isotope observations have also been used to test how well the kinetic isotope effects are known, at least to within the uncertainties in model chemistry and transport. Overall, these results represent an important step forward in our understanding of isotope fractionation in the atmosphere and demonstrate that stratospheric isotope fractionation cannot be ignored in modeling studies which use isotope observations in the troposphere to infer the global budgets of CH4 (an important greenhouse gas) and of H2 (a gas whose atmospheric budget must be better quantified, particularly before a large human perturbation from fuel cell use is realized). Our analyses of model results and observations from the NASA ER-2 aircraft are briefly summarized separately below for CH4, H2, and H2O and for the contribution of these modeling studies to date to our understanding of isotope fractionation for N2O, CO2, and O3 as well.
NASA Astrophysics Data System (ADS)
Pickhardt, Carola; Dietze, Hans-Joachim; Becker, J. Sabine
2005-04-01
Isotope ratio measurements have been increasingly used in quite different application fields, e.g., for the investigation of isotope variation in nature, in geoscience (geochemistry and geochronology), in cosmochemistry and planetary science, in environmental science, e.g., in environmental monitoring, or by the application of the isotope dilution technique for quantification purposes using stable or radioactive high-enriched isotope tracers. Due to its high sensitivity, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is today a challenging mass spectrometric technique for the direct determination of precise and accurate isotope ratios in solid samples. In comparison to laser ablation quadrupole ICP-MS (LA-ICP-QMS), laser ablation coupled to a double-focusing sector field ICP-MS (LA-ICP-SFMS) with single ion detection offers a significant improvement of sensitivity at low mass resolution, whereby isotope ratios can be measured with a precision to 0.1% relative standard deviation (R.S.D.). In LA-ICP-SFMS, many disturbing isobaric interferences of analyte and molecular ions can be separated at the required mass resolution (e.g., 40Ar16O+ and 56Fe+ for iron isotope ratio measurements). The precision on isotope ratio measurements was improved by one order of magnitude via the simultaneous detection of mass-separated ion currents of isotopes using multiple ion collectors in LA-ICP-MS (LA-MC-ICP-MS). The paper discusses the state of the art, the challenges and limits in isotope ratio measurements by LA-ICP-MS using different instrumentations at the trace and ultratrace level in different fields of application as in environmental and biological research, geochemistry and geochronology with respect to their precision and accuracy.
Mound Laboratory activities for the Division of Physical Research: July--December 1975
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-05-14
Research and development are reported in the following areas: isotope separation and production for Ar, C, He, Kr, Ne, O, S, and Xe; testing of cubic B crystals for superconductivity; metal hydride research on band theory and electronic structure and spin-lattice relaxation times for VH/sub x/; separation chemistry of Pu, /sup 231/Pa, /sup 230/Th, /sup 229/Th, and /sup 234/U; adsorption of U and Pu by bone char; separation research for Ca and S isotopes; molecular beam scattering for Ar--Kr; and transport properties for the systems Ne--Ar, Ne--Kr, and Ar--Kr. (JSR)
NASA Astrophysics Data System (ADS)
Hu, Yuntao; Richter, Andreas; Wanek, Wolfgang
2016-04-01
Soil organic matter (SOM) decomposition is one of the most important processes of the global nitrogen cycle, having strong implications on soil N availability, terrestrial carbon cycling and soil carbon sequestration. During SOM decomposition low-molecular weight organic nitrogen (LMWON) is released which can be taken up by microbes (and plants). The breakdown of high-molecular weight organic nitrogen (HMWON, e.g. proteins, peptidoglycan, chitin, nucleic acids) represents the bottleneck of soil HMWON decomposition and is performed by extracellular enzymes released mainly by soil microorganisms. Despite that, the current understanding of the controls of these processes is incomplete. The only way to measure gross decomposition rates of these polymers is to use isotope pool dilution (IPD) techniques. In IPD approaches the product pool is isotopically enriched (by e.g. 15N) and the isotope dilution of this pool is measured over time. We have pioneered an IPD for protein and cellulose depolymerization, but IPD approaches for other polymers, specifically for important microbial necromass components such as chitin (fungi) and peptidoglycan (bacteria), or nucleic acids have not yet been developed. Here we present a workflow based on a universally applicable technical platform that allows to estimate the gross depolymerization rate of SOM (HMWON) at the molecular level, using ultra high performance liquid chromatography/high resolution Orbitrap mass spectrometry (UPLC/HRMS) combined with IPD techniques. The necessary isotopically labeled organic polymers (chitin, peptidoglycan and others) are extracted from laboratory bacterial and fungal cultures grown in fully isotopically labeled nutrient media (15N, 13C or both). A purification scheme for the different polymers is currently established. Labeled potential decomposition products (e.g. amino sugars and muropeptides from peptidoglycan, amino sugars and chitooligosaccharides from chitin, nucleotides and nucleosides from nucleic acids) are prepared by enzymatic and/or acid digestion of the polymers. Different UPLC separation columns (Hypercarb, HiliC and C18) make it possible to separate more than 100 related monomers and oligomers produced during polymer decomposition, a prerequisite for analyzing the concentrations and isotope kinetics of decomposition products in complex soil samples. The benchtop Orbitrap mass analyzer has a nominal mass resolving power of 100,000 (FWHM at m/z 200), which enables us to separate compounds that are 13C- and 15N-labelled (mass difference: 0.00632) in the same compound, allowing tracing carbon and nitrogen isotopes in the same compound in IPD experiments. With the accurate masses, retention times and the isotopic pattern we can quantify and qualify the target decomposition products and their isotope kinetics during soil incubation experiments. This will enable us to estimate in situ decomposition rates of the major organic nitrogen polymers in soils, allowing new insights into the major controls of the most important step in soil organic nitrogen recycling.
Method for isotopic analysis of chlorinated organic compounds
Holt, Ben D.; Sturchio, Neil C.
1999-01-01
The present invention provides a method for preparing a VOC sample for carbon and chlorine isotope ratio analysis by mass spectrometer. A VOC sample is placed in a combustion tube and reacted with CuO to form CO.sub.2 and CuCl. The CO.sub.2 is then extracted and analyzed for the carbon isotope ratio. The CuCl is separated from the excess CuO and reacted with CH.sub.3 I to form CH.sub.3 Cl, extracted and analyzed for chlorine isotope ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keck, B D; Ognibene, T; Vogel, J S
2010-02-05
Accelerator mass spectrometry (AMS) is an isotope based measurement technology that utilizes carbon-14 labeled compounds in the pharmaceutical development process to measure compounds at very low concentrations, empowers microdosing as an investigational tool, and extends the utility of {sup 14}C labeled compounds to dramatically lower levels. It is a form of isotope ratio mass spectrometry that can provide either measurements of total compound equivalents or, when coupled to separation technology such as chromatography, quantitation of specific compounds. The properties of AMS as a measurement technique are investigated here, and the parameters of method validation are shown. AMS, independent of anymore » separation technique to which it may be coupled, is shown to be accurate, linear, precise, and robust. As the sensitivity and universality of AMS is constantly being explored and expanded, this work underpins many areas of pharmaceutical development including drug metabolism as well as absorption, distribution and excretion of pharmaceutical compounds as a fundamental step in drug development. The validation parameters for pharmaceutical analyses were examined for the accelerator mass spectrometry measurement of {sup 14}C/C ratio, independent of chemical separation procedures. The isotope ratio measurement was specific (owing to the {sup 14}C label), stable across samples storage conditions for at least one year, linear over 4 orders of magnitude with an analytical range from one tenth Modern to at least 2000 Modern (instrument specific). Further, accuracy was excellent between 1 and 3 percent while precision expressed as coefficient of variation is between 1 and 6% determined primarily by radiocarbon content and the time spent analyzing a sample. Sensitivity, expressed as LOD and LLOQ was 1 and 10 attomoles of carbon-14 (which can be expressed as compound equivalents) and for a typical small molecule labeled at 10% incorporated with {sup 14}C corresponds to 30 fg equivalents. AMS provides an sensitive, accurate and precise method of measuring drug compounds in biological matrices.« less
Pollington, Anthony D.; Kinman, William S.; Hanson, Susan K.; ...
2015-09-04
Modern mass spectrometry and separation techniques have made measurement of major uranium isotope ratios a routine task; however accurate and precise measurement of the minor uranium isotopes remains a challenge as sample size decreases. One particular challenge is the presence of isobaric interferences and their impact on the accuracy of minor isotope 234U and 236U measurements. Furthermore, we present techniques used for routine U isotopic analysis of environmental nuclear safeguards samples and evaluate polyatomic interferences that negatively impact accuracy as well as methods to mitigate their impacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Andy; Jain, Jinesh; Stewart, Brian
2012-01-01
Recent innovations in multi-collector ICP-mass spectrometry (MC-ICP-MS) have allowed for rapid and precise measurements of isotope ratios in geological samples. Naturally occurring Sr isotopes has the potential for use in Monitoring, Verification, and Accounting (MVA) associated with geologic CO2 storage. Sr isotopes can be useful for: Sensitive tracking of brine migration; Determining seal rock leakage; Studying fluid/rock reactions. We have optimized separation chemistry procedures that will allow operators to prepare samples for Sr isotope analysis off site using rapid, low cost methods.
Recent Advances in SRS on Hydrogen Isotope Separation Using Thermal Cycling Absorption Process
Xiao, Xin; Sessions, Henry T.; Heung, L. Kit
2015-02-01
The recent Thermal Cycling Absorption Process (TCAP) advances at Savannah River Site (SRS) include compressor-free concept for heating/cooling, push and pull separation using an active inverse column, and compact column design. The new developments allow significantly higher throughput and better reliability from 1/10th of the current production system’s footprint while consuming 60% less energy. Various versions are derived in the meantime for external customers to be used in fusion energy projects and medical isotope production.
NASA Astrophysics Data System (ADS)
Watanabe, Shin; Minomo, Kosho; Shimada, Mitsuhiro; Tagami, Shingo; Kimura, Masaaki; Takechi, Maya; Fukuda, Mitsunori; Nishimura, Daiki; Suzuki, Takeshi; Matsumoto, Takuma; Shimizu, Yoshifumi R.; Yahiro, Masanobu
We analyze recently measured total reaction cross sections (σR) for 24-38Mg incident on 12C targets at 240 MeV/nucleon by using the microscopic framework based on the double folding model and antisymmetrized molecular dynamics (AMD). The framework reproduces not only the measured σR but also other existing measured ground-state properties of Mg Isotopes (spin parity, total binding energy, one-neutron separation energy, and 2+ and 4+ excitation energies) quite well. AMD predicts large deformation from 31Mg19 to a drip-line nucleus 40Mg28, indicating that both the N = 20 and 28 magicities disappear.
Breit, G.N.; Simmons, E.C.; Goldhaber, M.B.
1985-01-01
A simple procedure for preparing barite samples for chemical and isotopic analysis is described. Sulfate ion, in barite, in the presence of high concentrations of aqueous sodium carbonate, is replaced by carbonate. This replacement forms insoluble carbonates with the cations commonly in barite: Ba, Sr, Ca and Pb. Sulfate is released into the solution by the carbonate replacement and is separated by filtration. The aqueous sulfate can then be reprecipitated for analysis of the sulfur and oxygen isotopes. The cations in the carbonate phase can be dissolved by acidifying the solid residue. Sr can be separated from the solution for Sr isotope analysis by ion-exchange chromatography. The sodium carbonate used contains amounts of Sr which will affect almost all barite 87Sr 86Sr ratios by less than 0.00001 at 1.95?? of the mean. The procedure is preferred over other techniques used for preparing barite samples for the determination of 87Sr 86Sr ratios because it is simple, rapid and enables simultaneous determination of many compositional parameters on the same material. ?? 1985.
NASA Astrophysics Data System (ADS)
Archer, Gregory J.
Highly siderophile element (HSE) abundances and 187Re- 187Os isotopic systematics for H chondrites and ungrouped achondrites, as well as 182Hf-182W isotopic systematics of H and CR chondrites are reported. Achondrite fractions with higher HSE abundances show little disturbance of 187Re-187Os isotopic systematics. By contrast, isotopic systematics for lower abundance fractions are consistent with minor Re mobilization. For magnetically separated H chondrite fractions, the magnitudes of disturbance for the 187Re-187Os isotopic system follow the trend coarse-metal isotopic system follow the trend coarse-metal
NASA Astrophysics Data System (ADS)
Smirnov, A. Yu; Mustafin, A. R.; Nevinitsa, V. A.; Sulaberidze, G. A.; Dudnikov, A. A.; Gusev, V. E.
2017-01-01
The effect of the uncertainties of the isotopic composition of the reprocessed uranium on its enrichment process in gas centrifuge cascades while diluting it by adding low-enriched uranium (LEU) and waste uranium. It is shown that changing the content of 232U and 236U isotopes in the initial reprocessed uranium within 15% (rel.) can significantly change natural uranium consumption and separative work (up to 2-3%). However, even in case of increase of these parameters is possible to find the ratio of diluents, where the cascade with three feed flows (depleted uranium, LEU and reprocessed uranium) will be more effective than ordinary separation cascade with one feed point for producing LEU from natural uranium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oi, Takao; Shimazaki, Hiromi; Ishii, Reiko
1997-07-01
Boron-specific resins with n-methyl glucamine as the functional group were used as column packing material of liquid chromatography for boron isotope separation. The shapes of chromatograms in reverse breakthrough experiments were heavily dependent on the pH of the eluents, and there existed a pH value at which a chromatogram of the displacement type was realized nearly ideally. The value of the single-stage separation factor for the boron isotopes varied between 1.010 and 1.022, depending on the temperature and the form of the resins. The existence of the three-coordinate boron species in addition to the four-coordinate species in the resin phasemore » is suggested.« less
Hanousek, Ondrej; Santner, Jakob; Mason, Sean; Berger, Torsten W; Wenzel, Walter W; Prohaska, Thomas
2016-11-01
A diffusive gradient in thin films (DGT) technique, based on a strongly basic anion exchange resin (Amberlite IRA-400), was successfully tested for 34 S/ 32 S analysis in labile soil sulfate. Separation of matrix elements (Na, K, and Ca) that potentially cause non-spectral interferences in 34 S/ 32 S analysis by MC ICP-MS (multi-collector inductively coupled plasma-mass spectrometry) during sampling of sulfate was demonstrated. No isotopic fractionation caused by diffusion or elution of sulfate was observed below a resin gel disc loading of ≤79 μg S. Above this threshold, fractionation towards 34 S was observed. The method was applied to 11 different topsoils and one mineral soil profile (0-100 cm depth) and compared with soil sulfate extraction by water. The S amount and isotopic ratio in DGT-S and water-extractable sulfate correlated significantly (r 2 = 0.89 and r 2 = 0.74 for the 11 topsoils, respectively). The systematically lower 34 S/ 32 S isotope ratios of the DGT-S were ascribed to mineralization of organic S.
A Mass Spectrometry Study of Isotope Separation in the Laser Plume
NASA Astrophysics Data System (ADS)
Suen, Timothy Wu
Accurate quantification of isotope ratios is critical for both preventing the development of illicit weapons programs in nuclear safeguards and identifying the source of smuggled material in nuclear forensics. While isotope analysis has traditionally been performed by mass spectrometry, the need for in situ measurements has prompted the development of optical techniques, such as laser-induced breakdown spectroscopy (LIBS) and laser ablation molecular isotopic spectrometry (LAMIS). These optical measurements rely on laser ablation for direct solid sampling, but several past studies have suggested that the distribution of isotopes in the ablation plume is not uniform. This study seeks to characterize isotope separation in the laser plume through the use of orthogonal-acceleration time-of-flight mass spectrometry. A silver foil was ablated with a Nd:YAG at 355 nm at an energy of 50 muJ with a spot size of 71 mum, for a fluence of 1.3 J/cm2 and an irradiance of 250 MW/cm2. Flat-plate repellers were used to sample the plume, and a temporal profile of the ions was obtained by varying the time delay on the high-voltage pulse. A spatial profile along the axis of the plume was generated by changing the position of the sample, which yielded snapshots of the isotopic composition with time. In addition, the reflectron time-of-flight system was used as an energy filter in conjunction with the repellers to sample slices of the laser plasma orthogonal to the plume axis. Mass spectrometry of the plume revealed a fast ion distribution and a slow ion distribution. Measurements taken across the entire plume showed the fast 109Ag ions slightly ahead in both space and time, causing the 107Ag fraction to drop to 0.34 at 3 mus, 4 mm from the sample surface. Although measurements centered on the near side of the plume did not show isotope separation, the slow ions on the far side of the plume included much more 109Ag than 107Ag. In addition to examining the isotope content of the ablation plume, this study has developed a mass spectrometry characterization technique that may be useful for investigating chemical reactions during laser ablation.
Separation of mixtures of chemical elements in plasma
NASA Astrophysics Data System (ADS)
Dolgolenko, D. A.; Muromkin, Yu A.
2017-10-01
This paper reviews proposals on the plasma processing of radioactive waste (RW) and spent nuclear fuel (SNF). The chemical processing of SNF based on the extraction of its components from water solutions is rather expensive and produces new waste. The paper considers experimental research on plasma separation of mixtures of chemical elements and isotopes, whose results can help evaluate the plasma methods of RW and SNF reprocessing. The analysis identifies the difference between ionization levels of RW and SNF components at their transition to the plasma phase as a reason why all plasma methods are difficult to apply.
The evolution of the ISOLDE control system
NASA Astrophysics Data System (ADS)
Jonsson, O. C.; Catherall, R.; Deloose, I.; Drumm, P.; Evensen, A. H. M.; Gase, K.; Focker, G. J.; Fowler, A.; Kugler, E.; Lettry, J.; Olesen, G.; Ravn, H. L.; Isolde Collaboration
The ISOLDE on-line mass separator facility is operating on a Personal Computer based control system since spring 1992. Front End Computers accessing the hardware are controlled from consoles running Microsoft Windows ™ through a Novell NetWare4 ™ local area network. The control system is transparently integrated in the CERN wide office network and makes heavy use of the CERN standard office application programs to control and to document the running of the ISOLDE isotope separators. This paper recalls the architecture of the control system, shows its recent developments and gives some examples of its graphical user interface.
The evolution of the ISOLDE control system
NASA Astrophysics Data System (ADS)
Jonsson, O. C.; Catherall, R.; Deloose, I.; Evensen, A. H. M.; Gase, K.; Focker, G. J.; Fowler, A.; Kugler, E.; Lettry, J.; Olesen, G.; Ravn, H. L.; Drumm, P.
1996-04-01
The ISOLDE on-line mass separator facility is operating on a Personal Computer based control system since spring 1992. Front End Computers accessing the hardware are controlled from consoles running Microsoft Windows® through a Novell NetWare4® local area network. The control system is transparently integrated in the CERN wide office network and makes heavy use of the CERN standard office application programs to control and to document the running of the ISOLDE isotope separators. This paper recalls the architecture of the control system, shows its recent developments and gives some examples of its graphical user interface.
Lueders, Tillmann; Manefield, Mike; Friedrich, Michael W
2004-01-01
Stable isotope probing (SIP) of nucleic acids allows the detection and identification of active members of natural microbial populations that are involved in the assimilation of an isotopically labelled compound into nucleic acids. SIP is based on the separation of isotopically labelled DNA or rRNA by isopycnic density gradient centrifugation. We have developed a highly sensitive protocol for the detection of 'light' and 'heavy' nucleic acids in fractions of centrifugation gradients. It involves the fluorometric quantification of total DNA or rRNA, and the quantification of either 16S rRNA genes or 16S rRNA in gradient fractions by real-time PCR with domain-specific primers. Using this approach, we found that fully 13C-labelled DNA or rRNA of Methylobacterium extorquens was quantitatively resolved from unlabelled DNA or rRNA of Methanosarcina barkeri by cesium chloride or cesium trifluoroacetate density gradient centrifugation respectively. However, a constant low background of unspecific nucleic acids was detected in all DNA or rRNA gradient fractions, which is important for the interpretation of environmental SIP results. Consequently, quantitative analysis of gradient fractions provides a higher precision and finer resolution for retrieval of isotopically enriched nucleic acids than possible using ethidium bromide or gradient fractionation combined with fingerprinting analyses. This is a prerequisite for the fine-scale tracing of microbial populations metabolizing 13C-labelled compounds in natural ecosystems.
Martelat, Benoit; Isnard, Helene; Vio, Laurent; Dupuis, Erwan; Cornet, Terence; Nonell, Anthony; Chartier, Frederic
2018-06-22
Precise isotopic and elemental characterization of spent nuclear fuel is a major concern for the validation of the neutronic calculation codes and waste management strategy in the nuclear industry. Generally, the elements of interest, particularly U and Pu which are the two major elements present in spent fuel, are purified by ion exchange or extractant resins before off-line measurements by thermal ionization mass spectrometry. The aim of the present work was to develop a new analytical approach based on capillary electrophoresis (CE) hyphenated to a multicollector inductively coupled plasma mass spectrometer (MC-ICPMS) for online isotope ratio measurements. An electrophoretic separation protocol of U, Pu and the fraction containing fission products and minor actinides (Am and Cm) was developed using acetic acid as the electrolyte and complexing agent. The instrumentation for CE was designed to be used in a glove box and a laboratory-built interface was developed for hyphenation with MC-ICPMS. The separation was realized with only a few nL of a solution of spent nuclear fuel and the reproducibilities obtained on the U and Pu isotope ratios were on the order of a few ‰ which is comparable to those obtained by thermal ionization mass spectrometer (TIMS). This innovative protocol allowed a tremendous reduction of the analyte masses from μg to ng and also a drastic reduction of the liquid waste production from mL to μL. In addition, the time of analysis was shorted by at least a factor three. All of these improved parameters are of major interest for nuclear applications.
Code of Federal Regulations, 2013 CFR
2013-01-01
...); (3) A fuel fabrication plant; (4) An enrichment plant or isotope separation plant for the separation..., irradiated fuel element chopping machines, and hot cells. Nuclear fuel cycle-related research and development...
Code of Federal Regulations, 2014 CFR
2014-01-01
...); (3) A fuel fabrication plant; (4) An enrichment plant or isotope separation plant for the separation..., irradiated fuel element chopping machines, and hot cells. Nuclear fuel cycle-related research and development...
Antler, Gilad; Pellerin, André
2018-01-01
Separating the contributions of anaerobic oxidation of methane and organoclastic sulfate reduction in the overall sedimentary sulfur cycle of marine sediments has benefited from advances in isotope biogeochemistry. Particularly, the coupling of sulfur and oxygen isotopes measured in the residual sulfate pool (δ18OSO4 vs. δ34SSO4). Yet, some important questions remain. Recent works have observed patterns that are inconsistent with previous interpretations. We differentiate the contributions of oxygen and sulfur isotopes to separating the anaerobic oxidation of methane and organoclastic sulfate reduction into three phases; first evidence from conventional high methane vs. low methane sites suggests a clear relationship between oxygen and sulfur isotopes in porewater and the metabolic process taking place. Second, evidence from pure cultures and organic matter rich sites with low levels of methane suggest the signatures of both processes overlap and cannot be differentiated. Third, we take a critical look at the use of oxygen and sulfur isotopes to differentiate metabolic processes (anaerobic oxidation of methane vs. organoclastic sulfate reduction). We identify that it is essential to develop a better understanding of the oxygen kinetic isotope effect, the degree of isotope exchange with sulfur intermediates as well as establishing their relationships with the cell-specific metabolic rates if we are to develop this proxy into a reliable tool to study the sulfur cycle in marine sediments and the geological record. PMID:29681890
Analysis of Gas Membrane Ultra-High Purification of Small Quantities of Mono-Isotopic Silane
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Almeida, Valmor F.; Hart, Kevin J.
A small quantity of high-value, crude, mono-isotopic silane is a prospective gas for a small-scale, high-recovery, ultra-high membrane purification process. This is an unusual application of gas membrane separation for which we provide a comprehensive analysis of a simple purification model. The goal is to develop direct analytic expressions for estimating the feasibility and efficiency of the method, and guide process design; this is only possible for binary mixtures of silane in the dilute limit which is a somewhat realistic case. Among the common impurities in crude silane, methane poses a special membrane separation challenge since it is chemically similarmore » to silane. Other potential problematic surprises are: ethylene, diborane and ethane (in this order). Nevertheless, we demonstrate, theoretically, that a carefully designed membrane system may be able to purify mono-isotopic, crude silane to electronics-grade level in a reasonable amount of time and expenses. We advocate a combination of membrane materials that preferentially reject heavy impurities based on mobility selectivity, and light impurities based on solubility selectivity. We provide estimates for the purification of significant contaminants of interest. To improve the separation selectivity, it is advantageous to use a permeate chamber under vacuum, however this also requires greater control of in-leakage of impurities in the system. In this study, we suggest cellulose acetate and polydimethylsiloxane as examples of membrane materials on the basis of limited permeability data found in the open literature. We provide estimates on the membrane area needed and priming volume of the cell enclosure for fabrication purposes when using the suggested membrane materials. These estimates are largely theoretical in view of the absence of reliable experimental data for the permeability of silane. Last but not least, future extension of this work to the non-dilute limit may apply to the recovery of silane from rejected streams of natural silicon semi-conductor processes.« less
Data-driven Approaches to Teaching Stable Isotopes in Hydrology and Environmental Geochemistry
NASA Astrophysics Data System (ADS)
Jefferson, A.; Merchant, W. R.; Dees, D.; Griffith, E. M.; Ortiz, J. D.
2016-12-01
Stable isotopes have revolutionized our understanding of watershed hydrology and other earth science processes. However, students may struggle to correctly interpret isotope ratios and few students understand how isotope measurements are made. New laser-based technologies lower the barrier to entry for giving students hands on experience with isotope measurements and data analysis. We hypothesizedthat integrating such activities into the curriculum would increase student content knowledge, perceptions, and motivation to learn. This project assessed the impact that different pedagogical approaches have on student learning of stable isotope concepts in upper-division geoscience courses. An isotope hydrograph separation module was developed and taught for a Watershed Hydrology course, and a Rayleigh distillation activity was developed and deployed for Environmental Geochemistry and Sedimentology/Stratigraphy classes. Groups of students were exposed to this content via (1) a lecture-only format; (2) a paper-based data analysis activity; and (3) hands-on data collection, sometimes including spectrometer analysis. Pre- and post-tests measured gains in content knowledge while approaches to learning and motivational questionnaires instruments were used to identify the effects of the classroom environment on learning approaches and motivation. Focus group interviews were also conducted to verify the quantitative data. All instructional styles appear to be equally effective at increasing student content knowledge of stable isotopes in the geosciences, but future studies need to move beyond "exam question" style assessment of learning. Our results may reflect that hands-on experiences are not new to upper-level geosciences students, because this is the way that many classes are taught in the geosciences (labs, field trips). Thus, active learning approaches may not have had the impact they would with other groups. The "messiness" of hands-on activities and authentic research experiences may be perceived as negatives by students, particularly those who use surface learning techniques and extrinsic motivation.
Laser photochemical lead isotopes separation for harmless nuclear power engineering
NASA Astrophysics Data System (ADS)
Bokhan, P. A.; Fateev, N. V.; Kim, V. A.; Zakrevsky, D. E.
2016-09-01
The collisional quenching of the metastable 3 P 1,2 and 1 D 2 lead atoms is studied experimentally in the gas flow of the lead atoms, reagent-molecules and a carrier gas Ar. The experimental parameters were similar to the conditions that are required in the operation of the experimental setup for photochemical isotope separation. Excited atoms are generated under electron impact conditions created by a gas glow discharge through the mixture of gases and monitored photoelectrically by attenuation of atomic resonance radiation from hollow cathode 208Pb lamp. The decay of the excited atoms has been studied in the presence various molecules and total cross section data are reported. The flow tube measurements has allowed to separate the physical and chemical quenching channels and measure the rates of the chemical reaction excited lead with N2O, CH2Cl2, SF6 and CuBr molecules. These results are discussed in the prospects of the obtaining isotopically modified lead as a promising coolant in the reactors on the fast-neutron.
The influence of lithology on surface water sources | Science ...
Understanding the temporal and spatial variability of surface water sources within a basin is vital to our ability to manage the impacts of climate variability and land cover change. Water stable isotopes can be used as a tool to determine geographic and seasonal sources of water at the basin scale. Previous studies in the Coastal Range of Oregon reported that the variation in the isotopic signatures of surface water does not conform to the commonly observed “rainout effect”, which exhibits a trend of increasing isotopic depletion with rising elevation. The primary purpose of this research is to investigate the mechanisms governing seasonal and spatial variations in the isotopic signature of surface waters within the Marys River Basin, located in the leeward side of the Oregon Coastal Range. Surface water and precipitation samples were collected every 2-3 weeks for isotopic analysis of δ18O and δ2H for one year. Results indicate a significant difference in isotopic signature between watersheds underlain by basalt and sandstone. The degree of separation was the most distinct during the summer when low flows reflect deeper groundwater sources, whereas isotopic signatures during the rainy season (fall and winter) showed a greater degree of similarity between the two lithologies. This indicates that baseflow within streams drained by sandstone versus basalt is being supplied from two distinctly separate water sources. In addition, Marys River flow at the outle
Isotopic Abundances as Tracers of the Processes of Lunar Formation
NASA Astrophysics Data System (ADS)
Pahlevan, K.
2011-12-01
Ever since Apollo, isotopic abundances have been used as tracers to study lunar formation, in particular, to study the sources of the lunar material. In the last decade, however, a number of isotopic similarities have been observed between the lunar samples and the Earth's mantle such that these two reservoirs are now known to be indistinguishable from one another to high precision for a variety of isotopic tracers. This occurs against the backdrop of a Solar System that exhibits widespread heterogeneity with respect to these tracers, a situation that strongly argues that the source of the lunar material is the silicate Earth. To reconcile this observation with the fact that the Moon is thought to result from the collision of two isotopically distinct planetary bodies, a scenario has emerged in which the material from the Moon-forming impactor and the proto-Earth are homogenized in the aftermath of the giant impact. This takes place via turbulent mixing in the time after the giant impact but before lunar accretion while the Earth-Moon system exists in the form of a continuous, high-temperature fluid. Importantly, this high-temperature phase of the evolution occurs in the presence of at least two phases (liquid + vapor) making possible chemical and isotopic fractionation. While equilibrium isotopic fractionation tends to zero at high temperatures, and the post giant impact environment experiences some of the highest temperatures encountered in the Earth sciences, there are several factors that nevertheless make equilibrium isotope effects important probes of this early evolution. (1) Because the vaporization of silicates involves decomposition reactions, the bonding environment for elements in the liquid is often very different from that in the vapor. This difference makes the magnitude of isotopic fractionation intrinsically large, even at the relevant temperatures. (2) Since the isotopic composition of a silicate liquid and co-existing vapor are distinctly different, if the Moon preferentially forms from the liquid or vapor relative to the Earth, mass-dependent isotopic differences at the planetary scale may arise. The large density contrast between liquid and vapor makes phase separation possible. (3) The precision with which planetary isotopic compositions can be determined has increased such that measurements are sensitive to even small degrees of high-temperature phase separation. Using thermodynamic models of silicate liquids to determine the partial vaporization behavior of the major elements, we will present calculations of isotopic fractionation due to liquid-vapor separation for the elements iron, magnesium, silicon, and oxygen. Improvements in analytical precision have largely settled the question of the source of the lunar material - the Earth's mantle - and isotopic measurements are now beginning to yield insight into the high-temperatures processes operating during lunar formation.
Xu, Yihong; Qiao, Jixin; Hou, Xiaolin; Pan, Shaoming; Roos, Per
2014-02-01
This paper reports an analytical method for the determination of plutonium isotopes ((238)Pu, (239)Pu, (240)Pu, (241)Pu) in environmental samples using anion exchange chromatography in combination with extraction chromatography for chemical separation of Pu. Both radiometric methods (liquid scintillation counting and alpha spectrometry) and inductively coupled plasma mass spectrometry (ICP-MS) were applied for the measurement of plutonium isotopes. The decontamination factors for uranium were significantly improved up to 7.5 × 10(5) for 20 g soil compared to the level reported in the literature, this is critical for the measurement of plutonium isotopes using mass spectrometric technique. Although the chemical yield of Pu in the entire procedure is about 55%, the analytical results of IAEA soil 6 and IAEA-367 in this work are in a good agreement with the values reported in the literature or reference values, revealing that the developed method for plutonium determination in environmental samples is reliable. The measurement results of (239+240)Pu by alpha spectrometry agreed very well with the sum of (239)Pu and (240)Pu measured by ICP-MS. ICP-MS can not only measure (239)Pu and (240)Pu separately but also (241)Pu. However, it is impossible to measure (238)Pu using ICP-MS in environmental samples even a decontamination factor as high as 10(6) for uranium was obtained by chemical separation. © 2013 Elsevier B.V. All rights reserved.
Depth profile of 236U/238U in soil samples in La Palma, Canary Islands
Srncik, M.; Steier, P.; Wallner, G.
2011-01-01
The vertical distribution of the 236U/238U isotopic ratio was investigated in soil samples from three different locations on La Palma (one of the seven Canary Islands, Spain). Additionally the 240Pu/239Pu atomic ratio, as it is a well establish tool for the source identification, was determined. The radiochemical procedure consisted of a U separation step by extraction chromatography using UTEVA® Resin (Eichrom Technologies, Inc.). Afterwards Pu was separated from Th and Np by anion exchange using Dowex 1x2 (Dow Chemical Co.). Furthermore a new chemical procedure with tandem columns to separate Pu and U from the matrix was tested. For the determination of the uranium and plutonium isotopes by alpha spectrometry thin sources were prepared by microprecipitation techniques. Additionally these fractions separated from the soil samples were measured by Accelerator Mass Spectrometry (AMS) to get information on the isotopic ratios 236U/238U, 240Pu/239Pu and 236U/239Pu, respectively. The 236U concentrations [atoms/g] in each surface layer (∼2 cm) were surprisingly high compared to deeper layers where values around two orders of magnitude smaller were found. Since the isotopic ratio 240Pu/239Pu indicated a global fallout signature we assume the same origin as the probable source for 236U. Our measured 236U/239Pu value of around 0.2 is within the expected range for this contamination source. PMID:21481502
Fast isotopic separation of 10 B and 11 B boric acid by capillary zone electrophoresis.
Kamencev, Mikhail; Yakimova, Nina; Moskvin, Leonid; Kuchumova, Irina; Tkach, Kirill; Malinina, Yulia
2016-11-01
Fast isotopic separation of 10 B and 11 B boric acid by CZE was demonstrated. The BGE contained 25 mM phenylalanine and 5 mM putrescine (рН 8.95). The running conditions were +25 kV at 20°C with indirect photometric detection at 210 nm. Baseline separation was achieved in less than 9 min. RSD of migration times and corrected peak areas were less than 0.5 and 3%, respectively (n = 5). Linearity was demonstrated in the range 0.2-2 mM for 11 B and 0.2-0.5 mM for 10 B. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Variants of closing the nuclear fuel cycle
NASA Astrophysics Data System (ADS)
Andrianova, E. A.; Davidenko, V. D.; Tsibulskiy, V. F.; Tsibulskiy, S. V.
2015-12-01
Influence of the nuclear energy structure, the conditions of fuel burnup, and accumulation of new fissile isotopes from the raw isotopes on the main parameters of a closed fuel cycle is considered. The effects of the breeding ratio, the cooling time of the spent fuel in the external fuel cycle, and the separation of the breeding area and the fissile isotope burning area on the parameters of the fuel cycle are analyzed.
2016-05-01
Certification Program ETH Ethene GC Gas Chromatography GC-IRMS Gas Chromatography Isotope Ratio Mass Spectroscopy H Hydrogen IRMS Isotope...tool for attenuation of chlorinated solvents. The Demonstration Site was Operable Unit 10 at Hill AFB, Utah , a site where groundwater is impacted...techniques. The method involves extraction of the target compounds from environmental sample matrix, followed by separation of the compounds using gas
Sr isotopic tracer study of the Samail ophiolite, Oman.
Lanphere, M.A.; Coleman, R.G.; Hopson, C.A.
1981-01-01
Rb and Sr concentrations and Sr-isotopic compositions were measured in 41 whole-rock samples and 12 mineral separates from units of the Samail ophiolite, including peridotite, gabbro, plagiogranite, diabase dykes, and gabbro and websterite dykes within the metamorphic peridotite. Ten samples of cumulate gabbro from the Wadir Kadir section and nine samples from the Wadi Khafifah section have 87Sr/86Sr ratios of 0.70314 + or - 0.00030 and 0.70306 + or - 0.00034, respectively. The dispersion in Sr- isotopic composition may reflect real heterogeneities in the magma source region. The average Sr-isotopic composition of cumulate gabbro falls in the range of isotopic compositions of modern MORB. The 87Sr/86Sr ratios of noncumulate gabbro, plagiogranite, and diabase dykes range 0.7034-0.7047, 0.7038-0.7046 and 0.7037- 0.7061, respectively. These higher 87Sr/86Sr ratios are due to alteration of initial magmatic compositions by hydrothermal exchange with sea-water. Mineral separates from dykes that cut harzburgite tectonite have Sr-isotopic compositions which agree with that of cumulate gabbro. These data indicate that the cumulate gabbro and the different dykes were derived from partial melting of source regions that had similar long-term histories and chemical compositions.-T.R.
Nickel isotopic composition of the mantle
NASA Astrophysics Data System (ADS)
Gall, Louise; Williams, Helen M.; Halliday, Alex N.; Kerr, Andrew C.
2017-02-01
This paper presents a detailed high-precision study of Ni isotope variations in mantle peridotites and their minerals, komatiites as well as chondritic and iron meteorites. Ultramafic rocks display a relatively large range in δ60 Ni (permil deviation in 60 Ni /58 Ni relative to the NIST SRM 986 Ni isotope standard) for this environment, from 0.15 ± 0.07‰ to 0.36 ± 0.08‰, with olivine-rich rocks such as dunite and olivine cumulates showing lighter isotope compositions than komatiite, lherzolite and pyroxenite samples. The data for the mineral separates shed light on the origin of these variations. Olivine and orthopyroxene display light δ60 Ni whereas clinopyroxene and garnet are isotopically heavy. This indicates that peridotite whole-rock δ60 Ni may be controlled by variations in modal mineralogy, with the prediction that mantle melts will display variable δ60 Ni values due to variations in residual mantle and cumulate mineralogy. Based on fertile peridotite xenoliths and Phanerozoic komatiite samples it is concluded that the upper mantle has a relatively homogeneous Ni isotope composition, with the best estimate of δ60Nimantle being 0.23 ± 0.06‰ (2 s.d.). Given that >99% of the Ni in the silicate Earth is located in the mantle, this also defines the Ni isotope composition of the Bulk Silicate Earth (BSE). This value is nearly identical to the results obtained for a suite of chondrites and iron meteorites (mean δ60 Ni 0.26 ± 0.12‰ and 0.29 ± 0.10‰, respectively) showing that the BSE is chondritic with respect to its Ni isotope composition, with little to no Ni mass-dependent isotope fractionation resulting from core formation.
Ball, J.W.; Bassett, R.L.
2000-01-01
A method has been developed for separating the Cr dissolved in natural water from matrix elements and determination of its stable isotope ratios using solid-source thermal-ionization mass spectrometry (TIMS). The separation method takes advantage of the existence of the oxidized form of Cr as an oxyanion to separate it from interfering cations using anion-exchange chromatography, and of the reduced form of Cr as a positively charged ion to separate it from interfering anions such as sulfate. Subsequent processing of the separated sample eliminates residual organic material for application to a solid source filament. Ratios for 53Cr/52Cr for National Institute of Standards and Technology Standard Reference Material 979 can be measured using the silica gel-boric acid technique with a filament-to-filament standard deviation in the mean 53Cr/52Cr ratio for 50 replicates of 0.00005 or less. (C) 2000 Elsevier Science B.V. All rights reserved.
Method for isotopic analysis of chlorinated organic compounds
Holt, B.D.; Sturchio, N.C.
1999-08-24
The present invention provides a method for preparing a VOC sample for carbon and chlorine isotope ratio analysis by mass spectrometer. A VOC sample is placed in a combustion tube and reacted with CuO to form CO{sub 2} and CuCl. The CO{sub 2} is then extracted and analyzed for the carbon isotope ratio. The CuCl is separated from the excess CuO and reacted with CH{sub 3}I to form CH{sub 3}Cl, extracted and analyzed for chlorine isotope ratio. 9 figs.
Kudravetz, M.K.; Greene, H.B.
1958-09-16
This patent relates to control systems for a calutron and, in particular, describes an electro-mechanical system for interrupting the collection of charged particles when the ratio between the two isotopes being receivcd deviates from a predetermined value. One embodiment of the invention includes means responsive to the ratio between two isotopes being received for opening a normally closed shutter over the receiver entrance when the isotope ratio is the desired value. In another form of the invention the collection operation is interrupted by changing the beam accelerating voltage to deflect the ion beam away from the receiver.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bidica, N.; Stefanescu, I.; Cristescu, I.
2008-07-15
In this paper we present a methodology for determination of tritium inventory in a tritium removal facility. The method proposed is based on the developing of computing models for accountancy of the mobile tritium inventory in the separation processes, of the stored tritium and of the trapped tritium inventory in the structure of the process system components. The configuration of the detritiation process is a combination of isotope catalytic exchange between water and hydrogen (LPCE) and the cryogenic distillation of hydrogen isotopes (CD). The computing model for tritium inventory in the LPCE process and the CD process will be developedmore » basing on mass transfer coefficients in catalytic isotope exchange reactions and in dual-phase system (liquid-vapour) of hydrogen isotopes distillation process. Accounting of tritium inventory stored in metallic hydride will be based on in-bed calorimetry. Estimation of the trapped tritium inventory can be made by subtraction of the mobile and stored tritium inventories from the global tritium inventory of the plant area. Determinations of the global tritium inventory of the plant area will be made on a regular basis by measuring any tritium quantity entering or leaving the plant area. This methodology is intended to be applied to the Heavy Water Detritiation Pilot Plant from ICIT Rm. Valcea (Romania) and to the Cernavoda Tritium Removal Facility (which will be built in the next 5-7 years). (authors)« less
NASA Astrophysics Data System (ADS)
Imfeld, A.; Ouellet, A.; Gelinas, Y.
2016-12-01
Crude oil and petroleum products are continually being introduced into the environment during transportation, production, consumption and storage. Source identification of these organic contaminants proves challenging due to a variety of factors; samples tend to be convoluted, compounds need to be separated from an unresolved complex mixtures of highly altered aliphatic and aromatic compounds, and chemical composition and biomarker distributions can be altered by weathering, aging, and degradation processes. The aim of our research is to optimize a molecular and isotopic (δ13C, δ2H) method to fingerprint and identify petroleum contaminants in soil and sediment matrices, and to trace the temporal and spatial extent of the contamination event. This method includes the extraction, separation and analysis of the petroleum derived hydrocarbons. Sample extraction and separation is achieved using sonication, column chromatography and urea adduction. Compound identification and molecular/isotopic fingerprinting is obtained by gas chromatography with flame ionization (GC-FID) and mass spectrometer (GC-MS) detection, as well as gas chromatography coupled to an isotope ratio mass spectrometer (GC-IRMS). This method will be used to assist the Centre d'Expertise en Analyse Environnementale du Québec to determine the nature, sources and timing of contamination events as well as for investigating the residual contamination involving petroleum products.
Higashi, Tatsuya; Ogawa, Shoujiro
2016-10-25
The analysis of the qualitative and quantitative changes of metabolites in body fluids and tissues yields valuable information for the diagnosis, pathological analysis and treatment of many diseases. Recently, liquid chromatography/electrospray ionization-(tandem) mass spectrometry [LC/ESI-MS(/MS)] has been widely used for these purposes due to the high separation capability of LC, broad coverage of ESI for various compounds and high specificity of MS(/MS). However, there are still two major problems to be solved regarding the biological sample analysis; lack of sensitivity and limited availability of stable isotope-labeled analogues (internal standards, ISs) for most metabolites. Stable isotope-coded derivatization (ICD) can be the answer for these problems. By the ICD, different isotope-coded moieties are introduced to the metabolites and one of the resulting derivatives can serve as the IS, which minimize the matrix effects. Furthermore, the derivatization can improve the ESI efficiency, fragmentation property in the MS/MS and chromatographic behavior of the metabolites, which lead to a high sensitivity and specificity in the various detection modes. Based on this background, this article reviews the recently-reported isotope-coded ESI-enhancing derivatization (ICEED) reagents, which are key components for the ICD-based LC/MS(/MS) studies, and their applications to the detection, identification, quantification and profiling of metabolites in human and animal samples. The LC/MS(/MS) using the ICEED reagents is the powerful method especially for the differential analysis (relative quantification) of metabolites in two comparative samples, simultaneous quantification of multiple metabolites whose stable isotope-labeled ISs are not available, and submetabolome profiling. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Karamat, Muhammad I.; Farncombe, Troy H.
2015-10-01
Simultaneous multi-isotope Single Photon Emission Computed Tomography (SPECT) imaging has a number of applications in cardiac, brain, and cancer imaging. The major concern however, is the significant crosstalk contamination due to photon scatter between the different isotopes. The current study focuses on a method of crosstalk compensation between two isotopes in simultaneous dual isotope SPECT acquisition applied to cancer imaging using 99mTc and 111In. We have developed an iterative image reconstruction technique that simulates the photon down-scatter from one isotope into the acquisition window of a second isotope. Our approach uses an accelerated Monte Carlo (MC) technique for the forward projection step in an iterative reconstruction algorithm. The MC estimated scatter contamination of a radionuclide contained in a given projection view is then used to compensate for the photon contamination in the acquisition window of other nuclide. We use a modified ordered subset-expectation maximization (OS-EM) algorithm named simultaneous ordered subset-expectation maximization (Sim-OSEM), to perform this step. We have undertaken a number of simulation tests and phantom studies to verify this approach. The proposed reconstruction technique was also evaluated by reconstruction of experimentally acquired phantom data. Reconstruction using Sim-OSEM showed very promising results in terms of contrast recovery and uniformity of object background compared to alternative reconstruction methods implementing alternative scatter correction schemes (i.e., triple energy window or separately acquired projection data). In this study the evaluation is based on the quality of reconstructed images and activity estimated using Sim-OSEM. In order to quantitate the possible improvement in spatial resolution and signal to noise ratio (SNR) observed in this study, further simulation and experimental studies are required.
Process for recovering evolved hydrogen enriched with at least one heavy hydrogen isotope
Tanaka, John; Reilly, Jr., James J.
1978-01-01
This invention relates to a separation means and method for enriching a hydrogen atmosphere with at least one heavy hydrogen isotope by using a solid titaniun alloy hydride. To this end, the titanium alloy hydride containing at least one metal selected from the group consisting of vanadium, chromium, manganese, molybdenum, iron, cobalt and nickel is contacted with a circulating gaseous flow of hydrogen containing at least one heavy hydrogen isotope at a temperature in the range of -20.degree. to +40.degree. C and at a pressure above the dissociation pressure of the hydrided alloy selectively to concentrate at least one of the isotopes of hydrogen in the hydrided metal alloy. The contacting is continued until equilibrium is reached, and then the gaseous flow is isolated while the temperature and pressure of the enriched hydride remain undisturbed selectively to isolate the hydride. Thereafter, the enriched hydrogen is selectively recovered in accordance with the separation factor (S.F.) of the alloy hydride employed.
Extreme isotopic variations in the upper mantle: evidence from Ronda
NASA Astrophysics Data System (ADS)
Reisberg, Laurie; Zindler, Alan
1986-12-01
The Ronda Ultramafic Complex in southern Spain represents a piece of the Earth's mantle which has been tectonically emplaced into the crust. Nd and Sr isotopic analyses are presented for leached, hand-picked Cr-diopside separates prepared from 15 rock and 18 river sediment samples from Ronda. These results demonstrate that within this small, contiguous body there exists the entire range of Nd isotopic compositions, and much of the range of Sr compositions, found in rocks derived from the sub-oceanic mantle. The sediment cpx samples show that the average isotopic composition of the massif becomes progressively less "depleted" moving from SW to NE along the long axis of the massif. The rock cpx samples document 143Nd/ 144Nd variations from 0.5129 to 0.5126 and 87Sr/ 86Sr variations from 0.7031 to 0.7039 within a uniform outcrop less than 10 m in extent. Thus, extreme isotopic fluctuations exist over a wide range of wavelengths. Sr and Nd isotopes are generally inversely correlated, forming a trend on a Nd-Sr diagram that sharply crosscuts that of the "mantle array". Many of the 143Nd/ 144Nd values, and all of the Sm/Nd values, from one section of the massif are lower than that SCV015SCV0 of the bulk earth, implying that this region existed, or was influenced by a component which existed, in a LREE-enriched environment for a significant period of time. Among the sediment cpxs there is a positive correlation between 143Nd/ 144Nd and 147Sm/ 144Nd. The rock cpx separates display considerably more scatter. A simple, single-stage differentiation event starting with a uniform mantle source cannot explain these results. At least one episode of mixing with a LREE-enriched component is required. If these results from Ronda are typical of the upper mantle, basalts with different isotopic compositions need not derive from spatially separated mantle sources.
Present status of the KISS project
NASA Astrophysics Data System (ADS)
Miyatake, H.; Wada, M.; Watanabe, X. Y.; Hirayama, Y.; Schury, P.; Ahmed, M.; Ishiyama, H.; Jeong, S. C.; Kakiguchi, Y.; Kimura, S.; Moon, J. Y.; Mukai, M.; Oyaizu, M.; Park, J. H.
2018-04-01
KISS project aims at finding an astrophysical condition for synthesizing r-process heavy element isotopes, which are characterized as the third peak in the solar abundance pattern. This is an experimental challenge in nuclear physics to measure ground and isomeric state properties of unknown nuclei around the region of N=126 isotones. So far we have constructed and developed new type of mass separation system, KISS (KEK Isotope Separation System) and performed measurements of lifetimes and hyperfine structures of some platinum and iridium neutron-rich radioactive isotopes by applying multi-nucleon transfer reactions and in-gas laser ionization and spectroscopy (IGLIS) methods. In this report, recent physics results, updated KISS performance, and future's research plan including a challenge of a systematic mass measurement with MRTOF (Multi-Reflection Time-Of-Flight mass spectrograph) are presented.
Leng, Jiapeng; Zhu, Dong; Wu, Duojiao; Zhu, Tongyu; Zhao, Ningwei; Guo, Yinlong
2012-11-15
Peptidomics analysis of human serum is challenging due to the low abundance of serum peptides and interference from the complex matrix. This study analyzed the differentially expressed (DE) low molecular weight peptides in human serum integrating a DMPITC-based N-terminal isotope labeling technique with nano-liquid chromatography and matrix-assisted laser desorption/ionization mass spectrometry (nano-LC/MALDI-MS). The workflow introduced a [d(6)]-4,6-dimethoxypyrimidine-2-isothiocyanate (DMPITC)-labeled mixture of aliquots from test samples as the internal standard. The spiked [d(0)]-DMPITC-labeled samples were separated by nano-LC then spotted on the MALDI target. Both quantitative and qualitative studies for serum peptides were achieved based on the isotope-labeled peaks. The DMPITC labeling technique combined with nano-LC/MALDI-MS not only minimized the errors in peptide quantitation, but also allowed convenient recognition of the labeled peptides due to the 6 Da mass difference. The data showed that the entire research procedure as well as the subsequent data analysis method were effective, reproducible, and sensitive for the analysis of DE serum peptides. This study successfully established a research model for DE serum peptides using DMPITC-based N-terminal isotope labeling and nano-LC/MALDI-MS. Application of the DMPITC-based N-terminal labeling technique is expected to provide a promising tool for the investigation of peptides in vivo, especially for the analysis of DE peptides under different biological conditions. Copyright © 2012 John Wiley & Sons, Ltd.
Study of helium embrittlement in boron doped EUROFER97 steels
NASA Astrophysics Data System (ADS)
Gaganidze, E.; Petersen, C.; Aktaa, J.
2009-04-01
To simulate helium effects in Reduced Activation Ferritic/Martensitic steels, experimental heats ADS2, ADS3 and ADS4 with the basic composition of EUROFER97 (9%Cr-WVTa) were doped with different contents of natural boron and separated 10B-isotope (0.008-0.112 wt.%) and irradiated in High Flux Reactor (HFR) Petten up to 16.3 dpa at 250-450 °C and in Bor-60 fast reactor in Dimitrovgrad up to 31.8 dpa at 332-338 °C. The embrittlement and hardening are investigated by instrumented Charpy-V tests with subsize specimens. Complete burn-up of 10B isotope under neutron irradiation in HFR Petten led to generation of 84, 432 and 5580 appm He and partial boron-to-helium transformation in Bor-60 led to generation of 9, 46, 880 appm He in ADS2, ADS3 and ADS4 heats, respectively. At low irradiation temperatures Tirr ⩽ 340 °C the boron doped steels show progressive embrittlement with increasing helium amount. Irradiation induced DBTT shift of EUROFER97 based heat doped with 1120 wppm separated 10B isotope could not be quantified due to large embrittlement found in the investigated temperature range. At Tirr ⩽ 340 °C helium induced extra embrittlement is attributed to material hardening induced by helium bubbles and described in terms of phenomenological model.
Wang, Bo-Shian; You, Chen-Feng; Huang, Kuo-Fang; Wu, Shein-Fu; Aggarwal, Suresh Kumar; Chung, Chuan-Hsiung; Lin, Pei-Ying
2010-09-15
An improved technique for precise and accurate determination of boron isotopic composition in Na-rich natural waters (groundwater, seawater) and marine biogenic carbonates was developed. This study used a 'micro-sublimation' technique to separate B from natural sample matrices in place of the conventional ion-exchange extraction. By adjusting analyte to appropriate pH, quantitative recovery of boron can be achieved (>98%) and the B procedural blank is limited to <8 pg. An additional mass bias effect in MC-ICP-MS was observed which could not be improved via the standard-sample-standard bracketing or the 'pseudo internal' normalization by Li. Therefore a standard other than NBS SRM 951 was used to monitor plasma condition in order to maintain analytical accuracy. An isotope cross-calibration with results from TIMS shows that the space-charge mass bias on MC-ICP-MS can be successfully corrected using off-line mathematical manipulation. Several reference materials, including the seawater IAPSO and two groundwater standards IAEA-B-2 and IAEA-B-3, were used to validate this approach. We found that the delta(11)B of the reference coral JCp-1 was 24.22+/-0.28 per thousand, corresponding to seawater pH based on the coral delta(11)B-pH function. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Louwagie, Mathilde; Kieffer-Jaquinod, Sylvie; Dupierris, Véronique; Couté, Yohann; Bruley, Christophe; Garin, Jérôme; Dupuis, Alain; Jaquinod, Michel; Brun, Virginie
2012-07-06
Accurate quantification of pure peptides and proteins is essential for biotechnology, clinical chemistry, proteomics, and systems biology. The reference method to quantify peptides and proteins is amino acid analysis (AAA). This consists of an acidic hydrolysis followed by chromatographic separation and spectrophotometric detection of amino acids. Although widely used, this method displays some limitations, in particular the need for large amounts of starting material. Driven by the need to quantify isotope-dilution standards used for absolute quantitative proteomics, particularly stable isotope-labeled (SIL) peptides and PSAQ proteins, we developed a new AAA assay (AAA-MS). This method requires neither derivatization nor chromatographic separation of amino acids. It is based on rapid microwave-assisted acidic hydrolysis followed by high-resolution mass spectrometry analysis of amino acids. Quantification is performed by comparing MS signals from labeled amino acids (SIL peptide- and PSAQ-derived) with those of unlabeled amino acids originating from co-hydrolyzed NIST standard reference materials. For both SIL peptides and PSAQ standards, AAA-MS quantification results were consistent with classical AAA measurements. Compared to AAA assay, AAA-MS was much faster and was 100-fold more sensitive for peptide and protein quantification. Finally, thanks to the development of a labeled protein standard, we also extended AAA-MS analysis to the quantification of unlabeled proteins.
Gulson, B.L.; Meier, A.L.; Church, S.E.; Mizon, K.J.
1989-01-01
Thermal ionization mass spectrometry (TI-MS) has long been the method of choice for Pb-isotope determinations. More recently, however, inductively coupled plasma mass spectrometry (ICP-MS) has been used to determine Pb-isotope ratios for mineral exploration. The ICP-MS technique, although not as precise as TI-MS, may promote a wider application of Ph-isotope ratio methods because it allows individual isotopes to be determined more rapidly, generally without need for chemical separation (e.g., Smith et al., 1984; Hinners et al., 1987). To demonstrate the utility of the ICP-MS method, we have conducted a series of Pb-isotope measurements on several suites of samples using both TI-MS and ICP-MS. ?? 1989.
Separation processes using expulsion from dilute supercritical solutions
Cochran, Jr., Henry D.
1993-01-01
A process for separating isotopes as well as other mixtures by utilizing the behavior of dilute repulsive or weakly attractive elements of the mixtures as the critical point of the solvent is approached.
Methods for separating medical isotopes using ionic liquids
Luo, Huimin; Boll, Rose Ann; Bell, Jason Richard; Dai, Sheng
2014-10-21
A method for extracting a radioisotope from an aqueous solution, the method comprising: a) intimately mixing a non-chelating ionic liquid with the aqueous solution to transfer at least a portion of said radioisotope to said non-chelating ionic liquid; and b) separating the non-chelating ionic liquid from the aqueous solution. In preferred embodiments, the method achieves an extraction efficiency of at least 80%, or a separation factor of at least 1.times.10.sup.4 when more than one radioisotope is included in the aqueous solution. In particular embodiments, the method is applied to the separation of medical isotopes pairs, such as Th from Ac (Th-229/Ac-225, Ac-227/Th-227), or Ra from Ac (Ac-225 and Ra-225, Ac-227 and Ra-223), or Ra from Th (Th-227 and Ra-223, Th-229 and Ra-225).
NASA Technical Reports Server (NTRS)
Socki, Richard A.; Fu, Qi; Niles, Paul B.; Gibson, Everett K., Jr.
2012-01-01
We report results of experiments to measure the H isotope composition of organic acids and alcohols. These experiments make use of a pyroprobe interfaced with a GC and high temperature extraction furnace to make quantitative H isotope measurements. This work compliments our previous work that focused on the extraction and analysis of C isotopes from the same compounds [1]. Together with our carbon isotope analyses our experiments serve as a "proof of concept" for making C and H isotope measurements on more complex mixtures of organic compounds on mineral surfaces in abiotic hydrocarbon formation processes at elevated temperatures and pressures. Our motivation for undertaking this work stems from observations of methane detected within the Martian atmosphere [2-5], coupled with evidence showing extensive water-rock interaction during Mars history [6-8]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization [9,10]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [11-13]. Our H isotope measurements utilize an analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-High Temperature Conversion-Isotope Ratio Mass Spectrometry (Py-GC-MS-TC-IRMS). This technique is designed to carry a split of the pyrolyzed GC-separated product to a Thermo DSQII quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of separated organic compounds, therefore both chemical and isotopic measurements can be carried out simultaneously on the same sample.
NASA Technical Reports Server (NTRS)
Socki, Richard A.; Pernia, Denet; Evans, Michael; Fu, Qi; Bissada, Kadry K.; Curiale, Joseph A.; Niles, Paul B.
2013-01-01
The use of Hydrogen (H) isotopes in understanding oil and gas resource plays is in its infancy. Described here is a technique for H isotope analysis of organic compounds pyrolyzed from oil and gas shale-derived kerogen. Application of this technique will progress our understanding. This work complements that of Pernia et al. (2013, this meeting) by providing a novel method for the H isotope analysis of specific compounds in the characterization of kerogen extracted by analytically diverse techniques. Hydrogen isotope analyses were carried out entirely "on-line" utilizing a CDS 5000 Pyroprobe connected to a Thermo Trace GC Ultra interfaced with a Thermo MAT 253 IRMS. Also, a split of GC-separated products was sent to a DSQ II quadrupole MS to make semi-quantitative compositional measurements of the extracted compounds. Kerogen samples from five different basins (type II and III) were dehydrated (heated to 80 C overnight in vacuum) and analyzed for their H isotope compositions by Pyrolysis-GC-MS-TC-IRMS. This technique takes pyrolysis products separated via GC and reacts them in a high temperature conversion furnace (1450 C) which quantitatively forms H2, following a modified method of Burgoyne and Hayes, (1998, Anal. Chem., 70, 5136-5141). Samples ranging from approximately 0.5 to 1.0mg in size, were pyrolyzed at 800 C for 30s. Compounds were separated on a Poraplot Q GC column. Hydrogen isotope data from all kerogen samples typically show enrichment in D from low to high molecular weight compounds. Water (H2O) average deltaD = -215.2 (V-SMOW), ranging from -271.8 for the Marcellus Shale to -51.9 for the Polish Shale. Higher molecular weight compounds like toluene (C7H8) have an average deltaD of -89.7 0/00, ranging from -156.0 for the Barnett Shale to -50.0 for the Monterey Shale. We interpret these data as representative of potential H isotope exchange between hydrocarbons and sediment pore water during formation within each basin. Since hydrocarbon H isotopes readily exchange with water, these data may provide some useful information on gas-water or oil-water interaction in resource plays, and further as a possible indicator of paleo-environmental conditions. Alternatively, our data may be an indication of H isotope exchange with water and/or acid during the kerogen isolation process. Either of these interpretations will prove useful when deciphering H isotope data derived from kerogen analysis. More experiments are planned to discern these two or other possible scenarios.
High Precision 142Nd/144Nd and 143Nd/144Nd Isotope Ratio Measurements in Rock Samples
NASA Astrophysics Data System (ADS)
Ali, A.; Srinivasan, G.
2009-05-01
The long-lived 147Sm-143Nd system with a half-life (T1/2) of 106 Gyr is generally used for geochronology. The short-lived 146Sm-142Nd system (T1/2= 103 Myr) is used as a geological tracer to track early (˜500 Ma) silicate differentiation [1] events in different planetary bodies. The isotope composition measurements by thermal ionization mass spectrometry (TIMS) require purification of Nd using chemical separation methods. This is important as an impure sample will give both a very poor ion yield and cause beam instability in the mass spectrometer, potentially resulting in a poor analysis [2]. The separation of Nd for 143Nd isotope measurement is, fairly straightforward because there is no isobaric interference of any other REE. While 142Nd isotope analysis needs chemically separated Nd fraction to be ˜100% Ce-free as latter is composed of a substantial amount of 142Ce isotope. A 4-steps technique, modified from Caro et al., [3], for the separation of Nd is established at the Cosmochemistry Laboratory of University of Toronto, Canada and applied to the measurement of Nd isotope ratios in geological reference sample BCR-2 (USGS, Columbia River basalt) using TIMS. Results of the isotopic ratios obtained for BCR-2 are in good agreement with published values [e.g., 4]. Analytical work on the samples discovered as the oldest rocks on Earth [5] from Nuvvuagittuq greenstone belt in Québec, Canada and various meteorites is in progress. An account of the procedures involved is briefly described here. All working solutions and acids were prepared using >18.2 MΩ.cm-1 H2O from a Milli-Q water system. Experiments were performed under Class 100 clean work bench with acid-cleaned apparatus and plastic-ware. The whole rock powders were weighed (20-30 mg) and dissolved in a mixture of HF and HNO3 using PFA vials and heated at 110°C. Further decomposition was done in Teflon bomb in the oven at 205°C. Later on contents of the Teflon bomb were transferred to vials and fluorides were removed with a mixtures of HClO4 and HCl. Finally the digested samples were dissolved in 4N HCl prior to the column chromatography. The separation of alkalis and REE was achieved with 2 ml BioRad column using AG®50W-X12 resin; following which the separation of Nd and Sm fractions was achieved using Ln-Spec resin in PFA column. Results: Triple filament geometry was used to measure Nd as a metal in multi-dynamic mode using Isoprobe-T TIMS. About 600x10-9 g of JNdi-1 standard [6] produced a 142Nd beam strength of ~5×10-11 A; 400 cycles constituted one measurement, where each cycle consisted of 4 sequences of 10 second counting time. A set of ˜10 measurements of JNdi-1 gave extremely accurate and precise ratios for 142/144, 143/144 and 145/144 with internal precision better than 4 ppm and an external precision of less than 7 ppm in all cases. The BCR-2 samples were loaded ˜200 ng (factor of 4 less than JNdi-1) and therefore their operating signal strength for 142Nd was ˜1×10-11 A. Based on our analyses we conclude that the internal precision for BCR-2 samples in the range of 8-9 ppm and their external precision is comparable to JNdi-1. References: [1] Caro et al, (2008) Nature 452, 336-339; [2] Míková & Denková, (2007) Geosciences 52, 221-226; [3] Caro et al, (2003) Nature 432, 428-432; [4] Raczek et al., (2003) Geostandards Newsletter 27, No.2, 173-179; [5] O'Neil et al, (2008) Science 321, 1828-1831; [6] Tanaka et al., (2000) Chem Geol, 168, 279-281.
NASA Astrophysics Data System (ADS)
Sahlstedt, Elina; Arppe, Laura
2017-04-01
Stable isotope composition of bones, analysed either from the mineral phase (hydroxyapatite) or from the organic phase (mainly collagen) carry important climatological and ecological information and are therefore widely used in paleontological and archaeological research. For the analysis of the stable isotope compositions, both of the phases, hydroxyapatite and collagen, have their more or less well established separation and analytical techniques. Recent development in IRMS and wet chemical extraction methods have facilitated the analysis of very small bone fractions (500 μg or less starting material) for PO43-O isotope composition. However, the uniqueness and (pre-) historical value of each archaeological and paleontological finding lead to preciously little material available for stable isotope analyses, encouraging further development of microanalytical methods for the use of stable isotope analyses. Here we present the first results in developing extraction methods for combining collagen C- and N-isotope analyses to PO43-O-isotope analyses from a single bone sample fraction. We tested sequential extraction starting with dilute acid demineralization and collection of both collagen and PO43-fractions, followed by further purification step by H2O2 (PO43-fraction). First results show that bone sample separates as small as 2 mg may be analysed for their δ15N, δ13C and δ18OPO4 values. The method may be incorporated in detailed investigation of sequentially developing skeletal material such as teeth, potentially allowing for the investigation of interannual variability in climatological/environmental signals or investigation of the early life history of an individual.
Farmer, A.; Cade, B.S.; Torres-Dowdall, J.
2008-01-01
Deuterium isotope analyses have revolutionized the study of migratory connectivity because global gradients of deuterium in precipitation (??DP) are expressed on a continental scale. Several authors have constructed continental scale base maps of ??DP to provide a spatial reference for studying the movement patterns of migratory species and, although they are very useful, these maps present a static, 40-year average view of the landscape that ignores much underlying inter-annual variation. To more fully understand the consequences of this underlying variation, we analyzed the GNIP deuterium data, the source for all current ??DP maps, to estimate the minimum separation in ??DP (and latitude) necessary to conclude with a given level of confidence that distinct ??DP values represent different geographic sites. Extending analyses of ??DP successfully to deuterium in tissues of living organisms, e.g., feathers in migratory birds (??DF), is dependent on the existence of geographic separation of ??DP, where every geographic location has a distribution of values associated with temporal variability in ??DP. Analyses were conducted for three distinct geographic regions: North America, eastern North America (east of longitude 100??W), and Argentina. At the 80% confidence level, the minimum separation values were 12, 7, and 14?? of latitude (equivalent to 53, 31, and 32???) for North America, eastern North America, and Argentina, respectively. Hence, in eastern North America, for example, one may not be able to accurately assign individual samples to sites separated by less than about 7?? of latitude as the distributions of ??DP were not distinct at latitudes <7?? apart. Moreover, two samples that differ by less than 31??? cannot be confidently said to originate from different latitudes. These estimates of minimum separation for ??DP do not include other known sources of variation in feather deuterium (??D F) and hence are a first order approximation that may be useful, in the absence of more specific information for the system of interest, for planning and interpreting the results of new stable isotope studies. ?? 2008 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Yacovitch, Tara; Shorter, Joanne; Nelson, David; Herndon, Scott; Agnese, Mike; McManus, Barry; Zahniser, Mark
2017-04-01
In order to understand how and why methane (CH4 ) concentrations change over time, it is necessary to understand their sources and sinks. Stable isotope measurements of 13 CH4 :12 CH4 and CH3 D:12 CH4 ratios constrain the inventory of these sinks and sources. Current measurements often depend on Isotope Ratio Mass Spectrometry (IRMS), which requires extensive sample preparation including cryogenic separation of methane from air and subsequent conversion to either CO2 or H2 . Here, we detail improvements to a direct-absorption laser spectrometer that enable fast and precise measurements of methane isotope ratios (δ13 C and δ2 H ) of ambient air samples, without such sample preparation. The measurement system consists of a laser-based direct absorption spectrometer configured with a sample manifold for measurement of discrete samples (as opposed to flow-through measurements). Samples are trapped in the instrument using a rapid sample switching technique that compares each flask sample against a monitor tank sample. This approach reduces instrument drift and results in excellent precision. Precisions of 0.054 o/oo for δ13 C and 1.4 o/oo for δ2 H have been achieved (Allan-Werle deviations). These results are obtained in 20 minutes using 4 replicate comparisons to a monitor tank.
Void reactivity feedback analysis for U-based and Th-based LWR incineration cycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindley, B.A.; Parks, G.T.; Franceschini, F.
2013-07-01
In reduced-moderation LWRs, an external supply of transuranic (TRU) can be incinerated by mixing it with a fertile isotope ({sup 238}U or {sup 232}Th) and recycling all the actinides after each cycle. Performance is limited by coolant reactivity feedback - the moderator density coefficient (MDC) must be kept negative. The MDC is worse when more TRU is loaded, but TRU feed is also needed to maintain criticality. To assess the performance of this fuel cycle in different neutron spectra, three LWRs are considered: 'reference' PWRs and reduced-moderation PWRs and BWRs. The MDC of the equilibrium cycle is analysed by reactivitymore » decomposition with perturbed coolant density by isotope and neutron energy. The results show that using {sup 232}Th as a fertile isotope yields superior performance to {sup 238}U. This is due essentially to the high resonance η of U bred from Th (U3), which increases the fissility of the U3-TRU isotope vector in the Th-fueled system relative to the U-fueled system, and also improves the MDC in a sufficiently hard spectrum. Spatial separation of TRU and U3 in the Th-fueled system renders further improvement by hardening the neutron spectrum in the TRU and softening it in the U3. This improves the TRU η and increases the negative MDC contribution from reduced thermal fission in U3. (authors)« less
The nature of Archean terrane boundaries: an example from the northern Wyoming Province
Mogk, D.W.; Mueller, P.A.; Wooden, J.L.
1992-01-01
The Archean northern Wyoming Province can be subdivided into two geologically distinct terranes, the Beartooth-Bighorn magmatic terrane (BBMT) and the Montana metasedimentary terrane (MMT). The BBMT is characterized by voluminous Late Archean (2.90-2.74 Ga) magmatic rocks (primarily tonalite, trondhjemite, and granite); metasedimentary rocks are preserved only as small, rare enclaves in this magmatic terrane. The magmatic rocks typically have geochemical and isotopic signatures that suggest petrogenesis in a continental magmatic arc environment. The MMT, as exposed in the northern Gallatin and Madison Ranges, is dominated by Middle Archean trondhjemitic gneisses (3.2-3.0 Ga); metasedimentary rocks, however, are significantly more abundant than in the BBMT. Each terrane has experienced a separate and distinct geologic history since at least 3.6 Ga ago based on differences in metamorphic and structural styles, composition of magmatic and metasupracrustal rocks, and isotopic ages; consequently, these may be described as discrete terranes in the Cordilleran sense. Nonetheless, highly radiogenic and distinctive Pb-Pb isotopic signatures in rocks of all ages in both terranes indicate that the two terranes share a significant aspect of their history. This suggests that these two Early to Middle Archean crustal blocks, that initially evolved as part of a larger crustal province, experienced different geologic histories from at least 3.6 Ga until their juxtaposition in the Late Archean (between 2.75 to 2.55 Ga ago). Consequently, the boundary between the BBMT and MMT appears to separate terranes that are not likely to be exotic in the sense of their Phanerozoic counterparts. Other Archean provinces do appear to contain crustal blocks with different isotopic signatures (e.g. West Greenland, India, South Africa). The use of the term exotic, therefore, must be cautious in situations where geographic indicators such as paleontologic and/or paleomagnetic data are not available. In these cases, isotopic signatures are one of the most useful features for assessing overall genetic relations amongst geologically distinct terranes. ?? 1992.
Process for radioisotope recovery and system for implementing same
Meikrantz, David H [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Tranter, Troy J [Idaho Falls, ID; Horwitz, E Philip [Naperville, IL
2009-10-06
A method of recovering daughter isotopes from a radioisotope mixture. The method comprises providing a radioisotope mixture solution comprising at least one parent isotope. The at least one parent isotope is extracted into an organic phase, which comprises an extractant and a solvent. The organic phase is substantially continuously contacted with an aqueous phase to extract at least one daughter isotope into the aqueous phase. The aqueous phase is separated from the organic phase, such as by using an annular centrifugal contactor. The at least one daughter isotope is purified from the aqueous phase, such as by ion exchange chromatography or extraction chromatography. The at least one daughter isotope may include actinium-225, radium-225, bismuth-213, or mixtures thereof. A liquid-liquid extraction system for recovering at least one daughter isotope from a source material is also disclosed.
Process for radioisotope recovery and system for implementing same
Meikrantz, David H.; Todd, Terry A.; Tranter, Troy J.; Horwitz, E. Philip
2007-01-02
A method of recovering daughter isotopes from a radioisotope mixture. The method comprises providing a radioisotope mixture solution comprising at least one parent isotope. The at least one parent isotope is extracted into an organic phase, which comprises an extractant and a solvent. The organic phase is substantially continuously contacted with an aqueous phase to extract at least one daughter isotope into the aqueous phase. The aqueous phase is separated from the organic phase, such as by using an annular centrifugal contactor. The at least one daughter isotope is purified from the aqueous phase, such as by ion exchange chromatography or extraction chromatography. The at least one daughter isotope may include actinium-225, radium-225, bismuth-213, or mixtures thereof. A liquid-liquid extraction system for recovering at least one daughter isotope from a source material is also disclosed.
Sahoo, Yu Vin; Nakai, Shun'ichi; Ali, Arshad
2006-03-01
Tungsten isotope composition of a sample of deep-seated rock can record the influence of core-mantle interaction of the parent magma. Samples of kimberlite, which is known as a carrier of diamond, from the deep mantle might exhibit effects of core-mantle interaction. Although tungsten isotope anomaly was reported for kimberlites from South Africa, a subsequent investigation did not verify the anomaly. The magnesium-rich and calcium-rich chemical composition of kimberlite might engender difficulty during chemical separation of tungsten for isotope analyses. This paper presents a simple, one-step anion exchange technique for precise and accurate determination of tungsten isotopes in kimberlites using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Large quantities of Ca and Mg in kimberlite samples were precipitated and removed with aqueous H(2)SO(4). Highly pure fractions of tungsten for isotopic measurements were obtained following an anion exchange chromatographic procedure involving mixed acids. That procedure enabled efficient removal of high field strength elements (HFSE), such as Hf, Zr and Ti, which are small ions that carry strong charges and develop intense electrostatic fields. The tungsten yields were 85%-95%. Advantages of this system include less time and less use of reagents. Precise and accurate isotopic measurements are possible using fractions of tungsten that are obtained using this method. The accuracy and precision of these measurements were confirmed using various silicate standard rock samples, JB-2, JB-3 and AGV-1.
Precise Analysis of Gallium Isotopic Composition by MC-ICP-MS.
Yuan, Wei; Chen, Jiu Bin; Birck, Jean-Louis; Yin, Zuo Ying; Yuan, Sheng Liu; Cai, Hong Ming; Wang, Zhong Wei; Huang, Qiang; Wang, Zhu Hong
2016-10-04
Though an isotope approach could be beneficial for better understanding the biogeochemical cycle of gallium (Ga), an analogue of the monoisotopic element aluminum (Al), the geochemistry of Ga isotopes has not been widely elaborated. We developed a two-step method for purifying Ga from geological (biological) samples for precise measurement of Ga isotope ratio using multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). Ga was thoroughly separated from other matrix elements using two chromatographic columns loaded with AG 1-X4 and Ln-spec resin, respectively. The separation method was carefully calibrated using both synthetic and natural samples and validated by assessing the extraction yield (99.8 ± 0.8%, 2SD, n = 23) and the reproducibility (2SD uncertainty better than 0.05‰, n = 116) of the measured isotopic ratio (expressed as δ 71 Ga). The validation of the whole protocol, together with instrumental analysis, was confirmed by the investigation of the matrix effect, the result of a standard addition experiment, and the comparison of Ga isotope measurement on two mass spectrometers-Nu Plasma II and Neptune Plus. Although the measurements using the sample-standard bracketing (SSB) correction method on both instruments resulted in identical δ 71 Ga values for reference materials, the modified empirical external normalization (MEEN) method gave relatively better precision compared to SSB on Neptune. Our preliminary results showed large variation of δ 71 Ga (up to 1.83‰) for 10 standards, with higher values in industrially produced materials, implying potential application of Ga isotopes.
Separation processes using expulsion from dilute supercritical solutions
Cochran, H.D. Jr.
1993-04-20
A process is described for separating isotopes as well as other mixtures by utilizing the behavior of dilute repulsive or weakly attractive elements of the mixtures as the critical point of the solvent is approached.
Tobias, Herbert J.; Zhang, Ying; Auchus, Richard J.; Brenna, J. Thomas
2011-01-01
We report the first demonstration of Comprehensive Two-dimensional Gas Chromatography Combustion Isotope Ratio Mass Spectrometry (GC×GCC-IRMS) for the analysis of urinary steroids to detect illicit synthetic testosterone use, of interest in sport doping. GC coupled to IRMS (GCC-IRMS) is currently used to measure the carbon isotope ratios (CIR, δ13C) of urinary steroids in anti-doping efforts; however, extensive cleanup of urine extracts is required prior to analysis to enable baseline separation of target steroids. With its greater separation capabilities, GC×GC has the potential to reduce sample preparation requirements and enable CIR analysis of minimally processed urine extracts. Challenges addressed include on-line reactors with minimized dimensions to retain narrow peaks shapes, baseline separation of peaks in some cases, and reconstruction of isotopic information from sliced steroid chromatographic peaks. Difficulties remaining include long-term robustness of on-line reactors and urine matrix effects that preclude baseline separation and isotopic analysis of low concentration and trace components. In this work, steroids were extracted, acetylated, and analyzed using a refined, home-built GC×GCC-IRMS system. 11-hydroxy-androsterone (11OHA) and 11-ketoetiocolanolone (11KE) were chosen as endogenous reference compounds (ERC) because of their satisfactory signal intensity, and their CIR was compared to target compounds (TC) androsterone (A) and etiocholanolone (E). Separately, a GC×GC-qMS system was used to measure testosterone (T)/EpiT concentration ratios. Urinary extracts of urine pooled from professional athletes, and urine from one individual that received testosterone gel (T-gel) and one individual that received testosterone injections (T-shot) were analyzed. The average precisions of δ13C and Δδ13C measurements were SD(δ13C) approximately ± 1‰ (n=11). The T-shot sample resulted in a positive for T use with a T/EpiT ratio of > 9 and CIR measurements of Δδ13C > 5‰, both fulfilling World Anti-Doping Agency criteria. These data show for the first time that synthetic steroid use is detectable by GC×GCC-IRMS without need for extensive urine cleanup. PMID:21846122
Light neutron-rich hypernuclei from the importance-truncated no-core shell model
NASA Astrophysics Data System (ADS)
Wirth, Roland; Roth, Robert
2018-04-01
We explore the systematics of ground-state and excitation energies in singly-strange hypernuclei throughout the helium and lithium isotopic chains - from He5Λ to He11Λ and from Li7Λ to Li12Λ - in the ab initio no-core shell model with importance truncation. All calculations are based on two- and three-baryon interaction from chiral effective field theory and we employ a similarity renormalization group transformation consistently up to the three-baryon level to improve the model-space convergence. While the absolute energies of hypernuclear states show a systematic variation with the regulator cutoff of the hyperon-nucleon interaction, the resulting neutron separation energies are very stable and in good agreement with available data for both nucleonic parents and their daughter hypernuclei. We provide predictions for the neutron separation energies and the spectra of neutron-rich hypernuclei that have not yet been observed experimentally. Furthermore, we find that the neutron drip lines in the helium and lithium isotopic chains are not changed by the addition of a hyperon.
NASA Astrophysics Data System (ADS)
Welker, J. M.; Klein, E. S.; Collins, E.; Iken, K.; Hopcroft, R. R.; Norcross, B.
2016-12-01
The Arctic is under going rapid and profound sea ice, temperature, food web, ocean current, precipitation and synoptic weather changes. Delineating these changes requires a suite of tools, especially those that have the ability to depict the interactive nature of the marine system. Understanding the marine water isotope cycle is paramount to recognizing the unique isotopic properties of this region and to characterize possibly the reorganization of the Arctic. The Arctic marine water isotope system has been primarily examined with shore-based stations and or episodic station sampling; without continuous surface water sampling in combination with station-specific water column and organismic measurements. New technologies that allow in situ and continuous water isotope measurements (vapor and liquid) and the integration of inorganic and organic water isotope geochemistry provide a means to reveal in more detail the fundamental traits of the Arctic marine water isotope system. In July and August of 2016, we are measuring seawater surface (8 m depth) isotopes (δ18O and δ2H) in-situ and continuously (Picarro CWS system) along a research transect (60oN to 77oN) from the Gulf of Alaska to the Arctic Ocean Basin. These continuous surface water isotope measurements are being combined with periodic water column isotope profiling and corresponding organic δ18O and δ2H measurements of pelagic and benthic organisms (microbes to fish) to depths of up to 2600m. We measured surface seawater δ18O that from -1‰ to -6‰; while seawater profiles followed vertical separation in the water column; possibly reflecting divergent currents of the Arctic. Station based δ18O and δ2H values of surface water did not vary by more than 1‰ δ18O over the course of our 24-36 hour sampling periods. The δ18O and δ2H values of marine organism throughout the water column and by trophic level will be analyzed and a seawater-food web model will be developed in addition to surface and water column isoscapes. Our Arctic marine water isotope cycle research is providing the most detailed depiction ever of the western Arctic and sub-Arctic surface water, water column and marine food web O/H isotope properties. Our findings will provide an important new understanding of the Arctic and the high definition of its water isotope cycle.
Bullion to B-fields: The Silver Program of the Manhattan Project
NASA Astrophysics Data System (ADS)
Reed, Cameron
2010-04-01
Between October 1942 and September 1944, over 14,000 tons of silver bullion bars withdrawn form the U.S. Treasury were melted and cast into magnet coils and busbar pieces for the ``calutron'' electromagnetic isotope-separators constructed at Oak Ridge. Based on Manhattan Engineer District documents, this paper will review the history of this ``Silver Program,'' including discussions of the contractors, production methods, and quantities of materials involved.
Bullion to B-fields: The Silver Program of the Manhattan Project
NASA Astrophysics Data System (ADS)
Reed, Cameron
2010-02-01
Between October 1942 and September 1944, over 14,000 tons of silver bullion bars withdrawn from the U. S. Treasury were melted and cast into magnet coils and busbar pieces for the ``calutron'' electromagnetic isotope-separators constructed at Oak Ridge. Based on Manhattan Engineer District documents, this paper will review the history of this ``Silver Program,'' including discussions of the contractors, production methods, and quantities of material involved. )
Atar, L; Paschalis, S; Barbieri, C; Bertulani, C A; Díaz Fernández, P; Holl, M; Najafi, M A; Panin, V; Alvarez-Pol, H; Aumann, T; Avdeichikov, V; Beceiro-Novo, S; Bemmerer, D; Benlliure, J; Boillos, J M; Boretzky, K; Borge, M J G; Caamaño, M; Caesar, C; Casarejos, E; Catford, W; Cederkall, J; Chartier, M; Chulkov, L; Cortina-Gil, D; Cravo, E; Crespo, R; Dillmann, I; Elekes, Z; Enders, J; Ershova, O; Estrade, A; Farinon, F; Fraile, L M; Freer, M; Galaviz Redondo, D; Geissel, H; Gernhäuser, R; Golubev, P; Göbel, K; Hagdahl, J; Heftrich, T; Heil, M; Heine, M; Heinz, A; Henriques, A; Hufnagel, A; Ignatov, A; Johansson, H T; Jonson, B; Kahlbow, J; Kalantar-Nayestanaki, N; Kanungo, R; Kelic-Heil, A; Knyazev, A; Kröll, T; Kurz, N; Labiche, M; Langer, C; Le Bleis, T; Lemmon, R; Lindberg, S; Machado, J; Marganiec-Gałązka, J; Movsesyan, A; Nacher, E; Nikolskii, E Y; Nilsson, T; Nociforo, C; Perea, A; Petri, M; Pietri, S; Plag, R; Reifarth, R; Ribeiro, G; Rigollet, C; Rossi, D M; Röder, M; Savran, D; Scheit, H; Simon, H; Sorlin, O; Syndikus, I; Taylor, J T; Tengblad, O; Thies, R; Togano, Y; Vandebrouck, M; Velho, P; Volkov, V; Wagner, A; Wamers, F; Weick, H; Wheldon, C; Wilson, G L; Winfield, J S; Woods, P; Yakorev, D; Zhukov, M; Zilges, A; Zuber, K
2018-02-02
Quasifree one-proton knockout reactions have been employed in inverse kinematics for a systematic study of the structure of stable and exotic oxygen isotopes at the R^{3}B/LAND setup with incident beam energies in the range of 300-450 MeV/u. The oxygen isotopic chain offers a large variation of separation energies that allows for a quantitative understanding of single-particle strength with changing isospin asymmetry. Quasifree knockout reactions provide a complementary approach to intermediate-energy one-nucleon removal reactions. Inclusive cross sections for quasifree knockout reactions of the type ^{A}O(p,2p)^{A-1}N have been determined and compared to calculations based on the eikonal reaction theory. The reduction factors for the single-particle strength with respect to the independent-particle model were obtained and compared to state-of-the-art ab initio predictions. The results do not show any significant dependence on proton-neutron asymmetry.
USDA-ARS?s Scientific Manuscript database
Separation of the photosynthetic (Fp) and respiratory (Fr) fluxes of net CO2 exchange (Fn)remains a necessary step toward understanding the biological and physical controls on carbon cycling between the soil, biomass, and atmosphere. Despite recent advancements in stable carbon isotope partitioning ...
Microscopic model for the isotope effect in the high-Tc oxides
NASA Astrophysics Data System (ADS)
Kresin, V. Z.; Wolf, S. A.
1994-02-01
An unconventional microscopic mechanism relating Tc and the isotope substitution for the doped superconductors such as the high-Tc oxides is proposed. Strong nonadiabaticity, when it is impossible, strictly speaking, to separate fully the nuclear and electronic degrees of freedom, leads to a peculiar dependence of the carrier concentration n on the ionic mass M. This case corresponds, for example, to the isotopic substitution of the axial oxygen in YBa2Cu3O7-x. Because of the dependence of Tc on n, this leads to the dependence of Tc on M, that is to the isotope effect. The minimum value of the isotope coefficient corresponds to Tc=Tmaxc.
Machavaram, M.V.; Whittemore, Donald O.; Conrad, M.E.; Miller, N.L.
2006-01-01
A small stream in the Great Plains of USA was sampled to understand the streamflow components following intense precipitation and the influence of water storage structures in the drainage basin. Precipitation, stream, ponds, ground-water and soil moisture were sampled for determination of isotopic (D, 18O) and chemical (Cl, SO4) composition before and after two intense rain events. Following the first storm event, flow at the downstream locations was generated primarily through shallow subsurface flow and runoff whereas in the headwaters region - where a pond is located in the stream channel - shallow ground-water and pond outflow contributed to the flow. The distinct isotopic signatures of precipitation and the evaporated pond water allowed separation of the event water from the other sources that contributed to the flow. Similarly, variations in the Cl and SO4 concentrations helped identify the relative contributions of ground-water and soil moisture to the streamflow. The relationship between deuterium excess and Cl or SO4 content reveals that the early contributions from a rain event to streamflow depend upon the antecedent climatic conditions and the position along the stream channel within the watershed. The design of this study, in which data from several locations within a watershed were collected, shows that in small streams changes in relative contributions from ground water and soil moisture complicate hydrograph separation, with surface-water bodies providing additional complexity. It also demonstrates the usefulness of combined chemical and isotopic methods in hydrologic investigations, especially the utility of the deuterium excess parameter in quantifying the relative contributions of various source components to the stream flow. ?? 2006 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orozco, Luis A
This is a report of the construction of a Francium Trapping Facility (FTF) at the Isotope Separator and Accelerator (ISAC) of TRIUMF in Vancouver, Canada, where the Francium Parity Non Conservation (FrPNC) international collaboration has its home. This facility will be used to study fundamental symmetries with high-resolution atomic spectroscopy. The primary scientific objective of the program is a measurement of the anapole moment of francium in a chain of isotopes by observing the parity violation induced by the weak interaction. The anapole moment of francium and associated signal are expected to be ten times larger than in cesium, themore » only element in which an anapole moment has been observed. The measurement will provide crucial information for better understanding weak hadronic interactions in the context of Quantum Chromodynamics (QCD). The methodology combines nuclear and particle physics techniques for the production of francium with precision measurements based on laser cooling and trapping and microwave spectroscopy. The program builds on an initial series of atomic spectroscopy measurements of the nuclear structure of francium, based on isotope shifts and hyperfine anomalies, before conducting the anapole moment measurements, these measurements performed during commissioning runs help understand the atomic and nuclear structure of Fr.« less
Inoue, Koichi; Miyazaki, Yasuto; Unno, Keiko; Min, Jun Zhe; Todoroki, Kenichiro; Toyo'oka, Toshimasa
2016-01-01
In this study, we developed the stable isotope dilution hydrophilic interaction liquid chromatography with tandem mass spectrometry (HILIC-MS/MS) technique for the accurate, reasonable and simultaneous quantification of glutamic acid (Glu), glutamine (Gln), pyroglutamic acid (pGlu), γ-aminobutyric acid (GABA) and theanine in mouse brain tissues. The quantification of these analytes was accomplished using stable isotope internal standards and the HILIC separating mode to fully correct the intramolecular cyclization during the electrospray ionization. It was shown that linear calibrations were available with high coefficients of correlation (r(2) > 0.999, range from 10 pmol/mL to 50 mol/mL). For application of the theanine intake, the determination of Glu, Gln, pGlu, GABA and theanine in the hippocampus and central cortex tissues was performed based on our developed method. In the region of the hippocampus, the concentration levels of Glu and pGlu were significantly reduced during reality-based theanine intake. Conversely, the concentration level of GABA increased. This result showed that transited theanine has an effect on the metabolic balance of Glu analogs in the hippocampus. Copyright © 2015 John Wiley & Sons, Ltd.
Hannon, Janet E.; Böhlke, John Karl; Mroczkowski, Stanley J.
2008-01-01
BaSO4 precipitated from mixed salt solutions by common techniques for SO isotopic analysis may contain quantities of H2O and NO that introduce errors in O isotope measurements. Experiments with synthetic solutions indicate that δ18O values of CO produced by decomposition of precipitated BaSO4 in a carbon reactor may be either too low or too high, depending on the relative concentrations of SO and NO and the δ18O values of the H2O, NO, and SO. Typical δ18O errors are of the order of 0.5 to 1‰ in many sample types, and can be larger in samples containing atmospheric NO, which can cause similar errors in δ17O and Δ17O. These errors can be reduced by (1) ion chromatographic separation of SO from NO, (2) increasing the salinity of the solutions before precipitating BaSO4 to minimize incorporation of H2O, (3) heating BaSO4under vacuum to remove H2O, (4) preparing isotopic reference materials as aqueous samples to mimic the conditions of the samples, and (5) adjusting measured δ18O values based on amounts and isotopic compositions of coexisting H2O and NO. These procedures are demonstrated for SO isotopic reference materials, synthetic solutions with isotopically known reagents, atmospheric deposition from Shenandoah National Park, Virginia, USA, and sulfate salt deposits from the Atacama Desert, Chile, and Mojave Desert, California, USA. These results have implications for the calibration and use of O isotope data in studies of SO sources and reaction mechanisms.
Where does streamwater come from in low-relief forested watersheds? A dual-isotope approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klaus, J.; McDonnell, J. J.; Jackson, C. R.
The time and geographic sources of streamwater in low-relief watersheds are poorly understood. This is partly due to the difficult combination of low runoff coefficients and often damped streamwater isotopic signals precluding traditional hydrograph separation and convolution integral approaches. Here we present a dual-isotope approach involving 18O and 2H of water in a low-angle forested watershed to determine streamwater source components and then build a conceptual model of streamflow generation. We focus on three headwater lowland sub-catchments draining the Savannah River Site in South Carolina, USA. Our results for a 3-year sampling period show that the slopes of the meteoricmore » water lines/evaporation water lines (MWLs/EWLs) of the catchment water sources can be used to extract information on runoff sources in ways not considered before. Our dual-isotope approach was able to identify unique hillslope, riparian and deep groundwater, and streamflow compositions. Thus, the streams showed strong evaporative enrichment compared to the local meteoric water line (δ 2H = 7.15 · δ 18O +9.28‰) with slopes of 2.52, 2.84, and 2.86. Based on the unique and unambiguous slopes of the EWLs of the different water cycle components and the isotopic time series of the individual components, we were able to show how the riparian zone controls baseflow in this system and how the riparian zone "resets" the stable isotope composition of the observed streams in our low-angle, forested watersheds. Although this approach is limited in terms of quantifying mixing percentages between different end-members, our dual-isotope approach enabled the extraction of hydrologically useful information in a region with little change in individual isotope time series.« less
Where does streamwater come from in low-relief forested watersheds? A dual-isotope approach
Klaus, J.; McDonnell, J. J.; Jackson, C. R.; ...
2015-01-08
The time and geographic sources of streamwater in low-relief watersheds are poorly understood. This is partly due to the difficult combination of low runoff coefficients and often damped streamwater isotopic signals precluding traditional hydrograph separation and convolution integral approaches. Here we present a dual-isotope approach involving 18O and 2H of water in a low-angle forested watershed to determine streamwater source components and then build a conceptual model of streamflow generation. We focus on three headwater lowland sub-catchments draining the Savannah River Site in South Carolina, USA. Our results for a 3-year sampling period show that the slopes of the meteoricmore » water lines/evaporation water lines (MWLs/EWLs) of the catchment water sources can be used to extract information on runoff sources in ways not considered before. Our dual-isotope approach was able to identify unique hillslope, riparian and deep groundwater, and streamflow compositions. Thus, the streams showed strong evaporative enrichment compared to the local meteoric water line (δ 2H = 7.15 · δ 18O +9.28‰) with slopes of 2.52, 2.84, and 2.86. Based on the unique and unambiguous slopes of the EWLs of the different water cycle components and the isotopic time series of the individual components, we were able to show how the riparian zone controls baseflow in this system and how the riparian zone "resets" the stable isotope composition of the observed streams in our low-angle, forested watersheds. Although this approach is limited in terms of quantifying mixing percentages between different end-members, our dual-isotope approach enabled the extraction of hydrologically useful information in a region with little change in individual isotope time series.« less
Hafnium isotope stratigraphy of ferromanganese crusts
Lee; Halliday; Hein; Burton; Christensen; Gunther
1999-08-13
A Cenozoic record of hafnium isotopic compositions of central Pacific deep water has been obtained from two ferromanganese crusts. The crusts are separated by more than 3000 kilometers but display similar secular variations. Significant fluctuations in hafnium isotopic composition occurred in the Eocene and Oligocene, possibly related to direct advection from the Indian and Atlantic oceans. Hafnium isotopic compositions have remained approximately uniform for the past 20 million years, probably reflecting increased isolation of the central Pacific. The mechanisms responsible for the increase in (87)Sr/(86)Sr in seawater through the Cenozoic apparently had no effect on central Pacific deep-water hafnium.
Sun, Dayong; Cree, Melanie G; Zhang, Xiao-Jun; Bøersheim, Elisabet; Wolfe, Robert R
2006-02-01
We have developed a new method for the simultaneous measurements of stable isotopic tracer enrichments and concentrations of individual long-chain fatty acyl-carnitines in muscle tissue using ion-pairing high-performance liquid chromatography-electrospray ionization quadrupole mass spectrometry in the selected ion monitoring (SIM) mode. Long-chain fatty acyl-carnitines were extracted from frozen muscle tissue samples by acetonitrile/methanol. Baseline separation was achieved by reverse-phase HPLC in the presence of the volatile ion-pairing reagent heptafluorobutyric acid. The SIM capability of a single quadrupole mass analyzer allows further separation of the ions of interest from the sample matrixes, providing very clean total and selected ion chromatograms that can be used to calculate the stable isotopic tracer enrichment and concentration of long-chain fatty acyl-carnitines in a single analysis. The combination of these two separation techniques greatly simplifies the sample preparation procedure and increases the detection sensitivity. Applying this protocol to biological muscle samples proves it to be a very sensitive, accurate, and precise analytical tool.
NASA Astrophysics Data System (ADS)
Martín Gómez, Paula; Aguilera, Mònica; Pemán, Jesús; Gil Pelegrín, Eustaquio; Ferrio, Juan Pedro
2014-05-01
As a general rule, no isotopic fractionation occurs during water uptake and water transport, thus, xylem water reflects source water. However, this correspondence does not always happen. Isotopic enrichment of xylem water has been found in several cases and has been either associated to 'stem processes' like cuticular evaporation 1 and xylem-phloem communication under water stress 2,3 or to 'soil processes' such as species-specific use of contrasting water sources retained at different water potential forces in soil. In this regard, it has been demonstrated that mobile and tightly-bound water may show different isotopic signature 4,5. However, standard cryogenic distillation does not allow to separate different water pools within soil samples. Here, we carried out a study in a mixed adult forest (Pinus sylvestris, Quercus subpyrenaica and Buxus sempervirens) growing in a relatively deep loamy soil in the Pre-Pyrenees. During one year, we sampled xylem from twigs and soil at different depths (10, 30 and 50 cm). We also sampled xylem from trunk and bigger branches to assess whether xylem water was enriched in the distal parts of the tree. We found average deviations in the isotopic signature from xylem to soil of 4o 2o and 2.4o in δ18O and 18.3o 7.3o and 8.9o in δ2H, for P.sylvestris, Q.subpyrenaica and B.sempervirens respectively. Xylem water was always enriched compared to soil. In contrast, we did not find clear differences in isotopic composition between xylem samples along the tree. Declining the hypothesis that 'stem processes' would cause these uncoupling between soil and xylem isotopic values, we tested the possibility to separate mobile and tightly-bound water by centrifugation. Even though we could separate two water fractions in soils close to saturation, we could not recover a mobile fraction in drier soils. In this regard, we welcome suggestions on alternatives to separate different soil fractions in order to find the correspondence between soil and xylem water. References 1. Dawson, T. E. & Ehleringer, J. R. Isotopic enrichment of water in the 'woody' tissues of plants: Implications for plant water source, water uptake, and other studies which use the stable isotopic composition of cellulose. (1993). 2. Cernusak, L. a, Farquhar, G. D. & Pate, J. S. Environmental and physiological controls over oxygen and carbon isotope composition of Tasmanian blue gum, Eucalyptus globulus. Tree Physiol. 25, 129-46 (2005). 3. Bertrand, G. et al. Determination of spatiotemporal variability of tree water uptake using stable isotopes (δ 18 O, δ 2 H) in an alluvial system supplied by a high-altitude watershed, Pfyn forest, Switzerland. Ecohydrology (2012). doi:10.1002/eco.1347 4. Tang, K. & Feng, X. The effect of soil hydrology on the oxygen and hydrogen isotopic compositions of plants ' source water. 185, (2001). 5. Brooks, J. R., Barnard, H. R., Coulombe, R. & McDonnell, J. J. Ecohydrologic separation of water between trees and streams in a Mediterranean climate. Nat. Geosci. 3, 100-104 (2009). Acknowledgements This study was funded by RESILFOR project (AGL 2012-40039-C02-02) and FPU fellowship from the Spanish Ministry of Science and Innovation (FPU12/00648). We thank Instituto de Formación Agroambiental de Jaca and Unidad de Salud de los Bosques de Aragón for their support on field work and we feel very grateful to Miguel Ángel Lázaro for climbing the studied trees, José María Alcaire for one year of rain collection and Pilar Sopeña and Ma Josep Pau for laboratory analysis. Helpful comments by Jordi Voltas on statistical analysis have improved the quality of the work.
Barnes, S.W.
1959-08-25
An improvement in a calutron receiver for collecting the isotopes ts described. The electromagnetic separation of the isotopes produces a mass spectrum of closely adjacent beams of ions at the foci regions, and a dividing wall between the two pockets is arranged at an angle. Substantially all of the tons of the less abundant isotope enter one of the pockets and strike one side of the wall directly, while substantially none of the tons entering the other pocket strikes the wall directly.
Skarstrom, C.; Urey, H.C.; Cohen, K.
1960-08-01
A high-speed centrifuge for the separation of gaseous isotopes is designed comprising a centrifugal pump mounted on the outlet of a centrifuge bowl and arranged to pump the heavy and light fractions out of the centrifuge bowl in two separate streams.
Efficient 3He/4He separation in a nanoporous graphenylene membrane.
Qu, Yuanyuan; Li, Feng; Zhao, Mingwen
2017-08-16
Helium-3 is a precious noble gas, which is essential in many advanced technologies such as cryogenics, isotope labeling and nuclear weapons. The current imbalance of 3 He demand and supply shortage leads to the search for an efficient membrane with high performance for 3 He separation. In this study, based on first-principles calculations, we demonstrated that highly efficient 3 He harvesting can be achieved in a nanoporous graphenylene membrane with industrially-acceptable selectivity and permeance. The quantum tunneling effect leads to 3 He harvesting with high efficiency via kinetic sieving. Both the quantum tunneling effect and zero-point energy (ZPE) determine the 3 He/ 4 He separation via thermally-driven equilibrium sieving, where the ZPE effect dominates efficient 3 He/ 4 He separation between two reservoirs. The quantum effects revealed in this work suggest that the nanoporous graphenylene membrane is promising for efficient 3 He harvesting that can be exploited for industrial applications.
NASA Technical Reports Server (NTRS)
Engrand, C.; Gounelle, M.; Zolensky, M. E.; Duprat, J.
2003-01-01
The origin of the Antarctic micrometeorites (AMMs) is still a matter of debate. Their closest meteoritic counterparts are the C2 chondrites, but the match is not perfect, and the parent body(ies) of the AMMs is(are) still to be identified. Tagish Lake is a new meteorite fall which bears similarity with CI1 and CM2 chondrites, but is distinct from both. Based on the mineralogy of phyllosilicates, Noguchi et al. proposed that the phyllosilicate-rich AMMs and the Tagish Lake meteorites could derive from similar asteroids. The hydrogen isotopic compositions of extra-terrestrial samples can be used to get some insight on their origin. The D/H ratios of AMMs and of Tagish Lake have been measured, but using different analytical techniques. They are therefore not directly comparable. We performed additional hydrogen isotopic analyses of fragments of Tagish Lake using the same experimental setup previously used for the measurement of the hydrogen isotopic composition of AMMs. In this work, we could also analyze separately both lithologies of Tagish Lake (carbonate-poor and -rich). The distributions of delta D values measured in the two lithologies of Tagish Lake are very similar, indicating that fluids with similar hydrogen isotopic compositions altered the meteorite on the parent body for the two lithologies. Yet, the hydrogen isotopic composition of Tagish Lake is different from that of AMMs, suggesting that they do not derive from the same parent body.
Longobardi, Francesco; Casiello, Grazia; Centonze, Valentina; Catucci, Lucia; Agostiano, Angela
2017-08-01
Although table grape is one of the most cultivated and consumed fruits worldwide, no study has been reported on its geographical origin or agronomic practice based on stable isotope ratios. This study aimed to evaluate the usefulness of isotopic ratios (i.e. 2 H/ 1 H, 13 C/ 12 C, 15 N/ 14 N and 18 O/ 16 O) as possible markers to discriminate the agronomic practice (conventional versus organic farming) and provenance of table grape. In order to quantitatively evaluate which of the isotopic variables were more discriminating, a t test was carried out, in light of which only δ 13 C and δ 18 O provided statistically significant differences (P ≤ 0.05) for the discrimination of geographical origin and farming method. Principal component analysis (PCA) showed no good separation of samples differing in geographical area and agronomic practice; thus, for classification purposes, supervised approaches were carried out. In particular, general discriminant analysis (GDA) was used, resulting in prediction abilities of 75.0 and 92.2% for the discrimination of farming method and origin respectively. The present findings suggest that stable isotopes (i.e. δ 18 O, δ 2 H and δ 13 C) combined with chemometrics can be successfully applied to discriminate the provenance of table grape. However, the use of bulk nitrogen isotopes was not effective for farming method discrimination. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Modelling aspects regarding the control in 13C isotope separation column
NASA Astrophysics Data System (ADS)
Boca, M. L.
2016-08-01
Carbon represents the fourth most abundant chemical element in the world, having two stable and one radioactive isotope. The 13Carbon isotopes, with a natural abundance of 1.1%, plays an important role in numerous applications, such as the study of human metabolism changes, molecular structure studies, non-invasive respiratory tests, Alzheimer tests, air pollution and global warming effects on plants [9] A manufacturing control system manages the internal logistics in a production system and determines the routings of product instances, the assignment of workers and components, the starting of the processes on not-yet-finished product instances. Manufacturing control does not control the manufacturing processes themselves, but has to cope with the consequences of the processing results (e.g. the routing of products to a repair station). In this research it was fulfilled some UML (Unified Modelling Language) diagrams for modelling the C13 Isotope Separation column, implement in STARUML program. Being a critical process and needing a good control and supervising, the critical parameters in the column, temperature and pressure was control using some PLC (Programmable logic controller) and it was made some graphic analyze for this to observe some critical situation than can affect the separation process. The main parameters that need to be control are: -The liquid nitrogen (N2) level in the condenser. -The electrical power supplied to the boiler. -The vacuum pressure.
NASA Astrophysics Data System (ADS)
Chassefiere, E.; Jambon, A.; Berthelier, J.-J.; Goulpeau, G.; Leblanc, F.; Montmessin, F.; Sarda, P.; Agrinier, P.; Fouchet, T.; Waite, H.
The technique of GCMS analysis has to be completed by static mass spectrometry for precise in-situ measurements of the isotopic composition of planetary atmospheres (noble gases, stable isotopes), and volatile outgassed products from solid sample pyrolysis. Static mass spectrometry, coupled with gas separation by cryo-separation and gettering, is commonly used in the laboratory to study volatiles extracted from terrestrial and meteoritic samples. Such an instrument (PALOMA) is presently developed in our laboratories, and it will be coupled with a Pyr-GCMS analyzer (MACE), built by a US consortium of science laboratories and industrials (University of Michigan, Southwest Research Institute, JPL, Ball Aerospace). The MACE/PALOMA experiment will be proposed on the NASA Mars Science Laboratory mission, planned to be launched in 2009. The scientific objectives of PALOMA, coupled with MACE, may be listed as follows : (i) search for isotopic signatures of past life in atmosphere, rock, dust and ice samples, with emphasis on carbon, nitrogen and hydrogen; (ii) accurately measure isotopic composition of atmospheric noble gases, and stable isotopes, in order to better constrain past escape, surface interaction, outgassing history and climate evolution; (iii) precisely measure diurnal/ seasonal variations of isotopic ratios of H2O, CO2, and N2, for improving our understanding of present and past climate, and of the role of water cycle. Main measurement objectives are : (i) C, H, O, N isotopic composition in both organic evolved samples (provided by MACE pyrolysis system) and atmosphere with high accuracy (a few per mil at 1-s level); (ii) noble gas (He, Ne, Ar, Kr, Xe) and stable (C, H, O, N) isotope composition in atmosphere with high accuracy (a few per mil at 1-s level); (iii) molecular and isotopic composition of inorganic evolved samples (salts, hydrates, nitrates, {ldots}), including ices; (iv) diurnal and seasonal monitoring of D/H in water vapor, and water ice.
NASA Technical Reports Server (NTRS)
Socki, Richard A.; Pernia, Denet; Evans, Michael; Fu, Qi; Bissada, Kadry K.; Curiale, Joseph A.; Niles, Paul B.
2014-01-01
Described here is a technique for H isotope analysis of organic compounds pyrolyzed from kerogens isolated from gas- and liquids-rich shales. Application of this technique will progress the understanding of the use of H isotopes not only in potential kerogen occurrences on Mars, but also in terrestrial oil and gas resource plays. H isotope extraction and analyses were carried out utilizing a CDS 5000 Pyroprobe connected to a Thermo Trace GC interfaced with a Thermo MAT 253 IRMS. Also, a split of GC-separated products was sent to a DSQ II quadrupole MS to make qualitative and semi-quantitative compositional measurements of these products. Kerogen samples from five different basins (type II and II-S) were dehydrated (heated to 80 C overnight under vacuum) and analyzed for their H isotope compositions by Pyrolysis-GC-MS-TC-IRMS. This technique takes pyrolysis products separated via GC and reacts them in a high temperature conversion furnace (1450 C), which quantitatively forms H2. Samples ranging from 0.5 to 1.0mg in size, were pyrolyzed at 800 C for 30s. and separated on a Poraplot Q GC column. H isotope data from all kerogen samples typically show enrichment in D from low to high molecular weight. H2O average delta D = -215.2 per mille (V-SMOW), ranging from - 271.8 per mille for the Marcellus Shale to -51.9 per mille for a Polish shale. Higher molecular weight compounds like toluene (C7H8) have an average delta D of -89.7 per mille, ranging from -156.0 per mille for the Barnett Shale to -50.0 per mille for the Monterey Shale. We interpret these data as representative of potential H isotope exchange between hydrocarbons and sediment pore water during basin formation. Since hydrocarbon H isotopes readily exchange with water, these data may provide some useful information on gas-water or oil-water interaction in resource plays, and further as a possible indicator of paleoenvironmental conditions. Alternatively, our data may be an indication of H isotope exchange with water and/or acid during the kerogen isolation process. Either of these interpretations will prove useful when deciphering H isotope data derived from kerogen analyses. Understanding the role that these H-bearing compounds play in terrestrial shale paleo-environmental reconstruction may also prove useful as analogs for understanding the interactions of water and potential kerogen/organic compounds on the planet Mars.
Molten Salts and Isotope Separation
NASA Astrophysics Data System (ADS)
Lantelme, Frédéric
2013-02-01
The work on molten salts and isotope separation performed over the years at Université Pierre et Marie Curie and at Collège de France is critically reviewed. This research, closely related to A. Klemm's pioneering contributions, leads among other things to the discovery of the effect now called the `Chemla effect', after the late Professor Marius Chemla. These studies of ionic motions in melts, and liquids in general, have greatly benefitted from recent advances in molecular simulations. Some recent results of such simulations - molecular dynamics (MD) and Brownian dynamics (BD) - as well as of related theoretical work are discussed.
NASA Astrophysics Data System (ADS)
Lassiter, J. C.
2016-12-01
The use of isotope variations in basalts to probe the composition and evolution of the mantle is predicated on the assumption of local (i.e., grain-scale) isotopic equilibrium during mantle melting (Hofmann & Hart, 1978). However, several studies report Os-isotope disequilibrium in distinct populations of sulfides in some peridotites. In principle, grain-scale isotopic heterogeneity could reflect variable radiogenic ingrowth in ancient sulfides with variable Re/Os, or partial re-equilibration of low-Re/Os sulfides with high-Re/Os silicate phases along grain boundaries during mantle melting (e.g., Alard et al., 2005). Both cases require that sulfides fail to maintain isotopic equilibrium with neighboring phases over geologically long ( Ga) time scales. The preservation of Os-isotope disequilibrium in peridotites has been ascribed to the armoring effect of low-[Os] silicates, which limit diffusive exchange between isolated Os-rich phases. This raises the prospect that peridotite-derived melts may not inherit the Os-isotope composition of their source. The timescale required for diffusive equilibration between separate sulfide grains or between Os-rich sulfides and Os-poor silicates is a function of average sulfide size and spacing, Os diffusivity in armoring silicate minerals, and Os partitioning between silicate and sulfide phases. For typical sulfide abundances and sizes in mantle peridotites, neighboring sulfides are expected to re-equilibrate in less than a few 10s of m.y. at adiabatic mantle temperatures, even for very high (>106) sulfide/silicate KD values. Maintenance of disequilibrium requires very large sulfides (>100 um) separated by several mm and diffusion rates (D < 10-20 m2/s) slower than for most other elements in olivine. Equilibration timescales between sulfides and surrounding silicates are similar, so that large-scale isotopic disequilibrium between sulfides and silicates is also unlikely within the convecting mantle. Instead, observed grain-scale Os-isotope disequilibrium in mantle peridotites likely reflects recent sulfide metasomatism linked to interaction with eclogite- or pyroxenite-derived melts. Interstitial sulfides with radiogenic Os-isotopes provide further evidence for a role of eclogite melting in MORB genesis.
Takano, Yoshinori; Chikaraishi, Yoshito; Ogawa, Nanako O; Kitazato, Hiroshi; Ohkouchi, Naohiko
2009-01-01
We have developed an analytical method to determine the compound-specific nitrogen isotope compositions of individual amino acid enantiomers using gas chromatography/combustion/isotope ratio mass spectrometry. A novel derivatization of amino acid diastereomers by optically active (R)-(-)-2-butanol or (S)-(+)-2-butanol offers two advantages for nitrogen isotope analysis. First, chromatographic chiral separation can be achieved without the use of chiral stationary-phase columns. Second, the elution order of these compounds on the chromatogram can be switched by a designated esterification reaction. We applied the method to the compound-specific nitrogen isotope analysis of D- and L-alanine in a peptidoglycan derived from the cell walls of cultured bacteria (Firmicutes and Actinobacteria; Enterococcus faecalis, Staphylococcus aureus, Staphylococcus staphylolyticus, Lactobacillus acidophilus, Bacillus subtilis, Micrococcus luteus, and Streptomyces sp.), natural whole bacterial cells (Bacillus subtilis var. natto), (pseudo)-peptidoglycan from archaea (Methanobacterium sp.), and cell wall from eukaryota (Saccharomyces cerevisiae). We observed statistically significant differences in nitrogen isotopic compositions; e.g., delta15N ( per thousand vs air) in Staphylococcus staphylolyticus for d-alanine (19.2 +/- 0.5 per thousand, n = 4) and L-alanine (21.3 +/- 0.8 per thousand, n = 4) and in Bacillus subtilis for D-alanine (6.2 +/- 0.2 per thousand, n = 3) and L-alanine (8.2 +/- 0.4 per thousand, n = 3). These results suggest that enzymatic reaction pathways, including the alanine racemase reaction, produce a nitrogen isotopic difference in amino acid enantiomers, resulting in 15N-depleted D-alanine. This method is expected to facilitate compound-specific nitrogen isotope studies of amino acid stereoisomers.
NASA Astrophysics Data System (ADS)
Baker, Joel; Waight, Tod; Ulfbeck, David
2002-10-01
A method has been developed for the rapid chemical separation and highly reproducible analysis of the rare earth elements (REE) by isotope dilution analysis by means of a multiple collector inductively coupled plasma mass spectrometer (MC-ICP-MS). This technique is superior in terms of the analytical reproducibility or rapidity of analysis compared with quadrupole ICP-MS or with thermal ionization mass spectrometric isotope dilution techniques. Samples are digested by standard hydrofluoric-nitric acid-based techniques and spiked with two mixed spikes. The bulk REE are separated from the sample on a cation exchange column, collecting the middle-heavy and light REE as two groups, which provides a middle-heavy REE cut with sufficient separation of the light from the heavier REE to render oxide interferences trivial, and a Ba-free light REE cut. The heavy (Er-Lu), middle (Eu-Gd), and light REE (La-Eu) concentrations are determined by three short (1 to 2 min) analyses with a CETAC Aridus desolvating nebulizer introduction system. Replicate digestions of international rock standards demonstrate that concentrations can be reproduced to <1%, which reflects weighing errors during digestion and aliquotting as inter-REE ratios reproduce to ≤0.2% (2 SD). Eu and Ce anomalies reproduce to <0.15%. In addition to determining the concentrations of polyisotopic REE by isotope dilution analysis, the concentration of monoisotopic Pr can be measured during the light REE isotope dilution run, by reference to Pr/Ce and Pr/Nd ratios measured in a REE standard solution. Pr concentrations determined in this way reproduce to <1%, and Pr/REE ratios reproduce to <0.4%. Ce anomalies calculated with La and Pr also reproduce to <0.15% (2 SD). The precise Ce (and Eu) anomaly measurements should allow greater use of these features in studying the recycling of materials with these anomalies into the mantle, or redox-induced effects on the REE during recycling and dehydration of oceanic lithosphere, partial melting, metamorphism, alteration, or sedimentation processes. Moreover, this technique consumes very small amounts (subnanograms) of the REE and will allow precise REE determinations to be made on much smaller samples than hitherto possible.
García-Ruiz, Silvia; Petrov, Ivan; Vassileva, Emilia; Quétel, Christophe R
2011-11-01
The cadmium content in surface water is regulated by the last European Water Framework Directive to a maximum between 0.08 and 0.25 μg L(-1) depending on the water type and hardness. Direct measurement of cadmium at this low level is not straightforward in real samples, and we hereby propose a validated method capable of addressing cadmium content below μg L(-1) level in natural water. It is based on solid-phase extraction using TiO(2) nanoparticles as solid sorbent (0.05 g packed in mini-columns) to allow the separation and preconcentration of cadmium from the sample, combined to direct isotope dilution and detection by inductively coupled plasma mass spectrometry (ID-ICP-MS). The extraction setup is miniaturised and semi-automated to reduce risks of sample contamination and improve reproducibility. Procedural blanks for the whole measurement process were 5.3 ± 2.8 ng kg(-1) (1 s) for 50 g of ultrapure water preconcentrated ten times. Experimental conditions influencing the separation (including loading pH, sample flow rates, and acid concentration in the eluent) were evaluated. With isotope dilution the Cd recovery rate does not have to be evaluated carefully. Moreover, the mathematical model associated to IDMS is known, and provides transparency for the uncertainty propagation. Our validation protocol was in agreement with guidelines of the ISO/IEC 17025 standard (chapter 5.4.5). Firstly, we assessed the experimental factors influencing the final result. Secondly, we compared the isotope ratios measured after our separation procedure to the reference values obtained with a different protocol for the digested test material IMEP-111 (mineral feed). Thirdly, we analysed the certified reference material BCR-609 (groundwater). Finally, combined uncertainties associated to our results were estimated according to ISO-GUM guidelines (typically, 3-4% k = 2 for a cadmium content of around 100 ng kg(-1)). We applied the developed method to the groundwater and wastewater samples ERM-CA615 and BCR-713, respectively, and results agreed with certificate values within uncertainty statements.
Photonuclear Production of Medical Isotopes
NASA Astrophysics Data System (ADS)
Weinandt, Nick
2011-10-01
Every year, more than 20 million people in the United States receive a nuclear medicine procedure. Many of the isotopes needed for these procedures are under-produced. Suppliers of the isotopes are usually located outside the United States, which presents a problem when the desired isotopes have short half-lives. Linear accelerators were investigated as a possible method of meeting isotope demand. Linear accelerators are cheaper, safer, and have lower decommissioning costs compared to nuclear reactors. By using (γ,p) reactions, the desired isotope can be separated from the target material due to the different chemical nature of each isotope. Isotopes investigated were Cu-67, In-111, and Lu-111. Using the results the photon flux Monte Carlo simulations, the expected activity of isotopes can be calculated. After samples were irradiated, a high purity germanium detector and signal processing apparatus were used to count the samples. The activity at the time of irradiation stop was then calculated. The uses of medical isotopes will also be presented. Thanks to Idaho State University, the Idaho Accelerator Center, and the National Science Foundation for supporting the research.
Krypton and xenon in lunar fines
NASA Technical Reports Server (NTRS)
Basford, J. R.; Dragon, J. C.; Pepin, R. O.; Coscio, M. R., Jr.; Murthy, V. R.
1973-01-01
Data from grain-size separates, stepwise-heated fractions, and bulk analyses of 20 samples of fines and breccias from five lunar sites are used to define three-isotope and ordinate intercept correlations in an attempt to resolve the lunar heavy rare gas system in a statistically valid approach. Tables of concentrations and isotope compositions are given.
Enzymatic Kinetic Isotope Effects from Path-Integral Free Energy Perturbation Theory.
Gao, J
2016-01-01
Path-integral free energy perturbation (PI-FEP) theory is presented to directly determine the ratio of quantum mechanical partition functions of different isotopologs in a single simulation. Furthermore, a double averaging strategy is used to carry out the practical simulation, separating the quantum mechanical path integral exactly into two separate calculations, one corresponding to a classical molecular dynamics simulation of the centroid coordinates, and another involving free-particle path-integral sampling over the classical, centroid positions. An integrated centroid path-integral free energy perturbation and umbrella sampling (PI-FEP/UM, or simply, PI-FEP) method along with bisection sampling was summarized, which provides an accurate and fast convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. The PI-FEP method is illustrated by a number of applications, to highlight the computational precision and accuracy, the rule of geometrical mean in kinetic isotope effects, enhanced nuclear quantum effects in enzyme catalysis, and protein dynamics on temperature dependence of kinetic isotope effects. © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lutz, Stefanie; Van Breukelen, Boris
2014-05-01
Natural attenuation can represent a complementary or alternative approach to engineered remediation of polluted sites. In this context, compound specific stable isotope analysis (CSIA) has proven a useful tool, as it can provide evidence of natural attenuation and assess the extent of in-situ degradation based on changes in isotope ratios of pollutants. Moreover, CSIA can allow for source identification and apportionment, which might help to identify major emission sources in complex contamination scenarios. However, degradation and mixing processes in aquifers can lead to changes in isotopic compositions, such that their simultaneous occurrence might complicate combined source apportionment (SA) and assessment of the extent of degradation (ED). We developed a mathematical model (stable isotope sources and sinks model; SISS model) based on the linear stable isotope mixing model and the Rayleigh equation that allows for simultaneous SA and quantification of the ED in a scenario of two emission sources and degradation via one reaction pathway. It was shown that the SISS model with CSIA of at least two elements contained in the pollutant (e.g., C and H in benzene) allows for unequivocal SA even in the presence of degradation-induced isotope fractionation. In addition, the model enables precise quantification of the ED provided degradation follows instantaneous mixing of two sources. If mixing occurs after two sources have degraded separately, the model can still yield a conservative estimate of the overall extent of degradation. The SISS model was validated against virtual data from a two-dimensional reactive transport model. The model results for SA and ED were in good agreement with the simulation results. The application of the SISS model to field data of benzene contamination was, however, challenged by large uncertainties in measured isotope data. Nonetheless, the use of the SISS model provided a better insight into the interplay of mixing and degradation processes at the field site, as it revealed the prevailing contribution of one emission source and a low overall ED. The model can be extended to a larger number of sources and sinks. It may aid in forensics and natural attenuation assessment of soil, groundwater, surface water, or atmospheric pollution.
Neutron Capture Experiments on Unstable Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwantes, Jon M.; Sudowe, Ralf; Folden, Charles M., III
2005-01-15
The overall objective of this project is the measurement of neutron capture cross sections of importance to stewardship science and astrophysical modeling of nucleosynthesis, while at the same time helping to train the next generation of scientists with expertise relevant to U.S. national nuclear security missions and to stewardship science. A primary objective of this project is to study neutron capture cross sections for various stable and unstable isotopes that will contribute to the Science Based Stockpile Stewardship (SBSS) program by providing improved data for modeling and interpretation of nuclear device performance. Much of the information obtained will also bemore » important in astrophysical modeling of nucleosynthesis. Measurements of these neutron capture cross sections are being conducted in collaboration with researchers at the Los Alamos Neutron Science Center (LANSCE) facility using the unique Detector for Advanced Neutron Capture Experiments (DANCE). In our early discussions with the DANCE group, decisions were made on the first cross sections to be measured and how our expertise in target preparation, radiochemical separations chemistry, and data analysis could best be applied. The initial emphasis of the project was on preparing suitable targets of both natural and separated stable europium isotopes in preparation for the ultimate goal of preparing a sufficiently large target of radioactive 155Eu (t1/2 = 4.7 years) and other radioactive and stable species for neutron cross-section measurements at DANCE. Our Annual Report, ''Neutron Capture Experiments on Unstable Nuclei'' by J. M. Schwantes, R. Sudowe, C. M. Folden III, H. Nitsche, and D. C. Hoffman, submitted to NNSA in December 2003, gives details about the initial considerations and scope of the project. During the current reporting period, electroplated targets of natural Eu together with valuable, stable, and isotopically pure 151Eu and 153Eu, and isotopically separated 154Sm were measured for the first time at the DANCE facility in early 2004. The Eu targets, suitable blanks, Be backing foils, and standards had been sent to the DANCE group in early fall 2003. Some preliminary data analysis was performed and more sophisticated analysis has begun. We developed plans for a suitable computer system for data analysis within our group at Berkeley and had meetings with counterparts at Lawrence Livermore National Laboratory (LLNL) and LANL concerning analysis of these data. Our major emphasis in 2004 has been to develop the separations and processes ultimately required to prepare radioactive targets of 4.7-year 155Eu. Efforts continued to devise an optimum multiprocess procedure suitable for use in separating radioactive 155Eu already produced by irradiation of stable 154Sm in a high neutron flux reactor at the Institut Laue-Langevin in France and shipped to LANL (the 22-min 155Sm neutron-capture product decays to 155Eu). This separation is extremely demanding because the highly radioactive 155Eu must be isolated from about 20 times as much mass of samarium before a target can be prepared for DANCE measurements. After all the procedures have been fully tested the radioactive 155Eu will be separated. The same electroplating methods already used successfully to prepare stable Eu isotope targets will be used to prepare the 155Eu target for DANCE. Discussions were held with LANL radiochemists in the Chemistry (C) Division about appropriate facilities at LANL for conducting the full-scale separation and purification of the radioactive targets. Three more multiprocess separations were developed that generated less chemical and radioactive waste, but they must still be adapted for processing hundred-milligram quantities. Until these separations can be successfully implemented at this scale, standard HPLC procedures will be used for separating and preparing radioactive 155Eu, 2.6-year 147Pm, and 1.9-year 171Tm target materials. Future directions beyond the preparation of radioactive lanthanide targets include closer collaboration with both LLNL and LANL to prepare actinide targets such as plutonium, americium, and curium. Also, the applicability of established and novel techniques will be evaluated for rapid separations of Am and Cm required in the irradiation of 241Am. Lastly, we will conduct a series of experiments aimed at enhancing current methods used to electrodeposit lanthanide and actinide targets on thin Ti and Be backings.« less
Atmosphere-entry behavior of a modular, disk-shaped, isotope heat source.
NASA Technical Reports Server (NTRS)
Vorreiter, J. W.; Pitts, W. C.; Stine, H. A.; Burns, J. J.
1973-01-01
The authors have studied the entry and impact behavior of an isotope heat source for space nuclear power that disassembles into a number of modules which would enter the earth's atmosphere separately if a flight aborted. These modules are disk-shaped units, each with its own reentry heat shield and protective impact container. In normal operation, the disk modules are stacked inside the generator, but during a reentry abort they separate and fly as individual units of low ballistic coefficient. Flight tests at hypersonic speeds have confirmed that a stack of disks will separate and assume a flat-forward mode of flight. Free-fall tests of single disks have demonstrated a nominal impact velocity of 30 m/sec at sea level for a practical range of ballistic coefficients.
Cantrell, Cyrus D.; Carbone, Robert J.; Cooper, Ralph S.
1977-01-01
An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.
Cantrell, Cyrus D.; Carbone, Robert J.; Cooper, Ralph
1982-01-01
An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.
Extending the Boundaries of Isotope Ratio MS - Latest Technological Improvements
NASA Astrophysics Data System (ADS)
Hilkert, A.
2016-12-01
Isotope ratio mass spectrometry has a long history, which started with the analysis of the isotopes of CO2. Over several decades a broad range of IRMS techniques has been derived like multi-collector high resolution ICP-MS, TIMS, noble gas static MS and gas IRMS. These different flavors of IRMS are now building a technology tool box, which allows to derive new applications build on new capabilities by combination of specific features of these sister technologies. In the 90's inductive coupled plasma ionization was added for the high precision analysis of rare elements. In 2000 extended multicollection opened the way into clumped isotopes. In 2008 the concept of a high resolution gas source IRMS was layed out to revolutionize stable gas IRMS recently followed by the combination of this static multicollection mode with fast mass scans of the single collector double focusing high resolution GCMS. Recently new technologies were created, like the mid infrared analyzers (IRIS) based on difference frequency generation lasers, the combination of a collision cell with HR MC ICPMS as well as the use of a high resolution electrostatic ion trap for extended stable isotope analysis on individual compounds. All these building blocks for IRMS address selected requirements of sample preparation, sample introduction, referencing, ionization, mass separation, ion detection or signal amplification. Along these lines new technological improvements and applications will be shown and discussed.
Charge state breeding experiences and plans at TRIUMF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ames, F., E-mail: ames@triumf.ca; Marchetto, M.; Mjøs, A.
At the Isotope Separation and ACceleration (ISAC) facility at TRIUMF, an electron cyclotron resonance ion source (ECRIS) has been set up for the charge state breeding of radioactive ions. In order to reduce background from stable ions generated in the ECRIS, several measures, including changing materials for the plasma chamber and the surrounding components, have been implemented. Further reduction has been achieved by using the post-accelerator chain as a mass filter. Since the implementation of those measures in 2013, physics experiments with accelerated radioactive isotopes of Rb, Sr, K, and Mg have been performed. In most cases, a charge breedingmore » efficiency of several percent has been achieved. With the planned expansion of the isotope production capabilities at TRIUMF within the Advanced Rare IsotopE Laboratory project, two new target stations, one using photo-fission induced by a high-power electron beam at 50 MeV and the other one using 480 MeV protons as at ISAC, will be put into operation within the next 5 yr. Additionally, a new electron beam ion source (EBIS) based charge state breeding system will be installed. Background from such a source is expected to be much lower. The drawback is that for the efficient operation of such a system, pulsed beam operation is required, which makes the installation of an additional ion buncher in front of the EBIS necessary.« less
Design of an EBIS charge breeder system for rare-isotope beams
NASA Astrophysics Data System (ADS)
Park, Young-Ho; Son, Hyock-Jun; Kim, Jongwon
2016-09-01
Rare-isotope beams will be produced by using the isotope separation on-line (ISOL) system at the Rare Isotope Science Project (RISP). A proton cyclotron is the driver accelerator for ISOL targets, and uranium carbide (UCx) will be a major target material. An isotope beam of interest extracted from the target will be ionized and selected by using a mass separator. The beam emittance will then be reduced by using a radio-frequency quadrupole (RFQ) cooler before the beam is injected into the electron-beam ion-source (EBIS) charge breeder (CB). The maximum electron beam current of the EBIS is 3 A from a cathode made of IrCe in an applied magnetic field of 0.2 T. The size of the electron beam is compressed by magnetic fields of up to 6 T caused in the charge-breeding region by a superconducting solenoid. The design of EBIS-CB was performed by using mechanics as well as beam optics. A test stand for the electron gun and its collector, which can take an electron-beam power of 20 kW, are under construction. The gun assembly was first tested by using a high-voltage pulse so as to measure its perveance. The design of the EBIS, along with its test stand, is described.
NASA Astrophysics Data System (ADS)
Janssen, S.; Johnson, M. W.; Barkay, T.; Blum, J. D.; Reinfelder, J. R.
2014-12-01
Tracking monomethylmercury (MeHg) from its source in soils and sediments through various environmental compartments and transformations is critical to understanding its accumulation in aquatic and terrestrial food webs. Advances in the field of mercury (Hg) stable isotopes have allowed for the tracking of discrete Hg sources and the examination of photochemical and bacterial transformations. Despite analytical advances, measuring the Hg stable isotopic signature of MeHg in environmental samples or laboratory experiments remains challenging due to difficulties in the quantitative separation of MeHg from complex matrices with high concentrations of inorganic Hg. To address these challenges, we have developed a MeHg isolation method for sediments and bacterial cultures which involves separation by gas chromatography. The MeHg eluting from the GC is passed through a pyrolysis column and purged onto a gold amalgam trap which is then desorbed into a final oxidizing solution. A MeHg reference standard carried through our separation process retained its isotopic composition within 0.02 ‰ for δ202Hg, and for native estuarine sediments, MeHg recoveries were 80% to 100%. For sediment samples from the Hackensack and Passaic Rivers (New Jersey, USA), δ202Hg values for MeHg varied from -1.2 to +0.58 ‰ (relative to SRM 3133) and for individual samples were significantly different from that of total Hg (-0.38 ± 0.06 ‰). No mass independent fractionation was observed in MeHg or total Hg from these sediments. Pure cultures of Geobacter sulfurreducens, grown under fermentative conditions showed preferential enrichment of lighter isotopes (lower δ202Hg) during Hg methylation. The Hg stable isotope signatures of MeHg in sediments and laboratory methylation experiments will be discussed in the context of the formation and degradation of MeHg in the environment and the bioaccumulation of MeHg in estuarine food webs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitroshkov, Alexandre V.; Olsen, Khris B.; Thomas, Linda M.
2015-01-01
The analyses of IAEA and environmental samples for Plutonium isotopic content are conducted normally at very low concentrations of Pu–usually in the range of part per trillion level and even more often at the parts per quadrillion level. To analyze such low concentrations, the interferences in the analytical solution must be reduced as much as possible. Polyatomic interferences (PIs), formed by the heavy metals (HMs) from Hf to Bi are known to create the problems for Pu isotopic analyses, because even the relatively high resolution of a modern multicollector ICP-MS is not enough to separate Pu isotopes from this PIsmore » in most of the cases. Desolvating nebulizers (DSN) (e.g. APEX and AridusII) reduce significantly the formation of PIs compare to the use of wet plasma. The purpose of this work was to investigate the rate of formation of PIs, produced by HMs, when high resolution MC ICP-MS with desolvating nebulizer was used for Pu isotopic analyses and to estimate the influence of the metals present in the sample on the results of analyses. The NU Plasma HR Multicollector and AridusII desolvating nebulizer were used in this investigation. This investigation was done for all Pu isotopes normally analyzed by ICP-MS, including ²⁴⁴Pu, with the exception of ²³⁸Pu, which most of the time can’t be analyzed by ICP-MS, because of the overwhelming presence of ²³⁸U in the solutions. The PI formation rates were determined and reported for all 12 HMs from Hf to Bi. Selected IAEA samples were scanned for the presence of HMs and the influence of HMs on the results of Pu isotopic analyses was evaluated. It was found that the implemented separation procedure provides sufficient separation of HM from Pu, although the effect of PIs on the measurement of low level isotopes like ²⁴¹Pu and ²⁴²Pu in some cases can still be observed.« less
Thermal, mechanical and fluid flow aspects of the high power beam dump for FRIB
NASA Astrophysics Data System (ADS)
Avilov, Mikhail; Aaron, Adam; Amroussia, Aida; Bergez, Wladimir; Boehlert, Carl; Burgess, Thomas; Carroll, Adam; Colin, Catherine; Durantel, Florent; Ferrante, Paride; Fourmeau, Tiffany; Graves, Van; Grygiel, Clara; Kramer, Jacob; Mittig, Wolfgang; Monnet, Isabelle; Patel, Harsh; Pellemoine, Frederique; Ronningen, Reginald; Schein, Mike
2016-06-01
The Facility for Rare Isotope Beams (FRIB) under construction at Michigan State University is based on a 400 kW heavy ion accelerator and uses in-flight production and separation to generate rare isotope beams. The first section of the fragment separator houses the rare isotope production target, and the primary beam dump to stop the unreacted primary beam. The experimental program will use 400 kW ion beams from 16O to 238U. After interaction with the production target, over 300 kW in remaining beam power must be absorbed by the beam dump. A rotating water-cooled thin-shell metal drum was chosen as the basic concept for the beam dump. Extensive thermal, mechanical and fluid flow analyses were performed to evaluate the effects of the high power density in the beam dump shell and in the water. Many properties were optimized simultaneously, such as shell temperature, mechanical strength, fatigue strength, and radiation resistance. Results of the analyses of the beam dump performance with different design options will be discussed. For example, it was found that a design modification to the initial water flow pattern resulted in a substantial increase in the wall heat transfer coefficient. A detailed evaluation of materials for the shell is in progress. The widely used titanium alloy, Ti-6Al-4V (wt%), is presently considered as the best candidate, and is the subject of specific tests, such as studies of performance under heavy ion irradiation.
Nd and Sm isotopic composition of spent nuclear fuels from three material test reactors
Sharp, Nicholas; Ticknor, Brian W.; Bronikowski, Michael; ...
2016-11-17
Rare earth elements such as neodymium and samarium are ideal for probing the neutron environment that spent nuclear fuels are exposed to in nuclear reactors. The large number of stable isotopes can provide distinct isotopic signatures for differentiating the source material for nuclear forensic investigations. The rare-earth elements were isolated from the high activity fuel matrix via ion exchange chromatography in a shielded cell. The individual elements were then separated using cation exchange chromatography. In conclusion, the neodymium and samarium aliquots were analyzed via MC–ICP–MS, resulting in isotopic compositions with a precision of 0.01–0.3%.
Nd and Sm isotopic composition of spent nuclear fuels from three material test reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharp, Nicholas; Ticknor, Brian W.; Bronikowski, Michael
Rare earth elements such as neodymium and samarium are ideal for probing the neutron environment that spent nuclear fuels are exposed to in nuclear reactors. The large number of stable isotopes can provide distinct isotopic signatures for differentiating the source material for nuclear forensic investigations. The rare-earth elements were isolated from the high activity fuel matrix via ion exchange chromatography in a shielded cell. The individual elements were then separated using cation exchange chromatography. In conclusion, the neodymium and samarium aliquots were analyzed via MC–ICP–MS, resulting in isotopic compositions with a precision of 0.01–0.3%.
NASA Astrophysics Data System (ADS)
Fisher, Christopher M.; Paton, Chad; Pearson, D. Graham; Sarkar, Chiranjeeb; Luo, Yan; Tersmette, Daniel B.; Chacko, Thomas
2017-12-01
A robust platform to view and integrate multiple data sets collected simultaneously is required to realize the utility and potential of the Laser Ablation Split-Stream (LASS) method. This capability, until now, has been unavailable and practitioners have had to laboriously process each data set separately, making it challenging to take full advantage of the benefits of LASS. We describe a new program for handling multiple mass spectrometric data sets collected simultaneously, designed specifically for the LASS technique, by which a laser aerosol is been split into two or more separate "streams" to be measured on separate mass spectrometers. New features within Iolite (https://iolite-software.com) enable the capability of loading, synchronizing, viewing, and reducing two or more data sets acquired simultaneously, as multiple DRSs (data reduction schemes) can be run concurrently. While this version of Iolite accommodates any combination of simultaneously collected mass spectrometer data, we demonstrate the utility using case studies where U-Pb and Lu-Hf isotope composition of zircon, and U-Pb and Sm-Nd isotope composition of monazite were analyzed simultaneously, in crystals showing complex isotopic zonation. These studies demonstrate the importance of being able to view and integrate simultaneously acquired data sets, especially for samples with complicated zoning and decoupled isotope systematics, in order to extract accurate and geologically meaningful isotopic and compositional data. This contribution provides instructions and examples for handling simultaneously collected laser ablation data. An instructional video is also provided. The updated Iolite software will help to fully develop the applications of both LASS and multi-instrument mass spectrometric measurement capabilities.
Electrochemically controlled iron isotope fractionation
NASA Astrophysics Data System (ADS)
Black, Jay R.; Young, Edward D.; Kavner, Abby
2010-02-01
Variations in the stable isotope abundances of transition metals have been observed in the geologic record and trying to understand and reconstruct the physical/environmental conditions that produced these signatures is an area of active research. It is clear that changes in oxidation state lead to large fractionations of the stable isotopes of many transition metals such as iron, suggesting that transition metal stable isotope signatures could be used as a paleo-redox proxy. However, the factors contributing to these observed stable isotope variations are poorly understood. Here we investigate how the kinetics of iron redox electrochemistry generates isotope fractionation. Through a combination of electrodeposition experiments and modeling of electrochemical processes including mass-transport, we show that electron transfer reactions are the cause of a large isotope separation, while mass transport-limited supply of reactant to the electrode attenuates the observed isotopic fractionation. Furthermore, the stable isotope composition of electroplated transition metals can be tuned in the laboratory by controlling parameters such as solution chemistry, reaction overpotential, and solution convection. These methods are potentially useful for generating isotopically-marked metal surfaces for tracking and forensic purposes. In addition, our studies will help interpret stable isotope data in terms of identifying underlying electron transfer processes in laboratory and natural samples.
NASA Astrophysics Data System (ADS)
Nihill, Kevin John
This thesis details a range of experiments and techniques that use the scattering of atomic beams from surfaces to both characterize a variety of interfaces and harness mass-specific scattering conditions to separate and enrich isotopic components in a mixture of gases. Helium atom scattering has been used to characterize the surface structure and vibrational dynamics of methyl-terminated Ge(111), thereby elucidating the effects of organic termination on a rigid semiconductor interface. Helium atom scattering was employed as a surface-sensitive, non-destructive probe of the surface. By means of elastic gas-surface diffraction, this technique is capable of providing measurements of atomic spacing, step height, average atomic displacement as a function of surface temperature, gas-surface potential well depth, and surface Debye temperature. Inelastic time-of-flight studies provide highly resolved energy exchange measurements between helium atoms and collective lattice vibrations, or phonons; a collection of these measurements across a range of incident kinematic parameters allowed for a thorough mapping of low-energy phonons (e.g., the Rayleigh wave) across the surface Brillouin zone and subsequent comparison with complementary theoretical calculations. The scattering of molecular beams - here, hydrogen and deuterium from methyl-terminated Si(111) - enables the measurement of the anisotropy of the gas-surface interaction potential through rotationally inelastic diffraction (RID), whereby incident atoms can exchange internal energy between translational and rotational modes and diffract into unique angular channels as a result. The probability of rotational excitations as a function of incident energy and angle were measured and compared with electronic structure and scattering calculations to provide insight into the gas-surface interaction potential and hence the surface charge density distribution, revealing important details regarding the interaction of H2 with an organic-functionalized semiconductor interface. Aside from their use as probes for surface structure and dynamics, atomic beam sources are also demonstrated to enable the efficient separation of gaseous mixtures of isotopes by means of diffraction and differential condensation. In the former method, the kinematic conditions for elastic diffraction result in an incident beam of natural abundance neon diffracting into isotopically distinct angles, resulting in the enrichment of a desired isotope; this purification can be improved by exploiting the difference in arrival times of the two isotopes at a given final angle. In the latter method, the identical incident velocities of coexpanded isotopes lead to minor but important differences in their incident kinetic energies, and thus their probability of adsorbing on a sufficiently cold surface, resulting in preferential condensation of a given isotope that depends on the energy of the incident beam. Both of these isotope separation techniques are made possible by the narrow velocity distribution and velocity seeding effect offered only by high-Mach number supersonic beam sources. These experiments underscore the utility of supersonically expanded atomic and molecular beam sources as both extraordinarily precise probes of surface structure and dynamics and as a means for high-throughput, non-dissociative isotopic enrichment methods.
Variation of the stable isotopes of water with altitiude in the Saint Elias Mountains of Canada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holdsworth, G.; Fogarasi, S.; Krouse, H.R.
1991-04-20
The stable isotopes of water, measured in melt samples taken from snow pits and cores at locations between 1,750- and 5,930-m altitude on Mount Logan and between 2,900 and 4,900 m on Mount Steele, in the Saint Elias Mountains, Yukon, show a distinctive altitudinal distribution. Several {delta}{sup 18}O and {delta}D versus altitude profiles indicate the general persistence of a nearly iso-{delta} step, or staircase structure, separating a lower region of altitude dependent isotopic fractionation between 1,750 and 3,350 m from another apparent frictionation sequence appearing above about 5,300 m. On the one hand, postdepositional changes to isotope ratios in snowmore » at different altitudes may cause distortions to an otherwise nearly monotonic isotope fractionation sequence, but the main anomaly appears to be far too large to be explained this way. On the other hand, an explanation linked to processes occuring in the lower and midtroposphere is based on established meteorological principles as well as on upper air data. This hypothesis is proposed as the primary one to explain the gross features of the observed isotope profiles. It is compatible with the concept of secondary-source moisture arriving via the upper troposphere, and it does not exclude the effects of postdepositional stratigraphic and stable isotope ratio changes. Over interannual time scales, any vertical modulation of the observed isotope-altitude structure, from, for example, changes in wind regime, would give rise to an additional signal in any ice core {delta} time series. These findings identify a potential difficulty in the interpretation of stable isotope records obtained from high mountain ice core sites. It is possible that the results may have application to atmospheric circulation modeling, where the effects of extreme topography are being studied.« less
Online Compound-Specific δ13C and δD Determinations Using Laser Spectroscopy
NASA Astrophysics Data System (ADS)
Saad, N.; Hoffnagle, J.
2012-04-01
A unique laser spectroscopic approach for making online high-precision compound-specific isotope analysis (CSIA) of both δ13C and δD of the CO2 and H2O organic combustion products is described. The system consists of a gas chromatograph (GC) for the separation of an organic mixture coupled to a novel micro-fabricated microreactor (MFMR) for the complete combustion of each organic compound into CO2 and H2O and the precise measurements of δ13C in the CO2 gas and δ2H in the H2O vapor from the well established infrared spectrum of both gases, using an isotopic CO2 Cavity Ring-Down Spectroscopy (CRDS) analyzer and an isotopic H2O vapor CRDS analyzer, respectively. Light hydrocarbons are used as our test compounds in this study. The analyses of CH4, C2H6 and C3H8 for δ13C and δ2H values resulted in precisions of SD(δ13C)<1‰ and SD(δ2H)<2‰, respectively. These results were further compared to the gold standard method using Dual Inlet IRMS (DI-IRMS) and showed excellent agreements in isotopic measurements. The preliminary results presented here pave the way for a single CRDS analyzer-based system that simultaneously measures δ13C and δD, is field-deployable, less costly and necessitates less operator expertise than IRMS-based systems.
Observation of the 162Dy-164Dy Isotope Shift for the 0 → 16 717.79 cm-1 Optical Transition.
Nardin Barreta, Luiz Felipe; Victor, Alessandro Rogério; Bueno, Patrícia; Dos Santos, Jhonatha Ricardo; da Silveira, Carlos Alberto Barbosa; Neri, José Wilson; Neto, Jonas Jakutis; Sbampato, Maria Esther; Destro, Marcelo Geraldo
2017-08-01
In this work, we report a newly observed isotope shift between 162 Dy and 164 Dy isotopes for the 0 → 16 717.79 cm -1 (598.003 nm) optical transition. We compared the newly observed results against two other lines (597.452 nm and 598.859 nm), which we measured in this work, and were already reported in the literature. The newly observed 162-164 Dy isotope shift, shows at least a 20% larger isotope shift than the isotope shifts for the other two lines investigated. The larger 162-164 isotope shift observed for the 598.003 nm line could lead to an increased isotope selectivity for atomic vapor laser isotope separation (AVLIS). Hence, this line could be a good choice for application in AVLIS. Experimental data available in the literature for the 597.452 nm and 598.859 nm lines, enabled us to perform simulations of spectra for both lines, in order to confirm the accuracy of our experimental measurements.
Sorrentino, Rita; Bortolini, Eugenio; Lugli, Federico; Mancuso, Giuseppe; Buti, Laura; Oxilia, Gregorio; Vazzana, Antonino; Figus, Carla; Serrangeli, Maria Cristina; Margherita, Cristiana; Penzo, Annachiara; Gruppioni, Giorgio; Gottarelli, Antonio; Jochum, Klaus Peter; Belcastro, Maria Giovanna; Cipriani, Anna; Feeney, Robin N M; Benazzi, Stefano
2018-01-01
The 4th century BC marks the main entrance of Celtic populations in northern Italy. Their arrival has been suggested based on the presence of Celtic customs in Etruscan mortuary contexts, yet up to now few bioarchaeological data have been examined to support or reject the arrival of these newcomers. Here we use strontium isotopes, non-metric dental traits and funerary patterns to unravel the biocultural structure of the necropolis of Monterenzio Vecchio (Bologna, Italy). Subsamples of our total sample of 38 individuals were analyzed based on different criteria characterizing the following analyses: 1) strontium isotope analysis to investigate migratory patterns and provenance; 2) non-metric dental traits to establish biological relationships between Monterenzio Vecchio, 13 Italian Iron age necropolises and three continental and non-continental Celtic necropolises; 3) grave goods which were statistically explored to detect possible patterns of cultural variability. The strontium isotopes results indicate the presence of local and non-local individuals, with some revealing patterns of mobility. The dental morphology reveals an affinity between Monterenzio Vecchio and Iron Age Italian samples. However, when the Monterenzio Vecchio sample is separated by isotopic results into locals and non-locals, the latter share affinity with the sample of non-continental Celts from Yorkshire (UK). Moreover, systematic analyses demonstrate that ethnic background does not retain measurable impact on the distribution of funerary elements. Our results confirm the migration of Celtic populations in Monterenzio as archaeologically hypothesized on the basis of the grave goods, followed by a high degree of cultural admixture between exogenous and endogenous traits. This contribution shows that combining different methods offers a more comprehensive perspective for the exploration of biocultural processes in past and present populations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, J.R.; Rohrs, D.T.
The isotopic compositions of hydrogen and oxygen have been determined for spring waters and thermal fluids from the Roosevelt Hot Springs and Cove Fort-Sulphurdale thermal areas, for clay mineral separates from shallow alteration of the acid-sulfate type in the Roosevelt Hot Springs area, and for spring and well waters from the Goshen Valley area of central Utah. The water analyses in the Roosevelt Hot Springs thermal area confirm the origin of the thermal fluids from meteoric water in the Mineral Range. The water analyses in the Cove Fort-Sulphurdale thermal area restrict recharge areas for this system to the upper elevationsmore » of the Pavant and/or Tushar Ranges. The low /sup 18/O shift observed in these thermal fluids (+0.7 permil) implies either high water/rock ratios or incomplete isotope exchange or both, and further suggests minimal interaction between the thermal fluid and marble country rock in the system. Hydrogen and oxygen-isotope data for clay mineral separates from shallow alteration zones in the Roosevelt Hot Springs thermal system suggest that the fluids responsible for the shallow acid-sulfate alteration were in part derived from condensed steam produced by boiling of the deep reservoir fluid. The isotope evidence supports the chemical model proposed by Parry et al. (1980) for origin of the acid-sulfate alteration at Roosevelt Hot Springs. The isotope analyses of spring and well waters from the Goshen Valley area indicate only a general correlation of isotope composition, salinity and chemical temperatures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J. Y.; Kim, J. W.; Wan, W.
2015-07-15
An in-flight fragment separator usually requires large acceptance and high momentum resolution to minimize the loss of a rare isotope beam of interest produced at a thin target, which is especially important when {sup 238}U fission reactions in the energy of 200 MeV/u are used. The production target and beam dump are located in the pre-separator, where a beam power of up to 400 kW is dissipated. The area is surrounded by thick radiation shielding walls, which result in long drift spaces between adjacent magnetic components at various locations and an asymmetrical layout. Efforts have been made to minimize non-linearmore » effects in the pre-separator beam optics with trials of different separator configurations and correction schemes using COSY Infinity and GICOSY. The main separator is configured to be mirror symmetric such that correction with hexapole and octupole coils can be more readily applied. The separator configuration was finalized to allow the facility design to proceed and the key components including superconducting magnets have been designed and prototyped. In addition, the separator design has been evaluated using LISE++ including a set of wedge degraders at dispersive focal planes to improve the yield and purity of selected isotope beam.« less
Superheavy nuclei from 48Ca-induced reactions
NASA Astrophysics Data System (ADS)
Oganessian, Yu. Ts.; Utyonkov, V. K.
2015-12-01
The discovery and investigation of the new region of superheavy nuclei at the DGFRS separator based on fusion reactions of 48Ca with 238U-249Cf target nuclei are reviewed. The production cross sections and summaries of the decay properties, including the results of the posterior experiments performed at the SHIP, BGS, and TASCA separators, as well as at the chemistry setups, are discussed and compared with the theoretical calculations and the systematic trends in the α-decay and spontaneous fission properties. The properties of the new nuclei, isotopes of elements 112-118, and their decay products demonstrate significant increases in the stability of the heaviest nuclei with increasing neutron number and closer approach to magic number N = 184.
Preserving Plutonium-244 as a National Asset
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patton, Bradley D; Alexander, Charles W; Benker, Dennis
Plutonium-244 (244 Pu) is an extremely rare and long-lived isotope of plutonium with a half-life of 80 million years. Measureable amounts of 244 Pu are found in neither reactor-grade nor weapons-grade plutonium. Production of this isotope requires a very high thermal flux to permit the two successive neutron captures that convert 242 Pu to 243 Pu to 244 Pu, particularly given the short (about 5 hour) half-life of 243 Pu. Such conditions simply do not exist in plutonium production processes. Therefore, 244 Pu is ideal for precise radiochemical analyses measuring plutonium material properties and isotopic concentrations in items containing plutonium.more » Isotope dilution mass spectrometry is about ten times more sensitive when using 244 Pu rather than 242 Pu for determining plutonium isotopic content. The isotope can also be irradiated in small quantities to produce superheavy elements. The majority of the existing global inventory of 244 Pu is contained in the outer housing of Mark-18A targets at the Savannah River Site (SRS). The total inventory is about 20 grams of 244 Pu in about 400 grams of plutonium distributed among the 65 targets. Currently, there are no specific plans to preserve these targets. Although the cost of separating and preserving this material would be considerable, it is trivial in comparison to new production costs. For all practical purposes, the material is irreplaceable, because new production would cost billions of dollars and require a series of irradiation and chemical separation cycles spanning up to 50 years. This paper will discuss a set of options for overcoming the significant challenges to preserve the 244 Pu as a National Asset: (1) the need to relocate the material from SRS in a timely manner, (2) the need to reduce the volume of material to the extent possible for storage, and (3) the need to establish an operational capability to enrich the 244 Pu in significant quantities. This paper suggests that if all the Mark-18A plutonium is separated, it would occupy a small volume and would be inexpensive to store while an enrichment capability is developed. Very small quantities could be enriched in existing mass separators to support critical needs.« less
Bartlit, John R.; Denton, William H.; Sherman, Robert H.
1982-01-01
A system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D.sub.2, DT, T.sub.2, and a tritium-free stream of HD for waste disposal.
Continuous production of tritium in an isotope-production reactor with a separate circulation system
Cawley, W.E.; Omberg, R.P.
1982-08-19
A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium is allowed to flow through the reactor in separate loops in order to facilitate the production and removal of tritium.
Studies of Flerovium and Element 115 Homologs with Macrocyclic Extractants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Despotopulos, John D.
2015-03-12
Study of the chemistry of the heaviest elements, Z ≥ 104, poses a unique challenge due to their low production cross-sections and short half-lives. Chemistry also must be studied on the one-atom-at-a-time scale, requiring automated, fast, and very efficient chemical schemes. Recent studies of the chemical behavior of copernicium (Cn, element 112) and flerovium (Fl, element 114) together with the discovery of isotopes of these elements with half-lives suitable for chemical studies have spurred a renewed interest in the development of rapid systems designed to study the chemical properties of elements with Z ≥ 114. This dissertation explores both extractionmore » chromatography and solvent extraction as methods for development of a rapid chemical separation scheme for the homologs of flerovium (Pb, Sn, Hg) and element 115 (Bi, Sb), with the goal of developing a chemical scheme that, in the future, can be applied to on-line chemistry of both Fl and element 115. Carrier-free radionuclides, used in these studies, of the homologs of Fl and element 115 were obtained by proton activation of high-purity metal foils at the Lawrence Livermore National Laboratory (LLNL) Center for Accelerator Mass Spectrometry (CAMS): natIn(p,n) 113Sn, natSn(p,n) 124Sb, and Au(p,n) 197m,gHg. The carrier-free activity was separated from the foils by novel separation schemes based on ion exchange and extraction chromatography techniques. Carrier-free Pb and Bi isotopes were obtained from development of a novel generator based on cation exchange chromatography using the 232U parent to generate 212Pb and 212Bi. Macrocyclic extractants, specifically crown ethers and their derivatives, were chosen for these studies; crown ethers show high selectivity for metal ions. Finally. a potential chemical system for Fl was established based on the Eichrom Pb resin, and insight to an improved system based on thiacrown ethers is presented.« less
NASA Astrophysics Data System (ADS)
Chen, J.; Gaillardet, J.; Louvat, P.; Birck, J.
2009-05-01
Metal contamination is a major issue of human impact on the aqueous environment. River water is particularly susceptible to contamination for both dissolved and particulate loads, displaying a major challenge in understanding the dominant sources and pathways of metals in polluted drainage basins. Recent improvements in mass spectrometry allow isotopic measurements of "non-traditional" metals (Zn, Cu, Fe, etc.), making their isotopes a new potential device to investigate contamination of metals under dissolved and particulate forms in rivers. We focus here on Zn isotope geochemistry in the largely anthropized Seine River (France). A new protocol of two-column separation of Zn from dilute aqueous solution has been developed and proven to be reproducible and satisfactory for accurate measurement of Zn isotopic ratios in water samples by MC-ICP-MS (2σ = 0.04‰). Preliminary results show a total variation of 0.65‰ for δ66Zn in dissolved phases of the Seine basin, and a light isotope enrichment in anthropogenic sources compared to other water samples. The determined conservative behavior of Zn in river water makes its isotopes an effective probe of anthropogenic contamination. The natural and anthropogenic inputs were clearly identified and calculated based on Zn isotope compositions for dissolved loads. Suspended particular matters (SPM) display different Zn isotope compositions compared to dissolved loads, with a total δ66Zn variation of 0.22‰. Zn concentrations and its isotope compositions in SPM reveal inverse relationships as function of the distance from the headwater and the SPM content for geographical and temporal samples, respectively. The δ66Zn data in SPM are interpreted as reflecting the mixture of natural and anthropogenic particles. The correlation between dissolved and particulate δ66Zn shows that adsorption processes are not the dominant process making Zn enrichment in SPM. We report here for the first time systematic δ66Zn data in waters of a whole river basin, showing Zn isotopes a powerful probe to trace contamination sources and biogeochemical processes in hydrologic systems.
Zhang, Le; Ren, Zhong-Yuan; Wu, Ya-Dong; Li, Nan
2018-01-30
In situ strontium (Sr) isotope analysis of geological samples by laser ablation multiple collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) provides useful information about magma mixing, crustal contamination and crystal residence time. Without chemical separation, during Sr isotope analysis with laser ablation, many kinds of interference ions (such as Rb + and Kr + ) are on the Sr isotope spectrum. Most previous in situ Sr isotope studies only focused on Sr-enriched minerals (e.g. plagioclase, calcite). Here we established a simple method for in situ Sr isotope analysis of basaltic glass with Rb/Sr ratio less than 0.14 by LA-MC-ICP-MS. Seven Faraday cups, on a Neptune Plus MC-ICP-MS instrument, were used to receive the signals on m/z 82, 83, 84, 85, 86, 87 and 88 simultaneously for the Sr isotope analysis of basaltic glass. The isobaric interference of 87 Rb was corrected by the peak stripping method. The instrumental mass fractionation of 87 Sr/ 86 Sr was corrected to 86 Sr/ 88 Sr = 0.1194 with an exponential law. Finally, the residual analytical biases of 87 Sr/ 86 Sr were corrected with a relationship between the deviation of 87 Sr/ 86 Sr from the reference values and the measured 87 Rb/ 86 Sr. The validity of the protocol present here was demonstrated by measuring the Sr isotopes of four basaltic glasses, a plagioclase crystal and a piece of modern coral. The measured 87 Sr/ 86 Sr ratios of all these samples agree within 100 ppm with the reference values. In addition, the Sr isotopes of olivine-hosted melt inclusions from the Emeishan large igneous province (LIP) were measured to show the application of our method to real geological samples. A simple but accurate approach for in situ Sr isotope measurement by LA-MC-ICP-MS has been established, which should greatly facilitate the wider application of in situ Sr isotope geochemistry, especially to volcanic rock studies. Copyright © 2017 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marmer, G.J.; Dunn, C.P.; Moeller, K.L.
Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. The U-235 atoms are ionized when precisely tuned laser light -- of appropriate power, spectral, and temporal characteristics -- illuminates the uranium vapor and selectively photoionizes the U-235 isotope. A programmatic document for use in screening DOE site to locate a U-AVLIS production plant was developed and implemented in two parts. The first partmore » consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the PGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. 65 refs., 15 tabs.« less
Borgna, F; Ballan, M; Corradetti, S; Vettorato, E; Monetti, A; Rossignoli, M; Manzolaro, M; Scarpa, D; Mazzi, U; Realdon, N; Andrighetto, A
2017-09-01
Radiopharmaceuticals represent a fundamental tool for nuclear medicine procedures, both for diagnostic and therapeutic purposes. The present work aims to explore the Isotope Separation On-Line (ISOL) technique for the production of carrier-free radionuclides for nuclear medicine at SPES, a nuclear physics facility under construction at INFN-LNL. Stable ion beams of strontium, yttrium and iodine were produced using the SPES test bench (Front-End) to simulate the production of 89 Sr, 90 Y, 125 I and 131 I and collected with good efficiency on suitable targets. Copyright © 2017 Elsevier Ltd. All rights reserved.
CONTROL SYSTEM FOR ISOTOPE SEPARATING APPARATUS
Barnes, S.W.
1960-01-26
A method is described for controlling the position of the ion beams in a calutron used for isotope separation. The U/sup 238/ beams is centered over the U/sup 235/ receiving pocket, the operator monitoring the beam until a maximum reading is achieved on the meter connected to that pocket. Then both beams are simultaneously shifted by a preselected amount to move the U/sup 235/ beam over the U/sup 235/ pocket. A slotted door is placed over the entrance to that pocket during the U/sup 238/ beam centering to reduce the contamination to the pocket, while allowing enough beam to pass for monitoring purposes.
The New Element Berkelium (Atomic Number 97)
DOE R&D Accomplishments Database
Seaborg, G. T.; Thompson, S. G.; Ghiorso, A.
1950-04-26
An isotope of the element with atomic number 97 has been discovered as a product of the helium-ion bombardment of americium. The name berkelium, symbol Bk, is proposed for element 97. The chemical separation of element 97 from the target material and other reaction products was made by combinations of precipitation and ion exchange adsorption methods making use of its anticipated (III) and (IV) oxidation states and its position as a member of the actinide transition series. The distinctive chemical properties made use of in its separation and the equally distinctive decay properties of the particular isotope constitute the principal evidence for the new element.
Multi-Isotopic evidence from West Eifel Xenoliths
NASA Astrophysics Data System (ADS)
Thiemens, M. M.; Sprung, P.
2015-12-01
Mantle Xenoliths from the West Eifel intraplate volcanic field of Germany provide insights into the nature and evolution of the regional continental lithospheric mantle. Previous isotope studies have suggested a primary Paleoproterozoic depletion age, a second partial melting event in the early Cambrian, and a Variscan metasomatic overprint. Textural and Sr-Nd isotopic observations further suggest two episodes of melt infiltration of early Cretaceous and Quaternary age. We have investigated anhydrous, vein-free lherzolites from this region, focusing on the Dreiser Weiher and Meerfelder Maar localities. Hand separated spinel, olivine, ortho- and clinopryoxene, along with host and bulk rocks were dissolved and purified for Rb-Sr, Sm-Nd, and Lu-Hf analysis on the Cologne/Bonn Neptune MC-ICP-MS. We find an unexpected discontinuity between mineral separates and whole rocks. While the latter have significantly more radiogenic ɛNd and ɛHf, mineral separates imply close-to chondritic compositions. Our Lu-Hf data imply resetting of the Lu-Hf systematic after 200 Ma. Given the vein-free nature of the lherzolites, this appears to date to the second youngest metasomatic episode. We suggest that markedly radiogenic Nd and Hf were introduced during the Quarternary metasomatic episode and most likely reside on grain boundaries.
The setup of an extraction system coupled to a hydrogen isotopes distillation column
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zamfirache, M.; Bornea, A.; Stefanescu, I.
2008-07-15
Among the most difficult problems of cryogenic distillation one stands apart: the extraction of the heavy fraction. By an optimal design of the cycle scheme, this problem could be avoided. A 'worst case scenario' is usually occurring when the extracted fraction consists of one prevalent isotope such as hydrogen and small amounts of the other two hydrogen isotopes (deuterium and/or tritium). This situation is further complicated by two parameters of the distillation column: the extraction flow rate and the hold-up. The present work proposes the conceptual design of an extraction system associated to the cryogenic distillation column used in hydrogenmore » separation processes. During this process, the heavy fraction (DT, T{sub 2}) is separated, its concentration being the highest at the bottom of the distillation column. From this place the extraction of the gaseous phase can now begin. Being filled with adsorbent, the extraction system is used to temporarily store the heavy fraction. Also the extraction system provides samples for the gas Chromatograph. The research work is focused on the existent pilot plant for tritium and deuterium separation from our institute to validate the experiments carried out until now. (authors)« less
Wang, Xiao-Ping; Zhang, Ji-Long
2007-07-01
Twelve camphor (cinnamomum camphora) tree bark samples were collected from Hiroshima and Kyoto, and the matrix element composition and morphology of the outer surface of these camphor tree bark samples were studied by EDXS and SEM respectively. After a dry decomposition, DOWEX 1-X8 anion exchange resin was used to separate uranium from matrix elements in these camphor tree bark samples. Finally, 235U/238 U isotope ratios in purified uranium solutions were determined by MC-ICP-MS. It was demonstrated that the outer surface of these camphor tree bark samples is porous and rough, with Al, Ca, Fe, K, Mg, Si, C, O and S as its matrix element composition. Uranium in these camphor tree bark samples can be efficiently separated and quantitatively recovered from the matrix element composition. Compared with those collected from Kyoto, the camphor tree bark samples collected from Hiroshima have significantly higher uranium contents, which may be due to the increased aerosol mass concentration during the city reconstruction. Moreover, the 235 U/23.U isotope ratios in a few camphor tree bark samples collected from Hiroshima are slightly higher than 0.007 25.
Váradi, Csaba; Mittermayr, Stefan; Millán-Martín, Silvia; Bones, Jonathan
2016-12-01
Capillary electrophoresis (CE) offers excellent efficiency and orthogonality to liquid chromatographic (LC) separations for oligosaccharide structural analysis. Combination of CE with high resolution mass spectrometry (MS) for glycan analysis remains a challenging task due to the MS incompatibility of background electrolyte buffers and additives commonly used in offline CE separations. Here, a novel method is presented for the analysis of 2-aminobenzoic acid (2-AA) labelled glycans by capillary electrophoresis coupled to mass spectrometry (CE-MS). To ensure maximum resolution and excellent precision without the requirement for excessive analysis times, CE separation conditions including the concentration and pH of the background electrolyte, the effect of applied pressure on the capillary inlet and the capillary length were evaluated. Using readily available 12/13 C 6 stable isotopologues of 2-AA, the developed method can be applied for quantitative glycan profiling in a twoplex manner based on the generation of extracted ion electropherograms (EIE) for 12 C 6 'light' and 13 C 6 'heavy' 2-AA labelled glycan isotope clusters. The twoplex quantitative CE-MS glycan analysis platform is ideally suited for comparability assessment of biopharmaceuticals, such as monoclonal antibodies, for differential glycomic analysis of clinical material for potential biomarker discovery or for quantitative microheterogeneity analysis of different glycosylation sites within a glycoprotein. Additionally, due to the low injection volume requirements of CE, subsequent LC-MS analysis of the same sample can be performed facilitating the use of orthogonal separation techniques for structural elucidation or verification of quantitative performance.
NASA Astrophysics Data System (ADS)
Sonoda, Tetsu
2009-10-01
The projectile fragment separator BigRIPS of RIBF at RIKEN provides a wide variety of short-lived radioactive isotope (RI) ions without restrictions on their lifetime or chemical properties. A universal slow RI-beam facility (SLOWRI) to decelerate the beams from BigRIPS using an RF-carpet ion guide has been proposed as a principal facility of RIBF. However, beam time at such a modern accelerator facility is always limited and operational costs are high. We therefore propose an additional scheme as a complementary option to SLOWRI to drastically enhance the usability of such an expensive facility. In BigRIPS, a single primary beam produces thousands of isotopes but only one isotope is used for an experiment while the other >99.99% of isotopes are simply dumped in the slits or elsewhere in the fragment separator. We plan to locate a compact gas cell with 1 bar Ar at the slits. The thermalized ions in the cell will be quickly neutralized and transported to the exit by gas flow and resonantly re-ionized by lasers. Such low energy RI-beams will always be provided without any restriction to the main experiment. It will allow us to run parasitic experiments for precision atomic or decay spectroscopy, mass measurements. Furthermore, the resonance ionization in the cell itself can be used for high-sensitive laser spectroscopy, which will expand our knowledge of the ground state property of unstable nuclei.
Femtosecond Laser Ablation Multicollector ICPMS Analysis of Uranium Isotopes in NIST Glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffin, Andrew M.; Springer, Kellen WE; Ward, Jesse D.
We have utilized femtosecond laser ablation coupled to multi-collector inductively couple plasma mass spectrometry to measure the uranium isotopic content of NIST 61x (x=0,2,4,6) glasses. The uranium content of these glasses is a linear two-component mixing between isotopically natural uranium and the isotopically depleted spike used in preparing the glasses. Laser ablation results match extremely well, generally within a few ppm, with solution analysis following sample dissolution and chemical separation. In addition to isotopic data, sample utilization efficiency measurements indicate that over 1% of ablated uranium atoms reach a mass spectrometer detector, making this technique extremely efficient. Laser sampling alsomore » allows for spatial analysis and our data indicate that rare uranium concentration inhomogeneities exist in NIST 616 glass.« less
Xu, Wei; Chen, Deying; Wang, Nan; Zhang, Ting; Zhou, Ruokun; Huan, Tao; Lu, Yingfeng; Su, Xiaoling; Xie, Qing; Li, Liang; Li, Lanjuan
2015-01-20
Human fecal samples contain endogenous human metabolites, gut microbiota metabolites, and other compounds. Profiling the fecal metabolome can produce metabolic information that may be used not only for disease biomarker discovery, but also for providing an insight about the relationship of the gut microbiome and human health. In this work, we report a chemical isotope labeling liquid chromatography-mass spectrometry (LC-MS) method for comprehensive and quantitative analysis of the amine- and phenol-containing metabolites in fecal samples. Differential (13)C2/(12)C2-dansyl labeling of the amines and phenols was used to improve LC separation efficiency and MS detection sensitivity. Water, methanol, and acetonitrile were examined as an extraction solvent, and a sequential water-acetonitrile extraction method was found to be optimal. A step-gradient LC-UV setup and a fast LC-MS method were evaluated for measuring the total concentration of dansyl labeled metabolites that could be used for normalizing the sample amounts of individual samples for quantitative metabolomics. Knowing the total concentration was also useful for optimizing the sample injection amount into LC-MS to maximize the number of metabolites detectable while avoiding sample overloading. For the first time, dansylation isotope labeling LC-MS was performed in a simple time-of-flight mass spectrometer, instead of high-end equipment, demonstrating the feasibility of using a low-cost instrument for chemical isotope labeling metabolomics. The developed method was applied for profiling the amine/phenol submetabolome of fecal samples collected from three families. An average of 1785 peak pairs or putative metabolites were found from a 30 min LC-MS run. From 243 LC-MS runs of all the fecal samples, a total of 6200 peak pairs were detected. Among them, 67 could be positively identified based on the mass and retention time match to a dansyl standard library, while 581 and 3197 peak pairs could be putatively identified based on mass match using MyCompoundID against a Human Metabolome Database and an Evidence-based Metabolome Library, respectively. This represents the most comprehensive profile of the amine/phenol submetabolome ever detected in human fecal samples. The quantitative metabolome profiles of individual samples were shown to be useful to separate different groups of samples, illustrating the possibility of using this method for fecal metabolomics studies.
NASA Astrophysics Data System (ADS)
Eyer, S.; Tuzson, B.; Popa, M. E.; van der Veen, C.; Röckmann, T.; Rothe, M.; Brand, W. A.; Fisher, R.; Lowry, D.; Nisbet, E. G.; Brennwald, M. S.; Harris, E.; Zellweger, C.; Emmenegger, L.; Fischer, H.; Mohn, J.
2015-08-01
In situ and simultaneous measurement of the three most abundant isotopologues of methane using mid-infrared laser absorption spectroscopy is demonstrated. A field-deployable, autonomous platform is realized by coupling a compact quantum cascade laser absorption spectrometer (QCLAS) to a preconcentration unit, called TRace gas EXtractor (TREX). This unit enhances CH4 mole fractions by a factor of up to 500 above ambient levels and quantitatively separates interfering trace gases such as N2O and CO2. The analytical precision of the QCLAS isotope measurement on the preconcentrated (750 ppm, parts-per-million, μmole/mole) methane is 0.1 and 0.5 ‰ for δ13C- and δD-CH4 at 10 min averaging time. Based on replicate measurements of compressed air during a two-week intercomparison campaign, the repeatability of the TREX-QCLAS was determined to be 0.19 and 1.9 ‰ for δ13C and δD-CH4, respectively. In this intercomparison campaign the new in situ technique is compared to isotope-ratio mass-spectrometry (IRMS) based on glass flask and bag sampling and real time CH4 isotope analysis by two commercially available laser spectrometers. Both laser-based analyzers were limited to methane mole fraction and δ13C-CH4 analysis, and only one of them, a cavity ring down spectrometer, was capable to deliver meaningful data for the isotopic composition. After correcting for scale offsets, the average difference between TREX-QCLAS data and bag/flask sampling-IRMS values are within the extended WMO compatibility goals of 0.2 and 5 ‰ for δ13C- and δD-CH4, respectively. Thus, the intercomparison also reveals the need for reference air samples with accurately determined isotopic composition of CH4 to further improve the interlaboratory compatibility.
Report on Initial Direct Soil Leaching Experiments Using Post-Detonation Debris
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gostic, R.; Knight, K. B.; Borg, L.
2011-08-01
A key challenge of nuclear forensics is reducing the time and manpower effort required to measure nuclear debris compositions. The overall motivation for this work is to explore development of a robust, automated system that can be used to concurrently analyze several elements/isotopes associated with the forensic signature of nuclear materials. The primary focus of this research has been to methodically investigate if rapid partial leaching of post-detonation debris can yield usable elemental and isotopic information for interpretation. The unique requirements of post-detonation nuclear forensics have not been fully adapted to or fully incorporated contemporary chemical separation techniques. Challenges includemore » addressing the range of material matrices or mixed fission product and actinide compositions and concentrations that might be encountered. These include, but are not limited to, puddle melt glass, urban debris, seawater, air filters, iron-rich urban debris, asphalt, and silica sand. Separation of these elements and their subsequent measurement is a key element of related laboratory analysis activity. Existing practices at LLNL rely on proven but time-consuming and labor intensive processes. Significant time and labor savings are possible in chemical separations, however, if rapid processing methods can be adapted to post-detonation debris. Development of a simple and reliable leaching technique could shorten analytical times and would be useful as a field deployable method for the preliminary characterization of actinide isotopic ratios in soils. Measurement of isotopic ratios in the field using modern mass spectrometry capabilities such as Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is desirable, taking advantage of the extended range of isotopic systems measureable using such instruments. Sample introduction to these types of mass spectrometry instruments requires partial leaching or full dissolution of a sample to remove isobaric (same mass) interferences, and, in some cases, to concentrate the elements(s) of interest. To develop a field-deployable mass spectrometry capability, therefore, automated and robust leaching of likely debris samples (ranging from silicates and oxides to metals and urban materials such as concrete and asphalt), followed by separation/purification through cation exchange column chemistry is necessary. In a post-detonation environment, analysis of melt glasses via rapid leaching and ICP-MS could be a viable route to the same goal. This report presents initial leaching experiments on ‘uncontaminated’ soils, as well as data from melt glass from a single nuclear weapons test. Samples were characterized by gamma spectrometry, then aliquoted for rapid leaching experiments. Experiments were conducted using two different rapid acid treatments to leach the soils. Following leaching, the leachate solutions were analyzed by ICP-MS to determine if U isotopic composition. We present these data to address the question as to whether or not rapid (~1 hr) leaching techniques have the potential to yield meaningful U isotopic compositions, without the need for a complete (time consuming) sample dissolution and separation.« less
Isotopic generator for bismuth-212 and lead-212 from radium
Atcher, Robert W.; Friedman, Arnold M.; Hines, John
1987-01-01
A method and apparatus for providing radionuclides of bismuth-212 and lead-212. Thorium-228 and carrier solution starting material is input to a radiologically contained portion of an isotopic generator system, and radium-224 is separated from thorium-228 which is retained by a strongly basic anion exchange column. The separated radium-224 is transferred to an accessible, strongly acidic cationic exchange column. The cationic column retains the radium-224, and natural radioactive decay generates bismuth-212 and lead-212. The cationic exchange column can also be separated from the contained portion of the system and utilized without the extraordinary safety measures necessary in the contained portion. Furthermore, the cationic exchange column provides over a relatively long time period the short lived lead-212 and bismuth-212 radionuclides which are useful for a variety of medical therapies.
Kim, Taewoon; Lee, Seung-Kon; Lee, Suseung; Lee, Jun Sig; Kim, Sang Wook
2017-11-01
Removing radioactive iodine from solutions containing fission products is essential for nuclear facility decontamination, radioactive waste treatment, and medical isotope production. For example, the production of high-purity fission 99 Mo by irradiation of 235 U with neutrons involves the removal of iodine from an alkaline solution of the irradiated target (which contains numerous fission products and a large quantity of aluminate ions) using silver-based materials or anion-exchange resins. To be practically applicable, the utilized iodine adsorbent should exhibit a decontamination factor of at least 200. Herein, the separation of radioactive iodine from alkaline solutions was achieved using alumina doped with silver nanoparticles (Ag NPs). Ag NPs have a larger surface area than Ag powder/wires and can thus adsorb iodine more effectively and economically, whereas alumina is a suitable inert support that does not adsorb 99 Mo and is stable under basic conditions. The developed adsorbents with less impurities achieved iodine removal and recovery efficiencies of 99.7 and 62%, respectively, thus being useful for the production of 131 I, a useful medical isotope. Copyright © 2017. Published by Elsevier Ltd.
Hydrogen isotope separation from water
Jensen, R.J.
1975-09-01
A process for separating tritium from tritium-containing water or deuterium enrichment from water is described. The process involves selective, laser-induced two-photon excitation and photodissociation of those water molecules containing deuterium or tritium followed by immediate reaction of the photodissociation products with a scavenger gas which does not substantially absorb the laser light. The reaction products are then separated from the undissociated water. (auth)
Blumenthal, Scott A.; Chritz, Kendra L.; Rothman, Jessica M.; Cerling, Thure E.
2012-01-01
We use stable isotope ratios in feces of wild mountain gorillas (Gorilla beringei) to test the hypothesis that diet shifts within a single year, as measured by dry mass intake, can be recovered. Isotopic separation of staple foods indicates that intraannual changes in the isotopic composition of feces reflect shifts in diet. Fruits are isotopically distinct compared with other staple foods, and peaks in fecal δ13C values are interpreted as periods of increased fruit feeding. Bayesian mixing model results demonstrate that, although the timing of these diet shifts match observational data, the modeled increase in proportional fruit feeding does not capture the full shift. Variation in the isotopic and nutritional composition of gorilla foods is largely independent, highlighting the difficulty for estimating nutritional intake with stable isotopes. Our results demonstrate the potential value of fecal sampling for quantifying short-term, intraindividual dietary variability in primates and other animals with high temporal resolution even when the diet is composed of C3 plants. PMID:23236160
NASA Astrophysics Data System (ADS)
Pearson, A.; Mohr, W.; Tang, T.; Sattin, S.; Bovee, R.
2014-12-01
Protein stable isotope fingerprinting (P-SIF) is a method to measure the carbon isotope ratios of whole proteins separated from complex mixtures, including cultures and environmental samples. The goal of P-SIF is to expose the links between identity and function in microbial ecosystems by (i) determining the ratios of 13C/12C (values of δ13C) for different taxonomic divisions, and (ii) using those values as clues to the metabolic pathways employed by the respective organisms, while (iii) not perturbing the system, i.e., not adding exogenous substrates or isotope labels. To accomplish this, we employ two-dimensional HPLC to resolve a sample containing ca. 5-10 mg of mixed proteins into 960-1440 fractions. Each fraction then is split in two aliquots: The first is digested with trypsin for peptide sequencing, while the second is measured in triplicate using an isotope-ratio mass spectrometer interfaced with a spooling wire microcombustion device. Data from pure cultures show that bacteria have a narrow distribution of protein δ13C values within individual taxa (±0.7-1.2‰, 1σ). This is moderately larger than the mean precision of the triplicate isotope measurements (±0.5‰, 1σ) and may reflect heterogeneous distribution of 13C among the amino acids. When cells from different species are mixed together prior to protein extraction and separation, the results can predict accurately (to within ±1σ) the δ13C values of the original taxa. The number of data points required for this endmember prediction is ≥20/taxon, yielding a theoretical resolution of ca. 10 taxonomic units/sample. Initial tests on environmental samples suggest the approach will be useful to determine the overall trophic breadth of mixed microbial ecosystems.
Bartlit, J.R.; Denton, W.H.; Sherman, R.H.
Disclosed is a system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D/sub 2/, DT, T/sub 2/, and a tritium-free stream of HD for waste disposal.
Agarande, M; Benzoubir, S; Bouisset, P; Calmet, D
2001-08-01
Trace levels (pg kg(-1)) of 241Am in sediments were determined by isotope dilution high resolution inductively coupled plasma mass spectrometry (ID HR ICP-MS) using a microconcentric nebulizer. 241Am was isolated from major elements like Ca and Fe by different selective precipitations. In further steps. Am was first separated from other transuranic elements and purified by anion exchange and extraction chromatography prior to the mass spectrometric measurements. The ID HR ICP-MS results are compared with isotope dilution alpha spectrometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Andrew J.; Capo, Rosemary C.; Stewart, Brian W.
2016-09-22
This technical report presents the details of the Sr column configuration and the high-throughput Sr separation protocol. Data showing the performance of the method as well as the best practices for optimizing Sr isotope analysis by MC-ICP-MS is presented. Lastly, this report offers tools for data handling and data reduction of Sr isotope results from the Thermo Scientific Neptune software to assist in data quality assurance, which help avoid issues of data glut associated with high sample throughput rapid analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hakala, Jacqueline Alexandra
2016-11-22
This technical report presents the details of the Sr column configuration and the high-throughput Sr separation protocol. Data showing the performance of the method as well as the best practices for optimizing Sr isotope analysis by MC-ICP-MS is presented. Lastly, this report offers tools for data handling and data reduction of Sr isotope results from the Thermo Scientific Neptune software to assist in data quality assurance, which help avoid issues of data glut associated with high sample throughput rapid analysis.
Multi-Detector Analysis System for Spent Nuclear Fuel Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reber, Edward Lawrence; Aryaeinejad, Rahmat; Cole, Jerald Donald
1999-09-01
The Spent Nuclear Fuel (SNF) Non-Destructive Analysis (NDA) program at INEEL is developing a system to characterize SNF for fissile mass, radiation source term, and fissile isotopic content. The system is based on the integration of the Fission Assay Tomography System (FATS) and the Gamma-Neutron Analysis Technique (GNAT) developed under programs supported by the DOE Office of Non-proliferation and National Security. Both FATS and GNAT were developed as separate systems to provide information on the location of special nuclear material in weapons configuration (FATS role), and to measure isotopic ratios of fissile material to determine if the material was frommore » a weapon (GNAT role). FATS is capable of not only determining the presence and location of fissile material but also the quantity of fissile material present to within 50%. GNAT determines the ratios of the fissile and fissionable material by coincidence methods that allow the two prompt (immediately) produced fission fragments to be identified. Therefore, from the combination of FATS and GNAT, MDAS is able to measure the fissile material, radiation source term, and fissile isotopics content.« less
Key technologies for tritium storage bed development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, S.H.; Chang, M.H.; Kang, H.G.
2015-03-15
ITER Storage and Delivery System (SDS) is a complex system involving tens of storage beds. The most important SDS getter bed will be used for the absorption and desorption of hydrogen isotopes in accordance with the fusion fuel cycle scenario. In this paper the current status concerning research/development activities for the optimal approach to the final SDS design is introduced. A thermal analysis is performed and discussed on the aspect of heat losses considering whether the reflector and/or the feed-through is present or not. A thermal hydraulic simulation shows that the presence of 3 or 4 reflectors minimize the heatmore » loss. Another important point is to introduce the real-time gas analysis in the He{sup 3} collection system. In this study 2 independent strength methods based on gas chromatography and quadruple mass spectrometer for one and on a modified self-assaying quadruple mass spectrometer for the second are applied to separate the hydrogen isotopes in helium gas. Another issue is the possibility of using depleted uranium getter material for the storage of hydrogen isotopes, especially of tritium.« less
Van Soest, M. C.; Kennedy, B.M.; Evans, William C.; Mariner, R.H.
2002-01-01
Here we present the helium and carbon isotope results from the initial study of a fluid chemistry-monitoring program started in the summer of 2001 near the South Sister volcano in central Oregon. The Separation Creek area which is several miles due west of the volcano is the locus of strong crustal uplift currently occurring at a rate of 4-5 cm/yr (Wicks, et. al., 2001).Helium [RC/RA = 7.44 and 8.61 RA (RC/R A = (3He/4He)sample-. air corrected/(3He/4He)air))] and carbon (??13C = -11.59 to -9.03??? vs PDB) isotope data and CO2/3He (5 and 9 ?? 109) show that bubbling cold springs in the Separation Creek area near South Sister volcano carry a strong mantle signal, indicating the presence of fresh basaltic magma in the volcanic plumbing system. There is no evidence though, to directly relate this signal to the crustal uplift that is currently taking place in the area, which started in 1998. The geothermal system in the area is apparently much longer lived and shows no significant changes in chemistry compared to data from the early 1990s. Hot springs in the area, which are relatively far removed from the volcanic edifice, do not carry a strong mantle signal in helium isotope ratios (2.79 to 5.08 RA), unlike the cold springs, and also do not show any significant changes in helium isotope ratios compared to literature data for the same springs of over two decades ago. The cold springs of the Separation Creek area form a very diffuse but significant low temperature geothermal system, that should, due to its close vicinity to the center of up uplift, be more sensitive to changes in the deeper volcanic plumbing system than the far removed hot springs and therefore require much more study and consideration when dealing with volcano monitoring in the Cascade range or possibly with geothermal exploration in general.
NASA Astrophysics Data System (ADS)
Fike, D. A.; Jones, D. S.
2012-12-01
The proliferation of carbonate-associated sulfate (CAS) isotope analyses in recent years has revolutionized our understanding of marine sulfur cycling over much of Earth history. In marine carbonate rocks, δ34SCAS is thought to be a faithful recorder of the isotopic composition of marine sulfate (δ34SSO4). However, as the chemostratigraphic record becomes better resolved in time and space, reports of coeval but discordant δ34SCAS values are becoming increasingly common. These differences could arise in part from a) water column stratification or physiographic separations between separate ocean basins (i.e., paleoceanographic variability in δ34SSO4); b) syndepositional processes that decouple the relationship between δ34SSO4 and δ34SCAS during deposition or prior to lithification; or c) diagenetic alteration of the δ34SCAS signal following deposition. To help disentangle these processes, we have developed a microanalytical approach to determine the abundance and isotopic composition of CAS using secondary ionization mass spectrometry (SIMS). While our current precision (~1‰) cannot compete with that obtained from traditional bulk analysis on gas source isotope ratio mass spectrometers, we believe that the unparalleled spatial resolution can provide substantial insights into many of the fundamental questions that remain regarding the mechanisms by which CAS concentration and isotopic composition can be altered during carbonate precipitation and/or recrystallization. With a spatial resolution as low as ~ 5 μm, it is possible to analyze suites of primary and diagenetic phases, including individual carbonate allochems, muds, and cements. Preliminary results indicate that δ34SCAS can vary by as much as 10‰ between phases in a single sample. This scale of analysis allows for a rigorous evaluation of the susceptibility of δ34SCAS to syndepositional and diagenetic alteration, especially when coupled with parallel analysis of δ13Ccarb/δ18Ocarb and diagnostic trace element abundances. Such detailed measurements illuminate the complex relationships between the isotopic composition of individual constituents of carbonate rocks and the bulk δ34SCAS values on which much of our understanding of sulfur cycling in deep time is based. The resulting insights can be used to re-examine existing δ34SCAS records and our understanding of the evolution of sulfur cycling over Earth history.
Balliana, Eleonora; Aramendía, Maite; Resano, Martin; Barbante, Carlo; Vanhaecke, Frank
2013-03-01
Although in many cases Pb isotopic analysis can be relied on for provenance determination of ancient bronzes, sometimes the use of "non-traditional" isotopic systems, such as those of Cu and Sn, is required. The work reported on in this paper aimed at revising the methodology for Cu and Sn isotope ratio measurements in archaeological bronzes via optimization of the analytical procedures in terms of sample pre-treatment, measurement protocol, precision, and analytical uncertainty. For Cu isotopic analysis, both Zn and Ni were investigated for their merit as internal standard (IS) relied on for mass bias correction. The use of Ni as IS seems to be the most robust approach as Ni is less prone to contamination, has a lower abundance in bronzes and an ionization potential similar to that of Cu, and provides slightly better reproducibility values when applied to NIST SRM 976 Cu isotopic reference material. The possibility of carrying out direct isotopic analysis without prior Cu isolation (with AG-MP-1 anion exchange resin) was investigated by analysis of CRM IARM 91D bronze reference material, synthetic solutions, and archaeological bronzes. Both procedures (Cu isolation/no Cu isolation) provide similar δ (65)Cu results with similar uncertainty budgets in all cases (±0.02-0.04 per mil in delta units, k = 2, n = 4). Direct isotopic analysis of Cu therefore seems feasible, without evidence of spectral interference or matrix-induced effect on the extent of mass bias. For Sn, a separation protocol relying on TRU-Spec anion exchange resin was optimized, providing a recovery close to 100 % without on-column fractionation. Cu was recovered quantitatively together with the bronze matrix with this isolation protocol. Isotopic analysis of this Cu fraction provides δ (65)Cu results similar to those obtained upon isolation using AG-MP-1 resin. This means that Cu and Sn isotopic analysis of bronze alloys can therefore be carried out after a single chromatographic separation using TRU-Spec resin. Tin isotopic analysis was performed relying on Sb as an internal standard used for mass bias correction. The reproducibility over a period of 1 month (n = 42) for the mass bias-corrected Sn isotope ratios is in the range of 0.06-0.16 per mil (2 s), for all the ratios monitored.
A target for production of radioxenons
NASA Technical Reports Server (NTRS)
Blue, J. W.; Leonard, R.; Jha, S.; Sodd, V. J.; Vincent, J. S.
1976-01-01
A liquid cesium target has been developed which allows the production and separate identification of the neutron deficient isotopes of xenon. The present report describes irradiations utilizing 34 to 41 MeV protons to produce millicurie quantities of Xe-127 and Xe-129m. At higher energies, however, the target could be used without modification to produce xenon isotopes as light as 119.
Process chemistry of americium-241
DOE Office of Scientific and Technical Information (OSTI.GOV)
Navratil, J.D.
1983-01-01
Americium-241, one of the most useful actinide isotopes, is produced as a by-product of plutonium scrap recovery operations. Rocky Flats has supplied high purity americium oxide to the US Department of Energy's Isotope Pool since 1962. Over the years, the evolving separation and purification processes have included such diverse operations as ion exchange, aqueous precipitation, and both molten-salt and organic-solvent extraction.
Identifying the groundwater basin boundaries, using environmental isotopes: a case study
NASA Astrophysics Data System (ADS)
Demiroğlu, Muhterem
2017-06-01
Groundwater, which is renewable under current climatic conditions separately from other natural sources, in fact is a finite resource in terms of quality and fossil groundwater. Researchers have long emphasized the necessity of exploiting, operating, conserving and managing groundwater in an efficient and sustainable manner with an integrated water management approach. The management of groundwater needs reliable information about changes on groundwater quantity and quality. Environmental isotopes are the most important tools to provide this support. No matter which method we use to calculate the groundwater budget and flow equations, we need to determine boundary conditions or the physical boundaries of the domain. The Groundwater divide line or basin boundaries that separate the two adjacent basin recharge areas from each other must be drawn correctly to be successful in defining complex groundwater basin boundary conditions. Environmental isotope data, as well as other methods provide support for determining recharge areas of the aquifers, especially for karst aquifers, residence time and interconnections between aquifer systems. This study demonstrates the use of environmental isotope data to interpret and correct groundwater basin boundaries giving as an example the Yeniçıkrı basin within the main Sakarya basin.
An Update on the Non-Mass-Dependent Isotope Fractionation under Thermal Gradient
NASA Technical Reports Server (NTRS)
Sun, Tao; Niles, Paul; Bao, Huiming; Socki, Richard; Liu, Yun
2013-01-01
Mass flow and compositional gradient (elemental and isotope separation) occurs when flu-id(s) or gas(es) in an enclosure is subjected to a thermal gradient, and the phenomenon is named thermal diffusion. Gas phase thermal diffusion has been theoretically and experimentally studied for more than a century, although there has not been a satisfactory theory to date. Nevertheless, for isotopic system, the Chapman-Enskog theory predicts that the mass difference is the only term in the thermal diffusion separation factors that differs one isotope pair to another,with the assumptions that the molecules are spherical and systematic (monoatomic-like structure) and the particle collision is elastic. Our previous report indicates factors may be playing a role because the Non-Mass Dependent (NMD) effect is found for both symmetric and asymmetric, linear and spherical polyatomic molecules over a wide range of temperature (-196C to +237C). The observed NMD phenomenon in the simple thermal-diffusion experiments demands quantitative validation and theoretical explanation. Besides the pressure and temperature dependency illustrated in our previous reports, efforts are made in this study to address issues such as the role of convection or molecular structure and whether it is a transient, non-equilibrium effect only.
Decommissioning ALARA programs Cintichem decommissioning experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adler, J.J.; LaGuardia, T.S.
1995-03-01
The Cintichem facility, originally the Union Carbide Nuclear Company (UCNC) Research Center, consisted primarily of a 5MW pool type reactor linked via a four-foot-wide by twelve-foot-deep water-filled canal to a bank of five adjacent hot cells. Shortly after going into operations in the early 1960s, the facility`s operations expanded to provide various reactor-based products and services to a multitude of research, production, medical, and education groups. From 1968 through 1972, the facility developed a process of separating isotopes from mixed fission products generated by irradiating enriched Uranium target capsules. By the late 1970s, 20 to 30 capsules were being processedmore » weekly, with about 200,000 curies being produced per week. Several isotopes such as Mo{sup 99}, I{sup 131}, and Xe{sup 133} were being extracted for medical use.« less
Jin, Biao; Haderlein, Stefan B; Rolle, Massimo
2013-02-05
We propose a self-consistent method to predict the evolution of carbon and chlorine isotope ratios during degradation of chlorinated hydrocarbons. The method treats explicitly the cleavage of isotopically different C-Cl bonds and thus considers, simultaneously, combined carbon-chlorine isotopologues. To illustrate the proposed modeling approach we focus on the reductive dehalogenation of chlorinated ethenes. We compare our method with the currently available approach, in which carbon and chlorine isotopologues are treated separately. The new approach provides an accurate description of dual-isotope effects regardless of the extent of the isotope fractionation and physical characteristics of the experimental system. We successfully applied the new approach to published experimental results on dehalogenation of chlorinated ethenes both in well-mixed systems and in situations where mass-transfer limitations control the overall rate of biodegradation. The advantages of our self-consistent dual isotope modeling approach proved to be most evident when isotope fractionation factors of carbon and chlorine differed significantly and for systems with mass-transfer limitations, where both physical and (bio)chemical transformation processes affect the observed isotopic values.
Kish, G.R.; Stringer, C.E.; Stewart, M.T.; Rains, M.C.; Torres, A.E.
2010-01-01
Geochemical mass-balance (GMB) and conductivity mass-balance (CMB) methods for hydrograph separation were used to determine the contribution of base flow to total stormflow at two sites in the upper Hillsborough River watershed in west-central Florida from 2003-2005 and at one site in 2009. The chemical and isotopic composition of streamflow and precipitation was measured during selected local and frontal low- and high-intensity storm events and compared to the geochemical and isotopic composition of groundwater. Input for the GMB method included cation, anion, and stable isotope concentrations of surface water and groundwater, whereas input for the CMB method included continuous or point-sample measurement of specific conductance. The surface water is a calcium-bicarbonate type water, which closely resembles groundwater geochemically, indicating that much of the surface water in the upper Hillsborough River basin is derived from local groundwater discharge. This discharge into the Hillsborough River at State Road 39 and at Hillsborough River State Park becomes diluted by precipitation and runoff during the wet season, but retains the calcium-bicarbonate characteristics of Upper Floridan aquifer water. Field conditions limited the application of the GMB method to low-intensity storms but the CMB method was applied to both low-intensity and high-intensity storms. The average contribution of base flow to total discharge for all storms ranged from 31 to 100 percent, whereas the contribution of base flow to total discharge during peak discharge periods ranged from less than 10 percent to 100 percent. Although calcium, magnesium, and silica were consistent markers of Upper Floridan aquifer chemistry, their use in calculating base flow by the GMB method was limited because the frequency of point data collected in this study was not sufficient to capture the complete hydrograph from pre-event base-flow to post-event base-flow concentrations. In this study, pre-event water represented somewhat diluted groundwater. Streamflow conductivity integrates the concentrations of the major ions, and the logistics of acquiring specific conductance at frequent time intervals are less complicated than data collection, sample processing, shipment, and analysis of water samples in a laboratory. The acquisition of continuous specific conductance data reduces uncertainty associated with less-frequently collected geochemical point data.
METHOD OF SEPARATING HYDROGEN ISOTOPES
Salmon, O.N.
1958-12-01
The process of separating a gaseous mixture of hydrogen and tritium by contacting finely dlvided palladium with the mixture in order to adsorb the gases, then gradually heating the palladium and collecting the evolved fractlons, is described. The fraction first given off is richer in trltium than later fractions.
NASA Astrophysics Data System (ADS)
Xue, S.; Herzog, G. F.; Hall, G. S.
1993-07-01
Iron and nickel isotopes may undergo mass fractionation in systems subjected to high-temperature vaporization [1-3]. We report here a search for nickel fractionation in fusion crusts from iron meteorites and in metal-rich material separated from Wabar impact glasses. Fusion-crust bearing samples of Bogou (IA), N'Goureyma (I-an), and Pitts (IB) were potted in epoxy and were "shaved" with a milling machine. Microscopic examination of the shavings showed the presence of some material from the interior of the meteorites as well as from the fusion crust. A fourth meteorite, Cape of Good Hope (IVB), was prepared for use as a reference standard. About 1.4 mg of magnetic material was collected from a 2-g sample of black Wabar impact glass ground in a Spex mill; microscopic examination indicated that adhering silicates comprised ~5% of the sample. These (terrestrial) silicates contain relatively little Ni [4] so their presence does not interfere with the nickel analysis. Nickel was separated from all samples and its isotopic composition determined as in [2]. Results and Discussion: Nickel isotopic abundances are given in Table 1 both as delta values and as an average fractionation, PHI, where PHI is the slope of a plot of delta vs. mass for each sample. Within the precision of our measurements (from 0.3 to 1.5%, depending on the isotope) all the samples had normal (i.e., terrestrial) isotopic abundances of Ni. Clayton et al. [5] reported that delta-18O in fusion crust is lower than in the atmosphere, probably as a result of a kinetic isotope effect, while in metallic deep-sea spheres, heavy oxygen isotopes are enriched. They inferred that the metallic spheres are not the ablation products of larger meteorites. Similarly, the Ni isotopic abundances in fusion crust are normal, while those in deep-sea metallic spheres are enriched in the heavier isotopes [1]. We note, however, that material ablated from the surface of an iron could have undergone fractionation after separation from the incoming meteorite (see [4]). Horz et al. [6] found variable Fe/Ni ratios (from 0.1 to 222) in black melt glasses associated with the Wabar impact. The Fe/Ni ratio in our metal sample is 2, which is considerably lower than that in the bulk meteorite (~12.4). Several lines of evidence suggest that vapor fractionation is to be expected in samples that have Fe/Ni ratios greater than those in the bulk impactor [2-6]. Thus it is not surprising that our first results for Wabar impactites show no Ni isotopic fractionation. Isotopic analyses of Wabar impactites with high Fe/Ni ratios should be made to test the importance of vapor fractionation. References: [1] Herzog G. F. et al. (1992) LPSC XXIII, 527-528. [2] Xue S. et al. (1993) LPSC XXIV, 1547-1548. [3] Davis A. et al. (1993) LPSC XXIV, 373- 374. [4] Mittlefehldt D. W. et al. (1992) Meteoritics, 27, 361-370. [5] Clayton R. N. et al. (1986) EPSL, 79, 235-240. [6] Horz F. et al. (1989) Proc. LPSC 19th, 697-710. Table 1, which appears in the hard copy, shows delta (permil) and average isotope fractionation PHI (%/amu) for Ni isotopes in iron meteorites and black Wabar impact glass.
Mg-Fe Isotope Systems of Mantle Xenoliths: Constrains on the Evolution of Siberian Craton
NASA Astrophysics Data System (ADS)
An, Y.; Kiseeva, E. S.; Sobolev, N. V.; Zhang, Z.
2017-12-01
Mantle xenoliths bring to the surface a variety of lithologies (dunites, lherzolites, harzburgites, wehrlites, eclogites, pyroxenites, and websterites) and represent snapshots of the geochemical processes that occur deep within the Earth. Recent improvements in the precision of the MC-ICP-MS measurements have allowed us to expand the amount of data on Mg and Fe isotopes for mantle-derived samples. For instance, to constrain the isotopic composition of the Earth based on the study of spinel and garnet peridotites (An et al., 2017; Teng et al., 2010), to trace the origin and to investigate the isotopic fractionation mechanism during metamorphic process using cratonic or orogenic eclogites (Li et al., 2011; Wang et al., 2012) and to reveal the metasomatism-induced mantle heterogeneity by pyroxenites (Hu et al., 2016). Numerous multi-stage modification events and mantle layering are detected in the subcontinental lithospheric mantle under the Siberian craton (Ashchepkov et al., 2008a; Sobolev et al., 1975, etc). Combined analyses of Mg and Fe isotopic systems could provide new constraints on the formation and evolution of the ancient cratonic mantle. In order to better constrain the magnitude and mechanism of inter-mineral Mg and Fe isotopic fractionations at high temperatures, systematic studies of mantle xenoliths are needed. For example, theoretical calculations and natural samples measurements have shown that large equilibrium Mg isotope fractionations controlled by the difference in coordination number of Mg among minerals could exist (Huang et al., 2013; Li et al., 2011). Thus, the Mg isotope geothermometer could help us trace the evolution history of ancient cratons. In this study we present Mg and Fe isotopic data for whole rocks and separated minerals (clinopyroxene (cpx) and garnet (grt)) from different types of mantle xenoliths (garnet pyroxenites, eclogites, grospydites and garnet peridotites) from a number of kimberlite pipes in Siberian craton (Udachnaya, Obnazhennaya, Mir, and Zagadochnaya). The large Mg and Fe isotope fractionations between clinopyroxene and garnet for various mantle rocks (Δ26Mg cpx-gnt= 0.360‰ 0.888‰, Δ56Fe cpx-gnt= 0.018‰ 0.348‰) indicate that the Siberian cratonic lithosphetic mantle has undergone multiple complex metasomatic and re-equilibration events.
Ficarro, Scott B.; Biagi, Jessica M.; Wang, Jinhua; Scotcher, Jenna; Koleva, Rositsa I.; Card, Joseph D.; Adelmant, Guillaume; He, Huan; Askenazi, Manor; Marshall, Alan G.; Young, Nicolas L.; Gray, Nathanael S.; Marto, Jarrod A.
2014-01-01
We assemble a versatile molecular scaffold from simple building blocks to create binary and multiplexed stable isotope reagents for quantitative mass spectrometry. Termed Protected Amine Labels (PAL), these reagents offer multiple analytical figures of merit including, (i) robust targeting of peptide N-termini and lysyl side chains, (ii) optimal mass spectrometry ionization efficiency through regeneration of primary amines on labeled peptides, (iii) an amino acid-based mass tag that incorporates heavy isotopes of carbon, nitrogen, and oxygen to ensure matched physicochemical and MS/MS fragmentation behavior among labeled peptides, and (iv) a molecularly efficient architecture, in which the majority of hetero-atom centers can be used to synthesize a variety of nominal mass and sub-Da isotopologue stable isotope reagents. We demonstrate the performance of these reagents in well-established strategies whereby up to four channels of peptide isotopomers, each separated by 4 Da are quantified in MS-level scans with accuracies comparable to current commercial reagents. In addition we utilize the PAL scaffold to create isotopologue reagents in which labeled peptide analogs differ in mass based on the binding energy in carbon and nitrogen nuclei, thereby allowing quantification based on MS or MS/MS spectra. We demonstrate accurate quantification for reagents that support 6-plex labeling and propose extension of this scheme to 9-channels based on a similar PAL scaffold. Finally we provide exemplar data that extends the application of isotopologe-based quantification reagents to medium resolution, quadrupole time-of-flight mass spectrometers. PMID:24496597
Returning from the deep: Archean atmospheric fingerprints in modern hotspot lavas (Invited)
NASA Astrophysics Data System (ADS)
Jackson, M. G.; Cabral, R. A.; Rose-Koga, E. F.; Koga, K. T.; Whitehouse, M. J.; Antonelli, M. A.; Farquhar, J.; Day, J. M.; Hauri, E. H.
2013-12-01
Ocean plates transport surface materials, including oceanic crust and sediment, into the mantle at subduction zones. However, the fate of the subducted package--oceanic crust and sediment--in the mantle is poorly understood. A long-standing hypothesis maintains that subducted materials reside in the mantle for an extended, but unknown, period of time and are then recycled back to the Earth's surface in regions of buoyantly upwelling mantle and melted beneath hotspots. Sulfur isotopes provide an important new tool to evaluate the presence of ancient recycled materials in hotspot lavas. Widespread terrestrial mass independently fractionated sulfur (MIF-S) isotope signatures were generated exclusively through atmospheric photochemical reactions until ~2.45 Ga. In fact, the only significant reservoirs of MIF-S containing rocks documented so far are sediments and hydrothermal rocks older than ~2.45 Ga. Armed with this insight, we examined sulfur isotopes in olivine phenocrysts and olivine-hosted sulfides in lavas from the island of Mangaia, Cook Islands. Lavas from this location host unusually radiogenic Pb-isotopic compositions--referred to as a HIMU (high U/Pb) component--and this has been attributed to ancient recycled oceanic crust in the mantle source. In Cabral et al. (2013), we report MIF-S in olivine phenocrysts and olivine-hosted sulfides. The discovery of MIF-S isotopic signatures in young hotspot lavas appears to provide a "timestamp" and "signature" for preservation of subducted Archean surface materials in the mantle sourcing Mangaia lavas. We report new sulfur isotope data on olivine-hosted sulfides from the Mangaia lavas that reinforce our discovery of MIF-S anomalies reported in Cabral et al. (2013). We also report new sulfur isotopic data on Mangaia whole rock powders, and we find no evidence of MIF-S signatures. It is not yet clear why the individual Mangaia sulfides and the olivine separates have more extreme MIF-S than the whole rocks. We consider it likely that the MIF-S anomaly measured in the olivine separates was diminished relative to the olivine-hosted sulfides by incorporation of modern sulfur into the olivine separates by low-temperature processes operating on the rocks during the 20 Ma since eruption: The absence of a MIF-S anomaly in the whole rock that has olivine-hosted sulfides with MIF-S anomalies may be a result of near-complete replacement of the magmatic sulfur (with a MIF-S anomaly) with modern sulfur (with no MIF-S anomaly) during surficial weathering over 20 Ma. The sulfur in the olivine-hosted sulfides with the largest MIF-S anomalies represents a very small proportion of the sulfur in a bulk basaltic rock and therefore do not impart a clear MIF-S anomaly on the bulk rock analysis. Very few data are available to evaluate this hypothesis. Therefore, pairing sulfur isotope measurements with whole rocks, mineral separates and olivine-hosted sulfides with careful petrographic and electron probe analyses of the samples will be critical for evaluating the origin of the sulfides--primary magmatic or secondary--and the origin and distribution of the sulfur-isotopic signatures in OIB.
Preston, Tom
2014-01-01
This paper discusses some of the recent improvements in instrumentation used for stable isotope tracer measurements in the context of measuring retinol stores, in vivo. Tracer costs, together with concerns that larger tracer doses may perturb the parameter under study, demand that ever more sensitive mass spectrometric techniques are developed. GCMS is the most widely used technique. It has high sensitivity in terms of sample amount and uses high resolution GC, yet its ability to detect low isotope ratios is limited by background noise. LCMSMS may become more accessible for tracer studies. Its ability to measure low level stable isotope tracers may prove superior to GCMS, but it is isotope ratio MS (IRMS) that has been designed specifically for low level stable isotope analysis through accurate analysis of tracer:tracee ratios (the tracee being the unlabelled species). Compound-specific isotope analysis, where GC is interfaced to IRMS, is gaining popularity. Here, individual 13C-labelled compounds are separated by GC, combusted to CO2 and transferred on-line for ratiometric analysis by IRMS at the ppm level. However, commercially-available 13C-labelled retinol tracers are 2 - 4 times more expensive than deuterated tracers. For 2H-labelled compounds, GC-pyrolysis-IRMS has now become more generally available as an operating mode on the same IRMS instrument. Here, individual compounds are separated by GC and pyrolysed to H2 at high temperature for analysis by IRMS. It is predicted that GC-pyrolysis-IRMS will facilitate low level tracer procedures to measure body retinol stores, as has been accomplished in the case of fatty acids and amino acids. Sample size requirements for GC-P-IRMS may exceed those of GCMS, but this paper discusses sample preparation procedures and predicts improvements, particularly in the efficiency of sample introduction.
Isotope effects on the optical spectra of semiconductors
NASA Astrophysics Data System (ADS)
Cardona, Manuel; Thewalt, M. L. W.
2005-10-01
Since the end of the cold war, macroscopic amounts of separated stable isotopes of most elements have been available “off the shelf” at affordable prices. Using these materials, single crystals of many semiconductors have been grown and the dependence of their physical properties on isotopic composition has been investigated. The most conspicuous effects observed have to do with the dependence of phonon frequencies and linewidths on isotopic composition. These affect the electronic properties of solids through the mechanism of electron-phonon interaction, in particular, in the corresponding optical excitation spectra and energy gaps. This review contains a brief introduction to the history, availability, and characterization of stable isotopes, including their many applications in science and technology. It is followed by a concise discussion of the effects of isotopic composition on the vibrational spectra, including the influence of average isotopic masses and isotopic disorder on the phonons. The final sections deal with the effects of electron-phonon interaction on energy gaps, the concomitant effects on the luminescence spectra of free and bound excitons, with particular emphasis on silicon, and the effects of isotopic composition of the host material on the optical transitions between the bound states of hydrogenic impurities.
NASA Astrophysics Data System (ADS)
Bantcev, Dmitrii; Ganushkin, Dmitriy; Ekaykin, Alexey; Chistyakov, Kirill
2017-04-01
Stable isotopes investigations were carried out during fieldwork in glacier basins of the Mongun-Taiga (southwestern Tuva) and Tsambagarav (northwestern Mongolia) mountain massifs in July, 2016. These Arid highlands are problematic in the context of provision of water resources, and glaciers here play a large part in nourishment of the rivers. Concentrations of the oxygen 18, deuterium and the mineralization were measured in the samples of meltwater, precipitation, water from streams, ice and snow. Sable isotope method was used for separation of the glacier runoff. Average isotopic characteristics for different water sources, such as glacier ice, snow patches and precipitation, were calculated and the contribution of these sources in total runoff was valued. Isotopic method was also used for estimation of contribution of buried ice meltwater from rock glaciers ice cores.
NASA Astrophysics Data System (ADS)
Bylyku, Elida
2009-04-01
In Albania in recent years it has been of increasing interest to determine various pollutants in the environment and their possible effects on human health. The radiochemical procedure used to identify Pu, Am, U, Th, and Sr radioisotopes in soil, sediment, water, coal, and milk samples is described. The analysis is carried out in the presence of respective tracer solutions and combines the procedure for Pu analysis based on anion exchange, the selective method for Sr isolation based on extraction chromatography using Sr-Spec resin, and the application of the TRU-Spec column for separation of Am fraction. An acid digestion method has been applied for the decomposition of samples. The radiochemical procedure involves the separation of Pu from Th, Am, and Sr by anion exchange, followed by the preconcentration of Am and Sr by coprecipitation with calcium oxalate. Am is separated from Sr by extraction chromatography. Uranium is separated from the bulk elements by liquid-liquid extraction using UTEVA® resin. Thin sources for alpha spectrometric measurements are prepared by microprecipitation with NdF3. Two International Atomic Energy Agency reference materials were analyzed in parallel with the samples.
The TRIUMF nuclear structure program and TIGRESS
NASA Astrophysics Data System (ADS)
Garrett, P. E.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Boston, H. C.; Chakrawarthy, R. S.; Churchman, R.; Cline, D.; Cooper, R. J.; Cross, D.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Drake, T.; Finlay, P.; Gagnon, K.; Gallant, A. T.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Hackman, G.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Kulp, W. D.; Leach, K. G.; Lee, G.; Leslie, J. R.; Maharaj, R.; Martin, J.-P.; Mattoon, C.; Mills, W. J.; Morton, A. C.; Nelson, L.; Newman, O.; Nolan, P. J.; Padilla-Rodal, E.; Pearson, C. J.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Ruiz, C.; Sarazin, F.; Schumaker, M. A.; Scraggs, D. P.; Strange, M. D.; Subramanian, M.; Svensson, C. E.; Waddington, J. C.; Wan, J.; Whitbeck, A.; Williams, S. J.; Wood, J. L.; Wong, J. C.; Wu, C. Y.; Zganjar, E. F.
2007-08-01
The isotope separator and accelerator (ISAC) facility located at the TRIUMF laboratory in Vancouver, Canada, is one of the world's most advanced isotope separator on-line-type radioactive ion beam facilities. An extensive γ-ray spectroscopy programme at ISAC is centred around two major research facilities: (i) the 8π γ-ray spectrometer for β-delayed γ-ray spectroscopy experiments with the low-energy beams from ISAC-I, and (ii) the next generation TRIUMF-ISAC gamma-ray escape suppressed spectrometer (TIGRESS) for in-beam experiments with the accelerated radioactive-ion beams. An overview of these facilities and recent results from the diverse programme of nuclear structure and fundamental interaction studies they support is presented.
Photolytic separation of isotopes in cryogenic solution
Freund, S.M.; Maier, W.B. II; Holland, R.F.; Battie, W.H.
Separation of carbon isotopes by photolysis of CS/sub 2/ in cryogenic solutions of nitrogen, krypton and argon with 206 nm light from an iodine resonance lamp is reported. The spectral distributionn of the ultraviolet absorption depends on solvent. Thus, in liquid nitrogen the photolytic decomposition rate of /sup 13/CS/sub 2/ is greater than that of /sup 12/CS/sub 2/ (because the absorption of 206 nm radiation is greater for /sup 13/CS/sub 2/), whereas in liquid krypton and liquid argon the reverse is true. The shift in ultraviolet spectrum is a general phenomenon readily characterized as a function of solvent polarizability, and exhibits behavior similar to that for vibrational transitions occurring in the infrared.
Photolytic separation of isotopes in cryogenic solution
Freund, Samuel M.; Maier, II, William B.; Holland, Redus F.; Beattie, Willard H.
1985-01-01
Separation of carbon isotopes by photolysis of CS.sub.2 in cryogenic solutions of nitrogen, krypton and argon with 206 nm light from an iodine resonance lamp is reported. The spectral distribution of the ultraviolet absorption depends on solvent. Thus, in liquid nitrogen the photolytic decomposition rate of .sup.13 CS.sub.2 is greater than that of .sup.12 CS.sub.2 (because the absorption of 206 nm radiation is greater for .sup.13 CS.sub.2), whereas in liquid krypton and liquid argon the reverse is true. The shift in ultraviolet spectrum is a general phenomenon readily characterized as a function of solvent polarizability, and exhibits behavior similar to that for vibrational transitions occurring in the infrared.
High Precision Low-blank Lithium Isotope Ratios in Forams.
NASA Astrophysics Data System (ADS)
Misra, S.; Froelich, P. N.
2007-12-01
We present a high precision (±1‰, 2σ) low blank (<500 fg/ml) method for Li isotope measurements of forams using <2 ng of Li by single collector Quad ICP-MS (Agilent 7500cs). The Li isotope ratio of seawater (δ7Li) recorded in planktonic forams has the potential to constrain the evolution of seawater chemistry and elucidate the factors driving variations of oceanic mass balances linked to the continental and sea floor/hydrothermal silica cycles. In addition a δ7Li record of seawater will complement other long-term recorders of seawater chemistry such as Sr, Os and S isotopes. Li isotope measurements of forams are limited by several factors: low Li concentrations in forams (1-2 ppm), instrument-induced fractionation and mass bias effects, matrix effects, high Li blanks and incomplete recovery of Li during column separation. Modest concentrations of alkali and alkaline earth elements in the matrix result in variable mass bias in measured Li isotope ratios. Even worse, Li strongly fractionates during chromatographic clean-up to remove Na+, Ca2+ and Mg2+, from +100‰ in the leading edge to - 100‰ in the trailing edge of elution peaks (Urey 1938). Consequently, miniscule incomplete recoveries of Li during chromatographic separations can result in large unrecognized isotope fractionation of eluents. Large mass-dependent fractionation caused by a difference of 17% in mass between 6Li and 7Li, makes Li a powerful tracer of geochemical processes, but also promotes large and difficult-to-fix isotope fractionations during laboratory chemical processing. Matrix effects of Na & Ca and of column chromatography on Li isotope ratios were investigated using artificial Li solutions representative of foram compositions (matrix matching). Li/Ca and Li/Na ratios in cleaned forams are 10 μmol/mol and 3 mmol/mol respectively. An ICP-MS tolerance limit of 20 ppb for Na and 20 μM for Ca was established, much higher tolerances than by TIMS. A single step chromatographic method to quantitatively separate Li from matrix elements using both small volume resin (3.4 meq/2ml AG50W-X8) and acid (6 ml of 0.5N HCl) was developed. Our low blank (<0.5 pg/ml) and high yield (>99.99%) column method minimizes errors in measured Li isotope ratios associated with incomplete column recovery and presence of matrix elements. High sensitivity and precision achieved with a 7500cs using cold plasma (600W), soft extraction and peak jumping coupled with very low sample to blank ratios enables high precision (±1‰, 2σ) statistically significant Li isotope measurements using very small mass of Li (0.8 ng). The development of this technique makes possible good quality Li isotope measurements from samples that are mass limited for Li, i.e., reasonable number of picked forams. This will enable us to test interferences regarding chemical cleaning and species effects in planktonic forams along the road toward creating a δ7Li record of seawater for the Cenozoic.
Selective Hydrogen Isotope Separation via Breathing Transition in MIL-53(Al).
Kim, Jin Yeong; Zhang, Linda; Balderas-Xicohténcatl, Rafael; Park, Jaewoo; Hirscher, Michael; Moon, Hoi Ri; Oh, Hyunchul
2017-12-13
Breathing of MIL-53(Al), a flexible metal-organic framework (MOF), leads to dynamic changes as narrow pore (np) transitions to large pore (lp). During the flexible and reversible transition, the pore apertures are continuously adjusted, thus providing the tremendous opportunity to separate mixtures of similar-sized and similar-shaped molecules that require precise pore tuning. Herein, for the first time, we report a strategy for effectively separating hydrogen isotopes through the dynamic pore change during the breathing of MIL-53(Al), a representative of flexible MOFs. The experiment shows that the selectivity for D 2 over H 2 is strongly related to the state of the pore structure of MIL-53(Al). The highest selectivity (S D 2 /H 2 = 13.6 at 40 K) was obtained by optimizing the exposure temperature, pressure, and time to systematically tune the pore state of MIL-53(Al).
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Progress in the fields of nuclear chemistry, isolation and chemical properties of synthetic elements, chemical separation of isotopes, radiation chemistry, organic chemistry, chemistry of aquecus systems, electrochemistry of corrosion, nonaqueous systems at high temperature, and chemical physics for the year ending June 20, 1961, is reported. Separate abstracts were prepared for each topic. (M.C.G.)
NASA Astrophysics Data System (ADS)
Dalbouha, Samira; Domínguez-Gómez, Rosa M.; Senent, Maria Luisa
2017-06-01
Various isotopologues of 2-hydroxyacetonitrile (OHCH2CN), a detectable astrophysical molecule, are characterized using explicitly correlated coupled cluster theory (CCSD(T)-F12/AVTZ-F12). Rovibrational parameters and far infrared transitions are computed to help the interpretation of the rotational spectra and radioastronomical observations. OHCH2CN displays non-rigid properties. The OH internal rotation intertransforms two conformers, gauche and trans, whose energy separation reaches 1.41 kcal/mol. The process is restricted by energy barriers of V t = 645 cm-1 and V g → g = 425 cm-1. Isotopic effects on the rotational constants and on the torsional energy levels are evaluated for isotopic varieties containing the most abundant cosmological isotopes (13C, 18C, 15N and D). Effects are relevant for ODCH2CN where the ground vibrational state splits in two components separated by 0.51 cm-1. This gap has been evaluated to be 3.20 cm-1 for the main isotopologue.
The SPES High Power ISOL production target
NASA Astrophysics Data System (ADS)
Andrighetto, A.; Corradetti, S.; Ballan, M.; Borgna, F.; Manzolaro, M.; Scarpa, D.; Monetti, A.; Rossignoli, M.; Silingardi, R.; Mozzi, A.; Vivian, G.; Boratto, E.; De Ruvo, L.; Sattin, N.; Meneghetti, G.; Oboe, R.; Guerzoni, M.; Margotti, A.; Ferrari, M.; Zenoni, A.; Prete, G.
2016-11-01
SPES (Selective Production of Exotic Species) is a facility under construction at INFN-LNL (Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro), aimed to produce intense neutron-rich radioactive ion beams (RIBs). These will be obtained using the ISOL (Isotope Separation On-Line) method, bombarding a uranium carbide target with a proton beam of 40MeV energy and currents up to 200μA. The target configuration was designed to obtain a high number of fissions, up to 1013 per second, low power deposition and fast release of the produced isotopes. The exotic isotopes generated in the target are ionized, mass separated and re-accelerated by the ALPI superconducting LINAC at energies of 10AMeV and higher, for masses in the region of A = 130 amu , with an expected rate on the secondary target up to 109 particles per second. In this work, recent results on the R&D activities regarding the SPES RIB production target-ion source system are reported.
NASA Astrophysics Data System (ADS)
Luecke, Andreas; Wissel, Holger; Mayr*, Christoph; Oehlerich, Markus; Ohlendorf, Christian; Zolitschka, Bernd; Pasado Science Team
2010-05-01
The ICDP project PASADO aims to develop a detailed paleoclimatic record for the southern part of the South American continent from sediments of Laguna Potrok Aike (51°58'S, 70°23'W), situated in the Patagonian steppe east of the Andean cordillera and north of the Street of Magellan. The precursor project SALSA recovered the Holocene and Late Glacial sediment infill of Laguna Potrok Aike and developed the environmental history of the semi-arid Patagonian steppe by a consequent interdisciplinary multi-proxy approach (e.g. Haberzettl et al., 2007). From September to November 2008 the ICDP deep drilling took place and successfully recovered in total 510 m of sediments from two sites resulting in a composite depth of 106 m for the selected main study Site 2. A preliminary age model places the record within the last 50.000 years. During the drilling campaign, the core catcher content of each drilled core run (3 m) was taken as separate sample to be shared and distributed between involved laboratories long before the main sampling party. A total of 70 core catcher samples describe the sediments of Site 2 and will form the base for more detailed investigations on the palaeoclimatic history of Patagonia. We here report on the organic carbon and nitrogen isotope composition of bulk sediment and plant debris of the core catcher samples. Similar investigations were performed for Holocene and Late Glacial sediments of Laguna Potrok Aike revealing insights into the organic matter dynamics of the lake and its catchment as well as into climatically induced hydrological variations with related lake level fluctuations (Mayr et al., 2009). The carbon and nitrogen content of the core catcher fine sediment fraction (<200 µm) is low to very low (around 1 % and 0.1 %, respectively) and requires particular attention in isotope analysis. The carbon isotope composition shows comparably little variation around a value of -26.0 per mil. The positive values of the Holocene and the Late Glacial (up to 22.0 per mil) are only sporadically reached down core. Compared to this, separated moss debris is remarkably 13C depleted with a minimum at 31.5 per mil. The nitrogen isotope ratios of glacial Laguna Potrok Aike sediments are lower (2.5 per mil) than those of the younger part of the record. The core catcher samples indicate several oscillations between 0.5 and 3.5 per mil. Data suggest a correlation between nitrogen isotopes and C/N ratios, but no linear relation between carbon isotopes and carbon content and an only weak relationship between carbon and nitrogen isotopes. Increasing nitrogen isotope values from 8000 cm downwards could probably be related to changed environmental conditions of Marine Isotope Stage 3 (MIS 3) compared to Marine Isotope Stage 2 (MIS 2). This will be further evaluated with higher resolution from the composite profile including a detailed study of discrete plant debris layers. References Haberzettl, T. et al. (2007). Lateglacial and Holocene wet-dry cycles in southern Patagonia: chronology, sedimentology and geochemistry of a lacustrine record from Laguna Potrok Aike, Argentina. The Holocene, 17: 297-310. Mayr, C. et al. (2009). Isotopic and geochemical fingerprints of environmental changes during the last 16,000 years on lacustrine organic matter from Laguna Potrok Aike (southern Patagonia, Argentina). Journal of Paleolimnology, 42: 81-102.
NASA Astrophysics Data System (ADS)
Larijani, C.; Jerome, S. M.; Lorusso, G.; Ivanov, P.; Russell, B.; Pearce, A. K.; Regan, P. H.
2017-11-01
The aim of the current work is to develop and validate a radiochemical separation scheme capable of separating both 236gNp and 236Pu from a uranium target of natural isotopic composition ( 1 g uranium) and 200 MBq of fission decay products. A target containing 1.2 g of UO2 was irradiated with a beam of 25 MeV protons with a typical beam current of 30 μA for 19 h in December 2013 at the University of Birmingham Cyclotron facility. Using literature values for the production cross-section for fusion of protons with uranium targets, we estimate that an upper limit of approximately 250 Bq of activity from the 236Np ground state was produced in this experiment. Using a radiochemical separation scheme, Np and Pu fractions were separated from the produced fission decay products, with analyses of the target-based final reaction products made using Inductively Couple Plasma Mass Spectrometry (ICP-MS) and high-resolution α particle and γ-ray spectrometry.
Simultaneous Separation of Actinium and Radium Isotopes from a Proton Irradiated Thorium Matrix
Mastren, Tara; Radchenko, Valery; Owens, Allison; ...
2017-08-15
A new method has been developed for the isolation of 223,224,225Ra, in high yield and purity, from a proton irradiated 232Th matrix. We report an all-aqueous process using multiple solid-supported adsorption steps including a citrate chelation method developed to remove >99.9% of the barium contaminants by activity from the final radium product. Moreover, we developed a procedure involving the use of three columns in succession, and the separation of 223,224,225Ra from the thorium matrix was obtained with an overall recovery yield of 91 ± 3%, average radiochemical purity of 99.9%, and production yields that correspond to physical yields based onmore » previously measured excitation functions.« less
Tracing the pathways of neotropical migratory shorebirds using stable isotopes: a pilot study.
Farmer, A; Rye, R; Landis, G; Bern, C; Kester, C; Ridley, I
2003-09-01
We evaluated the potential use of stable isotopes to establish linkages between the wintering grounds and the breeding grounds of the Pectoral Sandpiper (Calidris melanotos), the White-rumped Sandpiper (Calidris fuscicollis), the Baird's Sandpiper (Calidris bairdii), and other Neotropical migratory shorebird species (e.g., Tringa spp.). These species molt their flight feathers on the wintering grounds and hence their flight feathers carry chemical signatures that are characteristic of their winter habitat. The objective of our pilot study was to assess the feasibility of identifying the winter origin of individual birds by: (1) collecting shorebird flight feathers from several widely separated Argentine sites and analyzing these for a suite of stable isotopes; and 2) analyzing the deuterium and 18O isotope data that were available from precipitation measurement stations in Argentina. Isotopic ratios (delta13C, delta15N and delta34S) of flight feathers were significantly different among three widely separated sites in Argentina during January 2001. In terms of relative importance in separating the sites, delta34S was most important, followed by delta15N, and then delta13C. In the complete discriminant analysis, the classification function correctly predicted group membership in 85% of the cases (jackknifed classification matrix). In a stepwise analysis delta13C was dropped from the solution, and site membership was correctly predicted in 92% of cases (jackknifed matrix). Analysis of precipitation data showed that both deltaD and delta18O were significantly related to both latitude and longitude on a countrywide scale (p < 0.001). Other variables, month, altitude, explained little additional variation in these isotope ratios. Several issues were identified that will likely constrain the degree of accuracy one can expect in predicting the geographic origin of birds from Argentina. There was unexplained variation in isotope ratios within and among the different wing feathers from individual birds. Such variation may indicate that birds are not faithful to a local site during their winter stay in Argentina. There was significant interannual variation in the deltaD and delta18O of precipitation. Hence, specific locations may not have a constant signature for some isotopes. Moreover, the fractionation that occurs in wetlands due to evaporation significantly skews local deltaD and delta18O values, which may undermine the strong large-scale gradients seen in the precipitation data. We are continuing the research with universities in Argentina with a focus on expanding the breadth of feather collection and attempting to resolve the identified issues.
Tracing the pathways of Neotropical migratory shorebirds using stable isotopes: A pilot study
Farmer, A.H.; Rye, R.; Landis, G.; Bern, C.; Kester, C.; Ridley, I.
2003-01-01
We evaluated the potential use of stable isotopes to establish linkages between the wintering grounds and the breeding grounds of the Pectoral Sandpiper (Calidris melanotos), the White-rumped Sandpiper (Calidris fuscicollis), the Baird's Sandpiper (Calidris bairdii), and other Neotropical migratory shorebird species (e.g., Tringa spp.). These species molt their flight feathers on the wintering grounds and hence their flight feathers carry chemical signatures that are characteristic of their winter habitat. The objective of our pilot study was to assess the feasibility of identifying the winter origin of individual birds by: (1) collecting shorebird flight feathers from several widely separated Argentine sites and analyzing these for a suite of stable isotopes; and (2) analyzing the deuterium and 18O isotope data that were available from precipitation measurement stations in Argentina. Isotopic ratios (δ13C, δ15N and δ34S) of flight feathers were significantly different among three widely separated sites in Argentina during January 2001. In terms of relative importance in separating the sites, δ34S was most important, followed by δ15N, and then δ13C. In the complete discriminant analysis, the classification function correctly predicted group membership in 85% of the cases (jackknifed classification matrix). In a stepwise analysis δ13C was dropped from the solution, and site membership was correctly predicted in 92% of cases (jackknifed matrix). Analysis of precipitation data showed that both δD and δ18O were significantly related to both latitude and longitude on a countrywide scale (p < 0.001). Other variables, month, altitude, explained little additional variation in these isotope ratios. Several issues were identified that will likely constrain the degree of accuracy one can expect in predicting the geographic origin of birds from Argentina. There was unexplained variation in isotope ratios within and among the different wing feathers from individual birds. Such variation may indicate that birds are not faithful to a local site during their winter stay in Argentina. There was significant interannual variation in the δD and δ18O of precipitation. Hence, specific locations may not have a constant signature for some isotopes. Moreover, the fractionation that occurs in wetlands due to evaporation significantly skews local δD and δ18O values, which may undermine the strong large-scale gradients seen in the precipitation data. We are continuing the research with universities in Argentina with a focus on expanding the breadth of feather collection and attempting to resolve the identified issues.
NASA Astrophysics Data System (ADS)
Hunt, Alison C.; Cook, David L.; Lichtenberg, Tim; Reger, Philip M.; Ek, Mattias; Golabek, Gregor J.; Schönbächler, Maria
2018-01-01
The short-lived 182Hf-182W decay system is a powerful chronometer for constraining the timing of metal-silicate separation and core formation in planetesimals and planets. Neutron capture effects on W isotopes, however, significantly hamper the application of this tool. In order to correct for neutron capture effects, Pt isotopes have emerged as a reliable in-situ neutron dosimeter. This study applies this method to IAB iron meteorites, in order to constrain the timing of metal segregation on the IAB parent body. The ε182W values obtained for the IAB iron meteorites range from -3.61 ± 0.10 to -2.73 ± 0.09. Correlating εiPt with ε182W data yields a pre-neutron capture ε182W of -2.90 ± 0.06. This corresponds to a metal-silicate separation age of 6.0 ± 0.8 Ma after CAI for the IAB parent body, and is interpreted to represent a body-wide melting event. Later, between 10 and 14 Ma after CAI, an impact led to a catastrophic break-up and subsequent reassembly of the parent body. Thermal models of the interior evolution that are consistent with these estimates suggest that the IAB parent body underwent metal-silicate separation as a result of internal heating by short-lived radionuclides and accreted at around 1.4 ± 0.1 Ma after CAIs with a radius of greater than 60 km.
Overview of the ISOL facility for the RISP
NASA Astrophysics Data System (ADS)
Woo, H. J.; Kang, B. H.; Tshoo, K.; Seo, C. S.; Hwang, W.; Park, Y.-H.; Yoon, J. W.; Yoo, S. H.; Kim, Y. K.; Jang, D. Y.
2015-02-01
The key feature of the Isotope Separation On-Line (ISOL) facility is its ability to provide high-intensity and high-quality beams of neutron-rich isotopes with masses in the range of 80-160 by means of a 70-MeV proton beam directly impinging on uranium-carbide thin-disc targets to perform forefront research in nuclear structure, nuclear astrophysics, reaction dynamics and interdisciplinary fields like medical, biological and material sciences. The technical design of the 10-kW and the 35-kW direct fission targets with in-target fission rates of up to 1014 fissions/s has been finished, and for the development of the ISOL fission-target chemistry an initial effort has been made to produce porous lanthanum-carbide (LaCx) discs as a benchmark for the final production of porous UCx discs. For the production of various beams, three classes of ion sources are under development at RISP (Rare Isotope Science Project), the surface ion source, the plasma ion source (FEBIAD), the laser ion source, and the engineering design of the FEBIAD is in progress for prototype fabrication. The engineering design of the ISOL target/ion source front-end system is also in progress, and a prototype will be used for an off-line test facility in front of the pre-separator. The technical designs of other basic elements at the ISOL facility, such as the RF-cooler, the high-resolution mass separator, and the A/q separator, have been finished, and the results, along with the future plans, are introduced.
Murphy, Karen E; Vetter, Thomas W
2013-05-01
The potential effect of spectral interference on the accurate measurement of the cadmium (Cd) mass fraction in fortified breakfast cereal and a variety of dietary supplement materials using inductively coupled plasma quadrupole mass spectrometry was studied. The materials were two new standard reference materials (SRMs)--SRM 3233 Fortified Breakfast Cereal and SRM 3532 Calcium Dietary Supplement--as well as several existing materials--SRM 3258 Bitter Orange Fruit, SRM 3259 Bitter Orange Extract, SRM 3260 Bitter Orange-containing Solid Oral Dosage Form, and SRM 3280 Multivitamin/Multielement Tablets. Samples were prepared for analysis using the method of isotope dilution and measured using various operating and sample introduction configurations including standard mode, collision cell with kinetic energy discrimination mode, and standard mode with sample introduction via a desolvating nebulizer system. Three isotope pairs, (112)Cd/(111)Cd, (113)Cd/(111)Cd, and (114)Cd/(111)Cd, were measured. Cadmium mass fraction results for the unseparated samples of each material, measured using the three instrument configurations and isotope pairs, were compared to the results obtained after the matrix was removed via chemical separation using anion exchange chromatography. In four of the six materials studied, measurements using the standard mode with sample introduction via the desolvating nebulizer gave results for the unseparated samples quantified with the (112)Cd/(111)Cd isotope pair that showed a positive bias relative to the matrix-separated samples, which indicated a persistent inference at m/z112 with this configuration. Use of the standard mode, without the desolvating nebulizer, also gave results that showed a positive bias for the unseparated samples quantified with the (112)Cd/(111)Cd isotope pair in three of the materials studied. Collision cell/kinetic energy discrimination mode, however, was very effective for reducing spectral interference for Cd in all of the materials and isotope pairs studied, except in the multivitamin/multielement matrix (SRM 3280) where the large corrections for known isobaric interferences or unidentified interferences compromised the accuracy. For SRM 3280, matrix separation provided the best method to achieve accurate measurement of Cd.
Determination of (87)Sr/(86)Sr and δ(88/86)Sr ratios in plant materials using MC-ICP-MS.
Liu, Hou-Chun; Chung, Chuan-Hsiung; You, Chen-Feng; Chiang, Yi-Hsuan
2016-01-01
A protocol for highly accurate and precise determination of Sr isotope ratios in plant materials, (87)Sr/(86)Sr and δ (88/86)Sr, by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) is presented in this study. An Eichrom Sr resin was used for matrix separation and an improved Zr empirical external normalization coupled with standard-sample bracketing method (Zr EEN-SSB) was applied to mass bias correction during Sr isotope MC-ICP-MS measurements. Potential influences of matrix elements, and polyatomic and isobaric interferences on the Sr isotopic determination were further evaluated using NIST SRM 987 Sr isotopic standard spiked with various amount of Ca, Mg, and Rb contents. Concentrations of Ca and Mg lower than 30 ng g(-1) or Rb < 2 ng g(-1) in 150 ng g(-1) Sr analyte were estimated to have only a minor effect on Sr isotope ratios determination. On the other hand, intensity differences between sample and standards (IntSample/IntStandards) represented a large δ (88/86)Sr deviation of <0.9 or >1.3, reflecting the significance of intensity bias attributed to different mass bias behavior. An apple leaf material, NIST SRM 1515, was adopted as the plant material for overall evaluation of sample digestion, matrix separation, and potential spectral interferences on the measurements of Sr isotope ratios. Our results suggest that the partially remaining organic compounds in the incomplete digestion would have a significant bias on the extraction chromatography procedure, resulting in sizable uncertainty in δ (88/86)Sr ratios. Thus, complete digestion of the organic-enriched materials is of great importance for efficiency assurance in matrix separation. Extraction chromatography works well for the total digested samples, where Ca, Mg, and Rb were efficiently removed. The obtained average (87)Sr/(86)Sr and δ (88/86)Sr values for the NIST SRM 1515 apple leaves are 0.71398 ± 0.00004 and 0.23 ± 0.03‰ (2SD, n = 10), respectively.
Tanner, Scott D; Li, Chunsheng; Vais, Vladimir; Baranov, Vladimir I; Bandura, Dmitry R
2004-06-01
Determination of the concentration and distribution of the Pu and Am isotopes is hindered by the isobaric overlaps between the elements themselves and U, generally requiring time-consuming chemical separation of the elements. A method is described in which chemical resolution of the elemental ions is obtained through ion-molecule reactions in a reaction cell of an ICPMS instrument. The reactions of "natural" U(+), (242)Pu(+), and (243)Am(+) with ethylene, carbon dioxide, and nitric oxide are reported. Since the net sensitivities to the isotopes of an element are similar, chemical resolution is inferred when one isobaric element reacts rapidly with a given gas and the isobar (or in this instance surrogate isotope) is unreactive or slowly reactive. Chemical resolution of the m/z 238 isotopes of U and Pu can be obtained using ethylene as a reaction gas, but little improvement in the resolution of the m/z 239 isobars is obtained. However, high efficiency of reaction of U(+) and UH(+) with CO(2), and nonreaction of Pu(+), allows the sub-ppt determination of (239)Pu, (240)Pu, and (242)Pu (single ppt for (238)Pu) in the presence of 7 orders of magnitude excess U matrix without prior chemical separation. Similarly, oxidation of Pu(+) by NO, and nonreaction of Am(+), permit chemical resolution of the isobars of Pu and Am over 2-3 orders of magnitude relative concentration. The method provides the potential for analysis of the actinides with reduced sample matrix separation.
Precision mass measurements of cesium isotopes—new entries in the ISOLTRAP chronicles
NASA Astrophysics Data System (ADS)
Atanasov, D.; Beck, D.; Blaum, K.; Borgmann, Ch; Cakirli, R. B.; Eronen, T.; George, S.; Herfurth, F.; Herlert, A.; Kowalska, M.; Kreim, S.; Litvinov, Yu A.; Lunney, D.; Manea, V.; Neidherr, D.; Rosenbusch, M.; Schweikhard, L.; Wienholtz, F.; Wolf, R. N.; Zuber, K.
2017-04-01
Alkali ion beams are among the most intense produced by the ISOLDE facility. These were the first to be studied by the ISOLTRAP mass spectrometer and ever since, new measurements have been regularly reported. Recently the masses of very neutron-rich and short-lived cesium isotopes were determined at ISOLTRAP. The isotope 148Cs was measured directly for the first time by Penning-trap mass spectrometry. Using the new results, the trend of two-neutron separation energies in the cesium isotopic chain is revealed to be smooth and gradually decreasing, similar to the ones of the barium and xenon isotopic chains. Predictions of selected microscopic models are employed for a discussion of the experimental data in the region.
Decay of the neutron-rich isotope 171Ho and the identification of 169Dy
NASA Astrophysics Data System (ADS)
Chasteler, R. M.; Nitschke, J. M.; Firestone, R. B.; Vierinen, K. S.; Wilmarth, P. A.
1990-10-01
Neutron-rich rare-earth isotopes were produced in multinucleon transfer reactions between 170Er ions and natW targets. On-line mass separation was used together with β- and γ-ray spectroscopy in these studies. At mass A=169, the heaviest known dysprosium isotope, 39(8) s,169Dy, was identified. It was observed to β- decay to the ground state of 169Ho or through a level at 1578 keV. In the A=171 mass chain, a partial decay scheme for 55(3)-s 171Ho was determined.
Analytical Chemistry Developmental Work Using a 243Am Solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Khalil J.; Stanley, Floyd E.; Porterfield, Donivan R.
2015-02-24
This project seeks to reestablish our analytical capability to characterize Am bulk material and develop a reference material suitable to characterizing the purity and assay of 241Am oxide for industrial use. The tasks associated with this phase of the project included conducting initial separations experiments, developing thermal ionization mass spectrometry capability using the 243Am isotope as an isotope dilution spike , optimizing the spike for the determination of 241Pu- 241 Am radiochemistry, and, additionally, developing and testing a methodology which can detect trace to ultra- trace levels of Pu (both assay and isotopics) in bulk Am samples .
Zinc isotopes in sphalerite from base metal deposits in the Red Dog district, northern Alaska
Kelley, K.D.; Wilkinson, J.J.; Chapman, J.B.; Crowther, H.L.; Weiss, D.J.
2009-01-01
Analyses of sphalerite samples from shale-hosted massive sulfide and stratigraphically underlying vein breccia deposits in the Red Dog district in northern Alaska show a range ??66Zn values from zero to 0.60 per mil. The lowest values are observed in the vein breccia deposits, and the stratigraphically overlying (but structurally displaced) shale-hosted massive sulfide deposits show a systematic trend of increasing ??66Zn values from south to north (Main-Aqqaluk-Paalaaq-Anarraaq). The ??66Zn values are inversely correlated with sphalerite Fe/Mn ratio and also tend to be higher in low Cu sphalerite, consistent with precipitation of lower ??66Zn sphalerite closer to the principal hydrothermal fluid conduits. The most likely control on isotopic variation is Rayleigh fractionation during sulfide precipitation, with lighter zinc isotopes preferentially incorporated in the earliest sphalerite to precipitate from ore fluids at deeper levels (vein breccias) and close to the principal fluid conduits in the orebodies, followed by precipitation of sulfides with higher ??66Zn values in shallower and/or more distal parts of the flow path. There is no systematic variation among the paragenetic stages of sphalerite from a single deposit, suggesting an isotopically homogeneous zinc source and consistent transport-deposition conditions and/or dissolution-reprecipitation of earlier sphalerite without significant fractionation. Decoupled Zn and S isotope compositions are best explained by mixing of separate metal- and sulfur-bearing fluids at the depositional site. The results confirm that Zn isotopes may be a useful tracer for distinguishing between the central and distal parts of large hydrothermal systems as previously suggested and could therefore be of use in exploration. ?? 2009 by Economic Geology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lima, F.W.; Abrao, A.
1958-09-01
Bismuth can be separated from lead radiochemically by using (ethylenediamine)tetraacetic acid. The separation is successful when both elements are in trace concentration when one is in trace concentrations and other in macroconcentrations, and when both are in macroconcentrations. A single separation gives more than 90% of both elements. The process involves simple manipulations and can be done in less than fifteen minutes, which is of importance in the separation of short-lived isotopes. (tr-auth)
NASA Astrophysics Data System (ADS)
Schaltegger, Urs; Stille, Peter; Rais, Naoual; Piqué, Alain; Clauer, Norbert
1994-03-01
The behaviour of the Rb-Sr and Sm-Nd isotopic systems with increasing degree of Hercynian metamorphic overprint was studied along a transect in Cambrian shales of northwestern Morocco. Clay fractions of < 0.2 to 2-6 μm size from five samples were investigated, representing a range from nonmetamorphic to epizonal metamorphic conditions. The samples were washed in cold l N HC1 prior to digestion to separate soluble/exchangeable Rb, Sr, Sm, and Nd from amounts of these elements fixed in the crystallographic sites of the minerals and to analyze both components separately. The results reveal that the Rb-Sr isotopic system is dominated by Sr hosted by clay mineral phases (both detrital and authigenic illite and chlorite) and carbonate-hosted soluble Sr. Isotopic homogenization of Sr occurred during Hercynian metamorphism, yielding ages between 309 and 349 Ma. The Sm-Nd isotopic system, on the other hand, is dominated by cogenetic apatite and Fe oxide/ hydroxide, both having high contents of leachable REEs. The leachates yield a Sm-Nd isochron age of 523 ± 72 Ma, indicating diagenetic equilibrium between apatite and Fe-oxide/hydroxide. Fine-grained clay fractions of < 0.2 μm size plot onto this reference line, suggesting isotopic equilibrium with the leachates. Size fractions > 0.2 μm show inheritance of a detrital Nd component. The study demonstrates that the diagenesis of the investigated argillaceous sediments can be dated by the Sm-Nd chronometer in authigenic cement phases. The isotopic system of these minerals (apatite, Fe hydroxide/oxide) was homogenized during authigenic mineral growth in a sediment that was flushed by diagenetic fluids and had abundant primary or secondary interconnected pore space. The Hercynian metamorphic overprint caused partial isotopic rehomogenization of the adsorbed and clay-hosted portion of the Sr as well as of the carbonate-hosted Sr. The Sm-Nd system in the cement phases survived this metamorphism. This results in decoupling of the two isotopic systems and allows the dating of diagenesis on the one hand (Sm-Nd) and metamorphism on the other hand (Rb-Sr).
Core formation conditons in planetesimals: constraints from isotope fractionation experiments.
NASA Astrophysics Data System (ADS)
Guignard, J.; Quitté, G.; Toplis, M. J.; Poitrasson, F.
2016-12-01
Planetesimals are small objects (10 to 1000 km) early accreted in the history of the solar system which show a wide variety of thermal history due to the initial amount of radiogenic elements [1] (26Al and 60Fe), from a simple metamorphism to a complete metal-silicate differentiation. Moreover, isotope compositions of siderophile element, e.g. Fe, Ni, and W in meteorites spread on a range that can be attributed to the process of core-mantle segregation. We therefore performed isotope fractionation experiments of nickel and tungsten between metal and silicate in a gas-mixing (CO-CO2) vertical furnace, at different temperatures (from 1270°C to 1600°C), oxygen fugacity (from IW+2 to IW-6) and annealing times (from 20 minutes to 48 hours). The starting silicate is an anorthite-diopside eutectic composition glass, synthesize from the respective oxides. The starting metal is either a nickel or tungsten wire according to the element to study. After each experiment, metal and silicate are mechanically separated and digested in acids. Nickel and Tungsten separation have been made according to the methods developed by [2] and [3] and isotopes measurements have been made using a high resolution MC-ICP-MS (Neptune; Thermofisher©). Results show evidence for a strong kinetic isotope fractionation during the first annealing times with a faster diffusion of lightest isotopes than heaviest. Similar mechanism has been already highlighted for iron isotope fractionation between silicate and metal [4]. Chemical and isotopic equilibrium is also reached in our experiments but the time required dependent on the conditions of temperature and oxygen fugacity. Therefore, at equilibrium, metal-silicate isotope fractionation has also been quantified as well its temperature dependence. These experimental data can be used in order to bring new constraints on the metal silicate segregation in the planetesimals early accreted. [1] Lee T., et al., GRL, 3, 41-44 (1976) [2] Quitté G., and Oberli F., JAAS, 21, 1249-1255 (2006) [3] Breton T., and Quitté G., JAAS, 29, 2284-2293 (2014) [4] Roskosz M., et al., EPSL, 248, 851-867 (2006)
NASA Astrophysics Data System (ADS)
Roulleau, Emilie; Tardani, Daniele; Sano, Yuji; Takahata, Naoto; Vinet, Nicolas; Bravo, Francisco; Muñoz, Carlos; Sanchez, Juan
2016-12-01
We measured noble gas and stable isotopes of the geothermal and hydrothermal fluids of the Caviahue-Copahue Volcanic Complex (CCVC), one of the most important geothermal systems in Argentina/Chile, in order to provide new insights into fluid circulation and origin. With the exception of Anfiteatro and Chancho-co geothermal systems, mantle-derived helium dominates in the CCVC fluids, with measured 3He/4He ratios up to 7.86Ra in 2015. Their positive δ15N is an evidence for subducted sediment-derived nitrogen, which is commonly observed in subduction settings. Both He-N2-Ar composition and positive correlation between δD-H2O and δ18O-H2O suggest that the fluids from Anfiteatro and Chancho-co (and partly from Pucon-Mahuida as well, on the southern flank of Copahue volcano) represent a meteoric water composition with a minor magmatic contribution. The Ne, Kr and Xe isotopic compositions are entirely of atmospheric origin, but processes of boiling and steam separation have led to fractionation of their elemental abundances. We modeled the CCVC fluid evolution using Rayleigh distillation curves, considering an initial air saturated geothermal water (ASGW) end-member at 250 and 300 °C, followed by boiling and steam separation at lower temperatures (from 200 °C to 150 °C). Between 2014 and 2015, the CCVC hydrogen and oxygen isotopes shifted from local meteoric water-dominated to andesitic water-dominated signature. This shift is associated with an increase of δ13C values and Stotal, HCl and He contents. These characteristics are consistent with a change in the gas ascent pathway between 2014 and 2015, which in turn induced higher magmatic-hydrothermal contribution in the fluid signature. The composition of the magmatic source of the CCVC fluids is: 3He/4He = 7.7Ra, δ15N = + 6‰, and δ13C = - 6.5‰. Mixing models between air-corrected He and N suggest the involvement of 0.5% to 5% of subducted sediments in the magmatic source. The magmatic sulfur isotopic composition is estimated at - 2.38‰ (from COP-2), but most samples show elemental fractionation due to boiling and steam separation followed by various degrees of atmospheric contamination. All these geochemical and isotopic characteristics are the direct consequence of tectonic particularities of the CCVC: NE faults promote the ascent of hydrothermal fluids in the geothermal area whereas WNW faults serve as preferential channels for meteoric water infiltration.
High latitude hydrological changes during the Eocene Thermal Maximum 2
NASA Astrophysics Data System (ADS)
Krishnan, Srinath; Pagani, Mark; Huber, Matthew; Sluijs, Appy
2014-10-01
The Eocene hyperthermals, including the Paleocene-Eocene Thermal Maximum (PETM) and Eocene Thermal Maximum 2 (ETM2), represent extreme global warming events ∼56 and 54 million years ago associated with rapid increases in atmospheric greenhouse gas concentrations. An initial study on PETM characteristics in the Arctic region argued for intensification of the hydrological cycle and a substantial increase in poleward moisture transport during global warming based on compound-specific carbon and hydrogen isotopic (2H/1H) records from sedimentary leaf-wax lipids. In this study, we apply this isotopic and hydrological approach on sediments deposited during ETM2 from the Lomonosov Ridge (Integrated Ocean Drilling Program Expedition 302). Our results show similar 2H/1H changes during ETM2 as during the PETM, with a period of 2H-enrichment (∼ 20 ‰) relative to ;pre-event; values just prior to the negative carbon isotope shift (CIE) that is often taken as the onset of the hyperthermal, and more negative lipid δ2H values (∼ - 15 ‰) during peak warming. Notably, lipid 2H-enrichment at the base of the event is coeval with colder TEX86H temperatures. If 2H/1H values of leaf waxes primarily reflect the hydrogen isotopic composition of precipitation, the observed local relationship between temperature and 2H/1H values for the body of ETM2 is precisely the opposite of what would be predicted using a simple Rayleigh isotope distillation model, assuming a meridional vapor trajectory and a reduction in equator-pole temperature gradients. Overall, a negative correlation exists between the average chain length of n-alkanes and 2H/1H suggesting that local changes in ecology could have impacted the hydrogen isotopic compositions of leaf waxes. The negative correlation falls across three separate intervals - the base of the event, the initial CIE, and during the H2 hyperthermal (of which the assignment is not fully certain). Three possible mechanisms potentially explain 2H-enriched signals at the base of the event, including (1) intense local drying and cooling leading to evaporative 2H-enrichment; (2) changes in frequency/intensity of storm events and its impact on high latitude amount effects; and (3) changes in low-latitude temperatures. Evidence for hydrological shifts at the base of both hyperthermals suggests that hydrological change or the factors promoting hydrological change played a role in triggering the release of greenhouse gases. Generation of similar high-resolution isotopic- and temperature records at other latitudes is crucial for understanding the causal links between temperature and hydrological changes and may help constrain the source and mechanism of carbon release that triggered the early Eocene hyperthermals.
Radchenko, Valery; Mastren, Tara; Meyer, Catherine A. L.; ...
2017-07-20
Actinium-225 is a potential Targeted Alpha Therapy (TAT) isotope. It can be generated with high energy (≥ 100 MeV) proton irradiation of thorium targets. The main challenge in the chemical recovery of 225Ac lies in the separation from thorium and many fission by-products most importantly radiolanthanides. We recently developed a separation strategy based on a combination of cation exchange and extraction chromatography to isolate and purify 225Ac. In this study, actinium and lanthanide equilibrium distribution coefficients and column elution behavior for both TODGA (N,N,N',N'-tetra- n-octyldiglycolamide) and TEHDGA (N,N,N',N'-tetrakis-2-ethylhexyldiglycolamide) were determined. Density functional theory (DFT) calculations were performed and were inmore » agreement with experimental observations providing the foundation for understanding of the selectivity for Ac and lanthanides on different DGA (diglycolamide) based resins. The results of Gibbs energy (ΔG aq) calculations confirm significantly higher selectivity of DGA based resins for Ln III over Ac III in the presence of nitrate. As a result, DFT calculations and experimental results reveal that Ac chemistry cannot be predicted from lanthanide behavior under comparable circumstances.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radchenko, Valery; Mastren, Tara; Meyer, Catherine A. L.
Actinium-225 is a potential Targeted Alpha Therapy (TAT) isotope. It can be generated with high energy (≥ 100 MeV) proton irradiation of thorium targets. The main challenge in the chemical recovery of 225Ac lies in the separation from thorium and many fission by-products most importantly radiolanthanides. We recently developed a separation strategy based on a combination of cation exchange and extraction chromatography to isolate and purify 225Ac. In this study, actinium and lanthanide equilibrium distribution coefficients and column elution behavior for both TODGA (N,N,N',N'-tetra- n-octyldiglycolamide) and TEHDGA (N,N,N',N'-tetrakis-2-ethylhexyldiglycolamide) were determined. Density functional theory (DFT) calculations were performed and were inmore » agreement with experimental observations providing the foundation for understanding of the selectivity for Ac and lanthanides on different DGA (diglycolamide) based resins. The results of Gibbs energy (ΔG aq) calculations confirm significantly higher selectivity of DGA based resins for Ln III over Ac III in the presence of nitrate. As a result, DFT calculations and experimental results reveal that Ac chemistry cannot be predicted from lanthanide behavior under comparable circumstances.« less
NASA Technical Reports Server (NTRS)
Tappa, M. J.; Simon, J. I; Jordan, M. K.; Young, E. D.
2015-01-01
Many elements display both linear (mass-dependent) and non-linear (mass-independent) isotope anomalies (relative to a common reservoir). In early Solar System objects, with the exception of oxygen, mass-dependent isotope anomalies are most commonly thought to result from phase separation processes such as evaporation and condensation, whereas many mass-independent isotope anomalies likely reflect radiogenic ingrowth or incomplete mixing of presolar components in the proto-planetary disk. Coupling the isotopic characterization of multiple elements with differing volatilities in single objects may provide information regarding the location, source material, and/or processes involved in the formation of early Solar System solids. Here, we follow up on the work presented in, and detail new procedures developed to make high-precision multi-isotope measurements of Calcium, Chromium, and Titanium with small or limited amounts of sample using thermal ionization mass spectrometry and multi-collector ICP-MS, and characterize a suite of chondritic and terrestrial standards.
Highly tritiated water processing by isotopic exchange
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, W.M.; Willms, R.S.; Glugla, M.
2015-03-15
Highly tritiated water (HTW) is produced in fusion machines and one of the promising technologies to process it is isotopic exchange. 3 kinds of Pt-catalyzed zeolite (13X-APG, CBV-100-CY and HiSiv-1000) were tested as candidates for isotopic exchange of highly tritiated water (HTW), and CBV-100-CY (Na-Y type with a SiO{sub 2}/Al{sub 2}O{sub 3} ratio of ∼ 5.0) shows the best performance. Small-scale tritium testing indicates that this method is efficient for reaching an exchange factor (EF) of 100. Full-scale non-tritium testing implies that an EF of 300 can be achieved in 24 hours of operation if a temperature gradient is appliedmore » along the column. For the isotopic exchange, deuterium recycled from the Isotope Separation System (deuterium with 1% T and/or 200 ppm T) should be employed, and the tritiated water regenerated from the Pt-catalyzed zeolite bed after isotopic exchange should be transferred to Water Detritiation System (WDS) for further processing.« less
METHOD FOR PRODUCING ISOTOPIC METHANES FROM LITHIUM CARBONATE AND LITHIUM HYDRIDE
Frazer, J.W.
1959-10-27
A process is descrlbed for the production of methane and for the production of methane containing isotopes of hydrogen and/or carbon. Finely divided lithium hydrlde and litldum carbonate reactants are mixed in intimate contact and subsequently compacted under pressures of from 5000 to 60,000 psl. The compacted lithium hydride and lithium carbenate reactunts are dispised in a gas collecting apparatus. Subsequently, the compact is heated to a temperature in the range 350 to 400 deg C whereupon a solid-solid reaction takes place and gaseous methane is evolved. The evolved methane is contaminated with gaseous hydrogen and a very small amount of CO/sub 2/; however, the desired methane product is separated from sald impurities by well known chemical processes, e.g., condensation in a cold trap. The product methane contalns isotopes of carbon and hydrogen, the Isotopic composition being determined by the carbon isotopes originally present In the lithium carbonate and the hydrogen isotopes originally present in the lithium hydride.
Gaseous isotope separation using solar wind phenomena.
Wang, C G
1980-12-01
A large evacuated drum-like chamber fitted with supersonic nozzles in the center, with the chamber and the nozzles corotating, can separate gaseous fluids according to their molecular weights. The principle of separation is essentially the same as that of the solar wind propagation, in which components of the plasma fluid are separated due to their difference in the time-of-flight. The process can inherently be very efficient, serving as a pump as well as a separator, and producing well over 10(5) separative work units (kg/year) for the hydrogen/deuterium mixture at high-velocity flows.
Kim, Seongho; Carruthers, Nicholas; Lee, Joohyoung; Chinni, Sreenivasa; Stemmer, Paul
2016-12-01
Stable isotope labeling by amino acids in cell culture (SILAC) is a practical and powerful approach for quantitative proteomic analysis. A key advantage of SILAC is the ability to simultaneously detect the isotopically labeled peptides in a single instrument run and so guarantee relative quantitation for a large number of peptides without introducing any variation caused by separate experiment. However, there are a few approaches available to assessing protein ratios and none of the existing algorithms pays considerable attention to the proteins having only one peptide hit. We introduce new quantitative approaches to dealing with SILAC protein-level summary using classification-based methodologies, such as Gaussian mixture models with EM algorithms and its Bayesian approach as well as K-means clustering. In addition, a new approach is developed using Gaussian mixture model and a stochastic, metaheuristic global optimization algorithm, particle swarm optimization (PSO), to avoid either a premature convergence or being stuck in a local optimum. Our simulation studies show that the newly developed PSO-based method performs the best among others in terms of F1 score and the proposed methods further demonstrate the ability of detecting potential markers through real SILAC experimental data. No matter how many peptide hits the protein has, the developed approach can be applicable, rescuing many proteins doomed to removal. Furthermore, no additional correction for multiple comparisons is necessary for the developed methods, enabling direct interpretation of the analysis outcomes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Beam optical design of in-flight fragment separator for high-power heavy ion beam
NASA Astrophysics Data System (ADS)
Yun, C. C.; Kim, Mi-Jung; Kim, D. G.; Song, J. S.; Kim, Myeong-Jin; Kim, J. W.; Kim, J. R.; Wan, W.
2013-12-01
An in-flight fragment separator has been designed for the rare isotope science project (RISP) in Korea. A beam used for the design is 238U in the energy of 200 MeV/u with the maximum beam power of 400 kW. The use of high-power beam requires careful removal of the primary beam by pre-separator, for which its configuration was revised to employ four dipole magnets instead of two. Different configurations of the separator have been tested in search of optimal design in non-linear optics, which was complicated by the space needed for the target, beam dump and radiation shielding. Non-linear optical calculations have been carried out using GICOSY and COSY Infinity including the fringe fields of large-aperture quadrupole magnets. Correction of non-linear terms is made with multipole coils located inside the superconducting quadrupole magnets and by external multipole magnets. Beam simulations using LISE++ and MOCADI have been performed to consider the effects of multiple charge states of the primary and isotope beams produced at the target. Layout of the separator is being finalized, and detailed optics simulation will continue to refine its design.
METHOD OF SEPARATING ISOTOPES OF URANIUM IN A CALUTRON
Jenkins, F.A.
1958-05-01
Mass separation devices of the calutron type and the use of uranium hexachloride as a charge material in the calutron ion source are described. The method for using this material in a mass separator includes heating the uranium hexachloride to a temperature in the range of 60 to 100 d C in a vacuum and thereby forming a vapor of the material. The vaporized uranium hexachloride is then ionized in a vapor ionizing device for subsequent mass separation processing.
Re-Os isotopic systematics in chromitites from the Stillwater Complex, Montana, USA
NASA Astrophysics Data System (ADS)
Marcantonio, Franco; Zindler, Alan; Reisberg, Laurie; Mathez, E. A.
1993-08-01
New Re-Os isotopic data on chromitites of the Stillwater Complex demonstrate isotopic equilibrium between cumulate chromite and whole rock. Initial osmium isotopic ratios for the chromitites, chosen for their freshness, are consistent with derivation from a mantle-derived magma that suffered little or no interaction with the continental crust prior to crystallization. Molybdenite, separated from a sample of the G-chromitite, yields a Re-Os age of 2740 Ma, indistinguishable from the age of the intrusion. The presence of molybdenite documents rhenium, and probably osmium, mobilization by hydrothermal fluids that permeated the intrusion shortly after crystallization. Initial osmium isotopic variability observed in chromitites and other rocks from the Stillwater Complex could result from interaction with these fluids. In this context, there is no compelling reason to call on assimilation of crust by mantle-derived magma to explain the osmium or neodymium isotopic variability. Although osmium isotopic systematics have been affected by hydrothermal processes, Re-Os results demonstrate that more than 95 percent of the osmium, and by inference other PGEs in the Stillwater Complex, derive from the mantle.
NASA Astrophysics Data System (ADS)
Bocherens, Hervé; Billiou, Daniel; Patou-Mathis, Marylène; Bonjean, Dominique; Otte, Marcel; Mariotti, André
1997-11-01
An isotopic investigation of upper Pleistocene mammal bones and teeth from Scladina cave (Sclayn, Belgium) demonstrated the very good quality of collagen preservation. A preliminary screening of the samples used the amount of nitrogen in whole bone and dentine in order to estimate the preserved amount of collagen before starting the extraction process. The isotopic abundances of fossil specimens from still-extant species are consistent with their trophic position. Moreover, the 15N isotopic abundance is higher in dentine than in bone in bears and hyenas, a phenomenon already observed in modern specimens. These results demonstrate that the isotopic compositions of samples from Scladina cave can be interpreted in ecological terms. Mammoths exhibit a high 15N isotopic abundance relative to other herbivores, as was the case in Siberian and Alaskan samples. These results suggest distinctive dietary adaptations in herbivores living in the mammoth steppe. Cave bears are clearly isotopically different from coeval brown bears, suggesting an ecological separation between species, with a pure vegetarian diet for cave bear and an omnivorous diet for brown bear.
Radioactive Cs capture in the early solar system
Hidaka, Hiroshi; Yoneda, Shigekazu
2013-01-01
Barium isotopic compositions of primitive materials in the solar system are generally affected by s- and r-process nucleosynthetic components that hide the contribution of the isotopic excess of 135Ba formed by decay of radioactive 135Cs. However, the Ba isotopic composition of the chemical separates from chondrules in the Sayama CM2 chondrite shows an excess of 135Ba isotopic abundance up to (0.33 ± 0.06)%, which is independent of the isotopic components from s- and r-process nucleosyntheses. The isotopic excesses of 135Ba correlate with the elemental abundance of Ba relative to Cs, providing chemical and isotopic evidence for the existence of the presently extinct radionuclide 135Cs (t1/2 = 2.3 million years) in the early solar system. The estimated abundance of 135Cs/133Cs = (6.8 ± 1.9) × 10−4 is more than double that expected from the uniform production model of the short-lived radioisotopes, suggesting remobilization of Cs including 135Cs in the chondrules of the meteorite parent body. PMID:23435551
Analysis of gas membrane ultra-high purification of small quantities of mono-isotopic silane
de Almeida, Valmor F.; Hart, Kevin J.
2017-01-03
A small quantity of high-value, crude, mono-isotopic silane is a prospective gas for a small-scale, high-recovery, ultra-high membrane purification process. This is an unusual application of gas membrane separation for which we provide a comprehensive analysis of a simple purification model. The goal is to develop direct analytic expressions for estimating the feasibility and efficiency of the method, and guide process design; this is only possible for binary mixtures of silane in the dilute limit which is a somewhat realistic case. In addition, analytic solutions are invaluable to verify numerical solutions obtained from computer-aided methods. Hence, in this paper wemore » provide new analytic solutions for the purification loops proposed. Among the common impurities in crude silane, methane poses a special membrane separation challenge since it is chemically similar to silane. Other potential problematic compounds are: ethylene, diborane and ethane (in this order). Nevertheless, we demonstrate, theoretically, that a carefully designed membrane system may be able to purify mono-isotopic, crude silane to electronics-grade level in a reasonable amount of time and expenses. We advocate a combination of membrane materials that preferentially reject heavy impurities based on mobility selectivity, and light impurities based on solubility selectivity. We provide estimates for the purification of significant contaminants of interest. In this study, we suggest cellulose acetate and polydimethylsiloxane as examples of membrane materials on the basis of limited permeability data found in the open literature. We provide estimates on the membrane area needed and priming volume of the cell enclosure for fabrication purposes when using the suggested membrane materials. These estimates are largely theoretical in view of the absence of reliable experimental data for the permeability of silane. And finally, future extension of this work to the non-dilute limit may apply to the recovery of silane from rejected streams of natural silicon semi-conductor processes.« less
Analysis of gas membrane ultra-high purification of small quantities of mono-isotopic silane
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Almeida, Valmor F.; Hart, Kevin J.
A small quantity of high-value, crude, mono-isotopic silane is a prospective gas for a small-scale, high-recovery, ultra-high membrane purification process. This is an unusual application of gas membrane separation for which we provide a comprehensive analysis of a simple purification model. The goal is to develop direct analytic expressions for estimating the feasibility and efficiency of the method, and guide process design; this is only possible for binary mixtures of silane in the dilute limit which is a somewhat realistic case. In addition, analytic solutions are invaluable to verify numerical solutions obtained from computer-aided methods. Hence, in this paper wemore » provide new analytic solutions for the purification loops proposed. Among the common impurities in crude silane, methane poses a special membrane separation challenge since it is chemically similar to silane. Other potential problematic compounds are: ethylene, diborane and ethane (in this order). Nevertheless, we demonstrate, theoretically, that a carefully designed membrane system may be able to purify mono-isotopic, crude silane to electronics-grade level in a reasonable amount of time and expenses. We advocate a combination of membrane materials that preferentially reject heavy impurities based on mobility selectivity, and light impurities based on solubility selectivity. We provide estimates for the purification of significant contaminants of interest. In this study, we suggest cellulose acetate and polydimethylsiloxane as examples of membrane materials on the basis of limited permeability data found in the open literature. We provide estimates on the membrane area needed and priming volume of the cell enclosure for fabrication purposes when using the suggested membrane materials. These estimates are largely theoretical in view of the absence of reliable experimental data for the permeability of silane. And finally, future extension of this work to the non-dilute limit may apply to the recovery of silane from rejected streams of natural silicon semi-conductor processes.« less
Sanders, Dirk; Vogel, Esther; Knop, Eva
2015-01-01
The function of a predator within a community is greatly based on its trophic niche, that is the number and the strength of feeding links. In generalist predators, which feed on a wide range of prey, the size and position of the trophic niche is likely determined by traits such as hunting mode, the stratum they occur in, their body size and age. We used stable isotope analyses ((13)C and (15)N) to measure the trophic niche size of nine spider species within a forest hedge community and tested for species traits and individual traits that influence stable isotope enrichment, niche size and resource use. The spiders Enoplognatha, Philodromus, Floronia, and Heliophanus had large isotopic niches, which correspond to a more generalistic feeding behaviour. In contrast, Araneus, Metellina and Agelena, as top predators in the system, had rather narrow niches. We found a negative correlation between trophic position and niche size. Differences in trophic position in spiders were explained by body size, hunting modes and stratum, while niche size was influenced by hunting mode. In Philodromus, the size of the trophic niche increased significantly with age. Fitting spiders to functional groups according to their mean body size, hunting mode and their habitat domain resulted in largely separated niches, which indicates that these traits are meaningful for separating functional entities in spiders. Functional groups based on habitat domain (stratum) caught the essential functional differences between the species with species higher up in the vegetation feeding on flying insects and herb and ground species also preying on forest floor decomposers. Interestingly, we found a gradient from large species using a higher habitat domain and having a smaller niche to smaller species foraging closer to the ground and having a larger niche. This shows that even within generalist predators, such as spiders, there is a gradient of specialism that can be predicted by functional traits. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotoh, K.; Graduate School of Engineering, Kyushu University, Nishi-ku, Fukuoka; Kubo, K.
2015-03-15
Authors have been developing a cryogenic pressure swing adsorption system for hydrogen isotope separation. In the problem of its design and operation, it is necessary to predict the concentration profiles developing in packed beds of adsorbent pellets. The profiling is affected by the longitudinal dispersion of gas flowing in packed beds, in addition to the mass transfer resistance in porous media of adsorbent pellets. In this work, an equation is derived for estimating the packed-bed dispersion coefficient of hydrogen isotopes, by analyzing the breakthrough curves of trace D{sub 2} or HD replacing H{sub 2} adsorbed in synthetic zeolite particles packedmore » columns at the liquefied nitrogen temperature 77.4 K. Since specialized for hydrogen isotopes, this equation can be considered to estimate the dispersion coefficients more reliable for the cryogenic hydrogen isotope adsorption process, than the existing equations. (authors)« less
NASA Astrophysics Data System (ADS)
Cang, Shuxi; Shackleton, N. J.
1990-12-01
The stable isotopic δ18O and δ13C composition of foraminiferal shell calcite varies as a function of many factors including temperature and salinity. In order to understand and interpret the variations in the isotopic composition of foraminiferal shell calcite, research has been recently focused on the role of the “vital effects”. Our examination of the lamella structure of several recent planktonic foraminifera indicates that the secretion of sequential lamellae results in multiple lamillae on earlier chambers and a single lamella on the final chamber. We used a very simple procedure to separate the individual whole test of foraminifera into several chambers and measured the isotopic composition of each growth stage chamber. The results indicate that the stable isotopic composition (carbon and oxygen), particularly that of the last two chambers, of the foraminiferal test varies as a function of the individual growing process.
Isotopic Changes During Digestion: Protein
NASA Astrophysics Data System (ADS)
Tuross, N.
2013-12-01
Nutrient and hydrological inputs traverse a complicated route of pH, enzymatic and cellular processes in digestion in higher animals. The end products of digestion are the starting products for biosynthesis that are often used to interpret past life-ways. Using an artificial gut system, the isotopic changes (dD, d18O, d13C and d15N) of protein are documented. Three separate protein sources are subjected to the conditions, chemical and enzymatic, found in the stomach and upper small intestine with only a small shift in the oxygen isotopic composition of the proteins observed. Middle to lower small intestine parameters produced both greater isotopic effects and significantly lower molecular weight products. The role of the gastric enterocyte and the likely involvement of the internal milieu of this cell in the isotopic composition of amino acids that are transported to the liver are reported.
NASA Astrophysics Data System (ADS)
Barzakh, A. E.; Lhersonneau, G.; Batist, L. Kh.; Fedorov, D. V.; Ivanov, V. S.; Mezilev, K. A.; Molkanov, P. L.; Moroz, F. V.; Orlov, S. Yu.; Panteleev, V. N.; Volkov, Yu. M.; Alyakrinskiy, O.; Barbui, M.; Stroe, L.; Tecchio, L. B.
2011-05-01
The diffusion-effusion model has been used to analyse the release and yields of Fr and Cs isotopes from uranium carbide targets of very different thicknesses (6.3 and 148 g/cm2) bombarded by a 1 GeV proton beam. Release curves of several isotopes of the same element and production efficiency versus decay half-life are well fitted with the same set of parameters. Comparison of efficiencies for neutron-rich and neutron-deficient Cs isotopes enables separation of the contributions from the primary ( p + 238U) and secondary (n + 238U) reactions to the production of neutron-rich Cs isotopes. A rather simple calculation of the neutron contribution describes these data fairly well. The FLUKA code describes the primary and secondary-reaction contributions to the Cs isotopes production efficiencies for different targets quite well.
The influence of diet on the δ 13C of shell carbon in the pulmonate snail Helix aspersa
NASA Astrophysics Data System (ADS)
Stott, Lowell D.
2002-02-01
The influence of diet and atmospheric CO 2 on the carbon isotope composition of shell aragonite and shell-bound organic carbon in the pulmonate snail Helix aspersa raised in the laboratory was investigated. Three separate groups of snails were raised on romaine lettuce (C3 plant, δ 13C=-25.8‰), corn (C4 plant, δ 13C=-10.5‰), and sour orange ( 12C-enriched C3 plant, δ 13C=-39.1‰). The isotopic composition of body tissues closely tracked the isotopic composition of the snail diet as demonstrated previously. However, the isotopic composition of the acid insoluble organic matrix extracted from the aragonite shells does not track diet in all groups. In snails that were fed corn the isotopic composition of the organic matrix was more negative than the body by as much as 5‰ whereas the matrix was approximately 1‰ heavier than the body tissues in snails fed a diet of C3 plant material. These results indicate that isotopic composition of the organic matrix carbon cannot be used as an isotopic substrate for paleodietary reconstructions without first determining the source of the carbon and any associated fractionations. The isotopic composition of the shell aragonite is offset from the body tissues by 12.3‰ in each of the culture groups. This offset was not influenced by the consumption of carbonate and is not attributable to the diffusion of atmospheric CO 2 into the hemolymph. The carbon isotopic composition of shell aragonite is best explained in terms of equilibrium fractionations associated with exchange between metabolic CO 2 and HCO 3 in the hemolymph and the fractionation associated with carbonate precipitation. These results differ from previous studies, based primarily on samples collected in the field, that have suggested atmospheric carbon dioxide contributes significantly to the shell δ 13C. The culture results indicate that the δ 13C of aragonite is a good recorder of the isotopic composition of the snail body tissue, and therefore a better recorder of diet than is the insoluble shell organic carbon. Because the systematic fractionation of carbon isotopes within the snail is temperature dependent, the δ 13C of the shell could provide an independent technique for estimating paleotemperature changes.
Radioisotope dilution analyses of geological samples using 236U and 229Th
Rosholt, J.N.
1984-01-01
The use of 236U and 229Th in alpha spectrometric measurements has some advantages over the use of other tracers and measurement techniques in isotope dilution analyses of most geological samples. The advantages are: (1) these isotopes do not occur in terrestrial rocks, (2) they have negligible decay losses because of their long half lives, (3) they cause minimal recoil contamination to surface-barrier detectors, (4) they allow for simultaneous determination of the concentration and isotopic composition of uranium and thorium in a variety of sample types, and (5) they allow for simple and constant corrections for spectral inferences, 0.5% of the 238U activity is subtracted for the contribution of 235U in the 236U peak and 1% of the 229Th activity is subtracted from the 230Th activity. Disadvantages in using 236U and 229Th are: (1) individual separates of uranium and thorium must be prepared as very thin sources for alpha spectrometry, (2) good resolution in the spectrometer system is required for thorium isotopic measurements where measurement times may extend to 300 h, and (3) separate calibrations of the 236U and 229Th spike solution with both uranium and thorium standards are required. The use of these tracers in applications of uranium-series disequilibrium studies has simplified the measurements required for the determination of the isotopic composition of uranium and thorium because of the minimal corrections needed for alpha spectral interferences. ?? 1984.
Spectroscopic Measurement of LEAD-204 Isotope Shift and LEAD-205 Nuclear Spin.
NASA Astrophysics Data System (ADS)
Schonberger, Peter
The isotope shift of ('204)Pb and the nuclear spin of 1.4 x 10('7)-y ('205)Pb was determined from a high -resolution optical measurement of the 6p('2) ('3)P(,o) -6p7s('3)P(,1)('o) 283.3-nm resonance line. The value of the shift, relative to ('208)Pb is -140.2(8) x 10('-3)cm(' -1), the negative sign indicating a shift to lower wave numbers. The precision is 3-4 times greater than that of previous measurements. The spin of ('205)Pb l = 5/2 was obtained from the measurement of the relative intensities of its three hyperfine components. This method of absorption spectroscopy determination of ground state nuclear spin is applicable to any stable or longlived isotope. High resolution optical absorption spectra were obtained with a 25.4cm diffraction grating in a 9.1m focal length Czerny-Turner spectrometer. A signal-averaging scanning technique was used to record the spectra. Increased precision in the isotope shift measurement was attained by using separated isotope samples of ('204)Pb and ('207)Pb. A controlled amount of the later was incorporated in the absorption cell to provide internal calibration by its 6p7s ('3)P(,1)('o) hfs separation. Absorption spectra were recorded for several optical thicknesses of the absorber. A single spin value of increased precision was derived from the entire set of combined data.
Horkley, J. J.; Carney, K. P.; Gantz, E. M.; ...
2015-03-17
Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure “spike” solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for “age” determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determinemore » 137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution, and the encapsulation of the materials will be described.« less
Advancing the Theory of Nuclear Reactions with Rare Isotopes: From the Laboratory to the Cosmos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elster, Charlotte
2015-06-01
The mission of the TORUS Topical Collaboration is to develop new methods that will advance nuclear reaction theory for unstable isotopes by using three-body techniques to improve direct-reaction calculations, and, by using a new partial-fusion theory, to integrate descriptions of direct and compound-nucleus reactions. Ohio University concentrates its efforts on the first part of the mission. Since direct measurements are often not feasible, indirect methods, e.g. (d,p) reactions, should be used. Those (d,p) reactions may be viewed as three-body reactions and described with Faddeev techniques. Faddeev equations in momentum space have a long tradition of utilizing separable interactions in ordermore » to arrive at sets of coupled integral equations in one variable. While there exist several separable representations for the nucleon-nucleon interaction, the optical potential between a neutron (proton) and a nucleus is not readily available in separable form. For this reason we first embarked in introducing a separable representation for complex phenomenological optical potentials of Woods-Saxon type.« less
An assessment of the tracer-based approach to quantifying groundwater contributions to streamflow
NASA Astrophysics Data System (ADS)
Jones, J. P.; Sudicky, E. A.; Brookfield, A. E.; Park, Y.-J.
2006-02-01
The use of conservative geochemical and isotopic tracers along with mass balance equations to determine the pre-event groundwater contributions to streamflow during a rainfall event is widely used for hydrograph separation; however, aspects related to the influence of surface and subsurface mixing processes on the estimates of the pre-event contribution remain poorly understood. Moreover, the lack of a precise definition of "pre-event" versus "event" contributions on the one hand and "old" versus "new" water components on the other hand has seemingly led to confusion within the hydrologic community about the role of Darcian-based groundwater flow during a storm event. In this work, a fully integrated surface and subsurface flow and solute transport model is used to analyze flow system dynamics during a storm event, concomitantly with advective-dispersive tracer transport, and to investigate the role of hydrodynamic mixing processes on the estimates of the pre-event component. A number of numerical experiments are presented, including an analysis of a controlled rainfall-runoff experiment, that compare the computed Darcian-based groundwater fluxes contributing to streamflow during a rainfall event with estimates of these contributions based on a tracer-based separation. It is shown that hydrodynamic mixing processes can dramatically influence estimates of the pre-event water contribution estimated by a tracer-based separation. Specifically, it is demonstrated that the actual amount of bulk flowing groundwater contributing to streamflow may be much smaller than the quantity indirectly estimated from a separation based on tracer mass balances, even if the mixing processes are weak.
Estimation of Some Parameters from Morse-Morse-Spline-Van Der Waals Intermolecular Potential
NASA Astrophysics Data System (ADS)
Coroiu, I.
2007-04-01
Some parameters such as transport cross-sections and isotopic thermal diffusion factor have been calculated from an improved intermolecular potential, Morse-Morse-Spline-van der Waals (MMSV) potential proposed by R.A. Aziz et al. The treatment was completely classical and no corrections for quantum effects were made. The results would be employed for isotope separations of different spherical and quasi-spherical molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1963-12-01
Separate abstracts were prepared for twenty-eight of the thirty-three papers. The other papers deal with whole-rock Rb- Sr ages of Ontario norite and micropegmatite and the Southern Rhodesia Great Dyke, Sr isotopes in vein type mineral deposits, whole-rock Rb-- Sr studies of volcanics, and accuracy in Sr / sup 87//Sr/sup 86/ measurements. (D.C.W.)
A rapid method for estimation of Pu-isotopes in urine samples using high volume centrifuge.
Kumar, Ranjeet; Rao, D D; Dubla, Rupali; Yadav, J R
2017-07-01
The conventional radio-analytical technique used for estimation of Pu-isotopes in urine samples involves anion exchange/TEVA column separation followed by alpha spectrometry. This sequence of analysis consumes nearly 3-4 days for completion. Many a times excreta analysis results are required urgently, particularly under repeat and incidental/emergency situations. Therefore, there is need to reduce the analysis time for the estimation of Pu-isotopes in bioassay samples. This paper gives the details of standardization of a rapid method for estimation of Pu-isotopes in urine samples using multi-purpose centrifuge, TEVA resin followed by alpha spectrometry. The rapid method involves oxidation of urine samples, co-precipitation of plutonium along with calcium phosphate followed by sample preparation using high volume centrifuge and separation of Pu using TEVA resin. Pu-fraction was electrodeposited and activity estimated using 236 Pu tracer recovery by alpha spectrometry. Ten routine urine samples of radiation workers were analyzed and consistent radiochemical tracer recovery was obtained in the range 47-88% with a mean and standard deviation of 64.4% and 11.3% respectively. With this newly standardized technique, the whole analytical procedure is completed within 9h (one working day hour). Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Merritt, Dawn A.; Hayes, J. M.; Des Marais, David J.
1995-01-01
Less than 15 min are required for the determination of delta C(sub PDB)-13 with a precision of 0.2 ppt(1 sigma, single measurement) in 5-mL samples of air containing CH4 at natural levels (1.7 ppm). An analytical system including a sample-introduction unit incorporating a preparative gas chromatograph (GC) column for separation of CH4 from N2, O2, and Ar is described. The 15-min procedure includes time for operation of that system, high-resolution chromatographic separation of the CH4, on-line combustion and purification of the products, and isotopic calibration. Analyses of standards demonstrate that systematic errors are absent and that there is no dependence of observed values of delta on sample size. For samples containing 100 ppm or more CH4, preconcentration is not required and the analysis time is less than 5 min. The system utilizes a commercially available, high-sensitivity isotope-ratio mass spectrometer. For optimal conditions of smaple handling and combustion, performance of the system is within a factor of 2 of the shot-noise limit. The potential exists therefore for analysis of samples as small as 15 pmol CH4 with a standard deviation of less than 1 ppt.
Foland, K.A.; Friedman, I.
1977-01-01
The Red Hill ring complex in central New Hampshire is composed of apparently cogenetic syenites, nepheline-sodalite syenite, and granite. The ages and petrogenetic relations among five of the six recognized units have been investigated by rubidiumstrontium and oxygen isotope analysis of whole rocks and separated minerals. Whole-rock samples from three syenite units are consistent with a single Rb-Sr isochron which gives an age of 198??3 m.y. and an initial (87Sr/86Sr)o ratio of 0.70330??0.00016 (??2 sigma; ??=1.42?? 10-11y-1). However, Sr isotope data for two other units, nepheline syenite and granite, are not consistent with this isochron but rather indicate higher initial ratios which range from 0.7033 to about 0.707. Whole-rock O isotope analyses give ??18O values which range from+6.2 to+9.3??? Sr and O isotope analyses on mineral separates indicate that observed whole-rock variations in (87Sr/86Sr)o are primary and are not due to any secondary process. The fact that the isotope systematics correlate with rock type, suggests that crustal interaction is likely to have played a significant role in the development of this over-and undersaturated association. Such process(es), while still not fully delineated, could be of fundamental importance to the genesis of associations of critically undersaturated and oversaturated intrusives. The data support the idea that interaction between magmas and crustal materials strongly influenced the compositional relations of similar complexes elsewhere including those of the White Mountain magma series. ?? 1977 Springer-Verlag.
The table of isotopes-8th edition and beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firestone, R.B.
A new edition of the Table of Isotopes has been published this year by John Wiley and Sons, Inc. This edition is the eighth in a series started by Glenn T. Seaborg in 1940. The two-volume, 3168-page, cloth-bound edition is twice the size of the previous edition published in 1978. It contains nuclear structure and decay data, based mainly on the Evaluated Nuclear Structure Data File (ENSDF), for >3100 isotopes and isomers. Approximately 24000 references are cited, and the appendices have been updated and extended. The book is packaged with an interactive CD-ROM that contains the Table of Isotopes inmore » Adobe Acrobat Portable Document Format for convenient viewing on personal computer (PC) and UNIX workstations. The CD-ROM version contains a chart of the nuclides graphical index and separate indices organized for radioisotope users and nuclear structure physicists. More than 100000 hypertext links are provided to move the user quickly through related information free from the limitations of page size. Complete references with keyword abstracts are provided. The CD-ROM also contains the Table of Super-deformed Nuclear Bands and Fission Isomers; Tables of Atoms, Atomic Nuclei, and Subatomic Particles by Ivan P. Selinov; the ENSDF and nuclear structure reference (NSR) databases; the ENSDF manual by Jagdish K. Tuli; and Abode Acrobat Reader software.« less
Formation of nonextractable soil residues: A stable isotope approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richnow, H.H.; Eschenback, A.; Mahro, B.
1999-11-01
Stable carbon isotopic measurements were employed to characterize the transformation of a {sup 13}C-labeled polycyclic aromatic hydrocarbon (PAH), anthracene, in a closed soil bioreactor system. The {sup 13}C-label was used to calculate a carbon mass balance including mineralization and the formation of nonextractable soil-bound residues. Similar results were obtained from {sup 13}C-labeled carbon and {sup 14}C-labeled carbon mass balance calculations for separate batch experiments with labeled anthracene. In concentration ranges typical for real PAH-contaminated sites, the sensitivity of the {sup 13}C tracer method meets the requirements of classical radiotracer experiments. Therefore, the authors balancing method based on stable isotope-labeled chemicalsmore » may supplement or substitute radiotracer experiments under many circumstances. One major advantage of using stable isotope-labeled tracers is the possible application in transformation studies where the use of radioactive substances is of environmental concern. The transformation of {sup 13}C-labeled PAH into nonextractable residues clearly depends on the metabolic activity of the soil microflora and occurs during an early phase of biodegradation. Successive contamination of the soil by anthracene leads to a progressive adaptation of the microflora to a complete mineralization of anthracene in the soil. The extent of residue formation is controlled by the capability of the microflora to degrade the contaminant. Results of long-term experiments indicate that nonextractable residues are relatively stable over time.« less
Calculation of gas-flow in plasma reactor for carbon partial oxidation
NASA Astrophysics Data System (ADS)
Bespala, Evgeny; Myshkin, Vyacheslav; Novoselov, Ivan; Pavliuk, Alexander; Makarevich, Semen; Bespala, Yuliya
2018-03-01
The paper discusses isotopic effects at carbon oxidation in low temperature non-equilibrium plasma at constant magnetic field. There is described routine of experiment and defined optimal parameters ensuring maximum enrichment factor at given electrophysical, gas-dynamic, and thermodymanical parameters. It has been demonstrated that at high-frequency generator capacity of 4 kW, supply frequency of 27 MHz and field density of 44 mT the concentration of paramagnetic heavy nuclei 13C in gaseous phase increases up to 1.78 % compared to 1.11 % for natural concentration. Authors explain isotopic effect decrease during plasmachemical separation induced by mixing gas flows enriched in different isotopes at the lack of product quench. With the help of modeling the motion of gas flows inside the plasma-chemical reactor based on numerical calculation of Navier-Stokes equation authors determine zones of gas mixing and cooling speed. To increase isotopic effects and proportion of 13C in gaseous phase it has been proposed to use quench in the form of Laval nozzle of refractory steel. The article represents results on calculation of optimal Laval Nozzle parameters for plasma-chemical reactor of chosen geometry of. There are also given dependences of quench time of products on pressure at the diffuser output and on critical section diameter. Authors determine the location of quench inside the plasma-chemical reactor in the paper.
Biometrics from the carbon isotope ratio analysis of amino acids in human hair.
Jackson, Glen P; An, Yan; Konstantynova, Kateryna I; Rashaid, Ayat H B
2015-01-01
This study compares and contrasts the ability to classify individuals into different grouping factors through either bulk isotope ratio analysis or amino-acid-specific isotope ratio analysis of human hair. Using LC-IRMS, we measured the isotope ratios of 14 amino acids in hair proteins independently, and leucine/isoleucine as a co-eluting pair, to provide 15 variables for classification. Multivariate analysis confirmed that the essential amino acids and non-essential amino acids were mostly independent variables in the classification rules, thereby enabling the separation of dietary factors of isotope intake from intrinsic or phenotypic factors of isotope fractionation. Multivariate analysis revealed at least two potential sources of non-dietary factors influencing the carbon isotope ratio values of the amino acids in human hair: body mass index (BMI) and age. These results provide evidence that compound-specific isotope ratio analysis has the potential to go beyond region-of-origin or geospatial movements of individuals-obtainable through bulk isotope measurements-to the provision of physical and characteristic traits about the individuals, such as age and BMI. Further development and refinement, for example to genetic, metabolic, disease and hormonal factors could ultimately be of great assistance in forensic and clinical casework. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.
Isotopic decoupling during porous melt flow: A case-study in the Lherz peridotite
NASA Astrophysics Data System (ADS)
Le Roux, V.; Bodinier, J.-L.; Alard, O.; O'Reilly, S. Y.; Griffin, W. L.
2009-03-01
Most peridotite massifs and mantle xenoliths show a wide range of isotopic variations, often involving significant decoupling between Hf, Nd and Sr isotopes. These variations are generally ascribed either to mingling of individual components of contrasted isotopic compositions or to time integration of parent-element enrichment by percolating melts/fluids, superimposed onto previous depletion event(s). However, strong isotopic decoupling may also arise during porous flow as a result of daughter-elements fractionation during solid-liquid interaction. Although porous flow is recognized as an important process in mantle rocks, its effects on mantle isotopic variability have been barely investigated so far. The peridotites of the Lherz massif (French Pyrenees) display a frozen melt percolation front separating highly refractory harzburgites from refertilized lherzolites. Isotopic signatures observed at the melt percolation front show a strong decoupling of Hf from Nd and Sr isotopes that cannot be accounted for by simple mixing involving the harzburgite protolith and the percolating melt. Using one dimensional percolation-diffusion and percolation-reaction modeling, we show that these signatures represent transient isotopic compositions generated by porous flow. These signatures are governed by a few critical parameters such as daughter element concentrations in melt and peridotite, element diffusivity, and efficiency of isotopic homogenization rather than by the chromatographic effect of melt transport and the refertilization reaction. Subtle variations in these parameters may generate significant inter-isotopic decoupling and wide isotopic variations in mantle rocks.
Experiments on the Synthesis of Superheavy Elements with 48CA Beams at the Separator Vassilissa
NASA Astrophysics Data System (ADS)
Oganessian, Yu. Ts.; Yeremin, A. V.; Belozerov, A. V.; Chelnokov, M. L.; Chepigin, V. I.; Gorshkov, V. A.; Kabachenko, A. P.; Korotkov, S. P.; Malyshev, O. N.; Popeko, A. G.; Roháč, J.; Sagaidak, R. N.; Hofmann, S.; Münzenberg, G.; Veselsky, M.; Saro, S.; Iwasa, N.; Morita, K.; Giardina, G.
2001-04-01
The study of the decay properties and formation cross sections of the isotopes of elements 110, 112 and 114 were performed at the FLNR JINR with the use of the high intensity 48Ca beams and an electrostatic separator VASSILISSA. 232Th, 238U and 242Pu targets were used in the experiments. At the beam energies corresponding to the calculated cross section maxima of the 3n evaporation channels the isotopes 277110, 283112 and 287114 were produced and identified. The cross section limits were obtained at excitation energies of the compound nucleus corresponding to the maxima of the 4n evaporation channels for the reactions with 232Th and 238U targets.
Study of isomeric states in 198,200,202,206Pb and 206Hg populated in fragmentation reactions
NASA Astrophysics Data System (ADS)
Lalović, N.; Rudolph, D.; Podolyák, Zs; Sarmiento, L. G.; Simpson, E. C.; Alexander, T.; Cortés, M. L.; Gerl, J.; Golubev, P.; Ameil, F.; Arici, T.; Bauer, Ch; Bazzacco, D.; Bentley, M. A.; Boutachkov, P.; Bowry, M.; Fahlander, C.; Gadea, A.; Gellanki, J.; Givechev, A.; Goel, N.; Górska, M.; Gottardo, A.; Gregor, E.; Guastalla, G.; Habermann, T.; Hackstein, M.; Jungclaus, A.; Kojouharov, I.; Kumar, R.; Kurz, N.; Lettmann, M.; Lizarazo, C.; Louchart, C.; Merchán, E.; Michelagnoli, C.; Moeller, Th; Moschner, K.; Patel, Z.; Pietralla, N.; Pietri, S.; Ralet, D.; Reese, M.; Regan, P. H.; Reiter, P.; Schaffner, H.; Singh, P.; Stahl, C.; Stegmann, R.; Stezowski, O.; Taprogge, J.; Thöle, P.; Wendt, A.; Wieland, O.; Wilson, E.; Wood, R.; Wollersheim, H.-J.; Birkenbach, B.; Bruyneel, B.; Burrows, I.; Clément, E.; Désesquelles, P.; Domingo-Pardo, C.; Eberth, J.; González, V.; Hess, H.; Jolie, J.; Judson, D. S.; Menegazzo, R.; Mengoni, D.; Napoli, D. R.; Pullia, A.; Quintana, B.; Rainovski, G.; Salsac, M. D.; Sanchis, E.; Simpson, J.; Valiente Dóbon, J. J.; AGATA Collaboration
2018-03-01
Isomeric states in isotopes in the vicinity of doubly-magic 208Pb were populated following reactions of a relativistic 208Pb primary beam impinging on a 9Be fragmentation target. Secondary beams of 198,200,202,206Pb and 206Hg were isotopically separated and implanted in a passive stopper positioned in the focal plane of the GSI Fragment Separator. Delayed γ rays were detected with the Advanced Gamma Tracking Array (AGATA). Decay schemes were re-evaluated and interpreted with shell-model calculations. The momentum-dependent population of isomeric states in the two-nucleon hole nuclei 206Pb/206Hg was found to differ from the population of multi neutron-hole isomeric states in 198,200,202Pb.
Separated isotopes: Vital tools for science and medicine
NASA Astrophysics Data System (ADS)
Deliberations and conclusions of a workshop on stable isotopes and derived radioisotopes organized by the Subcommittee on Nuclear and Radiochemistry of the National Research Council's Committee on Chemical Sciences at the request of the Department of Energy (DOE) are summarized. The workshop was jointly supported by the National Institutes of Health and DOE's Office of Basic Energy Sciences. An overview with three recommendations resulting from the workshop is followed by reports of the four workshop panels. Background papers were prepared by individuals on the Steering Committee and made available to all participants prior to the Workshop. They are reproduced as Appendixes 3 to 8. Short reports on alternate separation techniques were presented at the Workshop and are reproduced in Appendixes 9 to 11.
Beisner, Kimberly R.; Paretti, Nicholas V.; Tucci, Rachel S.
2016-04-25
Stable isotope delta values (δ18O and δ2H) of precipitation can vary with elevation, and quantification of the precipitation elevation gradient can be used to predict recharge elevation within a watershed. Precipitation samples were analyzed for stable isotope delta values between 2003 and 2014 from the Verde River watershed of north-central Arizona. Results indicate a significant decrease in summer isotopic values overtime at 3,100-, 4,100-, 6,100-, 7,100-, and 8,100-feet elevation. The updated local meteoric water line for the area is δ2H = 7.11 δ18O + 3.40. Equations to predict stable isotopic values based on elevation were updated from previous publications in Blasch and others (2006), Blasch and Bryson (2007), and Bryson and others (2007). New equations were separated for samples from the Camp Verde to Flagstaff transect and the Prescott to Chino Valley transect. For the Camp Verde to Flagstaff transect, the new equations for winter precipitation are δ18O = -0.0004z − 8.87 and δ2H = -0.0029z − 59.8 (where z represents elevation in feet) and the summer precipitation equations were not statistically significant. For the Prescott to Chino Valley transect, the new equations for summer precipitation are δ18O = -0.0005z − 3.22 and δ2H = -0.0022z − 27.9; the winter precipitation equations were not statistically significant and, notably, stable isotope values were similar across all elevations. Interpretation of elevation of recharge contributing to surface and groundwaters in the Verde River watershed using the updated equations for the Camp Verde to Flagstaff transect will give lower elevation values compared with interpretations presented in the previous studies. For waters in the Prescott and Chino Valley area, more information is needed to understand local controls on stable isotope values related to elevation.
NASA Astrophysics Data System (ADS)
Yokochi, Reika
2016-09-01
Current and foreseen population growths will lead to an increased demand in freshwater, large quantities of which is stored as groundwater. The ventilation age is crucial to the assessment of groundwater resources, complementing the hydrological model approach based on hydrogeological parameters. Ultra-trace radioactive isotopes of Kr (81 Kr and 85 Kr) possess the ideal physical and chemical properties for groundwater dating. The recent advent of atom trap trace analyses (ATTA) has enabled determination of ultra-trace noble gas radioisotope abundances using 5-10 μ L of pure Kr. Anticipated developments will enable ATTA to analyze radiokrypton isotope abundances at high sample throughput, which necessitates simple and efficient sample preparation techniques that are adaptable to various sample chemistries. Recent developments of field gas extraction devices and simple and rapid Kr separation method at the University of Chicago are presented herein. Two field gas extraction devices optimized for different sampling conditions were recently designed and constructed, aiming at operational simplicity and portability. A newly developed Kr purification system enriches Kr by flowing a sample gas through a moderately cooled (138 K) activated charcoal column, followed by a gentle fractionating desorption. This simple process uses a single adsorbent and separates 99% of the bulk atmospheric gases from Kr without significant loss. The subsequent two stages of gas chromatographic separation and a hot Ti sponge getter further purify the Kr-enriched gas. Abundant CH4 necessitates multiple passages through one of the gas chromatographic separation columns. The presented Kr separation system has a demonstrated capability of extracting Kr with > 90% yield and 99% purity within 75 min from 1.2 to 26.8 L STP of atmospheric air with various concentrations of CH4. The apparatuses have successfully been deployed for sampling in the field and purification of groundwater samples.
NASA Astrophysics Data System (ADS)
Dou, Xiaolin; He, Ping; Cheng, Xiaoli; Zhou, Wei
2016-01-01
Quantification of dynamics of soil organic carbon (SOC) pools under the influence of long-term fertilization is essential for predicting carbon (C) sequestration. We combined soil chemical fractionation with stable C isotope analyses to investigate the C dynamics of the various SOC pools after 25 years of fertilization. Five types of soil samples (0-20, 20-40 cm) including the initial level (CK) and four fertilization treatments (inorganic nitrogen fertilizer, IN; balanced inorganic fertilizer, NPK; inorganic fertilizer plus farmyard manure, MNPK; inorganic fertilizer plus corn straw residue, SNPK) were separated into recalcitrant and labile fractions, and the fractions were analysed for C content, C:N ratios, δ13C values, soil C and N recalcitrance indexes (RIC and RIN). Chemical fractionation showed long-term MNPK fertilization strongly increased the SOC storage in both soil layers (0-20 cm = 1492.4 gC m2 and 20-40 cm = 1770.6 gC m2) because of enhanced recalcitrant C (RC) and labile C (LC). The 25 years of inorganic fertilizer treatment did not increase the SOC storage mainly because of the offsetting effects of enhanced RC and decreased LC, whereas no clear SOC increases under the SNPK fertilization resulted from the fast decay rates of soil C.
Dou, Xiaolin; He, Ping; Cheng, Xiaoli; Zhou, Wei
2016-01-11
Quantification of dynamics of soil organic carbon (SOC) pools under the influence of long-term fertilization is essential for predicting carbon (C) sequestration. We combined soil chemical fractionation with stable C isotope analyses to investigate the C dynamics of the various SOC pools after 25 years of fertilization. Five types of soil samples (0-20, 20-40 cm) including the initial level (CK) and four fertilization treatments (inorganic nitrogen fertilizer, IN; balanced inorganic fertilizer, NPK; inorganic fertilizer plus farmyard manure, MNPK; inorganic fertilizer plus corn straw residue, SNPK) were separated into recalcitrant and labile fractions, and the fractions were analysed for C content, C:N ratios, δ(13)C values, soil C and N recalcitrance indexes (RIC and RIN). Chemical fractionation showed long-term MNPK fertilization strongly increased the SOC storage in both soil layers (0-20 cm = 1492.4 gC m(2) and 20-40 cm = 1770.6 gC m(2)) because of enhanced recalcitrant C (RC) and labile C (LC). The 25 years of inorganic fertilizer treatment did not increase the SOC storage mainly because of the offsetting effects of enhanced RC and decreased LC, whereas no clear SOC increases under the SNPK fertilization resulted from the fast decay rates of soil C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodds, W. K.; Collins, S. M.; Hamilton, S. K.
Analyses of 21 15N stable isotope tracer experiments, designed to examine food web dynamics in streams around the world, indicated that the isotopic composition of food resources assimilated by primary consumers (mostly invertebrates) poorly reflected the presumed food sources. Modeling indicated that consumers assimilated only 33–50% of the N available in sampled food sources such as decomposing leaves, epilithon, and fine particulate detritus over feeding periods of weeks or more. Thus, common methods of sampling food sources consumed by animals in streams do not sufficiently reflect the pool of N they assimilate. Lastly, Isotope tracer studies, combined with modeling andmore » food separation techniques, can improve estimation of N pools in food sources that are assimilated by consumers.« less
Dodds, W. K.; Collins, S. M.; Hamilton, S. K.; ...
2014-10-01
Analyses of 21 15N stable isotope tracer experiments, designed to examine food web dynamics in streams around the world, indicated that the isotopic composition of food resources assimilated by primary consumers (mostly invertebrates) poorly reflected the presumed food sources. Modeling indicated that consumers assimilated only 33–50% of the N available in sampled food sources such as decomposing leaves, epilithon, and fine particulate detritus over feeding periods of weeks or more. Thus, common methods of sampling food sources consumed by animals in streams do not sufficiently reflect the pool of N they assimilate. Lastly, Isotope tracer studies, combined with modeling andmore » food separation techniques, can improve estimation of N pools in food sources that are assimilated by consumers.« less
Circulation Plasma Centrifuge with Product Flow
NASA Astrophysics Data System (ADS)
Borisevich, V. D.; Potanin, E. P.
2018-05-01
We have analyzed the isotope separation in a high-frequency plasma circulating centrifuge operating with a product flow. The rotation of a weakly ionized plasma is ensured by a rotating magnetic field, while the countercurrent flow (circulation) is produced by a traveling magnetic field. We have calculated the dependences of the enrichment factor and the separative power of the centrifuge on a product flow. The optimal characteristics of the separation unit have been determined.
VAPOR PRESSURE ISOTOPE EFFECTS IN THE MEASUREMENT OF ENVIRONMENTAL TRITIUM SAMPLES.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhne, W.
2012-12-03
Standard procedures for the measurement of tritium in water samples often require distillation of an appropriate sample aliquot. This distillation process may result in a fractionation of tritiated water and regular light water due to the vapor pressure isotope effect, introducing either a bias or an additional contribution to the total tritium measurement uncertainty. The magnitude of the vapor pressure isotope effect is characterized as functions of the amount of water distilled from the sample aliquot and the heat settings for the distillation process. The tritium concentration in the distillate is higher than the tritium concentration in the sample earlymore » in the distillation process, it then sharply decreases due to the vapor pressure isotope effect and becomes lower than the tritium concentration in the sample, until the high tritium concentration retained in the boiling flask is evaporated at the end of the process. At that time, the tritium concentration in the distillate again overestimates the sample tritium concentration. The vapor pressure isotope effect is more pronounced the slower the evaporation and distillation process is conducted; a lower heat setting during the evaporation of the sample results in a larger bias in the tritium measurement. The experimental setup used and the fact that the current study allowed for an investigation of the relative change in vapor pressure isotope effect in the course of the distillation process distinguish it from and extend previously published measurements. The separation factor as a quantitative measure of the vapor pressure isotope effect is found to assume values of 1.034 {+-} 0.033, 1.052 {+-} 0.025, and 1.066 {+-} 0.037, depending on the vigor of the boiling process during distillation of the sample. A lower heat setting in the experimental setup, and therefore a less vigorous boiling process, results in a larger value for the separation factor. For a tritium measurement in water samples, this implies that the tritium concentration could be underestimated by 3 - 6%.« less
Copper isotope fractionation during surface adsorption and intracellular incorporation by bacteria
Navarrete, Jesica U.; Borrok, David M.; Viveros, Marian; Ellzey, Joanne T.
2011-01-01
Copper isotopes may prove to be a useful tool for investigating bacteria–metal interactions recorded in natural waters, soils, and rocks. However, experimental data which attempt to constrain Cu isotope fractionation in biologic systems are limited and unclear. In this study, we utilized Cu isotopes (δ65Cu) to investigate Cu–bacteria interactions, including surface adsorption and intracellular incorporation. Experiments were conducted with individual representative species of Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria, as well as with wild-type consortia of microorganisms from several natural environments. Ph-dependent adsorption experiments were conducted with live and dead cells over the pH range 2.5–6. Surface adsorption experiments of Cu onto live bacterial cells resulted in apparent separation factors (Δ65Cusolution–solid = δ65Cusolution – δ65Cusolid) ranging from +0.3‰ to +1.4‰ for B. subtilis and +0.2‰ to +2.6‰ for E. coli. However, because heat-killed bacterial cells did not exhibit this behavior, the preference of the lighter Cu isotope by the cells is probably not related to reversible surface adsorption, but instead is a metabolically-driven phenomenon. Adsorption experiments with heat-killed cells yielded apparent separation factors ranging from +0.3‰ to –0.69‰ which likely reflects fractionation from complexation with organic acid surface functional group sites. For intracellular incorporation experiments the lab strains and natural consortia preferentially incorporated the lighter Cu isotope with an apparent Δ65Cusolution–solid ranging from ~+1.0‰ to +4.4‰. Our results indicate that live bacterial cells preferentially sequester the lighter Cu isotope regardless of the experimental conditions. The fractionation mechanisms involved are likely related to active cellular transport and regulation, including the reduction of Cu(II) to Cu(I). Because similar intracellular Cu machinery is shared by fungi, plants, and higher organisms, the influence of biological processes on the δ65Cu of natural waters and soils is probably considerable. PMID:21785492
10 CFR 110.40 - Commission review.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Canada. (5) An export involving assistance to end uses related to isotope separation, chemical reprocessing, heavy water production, advanced reactors, or the fabrication of nuclear fuel containing...
The RIB production target for the SPES project
NASA Astrophysics Data System (ADS)
Monetti, Alberto; Andrighetto, Alberto; Petrovich, Carlo; Manzolaro, Mattia; Corradetti, Stefano; Scarpa, Daniele; Rossetto, Francesco; Martinez Dominguez, Fernando; Vasquez, Jesus; Rossignoli, Massimo; Calderolla, Michele; Silingardi, Roberto; Mozzi, Aldo; Borgna, Francesca; Vivian, Gianluca; Boratto, Enrico; Ballan, Michele; Prete, Gianfranco; Meneghetti, Giovanni
2015-10-01
Facilities making use of the Isotope Separator On-Line (ISOL) method for the production of Radioactive Ion Beams (RIB) attract interest because they can be used for nuclear structure and reaction studies, astrophysics research and interdisciplinary applications. The ISOL technique is based on the fast release of the nuclear reaction products from the chosen target material together with their ionization into short-lived nuclei beams. Within this context, the SPES (Selective Production of Exotic Species) facility is now under construction in Italy at INFN-LNL (Istituto Nazionale di Fisica Nucleare — Laboratori Nazionali di Legnaro). The SPES facility will produce RIBs mainly from n-rich isotopes obtained by a 40 MeV cyclotron proton beam (200 μA) directly impinging on a uranium carbide multi-foil fission target. The aim of this work is to describe and update, from a comprehensive point of view, the most important results obtained by the analysis of the on-line behavior of the SPES production target assembly. In particular an improved target configuration has been studied by comparing different codes and physics models: the thermal analyses and the isotope production are re-evaluated. Then some consequent radioprotection aspects, which are essential for the installation and operation of the facility, are presented.
Resonance ionization laser ion sources for on-line isotope separators (invited).
Marsh, B A
2014-02-01
A Resonance Ionization Laser Ion Source (RILIS) is today considered an essential component of the majority of Isotope Separator On Line (ISOL) facilities; there are seven laser ion sources currently operational at ISOL facilities worldwide and several more are under development. The ionization mechanism is a highly element selective multi-step resonance photo-absorption process that requires a specifically tailored laser configuration for each chemical element. For some isotopes, isomer selective ionization may even be achieved by exploiting the differences in hyperfine structures of an atomic transition for different nuclear spin states. For many radioactive ion beam experiments, laser resonance ionization is the only means of achieving an acceptable level of beam purity without compromising isotope yield. Furthermore, by performing element selection at the location of the ion source, the propagation of unwanted radioactivity downstream of the target assembly is reduced. Whilst advances in laser technology have improved the performance and reliability of laser ion sources and broadened the range of suitable commercially available laser systems, many recent developments have focused rather on the laser/atom interaction region in the quest for increased selectivity and/or improved spectral resolution. Much of the progress in this area has been achieved by decoupling the laser ionization from competing ionization processes through the use of a laser/atom interaction region that is physically separated from the target chamber. A new application of gas catcher laser ion source technology promises to expand the capabilities of projectile fragmentation facilities through the conversion of otherwise discarded reaction fragments into high-purity low-energy ion beams. A summary of recent RILIS developments and the current status of laser ion sources worldwide is presented.
Evaristo, Jaivime; McDonnell, Jeffrey J.; Scholl, Martha A.; Bruijnzeel, L. Adrian; Chun, Kwok P.
2016-01-01
Water transpired by trees has long been assumed to be sourced from the same subsurface water stocks that contribute to groundwater recharge and streamflow. However, recent investigations using dual water stable isotopes have shown an apparent ecohydrological separation between tree-transpired water and stream water. Here we present evidence for such ecohydrological separation in two tropical environments in Puerto Rico where precipitation seasonality is relatively low and where precipitation is positively correlated with primary productivity. We determined the stable isotope signature of xylem water of 30 mahogany (Swietenia spp.) trees sampled during two periods with contrasting moisture status. Our results suggest that the separation between transpiration water and groundwater recharge/streamflow water might be related less to the temporal phasing of hydrologic inputs and primary productivity, and more to the fundamental processes that drive evaporative isotopic enrichment of residual soil water within the soil matrix. The lack of an evaporative signature of both groundwater and streams in the study area suggests that these water balance components have a water source that is transported quickly to deeper subsurface storage compared to waters that trees use. A Bayesian mixing model used to partition source water proportions of xylem water showed that groundwater contribution was greater for valley-bottom, riparian trees than for ridge-top trees. Groundwater contribution was also greater at the xeric site than at the mesic–hydric site. These model results (1) underline the utility of a simple linear mixing model, implemented in a Bayesian inference framework, in quantifying source water contributions at sites with contrasting physiographic characteristics, and (2) highlight the informed judgement that should be made in interpreting mixing model results, of import particularly in surveying groundwater use patterns by vegetation from regional to global scales.
NASA Astrophysics Data System (ADS)
Panetta, Robert James; Seed, Mike
2016-04-01
Stable isotope applications that call for preconcentration (i.e., greenhouse gas measurements, small carbonate samples, etc.) universally call for cryogenic fluids such as liquid nitrogen, dry ice slurries, or expensive external recirculation chillers. This adds significant complexity, first and foremost in the requirements to store and handle such dangerous materials. A second layer of complexity is the instrument itself - with mechanisms to physically move either coolant around the trap, or move a trap in or out of the coolant. Not to mention design requirements for hardware that can safely isolate the fluid from other sensitive areas. In an effort to simplify the isotopic analysis of gases requiring preconcentration, we have developed a new separation technology, UltiTrapTM (patent pending), which leverage's the proprietary Advanced Purge & Trap (APT) Technology employed in elemental analysers from Elementar Analysensysteme GmbH products. UltiTrapTM has been specially developed as a micro volume, dynamically heated GC separation column. The introduction of solid-state cooling technology enables sub-zero temperatures without cryogenics or refrigerants, eliminates all moving parts, and increases analytical longevity due to no boiling losses of coolant . This new technology makes it possible for the system to be deployed as both a focussing device and as a gas separation device. Initial data on synthetic gas mixtures (CO2/CH4/N2O in air), and real-world applications including long-term room air and a comparison between carbonated waters of different origins show excellent agreement with previous technologies.
NASA Astrophysics Data System (ADS)
Fukuda, Naoki; Kubo, Toshiyuki; Kameda, Daisuke; Inabe, Naohito; Suzuki, Hiroshi; Shimizu, Yohei; Takeda, Hiroyuki; Kusaka, Kensuke; Yanagisawa, Yoshiyuki; Ohtake, Masao; Tanaka, Kanenobu; Yoshida, Koichi; Sato, Hiromi; Baba, Hidetada; Kurokawa, Meiko; Ohnishi, Tetsuya; Iwasa, Naohito; Chiba, Ayuko; Yamada, Taku; Ideguchi, Eiji; Go, Shintaro; Yokoyama, Rin; Fujii, Toshihiko; Nishibata, Hiroki; Ieki, Kazuo; Murai, Daichi; Momota, Sadao; Nishimura, Daiki; Sato, Yoshiteru; Hwang, Jongwon; Kim, Sunji; Tarasov, Oleg B.; Morrissey, David J.; Simpson, Gary
2018-01-01
A search for new isotopes in the neutron-rich rare-earth region has been carried out using a 345 MeV/nucleon 238U beam at the RIKEN Nishina Center RI Beam Factory. Fragments produced were analyzed and identified using the BigRIPS in-flight separator. We observed a total of 29 new neutron-rich isotopes: 153Ba, 154,155,156La, 156,157,158Ce, 156,157,158,159,160,161Pr, 162,163Nd, 164,165Pm, 166,167Sm, 169Eu, 171Gd, 173,174Tb, 175,176Dy, 177,178Ho, and 179,180Er.
Lead isotope systematics of some igneous rocks from the Egyptian Shield
NASA Technical Reports Server (NTRS)
Gillespie, J. G.; Dixon, T. H.
1983-01-01
Lead isotope data on whole-rock samples and two feldspar separates for a variety of Pan-African (late Precambrian) igneous rocks for the Egyptian Shield are presented. It is pointed out that the eastern desert of Egypt is a Late Precambrian shield characterized by the widespread occurrence of granitic plutons. The lead isotope ratios may be used to delineate boundaries between Late Precambrian oceanic and continental environments in northeastern Africa. The samples belong to three groups. These groups are related to a younger plutonic sequence of granites and adamellites, a plutonic group consisting of older tonalites to granodiorites, and the Dokhan volcanic suite.
Identification of neutron deficient niobium, molybdenum and technetium isotopes
NASA Astrophysics Data System (ADS)
Gross, C. J.
We report on the in-beam identification of fourteen new isotopes in the A=80-90 region. Heavy-ion reactions with a recoil separator or charged particle and neutron detectors provided identification of γ-rays from these new niobium, molybdenum, and technetium isotopes. The procedures used are described and energy level systematics are discussed. The energy levels appear to be organized into rotational bands in nuclei with N≤44 while those with N ≥ 46 have more single-particle-like transitions. Lifetime measurements in 87Mo and 87Nb indicate that g {9}/{2} particle alignment strongly influences the collectivity of these nuclei.
Pan, Kai-Ling; Gao, Jing-Feng; Li, Hong-Yu; Fan, Xiao-Yan; Li, Ding-Chang; Jiang, Hao
2018-05-01
A full-scale wastewater treatment plant (WWTP) with three separate treatment processes was selected to investigate the effects of seasonality and treatment process on the community structures of ammonia-oxidizing archaea (AOA) and bacteria (AOB). And then DNA-based stable isotope probing (DNA-SIP) was applied to explore the active ammonia oxidizers. The results of high-throughput sequencing indicated that treatment processes varied AOB communities rather than AOA communities. AOA slightly outnumbered AOB in most of the samples, whose abundance was significantly correlated with temperature. DNA-SIP results showed that the majority of AOB amoA gene was labeled by 13 C-substrate, while just a small amount of AOA amoA gene was labeled. As revealed by high-throughput sequencing of heavy DNA, Nitrosomonadaceae-like AOB, Nitrosomonas sp. NP1, Nitrosomonas oligotropha and Nitrosomonas marina were the active AOB, and Nitrososphaera viennensis dominated the active AOA. The results indicated that AOB, not AOA, dominated active ammonia oxidation in the test WWTP. Copyright © 2018 Elsevier Ltd. All rights reserved.
Controlling Pu behavior on Titania: Implications for LEU Fission-Based Mo-99 Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youker, Amanda J.; Brown, M. Alex; Heltemes, Thad A.
Molybdenum-99 is the parent isotope of the most widely used isotope, technetium-99m, in all diagnostic nuclear medicine procedures. Due to proliferation concerns associated with the use of highly enriched uranium (HEU), the preferred method of fission-based Mo-99 production uses low enriched uranium (LEU) targets. Using LEU versus HEU for Mo-99 production produces similar to 30 times more Pu-239, due to neutron capture on U-238 to produce Np-239, which ultimately decays to Pu-239 (t(1/2) = 24,110 yr). Argonne National Laboratory is supporting a potential US Mo-99 producer in their efforts to produce Mo-99 from an LEU solution. In order to mitigatemore » the generation of large volumes of greater-than-class-C (GTCC) low level waste (Pu-239 concentrations greater than 1 nCi/g), we have focused our efforts on the separation chemistry of Pu and Mo with a titania sorbent in sulfate media. Results from batch and column experiments show that temperature and acid wash concentration can be used to control Pu behavior on titania.« less
New method of 85Kr reduction in a noble gas based low-background detector
NASA Astrophysics Data System (ADS)
Akimov, D. Yu.; Bolozdynya, A. I.; Burenkov, A. A.; Hall, C.; Kovalenko, A. G.; Kuzminov, V. V.; Simakov, G. E.
2017-04-01
Krypton-85 is an anthropogenic beta-decaying isotope which produces low energy backgrounds in dark matter and neutrino experiments, especially those based upon liquid xenon. Several technologies have been developed to reduce the Kr concentration in such experiments. We propose to augment those separation technologies by first adding to the xenon an 85Kr-free sample of krypton in an amount much larger than the natural krypton that is already present. After the purification system reduces the total Kr concentration to the same level, the final 85Kr concentration will be reduced even further by the dilution factor. A test cell for measurement of the activity of various Kr samples has been assembled, and the activity of 25-year-old krypton has been measured. The measured activity agrees well with the expected activity accounting for the 85Kr abundance of the earth's atmosphere in 1990 and the half-life of the isotope. Additional tests with a Kr sample produced in the year 1944 (before the atomic era) have been done in order to demonstrate the sensitivity of the test cell.
Colloidally separated samples from Allende residues - Noble gases, carbon and an ESCA-study
NASA Technical Reports Server (NTRS)
Ott, U.; Kronenbitter, J.; Flores, J.; Chang, S.
1984-01-01
Results are presented which strengthen the hypothesis of heterogeneity among the carbon- and nitrogen-bearing phases of the Allende meteorite. These data also highlight the possibility of performing physical separations yielding samples in which some of the noble gas- and carbon-bearing phases are extraordinarily predominant over others. The conclusion, based on mass and isotope balance arguments, that a significant portion of the carbonaceous matter in Allende is likely to be gas-poor or gas-free need not weaken the case for carbonaceous carriers for the major noble gas components. The concept that acid-soluble carbonaceous phases contain a multiplicity of components, each of which may have formed under a multiplicity of different physical-chemical conditions, is reemphasized by the results of the present study.