Science.gov

Sample records for based life prediction

  1. Life prediction modeling based on strainrange partitioning

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    1988-01-01

    Strainrange partitioning (SRP) is an integrated low-cycle-fatigue life predicting system. It was created specifically for calculating cyclic crack initiation life under severe high-temperature fatigue conditions. The key feature of the SRP system is its recognition of the interacting mechanisms of cyclic inelastic deformation that govern cyclic life at high temperatures. The SRP system bridges the gap between the mechanistic level of understanding that breeds new and better materials and the phenomenological level wherein workable engineering life prediction methods are in great demand. The system was recently expanded to address engineering fatigue problems in the low-strain, long-life, nominally elastic regime. This breakthrough, along with other advances in material behavior and testing technology, has permitted the system to also encompass low-strain thermomechanical loading conditions. Other important refinements of the originally proposed method include procedures for dealing with life-reducing effects of multiaxial loading, ratcheting, mean stresses, nonrepetitive (cumulative loading) loading, and environmental and long-time exposure. Procedure were also developed for partitioning creep and plastic strain and for estimating strainrange versus life relations from tensile and creep rupture properties. Each of the important engineering features of the SRP system are discussed and examples shown of how they help toward predicting high-temperature fatigue life under practical, although complex, loading conditions.

  2. Remaining useful life prediction based on known usage data

    NASA Astrophysics Data System (ADS)

    Kiddy, Jason S.

    2003-08-01

    Systems Planning and Analysis, Inc. (SPA) has developed a novel statistical approach to estimating the remaining useful life of aircraft components based on known usage monitoring data. The analysis technique is known as the Remaining Useful Life Estimation (RULE) methodology. The basic premise of RULE is to determine conservative predictions for the component loads and fatigue life values from Monte Carlo simulations based on a desired component reliability. Then, as the aircraft's usage is monitored, the component life can be calculated with a known reliability based on the conservative predictions generated by the Monte Carlo simulation. The RULE methodology, which has been successfully tested on small-scale analytical problems, is ideally suited to be integrated into both rotorcraft and fixed-wing aircraft. Furthermore, modifications to the technology may prove to be applicable to wide variety of health and prognostic problems.

  3. Life prediction modeling based on cyclic damage accumulation

    NASA Technical Reports Server (NTRS)

    Nelson, Richard S.

    1988-01-01

    A high temperature, low cycle fatigue life prediction method was developed. This method, Cyclic Damage Accumulation (CDA), was developed for use in predicting the crack initiation lifetime of gas turbine engine materials, where initiation was defined as a 0.030 inch surface length crack. A principal engineering feature of the CDA method is the minimum data base required for implementation. Model constants can be evaluated through a few simple specimen tests such as monotonic loading and rapic cycle fatigue. The method was expanded to account for the effects on creep-fatigue life of complex loadings such as thermomechanical fatigue, hold periods, waveshapes, mean stresses, multiaxiality, cumulative damage, coatings, and environmental attack. A significant data base was generated on the behavior of the cast nickel-base superalloy B1900+Hf, including hundreds of specimen tests under such loading conditions. This information is being used to refine and extend the CDA life prediction model, which is now nearing completion. The model is also being verified using additional specimen tests on wrought INCO 718, and the final version of the model is expected to be adaptable to most any high-temperature alloy. The model is currently available in the form of equations and related constants. A proposed contract addition will make the model available in the near future in the form of a computer code to potential users.

  4. Trajectory Similarity Based Prediction for Remaining Useful Life Estimation

    NASA Astrophysics Data System (ADS)

    Wang, Tianyi

    The degradation process of a complex system may be affected by many unknown factors, such as unidentified fault modes, unmeasured operational conditions, engineering variance, environmental conditions, etc. These unknown factors not only complicate the degradation behaviors of the system, but also lower the quality of the collected data for modeling. Due to lack of knowledge and incomplete measurements, certain important context information (e.g. fault modes, operational conditions) of the collected data will be missing. Therefore historical data of the system with a large variety of degradation patterns will be mixed together. With such data, learning a global model for Remaining Useful Life (RUL) prediction becomes extremely hard. This has led us to look for advanced RUL prediction techniques beyond the traditional global models. In this thesis, a novel RUL prediction method inspired by the Instance Based Learning methodology, called Trajectory Similarity Based Prediction (TSBP), is proposed. In TSBP, the historical instances of a system with life-time condition data and known failure time are used to create a library of degradation models. For a test instance of the same system whose RUL is to be estimated, similarity between it and each of the degradation models is evaluated by computing the minimal weighted Euclidean distance defined on two degradation trajectories. Based on the known failure time, each of the degradation models will produce one RUL estimate for the test instance. The final RUL estimate can then be obtained by aggregating the multiple RUL estimates using a density estimation method. A case study using the turbofan engine degradation simulation data supplied by NASA Ames is provided to study the performance of TSBP. In this study, the TSBP method has demonstrated significant improvement in performance over a Neural Network based prediction method.

  5. Development of the microstructure based stochastic life prediction models

    NASA Astrophysics Data System (ADS)

    Przystupa, M. A.; Vasudevan, A. K.

    This study explores the methods of incorporating material microstructural characteristics into the fatigue life prediction models based on the results of the microstructural characterizations and fatigue testing of aluminum 7050-T7451 plate alloys. The emphases in the microstructural characterization part of the program are on the identification of the fatigue-relevant microstructural features and on the characterizations of the microstructural gradients. The characterizations are carried out using both the standard and novel techniques such as tessellation, fractal and modified linear intercept methods. The key measurement is determination of the size distributions of the fatigue crack initiating flaws -- they are assumed equal to the extreme value distributions of the micropore and/or constituent particle size distributions measured on the metallographic sections.

  6. Development of the Microstructure Based Stochastic Life Prediction Model

    DTIC Science & Technology

    1993-08-01

    the formulation of preliminary life prediction models[l]. In the microstruc - 3 tural characterization part of the program we have concentrated on the...microstructural models may be needed to describe behavior during different stages of fatigue life3 and intend to integrate them using Markov chain approach. -- B...precipitate phases present in the studied alloy the obtained diffraction patterns were compared with those found in the literature on 7075 and 7050 alloys. The

  7. Development of the Microstructure Based Stochastic Life Prediction Models

    DTIC Science & Technology

    1991-06-27

    initiation of the work on the characterization of the 7050 alloys and development of the image analysis software. This progress report gives account for...project. Dr. ’ hang will be additionally working of the development of the image analysis software and on the life prediction models. Dr. Przystupa...the implementation of the tessellation programs I1 ], texture analysis and on the development of the image analysis system. Page 2 Equipment The image

  8. Shelf Life Prediction for Canned Gudeg using Accelerated Shelf Life Testing (ASLT) Based on Arrhenius Method

    NASA Astrophysics Data System (ADS)

    Nurhayati, R.; Rahayu NH, E.; Susanto, A.; Khasanah, Y.

    2017-04-01

    Gudeg is traditional food from Yogyakarta. It is consist of jackfruit, chicken, egg and coconut milk. Gudeg generally have a short shelf life. Canning or commercial sterilization is one way to extend the shelf life of gudeg. This aims of this research is to predict the shelf life of Andrawinaloka canned gudeg with Accelerated Shelf Life Test methods, Arrhenius model. Canned gudeg stored at three different temperature, there are 37, 50 and 60°C for two months. Measuring the number of Thio Barbituric Acid (TBA), as a critical aspect, were tested every 7 days. Arrhenius model approach is done with the equation order 0 and order 1. The analysis showed that the equation of order 0 can be used as an approach to estimating the shelf life of canned gudeg. The storage of Andrawinaloka canned gudeg at 30°C is predicted untill 21 months and 24 months for 25°C.

  9. SHM-Based Probabilistic Fatigue Life Prediction for Bridges Based on FE Model Updating.

    PubMed

    Lee, Young-Joo; Cho, Soojin

    2016-03-02

    Fatigue life prediction for a bridge should be based on the current condition of the bridge, and various sources of uncertainty, such as material properties, anticipated vehicle loads and environmental conditions, make the prediction very challenging. This paper presents a new approach for probabilistic fatigue life prediction for bridges using finite element (FE) model updating based on structural health monitoring (SHM) data. Recently, various types of SHM systems have been used to monitor and evaluate the long-term structural performance of bridges. For example, SHM data can be used to estimate the degradation of an in-service bridge, which makes it possible to update the initial FE model. The proposed method consists of three steps: (1) identifying the modal properties of a bridge, such as mode shapes and natural frequencies, based on the ambient vibration under passing vehicles; (2) updating the structural parameters of an initial FE model using the identified modal properties; and (3) predicting the probabilistic fatigue life using the updated FE model. The proposed method is demonstrated by application to a numerical model of a bridge, and the impact of FE model updating on the bridge fatigue life is discussed.

  10. SHM-Based Probabilistic Fatigue Life Prediction for Bridges Based on FE Model Updating

    PubMed Central

    Lee, Young-Joo; Cho, Soojin

    2016-01-01

    Fatigue life prediction for a bridge should be based on the current condition of the bridge, and various sources of uncertainty, such as material properties, anticipated vehicle loads and environmental conditions, make the prediction very challenging. This paper presents a new approach for probabilistic fatigue life prediction for bridges using finite element (FE) model updating based on structural health monitoring (SHM) data. Recently, various types of SHM systems have been used to monitor and evaluate the long-term structural performance of bridges. For example, SHM data can be used to estimate the degradation of an in-service bridge, which makes it possible to update the initial FE model. The proposed method consists of three steps: (1) identifying the modal properties of a bridge, such as mode shapes and natural frequencies, based on the ambient vibration under passing vehicles; (2) updating the structural parameters of an initial FE model using the identified modal properties; and (3) predicting the probabilistic fatigue life using the updated FE model. The proposed method is demonstrated by application to a numerical model of a bridge, and the impact of FE model updating on the bridge fatigue life is discussed. PMID:26950125

  11. A Fatigue Life Prediction Method Based on Strain Intensity Factor.

    PubMed

    Zhang, Wei; Liu, Huili; Wang, Qiang; He, Jingjing

    2017-06-22

    In this paper, a strain-intensity-factor-based method is proposed to calculate the fatigue crack growth under the fully reversed loading condition. A theoretical analysis is conducted in detail to demonstrate that the strain intensity factor is likely to be a better driving parameter correlated with the fatigue crack growth rate than the stress intensity factor (SIF), especially for some metallic materials (such as 316 austenitic stainless steel) in the low cycle fatigue region with negative stress ratios R (typically R = -1). For fully reversed cyclic loading, the constitutive relation between stress and strain should follow the cyclic stress-strain curve rather than the monotonic one (it is a nonlinear function even within the elastic region). Based on that, a transformation algorithm between the SIF and the strain intensity factor is developed, and the fatigue crack growth rate testing data of 316 austenitic stainless steel and AZ31 magnesium alloy are employed to validate the proposed model. It is clearly observed that the scatter band width of crack growth rate vs. strain intensity factor is narrower than that vs. the SIF for different load ranges (which indicates that the strain intensity factor is a better parameter than the stress intensity factor under the fully reversed load condition). It is also shown that the crack growth rate is not uniquely determined by the SIF range even under the same R, but is also influenced by the maximum loading. Additionally, the fatigue life data (strain-life curve) of smooth cylindrical specimens are also used for further comparison, where a modified Paris equation and the equivalent initial flaw size (EIFS) are involved. The results of the proposed method have a better agreement with the experimental data compared to the stress intensity factor based method. Overall, the strain intensity factor method shows a fairly good ability in calculating the fatigue crack propagation, especially for the fully reversed cyclic loading

  12. A Fatigue Life Prediction Method Based on Strain Intensity Factor

    PubMed Central

    Zhang, Wei; Liu, Huili; Wang, Qiang; He, Jingjing

    2017-01-01

    In this paper, a strain-intensity-factor-based method is proposed to calculate the fatigue crack growth under the fully reversed loading condition. A theoretical analysis is conducted in detail to demonstrate that the strain intensity factor is likely to be a better driving parameter correlated with the fatigue crack growth rate than the stress intensity factor (SIF), especially for some metallic materials (such as 316 austenitic stainless steel) in the low cycle fatigue region with negative stress ratios R (typically R = −1). For fully reversed cyclic loading, the constitutive relation between stress and strain should follow the cyclic stress-strain curve rather than the monotonic one (it is a nonlinear function even within the elastic region). Based on that, a transformation algorithm between the SIF and the strain intensity factor is developed, and the fatigue crack growth rate testing data of 316 austenitic stainless steel and AZ31 magnesium alloy are employed to validate the proposed model. It is clearly observed that the scatter band width of crack growth rate vs. strain intensity factor is narrower than that vs. the SIF for different load ranges (which indicates that the strain intensity factor is a better parameter than the stress intensity factor under the fully reversed load condition). It is also shown that the crack growth rate is not uniquely determined by the SIF range even under the same R, but is also influenced by the maximum loading. Additionally, the fatigue life data (strain-life curve) of smooth cylindrical specimens are also used for further comparison, where a modified Paris equation and the equivalent initial flaw size (EIFS) are involved. The results of the proposed method have a better agreement with the experimental data compared to the stress intensity factor based method. Overall, the strain intensity factor method shows a fairly good ability in calculating the fatigue crack propagation, especially for the fully reversed cyclic

  13. Predictive and Incremental Validity of Global and Domain-Based Adolescent Life Satisfaction Reports

    ERIC Educational Resources Information Center

    Haranin, Emily C.; Huebner, E. Scott; Suldo, Shannon M.

    2007-01-01

    Concurrent, predictive, and incremental validity of global and domain-based adolescent life satisfaction reports are examined with respect to internalizing and externalizing behavior problems. The Students' Life Satisfaction Scale (SLSS), Multidimensional Students' Life Satisfaction Scale (MSLSS), and measures of internalizing and externalizing…

  14. An Energy Based Fatigue Life Prediction Framework for In-Service Structural Components

    SciTech Connect

    H. Ozaltun; M. H.H. Shen; T. George; C. Cross

    2011-06-01

    An energy based fatigue life prediction framework has been developed for calculation of remaining fatigue life of in service gas turbine materials. The purpose of the life prediction framework is to account aging effect caused by cyclic loadings on fatigue strength of gas turbine engines structural components which are usually designed for very long life. Previous studies indicate the total strain energy dissipated during a monotonic fracture process and a cyclic process is a material property that can be determined by measuring the area underneath the monotonic true stress-strain curve and the sum of the area within each hysteresis loop in the cyclic process, respectively. The energy-based fatigue life prediction framework consists of the following entities: (1) development of a testing procedure to achieve plastic energy dissipation per life cycle and (2) incorporation of an energy-based fatigue life calculation scheme to determine the remaining fatigue life of in-service gas turbine materials. The accuracy of the remaining fatigue life prediction method was verified by comparison between model approximation and experimental results of Aluminum 6061-T6. The comparison shows promising agreement, thus validating the capability of the framework to produce accurate fatigue life prediction.

  15. Thrust chamber life prediction

    NASA Technical Reports Server (NTRS)

    Kasper, H. J.

    1985-01-01

    The reusable life of the Space Shuttle main engine (SSME) is influenced by the cyclic life of the regeneratively liquid cooled main combustion chamber (MCC). During an operational duty cycle the MCC liner is subjected to a large transient thermal gradient that imparts a high thermal cyclic strain to the liner hot gas wall. Life predictions of such chambers have usually been based on low cycle fatigue (LCF) evaluations. Hot-fire testing, however, has shown significant mid-channel wall deformation and thinning during accrued cyclic testing. This phenomenon is termed cyclic creep and appears to be significantly accelerated at elevated temperatures. An analytical method that models the cyclic creep phenomenon and its application to thrust chamber life prediction is presented. The chamber finite element geometry is updated periodically to account for accrued wall thinning and distortion. Failure is based on the tensile instability failure criterion. Cyclic life results for several chamber life enhancing coolant channel designs are compared to the typically used LCF analysis that neglects cyclic creep. The results show that the usable cyclic creep life is approximately 30 to 50% of the commonly used LCF life.

  16. Fatigue Life Prediction of Ductile Iron Based on DE-SVM Algorithm

    NASA Astrophysics Data System (ADS)

    Yiqun, Ma; Xiaoping, Wang; lun, An

    the model, predicting fatigue life of ductile iron, based on SVM (Support Vector Machine, SVM) has been established. For it is easy to fall into local optimum during parameter optimization of SVM, DE (Differential Evolution algorithm, DE) algorithm was adopted to optimize to improve prediction precision. Fatigue life of ductile iron is predicted combining with concrete examples, and simulation experiment to optimize SVM is conducted adopting GA (Genetic Algorithm), ACO (Ant Colony Optimization) and POS (Partial Swarm Optimization). Results reveal that DE-SVM algorithm is of a better prediction performance.

  17. Predicting nature-based tourist roles: a life span perspective

    Treesearch

    James J. Murdy; Heather J. Gibson; Andrew Yiannakis

    2003-01-01

    The concept of stable, clearly identifiable patterns of tourist behavior, or roles, is a relatively recent development. Yiannakis and Gibson (1988, 1992) identified fifteen tourist roles based on leisure travelers' vacation behaviors. Building on this work, Gibson (1994) used discriminant analysis to determine the combination of needs and demographics are...

  18. Low Cycle Fatigue Behavior and Life Prediction of a Cast Cobalt-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Yang, Ho-Young; Kim, Jae-Hoon; Yoo, Keun-Bong

    Co-base superalloys have been applied in the stationary components of gas turbine owing to their excellent high temperature properties. Low cycle fatigue data on ECY-768 reported in a companion paper were used to evaluate fatigue life prediction models. In this study, low cycle fatigue tests are performed as the variables of total strain range and temperatures. The relations between plastic and total strain energy densities and number of cycles to failure are examined in order to predict the low cycle fatigue life of Cobalt-based super alloy at different temperatures. The fatigue lives is evaluated using predicted by Coffin-Manson method and strain energy methods is compared with the measured fatigue lives at different temperatures. The microstructure observing was performed for how affect able to low-cycle fatigue life by increasing the temperature.

  19. A damage mechanics based method for fatigue life prediction of the metal graded materials

    NASA Astrophysics Data System (ADS)

    Tong, Yang; Hu, Weiping; Meng, Qingchun

    2017-03-01

    Based on the continuum damage mechanics theory, the fatigue life prediction for TC4-TC11 graded material was conducted. At first, the damage evolution equation was derived, then the method to calibrate material parameters for TC4-TC11 graded material was proposed, and all the material parameters were obtained. A beam model with TC4-TC11 graded material was established by using the stratified method and finite element method. Finally, the fatigue life of TC4-TC11 graded beam was predicted.

  20. Fatigue Life Prediction of Metallic Materials Based on the Combined Nonlinear Ultrasonic Parameter

    NASA Astrophysics Data System (ADS)

    Zhang, Yuhua; Li, Xinxin; Wu, Zhenyong; Huang, Zhenfeng; Mao, Hanling

    2017-08-01

    The fatigue life prediction of metallic materials is always a tough problem that needs to be solved in the mechanical engineering field because it is very important for the secure service of mechanical components. In this paper, a combined nonlinear ultrasonic parameter based on the collinear wave mixing technique is applied for fatigue life prediction of a metallic material. Sweep experiments are first conducted to explore the influence of driving frequency on the interaction of two driving signals and the fatigue damage of specimens, and the amplitudes of sidebands at the difference frequency and sum frequency are tracked when the driving frequency changes. Then, collinear wave mixing tests are carried out on a pair of cylindrically notched specimens with different fatigue damage to explore the relationship between the fatigue damage and the relative nonlinear parameters. The experimental results show when the fatigue degree is below 65% the relative nonlinear parameter increases quickly, and the growth rate is approximately 130%. If the fatigue degree is above 65%, the increase in the relative nonlinear parameter is slow, which has a close relationship with the microstructure evolution of specimens. A combined nonlinear ultrasonic parameter is proposed to highlight the relationship of the relative nonlinear parameter and fatigue degree of specimens; the fatigue life prediction model is built based on the relationship, and the prediction error is below 3%, which is below the prediction error based on the relative nonlinear parameters at the difference and sum frequencies. Therefore, the combined nonlinear ultrasonic parameter using the collinear wave mixing method can effectively estimate the fatigue degree of specimens, which provides a fast and convenient method for fatigue life prediction.

  1. Fatigue Life Prediction of Metallic Materials Based on the Combined Nonlinear Ultrasonic Parameter

    NASA Astrophysics Data System (ADS)

    Zhang, Yuhua; Li, Xinxin; Wu, Zhenyong; Huang, Zhenfeng; Mao, Hanling

    2017-07-01

    The fatigue life prediction of metallic materials is always a tough problem that needs to be solved in the mechanical engineering field because it is very important for the secure service of mechanical components. In this paper, a combined nonlinear ultrasonic parameter based on the collinear wave mixing technique is applied for fatigue life prediction of a metallic material. Sweep experiments are first conducted to explore the influence of driving frequency on the interaction of two driving signals and the fatigue damage of specimens, and the amplitudes of sidebands at the difference frequency and sum frequency are tracked when the driving frequency changes. Then, collinear wave mixing tests are carried out on a pair of cylindrically notched specimens with different fatigue damage to explore the relationship between the fatigue damage and the relative nonlinear parameters. The experimental results show when the fatigue degree is below 65% the relative nonlinear parameter increases quickly, and the growth rate is approximately 130%. If the fatigue degree is above 65%, the increase in the relative nonlinear parameter is slow, which has a close relationship with the microstructure evolution of specimens. A combined nonlinear ultrasonic parameter is proposed to highlight the relationship of the relative nonlinear parameter and fatigue degree of specimens; the fatigue life prediction model is built based on the relationship, and the prediction error is below 3%, which is below the prediction error based on the relative nonlinear parameters at the difference and sum frequencies. Therefore, the combined nonlinear ultrasonic parameter using the collinear wave mixing method can effectively estimate the fatigue degree of specimens, which provides a fast and convenient method for fatigue life prediction.

  2. Predicting Pedestrian Flow: A Methodology and a Proof of Concept Based on Real-Life Data

    PubMed Central

    Davidich, Maria; Köster, Gerta

    2013-01-01

    Building a reliable predictive model of pedestrian motion is very challenging: Ideally, such models should be based on observations made in both controlled experiments and in real-world environments. De facto, models are rarely based on real-world observations due to the lack of available data; instead, they are largely based on intuition and, at best, literature values and laboratory experiments. Such an approach is insufficient for reliable simulations of complex real-life scenarios: For instance, our analysis of pedestrian motion under natural conditions at a major German railway station reveals that the values for free-flow velocities and the flow-density relationship differ significantly from widely used literature values. It is thus necessary to calibrate and validate the model against relevant real-life data to make it capable of reproducing and predicting real-life scenarios. In this work we aim at constructing such realistic pedestrian stream simulation. Based on the analysis of real-life data, we present a methodology that identifies key parameters and interdependencies that enable us to properly calibrate the model. The success of the approach is demonstrated for a benchmark model, a cellular automaton. We show that the proposed approach significantly improves the reliability of the simulation and hence the potential prediction accuracy. The simulation is validated by comparing the local density evolution of the measured data to that of the simulated data. We find that for our model the most sensitive parameters are: the source-target distribution of the pedestrian trajectories, the schedule of pedestrian appearances in the scenario and the mean free-flow velocity. Our results emphasize the need for real-life data extraction and analysis to enable predictive simulations. PMID:24386186

  3. Predicting pedestrian flow: a methodology and a proof of concept based on real-life data.

    PubMed

    Davidich, Maria; Köster, Gerta

    2013-01-01

    Building a reliable predictive model of pedestrian motion is very challenging: Ideally, such models should be based on observations made in both controlled experiments and in real-world environments. De facto, models are rarely based on real-world observations due to the lack of available data; instead, they are largely based on intuition and, at best, literature values and laboratory experiments. Such an approach is insufficient for reliable simulations of complex real-life scenarios: For instance, our analysis of pedestrian motion under natural conditions at a major German railway station reveals that the values for free-flow velocities and the flow-density relationship differ significantly from widely used literature values. It is thus necessary to calibrate and validate the model against relevant real-life data to make it capable of reproducing and predicting real-life scenarios. In this work we aim at constructing such realistic pedestrian stream simulation. Based on the analysis of real-life data, we present a methodology that identifies key parameters and interdependencies that enable us to properly calibrate the model. The success of the approach is demonstrated for a benchmark model, a cellular automaton. We show that the proposed approach significantly improves the reliability of the simulation and hence the potential prediction accuracy. The simulation is validated by comparing the local density evolution of the measured data to that of the simulated data. We find that for our model the most sensitive parameters are: the source-target distribution of the pedestrian trajectories, the schedule of pedestrian appearances in the scenario and the mean free-flow velocity. Our results emphasize the need for real-life data extraction and analysis to enable predictive simulations.

  4. TOPICAL REVIEW: Mechanistically based probability modelling, life prediction and reliability assessment

    NASA Astrophysics Data System (ADS)

    Wei, Robert P.; Harlow, D. Gary

    2005-01-01

    Life prediction and reliability assessment are essential components for the life-cycle engineering and management (LCEM) of modern engineered systems. These systems can range from microelectronic and bio-medical devices to large machinery and structures. To be effective, the underlying approach to LCEM must be transformed to embody mechanistically based probability modelling, vis-à-vis the more traditional experientially based statistical modelling, for predicting damage evolution and distribution. In this paper, the probability and statistical approaches are compared and differentiated. The process of model development on the basis of mechanistic understanding derived from critical experiments is illustrated through selected examples. The efficacy of this approach is illustrated through an example of the evolution and distribution of corrosion and corrosion fatigue damage in aluminium alloys in relation to aircraft that had been in long-term service.

  5. A parametric physics based creep life prediction approach to gas turbine blade conceptual design

    NASA Astrophysics Data System (ADS)

    Smith, Marcus Edward Brockbank

    The required useful service lives of gas turbine components and parts are naturally one of the major design constraints limiting the gas turbine design space. For example, the required service life of a turbine blade limits the firing temperature in the combustor, which in turn limits the performance of the gas turbine. For a cooled turbine blade, it also determines the necessary cooling flow, which has a strong impact on the turbine efficiency. In most gas turbine design practices, the life prediction is only emphasized during or after the detailed design has been completed. Limited life prediction efforts have been made in the early design stages, but these efforts capture only a few of the necessary key factors, such as centrifugal stress. Furthermore, the early stage prediction methods are usually hard coded in the gas turbine system design tools and hidden from the system designer's view. The common failure mechanisms affecting the service life, such as creep, fatigue and oxidation, are highly sensitive to the material temperatures and/or stresses. Calculation of these temperatures and stresses requires that the geometry, material properties, and operating conditions be known; information not typically available in early stages of design. Even without awareness of the errors, the resulting inaccuracy in the life prediction may mislead the system designers when examining a design space which is bounded indirectly by the inaccurate required life constraints. Furthermore, because intensive creep lifing analysis is possible only towards the end of the design process, any errors or changes will cost the engine manufacturer significant money; money that could be saved if more comprehensive creep lifing predictions were possible in the early stages of design. A rapid, physics-based life prediction method could address this problem by enabling the system designer to investigate the design space more thoroughly and accurately. Although not meant as a final decision

  6. Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network

    NASA Astrophysics Data System (ADS)

    Ben Ali, Jaouher; Chebel-Morello, Brigitte; Saidi, Lotfi; Malinowski, Simon; Fnaiech, Farhat

    2015-05-01

    Accurate remaining useful life (RUL) prediction of critical assets is an important challenge in condition based maintenance to improve reliability and decrease machine's breakdown and maintenance's cost. Bearing is one of the most important components in industries which need to be monitored and the user should predict its RUL. The challenge of this study is to propose an original feature able to evaluate the health state of bearings and to estimate their RUL by Prognostics and Health Management (PHM) techniques. In this paper, the proposed method is based on the data-driven prognostic approach. The combination of Simplified Fuzzy Adaptive Resonance Theory Map (SFAM) neural network and Weibull distribution (WD) is explored. WD is used just in the training phase to fit measurement and to avoid areas of fluctuation in the time domain. SFAM training process is based on fitted measurements at present and previous inspection time points as input. However, the SFAM testing process is based on real measurements at present and previous inspections. Thanks to the fuzzy learning process, SFAM has an important ability and a good performance to learn nonlinear time series. As output, seven classes are defined; healthy bearing and six states for bearing degradation. In order to find the optimal RUL prediction, a smoothing phase is proposed in this paper. Experimental results show that the proposed method can reliably predict the RUL of rolling element bearings (REBs) based on vibration signals. The proposed prediction approach can be applied to prognostic other various mechanical assets.

  7. Research on the life prediction of light-emitting diode based on neural network

    NASA Astrophysics Data System (ADS)

    Song, Yang; Qian, Keyuan

    2017-08-01

    This paper establishes a neural network model that can predict LED lifetime. The ideal factor, luminous flux, light quantum number and fluorescence efficiency are taken as input variables of neural network, whose output variable is the life of the LED. Through the repeated training of the experimental sample, the hidden layer number, the hidden layer unit number and the transfer function of the neural network are determined, and the life prediction model function is established. Predicting the LED life only need once measurement of the LED through the model function, which can predict different types of LED life on the same time. Respectively, the model can precisely predict LED life under the using current of 60mA and 40mA. The accuracy of the life prediction model under aging current can reach more than 85%.

  8. Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Gaussian Processes Mixture

    PubMed Central

    Li, Lingling; Wang, Pengchong; Chao, Kuei-Hsiang; Zhou, Yatong; Xie, Yang

    2016-01-01

    The remaining useful life (RUL) prediction of Lithium-ion batteries is closely related to the capacity degeneration trajectories. Due to the self-charging and the capacity regeneration, the trajectories have the property of multimodality. Traditional prediction models such as the support vector machines (SVM) or the Gaussian Process regression (GPR) cannot accurately characterize this multimodality. This paper proposes a novel RUL prediction method based on the Gaussian Process Mixture (GPM). It can process multimodality by fitting different segments of trajectories with different GPR models separately, such that the tiny differences among these segments can be revealed. The method is demonstrated to be effective for prediction by the excellent predictive result of the experiments on the two commercial and chargeable Type 1850 Lithium-ion batteries, provided by NASA. The performance comparison among the models illustrates that the GPM is more accurate than the SVM and the GPR. In addition, GPM can yield the predictive confidence interval, which makes the prediction more reliable than that of traditional models. PMID:27632176

  9. Creep life prediction based on stochastic model of microstructurally short crack growth

    NASA Technical Reports Server (NTRS)

    Kitamura, Takayuki; Ohtani, Ryuichi

    1988-01-01

    A nondimensional model of microstructurally short crack growth in creep is developed based on a detailed observation of the creep fracture process of 304 stainless steel. In order to deal with the scatter of small crack growth rate data caused by microstructural inhomogeneity, a random variable technique is used in the model. A cumulative probability of the crack length at an arbitary time, G(bar a, bar t), and that of the time when a crack reaches an arbitary length, F(bar t, bar a), are obtained numerically by means of a Monte Carlo method. G(bar a, bar t), and F(bar t, bar a) are the probabilities for a single crack. However, multiple cracks generally initiate on the surface of a smooth specimen from the early stage of creep life to the final stage. TAking into account the multiple crack initiations, the actual crack length distribution observed on the surface of a specimen is predicted by the combination of probabilities for a single crack. The prediction shows a fairly good agreement with the experimental result for creep of 304 stainless steel at 923 K. The probability of creep life is obtained from an assumption that creep fracture takes place when the longest crack reaches a critical length. The observed and predicted scatter of the life is fairly small for the specimens tested.

  10. Creep life prediction based on stochastic model of microstructurally short crack growth

    NASA Technical Reports Server (NTRS)

    Kitamura, Takayuki; Ohtani, Ryuichi

    1989-01-01

    A nondimensional model of microstructurally short crack growth in creep is developed based on a detailed observation of the creep fracture process of 304 stainless steel. In order to deal with the scatter of small crack growth rate data caused by microstructural inhomogeneity, a random variable technique is used in the model. A cumulative probability of the crack length at an arbitrary time, G(bar a, bar t), and that of the time when a crack reaches an arbitrary length, F(bar t, bar a), are obtained numerically by means of a Monte Carlo method. G(bar a, bar t), and F(bar t, bar a) are the probabilities for a single crack. However, multiple cracks generally initiate on the surface of a smooth specimen from the early stage of creep life to the final stage. Taking into account the multiple crack initiations, the actual crack length distribution observed on the surface of a specimen is predicted by the combination of probabilities for a single crack. The prediction shows a fairly good agreement with the experimental result for creep of 304 stainless steel at 923 K. The probability of creep life is obtained from an assumption that creep fracture takes place when the longest crack reaches a critical length. The observed and predicted scatter of the life is fairly small for the specimens tested.

  11. Application of an Energy-Based Life Prediction Model to Bithermal and Thermomechanical Fatigue

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, V. M.; Kalluri, Sreeramesh; Halford, Gary R.

    1994-01-01

    The inelastic hysteresis energy applied to the material in a cycle is used as the basis for predicting nonisothermal fatigue life of a wrought cobalt-base superalloy, Haynes 188, from isothermal fatigue data. Damage functions that account for hold-time effects and time-dependent environmental phenomena such as oxidation and hot corrosion are proposed in terms of the inelastic hysteresis energy per cycle. The proposed damage functions are used to predict the bithermal and thermomechanical fatigue lives of Haynes 188 between 316 and 760 C from isothermal fatigue data. Predicted fatigue lives of all but two of the nonisothermal tests are within a factor of 1.5 of the experimentally observed lives.

  12. Application of an energy-based life prediction model to bithermal and thermomechanical fatigue

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, V. M.; Kalluri, Sreeramesh; Halford, Gary R.

    1994-07-01

    The inelastic hysteresis energy applied to the material in a cycle is used as the basis for predicting nonisothermal fatigue life of a wrought cobalt-base superalloy, Haynes 188, from isothermal fatigue data. Damage functions that account for hold-time effects and time-dependent environmental phenomena such as oxidation and hot corrosion are proposed in terms of the inelastic hysteresis energy per cycle. The proposed damage functions are used to predict the bithermal and thermomechanical fatigue lives of Haynes 188 between 316 and 760 C from isothermal fatigue data. Predicted fatigue lives of all but two of the nonisothermal tests are within a factor of 1.5 of the experimentally observed lives.

  13. Predicting service life margins

    NASA Technical Reports Server (NTRS)

    Egan, G. F.

    1971-01-01

    Margins are developed for equipment susceptible to malfunction due to excessive time or operation cycles, and for identifying limited life equipment so monitoring and replacing is accomplished before hardware failure. Method applies to hardware where design service is established and where reasonable expected usage prediction is made.

  14. A high temperature fatigue life prediction computer code based on the Total Strain Version of Strainrange Partitioning (SRP)

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.; Saltsman, James F.

    1991-01-01

    A recently developed high-temperature fatigue life prediction computer code is presented, based on the Total Strain version of Strainrange Partitioning (TS-SRP). Included in this code are procedures for characterizing the creep-fatigue durability behavior of an alloy according to TS-SRP guidelines and predicting cyclic life for complex cycle types for both isothermal and thermomechanical conditions. A reasonably extensive materials properties database is included with the code.

  15. [Prediction of life expectancy for prostate cancer patients based on the kinetic theory of aging of living systems].

    PubMed

    Viktorov, A A; Zharinov, G M; Neklasova, N Ju; Morozova, E E

    2017-01-01

    The article presents a methodical approach for prediction of life expectancy for people diagnosed with prostate cancer based on the kinetic theory of aging of living systems. The life expectancy is calculated by solving the differential equation for the rate of aging for three different stage of life - «normal» life, life with prostate cancer and life after combination therapy for prostate cancer. The mathematical model of aging for each stage of life has its own parameters identified by the statistical analysis of healthcare data from the Zharinov's databank and Rosstat CDR NES databank. The core of the methodical approach is the statistical correlation between growth rate of the prostate specific antigen level (PSA-level) or the PSA doubling time (PSA DT) before therapy, and lifespan: the higher the PSA DT is, the greater lifespan. The patients were grouped under the «fast PSA DT» and «slow PSA DT» categories. The satisfactory matching between calculations and experiment is shown. The prediction error of group life expectancy is due to the completeness and reliability of the main data source. A detailed monitoring of the basic health indicators throughout the each person life in each analyzed group is required. The absence of this particular information makes it impossible to predict the individual life expectancy.

  16. Strainrange partitioning - A total strain range version. [for creep fatigue life prediction by summing inelastic and elastic strain-range-life relations for two Ni base superalloys

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Saltsman, J. F.

    1983-01-01

    Procedures are presented for expressing the Strainrange Partitioning (SRP) method for creep fatigue life prediction in terms of total strain range. Inelastic and elastic strain-range - life relations are summed to give total strain-range - life relations. The life components due to inelastic strains are dealt with using conventional SRP procedures while the life components due to elastic strains are expressed as families of time-dependent terms for each type of SRP cycle. Cyclic constitutive material behavior plays an important role in establishing the elastic strain-range life relations as well as the partitioning of the inelastic strains. To apply the approach, however, it is not necessary to have to determine the magnitude of the inelastic strain range. The total strain SRP approach is evaluated and verified using two nickel base superalloys, AF2-1DA and Rene 95. Excellent agreement is demonstrated between observed and predicted cyclic lifetimes with 70 to 80 percent of the predicted lives falling within factors of two of the observed lives. The total strain-range SRP approach should be of considerable practical value to designers who are faced with creep-fatigue problems for which the inelastic strains cannot be calculated with sufficient accuracy to make reliable life predictions by the conventional inelastic strain range SRP approach.

  17. Multi-scale mechanism based life prediction of polymer matrix composites for high temperature airframe applications

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Priyank

    A multi-scale mechanism-based life prediction model is developed for high-temperature polymer matrix composites (HTPMC) for high temperature airframe applications. In the first part of this dissertation the effect of Cloisite 20A (C20A) nano-clay compounding on the thermo-oxidative weight loss and the residual stresses due to thermal oxidation for a thermoset polymer bismaleimide (BMI) are investigated. A three-dimensional (3-D) micro-mechanics based finite element analysis (FEA) was conducted to investigate the residual stresses due to thermal oxidation using an in-house FEA code (NOVA-3D). In the second part of this dissertation, a novel numerical-experimental methodology is outlined to determine cohesive stress and damage evolution parameters for pristine as well as isothermally aged (in air) polymer matrix composites. A rate-dependent viscoelastic cohesive layer model was implemented in an in-house FEA code to simulate the delamination initiation and propagation in unidirectional polymer composites before and after aging. Double cantilever beam (DCB) experiments were conducted (at UT-Dallas) on both pristine and isothermally aged IM-7/BMI composite specimens to determine the model parameters. The J-Integral based approach was adapted to extract cohesive stresses near the crack tip. Once the damage parameters had been characterized, the test-bed FEA code employed a micromechanics based viscoelastic cohesive layer model to numerically simulate the DCB experiment. FEA simulation accurately captures the macro-scale behavior (load-displacement history) simultaneously with the micro-scale behavior (crack-growth history).

  18. Inclusions Size-based Fatigue Life Prediction Model of NiTi Alloy for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Urbano, Marco Fabrizio; Cadelli, Andrea; Sczerzenie, Frank; Luccarelli, Pietro; Beretta, Stefano; Coda, Alberto

    2015-06-01

    Current standards consider the size and distribution of inclusions in semi-finished material, but do not place requirements on final biomedical devices made of NiTi shape memory alloys. In this paper, we analyze this by comparing the fatigue performances of NiTi superelastic wires obtained by different processes through a simple bilinear model of fatigue response in terms of strain life. The fracture surfaces of failed wires are analyzed through SEM microscopy and data regarding the presence of particles, and their morphology is recorded and analyzed using Type-I extreme value distribution. The results show a strong correlation between the fatigue limit of wires (in terms of strain) and the predicted extreme values of inclusions at fracture origin. Then, following the concept of treating the inclusions as `small cracks,' a simple relationship between fatigue limit strain range and inclusion size is proposed based on ΔKth data from the literature. The model is compared with the fatigue data obtained from the tested wires.

  19. Damage tolerance based life prediction in gas turbine engine blades under vibratory high cycle fatigue

    SciTech Connect

    Walls, D.P.; deLaneuville, R.E.; Cunningham, S.E.

    1997-01-01

    A novel fracture mechanics approach has been used to predict crack propagation lives in gas turbine engine blades subjected to vibratory high cycle fatigue (HCF). The vibratory loading included both a resonant mode and a nonresonant mode, with one blade subjected to only the nonresonant mode and another blade to both modes. A life prediction algorithm was utilized to predict HCF propagation lives for each case. The life prediction system incorporates a boundary integral element (BIE) derived hybrid stress intensity solution, which accounts for the transition from a surface crack to corner crack to edge crack. It also includes a derivation of threshold crack length from threshold stress intensity factors to give crack size limits for no propagation. The stress intensity solution was calibrated for crack aspect ratios measured directly from the fracture surfaces. The model demonstrates the ability to correlate predicted missions to failure with values deduced from fractographic analysis. This analysis helps to validate the use of fracture mechanics approaches for assessing damage tolerance in gas turbine engine components subjected to combined steady and vibratory stresses.

  20. A high temperature fatigue life prediction computer code based on the total strain version of StrainRange Partitioning (SRP)

    NASA Astrophysics Data System (ADS)

    McGaw, Michael A.; Saltsman, James F.

    1993-10-01

    A recently developed high-temperature fatigue life prediction computer code is presented and an example of its usage given. The code discussed is based on the Total Strain version of Strainrange Partitioning (TS-SRP). Included in this code are procedures for characterizing the creep-fatigue durability behavior of an alloy according to TS-SRP guidelines and predicting cyclic life for complex cycle types for both isothermal and thermomechanical conditions. A reasonably extensive materials properties database is included with the code.

  1. A high temperature fatigue life prediction computer code based on the total strain version of StrainRange Partitioning (SRP)

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.; Saltsman, James F.

    1993-01-01

    A recently developed high-temperature fatigue life prediction computer code is presented and an example of its usage given. The code discussed is based on the Total Strain version of Strainrange Partitioning (TS-SRP). Included in this code are procedures for characterizing the creep-fatigue durability behavior of an alloy according to TS-SRP guidelines and predicting cyclic life for complex cycle types for both isothermal and thermomechanical conditions. A reasonably extensive materials properties database is included with the code.

  2. Fatigue Life Prediction Based on Crack Closure and Equivalent Initial Flaw Size.

    PubMed

    Wang, Qiang; Zhang, Wei; Jiang, Shan

    2015-10-21

    Failure analysis and fatigue life prediction are necessary and critical for engineering structural materials. In this paper, a general methodology is proposed to predict fatigue life of smooth and circular-hole specimens, in which the crack closure model and equivalent initial flaw size (EIFS) concept are employed. Different effects of crack closure on small crack growth region and long crack growth region are considered in the proposed method. The EIFS is determined by the fatigue limit and fatigue threshold stress intensity factor △Kth. Fatigue limit is directly obtained from experimental data, and △Kth is calculated by using a back-extrapolation method. Experimental data for smooth and circular-hole specimens in three different alloys (Al2024-T3, Al7075-T6 and Ti-6Al-4V) under multiple stress ratios are used to validate the method. In the validation section, Semi-circular surface crack and quarter-circular corner crack are assumed to be the initial crack shapes for the smooth and circular-hole specimens, respectively. A good agreement is observed between model predictions and experimental data. The detailed analysis and discussion are performed on the proposed model. Some conclusions and future work are given.

  3. Fatigue Life Prediction Based on Crack Closure and Equivalent Initial Flaw Size

    PubMed Central

    Wang, Qiang; Zhang, Wei; Jiang, Shan

    2015-01-01

    Failure analysis and fatigue life prediction are necessary and critical for engineering structural materials. In this paper, a general methodology is proposed to predict fatigue life of smooth and circular-hole specimens, in which the crack closure model and equivalent initial flaw size (EIFS) concept are employed. Different effects of crack closure on small crack growth region and long crack growth region are considered in the proposed method. The EIFS is determined by the fatigue limit and fatigue threshold stress intensity factor △Kth. Fatigue limit is directly obtained from experimental data, and △Kth is calculated by using a back-extrapolation method. Experimental data for smooth and circular-hole specimens in three different alloys (Al2024-T3, Al7075-T6 and Ti-6Al-4V) under multiple stress ratios are used to validate the method. In the validation section, Semi-circular surface crack and quarter-circular corner crack are assumed to be the initial crack shapes for the smooth and circular-hole specimens, respectively. A good agreement is observed between model predictions and experimental data. The detailed analysis and discussion are performed on the proposed model. Some conclusions and future work are given. PMID:28793625

  4. Developing a support vector machine based QSPR model for prediction of half-life of some herbicides.

    PubMed

    Samghani, Kobra; HosseinFatemi, Mohammad

    2016-07-01

    The half-life (t1/2) of 58 herbicides were modeled by quantitative structure-property relationship (QSPR) based molecular structure descriptors. After calculation and the screening of a large number of molecular descriptors, the most relevant those ones selected by stepwise multiple linear regression were used for developing linear and nonlinear models which developed by using multiple linear regression and support vector machine, respectively. Comparison between statistical parameters of linear and nonlinear models indicates the suitability of SVM over MLR model for predicting the half-life of herbicides. The statistical parameters of R(2) and standard error for training set of SVM model were; 0.96 and 0.087, respectively, and were 0.93 and 0.092 for the test set. The SVM model was evaluated by leave one out cross validation test, which its result indicates the robustness and predictability of the model. The established SVM model was used for predicting the half-life of other herbicides that are located in the applicability domain of model that were determined via leverage approach. The results of this study indicate that the relationship among selected molecular descriptors and herbicide's half-life is non-linear. These results emphases that the process of degradation of herbicides in the environment is very complex and can be affected by various environmental and structural features, therefore simple linear model cannot be able to successfully predict it.

  5. Development of a Late-Life Dementia Prediction Index with Supervised Machine Learning in the Population-Based CAIDE Study.

    PubMed

    Pekkala, Timo; Hall, Anette; Lötjönen, Jyrki; Mattila, Jussi; Soininen, Hilkka; Ngandu, Tiia; Laatikainen, Tiina; Kivipelto, Miia; Solomon, Alina

    2017-01-01

    This study aimed to develop a late-life dementia prediction model using a novel validated supervised machine learning method, the Disease State Index (DSI), in the Finnish population-based CAIDE study. The CAIDE study was based on previous population-based midlife surveys. CAIDE participants were re-examined twice in late-life, and the first late-life re-examination was used as baseline for the present study. The main study population included 709 cognitively normal subjects at first re-examination who returned to the second re-examination up to 10 years later (incident dementia n = 39). An extended population (n = 1009, incident dementia 151) included non-participants/non-survivors (national registers data). DSI was used to develop a dementia index based on first re-examination assessments. Performance in predicting dementia was assessed as area under the ROC curve (AUC). AUCs for DSI were 0.79 and 0.75 for main and extended populations. Included predictors were cognition, vascular factors, age, subjective memory complaints, and APOE genotype. The supervised machine learning method performed well in identifying comprehensive profiles for predicting dementia development up to 10 years later. DSI could thus be useful for identifying individuals who are most at risk and may benefit from dementia prevention interventions.

  6. Development of a Late-Life Dementia Prediction Index with Supervised Machine Learning in the Population-Based CAIDE Study

    PubMed Central

    Pekkala, Timo; Hall, Anette; Lötjönen, Jyrki; Mattila, Jussi; Soininen, Hilkka; Ngandu, Tiia; Laatikainen, Tiina; Kivipelto, Miia; Solomon, Alina

    2016-01-01

    Background and objective: This study aimed to develop a late-life dementia prediction model using a novel validated supervised machine learning method, the Disease State Index (DSI), in the Finnish population-based CAIDE study. Methods: The CAIDE study was based on previous population-based midlife surveys. CAIDE participants were re-examined twice in late-life, and the first late-life re-examination was used as baseline for the present study. The main study population included 709 cognitively normal subjects at first re-examination who returned to the second re-examination up to 10 years later (incident dementia n = 39). An extended population (n = 1009, incident dementia 151) included non-participants/non-survivors (national registers data). DSI was used to develop a dementia index based on first re-examination assessments. Performance in predicting dementia was assessed as area under the ROC curve (AUC). Results: AUCs for DSI were 0.79 and 0.75 for main and extended populations. Included predictors were cognition, vascular factors, age, subjective memory complaints, and APOE genotype. Conclusion: The supervised machine learning method performed well in identifying comprehensive profiles for predicting dementia development up to 10 years later. DSI could thus be useful for identifying individuals who are most at risk and may benefit from dementia prevention interventions. PMID:27802228

  7. An integrated Gaussian process regression for prediction of remaining useful life of slow speed bearings based on acoustic emission

    NASA Astrophysics Data System (ADS)

    Aye, S. A.; Heyns, P. S.

    2017-02-01

    This paper proposes an optimal Gaussian process regression (GPR) for the prediction of remaining useful life (RUL) of slow speed bearings based on a novel degradation assessment index obtained from acoustic emission signal. The optimal GPR is obtained from an integration or combination of existing simple mean and covariance functions in order to capture the observed trend of the bearing degradation as well the irregularities in the data. The resulting integrated GPR model provides an excellent fit to the data and improves over the simple GPR models that are based on simple mean and covariance functions. In addition, it achieves a low percentage error prediction of the remaining useful life of slow speed bearings. These findings are robust under varying operating conditions such as loading and speed and can be applied to nonlinear and nonstationary machine response signals useful for effective preventive machine maintenance purposes.

  8. Ceramic Life Prediction Parameters

    DTIC Science & Technology

    1980-05-01

    prediction methodology is shown in the form of a flow chart in Fig. 1, and entails material characterization including the two parameter Weibull (volume...temperatures between 1100 and 1250CC, Fig. 24, is interpreted as indicative of blunting of the microcrack due to the viscous flow . It is...retained in two slotted SiC holders by large SiC pins. The SiC holders are retained in water cooled metal adaptors which in turn are attached

  9. Effect of Individual Component Life Distribution on Engine Life Prediction

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.; Hendricks, Robert C.; Soditus, Sherry M.

    2003-01-01

    The effect of individual engine component life distributions on engine life prediction was determined. A Weibull-based life and reliability analysis of the NASA Energy Efficient Engine was conducted. The engine s life at a 95 and 99.9 percent probability of survival was determined based upon the engine manufacturer s original life calculations and assumed values of each of the component s cumulative life distributions as represented by a Weibull slope. The lives of the high-pressure turbine (HPT) disks and blades were also evaluated individually and as a system in a similar manner. Knowing the statistical cumulative distribution of each engine component with reasonable engineering certainty is a condition precedent to predicting the life and reliability of an entire engine. The life of a system at a given reliability will be less than the lowest-lived component in the system at the same reliability (probability of survival). Where Weibull slopes of all the engine components are equal, the Weibull slope had a minimal effect on engine L(sub 0.1) life prediction. However, at a probability of survival of 95 percent (L(sub 5) life), life decreased with increasing Weibull slope.

  10. V-Notched Bar Creep Life Prediction: GH3536 Ni-Based Superalloy Under Multiaxial Stress State

    NASA Astrophysics Data System (ADS)

    Zhang, D. X.; Wang, J. P.; Wen, Z. X.; Liu, D. S.; Yue, Z. F.

    2016-07-01

    In this study, creep experiments on smooth and circumferential V-type notched round bars were conducted in GH3536 Ni-based superalloy at 750 °C to identify notch strengthening effect in notched specimens. FE analysis was carried out, coupled with continuum damage mechanics (CDM), to analyze stress distribution and damage evolution under multiaxial stress state. The creep deformation of smooth specimens and the rupture life of both smooth and notched specimens showed good agreement between experimental results and FE analysis predictions; the creep rupture life for the notched specimen was successfully predicted via the "skeletal point" concept. Both creep damage analysis and the observed fracture morphology suggest that creep rupture started first at the root in the V-type notched specimens, and shifted to the region close to the notch root when the notch was relatively shallow compared to U-type notched specimens.

  11. An Energy-Critical Plane Based Fatigue Damage Approach for the Life Prediction of Metal Alloys

    NASA Astrophysics Data System (ADS)

    Pitatzis, N.; Savaidis, G.

    2016-11-01

    This paper presents a new energy-critical plane based fatigue damage approach for the assessment of the fatigue life under uniaxial and multiaxial proportional and non-proportional fatigue loading. The proposed approximate method, based on Farahani's multiaxial fatigue damage model, takes into account the critical plane orientations during a loading cycle and the values of the respective damage parameters on them. The uniqueness of the proposed method lies on the fact that it considers a weighted contribution of each critical plane orientation to the material damage. The relative weighting factors depend on the declination of each critical plane with respect to the critical plane, where the damage parameters exhibit their maximum values during a fatigue loading cycle. Herein, several low, mid and high-cycle fatigue loading cases are being investigated. The induced elastic-plastic stress-strain states are approximated by means of respective finite element analyses (FEA). Several experimental fatigue data derived from uniaxial and multiaxial fatigue tests on StE460 steel alloy thin-walled hourglass-type specimens have been used to verify the model's calculation accuracy. Comparison of experimental and calculated fatigue lives confirm remarkable fatigue life calculation accuracy in all cases examined.

  12. [Prediction method of rural landscape pattern evolution based on life cycle: a case study of Jinjing Town, Hunan Province, China].

    PubMed

    Ji, Xiang; Liu, Li-Ming; Li, Hong-Qing

    2014-11-01

    Taking Jinjing Town in Dongting Lake area as a case, this paper analyzed the evolution of rural landscape patterns by means of life cycle theory, simulated the evolution cycle curve, and calculated its evolution period, then combining CA-Markov model, a complete prediction model was built based on the rule of rural landscape change. The results showed that rural settlement and paddy landscapes of Jinjing Town would change most in 2020, with the rural settlement landscape increased to 1194.01 hm2 and paddy landscape greatly reduced to 3090.24 hm2. The quantitative and spatial prediction accuracies of the model were up to 99.3% and 96.4%, respectively, being more explicit than single CA-Markov model. The prediction model of rural landscape patterns change proposed in this paper would be helpful for rural landscape planning in future.

  13. A co-training-based approach for prediction of remaining useful life utilizing both failure and suspension data

    NASA Astrophysics Data System (ADS)

    Hu, Chao; Youn, Byeng D.; Kim, Taejin; Wang, Pingfeng

    2015-10-01

    Traditional data-driven prognostics often requires some amount of failure data for the offline training in order to achieve good accuracy for the online prediction. Failure data refer to condition monitoring data collected from the very beginning of an engineered system's lifetime till the occurrence of its failure. However, in many engineered systems, failure data are fairly expensive and time-consuming to obtain while suspension data are readily available. Suspension data refer to condition monitoring data acquired from the very beginning of an engineered system's lifetime till planned inspection or maintenance when the system is taken out of service. In such cases, it becomes essentially critical to utilize suspension data which may carry rich information regarding the degradation trend and help achieve more accurate remaining useful life (RUL) prediction. To this end, this paper proposes a co-training-based data-driven prognostic approach, denoted by COPROG, which uses two data-driven algorithms with each predicting RULs of suspension units for the other. After a suspension unit is chosen and its RUL is predicted by an individual algorithm, it becomes a virtual failure unit that is added to the training data set of the other individual algorithm. Results obtained from two case studies suggest that COPROG gives more accurate RUL prediction, as compared to any individual algorithm with no use of suspension data, and that COPROG can effectively exploit suspension data to improve the prognostic accuracy.

  14. An Improved Wavelet Packet-Chaos Model for Life Prediction of Space Relays Based on Volterra Series

    PubMed Central

    Li, Lingling; Han, Ye; Chen, Wenyuan; Lv, Congmin; Sun, Dongwang

    2016-01-01

    In this paper, an improved algorithm of wavelet packet-chaos model for life prediction of space relays based on volterra series is proposed. In the proposed method, the high and low frequency time sequence components of performance parameters are obtained by employing the improved wavelet packet transform to decompose the performance parameters of the relay into multiple scales. Then the optimization algorithm of parameters in volterra series is improved, and is used to construct a chaotic forecasting model for the high and low frequency time sequence components gained by the wavelet packet transform. At last, the chaotic forecasting results of the high and low frequency components are combined by taking the wavelet packet reconstruction approach, so as to predict the lifetime of the studied space relay. The algorithm can predict the life curve of the relay accurately and reflect the characteristics of the relay performance with sufficient accuracy. The proposed method is validated via a case study of a space relay. PMID:27355578

  15. A Microstructure-Based Time-Dependent Crack Growth Model for Life and Reliability Prediction of Turbopropulsion Systems

    NASA Astrophysics Data System (ADS)

    Chan, Kwai S.; Enright, Michael P.; Moody, Jonathan; Fitch, Simeon H. K.

    2014-01-01

    The objective of this investigation was to develop an innovative methodology for life and reliability prediction of hot-section components in advanced turbopropulsion systems. A set of generic microstructure-based time-dependent crack growth (TDCG) models was developed and used to assess the sources of material variability due to microstructure and material parameters such as grain size, activation energy, and crack growth threshold for TDCG. A comparison of model predictions and experimental data obtained in air and in vacuum suggests that oxidation is responsible for higher crack growth rates at high temperatures, low frequencies, and long dwell times, but oxidation can also induce higher crack growth thresholds (Δ K th or K th) under certain conditions. Using the enhanced risk analysis tool and material constants calibrated to IN 718 data, the effect of TDCG on the risk of fracture in turboengine components was demonstrated for a generic rotor design and a realistic mission profile using the DARWIN® probabilistic life-prediction code. The results of this investigation confirmed that TDCG and cycle-dependent crack growth in IN 718 can be treated by a simple summation of the crack increments over a mission. For the temperatures considered, TDCG in IN 718 can be considered as a K-controlled or a diffusion-controlled oxidation-induced degradation process. This methodology provides a pathway for evaluating microstructural effects on multiple damage modes in hot-section components.

  16. Physics based modeling of a series parallel battery pack for asymmetry analysis, predictive control and life extension

    NASA Astrophysics Data System (ADS)

    Ganesan, Nandhini; Basu, Suman; Hariharan, Krishnan S.; Kolake, Subramanya Mayya; Song, Taewon; Yeo, Taejung; Sohn, Dong Kee; Doo, Seokgwang

    2016-08-01

    Lithium-Ion batteries used for electric vehicle applications are subject to large currents and various operation conditions, making battery pack design and life extension a challenging problem. With increase in complexity, modeling and simulation can lead to insights that ensure optimal performance and life extension. In this manuscript, an electrochemical-thermal (ECT) coupled model for a 6 series × 5 parallel pack is developed for Li ion cells with NCA/C electrodes and validated against experimental data. Contribution of the cathode to overall degradation at various operating conditions is assessed. Pack asymmetry is analyzed from a design and an operational perspective. Design based asymmetry leads to a new approach of obtaining the individual cell responses of the pack from an average ECT output. Operational asymmetry is demonstrated in terms of effects of thermal gradients on cycle life, and an efficient model predictive control technique is developed. Concept of reconfigurable battery pack is studied using detailed simulations that can be used for effective monitoring and extension of battery pack life.

  17. Predicting quality of life after breast cancer surgery using ANN-based models: performance comparison with MR.

    PubMed

    Tsai, Jinn-Tsong; Hou, Ming-Feng; Chen, Yao-Mei; Wan, Thomas T H; Kao, Hao-Yun; Shi, Hon-Yi

    2013-05-01

    The goal was to develop models for predicting long-term quality of life (QOL) after breast cancer surgery. Data were obtained from 203 breast cancer patients who completed the SF-36 health survey before and 2 years after surgery. Two of the models used to predict QOL after surgery were artificial neural networks (ANNs), which included one multilayer perceptron (MLP) network and one radial basis function (RBF) network. The third model was a multiple regression (MR) model. The criteria for evaluating the accuracy of the system models were mean square error (MSE) and mean absolute percentage error (MAPE). Compared to the MR model, the ANN-based models generally had smaller MSE values and smaller MAPE values in the test data set. One exception was the second year MSE for the test value. Most MAPE values for the ANN models ranged from 10 to 20 %. The one exception was the 6-month physical component summary score (PCS), which ranged from 23.19 to 26.86 %. Comparison of criteria for evaluating system performance showed that the ANN-based systems outperformed the MR system in terms of prediction accuracy. In both the MLP and RBF networks, surgical procedure type was the most sensitive parameter affecting PCS, and preoperative functional status was the most sensitive parameter affecting mental component summary score. The three systems can be combined to obtain a conservative prediction, and a combined approach is a potential supplemental tool for predicting long-term QOL after surgical treatment for breast cancer. Patients should also be advised that their postoperative QOL might depend not only on the success of their operations but also on their preoperative functional status.

  18. MRI-Based Classification Models in Prediction of Mild Cognitive Impairment and Dementia in Late-Life Depression

    PubMed Central

    Lebedeva, Aleksandra K.; Westman, Eric; Borza, Tom; Beyer, Mona K.; Engedal, Knut; Aarsland, Dag; Selbaek, Geir; Haberg, Asta K.

    2017-01-01

    Objective: Late-life depression (LLD) is associated with development of different types of dementia. Identification of LLD patients, who will develop cognitive decline, i.e., the early stage of dementia would help to implement interventions earlier. The purpose of this study was to assess whether structural brain magnetic resonance imaging (MRI) in LLD patients can predict mild cognitive impairment (MCI) or dementia 1 year prior to the diagnosis. Methods: LLD patients underwent brain MRI at baseline and repeated clinical assessment after 1-year. Structural brain measurements were obtained using Freesurfer software (v. 5.1) from the T1W brain MRI images. MRI-based Random Forest classifier was used to discriminate between LLD who developed MCI or dementia after 1-year follow-up and cognitively stable LLD. Additionally, a previously established Random Forest model trained on 185 patients with Alzheimer’s disease (AD) vs. 225 cognitively normal elderly from the Alzheimer’s disease Neuroimaging Initiative was tested on the LLD data set (ADNI model). Results: MCI and dementia diagnoses were predicted in LLD patients with 76%/68%/84% accuracy/sensitivity/specificity. Adding the baseline Mini-Mental State Examination (MMSE) scores to the models improved accuracy/sensitivity/specificity to 81%/75%/86%. The best model predicted MCI status alone using MRI and baseline MMSE scores with accuracy/sensitivity/specificity of 89%/85%/90%. The most important region for all the models was right ventral diencephalon, including hypothalamus. Its volume correlated negatively with the number of depressive episodes. ADNI model trained on AD vs. Controls using SV could predict MCI-DEM patients with 67% accuracy. Conclusion: LDD patients developing MCI and dementia can be discriminated from LLD patients remaining cognitively stable with good accuracy based on baseline structural MRI alone. Baseline MMSE score improves prediction accuracy. Ventral diencephalon, including the hypothalamus

  19. Prediction of the Maximum Temperature for Life Based on the Stability of Metabolites to Decomposition in Water

    PubMed Central

    Bains, William; Xiao, Yao; Yu, Changyong

    2015-01-01

    The components of life must survive in a cell long enough to perform their function in that cell. Because the rate of attack by water increases with temperature, we can, in principle, predict a maximum temperature above which an active terrestrial metabolism cannot function by analysis of the decomposition rates of the components of life, and comparison of those rates with the metabolites’ minimum metabolic half-lives. The present study is a first step in this direction, providing an analytical framework and method, and analyzing the stability of 63 small molecule metabolites based on literature data. Assuming that attack by water follows a first order rate equation, we extracted decomposition rate constants from literature data and estimated their statistical reliability. The resulting rate equations were then used to give a measure of confidence in the half-life of the metabolite concerned at different temperatures. There is little reliable data on metabolite decomposition or hydrolysis rates in the literature, the data is mostly confined to a small number of classes of chemicals, and the data available are sometimes mutually contradictory because of varying reaction conditions. However, a preliminary analysis suggests that terrestrial biochemistry is limited to environments below ~150–180 °C. We comment briefly on why pressure is likely to have a small effect on this. PMID:25821932

  20. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Stewart, S. E.; Ortiz, M.

    1988-01-01

    A life prediction model for correlating the spallation life of ceramic thermal barrier coatings is developed which includes both cyclic and time-dependent damage. The cyclic damage is related to the calculated cyclic inelastic strain range, while the time-dependent damage is related to the oxidation kinetics at the bond-ceramic interface. The cyclic inelastic strain range is calculated using a modified form of the Walker viscoplastic material model; calculation of the oxidation kinetics is based on traditional oxidation algorithms using experimentally determined parameters. The correlation between the actual and predicted spallation lives is within a factor of 3.

  1. Kinetics of changes in shelf life parameters during storage of pearl millet based kheer mix and development of a shelf life prediction model.

    PubMed

    Bunkar, Durga Shankar; Jha, Alok; Mahajan, Ankur; Unnikrishnan, V S

    2014-12-01

    Pearl millet, dairy whitener and sugar powder were blended for preparing pearl millet kheer mix. Pearl millet based kheer mix samples were stored at 8, 25, 37 and 45 °C under nitrogen flushing environment. Changes in HMF and TBA formation in the dry mix and sensory changes in reconstituted kheer were studied upto 180 days. In fresh dry mix, the average value of HMF recorded was 4.87 μmol/g which increased to 11.23, 13.67, 18.13, and 21.43 μmol/g at 8, 25, 37 and 45 °C, respectively after 180 days of storage. From an initial value of 0.067, the TBA value increased to 0.219, 0.311, 0.432 and 0.613 at 532 nm at 8, 25, 37 and 45 °C, respectively after 180 days of storage. Data generated from the chemical kinetics of HMF and TBA development that progressed during storage of pearl millet kheer mix were modeled using Arrhenius equations to predict the shelf life of the product. Changes in HMF and TBA followed first order reaction kinetics. It was found that the potential shelf life of the pearl millet based kheer mix was 396 days at 8 and 288 days at 25 °C, respectively.

  2. Applying a Physics-Based Description of Fatigue Variability Behavior to Probabilistic Life Prediction (Preprint)

    DTIC Science & Technology

    2007-07-01

    predicted at lower stress levels as illustrated for the α+β titanium alloy, Ti-6Al-2Sn-4Zr-6Mo (Ti- 6 -2- 4 - 6 ), in Fig. 2((a) and (b)) [7, 8]. The...variability by a bimodal probability density representing the superposition of these dual mechanisms with reference to the α+β titanium alloy, Ti- 6 -2- 4 - 6 ...these trends. 7 The alternate description is illustrated with respect to the α+β titanium alloy, Ti- 6 -2- 4 - 6 . The stress vs. total lifetime behavior

  3. Creep Life Prediction of Ceramic Components Using the Finite Element Based Integrated Design Program (CARES/Creep)

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama M.; Powers, Lynn M.; Gyekenyesi, John P.

    1997-01-01

    The desirable properties of ceramics at high temperatures have generated interest in their use for structural applications such as in advanced turbine systems. Design lives for such systems can exceed 10,000 hours. Such long life requirements necessitate subjecting the components to relatively low stresses. The combination of high temperatures and low stresses typically places failure for monolithic ceramics in the creep regime. The objective of this work is to present a design methodology for predicting the lifetimes of structural components subjected to multiaxial creep loading. This methodology utilizes commercially available finite element packages and takes into account the time varying creep stress distributions (stress relaxation). In this methodology, the creep life of a component is divided into short time steps, during which, the stress and strain distributions are assumed constant. The damage, D, is calculated for each time step based on a modified Monkman-Grant creep rupture criterion. For components subjected to predominantly tensile loading, failure is assumed to occur when the normalized accumulated damage at any point in the component is greater than or equal to unity.

  4. Predicting the remaining service life of concrete

    SciTech Connect

    Clifton, J.F.

    1991-11-01

    Nuclear power plants are providing, currently, about 17 percent of the U.S. electricity and many of these plants are approaching their licensed life of 40 years. The U.S. Nuclear Regulatory Commission and the Department of Energy`s Oak Ridge National Laboratory are carrying out a program to develop a methodology for assessing the remaining safe-life of the concrete components and structures in nuclear power plants. This program has the overall objective of identifying potential structural safety issues, as well as acceptance criteria, for use in evaluations of nuclear power plants for continued service. The National Institute of Standards and Technology (NIST) is contributing to this program by identifying and analyzing methods for predicting the remaining life of in-service concrete materials. This report examines the basis for predicting the remaining service lives of concrete materials of nuclear power facilities. Methods for predicting the service life of new and in-service concrete materials are analyzed. These methods include (1) estimates based on experience, (2) comparison of performance, (3) accelerated testing, (4) stochastic methods, and (5) mathematical modeling. New approaches for predicting the remaining service lives of concrete materials are proposed and recommendations for their further development given. Degradation processes are discussed based on considerations of their mechanisms, likelihood of occurrence, manifestations, and detection. They include corrosion, sulfate attack, alkali-aggregate reactions, frost attack, leaching, radiation, salt crystallization, and microbiological attack.

  5. Rolling Bearing Life Prediction, Theory, and Application

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    2013-01-01

    A tutorial is presented outlining the evolution, theory, and application of rolling-element bearing life prediction from that of A. Palmgren, 1924; W. Weibull, 1939; G. Lundberg and A. Palmgren, 1947 and 1952; E. Ioannides and T. Harris, 1985; and E. Zaretsky, 1987. Comparisons are made between these life models. The Ioannides-Harris model without a fatigue limit is identical to the Lundberg-Palmgren model. The Weibull model is similar to that of Zaretsky if the exponents are chosen to be identical. Both the load-life and Hertz stress-life relations of Weibull, Lundberg and Palmgren, and Ioannides and Harris reflect a strong dependence on the Weibull slope. The Zaretsky model decouples the dependence of the critical shear stress-life relation from the Weibull slope. This results in a nominal variation of the Hertz stress-life exponent. For 9th- and 8th-power Hertz stress-life exponents for ball and roller bearings, respectively, the Lundberg- Palmgren model best predicts life. However, for 12th- and 10th-power relations reflected by modern bearing steels, the Zaretsky model based on the Weibull equation is superior. Under the range of stresses examined, the use of a fatigue limit would suggest that (for most operating conditions under which a rolling-element bearing will operate) the bearing will not fail from classical rolling-element fatigue. Realistically, this is not the case. The use of a fatigue limit will significantly overpredict life over a range of normal operating Hertz stresses. Since the predicted lives of rolling-element bearings are high, the problem can become one of undersizing a bearing for a particular application.

  6. Microstructure-Based Fatigue Life Prediction Methods for Naval Steel Structures

    DTIC Science & Technology

    1994-09-12

    Subsequent crack PAP growth models based on the concept of a microstructural mep, unit size where the damage criterion is applied include , those by Antolovich ...m + Cu p Pi of U ’. 20 The present model is quite similar to that of Antolovich et al.� The essential difference between the two models 15U AL "is...dislocation cell size is considered in the latter model. The model of Antolovich et al.1221 10 •• can be expressed in a form similar to Eq. 1121. resulting 0

  7. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Hillery, R. V.; Pilsner, B. H.; Mcknight, R. L.; Cook, T. S.; Hartle, M. S.

    1988-01-01

    This report describes work performed to determine the predominat modes of degradation of a plasma sprayed thermal barrier coating system and to develop and verify life prediction models accounting for these degradation modes. The primary TBC system consisted of a low pressure plasma sprayed NiCrAlY bond coat, an air plasma sprayed ZrO2-Y2O3 top coat, and a Rene' 80 substrate. The work was divided into 3 technical tasks. The primary failure mode to be addressed was loss of the zirconia layer through spalling. Experiments showed that oxidation of the bond coat is a significant contributor to coating failure. It was evident from the test results that the species of oxide scale initially formed on the bond coat plays a role in coating degradation and failure. It was also shown that elevated temperature creep of the bond coat plays a role in coating failure. An empirical model was developed for predicting the test life of specimens with selected coating, specimen, and test condition variations. In the second task, a coating life prediction model was developed based on the data from Task 1 experiments, results from thermomechanical experiments performed as part of Task 2, and finite element analyses of the TBC system during thermal cycles. The third and final task attempted to verify the validity of the model developed in Task 2. This was done by using the model to predict the test lives of several coating variations and specimen geometries, then comparing these predicted lives to experimentally determined test lives. It was found that the model correctly predicts trends, but that additional refinement is needed to accurately predict coating life.

  8. Operational life prediction on gating image intensifier

    NASA Astrophysics Data System (ADS)

    Dong, Yu-hui; Shen, Zhi-guo; Li, Zhong-li

    2009-07-01

    Operational life is one of the important parameters to evaluate second and super second generation image intensifiers. It can be used not only to monitor manufacturing technique in product line, then the technology on photocathode processing, MCP degassing and MCP producing can be adjusted promptly, but also to eliminate the image intensifiers which have hidden risk on operational life as early as possible. Recently gating image intensifiers are used widely, method to estimate the operational life of gating image intensifier related to its practical operate mode and working condition need to be established urgently. The least square method to analyze the operational life test data in product line was introduced in this paper. Now the data can be analyzed with convenient statistic analyze function on Excel. Using "worksheet function" and "chart wizard" and "data analysis" on Excel to do the least square method calculation, spreadsheets are established to do complex data calculation with worksheet functions. Based on them, formulas to monitor the technology parameters were derived, and the conclusion that the operational life was only related to the decrease slope of photocathode exponential fit curve was made. The decrease slope of photocathode sensitivity exponential fit curve and the decrease percent of the exponential fit photocathode sensitivity can be used to evaluate the qualification of the operational life rapidly. The mathematic models for operational life prediction on image intensifier and gating image intensifier are established respectively based on the acceptable values of the decrease percent of the exponential fit photocathode sensitivity and the expecting signal to noise ratio. The equations predicting the operational life related to duty cycle and input light level on gating image intensifier were derived, and the relationship between them were discussed too. The theory foundation were made herein, so the user can select proper gating image

  9. Development of Reliability Based Life Prediction Methods for Thermal and Environmental Barrier Coatings in Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin

    2001-01-01

    Literature survey related to the EBC/TBC (environmental barrier coating/thermal barrier coating) fife models, failure mechanisms in EBC/TBC and the initial work plan for the proposed EBC/TBC life prediction methods development was developed as well as the finite element model for the thermal/stress analysis of the GRC-developed EBC system was prepared. Technical report for these activities is given in the subsequent sections.

  10. How can we predict which morbidly obese patients will adhere to weight-loss programs based on life style changes?

    PubMed

    Tur, Juan J; Escudero, Antonio J; Romaguera, Dora; Burguera, Bartolomé

    2013-01-01

    Dropout is a highly prevalent and serious problem in assessing the effectiveness of weight loss studies and a major cause of treatment failure in the management of morbidly obese patients. To determine which tests used for the psychometric evaluation of morbidly obese patients are more predictive of success/dropout in a weight loss program. Sixty patients aged 18-65 attending the Outpatient Obesity Clinic between 2009 and 2011, were recruited for an intensive life style weight loss program. We compared the results obtained in Hamilton Depression scale, Hamilton Anxiety scale, Golombok Rust Inventory of Sexual Satisfaction, Eating Disorders Inventory-2, SF-36 Health Survey and Plutchik's Impulsivity questionnaire between patients who completed the intervention with those obtained in patients who did not complete it. The rate of decline in the patients attending our program was 41.6% in the first year. Our results suggest that the Plutchik Impulsivity questionnaire, could be used as a predictive tool for success/attrition in intensive life style weight loss program. Our results suggest that the Plutchik Impulsivity questionnaire, could be used as a predictive tool for success/attrition in intensive life style weight loss program. The screening of patients prior to inclusion in these programs should help to optimize its efficacy and efficiency. Copyright © 2012 SEEN. Published by Elsevier Espana. All rights reserved.

  11. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Demasi, J.; Sheffler, K.

    1984-01-01

    The objective of this program is to develop an integrated life prediction model accounting for all potential life-limiting Thermal Barrier Coating (TBC) degradation and failure modes including spallation resulting from cyclic thermal stress, oxidative degradation, hot corrosion, erosion, and foreign object damage (FOD). The mechanisms and relative importance of the various degradation and failure modes will be determined, and the methodology to predict predominant mode failure life in turbine airfoil application will be developed and verified. An empirically based correlative model relating coating life to parametrically expressed driving forces such as temperature and stress will be employed. The two-layer TBC system being investigated, designated PWA264, currently is in commercial aircraft revenue service. It consists of an inner low pressure chamber plasma-sprayed NiCoCrAlY metallic bond coat underlayer (4 to 6 mils) and an outer air plasma-sprayed 7 w/o Y2O3-ZrO2 (8 to 12 mils) ceramic top layer.

  12. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Demasi, J. T.

    1986-01-01

    A methodology is established to predict thermal barrier coating life in a environment similar to that experienced by gas turbine airfoils. Experiments were conducted to determine failure modes of the thermal barrier coating. Analytical studies were employed to derive a life prediction model. A review of experimental and flight service components as well as laboratory post evaluations indicates that the predominant mode of TBC failure involves thermomechanical spallation of the ceramic coating layer. This ceramic spallation involves the formation of a dominant crack in the ceramic coating parallel to and closely adjacent to the topologically complex metal ceramic interface. This mechanical failure mode clearly is influenced by thermal exposure effects as shown in experiments conducted to study thermal pre-exposure and thermal cycle-rate effects. The preliminary life prediction model developed focuses on the two major damage modes identified in the critical experiments tasks. The first of these involves a mechanical driving force, resulting from cyclic strains and stresses caused by thermally induced and externally imposed mechanical loads. The second is an environmental driving force based on experimental results, and is believed to be related to bond coat oxidation. It is also believed that the growth of this oxide scale influences the intensity of the mechanical driving force.

  13. A model for life predictions of nickel-base superalloys in high-temperature low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Romanoski, Glenn R.; Pelloux, Regis M.; Antolovich, Stephen D.

    1988-01-01

    Extensive characterization of low-cycle fatigue damage mechanisms was performed on polycrystalline Rene 80 and IN100 tested in the temperature range from 871 to 1000 C. Low-cycle fatigue life was found to be dominated by propagation of microcracks to a critical size governed by the maximum tensile stress. A model was developed which incorporates a threshold stress for crack extension, a stress-based crack growth expression, and a failure criterion. The mathematical equivalence between this mechanistically based model and the strain-life low-cycle fatigue law was demonstrated using cyclic stress-strain relationships. The model was shown to correlate the high-temperature low-cycle fatigue data of the different nickel-base superalloys considered in this study.

  14. A model for life predictions of nickel-base superalloys in high-temperature low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Romanoski, Glenn R.; Pelloux, Regis M.; Antolovich, Stephen D.

    1988-01-01

    Extensive characterization of low-cycle fatigue damage mechanisms was performed on polycrystalline Rene 80 and IN100 tested in the temperature range from 871 to 1000 C. Low-cycle fatigue life was found to be dominated by propagation of microcracks to a critical size governed by the maximum tensile stress. A model was developed which incorporates a threshold stress for crack extension, a stress-based crack growth expression, and a failure criterion. The mathematical equivalence between this mechanistically based model and the strain-life low-cycle fatigue law was demonstrated using cyclic stress-strain relationships. The model was shown to correlate the high-temperature low-cycle fatigue data of the different nickel-base superalloys considered in this study.

  15. Chemiluminescent prediction of service life

    NASA Technical Reports Server (NTRS)

    Hassell, J. A.; Mendenhall, G. D.; Nathan, R. A.

    1976-01-01

    Technique can be used to predict polymer degradation under actual expected-use conditions, without imposing artificial conditions. Smooth or linear correlations are obtained between chemiluminescence and physical properties of purified polymer gums.

  16. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Meier, Susan M.; Nissley, David M.; Sheffler, Keith D.; Cruse, Thomas A.

    1991-01-01

    A thermal barrier coated (TBC) turbine component design system, including an accurate TBC life prediction model, is needed to realize the full potential of available TBC engine performance and/or durability benefits. The objective of this work, which was sponsored in part by NASA, was to generate a life prediction model for electron beam - physical vapor deposited (EB-PVD) zirconia TBC. Specific results include EB-PVD zirconia mechanical and physical properties, coating adherence strength measurements, interfacial oxide growth characteristics, quantitative cyclic thermal spallation life data, and a spallation life model.

  17. Mission Cycle Life Prediction for C/SiC Composites

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R.

    2004-01-01

    The residual strength and life of C/SiC is dominated by carbon interface and fiber oxidation if thermal and mechanical stresses combine with thermal expansion mismatch in a manner such that seal coat and matrix cracks are open to allow oxygen ingress. Under these circumstances life can be predicted by simple oxidation based models based on reaction controlled kinetics at low temperature and gas phase diffusion controlled kinetics at high temperature. Key life governing variables in these models include temperature, applied stress, initial strength, oxygen partial pressure and total pressure. In this paper these models are described and extended to mission cycle life prediction.

  18. End-of-Discharge and End-of-Life Prediction in Lithium-Ion Batteries with Electrochemistry-Based Aging Models

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Kulkarni, Chetan S.

    2016-01-01

    As batteries become increasingly prevalent in complex systems such as aircraft and electric cars, monitoring and predicting battery state of charge and state of health becomes critical. In order to accurately predict the remaining battery power to support system operations for informed operational decision-making, age-dependent changes in dynamics must be accounted for. Using an electrochemistry-based model, we investigate how key parameters of the battery change as aging occurs, and develop models to describe aging through these key parameters. Using these models, we demonstrate how we can (i) accurately predict end-of-discharge for aged batteries, and (ii) predict the end-of-life of a battery as a function of anticipated usage. The approach is validated through an experimental set of randomized discharge profiles.

  19. Tool Life Prediction for Ceramic Tools in Intermittent Turning of Hardened Steel Based on Damage Evolution Model

    NASA Astrophysics Data System (ADS)

    Cui, Xiaobin; Zhao, Jun; Zhou, Yonghui; Zheng, Guangming

    2011-07-01

    Al2O3-based ceramic is one of the most widely used materials for tools employed in hardened steel turning applications due to its high hardness, wear resistance, heat resistance and chemical stability. The objective of this work is to predict the lives of Al2O3-(W, Ti)C ceramic tools in intermittent turning of hardened AISI 1045 steel by means of damage evolution model taking into account the mechanical loading and thermal effect in the cutting process. A damage evolution model analyzing the RVE with uniformly distributed interacting cracks is constructed based on micromechanics. The calculated results of the proposed damage evolution model are compared with the lives of two kinds of Al2O3-(W, Ti)C ceramic tools obtained through experiments. It is found that the proposed model can be used to predict the lives of the ceramic cutting tools in intermittent turning operation.

  20. Life prediction of aging aircraft wiring systems

    NASA Technical Reports Server (NTRS)

    Slenski, George

    1995-01-01

    The program goal is to develop a computerized life prediction model capable of identifying present aging progress and predicting end of life for aircraft wiring. A summary is given in viewgraph format of progress made on phase 1 objectives, which were to identify critical aircraft wiring problems; relate most common failures identified to the wire mechanism causing the failure; assess wiring requirments, materials, and stress environment for fighter aircraft; and demonstrate the feasibility of a time-temperature-environment model.

  1. Thermal barrier coating life prediction model

    NASA Technical Reports Server (NTRS)

    Hillery, R. V.; Pilsner, B. H.; Cook, T. S.; Kim, K. S.

    1986-01-01

    This is the second annual report of the first 3-year phase of a 2-phase, 5-year program. The objectives of the first phase are to determine the predominant modes of degradation of a plasma sprayed thermal barrier coating system and to develop and verify life prediction models accounting for these degradation modes. The primary TBC system consists of an air plasma sprayed ZrO-Y2O3 top coat, a low pressure plasma sprayed NiCrAlY bond coat, and a Rene' 80 substrate. Task I was to evaluate TBC failure mechanisms. Both bond coat oxidation and bond coat creep have been identified as contributors to TBC failure. Key property determinations have also been made for the bond coat and the top coat, including tensile strength, Poisson's ratio, dynamic modulus, and coefficient of thermal expansion. Task II is to develop TBC life prediction models for the predominant failure modes. These models will be developed based on the results of thermmechanical experiments and finite element analysis. The thermomechanical experiments have been defined and testing initiated. Finite element models have also been developed to handle TBCs and are being utilized to evaluate different TBC failure regimes.

  2. Predicting Future Years of Life, Health, and Functional Ability

    PubMed Central

    Diehr, Paula; Diehr, Michael; Arnold, Alice; Yee, Laura M.; Odden, Michelle C.; Hirsch, Calvin H; Thielke, Stephen; Psaty, Bruce M.; Johnson, W. Craig; Kizer, MD, Jorge R.; Newman, Anne

    2015-01-01

    Objective: To create personalized estimates of future health and ability status for older adults. Method: Data came from the Cardiovascular Health Study (CHS), a large longitudinal study. Outcomes included years of life, years of healthy life (based on self-rated health), years of able life (based on activities of daily living), and years of healthy and able life. We developed regression estimates using the demographic and health characteristics that best predicted the four outcomes. Internal and external validity were assessed. Results: A prediction equation based on 11 variables accounted for about 40% of the variability for each outcome. Internal validity was excellent, and external validity was satisfactory. The resulting CHS Healthy Life Calculator (CHSHLC) is available at http://healthylifecalculator.org. Conclusion: CHSHLC provides a well-documented estimate of future years of healthy and able life for older adults, who may use it in planning for the future. PMID:28138467

  3. Uniaxial and Multiaxial Fatigue Life Prediction of the Trabecular Bone Based on Physiological Loading: A Comparative Study.

    PubMed

    Fatihhi, S J; Harun, M N; Abdul Kadir, Mohammed Rafiq; Abdullah, Jaafar; Kamarul, T; Öchsner, Andreas; Syahrom, Ardiyansyah

    2015-10-01

    Fatigue assessment of the trabecular bone has been developed to give a better understanding of bone properties. While most fatigue studies are relying on uniaxial compressive load as the method of assessment, in various cases details are missing, or the uniaxial results are not very realistic. In this paper, the effect of three different load histories from physiological loading applied on the trabecular bone were studied in order to predict the first failure surface and the fatigue lifetime. The fatigue behaviour of the trabecular bone under uniaxial load was compared to that of multiaxial load using a finite element simulation. The plastic strain was found localized at the trabecular structure under multiaxial load. On average, applying multiaxial loads reduced more than five times the fatigue life of the trabecular bone. The results provide evidence that multiaxial loading is dominated in the low cycle fatigue in contrast to the uniaxial one. Both bone volume fraction and structural model index were best predictors of failure (p < 0.05) in fatigue for both types of loading, whilst uniaxial loading has indicated better values in most cases.

  4. Physiologically Based Pharmacokinetic Predictions of Tramadol Exposure Throughout Pediatric Life: an Analysis of the Different Clearance Contributors with Emphasis on CYP2D6 Maturation.

    PubMed

    T'jollyn, Huybrecht; Snoeys, Jan; Vermeulen, An; Michelet, Robin; Cuyckens, Filip; Mannens, Geert; Van Peer, Achiel; Annaert, Pieter; Allegaert, Karel; Van Bocxlaer, Jan; Boussery, Koen

    2015-11-01

    This paper focuses on the retrospective evaluation of physiologically based pharmacokinetic (PBPK) techniques used to mechanistically predict clearance throughout pediatric life. An intravenous tramadol retrograde PBPK model was set up in Simcyp® using adult clearance values, qualified for CYP2D6, CYP3A4, CYP2B6, and renal contributions. Subsequently, the model was evaluated for mechanistic prediction of total, CYP2D6-related, and renal clearance predictions in very early life. In two in vitro pediatric human liver microsomal (HLM) batches (1 and 3 months), O-desmethyltramadol and N-desmethyltramadol formation rates were compared with CYP2D6 and CYP3A4 activity, respectively. O-desmethyltramadol formation was mediated only by CYP2D6, while N-desmethyltramadol was mediated in part by CYP3A4. Additionally, the clearance maturation of the PBPK model predictions was compared to two in vivo maturation models (Hill and exponential) based on plasma concentration data, and to clearance estimations from a WinNonlin® fit of plasma concentration and urinary excretion data. Maturation of renal and CYP2D6 clearance is captured well in the PBPK model predictions, but total tramadol clearance is underpredicted. The most pronounced underprediction of total and CYP2D6-mediated clearance was observed in the age range of 2-13 years. In conclusion, the PBPK technique showed to be a powerful mechanistic tool capable of predicting maturation of CYP2D6 and renal tramadol clearance in early infancy, although some underprediction occurs between 2 and 13 years for total and CYP2D6-mediated tramadol clearance.

  5. Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter

    NASA Astrophysics Data System (ADS)

    Dong, Hancheng; Jin, Xiaoning; Lou, Yangbing; Wang, Changhong

    2014-12-01

    Lithium-ion batteries are used as the main power source in many electronic and electrical devices. In particular, with the growth in battery-powered electric vehicle development, the lithium-ion battery plays a critical role in the reliability of vehicle systems. In order to provide timely maintenance and replacement of battery systems, it is necessary to develop a reliable and accurate battery health diagnostic that takes a prognostic approach. Therefore, this paper focuses on two main methods to determine a battery's health: (1) Battery State-of-Health (SOH) monitoring and (2) Remaining Useful Life (RUL) prediction. Both of these are calculated by using a filter algorithm known as the Support Vector Regression-Particle Filter (SVR-PF). Models for battery SOH monitoring based on SVR-PF are developed with novel capacity degradation parameters introduced to determine battery health in real time. Moreover, the RUL prediction model is proposed, which is able to provide the RUL value and update the RUL probability distribution to the End-of-Life cycle. Results for both methods are presented, showing that the proposed SOH monitoring and RUL prediction methods have good performance and that the SVR-PF has better monitoring and prediction capability than the standard particle filter (PF).

  6. Benchmark notch test for life prediction

    NASA Technical Reports Server (NTRS)

    Domas, P. A.; Sharpe, W. N.; Ward, M.; Yau, J. F.

    1982-01-01

    The laser Interferometric Strain Displacement Gage (ISDG) was used to measure local strains in notched Inconel 718 test bars subjected to six different load histories at 649 C (1200 F) and including effects of tensile and compressive hold periods. The measurements were compared to simplified Neuber notch analysis predictions of notch root stress and strain. The actual strains incurred at the root of a discontinuity in cyclically loaded test samples subjected to inelastic deformation at high temperature where creep deformations readily occur were determined. The steady state cyclic, stress-strain response at the root of the discontinuity was analyzed. Flat, double notched uniaxially loaded fatigue specimens manufactured from the nickel base, superalloy Inconel 718 were used. The ISDG was used to obtain cycle by cycle recordings of notch root strain during continuous and hold time cycling at 649 C. Comparisons to Neuber and finite element model analyses were made. The results obtained provide a benchmark data set in high technology design where notch fatigue life is the predominant component service life limitation.

  7. Thermal barrier coating life prediction model

    NASA Technical Reports Server (NTRS)

    Pilsner, B. H.; Hillery, R. V.; Mcknight, R. L.; Cook, T. S.; Kim, K. S.; Duderstadt, E. C.

    1986-01-01

    The objectives of this program are to determine the predominant modes of degradation of a plasma sprayed thermal barrier coating system, and then to develop and verify life prediction models accounting for these degradation modes. The program is divided into two phases, each consisting of several tasks. The work in Phase 1 is aimed at identifying the relative importance of the various failure modes, and developing and verifying life prediction model(s) for the predominant model for a thermal barrier coating system. Two possible predominant failure mechanisms being evaluated are bond coat oxidation and bond coat creep. The work in Phase 2 will develop design-capable, causal, life prediction models for thermomechanical and thermochemical failure modes, and for the exceptional conditions of foreign object damage and erosion.

  8. Ceramic Matrix Composites (CMC) Life Prediction Development

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R.; Verrilli, Michael J.; Thomas, David J.; Halbig, Michael C.; Calomino, Anthony M.; Ellis, John R.; Opila, Elizabeth J.

    1990-01-01

    Advanced launch systems will very likely incorporate fiber reinforced ceramic matrix composites (CMC) in critical propulsion and airframe components. The use of CMC will save weight, increase operating margin, safety and performance, and improve reuse capability. For reusable and single mission use, accurate life prediction is critical to success. The tools to accomplish this are immature and not oriented toward the behavior of carbon fiber reinforced silicon carbide (C/SiC), the primary system of interest for many applications. This paper describes an approach and progress made to satisfy the need to develop an integrated life prediction system that addresses mechanical durability and environmental degradation.

  9. Perchlorate and radioiodide kinetics across life stages in the human: using PBPK models to predict dosimetry and thyroid inhibition and sensitive subpopulations based on developmental stage.

    PubMed

    Clewell, Rebecca A; Merrill, Elaine A; Gearhart, Jeffery M; Robinson, Peter J; Sterner, Teresa R; Mattie, David R; Clewell, Harvey J

    2007-03-01

    Perchlorate (ClO4(-)) is a drinking-water contaminant, known to disrupt thyroid hormone homeostasis in rats. This effect has only been seen in humans at high doses, yet the potential for long term effects from developmental endocrine disruption emphasizes the need for improved understanding of perchlorate's effect during the perinatal period. Physiologically based pharmacokinetic/dynamic (PBPK/PD) models for ClO4(-) and its effect on thyroid iodide uptake were constructed for human gestation and lactation data. Chemical specific parameters were estimated from life-stage and species-specific relationships established in previously published models for various life-stages in the rat and nonpregnant adult human. With the appropriate physiological descriptions, these kinetic models successfully simulate radioiodide data culled from the literature for gestation and lactation, as well as ClO4(-) data from populations exposed to contaminated drinking water. These models provide a framework for extrapolating from chemical exposure in laboratory animals to human response, and support a more quantitative understanding of life-stage-specific susceptibility to ClO4(-). The pregnant and lactating woman, fetus, and nursing infant were predicted to have higher blood ClO4(-) concentrations and greater thyroid iodide uptake inhibition at a given drinking-water concentration than either the nonpregnant adult or the older child. The fetus is predicted to receive the greatest dose (per kilogram body weight) due to several factors, including placental sodium-iodide symporter (NIS) activity and reduced maternal urinary clearance of ClO4(-). The predicted extent of iodide inhibition in the most sensitive population (fetus) is not significant (approximately 1%) at the U.S. Environmental Protection Agency reference dose (0.0007 mg/kg-d).

  10. SSME main combustion chamber life prediction

    NASA Technical Reports Server (NTRS)

    Cook, R. T.; Fryk, E. E.; Newell, J. F.

    1983-01-01

    Typically, low cycle fatigue life is a function of the cyclic strain range, the material properties, and the operating temperature. The reusable life is normally defined by the number of strain cycles that can be accrued before severe material degradation occurs. Reusable life is normally signified by the initiation or propagation of surface cracks. Hot-fire testing of channel wall combustors has shown significant mid-channel wall thinning or deformation during accrued cyclic testing. This phenomenon is termed cyclic-creep and appears to be significantly accelerated at elevated surface temperatures. This failure mode was analytically modelled. The cyclic life of the baseline SSME-MCC based on measured calorimeter heat transfer data, and the life sensitivity of local hot spots caused by injector effects were determined. Four life enhanced designs were assessed.

  11. Life prediction technologies for aeronautical propulsion systems

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.

    1990-01-01

    Fatigue and fracture problems continue to occur in aeronautical gas turbine engines. Components whose useful life is limited by these failure modes include turbine hot-section blades, vanes, and disks. Safety considerations dictate that catastrophic failures be avoided, while economic considerations dictate that catastrophic failures be avoided, while economic considerations dictate that noncatastrophic failures occur as infrequently as possible. Therefore, the decision in design is making the tradeoff between engine performance and durability. LeRC has contributed to the aeropropulsion industry in the area of life prediction technology for over 30 years, developing creep and fatigue life prediction methodologies for hot-section materials. At the present time, emphasis is being placed on the development of methods capable of handling both thermal and mechanical fatigue under severe environments. Recent accomplishments include the development of more accurate creep-fatigue life prediction methods such as the total strain version of LeRC's strain-range partitioning (SRP) and the HOST-developed cyclic damage accumulation (CDA) model. Other examples include the development of a more accurate cumulative fatigue damage rule - the double damage curve approach (DDCA), which provides greatly improved accuracy in comparison with usual cumulative fatigue design rules. Other accomplishments in the area of high-temperature fatigue crack growth may also be mentioned. Finally, we are looking to the future and are beginning to do research on the advanced methods which will be required for development of advanced materials and propulsion systems over the next 10-20 years.

  12. Life prediction technologies for aeronautical propulsion systems

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.

    1987-01-01

    Fatigue and fracture problems continue to occur in aeronautical gas turbine engines. Components whose useful life is limited by these failure modes include turbine hot-section blades, vanes and disks. Safety considerations dictate that catastrophic failures be avoided, while economic considerations dictate that noncatastrophic failures occur as infrequently as possible. The design decision is therefore in making the tradeoff between engine performance and durability. The NASA Lewis Research Center has contributed to the aeropropulsion industry in the areas of life prediction technology for 30 years, developing creep and fatigue life prediction methodologies for hot-section materials. Emphasis is placed on the development of methods capable of handling both thermal and mechanical fatigue under severe environments. Recent accomplishments include the development of more accurate creep-fatigue life prediction methods such as the total strain version of Lewis' Strainrange Partitioning (SRP) and the HOST-developed Cyclic Damage Accumulation (CDA) model. Other examples include the Double Damage Curve Approach (DDCA), which provides greatly improved accuracy for cumulative fatigue design rules.

  13. High temperature life prediction of a welded IN718 component

    NASA Astrophysics Data System (ADS)

    Tanner, D. W. J.; Becker, A. A.; Hyde, T. H.

    2009-08-01

    Life predictions from a case study of a welded feature in a generic spoke structure, determined using three-dimensional quasi-static elastic-plastic and creep finite element analyses, are demonstrated. The complete structure consists of multiple Inconel 718 (IN718) TIG-welded features; the welds exhibit noticeably depleted mechanical properties so a multimaterial analysis is necessary for accurate predictions. The effect the welds have on the life is investigated for both constant (creep) and cyclic loading (creep-fatigue) conditions at 620°C. Creep damage and Smith, Watson and Topper (SWT) strain parameter lifing methods are used, based upon material properties determined using uniaxial test data. The lower fatigue properties of the welded IN718 material at high temperature had a negative effect on the fatigue life of the structure. The effect of the weld on the life under constant loading at high temperature was found to be more difficult to evaluate due to significant stress relaxation.

  14. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Demasi, J. T.; Sheffler, K. D.

    1986-01-01

    The objective of this program is to establish a methodology to predict Thermal Barrier Coating (TBC) life on gas turbine engine components. The approach involves experimental life measurement coupled with analytical modeling of relevant degradation modes. The coating being studied is a flight qualified two layer system, designated PWA 264, consisting of a nominal ten mil layer of seven percent yttria partially stabilized zirconia plasma deposited over a nominal five mil layer of low pressure plasma deposited NiCoCrAlY. Thermal barrier coating degradation modes being investigated include: thermomechanical fatigue, oxidation, erosion, hot corrosion, and foreign object damage.

  15. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Demasi, J. T.; Manning, S. L.; Ortiz, M.; Sheffler, K. D.

    1987-01-01

    The objectives of this program are to increase understanding of thermal barrier coating (TBC) degradation and failure modes, to generate quantitative ceramic failure life data under cyclic thermal conditions which simulate those encountered in gas turbine engine service, and to develop an analytical methodology for prediction of coating life in the engine. Observations of degradation and failure modes in plasma deposited ceramic indicate that spallation failure results from progressive cracking of the ceramic parallel to and adjacent to, but not coincident with the metal-ceramic interface.

  16. A predictive model for risk of prehypertension and hypertension and expected benefit after population-based life-style modification (KCIS No. 24).

    PubMed

    Tseng, Chuen-Den; Yen, Amy Ming-Fang; Chiu, Sherry Yueh-Hsia; Chen, Li-Sheng; Chen, Hsiu-Hsi; Chang, Shu-Hui

    2012-02-01

    Few reports have identified and quantified significant risk factors responsible for multistate natural course of progression to hypertension and also regression of prehypertension to normal, which provides baseline risks to estimate the size of expected benefit derived from population-based life-style modification. Data used for estimating clinical parameters governing temporal natural course of hypertension are derived from 42,027 participants attending screening annually between 1999 and 2002. Information on transition history between normal, prehypertension, stage 1 and stage 2 hypertension between screens was therefore collected to compute multistep composite risk scores without intervention program. The expected benefits of risk reduction in prehypertension and hypertension under different intervention programs by modifying the related risk factors from abnormal to normal ranges were estimated. The majority of risk factors play a more remarkable role in prehypertension and stage 1 hypertension but less in stage 2 hypertension. The greater the number of risk factors included in the intervention programs becomes, the lower the mean risk score is expected to achieve. The 5-year predicted cumulative risk for stage 2 hypertension decreased from 23.6% in the absence of intervention program to 14% with the provision of "six-component intervention" in men. The results were similar for women. Multiple risk factors responsible for multistep transitions between prehypertension and hypertension were identified by using population-based screening data to derive multistep composite risk scores, which are useful for the expected benefit of reducing risk of hypertension by providing population-based life-style modification.

  17. Effect of Roller Profile on Cylindrical Roller Bearing Life Prediction

    NASA Technical Reports Server (NTRS)

    Poplawski, Joseph V.; Zaretsky, Erwin V.; Peters, Steven M.

    2000-01-01

    Four roller profiles used in cylindrical roller bearing design and manufacture were analyzed using both a closed form solution and finite element analysis (FEA) for stress and life. The roller profiles analyzed were flat, tapered end, aerospace, and fully crowned loaded against a flat raceway. Four rolling-element bearing life models were chosen for this analysis and compared. These were those of Weibull, Lundberg and Palmgren, Ioannides and Harris, and Zaretsky. The flat roller profile without edge loading has the longest predicted life. However, edge loading can reduce life by as much as 98 percent. The end tapered profile produced the highest lives but not significantly different than the aerospace profile. The fully crowned profile produces the lowest lives. The resultant predicted life at each stress condition not only depends on the life equation used but also on the Weibull slope assumed. For Weibull slopes of 1.5 and 2, both Lundberg-Palmgren and Iaonnides-Harris equations predict lower lives than the ANSI/ABMAJISO standards. Based upon the Hertz stresses for line contact, the accepted load-life exponent of 10/3 results in a maximum Hertz stress-life exponent equal to 6.6. This value is inconsistent with that experienced in the field.

  18. A Predictive Framework for Thermomechanical Fatigue Life of High Silicon Molybdenum Ductile Cast Iron Based on Considerations of Strain Energy Dissipation

    NASA Astrophysics Data System (ADS)

    Avery, Katherine R.

    Isothermal low cycle fatigue (LCF) and anisothermal thermomechanical fatigue (TMF) tests were conducted on a high silicon molybdenum (HiSiMo) cast iron for temperatures up to 1073K. LCF and out-of-phase (OP) TMF lives were significantly reduced when the temperature was near 673K due to an embrittlement phenomenon which decreases the ductility of HiSiMo at this temperature. In this case, intergranular fracture was predominant, and magnesium was observed at the fracture surface. When the thermal cycle did not include 673K, the failure mode was predominantly transgranular, and magnesium was not present on the fracture surface. The in-phase (IP) TMF lives were unaffected when the thermal cycle included 673K, and the predominant failure mode was found to be transgranular fracture, regardless of the temperature. No magnesium was present on the IP TMF fracture surfaces. Thus, the embrittlement phenomenon was found to contribute to fatigue damage only when the temperature was near 673K and a tensile stress was present. To account for the temperature- and stress-dependence of the embrittlement phenomenon on the TMF life of HiSiMo cast iron, an original model based on the cyclic inelastic energy dissipation is proposed which accounts for temperature-dependent differences in the rate of fatigue damage accumulation in tension and compression. The proposed model has few empirical parameters. Despite the simplicity of the model, the predicted fatigue life shows good agreement with more than 130 uniaxial low cycle and thermomechanical fatigue tests, cyclic creep tests, and tests conducted at slow strain rates and with hold times. The proposed model was implemented in a multiaxial formulation and applied to the fatigue life prediction of an exhaust manifold subjected to severe thermal cycles. The simulation results show good agreement with the failure locations and number of cycles to failure observed in a component-level experiment.

  19. Multiscale Fatigue Life Prediction for Composite Panels

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Yarrington, Phillip W.; Arnold, Steven M.

    2012-01-01

    Fatigue life prediction capabilities have been incorporated into the HyperSizer Composite Analysis and Structural Sizing Software. The fatigue damage model is introduced at the fiber/matrix constituent scale through HyperSizer s coupling with NASA s MAC/GMC micromechanics software. This enables prediction of the micro scale damage progression throughout stiffened and sandwich panels as a function of cycles leading ultimately to simulated panel failure. The fatigue model implementation uses a cycle jumping technique such that, rather than applying a specified number of additional cycles, a specified local damage increment is specified and the number of additional cycles to reach this damage increment is calculated. In this way, the effect of stress redistribution due to damage-induced stiffness change is captured, but the fatigue simulations remain computationally efficient. The model is compared to experimental fatigue life data for two composite facesheet/foam core sandwich panels, demonstrating very good agreement.

  20. Landmark Risk Prediction of Residual Life for Breast Cancer Survival

    PubMed Central

    Parast, Layla; Cai, Tianxi

    2013-01-01

    The importance of developing personalized risk prediction estimates has become increasingly evident in recent years. In general, patient populations may be heterogenous and represent a mixture of different unknown subtypes of disease. When the source of this heterogeneity and resulting subtypes of disease are unknown, accurate prediction of survival may be difficult. However, in certain disease settings the onset time of an observable short term event may be highly associated with these unknown subtypes of disease and thus may be useful in predicting long term survival. One approach to incorporate short term event information along with baseline markers for the prediction of long term survival is through a landmark Cox model, which assumes a proportional hazards model for the residual life at a given landmark point. In this paper, we use this modeling framework to develop procedures to assess how a patient’s long term survival trajectory may change over time given good short term outcome indications along with prognosis based on baseline markers. We first propose time-varying accuracy measures to quantify the predictive performance of landmark prediction rules for residual life and provide resampling-based procedures to make inference about such accuracy measures. Simulation studies show that the proposed procedures perform well in finite samples. Throughout, we illustrate our proposed procedures using a breast cancer dataset with information on time to metastasis and time to death. In addition to baseline clinical markers available for each patient, a chromosome instability genetic score, denoted by CIN25, is also available for each patient and has been shown to be predictive of survival for various types of cancer. We provide procedures to evaluate the incremental value of CIN25 for the prediction of residual life and examine how the residual life profile changes over time. This allows us to identify an informative landmark point, t0, such that accurate risk

  1. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Sheffler, K. D.; Demasi, J. T.

    1985-01-01

    A methodology was established to predict thermal barrier coating life in an environment simulative of that experienced by gas turbine airfoils. Specifically, work is being conducted to determine failure modes of thermal barrier coatings in the aircraft engine environment. Analytical studies coupled with appropriate physical and mechanical property determinations are being employed to derive coating life prediction model(s) on the important failure mode(s). An initial review of experimental and flight service components indicates that the predominant mode of TBC failure involves thermomechanical spallation of the ceramic coating layer. This ceramic spallation involves the formation of a dominant crack in the ceramic coating parallel to and closely adjacent to the metal-ceramic interface. Initial results from a laboratory test program designed to study the influence of various driving forces such as temperature, thermal cycle frequency, environment, and coating thickness, on ceramic coating spalling life suggest that bond coat oxidation damage at the metal-ceramic interface contributes significantly to thermomechanical cracking in the ceramic layer. Low cycle rate furnace testing in air and in argon clearly shows a dramatic increase of spalling life in the non-oxidizing environments.

  2. Very High Cycle Fatigue Failure Analysis and Life Prediction of Cr-Ni-W Gear Steel Based on Crack Initiation and Growth Behaviors

    PubMed Central

    Deng, Hailong; Li, Wei; Sakai, Tatsuo; Sun, Zhenduo

    2015-01-01

    The unexpected failures of structural materials in very high cycle fatigue (VHCF) regime have been a critical issue in modern engineering design. In this study, the VHCF property of a Cr-Ni-W gear steel was experimentally investigated under axial loading with the stress ratio of R = −1, and a life prediction model associated with crack initiation and growth behaviors was proposed. Results show that the Cr-Ni-W gear steel exhibits the constantly decreasing S-N property without traditional fatigue limit, and the fatigue strength corresponding to 109 cycles is around 485 MPa. The inclusion-fine granular area (FGA)-fisheye induced failure becomes the main failure mechanism in the VHCF regime, and the local stress around the inclusion play a key role. By using the finite element analysis of representative volume element, the local stress tends to increase with the increase of elastic modulus difference between inclusion and matrix. The predicted crack initiation life occupies the majority of total fatigue life, while the predicted crack growth life is only accounts for a tiny fraction. In view of the good agreement between the predicted and experimental results, the proposed VHCF life prediction model involving crack initiation and growth can be acceptable for inclusion-FGA-fisheye induced failure. PMID:28793714

  3. Creep fatigue life prediction for engine hot section materials (isotropic)

    NASA Technical Reports Server (NTRS)

    Moreno, Vito; Nissley, David; Lin, Li-Sen Jim

    1985-01-01

    The first two years of a two-phase program aimed at improving the high temperature crack initiation life prediction technology for gas turbine hot section components are discussed. In Phase 1 (baseline) effort, low cycle fatigue (LCF) models, using a data base generated for a cast nickel base gas turbine hot section alloy (B1900+Hf), were evaluated for their ability to predict the crack initiation life for relevant creep-fatigue loading conditions and to define data required for determination of model constants. The variables included strain range and rate, mean strain, strain hold times and temperature. None of the models predicted all of the life trends within reasonable data requirements. A Cycle Damage Accumulation (CDA) was therefore developed which follows an exhaustion of material ductility approach. Material ductility is estimated based on observed similarities of deformation structure between fatigue, tensile and creep tests. The cycle damage function is based on total strain range, maximum stress and stress amplitude and includes both time independent and time dependent components. The CDA model accurately predicts all of the trends in creep-fatigue life with loading conditions. In addition, all of the CDA model constants are determinable from rapid cycle, fully reversed fatigue tests and monotonic tensile and/or creep data.

  4. A. Palmgren Revisited: A Basis for Bearing Life Prediction

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1997-01-01

    Bearing technology, as well as the bearing industry, began to develop with the invention of the bicycle in the 1850's. At the same time, high-quality steel was made possible by the Bessemer process. In 1881, H. Hertz published his contact stress analysis. By 1902, R. Stribeck had published his work based on Hertz theory to calculate the maximum load of a radially loaded ball bearing. By 1920, all of the rolling bearing types used today were being manufactured. AISI 52100 bearing steel became the material of choice for these bearings. Beginning in 1918, engineers directed their attention to predicting the lives of these bearings. In 1924, A. Palmgren published a paper outlining his approach to bearing life prediction. This paper was the basis for the Lundberg-Palmgren life theory published in 1947. A critical review of the 1924 Palmgren paper is presented here together with a discussion of its effect on bearing life prediction.

  5. Predictive Service Life Tests for Roofing Membranes

    NASA Astrophysics Data System (ADS)

    Bailey, David M.; Cash, Carl G.; Davies, Arthur G.

    2002-09-01

    The average service life of roofing membranes used in low-slope applications on U.S. Army buildings is estimated to be considerably shorter than the industry-presumed 20-year design life, even when installers carefully adhere to the latest guide specifications. This problem is due in large part to market-driven product development cycles, which do not include time for long-term field testing. To reduce delivery costs, contractors may provide untested, interior membranes in place of ones proven satisfactory in long-term service. Federal procurement regulations require that roofing systems and components be selected according to desired properties and generic type, not brand name. The problem is that a material certified to have satisfactory properties at installation time will not necessarily retain those properties in service. The overall objective of this research is to develop a testing program that can be executed in a matter of weeks to adequately predict a membrane's long-term performance in service. This report details accelerated aging tests of 12 popular membrane materials in the laboratory, and describes outdoor experiment stations set up for long-term exposure tests of those same membranes. The laboratory results will later be correlated with the outdoor test results to develop performance models and predictive service life tests.

  6. Early Adolescent Affect Predicts Later Life Outcomes

    PubMed Central

    Kansky, Jessica; Allen, Joseph P.; Diener, Ed

    2016-01-01

    Background Subjective well-being as a predictor for later behavior and health has highlighted its relationship to health, work performance, and social relationships. However, the majority of such studies neglect the developmental nature of well-being in contributing to important changes across the transition to adulthood. Methods To examine the potential role of subjective well-being as a long-term predictor of critical life outcomes, we examined indicators of positive and negative affect at age 14 as a predictor of relationship, adjustment, self worth, and career outcomes a decade later at ages 23 to 25, controlling for family income and gender. We utilized multi-informant methods including reports from the target participant, close friends, and romantic partners in a demographically diverse community sample of 184 participants. Results Early adolescent positive affect predicted less relationship problems (less self-reported and partner-reported conflict, greater friendship attachment as rated by close peers), healthy adjustment to adulthood (lower levels of depression, anxiety, and loneliness). It also predicted positive work functioning (higher levels of career satisfaction and job competence) and increased self-worth. Negative affect did not significantly predict any of these important life outcomes. In addition to predicting desirable mean levels of later outcomes, early positive affect predicted beneficial changes across time in many outcomes. Conclusions The findings extend early research on the beneficial outcomes of subjective well-being by having an earlier assessment of well-being, including informant reports in measuring a large variety of outcome variables, and by extending the findings to a lower socioeconomic group of a diverse and younger sample. The results highlight the importance of considering positive affect as an important component of subjective well-being distinct from negative affect. PMID:27075545

  7. Early Adolescent Affect Predicts Later Life Outcomes.

    PubMed

    Kansky, Jessica; Allen, Joseph P; Diener, Ed

    2016-07-01

    Subjective well-being as a predictor for later behavior and health has highlighted its relationship to health, work performance, and social relationships. However, the majority of such studies neglect the developmental nature of well-being in contributing to important changes across the transition to adulthood. To examine the potential role of subjective well-being as a long-term predictor of critical life outcomes, we examined indicators of positive and negative affect at age 14 as predictors of relationship, adjustment, self-worth, and career outcomes a decade later at ages 23 to 25, controlling for family income and gender. We utilised multi-informant methods including reports from the target participant, close friends, and romantic partners in a demographically diverse community sample of 184 participants. Early adolescent positive affect predicted fewer relationship problems (less self-reported and partner-reported conflict, and greater friendship attachment as rated by close peers) and healthy adjustment to adulthood (lower levels of depression, anxiety, and loneliness). It also predicted positive work functioning (higher levels of career satisfaction and job competence) and increased self-worth. Negative affect did not significantly predict any of these important life outcomes. In addition to predicting desirable mean levels of later outcomes, early positive affect predicted beneficial changes across time in many outcomes. The findings extend early research on the beneficial outcomes of subjective well-being by having an earlier assessment of well-being, including informant reports in measuring a large variety of outcome variables, and by extending the findings to a lower socioeconomic group of a diverse and younger sample. The results highlight the importance of considering positive affect as an important component of subjective well-being distinct from negative affect. © 2016 The International Association of Applied Psychology.

  8. Predicting life-history adaptations to pollutants

    SciTech Connect

    Maltby, L.

    1995-12-31

    Animals may adapt to pollutant stress so that individuals from polluted environments are less susceptible than those from unpolluted environments. In addition to such direct adaptations, animals may respond to pollutant stress by life-history modifications; so-called indirect adaptations. This paper will demonstrate how, by combining life-history theory and toxicological data, it is possible to predict stress-induced alterations in reproductive output and offspring size. Pollutant-induced alterations in age-specific survival in favor of adults and reductions in juvenile growth, conditions are predicted to select for reduced investment in reproduction and the allocation of this investment into fewer, larger offspring. Field observations on the freshwater crustaceans, Asellus aquaticus and Gammarus pulex, support these predictions. Females from metal-polluted sites had lower investment in reproduction and produced larger offspring than females of the same species from unpolluted sites. Moreover, interpopulation differences in reproductive biology persisted in laboratory cultures indicating that they had a genetic basis and were therefore due to adaptation rather than acclimation. The general applicability of this approach will be considered.

  9. Thermomechanical fatigue life prediction for several solders

    NASA Astrophysics Data System (ADS)

    Wen, Shengmin

    Since solder connections operate at high homologous temperature, solders are high temperature materials. This feature makes their mechanical behavior and fatigue phenomena unique. Based on experimental findings, a physical damage mechanism is introduced for solders. The mechanism views the damage process as a series of independent local damage events characterized by the failure of individual grains, while the structural damage is the eventual percolation result of such local events. Fine's dislocation energy density concept and Mura's microcrack initiation theory are adopted to derive the fatigue formula for an individual grain. A physical damage metric is introduced to describe the material with damage. A unified creep and plasticity constitutive model is adopted to simulate the mechanical behavior of solders. The model is cast into a continuum damage mechanics framework to simulate material with damage. The model gives good agreement with the experimental results of 96.5Pb-3.5Sn and 96.5Sn-3.5Ag solders under uniaxial strain-controlled cyclic loading. The model is convenient for implementation into commercial computational packages. Also presented is a fatigue theory with its failure criterion for solders based on physical damage mechanism. By introducing grain orientation into the fatigue formula, an m-N curve (m is Schmid factor) at constant loading condition is suggested for fatigue of grains with different orientations. A solder structure is defined as fatigued when the damage metric reaches a critical threshold, since at this threshold the failed grains may form a cluster and percolate through the structure according to percolation theory. Fatigue data of 96.5Pb-3.5Sn solder bulk specimens under various uniaxial tension tests were analyzed. Results show that the theory gives consistent predictions under broad conditions, while inelastic strain theory does not. The theory is anisotropic with no size limitation to its application, which could be suitable for

  10. Life prediction and constitutive behavior: Overview

    NASA Technical Reports Server (NTRS)

    Halford, G. R.

    1982-01-01

    The evolution of programs to investigate high temperature consititutive behavior and develop cyclic life prediction methods is reviewed. Contracts granted for developing and verifying workable engineering methods for the calculation, in advance of service, of the local stress-strain response at the critical life governing location in typical hot section components as well as the resultant cyclic crack initiation and crack growth lifetimes are listed. The Langley fatigue facility is being upgraded to include: (1) a servocontrolled testing machine for high temperature crack growth; (2) three servocontrolled tension/torsion machines for biaxial studies; (3) a HOST/satellite computer for data acquisition, processing, storage, and retrieval; and (4) HCV/LCF machines for cumulative damage studies.

  11. Fatigue life prediction of bonded primary joints

    NASA Technical Reports Server (NTRS)

    Knauss, J. F.

    1979-01-01

    The validation of a proposed fatigue life prediction methodology was sought through the use of aluminum butt and scarf joint and graphite/epoxy butt joint specimens in a constant amplitude fatigue environment. The structural properties of the HYSOL 9313 adhesive system were obtained by mechanical test of molded heat adhesive specimens. Aluminum contoured double cantilever beam specimens were used to generate crack velocity versus stress intensity factor data. The specific objectives were: (1) to ascertain the feasibility of predicting fatigue failure of an adhesive in a primary bonded composite structure by incorporating linear elastic crack growth behavior; and (2) to ascertain if acoustic emission and/or compliance measurement techniques can be used to detect flaws.

  12. Creep fatigue life prediction for engine hot section materials (isotropic)

    NASA Technical Reports Server (NTRS)

    Moreno, V.

    1983-01-01

    The Hot Section Technology (HOST) program, creep fatigue life prediction for engine hot section materials (isotropic), is reviewed. The program is aimed at improving the high temperature crack initiation life prediction technology for gas turbine hot section components. Significant results include: (1) cast B1900 and wrought IN 718 selected as the base and alternative materials respectively; (2) fatigue test specimens indicated that measurable surface cracks appear early in the specimen lives, i.e., 15% of total life at 871 C and 50% of life at 538 c; (3) observed crack initiation sites are all surface initiated and are associated with either grain boundary carbides or local porosity, transgrannular cracking is observed at the initiation site for all conditions tested; and (4) an initial evaluation of two life prediction models, representative of macroscopic (Coffin-Mason) and more microscopic (damage rate) approaches, was conducted using limited data generated at 871 C and 538 C. It is found that the microscopic approach provides a more accurate regression of the data used to determine crack initiation model constants, but overpredicts the effect of strain rate on crack initiation life for the conditions tested.

  13. Probabilistic fatigue life prediction of metallic and composite materials

    NASA Astrophysics Data System (ADS)

    Xiang, Yibing

    Fatigue is one of the most common failure modes for engineering structures, such as aircrafts, rotorcrafts and aviation transports. Both metallic materials and composite materials are widely used and affected by fatigue damage. Huge uncertainties arise from material properties, measurement noise, imperfect models, future anticipated loads and environmental conditions. These uncertainties are critical issues for accurate remaining useful life (RUL) prediction for engineering structures in service. Probabilistic fatigue prognosis considering various uncertainties is of great importance for structural safety. The objective of this study is to develop probabilistic fatigue life prediction models for metallic materials and composite materials. A fatigue model based on crack growth analysis and equivalent initial flaw size concept is proposed for metallic materials. Following this, the developed model is extended to include structural geometry effects (notch effect), environmental effects (corroded specimens) and manufacturing effects (shot peening effects). Due to the inhomogeneity and anisotropy, the fatigue model suitable for metallic materials cannot be directly applied to composite materials. A composite fatigue model life prediction is proposed based on a mixed-mode delamination growth model and a stiffness degradation law. After the development of deterministic fatigue models of metallic and composite materials, a general probabilistic life prediction methodology is developed. The proposed methodology combines an efficient Inverse First-Order Reliability Method (IFORM) for the uncertainty propogation in fatigue life prediction. An equivalent stresstransformation has been developed to enhance the computational efficiency under realistic random amplitude loading. A systematical reliability-based maintenance optimization framework is proposed for fatigue risk management and mitigation of engineering structures.

  14. Nondestructive evaluation of creep damage and life prediction of Ni-base superalloy used in advanced gas turbine blades by electrochemical technique

    NASA Astrophysics Data System (ADS)

    Komazaki, Shin-ichi; Shoji, Tetsuo; Abe, Iwao; Okada, Ikuo

    1999-12-01

    In order to develop a creep life assessment technique for directionally solidified Ni-base superalloy CM247LC, changes in electrochemical properties due to creep have been investigated. Experimental results on electrochemical polarization measurements revealed that the peak current density "Ip" and "Ipr" which appeared at a specific potential during potentiodynamic polarization reactivation measurements in dilute glyceregia solution linearly increased with a life fraction in early stage of the creep life and were uniquely correlated with Arrhenius type parameter "(t/tr)exp(-Qc/RT)." As a consequence, the creep life fraction can be estimated with high accuracy by the electrochemical technique.

  15. Practical theories for service life prediction of critical aerospace structural components

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Monaghan, Richard C.; Jackson, Raymond H.

    1992-01-01

    A new second-order theory was developed for predicting the service lives of aerospace structural components. The predictions based on this new theory were compared with those based on the Ko first-order theory and the classical theory of service life predictions. The new theory gives very accurate service life predictions. An equivalent constant-amplitude stress cycle method was proposed for representing the random load spectrum for crack growth calculations. This method predicts the most conservative service life. The proposed use of minimum detectable crack size, instead of proof load established crack size as an initial crack size for crack growth calculations, could give a more realistic service life.

  16. Thermomechanical fatigue, oxidation, and Creep: Part II. Life prediction

    NASA Astrophysics Data System (ADS)

    Neu, R. W.; Sehitoglu, Huseyin

    1989-09-01

    A life prediction model is developed for crack nucleation and early crack growth based on fatigue, environment (oxidation), and creep damage. The model handles different strain-temperature phasings (i.e., in-phase and out-of-phase thermomechanical fatigue, isothermal fatigue, and others, including nonproportional phasings). Fatigue life predictions compare favorably with experiments in 1070 steel for a wide range of test conditions and strain-temperature phasings. An oxide growth (oxide damage) model is based on the repeated microrupture process of oxide observed from microscopic measurements. A creep damage expression, which is stress-based, is coupled with a unified constitutive equation. A set of interrupted tests was performed to provide valuable damage progression information. Tests were performed in air and in helium atmospheres to isolate creep damage from oxidation damage.

  17. Space shuttle nonmetallic materials age life prediction

    NASA Technical Reports Server (NTRS)

    Mendenhall, G. D.; Hassell, J. A.; Nathan, R. A.

    1975-01-01

    The chemiluminescence from samples of polybutadiene, Viton, Teflon, Silicone, PL 731 Adhesive, and SP 296 Boron-Epoxy composite was measured at temperatures from 25 to 150 C. Excellent correlations were obtained between chemiluminescence and temperature. These correlations serve to validate accelerated aging tests (at elevated temperatures) designed to predict service life at lower temperatures. In most cases, smooth or linear correlations were obtained between chemiluminescence and physical properties of purified polymer gums, including the tensile strength, viscosity, and loss tangent. The latter is a complex function of certain polymer properties. Data were obtained with far greater ease by the chemiluminescence technique than by the conventional methods of study. The chemiluminescence from the Teflon (Halon) samples was discovered to arise from trace amounts of impurities, which were undetectable by conventional, destructive analysis of the sample.

  18. Toughened ceramics life prediction. Final technical report

    SciTech Connect

    Salem, J.A.; Choi, S.R.; Pawlik, R.J.

    1998-02-01

    The objective of this research was to understand the room temperature and high temperature behavior of brittle materials such as in situ toughened ceramics, glasses and intermetallics as the basis for developing life prediction and test methodologies. A major objective was to understand the relationship between microstructure and mechanical behavior within the bounds of a limited number of materials. A second major objective was to determine the behavior as a function of time and temperature. Specifically, the room temperature and elevated strength and reliability, the fracture toughness, slow crack growth and the creep behavior. These results will provide input for parallel materials development and design methodology programs. Resultant design codes will be verified. A summary of the accomplishments that occurred under this program is given.

  19. Decomposition Technique for Remaining Useful Life Prediction

    NASA Technical Reports Server (NTRS)

    Saha, Bhaskar (Inventor); Goebel, Kai F. (Inventor); Saxena, Abhinav (Inventor); Celaya, Jose R. (Inventor)

    2014-01-01

    The prognostic tool disclosed here decomposes the problem of estimating the remaining useful life (RUL) of a component or sub-system into two separate regression problems: the feature-to-damage mapping and the operational conditions-to-damage-rate mapping. These maps are initially generated in off-line mode. One or more regression algorithms are used to generate each of these maps from measurements (and features derived from these), operational conditions, and ground truth information. This decomposition technique allows for the explicit quantification and management of different sources of uncertainty present in the process. Next, the maps are used in an on-line mode where run-time data (sensor measurements and operational conditions) are used in conjunction with the maps generated in off-line mode to estimate both current damage state as well as future damage accumulation. Remaining life is computed by subtracting the instance when the extrapolated damage reaches the failure threshold from the instance when the prediction is made.

  20. Predicting Later-Life Outcomes of Early-Life Exposures

    EPA Science Inventory

    Background: In utero exposure of the fetus to a stressor can lead to disease in later life. Epigenetic mechanisms are likely mediators of later-life expression of early-life events.Objectives: We examined the current state of understanding of later-life diseases resulting from ea...

  1. Predicting Later-Life Outcomes of Early-Life Exposures

    EPA Science Inventory

    Background: In utero exposure of the fetus to a stressor can lead to disease in later life. Epigenetic mechanisms are likely mediators of later-life expression of early-life events.Objectives: We examined the current state of understanding of later-life diseases resulting from ea...

  2. Fatigue life and crack growth prediction methodology

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Phillips, E. P.; Everett, R. A., Jr.

    1993-01-01

    The capabilities of a plasticity-induced crack-closure model and life-prediction code to predict fatigue crack growth and fatigue lives of metallic materials are reviewed. Crack-tip constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective-stress-intensity factor range (delta(K(sub eff))) under constant-amplitude loading. Some modifications to the delta(K(sub eff))-rate relations were needed in the near threshold regime to fit small-crack growth rate behavior and endurance limits. The model was then used to calculate small- and large-crack growth rates, and in some cases total fatigue lives, for several aluminum and titanium alloys under constant-amplitude, variable-amplitude, and spectrum loading. Fatigue lives were calculated using the crack growth relations and microstructural features like those that initiated cracks. Results from the tests and analyses agreed well.

  3. Lamp-life predictive model for avionics backlights

    NASA Astrophysics Data System (ADS)

    Webster, Richard P.; Nelson, Leonard Y.

    1998-09-01

    Active Matrix Liquid Crystal Displays (AMLCDs) used in avionics applications require high luminance, high efficacy, and long-life backlights. Currently, fluorescent lamps are the favored light sources for these high performance avionics backlights. Their spectral characteristics and high electrical efficiency are well suited to illuminating AMLCDs used in avionics applications. Fluorescent lamps, however, suffer gradual reduction in luminance output caused by various degradation mechanisms. Korry Electronics Co. recently developed a mathematical model for predicting fluorescent lamp life. The model's basis is the well characterized exponential decay of the phosphor output. The primary luminance degradation mechanism of a fluorescent lamp is related to the arc discharge. Consequently, phosphor depreciation is proportional to the discharge arc power divided by the phosphor surface area. This 'wall loading' is a parameter in the computer model developed to extrapolate long-term luminance performance. Our model predicts a rapidly increasing decay rate of the lamp output as the input power is increased to sustain constant luminance. Eventually, a run-away condition occurs -- lamp arc power must be increased by unrealistically large factors (greater than 5x) to maintain the required luminance output. This condition represents the end of the useful lamp life. The lamp life model requires the definition of several key parameters in order to accurately predict the useful lamp life of an avionics backlight. These important factors include the construction of the lamp, lamp arc power, a decay constant based on the phosphor loading, and the operational profile. Based on the above-mentioned factors, our model approximates the useful lamp life of an avionics backlight using fluorescent lamp technology. Comparisons between calculated and experimental lamp depreciation are presented.

  4. Oxidation and low cycle fatigue life prediction

    NASA Technical Reports Server (NTRS)

    Oshida, Y.; Liu, H. W.

    1984-01-01

    When a metallic material is exposed to a high temperature in an ambient atmosphere, oxidation takes place on the metallic surface. The formed oxides (both surface and grain boundary oxides) are mechanically brittle so that if the stress is high enough the oxides will be cracked. The grain boundary oxide formation in TAZ-8A nickel-base superalloy was studied. The effect of oxide crack nucleus on low cycle fatigue life will be analyzed. The TAZ-8A was subjected to high temperature oxidation tests in air under the stress-free condition. The oxidation temperatures were 600, 800, and 1000 C. The oxidation time varies from 10 to 1000 hours.

  5. Landmark risk prediction of residual life for breast cancer survival.

    PubMed

    Parast, Layla; Cai, Tianxi

    2013-09-10

    The importance of developing personalized risk prediction estimates has become increasingly evident in recent years. In general, patient populations may be heterogenous and represent a mixture of different unknown subtypes of disease. When the source of this heterogeneity and resulting subtypes of disease are unknown, accurate prediction of survival may be difficult. However, in certain disease settings, the onset time of an observable short-term event may be highly associated with these unknown subtypes of disease and thus may be useful in predicting long-term survival. One approach to incorporate short-term event information along with baseline markers for the prediction of long-term survival is through a landmark Cox model, which assumes a proportional hazards model for the residual life at a given landmark point. In this paper, we use this modeling framework to develop procedures to assess how a patient's long-term survival trajectory may change over time given good short-term outcome indications along with prognosis on the basis of baseline markers. We first propose time-varying accuracy measures to quantify the predictive performance of landmark prediction rules for residual life and provide resampling-based procedures to make inference about such accuracy measures. Simulation studies show that the proposed procedures perform well in finite samples. Throughout, we illustrate our proposed procedures by using a breast cancer dataset with information on time to metastasis and time to death. In addition to baseline clinical markers available for each patient, a chromosome instability genetic score, denoted by CIN25, is also available for each patient and has been shown to be predictive of survival for various types of cancer. We provide procedures to evaluate the incremental value of CIN25 for the prediction of residual life and examine how the residual life profile changes over time. This allows us to identify an informative landmark point, t(0) , such that

  6. Thermal barrier coating life prediction model development, phase 1

    NASA Technical Reports Server (NTRS)

    Demasi, Jeanine T.; Ortiz, Milton

    1989-01-01

    The objective of this program was to establish a methodology to predict thermal barrier coating (TBC) life on gas turbine engine components. The approach involved experimental life measurement coupled with analytical modeling of relevant degradation modes. Evaluation of experimental and flight service components indicate the predominant failure mode to be thermomechanical spallation of the ceramic coating layer resulting from propagation of a dominant near interface crack. Examination of fractionally exposed specimens indicated that dominant crack formation results from progressive structural damage in the form of subcritical microcrack link-up. Tests conducted to isolate important life drivers have shown MCrAlY oxidation to significantly affect the rate of damage accumulation. Mechanical property testing has shown the plasma deposited ceramic to exhibit a non-linear stress-strain response, creep and fatigue. The fatigue based life prediction model developed accounts for the unusual ceramic behavior and also incorporates an experimentally determined oxide rate model. The model predicts the growth of this oxide scale to influence the intensity of the mechanic driving force, resulting from cyclic strains and stresses caused by thermally induced and externally imposed mechanical loads.

  7. Life prediction for bridged fatigue cracks

    SciTech Connect

    Cox, B.N.

    1994-08-01

    One of the more promising classes of composites touted for high temperature applications, and certainly the most available, is that of relatively brittle matrices, either ceramic or intermetallic, reinforced by strong, aligned, continuous fibers. Under cyclic loading in the fiber direction, these materials develop matrix cracks that often run perpendicular to the fibers, while the fibers remain intact in the crack wake, supplying bridging tractions across the fracture surfaces. The bridging tractions shield the crack tip from the applied load, dramatically reducing the crack velocity from that expected in an unreinforced material subjected to the same value, {Delta}K{sub a}, of the cyclic applied stress intensity factor. An important issue in reliability is the prediction of the growth rates of the bridged cracks. The growth rates of matrix fatigue cracks bridged by sliding fibers are now commonly predicted by models based on the micromechanics of frictional interfaces. However, there exist many reasons, both theoretical and experimental, for suspecting that the most popular micromechanical models are probably wrong in detail in the context of fatigue cracks. Furthermore, a review of crack growth data reveals that the validity of the micromechanics-based predictive model has never been tested and may never be tested. In this paper, two alternative approaches are suggested to the engineering problem of predicting the growth rates of bridged cracks without explicit recourse to micromechanics. Instead, it is shown that the material properties required to analyze bridging effects can be deduced directly from crack growth data. Some experiments are proposed to test the validity of the proposals.

  8. Maintenance Resource Prediction in the Facility Life-Cycle Process

    DTIC Science & Technology

    1991-05-01

    life - cycle : planning, design, operation/maintenance, and demolition. In the past, estimates that involved maintenance resources have been inaccurate due to the lack of a comprehensive data base containing maintenance costs. To improve this accuracy, the U.S. Army Construction Engineering Research Laboratory (USACERL) has developed a series of maintenance resources data bases which can be used in economic analysis. In addition, models have been devised for prediction of outyear maintenance costs. Computer programs have been developed to automate the data bases and

  9. Thermal barrier coating life prediction model development, phase 2

    NASA Technical Reports Server (NTRS)

    Meier, Susan Manning; Sheffler, Keith D.; Nissley, David M.

    1991-01-01

    The objective of this program was to generate a life prediction model for electron-beam-physical vapor deposited (EB-PVD) zirconia thermal barrier coating (TBC) on gas turbine engine components. Specific activities involved in development of the EB-PVD life prediction model included measurement of EB-PVD ceramic physical and mechanical properties and adherence strength, measurement of the thermally grown oxide (TGO) growth kinetics, generation of quantitative cyclic thermal spallation life data, and development of a spallation life prediction model. Life data useful for model development was obtained by exposing instrumented, EB-PVD ceramic coated cylindrical specimens in a jet fueled burner rig. Monotonic compression and tensile mechanical tests and physical property tests were conducted to obtain the EB-PVD ceramic behavior required for burner rig specimen analysis. As part of that effort, a nonlinear constitutive model was developed for the EB-PVD ceramic. Spallation failure of the EB-PVD TBC system consistently occurred at the TGO-metal interface. Calculated out-of-plane stresses were a small fraction of that required to statically fail the TGO. Thus, EB-PVD spallation was attributed to the interfacial cracking caused by in-plane TGO strains. Since TGO mechanical properties were not measured in this program, calculation of the burner rig specimen TGO in-plane strains was performed by using alumina properties. A life model based on maximum in-plane TGO tensile mechanical strain and TGO thickness correlated the burner rig specimen EB-PVD ceramic spallation lives within a factor of about plus or minus 2X.

  10. NASALIFE - Component Fatigue and Creep Life Prediction Program

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Murthy, Pappu L. N.; Mital, Subodh K.

    2014-01-01

    NASALIFE is a life prediction program for propulsion system components made of ceramic matrix composites (CMC) under cyclic thermo-mechanical loading and creep rupture conditions. Although the primary focus was for CMC components, the underlying methodologies are equally applicable to other material systems as well. The program references empirical data for low cycle fatigue (LCF), creep rupture, and static material properties as part of the life prediction process. Multiaxial stresses are accommodated by Von Mises based methods and a Walker model is used to address mean stress effects. Varying loads are reduced by the Rainflow counting method or a peak counting type method. Lastly, damage due to cyclic loading and creep is combined with Minor's Rule to determine damage due to cyclic loading, damage due to creep, and the total damage per mission and the number of potential missions the component can provide before failure.

  11. Thermal barrier coating life prediction model

    NASA Technical Reports Server (NTRS)

    Hillery, R. V.; Pilsner, B. H.

    1985-01-01

    This is the first report of the first phase of a 3-year program. Its objectives are to determine the predominant modes of degradation of a plasma sprayed thermal barrier coating system, then to develop and verify life prediction models accounting for these degradation modes. The first task (Task I) is to determine the major failure mechanisms. Presently, bond coat oxidation and bond coat creep are being evaluated as potential TBC failure mechanisms. The baseline TBC system consists of an air plasma sprayed ZrO2-Y2O3 top coat, a low pressure plasma sprayed NiCrAlY bond coat, and a Rene'80 substrate. Pre-exposures in air and argon combined with thermal cycle tests in air and argon are being utilized to evaluate bond coat oxidation as a failure mechanism. Unexpectedly, the specimens pre-exposed in argon failed before the specimens pre-exposed in air in subsequent thermal cycles testing in air. Four bond coats with different creep strengths are being utilized to evaluate the effect of bond coat creep on TBC degradation. These bond coats received an aluminide overcoat prior to application of the top coat to reduce the differences in bond coat oxidation behavior. Thermal cycle testing has been initiated. Methods have been selected for measuring tensile strength, Poisson's ratio, dynamic modulus and coefficient of thermal expansion both of the bond coat and top coat layers.

  12. Life history traits to predict biogeographic species distributions in bivalves

    NASA Astrophysics Data System (ADS)

    Montalto, V.; Rinaldi, A.; Sarà, G.

    2015-10-01

    Organismal fecundity ( F) and its relationship with body size (BS) are key factors in predicting species distribution under current and future scenarios of global change. A functional trait-based dynamic energy budget (FT-DEB) is proposed as a mechanistic approach to predict the variation of F and BS as function of environmental correlates using two marine bivalves as model species ( Mytilus galloprovincialis and Brachidontes pharaonis). Validation proof of model skill (i.e., degree of correspondence between model predictions and field observations) and stationarity (i.e., ability of a model generated from data collected at one place/time to predict processes at another place/time) was provided to test model performance in predicting the bivalve distribution throughout the 22 sites in the Central Mediterranean Sea under local conditions of food density and body temperature. Model skill and stationarity were tested through the estimate of commission (i.e., proportion of species' absences predicted present) and omission (i.e., proportion of presences predicted absent) errors of predictions by comparing mechanistic predicted vs. observed F and BS values throughout the study area extrapolated by lab experiments and literature search. The resulting relationship was reliable for both species, and body size and fecundity were highly correlated in M. galloprovincialis compared to B. pharaonis; FT-DEB showed correct predictions of presence in more than 75 % of sites, and the regression between BS predicted vs. observed was highly significant in both species. Whilst recognising the importance of biotic interactions in shaping the distribution of species, our FT-DEB approach provided reliable quantitative estimates of where our species had sufficient F to support local populations or suggesting reproductive failure. Mechanistically, estimating F and BS as key traits of species life history can also be addressed within a broader, scale-dependent context that surpasses the

  13. Life history traits to predict biogeographic species distributions in bivalves.

    PubMed

    Montalto, V; Rinaldi, A; Sarà, G

    2015-10-01

    Organismal fecundity (F) and its relationship with body size (BS) are key factors in predicting species distribution under current and future scenarios of global change. A functional trait-based dynamic energy budget (FT-DEB) is proposed as a mechanistic approach to predict the variation of F and BS as function of environmental correlates using two marine bivalves as model species (Mytilus galloprovincialis and Brachidontes pharaonis). Validation proof of model skill (i.e., degree of correspondence between model predictions and field observations) and stationarity (i.e., ability of a model generated from data collected at one place/time to predict processes at another place/time) was provided to test model performance in predicting the bivalve distribution throughout the 22 sites in the Central Mediterranean Sea under local conditions of food density and body temperature. Model skill and stationarity were tested through the estimate of commission (i.e., proportion of species' absences predicted present) and omission (i.e., proportion of presences predicted absent) errors of predictions by comparing mechanistic predicted vs. observed F and BS values throughout the study area extrapolated by lab experiments and literature search. The resulting relationship was reliable for both species, and body size and fecundity were highly correlated in M. galloprovincialis compared to B. pharaonis; FT-DEB showed correct predictions of presence in more than 75 % of sites, and the regression between BS predicted vs. observed was highly significant in both species. Whilst recognising the importance of biotic interactions in shaping the distribution of species, our FT-DEB approach provided reliable quantitative estimates of where our species had sufficient F to support local populations or suggesting reproductive failure. Mechanistically, estimating F and BS as key traits of species life history can also be addressed within a broader, scale-dependent context that surpasses the

  14. Ceramic Matrix Composites (CMC) Life Prediction Method Development

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R.; Calomino, Anthony M.; Ellis, John R.; Halbig, Michael C.; Mital, Subodh K.; Murthy, Pappu L.; Opila, Elizabeth J.; Thomas, David J.; Thomas-Ogbuji, Linus U.; Verrilli, Michael J.

    2000-01-01

    Advanced launch systems (e.g., Reusable Launch Vehicle and other Shuttle Class concepts, Rocket-Based Combine Cycle, etc.), and interplanetary vehicles will very likely incorporate fiber reinforced ceramic matrix composites (CMC) in critical propulsion components. The use of CMC is highly desirable to save weight, to improve reuse capability, and to increase performance. CMC candidate applications are mission and cycle dependent and may include turbopump rotors, housings, combustors, nozzle injectors, exit cones or ramps, and throats. For reusable and single mission uses, accurate prediction of life is critical to mission success. The tools to accomplish life prediction are very immature and not oriented toward the behavior of carbon fiber reinforced silicon carbide (C/SiC), the primary system of interest for a variety of space propulsion applications. This paper describes an approach to satisfy the need to develop an integrated life prediction system for CMC that addresses mechanical durability due to cyclic and steady thermomechanical loads, and takes into account the impact of environmental degradation.

  15. Rolling Bearing Life Prediction-Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Zaretsky, E V; Poplawski, J. V.; Miller, C. R.

    2000-01-01

    Comparisons were made between the life prediction formulas of Lundberg and Palmgren, Ioannides and Harris, and Zaretsky and full-scale ball and roller bearing life data. The effect of Weibull slope on bearing life prediction was determined. Life factors are proposed to adjust the respective life formulas to the normalized statistical life distribution of each bearing type. The Lundberg-Palmgren method resulted in the most conservative life predictions compared to Ioannides and Harris, and Zaretsky methods which produced statistically similar results. Roller profile can have significant effects on bearing life prediction results. Roller edge loading can reduce life by as much as 98 percent. The resultant predicted life not only depends on the life equation used but on the Weibull slope assumed, the least variation occurring with the Zaretsky equation. The load-life exponent p of 10/3 used in the American National Standards Institute (ANSI)/American Bearing Manufacturers Association (ABMA)/International Organization for Standardization (ISO) standards is inconsistent with the majority roller bearings designed and used today.

  16. Early-Life Intelligence Predicts Midlife Biological Age.

    PubMed

    Schaefer, Jonathan D; Caspi, Avshalom; Belsky, Daniel W; Harrington, Honalee; Houts, Renate; Israel, Salomon; Levine, Morgan E; Sugden, Karen; Williams, Benjamin; Poulton, Richie; Moffitt, Terrie E

    2016-11-01

    Early-life intelligence has been shown to predict multiple causes of death in populations around the world. This finding suggests that intelligence might influence mortality through its effects on a general process of physiological deterioration (i.e., individual variation in "biological age"). We examined whether intelligence could predict measures of aging at midlife before the onset of most age-related disease. We tested whether intelligence assessed in early childhood, middle childhood, and midlife predicted midlife biological age in members of the Dunedin Study, a population-representative birth cohort. Lower intelligence predicted more advanced biological age at midlife as captured by perceived facial age, a 10-biomarker algorithm based on data from the National Health and Nutrition Examination Survey (NHANES), and Framingham heart age (r = 0.1-0.2). Correlations between intelligence and telomere length were less consistent. The associations between intelligence and biological age were not explained by differences in childhood health or parental socioeconomic status, and intelligence remained a significant predictor of biological age even when intelligence was assessed before Study members began their formal schooling. These results suggest that accelerated aging may serve as one of the factors linking low early-life intelligence to increased rates of morbidity and mortality. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Prediction of residual fatigue life using nonlinear ultrasound

    NASA Astrophysics Data System (ADS)

    Amura, Mikael; Meo, Michele

    2012-04-01

    Prediction of fatigue life of components during service is an on-going and unsolved challenge for the NDT and structural health monitoring community. It has been demonstrated by a number of researchers that nonlinear guided waves or the acoustic nonlinear signature of fatigued cracked material provides clear signs of the progressive fatigue damage in the material, unlike linear guided waves. However, even with nonlinear acoustic-ultrasound methods there is a necessity to compare the current nonlinear feature to a previously measured cracked material state to assess the absolute residual fatigue life. In this paper, a new procedure based on the measurement of the second-order acoustic nonlinearity is presented which is able to assess the fatigue life of a metallic component without the need of a baseline. The Nazarov-Sutin crack nonlinearity equation and the Paris law are combined in order to obtain an analytical solution able to evaluate the theoretical second-order quadratic nonlinear parameters as a function of the crack growth and fatigue life that evolve during cyclic loading in metals. The model makes the assumption that the crack surface topology has variable geometrical parameters. The method was tested on aluminum alloy specimens AA2024-T351, containing fatigue fracture of different sizes, and excellent correlation was obtained between the theoretical and measured second-order nonlinear parameter. Then, it was demonstrated clearly that by measuring the nonlinear parameters it is possible to estimate crack size and fatigue life. Finally, advantages and limitations of the procedure are discussed.

  18. Predicted effect of dynamic load on pitting fatigue life for low-contact-ratio spur gears

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.

    1986-01-01

    How dynamic load affects the surface pitting fatigue life of external spur gears was predicted by using the NASA computer program TELSGE. Parametric studies were performed over a range of various gear parameters modeling low-contact-ratio involute spur gears. In general, gear life predictions based on dynamic loads differed significantly from those based on static loads, with the predictions being strongly influenced by the maximum dynamic load during contact. Gear mesh operating speed strongly affected predicted dynamic load and life. Meshes operating at a resonant speed or one-half the resonant speed had significantly shorter lives. Dynamic life factors for gear surface pitting fatigue were developed on the basis of the parametric studies. In general, meshes with higher contact ratios had higher dynamic life factors than meshes with lower contact ratios. A design chart was developed for hand calculations of dynamic life factors.

  19. Predicting young children's quality of life.

    PubMed

    Jirojanakul, Pragai; Skevington, Suzanne M; Hudson, John

    2003-10-01

    This paper represents an investigation into the determinants of young children's quality of life (QOL) in Thailand. The empirical work is based upon a sample of 498 children (aged 5-8); 220 were urban children and 278 children of construction workers in Bangkok. Their QOL was assessed using a new self-report QOL measure for children. Multiple regression analyses indicated that the father's income and education, type of school, mode of transportation to school, and the amount of time that the child spent on extra study courses were significant explanatory variables. It was found that these factors had different influences on the QOL of urban children and those of construction workers. Extra sport-related activities and extra work (other than housework) improved the QOL of urban children, while the QOL of construction workers' children was directly linked to father's education and income. This result is consistent with income having a diminishing marginal effect on the QOL of children. There is also evidence that amongst construction workers' children, boys have a lower QOL than girls. The different causal explanations for the QOL of urban and construction workers' children suggests that it is context specific, and what impacts one group of children's QOL within a particular context may not impact another group in a different situation. This has important policy implications. Throughout the study we could find no significant impact of health on QOL-neither chronic, acute nor severe illness has any significant impact on QOL. This is consistent with the hypothesis that QOL is influenced by expectations (Social Science and Medicine 41 (10) (1995) 1403). Findings of the effects of social and environmental factors on children's QOL are new in this field and should be further investigated.

  20. Fatigue life prediction modeling for turbine hot section materials

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Meyer, T. G.; Nelson, R. S.; Nissley, D. M.; Swanson, G. A.

    1988-01-01

    A major objective of the fatigue and fracture efforts under the Hot Section Technology (HOST) program was to significantly improve the analytic life prediction tools used by the aeronautical gas turbine engine industry. This was achieved in the areas of high-temperature thermal and mechanical fatigue of bare and coated high-temperature superalloys. The cyclic crack initiation and propagation resistance of nominally isotropic polycrystalline and highly anisotropic single crystal alloys were addressed. Life prediction modeling efforts were devoted to creep-fatigue interaction, oxidation, coatings interactions, multiaxiality of stress-strain states, mean stress effects, cumulative damage, and thermomechanical fatigue. The fatigue crack initiation life models developed to date include the Cyclic Damage Accumulation (CDA) and the Total Strain Version of Strainrange Partitioning (TS-SRP) for nominally isotropic materials, and the Tensile Hysteretic Energy Model for anisotropic superalloys. A fatigue model is being developed based upon the concepts of Path-Independent Integrals (PII) for describing cyclic crack growth under complex nonlinear response at the crack tip due to thermomechanical loading conditions. A micromechanistic oxidation crack extension model was derived. The models are described and discussed.

  1. Fatigue life prediction modeling for turbine hot section materials

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Meyer, T. G.; Nelson, R. S.; Nissley, D. M.; Swanson, G. A.

    1988-01-01

    A major objective of the fatigue and fracture efforts under the Hot Section Technology (HOST) program was to significantly improve the analytic life prediction tools used by the aeronautical gas turbine engine industry. This was achieved in the areas of high-temperature thermal and mechanical fatigue of bare and coated high-temperature superalloys. The cyclic crack initiation and propagation resistance of nominally isotropic polycrystalline and highly anisotropic single crystal alloys were addressed. Life prediction modeling efforts were devoted to creep-fatigue interaction, oxidation, coatings interactions, multiaxiality of stress-strain states, mean stress effects, cumulative damage, and thermomechanical fatigue. The fatigue crack initiation life models developed to date include the Cyclic Damage Accumulation (CDA) and the Total Strain Version of Strainrange Partitioning (TS-SRP) for nominally isotropic materials, and the Tensile Hysteretic Energy Model for anisotropic superalloys. A fatigue model is being developed based upon the concepts of Path-Independent Integrals (PII) for describing cyclic crack growth under complex nonlinear response at the crack tip due to thermomechanical loading conditions. A micromechanistic oxidation crack extension model was derived. The models are described and discussed.

  2. Fatigue life prediction modeling for turbine hot section materials

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Meyer, T. G.; Nelson, R. S.; Nissley, D. M.; Swanson, G. A.

    1989-01-01

    A major objective of the fatigue and fracture efforts under the NASA Hot Section Technology (HOST) program was to significantly improve the analytic life prediction tools used by the aeronautical gas turbine engine industry. This was achieved in the areas of high-temperature thermal and mechanical fatigue of bare and coated high-temperature superalloys. The cyclic crack initiation and propagation resistance of nominally isotropic polycrystalline and highly anisotropic single crystal alloys were addressed. Life prediction modeling efforts were devoted to creep-fatigue interaction, oxidation, coatings interactions, multiaxiality of stress-strain states, mean stress effects, cumulative damage, and thermomechanical fatigue. The fatigue crack initiation life models developed to date include the Cyclic Damage Accumulation (CDA) and the Total Strain Version of Strainrange Partitioning (TS-SRP) for nominally isotropic materials, and the Tensile Hysteretic Energy Model for anisotropic superalloys. A fatigue model is being developed based upon the concepts of Path-Independent Integrals (PII) for describing cyclic crack growth under complex nonlinear response at the crack tip due to thermomechanical loading conditions. A micromechanistic oxidation crack extension model was derived. The models are described and discussed.

  3. Are the Performance Based Logistics Prophets Using Science or Alchemy to Create Life-Cycle Affordability? Using Theory to Predict the Efficacy of Performance Based Logistics

    DTIC Science & Technology

    2013-10-01

    critical to the fiduciary responsibility of leaders charged with stewardship of defense budgets, warfighter effectiveness, and the success of the defense...structure based upon long-term relationships , stable cash flow, clear scope, and intelligent metrics (Kratz & Diaz, 2012). The net-net of this research...a much broader concept than control. Essentially, governance includes elements of establishing and structuring exchange relationships as well as

  4. Effect of Roller Profile on Cylindrical Roller Bearing Life Prediction. Part 1; Comparison of Bearing Life Theories

    NASA Technical Reports Server (NTRS)

    Poplawski, Joseph V.; Peters, Steven M.; Zaretsky, Erwin V.

    2001-01-01

    Four rolling-element bearing life theories were chosen for analysis and compared for a simple roller-race geometry model. The life theories were those of Weibull; Lundberg and Palmgren; Ioannides and Harris; and Zaretsky. The analysis without a fatigue limit of Ioannides and Harris is identical to the Lundberg and Palmgren analysis, and the Weibull analysis is similar to that of Zaretsky if the exponents are chosen to be identical. The resultant predicted life a each stress condition not only depends on the life equation used but also on the Weibull slope assumed. The least variation in predicted life with Weibull slope comes with the Zaretsky equation. Except for a Weibull slope of 1.11, at which the Weibull equation predicts the highest lives, the highest lives are predicted for the Zaretsky equation. For Weibull slopes of 1.5 and 2, both the Lundherg-Palmgren and Ioannides-Harris (where tau(sub u) = 0) equations predict lower lives than the ANSI/ABMA/ISO standard. Based upon the Hertz stresses for line contact, the accepted load-life exponent of 10/3 results in a maximum Hertz stress-life exponent equal to 6.6. This value is inconsistent with that experienced in the field. The assumption of as shear stress fatigue limit tau(sub u) results in Hertz stress-life exponents greater than are experimentally verifiable.

  5. Effect of Roller Profile on Cylindrical Roller Bearing Life Prediction. Part 1; Comparison of Bearing Life Theories

    NASA Technical Reports Server (NTRS)

    Poplawski, Joseph V.; Peters, Steven M.; Zaretsky, Erwin V.

    2001-01-01

    Four rolling-element bearing life theories were chosen for analysis and compared for a simple roller-race geometry model. The life theories were those of Weibull; Lundberg and Palmgren; Ioannides and Harris; and Zaretsky. The analysis without a fatigue limit of Ioannides and Harris is identical to the Lundberg and Palmgren analysis, and the Weibull analysis is similar to that of Zaretsky if the exponents are chosen to be identical. The resultant predicted life a each stress condition not only depends on the life equation used but also on the Weibull slope assumed. The least variation in predicted life with Weibull slope comes with the Zaretsky equation. Except for a Weibull slope of 1.11, at which the Weibull equation predicts the highest lives, the highest lives are predicted for the Zaretsky equation. For Weibull slopes of 1.5 and 2, both the Lundherg-Palmgren and Ioannides-Harris (where tau(sub u) = 0) equations predict lower lives than the ANSI/ABMA/ISO standard. Based upon the Hertz stresses for line contact, the accepted load-life exponent of 10/3 results in a maximum Hertz stress-life exponent equal to 6.6. This value is inconsistent with that experienced in the field. The assumption of as shear stress fatigue limit tau(sub u) results in Hertz stress-life exponents greater than are experimentally verifiable.

  6. Investigation of Accelerated Life Prediction Techniques

    DTIC Science & Technology

    1975-10-01

    1974, AD 784 188. 2. Rabinowicz , E., McEntire, R. H., and Shwalkar, B., A TECHNIQUE FOR ACCELERATED LIFE TESTING, Trans. ASME, August 1970, pp...706-710. 3. Rabinowicz , E., FRICTION AND WEAR OF MATERIALS, New York, John Wiley and Sons, 1966. 4. MacGregor, C. W. (ed), HANDBOOK OF

  7. Prediction of Solder Joint Fatigue Life

    DTIC Science & Technology

    1988-04-01

    strains are in turn used to calculate Nf via a Coffin - Manson LCF curve developed from the tests on simple solder joints. This life is compared to...correlation with a = 0.52 (the Coffin - Manson LCF exponent) has been discussed previously [2]. The slope was determined from a least squares fit with a

  8. Enhanced Life Prediction Technology for Engine Rotor Life Extension (ERLE)

    DTIC Science & Technology

    2008-09-01

    Force (USAF) is facing a potentially large wave of turbine engine disc replacement costs over the next eight to ten years that are inconsistent with...health monitoring of turbine engine discs . This analysis fuses data from probabilistic FaNG model predictions and continual input from a crack...facing a significant wave of turbine engine disc replacement costs in the next eight to ten years that are inconsistent with anticipated budgets

  9. Multiaxial Fatigue Damage Parameter and Life Prediction without Any Additional Material Constants.

    PubMed

    Yu, Zheng-Yong; Zhu, Shun-Peng; Liu, Qiang; Liu, Yunhan

    2017-08-09

    Based on the critical plane approach, a simple and efficient multiaxial fatigue damage parameter with no additional material constants is proposed for life prediction under uniaxial/multiaxial proportional and/or non-proportional loadings for titanium alloy TC4 and nickel-based superalloy GH4169. Moreover, two modified Ince-Glinka fatigue damage parameters are put forward and evaluated under different load paths. Results show that the generalized strain amplitude model provides less accurate life predictions in the high cycle life regime and is better for life prediction in the low cycle life regime; however, the generalized strain energy model is relatively better for high cycle life prediction and is conservative for low cycle life prediction under multiaxial loadings. In addition, the Fatemi-Socie model is introduced for model comparison and its additional material parameter k is found to not be a constant and its usage is discussed. Finally, model comparison and prediction error analysis are used to illustrate the superiority of the proposed damage parameter in multiaxial fatigue life prediction of the two aviation alloys under various loadings.

  10. Multiaxial Fatigue Damage Parameter and Life Prediction without Any Additional Material Constants

    PubMed Central

    Yu, Zheng-Yong; Liu, Qiang; Liu, Yunhan

    2017-01-01

    Based on the critical plane approach, a simple and efficient multiaxial fatigue damage parameter with no additional material constants is proposed for life prediction under uniaxial/multiaxial proportional and/or non-proportional loadings for titanium alloy TC4 and nickel-based superalloy GH4169. Moreover, two modified Ince-Glinka fatigue damage parameters are put forward and evaluated under different load paths. Results show that the generalized strain amplitude model provides less accurate life predictions in the high cycle life regime and is better for life prediction in the low cycle life regime; however, the generalized strain energy model is relatively better for high cycle life prediction and is conservative for low cycle life prediction under multiaxial loadings. In addition, the Fatemi–Socie model is introduced for model comparison and its additional material parameter k is found to not be a constant and its usage is discussed. Finally, model comparison and prediction error analysis are used to illustrate the superiority of the proposed damage parameter in multiaxial fatigue life prediction of the two aviation alloys under various loadings. PMID:28792487

  11. Fatigue life prediction of solder joints

    SciTech Connect

    Jones, W.B.

    1991-09-10

    The current status of lifetime prediction under conditions of thermomechanical creep/fatigue is reviewed. Each method is summarized and the results of the application to solder joints is shown. While each method has been applied with some success, a predictive, phenomenological approach has not been developed and validated. A method which captures the response of a crack to steady-state and cycling environments appears to hold most the most promise to provide a useful design tool. 42 refs., 14 figs., 1 tab.

  12. Probabilistic Fatigue Life Prediction of Turbine Disc Considering Model Parameter Uncertainty

    NASA Astrophysics Data System (ADS)

    He, Liping; Yu, Le; Zhu, Shun-Peng; Ding, Liangliang; Huang, Hong-Zhong

    2016-06-01

    Aiming to improve the predictive ability of Walker model for fatigue life prediction and taking the turbine disc alloy GH4133 as the application example, this paper investigates a new approach for probabilistic fatigue life prediction when considering parameter uncertainty inherent in the life prediction model. Firstly, experimental data are used to update the model parameters using Bayes' theorem, so as to obtain the posterior probability distribution functions of two parameters of the Walker model, as well to achieve the probabilistic life prediction model for turbine disc. During the updating process, Markov Chain Monte Carlo (MCMC) technique is used to generate samples of the given distribution and estimating the parameters distinctly. After that, the turbine disc life is predicted using the probabilistic Walker model based on Monte Carlo simulation technique. The experimental results indicate that: (1) after using the small sample test data obtained from turbine disc, parameter uncertainty of the Walker model can be quantified and the corresponding probabilistic model for fatigue life prediction can be established using Bayes' theorem; (2) there exists obvious dispersion of life data for turbine disc when predicting fatigue life in practical engineering application.

  13. Computational Methods for Failure Analysis and Life Prediction

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Harris, Charles E. (Compiler); Housner, Jerrold M. (Compiler); Hopkins, Dale A. (Compiler)

    1993-01-01

    This conference publication contains the presentations and discussions from the joint UVA/NASA Workshop on Computational Methods for Failure Analysis and Life Prediction held at NASA Langley Research Center 14-15 Oct. 1992. The presentations focused on damage failure and life predictions of polymer-matrix composite structures. They covered some of the research activities at NASA Langley, NASA Lewis, Southwest Research Institute, industry, and universities. Both airframes and propulsion systems were considered.

  14. Life Prediction Methodologies for Composite Materials

    DTIC Science & Technology

    1992-01-31

    prediction methodology for composite materials is not a mathematical model (although it may include such models ), but can be purely empirical, as is the...understanding of realistic failure mechanisms and modeling procedures that translate such understanding into practical design tools, it also...comprehensive experimental procedures, were reviewed and considered in the development of an outline of the type of model deemed desirable by the committee. The

  15. Ductility normalized-strainrange partitioning life relations for creep-fatigue life predictions

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Saltsman, J. F.; Hirschberg, M. H.

    1977-01-01

    Procedures based on Strainrange Partitioning (SRP) are presented for estimating the effects of environment and other influences on the high temperature, low cycle, creep fatigue resistance of alloys. It is proposed that the plastic and creep, ductilities determined from conventional tensile and creep rupture tests conducted in the environment of interest be used in a set of ductility normalized equations for making a first order approximation of the four SRP inelastic strainrange life relations. Different levels of sophistication in the application of the procedures are presented by means of illustrative examples with several high temperature alloys. Predictions of cyclic lives generally agree with observed lives within factors of three.

  16. Predicting life satisfaction of the Angolan elderly: a structural model.

    PubMed

    Gutiérrez, M; Tomás, J M; Galiana, L; Sancho, P; Cebrià, M A

    2013-01-01

    Satisfaction with life is of particular interest in the study of old age well-being because it has arisen as an important component of old age. A considerable amount of research has been done to explain life satisfaction in the elderly, and there is growing empirical evidence on best predictors of life satisfaction. This research evaluates the predictive power of some aging process variables, on Angolan elderly people's life satisfaction, while including perceived health into the model. Data for this research come from a cross-sectional survey of elderly people living in the capital of Angola, Luanda. A total of 1003 Angolan elderly were surveyed on socio-demographic information, perceived health, active engagement, generativity, and life satisfaction. A Multiple Indicators Multiple Causes model was built to test variables' predictive power on life satisfaction. The estimated theoretical model fitted the data well. The main predictors were those related to active engagement with others. Perceived health also had a significant and positive effect on life satisfaction. Several processes together may predict life satisfaction in the elderly population of Angola, and the variance accounted for it is large enough to be considered relevant. The key factor associated to life satisfaction seems to be active engagement with others.

  17. Glass Fibre/Epoxy Resin Interface Life-Time Prediction.

    DTIC Science & Technology

    1983-04-01

    RD-Ai32 26 GLASS FIBRE /POXY RESIN INTERFACE LIFE-TIME PREDICTION 1/1 (U) BRISTOL UNIV (ENGLAND) H H WILLS PHYSICS LAB K H RSHBEE ET AL. APR 83...D 3005-MS GLASS FIBRE /EPOXY RESIN INTERFACE LIFE-TIME PREDICTION - Final Report by K H G Ashbee, Principal Investigator R Ho~l J P Sargent Elizabeth...REPORT h PERIOD COVERED. Glass Fibre /Epoxy Resin Interface Life-time F-inal Technical 11’ port PreictonApril 1981 - A:’ril 1983 6. PERFORMING ORG. REPORT

  18. Prediction of life expectancy in patients with spinal epidural metastasis

    PubMed Central

    Bartels, Ronald H.M.A.; de Ruiter, Godard; Feuth, Ton; Arts, Mark P.

    2016-01-01

    Background The treatment of spinal epidural metastasis is multidisciplinary and usually involves a team of medical oncologists, radiologists, radiotherapists, and spinal surgeons. Life expectancy is one of the factors considered when deciding whether surgery is warranted. Because expert estimates of life expectancy are generally not reliable, a prediction model is needed. Here, we temporally validated a model that was previously validated geographically. Methods The records of 110 consecutive patients who were referred with a spinal epidural metastasis were collected prospectively from 2009 to 2013 in order to validate the model, which was published in 2011. The actual and estimated life expectancies were represented graphically, and calibration and discrimination were determined. The calibration slope, Harrell's c-index, D, and RD2 were calculated. Hazard ratios in the derivation set of 2011 were compared with the validation set. Misspecification was determined using the joint test for β*. Results The calibration slope was 0.64 ± 0.15 (95% CI: 0.34–0.94), Harrell's c-index was 0.72, D was 1.08, and RD2 was 0.22, indicating slightly worse discrimination in the derivation set. The joint test for β* = 0 was statistically significant and indicated misspecification; however, this misspecification was attributed entirely to the surgical group. Conclusions We validated a prediction model for surgical decision making, showing that the model's overall performance is good. Based on these results, this model will help clinicians to decide whether to offer surgery to patients with spinal epidural metastasis. PMID:26254478

  19. Evaluation of creep-fatigue life-prediction models for the solar central receiver

    NASA Astrophysics Data System (ADS)

    Hyzak, J. M.; Hughes, D. A.

    1981-09-01

    The applicability of several creep fatigue models to life prediction of boiler tubes in a solar central receiver (SCR) was evaluated. The SCR boiler tubes will experience compressive strain dwell loading with hold times up to 6 to 8 hours at temperatures where time dependent deformation will occur. The evaluation criteria include the ability of the model to account for mean stress effects and to be practical in the long life, small strain range regime. A correlation between maximum tensile stress and fatigue life is presented. Using this correlation, compressive dwell behavior is predicted based on continuous cycling data. The limits of this predictive scheme are addressed.

  20. Evolution of creep-fatigue life prediction models

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    1991-01-01

    The evolution of high-temperature, creep-fatigue, life-prediction methods used for cyclic crack initiation is traced from inception in the late 1940s. The methods reviewed are material models as opposed to structural life prediction models. Material life models are used by both structural durability analysts and by material scientists. The latter use micromechanistic models as guidance to improve a material's crack initiation resistance. Nearly one hundred approaches and their variations have been proposed to date. This proliferation poses a problem in deciding which method is most appropriate for a given application. Approaches have been identified as being combinations of fourteen different classifications. This review is intended to aid both developers and users of high-temperature fatigue life prediction methods by providing a background from which choices can be made.

  1. Evolution of creep-fatigue life prediction models

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    1991-01-01

    The evolution of high-temperature, creep-fatigue, life-prediction methods used for cyclic crack initiation is traced from inception in the late 1940s. The methods reviewed are material models as opposed to structural life prediction models. Material life models are used by both structural durability analysts and by material scientists. The latter use micromechanistic models as guidance to improve a material's crack initiation resistance. Nearly one hundred approaches and their variations have been proposed to date. This proliferation poses a problem in deciding which method is most appropriate for a given application. Approaches have been identified as being combinations of fourteen different classifications. This review is intended to aid both developers and users of high-temperature fatigue life prediction methods by providing a background from which choices can be made.

  2. Life prediction and constitutive models for engine hot section

    NASA Technical Reports Server (NTRS)

    Swanson, G. A.; Meyer, T. G.; Nissley, D. M.

    1986-01-01

    The purpose of this program is to develop life prediction models for coated anisotropic materials used in gas turbine airfoils. In the program, two single crystal alloys and two coatings are being tested. These include PWA 1480, Alloy 185, overlay coating (PWA 286), and aluminide coating (PWA 273). Constitutive models are also being developed for these materials to predict the time independent (plastic) and time dependent (creep) strain histories of the materials in the lab tests and for actual design conditions. This nonlinear material behavior is particularly important for high temperature gas turbine applications and is basic to any life prediction system. Some of the accomplishments of the program are highlighted.

  3. Assessment of fatigue life of remanufactured impeller based on FEA

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Cao, Huajun; Liu, Hailong; Zhang, Yubo

    2016-09-01

    Predicting the fatigue life of remanufactured centrifugal compressor impellers is a critical problem. In this paper, the S-N curve data were obtained by combining experimentation and theory deduction. The load spectrum was compiled by the rain-flow counting method based on the comprehensive consideration of the centrifugal force, residual stress, and aerodynamic loads in the repair region. A fatigue life simulation model was built, and fatigue life was analyzed based on the fatigue cumulative damage rule. Although incapable of providing a high-precision prediction, the simulation results were useful for the analysis of fatigue life impact factors and fatigue fracture areas. Results showed that the load amplitude greatly affected fatigue life, the impeller was protected from running at over-speed, and the predicted fatigue life was satisfied within the next service cycle safely at the rated speed.

  4. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Neumann, J. F.; Liu, A.

    1986-01-01

    Thermal barrier coatings (TBCs) for turbine airfoils in high-performance engines represent an advanced materials technology with both performance and durability benefits. The foremost TBC benefit is the reduction of heat transferred into air-cooled components, which yields performance and durability benefits. This program focuses on predicting the lives of two types of strain-tolerant and oxidation-resistant TBC systems that are produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system, composed of a low-pressure plasma-spray (LPPS) or an argon shrouded plasma-spray (ASPS) applied oxidation resistant NiCrAlY (or CoNiCrAlY) bond coating and an air-plasma-sprayed yttria (8 percent) partially stabilized zirconia insulative layer, is applied by Chromalloy, Klock, and Union Carbide. The second type of TBC is applied by the electron beam-physical vapor deposition (EB-PVD) process by Temescal.

  5. Risk assessment and life prediction of complex engineering systems

    SciTech Connect

    Garcia, M.D.; Varma, R.; Heger, A.S.

    1996-03-01

    Many complex engineering systems will exceed their design life expectancy within the next 10 to 15 years. It is also expected that these systems must be maintained and operated beyond their design life. This paper presents a integrated approach for managing the risks associated with aging effects and predicting the residually expectancy these systems, The approach unifies risk assessment, enhanced surveillance and testing, and robust computational models to assess the risk, predict age, and develop a life-extension management procedure. It also relies on the state of the art in life-extension and risk assessment methods from the nuclear power industry. Borrowing from the developments in decision analysis, this approach should systematically identify the options available for managing the existing aging systems beyond their intended design life.

  6. Fatigue life prediction for expansion bellows

    NASA Astrophysics Data System (ADS)

    Aistov, A. I.; Skvortsov, Yu. V.; Chernyakin, S. A.; Perov, S. N.

    2017-01-01

    In this paper the expansion bellows which was designed to make compensation for the mutual axial displacement of the fuel line flanges is considered. The aim of this study to evaluate the performance of the bellows under durability test conditions and estimate of durability according to the low-cycle strength criteria. Considered bellows is a two-layer corrugated shell which works in very difficult conditions. At the same time there are all possible kinds of nonlinearities such as large displacements, advanced plastic deformations, contact interactions of the individual corrugations. By using the finite element method the modeling of the stress-strain behavior of the bellows is carried out, taking into account physical and geometrical nonlinearities, contact interaction. It leads to an estimation of the accumulated plastic strains and enables the calculation of the fatigue life of bellows. It is performed by the low-cycle strength criteria using different assessment methods of the Basquin-Coffin-Manson`s equation parameters. The results of durability evaluation were compared with experimental data. Obtained estimations of the bellows durability are in good agreement with the experimental data.

  7. A life prediction methodology for encapsulated solar cells

    NASA Technical Reports Server (NTRS)

    Coulbert, C. D.

    1978-01-01

    This paper presents an approach to the development of a life prediction methodology for encapsulated solar cells which are intended to operate for twenty years or more in a terrestrial environment. Such a methodology, or solar cell life prediction model, requires the development of quantitative intermediate relationships between local environmental stress parameters and the basic chemical mechanisms of encapsulant aging leading to solar cell failures. The use of accelerated/abbreviated testing to develop these intermediate relationships and in revealing failure modes is discussed. Current field and demonstration tests of solar cell arrays and the present laboratory tests to qualify solar module designs provide very little data applicable to predicting the long-term performance of encapsulated solar cells. An approach to enhancing the value of such field tests to provide data for life prediction is described.

  8. Prediction and evaluation of route dependent dosimetry of BPA in rats at different life stages using a physiologically based pharmacokinetic model

    SciTech Connect

    Yang, Xiaoxia Doerge, Daniel R.; Fisher, Jeffrey W.

    2013-07-01

    Bisphenol A (BPA) has received considerable attention throughout the last decade due to its widespread use in consumer products. For the first time a physiologically based pharmacokinetic (PBPK) model was developed in neonatal and adult rats to quantitatively evaluate age-dependent pharmacokinetics of BPA and its phase II metabolites. The PBPK model was calibrated in adult rats using studies on BPA metabolism and excretion in the liver and gastrointestinal tract, and pharmacokinetic data with BPA in adult rats. For immature rats the hepatic and gastrointestinal metabolism of BPA was inferred from studies on the maturation of phase II enzymes coupled with serum time course data in pups. The calibrated model predicted the measured serum concentrations of BPA and BPA conjugates after administration of 100 μg/kg of d6-BPA in adult rats (oral gavage and intravenous administration) and postnatal days 3, 10, and 21 pups (oral gavage). The observed age-dependent BPA serum concentrations were partially attributed to the immature metabolic capacity of pups. A comparison of the dosimetry of BPA across immature rats and monkeys suggests that dose adjustments would be necessary to extrapolate toxicity studies from neonatal rats to infant humans. - Highlights: • A PBPK model predicts the kinetics of bisphenol A (BPA) in young and adult rats. • BPA metabolism within enterocytes is required for fitting of oral BPA kinetic data. • BPA dosimetry in young rats is different than adult rats and young monkeys.

  9. Benchmark notch test for life prediction

    NASA Technical Reports Server (NTRS)

    Domas, P. A.; Yau, J.; Sharpe, W. N.; Ward, M.

    1982-01-01

    Aircraft gas turbine engine components are subjected to severe stress, temperature, and environmental conditions. Economic and reliabilty demands have prompted inordinate effort in development of analytic methods to predict stresses and strains in aircraft engines. There remains, however, the need to check or verify these analytical methodologies against actual experimental data measurements. The laser interferometric strain displacement gage was recognized as having the potential to accomplish this task and was employed in this program. The actual strains incurred at the root of a discontinuity in cyclically loaded test samples subjected to inelastic deformation at high temperature where creep deformation readily occur were measured. The steady-state, cyclic stress-strain response at the root of the discontinuity in the tested samples was analyzed for comparison with the measured results. A comprehensive set of local notch root strain measurements for a variety of load patterns in an Inconel 718 notch specimen at 649 C (1200 F) was obtained and documented using the laser interferometric strain displacement gage.

  10. Multiaxial plasticity and fatigue life prediction in coiled tubing

    SciTech Connect

    Tipton, S.M.

    1996-12-31

    Coiled tubing is being used increasingly in the oil well drilling and servicing industry. Continuous steel tubing of structural dimensions (up to 89 mm or 3.5 in. in diameter) is wound onto a large-diameter reel for repeated deployment into and out of a well bore. The bending strain range associated with each wrap-unwrap cycle can exceed 3% with lives well below 100 cycles. During constant internal pressure fatigue testing, tubing has been observed to grow in diameter by as much as 30%. This paper describes an analytical model to predict the fatigue behavior of coiled tubing subjected to variable pressure service conditions. The approach utilizes standard low-cycle fatigue data but requires additional experimental results from constant pressure fatigue testing. The algorithm is based on estimates of biaxial ratcheting from an incremental plasticity model using a hybrid associated flow rule, a modified kinematic hardening rule with multiple von Mises yield surfaces, and a specialized limit surface concept. An empirical damage parameter was formulated based on constant pressure fatigue data using mean and fluctuating von Mises equivalent strain components occurring throughout the life of a section of tubing. This parameters is used with the Palmgren-Miner definition of cumulative damage to track damage that is accumulating nonlinearly under constant or variable pressure histories. Modifications to standard incremental plasticity components and implementation assumptions used to apply the model are presented and discussed. The predictive capability of the model is demonstrated relative to data generated under constant and variable pressure histories.

  11. Life Prediction Methodologies for Aerospace Materials

    DTIC Science & Technology

    2001-01-01

    were measured by Thermophysical Properties Research Laboratory ( TPRL ) over the anticipated range of combustor operating temperatures, ≤ 1000°C. The...Extension (anticipated). These programs are directed towards conventional materials, such as aluminum alloys , Ni-base superalloys and titanium (Ti) alloys ... property information of two-phase gamma alloys are scarce. Also, colony-level properties are required for development of accurate models in these material

  12. Purpose in life predicts better emotional recovery from negative stimuli.

    PubMed

    Schaefer, Stacey M; Morozink Boylan, Jennifer; van Reekum, Carien M; Lapate, Regina C; Norris, Catherine J; Ryff, Carol D; Davidson, Richard J

    2013-01-01

    Purpose in life predicts both health and longevity suggesting that the ability to find meaning from life's experiences, especially when confronting life's challenges, may be a mechanism underlying resilience. Having purpose in life may motivate reframing stressful situations to deal with them more productively, thereby facilitating recovery from stress and trauma. In turn, enhanced ability to recover from negative events may allow a person to achieve or maintain a feeling of greater purpose in life over time. In a large sample of adults (aged 36-84 years) from the MIDUS study (Midlife in the U.S., http://www.midus.wisc.edu/), we tested whether purpose in life was associated with better emotional recovery following exposure to negative picture stimuli indexed by the magnitude of the eyeblink startle reflex (EBR), a measure sensitive to emotional state. We differentiated between initial emotional reactivity (during stimulus presentation) and emotional recovery (occurring after stimulus offset). Greater purpose in life, assessed over two years prior, predicted better recovery from negative stimuli indexed by a smaller eyeblink after negative pictures offset, even after controlling for initial reactivity to the stimuli during the picture presentation, gender, age, trait affect, and other well-being dimensions. These data suggest a proximal mechanism by which purpose in life may afford protection from negative events and confer resilience is through enhanced automatic emotion regulation after negative emotional provocation.

  13. Effect of Hoop Stress on Ball Bearing Life Prediction

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.; August, Richard; Coe, Harold H.

    1995-01-01

    A finite-element analysis (FEA) of a generic, dimensionally normalized inner race of an angular-contact ball bearing was performed under varying conditions of speed and the press (or interference) fit of the inner-race bore on a journal. The FEA results at the ball-race contact were used to derive an equation from which was obtained the radius of an equivalent cylindrical bearing race with the same or similar hoop stress. The radius of the equivalent cylinder was used to obtain a generalized closed-form approximation of the hoop stresses at the ball-inner-race contact in an angular-contact ball bearing. A life analysis was performed on both a 45- and a 120-mm-bore, angular-contact ball bearing. The predicted lives with and without hoop stress were compared with experimental endurance results obtained at 12000 and 25000 rpm with the 120-mm-bore ball bearing. A life factor equation based on hoop stress is presented.

  14. Life history theory predicts fish assemblage response to hydrologic regimes.

    PubMed

    Mims, Meryl C; Olden, Julian D

    2012-01-01

    The hydrologic regime is regarded as the primary driver of freshwater ecosystems, structuring the physical habitat template, providing connectivity, framing biotic interactions, and ultimately selecting for specific life histories of aquatic organisms. In the present study, we tested ecological theory predicting directional relationships between major dimensions of the flow regime and life history composition of fish assemblages in perennial free-flowing rivers throughout the continental United States. Using long-term discharge records and fish trait and survey data for 109 stream locations, we found that 11 out of 18 relationships (61%) tested between the three life history strategies (opportunistic, periodic, and equilibrium) and six hydrologic metrics (two each describing flow variability, predictability, and seasonality) were statistically significant (P < or = 0.05) according to quantile regression. Our results largely support a priori hypotheses of relationships between specific flow indices and relative prevalence of fish life history strategies, with 82% of all significant relationships observed supporting predictions from life history theory. Specifically, we found that (1) opportunistic strategists were positively related to measures of flow variability and negatively related to predictability and seasonality, (2) periodic strategists were positively related to high flow seasonality and negatively related to variability, and (3) the equilibrium strategists were negatively related to flow variability and positively related to predictability. Our study provides important empirical evidence illustrating the value of using life history theory to understand both the patterns and processes by which fish assemblage structure is shaped by adaptation to natural regimes of variability, predictability, and seasonality of critical flow events over broad biogeographic scales.

  15. Prediction and evaluation of route dependent dosimetry of BPA in rats at different life stages using a physiologically based pharmacokinetic model.

    PubMed

    Yang, Xiaoxia; Doerge, Daniel R; Fisher, Jeffrey W

    2013-07-01

    Bisphenol A (BPA) has received considerable attention throughout the last decade due to its widespread use in consumer products. For the first time a physiologically based pharmacokinetic (PBPK) model was developed in neonatal and adult rats to quantitatively evaluate age-dependent pharmacokinetics of BPA and its phase II metabolites. The PBPK model was calibrated in adult rats using studies on BPA metabolism and excretion in the liver and gastrointestinal tract, and pharmacokinetic data with BPA in adult rats. For immature rats the hepatic and gastrointestinal metabolism of BPA was inferred from studies on the maturation of phase II enzymes coupled with serum time course data in pups. The calibrated model predicted the measured serum concentrations of BPA and BPA conjugates after administration of 100μg/kg of d6-BPA in adult rats (oral gavage and intravenous administration) and postnatal days 3, 10, and 21 pups (oral gavage). The observed age-dependent BPA serum concentrations were partially attributed to the immature metabolic capacity of pups. A comparison of the dosimetry of BPA across immature rats and monkeys suggests that dose adjustments would be necessary to extrapolate toxicity studies from neonatal rats to infant humans.

  16. Ceramic Matrix Composites (CMC) Life Prediction Development - 2003

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R.; Calomino, Anthony M.; Verrilli, Michael J.; Thomas, David J.; Halbig, Michael C.; Opila, Elizabeth J.; Ellis, John R.

    2003-01-01

    Accurate life prediction is critical to successful use of ceramic matrix composites (CMCs). The tools to accomplish this are immature and not oriented toward the behavior of carbon fiber reinforced silicon carbide (C/SiC), the primary system of interest for many reusable and single mission launch vehicle propulsion and airframe applications. This paper describes an approach and progress made to satisfy the need to develop an integrated life prediction system that addresses mechanical durability and environmental degradation of C/SiC.

  17. Thermal barrier coating life-prediction model development

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Neumann, J. F.; Liu, A.

    1987-01-01

    The primary objective of this program was to develop an operative thermal barrier coating (TBC) design model for life prediction. The objective was successfully accomplished with the development, calibration, and demonstration of a mechanistic thermochemical model which rapidly predicts TBC life as a function of engine, mission, and materials system parameters. This thermochemical design model accounts for the three operative TBC damage modes (bond coating oxidation, zirconia toughness reduction, and molten salt film damage), which all contribute to spalling of the insulating zirconia layer.

  18. C/sic Life Prediction for Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R.; Verrilli, Michael J.; Opila, Elizabeth J.; Halbig, Michael C.; Calomino, Anthony M.; Thomas, David J.

    2003-01-01

    Accurate life prediction is critical to successful use of ceramic matrix composites (CMCs). The tools to accomplish this are immature and not oriented toward the behavior of carbon fiber reinforced silicon carbide (C/SiC), the primary system of interest for many reusable and single mission launch vehicle propulsion and airframe applications. This paper describes an approach and progress made to satisfy the need to develop an integrated life prediction system that addresses mechanical durability and environmental degradation of C/SiC.

  19. Creep fatigue life prediction for engine hot section materials (isotropic)

    NASA Technical Reports Server (NTRS)

    Moreno, V.

    1983-01-01

    The activities performed during the first year of the NASA HOST Program, Creep Fatigue Life Prediction for Engine Hot Section Materials (Isotropic), being conducted by Pratt & Whitney Aircraft are summarized. The program is a 5 year, two part effort aimed at improving the high temperature crack initiation prediction technology for gas turbine hot section components. Significant results of the program produced thus far are discussed. Cast B1900 + Hf and wrought IN 718 were selected as the base and alternate materials, respectively. A single heat of B1900 + Hf was obtained and test specimens fabricated. The material was characterized with respect to grain size, gamma prime size, carbide distribution, and dislocation density. Monotonic tensile and creep testing has shown engineering properties within anticipated scatter for this material. Examination of the tensile tests has shown a transition from inhomogeneous planar slip within the grains at lower temperatures to more homogeneous matrix deformation. Examination of the creep tests has shown a transgranular failure mode at 1400 F and an intergranular failure mode at 1600 F and 1800 F.

  20. Progressive Failure And Life Prediction of Ceramic and Textile Composites

    NASA Technical Reports Server (NTRS)

    Xue, David Y.; Shi, Yucheng; Katikala, Madhu; Johnston, William M., Jr.; Card, Michael F.

    1998-01-01

    An engineering approach to predict the fatigue life and progressive failure of multilayered composite and textile laminates is presented. Analytical models which account for matrix cracking, statistical fiber failures and nonlinear stress-strain behavior have been developed for both composites and textiles. The analysis method is based on a combined micromechanics, fracture mechanics and failure statistics analysis. Experimentally derived empirical coefficients are used to account for the interface of fiber and matrix, fiber strength, and fiber-matrix stiffness reductions. Similar approaches were applied to textiles using Repeating Unit Cells. In composite fatigue analysis, Walker's equation is applied for matrix fatigue cracking and Heywood's formulation is used for fiber strength fatigue degradation. The analysis has been compared with experiment with good agreement. Comparisons were made with Graphite-Epoxy, C/SiC and Nicalon/CAS composite materials. For textile materials, comparisons were made with triaxial braided and plain weave materials under biaxial or uniaxial tension. Fatigue predictions were compared with test data obtained from plain weave C/SiC materials tested at AS&M. Computer codes were developed to perform the analysis. Composite Progressive Failure Analysis for Laminates is contained in the code CPFail. Micromechanics Analysis for Textile Composites is contained in the code MicroTex. Both codes were adapted to run as subroutines for the finite element code ABAQUS and CPFail-ABAQUS and MicroTex-ABAQUS. Graphic user interface (GUI) was developed to connect CPFail and MicroTex with ABAQUS.

  1. Markov blanket-based approach for learning multi-dimensional Bayesian network classifiers: an application to predict the European Quality of Life-5 Dimensions (EQ-5D) from the 39-item Parkinson's Disease Questionnaire (PDQ-39).

    PubMed

    Borchani, Hanen; Bielza, Concha; Martı Nez-Martı N, Pablo; Larrañaga, Pedro

    2012-12-01

    Multi-dimensional Bayesian network classifiers (MBCs) are probabilistic graphical models recently proposed to deal with multi-dimensional classification problems, where each instance in the data set has to be assigned to more than one class variable. In this paper, we propose a Markov blanket-based approach for learning MBCs from data. Basically, it consists of determining the Markov blanket around each class variable using the HITON algorithm, then specifying the directionality over the MBC subgraphs. Our approach is applied to the prediction problem of the European Quality of Life-5 Dimensions (EQ-5D) from the 39-item Parkinson's Disease Questionnaire (PDQ-39) in order to estimate the health-related quality of life of Parkinson's patients. Fivefold cross-validation experiments were carried out on randomly generated synthetic data sets, Yeast data set, as well as on a real-world Parkinson's disease data set containing 488 patients. The experimental study, including comparison with additional Bayesian network-based approaches, back propagation for multi-label learning, multi-label k-nearest neighbor, multinomial logistic regression, ordinary least squares, and censored least absolute deviations, shows encouraging results in terms of predictive accuracy as well as the identification of dependence relationships among class and feature variables.

  2. A life prediction model for laminated composite structural components

    NASA Technical Reports Server (NTRS)

    Allen, David H.

    1990-01-01

    A life prediction methodology for laminated continuous fiber composites subjected to fatigue loading conditions was developed. A summary is presented of research completed. A phenomenological damage evolution law was formulated for matrix cracking which is independent of stacking sequence. Mechanistic and physical support was developed for the phenomenological evolution law proposed above. The damage evolution law proposed above was implemented to a finite element computer program. And preliminary predictions were obtained for a structural component undergoing fatigue loading induced damage.

  3. Evaluation of corrosion fatigue and life prediction of lower arm for automotive suspension component

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Sang; Kim, Jung-Gu

    2017-01-01

    Lower arm is one of the suspension components of automobile. It is suffered from driving vibration and corrosive environment, namely corrosion fatigue. In this study, corrosion fatigue property of lower arm was investigated, and a modified model based on Palmgren-Miner rule was developed to predict the lifetimes of corrosion fatigue. The corrosion fatigue life of lower arm was about 1/6 times shorter than fatigue life. Based on the results of corrosion fatigue tests and meteorological data in Seoul and Halifax, the corrosion fatigue life of lower arm was predicted. The satisfaction of 10-year and 300,000 km warranty was dominated by the climate of automobile driving. This prediction indicates that the weather condition or driving condition influences the life of automotive parts. Therefore, to determine the warranty of automotive parts, the driving condition has to be carefully considered.

  4. Strainrange partitioning life predictions of the long time Metal Properties Council creep-fatigue tests

    NASA Technical Reports Server (NTRS)

    Saltsman, J. F.; Halford, G. R.

    1979-01-01

    The method of Strainrange Partitioning is used to predict the cyclic lives of the Metal Properties Council's long time creep-fatigue interspersion tests of several steel alloys. Comparisons are made with predictions based upon the Time- and Cycle-Fraction approach. The method of Strainrange Partitioning is shown to give consistently more accurate predictions of cyclic life than is given by the Time- and Cycle-Fraction approach.

  5. Strainrange partitioning life predictions of the long time metal properties council creep-fatigue tests

    NASA Technical Reports Server (NTRS)

    Saltsman, J. F.; Halford, G. R.

    1979-01-01

    The method of strainrange partitioning is used to predict the cyclic lives of the Metal Properties Council's long time creep-fatigue interspersion tests of several steel alloys. Comparisons are made with predictions based upon the time- and cycle-fraction approach. The method of strainrange partitioning is shown to give consistently more accurate predictions of cyclic life than is given by the time- and cycle-fraction approach.

  6. Purpose in Life Predicts Better Emotional Recovery from Negative Stimuli

    PubMed Central

    Schaefer, Stacey M.; Morozink Boylan, Jennifer; van Reekum, Carien M.; Lapate, Regina C.; Norris, Catherine J.; Ryff, Carol D.; Davidson, Richard J.

    2013-01-01

    Purpose in life predicts both health and longevity suggesting that the ability to find meaning from life’s experiences, especially when confronting life’s challenges, may be a mechanism underlying resilience. Having purpose in life may motivate reframing stressful situations to deal with them more productively, thereby facilitating recovery from stress and trauma. In turn, enhanced ability to recover from negative events may allow a person to achieve or maintain a feeling of greater purpose in life over time. In a large sample of adults (aged 36-84 years) from the MIDUS study (Midlife in the U.S., http://www.midus.wisc.edu/), we tested whether purpose in life was associated with better emotional recovery following exposure to negative picture stimuli indexed by the magnitude of the eyeblink startle reflex (EBR), a measure sensitive to emotional state. We differentiated between initial emotional reactivity (during stimulus presentation) and emotional recovery (occurring after stimulus offset). Greater purpose in life, assessed over two years prior, predicted better recovery from negative stimuli indexed by a smaller eyeblink after negative pictures offset, even after controlling for initial reactivity to the stimuli during the picture presentation, gender, age, trait affect, and other well-being dimensions. These data suggest a proximal mechanism by which purpose in life may afford protection from negative events and confer resilience is through enhanced automatic emotion regulation after negative emotional provocation. PMID:24236176

  7. Life-Space Mobility Change Predicts 6-Month Mortality.

    PubMed

    Kennedy, Richard E; Sawyer, Patricia; Williams, Courtney P; Lo, Alexander X; Ritchie, Christine S; Roth, David L; Allman, Richard M; Brown, Cynthia J

    2017-04-01

    To examine 6-month change in life-space mobility as a predictor of subsequent 6-month mortality in community-dwelling older adults. Prospective cohort study. Community-dwelling older adults from five Alabama counties in the University of Alabama at Birmingham (UAB) Study of Aging. A random sample of 1,000 Medicare beneficiaries, stratified according to sex, race, and rural or urban residence, recruited between November 1999 and February 2001, followed by a telephone interview every 6 months for the subsequent 8.5 years. Mortality data were determined from informant contacts and confirmed using the National Death Index and Social Security Death Index. Life-space was measured at each interview using the UAB Life-Space Assessment, a validated instrument for assessing community mobility. Eleven thousand eight hundred seventeen 6-month life-space change scores were calculated over 8.5 years of follow-up. Generalized linear mixed models were used to test predictors of mortality at subsequent 6-month intervals. Three hundred fifty-four deaths occurred within 6 months of two sequential life-space assessments. Controlling for age, sex, race, rural or urban residence, and comorbidity, life-space score and life-space decline over the preceding 6-month interval predicted mortality. A 10-point decrease in life-space resulted in a 72% increase in odds of dying over the subsequent 6 months (odds ratio = 1.723, P < .001). Life-space score at the beginning of a 6-month interval and change in life-space over 6 months were each associated with significant differences in subsequent 6-month mortality. Life-space assessment may assist clinicians in identifying older adults at risk of short-term mortality. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.

  8. Capacity-loss diagnostic and life-time prediction in lithium-ion batteries: Part 1. Development of a capacity-loss diagnostic method based on open-circuit voltage analysis

    NASA Astrophysics Data System (ADS)

    Wang, Tiansi; Pei, Lei; Wang, Tingting; Lu, Rengui; Zhu, Chunbo

    2016-01-01

    Effective capacity-loss diagnosis and life-time prediction are the foundations of battery second-use technology and will play an important role in the development of the new energy industry. Of the two, the capacity-loss diagnostic, as a precondition of the life-time prediction, needs to be studied first. Performing a capacity-loss diagnosis for an aging cell consists of finding the decisive degradation mechanisms for the cell's capacity degradation. Because a cell's capacity just equals the span of the open-circuit voltage (OCV), when suspect degradation mechanisms affect a cell's capacity, they will leave corresponding and particular clues in the OCV curve. Taking a cell's OCV as the diagnostic indicator, a multi-mechanistic and non-destructive diagnostic method is developed in this paper. To establish an unambiguous relationship between OCV changes and the combinations of the decisive mechanisms, all the possible OCV changes under various aging situations are systematically analyzed based on a novel simultaneous coordinate system, in which the effects of each suspect capacity-loss mechanism on the OCV curve can be clearly represented. As a summary of the analysis results, a straightforward diagnostic flowchart is presented. By following the flowchart, an aging cell can be diagnosed within three steps by observation of the OCV changes.

  9. Advances in fatigue life prediction methodology for metallic materials

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1992-01-01

    The capabilities of a plasticity-induced crack-closure model to predict small- and large-crack growth rates, and in some cases total fatigue life, for four aluminum alloys and three titanium alloys under constant-amplitude, variable-amplitude, and spectrum loading are described. Equations to calculate a cyclic-plastic-zone corrected effective stress-intensity factor range from a cyclic J-integral and crack-closure analysis of large cracks were reviewed. The effective stress-intensity factor range against crack growth rate relations were used in the closure model to predict small- and large-crack growth under variable-amplitude and spectrum loading. Using the closure model and microstructural features, a total fatigue life prediction method is demonstrated for three aluminum alloys under various load histories.

  10. Enhanced CARES Software Enables Improved Ceramic Life Prediction

    NASA Technical Reports Server (NTRS)

    Janosik, Lesley A.

    1997-01-01

    The NASA Lewis Research Center has developed award-winning software that enables American industry to establish the reliability and life of brittle material (e.g., ceramic, intermetallic, graphite) structures in a wide variety of 21st century applications. The CARES (Ceramics Analysis and Reliability Evaluation of Structures) series of software is successfully used by numerous engineers in industrial, academic, and government organizations as an essential element of the structural design and material selection processes. The latest version of this software, CARES/Life, provides a general- purpose design tool that predicts the probability of failure of a ceramic component as a function of its time in service. CARES/Life was recently enhanced by adding new modules designed to improve functionality and user-friendliness. In addition, a beta version of the newly-developed CARES/Creep program (for determining the creep life of monolithic ceramic components) has just been released to selected organizations.

  11. Enhanced CARES Software Enables Improved Ceramic Life Prediction

    NASA Technical Reports Server (NTRS)

    Janosik, Lesley A.

    1997-01-01

    The NASA Lewis Research Center has developed award-winning software that enables American industry to establish the reliability and life of brittle material (e.g., ceramic, intermetallic, graphite) structures in a wide variety of 21st century applications. The CARES (Ceramics Analysis and Reliability Evaluation of Structures) series of software is successfully used by numerous engineers in industrial, academic, and government organizations as an essential element of the structural design and material selection processes. The latest version of this software, CARES/Life, provides a general- purpose design tool that predicts the probability of failure of a ceramic component as a function of its time in service. CARES/Life was recently enhanced by adding new modules designed to improve functionality and user-friendliness. In addition, a beta version of the newly-developed CARES/Creep program (for determining the creep life of monolithic ceramic components) has just been released to selected organizations.

  12. Expression of a Single-Copy hsp-16.2 Reporter Predicts Life span

    PubMed Central

    Tedesco, Patricia M.; Taylor, Larry D.; Lowe, Anita; Cypser, James R.; Johnson, Thomas E.

    2012-01-01

    The level of green fluorescent protein expression from an hsp-16.2–based transcriptional reporter predicts life span and thermotolerance in Caenorhabditis elegans. The initial report used a high-copy number reporter integrated into chromosome IV. There was concern that the life-span prediction power of this reporter was not attributable solely to hsp-16.2 output. Specifically, prediction power could stem from disruption of some critical piece of chromatin on chromosome IV by the gpIs1 insertion, a linked mutation from the process used to create the reporter, or from an artifact of transgene regulation (multicopy transgenes are subject to regulation by C elegans chromatin surveillance machinery). Here we determine if the ability to predict life span and thermotolerance is specific to the gpIs1 insertion or a general property of hsp-16.2–based reporters. New single-copy hsp-16.2–based reporters predict life span and thermotolerance. We conclude that prediction power of hsp-16.2–based transcriptional reporters is not an artifact of any specific transgene configuration or chromatin surveillance mechanism. PMID:22227523

  13. Life Prediction Issues in Thermal/Environmental Barrier Coatings in Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Brewer, David N.; Murthy, Pappu L. N.

    2001-01-01

    Issues and design requirements for the environmental barrier coating (EBC)/thermal barrier coating (TBC) life that are general and those specific to the NASA Ultra-Efficient Engine Technology (UEET) development program have been described. The current state and trend of the research, methods in vogue related to the failure analysis, and long-term behavior and life prediction of EBCITBC systems are reported. Also, the perceived failure mechanisms, variables, and related uncertainties governing the EBCITBC system life are summarized. A combined heat transfer and structural analysis approach based on the oxidation kinetics using the Arrhenius theory is proposed to develop a life prediction model for the EBC/TBC systems. Stochastic process-based reliability approach that includes the physical variables such as gas pressure, temperature, velocity, moisture content, crack density, oxygen content, etc., is suggested. Benefits of the reliability-based approach are also discussed in the report.

  14. Probabilistic fatigue life prediction model for alloys with defects: applied to A206

    SciTech Connect

    Kapoor, Rajeev; Sree Hari Rao, V.; Mishra, Rajiv S.; Baumann, John A.; Grant, Glenn J.

    2011-05-31

    Presented here is a model for the prediction of fatigue life based on the statistical distribution of pores, intermetallic particles and grains. This has been applied to a cast Al alloy A206, before and after friction stir processing (FSP). The model computes the probability to initiate a small crack based on the probability of finding combinations of defects and grains on the surface. The crack initiation and propagation life of small cracks due to these defect and grain combinations are computed and summed to obtain the total fatigue life. The defect and grain combinations are ranked according to total fatigue life and the failure probability computed. Bending fatigue experiments were carried out on A206 before and after FSP. FSP eliminated the porosity, broke down the particles and refined the microstructure. The model predicted the fatigue life of A206 before and after FSP well. The cumulative probability distribution vs. fatigue life was fitted to a three parameter Weibull distribution function. The scatter reduced after FSP and the threshold of fatigue life increased. The potential improvement in the fatigue life of A206 for a microstructure consisting of a finer distribution of particle sizes after FSP was predicted using the model.

  15. Purpose in Life Predicts Allostatic Load Ten Years Later

    PubMed Central

    Zilioli, Samuele; Slatcher, Richard B.; Ong, Anthony D.; Gruenewald, Tara

    2015-01-01

    Objective Living a purposeful life is associated with better mental and physical health, including longevity. Accumulating evidence shows that these associations might be explained by the association between life purpose and regulation of physiological systems involved in the stress response. The aim of this study was to investigate the prospective associations between life purpose and allostatic load over a 10-year period. Methods Analyses were conducted using data from the Midlife in the United States (MIDUS) survey. Assessment of life purpose, psychological covariates and demographics were obtained at baseline, while biomarkers of allostatic load were assessed at the 10-year follow-up. Results We found that greater life purpose predicted lower levels of allostatic load at follow-up, even when controlling for other aspects of psychological well-being potentially associated with allostatic load. Further, life purpose was also a strong predictor of individual differences in self-health locus of control—i.e., beliefs about how much influence individuals can exert on their own health—which, in turn, partially mediated the association between purpose and allostatic load. Although life purpose was also negatively linked to other-health locus of control —i.e., the extent to which individuals believe their health is controlled by others/chance —this association did not mediate the impact of life purpose on allostatic load. Conclusion The current study provides the first empirical evidence for the long-term physiological correlates of life purpose and supports the hypothesis that self-health locus of control acts as one proximal psychological mechanism through which life purpose may be linked to positive biological outcomes. PMID:26526322

  16. Life in the Mosaic: Predicting changes in estuarine nursery production for juvenile fishes in response to sea-level rise with a landscape-based habitat production model

    EPA Science Inventory

    Identification of critical habitat in estuarine fish nursery areas is an important conservation and management objective, yet response to changes in critical habitat is both equally important and harder to predict. Habitat can be viewed as a mosaic of both temporally variable en...

  17. Life in the Mosaic: Predicting changes in estuarine nursery production for juvenile fishes in response to sea-level rise with a landscape-based habitat production model

    EPA Science Inventory

    Identification of critical habitat in estuarine fish nursery areas is an important conservation and management objective, yet response to changes in critical habitat is both equally important and harder to predict. Habitat can be viewed as a mosaic of both temporally variable en...

  18. Prediction of Service Life for Assembly with Time-variant Deviation

    NASA Astrophysics Data System (ADS)

    Zeng, Wenhui; Rao, Yunqing; Long, Chenxi; Wang, Peng

    2017-06-01

    During operation, the time-variant deviations, such as deformation, thermal expansion, friction and wear always occur and affect the mechanical performance and service life of assembly. In this paper, a methodology for the prediction of service life for assembly with time-variant deviations is proposed. Firstly, based on the modified Unified Jacobian-Torsor model and Monte Carlo simulation, according to the distribution the geometric and dimension tolerances are randomly generated to limit the variations of surface of part. Secondly, the deformations caused by load and thermal expansion are obtained by finite element analysis, and considering the friction and wear, the prediction model of service life is constructed subject to the constraints. At last, an application is given to illustrate the prediction model, and the influences of time-variant deviations on the assembly deviation and service life are analyzed.

  19. Predictive modeling of surimi cake shelf life at different storage temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Yatong; Hou, Yanhua; Wang, Quanfu; Cui, Bingqing; Zhang, Xiangyu; Li, Xuepeng; Li, Yujin; Liu, Yuanping

    2017-04-01

    The Arrhenius model of the shelf life prediction which based on the TBARS index was established in this study. The results showed that the significant changed of AV, POV, COV and TBARS with temperature increased, and the reaction rate constants k was obtained by the first order reaction kinetics model. Then the secondary model fitting was based on the Arrhenius equation. There was the optimal fitting accuracy of TBARS in the first and the secondary model fitting (R2≥0.95). The verification test indicated that the relative error between the shelf life model prediction value and actual value was within ±10%, suggesting the model could predict the shelf life of surimi cake.

  20. How the behavioral approach system predicts everyday life outcomes.

    PubMed

    Izadikhah, Zahra; Jackson, Chris J

    2010-01-01

    This study tested crucial components of Gray's reinforcement sensitivity theory that have generally been overlooked in the literature. We tested whether the perceived amount of reward moderates the behavioral approach system (BAS) and the importance of reward mediates BAS in the prediction of job satisfaction and organizational commitment. Results from 514 participants employed in part-time and full-time jobs provided support for our model, such that the indirect effect of BAS through the importance of reward was strongest when reward was provided. This model advances our understanding of reinforcement sensitivity theory and offers a solid foundation for predicting outcomes in everyday life.

  1. DNA sequencing and predictions of the cosmic theory of life

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, N. Chandra

    2013-01-01

    The theory of cometary panspermia, developed by the late Sir Fred Hoyle and the present author argues that life originated cosmically as a unique event in one of a great multitude of comets or planetary bodies in the Universe. Life on Earth did not originate here but was introduced by impacting comets, and its further evolution was driven by the subsequent acquisition of cosmically derived genes. Explicit predictions of this theory published in 1979-1981, stating how the acquisition of new genes drives evolution, are compared with recent developments in relation to horizontal gene transfer, and the role of retroviruses in evolution. Precisely-stated predictions of the theory of cometary panspermia are shown to have been verified.

  2. DNA Sequencing and Predictions of the Cosmic Theory of Life

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, N. Chandra

    The theory of cometary panspermia, developed by the late Sir Fred Hoyle and the present author argues that life originated cosmically as a unique event in one of a great multitude of comets or planetary bodies in the Universe. Life on Earth did not originate here but was introduced by impacting comets, and its further evolution was driven by the subsequent acquisition of cosmically derived genes. Explicit predictions of this theory published in 1979-1981, stating how the acquisition of new genes drives evolution, are compared with recent developments in relation to horizontal gene transfer, and the role of retroviruses in evolution. Precisely-stated predictions of the theory of cometary panspermia are shown to have been verified.

  3. Reengineering Aircraft Structural Life Prediction Using a Digital Twin

    DTIC Science & Technology

    2011-01-01

    exploit advances in very high performance digital computing is proposed. The proposed process utilizes an ultrahigh fidelity model of individual aircraft by...local damage and material state evolution. A conceptual model of how the Digital Twin can be used for predicting the life of aircraft structure and...receives an as- built digital model of this particular aircraft, designated 25- 0001D/I. 25-0001D/I is a 1000 billion degree-of-freedom (DOF

  4. Life Prediction of Fretting Fatigue with Advanced Surface Treatments (Preprint)

    DTIC Science & Technology

    2006-05-01

    surfaces and not the fretting pads. The chosen coatings included DLC, Ni-B, Molybdenum, and Nitride. These 4 coatings, their application to the titanium ...Article Preprint 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 4 . TITLE AND SUBTITLE LIFE PREDICTION OF FRETTING FATIGUE WITH ADVANCED SURFACE...TREATMENTS (PREPRINT) 5c. PROGRAM ELEMENT NUMBER N/A 5d. PROJECT NUMBER M02R 5e. TASK NUMBER 30 6 . AUTHOR(S) Patrick J. Golden and Michael

  5. NASA GRC Fatigue Crack Initiation Life Prediction Models

    NASA Technical Reports Server (NTRS)

    Arya, Vinod K.; Halford, Gary R.

    2002-01-01

    Metal fatigue has plagued structural components for centuries, and it remains a critical durability issue in today's aerospace hardware. This is true despite vastly improved and advanced materials, increased mechanistic understanding, and development of accurate structural analysis and advanced fatigue life prediction tools. Each advance is quickly taken advantage of to produce safer, more reliable, more cost effective, and better performing products. In other words, as the envelope is expanded, components are then designed to operate just as close to the newly expanded envelope as they were to the initial one. The problem is perennial. The economic importance of addressing structural durability issues early in the design process is emphasized. Tradeoffs with performance, cost, and legislated restrictions are pointed out. Several aspects of structural durability of advanced systems, advanced materials and advanced fatigue life prediction methods are presented. Specific items include the basic elements of durability analysis, conventional designs, barriers to be overcome for advanced systems, high-temperature life prediction for both creep-fatigue and thermomechanical fatigue, mean stress effects, multiaxial stress-strain states, and cumulative fatigue damage accumulation assessment.

  6. A Primer In Advanced Fatigue Life Prediction Methods

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    2000-01-01

    Metal fatigue has plagued structural components for centuries, and it remains a critical durability issue in today's aerospace hardware. This is true despite vastly improved and advanced materials, increased mechanistic understanding, and development of accurate structural analysis and advanced fatigue life prediction tools. Each advance is quickly taken advantage of to produce safer, more reliable more cost effective, and better performing products. In other words, as the envelop is expanded, components are then designed to operate just as close to the newly expanded envelop as they were to the initial one. The problem is perennial. The economic importance of addressing structural durability issues early in the design process is emphasized. Tradeoffs with performance, cost, and legislated restrictions are pointed out. Several aspects of structural durability of advanced systems, advanced materials and advanced fatigue life prediction methods are presented. Specific items include the basic elements of durability analysis, conventional designs, barriers to be overcome for advanced systems, high-temperature life prediction for both creep-fatigue and thermomechanical fatigue, mean stress effects, multiaxial stress-strain states, and cumulative fatigue damage accumulation assessment.

  7. NASA GRC Fatigue Crack Initiation Life Prediction Models

    NASA Astrophysics Data System (ADS)

    Arya, Vinod K.; Halford, Gary R.

    2002-10-01

    Metal fatigue has plagued structural components for centuries, and it remains a critical durability issue in today's aerospace hardware. This is true despite vastly improved and advanced materials, increased mechanistic understanding, and development of accurate structural analysis and advanced fatigue life prediction tools. Each advance is quickly taken advantage of to produce safer, more reliable, more cost effective, and better performing products. In other words, as the envelope is expanded, components are then designed to operate just as close to the newly expanded envelope as they were to the initial one. The problem is perennial. The economic importance of addressing structural durability issues early in the design process is emphasized. Tradeoffs with performance, cost, and legislated restrictions are pointed out. Several aspects of structural durability of advanced systems, advanced materials and advanced fatigue life prediction methods are presented. Specific items include the basic elements of durability analysis, conventional designs, barriers to be overcome for advanced systems, high-temperature life prediction for both creep-fatigue and thermomechanical fatigue, mean stress effects, multiaxial stress-strain states, and cumulative fatigue damage accumulation assessment.

  8. One- and two-stage Arrhenius models for pharmaceutical shelf life prediction.

    PubMed

    Fan, Zhewen; Zhang, Lanju

    2015-01-01

    One of the most challenging aspects of the pharmaceutical development is the demonstration and estimation of chemical stability. It is imperative that pharmaceutical products be stable for two or more years. Long-term stability studies are required to support such shelf life claim at registration. However, during drug development to facilitate formulation and dosage form selection, an accelerated stability study with stressed storage condition is preferred to quickly obtain a good prediction of shelf life under ambient storage conditions. Such a prediction typically uses Arrhenius equation that describes relationship between degradation rate and temperature (and humidity). Existing methods usually rely on the assumption of normality of the errors. In addition, shelf life projection is usually based on confidence band of a regression line. However, the coverage probability of a method is often overlooked or under-reported. In this paper, we introduce two nonparametric bootstrap procedures for shelf life estimation based on accelerated stability testing, and compare them with a one-stage nonlinear Arrhenius prediction model. Our simulation results demonstrate that one-stage nonlinear Arrhenius method has significant lower coverage than nominal levels. Our bootstrap method gave better coverage and led to a shelf life prediction closer to that based on long-term stability data.

  9. Fatigue life prediction under service load considering strengthening effect of loads below fatigue limit

    NASA Astrophysics Data System (ADS)

    Zhao, Lihui; Zheng, Songlin; Feng, Jinzhi

    2014-11-01

    Lightweight design requires an accurate life prediction for structures and components under service loading histories. However, predicted life with the existing methods seems too conservative in some cases, leading to a heavy structure. Because these methods are established on the basis that load cycles would only cause fatigue damage, ignore the strengthening effect of loads. Based on Palmgren-Miner Rule (PMR), this paper introduces a new method for fatigue life prediction under service loadings by taking into account the strengthening effect of loads below the fatigue limit. In this method, the service loadings are classified into three categories: damaging load, strengthening load and none-effect load, and the process for fatigue life prediction is divided into two stages: stage I and stage II, according to the best strengthening number of cycles. During stage I, fatigue damage is calculated considering both the strengthening and damaging effect of load cycles. While during stage II, only the damaging effect is considered. To validate this method, fatigue lives of automobile half shaft and torsion beam rear axle are calculated based on the new method and traditional methods, such as PMR and Modified Miner Rule (MMR), and fatigue tests of the two components are conducted under service loading histories. The tests results show that the percentage errors of the predicted life with the new method to mean life of tests for the two components are -3.78% and -1.76% separately, much lesser than that with PMR and MMR. By considering the strengthening effect of loads below the fatigue limit, the new method can significantly improve the accuracy for fatigue life prediction. Thus lightweight design can be fully realized in the design stage.

  10. Life prediction of advanced materials for gas turbine application

    SciTech Connect

    Zamrik, S.Y.; Ray, A.; Koss, D.A.

    1995-12-31

    Emphasis is placed on life characterization based on low cycle fatigue under isothermal conditions and thermomechanical fatigue. Microstructure of failed coated and uncoated specimens is being analyzed. IN 738 LC is the material; the coating is either overlay (NiCoCrAly) or NiAl-based aluminide.

  11. Life histories predict coral community disassembly under multiple stressors.

    PubMed

    Darling, Emily S; McClanahan, Timothy R; Côté, Isabelle M

    2013-06-01

    Climate change is reshaping biological communities against a background of existing human pressure. Evaluating the impacts of multiple stressors on community dynamics can be particularly challenging in species-rich ecosystems, such as coral reefs. Here, we investigate whether life-history strategies and cotolerance to different stressors can predict community responses to fishing and temperature-driven bleaching using a 20-year time series of coral assemblages in Kenya. We found that the initial life-history composition of coral taxa largely determined the impacts of bleaching and coral loss. Prior to the 1998 bleaching event, coral assemblages within no-take marine reserves were composed of three distinct life histories - competitive, stress-tolerant and weedy- and exhibited strong declines following bleaching with limited subsequent recovery. In contrast, fished reefs had lower coral cover, fewer genera and were composed of stress-tolerant and weedy corals that were less affected by bleaching over the long term. Despite these general patterns, we found limited evidence for cotolerance as coral genera and life histories were variable in their sensitivities to fishing and bleaching. Overall, fishing and bleaching have reduced coral diversity and led to altered coral communities of 'survivor' species with stress-tolerant and weedy life histories. Our findings are consistent with expectations that climate change interacting with existing human pressure will result in the loss of coral diversity and critical reef habitat. © 2013 Blackwell Publishing Ltd.

  12. Lunar Base Life Support Failures

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2009-01-01

    Dynamic simulation of the lunar outpost habitat life support was undertaken to investigate the impact of life support failures and to investigate responses. Some preparatory static analysis for the Lunar Outpost life support model, an earlier version of the model, and an investigation into the impact of Extravehicular Activity (EVA) were reported previously. (Jones, 2008-01-2184, 2008-01-2017) The earlier model was modified to include possible resupply delays, power failures, recycling system failures, and atmosphere and other material storage failures. Most failures impact the lunar outpost water balance and can be mitigated by reducing water usage. Food solids, nitrogen can be obtained only by resupply from Earth. The most time urgent failure is a lass of carbon dioxide removal capability. Life support failures might be survivable if effective operational solutions are provided in the system design.

  13. Modelling of microbial activity and prediction of shelf life for packed fresh fish.

    PubMed

    Dalgaard, P

    1995-08-01

    Prediction of shelf life based on growth of specific spoilage organisms (SSO) in model substrates was studied. The effect of CO2 on the growth kinetics for Photobacterium phosphoreum and Shewanella putrefaciens was quantified and modelled. Results showed that microbial spoilage of packed cod stored with various concentrations of CO2 was accurately predicted from the effect of CO2 on P. phosphoreum grown in model substrates. The short shelf life extensions previously reported for packed cod therefore can be explained by the high CO2 resistance of this Gram negative organism. S. putrefaciens was very sensitive to CO2 and growth rates could not be related to the shelf life of packed cod. Growth curves without lag phases were found for all concentrations of CO2 and for both the microorganisms studied. For the fitting of these growth curves the log-transformed Logistic models were selected after comparison with the 'modified Gompertz' models and with the model of Baranyi et al. (1993). The effect of CO2 on mu max was well described by a 2 parameter square root model. Validation of kinetic models by comparison of shelf life predictions with shelf life determined by sensory evaluations in product experiments was preferred for comparison of microbial growth rates determined in product and model system experiments. Kinetic modelling was found to be valuable for both evaluation and prediction of microbial fish spoilage and an iterative approach for development of kinetic shelf life models was suggested.

  14. Life prediction of advanced materials for gas turbine application

    SciTech Connect

    Zamrik, S.Y.; Ray, A.; Koss, D.A.

    1995-10-01

    Most of the studies on the low cycle fatigue life prediction have been reported under isothermal conditions where the deformation of the material is strain dependent. In the development of gas turbines, components such as blades and vanes are exposed to temperature variations in addition to strain cycling. As a result, the deformation process becomes temperature and strain dependent. Therefore, the life of the component becomes sensitive to temperature-strain cycling which produces a process known as {open_quotes}thermomechanical fatigue, or TMF{close_quotes}. The TMF fatigue failure phenomenon has been modeled using conventional fatigue life prediction methods, which are not sufficiently accurate to quantitatively establish an allowable design procedure. To add to the complexity of TMF life prediction, blade and vane substrates are normally coated with aluminide, overlay or thermal barrier type coatings (TBC) where the durability of the component is dominated by the coating/substrate constitutive response and by the fatigue behavior of the coating. A number of issues arise from TMF depending on the type of temperature/strain phase cycle: (1) time-dependent inelastic behavior can significantly affect the stress response. For example, creep relaxation during a tensile or compressive loading at elevated temperatures leads to a progressive increase in the mean stress level under cyclic loading. (2) the mismatch in elastic and thermal expansion properties between the coating and the substrate can lead to significant deviations in the coating stress levels due to changes in the elastic modulii. (3) the {open_quotes}dry{close_quotes} corrosion resistance coatings applied to the substrate may act as primary crack initiation sites. Crack initiation in the coating is a function of the coating composition, its mechanical properties, creep relaxation behavior, thermal strain range and the strain/temperature phase relationship.

  15. Multiaxial deformation and life prediction model and experimental data for advanced silicon nitride ceramics

    SciTech Connect

    Ding, J.L.; Liu, K.C.; Brinkman, C.R.

    1993-06-01

    This paper summarizes recent experimental results on creep and creep rupture behavior of a commercial grade of Si{sub 3}N{sub 4} ceramic in the temperature range of 1150 to 1300C obtained at ORNL; and introduces a tentative multiaxial deformation and life prediction model for ceramic materials under general thermomechanical loadings. Issues related to the possible standardization of the data analysis methodology and possible future research needs for high temperature structural ceramics in the area of development of data base and life prediction methodology are also discussed.

  16. Thermal barrier coating life-prediction model development

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Neumann, J.; Liu, A.

    1986-01-01

    The program focuses on predicting the lives of two types of strain-tolerant and oxidation-resistant thermal barrier coating (TBC) systems that are produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system, composed of a low-pressure plasma-spray (LPPS) or an argon shrouded plasma-spray (ASPS) applied oxidation resistant NiCrAlY or (CoNiCrAlY) bond coating and an air-plasma-sprayed yttria partially stabilized zirconia insulative layer, is applied by both Chromalloy, Klock, and Union Carbide. The second type of TBS is applied by the electron beam-physical vapor deposition (EB-PVD) process by Temescal. The second year of the program was focused on specimen procurement, TMC system characterization, nondestructive evaluation methods, life prediction model development, and TFE731 engine testing of thermal barrier coated blades. Materials testing is approaching completion. Thermomechanical characterization of the TBC systems, with toughness, and spalling strain tests, was completed. Thermochemical testing is approximately two-thirds complete. Preliminary materials life models for the bond coating oxidation and zirconia sintering failure modes were developed. Integration of these life models with airfoil component analysis methods is in progress. Testing of high pressure turbine blades coated with the program TBS systems is in progress in a TFE731 turbofan engine. Eddy current technology feasibility was established with respect to nondestructively measuring zirconia layer thickness of a TBC system.

  17. The construction of life prediction models for the design of Stirling engine heater components

    NASA Technical Reports Server (NTRS)

    Petrovich, A.; Bright, A.; Cronin, M.; Arnold, S.

    1983-01-01

    The service life of Stirling-engine heater structures of Fe-based high-temperature alloys is predicted using a numerical model based on a linear-damage approach and published test data (engine test data for a Co-based alloy and tensile-test results for both the Co-based and the Fe-based alloys). The operating principle of the automotive Stirling engine is reviewed; the economic and technical factors affecting the choice of heater material are surveyed; the test results are summarized in tables and graphs; the engine environment and automotive duty cycle are characterized; and the modeling procedure is explained. It is found that the statistical scatter of the fatigue properties of the heater components needs to be reduced (by decreasing the porosity of the cast material or employing wrought material in fatigue-prone locations) before the accuracy of life predictions can be improved.

  18. Using ABAQUS Scripting Interface for Materials Evaluation and Life Prediction

    NASA Technical Reports Server (NTRS)

    Powers, Lynn M.; Arnold, Steven M.; Baranski, Andrzej

    2006-01-01

    An ABAQUS script has been written to aid in the evaluation of the mechanical behavior of viscoplastic materials. The purposes of the script are to: handle complex load histories; control load/displacement with alternate stopping criteria; predict failure and life; and verify constitutive models. Material models from the ABAQUS library may be used or the UMAT routine may specify mechanical behavior. User subroutines implemented include: UMAT for the constitutive model; UEXTERNALDB for file manipulation; DISP for boundary conditions; and URDFIL for results processing. Examples presented include load, strain and displacement control tests on a single element model. The tests are creep with a life limiting strain criterion, strain control with a stress limiting cycle and a complex interrupted cyclic relaxation test. The techniques implemented in this paper enable complex load conditions to be solved efficiently with ABAQUS.

  19. Life histories predict vulnerability to overexploitation in parrotfishes

    NASA Astrophysics Data System (ADS)

    Taylor, Brett M.; Houk, Peter; Russ, Garry R.; Choat, J. Howard

    2014-12-01

    A scarcity of life-history data currently exists for many exploited coral reef fishes, hindering our ability to interpret fishery dynamics and develop sound conservation policies. In particular, parrotfishes (Family Labridae) represent a ubiquitous and ecologically important group that is increasingly prevalent in commercial and artisanal fisheries worldwide. We used both fishery-dependent and fishery-independent data to examine the effect of life histories on vulnerability to overexploitation in parrotfishes. Vulnerability for each species was derived from independent measures associated with both temporal (20-year catch records) and spatial datasets. Most life-history traits examined were significant predictors of vulnerability across species, but their relative utility differed considerably. Length-based traits (e.g., lengths at maturity and sex change, maximum length) were generally superior to age-based traits (e.g., life span), but one age-based trait, age at female maturation, was the best predictor. The results suggest that easily derived metrics such as maximum length can be effective measures of sensitivity to exploitation when applied to phylogenetically related multispecies assemblages, but more holistic and comprehensive age-based demographic data should be sought, especially in data-deficient and heavily impacted regions. Given the increasing prevalence of parrotfishes in the global coral reef harvest, species-specific responses demonstrate the capacity for heavy fishing pressure to alter parrotfish assemblages considerably.

  20. Predicting later life health status and mortality using state-level socioeconomic characteristics in early life.

    PubMed

    Hamad, Rita; Rehkopf, David H; Kuan, Kai Y; Cullen, Mark R

    2016-12-01

    Studies extending across multiple life stages promote an understanding of factors influencing health across the life span. Existing work has largely focused on individual-level rather than area-level early life determinants of health. In this study, we linked multiple data sets to examine whether early life state-level characteristics were predictive of health and mortality decades later. The sample included 143,755 U.S. employees, for whom work life claims and administrative data were linked with early life state-of-residence and mortality. We first created a "state health risk score" (SHRS) and "state mortality risk score" (SMRS) by modeling state-level contextual characteristics with health status and mortality in a randomly selected 30% of the sample (the "training set"). We then examined the association of these scores with objective health status and mortality in later life in the remaining 70% of the sample (the "test set") using multivariate linear and Cox regressions, respectively. The association between the SHRS and adult health status was β=0.14 (95%CI: 0.084, 0.20), while the hazard ratio for the SMRS was 0.96 (95%CI: 0.93, 1.00). The association between the SHRS and health was not statistically significant in older age groups at a p-level of 0.05, and there was a statistically significantly different association for health status among movers compared to stayers. This study uses a life course perspective and supports the idea of "sensitive periods" in early life that have enduring impacts on health. It adds to the literature examining populations in the U.S. where large linked data sets are infrequently available.

  1. USING CONDITION MONITORING TO PREDICT REMAINING LIFE OF ELECTRIC CABLES.

    SciTech Connect

    LOFARO,R.; SOO,P.; VILLARAN,M.; GROVE,E.

    2001-03-29

    Electric cables are passive components used extensively throughout nuclear power stations to perform numerous safety and non-safety functions. It is known that the polymers commonly used to insulate the conductors on these cables can degrade with time; the rate of degradation being dependent on the severity of the conditions in which the cables operate. Cables do not receive routine maintenance and, since it can be very costly, they are not replaced on a regular basis. Therefore, to ensure their continued functional performance, it would be beneficial if condition monitoring techniques could be used to estimate the remaining useful life of these components. A great deal of research has been performed on various condition monitoring techniques for use on electric cables. In a research program sponsored by the U.S. Nuclear Regulatory Commission, several promising techniques were evaluated and found to provide trendable information on the condition of low-voltage electric cables. These techniques may be useful for predicting remaining life if well defined limiting values for the aging properties being measured can be determined. However, each technique has advantages and limitations that must be addressed in order to use it effectively, and the necessary limiting values are not always easy to obtain. This paper discusses how condition monitoring measurements can be used to predict the remaining useful life of electric cables. The attributes of an appropriate condition monitoring technique are presented, and the process to be used in estimating the remaining useful life of a cable is discussed along with the difficulties that must be addressed.

  2. C/sic Life Prediction for Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R.; Verrilli, Michael J.; Opila, Elizabeth J.; Halbig, Michael C.; Calomino, Anthony M.; Thomas, David J.

    2002-01-01

    Accurate life prediction is critical to successful use of ceramic matrix composites (CMC). The tools to accomplish this are immature and not oriented toward the behavior of carbon fiber reinforced silicon carbide (C/SiC), the primary system of interest for many reusable and single mission launch vehicle propulsion and airframe applications. This paper describes an approach and process made to satisfy the need to develop an integrated life prediction system that addresses mechanical durability and environmental degradation of C/SiC. Issues such as oxidation, steam and hydrogen effects on material behavior are discussed. Preliminary tests indicate that steam will aggressively remove SiC seal coat and matrix in line with past experience. The kinetics of water vapor reaction with carbon fibers is negligible at 600 C, but comparable to air attack at 1200 C. The mitigating effect of steam observed in fiber oxidation studies has also been observed in stress rupture tests. Detailed microscopy of oxidized specimens is being carried out to develop the oxidation model. Carbon oxidation kinetics are reaction controlled at intermediate temperatures and diffusion controlled at high temperatures (approximately 1000 C). Activation energies for T-300 and interface pyrolytic carbon were determined as key inputs to the oxidation model. Crack opening as a function of temperature and stress was calculated. Mechanical property tests to develop and verify the probabilistic life model are very encouraging except for residual strength prediction. Gage width is a key variable governing edge oxidation of seal coated specimens. Future efforts will include architectural effects, enhanced coatings, biaxial tests, and LCF. Modeling will need to account for combined effects.

  3. C/SIC Life Prediction for Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R.; Verrilli, Michael J.; Opula, Elizabeth J.; Halbig, Michael C.; Calomino, Anthony M.; Thomas, David J.

    2002-01-01

    Accurate life prediction is critical to successful use of ceramic matrix composites (CMC). The tools to accomplish this are immature and not oriented toward the behavior of carbon fiber reinforced silicon carbide (C/SiC), the primary system of interest for many reusable and single mission launch vehicle propulsion and airframe applications. This paper describes an approach and progress made to satisfy the need to develop an integrated life prediction system that addresses mechanical durability and environmental degradation of C/SiC. Issues such as oxidation, steam and hydrogen effects on material behavior are discussed. Preliminary tests indicate that stream will aggressively remove SiC seal coat and matrix in line with past experience. The kinetics of water vapor reaction with carbon fibers is negligible at 600 C, but comparable to air attack at 1200 C. The mitigating effect of steam observed in fiber oxidation studies has also been observed in stress rupture tests. Detailed microscopy of oxidized specimens is being carried out to develop the oxidation model. Carbon oxidation kinetics are reaction controlled at intermediate temperatures and diffusion controlled at high temperatures (approx. 1000 C). Activation energies for T-300 and interface pyrolytic carbon were determined as key inputs to the oxidation model. Crack opening as a function of temperature and stress was calculated. Mechanical property tests to develop and verify the probabilistic life model are very encouraging except for residual strength prediction. Gage width is a key variable governing edge oxidation of seal coated specimens. Future efforts will include architectural effects, enhanced coatings, biaxial tests, and LCF. Modeling will need to account for combined effects.

  4. Life Prediction for a CMC Component Using the NASALIFE Computer Code

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Murthy, Pappu L. N.; Mital, Subodh K.

    2005-01-01

    The computer code, NASALIFE, was used to provide estimates for life of an SiC/SiC stator vane under varying thermomechanical loading conditions. The primary intention of this effort is to show how the computer code NASALIFE can be used to provide reasonable estimates of life for practical propulsion system components made of advanced ceramic matrix composites (CMC). Simple loading conditions provided readily observable and acceptable life predictions. Varying the loading conditions such that low cycle fatigue and creep were affected independently provided expected trends in the results for life due to varying loads and life due to creep. Analysis was based on idealized empirical data for the 9/99 Melt Infiltrated SiC fiber reinforced SiC.

  5. Predicting mooring system fatigue life by probabilistic methods

    SciTech Connect

    Saders, D.R.; Dominguez, R.F.; Ho, K.C.; Lai, N.W.

    1983-05-01

    Failure of moored structures from accumulated fatigue damage in shackles, connecting links, chain and wire rope components is common. When systems will be deployed for long periods, it is especially important to determine at the design, inspection and maintenance stages the fatigue damage. Since slack moored structures behave in a highly nonlinear manner, commonly used fatigue analysis procedures are normally inadequate. This paper reviews present probablistic fatigue analysis methods, and provides a means for incorporating nonlinear mooring behavior into analysis and design to predict accumulated damage and remaining service life. The procedures presented are general, and they are also applicable to ship and buoy moorings, offshore terminals, and guyed and tension leg platforms.

  6. Development of a Composite Delamination Fatigue Life Prediction Methodology

    NASA Technical Reports Server (NTRS)

    OBrien, Thomas K.

    2009-01-01

    Delamination is one of the most significant and unique failure modes in composite structures. Because of a lack of understanding of the consequences of delamination and the inability to predict delamination onset and growth, many composite parts are unnecessarily rejected upon inspection, both immediately after manufacture and while in service. NASA Langley is leading the efforts in the U.S. to develop a fatigue life prediction methodology for composite delamination using fracture mechanics. Research being performed to this end will be reviewed. Emphasis will be placed on the development of test standards for delamination characterization, incorporation of approaches for modeling delamination in commercial finite element codes, and efforts to mature the technology for use in design handbooks and certification documents.

  7. Cumulative early life adversity predicts longevity in wild baboons.

    PubMed

    Tung, Jenny; Archie, Elizabeth A; Altmann, Jeanne; Alberts, Susan C

    2016-04-19

    In humans and other animals, harsh circumstances in early life predict morbidity and mortality in adulthood. Multiple adverse conditions are thought to be especially toxic, but this hypothesis has rarely been tested in a prospective, longitudinal framework, especially in long-lived mammals. Here we use prospective data on 196 wild female baboons to show that cumulative early adversity predicts natural adult lifespan. Females who experience ≥3 sources of early adversity die a median of 10 years earlier than females who experience ≤1 adverse circumstances (median lifespan is 18.5 years). Females who experience the most adversity are also socially isolated in adulthood, suggesting that social processes partially explain the link between early adversity and adult survival. Our results provide powerful evidence for the developmental origins of health and disease and indicate that close ties between early adversity and survival arise even in the absence of health habit and health care-related explanations.

  8. Cumulative early life adversity predicts longevity in wild baboons

    PubMed Central

    Tung, Jenny; Archie, Elizabeth A.; Altmann, Jeanne; Alberts, Susan C.

    2016-01-01

    In humans and other animals, harsh circumstances in early life predict morbidity and mortality in adulthood. Multiple adverse conditions are thought to be especially toxic, but this hypothesis has rarely been tested in a prospective, longitudinal framework, especially in long-lived mammals. Here we use prospective data on 196 wild female baboons to show that cumulative early adversity predicts natural adult lifespan. Females who experience ≥3 sources of early adversity die a median of 10 years earlier than females who experience ≤1 adverse circumstances (median lifespan is 18.5 years). Females who experience the most adversity are also socially isolated in adulthood, suggesting that social processes partially explain the link between early adversity and adult survival. Our results provide powerful evidence for the developmental origins of health and disease and indicate that close ties between early adversity and survival arise even in the absence of health habit and health care-related explanations. PMID:27091302

  9. Life prediction and reliability assessment of lithium secondary batteries

    NASA Astrophysics Data System (ADS)

    Eom, Seung-Wook; Kim, Min-Kyu; Kim, Ick-Jun; Moon, Seong-In; Sun, Yang-Kook; Kim, Hyun-Soo

    Reliability assessment of lithium secondary batteries was mainly considered. Shape parameter (β) and scale parameter (η) were calculated from experimental data based on cycle life test. We also examined safety characteristics of lithium secondary batteries. As proposed by IEC 62133 (2002), we had performed all of the safety/abuse tests such as 'mechanical abuse tests', 'environmental abuse tests', 'electrical abuse tests'. This paper describes the cycle life of lithium secondary batteries, FMEA (failure modes and effects analysis) and the safety/abuse tests we had performed.

  10. CARES/LIFE Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program

    NASA Astrophysics Data System (ADS)

    Nemeth, Noel N.; Powers, Lynn M.; Janosik, Lesley A.; Gyekenyesi, John P.

    2003-02-01

    This manual describes the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction (CARES/LIFE) computer program. The program calculates the time-dependent reliability of monolithic ceramic components subjected to thermomechanical and/or proof test loading. CARES/LIFE is an extension of the CARES (Ceramic Analysis and Reliability Evaluation of Structures) computer program. The program uses results from MSC/NASTRAN, ABAQUS, and ANSYS finite element analysis programs to evaluate component reliability due to inherent surface and/or volume type flaws. CARES/LIFE accounts for the phenomenon of subcritical crack growth (SCG) by utilizing the power law, Paris law, or Walker law. The two-parameter Weibull cumulative distribution function is used to characterize the variation in component strength. The effects of multiaxial stresses are modeled by using either the principle of independent action (PIA), the Weibull normal stress averaging method (NSA), or the Batdorf theory. Inert strength and fatigue parameters are estimated from rupture strength data of naturally flawed specimens loaded in static, dynamic, or cyclic fatigue. The probabilistic time-dependent theories used in CARES/LIFE, along with the input and output for CARES/LIFE, are described. Example problems to demonstrate various features of the program are also included.

  11. CARES/LIFE Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Powers, Lynn M.; Janosik, Lesley A.; Gyekenyesi, John P.

    2003-01-01

    This manual describes the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction (CARES/LIFE) computer program. The program calculates the time-dependent reliability of monolithic ceramic components subjected to thermomechanical and/or proof test loading. CARES/LIFE is an extension of the CARES (Ceramic Analysis and Reliability Evaluation of Structures) computer program. The program uses results from MSC/NASTRAN, ABAQUS, and ANSYS finite element analysis programs to evaluate component reliability due to inherent surface and/or volume type flaws. CARES/LIFE accounts for the phenomenon of subcritical crack growth (SCG) by utilizing the power law, Paris law, or Walker law. The two-parameter Weibull cumulative distribution function is used to characterize the variation in component strength. The effects of multiaxial stresses are modeled by using either the principle of independent action (PIA), the Weibull normal stress averaging method (NSA), or the Batdorf theory. Inert strength and fatigue parameters are estimated from rupture strength data of naturally flawed specimens loaded in static, dynamic, or cyclic fatigue. The probabilistic time-dependent theories used in CARES/LIFE, along with the input and output for CARES/LIFE, are described. Example problems to demonstrate various features of the program are also included.

  12. Life prediction of thermomechanical fatigue using total strain version of strainrange partitioning (SRP): A proposal

    NASA Technical Reports Server (NTRS)

    Saltsman, James F.; Halford, Gary R.

    1988-01-01

    A method is proposed (without experimental verification) for extending the total strain version of Strainrange Partitioning (TS-SRP) to predict the lives of thermomechanical fatigue (TMF) cycles. The principal feature of TS SRP is the determination of the time-temperature-waveshape dependent elastic strainrange versus life lines that are added subsequently to the classical inelastic strainrange versus life lines to form the total strainrange versus life relations. The procedure is based on a derived relation between failure and flow behavior. Failure behavior is represented by conventional SRP inelastic strainrange versus cyclic life relations, while flow behavior is captured in terms of the cyclic stress-strain response characteristics. Stress-strain response is calculated from simple equations developed from approximations to more complex cyclic constitutive models. For applications to TMF life prediction, a new testing technique, bithermal cycling, is proposed as a means for generating the inelastic strainrange versus life relations. Flow relations for use in predicting TMF lives would normally be obtained from approximations to complex thermomechanical constitutive models. Bithermal flow testing is also proposed as an alternative to thermomechanical flow testing at low strainranges where the hysteresis loop is difficult to analyze.

  13. Probabilistic fatigue life prediction using ultrasonic inspection data considering equivalent initial flaw size uncertainty

    NASA Astrophysics Data System (ADS)

    Guan, X.; Zhang, J.; Kadau, K.; Zhou, S. K.

    2013-01-01

    This study presents a systematical method for probabilistic fatigue life prediction using ultrasonic inspection data. A probabilistic model to correlate the ultrasonic inspection reported size and the actual size is proposed based on historical data of rotor flaw sizing. Both of the reported size and the actual size are quantified in terms of the equivalent reflector diameter. The equivalent initial flaw size (EIFS) is then calculated based on the actual size for fatigue propagation analysis. All major uncertainties, such as EIFS uncertainty, fatigue crack growth model parameter uncertainty, and experimental data measurement uncertainty are explicitly included in the fatigue life prediction. Bayesian parameter estimation is used to estimate fatigue crack growth model parameters and measurement uncertainties using a limited number of fatigue testing data points. The overall procedure is demonstrated using a Cr-Mo-V rotor segment with ultrasonic inspection data. Interpretations of the probabilistic prediction results are given.

  14. Development of a Generic Creep-Fatigue Life Prediction Model

    NASA Technical Reports Server (NTRS)

    Goswami, Tarun

    2002-01-01

    The objective of this research proposal is to further compile creep-fatigue data of steel alloys and superalloys used in military aircraft engines and/or rocket engines and to develop a statistical multivariate equation. The newly derived model will be a probabilistic fit to all the data compiled from various sources. Attempts will be made to procure the creep-fatigue data from NASA Glenn Research Center and other sources to further develop life prediction models for specific alloy groups. In a previous effort [1-3], a bank of creep-fatigue data has been compiled and tabulated under a range of known test parameters. These test parameters are called independent variables, namely; total strain range, strain rate, hold time, and temperature. The present research attempts to use these variables to develop a multivariate equation, which will be a probabilistic equation fitting a large database. The data predicted by the new model will be analyzed using the normal distribution fits, the closer the predicted lives are with the experimental lives (normal line 1 to 1 fit) the better the prediction. This will be evaluated in terms of a coefficient of correlation, R 2 as well. A multivariate equation developed earlier [3] has the following form, where S, R, T, and H have specific meaning discussed later.

  15. Tension fatigue analysis and life prediction for composite laminates

    NASA Technical Reports Server (NTRS)

    Obrien, T. K.; Rigamonti, M.; Zanotti, C.

    1988-01-01

    A tension fatigue life prediction methodology for composite laminates is presented. Tension fatigue tests were conducted on quasi-isotropic and orthotropic glass epoxy, graphite epoxy, and glass/graphite epoxy hybrid laminates. Edge delamination onset data were used to generate plots of strain energy release rate as a function of cycles to delamination onset. These plots were then used along with strain energy release rate analyses of delaminations initiating at matrix cracks to predict local delamination onset. Stiffness loss was measured experimentally to account for the accumulation of matrix cracks and for delamination growth. Fatigue failure was predicted by comparing the increase in global strain resulting from stiffness loss to the decrease in laminate failure strain resulting from delaminations forming at matrix cracks through the laminate thickness. Good agreement between measured and predicted lives indicated that the through-thickness damage accumulation model can accurately describe fatigue failure for laminates where the delamination onset behavior in fatigue is well characterized, and stiffness loss can be monitored in real time to account for damage growth.

  16. WHAT PREDICTS A SUCCESSFUL LIFE? A LIFE-COURSE MODEL OF WELL-BEING*

    PubMed Central

    Layard, Richard; Clark, Andrew E.; Cornaglia, Francesca; Powdthavee, Nattavudh; Vernoit, James

    2014-01-01

    Policy-makers who care about well-being need a recursive model of how adult life-satisfaction is predicted by childhood influences, acting both directly and (indirectly) through adult circumstances. We estimate such a model using the British Cohort Study (1970). We show that the most powerful childhood predictor of adult life-satisfaction is the child’s emotional health, followed by the child’s conduct. The least powerful predictor is the child’s intellectual development. This may have implications for educational policy. Among adult circumstances, family income accounts for only 0.5% of the variance of life-satisfaction. Mental and physical health are much more important. PMID:25422527

  17. Prediction of creep-rupture life of unidirectional titanium matrix composites subjected to transverse loading

    SciTech Connect

    John, R.; Khobaib, M.; Smith, P.R.

    1996-10-01

    Titanium matrix composites (TMCs) incorporating unidirectional fiber reinforcement are considered as enabling materials technology for advanced engines which require high specific strength and elevated temperature capability. The resistance of unidirectional TMCs to deformation under longitudinally applied sustained loading at elevated temperatures has been well documented. Many investigators have shown that the primary weakness of the unidirectional TMC is its susceptibility to failure under very low transverse loads, especially under sustained loading. Hence, a reliable model is required to predict the creep-rupture life of TMCs subjected to different transverse stress levels over a wide range of temperatures. In this article, the authors propose a model to predict the creep-rupture life of unidirectional TMC subjected to transverse loading based on the creep-rupture life of unidirectional TMC subjected to transverse loading based on the creep-rupture behavior of the corresponding fiberless matrix. The model assumes that during transverse loading, the effective load-carrying matrix ligament along a row of fibers controls the creep-rupture strength and the fibers do not contribute to the creep resistance of the composite. The proposed model was verified using data obtained from different TMC fabricated using three matrix compositions, which exhibited distinctly different types of creep behavior. The results show that the creep-rupture life of the transverse TMC decreases linearly with increasing ratio of the fiber diameter to the ply thickness. The creep-rupture life is also predicted to be independent of fiber spacing along the length of the specimen.

  18. Data-Based Predictive Control with Multirate Prediction Step

    NASA Technical Reports Server (NTRS)

    Barlow, Jonathan S.

    2010-01-01

    Data-based predictive control is an emerging control method that stems from Model Predictive Control (MPC). MPC computes current control action based on a prediction of the system output a number of time steps into the future and is generally derived from a known model of the system. Data-based predictive control has the advantage of deriving predictive models and controller gains from input-output data. Thus, a controller can be designed from the outputs of complex simulation code or a physical system where no explicit model exists. If the output data happens to be corrupted by periodic disturbances, the designed controller will also have the built-in ability to reject these disturbances without the need to know them. When data-based predictive control is implemented online, it becomes a version of adaptive control. One challenge of MPC is computational requirements increasing with prediction horizon length. This paper develops a closed-loop dynamic output feedback controller that minimizes a multi-step-ahead receding-horizon cost function with multirate prediction step. One result is a reduced influence of prediction horizon and the number of system outputs on the computational requirements of the controller. Another result is an emphasis on portions of the prediction window that are sampled more frequently. A third result is the ability to include more outputs in the feedback path than in the cost function.

  19. Overview of the fatigue/fracture/life prediction working group program at the Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.

    1991-01-01

    The objective is to develop and verify constitutive and life prediction models for materials typically used in hot gas path components of reusable space propulsion systems over the range of relevant operative environments. The efforts were concentrated on the development of crack initiation life prediction methods and on the development of cyclic crack propagation and fracture life prediction methods.

  20. Personality Predicts Health Declines Through Stressful Life Events During Late Mid-Life

    PubMed Central

    Iacovino, Juliette M.; Bogdan, Ryan; Oltmanns, Thomas F.

    2016-01-01

    Personality predicts the occurrence of dependent stressful life events (SLE; i.e., events reliant, at least in part, on an individual's behavior). This process, termed stress generation, contributes to psychiatric outcomes, but its role in physical health is unknown. Data were included from 998 participants (aged 55–64) in the St. Louis Personality and Aging Network (SPAN) study. Assessments occurred every 6 months for 18 months. Neuroticism, impulsivity, and agreeableness were measured with the Revised NEO Personality Inventory. Dependent (e.g., divorce) and independent (e.g., family death) SLE occurring within 6 months following baseline were assessed with the List of Threatening Experiences and confirmed by interviews. Health problems occurring within a year after SLE were the outcome. Analyses examined whether neuroticism, impulsivity, and agreeableness indirectly predict the onset of new health problems through exposure to dependent SLE. Each personality trait was associated with dependent, but not independent, SLE. Only dependent SLE predicted new health problems. Each personality trait indirectly predicted the onset of new health problems through dependent SLE. Findings suggest that personality-driven stress generation influences physical health during late mid-life. Addressing personality in interventions may reduce the occurrence of SLE, in turn decreasing health risks. PMID:25929195

  1. Personality Predicts Health Declines Through Stressful Life Events During Late Mid-Life.

    PubMed

    Iacovino, Juliette M; Bogdan, Ryan; Oltmanns, Thomas F

    2016-08-01

    Personality predicts the occurrence of dependent stressful life events (SLE; i.e., events reliant, at least in part, on an individual's behavior). This process, termed stress generation, contributes to psychiatric outcomes, but its role in physical health is unknown. Data were included from 998 participants (aged 55-64) in the St. Louis Personality and Aging Network (SPAN) study. Assessments occurred every 6 months for 18 months. Neuroticism, impulsivity, and agreeableness were measured with the Revised NEO Personality Inventory. Dependent (e.g., divorce) and independent (e.g., family death) SLE occurring within 6 months following baseline were assessed with the List of Threatening Experiences and confirmed by interviews. Health problems occurring within a year after SLE were the outcome. Analyses examined whether neuroticism, impulsivity, and agreeableness indirectly predict the onset of new health problems through exposure to dependent SLE. Each personality trait was associated with dependent, but not independent, SLE. Only dependent SLE predicted new health problems. Each personality trait indirectly predicted the onset of new health problems through dependent SLE. Findings suggest that personality-driven stress generation influences physical health during late mid-life. Addressing personality in interventions may reduce the occurrence of SLE, in turn decreasing health risks.

  2. Life prediction and constitutive models for engine hot section anisotropic materials program

    NASA Technical Reports Server (NTRS)

    Nissley, D. M.; Meyer, T. G.; Walker, K. P.

    1992-01-01

    This report presents a summary of results from a 7 year program designed to develop generic constitutive and life prediction approaches and models for nickel-based single crystal gas turbine airfoils. The program was composed of a base program and an optional program. The base program addressed the high temperature coated single crystal regime above the airfoil root platform. The optional program investigated the low temperature uncoated single crystal regime below the airfoil root platform including the notched conditions of the airfoil attachment. Both base and option programs involved experimental and analytical efforts. Results from uniaxial constitutive and fatigue life experiments of coated and uncoated PWA 1480 single crystal material formed the basis for the analytical modeling effort. Four single crystal primary orientations were used in the experiments: group of zone axes (001), group of zone axes (011), group of zone axes (111), and group of zone axes (213). Specific secondary orientations were also selected for the notched experiments in the optional program. Constitutive models for an overlay coating and PWA 1480 single crystal materials were developed based on isothermal hysteresis loop data and verified using thermomechanical (TMF) hysteresis loop data. A fatigue life approach and life models were developed for TMF crack initiation of coated PWA 1480. A life model was developed for smooth and notched fatigue in the option program. Finally, computer software incorporating the overlay coating and PWA 1480 constitutive and life models was developed.

  3. Fatigue life prediction of liquid rocket engine combustor with subscale test verification

    NASA Astrophysics Data System (ADS)

    Sung, In-Kyung

    Reusable rocket systems such as the Space Shuttle introduced a new era in propulsion system design for economic feasibility. Practical reusable systems require an order of magnitude increase in life. To achieve this improved methods are needed to assess failure mechanisms and to predict life cycles of rocket combustor. A general goal of the research was to demonstrate the use of subscale rocket combustor prototype in a cost-effective test program. Life limiting factors and metal behaviors under repeated loads were surveyed and reviewed. The life prediction theories are presented, with an emphasis on studies that used subscale test hardware for model validation. From this review, low cycle fatigue (LCF) and creep-fatigue interaction (ratcheting) were identified as the main life limiting factors of the combustor. Several life prediction methods such as conventional and advanced viscoplastic models were used to predict life cycle due to low cycle thermal stress, transient effects, and creep rupture damage. Creep-fatigue interaction and cyclic hardening were also investigated. A prediction method based on 2D beam theory was modified using 3D plate deformation theory to provide an extended prediction method. For experimental validation two small scale annular plug nozzle thrusters were designed, built and tested. The test article was composed of a water-cooled liner, plug annular nozzle and 200 psia precombustor that used decomposed hydrogen peroxide as the oxidizer and JP-8 as the fuel. The first combustor was tested cyclically at the Advanced Propellants and Combustion Laboratory at Purdue University. Testing was stopped after 140 cycles due to an unpredicted failure mechanism due to an increasing hot spot in the location where failure was predicted. A second combustor was designed to avoid the previous failure, however, it was over pressurized and deformed beyond repair during cold-flow test. The test results are discussed and compared to the analytical and numerical

  4. Predicting productivity based on EQ-5D: an explorative study.

    PubMed

    Krol, Marieke; Stolk, Elly; Brouwer, Werner

    2014-06-01

    Productivity costs are often ignored in economic evaluations. In order to facilitate productivity cost inclusion, it has been suggested to estimate productivity costs indirectly using quality of life data. This study aimed to derive and validate an algorithm for predicting productivity losses on the basis of quality-of-life data using the EQ-5D-3L. A large representative sample of the Dutch general public (n = 1,100) was asked in a web-based questionnaire to state their expected level of productivity in terms of absenteeism and presenteeism for multiple EQ-5D health states. Based on these data, two generalized estimating equations (GEE) models were constructed: (1) a model predicting levels of absenteeism and (2) a model predicting presenteeism. The models were validated by comparing model predictions with conventionally measured productivity within a group of low back pain patients. Predicted absenteeism levels based on EQ-5D health state closely resembled conventionally measured absenteeism levels. Productivity losses related to presenteeism seemed somewhat overestimated by our prediction model. Measured and predicted productivity were moderately but highly significantly correlated. Overall, it appears possible to make reasonable productivity predictions based on EQ-5D data. Further exploration and validation of prediction algorithms remains necessary, however, especially for presenteeism.

  5. Stress analysis and life prediction of gas turbine blade

    NASA Technical Reports Server (NTRS)

    Hsiung, H. C.; Dunn, A. J.; Woodling, D. R.; Loh, D. L.

    1988-01-01

    A stress analysis procedure is presented for a redesign of the Space Shuttle Main Engine high pressure fuel turbopump turbine blades. The analysis consists of the one-dimensional scoping analysis to support the design layout and the follow-on three-dimensional finite element analysis to confirm the blade design at operating loading conditions. Blade life is evaluated based on high-cycle fatigue and low-cycle fatigue.

  6. Life test data and flight predictions for nickel-hydrogen (Ni-H/sub 2/) batteries

    SciTech Connect

    Levy, E.

    1982-08-01

    A substantial test data base is accumulating on Ni-H/sub 2/ cells, batteries and positive plates to support life predictions of greater than 10 years in synchronous and elliptical orbits and greater than 5000 cycles in low earth orbit, all at high (80 percent) depth of discharge. All cells, batteries, and positive plates used for this test data base are of a common design. The cell is the Air Force/ Hughes ''pineapple slice'' cell. The positive plate is the Air Force/EPI Colorado Springs dry sinter electrochemically impregnated plate. Cell testing includes real time tests of cells and/or batteries in all three (low earth, elliptical, synchronous) orbits. Plate testing includes real time and accelerated tests in boilerplate assemblies. Life predictions are based on understanding cell wearout modes and comparing wearout rates of nickel-hydrogen components to those of nickel-cadmium cells.

  7. Fatigue Life Prediction for Porosity-Containing Cast 319-T7 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Jang, Younghwan; Jeong, Youin; Yoon, Chongho; Kim, Sangshik

    2009-05-01

    In this study, the linear elastic fracture mechanics (LEFM) approach, including use of the equivalent initial flaw size (EIFS) concept and fatigue crack propagation (FCP) rates, da/ dN, as a function of either Δ K or Δ K eff, was used to predict the fatigue life of a porosity-containing 319-T7 specimen. The uniaxial fatigue tests were conducted on a 319-T7 specimen at a stress ratio ( R) of -1. For the LEFM-based fatigue life prediction, da/ dN-Δ K data were obtained for the 319-T7 specimen at R = 0.1. The shape and the size of the porosity were analyzed based on the fractographic and the micrographic analyses for each fatigued specimen. The LEFM concept, including the use of the EIFS value, back-calculated by using da/ dN-Δ K eff data, successfully predicts the porosity-affected stress vs the number of cycles to failure (S-N) fatigue behavior of cast 319-T7 specimens. The LEFM models presently available for predicting the fatigue life of porosity-containing alloys were evaluated and a simple modification was proposed based on extensive fractographic analysis results.

  8. Teachers' assessments of children aged eight predict life satisfaction in adolescence.

    PubMed

    Honkanen, Meri; Meri, Honkanen; Hurtig, Tuula; Tuula, Hurtig; Taanila, Anja; Anja, Taanila; Moilanen, Irma; Irma, Moilanen; Koponen, Hannu; Hannu, Koponen; Mäki, Pirjo; Pirjo, Mäki; Veijola, Juha; Juha, Veijola; Puustjärvi, Anita; Anita, Puustjärvi; Ebeling, Hanna; Hanna, Ebeling; Koivumaa-Honkanen, Heli; Heli, Koivumaa-Honkanen

    2011-09-01

    The objective was to investigate how teachers' assessments of children predict life satisfaction in adolescence. This is a prospective cohort study on the population-based Northern Finland Birth Cohort 1986 (n = 8,959). Information was gathered from parents, teachers and adolescents using questionnaires at the age of 7, 8 and 15. Response rates were 80-90%. Emotional and behavioural problems were assessed with Rutter Children's Behavioural Questionnaires for teachers (RB2) and parents (RA2) during the first grade at age 8. At adolescence, self-reported life satisfaction was measured with a question including five response alternatives. According to teachers' assessments, 13.9% of the children had high emotional or behavioural problems (RB2 ≥9). These assessments predicted life dissatisfaction in adolescence (OR(crude) = 1.77; 95% CI 1.43-2.20) in several models including also health behaviour and use of psychotropic medicine. However, introducing all the significant variables in the same model, RB2 lost its significance (OR = 1.28; 0.96-1.70), but good school achievement assessed by teachers was still a significant predictor. Life satisfaction in adolescence was associated with a variety of favourable concurrent factors. In conclusion teachers' assessments of children during the first school year predicted life satisfaction in adolescence. In mental health promotion, teachers' early assessments should be utilized for the benefit of children.

  9. A systematic literature review of life expectancy prediction tools for localized prostate cancer patients

    PubMed Central

    Kent, Matthew; Vickers, Andrew J.

    2015-01-01

    Purpose We aimed to develop a clinical decision support tool for clinicians counseling patients with localized prostate cancer. The tool would provide estimates of patient life expectancy from age, comorbidities, and tumor characteristics. We reviewed the literature to find suitable prediction models. Materials and Methods We searched the literature for prediction models for life expectancy. Models were evaluated in terms of whether they provided an estimate of risk, incorporated comorbidities, were clinically feasible and gave plausible estimates. Clinical feasibility was defined in terms of whether the model provided coefficients, could be used in the initial consultation for men across a wide range of ages without an undue burden of data gathering. Results Models in the literature were characterized by the use of life years rather than a risk of death, questionable approaches to comorbidities, implausible estimates, questionable recommendations, and poor clinical feasibility. We found tools based on applying an unvalidated approach to assessing comorbidities to a clearly erroneous life expectancy table, or required a treatment decision be made before life expectancy could be calculated or gave highly implausible estimates, such as a substantial risk of prostate cancer specific mortality even for a highly comorbid 80 year old with Gleason 6 disease. Conclusions We found gross deficiencies in current tools that predict risk of death from other causes. No existing model was suitable for implementation in our clinical decision support system. PMID:25463998

  10. Fatigue life prediction of an intermetallic matrix composite at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Bartolotta, Paul A.

    1991-01-01

    A strain-based fatigue life prediction method is proposed for an intermetallic matrix composite (IMC) under tensile cyclic loadings at elevated temperatures. Styled after the Universal Slopes method, the model utilizes the composite's tensile properties to estimate fatigue life. Factors such as fiber volume ratio, number of plys and temperature dependence are implicitly incorporated into the model through these properties. The model constants are determined by using unidirectional fatigue data at temperatures of 425 and 815 C. Fatigue lives from two independent sources are used to verify the model at temperatures of 650 and 760 C. Cross-ply lives at 760 C are also predicted. It is demonstrated that the correlation between experimental and predicted lives is within a factor of two.

  11. Life prediction methodology for thermal-mechanical fatigue and elevated temperature creep design

    NASA Astrophysics Data System (ADS)

    Annigeri, Ravindra

    Nickel-based superalloys are used for hot section components of gas turbine engines. Life prediction techniques are necessary to assess service damage in superalloy components resulting from thermal-mechanical fatigue (TMF) and elevated temperature creep. A new TMF life model based on continuum damage mechanics has been developed and applied to IN 738 LC substrate material with and without coating. The model also characterizes TMF failure in bulk NiCoCrAlY overlay and NiAl aluminide coatings. The inputs to the TMF life model are mechanical strain range, hold time, peak cycle temperatures and maximum stress measured from the stabilized or mid-life hysteresis loops. A viscoplastic model is used to predict the stress-strain hysteresis loops. A flow rule used in the viscoplastic model characterizes the inelastic strain rate as a function of the applied stress and a set of three internal stress variables known as back stress, drag stress and limit stress. Test results show that the viscoplastic model can reasonably predict time-dependent stress-strain response of the coated material and stress relaxation during hold times. In addition to the TMF life prediction methodology, a model has been developed to characterize the uniaxial and multiaxial creep behavior. An effective stress defined as the applied stress minus the back stress is used to characterize the creep recovery and primary creep behavior. The back stress has terms representing strain hardening, dynamic recovery and thermal recovery. Whenever the back stress is greater than the applied stress, the model predicts a negative creep rate observed during multiple stress and multiple temperature cyclic tests. The model also predicted the rupture time and the remaining life that are important for life assessment. The model has been applied to IN 738 LC, Mar-M247, bulk NiCoCrAlY overlay coating and 316 austenitic stainless steel. The proposed model predicts creep response with a reasonable accuracy for wide range of

  12. Quality of life is predictive of relapse in schizophrenia.

    PubMed

    Boyer, Laurent; Millier, Aurelie; Perthame, Emeline; Aballea, Samuel; Auquier, Pascal; Toumi, Mondher

    2013-01-09

    The objective of this study was to evaluate whether quality of life (QoL), as measured by the SF36 and the Quality of Life Interview (QoLI), is predictive of relapse for patients with schizophrenia. Using data from a multicenter cohort study conducted in France, Germany, and the United-Kingdom (EuroSC), we performed Cox proportional-hazards models to estimate the associations between QoL at baseline and the occurrence of relapse over a 24-month period, with adjustment for age; gender; positive, negative and general psychopathology PANSS factors; functioning (GAF); medication; side-effects; and compliance measures. Our sample consisted of 1,024 patients; 540 (53%) had at least one period of relapse, and 484 (47%) had no relapse. QoL levels were the most important features predicting relapse. We found that a higher level of QoL predicts a lower rate of relapse at 24 months: HR = 0.82 (0.74; 0.91), p < 0.001 for the SF36-Physical Composite Score; and HR = 0.88 (0.81; 0.96), p = 0.002 for the SF36-Mental Composite Score. These results were not confirmed using the QoLI: HR = 0.91 (0.81; 1.01), p = 0.083. To a lesser extent, older age, better functioning, and a higher compliance score also predict a lower rate of relapse at 24 months (HRs from 0.97 to 0.98; p < 0.05). QoL, as assessed by the SF36, is an independent predictor of relapse at a 24-month follow-up in schizophrenia. This finding may have implications for future use of the QoL in psychiatry. Moreover, our findings may support the development and monitoring of complementary therapeutic approaches, such as 'recovery-oriented' combined with traditional mental health cares to prevent relapse.

  13. Quality of life is predictive of relapse in schizophrenia

    PubMed Central

    2013-01-01

    Background The objective of this study was to evaluate whether quality of life (QoL), as measured by the SF36 and the Quality of Life Interview (QoLI), is predictive of relapse for patients with schizophrenia. Methods Using data from a multicenter cohort study conducted in France, Germany, and the United-Kingdom (EuroSC), we performed Cox proportional-hazards models to estimate the associations between QoL at baseline and the occurrence of relapse over a 24-month period, with adjustment for age; gender; positive, negative and general psychopathology PANSS factors; functioning (GAF); medication; side-effects; and compliance measures. Results Our sample consisted of 1,024 patients; 540 (53%) had at least one period of relapse, and 484 (47%) had no relapse. QoL levels were the most important features predicting relapse. We found that a higher level of QoL predicts a lower rate of relapse at 24 months: HR = 0.82 (0.74; 0.91), p < 0.001 for the SF36-Physical Composite Score; and HR = 0.88 (0.81; 0.96), p = 0.002 for the SF36-Mental Composite Score. These results were not confirmed using the QoLI: HR = 0.91 (0.81; 1.01), p = 0.083. To a lesser extent, older age, better functioning, and a higher compliance score also predict a lower rate of relapse at 24 months (HRs from 0.97 to 0.98; p < 0.05). Conclusions QoL, as assessed by the SF36, is an independent predictor of relapse at a 24-month follow-up in schizophrenia. This finding may have implications for future use of the QoL in psychiatry. Moreover, our findings may support the development and monitoring of complementary therapeutic approaches, such as ‘recovery-oriented’ combined with traditional mental health cares to prevent relapse. PMID:23302219

  14. Life prediction and constitutive models for anisotropic materials

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1982-01-01

    The intent of this program is to develop a basic understanding of cyclic creep-fatigue deformation mechanisms and damage accumulation, a capability for reliable life prediction, and the ability to model the constitutive behavior of anisotropic single crystal (SC) and directionally solidified or recrystallized (DSR) comprise the program, and the work breakdown for each option reflects a distinct concern for two classes of anisotropic materials, SC and DSR materials, at temperatures encountered in the primary gas path (airfoil temperatures), and at temperatures typical of the blade root attachment and shank area. Work directed toward the higher temperature area of concern in the primary gas path includes effects of coatings on the behavior and properties of the materials of interest. The blade root attachment work areas will address the effects of stress concentrations associated with attachment features.

  15. Synthetic Microstructure-Based Lifing of Nickel-Based Superalloys

    NASA Astrophysics Data System (ADS)

    Tucker, Joseph C.

    This work focuses on the root cause of life limiting behavior in Ni-based superalloys for high pressure and temperature turbine disks applications in low cycle fatigue (LCF) by generating statistical volume elements (SVEs) of directly measured 3D microstructures for finite element method (FEM) simulations with crystal plasticity. Synthetic microstructures with experimentally determined microstructurally small fatigue crack (MSFC) weakest link features of as large as (ALA) grains and long annealing twins comprise the test cases. Upper limit truncated log-normal distributions account for the log-normal upper tail departure in grain size distributions of Ni-based superalloys more accurately representing ALA grains. Probability plots quantify the log-normality of grain sizes more effectively than traditional histograms. Twins are inserted into synthetic microstructures according to the coherent Sigma3 orientation relationship. A 3D measured dataset of the Inconel 100 (IN100) validates the Saltykov method stereology technique for estimating 3D grain size distributions from 2D; the 3D grain size distribution mean field and upper tail of IN100 is accurately predicted. The Saltykov method gave 3D grain sizes from a Rene 88 Damage Tolerant (R88DT) 2D dataset resulting in fatigue SVEs of approximately 1.5 million elements and 200 grains from FEM sensitivity studies. Changing mesh resolution minimally impacted global damage response, but converging locally requires significantly higher refinement. Fatigue interrogating FEM studies evolved hot spots in the local MSFC environment in one SVE, but not in another SVE with different crystallographic orientations, suggesting strong 3D full-field neighbor effects. The study revealed a need for slip line length considerations in crystal plasticity to better capture life limiting behavior. The findings point towards strictly limiting the ALA grain size in Ni-based superalloys to extend service life.

  16. Prediction of death after withdrawal of life-sustaining treatments.

    PubMed

    Coleman, Nicole L; Brieva, Jorge L; Crowfoot, Elise

    2008-12-01

    To assess the predictive value of respiratory and haemodynamic variables and opinion of the intensivist for determining how soon death occurs after withdrawal of life-sustaining treatments (WLST). Multicentre prospective observational study. 83 consecutive adult intensive care patients at John Hunter and Calvary Mater Hospitals, Newcastle, New South Wales, for whom a decision was made to withdraw life-sustaining treatment between March 2007 and March 2008. Data were collected before initiation of palliation. Primary outcome was to recognise in a multivariate analysis the parameters associated with a time to death < or = 60 minutes after WLST. 81 patients underwent WLST: 79 died, and two survived to be discharged from hospital. Thirty-six patients (45%) died within 60 minutes of WLST, and 45 (55%) survived 60 minutes or longer. Mean ICU stay before WLST was 4.8 days (range, 1-85 days). Mean time from WLST to death was 6:31 h (range, 1 minute to 31 days). A modified University of Wisconsin assessment tool showed no statistical association with the time from WLST to death (P = 0.09). The adapted United Network for Organ Sharing tool, systolic blood pressure, APACHE II score, ventilatory dependence, oxygen disruption, Glasgow Coma Scale (GCS) score and staff specialist opinion all showed a statistically significant association with time from WLST to death (P < 0.05). It is possible to predict the time from WLST to death accurately using a tool that combines GCS, respiratory and haemodynamic parameters and intensivist opinion. These results require validation in a large multicentre study.

  17. Base Rates, Contingencies, and Prediction Behavior

    ERIC Educational Resources Information Center

    Kareev, Yaakov; Fiedler, Klaus; Avrahami, Judith

    2009-01-01

    A skew in the base rate of upcoming events can often provide a better cue for accurate predictions than a contingency between signals and events. The authors study prediction behavior and test people's sensitivity to both base rate and contingency; they also examine people's ability to compare the benefits of both for prediction. They formalize…

  18. Thermal barrier coating life-prediction model development

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Neumann, J.

    1985-01-01

    Life predictions are made for two types of strain-tolerant and oxidation-resistant Thermal Barrier Coating (TBC) systems produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system, composed of a low-pressure plasma spray (LPPS) applied oxidation-resistant NiCrAlY bond coating and an air-plasma-sprayed yttria (8 percent) partially stabilized zirconia insulative layer, is applied by both Chromalloy and Klock. The second type of TBC is applied by the electron-beam/physical vapor deposition process by Temescal. Thermomechanical and thermochemical testing of the program TBCs is in progress. A number of the former tests has been completed. Fracture mechanics data for the Chromalloy plasma-sprayed TBC system indicate that the cohesive toughness of the zirconia layer is increased by thermal cycling and reduced by high temperature exposure at 1150 C. Eddy current technology feasibility has been established with respect to nondestructively measuring zirconia layer thickness of a TBC system. High pressure turbine blades have been coated with program TBC systems for a piggyback test in a TFE731-5 turbofan factory engine test. Data from this test will be used to validate the TBC life models.

  19. Thermomechanical Fatigue of Ductile Cast Iron and Its Life Prediction

    NASA Astrophysics Data System (ADS)

    Wu, Xijia; Quan, Guangchun; MacNeil, Ryan; Zhang, Zhong; Liu, Xiaoyang; Sloss, Clayton

    2015-06-01

    Thermomechanical fatigue (TMF) behaviors of ductile cast iron (DCI) were investigated under out-of-phase (OP), in-phase (IP), and constrained strain-control conditions with temperature hold in various temperature ranges: 573 K to 1073 K, 723 K to 1073 K, and 433 K to 873 K (300 °C to 800 °C, 450 °C to 800 °C, and 160 °C to 600 °C). The integrated creep-fatigue theory (ICFT) model was incorporated into the finite element method to simulate the hysteresis behavior and predict the TMF life of DCI under those test conditions. With the consideration of four deformation/damage mechanisms: (i) plasticity-induced fatigue, (ii) intergranular embrittlement, (iii) creep, and (iv) oxidation, as revealed from the previous study on low cycle fatigue of the material, the model delineates the contributions of these physical mechanisms in the asymmetrical hysteresis behavior and the damage accumulation process leading to final TMF failure. This study shows that the ICFT model can simulate the stress-strain response and life of DCI under complex TMF loading profiles (OP and IP, and constrained with temperature hold).

  20. Prediction of drug terminal half-life and terminal volume of distribution after intravenous dosing based on drug clearance, steady-state volume of distribution, and physiological parameters of the body.

    PubMed

    Berezhkovskiy, Leonid M

    2013-02-01

    The steady state, V(ss), terminal volume of distribution, V(β), and the terminal half-life, t(1/2), are commonly obtained from the drug plasma concentration-time profile, C(p)(t), following intravenous dosing. Unlike V(ss) that can be calculated based on the physicochemical properties of drugs considering the equilibrium partitioning between plasma and organ tissues, t(1/2) and V(β) cannot be calculated that way because they depend on the rates of drug transfer between blood and tissues. Considering the physiological pharmacokinetic model pertinent to the terminal phase of drug elimination, a novel equation that calculates t(1/2) (and consequently V(β)) was derived. It turns out that V(ss), the total body clearance, Cl, equilibrium blood-plasma concentration ratio, r; and the physiological parameters of the body such as cardiac output, and blood and tissue volumes are sufficient for determination of terminal kinetics. Calculation of t(1/2) by the obtained equation appears to be in good agreement with the experimentally observed vales of this parameter in pharmacokinetic studies in rat, monkey, dog, and human. The equation for the determination of the pre-exponent of the terminal phase of C(p)(t) is also found. The obtained equation allows to predict t(1/2) in human assuming that V(ss) and Cl were either obtained by allometric scaling or, respectively, calculated in silico or based on in vitro drug stability measurements. For compounds that have high clearance, the derived equation may be applied to calculate r just using the routine data on Cl, V(ss), and t(1/2), rather than doing the in vitro assay to measure this parameter.

  1. Fatigue Life Prediction of Low Pressure Turbine Shaft of Turbojet Engine

    NASA Astrophysics Data System (ADS)

    Yu, Le; Chen, Hao; Zhou, Jie; Yin, Hengsu; Huang, Hong-Zhong

    2017-05-01

    The fatigue life prediction method of a low pressure turbine shaft of the turbojet engine is presented. According to working conditions and assembled conditions of the turbojet engine, load types, load values and constraints of the turbine shaft are analyzed. ANSYS software is employed to simulate actual working conditions to obtain stress-strain distributions of the low pressure turbine shaft. Finally, based on stress-strain curves and surface quality, the fatigue life of the low-pressure turbine shaft is calculated with the modified local stress-strain method and the linear cumulative fatigue damage model.

  2. Life prediction and constitutive models for engine hot section anisotropic materials program

    NASA Technical Reports Server (NTRS)

    Nissley, D. M.; Meyer, T. G.

    1992-01-01

    This report presents the results from a 35 month period of a program designed to develop generic constitutive and life prediction approaches and models for nickel-based single crystal gas turbine airfoils. The program is composed of a base program and an optional program. The base program addresses the high temperature coated single crystal regime above the airfoil root platform. The optional program investigates the low temperature uncoated single crystal regime below the airfoil root platform including the notched conditions of the airfoil attachment. Both base and option programs involve experimental and analytical efforts. Results from uniaxial constitutive and fatigue life experiments of coated and uncoated PWA 1480 single crystal material form the basis for the analytical modeling effort. Four single crystal primary orientations were used in the experiments: (001), (011), (111), and (213). Specific secondary orientations were also selected for the notched experiments in the optional program. Constitutive models for an overlay coating and PWA 1480 single crystal material were developed based on isothermal hysteresis loop data and verified using thermomechanical (TMF) hysteresis loop data. A fatigue life approach and life models were selected for TMF crack initiation of coated PWA 1480. An initial life model used to correlate smooth and notched fatigue data obtained in the option program shows promise. Computer software incorporating the overlay coating and PWA 1480 constitutive models was developed.

  3. Remaining useful life prediction for an adaptive skew-Wiener process model

    NASA Astrophysics Data System (ADS)

    Huang, Zeyi; Xu, Zhengguo; Ke, Xiaojie; Wang, Wenhai; Sun, Youxian

    2017-03-01

    Predicting the remaining useful life for operational devices plays a critical role in prognostics and health management. As the models based on the stochastic processes are widely used for characterizing the degradation trajectory, an adaptive skew-Wiener model, which is much more flexible than traditional stochastic process models, is proposed to model the degradation drift of industrial devices. To make full use of the prior knowledge and the historical information, an on-line filtering algorithm is proposed for state estimation, a two-stage algorithm is adopted to estimate unknown parameters as well. For remaining useful life prediction, a novel result is presented with an explicit form based on the closed skew normal distribution. Finally, sufficient Monte Carlo simulations and an application for ball bearings in rotating electrical machines are used to validate our approach.

  4. A methodology to predict residual life in LCF regime

    NASA Astrophysics Data System (ADS)

    Delprete, C.; Vercelli, A.

    2009-08-01

    In this paper a methodology to calibrate a nonlinear constitutive model, implemented in a finite element commercial code and able to correctly predict the cyclic behaviour of material, is proposed. This model allows to take into account all the main phenomena that occur when a metallic material is subjected to cyclic loadings, in particular cyclic hardening or softening, Bauschinger effect, ratcheting and shakedown. High Cycle Fatigue and Low Cycle Fatigue tests under different strain levels have been performed on an aluminum alloy for high temperature applications, and the obtained experimental data have been used to determine the four constitutive parameters of the isotropic and kinematic hardening parts of the model. The comparison between the number of stabilized cycles predicted by numerical simulations and experimental data has been very satisfying. Using a self-made post-processing software, the Basquin-Manson-Coffin, Neu-Sehitoglu, Chaboche and Skelton damage models have been applied to determine the residual life of the specimen and to compare the results.

  5. Glatiramer acetate treatment persistence - but not adherence - in multiple sclerosis patients is predicted by health-related quality of life and self-efficacy: a prospective web-based patient-centred study (CAIR study).

    PubMed

    Jongen, Peter Joseph; Lemmens, Wim A; Hoogervorst, Erwin L; Donders, Rogier

    2017-03-14

    In patients with relapsing remitting multiple sclerosis (RRMS) the persistence of and adherence to disease modifying drug (DMD) treatment is inadequate. To take individualised measures there is a need to identify patients with a high risk of non-persistence or non-adherence. As patient-related factors have a major influence on persistence and adherence, we investigated whether health-related quality of life (HRQoL) and self-efficacy could predict persistence or adherence. In a prospective web-based patient-centred study in 203 RRMS patients, starting treatment with glatiramer acatete (GA) 20 mg subcutaneously daily, we measured physical and mental HRQoL (Multiple Sclerosis Quality of Life-54 questionnaire), functional and control self-efficacy (Multiple Sclerosis Self-Efficacy Scale), the 12-month persistence rate and, in persistent patients, the percentage of missed doses. HRQoL and self-efficacy were compared between persistent and non-persistent patients, and between adherent and non-adherent patients. Logistic regression analysis was used to assess whether persistence and adherence were explained by HRQoL and self-efficacy. Persistent patients had higher baseline physical (mean 58.1 [standard deviation, SD] 16.9) and mental HRQoL (63.8 [16.8]) than non-persistent patients (49.5 [17.6]; 55.9 [20.4]) (P = 0.001; P = 0.003) with no differences between adherent and non-adherent patients (P = 0.46; P = 0.54). Likewise, in persistent patients function (752 [156]) and control self-efficacy (568 [178]) were higher than in non-persistent patients (689 [173]; 491 [192]) (P = 0.009; P = 0.004), but not in adherent vs. non-adherent patients (P = 0.26; P = 0.82). Logistic regression modelling identified physical HRQoL and control self-efficacy as factors that explained persistence. Based on predicted scores from the model, patients were classified into quartiles and the percentage of non-persistent patients per quartile was calculated: non

  6. Probabilistic Residual Strength Model Developed for Life Prediction of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Thomas, David J.; Verrilli, Michael J.; Calomino, Anthony M.

    2004-01-01

    For the next generation of reusable launch vehicles, NASA is investigating introducing ceramic matrix composites (CMCs) in place of current superalloys for structural propulsion applications (e.g., nozzles, vanes, combustors, and heat exchangers). The higher use temperatures of CMCs will reduce vehicle weight by eliminating and/or reducing cooling system requirements. The increased strength-to-weight ratio of CMCs relative to superalloys further enhances their weight savings potential. However, in order to provide safe designs for components made of these new materials, a comprehensive life prediction methodology for CMC structures needs to be developed. A robust methodology for lifing composite structures has yet to be adopted by the engineering community. Current industry design practice continues to utilize deterministic empirically based models borrowed from metals design for predicting material life capabilities. The deterministic nature of these models inadequately addresses the stochastic character of brittle composites, and their empirical reliance makes predictions beyond the experimental test conditions a risky extrapolation. A team of engineers at the NASA Glenn Research Center has been developing a new life prediction engineering model. The Probabilistic Residual Strength (PRS) model uses the residual strength of the composite as its damage metric. Expected life and material strength are both considered probabilistically to account for the observed stochastic material response. Extensive experimental testing has been carried out on C/SiC (a candidate aerospace CMC material system) in a controlled 1000 ppm O2/argon environment at elevated temperatures of 800 and 1200 C. The test matrix was established to allow observation of the material behavior, characterization of the model, and validation of the model's predictive capabilities. Sample results of the validation study are illustrated in the graphs.

  7. [Measured and Predicted Aquatic Life Criteria and Risk Assessment of Chromium (VI) in Liaohe River].

    PubMed

    Wang, Xiao-nan; Yan, Zhen-guang; Liu, Zheng-tao; Zhang, Cong; Wang, Wei-li

    2015-07-01

    In this study, toxicity data of aquatic species in Liaohe River for heavy metal chromium (VI) was collected and selected. The aquatic life criteria for chromium (VI) in Liaohe River was derived based on these toxicity data. Moreover, water samples of 25 sites in Liaohe River were collected, and the concentrations of chromium (VI) in these samples were analyzed. Finally, ecological risk assessment of chromium (VI) in Liaohe River was performed. Moreover, interspecies correlation estimation method (ICE) established by US EPA was used to predict the acute toxicity of species in Liaohe River, and aquatic life criteria based on predicted toxicity data was derived. The results showed that: the measured CMC (criteria maximum concentration), measured CCC (criteria continuous concentration) and the predicted CMC were 17. 73, 12. 15 and 13. 97 µg . L -1, respectively. Therefore, the ICE method could be used to predict the aquatic life criteria, because the predicted criteria value was very similar to the measured criteria value. Analysis of chromium (V) showed that the chromium (VI) concentrations of the 25 sites in Liaohe River were all below Class I or Class II water quality standards (GB 3838-2002), and the water quality was in good condition. However, for the potential risk of chromium (VI) exposure to the aquatic life of Liaohe River, the result of ecological risk assessment showed that chromium (V) concentrations in 7 sites exceeded the CCC in July, and chromium (VI) concentrations in 6 sites exceeded the CCC in December. Therefore, unacceptable effect on aquatic species caused by chromium (VI) exposure might have occurred in some sites of Liaohe River.

  8. Predicting Life Expectancy for Pirfenidone in Idiopathic Pulmonary Fibrosis.

    PubMed

    Fisher, Mark; Nathan, Steven D; Hill, Christian; Marshall, Jade; Dejonckheere, Fred; Thuresson, Per-Olof; Maher, Toby M

    2017-03-01

    Conducting an adequately powered survival study in idiopathic pulmonary fibrosis (IPF) is challenging due to the rare nature of the disease and the need for extended follow-up. Consequently, registration trials of IPF treatments have not been designed to estimate long-term survival. To predict life expectancy for patients with IPF receiving pirfenidone versus best supportive care (BSC) in a population that met the inclusion criteria of patients enrolled in the ASCEND and CAPACITY trials. Kaplan-Meier survival data for pirfenidone and BSC were obtained from randomized controlled clinical studies (CAPACITY, ASCEND), an open-label extension study (RECAP), and the Inova Fairfax Hospital database. Data from the Inova registry were matched to the inclusion criteria of the CAPACITY and ASCEND trials. Life expectancy was estimated by the area under the curve of parametric survival distributions fit to the Kaplan-Meier data. Mean (95% confidence interval) life expectancy was calculated as 8.72 (7.65-10.15) years with pirfenidone and 6.24 (5.38-7.18) years with BSC. Therefore, pirfenidone improved life expectancy by 2.47 (1.26-4.17) years compared with BSC. In addition, treatment with pirfenidone recuperated 25% of the expected years of life lost due to IPF. Sensitivity analyses found that results were sensitive to the choice of parametric survival distribution, and alternative piecewise and parametric approaches. This analysis suggests that this population of patients with IPF has an improved life expectancy if treated with pirfenidone compared with BSC. This study was funded by InterMune International AG, a wholly owned Roche subsidiary since 2014. Fisher was previously employed by InterMune UK, a wholly owned Roche subsidiary, until July 2015. He is currently employed by FIECON, which has received funding from F. Hoffmann-La Roche for consulting services. Nathan has received consulting fees from Roche-Genentech and Boehringer Ingelheim. He is also on the speakers' bureau

  9. Structural Life and Reliability Metrics: Benchmarking and Verification of Probabilistic Life Prediction Codes

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Soditus, Sherry; Hendricks, Robert C.; Zaretsky, Erwin V.

    2002-01-01

    Over the past two decades there has been considerable effort by NASA Glenn and others to develop probabilistic codes to predict with reasonable engineering certainty the life and reliability of critical components in rotating machinery and, more specifically, in the rotating sections of airbreathing and rocket engines. These codes have, to a very limited extent, been verified with relatively small bench rig type specimens under uniaxial loading. Because of the small and very narrow database the acceptance of these codes within the aerospace community has been limited. An alternate approach to generating statistically significant data under complex loading and environments simulating aircraft and rocket engine conditions is to obtain, catalog and statistically analyze actual field data. End users of the engines, such as commercial airlines and the military, record and store operational and maintenance information. This presentation describes a cooperative program between the NASA GRC, United Airlines, USAF Wright Laboratory, U.S. Army Research Laboratory and Australian Aeronautical & Maritime Research Laboratory to obtain and analyze these airline data for selected components such as blades, disks and combustors. These airline data will be used to benchmark and compare existing life prediction codes.

  10. Method and apparatus to predict the remaining service life of an operating system

    DOEpatents

    Greitzer, Frank L.; Kangas, Lars J.; Terrones, Kristine M.; Maynard, Melody A.; Pawlowski, Ronald A. , Ferryman; Thomas A.; Skorpik, James R.; Wilson, Bary W.

    2008-11-25

    A method and computer-based apparatus for monitoring the degradation of, predicting the remaining service life of, and/or planning maintenance for, an operating system are disclosed. Diagnostic information on degradation of the operating system is obtained through measurement of one or more performance characteristics by one or more sensors onboard and/or proximate the operating system. Though not required, it is preferred that the sensor data are validated to improve the accuracy and reliability of the service life predictions. The condition or degree of degradation of the operating system is presented to a user by way of one or more calculated, numeric degradation figures of merit that are trended against one or more independent variables using one or more mathematical techniques. Furthermore, more than one trendline and uncertainty interval may be generated for a given degradation figure of merit/independent variable data set. The trendline(s) and uncertainty interval(s) are subsequently compared to one or more degradation figure of merit thresholds to predict the remaining service life of the operating system. The present invention enables multiple mathematical approaches in determining which trendline(s) to use to provide the best estimate of the remaining service life.

  11. Ways that Social Change Predicts Personal Quality of Life

    ERIC Educational Resources Information Center

    Cheung, Chau-Kiu; Leung, Kwok

    2010-01-01

    A notable way that social change affects personal quality of life would rely on the person's experience with social change. This experience may influence societal quality of life and quality of work life, which may in turn affect personal quality of life. Additionally, the experience of social change is possibly less detrimental to personal…

  12. Ways that Social Change Predicts Personal Quality of Life

    ERIC Educational Resources Information Center

    Cheung, Chau-Kiu; Leung, Kwok

    2010-01-01

    A notable way that social change affects personal quality of life would rely on the person's experience with social change. This experience may influence societal quality of life and quality of work life, which may in turn affect personal quality of life. Additionally, the experience of social change is possibly less detrimental to personal…

  13. Renal parenchymal histopathology predicts life-threatening chronic kidney disease as a result of radical nephrectomy.

    PubMed

    Sejima, Takehiro; Honda, Masashi; Takenaka, Atsushi

    2015-01-01

    The preoperative prediction of post-radical nephrectomy renal insufficiency plays an important role in the decision-making process regarding renal surgery options. Furthermore, the prediction of both postoperative renal insufficiency and postoperative cardiovascular disease occurrence, which is suggested to be an adverse consequence caused by renal insufficiency, contributes to the preoperative policy decision as well as the precise informed consent for a renal cell carcinoma patient. Preoperative nomograms for the prediction of post-radical nephrectomy renal insufficiency, calculated using patient backgrounds, are advocated. The use of these nomograms together with other types of nomograms predicting oncological outcome is beneficial. Post-radical nephrectomy attending physicians can predict renal insufficiency based on the normal renal parenchymal pathology in addition to preoperative patient characteristics. It is suggested that a high level of global glomerulosclerosis in nephrectomized normal renal parenchyma is closely associated with severe renal insufficiency. Some studies showed that post-radical nephrectomy severe renal insufficiency might have an association with increased mortality as a result of cardiovascular disease. Therefore, such pathophysiology should be recognized as life-threatening, surgically-related chronic kidney disease. On the contrary, the investigation of the prediction of mild post-radical nephrectomy renal insufficiency, which is not related to adverse consequences in the postoperative long-term period, is also promising because the prediction of mild renal insufficiency might be the basis for the substitution of radical nephrectomy for nephron-sparing surgery in technically difficult or compromised cases. The deterioration of quality of life caused by post-radical nephrectomy renal insufficiency should be investigated in conjunction with life-threatening matters.

  14. Life-history traits predict perennial species response to fire in a desert ecosystem

    USGS Publications Warehouse

    Shryock, Daniel F.; DeFalco, Lesley A.; Esque, Todd C.

    2014-01-01

    The Mojave Desert of North America has become fire-prone in recent decades due to invasive annual grasses that fuel wildfires following years of high rainfall. Perennial species are poorly adapted to fire in this system, and post-fire shifts in species composition have been substantial but variable across community types. To generalize across a range of conditions, we investigated whether simple life-history traits could predict how species responded to fire. Further, we classified species into plant functional types (PFTs) based on combinations of life-history traits and evaluated whether these groups exhibited a consistent fire-response. Six life-history traits varied significantly between burned and unburned areas in short (up to 4 years) or long-term (up to 52 years) post-fire datasets, including growth form, lifespan, seed size, seed dispersal, height, and leaf longevity. Forbs and grasses consistently increased in abundance after fire, while cacti were reduced and woody species exhibited a variable response. Woody species were classified into three PFTs based on combinations of life-history traits. Species in Group 1 increased in abundance after fire and were characterized by short lifespans, small, wind-dispersed seeds, low height, and deciduous leaves. Species in Group 2 were reduced by fire and distinguished from Group 1 by longer lifespans and evergreen leaves. Group 3 species, which also decreased after fire, were characterized by long lifespans, large non-wind dispersed seeds, and taller heights. Our results show that PFTs based on life-history traits can reliably predict the responses of most species to fire in the Mojave Desert. Dominant, long-lived species of this region possess a combination of traits limiting their ability to recover, presenting a clear example of how a novel disturbance regime may shift selective environmental pressures to favor alternative life-history strategies.

  15. Life-history traits predict perennial species response to fire in a desert ecosystem.

    PubMed

    Shryock, Daniel F; DeFalco, Lesley A; Esque, Todd C

    2014-08-01

    The Mojave Desert of North America has become fire-prone in recent decades due to invasive annual grasses that fuel wildfires following years of high rainfall. Perennial species are poorly adapted to fire in this system, and post-fire shifts in species composition have been substantial but variable across community types. To generalize across a range of conditions, we investigated whether simple life-history traits could predict how species responded to fire. Further, we classified species into plant functional types (PFTs) based on combinations of life-history traits and evaluated whether these groups exhibited a consistent fire-response. Six life-history traits varied significantly between burned and unburned areas in short (up to 4 years) or long-term (up to 52 years) post-fire datasets, including growth form, lifespan, seed size, seed dispersal, height, and leaf longevity. Forbs and grasses consistently increased in abundance after fire, while cacti were reduced and woody species exhibited a variable response. Woody species were classified into three PFTs based on combinations of life-history traits. Species in Group 1 increased in abundance after fire and were characterized by short lifespans, small, wind-dispersed seeds, low height, and deciduous leaves. Species in Group 2 were reduced by fire and distinguished from Group 1 by longer lifespans and evergreen leaves. Group 3 species, which also decreased after fire, were characterized by long lifespans, large non-wind dispersed seeds, and taller heights. Our results show that PFTs based on life-history traits can reliably predict the responses of most species to fire in the Mojave Desert. Dominant, long-lived species of this region possess a combination of traits limiting their ability to recover, presenting a clear example of how a novel disturbance regime may shift selective environmental pressures to favor alternative life-history strategies.

  16. Life-history traits predict perennial species response to fire in a desert ecosystem

    PubMed Central

    Shryock, Daniel F; DeFalco, Lesley A; Esque, Todd C

    2014-01-01

    The Mojave Desert of North America has become fire-prone in recent decades due to invasive annual grasses that fuel wildfires following years of high rainfall. Perennial species are poorly adapted to fire in this system, and post-fire shifts in species composition have been substantial but variable across community types. To generalize across a range of conditions, we investigated whether simple life-history traits could predict how species responded to fire. Further, we classified species into plant functional types (PFTs) based on combinations of life-history traits and evaluated whether these groups exhibited a consistent fire-response. Six life-history traits varied significantly between burned and unburned areas in short (up to 4 years) or long-term (up to 52 years) post-fire datasets, including growth form, lifespan, seed size, seed dispersal, height, and leaf longevity. Forbs and grasses consistently increased in abundance after fire, while cacti were reduced and woody species exhibited a variable response. Woody species were classified into three PFTs based on combinations of life-history traits. Species in Group 1 increased in abundance after fire and were characterized by short lifespans, small, wind-dispersed seeds, low height, and deciduous leaves. Species in Group 2 were reduced by fire and distinguished from Group 1 by longer lifespans and evergreen leaves. Group 3 species, which also decreased after fire, were characterized by long lifespans, large non-wind dispersed seeds, and taller heights. Our results show that PFTs based on life-history traits can reliably predict the responses of most species to fire in the Mojave Desert. Dominant, long-lived species of this region possess a combination of traits limiting their ability to recover, presenting a clear example of how a novel disturbance regime may shift selective environmental pressures to favor alternative life-history strategies. PMID:25247062

  17. Integration of Life-Stage Physiologically Based ...

    EPA Pesticide Factsheets

    A Life-stage Physiologically-Based Pharmacokinetic (PBPK) model was developed to include descriptions of several life-stage events such as pregnancy, fetal development, the neonate and child growth. The overall modeling strategy was used for in vitro to in vivo (IVIVE) extrapolation to help contextualize activity in ToxCast assays that were mapped to an adverse outcome pathway (AOP) for embryonic vascular disruption. Using life-stage PBPK models, we estimated maternal exposures that would yield fetal blood levels equivalent to in vitro activity from ToxCast assays with critical vascular signaling targets. The resulting in vivo dose estimates were then compared to life-time exposures using literature data or exposure models (SHEDS-LITE) to derive AOP-based Margins of Exposure (ME). This computational framework was applied to a list of five chemicals with varying activity against the putative Vascular Disruption AOP. The idea of linking biological information related to toxicity (using AOPs), high throughput in vitro data (ToxCast), and age-varying physiological and biochemical information to estimate AOP-based MEs is novel and can be used to help regulators in realistically assessing chemicals based on toxicity, dosimetry, and real-life exposures. Developing fetuses and infants are especially sensitive to toxicity caused by exposure to xenobiotics. The time and dose to which a developing target tissue is exposed during pregnancy or via lactation after birth are c

  18. Collective prediction based on community structure

    NASA Astrophysics Data System (ADS)

    Jiang, Yasong; Li, Taisong; Zhang, Yan; Yan, Yonghong

    2017-01-01

    Collective prediction algorithms have been used to improve performances when network structures are involved in prediction tasks. The training dataset of such tasks often contain information of content, links and labels, while the testing dataset have only content and link information. Conventional collective prediction algorithms conduct predictions based on the content of a node and the information of its direct neighbors with a base classifier. However, the information of some direct neighbor nodes may be not consistent with the target one. In addition, the information of indirect neighbors can be helpful when that of direct neighbors is scant. In this paper, instead of using information of direct neighbors, we propose to apply community structures in networks to prediction tasks. A community detection method is aggregated into the collective prediction process to improve prediction performance. Experimental results show that the proposed algorithm outperforms a number of standard prediction algorithms specially under conditions that labeled training dataset are limited.

  19. Life prediction of 808nm high power semiconductor laser by accelerated life test of constant current stress

    NASA Astrophysics Data System (ADS)

    Yao, Nan; Li, Wei; Zhao, Yihao; Zhong, Li; Liu, Suping; Ma, Xiaoyu

    2015-10-01

    High power semiconductor laser is widely used because of its high transformation efficiency, good working stability, compact volume and simple driving requirements. Laser's lifetime is very long, but tests at high levels of stress can speed up the failure process and shorten the times to failure significantly. So accelerated life test is used here for forecasting the lifetime of 808nm CW GaAs/AlGaAs high power semiconductor laser that has an output power of 1W under 1.04A. Accelerated life test of constant current stress based on the Inverse Power Law Relationship was designed. Tests were conducted under 1.3A, 1.6A and 1.9A at room temperature. It is the first time that this method is used in the domestic research of laser's lifetime prediction. Applying Weibull Distribution to describe the lifetime distribution and analyzing the data of times to failure, characteristics lifetime's functional relationship model with current is achieved. Then the characteristics lifetime under normal current is extrapolated, which is 9473h. Besides, to confirm the validity of the functional relationship model, we conduct an additional accelerated life test under 1.75A. Based on this experimental data we calculated the characteristics lifetime corresponding to 1.75A that is 171h, while the extrapolated characteristics lifetime from the former functional relationship model is 162h. The two results shows 5% deviation that is very low and acceptable, which indicates that the test design is reasonable and authentic.

  20. Damage Behavior and Life Prediction in CFRP Cross-Ply Laminates under Fatigue Loading

    NASA Astrophysics Data System (ADS)

    Tohgo, Keiichiro; Nakagawa, Shuji; Araki, Hiroyasu

    This paper deals with fatigue damage and life prediction of CFRP cross-ply laminates. Fatigue tests are carried out on CFRP unidirectional and cross-ply laminates under the on-axis and off-axis directions. On the unidirectional laminate, fiber breakage and fiber-peeling develop before the final fracture under on-axis fatigue, while the final fracture suddenly occurs by cracking along the fiber direction under off-axis fatigue. On the cross-ply laminates, ply-cracking in 90° plies and fiber-peeling in 0° plies develop under on-axis fatigue, while ply-cracking and delamination lead to the final fracture under off-axis fatigue. Based on the comparison of damage behavior and S-N curves between unidirectional and cross-ply laminates, possibility of fatigue life prediction of CFRP cross-ply laminates is discussed.

  1. International Space Station Bacteria Filter Element Post-Flight Testing and Service Life Prediction

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; von Jouanne, R. G.; Turner, E. H.

    2003-01-01

    The International Space Station uses high efficiency particulate air (HEPA) filters to remove particulate matter from the cabin atmosphere. Known as Bacteria Filter Elements (BFEs), there are 13 elements deployed on board the ISS's U.S. Segment. The pre-flight service life prediction of 1 year for the BFEs is based upon performance engineering analysis of data collected during developmental testing that used a synthetic dust challenge. While this challenge is considered reasonable and conservative from a design perspective, an understanding of the actual filter loading is required to best manage the critical ISS Program resources. Thus testing was conducted on BFEs returned from the ISS to refine the service life prediction. Results from this testing and implications to ISS resource management are discussed. Recommendations for realizing significant savings to the ISS Program are presented.

  2. Basic traits predict the prevalence of personality disorder across the life span: the example of psychopathy.

    PubMed

    Vachon, David D; Lynam, Donald R; Widiger, Thomas A; Miller, Joshua D; McCrae, Robert R; Costa, Paul T

    2013-05-01

    Personality disorders (PDs) may be better understood in terms of dimensions of general personality functioning rather than as discrete categorical conditions. Personality-trait descriptions of PDs are robust across methods and settings, and PD assessments based on trait measures show good construct validity. The study reported here extends research showing that basic traits (e.g., impulsiveness, warmth, straightforwardness, modesty, and deliberation) can re-create the epidemiological characteristics associated with PDs. Specifically, we used normative changes in absolute trait levels to simulate age-related differences in the prevalence of psychopathy in a forensic setting. Results demonstrated that trait information predicts the rate of decline for psychopathy over the life span; discriminates the decline of psychopathy from that of a similar disorder, antisocial PD; and accurately predicts the differential decline of subfactors of psychopathy. These findings suggest that basic traits provide a parsimonious account of PD prevalence across the life span.

  3. International Space Station Bacteria Filter Element Post-Flight Testing and Service Life Prediction

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; von Jouanne, R. G.; Turner, E. H.

    2003-01-01

    The International Space Station uses high efficiency particulate air (HEPA) filters to remove particulate matter from the cabin atmosphere. Known as Bacteria Filter Elements (BFEs), there are 13 elements deployed on board the ISS's U.S. Segment. The pre-flight service life prediction of 1 year for the BFEs is based upon performance engineering analysis of data collected during developmental testing that used a synthetic dust challenge. While this challenge is considered reasonable and conservative from a design perspective, an understanding of the actual filter loading is required to best manage the critical ISS Program resources. Thus testing was conducted on BFEs returned from the ISS to refine the service life prediction. Results from this testing and implications to ISS resource management are discussed. Recommendations for realizing significant savings to the ISS Program are presented.

  4. A New Approach to Predict the Fish Fillet Shelf-Life in Presence of Natural Preservative Agents.

    PubMed

    Giuffrida, Alessandro; Giarratana, Filippo; Valenti, Davide; Muscolino, Daniele; Parisi, Roberta; Parco, Alessio; Marotta, Stefania; Ziino, Graziella; Panebianco, Antonio

    2017-04-13

    Three data sets concerning the behaviour of spoilage flora of fillets treated with natural preservative substances (NPS) were used to construct a new kind of mathematical predictive model. This model, unlike other ones, allows expressing the antibacterial effect of the NPS separately from the prediction of the growth rate. This approach, based on the introduction of a parameter into the predictive primary model, produced a good fitting of observed data and allowed characterising quantitatively the increase of shelf-life of fillets.

  5. Durability and life prediction modeling in polyimide composites

    NASA Technical Reports Server (NTRS)

    Binienda, Wieslaw K.

    1995-01-01

    Sudden appearance of cracks on a macroscopically smooth surface of brittle materials due to cooling or drying shrinkage is a phenomenon related to many engineering problems. Although conventional strength theories can be used to predict the necessary condition for crack appearance, they are unable to predict crack spacing and depth. On the other hand, fracture mechanics theory can only study the behavior of existing cracks. The theory of crack initiation can be summarized into three conditions, which is a combination of a strength criterion and laws of energy conservation, the average crack spacing and depth can thus be determined. The problem of crack initiation from the surface of an elastic half plane is solved and compares quite well with available experimental evidence. The theory of crack initiation is also applied to concrete pavements. The influence of cracking is modeled by the additional compliance according to Okamura's method. The theoretical prediction by this structural mechanics type of model correlates very well with the field observation. The model may serve as a theoretical foundation for future pavement joint design. The initiation of interactive cracks of quasi-brittle material is studied based on a theory of cohesive crack model. These cracks may grow simultaneously, or some of them may close during certain stages. The concept of crack unloading of cohesive crack model is proposed. The critical behavior (crack bifurcation, maximum loads) of the cohesive crack model are characterized by rate equations. The post-critical behavior of crack initiation is also studied.

  6. Development of a simplified procedure for thrust chamber life prediction

    NASA Technical Reports Server (NTRS)

    Porowski, J. S.; Badlani, M.; Kasrale, B.; Odonnell, W. J.; Peterson, D.

    1981-01-01

    An analytical design procedure for predicting thrust chamber life considering cyclically induced thinning and bulging of the hot gas wall is developed. The hot gas wall, composed of ligaments connecting adjacent cooling channel ribs and separating the coolant flow from the combustion gas, is subjected to pressure loading and severe thermal cycling. Thermal transients during start up and shut down cause plastic straining through the ligaments. The primary bending stress superimposed on the alternate in-plane cyclic straining causes incremental bulging of the ligaments during each firing cycle. This basic mechanism of plastic ratcheting is analyzed and a method developed for determining ligament deformation and strain. The method uses a yield surface for combined bending and membrane loading to determine the incremental permanent deflection and pregressive thinning near the center of the ligaments which cause the geometry of the ligaments to change as the incremental strains accumulate. Fatigue and tensile instability are affected by these local geometry changes. Both are analyzed and a failure criterion developed.

  7. Creep fatigue life prediction for engine hot section materials (isotropic)

    NASA Technical Reports Server (NTRS)

    Nelson, R. S.; Levan, G. W.; Harvey, P. R.

    1992-01-01

    This Final Report covers the activities completed under the optional program of the NASA HOST Contract, NAS3-23288. The initial effort of the optional program was report-in NASA CR189221, which consisted of high temperature strain controlled fatigue tests to study the effects of thermomechanical fatigue, multiaxial loading, reactive environments, and imposed stresses. The baseline alloy used in the tests included B1900+Hf (with or without coating) and wrought INCO 718. Tests conducted on B1900+Hf included environmental tests using various atmospheres (75 psig oxygen, purified argon, or block exposures) and specimen tests of wrought INCO 718 included tensile, creep, stress rupture, TMF, multiaxial, and mean stress tests. Results of these testings were used to calibrate a CDA model for INCO 718 alloy and to develop modifications or corrections to the CDA model to handle additional failure mechanisms. The Socie parameter was found to provide the best correlation for INCO multiaxial loading. Microstructural evaluations consisting of optical, Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM) techniques, and surface replication techniques to determine crack initiation lives provided data which were used to develop life prediction models.

  8. Deconstructing environmental predictability: seasonality, environmental colour and the biogeography of marine life histories.

    PubMed

    Marshall, Dustin J; Burgess, Scott C

    2015-02-01

    Environmental predictability is predicted to shape the evolution of life histories. Two key types of environmental predictability, seasonality and environmental colour, may influence life-history evolution independently but formal considerations of both and how they relate to life history are exceedingly rare. Here, in a global biogeographical analysis of over 800 marine invertebrates, we explore the relationships between both forms of environmental predictability and three fundamental life-history traits: location of larval development (aplanktonic vs. planktonic), larval developmental mode (feeding vs. non-feeding) and offspring size. We found that both dispersal potential and offspring size related to environmental predictability, but the relationships depended on both the environmental factor as well as the type of predictability. Environments that were more seasonal in food availability had a higher prevalence of species with a planktonic larval stage. Future studies should consider both types of environmental predictability as each can strongly affect life-history evolution. © 2014 John Wiley & Sons Ltd/CNRS.

  9. Life prediction modeling of solder interconnects for electronic systems

    SciTech Connect

    Frear, D.R.; Burchett, S.N.; Neilsen, M.K.

    1997-02-01

    A microstructurally-based computational simulation is presented that predicts the behavior and lifetime of solder interconnects for electronic applications. This finite element simulation is based on an internal state variable constitutive model that captures both creep and plasticity, and accounts for microstructural evolution. The basis of the microstructural evolution is a simple model that captures the grain size and microstructural defects in the solder. The mechanical behavior of the solder is incorporated into the model in the form of time-dependent viscoplastic equations derived from experimental creep tests. The unique aspect of this methodology is that the constants in the constitutive relations of the model are determined from experimental tests. This paper presents the constitutive relations and the experimental means by which the constants in the equations are determined. The fatigue lifetime of the solder interconnects is predicted using a damage parameter (or grain size) that is an output of the computer simulation. This damage parameter methodology is discussed and experimentally validated.

  10. Fatigue Life Prediction of Steel Bridges for Extreme Loading Using a New Damage Indicator

    NASA Astrophysics Data System (ADS)

    Karunananda, Pallaha Athawudagedara Kamal; Ohga, Mitao; Dissanayake, Punchi Bandage Ranjith; Siriwardane, Siriwardane Arachchilage Sudath Chaminda

    High cycle fatigue (HCF) damage caused by normal traffic loading is one of the major modes of failures in steel bridges. During bridge service life, there are extreme loading situations such as typhoons, earthquakes which cause higher amplitude loading than normal traffic loading. Due to this reason, critical members could undergo overstress cycles in the plastic range. Therefore, such members are subjected to low cycle fatigue (LCF) during these situations while subjecting to HCF in serviceable condition. Bridges, which are not seriously damaged, generally continue to be functioned after these extreme loading situations and fatigue life estimation is required to ensure their safety. Therefore, this paper presents a new damage indicator based fatigue model to predict life of steel bridges due to combined effect of extreme and normal traffic loadings. It consists of a modified strain life curve and a strain based damage indicator. Both the strain life curve and the damage indicator are newly proposed in the study. Modified strain life curve consists of Coffin Manson relation in the LCF regime and a new strain life curve in the HCF regime. Damage variable is based on von Mises equivalent strain and modified by factors to consider effects of loading non proportionality and loading path in multiaxial stress state. The new damage indicator can capture the loading sequence effect. The proposed model is verified with experimental test results of combined HCF and LCF of three materials; S304L stainless steel, Haynes 188 (a Cobolt superalloy) and S45C steel obtained from the literature. The verification of experimental results confirms the validity of the proposed model.

  11. A total life prediction model for stress concentration sites

    NASA Technical Reports Server (NTRS)

    Hartman, G. A.; Dawicke, D. S.

    1983-01-01

    Fatigue crack growth tests were performed on center crack panels and radial crack hole samples. The data were reduced and correlated with the elastic parameter K taking into account finite width and corner crack corrections. The anomalous behavior normally associated with short cracks was not observed. Total life estimates for notches were made by coupling an initiation life estimate with a propagation life estimate.

  12. Approaches to lunar base life support

    NASA Technical Reports Server (NTRS)

    Brown, M. F.; Edeen, M. A.

    1990-01-01

    Various approaches to reliable, low maintenance, low resupply regenerative long-term life support for lunar base application are discussed. The first approach utilizes Space Station Freedom physiochemical systems technology which has closed air and water loops with approximately 99 and 90 percent closure respectively, with minor subsystem changes to the SSF baseline improving the level of water resupply for the water loop. A second approach would be a physiochemical system, including a solid waste processing system and improved air and water loop closure, which would require only food and nitrogen for resupply. A hybrid biological/physiochemical life support system constitutes the third alternative, incorporating some level of food production via plant growth into the life support system. The approaches are described in terms of mass, power, and resupply requirements; and the potential evolution of a small, initial outpost to a large, self-sustaining base is discussed.

  13. Life prediction methodology for ceramic components of advanced heat engines. Phase 1: Volume 1, Final report

    SciTech Connect

    Cuccio, J.C.; Brehm, P.; Fang, H.T.

    1995-03-01

    Emphasis of this program is to develop and demonstrate ceramics life prediction methods, including fast fracture, stress rupture, creep, oxidation, and nondestructive evaluation. Significant advancements were made in these methods and their predictive capabilities successfully demonstrated.

  14. Life-Space Assessment Predicts Hospital Readmission in Home-Limited Adults.

    PubMed

    Fathi, Roya; Bacchetti, Peter; Haan, Mary N; Houston, Thomas K; Patel, Kanan; Ritchie, Christine S

    2017-05-01

    To describe the association between restricted life-space and characteristics of community-dwelling adults hospitalized for congestive heart failure (CHF) or chronic obstructive pulmonary disease (COPD), to estimate the effect of hospitalization on postdischarge mobility, and to determine whether baseline restricted life-space predicts hospital readmission. Observational. Urban academic hospital that serves as a safety net for urban and rural populations with low resources and serves central and northern Alabama. Individuals with CHF or COPD hospitalized from home (N = 478). The Life-Space Assessment (LSA) measures mobility by asking about movement in situations ranging from within one's dwelling to beyond one's town. LSA scores below 60 correspond to "restricted life-space." Baseline LSA scores before admission were measured during an index hospitalization; follow-up LSA scores were determined over the telephone at 90 days. Participant characteristics were examined according to baseline restricted life-space using the chi-square test and Student's t-test. Each characteristic's association with restricted life-space was estimated uisng logistic regression. Of the participants, 372 (77.8%) were classified as having baseline restricted life-space. Baseline restricted life-space was associated with older age (odds ratio (OR) = 1.29 per decade, 95% confidence interval (CI) = 1.17-1.42, P = .001), female sex (OR = 2.69, 95% CI = 1.69-4.29, P < .001), African-American race (OR = 1.55, 95% CI = 1.00-2.41, P = .05), and having inadequate financial resources (OR = 2.03, 95% CI = 1.22-3.38, P = .006). In the baseline unrestricted life-space group, 49.5% (n = 49) had restricted life-space at 90-day follow-up. Baseline restricted life-space was associated with greater odds of 90-day hospital readmission (unadjusted OR = 1.64, 95% CI = 1.00-2.70, P = .05; adjusted OR = 1.72, 95% CI = 1.04-2.85, P = .03). Baseline restricted life-space was associated with greater risk of

  15. Structural strength analysis and fatigue life prediction of traction converter box in high-speed EMU

    NASA Astrophysics Data System (ADS)

    Tan, Qin; Li, Qiang

    2017-01-01

    The method of building the FEA model of traction converter box in high-speed EMU and analyzing the static strength and fatigue strength of traction converter box based on IEC 61373-2010 and EN 12663 standards is presented in this paper. The load-stress correlation coefficients of weak points is obtained by FEA model, applied to transfer the load history of traction converter box to stress history of each point. The fatigue damage is calculated based on Miner's rule and the fatigue life of traction converter box is predicted. According to study, the structural strength of traction converter box meets design requirements.

  16. A prediction model of the depth-of-discharge effect on the cycle life of a storage cell

    NASA Technical Reports Server (NTRS)

    Thaller, Lawrence H.; Lim, Hong S.

    1987-01-01

    Cycle life requirements are very high for batteries used in aerospace applications in low Earth orbit. The data base required to establish confidence in a particular cell design is thus both extensive and expensive. Reliable accelerated cycle life testing and performance decay modeling represent attractive alternatives to real-time tests of cycle life. In light of certain long-term cycle life test results, this paper examines a very simple performance decay model developed earlier. Application of that model to available data demonstrates a rigid relationship between a battery's expected cycle life and the depth of discharge of cycling. Further, modeling analysis of the data suggests that a significantly improved cycle life can be obtained with advanced components, materials, and designs; and that cycle life can be reliably predicted from the results of accelerated testing.

  17. Application of cyclic damage accumulation life prediction model to high temperature components

    NASA Technical Reports Server (NTRS)

    Nelson, Richard S.

    1989-01-01

    A high temperature, low cycle fatigue life prediction method was developed. This method, Cyclic Damage Accumulation (CDA), was developed for use in predicting the crack initiation lifetime of gas turbine engine materials, but it can be applied to other materials as well. The method is designed to account for the effects on creep-fatigue life of complex loading such as thermomechanical fatigue, hold periods, waveshapes, mean stresses, multiaxiality, cumulative damage, coatings, and environmental attack. Several features of this model were developed to make it practical for application to actual component analysis, such as the ability to handle nonisothermal loading (including TMF), arbitrary cycle paths, and multiple damage modes. The CDA life prediction model was derived from extensive specimen tests conducted on cast nickel-base superalloy B1900 + Hf. These included both monotonic tests (tensile and creep) and strain-controlled fatigue experiments (uniaxial, biaxial, TMF, mixed creep-fatigue, and controlled mean stress). Additional specimen tests were conducted on wrought INCO 718 to verify the applicability of the final CDA model to other high-temperature alloys. The model will be available to potential users in the near future in the form of a FORTRAN-77 computer program.

  18. Lunar base life support - facts, problems, possibilities

    NASA Astrophysics Data System (ADS)

    Doll, S.; Eckart, P.

    The life support system for a future lunar base has to maintain in an isolated volume an environment, suitable for the well-being of men and systems for a time period that will exceed the mission duration of all past and present space missions. The design of such a life support system will strongly depend on several specific, constraining requirements. Some constraints are related to the technologies while others come from the human, mission specific, system, and safety requirements. Anyway, the primary consideration for the designer will be to minimize the overall system and resupply mass for a lunar base and its life support system in balance with the safety and maintainability requirements. In order to avoid the large resupply penalties, especially for oxygen and water, the mostly open loop, non-regenerative systems of today will have to be replaced by closed loop, regenerative systems. In this stepwise process, the loops for water, CO2, O2, N2 and, finally, food will be closed successively. Nevertheless, reduced resupply of close loop systems has to be traded against, e.g., power and heat rejection requirements. In this respect, the life support system has to be seen in an overall context with the other systems of a lunar base, like, for example, the power supply and the heat rejection system, and potentially an in-situ oxygen production facility. This paper will give an overview of the human requirements, environmental conditions, and critical life support functions for a lunar base. Also, it will identify the technologies that may provide these functions and the constraints that have to be taken into account when designing a lunar base.

  19. Projecting LED product life based on application

    NASA Astrophysics Data System (ADS)

    Narendran, Nadarajah; Liu, Yi-wei; Mou, Xi; Thotagamuwa, Dinusha R.; Eshwarage, Oshadhi V. Madihe

    2016-09-01

    LED products have started to displace traditional light sources in many lighting applications. One of the commonly claimed benefits for LED lighting products is their long useful lifetime in applications. Today there are many replacement lamp products using LEDs in the marketplace. Typically, lifetime claims of these replacement lamps are in the 25,000-hour range. According to current industry practice, the time for the LED light output to reach the 70% value is estimated according to IESNA LM-80 and TM-21 procedures and the resulting value is reported as the whole system life. LED products generally experience different thermal environments and switching (on-off cycling) patterns when used in applications. Current industry test methods often do not produce accurate lifetime estimates for LED systems because only one component of the system, namely the LED, is tested under a continuous-on burning condition without switching on and off, and because they estimate for only one failure type, lumen depreciation. The objective of the study presented in this manuscript was to develop a test method that could help predict LED system life in any application by testing the whole LED system, including on-off power cycling with sufficient dwell time, and considering both failure types, catastrophic and parametric. The study results showed for the LED A-lamps tested in this study, both failure types, catastrophic and parametric, exist. The on-off cycling encourages catastrophic failure, and maximum operating temperature influences the lumen depreciation rate and parametric failure time. It was also clear that LED system life is negatively affected by on-off switching, contrary to commonly held belief. In addition, the study results showed that most of the LED systems failed catastrophically much ahead of the LED light output reaching the 70% value. This emphasizes the fact that life testing of LED systems must consider catastrophic failure in addition to lumen depreciation, and

  20. Neonatal neural networks predict children behavioral profiles later in life.

    PubMed

    Wee, Chong-Yaw; Tuan, Ta Anh; Broekman, Birit F P; Ong, Min Yee; Chong, Yap-Seng; Kwek, Kenneth; Shek, Lynette Pei-Chi; Saw, Seang-Mei; Gluckman, Peter D; Fortier, Marielle V; Meaney, Michael J; Qiu, Anqi

    2017-03-01

    This study aimed to examine heterogeneity of neonatal brain network and its prediction to child behaviors at 24 and 48 months of age. Diffusion tensor imaging (DTI) tractography was employed to construct brain anatomical network for 120 neonates. Clustering coefficients of individual structures were computed and used to classify neonates with similar brain anatomical networks into one group. Internalizing and externalizing behavioral problems were assessed using maternal reports of the Child Behavior Checklist (CBCL) at 24 and 48 months of age. The profile of CBCL externalizing and internalizing behaviors was then examined in the groups identified based on the neonatal brain network. Finally, support vector machine and canonical correlation analysis were used to identify brain structures whose clustering coefficients together significantly contribute the variation of the behaviors at 24 and 48 months of age. Four meaningful groups were revealed based on the brain anatomical networks at birth. Moreover, the clustering coefficients of the brain regions that most contributed to this grouping of neonates were significantly associated with childhood internalizing and externalizing behaviors assessed at 24 and 48 months of age. Specially, the clustering coefficient of the right amygdala was associated with both internalizing and externalizing behaviors at 24 months of age, while the clustering coefficients of the right inferior frontal cortex and insula were associated with externalizing behaviors at 48 months of age. Our findings suggested that neural organization established during fetal development could to some extent predict individual differences in behavioral-emotional problems in early childhood. Hum Brain Mapp 38:1362-1373, 2017. © 2016 Wiley Periodicals, Inc.

  1. Calculation of thermomechanical fatigue life based on isothermal behavior

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Saltsman, James F.

    1987-01-01

    The isothermal and thermomechanical fatigue (TMF) crack initiation response of a hypothetical material was analyzed. Expected thermomechanical behavior was evaluated numerically based on simple, isothermal, cyclic stress-strain - time characteristics and on strainrange versus cyclic life relations that have been assigned to the material. The attempt was made to establish basic minimum requirements for the development of a physically accurate TMF life-prediction model. A worthy method must be able to deal with the simplest of conditions: that is, those for which thermal cycling, per se, introduces no damage mechanisms other than those found in isothermal behavior. Under these assumed conditions, the TMF life should be obtained uniquely from known isothermal behavior. The ramifications of making more complex assumptions will be dealt with in future studies. Although analyses are only in their early stages, considerable insight has been gained in understanding the characteristics of several existing high-temperature life-prediction methods. The present work indicates that the most viable damage parameter is based on the inelastic strainrange.

  2. Calculation of thermomechanical fatigue life based on isothermal behavior

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Saltsman, J. F.

    1987-01-01

    The isothermal and thermomechanical fatigue (TMF) crack initiation response of a hypothetical material was analyzed. Expected thermomechanical behavior was evaluated numerically based on simple, isothermal, cyclic stress-strain-time characteristics and on strainrange versus cyclic life relations that have been assigned to the material. The attempt was made to establish basic minimum requirements for the development of a physically accurate TMF life-prediction model. A worthy method must be able to deal with the simplest of conditions: that is, those for which thermal cycling, per se, introduces no damage mechanisms other than those found in isothermal behavior. Under these assumed conditions, the TMF life should be obtained uniquely from known isothermal behavior. The ramifications of making more complex assumptions will be dealt with in future studies. Although analyses are only in their early stages, considerable insight has been gained in understanding the characteristics of several existing high-temperature life-prediction methods. The present work indicates that the most viable damage parameter is based on the inelastic strainrange.

  3. A total life prediction model for stress concentration sites

    NASA Technical Reports Server (NTRS)

    Hartman, G. A.; Dawicke, D. S.

    1983-01-01

    Fatigue crack growth tests were performed on center crack panels and radial crack hole samples. The data were reduced and correlated with the elastic parameter-K taking into account finite width and corner crack corrections. The anomalous behavior normally associated with short cracks was not observed. Total life estimates for notches were made by coupling an initiation life estimate with a propagation life estimate.

  4. Creep-fatigue life prediction for engine hot section materials (isotropic)

    NASA Technical Reports Server (NTRS)

    Moreno, V.

    1982-01-01

    The objectives of this program are the investigation of fundamental approaches to high temperature crack initiation life prediction, identification of specific modeling strategies and the development of specific models for component relevant loading conditions. A survey of the hot section material/coating systems used throughout the gas turbine industry is included. Two material/coating systems will be identified for the program. The material/coating system designated as the base system shall be used throughout Tasks 1-12. The alternate material/coating system will be used only in Task 12 for further evaluation of the models developed on the base material. In Task II, candidate life prediction approaches will be screened based on a set of criteria that includes experience of the approaches within the literature, correlation with isothermal data generated on the base material, and judgements relative to the applicability of the approach for the complex cycles to be considered in the option program. The two most promising approaches will be identified. Task 3 further evaluates the best approach using additional base material fatigue testing including verification tests. Task 4 consists of technical, schedular, financial and all other reporting requirements in accordance with the Reports of Work clause.

  5. CD34+ cell count predicts long lasting life in the oldest old.

    PubMed

    Mandraffino, Giuseppe; Aragona, Caterina Oriana; Basile, Giorgio; Cairo, Valentina; Mamone, Federica; Morace, Carmela; D'Ascola, Angela; Alibrandi, Angela; Lo Gullo, Alberto; Loddo, Saverio; Saitta, Antonino; Imbalzano, Egidio

    2017-06-01

    Circulating progenitor cells (CPCs) represent a pool of cells capable of differentiating into mature cells of different organs and systems, promoting tissue maintenance and repair. Among CPCs, CD34+cells (CD34+CPCs) seem to predict outcome in CV disease, also in elderly people. A decline in CD34+CPCs was reported with advancing age. Moreover, aging is associated with a state of chronic inflammation, influencing life expectancy. Our purpose was to investigate a 10-year predictive ability of CD34+CPCs, inflammatory marker levels, classic CV risk factors (CVRFs), and Framingham Risk Score (FRS) in a population of healthy, self-sufficient octogenarians. We found that baseline CD34+CPCs was strongly associated with mortality, showing a significant difference in CD34+CPC numbers between deceased and living patients. Moreover, by dividing our patients into tertiles based on age reached, this difference was more remarkable the higher the age reached. Regressive analyses suggested that the chances of reaching an older age depend on higher CD34+CPCs at baseline and are not significantly affected by inflammatory markers levels, FRS, CVFRs, or HDL-C levels. We found that higher CD34+CPCs predict longer life also in the oldest old, providing additional insights on the predictive role of CD34+CPCs in subjects aged 80 years or more. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Life prediction and constitutive models for engine hot section anisotropic materials

    NASA Technical Reports Server (NTRS)

    Swanson, G. A.; Linask, I.; Nissley, D. M.; Norris, P. P.; Meyer, T. G.; Walker, K. P.

    1987-01-01

    The results are presented of a program designed to develop life prediction and constitutive models for two coated single crystal alloys used in gas turbine airfoils. The two alloys are PWA 1480 and Alloy 185. The two oxidation resistant coatings are PWA 273, an aluminide coating, and PWA 286, an overlay NiCoCrAlY coating. To obtain constitutive and fatigue data, tests were conducted on uncoated and coated specimens loaded in the CH76 100 CH110 , CH76 110 CH110 , CH76 111 CH110 and CH76 123 CH110 crystallographic directions. Two constitutive models are being developed and evaluated for the single crystal materials: a micromechanic model based on crystallographic slip systems, and a macroscopic model which employs anisotropic tensors to model inelastic deformation anisotropy. Based on tests conducted on the overlay coating material, constitutive models for coatings also appear feasible and two initial models were selected. A life prediction approach was proposed for coated single crystal materials, including crack initiation either in the coating or in the substrate. The coating initiated failures dominated in the tests at load levels typical of gas turbine operation. Coating life was related to coating stress/strain history which was determined from specimen data using the constitutive models.

  7. Predicting Life-History Trade-Offs with Whole-Organism Performance.

    PubMed

    Lailvaux, Simon P; Husak, Jerry F

    2017-08-01

    Whole-organism performance traits are key intermediaries between the organism and the environment. Because performance traits are energetically costly to both build and maintain, performance will compete with other life-history traits over a limited pool of acquired energetic resources at any given time, potentially leading to trade-offs in performance expression. Although these trade-offs can have important implications for organismal fitness we currently lack a conceptual framework for predicting both where trade-offs might be expected, and which traits may be especially prone to trade-offs with other fitness-related life-history traits. We propose such a framework based on an estimate of the energetic requirements of locomotion in vertebrates, the ecological cost of transport. By analyzing existing data on mammalian energetic budgets and life-history, we found that species with higher costs of locomotion also tended to be those with "slow" life histories that invest relatively less in current reproduction than "fast" life-history species. We discuss the potential implications of ectothermy for masking such relationships, and how this framework might be expanded upon in the future. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  8. A novel health indicator for on-line lithium-ion batteries remaining useful life prediction

    NASA Astrophysics Data System (ADS)

    Zhou, Yapeng; Huang, Miaohua; Chen, Yupu; Tao, Ye

    2016-07-01

    Prediction of lithium-ion batteries remaining useful life (RUL) plays an important role in an intelligent battery management system. The capacity and internal resistance are often used as the batteries health indicator (HI) for quantifying degradation and predicting RUL. However, on-line measurement of capacity and internal resistance are hardly realizable due to the not fully charged and discharged condition and the extremely expensive cost, respectively. Therefore, there is a great need to find an optional way to deal with this plight. In this work, a novel HI is extracted from the operating parameters of lithium-ion batteries for degradation modeling and RUL prediction. Moreover, Box-Cox transformation is employed to improve HI performance. Then Pearson and Spearman correlation analyses are utilized to evaluate the similarity between real capacity and the estimated capacity derived from the HI. Next, both simple statistical regression technique and optimized relevance vector machine are employed to predict the RUL based on the presented HI. The correlation analyses and prediction results show the efficiency and effectiveness of the proposed HI for battery degradation modeling and RUL prediction.

  9. Does Life Satisfaction Predict Victimization Experiences in Adolescence?

    ERIC Educational Resources Information Center

    Martin, Kellie; Huebner, E. Scott; Valois, Robert F.

    2008-01-01

    Longitudinal relationships between adolescents' life satisfaction and peer victimization and prosocial experiences were assessed. A total of 417 students in Grades 6-8 completed the Multidimensional Students' Life Satisfaction Scale (MSLSS: Huebner, 1994) and the Children's Social Experience Questionnaire - Self Report (SEQ-SR: Crick & Grotpeter,…

  10. NDE: A key to engine rotor life prediction

    NASA Technical Reports Server (NTRS)

    Doherty, J. E.

    1977-01-01

    A key ingredient in the establishment of safe life times for critical components is the means of reliably detecting flaws which may potentially exist. Currently used nondestructive evaluation procedures are successful in detecting life limiting defects; however, the development of automated and computer aided NDE technology permits even greater assurance of flight safety.

  11. The Social Life of a Data Base

    NASA Technical Reports Server (NTRS)

    Linde, Charlotte; Wales, Roxana; Clancy, Dan (Technical Monitor)

    2002-01-01

    This paper presents the complex social life of a large data base. The topics include: 1) Social Construction of Mechanisms of Memory; 2) Data Bases: The Invisible Memory Mechanism; 3) The Human in the Machine; 4) Data of the Study: A Large-Scale Problem Reporting Data Base; 5) The PRACA Study; 6) Description of PRACA; 7) PRACA and Paper; 8) Multiple Uses of PRACA; 9) The Work of PRACA; 10) Multiple Forms of Invisibility; 11) Such Systems are Everywhere; and 12) Two Morals to the Story. This paper is in viewgraph form.

  12. Presurgical symptom profiles predict quality of life 2 years after surgery in women with breast cancer.

    PubMed

    Chen, Mei-Ling; Liu, Li-Ni; Miaskowski, Christine; Chen, Shin-Cheh; Lin, Yung-Chang; Wang, Jong-Shyan

    2016-01-01

    Higher symptom burden in oncology patients is associated with poorer quality of life (QOL). However, the long-term predictive relationship between pre-treatment symptom profiles and QOL is unknown. The aim of this study was to identify subgroups of breast cancer patients based on their presurgical symptom profiles and to examine the predictive effect of group membership on QOL 2 years after surgery. Data were analyzed from a longitudinal study of women's (N = 198) symptoms after breast cancer surgery. Patient subgroups were identified by latent class analysis based on presurgical severity of five symptoms (i.e., attentional and physical fatigue, sleep disturbance, depression, and anxiety). Among these 198 women, quality of life 2 years after surgery was available for 97. Group differences in QOL were examined by general linear models. We identified four distinct patient groups. Group A (All Low) had low levels of all symptoms. Group B (Low Fatigue and Moderate Mood) was characterized by low attentional and physical fatigue but moderate sleep disturbance, depression, and anxiety. Group C (All Moderate) was characterized by moderate levels of all five symptoms. Group D was characterized by moderate attentional and physical fatigue and severe sleep disturbance, depression, and anxiety (Moderate Fatigue and High Mood). Group D had significantly lower overall QOL scores 2 years after surgery than Group A (p = 0.002). Breast cancer patients' presurgical symptom profile had a long-term predictive effect on QOL. Routine assessment of patients' pre-treatment symptom is suggested to identify high risk group.

  13. Generation of Finite Life Distributional Goodman Diagrams for Reliability Prediction

    NASA Technical Reports Server (NTRS)

    Kececioglu, D.; Guerrieri, W. N.

    1971-01-01

    The methodology of developing finite life distributional Goodman diagrams and surfaces is described for presenting allowable combinations of alternating stress and mean stress to the design engineer. The combined stress condition is that of an alternating bending stress and a constant shear stress. The finite life Goodman diagrams and surfaces are created from strength distributions developed at various ratios of alternating to mean stress at particular cycle life values. The conclusions indicate that the Von Mises-Hencky ellipse, for cycle life values above 1000 cycles, is an adequate model of the finite life Goodman diagram. In addition, suggestions are made which reduce the number of experimental data points required in a fatigue data acquisition program.

  14. Measuring and predicting prostate cancer related quality of life changes using EPIC for clinical practice.

    PubMed

    Chipman, Jonathan J; Sanda, Martin G; Dunn, Rodney L; Wei, John T; Litwin, Mark S; Crociani, Catrina M; Regan, Meredith M; Chang, Peter

    2014-03-01

    We expanded the clinical usefulness of EPIC-CP (Expanded Prostate Cancer Index Composite for Clinical Practice) by evaluating its responsiveness to health related quality of life changes, defining the minimally important differences for an individual patient change in each domain and applying it to a sexual outcome prediction model. In 1,201 subjects from a previously described multicenter longitudinal cohort we modeled the EPIC-CP domain scores of each treatment group before treatment, and at short-term and long-term followup. We considered a posttreatment domain score change from pretreatment of 0.5 SD or greater clinically significant and p ≤ 0.01 statistically significant. We determined the domain minimally important differences using the pooled 0.5 SD of the 2, 6, 12 and 24-month posttreatment changes from pretreatment values. We then recalibrated an EPIC-CP based nomogram model predicting 2-year post-prostatectomy functional erection from that developed using EPIC-26. For each health related quality of life domain EPIC-CP was sensitive to similar posttreatment health related quality of life changes with time, as was observed using EPIC-26. The EPIC-CP minimally important differences in changes in the urinary incontinence, urinary irritation/obstruction, bowel, sexual and vitality/hormonal domains were 1.0, 1.3, 1.2, 1.6 and 1.0, respectively. The EPIC-CP based sexual prediction model performed well (AUC 0.76). It showed robust agreement with its EPIC-26 based counterpart with 10% or less predicted probability differences between models in 95% of individuals and a mean ± SD difference of 0.0 ± 0.05 across all individuals. EPIC-CP is responsive to health related quality of life changes during convalescence and it can be used to predict 2-year post-prostatectomy sexual outcomes. It can facilitate shared medical decision making and patient centered care. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc

  15. Age at the onset of senescence in birds and mammals is predicted by early-life performance

    PubMed Central

    Péron, Guillaume; Gimenez, Olivier; Charmantier, Anne; Gaillard, Jean-Michel; Crochet, Pierre-André

    2010-01-01

    Life-history theory predicts that traits involved in maturity, reproduction and survival correlate along a fast–slow continuum of life histories. Evolutionary theories and empirical results indicate that senescence-related traits vary along this continuum, with slow species senescing later and at a slower pace than fast species. Because senescence patterns are typically difficult to estimate from studies in the wild, here we propose to predict the associated trait values in the frame of life-history theory. From a comparative analysis based on 81 free-ranging populations of 72 species of birds and mammals, we find that a nonlinear combination of fecundity, age at first reproduction and survival over the immature stage can account for ca two-thirds of the variance in the age at the onset of actuarial senescence. Our life-history model performs better than a model predicting the onset based on generation time, and it only includes life-history traits during early life as explanatory variables, i.e. parameters that are both theoretically expected to shape senescence and are measurable within relatively short studies. We discuss the good-fit of our life-history model to the available data in the light of current evolutionary theories of senescence. We further use it to evaluate whether studies that provided no evidence for senescence lasted long enough to include the onset of senescence. PMID:20427343

  16. Age at the onset of senescence in birds and mammals is predicted by early-life performance.

    PubMed

    Péron, Guillaume; Gimenez, Olivier; Charmantier, Anne; Gaillard, Jean-Michel; Crochet, Pierre-André

    2010-09-22

    Life-history theory predicts that traits involved in maturity, reproduction and survival correlate along a fast-slow continuum of life histories. Evolutionary theories and empirical results indicate that senescence-related traits vary along this continuum, with slow species senescing later and at a slower pace than fast species. Because senescence patterns are typically difficult to estimate from studies in the wild, here we propose to predict the associated trait values in the frame of life-history theory. From a comparative analysis based on 81 free-ranging populations of 72 species of birds and mammals, we find that a nonlinear combination of fecundity, age at first reproduction and survival over the immature stage can account for ca two-thirds of the variance in the age at the onset of actuarial senescence. Our life-history model performs better than a model predicting the onset based on generation time, and it only includes life-history traits during early life as explanatory variables, i.e. parameters that are both theoretically expected to shape senescence and are measurable within relatively short studies. We discuss the good-fit of our life-history model to the available data in the light of current evolutionary theories of senescence. We further use it to evaluate whether studies that provided no evidence for senescence lasted long enough to include the onset of senescence.

  17. Life Prediction and Stress Evolvement for Low Cycle Fatigue in PWR Primary Pipe Material

    NASA Astrophysics Data System (ADS)

    Fei, Xue; Wei-wei, Yu; Zhao-xi, Wang; Wen-xin, Ti; Lei, Lin; Xin-ming, Men

    2010-05-01

    The low cycle fatigue (LCF) behavior of primary pipe material Z3CN20.09M cast stainless stell (CASS) was studied at room temperature (RT) and elevated temperature of 350° C by conducting total axial stain controlled tests in air with strain amplitude in the range ±0.175% to ±0.8%. Based on the test results, the cyclic stress response of material was analyzed, and a dynamic strain aging (DSA) phenomena was discovered at 350° C. Besides, the evaluation of elastic modulus during cyclic tests was studied, and the effect of elastic modulus on parameters of low cycle fatigue was investigated based on the Manson-Coffin model. It is shown that elastic modulus for Z3CN20.09M decreases constantly during the whole fatigue life, but fluctuates more frequently at elevated temperature. Both the static and dynamic elastic modulus result in a same life trend in low cycle fatigue, but the elastic modulus affects the precision of fatigue life prediction to some extent when the fatigue life exceeded 105.

  18. Creep fatigue life prediction for engine hot section materials (isotropic): Third year progress review

    NASA Technical Reports Server (NTRS)

    Nelson, Richard S.; Schoendorf, John F.

    1985-01-01

    This program is designed to investigate fundamental damage processes, identify modeling strategies, and develop practical models which can be used to guide the early design and development of new engines and to increase the durability of existing engines. A review is given of the base program, completed in 1984, which included the comparison and evaluation of several popular high-temperature life prediction approaches as applied to continuously cycled isothermal specimen tests. The option program, of which one year is completed, is designed to develop models which can account for complex cycles and loadings, such as thermomechanical cycling, cumulative damage, multiaxial stress/strain rates, and environmental effects.

  19. Development of a constitutive model for creep and life prediction of advanced silicon nitride ceramics

    SciTech Connect

    Ding, J.L.; Liu, K.C.; Brinkman, C.R.

    1992-12-31

    A constitutive model capable of describing deformation and predicting rupture life was developed for high temperature ceramic materials under general thermal-mechanical loading conditions. The model was developed based on the deformation and fracture behavior observed from a systematic experimental study on an advanced silicon nitride (Si{sub 3}N{sub 4}) ceramic material. Validity of the model was evaluated with reference to creep and creep rupture data obtained under constant and stepwise-varied loading conditions, including the effects of annealing on creep and creep rupture behavior.

  20. Dispersal syndromes and the use of life-histories to predict dispersal

    PubMed Central

    Stevens, Virginie M; Trochet, Audrey; Blanchet, Simon; Moulherat, Sylvain; Clobert, Jean; Baguette, Michel

    2013-01-01

    Due to its impact on local adaptation, population functioning or range shifts, dispersal is considered a central process for population persistence and species evolution. However, measuring dispersal is complicated, which justifies the use of dispersal proxies. Although appealing, and despite its general relationship with dispersal, body size has however proven unsatisfactory as a dispersal proxy. Our hypothesis here is that, given the existence of dispersal syndromes, suites of life-history traits may be alternative, more appropriate proxies for dispersal. We tested this idea by using butterflies as a model system. We demonstrate that different elements of the dispersal process (i.e., individual movement rates, distances, and gene flow) are correlated with different suites of life-history traits: these various elements of dispersal form separate syndromes and must be considered real axes of a species' niche. We then showed that these syndromes allowed accurate predictions of dispersal. The use of life-history traits improved the precision of the inferences made from wing size alone by up to five times. Such trait-based predictions thus provided reliable dispersal inferences that can feed simulation models aiming at investigating the dynamics and evolution of butterfly populations, and possibly of other organisms, under environmental changes, to help their conservation. PMID:23789030

  1. Methodologies for predicting the thermomechanical fatigue life of unidirectional metal matrix composites

    SciTech Connect

    Neu, R.W.; Nicholas, T.

    1996-12-31

    Parameters and models to correlate the cycles to failure of a unidirectional metal matrix composite (SCS-6/Timetal 21S) undergoing thermal and mechanical loading are examined. Three different cycle types are considered: out-of-phase thermomechanical fatigue (TMF), in-phase TMF, and isothermal fatigue. A single parameter based on either the fiber of matrix behavior is shown not to correlate the cycles to failure of all the data. Two prediction methods are presented that assume that life may be dependent on at least two fatigue damage mechanisms and therefore consist of two terms. The first method, the linear life fraction model, shows that by using the response of the constituents, the life of these different cycle types are better correlated using two simple empirical relationships: one describing the fatigue damage in the matrix and the other fiber-dominated damage. The second method, the dominant damage model, is more complex but additionally brings in the effect of the environment. This latter method improves the predictions of the effects of the maximum temperature, temperature range, and frequency, especially under out-of-phase TMF and isothermal fatigue. The steady-state response of the constituents is determined using a 1-D micromechanics model with viscoplasticity. The residual stresses due to the CTE mismatch between the fiber and matrix during processing are included in the analysis.

  2. Global life satisfaction predicts ambulatory affect, stress, and cortisol in daily life in working adults.

    PubMed

    Smyth, Joshua M; Zawadzki, Matthew J; Juth, Vanessa; Sciamanna, Christopher N

    2017-04-01

    Global life satisfaction has been linked with long-term health advantages, yet how life satisfaction impacts the trajectory of long-term health is unclear. This paper examines one such possible mechanism-that greater life satisfaction confers momentary benefits in daily life that accumulate over time. A community sample of working adults (n = 115) completed a measure of life satisfaction and then three subsequent days of ecological momentary assessment surveys (6 times/day) measuring affect (i.e., emotional valence, arousal), and perceived stress, and also provided salivary cortisol samples. Multilevel models indicated that people with higher (vs. lower) levels of life satisfaction reported better momentary affect, less stress, marginally lower momentary levels and significantly altered diurnal slopes of cortisol. Findings suggest individuals with high global life satisfaction have advantageous daily experiences, providing initial evidence for potential mechanisms through which global life satisfaction may help explain long-term health benefits.

  3. Predicting the Impact of a Stressful Life Experience: Criminal Victimization.

    ERIC Educational Resources Information Center

    Kilpatrick, Dean G.; And Others

    Because violent crime may produce persistent stress-related problems for many victims, it is important to determine what factors best predict development and persistence of stress-related problems. A study was conducted to examine the extent to which development and persistence of Posttraumatic Stress Disorder (PTSD) could be predicted on the…

  4. Personality and Situation in the Prediction of Women's Life Patterns.

    ERIC Educational Resources Information Center

    Stewart, Abigail J.

    1980-01-01

    Marriage, achievement need, children and self-definition predicted negative career persistence and career activity patterns in some family situations. Self-definition was associated with professional career activity among unconstrained women, but with freelance activity among married mothers. Personality variables may predict behavior within broad…

  5. Towards Practical Carbonation Prediction and Modelling for Service Life Design of Reinforced Concrete Structures

    NASA Astrophysics Data System (ADS)

    Ekolu, O. S.

    2015-11-01

    Amongst the scientific community, the interest in durability of concrete structures has been high for quite a long time of over 40 years. Of the various causes of degradation of concrete structures, corrosion is the most widespread durability problem and carbonation is one of the two causes of steel reinforcement corrosion. While much scientific understanding has been gained from the numerous carbonation studies undertaken over the past years, it is still presently not possible to accurately predict carbonation and apply it in design of structures. This underscores the complex nature of the mechanisms as influenced by several interactive factors. Based on critical literature and some experience of the author, it is found that there still exist major challenges in establishing a mathematical constitutive relation for realistic carbonation prediction. While most current models employ permeability /diffusion as the main model property, analysis shows that the most practical material property would be compressive strength, which has a low coefficient of variation of 20% compared to 30 to 50% for permeability. This important characteristic of compressive strength, combined with its merit of simplicity and data availability at all stages of a structure's life, promote its potential use in modelling over permeability. By using compressive strength in carbonation prediction, the need for accelerated testing and permeability measurement can be avoided. This paper attempts to examine the issues associated with carbonation prediction, which could underlie the current lack of a sound established prediction method. Suggestions are then made for possible employment of different or alternative approaches.

  6. An adaptive data-driven method for accurate prediction of remaining useful life of rolling bearings

    NASA Astrophysics Data System (ADS)

    Peng, Yanfeng; Cheng, Junsheng; Liu, Yanfei; Li, Xuejun; Peng, Zhihua

    2017-07-01

    A novel data-driven method based on Gaussian mixture model (GMM) and distance evaluation technique (DET) is proposed to predict the remaining useful life (RUL) of rolling bearings. The data sets are clustered by GMM to divide all data sets into several health states adaptively and reasonably. The number of clusters is determined by the minimum description length principle. Thus, either the health state of the data sets or the number of the states is obtained automatically. Meanwhile, the abnormal data sets can be recognized during the clustering process and removed from the training data sets. After obtaining the health states, appropriate features are selected by DET for increasing the classification and prediction accuracy. In the prediction process, each vibration signal is decomposed into several components by empirical mode decomposition. Some common statistical parameters of the components are calculated first and then the features are clustered using GMM to divide the data sets into several health states and remove the abnormal data sets. Thereafter, appropriate statistical parameters of the generated components are selected using DET. Finally, least squares support vector machine is utilized to predict the RUL of rolling bearings. Experimental results indicate that the proposed method reliably predicts the RUL of rolling bearings.

  7. Temperament and Parenting during the First Year of Life Predict Future Child Conduct Problems

    ERIC Educational Resources Information Center

    Lahey, Benjamin B.; Van Hulle, Carol A.; Keenan, Kate; Rathouz, Paul J.; D'Onofrio, Brian M.; Rodgers, Joseph Lee; Waldman, Irwin D.

    2008-01-01

    Predictive associations between parenting and temperament during the first year of life and child conduct problems were assessed longitudinally in 1,863 offspring of a representative sample of women. Maternal ratings of infant fussiness, activity level, predictability, and positive affect each independently predicted maternal ratings of conduct…

  8. Temperament and Parenting during the First Year of Life Predict Future Child Conduct Problems

    ERIC Educational Resources Information Center

    Lahey, Benjamin B.; Van Hulle, Carol A.; Keenan, Kate; Rathouz, Paul J.; D'Onofrio, Brian M.; Rodgers, Joseph Lee; Waldman, Irwin D.

    2008-01-01

    Predictive associations between parenting and temperament during the first year of life and child conduct problems were assessed longitudinally in 1,863 offspring of a representative sample of women. Maternal ratings of infant fussiness, activity level, predictability, and positive affect each independently predicted maternal ratings of conduct…

  9. Extended Aging Theories for Predictions of Safe Operational Life of Critical Airborne Structural Components

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Chen, Tony

    2006-01-01

    The previously developed Ko closed-form aging theory has been reformulated into a more compact mathematical form for easier application. A new equivalent loading theory and empirical loading theories have also been developed and incorporated into the revised Ko aging theory for the prediction of a safe operational life of airborne failure-critical structural components. The new set of aging and loading theories were applied to predict the safe number of flights for the B-52B aircraft to carry a launch vehicle, the structural life of critical components consumed by load excursion to proof load value, and the ground-sitting life of B-52B pylon failure-critical structural components. A special life prediction method was developed for the preflight predictions of operational life of failure-critical structural components of the B-52H pylon system, for which no flight data are available.

  10. Life systems for a lunar base

    NASA Technical Reports Server (NTRS)

    Nelson, Mark; Hawes, Philip B.; Augustine, Margret

    1992-01-01

    The Biosphere 2 project is pioneering work on life systems that can serve as a prototype for long-term habitation on the Moon. This project will also facilitate the understanding of the smaller systems that will be needed for initial lunar base life-support functions. In its recommendation for a policy for the next 50 years in space, the National Commission on Space urged, 'To explore and settle the inner Solar System, we must develop biospheres of smaller size, and learn how to build and maintain them' (National Commission on Space, 1986). The Biosphere 2 project, along with its Biospheric Research and Development Center, is a materially closed and informationally and energetically open system capable of supporting a human crew of eight, undertaking work to meet this need. This paper gives an overview of the Space Biospheres Ventures' endeavor and its lunar applications.

  11. Life Prediction of Atmospheric Plasma-Sprayed Thermal Barrier Coatings Using Temperature-Dependent Model Parameters

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Chen, Kuiying; Baddour, N.; Patnaik, P. C.

    2017-06-01

    The failure analysis and life prediction of atmospheric plasma-sprayed thermal barrier coatings (APS-TBCs) were carried out for a thermal cyclic process. A residual stress model for the top coat of APS-TBC was proposed and then applied to life prediction. This residual stress model shows an inversion characteristic versus thickness of thermally grown oxide. The capability of the life model was demonstrated using temperature-dependent model parameters. Using existing life data, a comparison of fitting approaches of life model parameters was performed. A larger discrepancy was found for the life predicted using linearized fitting parameters versus temperature compared to those using non-linear fitting parameters. A method for integrating the residual stress was proposed by using the critical time of stress inversion. The role of the residual stresses distributed at each individual coating layer was explored and their interplay on the coating's delamination was analyzed.

  12. Shelf life prediction of bread sticks using oxidation indices: a validation study.

    PubMed

    Calligaris, S; Pieve, S D; Kravina, G; Manzocco, L; Nicoli, C M

    2008-03-01

    The aim of this study was to apply the protocol for the shelf life prediction of bakery products proposed by Calligaris and others (2007a) on bread sticks. The methodology comprises 4 steps: (1) evaluation of the physical properties of fat; (2) performing the accelerated shelf life test; (3) evaluation of sensory acceptance limit and the relevant chemical index limit; (4) setting up the shelf life prediction model. The results allow validating the shelf life prediction methodology proposed. In fact, the peroxide number was found to be a representative index of the quality depletion of bread sticks during their shelf life. In addition, once again by accounting for the changes in the fat physical state, it is possible to set up a modified Arrhenius equation able to describe the temperature dependence of peroxide formation. Finally, a mathematical model to simply and quickly calculate the shelf life of bread sticks has been developed.

  13. Fatigue life prediction for high-heat-load components made of GlidCop by elastic-plastic analysis.

    PubMed

    Takahashi, Sunao; Sano, Mutsumi; Mochizuki, Tetsuro; Watanabe, Atsuo; Kitamura, Hideo

    2008-03-01

    A procedure to predict the fatigue fracture life of high-heat-load components made of GlidCop has been successfully established. This method is based upon the Manson-Coffin equation with a cumulative linear damage law. This prediction was achieved by consolidating the results of experiments and analyses, and considered the effects of environment and creep. A low-cycle-fatigue test for GlidCop was conducted so that environment-dependent Delta(t)-N(f) diagrams for any temperature could be prepared. A special test piece was designed to concentrate the strain in a central area locally, resulting in the low-cycle-fatigue fracture. The experiments were carried out by repeatedly irradiating a test piece with an electron beam. The results of the experiment confirmed that the observed fatigue life was within a factor of two when compared with the predicted fatigue life, yet located on the safer side.

  14. Early Life Growth Predicts Pubertal Development in South African Adolescents.

    PubMed

    Lundeen, Elizabeth A; Norris, Shane A; Martorell, Reynaldo; Suchdev, Parminder S; Mehta, Neil K; Richter, Linda M; Stein, Aryeh D

    2016-03-01

    Given global trends toward earlier onset of puberty and the adverse psychosocial consequences of early puberty, it is important to understand the childhood predictors of pubertal timing and tempo. We examined the association between early growth and the timing and tempo of puberty in adolescents in South Africa. We analyzed prospectively collected data from 1060 boys and 1135 girls participating in the Birth-to-Twenty cohort in Soweto, South Africa. Height-for-age z scores (HAZs) and body mass index-for-age z scores (BMIZs) were calculated based on height (centimeters) and body mass index (kilograms per meter squared) at ages 5 y and 8 y. The development of genitals, breasts, and pubic hair was recorded annually from 9 to 16 y of age with the use of the Tanner sexual maturation scale (SMS). We used latent class growth analysis to identify pubertal trajectory classes and also characterized children as fast or slow developers based on the SMS score at 12 y of age. We used multinomial logistic regression to estimate associations of HAZ and BMIZ at ages 5 and 8 y with pubertal development. We identified 3 classes for pubic hair development (for both girls and boys) and 4 classes for breast (for girls) and genital (for boys) development. In girls, both HAZ and BMIZ at age 5 y were positively associated with pubic hair development [relative risk ratio (RRR): 1.57, P < 0.001 and RRR: 1.51, P < 0.01, respectively], as was BMI at age 8 y (RRR: 2.06, P = 0.03); similar findings were observed for breast development. In boys, HAZ and BMIZ at age 5 y were positively associated with pubic hair development (RRR: 1.78, P < 0.001 and RRR: 1.43, P < 0.01, respectively); HAZ at age 5 y was associated with development of genitals (RRR: 2.19, P < 0.01). In boys and girls, both height and body mass index in early childhood predicted the trajectory of pubertal development. This may provide a tool to identify children at risk of early pubertal onset.

  15. Life history trade-off moderates model predictions of diversity loss from climate change

    PubMed Central

    2017-01-01

    Climate change can trigger species range shifts, local extinctions and changes in diversity. Species interactions and dispersal capacity are important mediators of community responses to climate change. The interaction between multispecies competition and variation in dispersal capacity has recently been shown to exacerbate the effects of climate change on diversity and to increase predictions of extinction risk dramatically. Dispersal capacity, however, is part of a species’ overall ecological strategy and are likely to trade off with other aspects of its life history that influence population growth and persistence. In plants, a well-known example is the trade-off between seed mass and seed number. The presence of such a trade-off might buffer the diversity loss predicted by models with random but neutral (i.e. not impacting fitness otherwise) differences in dispersal capacity. Using a trait-based metacommunity model along a warming climatic gradient the effect of three different dispersal scenarios on model predictions of diversity change were compared. Adding random variation in species dispersal capacity caused extinctions by the introduction of strong fitness differences due an inherent property of the dispersal kernel. Simulations including a fitness-equalising trade-off based on empirical relationships between seed mass (here affecting dispersal distance, establishment probability, and seedling biomass) and seed number (fecundity) maintained higher initial species diversity and predicted lower extinction risk and diversity loss during climate change than simulations with variable dispersal capacity. Large seeded species persisted during climate change, but developed lags behind their climate niche that may cause extinction debts. Small seeded species were more extinction-prone during climate change but tracked their niches through dispersal and colonisation, despite competitive resistance from residents. Life history trade-offs involved in coexistence

  16. Life history trade-off moderates model predictions of diversity loss from climate change.

    PubMed

    Moor, Helen

    2017-01-01

    Climate change can trigger species range shifts, local extinctions and changes in diversity. Species interactions and dispersal capacity are important mediators of community responses to climate change. The interaction between multispecies competition and variation in dispersal capacity has recently been shown to exacerbate the effects of climate change on diversity and to increase predictions of extinction risk dramatically. Dispersal capacity, however, is part of a species' overall ecological strategy and are likely to trade off with other aspects of its life history that influence population growth and persistence. In plants, a well-known example is the trade-off between seed mass and seed number. The presence of such a trade-off might buffer the diversity loss predicted by models with random but neutral (i.e. not impacting fitness otherwise) differences in dispersal capacity. Using a trait-based metacommunity model along a warming climatic gradient the effect of three different dispersal scenarios on model predictions of diversity change were compared. Adding random variation in species dispersal capacity caused extinctions by the introduction of strong fitness differences due an inherent property of the dispersal kernel. Simulations including a fitness-equalising trade-off based on empirical relationships between seed mass (here affecting dispersal distance, establishment probability, and seedling biomass) and seed number (fecundity) maintained higher initial species diversity and predicted lower extinction risk and diversity loss during climate change than simulations with variable dispersal capacity. Large seeded species persisted during climate change, but developed lags behind their climate niche that may cause extinction debts. Small seeded species were more extinction-prone during climate change but tracked their niches through dispersal and colonisation, despite competitive resistance from residents. Life history trade-offs involved in coexistence

  17. Life prediction of thermal-mechanical fatigue using strain-range partitioning

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Manson, S. S.

    1975-01-01

    The applicability is described of the method of Strainrange Partitioning to the life prediction of thermal-mechanical strain-cycling fatigue. An in-phase test on 316 stainless steel is analyzed as an illustrative example. The observed life is in excellent agreement with the life predicted by the method using the recently proposed Step-Stress Method of experimental partitioning, the Interation Damage Rule, and the life relationships determined at an isothermal temperature of 705 C. Implications of the study are discussed relative to the general thermal fatigue problem.

  18. Link prediction based on local community properties

    NASA Astrophysics Data System (ADS)

    Yang, Xu-Hua; Zhang, Hai-Feng; Ling, Fei; Cheng, Zhi; Weng, Guo-Qing; Huang, Yu-Jiao

    2016-09-01

    The link prediction algorithm is one of the key technologies to reveal the inherent rule of network evolution. This paper proposes a novel link prediction algorithm based on the properties of the local community, which is composed of the common neighbor nodes of any two nodes in the network and the links between these nodes. By referring to the node degree and the condition of assortativity or disassortativity in a network, we comprehensively consider the effect of the shortest path and edge clustering coefficient within the local community on node similarity. We numerically show the proposed method provide good link prediction results.

  19. Low cycle notched fatigue behavior and life predictions of A723 high strength steels

    SciTech Connect

    Troiano, E.; Underwood, J.H.; Crayon, D.

    1995-12-31

    Two types of ASTM A723 steels have been investigated for their low cycle fatigue behavior. Specimens were tested in four-point bending, both with and without notches, and the measured fatigue lives were compared with those predicted by Neubers notch analysis, and standard fracture mechanics life prediction techniques. Comparison of measured and predicted lives indicate that the elastic/plastic Neuber analysis under predicts the measured fatigue life by as much as 67% at large strains, and becomes a better predictor of life as the applied strains decrease. The elastic Neubers analysis also under predicts the measured fatigue lives by 45% at large applied strains, but seems to accurately predict lives at reversals to failure greater than 100. The fracture mechanics approach assumes elastic stresses at the crack tip, and predicts lives within 30% over the full range of strains investigated. The results show that the Neuber notch analysis is not as good an indicator of the low cycle fatigue behavior of A723 steels as is the fracture mechanics life prediction techniques. As the life cycles to failure decreases, the Neubers analysis predicts lives that are two to three times more conservative than those experimentally measured.

  20. The future is bright and predictable: the development of prospective life stories across childhood and adolescence.

    PubMed

    Bohn, Annette; Berntsen, Dorthe

    2013-07-01

    When do children develop the ability to imagine their future lives in terms of a coherent prospective life story? We investigated whether this ability develops in parallel with the ability to construct a life story for the past and narratives about single autobiographical events in the past and future. Four groups of school children aged 9 to 15 years imagined their future lives and produced past life stories, as well as a cultural life script (i.e., culturally shared assumptions as to the order and timing of important life events). They also produced narratives about single autobiographical events to take place in the near future or recent past. Past and prospective life story coherences developed in parallel across ages, that is, older children told more coherent life stories than younger children, irrespective of temporal direction. However, children produced more coherent stories about single events in the past than in the future. Across age groups, prospective life stories were shorter, contained more life script events and were more positive than past life stories. Life script normativity increased with age and predicted the coherence of prospective, but not of past, life stories. The findings indicate that the ability to tell coherent life stories for the past and future develops in parallel and relies on similar processes. Life script abilities might be a major factor in the development of past and prospective life story coherences but not for the development of single event story coherences.

  1. Shadow-based SAR ATR performance prediction

    NASA Astrophysics Data System (ADS)

    Blacknell, D.

    2009-05-01

    The ability to assess potential automatic target recognition (ATR) performance for a given SAR system, target set and clutter environment is a key requirement for system procurement and mission planning. A cost-effective solution is to develop a theoretical model which can provide ATR performance predictions given a parameterisation of the system, targets and environment. In this paper, a classification scheme based on shadow information is analysed. Consideration of the statistical accuracy of shadow-based features allows ATR performance to be predicted. Quantitative comparisons of predicted performance with results obtained via simulation as well as against real data from the MSTAR data set are presented. It is seen that a reasonable level of agreement is obtained which gives confidence in extending the theoretical concepts to more complex feature-based ATR schemes.

  2. A Monte Carlo Risk Analysis of Life Cycle Cost Prediction.

    DTIC Science & Technology

    1975-09-01

    pre- sented of the prior research which has been conducted in this area by the RAND Corporation and APNC Research Corporation. Chapter 3 discusses in...prior research in this area is presented. The purpose of the discussion is to compare the assumptions of the differ- ent approaches and demonstrate...Uncertainty in Life Cycle Cost The primary source of prior research in this area of study is a working paper by the Rand Corporation (62). The Rand

  3. Predicting quality of work life on nurses' intention to leave.

    PubMed

    Lee, Ya-Wen; Dai, Yu-Tzu; Park, Chang-Gi; McCreary, Linda L

    2013-06-01

    The purpose of this study was to explore the relationship between quality of work life (QWL) and nurses' intention to leave their organization (ITLorg). A descriptive cross-sectional survey design was conducted using purposive sampling of 1,283 nurses at seven hospitals in Taiwan. Data were collected from March to June 2012. Three questionnaires, including the Chinese version of the Quality of Nursing Work Life scale (C-QNWL), a questionnaire of intention to leave the organization, and a demographic questionnaire, with two informed consent forms were delivered to the nurses at their workplaces. Descriptive data, Pearson's correlations, and the ordinal regression model were analyzed. Over half (52.5%) of nurses had ITLorg. Seven QWL dimensions were significantly negatively correlated with ITLorg (r = -0.17 to -0.37, p < .01). Significant predictors (p < .05) of ITLorg (the pseudo R(2) = 0.282) were being single, having a diploma or lower educational level, working in a nonteaching hospital. Four of the QWL dimensions--supportive milieu with job security and professional recognition, work arrangement and workload, work or home life balance, and nursing staffing and patient care--were also predictors of ITLorg. Three QWL dimensions were not predictors of ITLorg. This study showed that individual-related variables (being single, having a diploma or lower educational level), a work-related variable (working at a nonteaching hospital), and the four QWL dimensions play a significant role in nurses' ITLorg. After the QWL dimensions were added to the regression, the variance explained by the model more than doubled. To reduce nurses' ITLorg, nursing administrators may offer more focused interventions to improve the supportive milieu with job security and professional recognition, work arrangement and workload, work or home life balance, and nursing staffing and patient care. © 2013 Sigma Theta Tau International.

  4. A comprehensive benchmark of RNA–RNA interaction prediction tools for all domains of life

    PubMed Central

    Gardner, Paul P.

    2017-01-01

    Abstract Motivation: The aim of this study is to assess the performance of RNA–RNA interaction prediction tools for all domains of life. Results: Minimum free energy (MFE) and alignment methods constitute most of the current RNA interaction prediction algorithms. The MFE tools that include accessibility (i.e. RNAup, IntaRNA and RNAplex) to the final predicted binding energy have better true positive rates (TPRs) with a high positive predictive values (PPVs) in all datasets than other methods. They can also differentiate almost half of the native interactions from background. The algorithms that include effects of internal binding energies to their model and alignment methods seem to have high TPR but relatively low associated PPV compared to accessibility based methods. Availability and Implementation: We shared our wrapper scripts and datasets at Github (github.com/UCanCompBio/RNA_Interactions_Benchmark). All parameters are documented for personal use. Contact: sinan.umu@pg.canterbury.ac.nz Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27993777

  5. Factors Predicting Life Satisfaction: A Process Model of Personality, Multidimensional Self-Concept, and Life Satisfaction

    ERIC Educational Resources Information Center

    Parker, Philip D.; Martin, Andrew J.; Marsh, Herbert W.

    2008-01-01

    Life satisfaction is an important component of psychological health and wellbeing. Although personality is consistently linked to life satisfaction, its "innate" and stable nature can make it a difficult target for intervention by practitioners. More malleable and context-specific factors such as multidimensional self-concept may prove…

  6. Factors Predicting Life Satisfaction: A Process Model of Personality, Multidimensional Self-Concept, and Life Satisfaction

    ERIC Educational Resources Information Center

    Parker, Philip D.; Martin, Andrew J.; Marsh, Herbert W.

    2008-01-01

    Life satisfaction is an important component of psychological health and wellbeing. Although personality is consistently linked to life satisfaction, its "innate" and stable nature can make it a difficult target for intervention by practitioners. More malleable and context-specific factors such as multidimensional self-concept may prove…

  7. Challenging the 10-year rule: The accuracy of patient life expectancy predictions by physicians in relation to prostate cancer management

    PubMed Central

    Leung, Kevin M.Y.B.; Hopman, Wilma M; Kawakami, Jun

    2012-01-01

    Introduction: We assess physicians’ ability to accurately predict life expectancies. In prostate cancer this prediction is especially important as it affects screening decisions. No previous studies have examined accuracy in the context of real cases and concrete end points. Methods: Seven clinical scenarios were summarized from charts of deceased patients. We recruited 100 medical professionals to review these scenarios and estimate each patient’s life expectancy. Responses were analyzed with respect to the patients’ actual survival end points, then stratified based on the demographic information provided. Results: Respondent factors, such as sex, level of training, location of work or specialty, made no significant difference on prediction accuracy. Furthermore, respondents were typically pessimistic in their estimations with a negative linear trend between estimated life expectancy and actual survival. Overall, respondents were within 1 year of actual life expectancy only 15.9% of the time; on average, respondents were 67.4% inaccurate in relation to actual survival. If framed in terms of correctly identifying which patients would live more than or less than 10 years (dichotomous accuracy), physicians were correct 68.3% of the time. Conclusions: Physicians do poorly at predicting life expectancy and tend to underestimate how long patients have left to live. This overall inaccuracy raises the question of whether physicians should refine screening and treatment criteria, find a better proxy or dispose of the criteria altogether. PMID:23093629

  8. A New Approach to Predict the Fish Fillet Shelf-Life in Presence of Natural Preservative Agents

    PubMed Central

    Giuffrida, Alessandro; Giarratana, Filippo; Valenti, Davide; Muscolino, Daniele; Parisi, Roberta; Parco, Alessio; Marotta, Stefania; Ziino, Graziella; Panebianco, Antonio

    2017-01-01

    Three data sets concerning the behaviour of spoilage flora of fillets treated with natural preservative substances (NPS) were used to construct a new kind of mathematical predictive model. This model, unlike other ones, allows expressing the antibacterial effect of the NPS separately from the prediction of the growth rate. This approach, based on the introduction of a parameter into the predictive primary model, produced a good fitting of observed data and allowed characterising quantitatively the increase of shelf-life of fillets. PMID:28713795

  9. Predicted Effect of Dynamic Load on Pitting Fatigue Life for Low-Contact-Ratio Spur Gears.

    DTIC Science & Technology

    1986-06-01

    helical gears, using an dynamic loads to predict life. In general, gear life predictions approach similar to that for rolling-element bearings (refs. 2...CP-2210, G.K. Fischer, ed., 1983, pp. 421-434. 19. Lundberg, G.;and Palmgren , A.: Dynamic Capacity of Rolling Bearings . 7. Buckingham, E.: Analytical...Proceedings, International 20. Lundberg, G.; and Palmgren , A.: Dynamic Capacity of Roller Bearings . Conference on Gearing, Institution of Mechanical Engineers

  10. A creep cavity growth model for creep-fatigue life prediction of a unidirectional W/Cu composite

    NASA Technical Reports Server (NTRS)

    Kim, Young-Suk; Verrilli, Michael J.; Halford, Gary R.

    1992-01-01

    A microstructural model was developed to predict creep-fatigue life in a (0)(sub 4), 9 volume percent tungsten fiber-reinforced copper matrix composite at the temperature of 833 K. The mechanism of failure of the composite is assumed to be governed by the growth of quasi-equilibrium cavities in the copper matrix of the composite, based on the microscopically observed failure mechanisms. The methodology uses a cavity growth model developed for prediction of creep fracture. Instantaneous values of strain rate and stress in the copper matrix during fatigue cycles were calculated and incorporated in the model to predict cyclic life. The stress in the copper matrix was determined by use of a simple two-bar model for the fiber and matrix during cyclic loading. The model successfully predicted the composite creep-fatigue life under tension-tension cyclic loading through the use of this instantaneous matrix stress level. Inclusion of additional mechanisms such as cavity nucleation, grain boundary sliding, and the effect of fibers on matrix-stress level would result in more generalized predictions of creep-fatigue life.

  11. Dietary restriction-induced life extension: a broadly based biological phenomenon.

    PubMed

    Masoro, Edward J

    2006-06-01

    It is concluded that dietary restriction will extend the life of all species in the Animalia Kingdom, including the human species. This conclusion is based on the fact that hormesis is a component of the life-extending action and the other anti-aging effects of dietary restriction. It is also concluded that given the currently available database, it is not possible to predict the quantitative effect of dietary restriction on the human life span.

  12. Fundamental understanding and life prediction of stress corrosion cracking in BWRs and energy systems

    SciTech Connect

    Andresen, P.L.; Ford, F.P.

    1998-03-01

    The objective of this paper is to present an approach for design and lifetime evaluation of environmental cracking based on experimental and fundamental modeling of the underlying processes operative in crack advance. In detailed this approach and its development and quantification for energy (hot water) systems, the requirements for a life prediction methodology will be highlighted and the shortcomings of the existing design and lifetime evaluation codes reviewed. Examples are identified of its use in a variety of cracking systems, such as stainless steels, low alloy steels, nickel base alloys, and irradiation assisted stress corrosion cracking in boiling water reactor (BWR) water, as well as preliminary use for low alloy steel and Alloy 600 in pressurized water reactors (PWRs) and turbine steels in steam turbines. Identification of the common aspects with environmental cracking in other hot water systems provides a secure basis for its extension to related energy systems. 166 refs., 49 figs.

  13. Late-life Depressive Symptoms: Prediction Models of Change

    PubMed Central

    García-Peña, Carmen; Wagner, Fernando A.; Sánchez-García, Sergio; Espinel-Bermúdez, Claudia; Juárez-Cedillo, Teresa; Pérez-Zepeda, Mario; Arango-Lopera, Victoria; Franco-Marina, Francisco; Ramírez-Aldana, Ricardo; Gallo, Joseph

    2013-01-01

    Background Depression is a well-recognised problem in the elderly. The aim of this study was to determine the factors associated with predictors of change in depressive symptoms, both in subjects with and without baseline significant depressive symptoms. Methods Longitudinal study of community-dwelling elderly people (>60 years or older), baseline evaluations, and two additional evaluations were reported. Depressive symptoms were measured using a 30-item Geriatric Depression Scale, and a score of 11 was used as cutoff point for significant depressive symptoms in order to stratify the analyses in two groups: with significant depressive symptoms and without significant depressive symptoms. Sociodemographic data, social support, anxiety, cognition, positive affect, control locus, activities of daily living, recent traumatic life events, physical activity, comorbidities, and quality of life were evaluated. Multi-level generalised estimating equation model was used to assess the impact on the trajectory of depressive symptoms. Results 7,882 subjects were assessed, with 29.42% attrition. At baseline assessment, mean age was 70.96 years, 61.15% were women. Trajectories of depressive symptoms had a decreasing trend. Stronger associations in those with significant depressive symptoms, were social support (OR .971, p<.001), chronic pain (OR 2.277, p<.001) and higher locus of control (OR .581, p<.001). In contrast for those without baseline significant depressive symptoms anxiety and a higher locus of control were the strongest associations. Conclusions New insights into late-life depression are provided, with special emphasis in differentiated factors influencing the trajectory when stratifying regarding basal status of significant depressive symptoms. Limitations The study has not included clinical evaluations and nutritional assessments PMID:23731940

  14. The OASE project: Object-based Analysis and Seamless prediction

    NASA Astrophysics Data System (ADS)

    Troemel, Silke; Wapler, Kathrin; Bick, Theresa; Diederich, Malte; Deneke, Hartwig; Horvath, Akos; Senf, Fabian; Simmer, Clemens; Simon, Juergen

    2013-04-01

    The research group on Object-based Analysis and SEamless prediction (OASE) is part of the Hans Ertel Centre for Weather Research (HErZ). The group consists of scientists at the Meteorological Institute, University of Bonn, the Leibniz-Institute for Tropospheric Research in Leipzig and the German Weather Service. OASE addresses seamless prediction of convective events from nowcasting to daily predictions by combining radar/satellite compositing and tracking with high-resolution model-based ensemble generation and prediction. While observation-based nowcasting provides good results for lead times between 0-1 hours, numerical weather prediction addresses lead times between 3-21 hours. Especially the discontinuity between 1-3 hours needs to be addressed. Therefore a central goal of the project is a near real-time high-resolved unprecedented data base. A radar and satellite remote sensing-driven 3D observation-microphysics composite covering Germany, currently under development, contains gridded observations and estimated microphysical quantities. Observations and microphysics are intertwined via forward operators and estimated inverse relations, which also provide uncertainties for model ensemble initialisations. The lifetime evolution of dynamics and microphysics in (severe) convective storms is analysed based on 3D scale-space tracking. An object-based analysis condenses the information contained in the dynamic 3D distributions of observables and related microphysics into descriptors, which will allow identifying governing processes leading to the formation and evolution of severe weather events. The object-based approach efficiently characterises and quantifies the process structure and life cycles of severe weather events, and facilitates nowcasting and the generation and initialisation of model prediction ensembles. Observation-based nowcasting will exploit the dual-composite based 3D feature detection and tracking to generate a set of predictions (observation-based

  15. Contact Stress Analysis and Fatigue Life Prediction of a Turbine Fan Disc

    NASA Astrophysics Data System (ADS)

    Yang, Liang; Zhu, Shun-Peng; Lv, Zhiqiang; Zuo, Fang-Jun; Huang, Hong-Zhong

    2016-06-01

    Fan discs are critical components of an aero engine. In this paper, contact stress and life prediction of a turbine fan disc were investigated. A simplified pin/disc model was conducted to simulate the practical working condition under applied loads using finite element (FE) analysis. This study is devoted to examining the effects of interface condition of pin/disc such as gap and coefficient upon the maximum stress. The FE model indicated that the maximum stress occurs at the top right corner in the second pin hole, and larger gap or friction coefficient has a significant effect on the maximum stress. In addition, FE analysis without considering friction is also conducted. The results show that the dangerous point is similar to the result which considers friction and the stress state is relatively larger than that of considering friction. Finally, based on FE analysis result, life prediction for the fan disc is conducted to combine the material S-N curve, mean stress effects and concentration stress factor obtained by means of FE method.

  16. Fatigue degradation and life prediction of glass fabric polymer composites under tension/torsion biaxial loadings

    SciTech Connect

    Kawakami, H.; Fujii, T.J.; Morita, Y.

    1995-10-01

    Fatigue degradation and life prediction for a plain woven glass fabric reinforced polyester under tension/torsion biaxial loadings were investigated. Typical S-N diagrams were given at several biaxial ratios when the biaxial cyclic loads were proportionally applied to the specimens. A fatigue damage accumulation model based on the continuum damage mechanics theory was developed, where modulus decay ratios in tension and shear were used as indicators for damage variables (D). In the model, the damage variables are considered to be second-order tensors. Then, the maximum principal damage variable, D* is introduced. According to the similarity to the principal stress, D* is obtained as the maximum eigen value of damage tensor [D{prime}]. Under proportional tension/torsion loadings, fatigue lives were satisfactorily predicted at any biaxial stress ratios using the present model in which the fatigue characteristics only under uniaxial tension and pure torsion loadings were needed. For a certain biaxial stress ratio, the effect of loading path on the fatigue strength was examined. The experimental result does not show a strong effect of loading path on the fatigue life.

  17. NASALife-Component Fatigue and Creep Life Prediction Program and Illustrative Examples

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Mital, Subodh K.; Gyekenyesi, John Z.

    2005-01-01

    NASALife is a life prediction program for propulsion system components made of ceramic matrix composites (CMC) under cyclic thermo-mechanical loading and creep rupture conditions. Although, the primary focus was for CMC components the underlying methodologies are equally applicable to other material systems as well. The program references data for low cycle fatigue (LCF), creep rupture, and static material properties as part of the life prediction process. Multiaxial stresses are accommodated by Von Mises based methods and a Walker model is used to address mean stress effects. Varying loads are reduced by the Rainflow counting method. Lastly, damage due to cyclic loading (Miner s rule) and creep are combined to determine the total damage per mission and the number of missions the component can survive before failure are calculated. Illustration of code usage is provided through example problem of a CMC turbine stator vane made of melt-infiltrated, silicon carbide fiber-reinforced, silicon carbide matrix composite (MI SiC/SiC)

  18. Creep studies for zircaloy life prediction in water reactors

    NASA Astrophysics Data System (ADS)

    Murty, K. Linga

    1999-10-01

    Zirconium alloys, commonly used as cladding tubes in water reactors, undergo complex biaxial creep deformation. The anisotropic nature of these metals makes it relatively complex to predict their dimensional changes in-reactor. These alloys exhibit transients in creep mechanisms as stress levels change. The underlying creep mechanisms and creep anisotropy depend on the alloy composition as well as the thermomechanical treatment. The anisotropic biaxial creep of cold-worked and recrystallized Zircaloy-4 in terms of Hill’s generalized stress formulation is described, and the temperature and stress dependencies of the steady-state creep rate are reviewed. Predictive models that incorporate anelastic strain are used for transient and transients in creep.

  19. Use of strainrange partitioning to predict high temperature low-cycle fatigue life. [of metallic materials

    NASA Technical Reports Server (NTRS)

    Hirschberg, M. H.; Halford, G. R.

    1976-01-01

    The fundamental concepts of the strainrange partitioning approach to high temperature, low low-cycle fatigue are reviewed. Procedures are presented by which the partitioned strainrange versus life relationships for any material can be generated. Laboratory tests are suggested for further verifying the ability of the method of strainrange partitioning to predict life.

  20. Predicting Trajectories of Offending over the Life Course: Findings from a Dutch Conviction Cohort

    ERIC Educational Resources Information Center

    Bersani, Bianca E.; Nieuwbeerta, Paul; Laub, John H.

    2009-01-01

    Distinguishing trajectories of criminal offending over the life course, especially the prediction of high-rate offenders, has received considerable attention over the past two decades. Motivated by a recent study by Sampson and Laub (2003), this study uses longitudinal data on conviction histories from the Dutch Criminal Career and Life-Course…

  1. Getting What You Expect? Future Self-Views Predict the Valence of Life Events

    ERIC Educational Resources Information Center

    Voss, Peggy; Kornadt, Anna E.; Rothermund, Klaus

    2017-01-01

    Views on aging have been shown to predict the occurrence of events related to physical health in previous studies. Extending these findings, we investigated the relation between aging-related future self-views and life events in a longitudinal study across a range of different life domains. Participants (N = 593, age range 30-80 years at…

  2. Academic Life Satisfaction Scale (ALSS) and Its Effectiveness in Predicting Academic Success

    ERIC Educational Resources Information Center

    Kumar, P.K. Sudheesh; P., Dileep

    2006-01-01

    This study is undertaken to examine the effectiveness of a newly constructed psychometric instrument to assess Academic Life Satisfaction along with the components of Emotional Intelligence. The Academic Life Satisfaction Scale is used to predict the scholastic achievement as an index of Academic success. The investigators found that Academic Life…

  3. A Micromechanics-Based Method for Multiscale Fatigue Prediction

    NASA Astrophysics Data System (ADS)

    Moore, John Allan

    An estimated 80% of all structural failures are due to mechanical fatigue, often resulting in catastrophic, dangerous and costly failure events. However, an accurate model to predict fatigue remains an elusive goal. One of the major challenges is that fatigue is intrinsically a multiscale process, which is dependent on a structure's geometric design as well as its material's microscale morphology. The following work begins with a microscale study of fatigue nucleation around non- metallic inclusions. Based on this analysis, a novel multiscale method for fatigue predictions is developed. This method simulates macroscale geometries explicitly while concurrently calculating the simplified response of microscale inclusions. Thus, providing adequate detail on multiple scales for accurate fatigue life predictions. The methods herein provide insight into the multiscale nature of fatigue, while also developing a tool to aid in geometric design and material optimization for fatigue critical devices such as biomedical stents and artificial heart valves.

  4. Prediction of end-of-life fears in COPD - hoping for the best but preparing for the worst.

    PubMed

    Stenzel, Nikola Maria; Vaske, Isabelle; Kühl, Kerstin; Kenn, Klaus; Rief, Winfried

    2015-01-01

    The diagnosis of a life-threatening illness can trigger end-of-life fears. Early studies show that end-of-life fears play an important role in chronic obstructive pulmonary disease (COPD). However, predictors of these fears have not yet been identified. This study investigated the relevance of socio-demographic variables, illness severity, psychological distress and disease-specific anxieties as predictors of end-of-life fears in COPD. A total of 131 COPD patients participated at two time points. Regression and mediation analyses, as well as cross-lagged panel analyses were conducted. The participants completed questionnaires assessing end-of-life fears (Multidimensional Orientation toward Dying and Death Inventory), psychological distress (Hospital Anxiety and Depression Scale), and disease-specific anxieties (COPD Anxiety Questionnaire). Pulmonary function and a 6-min walk test served as measures of illness severity. Illness severity was not predictive of end-of-life fears. However, gender and psychological distress explained incremental variance. When disease-specific anxieties were included as additional predictors, psychological distress was no longer significant. Cross-lagged panel analyses mostly supported these results. Moreover, disease-specific anxieties mediated the association between psychological distress and end-of-life fears. Administration and intensity of end-of-life care (especially concerning end-of-life fears) in COPD patients should be based not only on illness severity, but rather on psychological distress and disease-specific anxieties.

  5. Predicting Learned Helplessness Based on Personality

    ERIC Educational Resources Information Center

    Maadikhah, Elham; Erfani, Nasrollah

    2014-01-01

    Learned helplessness as a negative motivational state can latently underlie repeated failures and create negative feelings toward the education as well as depression in students and other members of a society. The purpose of this paper is to predict learned helplessness based on students' personality traits. The research is a predictive…

  6. Optimization-based Dynamic Human Lifting Prediction

    DTIC Science & Technology

    2008-06-01

    Anith Mathai, Steve Beck,Timothy Marler , Jingzhou Yang, Jasbir S. Arora, Karim Abdel-Malek Virtual Soldier Research Program, Center for Computer Aided...Rahmatalla, S., Kim, J., Marler , T., Beck, S., Yang, J., busek, J., Arora, J.S., and Abdel-Malek, K. Optimization-based dynamic human walking prediction

  7. Nonlinear-drifted Brownian motion with multiple hidden states for remaining useful life prediction of rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Zhao, Yang; Yang, Fangfang; Tsui, Kwok-Leung

    2017-09-01

    Brownian motion with adaptive drift has attracted much attention in prognostics because its first hitting time is highly relevant to remaining useful life prediction and it follows the inverse Gaussian distribution. Besides linear degradation modeling, nonlinear-drifted Brownian motion has been developed to model nonlinear degradation. Moreover, the first hitting time distribution of the nonlinear-drifted Brownian motion has been approximated by time-space transformation. In the previous studies, the drift coefficient is the only hidden state used in state space modeling of the nonlinear-drifted Brownian motion. Besides the drift coefficient, parameters of a nonlinear function used in the nonlinear-drifted Brownian motion should be treated as additional hidden states of state space modeling to make the nonlinear-drifted Brownian motion more flexible. In this paper, a prognostic method based on nonlinear-drifted Brownian motion with multiple hidden states is proposed and then it is applied to predict remaining useful life of rechargeable batteries. 26 sets of rechargeable battery degradation samples are analyzed to validate the effectiveness of the proposed prognostic method. Moreover, some comparisons with a standard particle filter based prognostic method, a spherical cubature particle filter based prognostic method and two classic Bayesian prognostic methods are conducted to highlight the superiority of the proposed prognostic method. Results show that the proposed prognostic method has lower average prediction errors than the particle filter based prognostic methods and the classic Bayesian prognostic methods for battery remaining useful life prediction.

  8. Planner-Based Control of Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Kortenkamp, David; Fry, Chuck; Bell, Scott

    2005-01-01

    The paper describes an approach to the integration of qualitative and quantitative modeling techniques for advanced life support (ALS) systems. Developing reliable control strategies that scale up to fully integrated life support systems requires augmenting quantitative models and control algorithms with the abstractions provided by qualitative, symbolic models and their associated high-level control strategies. This will allow for effective management of the combinatorics due to the integration of a large number of ALS subsystems. By focusing control actions at different levels of detail and reactivity we can use faster: simpler responses at the lowest level and predictive but complex responses at the higher levels of abstraction. In particular, methods from model-based planning and scheduling can provide effective resource management over long time periods. We describe reference implementation of an advanced control system using the IDEA control architecture developed at NASA Ames Research Center. IDEA uses planning/scheduling as the sole reasoning method for predictive and reactive closed loop control. We describe preliminary experiments in planner-based control of ALS carried out on an integrated ALS simulation developed at NASA Johnson Space Center.

  9. Planner-Based Control of Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Kortenkamp, David; Fry, Chuck; Bell, Scott

    2005-01-01

    The paper describes an approach to the integration of qualitative and quantitative modeling techniques for advanced life support (ALS) systems. Developing reliable control strategies that scale up to fully integrated life support systems requires augmenting quantitative models and control algorithms with the abstractions provided by qualitative, symbolic models and their associated high-level control strategies. This will allow for effective management of the combinatorics due to the integration of a large number of ALS subsystems. By focusing control actions at different levels of detail and reactivity we can use faster: simpler responses at the lowest level and predictive but complex responses at the higher levels of abstraction. In particular, methods from model-based planning and scheduling can provide effective resource management over long time periods. We describe reference implementation of an advanced control system using the IDEA control architecture developed at NASA Ames Research Center. IDEA uses planning/scheduling as the sole reasoning method for predictive and reactive closed loop control. We describe preliminary experiments in planner-based control of ALS carried out on an integrated ALS simulation developed at NASA Johnson Space Center.

  10. Testing and Life Prediction for Composite Rotor Hub Flexbeams

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen B.

    2004-01-01

    A summary of several studies of delamination in tapered composite laminates with internal ply-drops is presented. Initial studies used 2D FE models to calculate interlaminar stresses at the ply-ending locations in linear tapered laminates under tension loading. Strain energy release rates for delamination in these laminates indicated that delamination would likely start at the juncture of the tapered and thin regions and grow unstably in both directions. Tests of glass/epoxy and graphite/epoxy linear tapered laminates under axial tension delaminated as predicted. Nonlinear tapered specimens were cut from a full-size helicopter rotor hub and were tested under combined constant axial tension and cyclic transverse bending loading to simulate the loading experienced by a rotorhub flexbeam in flight. For all the tested specimens, delamination began at the tip of the outermost dropped ply group and grew first toward the tapered region. A 2D FE model was created that duplicated the test flexbeam layup, geometry, and loading. Surface strains calculated by the model agreed very closely with the measured surface strains in the specimens. The delamination patterns observed in the tests were simulated in the model by releasing pairs of MPCs along those interfaces. Strain energy release rates associated with the delamination growth were calculated for several configurations and using two different FE analysis codes. Calculations from the codes agreed very closely. The strain energy release rate results were used with material characterization data to predict fatigue delamination onset lives for nonlinear tapered flexbeams with two different ply-dropping schemes. The predicted curves agreed well with the test data for each case studied.

  11. Prediction of packaging seal life using thermoanalytical techniques

    SciTech Connect

    Nigrey, P.J.

    1997-11-01

    In this study, Thermogravimetric Analysis (TGA) has been used to study silicone, Viton and Ethylene Propylene (EPDM) rubber. The studies have shown that TGA accurately predicts the relative order of thermo-oxidative stability of these three materials from the calculated activation energies. As expected, the greatest thermal stability was found in silicone rubber followed by Viton and EPDM rubber. The calculated lifetimes for these materials were in relatively close agreement with published values. The preliminary results also accurately reflect decreased thermal stability and lifetime for EPDM rubber exposed to radiation and chemicals. These results suggest TGA provides a rapid method to evaluate material stability.

  12. Research on Mechanical Properties for Engine Life Prediction.

    DTIC Science & Technology

    1986-05-01

    TESTING 15 3.1.1 TMF Baseline Testing 15 3.1.2 HCF /LCF Initiation in 15 IN718 - C10 V TABLE OF CONTENTS (Continued) I SECTION PAGE 3.1.3 HCF /LCF...Initiation in 16 N4+ - Instron M/M 3.1.4 HCF /LCF Initiation on 17 £ Hastalloy X on C20 3.1.5 Fatigue Crack Growth in 19 Alloy N4 3.1.6 Threshold Evaluation...Hot Corrosion on 36 Creep Rupture Life of IN718 3.4.2 Hot Corrosion in Alloy 36 Rene ’ 77 and Rene ’ 80 vi . TABLE OF CONTENTS (Concluded) SECTION PAGE 4

  13. Crack Growth Modeling and Life Prediction of Pipeline Steels Exposed to Near-Neutral pH Environments: Stage II Crack Growth and Overall Life Prediction

    NASA Astrophysics Data System (ADS)

    Zhao, Jiaxi; Chen, Weixing; Yu, Mengshan; Chevil, Karina; Eadie, Reg; Been, Jenny; Van Boven, Greg; Kania, Richard; Keane, Sean

    2017-01-01

    This investigation was initiated to provide governing equations for crack initiation, crack growth, and service life prediction of pipeline steels in near-neutral pH (NNpH) environments. This investigation develops a predictive model considering loading interactions occurring during oil and gas pipeline operation with underload-type variable pressure fluctuations. This method has predicted lifetimes comparable to the actual service lives found in the field. This is in sharp contrast with the predictions made by existing methods that are either conservative or inconsistent with the field observations. It has been demonstrated that large slash loads (R-ratio is 0.05), often seen during gas pipeline operation, are a major life-limiting factor and should be avoided where possible. Oil pipelines have shorter lifetime because of their more frequent pressure fluctuations and larger amplitude load cycles. The accuracy of prediction can be improved if pressure data with appropriate sampling intervals are used. The sampling interval error is much larger in the prediction of oil pipelines than gas pipelines because of their different compressibility but is minimized if the pressure sampling rate for the data is at or less than one minute.

  14. Crack Growth Modeling and Life Prediction of Pipeline Steels Exposed to Near-Neutral pH Environments: Stage II Crack Growth and Overall Life Prediction

    NASA Astrophysics Data System (ADS)

    Zhao, Jiaxi; Chen, Weixing; Yu, Mengshan; Chevil, Karina; Eadie, Reg; Been, Jenny; Van Boven, Greg; Kania, Richard; Keane, Sean

    2017-04-01

    This investigation was initiated to provide governing equations for crack initiation, crack growth, and service life prediction of pipeline steels in near-neutral pH (NNpH) environments. This investigation develops a predictive model considering loading interactions occurring during oil and gas pipeline operation with underload-type variable pressure fluctuations. This method has predicted lifetimes comparable to the actual service lives found in the field. This is in sharp contrast with the predictions made by existing methods that are either conservative or inconsistent with the field observations. It has been demonstrated that large slash loads ( R-ratio is 0.05), often seen during gas pipeline operation, are a major life-limiting factor and should be avoided where possible. Oil pipelines have shorter lifetime because of their more frequent pressure fluctuations and larger amplitude load cycles. The accuracy of prediction can be improved if pressure data with appropriate sampling intervals are used. The sampling interval error is much larger in the prediction of oil pipelines than gas pipelines because of their different compressibility but is minimized if the pressure sampling rate for the data is at or less than one minute.

  15. Gas Generation in Radioactive Wastes - MAGGAS Predictive Life Cycle Model

    SciTech Connect

    Streatfield, R.E.; Hebditch, D.J.; Swift, B.T.; Hoch, A.R.; Constable, M.

    2006-07-01

    Gases may form from radioactive waste in quantities posing different potential hazards throughout the waste package life cycle. The latter includes surface storage, transport, placing in an operating repository, storage in the repository prior to backfill, closure and the post-closure stage. Potentially hazardous situations involving gas include fire, flood, dropped packages, blocked package vents and disruption to a sealed repository. The MAGGAS (Magnox Gas generation) model was developed to assess gas formation for safety assessments during all stages of the waste package life cycle. This is a requirement of the U.K. regulatory authorities and Nirex and progress in this context is discussed. The processes represented in the model include: Corrosion, microbial degradation, radiolysis, solid-state diffusion, chemico-physical degradation and pressurisation. The calculation was split into three time periods. First the 'aerobic phase' is used to model the periods of surface storage, transport and repository operations including storage in the repository prior to backfill. The second and third periods were designated 'anaerobic phase 1' and 'anaerobic phase 2' and used to model the waste packages in the post-closure phase of the repository. The various significant gas production processes are modeled in each phase. MAGGAS (currently Version 8) is mounted on an Excel spreadsheet for ease of use and speed, has 22 worksheets and is operated routinely for assessing waste packages (e.g. for ventilation of stores and pressurisation of containers). Ten operational and decommissioning generic nuclear power station waste streams were defined as initial inputs, which included ion exchange materials, sludges and concentrates, fuel element debris, graphite debris, activated components, contaminated items, desiccants and catalysts. (authors)

  16. Does health-related quality of life predict injury event?

    PubMed Central

    Soori, Hamid; Abachizadeh, Kambiz

    2009-01-01

    Abstract: Background: Unintentional injury is a leading threat to children's health. Some human factors have been determined as predictor of unintentional injury. Association between Health-Related Quality of Life (HRQOL) as a human factor and unintentional injuries is unclear. The objective of study is to examine the association between HRQOL and unintentional injuries among primary school children. Methods: This study was a cross-sectional conducted in Ahwaz, a city in Iran. Overall, 3375 children aged 6-10 years were randomly selected from primary school. HRQOL was measured by 56 items taken from seven domains of Netherlands Organization for Applied Scientific Research Academic Medical Center (TNO AZL) child quality of life (TACQOL) parent form. Parents were interviewed to collect information about incidence, cause and a brief description of injury within the past 12 months prior to the study. Results: The response rate was 3375 of 3792 (89%). There was a significant trend for increasing occurrence of injury with decreasing of HRQOL score (p was less than 0.001). Adjusted OR for injury was significantly higher in very low (2.38, 95% CI: 1.45-3.86), low (2.18, 95% CI: 1.34-3.56), and medium (1.73, 95%CI: 1.06-2.83) HRQOL groups compared to reference group (very high HRQOL). The median of total HRQOL (P less than 0.001) and all its domains (P=0.017) (except autonomous functioning) was lower in injured group compared to uninjured one. Conclusions: This study found an association between HRQOL and unintentional injury among primary school children. This is a preliminary finding and further investigations with a well-defined analytical design are needed. PMID:21483187

  17. Study of the spiritual intelligence role in predicting university students' quality of life.

    PubMed

    Bolghan-Abadi, Mustafa; Ghofrani, Fatemeh; Abde-Khodaei, Mohammad Saeed

    2014-02-01

    The aim of the study is to investigate the spiritual intelligence role in predicting Quchan University students' quality of life. In order to collect data, a sample of 143 students of Quechan University was selected randomly enrolled for 89-90 academic year. The instruments of the data collecting are World Health Organization Quality of Life (WHOQOL) and Spiritual Intelligence Questionnaire. For analyzing the data, the standard deviation, and Pearson's correlation coefficient in descriptive level, and in inferential level, the regression test was used. The results of the study show that the spiritual intelligence has effective role on predicting quality of life.

  18. Fatigue Life Prediction of 2D Woven Ceramic-Matrix Composites at Room and Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2017-03-01

    In this paper, the fatigue life of 2D woven ceramic-matrix composites, i.e., SiC/SiC, SiC/Si-N-C, SiC/Si-B4C, and Nextel 610™/Aluminosilicate, at room and elevated temperatures has been predicted using the micromechanics approach. An effective coefficient of the fiber volume fraction along the loading direction (ECFL) was introduced to describe the fiber architecture of preforms. The Budiansky-Hutchinson-Evans shear-lag model was used to describe the microstress field of the damaged composite considering fibers failure. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. The interface shear stress and fibers strength degradation model and oxidation region propagation model have been adopted to analyze the fatigue and oxidation effects on fatigue life of the composite, which is controlled by interface frictional slip and diffusion of oxygen gas through matrix multicrackings. Under cyclic fatigue loading, the fibers broken fraction was determined by combining the interface/fiber oxidation model, interface wear model and fibers statistical failure model at elevated temperatures, based on the assumption that the fiber strength is subjected to two-parameter Weibull distribution and the load carried by broken and intact fibers satisfy the Global Load Sharing (GLS) criterion. When the broken fibers fraction approaches to the critical value, the composites fatigue fractures. The fatigue life S- N curves of 2D SiC/SiC, SiC/Si-N-C, SiC/Si-B4C, and Nextel 610™/Aluminosilicate composites at room temperature and 800, 1000 and 1200 °C in air and steam have been predicted.

  19. Fatigue Life Prediction of 2D Woven Ceramic-Matrix Composites at Room and Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2017-02-01

    In this paper, the fatigue life of 2D woven ceramic-matrix composites, i.e., SiC/SiC, SiC/Si-N-C, SiC/Si-B4C, and Nextel 610™/Aluminosilicate, at room and elevated temperatures has been predicted using the micromechanics approach. An effective coefficient of the fiber volume fraction along the loading direction (ECFL) was introduced to describe the fiber architecture of preforms. The Budiansky-Hutchinson-Evans shear-lag model was used to describe the microstress field of the damaged composite considering fibers failure. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. The interface shear stress and fibers strength degradation model and oxidation region propagation model have been adopted to analyze the fatigue and oxidation effects on fatigue life of the composite, which is controlled by interface frictional slip and diffusion of oxygen gas through matrix multicrackings. Under cyclic fatigue loading, the fibers broken fraction was determined by combining the interface/fiber oxidation model, interface wear model and fibers statistical failure model at elevated temperatures, based on the assumption that the fiber strength is subjected to two-parameter Weibull distribution and the load carried by broken and intact fibers satisfy the Global Load Sharing (GLS) criterion. When the broken fibers fraction approaches to the critical value, the composites fatigue fractures. The fatigue life S-N curves of 2D SiC/SiC, SiC/Si-N-C, SiC/Si-B4C, and Nextel 610™/Aluminosilicate composites at room temperature and 800, 1000 and 1200 °C in air and steam have been predicted.

  20. Fatigue-Life Prediction Methodology Using Small-Crack Theory

    NASA Technical Reports Server (NTRS)

    Newmann, James C., Jr.; Phillips, Edward P.; Swain, M. H.

    1997-01-01

    This paper reviews the capabilities of a plasticity-induced crack-closure model to predict fatigue lives of metallic materials using 'small-crack theory' for various materials and loading conditions. Crack-tip constraint factors, to account for three-dimensional state-of-stress effects, were selected to correlate large-crack growth rate data as a function of the effective-stress-intensity factor range (delta K(eff)) under constant-amplitude loading. Some modifications to the delta k(eff)-rate relations were needed in the near-threshold regime to fit measured small-crack growth rate behavior and fatigue endurance limits. The model was then used to calculate small- and large-crack growth rates, and to predict total fatigue lives, for notched and un-notched specimens made of two aluminum alloys and a steel under constant-amplitude and spectrum loading. Fatigue lives were calculated using the crack-growth relations and microstructural features like those that initiated cracks for the aluminum alloys and steel for edge-notched specimens. An equivalent-initial-flaw-size concept was used to calculate fatigue lives in other cases. Results from the tests and analyses agreed well.

  1. Prediction of rigid silica based insulation conductivity

    NASA Technical Reports Server (NTRS)

    Williams, Stanley D.; Curry, Donald M.

    1993-01-01

    A method is presented for predicting the thermal conductivity of low density, silica based fibrous insulators. It is shown that the method can be used to extend data values to the upper material temperature limits from those obtained from the test data. It is demonstrated that once the conductivity is accurately determined by the analytical model the conductivity for other atmospheres can be predicted. The method is similar to that presented by previous investigators, but differs significantly in the contribution due to gas and internal radiation.

  2. Predicting negative life outcomes from early aggressive-disruptive behavior trajectories: gender differences in maladaptation across life domains.

    PubMed

    Bradshaw, Catherine P; Schaeffer, Cindy M; Petras, Hanno; Ialongo, Nicholas

    2010-08-01

    Transactional theories of development suggest that displaying high levels of antisocial behavior early in life and persistently over time causes disruption in multiple life domains, which in turn places individuals at risk for negative life outcomes. We used longitudinal data from 1,137 primarily African American urban youth (49.1% female) to determine whether different trajectories of aggressive and disruptive behavior problems were associated with a range of negative life outcomes in young adulthood. General growth mixture modeling was used to classify the youths' patterns of aggressive-disruptive behavior across elementary school. These trajectories were then used to predict early sexual activity, early pregnancy, school dropout, unemployment, and drug abuse in young adulthood. The trajectories predicted the number but not type of negative life outcomes experienced. Girls with the chronic high aggression-disruption (CHAD) pattern experienced more negative outcomes than girls with consistently moderate levels, who were at greater risk than nonaggressive-nondisruptive girls. Boys with CHAD and boys with an increasing pattern had equal levels of risk for experiencing negative outcomes. The findings are consistent with transactional models of development and have implications for preventive interventions.

  3. The Search for Life on Other Planets: Sulfur-Based, Silicon-Based, Ammonia-Based Life

    NASA Astrophysics Data System (ADS)

    Rampelotto, H. Pabulo

    2010-02-01

    The search for extraterrestrial life is one of the most challenging and interesting scientific themes of the 21st century. This search has been guided by our understanding of the life's nature. Up to now, we only know life on Earth, which uses water as a solvent and the building blocks of which are based on carbon and oxygen. Hence, the search for extraterrestrial life has been the search for life as we know it as based on life which lives on Earth. However, living systems that may have originated elsewhere, even within our own solar system, could be unrecognizable compared with life here and thus not be detectable by telescopes and spacecraft landers designed to detect terrestrial biomolecules or their products.Therefore, we need to expand the boundaries of our Earth-centric concept of life and be open-minded and aware of the most general features of living systems. Life forms based on silicon, ammonia, and sulfur are among those who may have evolved on other worlds, and these possibilities are discussed.

  4. Impact of predictive model-directed end-of-life counseling for Medicare beneficiaries.

    PubMed

    Hamlet, Karen S; Hobgood, Adam; Hamar, Guy Brent; Dobbs, Angela C; Rula, Elizabeth Y; Pope, James E

    2010-05-01

    To validate a predictive model for identifying Medicare beneficiaries who need end-of-life care planning and to determine the impact on cost and hospice care of a telephonic counseling program utilizing this predictive model in 2 Medicare Health Support (MHS) pilots. Secondary analysis of data from 2 MHS pilot programs that used a randomized controlled design. A predictive model was developed using intervention group data (N = 43,497) to identify individuals at greatest risk of death. Model output guided delivery of a telephonic intervention designed to support educated end-of-life decisions and improve end-of-life provisions. Control group participants received usual care. As a primary outcome, Medicare costs in the last 6 months of life were compared between intervention group decedents (n = 3112) and control group decedents (n = 1630). Hospice admission rates and duration of hospice care were compared as secondary measures. The predictive model was highly accurate, and more than 80% of intervention group decedents were contacted during the 12 months before death. Average Medicare costs were $1913 lower for intervention group decedents compared with control group decedents in the last 6 months of life (P = .05), for a total savings of $5.95 million. There were no significant changes in hospice admissions or mean duration of hospice care. Telephonic end-of-life counseling provided as an ancillary Medicare service, guided by a predictive model, can reach a majority of individuals needing support and can reduce costs by facilitating voluntary election of less intensive care.

  5. Predicting moderate improvement and decline in pediatric asthma quality of life over 24-months

    PubMed Central

    Annett, Robert D.; Bender, Bruce G.; Skipper, Betty; Allen, Celeste

    2011-01-01

    Objective Determine factors associated with 24-month change in quality of life in children with asthma and their parents during the Childhood Asthma Management Program (CAMP). Methods Participants from 4 CAMP clinical centers were administered the Pediatric Asthma Quality of Life questionnaire and protocol measures of asthma symptoms, lung function, and psychological measures. Results Multivariate logistic regression analyses determined predictors of moderate change in quality of life. Subclinical levels of depression predicted moderate improvement in child-reported quality of life. Level of depressed affect together with clinical asthma features predicted moderate decline. Improvement in parent quality of life was predicted by perception of illness burden, whereas family features and a child missing school predicted moderate decline. Conclusions This ancillary study provided an opportunity to examine the determinants of 24-month change in parent and child of quality of life within a subset of the CAMP participants. Moderate changes in quality of life occur in clinical studies and have both psychosocial correlates as well as illness characteristics. PMID:20680689

  6. Time Perspectives Predict Mood States and Satisfaction with Life over and above Personality.

    PubMed

    Stolarski, Maciej; Matthews, Gerald

    2016-01-01

    The present study aimed to test the incremental validity of Time Perspective (TP) scales in predicting satisfaction with life and mood, over and above the Big Five personality traits. It also investigated whether the new TP construct of Future Negative perspective contributed to prediction of these outcomes. Participants (N = 265) completed four measures: Satisfaction With Life Scale (SWLS), UWIST Mood Adjective Checklist (UMACL), a modified Zimbardo Time Perspective Inventory (ZTPI), and NEO-Five Factor Inventory (NEO-FFI). Results confirmed the incremental validity of TP, although Big Five dimensions were independently predictive of life satisfaction and certain mood scales. Past Negative TP was the strongest single predictor of life satisfaction. However, Future Negative TP was be the strongest mood predictor from the TP universe, after controlling for the Big Five and remaining TP dimensions. Findings suggest that TP is an important aspect of personality for understanding individual differences in well-being.

  7. Predicting water quality criteria for protecting aquatic life from physicochemical properties of metals or metalloids.

    PubMed

    Wu, Fengchang; Mu, Yunsong; Chang, Hong; Zhao, Xiaoli; Giesy, John P; Wu, K Benjamin

    2013-01-02

    Metals are widely distributed pollutants in water and can have detrimental effects on some aquatic life and humans. Over the past few decades, the United States Environmental Protection Agency (U.S. EPA) has published a series of criteria guidelines, which contain specific criteria maximum concentrations (CMCs) for 10 metals. However, CMCs for other metals are still lacking because of financial, practical, or ethical restrictions on toxicity testing. Herein, a quantitative structure activity relationship (QSAR) method was used to develop a set of predictive relationships, based on physical and chemical characteristics of metals, and predict acute toxicities of each species for five phyla and eight families of organisms for 25 metals or metalloids. In addition, species sensitivity distributions (SSDs) were developed as independent methods for determining predictive CMCs. The quantitative ion character-activity relationships (QICAR) analysis showed that the softness index (σp), maximum complex stability constants (log -β(n)), electrochemical potential (ΔE(0)), and covalent index (X(m)(2)r) were the minimum set of structure parameters required to predict toxicity of metals to eight families of representative organisms. Predicted CMCs for 10 metals are in reasonable agreement with those recommended previously by U.S. EPA within a difference of 1.5 orders of magnitude. CMCs were significantly related to σp (r(2) = 0.76, P = 7.02 × 10(-9)) and log -β(n) (r(2) = 0.73, P = 3.88 × 10(-8)). The novel QICAR-SSD model reported here is a rapid, cost-effective, and reasonably accurate method, which can provide a beneficial supplement to existing methodologies for developing preliminarily screen level toxicities or criteria for metals, for which little or no relevant information on the toxicity to particular classes of aquatic organisms exists.

  8. A comparison of two contemporary creep-fatigue life prediction methods

    NASA Technical Reports Server (NTRS)

    Mcgaw, M. A.

    1985-01-01

    A comparison of two contemporary approaches to creep fatigue life prediction, the Continuous Damage Mechanics as developed at ONERA, and Strain Range Partitioning, is presented. The general framework of each of these approaches, both being crack initiation life prediction tools, are examined. The basis for, and implications of each predictive method are discussed, relative to the material class(es) for which each was developed, as well as to their general applicability. Evident is a need for critical experiments capable of discriminating among the models; to this end, the question of choice of experiment and material is addressed.

  9. Life prediction and constitutive models for engine hot section anisotropic materials program

    NASA Technical Reports Server (NTRS)

    Swanson, G. A.

    1985-01-01

    The purpose is to develop life prediction models for coated anisotropic materials used in gas temperature airfoils. Two single crystal alloys and two coatings are now being tested. These include PWA 1480; Alloy 185; overlay coating, PWA 286; and aluminide coating, PWA 273. Constitutive models are also being developed for these materials to predict the plastic and creep strain histories of the materials in the lab tests and for actual design conditions. This nonlinear material behavior is particularily important for high temperature gas turbine applications and is basic to any life prediction system.

  10. Saliency-based gaze prediction based on head direction.

    PubMed

    Nakashima, Ryoichi; Fang, Yu; Hatori, Yasuhiro; Hiratani, Akinori; Matsumiya, Kazumichi; Kuriki, Ichiro; Shioiri, Satoshi

    2015-12-01

    Despite decades of attempts to create a model for predicting gaze locations by using saliency maps, a highly accurate gaze prediction model for general conditions has yet to be devised. In this study, we propose a gaze prediction method based on head direction that can improve the accuracy of any model. We used a probability distribution of eye position based on head direction (static eye-head coordination) and added this information to a model of saliency-based visual attention. Using empirical data on eye and head directions while observers were viewing natural scenes, we estimated a probability distribution of eye position. We then combined the relationship between eye position and head direction with visual saliency to predict gaze locations. The model showed that information on head direction improved the prediction accuracy. Further, there was no difference in the gaze prediction accuracy between the two models using information on head direction with and without eye-head coordination. Therefore, information on head direction is useful for predicting gaze location when it is available. Furthermore, this gaze prediction model can be applied relatively easily to many daily situations such as during walking. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. A multi-time scale approach to remaining useful life prediction in rolling bearing

    NASA Astrophysics Data System (ADS)

    Qian, Yuning; Yan, Ruqiang; Gao, Robert X.

    2017-01-01

    This paper presents a novel multi-time scale approach to bearing defect tracking and remaining useful life (RUL) prediction, which integrates enhanced phase space warping (PSW) with a modified Paris crack growth model. As a data-driven method, PSW describes the dynamical behavior of the bearing being tested on a fast-time scale, whereas the Paris crack growth model, as a physics-based model, characterizes the bearing's defect propagation on a slow-time scale. Theoretically, PSW constructs a tracking metric by evaluating the phase space trajectory warping of the bearing vibration data, and establishes a correlation between measurement on a fast-time scale and defect growth variables on a slow-time scale. Furthermore, PSW is enhanced by a multi-dimensional auto-regression (AR) model for improved accuracy in defect tracking. Also, the Paris crack growth model is modified by a time-piecewise algorithm for real-time RUL prediction. Case studies performed on two run-to-failure experiments indicate that the developed technique is effective in tracking the evolution of bearing defects and accurately predict the bearing RUL, thus contributing to the literature of bearing prognosis .

  12. Modeling and life prediction methodology for Titanium Matrix Composites subjected to mission profiles

    NASA Technical Reports Server (NTRS)

    Mirdamadi, M.; Johnson, W. S.

    1994-01-01

    Titanium matrix composites (TMC) are being evaluated as structural materials for elevated temperature applications in future generation hypersonic vehicles. In such applications, TMC components are subjected to complex thermomechanical loading profiles at various elevated temperatures. Therefore, thermomechanical fatigue (TMF) testing, using a simulated mission profile, is essential for evaluation and development of life prediction methodologies. The objective of the research presented in this paper was to evaluate the TMF response of the (0/90)2s SCS-6/Timetal-21S subjected to a generic hypersonic flight profile and its portions with a temperature ranging from -130 C to 816 C. It was found that the composite modulus, prior to rapid degradation, had consistent values for all the profiles tested. A micromechanics based analysis was used to predict the stress-strain response of the laminate and of the constituents in each ply during thermomechanical loading conditions by using only constituent properties as input. The fiber was modeled as elastic with transverse orthotropic and temperature dependent properties. The matrix was modeled using a thermoviscoplastic constitutive relation. In the analysis, the composite modulus degradation was assumed to result from matrix cracking and was modeled by reducing the matrix modulus. Fatigue lives of the composite subjected to the complex generic hypersonic flight profile were well correlated using the predicted stress in 0 degree fibers.

  13. Modeling and life prediction methodology for Titanium Matrix Composites subjected to mission profiles

    SciTech Connect

    Mirdamadi, M.; Johnson, W.S.

    1994-08-01

    Titanium matrix composites (TMC) are being evaluated as structural materials for elevated temperature applications in future generation hypersonic vehicles. In such applications, TMC components are subjected to complex thermomechanical loading profiles at various elevated temperatures. Therefore, thermomechanical fatigue (TMF) testing, using a simulated mission profile, is essential for evaluation and development of life prediction methodologies. The objective of the research presented in this paper was to evaluate the TMF response of the (0/90)2s SCS-6/Timetal-21S subjected to a generic hypersonic flight profile and its portions with a temperature ranging from -130 C to 816 C. It was found that the composite modulus, prior to rapid degradation, had consistent values for all the profiles tested. A micromechanics based analysis was used to predict the stress-strain response of the laminate and of the constituents in each ply during thermomechanical loading conditions by using only constituent properties as input. The fiber was modeled as elastic with transverse orthotropic and temperature dependent properties. The matrix was modeled using a thermoviscoplastic constitutive relation. In the analysis, the composite modulus degradation was assumed to result from matrix cracking and was modeled by reducing the matrix modulus. Fatigue lives of the composite subjected to the complex generic hypersonic flight profile were well correlated using the predicted stress in 0 degree fibers.

  14. Structure-Based Predictions of Activity Cliffs

    PubMed Central

    Husby, Jarmila; Bottegoni, Giovanni; Kufareva, Irina; Abagyan, Ruben; Cavalli, Andrea

    2015-01-01

    In drug discovery, it is generally accepted that neighboring molecules in a given descriptors' space display similar activities. However, even in regions that provide strong predictability, structurally similar molecules can occasionally display large differences in potency. In QSAR jargon, these discontinuities in the activity landscape are known as ‘activity cliffs’. In this study, we assessed the reliability of ligand docking and virtual ligand screening schemes in predicting activity cliffs. We performed our calculations on a diverse, independently collected database of cliff-forming co-crystals. Starting from ideal situations, which allowed us to establish our baseline, we progressively moved toward simulating more realistic scenarios. Ensemble- and template-docking achieved a significant level of accuracy, suggesting that, despite the well-known limitations of empirical scoring schemes, activity cliffs can be accurately predicted by advanced structure-based methods. PMID:25918827

  15. Plasma Stabilization Based on Model Predictive Control

    NASA Astrophysics Data System (ADS)

    Sotnikova, Margarita

    The nonlinear model predictive control algorithms for plasma current and shape stabilization are proposed. Such algorithms are quite suitable for the situations when the plant to be controlled has essentially nonlinear dynamics. Besides that, predictive model based control algorithms allow to take into account a lot of requirements and constraints involved both on the controlled and manipulated variables. The significant drawback of the algorithms is that they require a lot of time to compute control input at each sampling instant. In this paper the model predictive control algorithms are demonstrated by the example of plasma vertical stabilization for ITER-FEAT tokamak. The tuning of parameters of algorithms is performed in order to decrease computational load.

  16. Latex rubber condoms: predicting and extending shelf life.

    PubMed

    Free, M J; Srisamang, V; Vail, J; Mercer, D; Kotz, R; Marlowe, D E

    1996-04-01

    Condoms from five manufacturers were subjected to controlled exposures of heat, humidity, and air and to different natural environments in five countries. Under aerobic conditions (condoms in permeable packages or unpackaged), stress properties declined. The relationship between rate of decline as a function of temperature was quadratic. Under oxygen-restricted conditions (foil-wrapped packages) at average storage temperatures of 30 degrees C and lower, strain properties declined with little or no significant change in stress properties. The effect is to cause condoms to become stiffer; high-breakage rates in use have been correlated with product stiffening. A new rationale for accelerated-aging tests to predict condom shelf stability is suggested, including a test to control the trend of condoms to stiffen. Silicone lubricant, impermeable packaging, and inclusion of antioxidants in the condom formulation can prevent or minimize aerobic breakdown of latex condoms. Specifying low-modulus condoms can prevent excessive stiffening.

  17. Uncertainty Analysis in Fatigue Life Prediction of Gas Turbine Blades Using Bayesian Inference

    NASA Astrophysics Data System (ADS)

    Li, Yan-Feng; Zhu, Shun-Peng; Li, Jing; Peng, Weiwen; Huang, Hong-Zhong

    2015-12-01

    This paper investigates Bayesian model selection for fatigue life estimation of gas turbine blades considering model uncertainty and parameter uncertainty. Fatigue life estimation of gas turbine blades is a critical issue for the operation and health management of modern aircraft engines. Since lots of life prediction models have been presented to predict the fatigue life of gas turbine blades, model uncertainty and model selection among these models have consequently become an important issue in the lifecycle management of turbine blades. In this paper, fatigue life estimation is carried out by considering model uncertainty and parameter uncertainty simultaneously. It is formulated as the joint posterior distribution of a fatigue life prediction model and its model parameters using Bayesian inference method. Bayes factor is incorporated to implement the model selection with the quantified model uncertainty. Markov Chain Monte Carlo method is used to facilitate the calculation. A pictorial framework and a step-by-step procedure of the Bayesian inference method for fatigue life estimation considering model uncertainty are presented. Fatigue life estimation of a gas turbine blade is implemented to demonstrate the proposed method.

  18. Predicting responses to climate change requires all life-history stages.

    PubMed

    Zeigler, Sara

    2013-01-01

    In Focus: Radchuk, V., Turlure, C. & Schtickzelle, N. (2013) Each life stage matters: the importance of assessing response to climate change over the complete life cycle in butterflies. Journal of Animal Ecology, 82, 275-285. Population-level responses to climate change depend on many factors, including unexpected interactions among life history attributes; however, few studies examine climate change impacts over complete life cycles of focal species. Radchuk, Turlure & Schtickzelle () used experimental and modelling approaches to predict population dynamics for the bog fritillary butterfly under warming scenarios. Although they found that warming improved fertility and survival of all stages with one exception, populations were predicted to decline because overwintering larvae, whose survival declined with warming, were disproportionately important contributors to population growth. This underscores the importance of considering all life history stages in analyses of climate change's effects on population dynamics.

  19. Creep fatigue life prediction for engine hot section materials (ISOTROPIC)

    NASA Technical Reports Server (NTRS)

    Nelson, R. S.; Schoendorf, J. F.; Lin, L. S.

    1986-01-01

    The specific activities summarized include: verification experiments (base program); thermomechanical cycling model; multiaxial stress state model; cumulative loading model; screening of potential environmental and protective coating models; and environmental attack model.

  20. Condition Assessment and End-of-Life Prediction System for Electric Machines and Their Loads

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Toliyat, Hamid A.

    2005-01-01

    An end-of-life prediction system developed for electric machines and their loads could be used in integrated vehicle health monitoring at NASA and in other government agencies. This system will provide on-line, real-time condition assessment and end-of-life prediction of electric machines (e.g., motors, generators) and/or their loads of mechanically coupled machinery (e.g., pumps, fans, compressors, turbines, conveyor belts, magnetic levitation trains, and others). In long-duration space flight, the ability to predict the lifetime of machinery could spell the difference between mission success or failure. Therefore, the system described here may be of inestimable value to the U.S. space program. The system will provide continuous monitoring for on-line condition assessment and end-of-life prediction as opposed to the current off-line diagnoses.

  1. Highway traffic noise prediction based on GIS

    NASA Astrophysics Data System (ADS)

    Zhao, Jianghua; Qin, Qiming

    2014-05-01

    Before building a new road, we need to predict the traffic noise generated by vehicles. Traditional traffic noise prediction methods are based on certain locations and they are not only time-consuming, high cost, but also cannot be visualized. Geographical Information System (GIS) can not only solve the problem of manual data processing, but also can get noise values at any point. The paper selected a road segment from Wenxi to Heyang. According to the geographical overview of the study area and the comparison between several models, we combine the JTG B03-2006 model and the HJ2.4-2009 model to predict the traffic noise depending on the circumstances. Finally, we interpolate the noise values at each prediction point and then generate contours of noise. By overlaying the village data on the noise contour layer, we can get the thematic maps. The use of GIS for road traffic noise prediction greatly facilitates the decision-makers because of GIS spatial analysis function and visualization capabilities. We can clearly see the districts where noise are excessive, and thus it becomes convenient to optimize the road line and take noise reduction measures such as installing sound barriers and relocating villages and so on.

  2. Empirical modeling of environment-enhanced fatigue crack propagation in structural alloys for component life prediction

    NASA Technical Reports Server (NTRS)

    Richey, Edward, III

    1995-01-01

    This research aims to develop the methods and understanding needed to incorporate time and loading variable dependent environmental effects on fatigue crack propagation (FCP) into computerized fatigue life prediction codes such as NASA FLAGRO (NASGRO). In particular, the effect of loading frequency on FCP rates in alpha + beta titanium alloys exposed to an aqueous chloride solution is investigated. The approach couples empirical modeling of environmental FCP with corrosion fatigue experiments. Three different computer models have been developed and incorporated in the DOS executable program. UVAFAS. A multiple power law model is available, and can fit a set of fatigue data to a multiple power law equation. A model has also been developed which implements the Wei and Landes linear superposition model, as well as an interpolative model which can be utilized to interpolate trends in fatigue behavior based on changes in loading characteristics (stress ratio, frequency, and hold times).

  3. Predicting remaining life by fusing the physics of failure modeling with diagnostics

    NASA Astrophysics Data System (ADS)

    Kacprzynski, G. J.; Sarlashkar, A.; Roemer, M. J.; Hess, A.; Hardman, B.

    2004-03-01

    Technology that enables failure prediction of critical machine components (prognostics) has the potential to significantly reduce maintenance costs and increase availability and safety. This article summarizes a research effort funded through the U.S. Defense Advanced Research Projects Agency and Naval Air System Command aimed at enhancing prognostic accuracy through more advanced physics-of-failure modeling and intelligent utilization of relevant diagnostic information. H-60 helicopter gear is used as a case study to introduce both stochastic sub-zone crack initiation and three-dimensional fracture mechanics lifing models along with adaptive model updating techniques for tuning key failure mode variables at a local material/damage site based on fused vibration features. The overall prognostic scheme is aimed at minimizing inherent modeling and operational uncertainties via sensed system measurements that evolve as damage progresses.

  4. Creep fatigue life prediction for engine hot section materials (isotropic)

    NASA Technical Reports Server (NTRS)

    Nelson, R. S.; Levan, G. W.; Schoendorf, J. F.

    1992-01-01

    A series of high temperature strain controlled fatigue tests have been completed to study the effects of thermomechanical fatigue, multiaxial loading, reactive environments, and imposed mean stresses. The baseline alloy used in these tests was cast B1900+Hf (with and without coatings); a small number of tests of wrought INCO 718 are also included. A strong path dependence was demonstrated during the thermomechanical fatigue testing, using in-phase, out-phase, and non-proportional (elliptical and 'dogleg') strain-temperature cycles. The multiaxial tests also demonstrated cycle path to be a significant variable, using both proportional and non-proportional tension-torsion loading. Environmental screening tests were conducted in moderate pressure oxygen and purified argon; the oxygen reduced the specimen lives by two, while the argon testing produced ambiguous data. Both NiCoCrAlY overlay and diffusion aluminide coatings were evaluated under isothermal and TMF conditions; in general, the lives of the coated specimens were higher that those of uncoated specimens. Controlled mean stress TMF tests showed that small mean stress changes could change initiation lives by orders of magnitude; these results are not conservatively predicted using traditional linear damage summation rules. Microstructures were evaluated using optical, SEM and TEM methods.

  5. TMC Behavior Modeling and Life Prediction Under Multiaxial Stresses

    NASA Technical Reports Server (NTRS)

    Merrick, H. F.; Aksoy, S. Z.; Costen, M.; Ahmad, J.

    1998-01-01

    The goal of this program was to manufacture and burst test small diameter SCS-6/Ti-6Al-4V composite rings for use in the design of an advanced titanium matrix composite (TMC) impeller. The Textron Specialty Metals grooved foil-fiber process was successfully used to make high quality TMC rings. A novel spin test arbor with "soft touch" fingers to retain the TMC ring was designed and manufactured. The design of the arbor took into account its use for cyclic experiments as well as ring burst tests. Spin testing of the instrumented ring was performed at ambient, 149C (300F), and 316C (600F) temperatures. Assembly vibration was encountered during spin testing but this was overcome through simple modification of the arbor. A spin-to-burst test was successfully completed at 316C (600F). The rotational speed of the TMC ring at burst was close to that predicted. In addition to the spin test program, a number of SCS-6/Ti-6Al-4V test panels were made. Neat Ti-6Al-4V panels also were made.

  6. Personality traits predicting quality of life and overall functioning in schizophrenia.

    PubMed

    Ridgewell, Caitlin; Blackford, Jennifer Urbano; McHugo, Maureen; Heckers, Stephan

    2017-04-01

    Clinical symptoms and sociodemographic variables predict level of functioning and quality of life in patients with schizophrenia. However, few studies have examined the effect of personality traits on quality of life and overall functioning in schizophrenia. Personality traits are premorbid to illness and may predict the way patients experience schizophrenia. The aim of this study was to examine the individual and additive effects of two core personality traits-neuroticism and extraversion-on quality of life and functioning. Patients with schizophrenia-spectrum disorders (n=153) and healthy controls (n=125) completed personality and quality of life questionnaires. Global functioning was assessed during a clinician-administered structured interview. Neuroticism and extraversion scores were analyzed both as continuous variables and as categorical extremes (High versus Normal Neuroticism, Low versus Normal Extraversion). Quality of life was significantly associated with neuroticism, extraversion, and the neuroticism×diagnosis and extraversion×diagnosis interactions. For patients, a lower neuroticism score (in the normal range) was associated with quality of life scores comparable to controls; whereas high neuroticism scores in patients were associated with the lowest quality of life. For overall functioning, only diagnosis had a significant effect. Neuroticism modulates quality of life and may provide an important key to improving the life of patients with schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A study on the fatigue life prediction of the various gas-welded joints using a probabilistic statistics technique

    NASA Astrophysics Data System (ADS)

    Baek, Seung Yeb; Bae, Dong Ho

    2011-02-01

    Gas welding is a very important and useful technology in the fabrication of railroad cars and commercial vehicle structures. However, since the fatigue strength of gas-welded joints is considerably lower than that of the base of material due to stress concentration at the weld, the fatigue strength assessment of gas-welded joints is very important for the reliability and durability of railroad cars and establishment of criteria for long-life fatigue design. In this study, after evaluating the fatigue strength using a simulated specimen that satisfies not only the structural characteristics but also the mechanical condition of the actual structure, the fatigue design criteria are determined and applied to the fatigue design of the gas welded body structure. To save time and cost for the fatigue design, we investigated an accelerated life-prediction using a probabilistic statistics technique based on the theory of statistical reliability. The (Δσ a )R-Nf relationship was obtained from actual fatigue test data, including welding residual stress. On the basis of these results, the (Δσa)R-(Nf)ALP relationship that was derived from statistical probability analysis was compared with the actual fatigue test data. Therefore, it is expected that the accelerated life prediction will provide a useful method of determining the criteria for fatigue design and predicting a specific target life.

  8. A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades.

    PubMed

    Zhu, Shun-Peng; Yue, Peng; Yu, Zheng-Yong; Wang, Qingyuan

    2017-06-26

    Combined high and low cycle fatigue (CCF) generally induces the failure of aircraft gas turbine attachments. Based on the aero-engine load spectrum, accurate assessment of fatigue damage due to the interaction of high cycle fatigue (HCF) resulting from high frequency vibrations and low cycle fatigue (LCF) from ground-air-ground engine cycles is of critical importance for ensuring structural integrity of engine components, like turbine blades. In this paper, the influence of combined damage accumulation on the expected CCF life are investigated for turbine blades. The CCF behavior of a turbine blade is usually studied by testing with four load-controlled parameters, including high cycle stress amplitude and frequency, and low cycle stress amplitude and frequency. According to this, a new damage accumulation model is proposed based on Miner's rule to consider the coupled damage due to HCF-LCF interaction by introducing the four load parameters. Five experimental datasets of turbine blade alloys and turbine blades were introduced for model validation and comparison between the proposed Miner, Manson-Halford, and Trufyakov-Kovalchuk models. Results show that the proposed model provides more accurate predictions than others with lower mean and standard deviation values of model prediction errors.

  9. A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades

    PubMed Central

    Yue, Peng; Yu, Zheng-Yong; Wang, Qingyuan

    2017-01-01

    Combined high and low cycle fatigue (CCF) generally induces the failure of aircraft gas turbine attachments. Based on the aero-engine load spectrum, accurate assessment of fatigue damage due to the interaction of high cycle fatigue (HCF) resulting from high frequency vibrations and low cycle fatigue (LCF) from ground-air-ground engine cycles is of critical importance for ensuring structural integrity of engine components, like turbine blades. In this paper, the influence of combined damage accumulation on the expected CCF life are investigated for turbine blades. The CCF behavior of a turbine blade is usually studied by testing with four load-controlled parameters, including high cycle stress amplitude and frequency, and low cycle stress amplitude and frequency. According to this, a new damage accumulation model is proposed based on Miner’s rule to consider the coupled damage due to HCF-LCF interaction by introducing the four load parameters. Five experimental datasets of turbine blade alloys and turbine blades were introduced for model validation and comparison between the proposed Miner, Manson-Halford, and Trufyakov-Kovalchuk models. Results show that the proposed model provides more accurate predictions than others with lower mean and standard deviation values of model prediction errors. PMID:28773064

  10. Improved High-Cycle Fatigue (HCF) Life Prediction

    DTIC Science & Technology

    2001-01-01

    fretting damage, foreign object damage (FOD), intrinsic material capability ( stress threshold), crack nucleation, and propagation behavior. 16. SECURITY...3-11 3.2.2.1 Closure-Based Sinh Crack Growth Rate Model ... 3-11 3.2.2.2 Walker Model for Stress Ratio Effects...Fatigue- Crack -Nucleation Modeling in Ti-6Al-4V for Smooth and Notched Specimens Under Complex Stress States ............... 3I-0 3J Notch Fatigue

  11. Validation of Framework Code Approach to a Life Prediction System for Fiber Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Gravett, Phillip

    1997-01-01

    The grant was conducted by the MMC Life Prediction Cooperative, an industry/government collaborative team, Ohio Aerospace Institute (OAI) acted as the prime contractor on behalf of the Cooperative for this grant effort. See Figure I for the organization and responsibilities of team members. The technical effort was conducted during the period August 7, 1995 to June 30, 1996 in cooperation with Erwin Zaretsky, the LERC Program Monitor. Phil Gravett of Pratt & Whitney was the principal technical investigator. Table I documents all meeting-related coordination memos during this period. The effort under this grant was closely coordinated with an existing USAF sponsored program focused on putting into practice a life prediction system for turbine engine components made of metal matrix composites (MMC). The overall architecture of the NMC life prediction system was defined in the USAF sponsored program (prior to this grant). The efforts of this grant were focussed on implementing and tailoring of the life prediction system, the framework code within it and the damage modules within it to meet the specific requirements of the Cooperative. T'he tailoring of the life prediction system provides the basis for pervasive and continued use of this capability by the industry/government cooperative. The outputs of this grant are: 1. Definition of the framework code to analysis modules interfaces, 2. Definition of the interface between the materials database and the finite element model, and 3. Definition of the integration of the framework code into an FEM design tool.

  12. Accounting for inclusions and voids allows the prediction of tensile fatigue life of bone cement.

    PubMed

    Coultrup, Oliver J; Browne, Martin; Hunt, Christopher; Taylor, Mark

    2009-05-01

    Previous attempts by researchers to predict the fatigue behavior of bone cement have been capable of predicting the location of final failure in complex geometries but incapable of predicting cement fatigue life to the right order of magnitude of loading cycles. This has been attributed to a failure to model the internal defects present in bone cement and their associated stress singularities. In this study, dog-bone-shaped specimens of bone cement were micro-computed-tomography (microCT) scanned to generate computational finite element (FE) models before uniaxial tensile fatigue testing. Acoustic emission (AE) monitoring was used to locate damage events in real time during tensile fatigue tests and to facilitate a comparison with the damage predicted in FE simulations of the same tests. By tracking both acoustic emissions and predicted damage back to microCT scans, barium sulfate (BaSO(4)) agglomerates were found not to be significant in determining fatigue life (p=0.0604) of specimens. Both the experimental and numerical studies showed that diffuse damage occurred throughout the gauge length. A good linear correlation (R(2)=0.70, p=0.0252) was found between the experimental and the predicted tensile fatigue life. Although the FE models were not always able to predict the correct failure location, damage was predicted in simulations at areas identified as experiencing damage using AE monitoring.

  13. Development of Probabilistic Life Prediction Methodologies and Testing Strategies for MEMS and CMC's

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama

    2003-01-01

    This effort is to investigate probabilistic life prediction methodologies for ceramic matrix composites and MicroElectroMechanical Systems (MEMS) and to analyze designs that determine stochastic properties of MEMS. For CMC's this includes a brief literature survey regarding lifing methodologies. Also of interest for MEMS is the design of a proper test for the Weibull size effect in thin film (bulge test) specimens. The Weibull size effect is a consequence of a stochastic strength response predicted from the Weibull distribution. Confirming that MEMS strength is controlled by the Weibull distribution will enable the development of a probabilistic design methodology for MEMS - similar to the GRC developed CARES/Life program for bulk ceramics. A main objective of this effort is to further develop and verify the ability of the Ceramics Analysis and Reliability Evaluation of Structures/Life (CARES/Life) code to predict the time-dependent reliability of MEMS structures subjected to multiple transient loads. A second set of objectives is to determine the applicability/suitability of the CARES/Life methodology for CMC analysis, what changes would be needed to the methodology and software, and if feasible, run a demonstration problem. Also important is an evaluation of CARES/Life coupled to the ANSYS Probabilistic Design System (PDS) and the potential of coupling transient reliability analysis to the ANSYS PDS.

  14. Development of Probabilistic Life Prediction Methodologies and Testing Strategies for MEMS and CMC's

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama

    2003-01-01

    This effort is to investigate probabilistic life prediction methodologies for ceramic matrix composites and MicroElectroMechanical Systems (MEMS) and to analyze designs that determine stochastic properties of MEMS. For CMC's this includes a brief literature survey regarding lifing methodologies. Also of interest for MEMS is the design of a proper test for the Weibull size effect in thin film (bulge test) specimens. The Weibull size effect is a consequence of a stochastic strength response predicted from the Weibull distribution. Confirming that MEMS strength is controlled by the Weibull distribution will enable the development of a probabilistic design methodology for MEMS - similar to the GRC developed CARES/Life program for bulk ceramics. A main objective of this effort is to further develop and verify the ability of the Ceramics Analysis and Reliability Evaluation of Structures/Life (CARES/Life) code to predict the time-dependent reliability of MEMS structures subjected to multiple transient loads. A second set of objectives is to determine the applicability/suitability of the CARES/Life methodology for CMC analysis, what changes would be needed to the methodology and software, and if feasible, run a demonstration problem. Also important is an evaluation of CARES/Life coupled to the ANSYS Probabilistic Design System (PDS) and the potential of coupling transient reliability analysis to the ANSYS PDS.

  15. The fatigue life prediction of aluminium alloy using genetic algorithm and neural network

    NASA Astrophysics Data System (ADS)

    Susmikanti, Mike

    2013-09-01

    The behavior of the fatigue life of the industrial materials is very important. In many cases, the material with experiencing fatigue life cannot be avoided, however, there are many ways to control their behavior. Many investigations of the fatigue life phenomena of alloys have been done, but it is high cost and times consuming computation. This paper report the modeling and simulation approaches to predict the fatigue life behavior of Aluminum Alloys and resolves some problems of computation. First, the simulation using genetic algorithm was utilized to optimize the load to obtain the stress values. These results can be used to provide N-cycle fatigue life of the material. Furthermore, the experimental data was applied as input data in the neural network learning, while the samples data were applied for testing of the training data. Finally, the multilayer perceptron algorithm is applied to predict whether the given data sets in accordance with the fatigue life of the alloy. To achieve rapid convergence, the Levenberg-Marquardt algorithm was also employed. The simulations results shows that the fatigue behaviors of aluminum under pressure can be predicted. In addition, implementation of neural networks successfully identified a model for material fatigue life.

  16. A study of creep-fatigue life prediction using an artificial neural network

    NASA Astrophysics Data System (ADS)

    Kwon, Young Il; Lim, Byeong Soo

    2001-07-01

    In this study, using AISI 316 stainless steel, creep-fatigue tests were carried out under various test conditions (different total strain ranges and hold times) to verify the applicability of the artificial neural network method to creep-fatigue life prediction. Life prediction was also made by the modified Coffin-Manson method and the modified Ostegren method using 21 data points out of a total 27 experimental data points. The six verification data points were carefully chosen for the purpose of evaluating the predictability of each method. The predicted lives were compared with the experimental results and the following conclusions were obtained within the scope of this study. While the creep-fatigue life prediction by the modified Coffin-Manson method and the modified Ostegren method had average errors of 35.8% and 47.7% respectively, the artificial neural network method had only 15.6%. As a result, the artificial neural network method with the adaptive learning rate was found to be far more accurate and effective than any of the others. The validity of the artificial neural network method for life prediction checked with the six verification data points also proved to be very satisfactory.

  17. Temperature-based bioclimatic parameters can predict nematode metabolic footprints.

    PubMed

    Bhusal, Daya Ram; Tsiafouli, Maria A; Sgardelis, Stefanos P

    2015-09-01

    Nematode metabolic footprints (MFs) refer to the lifetime amount of metabolized carbon per individual, indicating a connection to soil food web functions and eventually to processes supporting ecosystem services. Estimating and managing these at a convenient scale requires information upscaling from the soil sample to the landscape level. We explore the feasibility of predicting nematode MFs from temperature-based bioclimatic parameters across a landscape. We assume that temperature effects are reflected in MFs, since temperature variations determine life processes ranging from enzyme activities to community structure. We use microclimate data recorded for 1 year from sites differing by orientation, altitude and vegetation cover. At the same sites we estimate MFs for each nematode trophic group. Our models show that bioclimatic parameters, specifically those accounting for temporal variations in temperature and extremities, predict most of the variation in nematode MFs. Higher fungivorous and lower bacterivorous nematode MFs are predicted for sites with high seasonality and low isothermality (sites of low vegetation, mostly at low altitudes), indicating differences in the relative contribution of the corresponding food web channels to the metabolism of carbon across the landscape. Higher plant-parasitic MFs were predicted for sites with high seasonality. The fitted models provide realistic predictions of unknown cases within the range of the predictor's values, allowing for the interpolation of MFs within the sampled region. We conclude that upscaling of the bioindication potential of nematode communities is feasible and can provide new perspectives not only in the field of soil ecology but other research areas as well.

  18. A New Ductility Exhaustion Model for High Temperature Low Cycle Fatigue Life Prediction of Turbine Disk Alloys

    NASA Astrophysics Data System (ADS)

    Zhu, Shun-Peng; Huang, Hong-Zhong; Li, Haiqing; Sun, Rui; Zuo, Ming J.

    2011-06-01

    Based on ductility exhaustion theory and the generalized energy-based damage parameter, a new viscosity-based life prediction model is introduced to account for the mean strain/stress effects in the low cycle fatigue regime. The loading waveform parameters and cyclic hardening effects are also incorporated within this model. It is assumed that damage accrues by means of viscous flow and ductility consumption is only related to plastic strain and creep strain under high temperature low cycle fatigue conditions. In the developed model, dynamic viscosity is used to describe the flow behavior. This model provides a better prediction of Superalloy GH4133's fatigue behavior when compared to Goswami's ductility model and the generalized damage parameter. Under non-zero mean strain conditions, moreover, the proposed model provides more accurate predictions of Superalloy GH4133's fatigue behavior than that with zero mean strains.

  19. Predictability of course of illness in manic patients positive for life events.

    PubMed

    Ambelas, A; George, M

    1986-11-01

    The intention of this study was to examine the possibility of predicting course of illness in manic patients, using a stress variable as a predictor, together with other more traditional indices. On the basis of information on three easily available parameters--family history, age at onset, and stress intensity--20 manic patients who had independent life events preceding an index admission were allocated into various risk groups and predictions were then made with regard to future course of illness for 5 years. On follow-up, the predictions were found to be correct in 85% of cases overall, and two high-risk factors were totally predictive.

  20. Life extending control: A concept paper

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Merrill, Walter C.

    1991-01-01

    The concept of Life Extending Control is defined. Life is defined in terms of mechanical fatigue life. A brief description is given of the current approach to life prediction using a local, cyclic, stress-strain approach for a critical system component. An alternative approach to life prediction based on a continuous functional relationship to component performance is proposed.Base on cyclic life prediction an approach to Life Extending Control, called the Life Management Approach is proposed. A second approach, also based on cyclic life prediction, called the Implicit Approach, is presented. Assuming the existence of the alternative functional life prediction approach, two additional concepts for Life Extending Control are presented.

  1. Prediction of the Low Cost Fatigue Life of HY-100 Undermatched Welds in Marine Structure (The National Shipbuilding Research Program)

    DTIC Science & Technology

    1993-11-01

    predict the low cycle fatigue life of undermatched (lower yield strength) weldments of HY- 100 steel . The objective was to determine the feasibility of...strength steel naval structures. The high yield strength of the weld metal, in comparison to that of the base metal, ensures adequate strength and...to be adequate. However, for high strength steels , such as HY-1OO and above, the welding process envelope is severely restricted. For this reason, and

  2. TBCs for Gas Turbines under Thermomechanical Loadings: Failure Behaviour and Life Prediction

    NASA Astrophysics Data System (ADS)

    Beck, T.; Trunova, O.; Herzog, R.; Singheiser, L.

    2012-10-01

    The present contribution gives an overview about recent research on a thermal barrier coating (TBC) system consisted of (i) an intermetallic MCrAlY-alloy Bondcoat (BC) applied by vacuum plasma spraying (VPS) and (ii) an Yttria Stabilised Zirconia (YSZ) top coat air plasma sprayed (APS) at Forschungszentrum Juelich, Institute of Energy and Climate Research (IEK-1). The influence of high temperature dwell time, maximum and minimum temperature on crack growth kinetics during thermal cycling of such plasma sprayed TBCs is investigated using infrared pulse thermography (IT), acoustic emission (AE) analysis and scanning electron microscopy. Thermocyclic life in terms of accumulated time at maximum temperature decreases with increasing high temperature dwell time and increases with increasing minimum temperature. AE analysis proves that crack growth mainly occurs during cooling at temperatures below the ductile-to-brittle transition temperature of the BC. Superimposed mechanical load cycles accelerate delamination crack growth and, in case of sufficiently high mechanical loadings, result in premature fatigue failure of the substrate. A life prediction model based on TGO growth kinetics and a fracture mechanics approach has been developed which accounts for the influence of maximum and minimum temperature as well as of high temperature dwell time with good accuracy in an extremely wide parameter range.

  3. Swallowing impairment is a significant factor for predicting life prognosis of elderly at the end of life.

    PubMed

    Naruishi, Koji; Nishikawa, Yasufumi

    2017-04-08

    In end-of-life care of elderly, the decision of care plan including gastrostomy is difficult frequently because of insufficient knowledge relating the life prognosis of elderly. It is important the families to decide correctly the life prognosis of elderly with geriatric diseases. Our purpose is to examine the significant factors for predicting life prognosis of elderly in end-of-life care. A total of 320 elderly patients was enrolled (male/female 151/169; averaged age: male 84.7 ± 5.9 year, female 86.8 ± 6.3 year) and retrospective analyses were performed. The elderly patients were classified as either: (1) with or without past illness of aspiration pneumonia; (2) with or without incidence of cerebrovascular disorder; (3) impaired or normal cognitive function; (4) impaired or normal swallowing function, and performed Kaplan-Meier survival analysis. Swallowing function was examined using video endoscopic (VE) evaluation method. The Kaplan-Meier analysis of the number of days from implementation of VE test (day 0) to death was evaluated with the log-rank Mantel-Cox test. The maximum follow-up time recorded was 180 days. There were no significant differences in number of days when divided with or without past illness of aspiration pneumonia, cerebrovascular disorder and impaired cognitive function. The survival probabilities of elderly with impaired swallowing function were significant lower than in elderly with the normal function. For judgement of life prognosis, the condition of being frail such as impaired swallowing function might be a useful factor, and the viewpoint would contribute to decide the treatment plan for the good end-of-life care of elderly.

  4. Early life stress, MAOA, and gene-environment interactions predict behavioral disinhibition in children.

    PubMed

    Enoch, M-A; Steer, C D; Newman, T K; Gibson, N; Goldman, D

    2010-02-01

    Several, but not all, studies have shown that the monoamine oxidase A functional promoter polymorphism (MAOA-LPR) interacts with childhood adversity to predict adolescent and adult antisocial behavior. However, it is not known whether MAOA-LPR interacts with early life (pre-birth-3 years) stressors to influence behavior in prepubertal children. The Avon Longitudinal Study of Parents and Children, UK, is a community-representative cohort study of children followed from pre-birth onwards. The impact of family adversity from pre-birth to age 3 years and stressful life events from 6 months to 7 years on behavioral disinhibition was determined in 7500 girls and boys. Behavioral disinhibition measures were: mother-reported hyperactivity and conduct disturbances (Strengths and Difficulties Questionnaire) at ages 4 and 7 years. In both sexes, exposure to family adversity and stressful life events in the first 3 years of life predicted behavioral disinhibition at age 4, persisting until age 7. In girls, MAOA-LPR interacted with stressful life events experienced from 6 months to 3.5 years to influence hyperactivity at ages 4 and 7. In boys, the interaction of MAOA-LPR with stressful life events between 1.5 and 2.5 years predicted hyperactivity at age 7 years. The low activity MAOA-LPR variant was associated with increased hyperactivity in girls and boys exposed to high stress. In contrast, there was no MAOA-LPR interaction with family adversity. In a general population sample of prepubertal children, exposure to common stressors from pre-birth to 3 years predicted behavioral disinhibition, and MAOA-LPR- stressful life event interactions specifically predicted hyperactivity.

  5. Analysis of fretting fatigue in aircraft structures: Stresses, stress intensity factors, and life predictions

    NASA Astrophysics Data System (ADS)

    McVeigh, Pamela Alison

    Clamped contacts subjected to cyclic loading are prone to fretting fatigue, a mechanism of crack nucleation and propagation. In aircraft, fretting fatigue occurs at the rivet/hole interface on the fuselage skin and at the dovetail joint in engine hardware where disk and blade meet. The ability to predict the lives of such components would be a great aid in preventing failures. Finite element models appropriate for the calculation of fretting fatigue stresses and stress intensity factors are developed for two different contact geometries. In addition, several less computationally expensive numerical methods are also studied. Agreement between the various solutions is good. A severe increase in the mode I stress intensity factor near the surface is discovered in both geometries. Mode II stress intensity factors are also detailed, illustrating the complex non-proportional loading of fretting-induced cracks. A comparison is made between results obtained from actual surface profiles and those generated from prescribed surface profiles; the differences are significant. Equivalent initial flaw sizes are calculated for two different metals using an approach which ignores the effect of mode II stress intensity factors. Life predictions based on the equivalent initial flaw size approach are found to agree reasonably well with those measured in the laboratory for contact geometries similar to the rivet/hole interface. More data is needed before a judgment can be made about life correlations for the dovetail joint contact geometry. The analysis methods described throughout can be easily implemented and integrated into a system aimed at designing against fretting fatigue.

  6. Fatigue life prediction of dentin-adhesive interface using micromechanical stress analysis

    PubMed Central

    Singh, Viraj; Misra, Anil; Marangos, Orestes; Park, Jonggu; Ye, Qiang; Kieweg, Sarah L; Spencer, Paulette

    2011-01-01

    Objectives The objective of this work was to develop a methodology for the prediction of fatigue life of the dentin-adhesive (d-a) interface. Methods At the micro-scale, the d-a interface is composed of dissimilar material components. Under global loading, these components experience different local stress amplitudes. The overall fatigue life of the d-a interface is, therefore, determined by the material component that has the shortest fatigue life under local stresses. Multiple 3d finite element (FE) models were developed to determine the stress distribution within the d-a interface by considering variations in micro-scale geometry, material composition and boundary conditions. The results from these models were analyzed to obtain the local stress concentrations within each d-a interface component. By combining the local stress concentrations and experimentally determined stress versus number of cycle to failure (S-N) curves for the different material components, the overall fatigue life of the d-a interface was predicted. Results The fatigue life was found to be a function of the applied loading amplitude, boundary conditions, microstructure and the mechanical properties of the material components of the d-a interface. In addition, it was found that the overall fatigue life of the d-a interface is not determined by the weakest material component. In many cases, the overall fatigue life was determined by the adhesive although exposed collagen was the weakest material component. Comparison of the predicted results with experimental data from the literature showed both qualitative and quantitative agreement. Significance The methodology developed for fatigue life prediction can provide insight into the mechanisms that control degradation of the bond formed at the d-a interface. PMID:21700326

  7. Arrhenius equation modeling for the shelf life prediction of tomato paste containing a natural preservative.

    PubMed

    Jafari, Seid Mahdi; Ganje, Mohammad; Dehnad, Danial; Ghanbari, Vahid; Hajitabar, Javad

    2017-04-28

    The shelf life of tomato paste with microencapsulated olive leaf extract was compared with that of samples containing a commercial preservative by accelerated shelf life testing. Based on previous studies showing that olive leaf extract as a rich source of phenolic compounds can have antimicrobial properties, application of its encapsulated form to improve the storage stability of tomato paste is proposed here. Regarding total soluble solids, the control and the sample containing 1000 µg g(-1) sodium benzoate had the lowest (Q10  = 1.63) and highest (Q10  = 1.88) sensitivity to temperature changes respectively; also, the microencapsulated sample containing 1000 µg g(-1) encapsulated olive leaf extract (Q10  = 1.83) followed the sample containing 1000 µg g(-1) sodium benzoate in terms of the highest kinetic rates. In the case of consistency, the lowest and highest activation energies (Ea ) corresponded to samples containing 1000 µg g(-1) non-encapsulated olive leaf extract and 1000 µg g(-1) microencapsulated olive leaf extract respectively. Interestingly, samples containing microencapsulated olive leaf extract could maintain the original quality of the tomato paste very well, while those with non-encapsulated olive leaf extract rated the worst performance (among all specimens) in terms of maintaining their quality indices for a long time period. Overall, the shelf life equation was able to predict the consistency index of all tomato paste samples during long-time storage with high precision. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. A Novel Creep-Fatigue Life Prediction Model for P92 Steel on the Basis of Cyclic Strain Energy Density

    NASA Astrophysics Data System (ADS)

    Ji, Dongmei; Ren, Jianxing; Zhang, Lai-Chang

    2016-11-01

    A novel creep-fatigue life prediction model was deduced based on an expression of the strain energy density in this study. In order to obtain the expression of the strain energy density, the load-controlled creep-fatigue (CF) tests of P92 steel at 873 K were carried out. Cyclic strain of P92 steel under CF load was divided into elastic strain, applying and unloading plastic strain, creep strain, and anelastic strain. Analysis of cyclic strain indicates that the damage process of P92 steel under CF load consists of three stages, similar to pure creep. According to the characteristics of the strains above, an expression was defined to describe the strain energy density for each cycle. The strain energy density at stable stage is inversely proportional to the total strain energy density dissipated by P92 steel. However, the total strain energy densities under different test conditions are proportional to the fatigue life. Therefore, the expression of the strain energy density at stable stage was chosen to predict the fatigue life. The CF experimental data on P92 steel were employed to verify the rationality of the novel model. The model obtained from the load-controlled CF test of P92 steel with short holding time could predict the fatigue life of P92 steel with long holding time.

  9. FLAPS (Fatigue Life Analysis Programs): Computer Programs to Predict Cyclic Life Using the Total Strain Version of Strainrange Partitioning and Other Life Prediction Methods. Users' Manual and Example Problems, Version 1.0

    NASA Technical Reports Server (NTRS)

    Arya, Vinod K.; Halford, Gary R. (Technical Monitor)

    2003-01-01

    This manual presents computer programs FLAPS for characterizing and predicting fatigue and creep-fatigue resistance of metallic materials in the high-temperature, long-life regime for isothermal and nonisothermal fatigue. The programs use the Total Strain version of Strainrange Partitioning (TS-SRP), and several other life prediction methods described in this manual. The user should be thoroughly familiar with the TS-SRP and these life prediction methods before attempting to use any of these programs. Improper understanding can lead to incorrect use of the method and erroneous life predictions. An extensive database has also been developed in a parallel effort. The database is probably the largest source of high-temperature, creep-fatigue test data available in the public domain and can be used with other life-prediction methods as well. This users' manual, software, and database are all in the public domain and can be obtained by contacting the author. The Compact Disk (CD) accompanying this manual contains an executable file for the FLAPS program, two datasets required for the example problems in the manual, and the creep-fatigue data in a format compatible with these programs.

  10. Predicting quality of life impairment in chronic schizophrenia from cognitive variables.

    PubMed

    Ritsner, Michael S

    2007-08-01

    The aim of this study was to see whether and how cognition deficit predicts quality of life impairments in schizophrenia patients. The Computerized Cambridge Automated Neuropsychological Test Battery, the Quality of Life Enjoyment and Satisfaction Questionnaire (Q-LES-Q) and the Quality of Life Scale (QLS) were used to assess 62 patients with chronic schizophrenia. Step-wise multiple regression analysis was used in order to determine cognitive variables that would predict the scores of each Q-LES-Q and QLS domain scores. Regression analysis revealed a significant association of the cognitive deficits with both general and domain-specific quality of life impairment measured with Q-LES-Q and QLS. Deficits in executive functions, visual sustained attention, memory and motor skills have been found to be valid predictors both before and after controlling for the severity of symptoms, emotional distress, side effects, age, education, and illness duration. This study suggests that deficits in executive functioning, attention, memory and motor skills substantially contributes to predicting impairments across a wide range of HRQL domains, and, consequently, to quality of life appraisal in schizophrenia. Cognitive predictors cannot be attributed to illness-related and background variables. It can be concluded that, when aiming at the improvement of quality of life in schizophrenia patients, cognitive functioning should be targeted.

  11. Development of a Novel Approach for Fatigue Life Prediction of Structural Materials

    DTIC Science & Technology

    2008-12-01

    304L Stainless Steels," Int J Fatigue 24, pp. 1063-1070. [29] Nemat-Nasser, S., Guo, W., and Kihl, D. P., 2001, " Thermomechanical Response of AL6XN...Final Report DEVELOPMENT OF A NOVEL APPROACH FOR FATIGUE LIFE PREDICTION OF STRUCTURAL MATERIALS (N00014-05-1-0777) Yanyao Jiang Department of...SUBTITLE DEVELOPMENT OF A NOVEL APPROACH FOR FATIGUE LIFE PREDICTION OF STRUCTURAL MATERIALS 5a. CONTRACT NUMBER N00014-05-1-0777 5b. GRANT NUMBER

  12. Life prediction of turbine components: On-going studies at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Spera, D. A.; Grisaffe, S. J.

    1973-01-01

    An overview is presented of the many studies at NASA-Lewis that form the turbine component life prediction program. This program has three phases: (1) development of life prediction methods for major failure modes through materials studies, (2) evaluation and improvement of these methods through a variety of burner rig studies on simulated components in research engines and advanced rigs. These three phases form a cooperative, interdisciplinary program. A bibliography of Lewis publications on fatigue, oxidation and coatings, and turbine engine alloys is included.

  13. Assessing trauma care provider judgement in the prediction of need for life-saving interventions.

    PubMed

    Anazodo, Amechi N; Murthi, Sarah B; Frank, M Kirsten; Hu, Peter F; Hartsky, Lauren; Imle, P Cristina; Stephens, Christopher T; Menaker, Jay; Miller, Catriona; Dinardo, Theresa; Pasley, Jason; Mackenzie, Colin F

    2015-05-01

    Human judgement on the need for life-saving interventions (LSI) in trauma is poorly studied, especially during initial casualty management. We prospectively examined early clinical judgement and compared clinical experts' predictions of LSI to their later occurrence. Within 10-15 min of direct trauma admission, we surveyed the predictions of pre-hospital care providers (PHP, 92% paramedics), trauma centre nurses (RN), and attending or fellow trauma physicians (MD) on the need for LSI. The actual outcomes including fluid bolus, intubation, transfusion (<1h and 1-6h), and emergent surgical interventions were observed. Cohen's kappa statistic (K) and percentage agreement were used to measure agreement among provider responses. Sensitivity, specificity, negative predictive value (NPV) and positive predictive value (PPV) were calculated to compare clinical judgement to actual patient interventions. Among 325 eligible trauma patient admissions, 209 clinical judgement of LSIs were obtained from all three providers. Cohen's kappa statistic for agreement between pairs of provider groups demonstrated no "disagreement" (K<0) between groups, "fair" agreement for fluid bolus (K=0.12-0.19) and blood transfusion 0-6h (K=0.22-0.39), and "moderate" (K=0.45-0.49) agreement between PHP and RN regarding intubation and surgical interventions, but no "excellent" (K ≥ 0.81) agreement between any pair of provider groups for any intervention. The percentage agreement across the different clinician groups ranged from 50% to 83%. NPV was 90-99% across providers for all interventions except fluid bolus. Expert clinical judgement provides a benchmark for the prediction of major LSI use in unstable trauma patients. No excellent agreement exists across providers on LSI predictions. It is possible that quality improvement measures and computer modelling-based decision-support could reduce errors of LSI commission and omission found in resuscitation at major trauma centres and enhance decision

  14. Analytical algorithms to quantify the uncertainty in remaining useful life prediction

    NASA Astrophysics Data System (ADS)

    Sankararaman, S.; Daigle, M.; Saxena, A.; Goebel, K.

    This paper investigates the use of analytical algorithms to quantify the uncertainty in the remaining useful life (RUL) estimate of components used in aerospace applications. The prediction of RUL is affected by several sources of uncertainty and it is important to systematically quantify their combined effect by computing the uncertainty in the RUL prediction in order to aid risk assessment, risk mitigation, and decision-making. While sampling-based algorithms have been conventionally used for quantifying the uncertainty in RUL, analytical algorithms are computationally cheaper and sometimes, are better suited for online decision-making. While exact analytical algorithms are available only for certain special cases (for e.g., linear models with Gaussian variables), effective approximations can be made using the first-order second moment method (FOSM), the first-order reliabilitymethod (FORM), and the inverse first-order reliabilitymethod (Inverse FORM). These methods can be used not only to calculate the entire probability distribution of RUL but also to obtain probability bounds on RUL. This paper explains these three methods in detail and illustrates them using the state-space model of a lithium-ion battery.

  15. Analytical Algorithms to Quantify the Uncertainty in Remaining Useful Life Prediction

    NASA Technical Reports Server (NTRS)

    Sankararaman, Shankar; Saxena, Abhinav; Daigle, Matthew; Goebel, Kai

    2013-01-01

    This paper investigates the use of analytical algorithms to quantify the uncertainty in the remaining useful life (RUL) estimate of components used in aerospace applications. The prediction of RUL is affected by several sources of uncertainty and it is important to systematically quantify their combined effect by computing the uncertainty in the RUL prediction in order to aid risk assessment, risk mitigation, and decisionmaking. While sampling-based algorithms have been conventionally used for quantifying the uncertainty in RUL, analytical algorithms are computationally cheaper and sometimes, are better suited for online decision-making. While exact analytical algorithms are available only for certain special cases (for e.g., linear models with Gaussian variables), effective approximations can be made using the the first-order second moment method (FOSM), the first-order reliability method (FORM), and the inverse first-order reliability method (Inverse FORM). These methods can be used not only to calculate the entire probability distribution of RUL but also to obtain probability bounds on RUL. This paper explains these three methods in detail and illustrates them using the state-space model of a lithium-ion battery.

  16. Life cycle cost based program decisions

    NASA Technical Reports Server (NTRS)

    Dick, James S.

    1991-01-01

    The following subject areas are covered: background (space propulsion facility assessment team final report); changes (Advanced Launch System, National Aerospace Plane, and space exploration initiative); life cycle cost analysis rationale; and recommendation to panel.

  17. Universal Mass Spectrometry-Based Life Detection

    NASA Astrophysics Data System (ADS)

    Cleaves, H. J.; Giri, C.

    2017-02-01

    The search for ET life will be an important 21st century solar system exploration goal. Mass spectrometry offers a comprehensive, rapid way of "chemotyping" environmental samples. Preparation of a reference catalogue of abiotic and biological samples is described.

  18. Statistical Seasonal Sea Surface based Prediction Model

    NASA Astrophysics Data System (ADS)

    Suarez, Roberto; Rodriguez-Fonseca, Belen; Diouf, Ibrahima

    2014-05-01

    The interannual variability of the sea surface temperature (SST) plays a key role in the strongly seasonal rainfall regime on the West African region. The predictability of the seasonal cycle of rainfall is a field widely discussed by the scientific community, with results that fail to be satisfactory due to the difficulty of dynamical models to reproduce the behavior of the Inter Tropical Convergence Zone (ITCZ). To tackle this problem, a statistical model based on oceanic predictors has been developed at the Universidad Complutense of Madrid (UCM) with the aim to complement and enhance the predictability of the West African Monsoon (WAM) as an alternative to the coupled models. The model, called S4CAST (SST-based Statistical Seasonal Forecast) is based on discriminant analysis techniques, specifically the Maximum Covariance Analysis (MCA) and Canonical Correlation Analysis (CCA). Beyond the application of the model to the prediciton of rainfall in West Africa, its use extends to a range of different oceanic, atmospheric and helth related parameters influenced by the temperature of the sea surface as a defining factor of variability.

  19. Purpose in Life Predicts Treatment Outcome Among Adult Cocaine Abusers in Treatment

    PubMed Central

    Martin, Rosemarie A.; MacKinnon, Selene; Johnson, Jennifer; Rohsenow, Damaris J.

    2010-01-01

    A sense of purpose in life has been positively associated with mental health and well-being and has been negatively associated with alcohol use in correlational and longitudinal studies, but has not been studied as a predictor of cocaine treatment outcome. This study examined pre-treatment purpose in life as a predictor of response to a 30-day residential substance use treatment program among 154 participants with cocaine dependence. Purpose in life was unrelated to cocaine or alcohol use during the 6 months pretreatment. After controlling for age, baseline use, and depressive symptoms, purpose in life significantly (p < .01) predicted relapse to any use of cocaine and to alcohol, and the number of days cocaine or alcohol was used in the six months after treatment. Findings suggest that increasing purpose in life may be an important aspect of treatment among cocaine dependent patients. PMID:21129893

  20. Ceramic material life prediction: A program to translate ANSYS results to CARES/LIFE reliability analysis

    NASA Technical Reports Server (NTRS)

    Vonhermann, Pieter; Pintz, Adam

    1994-01-01

    This manual describes the use of the ANSCARES program to prepare a neutral file of FEM stress results taken from ANSYS Release 5.0, in the format needed by CARES/LIFE ceramics reliability program. It is intended for use by experienced users of ANSYS and CARES. Knowledge of compiling and linking FORTRAN programs is also required. Maximum use is made of existing routines (from other CARES interface programs and ANSYS routines) to extract the finite element results and prepare the neutral file for input to the reliability analysis. FORTRAN and machine language routines as described are used to read the ANSYS results file. Sub-element stresses are computed and written to a neutral file using FORTRAN subroutines which are nearly identical to those used in the NASCARES (MSC/NASTRAN to CARES) interface.

  1. Temperament and parenting during the first year of life predict future child conduct problems.

    PubMed

    Lahey, Benjamin B; Van Hulle, Carol A; Keenan, Kate; Rathouz, Paul J; D'Onofrio, Brian M; Rodgers, Joseph Lee; Waldman, Irwin D

    2008-11-01

    Predictive associations between parenting and temperament during the first year of life and child conduct problems were assessed longitudinally in 1,863 offspring of a representative sample of women. Maternal ratings of infant fussiness, activity level, predictability, and positive affect each independently predicted maternal ratings of conduct problems during ages 4-13 years. Furthermore, a significant interaction indicated that infants who were both low in fussiness and high in predictability were at very low risk for future conduct problems. Fussiness was a stronger predictor of conduct problems in boys whereas fearfulness was a stronger predictor in girls. Conduct problems also were robustly predicted by low levels of early mother-report cognitive stimulation when infant temperament was controlled. Interviewer-rated maternal responsiveness was a robust predictor of conduct problems, but only among infants low in fearfulness. Spanking during infancy predicted slightly more severe conduct problems, but the prediction was moderated by infant fussiness and positive affect. Thus, individual differences in risk for mother-rated conduct problems across childhood are already partly evident in maternal ratings of temperament during the first year of life and are predicted by early parenting and parenting-by-temperament interactions.

  2. Looking beyond patients: Can parents' quality of life predict asthma control in children?

    PubMed

    Cano-Garcinuño, Alfredo; Mora-Gandarillas, Isabel; Bercedo-Sanz, Alberto; Callén-Blecua, María Teresa; Castillo-Laita, José Antonio; Casares-Alonso, Irene; Forns-Serrallonga, Dolors; Tauler-Toro, Eulàlia; Alonso-Bernardo, Luz María; García-Merino, Águeda; Moneo-Hernández, Isabel; Cortés-Rico, Olga; Carvajal-Urueña, Ignacio; Morell-Bernabé, Juan José; Martín-Ibáñez, Itziar; Rodríguez-Fernández-Oliva, Carmen Rosa; Asensi-Monzó, María Teresa; Fernández-Carazo, Carmen; Murcia-García, José; Durán-Iglesias, Catalina; Montón-Álvarez, José Luis; Domínguez-Aurrecoechea, Begoña; Praena-Crespo, Manuel

    2016-07-01

    Social and family factors may influence the probability of achieving asthma control in children. Parents' quality of life has been insufficiently explored as a predictive factor linked to the probability of achieving disease control in asthmatic children. Determine whether the parents' quality of life predicts medium-term asthma control in children. Longitudinal study of children between 4 and 14 years of age, with active asthma. The parents' quality of life was evaluated using the specific IFABI-R instrument, in which scores were higher for poorer quality of life. Its association with asthma control measures in the child 16 weeks later was analyzed using multivariate methods, adjusting the effect for disease, child and family factors. The data from 452 children were analyzed (median age 9.6 years, 63.3% males). The parents' quality of life was predictive for asthma control; each point increase on the initial IFABI-R score was associated with an adjusted odds ratio (95% confidence interval) of 0.56 (0.37-0.86) for good control of asthma on the second visit, 2.58 (1.62-4.12) for asthma exacerbation, 2.12 (1.33-3.38) for an unscheduled visit to the doctor, and 2.46 (1.18-5.13) for going to the emergency room. The highest quartile for the IFABI-R score had a sensitivity of 34.5% and a specificity of 82.2% to predict poorly controlled asthma. Parents' poorer quality of life is related to poor, medium-term asthma control in children. Assessing the parents' quality of life could aid disease management decisions. Pediatr Pulmonol. 2016;51:670-677. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  3. Physically based prediction of earthquake induced landsliding

    NASA Astrophysics Data System (ADS)

    Marc, Odin; Meunier, Patrick; Hovius, Niels; Gorum, Tolga; Uchida, Taro

    2015-04-01

    Earthquakes are an important trigger of landslides and can contribute significantly to sedimentary or organic matter fluxes. We present a new physically based expression for the prediction of total area and volume of populations of earthquake-induced landslides. This model implements essential seismic processes, linking key parameters such as ground acceleration, fault size, earthquake source depth and seismic moment. To assess the model we have compiled and normalized a database of landslide inventories for 40 earthquakes. We have found that low landscape steepness systematically leads to overprediction of the total area and volume of landslides. When this effect is accounted for, the model is able to predict within a factor of 2 the landslide areas and associated volumes for about two thirds of the cases in our databases. This is a significant improvement on a previously published empirical expression based only on earthquake moment, even though the prediction of total landslide area is more difficult than that of volume because it is affected by additional parameters such as the depth and continuity of soil cover. Some outliers in terms of observed landslide intensity are likely to be associated with exceptional rock mass properties in the epicentral area. Others may be related to seismic source complexities ignored by the model. However, most cases in our catalogue seem to be relatively unaffected by these two effects despite the variety of lithologies and tectonic settings they cover. This makes the model suitable for integration into landscape evolution models, and application to the assessment of secondary hazards and risks associated with earthquakes.

  4. Methodology for designing accelerated aging tests for predicting life of photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Gaines, G. B.; Thomas, R. E.; Derringer, G. C.; Kistler, C. W.; Bigg, D. M.; Carmichael, D. C.

    1977-01-01

    A methodology for designing aging tests in which life prediction was paramount was developed. The methodology builds upon experience with regard to aging behavior in those material classes which are expected to be utilized as encapsulant elements, viz., glasses and polymers, and upon experience with the design of aging tests. The experiences were reviewed, and results are discussed in detail.

  5. The Level of Quality of Work Life to Predict Work Alienation

    ERIC Educational Resources Information Center

    Erdem, Mustafa

    2014-01-01

    The current research aims to determine the level of elementary school teachers' quality of work life (QWL) to predict work alienation. The study was designed using the relational survey model. The research population consisted of 1096 teachers employed at 25 elementary schools within the city of Van in the academic year 2010- 2011, and 346…

  6. Prediction of Drug Abuse by the Life Values Questionnaire: Interim Report, May 1973-February 1974.

    ERIC Educational Resources Information Center

    Weeks, Joseph L.; And Others

    Three experimental psychological tests were investigated to determine if they added significantly to the prediction of eight drug abuse criteria when combined with a basic predictor set consisting of background variables only. Of the four tests investigated, only one, the Life Values Questionnaire appeared to add any significant unique variance to…

  7. The Role of Life Satisfaction and Parenting Styles in Predicting Delinquent Behaviors among High School Students

    ERIC Educational Resources Information Center

    Onder, Fulya Cenkseven; Yilmaz, Yasin

    2012-01-01

    The purpose of this study is to determine whether the parenting styles and life satisfaction predict delinquent behaviors frequently or not. Firstly the data were collected from 471 girls and 410 boys, a total of 881 high school students. Then the research was carried out with 502 students showing low (n = 262, 52.2%) and high level of delinquent…

  8. Development of Probabilistic Life Prediction Methodologies and Testing Strategies for MEMS

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama M.

    2003-01-01

    This effort is to investigate probabilistic life prediction methodologies for MicroElectroMechanical Systems (MEMS) and to analyze designs that determine stochastic properties of MEMS. This includes completion of a literature survey regarding Weibull size effect in MEMS and strength testing techniques. Also of interest is the design of a proper test for the Weibull size effect in tensile specimens. The Weibull size effect is a consequence of a stochastic strength response predicted from the Weibull distribution. Confirming that MEMS strength is controlled by the Weibull distribution will enable the development of a probabilistic design methodology for MEMS - similar to the GRC developed CARES/Life program for bulk ceramics. Another potential item of interest is analysis and modeling of material interfaces for strength as well as developing a strategy to handle stress singularities at sharp corners, filets, and material interfaces. The ultimate objective of this effort is to further develop and verify the ability of the Ceramics Analysis and Reliability Evaluation of Structuredlife (CARES/Life) code to predict the time-dependent reliability of MEMS structures subjected to multiple transient loads. Along these lines work may also be performed on transient fatigue life prediction methodologies.

  9. A Comprehensive Prognostics Approach for Predicting Gas Turbine Engine Bearing Life

    DTIC Science & Technology

    2004-06-01

    PROGNOSTICS APPROACH FOR PREDICTING GAS TURBINE ENGINE BEARING LIFE Rolf Orsagh, Michael Roemer, Jeremy Sheldon Impact Technologies, LLC 125...Wright-Patterson AFB, OH 45433 ABSTRACT Development of practical and verifiable prognostic approaches for gas turbine engine bearings will play...unnecessary maintenance on engines that operate under unusually mild conditions. A comprehensive engine bearing prognostic approach is presented

  10. The Roles of Life Satisfaction, Teaching Efficacy, and Self-Esteem in Predicting Teachers' Job Satisfaction

    ERIC Educational Resources Information Center

    Çevik, Gülsen Büyüksahin

    2017-01-01

    The current research aims to find out the extent to which high school teachers' life satisfaction, teaching efficacy, and self-esteem predict their job satisfaction. Research participants included a total of 358 teachers (age = 38.82; Ss = 6.73; range, 22-58), 222 males (62%) and 136 females (38%), employed in 21 public high schools in the city…

  11. Life prediction of materials exposed to monotonic and cyclic loading: A technology survey and bibliography

    NASA Technical Reports Server (NTRS)

    Stuhrke, W. F.; Carpenter, J. L., Jr.; Moya, N.; Mandel, G.

    1975-01-01

    Announced survey directs attention toward low cycle fatigue and thermal fatigue experienced at elevated temperatures equivalent to those found in hot end of gas turbine engine. Majority of bibliographic references are on life prediction for materials exposed to monotonic and cyclic loading in high temperature environments.

  12. Weather, knowledge base and life-style

    NASA Astrophysics Data System (ADS)

    Bohle, Martin

    2015-04-01

    Why to main-stream curiosity for earth-science topics, thus to appraise these topics as of public interest? Namely, to influence practices how humankind's activities intersect the geosphere. How to main-stream that curiosity for earth-science topics? Namely, by weaving diverse concerns into common threads drawing on a wide range of perspectives: be it beauty or particularity of ordinary or special phenomena, evaluating hazards for or from mundane environments, or connecting the scholarly investigation with concerns of citizens at large; applying for threading traditional or modern media, arts or story-telling. Three examples: First "weather"; weather is a topic of primordial interest for most people: weather impacts on humans lives, be it for settlement, for food, for mobility, for hunting, for fishing, or for battle. It is the single earth-science topic that went "prime-time" since in the early 1950-ties the broadcasting of weather forecasts started and meteorologists present their work to the public, daily. Second "knowledge base"; earth-sciences are a relevant for modern societies' economy and value setting: earth-sciences provide insights into the evolution of live-bearing planets, the functioning of Earth's systems and the impact of humankind's activities on biogeochemical systems on Earth. These insights bear on production of goods, living conditions and individual well-being. Third "life-style"; citizen's urban culture prejudice their experiential connections: earth-sciences related phenomena are witnessed rarely, even most weather phenomena. In the past, traditional rural communities mediated their rich experiences through earth-centric story-telling. In course of the global urbanisation process this culture has given place to society-centric story-telling. Only recently anthropogenic global change triggered discussions on geoengineering, hazard mitigation, demographics, which interwoven with arts, linguistics and cultural histories offer a rich narrative

  13. Mini-nutritional assessment predicts functional status and quality of life of patients with hepatocellular carcinoma in Taiwan.

    PubMed

    Hsu, Wei-Chung; Tsai, Alan C; Chan, Shu-Ching; Wang, Po-Ming; Chung, Na-Na

    2012-01-01

    This study aimed to determine the possibility of using the Mini-Nutritional Assessment (MNA) to evaluate the quality of life and functional status in patients with hepatocellular carcinoma (HCC). The study recruited 300 outpatients with HCC from a teaching hospital in Central Taiwan to serve as subjects. All subjects were interviewed with a structured questionnaire for rating the nutritional status with the MNA (long-form and short-form), and for evaluating quality of life and functional status with Global Quality of Life (GQL) and Global Functional Status (GFS), respectively, of the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Core 30 version-3. Cancer staging and liver cirrhosis indicators, blood biochemical indicators, and self-rated health status and mobility were used as reference standards. Results showed that based on the strength of the correlation and association with the reference standards, both the long-form and short-form of the MNA performed better than GQL and GFS in predicting quality of life and functional status of patients with HCC. These results suggest that the MNA is suitable for identifying the risk of deteriorating quality of life or functional status, in addition to identifying the risk of malnutrition, in patients with HCC.

  14. Validation of a pediatric bedside tool to predict time to death after withdrawal of life support.

    PubMed

    Das, Ashima; Anderson, Ingrid M; Speicher, David G; Speicher, Richard H; Shein, Steven L; Rotta, Alexandre T

    2016-02-08

    To evaluate the accuracy of a tool developed to predict timing of death following withdrawal of life support in children. Pertinent variables for all pediatric deaths (age ≤ 21 years) from 1/2009 to 6/2014 in our pediatric intensive care unit (PICU) were extracted through a detailed review of the medical records. As originally described, a recently developed tool that predicts timing of death in children following withdrawal of life support (dallas predictor tool [DPT]) was used to calculate individual scores for each patient. Individual scores were calculated for prediction of death within 30 min (DPT30) and within 60 min (DPT60). For various resulting DPT30 and DPT60 scores, sensitivity, specificity and area under the receiver operating characteristic curve were calculated. There were 8829 PICU admissions resulting in 132 (1.5%) deaths. Death followed withdrawal of life support in 70 patients (53%). After excluding subjects with insufficient data to calculate DPT scores, 62 subjects were analyzed. Average age of patients was 5.3 years (SD: 6.9), median time to death after withdrawal of life support was 25 min (range; 7 min to 16 h 54 min). Respiratory failure, shock and sepsis were the most common diagnoses. Thirty-seven patients (59.6%) died within 30 min of withdrawal of life support and 52 (83.8%) died within 60 min. DPT30 scores ranged from -17 to 16. A DPT30 score ≥ -3 was most predictive of death within that time period, with sensitivity = 0.76, specificity = 0.52, AUC = 0.69 and an overall classification accuracy = 66.1%. DPT60 scores ranged from -21 to 28. A DPT60 score ≥ -9 was most predictive of death within that time period, with sensitivity = 0.75, specificity = 0.80, AUC = 0.85 and an overall classification accuracy = 75.8%. In this external cohort, the DPT is clinically relevant in predicting time from withdrawal of life support to death. In our patients, the DPT is more useful in predicting death within 60 min of withdrawal of life support

  15. BROAD-BASED ENVIRONMENTAL LIFE CYCLE ASSESSMENT

    EPA Science Inventory

    Pollution prevention through Life Cycle Assessment (LCA) is a departure from evaluating waste management options that look mainly at single issues such as recyclability or reduced toxicity. An LCA is a snapshot in time of inputs and outputs. It can be used as an objective technic...

  16. BROAD-BASED ENVIRONMENTAL LIFE CYCLE ASSESSMENT

    EPA Science Inventory

    Pollution prevention through Life Cycle Assessment (LCA) is a departure from evaluating waste management options that look mainly at single issues such as recyclability or reduced toxicity. An LCA is a snapshot in time of inputs and outputs. It can be used as an objective technic...

  17. Distance saturation product predicts health-related quality of life among sarcoidosis patients.

    PubMed

    Bourbonnais, Julie M; Malaisamy, Subramanian; Dalal, Bhavinkumar D; Samarakoon, Priyan C; Parikh, Swapna R; Samavati, Lobelia

    2012-06-13

    Sarcoidosis is a chronic disease with different phenotypic manifestations. Health-related quality of life is an important aspect in sarcoidosis, yet difficult to measure. The objective of this study was to identify clinical markers predictive of poor quality of life in sarcoidosis patients that can be followed over time and targeted for intervention. We assessed the quality of life of 162 patients with confirmed sarcoidosis in a prospective, cross-sectional study using the Sarcoidosis Health Questionnaire (SHQ) and Short Form-36 Health Survey (SF-36). We evaluated the validity of these questionnaires and sought to identify variables that would best explain the performance scores of the patients. On multivariate regression analyses, the very best composite model to predict total scores from both surveys was a model containing the distance-saturation product and Borg Dyspnea Scale score at the end of a 6-min walk test. This model could better predict SF-36 scores (R² = 0.33) than SHQ scores (R² = 0.24). Substitution of distanced walked in 6 min for the distance-saturation product in this model resulted in a lesser ability to predict both scores (R² = 0.26 for SF-36; R² = 0.22 for SHQ). Both the SHQ and SF-36 surveys are valuable tools in the assessment of health-related quality of life in sarcoidosis patients. The best model to predict quality of life among these patients, as determined by regression analyses, included the distance-saturation product and Borg score after the 6-min walk test. Both variables represent easily obtainable clinical parameters that can be followed over time and targeted for intervention.

  18. Predicting time to death after withdrawal of life-sustaining therapy.

    PubMed

    Munshi, Laveena; Dhanani, Sonny; Shemie, Sam D; Hornby, Laura; Gore, Genevieve; Shahin, Jason

    2015-06-01

    Predicting time to death following the withdrawal of life-sustaining therapy is difficult. Accurate predictions may better prepare families and improve the process of donation after circulatory death. We systematically reviewed any predictive factors for time to death after withdrawal of life support therapy. Fifteen observational studies met our inclusion criteria. The primary outcome was time to death, which was evaluated to be within 60 min in the majority of studies (13/15). Additional time endpoints evaluated included time to death within 30, 120 min, and 10 h, respectively. While most studies evaluated risk factors associated with time to death, a few derived or validated prediction tools. Consistent predictors of time to death that were identified in five or more studies included the following risk factors: controlled ventilation, oxygenation, vasopressor use, Glasgow Coma Scale/Score, and brain stem reflexes. Seven unique prediction tools were derived, validated, or both across some of the studies. These tools, at best, had only moderate sensitivity to predicting the time to death. Simultaneous withdrawal of all support and physician opinion were only evaluated in more recent studies and demonstrated promising predictor capabilities. While the risk factors controlled ventilation, oxygenation, vasopressors, level of consciousness, and brainstem reflexes have been most consistently found to be associated with time to death, the addition of novel predictors, such as physician opinion and simultaneous withdrawal of all support, warrant further investigation. The currently existing prediction tools are not highly sensitive. A more accurate and generalizable tool is needed to inform end-of-life care and enhance the predictions of donation after circulatory death eligibility.

  19. Colonisation of toxic environments drives predictable life-history evolution in livebearing fishes (Poeciliidae).

    PubMed

    Riesch, Rüdiger; Plath, Martin; Schlupp, Ingo; Tobler, Michael; Brian Langerhans, R

    2014-01-01

    New World livebearing fishes (family Poeciliidae) have repeatedly colonised toxic, hydrogen sulphide-rich waters across their natural distribution. Physiological considerations and life-history theory predict that these adverse conditions should favour the evolution of larger offspring. Here, we examined nine poeciliid species that independently colonised toxic environments, and show that these fishes have indeed repeatedly evolved much larger offspring size at birth in sulphidic waters, thus uncovering a widespread pattern of predictable evolution. However, a second pattern, only indirectly predicted by theory, proved additionally common: a reduction in the number of offspring carried per clutch (i.e. lower fecundity). Our analyses reveal that this secondary pattern represents a mere consequence of a classic life-history trade-off combined with strong selection on offspring size alone. With such strong natural selection in extreme environments, extremophile organisms may commonly exhibit multivariate phenotypic shifts even though not all diverging traits necessarily represent adaptations to the extreme conditions.

  20. Ecological validity of the Multiple Errands Test using predictive models of dysexecutive problems in everyday life.

    PubMed

    Cuberos-Urbano, Gustavo; Caracuel, Alfonso; Vilar-López, Raquel; Valls-Serrano, Carlos; Bateman, Andrew; Verdejo-García, Antonio

    2013-01-01

    The"dysexecutive syndrome" is composed of a range of cognitive, emotional, and behavioral deficits that are difficult to evaluate using traditional neuropsychological tests. The Multiple Errands Test (MET) was originally developed to systematize the assessment of the more elusive manifestations of the dysexecutive syndrome. The aims of this study were to examining the reliability of the MET and to investigate the predictive ability of its indices to explain a range of "dysexecutive"-related symptoms in everyday life. Thirty patients with acquired brain injury participated in this study. The MET showed an adequate inter-rater reliability and ecological validity. The main performance indices from the MET were able to significantly predict severity of everyday life executive problems, with different indices predicting particular manifestations of different components of executive functions.

  1. Prediction of reliability on thermoelectric module through accelerated life test and Physics-of-failure

    NASA Astrophysics Data System (ADS)

    Choi, Hyoung-Seuk; Seo, Won-Seon; Choi, Duck-Kyun

    2011-09-01

    Thermoelectric cooling module (TEM) which is electric device has a mechanical stress because of temperature gradient in itself. It means that structure of TEM is vulnerable in an aspect of reliability but research on reliability of TEM was not performed a lot. Recently, the more the utilization of thermoelectric cooling devices grows, the more the needs for life prediction and improvement are increasing. In this paper, we investigated life distribution, shape parameter of the TEM through accelerated life test (ALT). And we discussed about how to enhance life of TEM through the Physics-of-failure. Experimental results of ALT showed that the thermoelectric cooling module follows the Weibull distribution, shape parameter of which is 3.6. The acceleration model is coffin Coffin-Manson and material constant is 1.8.

  2. Does life history predict risk-taking behavior of wintering dabbling ducks?

    USGS Publications Warehouse

    Ackerman, Joshua T.; Eadie, J.M.; Moore, T.G.

    2006-01-01

    Life-history theory predicts that longer-lived, less fecund species should take fewer risks when exposed to predation than shorter-lived, more fecund species. We tested this prediction for seven species of dabbling ducks (Anas) by measuring the approach behavior (behavior of ducks when approaching potential landing sites) of 1099 duck flocks during 37 hunting trials and 491 flocks during 13 trials conducted immediately after the 1999-2000 waterfowl hunting season in California, USA. We also experimentally manipulated the attractiveness of the study site by using two decoy treatments: (1) traditional, stationary decoys only, and (2) traditional decoys in conjunction with a mechanical spinning-wing decoy. Approach behavior of ducks was strongly correlated with their life history. Minimum approach distance was negatively correlated with reproductive output during each decoy treatment and trial type. Similarly, the proportion of flocks taking risk (approaching landing sites to within 45 m) was positively correlated with reproductive output. We found similar patterns of approach behavior in relation to other life-history parameters (i.e., adult female body mass and annual adult female survival rate). Thus, species characterized by a slower life-history strategy (e.g., Northern Pintail [A. acuta]) were more risk-averse than species with a faster life-history strategy (e.g., Cinnamon Teal [A. cyanoptera]). Furthermore, although we were able to reduce risk-averseness using the spinning-wing decoy, we were unable to override the influence of life history on risk-taking behavior. Alternative explanations did not account for the observed correlation between approach behavior and life-history parameters. These results suggest that life history influences the risk-taking behavior of dabbling ducks and provide an explanation for the differential vulnerability of waterfowl to harvest. ?? The Cooper Ornithological Society 2006.

  3. Physical activity predicts quality of life and happiness in children and adolescents with cerebral palsy.

    PubMed

    Maher, Carol Ann; Toohey, Monica; Ferguson, Monika

    2016-01-01

    To examine the associations between physical activity, health-related quality of life and happiness in young people with cerebral palsy. A total of 70 young people with cerebral palsy (45 males, 25 females; mean age 13 years 11 months, SD 2 years 0 month) took part in a cross-sectional, descriptive postal survey assessing physical activity (Physical Activity Questionnaire for Adolescents), functional ability (Gross Motor Function Classification System), quality of life (Pediatric Quality of Life Inventory 4.0) and happiness (single Likert-scale item). Relationships between physical activity, quality of life and happiness were examined using backward stepwise linear regression. Physical activity significantly predicted physical quality of life (R(2 )= 0.64, β = 6.12, p = 0.02), social quality of life (R(2 )= 0.28, β = 9.27, p < 0.01) and happiness (R(2 )= 0.08, β = 0.9, p = 0.04). Physical activity was not associated with emotional or school quality of life. This study found a positive association between physical activity, social and physical quality of life, and happiness in young people with cerebral palsy. Findings underscore the potential benefits of physical activity for the wellbeing of young people with cerebral palsy, in addition to its well-recognised physical and health benefits. Physical activity is a key predictor of quality of life and happiness in young people with cerebral palsy. Physical activity is widely recognised as having physical health benefits for young people with cerebral palsy; however, this study also highlights that it may have important benefits for wellbeing, quality of life and happiness. This emphasises the need for clinical services and intervention studies aimed specifically at increasing physical activity amongst children and adolescents with cerebral palsy.

  4. Shelf-life prediction of canned "nasi uduk" using accelerated shelf-life test (ASLT) - Arrhenius model

    NASA Astrophysics Data System (ADS)

    Kurniadi, Muhamad; Salam, Nur; Kusumaningrum, Annisa; Nursiwi, Asri; Angwar, Mukhamad; Susanto, Agus; Nurhikmat, Asep; Triwiyono, Frediansyah, Andri

    2017-01-01

    "Nasi Uduk" is one of the Indonesian traditional food made from rice, steamed with coconut milk and seasoning. For optimizing shelf-life, canned "nasi uduk" for military and disaster-response ration, was packed using cylindrical cans of 72,63 × 53,04 mm (Ø × h) in size. One of the important aspects on quality assessment of preserved product was its rancidity. The aim of this research was to determine shelf-life of canned "nasi uduk" using ASLT method of Arrhenius model. Storage temperatures set up at 35, 45 and 55°C for 35 days. Optimization of sterilization process was conducted to achieve the optimum conditions of sterilization. Target lethality value (Fo), microorganism total plate count (TPC) and rancidity levels (TBA) were used as parameters in this research. The results showed that the optimum sterilization conditions were 121 °C for 20 minutes, TPC value of 9.5 × 101 CFU/ml and Fo value 4.14 minutes. Predicted shelf-life of canned "nasi uduk" was 9.6 months which was average TBA value still bellow of the critical point.

  5. TOPPER: topology prediction of transmembrane protein based on evidential reasoning.

    PubMed

    Deng, Xinyang; Liu, Qi; Hu, Yong; Deng, Yong

    2013-01-01

    The topology prediction of transmembrane protein is a hot research field in bioinformatics and molecular biology. It is a typical pattern recognition problem. Various prediction algorithms are developed to predict the transmembrane protein topology since the experimental techniques have been restricted by many stringent conditions. Usually, these individual prediction algorithms depend on various principles such as the hydrophobicity or charges of residues. In this paper, an evidential topology prediction method for transmembrane protein is proposed based on evidential reasoning, which is called TOPPER (topology prediction of transmembrane protein based on evidential reasoning). In the proposed method, the prediction results of multiple individual prediction algorithms can be transformed into BPAs (basic probability assignments) according to the confusion matrix. Then, the final prediction result can be obtained by the combination of each individual prediction base on Dempster's rule of combination. The experimental results show that the proposed method is superior to the individual prediction algorithms, which illustrates the effectiveness of the proposed method.

  6. A Modified Nonlinear Damage Accumulation Model for Fatigue Life Prediction Considering Load Interaction Effects

    PubMed Central

    Huang, Hong-Zhong; Yuan, Rong

    2014-01-01

    Many structures are subjected to variable amplitude loading in engineering practice. The foundation of fatigue life prediction under variable amplitude loading is how to deal with the fatigue damage accumulation. A nonlinear fatigue damage accumulation model to consider the effects of load sequences was proposed in earlier literature, but the model cannot consider the load interaction effects, and sometimes it makes a major error. A modified nonlinear damage accumulation model is proposed in this paper to account for the load interaction effects. Experimental data of two metallic materials are used to validate the proposed model. The agreement between the model prediction and experimental data is observed, and the predictions by proposed model are more possibly in accordance with experimental data than that by primary model and Miner's rule. Comparison between the predicted cumulative damage by the proposed model and an existing model shows that the proposed model predictions can meet the accuracy requirement of the engineering project and it can be used to predict the fatigue life of welded aluminum alloy joint of Electric Multiple Units (EMU); meanwhile, the accuracy of approximation can be obtained from the proposed model though more simple computing process and less material parameters calling for extensive testing than the existing model. PMID:24574866

  7. Predictive Modeling for End-of-Life Pain Outcome using Electronic Health Records

    PubMed Central

    Lodhi, Muhammad K.; Stifter, Janet; Yao, Yingwei; Ansari, Rashid; Kee-nan, Gail M.; Wilkie, Diana J.; Khokhar, Ashfaq A.

    2016-01-01

    Electronic health record (EHR) systems are being widely used in the healthcare industry nowadays, mostly for monitoring the progress of the patients. EHR data analysis has become a big data problem as data is growing rapidly. Using a nursing EHR system, we built predictive models for determining what factors influence pain in end-of-life (EOL) patients. Utilizing different modeling techniques, we developed coarse-grained and fine-grained models to predict patient pain outcomes. The coarse-grained models help predict the outcome at the end of each hospitalization, whereas fine-grained models help predict the outcome at the end of each shift, thus providing a trajectory of predicted outcomes over the entire hospitalization. These models can help in determining effective treatments for individuals and groups of patients and support standardization of care where appropriate. Using these models may also lower the cost and increase the quality of end-of-life care. Results from these techniques show significantly accurate predictions. PMID:27500287

  8. Life Predicted in a Probabilistic Design Space for Brittle Materials With Transient Loads

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Palfi, Tamas; Reh, Stefan

    2005-01-01

    Analytical techniques have progressively become more sophisticated, and now we can consider the probabilistic nature of the entire space of random input variables on the lifetime reliability of brittle structures. This was demonstrated with NASA s CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code combined with the commercially available ANSYS/Probabilistic Design System (ANSYS/PDS), a probabilistic analysis tool that is an integral part of the ANSYS finite-element analysis program. ANSYS/PDS allows probabilistic loads, component geometry, and material properties to be considered in the finite-element analysis. CARES/Life predicts the time dependent probability of failure of brittle material structures under generalized thermomechanical loading--such as that found in a turbine engine hot-section. Glenn researchers coupled ANSYS/PDS with CARES/Life to assess the effects of the stochastic variables of component geometry, loading, and material properties on the predicted life of the component for fully transient thermomechanical loading and cyclic loading.

  9. Integrated Design Software Predicts the Creep Life of Monolithic Ceramic Components

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Significant improvements in propulsion and power generation for the next century will require revolutionary advances in high-temperature materials and structural design. Advanced ceramics are candidate materials for these elevated-temperature applications. As design protocols emerge for these material systems, designers must be aware of several innate features, including the degrading ability of ceramics to carry sustained load. Usually, time-dependent failure in ceramics occurs because of two different, delayedfailure mechanisms: slow crack growth and creep rupture. Slow crack growth initiates at a preexisting flaw and continues until a critical crack length is reached, causing catastrophic failure. Creep rupture, on the other hand, occurs because of bulk damage in the material: void nucleation and coalescence that eventually leads to macrocracks which then propagate to failure. Successful application of advanced ceramics depends on proper characterization of material behavior and the use of an appropriate design methodology. The life of a ceramic component can be predicted with the NASA Lewis Research Center's Ceramics Analysis and Reliability Evaluation of Structures (CARES) integrated design programs. CARES/CREEP determines the expected life of a component under creep conditions, and CARES/LIFE predicts the component life due to fast fracture and subcritical crack growth. The previously developed CARES/LIFE program has been used in numerous industrial and Government applications.

  10. Correlation Factor Study of Small Punch Creep Test and Its Life Prediction.

    PubMed

    Wen, Cheng; Xu, Tong; Guan, Kaishu

    2016-09-24

    A small punch test is one of the innovative methods that can be used to evaluate the properties of a material without destructive harm to the in-service component. Conventionally identifying material properties by a uniaxial test is widely applied to engineering. How the properties obtained from a small punch test can be applied with the same utility has been a goal. In 2006, European Code of Practice (CoP) of small punch tests was first released, in which the correlation factor, ksp, was introduced to bridge the gap between the above methods. The author investigates the relationship between a uniaxial creep text and a small punch creep test by exploring the correlation factor ksp. Various sets of experiments and a comparative study of the conventional uniaxial creep test and small punch creep test were carried out. Methods including Norton, Larson-Miller and Time versus Stress relation were employed to identify the value of ksp. Different ksp values were found in different materials, which indicate that ksp values of materials need to be identified separately. In addition, the life prediction of a small punch creep test was carried out and the results of the life prediction predict a reasonable accuracy, which indicates that the small punch creep test is a reliable method for life prediction.

  11. Correlation Factor Study of Small Punch Creep Test and Its Life Prediction

    PubMed Central

    Wen, Cheng; Xu, Tong; Guan, Kaishu

    2016-01-01

    A small punch test is one of the innovative methods that can be used to evaluate the properties of a material without destructive harm to the in-service component. Conventionally identifying material properties by a uniaxial test is widely applied to engineering. How the properties obtained from a small punch test can be applied with the same utility has been a goal. In 2006, European Code of Practice (CoP) of small punch tests was first released, in which the correlation factor, ksp, was introduced to bridge the gap between the above methods. The author investigates the relationship between a uniaxial creep text and a small punch creep test by exploring the correlation factor ksp. Various sets of experiments and a comparative study of the conventional uniaxial creep test and small punch creep test were carried out. Methods including Norton, Larson-Miller and Time versus Stress relation were employed to identify the value of ksp. Different ksp values were found in different materials, which indicate that ksp values of materials need to be identified separately. In addition, the life prediction of a small punch creep test was carried out and the results of the life prediction predict a reasonable accuracy, which indicates that the small punch creep test is a reliable method for life prediction. PMID:28773917

  12. Predicting life expectancy for community-dwelling older adults from Medicare claims data.

    PubMed

    Tan, Alai; Kuo, Yong-Fang; Goodwin, James S

    2013-09-15

    Estimates of life expectancy are useful in assessing whether different prevention strategies are appropriate in different populations. We developed sex-specific Cox proportional-hazard models that use Medicare claims data to predict life expectancy and risk of death at up to 10 years for older adults. We identified a cohort of Medicare beneficiaries 66-90 years of age from the 5% Medicare claims data in 2000 (n = 1,137,311) and tracked each subject's vital status until December 31, 2009. Subjects were split randomly into training and validation samples. Models were developed from the training sample and validated by comparison of predicted to actual survival in the validation sample. The C statistics for the models including predictors of age and Elixhauser comorbidities were 0.76-0.79 for men and women for prediction of death at the 1-, 5-, 7-, and 10-year follow-up periods. More than 80% of subjects with <25% risk of death at 5, 7, and 10 years survived longer than the chosen cutoff years. More than 80% of subjects with ≥75% risk of death at 5, 7, and 10 years died by those cutoff years. The models overestimated the risk of death at 1 year for the high-risk groups. Sex-specific models that use age and Elixhauser comorbidities can accurately predict patient life expectancy and risk of death at 5-10 years.

  13. Prediction of maternal quality of life on preterm birth and low birthweight: a longitudinal study.

    PubMed

    Wang, Panchalli; Liou, Shwu-Ru; Cheng, Ching-Yu

    2013-06-02

    Preterm birth is a significant cause of newborn morbidity and mortality and strains society's healthcare resources due to its long-term effects on the health of the newborn. Prenatal maternal quality of life (QoL) may be related to the occurrence of preterm birth and low birthweight infants. Few studies, however, have investigated maternal QoL, especially throughout the continuum of pregnancy and the immediate postpartum period. Therefore, the purposes of this longitudinal study were to measure the levels of QoL during and immediately after pregnancy in women with uncomplicated pregnancies, investigate the relationships between the dimensions of QoL, and determine whether prenatal QoL can predict preterm birth and low birthweight. Using convenience sampling in one hospital in Taiwan, we recruited 198 pregnant women without pregnancy complications after 24 gestational weeks and followed up monthly until one-month postpartum. The Duke Health Profile was used to measure QoL. Data were analyzed using descriptive statistics, the Mann-Whitney U test, the Kruskal-Wallis test, generalized estimation equations, Pearson correlations, and hierarchical logistic regression. Pregnant women did not perceive that they had a high level of QoL. Women at late pregnancy experienced a significant decrease in their level of physical and general health. After childbirth, although the mothers had better physical health, they had poorer social health. Poor QoL at late pregnancy predicted preterm birth. Employment, parity, educational level, and happiness about pregnancy were related to prenatal maternal QoL; employment was a factor related to postpartum maternal QoL. Early assessment of QoL, including its dimensions, of pregnant women may help us to understand women's health status. Based on this understanding, healthcare professionals can develop interventions to promote pregnant women's QoL and to lessen the occurrence of preterm birth and low birthweight infants. Further, an emphasis on

  14. External validation of a prognostic model predicting time of death after withdrawal of life support in neurocritical patients.

    PubMed

    de Groot, Yorick J; Lingsma, Hester F; Bakker, Jan; Gommers, Diederik A; Steyerberg, Ewout; Kompanje, Erwin J O

    2012-01-01

    The ability to predict the time of death after withdrawal of life support is of specific interest for organ donation after cardiac death. We aimed to externally validate a previously developed model to predict the probability of death within the time constraint of 60 mins after withdrawal of life-sustaining measures. The probability to die within 60 mins for each patient in this validation sample was calculated based on the model developed by Yee et al, which includes four variables (absent corneal reflex, absent cough reflex, extensor or absent motor response, and an oxygenation index >4.2). Analyses included logistic regression modeling with bootstrapping to adjust for overoptimism. Performance was assessed by calibration (agreement between observed and predicted outcomes) and discrimination (distinction of those patients who die within 60 mins from those who do not, expressed by the area under the receiver operating characteristic curve). Mixed intensive care unit in The Netherlands. We analyzed data from 152 patients who died as a result of a neurologic condition between 2007 and 2009. None. A total of 82 patients had sufficient data. Fifty (61%) died within 60 mins. Univariable and multivariable odds ratios of the predictors were very similar between the development and validation sample. The prediction model showed good discrimination with an area under the receiver operating characteristic curve of 0.75 (95% confidence interval [CI] 0.63-0.87) but calibration was modest. The mean predicted probability was 80%, overestimating the 61% overall observed risk of death within 60 mins. Modeling oxygenation index as a linear term led to an improved version of the Mayo NICU model. (area under the receiver operating characteristic curve [95% CI] = 0.774 [0.69-0.90], bootstrap-validated area under the receiver operating characteristic curve [95% CI] = 0.74 [0.66-0.87]). The model discriminated well between patients who died within 60 mins after withdrawal of life

  15. Early-life exposures predicting onset and resolution of childhood overweight or obesity.

    PubMed

    Kerr, Jessica A; Long, Catherine; Clifford, Susan A; Muller, Joshua; Gillespie, Alanna N; Donath, Susan; Wake, Melissa

    2017-10-01

    To determine which of multiple early-life exposures predict onset or resolution of overweight/obesity during a 9-year period. Design: longitudinal cohort from three harmonised community-based cohorts enriched for overweight and obesity. Early-life exposures: child-gestational age; delivery; birth weight; breast feeding; solids introduction; baseline body mass index (BMI); waist circumference; diet; activity; global, physical and psychosocial health. Mother-baseline BMI; education; age; neighbourhood disadvantage; concern for child's weight. Outcome: change in BMI category. Analyses: adjusted logistic regression. On average, the 363 children (57% retention) were 6 and 15 years old at baseline and follow-up. Children were classified as 'never' overweight/obese (38%), 'resolving' overweight/obese (15%), 'becoming' overweight/obese (8%) or 'always' overweight/obese (39%). Compared with 'never overweight/obese' children, odds of 'becoming overweight/obese' were greater with higher child (OR 2.33, 95% CI 1.02 to 5.29) and maternal BMI (OR 1.18, CI 1.07 to 1.31), and lower with higher maternal education (OR 0.09, CI 0.02 to 0.34). Compared with 'always overweight/obese' children, odds of 'resolving overweight/obese' were lower with higher maternal BMI (OR 0.87, CI 0.78 to 0.97), and higher with better child physical health (OR 1.06, CI 1.02 to 1.10) and higher maternal age (OR 1.11, CI 1.01 to 1.22) and education (OR 4.07, CI 1.02 to 16.19). Readily available baseline information (child/maternal BMI, maternal age, education and child health) were the strongest predictors of both onset and resolution of overweight/obesity between the primary school and adolescent years. Perinatal, breastfeeding and lifestyle exposures were not strongly predictive. Results could stimulate development of algorithms identifying children most in need of targeted prevention or treatment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a

  16. Toward a theoretically based measurement model of the good life.

    PubMed

    Cheung, C K

    1997-06-01

    A theoretically based conceptualization of the good life should differentiate 4 dimensions-the hedonist good life, the dialectical good life, the humanist good life, and the formalist good life. These 4 dimensions incorporate previous fragmentary measures, such as life satisfaction, depression, work alienation, and marital satisfaction, to produce an integrative view. In the present study, 276 Hong Kong Chinese husbands and wives responded to a survey of 13 indicators for these 4 good life dimensions. Confirmatory hierarchical factor analysis showed that these indicators identified the 4 dimensions of the good life, which in turn converged to identify a second-order factor of the overall good life. The model demonstrates discriminant validity in that the first-order factors had high loadings on the overall good life factor despite being linked by a social desirability factor. Analysis further showed that the second-order factor model applied equally well to husbands and wives. Thus, the conceptualization appears to be theoretically and empirically adequate in incorporating previous conceptualizations of the good life.

  17. Does life satisfaction predict five-year mortality in community-living older adults?

    PubMed

    St John, Philip D; Mackenzie, Corey; Menec, Verena

    2015-01-01

    Depression and depressive symptoms predict death, but it is less clear if more general measures of life satisfaction (LS) predict death. Our objectives were to determine: (1) if LS predicts mortality over a five-year period in community-living older adults; and (2) which aspects of LS predict death. 1751 adults over the age of 65 who were living in the community were sampled from a representative population sampling frame in 1991/1992 and followed five years later. Age, gender, and education were self-reported. An index of multimorbidity and the Older American Resource Survey measured health and functional status, and the Terrible-Delightful Scale assessed overall LS as well as satisfaction with: health, finances, family, friends, housing, recreation, self-esteem, religion, and transportation. Cox proportional hazards models examined the influence of LS on time to death. 417 participants died during the five-year study period. Overall LS and all aspects of LS except finances, religion, and self-esteem predicted death in unadjusted analyses. In fully adjusted analyses, LS with health, housing, and recreation predicted death. Other aspects of LS did not predict death after accounting for functional status and multimorbidity. LS predicted death, but certain aspects of LS are more strongly associated with death. The effect of LS is complex and may be mediated or confounded by health and functional status. It is important to consider different domains of LS when considering the impact of this important emotional indicator on mortality among older adults.

  18. Loading Analysis of Composite Wind Turbine Blade for Fatigue Life Prediction of Adhesively Bonded Root Joint

    NASA Astrophysics Data System (ADS)

    Salimi-Majd, Davood; Azimzadeh, Vahid; Mohammadi, Bijan

    2015-06-01

    Nowadays wind energy is widely used as a non-polluting cost-effective renewable energy resource. During the lifetime of a composite wind turbine which is about 20 years, the rotor blades are subjected to different cyclic loads such as aerodynamics, centrifugal and gravitational forces. These loading conditions, cause to fatigue failure of the blade at the adhesively bonded root joint, where the highest bending moments will occur and consequently, is the most critical zone of the blade. So it is important to estimate the fatigue life of the root joint. The cohesive zone model is one of the best methods for prediction of initiation and propagation of debonding at the root joint. The advantage of this method is the possibility of modeling the debonding without any requirement to the remeshing. However in order to use this approach, it is necessary to analyze the cyclic loading condition at the root joint. For this purpose after implementing a cohesive interface element in the Ansys finite element software, one blade of a horizontal axis wind turbine with 46 m rotor diameter was modelled in full scale. Then after applying loads on the blade under different condition of the blade in a full rotation, the critical condition of the blade is obtained based on the delamination index and also the load ratio on the root joint in fatigue cycles is calculated. These data are the inputs for fatigue damage growth analysis of the root joint by using CZM approach that will be investigated in future work.

  19. Do clinical assessments, steady-state or daily-life gait characteristics predict falls in ambulatory chronic stroke survivors?

    PubMed

    Punt, Michiel; Bruijn, Sjoerd M; Wittink, Harriet; van de Port, Ingrid G; van Dieën, Jaap H

    2017-05-16

    This exploratory study investigated to what extent gait characteristics and clinical physical therapy assessments predict falls in chronic stroke survivors. Prospective study. Chronic fall-prone and non-fall-prone stroke survivors. Steady-state gait characteristics were collected from 40 participants while walking on a treadmill with motion capture of spatio-temporal, variability, and stability measures. An accelerometer was used to collect daily-life gait characteristics during 7 days. Six physical and psychological assessments were administered. Fall events were determined using a "fall calendar" and monthly phone calls over a 6-month period. After data reduction through principal component analysis, the predictive capacity of each method was determined by logistic regression. Thirty-eight percent of the participants were classified as fallers. Laboratory-based and daily-life gait characteristics predicted falls acceptably well, with an area under the curve of, 0.73 and 0.72, respectively, while fall predictions from clinical assessments were limited (0.64). Independent of the type of gait assessment, qualitative gait characteristics are better fall predictors than clinical assessments. Clinicians should therefore consider gait analyses as an alternative for identifying fall-prone stroke survivors.

  20. Slow Crack Growth and Fatigue Life Prediction of Ceramic Components Subjected to Variable Load History

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama

    2001-01-01

    Present capabilities of the NASA CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code include probabilistic life prediction of ceramic components subjected to fast fracture, slow crack growth (stress corrosion), and cyclic fatigue failure modes. Currently, this code has the capability to compute the time-dependent reliability of ceramic structures subjected to simple time-dependent loading. For example, in slow crack growth (SCG) type failure conditions CARES/Life can handle the cases of sustained and linearly increasing time-dependent loads, while for cyclic fatigue applications various types of repetitive constant amplitude loads can be accounted for. In real applications applied loads are rarely that simple, but rather vary with time in more complex ways such as, for example, engine start up, shut down, and dynamic and vibrational loads. In addition, when a given component is subjected to transient environmental and or thermal conditions, the material properties also vary with time. The objective of this paper is to demonstrate a methodology capable of predicting the time-dependent reliability of components subjected to transient thermomechanical loads that takes into account the change in material response with time. In this paper, the dominant delayed failure mechanism is assumed to be SCG. This capability has been added to the NASA CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code, which has also been modified to have the ability of interfacing with commercially available FEA codes executed for transient load histories. An example involving a ceramic exhaust valve subjected to combustion cycle loads is presented to demonstrate the viability of this methodology and the CARES/Life program.

  1. Profiling crop pollinators: life history traits predict habitat use and crop visitation by Mediterranean wild bees.

    PubMed

    Pisanty, Gideon; Mandelik, Yael

    2015-04-01

    Wild pollinators, bees in particular, may greatly contribute to crop pollination and provide a safety net against declines in commercial pollinators. However, the identity, life history traits, and environmental sensitivities of main crop pollinator species.have received limited attention. These are crucial for predicting pollination services of different communities and for developing management practices that enhance crop pollinators. We sampled wild bees in three crop systems (almond, confection sunflower, and seed watermelon) in a mosaic Israeli Mediterranean landscape. Bees were sampled in field/orchard edges and interiors, and in seminatural scrub surrounding the fields/orchards. We also analyzed land cover at 50-2500 m radii around fields/orchards. We used this data to distinguish crop from non-crop pollinators based on a set of life history traits (nesting, lecty, sociality, body size) linked to habitat preference and crop visitation. Bee abundance and species richness decreased from the surrounding seminatural habitat to the field/orchard interior, especially across the seminatural habitat-field edge ecotone. Thus, although rich bee communities were found near fields, only small fractions crossed the ecotone and visited crop flowers in substantial numbers. The bee assemblage in agricultural fields/orchards and on crop flowers was dominated by ground-nesting bees of the tribe Halictini, which tend to nest within fields. Bees' habitat preferences were determined mainly by nesting guild, whereas crop visitation was determined mainly by sociality. Lecty and body size also affected both measures. The percentage of surrounding seminatural habitat at 250-2500 m radii had a positive effect on wild bee diversity in field edges, for all bee guilds, while at 50-100 m radii, only aboveground nesters were positively affected. In sum, we found that crop and non-crop pollinators are distinguished by behavioral and morphological traits. Hence, analysis of life

  2. Wealth and happiness across the world: material prosperity predicts life evaluation, whereas psychosocial prosperity predicts positive feeling.

    PubMed

    Diener, Ed; Ng, Weiting; Harter, James; Arora, Raksha

    2010-07-01

    The Gallup World Poll, the first representative sample of planet Earth, was used to explore the reasons why happiness is associated with higher income, including the meeting of basic needs, fulfillment of psychological needs, increasing satisfaction with one's standard of living, and public goods. Across the globe, the association of log income with subjective well-being was linear but convex with raw income, indicating the declining marginal effects of income on subjective well-being. Income was a moderately strong predictor of life evaluation but a much weaker predictor of positive and negative feelings. Possessing luxury conveniences and satisfaction with standard of living were also strong predictors of life evaluation. Although the meeting of basic and psychological needs mediated the effects of income on life evaluation to some degree, the strongest mediation was provided by standard of living and ownership of conveniences. In contrast, feelings were most associated with the fulfillment of psychological needs: learning, autonomy, using one's skills, respect, and the ability to count on others in an emergency. Thus, two separate types of prosperity-economic and social psychological-best predict different types of well-being.

  3. Theory-Based Approaches to the Concept of Life

    ERIC Educational Resources Information Center

    El-Hani, Charbel Nino

    2008-01-01

    In this paper, I argue that characterisations of life through lists of properties have several shortcomings and should be replaced by theory-based accounts that explain the coexistence of a set of properties in living beings. The concept of life should acquire its meaning from its relationships with other concepts inside a theory. I illustrate…

  4. Enhancing College Students' Life Skills through Project Based Learning

    ERIC Educational Resources Information Center

    Wurdinger, Scott; Qureshi, Mariam

    2015-01-01

    This study examined whether life skills could be developed in a Project Based Learning (PBL) course. The participants were students enrolled in a graduate level PBL course. The same 35-question survey was given to students at the beginning and end of the course, and students were asked to rank their life skills using a Likert scale. Additionally,…

  5. Theory-Based Approaches to the Concept of Life

    ERIC Educational Resources Information Center

    El-Hani, Charbel Nino

    2008-01-01

    In this paper, I argue that characterisations of life through lists of properties have several shortcomings and should be replaced by theory-based accounts that explain the coexistence of a set of properties in living beings. The concept of life should acquire its meaning from its relationships with other concepts inside a theory. I illustrate…

  6. Cultivating Life Skills at a Project-Based Charter School

    ERIC Educational Resources Information Center

    Wurdinger, Scott; Enloe, Walter

    2011-01-01

    Surveys that focused on academic and life skill development were collected from alumni who attended Avalon Charter School in St Paul, Minnesota. Avalon is a small public charter school that uses project-based learning as their primary teaching method. Forty-two alumni responded to the online survey. Students ranked life skills such as creativity,…

  7. Cultivating Life Skills at a Project-Based Charter School

    ERIC Educational Resources Information Center

    Wurdinger, Scott; Enloe, Walter

    2011-01-01

    Surveys that focused on academic and life skill development were collected from alumni who attended Avalon Charter School in St Paul, Minnesota. Avalon is a small public charter school that uses project-based learning as their primary teaching method. Forty-two alumni responded to the online survey. Students ranked life skills such as creativity,…

  8. Classroom Formation & Spiritual Awareness Pedagogy Based on Bonhoeffer's "Life Together"

    ERIC Educational Resources Information Center

    Holm, Neil

    2008-01-01

    Bonhoeffer's "Life Together" describes disciplines for Christian formation. Based on communal life, these disciplines assist Christians to take seriously Christ's call to discipleship. This article describes the disciplines of dispersion and community, reading Scripture, prayer, solitude, discernment, service and confession. Disconnected from…

  9. Classroom Formation & Spiritual Awareness Pedagogy Based on Bonhoeffer's "Life Together"

    ERIC Educational Resources Information Center

    Holm, Neil

    2008-01-01

    Bonhoeffer's "Life Together" describes disciplines for Christian formation. Based on communal life, these disciplines assist Christians to take seriously Christ's call to discipleship. This article describes the disciplines of dispersion and community, reading Scripture, prayer, solitude, discernment, service and confession. Disconnected from…

  10. Enhancing College Students' Life Skills through Project Based Learning

    ERIC Educational Resources Information Center

    Wurdinger, Scott; Qureshi, Mariam

    2015-01-01

    This study examined whether life skills could be developed in a Project Based Learning (PBL) course. The participants were students enrolled in a graduate level PBL course. The same 35-question survey was given to students at the beginning and end of the course, and students were asked to rank their life skills using a Likert scale. Additionally,…

  11. Life prediction methodology for ceramic components of advanced vehicular heat engines: Volume 1. Final report

    SciTech Connect

    Khandelwal, P.K.; Provenzano, N.J.; Schneider, W.E.

    1996-02-01

    One of the major challenges involved in the use of ceramic materials is ensuring adequate strength and durability. This activity has developed methodology which can be used during the design phase to predict the structural behavior of ceramic components. The effort involved the characterization of injection molded and hot isostatic pressed (HIPed) PY-6 silicon nitride, the development of nondestructive evaluation (NDE) technology, and the development of analytical life prediction methodology. Four failure modes are addressed: fast fracture, slow crack growth, creep, and oxidation. The techniques deal with failures initiating at the surface as well as internal to the component. The life prediction methodology for fast fracture and slow crack growth have been verified using a variety of confirmatory tests. The verification tests were conducted at room and elevated temperatures up to a maximum of 1371 {degrees}C. The tests involved (1) flat circular disks subjected to bending stresses and (2) high speed rotating spin disks. Reasonable correlation was achieved for a variety of test conditions and failure mechanisms. The predictions associated with surface failures proved to be optimistic, requiring re-evaluation of the components` initial fast fracture strengths. Correlation was achieved for the spin disks which failed in fast fracture from internal flaws. Time dependent elevated temperature slow crack growth spin disk failures were also successfully predicted.

  12. An equivalent strain/Coffin-Manson approach to multiaxial fatigue and life prediction in superelastic Nitinol medical devices.

    PubMed

    Runciman, Amanda; Xu, David; Pelton, Alan R; Ritchie, Robert O

    2011-08-01

    Medical devices, particularly endovascular stents, manufactured from superelastic Nitinol, a near-equiatomic alloy of Ni and Ti, are subjected to complex mixed-mode loading conditions in vivo, including axial tension and compression, radial compression, pulsatile, bending and torsion. Fatigue lifetime prediction methodologies for Nitinol, however, are invariably based on uniaxial loading and thus fall short of accurately predicting the safe lifetime of stents under the complex multiaxial loading conditions experienced physiologically. While there is a considerable body of research documented on the cyclic fatigue of Nitinol in uniaxial tension or bending, there remains an almost total lack of comprehensive fatigue lifetime data for other loading conditions, such as torsion and tension/torsion. In this work, thin-walled Nitinol tubes were cycled in torsion at various mean and alternating strains to investigate the fatigue life behavior of Nitinol and results compared to equivalent fatigue data collected under uniaxial tensile/bending loads. Using these strain-life results for various loading modes and an equivalent referential (Lagrangian) strain approach, a strategy for normalizing these data is presented. Based on this strategy, a fatigue lifetime prediction model for the multiaxial loading of Nitinol is presented utilizing a modified Coffin-Manson approach where the number of cycles to failure is related to the equivalent alternating transformation strain. Published by Elsevier Ltd.

  13. Stressful life events interacting with cognitive/personality styles to predict late-onset major depression.

    PubMed

    Mazure, Carolyn M; Maciejewski, Paul K; Jacobs, Selby C; Bruce, Martha L

    2002-01-01

    The current work evaluated the interaction of life stressors with cognitive/personality styles in predicting late-onset depression in 42 elderly outpatients with DSM-IV unipolar Major Depression and 42 nondepressed controls. Control subjects were matched to cases on age, sex, race, and years of education. As suggested by Beck's cognitive theory of depression, a multivariate model indicated that specific stressful-event types interacted with specific cognitive/personality styles in strongly predicting depression onset, adjusting for the positive associations of medical illness and reduced physical functioning with depression.

  14. Telomere dynamics rather than age predict life expectancy in the wild

    PubMed Central

    Bize, Pierre; Criscuolo, François; Metcalfe, Neil B.; Nasir, Lubna; Monaghan, Pat

    2009-01-01

    Despite accumulating evidence from in vitro studies that cellular senescence is linked to telomere dynamics, how this relates to whole-organism senescence and longevity is poorly understood and controversial. Using data on telomere length in red blood cells and long-term survival from wild Alpine swifts of a range of ages, we report that the telomere length and the rate of telomere loss are predictive of life expectancy, and that slow erosion of relatively long telomeres is associated with the highest survival probabilities. Importantly, because telomere dynamics, rather than chronological age, predict life expectancy, our study provides good evidence for a mechanistic link between telomere erosion and reduced organism longevity under natural conditions, chronological age itself possibly not becoming a significant predictor until very old ages beyond those in our sample. PMID:19324831

  15. Application and life prediction of titanium alloys in military gas turbine engines

    SciTech Connect

    Cowles, B.A.

    1999-07-01

    Since initial introduction in the 1950's, application of titanium alloys has steadily increased in aircraft gas turbine engines. The low density and high specific strength of titanium alloys have contributed significantly toward attainment of today's high thrust, lightweight, fuel-efficient engines. Today, titanium alloys comprise more than one-third of total engine weight, much of it in structurally critical parts such as fan and compressor rotors and airfoils, and engine mainframe structures. Materials processing, and structural design, durability, and life prediction practices have continuously evolved to facilitate such applications. This paper presents an overview of current titanium applications in gas turbine engines, the current durability and life prediction challenges and areas that appear significant for future applications.

  16. Life prediction of materials exposed to monotonic and cyclic loading: Bibliography

    NASA Technical Reports Server (NTRS)

    Carpenter, J. L., Jr.; Moya, N.; Stuhrke, W. F.

    1975-01-01

    This bibliography is comprised of approximately 1200 reference citations related to the mechanics of failure in aerospace structures. Most of the references are for information on life prediction for materials exposed to monotonic and cyclic loading in elevated temperature environments such as that in the hot end of a gas turbine engine. Additional citations listed are for documents on the thermal and mechanical effects on solar cells in the cryogenic vacuum environment; radiation effects on high temperature mechanical properties; and high cycle fatigue technology as applicable to gas turbine engine bearings. The bibliography represents a search of the literature published in the period April 1962 through April 1974 and is largely limited to documents published in the United States. It is a companion volume to NASA CR-134750, Life Prediction of Materials Exposed to Monotonic and cyclic Loading - A Technology Survey.

  17. Definition of data bases, codes, and technologies for cable life extension

    SciTech Connect

    Bustard, L.D.

    1986-01-01

    The substantial number of cables inside containment for a typical nuclear facility provides a strong motivation to extend cable life rather than replace cables. Hence, it is important to understand what information is necessary to accomplish life extension. This paper defines utility-specific as well as collective industry actions that would facilitate extending cable life. The focus of these recommendations is (1) to more realistically define the environmental profiles during which cables must function, (2) to better understand the validity of accelerated aging methodology through examination of naturally aged cables, (3) to better understand the validity of accelerated aging methodology via selected experimentation, (4) to support cable aging analysis by improving nonproprietary data bases, (5) to reduce the impact of the design basis accident assumptions on cable performance so additional cable aging can be accommodated during extended life, and (6) to complement life predictions with more powerful cable condition monitoring techniques than those currently available.

  18. Life prediction of materials exposed to monotonic and cyclic loading: A new technology survey

    NASA Technical Reports Server (NTRS)

    Stuhrke, W. F.; Carpenter, J. L., Jr.

    1975-01-01

    Reviewed and evaluated technical abstracts for about 100 significant documents are reported relating primarily to life prediction for structural materials exposed to monotonic and cyclic loading, particularly in elevated temperature environments. The abstracts in the report are mostly for publications in the period April 1962 through April 1974. The purpose of this report is to provide, in quick reference form, a dependable source for current information

  19. Lipari Landfill Piping Network Corrosion Condition Assessment and Service Life Prediction Analysis

    DTIC Science & Technology

    2008-12-01

    crevice or erosion corrosion . 3.4.2 Data The valve body containing the corrosion coupon was placed into the west header on August 4, 2007. Figure...value statistical analysis of maximum pit depths and time to first perforation. Corrosion : 83–87. Houston, TX: NACE International. Gumbel , E.J...ER D C/ CE R L TR -0 8 -2 1 Lipari Landfill Piping Network Corrosion Condition Assessment and Service Life Prediction Analysis Charles

  20. Measurement techniques and instruments suitable for life-prediction testing of photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Noel, G. T.; Sliemers, F. A.; Deringer, G. C.; Wood, V. E.; Wilkes, K. E.; Gaines, G. B.; Carmichael, D. C.

    1978-01-01

    Array failure modes, relevant materials property changes, and primary degradation mechanisms are discussed as a prerequisite to identifying suitable measurement techniques and instruments. Candidate techniques and instruments are identified on the basis of extensive reviews of published and unpublished information. These methods are organized in six measurement categories - chemical, electrical, optical, thermal, mechanical, and other physicals. Using specified evaluation criteria, the most promising techniques and instruments for use in life prediction tests of arrays were selected.