Science.gov

Sample records for based life prediction

  1. Life prediction modeling based on cyclic damage accumulation

    NASA Technical Reports Server (NTRS)

    Nelson, Richard S.

    1988-01-01

    A high temperature, low cycle fatigue life prediction method was developed. This method, Cyclic Damage Accumulation (CDA), was developed for use in predicting the crack initiation lifetime of gas turbine engine materials, where initiation was defined as a 0.030 inch surface length crack. A principal engineering feature of the CDA method is the minimum data base required for implementation. Model constants can be evaluated through a few simple specimen tests such as monotonic loading and rapic cycle fatigue. The method was expanded to account for the effects on creep-fatigue life of complex loadings such as thermomechanical fatigue, hold periods, waveshapes, mean stresses, multiaxiality, cumulative damage, coatings, and environmental attack. A significant data base was generated on the behavior of the cast nickel-base superalloy B1900+Hf, including hundreds of specimen tests under such loading conditions. This information is being used to refine and extend the CDA life prediction model, which is now nearing completion. The model is also being verified using additional specimen tests on wrought INCO 718, and the final version of the model is expected to be adaptable to most any high-temperature alloy. The model is currently available in the form of equations and related constants. A proposed contract addition will make the model available in the near future in the form of a computer code to potential users.

  2. SHM-Based Probabilistic Fatigue Life Prediction for Bridges Based on FE Model Updating.

    PubMed

    Lee, Young-Joo; Cho, Soojin

    2016-01-01

    Fatigue life prediction for a bridge should be based on the current condition of the bridge, and various sources of uncertainty, such as material properties, anticipated vehicle loads and environmental conditions, make the prediction very challenging. This paper presents a new approach for probabilistic fatigue life prediction for bridges using finite element (FE) model updating based on structural health monitoring (SHM) data. Recently, various types of SHM systems have been used to monitor and evaluate the long-term structural performance of bridges. For example, SHM data can be used to estimate the degradation of an in-service bridge, which makes it possible to update the initial FE model. The proposed method consists of three steps: (1) identifying the modal properties of a bridge, such as mode shapes and natural frequencies, based on the ambient vibration under passing vehicles; (2) updating the structural parameters of an initial FE model using the identified modal properties; and (3) predicting the probabilistic fatigue life using the updated FE model. The proposed method is demonstrated by application to a numerical model of a bridge, and the impact of FE model updating on the bridge fatigue life is discussed. PMID:26950125

  3. SHM-Based Probabilistic Fatigue Life Prediction for Bridges Based on FE Model Updating

    PubMed Central

    Lee, Young-Joo; Cho, Soojin

    2016-01-01

    Fatigue life prediction for a bridge should be based on the current condition of the bridge, and various sources of uncertainty, such as material properties, anticipated vehicle loads and environmental conditions, make the prediction very challenging. This paper presents a new approach for probabilistic fatigue life prediction for bridges using finite element (FE) model updating based on structural health monitoring (SHM) data. Recently, various types of SHM systems have been used to monitor and evaluate the long-term structural performance of bridges. For example, SHM data can be used to estimate the degradation of an in-service bridge, which makes it possible to update the initial FE model. The proposed method consists of three steps: (1) identifying the modal properties of a bridge, such as mode shapes and natural frequencies, based on the ambient vibration under passing vehicles; (2) updating the structural parameters of an initial FE model using the identified modal properties; and (3) predicting the probabilistic fatigue life using the updated FE model. The proposed method is demonstrated by application to a numerical model of a bridge, and the impact of FE model updating on the bridge fatigue life is discussed. PMID:26950125

  4. SHM-Based Probabilistic Fatigue Life Prediction for Bridges Based on FE Model Updating.

    PubMed

    Lee, Young-Joo; Cho, Soojin

    2016-03-02

    Fatigue life prediction for a bridge should be based on the current condition of the bridge, and various sources of uncertainty, such as material properties, anticipated vehicle loads and environmental conditions, make the prediction very challenging. This paper presents a new approach for probabilistic fatigue life prediction for bridges using finite element (FE) model updating based on structural health monitoring (SHM) data. Recently, various types of SHM systems have been used to monitor and evaluate the long-term structural performance of bridges. For example, SHM data can be used to estimate the degradation of an in-service bridge, which makes it possible to update the initial FE model. The proposed method consists of three steps: (1) identifying the modal properties of a bridge, such as mode shapes and natural frequencies, based on the ambient vibration under passing vehicles; (2) updating the structural parameters of an initial FE model using the identified modal properties; and (3) predicting the probabilistic fatigue life using the updated FE model. The proposed method is demonstrated by application to a numerical model of a bridge, and the impact of FE model updating on the bridge fatigue life is discussed.

  5. An Energy Based Fatigue Life Prediction Framework for In-Service Structural Components

    SciTech Connect

    H. Ozaltun; M. H.H. Shen; T. George; C. Cross

    2011-06-01

    An energy based fatigue life prediction framework has been developed for calculation of remaining fatigue life of in service gas turbine materials. The purpose of the life prediction framework is to account aging effect caused by cyclic loadings on fatigue strength of gas turbine engines structural components which are usually designed for very long life. Previous studies indicate the total strain energy dissipated during a monotonic fracture process and a cyclic process is a material property that can be determined by measuring the area underneath the monotonic true stress-strain curve and the sum of the area within each hysteresis loop in the cyclic process, respectively. The energy-based fatigue life prediction framework consists of the following entities: (1) development of a testing procedure to achieve plastic energy dissipation per life cycle and (2) incorporation of an energy-based fatigue life calculation scheme to determine the remaining fatigue life of in-service gas turbine materials. The accuracy of the remaining fatigue life prediction method was verified by comparison between model approximation and experimental results of Aluminum 6061-T6. The comparison shows promising agreement, thus validating the capability of the framework to produce accurate fatigue life prediction.

  6. Fatigue Life Prediction of Ductile Iron Based on DE-SVM Algorithm

    NASA Astrophysics Data System (ADS)

    Yiqun, Ma; Xiaoping, Wang; lun, An

    the model, predicting fatigue life of ductile iron, based on SVM (Support Vector Machine, SVM) has been established. For it is easy to fall into local optimum during parameter optimization of SVM, DE (Differential Evolution algorithm, DE) algorithm was adopted to optimize to improve prediction precision. Fatigue life of ductile iron is predicted combining with concrete examples, and simulation experiment to optimize SVM is conducted adopting GA (Genetic Algorithm), ACO (Ant Colony Optimization) and POS (Partial Swarm Optimization). Results reveal that DE-SVM algorithm is of a better prediction performance.

  7. Battery Life Predictive Model

    2009-12-31

    The Software consists of a model used to predict battery capacity fade and resistance growth for arbitrary cycling and temperature profiles. It allows the user to extrapolate from experimental data to predict actual life cycle.

  8. Predicting Pedestrian Flow: A Methodology and a Proof of Concept Based on Real-Life Data

    PubMed Central

    Davidich, Maria; Köster, Gerta

    2013-01-01

    Building a reliable predictive model of pedestrian motion is very challenging: Ideally, such models should be based on observations made in both controlled experiments and in real-world environments. De facto, models are rarely based on real-world observations due to the lack of available data; instead, they are largely based on intuition and, at best, literature values and laboratory experiments. Such an approach is insufficient for reliable simulations of complex real-life scenarios: For instance, our analysis of pedestrian motion under natural conditions at a major German railway station reveals that the values for free-flow velocities and the flow-density relationship differ significantly from widely used literature values. It is thus necessary to calibrate and validate the model against relevant real-life data to make it capable of reproducing and predicting real-life scenarios. In this work we aim at constructing such realistic pedestrian stream simulation. Based on the analysis of real-life data, we present a methodology that identifies key parameters and interdependencies that enable us to properly calibrate the model. The success of the approach is demonstrated for a benchmark model, a cellular automaton. We show that the proposed approach significantly improves the reliability of the simulation and hence the potential prediction accuracy. The simulation is validated by comparing the local density evolution of the measured data to that of the simulated data. We find that for our model the most sensitive parameters are: the source-target distribution of the pedestrian trajectories, the schedule of pedestrian appearances in the scenario and the mean free-flow velocity. Our results emphasize the need for real-life data extraction and analysis to enable predictive simulations. PMID:24386186

  9. Coating Life Prediction

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Gedwill, M. A.

    1984-01-01

    Hot-section gas-turbine components typically require some form of coating for oxidation and corrosion protection. Efficient use of coatings requires reliable and accurate predictions of the protective life of the coating. Currently engine inspections and component replacements are often made on a conservative basis. As a result, there is a constant need to improve and develop the life-prediction capability of metallic coatings for use in various service environments. The purpose of this present work is aimed at developing of an improved methodology for predicting metallic coating lives in an oxidizing environment and in a corrosive environment.

  10. A parametric physics based creep life prediction approach to gas turbine blade conceptual design

    NASA Astrophysics Data System (ADS)

    Smith, Marcus Edward Brockbank

    The required useful service lives of gas turbine components and parts are naturally one of the major design constraints limiting the gas turbine design space. For example, the required service life of a turbine blade limits the firing temperature in the combustor, which in turn limits the performance of the gas turbine. For a cooled turbine blade, it also determines the necessary cooling flow, which has a strong impact on the turbine efficiency. In most gas turbine design practices, the life prediction is only emphasized during or after the detailed design has been completed. Limited life prediction efforts have been made in the early design stages, but these efforts capture only a few of the necessary key factors, such as centrifugal stress. Furthermore, the early stage prediction methods are usually hard coded in the gas turbine system design tools and hidden from the system designer's view. The common failure mechanisms affecting the service life, such as creep, fatigue and oxidation, are highly sensitive to the material temperatures and/or stresses. Calculation of these temperatures and stresses requires that the geometry, material properties, and operating conditions be known; information not typically available in early stages of design. Even without awareness of the errors, the resulting inaccuracy in the life prediction may mislead the system designers when examining a design space which is bounded indirectly by the inaccurate required life constraints. Furthermore, because intensive creep lifing analysis is possible only towards the end of the design process, any errors or changes will cost the engine manufacturer significant money; money that could be saved if more comprehensive creep lifing predictions were possible in the early stages of design. A rapid, physics-based life prediction method could address this problem by enabling the system designer to investigate the design space more thoroughly and accurately. Although not meant as a final decision

  11. Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Gaussian Processes Mixture.

    PubMed

    Li, Lingling; Wang, Pengchong; Chao, Kuei-Hsiang; Zhou, Yatong; Xie, Yang

    2016-01-01

    The remaining useful life (RUL) prediction of Lithium-ion batteries is closely related to the capacity degeneration trajectories. Due to the self-charging and the capacity regeneration, the trajectories have the property of multimodality. Traditional prediction models such as the support vector machines (SVM) or the Gaussian Process regression (GPR) cannot accurately characterize this multimodality. This paper proposes a novel RUL prediction method based on the Gaussian Process Mixture (GPM). It can process multimodality by fitting different segments of trajectories with different GPR models separately, such that the tiny differences among these segments can be revealed. The method is demonstrated to be effective for prediction by the excellent predictive result of the experiments on the two commercial and chargeable Type 1850 Lithium-ion batteries, provided by NASA. The performance comparison among the models illustrates that the GPM is more accurate than the SVM and the GPR. In addition, GPM can yield the predictive confidence interval, which makes the prediction more reliable than that of traditional models. PMID:27632176

  12. Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Gaussian Processes Mixture

    PubMed Central

    Li, Lingling; Wang, Pengchong; Chao, Kuei-Hsiang; Zhou, Yatong; Xie, Yang

    2016-01-01

    The remaining useful life (RUL) prediction of Lithium-ion batteries is closely related to the capacity degeneration trajectories. Due to the self-charging and the capacity regeneration, the trajectories have the property of multimodality. Traditional prediction models such as the support vector machines (SVM) or the Gaussian Process regression (GPR) cannot accurately characterize this multimodality. This paper proposes a novel RUL prediction method based on the Gaussian Process Mixture (GPM). It can process multimodality by fitting different segments of trajectories with different GPR models separately, such that the tiny differences among these segments can be revealed. The method is demonstrated to be effective for prediction by the excellent predictive result of the experiments on the two commercial and chargeable Type 1850 Lithium-ion batteries, provided by NASA. The performance comparison among the models illustrates that the GPM is more accurate than the SVM and the GPR. In addition, GPM can yield the predictive confidence interval, which makes the prediction more reliable than that of traditional models. PMID:27632176

  13. Creep life prediction based on stochastic model of microstructurally short crack growth

    NASA Technical Reports Server (NTRS)

    Kitamura, Takayuki; Ohtani, Ryuichi

    1988-01-01

    A nondimensional model of microstructurally short crack growth in creep is developed based on a detailed observation of the creep fracture process of 304 stainless steel. In order to deal with the scatter of small crack growth rate data caused by microstructural inhomogeneity, a random variable technique is used in the model. A cumulative probability of the crack length at an arbitary time, G(bar a, bar t), and that of the time when a crack reaches an arbitary length, F(bar t, bar a), are obtained numerically by means of a Monte Carlo method. G(bar a, bar t), and F(bar t, bar a) are the probabilities for a single crack. However, multiple cracks generally initiate on the surface of a smooth specimen from the early stage of creep life to the final stage. TAking into account the multiple crack initiations, the actual crack length distribution observed on the surface of a specimen is predicted by the combination of probabilities for a single crack. The prediction shows a fairly good agreement with the experimental result for creep of 304 stainless steel at 923 K. The probability of creep life is obtained from an assumption that creep fracture takes place when the longest crack reaches a critical length. The observed and predicted scatter of the life is fairly small for the specimens tested.

  14. Creep life prediction based on stochastic model of microstructurally short crack growth

    NASA Technical Reports Server (NTRS)

    Kitamura, Takayuki; Ohtani, Ryuichi

    1989-01-01

    A nondimensional model of microstructurally short crack growth in creep is developed based on a detailed observation of the creep fracture process of 304 stainless steel. In order to deal with the scatter of small crack growth rate data caused by microstructural inhomogeneity, a random variable technique is used in the model. A cumulative probability of the crack length at an arbitrary time, G(bar a, bar t), and that of the time when a crack reaches an arbitrary length, F(bar t, bar a), are obtained numerically by means of a Monte Carlo method. G(bar a, bar t), and F(bar t, bar a) are the probabilities for a single crack. However, multiple cracks generally initiate on the surface of a smooth specimen from the early stage of creep life to the final stage. Taking into account the multiple crack initiations, the actual crack length distribution observed on the surface of a specimen is predicted by the combination of probabilities for a single crack. The prediction shows a fairly good agreement with the experimental result for creep of 304 stainless steel at 923 K. The probability of creep life is obtained from an assumption that creep fracture takes place when the longest crack reaches a critical length. The observed and predicted scatter of the life is fairly small for the specimens tested.

  15. Predicting service life margins

    NASA Technical Reports Server (NTRS)

    Egan, G. F.

    1971-01-01

    Margins are developed for equipment susceptible to malfunction due to excessive time or operation cycles, and for identifying limited life equipment so monitoring and replacing is accomplished before hardware failure. Method applies to hardware where design service is established and where reasonable expected usage prediction is made.

  16. Application of an Energy-Based Life Prediction Model to Bithermal and Thermomechanical Fatigue

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, V. M.; Kalluri, Sreeramesh; Halford, Gary R.

    1994-01-01

    The inelastic hysteresis energy applied to the material in a cycle is used as the basis for predicting nonisothermal fatigue life of a wrought cobalt-base superalloy, Haynes 188, from isothermal fatigue data. Damage functions that account for hold-time effects and time-dependent environmental phenomena such as oxidation and hot corrosion are proposed in terms of the inelastic hysteresis energy per cycle. The proposed damage functions are used to predict the bithermal and thermomechanical fatigue lives of Haynes 188 between 316 and 760 C from isothermal fatigue data. Predicted fatigue lives of all but two of the nonisothermal tests are within a factor of 1.5 of the experimentally observed lives.

  17. Coating life prediction

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Gedwill, Michael A.

    1985-01-01

    The investigation combines both experimental studies and numerical modeling to predict coating life in an oxidizing environment. The experimental work provides both input to and verification of two numerical models. The coatings being examined are an aluminide coating on Udimet 700 (U-700), a low-pressure plasma spray (LPPS) Ni-18Co-17Cr-24Al-0.2Y overlay coating also on U- 700, and bulk deposits of the LPPS NiCoCrAlY coating.

  18. Predicting in-service fatigue life of flexible pavements based on accelerated pavement testing

    NASA Astrophysics Data System (ADS)

    Guo, Runhua

    Pavement performance prediction in terms of fatigue cracking and surface rutting are essential for any mechanistically-based pavement design method. Traditionally, the estimation of the expected fatigue field performance has been based on the laboratory bending beam test. Full-scale Accelerated Pavement Testing (APT) is an alternative to laboratory testing leading to advances in practice and economic savings for the evaluation of new pavement configurations, stress level related factors, new materials and design improvements. This type of testing closely simulates field conditions; however, it does not capture actual performance because of the limited ability to address long-term phenomena. The same pavement structure may exhibit different response and performance under APT than when in-service. Actual field performance is better captured by experiments such as Federal Highway Administration's Long-Term Pavement Performance (LTPP) studies. Therefore, to fully utilize the benefits of APT, there is a need for a methodology to predict the long-term performance of in-service pavement structures from the results of APT tests that will account for such differences. Three models are generally suggested to account for the difference: shift factors, statistical and mechanistic approaches. A reliability based methodology for fatigue cracking prediction is proposed in this research, through which the three models suggested previously are combined into one general approach that builds on their individual strengths to overcome some of the shortcomings when the models are applied individually. The Bias Correction Factor (BCF) should account for all quantifiable differences between the fatigue life of the pavement site under APT and in-service conditions. In addition to the Bias Correction Factor, a marginal shifty factor, M, should be included to account for the unquantifiable differences when predicting the in-service pavement fatigue life from APT. The Bias Correction Factor

  19. A high temperature fatigue life prediction computer code based on the Total Strain Version of Strainrange Partitioning (SRP)

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.; Saltsman, James F.

    1991-01-01

    A recently developed high-temperature fatigue life prediction computer code is presented, based on the Total Strain version of Strainrange Partitioning (TS-SRP). Included in this code are procedures for characterizing the creep-fatigue durability behavior of an alloy according to TS-SRP guidelines and predicting cyclic life for complex cycle types for both isothermal and thermomechanical conditions. A reasonably extensive materials properties database is included with the code.

  20. Multi-scale mechanism based life prediction of polymer matrix composites for high temperature airframe applications

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Priyank

    A multi-scale mechanism-based life prediction model is developed for high-temperature polymer matrix composites (HTPMC) for high temperature airframe applications. In the first part of this dissertation the effect of Cloisite 20A (C20A) nano-clay compounding on the thermo-oxidative weight loss and the residual stresses due to thermal oxidation for a thermoset polymer bismaleimide (BMI) are investigated. A three-dimensional (3-D) micro-mechanics based finite element analysis (FEA) was conducted to investigate the residual stresses due to thermal oxidation using an in-house FEA code (NOVA-3D). In the second part of this dissertation, a novel numerical-experimental methodology is outlined to determine cohesive stress and damage evolution parameters for pristine as well as isothermally aged (in air) polymer matrix composites. A rate-dependent viscoelastic cohesive layer model was implemented in an in-house FEA code to simulate the delamination initiation and propagation in unidirectional polymer composites before and after aging. Double cantilever beam (DCB) experiments were conducted (at UT-Dallas) on both pristine and isothermally aged IM-7/BMI composite specimens to determine the model parameters. The J-Integral based approach was adapted to extract cohesive stresses near the crack tip. Once the damage parameters had been characterized, the test-bed FEA code employed a micromechanics based viscoelastic cohesive layer model to numerically simulate the DCB experiment. FEA simulation accurately captures the macro-scale behavior (load-displacement history) simultaneously with the micro-scale behavior (crack-growth history).

  1. A high temperature fatigue life prediction computer code based on the total strain version of StrainRange Partitioning (SRP)

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.; Saltsman, James F.

    1993-01-01

    A recently developed high-temperature fatigue life prediction computer code is presented and an example of its usage given. The code discussed is based on the Total Strain version of Strainrange Partitioning (TS-SRP). Included in this code are procedures for characterizing the creep-fatigue durability behavior of an alloy according to TS-SRP guidelines and predicting cyclic life for complex cycle types for both isothermal and thermomechanical conditions. A reasonably extensive materials properties database is included with the code.

  2. An Improved Wavelet Packet-Chaos Model for Life Prediction of Space Relays Based on Volterra Series.

    PubMed

    Li, Lingling; Han, Ye; Chen, Wenyuan; Lv, Congmin; Sun, Dongwang

    2016-01-01

    In this paper, an improved algorithm of wavelet packet-chaos model for life prediction of space relays based on volterra series is proposed. In the proposed method, the high and low frequency time sequence components of performance parameters are obtained by employing the improved wavelet packet transform to decompose the performance parameters of the relay into multiple scales. Then the optimization algorithm of parameters in volterra series is improved, and is used to construct a chaotic forecasting model for the high and low frequency time sequence components gained by the wavelet packet transform. At last, the chaotic forecasting results of the high and low frequency components are combined by taking the wavelet packet reconstruction approach, so as to predict the lifetime of the studied space relay. The algorithm can predict the life curve of the relay accurately and reflect the characteristics of the relay performance with sufficient accuracy. The proposed method is validated via a case study of a space relay.

  3. Developing a support vector machine based QSPR model for prediction of half-life of some herbicides.

    PubMed

    Samghani, Kobra; HosseinFatemi, Mohammad

    2016-07-01

    The half-life (t1/2) of 58 herbicides were modeled by quantitative structure-property relationship (QSPR) based molecular structure descriptors. After calculation and the screening of a large number of molecular descriptors, the most relevant those ones selected by stepwise multiple linear regression were used for developing linear and nonlinear models which developed by using multiple linear regression and support vector machine, respectively. Comparison between statistical parameters of linear and nonlinear models indicates the suitability of SVM over MLR model for predicting the half-life of herbicides. The statistical parameters of R(2) and standard error for training set of SVM model were; 0.96 and 0.087, respectively, and were 0.93 and 0.092 for the test set. The SVM model was evaluated by leave one out cross validation test, which its result indicates the robustness and predictability of the model. The established SVM model was used for predicting the half-life of other herbicides that are located in the applicability domain of model that were determined via leverage approach. The results of this study indicate that the relationship among selected molecular descriptors and herbicide's half-life is non-linear. These results emphases that the process of degradation of herbicides in the environment is very complex and can be affected by various environmental and structural features, therefore simple linear model cannot be able to successfully predict it. PMID:26970881

  4. Effect of Individual Component Life Distribution on Engine Life Prediction

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.; Hendricks, Robert C.; Soditus, Sherry M.

    2003-01-01

    The effect of individual engine component life distributions on engine life prediction was determined. A Weibull-based life and reliability analysis of the NASA Energy Efficient Engine was conducted. The engine s life at a 95 and 99.9 percent probability of survival was determined based upon the engine manufacturer s original life calculations and assumed values of each of the component s cumulative life distributions as represented by a Weibull slope. The lives of the high-pressure turbine (HPT) disks and blades were also evaluated individually and as a system in a similar manner. Knowing the statistical cumulative distribution of each engine component with reasonable engineering certainty is a condition precedent to predicting the life and reliability of an entire engine. The life of a system at a given reliability will be less than the lowest-lived component in the system at the same reliability (probability of survival). Where Weibull slopes of all the engine components are equal, the Weibull slope had a minimal effect on engine L(sub 0.1) life prediction. However, at a probability of survival of 95 percent (L(sub 5) life), life decreased with increasing Weibull slope.

  5. V-Notched Bar Creep Life Prediction: GH3536 Ni-Based Superalloy Under Multiaxial Stress State

    NASA Astrophysics Data System (ADS)

    Zhang, D. X.; Wang, J. P.; Wen, Z. X.; Liu, D. S.; Yue, Z. F.

    2016-07-01

    In this study, creep experiments on smooth and circumferential V-type notched round bars were conducted in GH3536 Ni-based superalloy at 750 °C to identify notch strengthening effect in notched specimens. FE analysis was carried out, coupled with continuum damage mechanics (CDM), to analyze stress distribution and damage evolution under multiaxial stress state. The creep deformation of smooth specimens and the rupture life of both smooth and notched specimens showed good agreement between experimental results and FE analysis predictions; the creep rupture life for the notched specimen was successfully predicted via the "skeletal point" concept. Both creep damage analysis and the observed fracture morphology suggest that creep rupture started first at the root in the V-type notched specimens, and shifted to the region close to the notch root when the notch was relatively shallow compared to U-type notched specimens.

  6. [Prediction method of rural landscape pattern evolution based on life cycle: a case study of Jinjing Town, Hunan Province, China].

    PubMed

    Ji, Xiang; Liu, Li-Ming; Li, Hong-Qing

    2014-11-01

    Taking Jinjing Town in Dongting Lake area as a case, this paper analyzed the evolution of rural landscape patterns by means of life cycle theory, simulated the evolution cycle curve, and calculated its evolution period, then combining CA-Markov model, a complete prediction model was built based on the rule of rural landscape change. The results showed that rural settlement and paddy landscapes of Jinjing Town would change most in 2020, with the rural settlement landscape increased to 1194.01 hm2 and paddy landscape greatly reduced to 3090.24 hm2. The quantitative and spatial prediction accuracies of the model were up to 99.3% and 96.4%, respectively, being more explicit than single CA-Markov model. The prediction model of rural landscape patterns change proposed in this paper would be helpful for rural landscape planning in future.

  7. An Improved Wavelet Packet-Chaos Model for Life Prediction of Space Relays Based on Volterra Series

    PubMed Central

    Li, Lingling; Han, Ye; Chen, Wenyuan; Lv, Congmin; Sun, Dongwang

    2016-01-01

    In this paper, an improved algorithm of wavelet packet-chaos model for life prediction of space relays based on volterra series is proposed. In the proposed method, the high and low frequency time sequence components of performance parameters are obtained by employing the improved wavelet packet transform to decompose the performance parameters of the relay into multiple scales. Then the optimization algorithm of parameters in volterra series is improved, and is used to construct a chaotic forecasting model for the high and low frequency time sequence components gained by the wavelet packet transform. At last, the chaotic forecasting results of the high and low frequency components are combined by taking the wavelet packet reconstruction approach, so as to predict the lifetime of the studied space relay. The algorithm can predict the life curve of the relay accurately and reflect the characteristics of the relay performance with sufficient accuracy. The proposed method is validated via a case study of a space relay. PMID:27355578

  8. Physics based modeling of a series parallel battery pack for asymmetry analysis, predictive control and life extension

    NASA Astrophysics Data System (ADS)

    Ganesan, Nandhini; Basu, Suman; Hariharan, Krishnan S.; Kolake, Subramanya Mayya; Song, Taewon; Yeo, Taejung; Sohn, Dong Kee; Doo, Seokgwang

    2016-08-01

    Lithium-Ion batteries used for electric vehicle applications are subject to large currents and various operation conditions, making battery pack design and life extension a challenging problem. With increase in complexity, modeling and simulation can lead to insights that ensure optimal performance and life extension. In this manuscript, an electrochemical-thermal (ECT) coupled model for a 6 series × 5 parallel pack is developed for Li ion cells with NCA/C electrodes and validated against experimental data. Contribution of the cathode to overall degradation at various operating conditions is assessed. Pack asymmetry is analyzed from a design and an operational perspective. Design based asymmetry leads to a new approach of obtaining the individual cell responses of the pack from an average ECT output. Operational asymmetry is demonstrated in terms of effects of thermal gradients on cycle life, and an efficient model predictive control technique is developed. Concept of reconfigurable battery pack is studied using detailed simulations that can be used for effective monitoring and extension of battery pack life.

  9. Prediction of the maximum temperature for life based on the stability of metabolites to decomposition in water.

    PubMed

    Bains, William; Xiao, Yao; Yu, Changyong

    2015-01-01

    The components of life must survive in a cell long enough to perform their function in that cell. Because the rate of attack by water increases with temperature, we can, in principle, predict a maximum temperature above which an active terrestrial metabolism cannot function by analysis of the decomposition rates of the components of life, and comparison of those rates with the metabolites' minimum metabolic half-lives. The present study is a first step in this direction, providing an analytical framework and method, and analyzing the stability of 63 small molecule metabolites based on literature data. Assuming that attack by water follows a first order rate equation, we extracted decomposition rate constants from literature data and estimated their statistical reliability. The resulting rate equations were then used to give a measure of confidence in the half-life of the metabolite concerned at different temperatures. There is little reliable data on metabolite decomposition or hydrolysis rates in the literature, the data is mostly confined to a small number of classes of chemicals, and the data available are sometimes mutually contradictory because of varying reaction conditions. However, a preliminary analysis suggests that terrestrial biochemistry is limited to environments below ~150-180 °C. We comment briefly on why pressure is likely to have a small effect on this.

  10. Prediction of the maximum temperature for life based on the stability of metabolites to decomposition in water.

    PubMed

    Bains, William; Xiao, Yao; Yu, Changyong

    2015-01-01

    The components of life must survive in a cell long enough to perform their function in that cell. Because the rate of attack by water increases with temperature, we can, in principle, predict a maximum temperature above which an active terrestrial metabolism cannot function by analysis of the decomposition rates of the components of life, and comparison of those rates with the metabolites' minimum metabolic half-lives. The present study is a first step in this direction, providing an analytical framework and method, and analyzing the stability of 63 small molecule metabolites based on literature data. Assuming that attack by water follows a first order rate equation, we extracted decomposition rate constants from literature data and estimated their statistical reliability. The resulting rate equations were then used to give a measure of confidence in the half-life of the metabolite concerned at different temperatures. There is little reliable data on metabolite decomposition or hydrolysis rates in the literature, the data is mostly confined to a small number of classes of chemicals, and the data available are sometimes mutually contradictory because of varying reaction conditions. However, a preliminary analysis suggests that terrestrial biochemistry is limited to environments below ~150-180 °C. We comment briefly on why pressure is likely to have a small effect on this. PMID:25821932

  11. Prediction of the Maximum Temperature for Life Based on the Stability of Metabolites to Decomposition in Water

    PubMed Central

    Bains, William; Xiao, Yao; Yu, Changyong

    2015-01-01

    The components of life must survive in a cell long enough to perform their function in that cell. Because the rate of attack by water increases with temperature, we can, in principle, predict a maximum temperature above which an active terrestrial metabolism cannot function by analysis of the decomposition rates of the components of life, and comparison of those rates with the metabolites’ minimum metabolic half-lives. The present study is a first step in this direction, providing an analytical framework and method, and analyzing the stability of 63 small molecule metabolites based on literature data. Assuming that attack by water follows a first order rate equation, we extracted decomposition rate constants from literature data and estimated their statistical reliability. The resulting rate equations were then used to give a measure of confidence in the half-life of the metabolite concerned at different temperatures. There is little reliable data on metabolite decomposition or hydrolysis rates in the literature, the data is mostly confined to a small number of classes of chemicals, and the data available are sometimes mutually contradictory because of varying reaction conditions. However, a preliminary analysis suggests that terrestrial biochemistry is limited to environments below ~150–180 °C. We comment briefly on why pressure is likely to have a small effect on this. PMID:25821932

  12. Rolling Bearing Life Prediction, Theory, and Application

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    2013-01-01

    A tutorial is presented outlining the evolution, theory, and application of rolling-element bearing life prediction from that of A. Palmgren, 1924; W. Weibull, 1939; G. Lundberg and A. Palmgren, 1947 and 1952; E. Ioannides and T. Harris, 1985; and E. Zaretsky, 1987. Comparisons are made between these life models. The Ioannides-Harris model without a fatigue limit is identical to the Lundberg-Palmgren model. The Weibull model is similar to that of Zaretsky if the exponents are chosen to be identical. Both the load-life and Hertz stress-life relations of Weibull, Lundberg and Palmgren, and Ioannides and Harris reflect a strong dependence on the Weibull slope. The Zaretsky model decouples the dependence of the critical shear stress-life relation from the Weibull slope. This results in a nominal variation of the Hertz stress-life exponent. For 9th- and 8th-power Hertz stress-life exponents for ball and roller bearings, respectively, the Lundberg- Palmgren model best predicts life. However, for 12th- and 10th-power relations reflected by modern bearing steels, the Zaretsky model based on the Weibull equation is superior. Under the range of stresses examined, the use of a fatigue limit would suggest that (for most operating conditions under which a rolling-element bearing will operate) the bearing will not fail from classical rolling-element fatigue. Realistically, this is not the case. The use of a fatigue limit will significantly overpredict life over a range of normal operating Hertz stresses. Since the predicted lives of rolling-element bearings are high, the problem can become one of undersizing a bearing for a particular application.

  13. Predicting the remaining service life of concrete

    SciTech Connect

    Clifton, J.F.

    1991-11-01

    Nuclear power plants are providing, currently, about 17 percent of the U.S. electricity and many of these plants are approaching their licensed life of 40 years. The U.S. Nuclear Regulatory Commission and the Department of Energy`s Oak Ridge National Laboratory are carrying out a program to develop a methodology for assessing the remaining safe-life of the concrete components and structures in nuclear power plants. This program has the overall objective of identifying potential structural safety issues, as well as acceptance criteria, for use in evaluations of nuclear power plants for continued service. The National Institute of Standards and Technology (NIST) is contributing to this program by identifying and analyzing methods for predicting the remaining life of in-service concrete materials. This report examines the basis for predicting the remaining service lives of concrete materials of nuclear power facilities. Methods for predicting the service life of new and in-service concrete materials are analyzed. These methods include (1) estimates based on experience, (2) comparison of performance, (3) accelerated testing, (4) stochastic methods, and (5) mathematical modeling. New approaches for predicting the remaining service lives of concrete materials are proposed and recommendations for their further development given. Degradation processes are discussed based on considerations of their mechanisms, likelihood of occurrence, manifestations, and detection. They include corrosion, sulfate attack, alkali-aggregate reactions, frost attack, leaching, radiation, salt crystallization, and microbiological attack.

  14. Creep Life Prediction of Ceramic Components Using the Finite Element Based Integrated Design Program (CARES/Creep)

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama M.; Powers, Lynn M.; Gyekenyesi, John P.

    1997-01-01

    The desirable properties of ceramics at high temperatures have generated interest in their use for structural applications such as in advanced turbine systems. Design lives for such systems can exceed 10,000 hours. Such long life requirements necessitate subjecting the components to relatively low stresses. The combination of high temperatures and low stresses typically places failure for monolithic ceramics in the creep regime. The objective of this work is to present a design methodology for predicting the lifetimes of structural components subjected to multiaxial creep loading. This methodology utilizes commercially available finite element packages and takes into account the time varying creep stress distributions (stress relaxation). In this methodology, the creep life of a component is divided into short time steps, during which, the stress and strain distributions are assumed constant. The damage, D, is calculated for each time step based on a modified Monkman-Grant creep rupture criterion. For components subjected to predominantly tensile loading, failure is assumed to occur when the normalized accumulated damage at any point in the component is greater than or equal to unity.

  15. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Hillery, R. V.; Pilsner, B. H.; Mcknight, R. L.; Cook, T. S.; Hartle, M. S.

    1988-01-01

    This report describes work performed to determine the predominat modes of degradation of a plasma sprayed thermal barrier coating system and to develop and verify life prediction models accounting for these degradation modes. The primary TBC system consisted of a low pressure plasma sprayed NiCrAlY bond coat, an air plasma sprayed ZrO2-Y2O3 top coat, and a Rene' 80 substrate. The work was divided into 3 technical tasks. The primary failure mode to be addressed was loss of the zirconia layer through spalling. Experiments showed that oxidation of the bond coat is a significant contributor to coating failure. It was evident from the test results that the species of oxide scale initially formed on the bond coat plays a role in coating degradation and failure. It was also shown that elevated temperature creep of the bond coat plays a role in coating failure. An empirical model was developed for predicting the test life of specimens with selected coating, specimen, and test condition variations. In the second task, a coating life prediction model was developed based on the data from Task 1 experiments, results from thermomechanical experiments performed as part of Task 2, and finite element analyses of the TBC system during thermal cycles. The third and final task attempted to verify the validity of the model developed in Task 2. This was done by using the model to predict the test lives of several coating variations and specimen geometries, then comparing these predicted lives to experimentally determined test lives. It was found that the model correctly predicts trends, but that additional refinement is needed to accurately predict coating life.

  16. Operational life prediction on gating image intensifier

    NASA Astrophysics Data System (ADS)

    Dong, Yu-hui; Shen, Zhi-guo; Li, Zhong-li

    2009-07-01

    Operational life is one of the important parameters to evaluate second and super second generation image intensifiers. It can be used not only to monitor manufacturing technique in product line, then the technology on photocathode processing, MCP degassing and MCP producing can be adjusted promptly, but also to eliminate the image intensifiers which have hidden risk on operational life as early as possible. Recently gating image intensifiers are used widely, method to estimate the operational life of gating image intensifier related to its practical operate mode and working condition need to be established urgently. The least square method to analyze the operational life test data in product line was introduced in this paper. Now the data can be analyzed with convenient statistic analyze function on Excel. Using "worksheet function" and "chart wizard" and "data analysis" on Excel to do the least square method calculation, spreadsheets are established to do complex data calculation with worksheet functions. Based on them, formulas to monitor the technology parameters were derived, and the conclusion that the operational life was only related to the decrease slope of photocathode exponential fit curve was made. The decrease slope of photocathode sensitivity exponential fit curve and the decrease percent of the exponential fit photocathode sensitivity can be used to evaluate the qualification of the operational life rapidly. The mathematic models for operational life prediction on image intensifier and gating image intensifier are established respectively based on the acceptable values of the decrease percent of the exponential fit photocathode sensitivity and the expecting signal to noise ratio. The equations predicting the operational life related to duty cycle and input light level on gating image intensifier were derived, and the relationship between them were discussed too. The theory foundation were made herein, so the user can select proper gating image

  17. Development of Reliability Based Life Prediction Methods for Thermal and Environmental Barrier Coatings in Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin

    2001-01-01

    Literature survey related to the EBC/TBC (environmental barrier coating/thermal barrier coating) fife models, failure mechanisms in EBC/TBC and the initial work plan for the proposed EBC/TBC life prediction methods development was developed as well as the finite element model for the thermal/stress analysis of the GRC-developed EBC system was prepared. Technical report for these activities is given in the subsequent sections.

  18. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Demasi, J.; Sheffler, K.

    1984-01-01

    The objective of this program is to develop an integrated life prediction model accounting for all potential life-limiting Thermal Barrier Coating (TBC) degradation and failure modes including spallation resulting from cyclic thermal stress, oxidative degradation, hot corrosion, erosion, and foreign object damage (FOD). The mechanisms and relative importance of the various degradation and failure modes will be determined, and the methodology to predict predominant mode failure life in turbine airfoil application will be developed and verified. An empirically based correlative model relating coating life to parametrically expressed driving forces such as temperature and stress will be employed. The two-layer TBC system being investigated, designated PWA264, currently is in commercial aircraft revenue service. It consists of an inner low pressure chamber plasma-sprayed NiCoCrAlY metallic bond coat underlayer (4 to 6 mils) and an outer air plasma-sprayed 7 w/o Y2O3-ZrO2 (8 to 12 mils) ceramic top layer.

  19. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Demasi, J. T.

    1986-01-01

    A methodology is established to predict thermal barrier coating life in a environment similar to that experienced by gas turbine airfoils. Experiments were conducted to determine failure modes of the thermal barrier coating. Analytical studies were employed to derive a life prediction model. A review of experimental and flight service components as well as laboratory post evaluations indicates that the predominant mode of TBC failure involves thermomechanical spallation of the ceramic coating layer. This ceramic spallation involves the formation of a dominant crack in the ceramic coating parallel to and closely adjacent to the topologically complex metal ceramic interface. This mechanical failure mode clearly is influenced by thermal exposure effects as shown in experiments conducted to study thermal pre-exposure and thermal cycle-rate effects. The preliminary life prediction model developed focuses on the two major damage modes identified in the critical experiments tasks. The first of these involves a mechanical driving force, resulting from cyclic strains and stresses caused by thermally induced and externally imposed mechanical loads. The second is an environmental driving force based on experimental results, and is believed to be related to bond coat oxidation. It is also believed that the growth of this oxide scale influences the intensity of the mechanical driving force.

  20. A crystal plasticity based methodology for modeling fatigue crack initiation and estimating material coefficients to predict fatigue crack initiation life at micro, nano and macro scales

    NASA Astrophysics Data System (ADS)

    Voothaluru, Rohit

    Fatigue failure is a dominant mechanism that governs the failure of components and structures in many engineering applications. In conventional engineering applications due to the design specifications, a significant proportion of the fatigue life is spent in the crack initiation phase. In spite of the large number of works addressing fatigue life modeling, the problem of modeling crack initiation life still remains a major challenge. In this work, a novel computational methodology based upon crystal plasticity formulations has been developed to predict crack initiation life at macro, micro and nano length scales. The crystal plasticity based constitutive model has been employed to model the micromechanical deformation and damage accumulation under cyclic loading in polycrystalline metals. This work provides a first of its kind, fundamental basis for employing crystal plasticity formulations for evaluating a quantifiable estimate of fatigue crack initiation life. A semi-empirical energy based fatigue crack initiation criterion s employed to allow for accurate modeling of the underlying microstructural phenomenon leading to the initiation of cracks at different material length scales. The results of the fatigue crack initiation life prediction in case of polycrystalline metals such as Copper and Nickel demonstrated that the crack initiation life prediction using the proposed methodology yielded an improvement of more than 30% in comparison to the existing continuum methodologies for fatigue crack initiation prediction and more than 80% improvement compared to the existing analytical models. The computational methodology developed in this work also provides a first of its kind technique to evaluate the fatigue crack initiation coefficient in the form of energy dissipation coefficient that can be used at varying length scales. The methodology and the computational framework proposed in this work, are developed such that experimental inputs are used to improve

  1. Chemiluminescent prediction of service life

    NASA Technical Reports Server (NTRS)

    Hassell, J. A.; Mendenhall, G. D.; Nathan, R. A.

    1976-01-01

    Technique can be used to predict polymer degradation under actual expected-use conditions, without imposing artificial conditions. Smooth or linear correlations are obtained between chemiluminescence and physical properties of purified polymer gums.

  2. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Demasi, J. T.; Sheffler, K. D.

    1985-01-01

    The objective is to develop an integrated life prediction model accounting for all potential life-limiting thermal barrier coating (TBC) degradation and failure modes, including spallation resulting from cyclic thermal stress, oxidation degradation, hot corrosion, erosion and foreign object damage.

  3. Thermal barrier coating life prediction model

    NASA Technical Reports Server (NTRS)

    Hillery, R. V.; Pilsner, B. H.; Cook, T. S.; Kim, K. S.

    1986-01-01

    This is the second annual report of the first 3-year phase of a 2-phase, 5-year program. The objectives of the first phase are to determine the predominant modes of degradation of a plasma sprayed thermal barrier coating system and to develop and verify life prediction models accounting for these degradation modes. The primary TBC system consists of an air plasma sprayed ZrO-Y2O3 top coat, a low pressure plasma sprayed NiCrAlY bond coat, and a Rene' 80 substrate. Task I was to evaluate TBC failure mechanisms. Both bond coat oxidation and bond coat creep have been identified as contributors to TBC failure. Key property determinations have also been made for the bond coat and the top coat, including tensile strength, Poisson's ratio, dynamic modulus, and coefficient of thermal expansion. Task II is to develop TBC life prediction models for the predominant failure modes. These models will be developed based on the results of thermmechanical experiments and finite element analysis. The thermomechanical experiments have been defined and testing initiated. Finite element models have also been developed to handle TBCs and are being utilized to evaluate different TBC failure regimes.

  4. End-of-Discharge and End-of-Life Prediction in Lithium-Ion Batteries with Electrochemistry-Based Aging Models

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Kulkarni, Chetan S.

    2016-01-01

    As batteries become increasingly prevalent in complex systems such as aircraft and electric cars, monitoring and predicting battery state of charge and state of health becomes critical. In order to accurately predict the remaining battery power to support system operations for informed operational decision-making, age-dependent changes in dynamics must be accounted for. Using an electrochemistry-based model, we investigate how key parameters of the battery change as aging occurs, and develop models to describe aging through these key parameters. Using these models, we demonstrate how we can (i) accurately predict end-of-discharge for aged batteries, and (ii) predict the end-of-life of a battery as a function of anticipated usage. The approach is validated through an experimental set of randomized discharge profiles.

  5. The use of physiologically based models to integrate diverse data sets and reduce uncertainty in the prediction of perchlorate and iodide kinetics across life stages and species.

    PubMed

    Clewell, R A; Merrill, E A; Robinson, P J

    2001-06-01

    The effects of perchlorate on the incorporation of iodide into thyroid hormones have been studied for more than 40 years in many species and under varying exposure conditions. Nevertheless, the database for this drinking water contaminant is still incomplete, particularly with regard to human developmental risk. A method for integrating the available data and forming meaningful conclusions for risk assessment is needed. To this end, an initial suite of physiologically based pharmacokinetic (PBPK) models has been developed, which incorporates physiological data for the relevant species and life stages and kinetic data for perchlorate and iodide, as well as the interaction between the two anions. The validated models successfully describe perchlorate-induced inhibition of thyroid iodide uptake and perchlorate and iodide kinetics in the male, pregnant, lactating, fetal, and neonatal rats and the adult humans. The relationships of model-predicted internal dose metrics and kinetic parameters allow a direct comparison of internal dose metrics across life stages in rats and humans. By incorporating all the available data, these models provide a framework for species and life stage extrapolation where the lack of specific data sets would otherwise limit predictive capability. This paper demonstrates two approaches for calculating life stage-specific equivalent doses in a risk assessment for perchlorate: the direct combination of validated model predictions, and the development of preliminary PBPK models for the human-sensitive populations based on the relationship of the parameters in the validated rat and human models. Either approach can be used to perform the needed dosimetry. However, the second approach provides the advantage of a preliminary human life stage-specific PBPK model that can be used for identification of key data gaps and estimation of uncertainty.

  6. Physiologically Based Pharmacokinetic Predictions of Tramadol Exposure Throughout Pediatric Life: an Analysis of the Different Clearance Contributors with Emphasis on CYP2D6 Maturation.

    PubMed

    T'jollyn, Huybrecht; Snoeys, Jan; Vermeulen, An; Michelet, Robin; Cuyckens, Filip; Mannens, Geert; Van Peer, Achiel; Annaert, Pieter; Allegaert, Karel; Van Bocxlaer, Jan; Boussery, Koen

    2015-11-01

    This paper focuses on the retrospective evaluation of physiologically based pharmacokinetic (PBPK) techniques used to mechanistically predict clearance throughout pediatric life. An intravenous tramadol retrograde PBPK model was set up in Simcyp® using adult clearance values, qualified for CYP2D6, CYP3A4, CYP2B6, and renal contributions. Subsequently, the model was evaluated for mechanistic prediction of total, CYP2D6-related, and renal clearance predictions in very early life. In two in vitro pediatric human liver microsomal (HLM) batches (1 and 3 months), O-desmethyltramadol and N-desmethyltramadol formation rates were compared with CYP2D6 and CYP3A4 activity, respectively. O-desmethyltramadol formation was mediated only by CYP2D6, while N-desmethyltramadol was mediated in part by CYP3A4. Additionally, the clearance maturation of the PBPK model predictions was compared to two in vivo maturation models (Hill and exponential) based on plasma concentration data, and to clearance estimations from a WinNonlin® fit of plasma concentration and urinary excretion data. Maturation of renal and CYP2D6 clearance is captured well in the PBPK model predictions, but total tramadol clearance is underpredicted. The most pronounced underprediction of total and CYP2D6-mediated clearance was observed in the age range of 2-13 years. In conclusion, the PBPK technique showed to be a powerful mechanistic tool capable of predicting maturation of CYP2D6 and renal tramadol clearance in early infancy, although some underprediction occurs between 2 and 13 years for total and CYP2D6-mediated tramadol clearance. PMID:26209290

  7. Benchmark notch test for life prediction

    NASA Technical Reports Server (NTRS)

    Domas, P. A.; Sharpe, W. N.; Ward, M.; Yau, J. F.

    1982-01-01

    The laser Interferometric Strain Displacement Gage (ISDG) was used to measure local strains in notched Inconel 718 test bars subjected to six different load histories at 649 C (1200 F) and including effects of tensile and compressive hold periods. The measurements were compared to simplified Neuber notch analysis predictions of notch root stress and strain. The actual strains incurred at the root of a discontinuity in cyclically loaded test samples subjected to inelastic deformation at high temperature where creep deformations readily occur were determined. The steady state cyclic, stress-strain response at the root of the discontinuity was analyzed. Flat, double notched uniaxially loaded fatigue specimens manufactured from the nickel base, superalloy Inconel 718 were used. The ISDG was used to obtain cycle by cycle recordings of notch root strain during continuous and hold time cycling at 649 C. Comparisons to Neuber and finite element model analyses were made. The results obtained provide a benchmark data set in high technology design where notch fatigue life is the predominant component service life limitation.

  8. Thermal barrier coating life prediction model

    NASA Technical Reports Server (NTRS)

    Pilsner, B. H.; Hillery, R. V.; Mcknight, R. L.; Cook, T. S.; Kim, K. S.; Duderstadt, E. C.

    1986-01-01

    The objectives of this program are to determine the predominant modes of degradation of a plasma sprayed thermal barrier coating system, and then to develop and verify life prediction models accounting for these degradation modes. The program is divided into two phases, each consisting of several tasks. The work in Phase 1 is aimed at identifying the relative importance of the various failure modes, and developing and verifying life prediction model(s) for the predominant model for a thermal barrier coating system. Two possible predominant failure mechanisms being evaluated are bond coat oxidation and bond coat creep. The work in Phase 2 will develop design-capable, causal, life prediction models for thermomechanical and thermochemical failure modes, and for the exceptional conditions of foreign object damage and erosion.

  9. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Hillery, R. V.

    1984-01-01

    In order to fully exploit thermal barrier coatings (TBCs) on turbine components and achieve the maximum performance benefit, the knowledge and understanding of TBC failure mechanisms must be increased and the means to predict coating life developed. The proposed program will determine the predominant modes of TBC system degradation and then develop and verify life prediction models accounting for those degradation modes. The successful completion of the program will have dual benefits: the ability to take advantage of the performance benefits offered by TBCs, and a sounder basis for making future improvements in coating behavior.

  10. Predicting the Fatigue life of Structures

    NASA Technical Reports Server (NTRS)

    Besuner, P. M.; Harris, D. O.; Thomas, J. M.; Allison, D. E.; Bannantine, J. M.; Brown, S. B.; Davis, C. S.; Derbalian, G. A.; Eischen, J. W.; Fowler, G. F.; Osteraas, J. D.; Robinson, J. N.; Sire, R. A.; Vroman, G. A.

    1985-01-01

    Report reviews fracture-mechanics technology for predicting life expectancy of structural components subjected to cyclic loads. Report covers analytical tools for modeling and forecasting subcritical fatigue-crack growth in structures. It emphasizes use of tools in practical, day-to-day problems of engineering design, development, and decisionmaking.

  11. SSME main combustion chamber life prediction

    NASA Technical Reports Server (NTRS)

    Cook, R. T.; Fryk, E. E.; Newell, J. F.

    1983-01-01

    Typically, low cycle fatigue life is a function of the cyclic strain range, the material properties, and the operating temperature. The reusable life is normally defined by the number of strain cycles that can be accrued before severe material degradation occurs. Reusable life is normally signified by the initiation or propagation of surface cracks. Hot-fire testing of channel wall combustors has shown significant mid-channel wall thinning or deformation during accrued cyclic testing. This phenomenon is termed cyclic-creep and appears to be significantly accelerated at elevated surface temperatures. This failure mode was analytically modelled. The cyclic life of the baseline SSME-MCC based on measured calorimeter heat transfer data, and the life sensitivity of local hot spots caused by injector effects were determined. Four life enhanced designs were assessed.

  12. Fatigue life prediction for carbon-epoxy composite design

    NASA Astrophysics Data System (ADS)

    Wright, B. D.

    A simple design method for the prediction of fatigue life for long fiber carbon-epoxy composites with multi-angular lay-ups is presented. The approach, based in part on the traditional metallic method of fatigue life prediction, can be applied to fully tensile, fully compressive or part-tensile part-compressive loading of either constant or variable amplitude. Predictions produced by the method are compared with extensive data from fatigue tests on XAS/914C material for both relatively fatigue-sensitive and -insensitive lay-ups.

  13. A comparison of fatigue life prediction methodologies for rotorcraft

    NASA Technical Reports Server (NTRS)

    Everett, R. A., Jr.

    1990-01-01

    Because of the current U.S. Army requirement that all new rotorcraft be designed to a 'six nines' reliability on fatigue life, this study was undertaken to assess the accuracy of the current safe life philosophy using the nominal stress Palmgrem-Miner linear cumulative damage rule to predict the fatigue life of rotorcraft dynamic components. It has been shown that this methodology can predict fatigue lives that differ from test lives by more than two orders of magnitude. A further objective of this work was to compare the accuracy of this methodology to another safe life method called the local strain approach as well as to a method which predicts fatigue life based solely on crack growth data. Spectrum fatigue tests were run on notched (k(sub t) = 3.2) specimens made of 4340 steel using the Felix/28 tests fairly well, being slightly on the unconservative side of the test data. The crack growth method, which is based on 'small crack' crack growth data and a crack-closure model, also predicted the fatigue lives very well with the predicted lives being slightly longer that the mean test lives but within the experimental scatter band. The crack growth model was also able to predict the change in test lives produced by the rainflow reconstructed spectra.

  14. Life prediction technologies for aeronautical propulsion systems

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.

    1990-01-01

    Fatigue and fracture problems continue to occur in aeronautical gas turbine engines. Components whose useful life is limited by these failure modes include turbine hot-section blades, vanes, and disks. Safety considerations dictate that catastrophic failures be avoided, while economic considerations dictate that catastrophic failures be avoided, while economic considerations dictate that noncatastrophic failures occur as infrequently as possible. Therefore, the decision in design is making the tradeoff between engine performance and durability. LeRC has contributed to the aeropropulsion industry in the area of life prediction technology for over 30 years, developing creep and fatigue life prediction methodologies for hot-section materials. At the present time, emphasis is being placed on the development of methods capable of handling both thermal and mechanical fatigue under severe environments. Recent accomplishments include the development of more accurate creep-fatigue life prediction methods such as the total strain version of LeRC's strain-range partitioning (SRP) and the HOST-developed cyclic damage accumulation (CDA) model. Other examples include the development of a more accurate cumulative fatigue damage rule - the double damage curve approach (DDCA), which provides greatly improved accuracy in comparison with usual cumulative fatigue design rules. Other accomplishments in the area of high-temperature fatigue crack growth may also be mentioned. Finally, we are looking to the future and are beginning to do research on the advanced methods which will be required for development of advanced materials and propulsion systems over the next 10-20 years.

  15. Multiscale Fatigue Life Prediction for Composite Panels

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Yarrington, Phillip W.; Arnold, Steven M.

    2012-01-01

    Fatigue life prediction capabilities have been incorporated into the HyperSizer Composite Analysis and Structural Sizing Software. The fatigue damage model is introduced at the fiber/matrix constituent scale through HyperSizer s coupling with NASA s MAC/GMC micromechanics software. This enables prediction of the micro scale damage progression throughout stiffened and sandwich panels as a function of cycles leading ultimately to simulated panel failure. The fatigue model implementation uses a cycle jumping technique such that, rather than applying a specified number of additional cycles, a specified local damage increment is specified and the number of additional cycles to reach this damage increment is calculated. In this way, the effect of stress redistribution due to damage-induced stiffness change is captured, but the fatigue simulations remain computationally efficient. The model is compared to experimental fatigue life data for two composite facesheet/foam core sandwich panels, demonstrating very good agreement.

  16. Effect of Roller Profile on Cylindrical Roller Bearing Life Prediction

    NASA Technical Reports Server (NTRS)

    Poplawski, Joseph V.; Zaretsky, Erwin V.; Peters, Steven M.

    2000-01-01

    Four roller profiles used in cylindrical roller bearing design and manufacture were analyzed using both a closed form solution and finite element analysis (FEA) for stress and life. The roller profiles analyzed were flat, tapered end, aerospace, and fully crowned loaded against a flat raceway. Four rolling-element bearing life models were chosen for this analysis and compared. These were those of Weibull, Lundberg and Palmgren, Ioannides and Harris, and Zaretsky. The flat roller profile without edge loading has the longest predicted life. However, edge loading can reduce life by as much as 98 percent. The end tapered profile produced the highest lives but not significantly different than the aerospace profile. The fully crowned profile produces the lowest lives. The resultant predicted life at each stress condition not only depends on the life equation used but also on the Weibull slope assumed. For Weibull slopes of 1.5 and 2, both Lundberg-Palmgren and Iaonnides-Harris equations predict lower lives than the ANSI/ABMAJISO standards. Based upon the Hertz stresses for line contact, the accepted load-life exponent of 10/3 results in a maximum Hertz stress-life exponent equal to 6.6. This value is inconsistent with that experienced in the field.

  17. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Sheffler, K. D.; Demasi, J. T.

    1985-01-01

    A methodology was established to predict thermal barrier coating life in an environment simulative of that experienced by gas turbine airfoils. Specifically, work is being conducted to determine failure modes of thermal barrier coatings in the aircraft engine environment. Analytical studies coupled with appropriate physical and mechanical property determinations are being employed to derive coating life prediction model(s) on the important failure mode(s). An initial review of experimental and flight service components indicates that the predominant mode of TBC failure involves thermomechanical spallation of the ceramic coating layer. This ceramic spallation involves the formation of a dominant crack in the ceramic coating parallel to and closely adjacent to the metal-ceramic interface. Initial results from a laboratory test program designed to study the influence of various driving forces such as temperature, thermal cycle frequency, environment, and coating thickness, on ceramic coating spalling life suggest that bond coat oxidation damage at the metal-ceramic interface contributes significantly to thermomechanical cracking in the ceramic layer. Low cycle rate furnace testing in air and in argon clearly shows a dramatic increase of spalling life in the non-oxidizing environments.

  18. A Predictive Framework for Thermomechanical Fatigue Life of High Silicon Molybdenum Ductile Cast Iron Based on Considerations of Strain Energy Dissipation

    NASA Astrophysics Data System (ADS)

    Avery, Katherine R.

    Isothermal low cycle fatigue (LCF) and anisothermal thermomechanical fatigue (TMF) tests were conducted on a high silicon molybdenum (HiSiMo) cast iron for temperatures up to 1073K. LCF and out-of-phase (OP) TMF lives were significantly reduced when the temperature was near 673K due to an embrittlement phenomenon which decreases the ductility of HiSiMo at this temperature. In this case, intergranular fracture was predominant, and magnesium was observed at the fracture surface. When the thermal cycle did not include 673K, the failure mode was predominantly transgranular, and magnesium was not present on the fracture surface. The in-phase (IP) TMF lives were unaffected when the thermal cycle included 673K, and the predominant failure mode was found to be transgranular fracture, regardless of the temperature. No magnesium was present on the IP TMF fracture surfaces. Thus, the embrittlement phenomenon was found to contribute to fatigue damage only when the temperature was near 673K and a tensile stress was present. To account for the temperature- and stress-dependence of the embrittlement phenomenon on the TMF life of HiSiMo cast iron, an original model based on the cyclic inelastic energy dissipation is proposed which accounts for temperature-dependent differences in the rate of fatigue damage accumulation in tension and compression. The proposed model has few empirical parameters. Despite the simplicity of the model, the predicted fatigue life shows good agreement with more than 130 uniaxial low cycle and thermomechanical fatigue tests, cyclic creep tests, and tests conducted at slow strain rates and with hold times. The proposed model was implemented in a multiaxial formulation and applied to the fatigue life prediction of an exhaust manifold subjected to severe thermal cycles. The simulation results show good agreement with the failure locations and number of cycles to failure observed in a component-level experiment.

  19. A. Palmgren Revisited: A Basis for Bearing Life Prediction

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1997-01-01

    Bearing technology, as well as the bearing industry, began to develop with the invention of the bicycle in the 1850's. At the same time, high-quality steel was made possible by the Bessemer process. In 1881, H. Hertz published his contact stress analysis. By 1902, R. Stribeck had published his work based on Hertz theory to calculate the maximum load of a radially loaded ball bearing. By 1920, all of the rolling bearing types used today were being manufactured. AISI 52100 bearing steel became the material of choice for these bearings. Beginning in 1918, engineers directed their attention to predicting the lives of these bearings. In 1924, A. Palmgren published a paper outlining his approach to bearing life prediction. This paper was the basis for the Lundberg-Palmgren life theory published in 1947. A critical review of the 1924 Palmgren paper is presented here together with a discussion of its effect on bearing life prediction.

  20. Theoretical Foundation for Mechanical Products Service Life Prediction

    NASA Astrophysics Data System (ADS)

    Konovodov, V. V.; Valentov, A. V.; Lafetova, T. V.; Basalaev, M. N.

    2016-04-01

    The article presents theoretical foundations for prediction of service life of mechanical products, based on the fatigue theory and fatigue limit. Ultimate amplitude and ultimate stress diagrams are presented. Wohler curve, characterizing material durability, is constructed on the results of the tests.

  1. Creep fatigue life prediction for engine hot section materials (isotropic)

    NASA Technical Reports Server (NTRS)

    Moreno, Vito; Nissley, David; Lin, Li-Sen Jim

    1985-01-01

    The first two years of a two-phase program aimed at improving the high temperature crack initiation life prediction technology for gas turbine hot section components are discussed. In Phase 1 (baseline) effort, low cycle fatigue (LCF) models, using a data base generated for a cast nickel base gas turbine hot section alloy (B1900+Hf), were evaluated for their ability to predict the crack initiation life for relevant creep-fatigue loading conditions and to define data required for determination of model constants. The variables included strain range and rate, mean strain, strain hold times and temperature. None of the models predicted all of the life trends within reasonable data requirements. A Cycle Damage Accumulation (CDA) was therefore developed which follows an exhaustion of material ductility approach. Material ductility is estimated based on observed similarities of deformation structure between fatigue, tensile and creep tests. The cycle damage function is based on total strain range, maximum stress and stress amplitude and includes both time independent and time dependent components. The CDA model accurately predicts all of the trends in creep-fatigue life with loading conditions. In addition, all of the CDA model constants are determinable from rapid cycle, fully reversed fatigue tests and monotonic tensile and/or creep data.

  2. Early Adolescent Affect Predicts Later Life Outcomes

    PubMed Central

    Kansky, Jessica; Allen, Joseph P.; Diener, Ed

    2016-01-01

    Background Subjective well-being as a predictor for later behavior and health has highlighted its relationship to health, work performance, and social relationships. However, the majority of such studies neglect the developmental nature of well-being in contributing to important changes across the transition to adulthood. Methods To examine the potential role of subjective well-being as a long-term predictor of critical life outcomes, we examined indicators of positive and negative affect at age 14 as a predictor of relationship, adjustment, self worth, and career outcomes a decade later at ages 23 to 25, controlling for family income and gender. We utilized multi-informant methods including reports from the target participant, close friends, and romantic partners in a demographically diverse community sample of 184 participants. Results Early adolescent positive affect predicted less relationship problems (less self-reported and partner-reported conflict, greater friendship attachment as rated by close peers), healthy adjustment to adulthood (lower levels of depression, anxiety, and loneliness). It also predicted positive work functioning (higher levels of career satisfaction and job competence) and increased self-worth. Negative affect did not significantly predict any of these important life outcomes. In addition to predicting desirable mean levels of later outcomes, early positive affect predicted beneficial changes across time in many outcomes. Conclusions The findings extend early research on the beneficial outcomes of subjective well-being by having an earlier assessment of well-being, including informant reports in measuring a large variety of outcome variables, and by extending the findings to a lower socioeconomic group of a diverse and younger sample. The results highlight the importance of considering positive affect as an important component of subjective well-being distinct from negative affect. PMID:27075545

  3. Service life prediction of reinforced concrete structures

    SciTech Connect

    Liang, M.T.; Wang, K.L.; Liang, C.H.

    1999-09-01

    This paper is focused on the estimation of durability and service life of reinforced concrete structures. Assuming that the chloride ion in concrete can be absorbed on tricalcium aluminate, calcium silicate hydrate, and by other constituents of hardened cement paste, hydrated or not, the exact analytical solution of the governing partial differential equation together with its boundary and initial conditions can be obtained through nondimensional parameters and Laplace's transform. When the results of an exact analytical solution using suitable parameters were compared with the results of previous experimental work, the differences were found to be very small. This suggests that the absorption model is of considerable value. The exact analytical solution with the saturation parameter and time and diffusion coefficients under different effective electrical potential could be used to predict both the experimental results and the service life of reinforced concrete structures.

  4. Fatigue life prediction of bonded primary joints

    NASA Technical Reports Server (NTRS)

    Knauss, J. F.

    1979-01-01

    The validation of a proposed fatigue life prediction methodology was sought through the use of aluminum butt and scarf joint and graphite/epoxy butt joint specimens in a constant amplitude fatigue environment. The structural properties of the HYSOL 9313 adhesive system were obtained by mechanical test of molded heat adhesive specimens. Aluminum contoured double cantilever beam specimens were used to generate crack velocity versus stress intensity factor data. The specific objectives were: (1) to ascertain the feasibility of predicting fatigue failure of an adhesive in a primary bonded composite structure by incorporating linear elastic crack growth behavior; and (2) to ascertain if acoustic emission and/or compliance measurement techniques can be used to detect flaws.

  5. Creep fatigue life prediction for engine hot section materials (isotropic)

    NASA Technical Reports Server (NTRS)

    Moreno, V.

    1983-01-01

    The Hot Section Technology (HOST) program, creep fatigue life prediction for engine hot section materials (isotropic), is reviewed. The program is aimed at improving the high temperature crack initiation life prediction technology for gas turbine hot section components. Significant results include: (1) cast B1900 and wrought IN 718 selected as the base and alternative materials respectively; (2) fatigue test specimens indicated that measurable surface cracks appear early in the specimen lives, i.e., 15% of total life at 871 C and 50% of life at 538 c; (3) observed crack initiation sites are all surface initiated and are associated with either grain boundary carbides or local porosity, transgrannular cracking is observed at the initiation site for all conditions tested; and (4) an initial evaluation of two life prediction models, representative of macroscopic (Coffin-Mason) and more microscopic (damage rate) approaches, was conducted using limited data generated at 871 C and 538 C. It is found that the microscopic approach provides a more accurate regression of the data used to determine crack initiation model constants, but overpredicts the effect of strain rate on crack initiation life for the conditions tested.

  6. Further development of a predictive pitting model for gears: Improvements in the life prediction analysis

    NASA Astrophysics Data System (ADS)

    Blake, J. W.; Draper, C. F.

    1994-04-01

    A predictive pitting model for gear design applications was recently developed by Blake and Cheng. Life estimates were based on predicting the growth of surface-breaking cracks leading to pit formation. While trends predicted by the model reflected observed behavior, estimated lives were lower than expected. The crack growth model has been improved by modifying the original shear-driven, two-dimensional propagation model to reflect three-dimensional cracks driven by both shear and lubricant pressure effects. Resistance to crack growth due to friction between the crack faces has also been considered. These changes have led to a net increase in predicted lives, which better reflects observed pitting behavior.

  7. Practical theories for service life prediction of critical aerospace structural components

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Monaghan, Richard C.; Jackson, Raymond H.

    1992-01-01

    A new second-order theory was developed for predicting the service lives of aerospace structural components. The predictions based on this new theory were compared with those based on the Ko first-order theory and the classical theory of service life predictions. The new theory gives very accurate service life predictions. An equivalent constant-amplitude stress cycle method was proposed for representing the random load spectrum for crack growth calculations. This method predicts the most conservative service life. The proposed use of minimum detectable crack size, instead of proof load established crack size as an initial crack size for crack growth calculations, could give a more realistic service life.

  8. Space shuttle nonmetallic materials age life prediction

    NASA Technical Reports Server (NTRS)

    Mendenhall, G. D.; Hassell, J. A.; Nathan, R. A.

    1975-01-01

    The chemiluminescence from samples of polybutadiene, Viton, Teflon, Silicone, PL 731 Adhesive, and SP 296 Boron-Epoxy composite was measured at temperatures from 25 to 150 C. Excellent correlations were obtained between chemiluminescence and temperature. These correlations serve to validate accelerated aging tests (at elevated temperatures) designed to predict service life at lower temperatures. In most cases, smooth or linear correlations were obtained between chemiluminescence and physical properties of purified polymer gums, including the tensile strength, viscosity, and loss tangent. The latter is a complex function of certain polymer properties. Data were obtained with far greater ease by the chemiluminescence technique than by the conventional methods of study. The chemiluminescence from the Teflon (Halon) samples was discovered to arise from trace amounts of impurities, which were undetectable by conventional, destructive analysis of the sample.

  9. Toughened ceramics life prediction. Final technical report

    SciTech Connect

    Salem, J.A.; Choi, S.R.; Pawlik, R.J.

    1998-02-01

    The objective of this research was to understand the room temperature and high temperature behavior of brittle materials such as in situ toughened ceramics, glasses and intermetallics as the basis for developing life prediction and test methodologies. A major objective was to understand the relationship between microstructure and mechanical behavior within the bounds of a limited number of materials. A second major objective was to determine the behavior as a function of time and temperature. Specifically, the room temperature and elevated strength and reliability, the fracture toughness, slow crack growth and the creep behavior. These results will provide input for parallel materials development and design methodology programs. Resultant design codes will be verified. A summary of the accomplishments that occurred under this program is given.

  10. Decomposition Technique for Remaining Useful Life Prediction

    NASA Technical Reports Server (NTRS)

    Saha, Bhaskar (Inventor); Goebel, Kai F. (Inventor); Saxena, Abhinav (Inventor); Celaya, Jose R. (Inventor)

    2014-01-01

    The prognostic tool disclosed here decomposes the problem of estimating the remaining useful life (RUL) of a component or sub-system into two separate regression problems: the feature-to-damage mapping and the operational conditions-to-damage-rate mapping. These maps are initially generated in off-line mode. One or more regression algorithms are used to generate each of these maps from measurements (and features derived from these), operational conditions, and ground truth information. This decomposition technique allows for the explicit quantification and management of different sources of uncertainty present in the process. Next, the maps are used in an on-line mode where run-time data (sensor measurements and operational conditions) are used in conjunction with the maps generated in off-line mode to estimate both current damage state as well as future damage accumulation. Remaining life is computed by subtracting the instance when the extrapolated damage reaches the failure threshold from the instance when the prediction is made.

  11. Predicting Later-Life Outcomes of Early-Life Exposures

    EPA Science Inventory

    Background: In utero exposure of the fetus to a stressor can lead to disease in later life. Epigenetic mechanisms are likely mediators of later-life expression of early-life events.Objectives: We examined the current state of understanding of later-life diseases resulting from ea...

  12. Lamp-life predictive model for avionics backlights

    NASA Astrophysics Data System (ADS)

    Webster, Richard P.; Nelson, Leonard Y.

    1998-09-01

    Active Matrix Liquid Crystal Displays (AMLCDs) used in avionics applications require high luminance, high efficacy, and long-life backlights. Currently, fluorescent lamps are the favored light sources for these high performance avionics backlights. Their spectral characteristics and high electrical efficiency are well suited to illuminating AMLCDs used in avionics applications. Fluorescent lamps, however, suffer gradual reduction in luminance output caused by various degradation mechanisms. Korry Electronics Co. recently developed a mathematical model for predicting fluorescent lamp life. The model's basis is the well characterized exponential decay of the phosphor output. The primary luminance degradation mechanism of a fluorescent lamp is related to the arc discharge. Consequently, phosphor depreciation is proportional to the discharge arc power divided by the phosphor surface area. This 'wall loading' is a parameter in the computer model developed to extrapolate long-term luminance performance. Our model predicts a rapidly increasing decay rate of the lamp output as the input power is increased to sustain constant luminance. Eventually, a run-away condition occurs -- lamp arc power must be increased by unrealistically large factors (greater than 5x) to maintain the required luminance output. This condition represents the end of the useful lamp life. The lamp life model requires the definition of several key parameters in order to accurately predict the useful lamp life of an avionics backlight. These important factors include the construction of the lamp, lamp arc power, a decay constant based on the phosphor loading, and the operational profile. Based on the above-mentioned factors, our model approximates the useful lamp life of an avionics backlight using fluorescent lamp technology. Comparisons between calculated and experimental lamp depreciation are presented.

  13. Thermal barrier coating life prediction model development, phase 1

    NASA Technical Reports Server (NTRS)

    Demasi, Jeanine T.; Ortiz, Milton

    1989-01-01

    The objective of this program was to establish a methodology to predict thermal barrier coating (TBC) life on gas turbine engine components. The approach involved experimental life measurement coupled with analytical modeling of relevant degradation modes. Evaluation of experimental and flight service components indicate the predominant failure mode to be thermomechanical spallation of the ceramic coating layer resulting from propagation of a dominant near interface crack. Examination of fractionally exposed specimens indicated that dominant crack formation results from progressive structural damage in the form of subcritical microcrack link-up. Tests conducted to isolate important life drivers have shown MCrAlY oxidation to significantly affect the rate of damage accumulation. Mechanical property testing has shown the plasma deposited ceramic to exhibit a non-linear stress-strain response, creep and fatigue. The fatigue based life prediction model developed accounts for the unusual ceramic behavior and also incorporates an experimentally determined oxide rate model. The model predicts the growth of this oxide scale to influence the intensity of the mechanic driving force, resulting from cyclic strains and stresses caused by thermally induced and externally imposed mechanical loads.

  14. Thermal barrier coating life prediction model

    NASA Technical Reports Server (NTRS)

    Hillery, R. V.; Pilsner, B. H.

    1985-01-01

    This is the first report of the first phase of a 3-year program. Its objectives are to determine the predominant modes of degradation of a plasma sprayed thermal barrier coating system, then to develop and verify life prediction models accounting for these degradation modes. The first task (Task I) is to determine the major failure mechanisms. Presently, bond coat oxidation and bond coat creep are being evaluated as potential TBC failure mechanisms. The baseline TBC system consists of an air plasma sprayed ZrO2-Y2O3 top coat, a low pressure plasma sprayed NiCrAlY bond coat, and a Rene'80 substrate. Pre-exposures in air and argon combined with thermal cycle tests in air and argon are being utilized to evaluate bond coat oxidation as a failure mechanism. Unexpectedly, the specimens pre-exposed in argon failed before the specimens pre-exposed in air in subsequent thermal cycles testing in air. Four bond coats with different creep strengths are being utilized to evaluate the effect of bond coat creep on TBC degradation. These bond coats received an aluminide overcoat prior to application of the top coat to reduce the differences in bond coat oxidation behavior. Thermal cycle testing has been initiated. Methods have been selected for measuring tensile strength, Poisson's ratio, dynamic modulus and coefficient of thermal expansion both of the bond coat and top coat layers.

  15. Thermal barrier coating life prediction model development, phase 2

    NASA Technical Reports Server (NTRS)

    Meier, Susan Manning; Sheffler, Keith D.; Nissley, David M.

    1991-01-01

    The objective of this program was to generate a life prediction model for electron-beam-physical vapor deposited (EB-PVD) zirconia thermal barrier coating (TBC) on gas turbine engine components. Specific activities involved in development of the EB-PVD life prediction model included measurement of EB-PVD ceramic physical and mechanical properties and adherence strength, measurement of the thermally grown oxide (TGO) growth kinetics, generation of quantitative cyclic thermal spallation life data, and development of a spallation life prediction model. Life data useful for model development was obtained by exposing instrumented, EB-PVD ceramic coated cylindrical specimens in a jet fueled burner rig. Monotonic compression and tensile mechanical tests and physical property tests were conducted to obtain the EB-PVD ceramic behavior required for burner rig specimen analysis. As part of that effort, a nonlinear constitutive model was developed for the EB-PVD ceramic. Spallation failure of the EB-PVD TBC system consistently occurred at the TGO-metal interface. Calculated out-of-plane stresses were a small fraction of that required to statically fail the TGO. Thus, EB-PVD spallation was attributed to the interfacial cracking caused by in-plane TGO strains. Since TGO mechanical properties were not measured in this program, calculation of the burner rig specimen TGO in-plane strains was performed by using alumina properties. A life model based on maximum in-plane TGO tensile mechanical strain and TGO thickness correlated the burner rig specimen EB-PVD ceramic spallation lives within a factor of about plus or minus 2X.

  16. NASALIFE - Component Fatigue and Creep Life Prediction Program

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Murthy, Pappu L. N.; Mital, Subodh K.

    2014-01-01

    NASALIFE is a life prediction program for propulsion system components made of ceramic matrix composites (CMC) under cyclic thermo-mechanical loading and creep rupture conditions. Although the primary focus was for CMC components, the underlying methodologies are equally applicable to other material systems as well. The program references empirical data for low cycle fatigue (LCF), creep rupture, and static material properties as part of the life prediction process. Multiaxial stresses are accommodated by Von Mises based methods and a Walker model is used to address mean stress effects. Varying loads are reduced by the Rainflow counting method or a peak counting type method. Lastly, damage due to cyclic loading and creep is combined with Minor's Rule to determine damage due to cyclic loading, damage due to creep, and the total damage per mission and the number of potential missions the component can provide before failure.

  17. Life history traits to predict biogeographic species distributions in bivalves

    NASA Astrophysics Data System (ADS)

    Montalto, V.; Rinaldi, A.; Sarà, G.

    2015-10-01

    Organismal fecundity ( F) and its relationship with body size (BS) are key factors in predicting species distribution under current and future scenarios of global change. A functional trait-based dynamic energy budget (FT-DEB) is proposed as a mechanistic approach to predict the variation of F and BS as function of environmental correlates using two marine bivalves as model species ( Mytilus galloprovincialis and Brachidontes pharaonis). Validation proof of model skill (i.e., degree of correspondence between model predictions and field observations) and stationarity (i.e., ability of a model generated from data collected at one place/time to predict processes at another place/time) was provided to test model performance in predicting the bivalve distribution throughout the 22 sites in the Central Mediterranean Sea under local conditions of food density and body temperature. Model skill and stationarity were tested through the estimate of commission (i.e., proportion of species' absences predicted present) and omission (i.e., proportion of presences predicted absent) errors of predictions by comparing mechanistic predicted vs. observed F and BS values throughout the study area extrapolated by lab experiments and literature search. The resulting relationship was reliable for both species, and body size and fecundity were highly correlated in M. galloprovincialis compared to B. pharaonis; FT-DEB showed correct predictions of presence in more than 75 % of sites, and the regression between BS predicted vs. observed was highly significant in both species. Whilst recognising the importance of biotic interactions in shaping the distribution of species, our FT-DEB approach provided reliable quantitative estimates of where our species had sufficient F to support local populations or suggesting reproductive failure. Mechanistically, estimating F and BS as key traits of species life history can also be addressed within a broader, scale-dependent context that surpasses the

  18. Life history traits to predict biogeographic species distributions in bivalves.

    PubMed

    Montalto, V; Rinaldi, A; Sarà, G

    2015-10-01

    Organismal fecundity (F) and its relationship with body size (BS) are key factors in predicting species distribution under current and future scenarios of global change. A functional trait-based dynamic energy budget (FT-DEB) is proposed as a mechanistic approach to predict the variation of F and BS as function of environmental correlates using two marine bivalves as model species (Mytilus galloprovincialis and Brachidontes pharaonis). Validation proof of model skill (i.e., degree of correspondence between model predictions and field observations) and stationarity (i.e., ability of a model generated from data collected at one place/time to predict processes at another place/time) was provided to test model performance in predicting the bivalve distribution throughout the 22 sites in the Central Mediterranean Sea under local conditions of food density and body temperature. Model skill and stationarity were tested through the estimate of commission (i.e., proportion of species' absences predicted present) and omission (i.e., proportion of presences predicted absent) errors of predictions by comparing mechanistic predicted vs. observed F and BS values throughout the study area extrapolated by lab experiments and literature search. The resulting relationship was reliable for both species, and body size and fecundity were highly correlated in M. galloprovincialis compared to B. pharaonis; FT-DEB showed correct predictions of presence in more than 75 % of sites, and the regression between BS predicted vs. observed was highly significant in both species. Whilst recognising the importance of biotic interactions in shaping the distribution of species, our FT-DEB approach provided reliable quantitative estimates of where our species had sufficient F to support local populations or suggesting reproductive failure. Mechanistically, estimating F and BS as key traits of species life history can also be addressed within a broader, scale-dependent context that surpasses the

  19. Life history traits to predict biogeographic species distributions in bivalves.

    PubMed

    Montalto, V; Rinaldi, A; Sarà, G

    2015-10-01

    Organismal fecundity (F) and its relationship with body size (BS) are key factors in predicting species distribution under current and future scenarios of global change. A functional trait-based dynamic energy budget (FT-DEB) is proposed as a mechanistic approach to predict the variation of F and BS as function of environmental correlates using two marine bivalves as model species (Mytilus galloprovincialis and Brachidontes pharaonis). Validation proof of model skill (i.e., degree of correspondence between model predictions and field observations) and stationarity (i.e., ability of a model generated from data collected at one place/time to predict processes at another place/time) was provided to test model performance in predicting the bivalve distribution throughout the 22 sites in the Central Mediterranean Sea under local conditions of food density and body temperature. Model skill and stationarity were tested through the estimate of commission (i.e., proportion of species' absences predicted present) and omission (i.e., proportion of presences predicted absent) errors of predictions by comparing mechanistic predicted vs. observed F and BS values throughout the study area extrapolated by lab experiments and literature search. The resulting relationship was reliable for both species, and body size and fecundity were highly correlated in M. galloprovincialis compared to B. pharaonis; FT-DEB showed correct predictions of presence in more than 75 % of sites, and the regression between BS predicted vs. observed was highly significant in both species. Whilst recognising the importance of biotic interactions in shaping the distribution of species, our FT-DEB approach provided reliable quantitative estimates of where our species had sufficient F to support local populations or suggesting reproductive failure. Mechanistically, estimating F and BS as key traits of species life history can also be addressed within a broader, scale-dependent context that surpasses the

  20. Rolling Bearing Life Prediction-Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Zaretsky, E V; Poplawski, J. V.; Miller, C. R.

    2000-01-01

    Comparisons were made between the life prediction formulas of Lundberg and Palmgren, Ioannides and Harris, and Zaretsky and full-scale ball and roller bearing life data. The effect of Weibull slope on bearing life prediction was determined. Life factors are proposed to adjust the respective life formulas to the normalized statistical life distribution of each bearing type. The Lundberg-Palmgren method resulted in the most conservative life predictions compared to Ioannides and Harris, and Zaretsky methods which produced statistically similar results. Roller profile can have significant effects on bearing life prediction results. Roller edge loading can reduce life by as much as 98 percent. The resultant predicted life not only depends on the life equation used but on the Weibull slope assumed, the least variation occurring with the Zaretsky equation. The load-life exponent p of 10/3 used in the American National Standards Institute (ANSI)/American Bearing Manufacturers Association (ABMA)/International Organization for Standardization (ISO) standards is inconsistent with the majority roller bearings designed and used today.

  1. Shelf-Life Prediction of Chilled Foods

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Gudmundur; Kristbergsson, Kristberg

    All foods have a finite shelf life. Even foods, which mature with time, will in the end deteriorate, although their life span can exceed 100 years. Definitions of shelf life of food products differ. Some stress the suitability of the product for consump¬tion, others for how long the product can be sold. The Institute of Food Science and Technology emphasizes safety in its definition of shelf life: "The period of time under defined conditions of storage, after manufacture or packing, for which a food product will remain safe and be fit for use" ( http://www.ifst.org ). This definition does not describe what makes a food product "safe" or "fit" for use, but one can say all factors which restrict the shelf life of a food product either affect safety or quality or both.

  2. Prediction of residual fatigue life using nonlinear ultrasound

    NASA Astrophysics Data System (ADS)

    Amura, Mikael; Meo, Michele

    2012-04-01

    Prediction of fatigue life of components during service is an on-going and unsolved challenge for the NDT and structural health monitoring community. It has been demonstrated by a number of researchers that nonlinear guided waves or the acoustic nonlinear signature of fatigued cracked material provides clear signs of the progressive fatigue damage in the material, unlike linear guided waves. However, even with nonlinear acoustic-ultrasound methods there is a necessity to compare the current nonlinear feature to a previously measured cracked material state to assess the absolute residual fatigue life. In this paper, a new procedure based on the measurement of the second-order acoustic nonlinearity is presented which is able to assess the fatigue life of a metallic component without the need of a baseline. The Nazarov-Sutin crack nonlinearity equation and the Paris law are combined in order to obtain an analytical solution able to evaluate the theoretical second-order quadratic nonlinear parameters as a function of the crack growth and fatigue life that evolve during cyclic loading in metals. The model makes the assumption that the crack surface topology has variable geometrical parameters. The method was tested on aluminum alloy specimens AA2024-T351, containing fatigue fracture of different sizes, and excellent correlation was obtained between the theoretical and measured second-order nonlinear parameter. Then, it was demonstrated clearly that by measuring the nonlinear parameters it is possible to estimate crack size and fatigue life. Finally, advantages and limitations of the procedure are discussed.

  3. Prediction of war veteran's mental health based on spiritual well-being, social support and self-efficacy variables: The mediating role of life satisfaction

    PubMed Central

    Soltani, Mohsen Ahmadi Tahour; Karaminia, Reza; Hashemian, Sayedeh Asefeh

    2014-01-01

    Introduction: The present study aims to provide a model for explaining the mental health of war veterans based on the variables of spiritual well-being, social support, and self-efficacy, with the mediating role of life satisfaction. Materials and Methods: The research method was descriptive a correlational. The study samples included 210 veterans, who had records in the Veterans Foundation in Tehran's number one district, Sarallah and Imam Khomeini shelters and Essaar Sports Center in Tehran. They were selected randomly and were asked to respond to questionnaires on mental health, spiritual well-being, life satisfaction, social support, and self-efficacy. The data was analyzed by LISREL software version 8.5, using the path analysis. Results: The results showed that the designed model fitted the data (AGFI = 1.00, RMSEA = 0.00 and NFI = 1.00). In the fitted model, life satisfaction and spiritual well-being directly, and social support indirectly, had a significant relationship with the mediator variable of life satisfaction of the war veterans’ mental health. Conclusions: Veterans with better social support, life satisfaction, and spiritual well-being have better mental health. PMID:25077150

  4. Predicted effect of dynamic load on pitting fatigue life for low-contact-ratio spur gears

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.

    1986-01-01

    How dynamic load affects the surface pitting fatigue life of external spur gears was predicted by using the NASA computer program TELSGE. Parametric studies were performed over a range of various gear parameters modeling low-contact-ratio involute spur gears. In general, gear life predictions based on dynamic loads differed significantly from those based on static loads, with the predictions being strongly influenced by the maximum dynamic load during contact. Gear mesh operating speed strongly affected predicted dynamic load and life. Meshes operating at a resonant speed or one-half the resonant speed had significantly shorter lives. Dynamic life factors for gear surface pitting fatigue were developed on the basis of the parametric studies. In general, meshes with higher contact ratios had higher dynamic life factors than meshes with lower contact ratios. A design chart was developed for hand calculations of dynamic life factors.

  5. Predicting fatigue life of metal bellows

    NASA Technical Reports Server (NTRS)

    Daniels, C. M.

    1968-01-01

    Classical method of presenting fatigue data in plots of alternating stress vs number of deflection cycles is applied to bellows formed of various metals, including corrosion-resistant steel, nickel alloys, and aluminum alloys. The expected life of a new bellows design can then be determined before fabrication and testing.

  6. Effect of Roller Profile on Cylindrical Roller Bearing Life Prediction. Part 1; Comparison of Bearing Life Theories

    NASA Technical Reports Server (NTRS)

    Poplawski, Joseph V.; Peters, Steven M.; Zaretsky, Erwin V.

    2001-01-01

    Four rolling-element bearing life theories were chosen for analysis and compared for a simple roller-race geometry model. The life theories were those of Weibull; Lundberg and Palmgren; Ioannides and Harris; and Zaretsky. The analysis without a fatigue limit of Ioannides and Harris is identical to the Lundberg and Palmgren analysis, and the Weibull analysis is similar to that of Zaretsky if the exponents are chosen to be identical. The resultant predicted life a each stress condition not only depends on the life equation used but also on the Weibull slope assumed. The least variation in predicted life with Weibull slope comes with the Zaretsky equation. Except for a Weibull slope of 1.11, at which the Weibull equation predicts the highest lives, the highest lives are predicted for the Zaretsky equation. For Weibull slopes of 1.5 and 2, both the Lundherg-Palmgren and Ioannides-Harris (where tau(sub u) = 0) equations predict lower lives than the ANSI/ABMA/ISO standard. Based upon the Hertz stresses for line contact, the accepted load-life exponent of 10/3 results in a maximum Hertz stress-life exponent equal to 6.6. This value is inconsistent with that experienced in the field. The assumption of as shear stress fatigue limit tau(sub u) results in Hertz stress-life exponents greater than are experimentally verifiable.

  7. Damage-based life prediction model for uniaxial low-cycle stress fatigue of super-elastic NiTi shape memory alloy microtubes

    NASA Astrophysics Data System (ADS)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2015-08-01

    Based on the experimental observations for the uniaxial low-cycle stress fatigue failure of super-elastic NiTi shape memory alloy microtubes (Song et al 2015 Smart Mater. Struct. 24 075004) and a new definition of damage variable corresponding to the variation of accumulated dissipation energy, a phenomenological damage model is proposed to describe the damage evolution of the NiTi microtubes during cyclic loading. Then, with a failure criterion of Dc = 1, the fatigue lives of the NiTi microtubes are predicted by the damage-based model, the predicted lives are in good agreement with the experimental ones, and all of the points are located within an error band of 1.5 times.

  8. Three dimensional thrust chamber life prediction

    NASA Technical Reports Server (NTRS)

    Armstrong, W. H.; Brogren, E. W.

    1976-01-01

    A study was performed to analytically determine the cyclic thermomechanical behavior and fatigue life of three configurations of a Plug Nozzle Thrust Chamber. This thrust chamber is a test model which represents the current trend in nozzle design calling for high performance coupled with weight and volume limitations as well as extended life for reusability. The study involved the use of different materials and material combinations to evaluate their application to the problem of low-cycle fatigue in the thrust chamber. The thermal and structural analyses were carried out on a three-dimensional basis. Results are presented which show plots of continuous temperature histories and temperature distributions at selected times during the operating cycle of the thrust chamber. Computed structural data show critical regions for low-cycle fatigue and the histories of strain within the regions for each operation cycle.

  9. Probabilistic Fatigue Life Prediction of Turbine Disc Considering Model Parameter Uncertainty

    NASA Astrophysics Data System (ADS)

    He, Liping; Yu, Le; Zhu, Shun-Peng; Ding, Liangliang; Huang, Hong-Zhong

    2016-06-01

    Aiming to improve the predictive ability of Walker model for fatigue life prediction and taking the turbine disc alloy GH4133 as the application example, this paper investigates a new approach for probabilistic fatigue life prediction when considering parameter uncertainty inherent in the life prediction model. Firstly, experimental data are used to update the model parameters using Bayes' theorem, so as to obtain the posterior probability distribution functions of two parameters of the Walker model, as well to achieve the probabilistic life prediction model for turbine disc. During the updating process, Markov Chain Monte Carlo (MCMC) technique is used to generate samples of the given distribution and estimating the parameters distinctly. After that, the turbine disc life is predicted using the probabilistic Walker model based on Monte Carlo simulation technique. The experimental results indicate that: (1) after using the small sample test data obtained from turbine disc, parameter uncertainty of the Walker model can be quantified and the corresponding probabilistic model for fatigue life prediction can be established using Bayes' theorem; (2) there exists obvious dispersion of life data for turbine disc when predicting fatigue life in practical engineering application.

  10. Predictive and Treatment Validity of Life Satisfaction and the Quality of Life Inventory

    ERIC Educational Resources Information Center

    Frisch, Michael B.; Clark, Michelle P.; Rouse, Steven V.; Rudd, M. David; Paweleck, Jennifer K.; Greenstone, Andrew; Kopplin, David A.

    2005-01-01

    The clinical and positive psychology usefulness of quality of life, well-being, and life satisfaction assessments depends on their ability to predict important outcomes and to detect intervention-related change. These issues were explored in the context of a program of instrument validation for the Quality of Life Inventory (QOLI) involving 3,927…

  11. Computational Methods for Failure Analysis and Life Prediction

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Harris, Charles E. (Compiler); Housner, Jerrold M. (Compiler); Hopkins, Dale A. (Compiler)

    1993-01-01

    This conference publication contains the presentations and discussions from the joint UVA/NASA Workshop on Computational Methods for Failure Analysis and Life Prediction held at NASA Langley Research Center 14-15 Oct. 1992. The presentations focused on damage failure and life predictions of polymer-matrix composite structures. They covered some of the research activities at NASA Langley, NASA Lewis, Southwest Research Institute, industry, and universities. Both airframes and propulsion systems were considered.

  12. Ductility normalized-strainrange partitioning life relations for creep-fatigue life predictions

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Saltsman, J. F.; Hirschberg, M. H.

    1977-01-01

    Procedures based on Strainrange Partitioning (SRP) are presented for estimating the effects of environment and other influences on the high temperature, low cycle, creep fatigue resistance of alloys. It is proposed that the plastic and creep, ductilities determined from conventional tensile and creep rupture tests conducted in the environment of interest be used in a set of ductility normalized equations for making a first order approximation of the four SRP inelastic strainrange life relations. Different levels of sophistication in the application of the procedures are presented by means of illustrative examples with several high temperature alloys. Predictions of cyclic lives generally agree with observed lives within factors of three.

  13. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Neumann, J. F.; Liu, A.

    1986-01-01

    Thermal barrier coatings (TBCs) for turbine airfoils in high-performance engines represent an advanced materials technology with both performance and durability benefits. The foremost TBC benefit is the reduction of heat transferred into air-cooled components, which yields performance and durability benefits. This program focuses on predicting the lives of two types of strain-tolerant and oxidation-resistant TBC systems that are produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system, composed of a low-pressure plasma-spray (LPPS) or an argon shrouded plasma-spray (ASPS) applied oxidation resistant NiCrAlY (or CoNiCrAlY) bond coating and an air-plasma-sprayed yttria (8 percent) partially stabilized zirconia insulative layer, is applied by Chromalloy, Klock, and Union Carbide. The second type of TBC is applied by the electron beam-physical vapor deposition (EB-PVD) process by Temescal.

  14. Risk assessment and life prediction of complex engineering systems

    SciTech Connect

    Garcia, M.D.; Varma, R.; Heger, A.S.

    1996-03-01

    Many complex engineering systems will exceed their design life expectancy within the next 10 to 15 years. It is also expected that these systems must be maintained and operated beyond their design life. This paper presents a integrated approach for managing the risks associated with aging effects and predicting the residually expectancy these systems, The approach unifies risk assessment, enhanced surveillance and testing, and robust computational models to assess the risk, predict age, and develop a life-extension management procedure. It also relies on the state of the art in life-extension and risk assessment methods from the nuclear power industry. Borrowing from the developments in decision analysis, this approach should systematically identify the options available for managing the existing aging systems beyond their intended design life.

  15. Prediction and evaluation of route dependent dosimetry of BPA in rats at different life stages using a physiologically based pharmacokinetic model

    SciTech Connect

    Yang, Xiaoxia Doerge, Daniel R.; Fisher, Jeffrey W.

    2013-07-01

    Bisphenol A (BPA) has received considerable attention throughout the last decade due to its widespread use in consumer products. For the first time a physiologically based pharmacokinetic (PBPK) model was developed in neonatal and adult rats to quantitatively evaluate age-dependent pharmacokinetics of BPA and its phase II metabolites. The PBPK model was calibrated in adult rats using studies on BPA metabolism and excretion in the liver and gastrointestinal tract, and pharmacokinetic data with BPA in adult rats. For immature rats the hepatic and gastrointestinal metabolism of BPA was inferred from studies on the maturation of phase II enzymes coupled with serum time course data in pups. The calibrated model predicted the measured serum concentrations of BPA and BPA conjugates after administration of 100 μg/kg of d6-BPA in adult rats (oral gavage and intravenous administration) and postnatal days 3, 10, and 21 pups (oral gavage). The observed age-dependent BPA serum concentrations were partially attributed to the immature metabolic capacity of pups. A comparison of the dosimetry of BPA across immature rats and monkeys suggests that dose adjustments would be necessary to extrapolate toxicity studies from neonatal rats to infant humans. - Highlights: • A PBPK model predicts the kinetics of bisphenol A (BPA) in young and adult rats. • BPA metabolism within enterocytes is required for fitting of oral BPA kinetic data. • BPA dosimetry in young rats is different than adult rats and young monkeys.

  16. Assessment of fatigue life of remanufactured impeller based on FEA

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Cao, Huajun; Liu, Hailong; Zhang, Yubo

    2016-09-01

    Predicting the fatigue life of remanufactured centrifugal compressor impellers is a critical problem. In this paper, the S-N curve data were obtained by combining experimentation and theory deduction. The load spectrum was compiled by the rain-flow counting method based on the comprehensive consideration of the centrifugal force, residual stress, and aerodynamic loads in the repair region. A fatigue life simulation model was built, and fatigue life was analyzed based on the fatigue cumulative damage rule. Although incapable of providing a high-precision prediction, the simulation results were useful for the analysis of fatigue life impact factors and fatigue fracture areas. Results showed that the load amplitude greatly affected fatigue life, the impeller was protected from running at over-speed, and the predicted fatigue life was satisfied within the next service cycle safely at the rated speed.

  17. Assessment of fatigue life of remanufactured impeller based on FEA

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Cao, Huajun; Liu, Hailong; Zhang, Yubo

    2016-07-01

    Predicting the fatigue life of remanufactured centrifugal compressor impellers is a critical problem. In this paper, the S-N curve data were obtained by combining experimentation and theory deduction. The load spectrum was compiled by the rain-flow counting method based on the comprehensive consideration of the centrifugal force, residual stress, and aerodynamic loads in the repair region. A fatigue life simulation model was built, and fatigue life was analyzed based on the fatigue cumulative damage rule. Although incapable of providing a high-precision prediction, the simulation results were useful for the analysis of fatigue life impact factors and fatigue fracture areas. Results showed that the load amplitude greatly affected fatigue life, the impeller was protected from running at over-speed, and the predicted fatigue life was satisfied within the next service cycle safely at the rated speed.

  18. Effect of Hoop Stress on Ball Bearing Life Prediction

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.; August, Richard; Coe, Harold H.

    1995-01-01

    A finite-element analysis (FEA) of a generic, dimensionally normalized inner race of an angular-contact ball bearing was performed under varying conditions of speed and the press (or interference) fit of the inner-race bore on a journal. The FEA results at the ball-race contact were used to derive an equation from which was obtained the radius of an equivalent cylindrical bearing race with the same or similar hoop stress. The radius of the equivalent cylinder was used to obtain a generalized closed-form approximation of the hoop stresses at the ball-inner-race contact in an angular-contact ball bearing. A life analysis was performed on both a 45- and a 120-mm-bore, angular-contact ball bearing. The predicted lives with and without hoop stress were compared with experimental endurance results obtained at 12000 and 25000 rpm with the 120-mm-bore ball bearing. A life factor equation based on hoop stress is presented.

  19. Ceramic Matrix Composites (CMC) Life Prediction Development - 2003

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R.; Calomino, Anthony M.; Verrilli, Michael J.; Thomas, David J.; Halbig, Michael C.; Opila, Elizabeth J.; Ellis, John R.

    2003-01-01

    Accurate life prediction is critical to successful use of ceramic matrix composites (CMCs). The tools to accomplish this are immature and not oriented toward the behavior of carbon fiber reinforced silicon carbide (C/SiC), the primary system of interest for many reusable and single mission launch vehicle propulsion and airframe applications. This paper describes an approach and progress made to satisfy the need to develop an integrated life prediction system that addresses mechanical durability and environmental degradation of C/SiC.

  20. Thermal barrier coating life-prediction model development

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Neumann, J. F.; Liu, A.

    1987-01-01

    The primary objective of this program was to develop an operative thermal barrier coating (TBC) design model for life prediction. The objective was successfully accomplished with the development, calibration, and demonstration of a mechanistic thermochemical model which rapidly predicts TBC life as a function of engine, mission, and materials system parameters. This thermochemical design model accounts for the three operative TBC damage modes (bond coating oxidation, zirconia toughness reduction, and molten salt film damage), which all contribute to spalling of the insulating zirconia layer.

  1. Progressive Failure And Life Prediction of Ceramic and Textile Composites

    NASA Technical Reports Server (NTRS)

    Xue, David Y.; Shi, Yucheng; Katikala, Madhu; Johnston, William M., Jr.; Card, Michael F.

    1998-01-01

    An engineering approach to predict the fatigue life and progressive failure of multilayered composite and textile laminates is presented. Analytical models which account for matrix cracking, statistical fiber failures and nonlinear stress-strain behavior have been developed for both composites and textiles. The analysis method is based on a combined micromechanics, fracture mechanics and failure statistics analysis. Experimentally derived empirical coefficients are used to account for the interface of fiber and matrix, fiber strength, and fiber-matrix stiffness reductions. Similar approaches were applied to textiles using Repeating Unit Cells. In composite fatigue analysis, Walker's equation is applied for matrix fatigue cracking and Heywood's formulation is used for fiber strength fatigue degradation. The analysis has been compared with experiment with good agreement. Comparisons were made with Graphite-Epoxy, C/SiC and Nicalon/CAS composite materials. For textile materials, comparisons were made with triaxial braided and plain weave materials under biaxial or uniaxial tension. Fatigue predictions were compared with test data obtained from plain weave C/SiC materials tested at AS&M. Computer codes were developed to perform the analysis. Composite Progressive Failure Analysis for Laminates is contained in the code CPFail. Micromechanics Analysis for Textile Composites is contained in the code MicroTex. Both codes were adapted to run as subroutines for the finite element code ABAQUS and CPFail-ABAQUS and MicroTex-ABAQUS. Graphic user interface (GUI) was developed to connect CPFail and MicroTex with ABAQUS.

  2. A life prediction model for laminated composite structural components

    NASA Technical Reports Server (NTRS)

    Allen, David H.

    1990-01-01

    A life prediction methodology for laminated continuous fiber composites subjected to fatigue loading conditions was developed. A summary is presented of research completed. A phenomenological damage evolution law was formulated for matrix cracking which is independent of stacking sequence. Mechanistic and physical support was developed for the phenomenological evolution law proposed above. The damage evolution law proposed above was implemented to a finite element computer program. And preliminary predictions were obtained for a structural component undergoing fatigue loading induced damage.

  3. Markov blanket-based approach for learning multi-dimensional Bayesian network classifiers: an application to predict the European Quality of Life-5 Dimensions (EQ-5D) from the 39-item Parkinson's Disease Questionnaire (PDQ-39).

    PubMed

    Borchani, Hanen; Bielza, Concha; Martı Nez-Martı N, Pablo; Larrañaga, Pedro

    2012-12-01

    Multi-dimensional Bayesian network classifiers (MBCs) are probabilistic graphical models recently proposed to deal with multi-dimensional classification problems, where each instance in the data set has to be assigned to more than one class variable. In this paper, we propose a Markov blanket-based approach for learning MBCs from data. Basically, it consists of determining the Markov blanket around each class variable using the HITON algorithm, then specifying the directionality over the MBC subgraphs. Our approach is applied to the prediction problem of the European Quality of Life-5 Dimensions (EQ-5D) from the 39-item Parkinson's Disease Questionnaire (PDQ-39) in order to estimate the health-related quality of life of Parkinson's patients. Fivefold cross-validation experiments were carried out on randomly generated synthetic data sets, Yeast data set, as well as on a real-world Parkinson's disease data set containing 488 patients. The experimental study, including comparison with additional Bayesian network-based approaches, back propagation for multi-label learning, multi-label k-nearest neighbor, multinomial logistic regression, ordinary least squares, and censored least absolute deviations, shows encouraging results in terms of predictive accuracy as well as the identification of dependence relationships among class and feature variables.

  4. Markov blanket-based approach for learning multi-dimensional Bayesian network classifiers: an application to predict the European Quality of Life-5 Dimensions (EQ-5D) from the 39-item Parkinson's Disease Questionnaire (PDQ-39).

    PubMed

    Borchani, Hanen; Bielza, Concha; Martı Nez-Martı N, Pablo; Larrañaga, Pedro

    2012-12-01

    Multi-dimensional Bayesian network classifiers (MBCs) are probabilistic graphical models recently proposed to deal with multi-dimensional classification problems, where each instance in the data set has to be assigned to more than one class variable. In this paper, we propose a Markov blanket-based approach for learning MBCs from data. Basically, it consists of determining the Markov blanket around each class variable using the HITON algorithm, then specifying the directionality over the MBC subgraphs. Our approach is applied to the prediction problem of the European Quality of Life-5 Dimensions (EQ-5D) from the 39-item Parkinson's Disease Questionnaire (PDQ-39) in order to estimate the health-related quality of life of Parkinson's patients. Fivefold cross-validation experiments were carried out on randomly generated synthetic data sets, Yeast data set, as well as on a real-world Parkinson's disease data set containing 488 patients. The experimental study, including comparison with additional Bayesian network-based approaches, back propagation for multi-label learning, multi-label k-nearest neighbor, multinomial logistic regression, ordinary least squares, and censored least absolute deviations, shows encouraging results in terms of predictive accuracy as well as the identification of dependence relationships among class and feature variables. PMID:22897950

  5. Strainrange partitioning life predictions of the long time metal properties council creep-fatigue tests

    NASA Technical Reports Server (NTRS)

    Saltsman, J. F.; Halford, G. R.

    1979-01-01

    The method of strainrange partitioning is used to predict the cyclic lives of the Metal Properties Council's long time creep-fatigue interspersion tests of several steel alloys. Comparisons are made with predictions based upon the time- and cycle-fraction approach. The method of strainrange partitioning is shown to give consistently more accurate predictions of cyclic life than is given by the time- and cycle-fraction approach.

  6. Strainrange partitioning life predictions of the long time Metal Properties Council creep-fatigue tests

    NASA Technical Reports Server (NTRS)

    Saltsman, J. F.; Halford, G. R.

    1979-01-01

    The method of Strainrange Partitioning is used to predict the cyclic lives of the Metal Properties Council's long time creep-fatigue interspersion tests of several steel alloys. Comparisons are made with predictions based upon the Time- and Cycle-Fraction approach. The method of Strainrange Partitioning is shown to give consistently more accurate predictions of cyclic life than is given by the Time- and Cycle-Fraction approach.

  7. Enhanced CARES Software Enables Improved Ceramic Life Prediction

    NASA Technical Reports Server (NTRS)

    Janosik, Lesley A.

    1997-01-01

    The NASA Lewis Research Center has developed award-winning software that enables American industry to establish the reliability and life of brittle material (e.g., ceramic, intermetallic, graphite) structures in a wide variety of 21st century applications. The CARES (Ceramics Analysis and Reliability Evaluation of Structures) series of software is successfully used by numerous engineers in industrial, academic, and government organizations as an essential element of the structural design and material selection processes. The latest version of this software, CARES/Life, provides a general- purpose design tool that predicts the probability of failure of a ceramic component as a function of its time in service. CARES/Life was recently enhanced by adding new modules designed to improve functionality and user-friendliness. In addition, a beta version of the newly-developed CARES/Creep program (for determining the creep life of monolithic ceramic components) has just been released to selected organizations.

  8. Purpose in Life Predicts Allostatic Load Ten Years Later

    PubMed Central

    Zilioli, Samuele; Slatcher, Richard B.; Ong, Anthony D.; Gruenewald, Tara

    2015-01-01

    Objective Living a purposeful life is associated with better mental and physical health, including longevity. Accumulating evidence shows that these associations might be explained by the association between life purpose and regulation of physiological systems involved in the stress response. The aim of this study was to investigate the prospective associations between life purpose and allostatic load over a 10-year period. Methods Analyses were conducted using data from the Midlife in the United States (MIDUS) survey. Assessment of life purpose, psychological covariates and demographics were obtained at baseline, while biomarkers of allostatic load were assessed at the 10-year follow-up. Results We found that greater life purpose predicted lower levels of allostatic load at follow-up, even when controlling for other aspects of psychological well-being potentially associated with allostatic load. Further, life purpose was also a strong predictor of individual differences in self-health locus of control—i.e., beliefs about how much influence individuals can exert on their own health—which, in turn, partially mediated the association between purpose and allostatic load. Although life purpose was also negatively linked to other-health locus of control —i.e., the extent to which individuals believe their health is controlled by others/chance —this association did not mediate the impact of life purpose on allostatic load. Conclusion The current study provides the first empirical evidence for the long-term physiological correlates of life purpose and supports the hypothesis that self-health locus of control acts as one proximal psychological mechanism through which life purpose may be linked to positive biological outcomes. PMID:26526322

  9. Life Prediction Issues in Thermal/Environmental Barrier Coatings in Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Brewer, David N.; Murthy, Pappu L. N.

    2001-01-01

    Issues and design requirements for the environmental barrier coating (EBC)/thermal barrier coating (TBC) life that are general and those specific to the NASA Ultra-Efficient Engine Technology (UEET) development program have been described. The current state and trend of the research, methods in vogue related to the failure analysis, and long-term behavior and life prediction of EBCITBC systems are reported. Also, the perceived failure mechanisms, variables, and related uncertainties governing the EBCITBC system life are summarized. A combined heat transfer and structural analysis approach based on the oxidation kinetics using the Arrhenius theory is proposed to develop a life prediction model for the EBC/TBC systems. Stochastic process-based reliability approach that includes the physical variables such as gas pressure, temperature, velocity, moisture content, crack density, oxygen content, etc., is suggested. Benefits of the reliability-based approach are also discussed in the report.

  10. Probabilistic fatigue life prediction model for alloys with defects: applied to A206

    SciTech Connect

    Kapoor, Rajeev; Sree Hari Rao, V.; Mishra, Rajiv S.; Baumann, John A.; Grant, Glenn J.

    2011-05-31

    Presented here is a model for the prediction of fatigue life based on the statistical distribution of pores, intermetallic particles and grains. This has been applied to a cast Al alloy A206, before and after friction stir processing (FSP). The model computes the probability to initiate a small crack based on the probability of finding combinations of defects and grains on the surface. The crack initiation and propagation life of small cracks due to these defect and grain combinations are computed and summed to obtain the total fatigue life. The defect and grain combinations are ranked according to total fatigue life and the failure probability computed. Bending fatigue experiments were carried out on A206 before and after FSP. FSP eliminated the porosity, broke down the particles and refined the microstructure. The model predicted the fatigue life of A206 before and after FSP well. The cumulative probability distribution vs. fatigue life was fitted to a three parameter Weibull distribution function. The scatter reduced after FSP and the threshold of fatigue life increased. The potential improvement in the fatigue life of A206 for a microstructure consisting of a finer distribution of particle sizes after FSP was predicted using the model.

  11. Capacity-loss diagnostic and life-time prediction in lithium-ion batteries: Part 1. Development of a capacity-loss diagnostic method based on open-circuit voltage analysis

    NASA Astrophysics Data System (ADS)

    Wang, Tiansi; Pei, Lei; Wang, Tingting; Lu, Rengui; Zhu, Chunbo

    2016-01-01

    Effective capacity-loss diagnosis and life-time prediction are the foundations of battery second-use technology and will play an important role in the development of the new energy industry. Of the two, the capacity-loss diagnostic, as a precondition of the life-time prediction, needs to be studied first. Performing a capacity-loss diagnosis for an aging cell consists of finding the decisive degradation mechanisms for the cell's capacity degradation. Because a cell's capacity just equals the span of the open-circuit voltage (OCV), when suspect degradation mechanisms affect a cell's capacity, they will leave corresponding and particular clues in the OCV curve. Taking a cell's OCV as the diagnostic indicator, a multi-mechanistic and non-destructive diagnostic method is developed in this paper. To establish an unambiguous relationship between OCV changes and the combinations of the decisive mechanisms, all the possible OCV changes under various aging situations are systematically analyzed based on a novel simultaneous coordinate system, in which the effects of each suspect capacity-loss mechanism on the OCV curve can be clearly represented. As a summary of the analysis results, a straightforward diagnostic flowchart is presented. By following the flowchart, an aging cell can be diagnosed within three steps by observation of the OCV changes.

  12. Life in the Mosaic: Predicting changes in estuarine nursery production for juvenile fishes in response to sea-level rise with a landscape-based habitat production model

    EPA Science Inventory

    Identification of critical habitat in estuarine fish nursery areas is an important conservation and management objective, yet response to changes in critical habitat is both equally important and harder to predict. Habitat can be viewed as a mosaic of both temporally variable en...

  13. Corrosion fatigue behavior and life prediction method under changing temperature condition

    SciTech Connect

    Kanasaki, Hiroshi; Hirano, Akihiko; Iida, Kunihiro; Asada, Yasuhide

    1997-12-01

    Axially strain controlled low cycle fatigue tests of a carbon steel in oxygenated high temperature water were carried out under changing temperature conditions. Two patterns of triangular wave were selected for temperature cycling. One was in-phase pattern synchronizing with strain cycling and the other was an out-of-phase pattern in which temperature was changed in anti-phase to the strain cycling. The fatigue life under changing temperature condition was in the range of the fatigue life under various constant temperature within the range of the changing temperature. The fatigue life of in-phase pattern was equivalent to that of out-of-phase pattern. The corrosion fatigue life prediction method was proposed for changing temperature condition, and was based on the assumption that the fatigue damage increased in linear proportion to increment of strain during cycling. The fatigue life predicted by this method was in good agreement with the test results.

  14. How the behavioral approach system predicts everyday life outcomes.

    PubMed

    Izadikhah, Zahra; Jackson, Chris J

    2010-01-01

    This study tested crucial components of Gray's reinforcement sensitivity theory that have generally been overlooked in the literature. We tested whether the perceived amount of reward moderates the behavioral approach system (BAS) and the importance of reward mediates BAS in the prediction of job satisfaction and organizational commitment. Results from 514 participants employed in part-time and full-time jobs provided support for our model, such that the indirect effect of BAS through the importance of reward was strongest when reward was provided. This model advances our understanding of reinforcement sensitivity theory and offers a solid foundation for predicting outcomes in everyday life.

  15. DNA Sequencing and Predictions of the Cosmic Theory of Life

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, N. Chandra

    The theory of cometary panspermia, developed by the late Sir Fred Hoyle and the present author argues that life originated cosmically as a unique event in one of a great multitude of comets or planetary bodies in the Universe. Life on Earth did not originate here but was introduced by impacting comets, and its further evolution was driven by the subsequent acquisition of cosmically derived genes. Explicit predictions of this theory published in 1979-1981, stating how the acquisition of new genes drives evolution, are compared with recent developments in relation to horizontal gene transfer, and the role of retroviruses in evolution. Precisely-stated predictions of the theory of cometary panspermia are shown to have been verified.

  16. DNA sequencing and predictions of the cosmic theory of life

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, N. Chandra

    2013-01-01

    The theory of cometary panspermia, developed by the late Sir Fred Hoyle and the present author argues that life originated cosmically as a unique event in one of a great multitude of comets or planetary bodies in the Universe. Life on Earth did not originate here but was introduced by impacting comets, and its further evolution was driven by the subsequent acquisition of cosmically derived genes. Explicit predictions of this theory published in 1979-1981, stating how the acquisition of new genes drives evolution, are compared with recent developments in relation to horizontal gene transfer, and the role of retroviruses in evolution. Precisely-stated predictions of the theory of cometary panspermia are shown to have been verified.

  17. Development of thermomechanical life prediction models for thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.

    1985-01-01

    Thermal barrier coatings (TBCs) for turbine airfoils in high-performance engines represent an advanced materials technology with both performance and durability benefits. The foremost TBC benefit is the reduction of heat transferred into air-cooled components. To achieve these benefits, however, the TBC system must be reliable. Mechanistic thermomechanical and thermochemical life models and statistically significant design data are therefore required for the reliable exploitation of TBC benefits on gas turbine airfoils. Garrett's NASA-HOST Program (NAS3-23945) is designed to fulfill these requirements. This program focuses on predicting the lives of two types of strain-tolerant and oxidation-resistant TBC systems that are produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system, composed of a low-pressure plasma-spray (LPPS) applied oxidation resistant NiCrAlY bond coating, and an air-plasma-sprayed yttria partially stabilized zirconia insulated layer is applied by both Chromalloy and Klock. The second type of TBC is applied by the electron beam-physical vapor deposition process by Temescal. Thermomechanical life models are being tailored to predict TBC strain tolerance in terms of materials, engine, and mission parameters. Continuum and fracture mechanics approaches and statistical methods are being evaluated to develop tensile and compressive strain functions required to drive a mission analysis capable thermomechanical life model for TBCs. Results of initial testing to calibrate these life models will be presented.

  18. NASA GRC Fatigue Crack Initiation Life Prediction Models

    NASA Technical Reports Server (NTRS)

    Arya, Vinod K.; Halford, Gary R.

    2002-01-01

    Metal fatigue has plagued structural components for centuries, and it remains a critical durability issue in today's aerospace hardware. This is true despite vastly improved and advanced materials, increased mechanistic understanding, and development of accurate structural analysis and advanced fatigue life prediction tools. Each advance is quickly taken advantage of to produce safer, more reliable, more cost effective, and better performing products. In other words, as the envelope is expanded, components are then designed to operate just as close to the newly expanded envelope as they were to the initial one. The problem is perennial. The economic importance of addressing structural durability issues early in the design process is emphasized. Tradeoffs with performance, cost, and legislated restrictions are pointed out. Several aspects of structural durability of advanced systems, advanced materials and advanced fatigue life prediction methods are presented. Specific items include the basic elements of durability analysis, conventional designs, barriers to be overcome for advanced systems, high-temperature life prediction for both creep-fatigue and thermomechanical fatigue, mean stress effects, multiaxial stress-strain states, and cumulative fatigue damage accumulation assessment.

  19. A Primer In Advanced Fatigue Life Prediction Methods

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    2000-01-01

    Metal fatigue has plagued structural components for centuries, and it remains a critical durability issue in today's aerospace hardware. This is true despite vastly improved and advanced materials, increased mechanistic understanding, and development of accurate structural analysis and advanced fatigue life prediction tools. Each advance is quickly taken advantage of to produce safer, more reliable more cost effective, and better performing products. In other words, as the envelop is expanded, components are then designed to operate just as close to the newly expanded envelop as they were to the initial one. The problem is perennial. The economic importance of addressing structural durability issues early in the design process is emphasized. Tradeoffs with performance, cost, and legislated restrictions are pointed out. Several aspects of structural durability of advanced systems, advanced materials and advanced fatigue life prediction methods are presented. Specific items include the basic elements of durability analysis, conventional designs, barriers to be overcome for advanced systems, high-temperature life prediction for both creep-fatigue and thermomechanical fatigue, mean stress effects, multiaxial stress-strain states, and cumulative fatigue damage accumulation assessment.

  20. Life prediction of advanced materials for gas turbine application

    SciTech Connect

    Zamrik, S.Y.; Ray, A.; Koss, D.A.

    1995-12-31

    Emphasis is placed on life characterization based on low cycle fatigue under isothermal conditions and thermomechanical fatigue. Microstructure of failed coated and uncoated specimens is being analyzed. IN 738 LC is the material; the coating is either overlay (NiCoCrAly) or NiAl-based aluminide.

  1. One- and two-stage Arrhenius models for pharmaceutical shelf life prediction.

    PubMed

    Fan, Zhewen; Zhang, Lanju

    2015-01-01

    One of the most challenging aspects of the pharmaceutical development is the demonstration and estimation of chemical stability. It is imperative that pharmaceutical products be stable for two or more years. Long-term stability studies are required to support such shelf life claim at registration. However, during drug development to facilitate formulation and dosage form selection, an accelerated stability study with stressed storage condition is preferred to quickly obtain a good prediction of shelf life under ambient storage conditions. Such a prediction typically uses Arrhenius equation that describes relationship between degradation rate and temperature (and humidity). Existing methods usually rely on the assumption of normality of the errors. In addition, shelf life projection is usually based on confidence band of a regression line. However, the coverage probability of a method is often overlooked or under-reported. In this paper, we introduce two nonparametric bootstrap procedures for shelf life estimation based on accelerated stability testing, and compare them with a one-stage nonlinear Arrhenius prediction model. Our simulation results demonstrate that one-stage nonlinear Arrhenius method has significant lower coverage than nominal levels. Our bootstrap method gave better coverage and led to a shelf life prediction closer to that based on long-term stability data.

  2. Fatigue life prediction under service load considering strengthening effect of loads below fatigue limit

    NASA Astrophysics Data System (ADS)

    Zhao, Lihui; Zheng, Songlin; Feng, Jinzhi

    2014-11-01

    Lightweight design requires an accurate life prediction for structures and components under service loading histories. However, predicted life with the existing methods seems too conservative in some cases, leading to a heavy structure. Because these methods are established on the basis that load cycles would only cause fatigue damage, ignore the strengthening effect of loads. Based on Palmgren-Miner Rule (PMR), this paper introduces a new method for fatigue life prediction under service loadings by taking into account the strengthening effect of loads below the fatigue limit. In this method, the service loadings are classified into three categories: damaging load, strengthening load and none-effect load, and the process for fatigue life prediction is divided into two stages: stage I and stage II, according to the best strengthening number of cycles. During stage I, fatigue damage is calculated considering both the strengthening and damaging effect of load cycles. While during stage II, only the damaging effect is considered. To validate this method, fatigue lives of automobile half shaft and torsion beam rear axle are calculated based on the new method and traditional methods, such as PMR and Modified Miner Rule (MMR), and fatigue tests of the two components are conducted under service loading histories. The tests results show that the percentage errors of the predicted life with the new method to mean life of tests for the two components are -3.78% and -1.76% separately, much lesser than that with PMR and MMR. By considering the strengthening effect of loads below the fatigue limit, the new method can significantly improve the accuracy for fatigue life prediction. Thus lightweight design can be fully realized in the design stage.

  3. Life histories predict coral community disassembly under multiple stressors.

    PubMed

    Darling, Emily S; McClanahan, Timothy R; Côté, Isabelle M

    2013-06-01

    Climate change is reshaping biological communities against a background of existing human pressure. Evaluating the impacts of multiple stressors on community dynamics can be particularly challenging in species-rich ecosystems, such as coral reefs. Here, we investigate whether life-history strategies and cotolerance to different stressors can predict community responses to fishing and temperature-driven bleaching using a 20-year time series of coral assemblages in Kenya. We found that the initial life-history composition of coral taxa largely determined the impacts of bleaching and coral loss. Prior to the 1998 bleaching event, coral assemblages within no-take marine reserves were composed of three distinct life histories - competitive, stress-tolerant and weedy- and exhibited strong declines following bleaching with limited subsequent recovery. In contrast, fished reefs had lower coral cover, fewer genera and were composed of stress-tolerant and weedy corals that were less affected by bleaching over the long term. Despite these general patterns, we found limited evidence for cotolerance as coral genera and life histories were variable in their sensitivities to fishing and bleaching. Overall, fishing and bleaching have reduced coral diversity and led to altered coral communities of 'survivor' species with stress-tolerant and weedy life histories. Our findings are consistent with expectations that climate change interacting with existing human pressure will result in the loss of coral diversity and critical reef habitat.

  4. Life prediction of advanced materials for gas turbine application

    SciTech Connect

    Zamrik, S.Y.; Ray, A.; Koss, D.A.

    1995-10-01

    Most of the studies on the low cycle fatigue life prediction have been reported under isothermal conditions where the deformation of the material is strain dependent. In the development of gas turbines, components such as blades and vanes are exposed to temperature variations in addition to strain cycling. As a result, the deformation process becomes temperature and strain dependent. Therefore, the life of the component becomes sensitive to temperature-strain cycling which produces a process known as {open_quotes}thermomechanical fatigue, or TMF{close_quotes}. The TMF fatigue failure phenomenon has been modeled using conventional fatigue life prediction methods, which are not sufficiently accurate to quantitatively establish an allowable design procedure. To add to the complexity of TMF life prediction, blade and vane substrates are normally coated with aluminide, overlay or thermal barrier type coatings (TBC) where the durability of the component is dominated by the coating/substrate constitutive response and by the fatigue behavior of the coating. A number of issues arise from TMF depending on the type of temperature/strain phase cycle: (1) time-dependent inelastic behavior can significantly affect the stress response. For example, creep relaxation during a tensile or compressive loading at elevated temperatures leads to a progressive increase in the mean stress level under cyclic loading. (2) the mismatch in elastic and thermal expansion properties between the coating and the substrate can lead to significant deviations in the coating stress levels due to changes in the elastic modulii. (3) the {open_quotes}dry{close_quotes} corrosion resistance coatings applied to the substrate may act as primary crack initiation sites. Crack initiation in the coating is a function of the coating composition, its mechanical properties, creep relaxation behavior, thermal strain range and the strain/temperature phase relationship.

  5. Multiaxial deformation and life prediction model and experimental data for advanced silicon nitride ceramics

    SciTech Connect

    Ding, J.L.; Liu, K.C.; Brinkman, C.R.

    1993-06-01

    This paper summarizes recent experimental results on creep and creep rupture behavior of a commercial grade of Si{sub 3}N{sub 4} ceramic in the temperature range of 1150 to 1300C obtained at ORNL; and introduces a tentative multiaxial deformation and life prediction model for ceramic materials under general thermomechanical loadings. Issues related to the possible standardization of the data analysis methodology and possible future research needs for high temperature structural ceramics in the area of development of data base and life prediction methodology are also discussed.

  6. Thermal barrier coating life-prediction model development

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Neumann, J.; Liu, A.

    1986-01-01

    The program focuses on predicting the lives of two types of strain-tolerant and oxidation-resistant thermal barrier coating (TBC) systems that are produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system, composed of a low-pressure plasma-spray (LPPS) or an argon shrouded plasma-spray (ASPS) applied oxidation resistant NiCrAlY or (CoNiCrAlY) bond coating and an air-plasma-sprayed yttria partially stabilized zirconia insulative layer, is applied by both Chromalloy, Klock, and Union Carbide. The second type of TBS is applied by the electron beam-physical vapor deposition (EB-PVD) process by Temescal. The second year of the program was focused on specimen procurement, TMC system characterization, nondestructive evaluation methods, life prediction model development, and TFE731 engine testing of thermal barrier coated blades. Materials testing is approaching completion. Thermomechanical characterization of the TBC systems, with toughness, and spalling strain tests, was completed. Thermochemical testing is approximately two-thirds complete. Preliminary materials life models for the bond coating oxidation and zirconia sintering failure modes were developed. Integration of these life models with airfoil component analysis methods is in progress. Testing of high pressure turbine blades coated with the program TBS systems is in progress in a TFE731 turbofan engine. Eddy current technology feasibility was established with respect to nondestructively measuring zirconia layer thickness of a TBC system.

  7. Creep fatigue life prediction for engine hot section materials (isotropic). Annual report

    SciTech Connect

    Moreno, V.; Nissley, D.; Lin, L.J.

    1985-03-01

    The first two years of a two-phase program aimed at improving the high temperature crack initiation life prediction technology for gas turbine hot section components are discussed. In Phase 1 (baseline) effort, low cycle fatigue (LCF) models, using a data base generated for a cast nickel base gas turbine hot section alloy (B1900+Hf), were evaluated for their ability to predict the crack initiation life for relevant creep-fatigue loading conditions and to define data required for determination of model constants. The variables included strain range and rate, mean strain, strain hold times and temperature. None of the models predicted all of the life trends within reasonable data requirements. A Cycle Damage Accumulation (CDA) was therefore developed which follows an exhaustion of material ductility approach. Material ductility is estimated based on observed similarities of deformation structure between fatigue, tensile and creep tests. The cycle damage function is based on total strain range, maximum stress and stress amplitude and includes both time independent and time dependent components. The CDA model accurately predicts all of the trends in creep-fatigue life with loading conditions. In addition, all of the CDA model constants are determinable from rapid cycle, fully reversed fatigue tests and monotonic tensile and/or creep data.

  8. Using ABAQUS Scripting Interface for Materials Evaluation and Life Prediction

    NASA Technical Reports Server (NTRS)

    Powers, Lynn M.; Arnold, Steven M.; Baranski, Andrzej

    2006-01-01

    An ABAQUS script has been written to aid in the evaluation of the mechanical behavior of viscoplastic materials. The purposes of the script are to: handle complex load histories; control load/displacement with alternate stopping criteria; predict failure and life; and verify constitutive models. Material models from the ABAQUS library may be used or the UMAT routine may specify mechanical behavior. User subroutines implemented include: UMAT for the constitutive model; UEXTERNALDB for file manipulation; DISP for boundary conditions; and URDFIL for results processing. Examples presented include load, strain and displacement control tests on a single element model. The tests are creep with a life limiting strain criterion, strain control with a stress limiting cycle and a complex interrupted cyclic relaxation test. The techniques implemented in this paper enable complex load conditions to be solved efficiently with ABAQUS.

  9. Lunar Base Life Support Failures

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2009-01-01

    Dynamic simulation of the lunar outpost habitat life support was undertaken to investigate the impact of life support failures and to investigate responses. Some preparatory static analysis for the Lunar Outpost life support model, an earlier version of the model, and an investigation into the impact of Extravehicular Activity (EVA) were reported previously. (Jones, 2008-01-2184, 2008-01-2017) The earlier model was modified to include possible resupply delays, power failures, recycling system failures, and atmosphere and other material storage failures. Most failures impact the lunar outpost water balance and can be mitigated by reducing water usage. Food solids, nitrogen can be obtained only by resupply from Earth. The most time urgent failure is a lass of carbon dioxide removal capability. Life support failures might be survivable if effective operational solutions are provided in the system design.

  10. USING CONDITION MONITORING TO PREDICT REMAINING LIFE OF ELECTRIC CABLES.

    SciTech Connect

    LOFARO,R.; SOO,P.; VILLARAN,M.; GROVE,E.

    2001-03-29

    Electric cables are passive components used extensively throughout nuclear power stations to perform numerous safety and non-safety functions. It is known that the polymers commonly used to insulate the conductors on these cables can degrade with time; the rate of degradation being dependent on the severity of the conditions in which the cables operate. Cables do not receive routine maintenance and, since it can be very costly, they are not replaced on a regular basis. Therefore, to ensure their continued functional performance, it would be beneficial if condition monitoring techniques could be used to estimate the remaining useful life of these components. A great deal of research has been performed on various condition monitoring techniques for use on electric cables. In a research program sponsored by the U.S. Nuclear Regulatory Commission, several promising techniques were evaluated and found to provide trendable information on the condition of low-voltage electric cables. These techniques may be useful for predicting remaining life if well defined limiting values for the aging properties being measured can be determined. However, each technique has advantages and limitations that must be addressed in order to use it effectively, and the necessary limiting values are not always easy to obtain. This paper discusses how condition monitoring measurements can be used to predict the remaining useful life of electric cables. The attributes of an appropriate condition monitoring technique are presented, and the process to be used in estimating the remaining useful life of a cable is discussed along with the difficulties that must be addressed.

  11. C/sic Life Prediction for Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R.; Verrilli, Michael J.; Opila, Elizabeth J.; Halbig, Michael C.; Calomino, Anthony M.; Thomas, David J.

    2002-01-01

    Accurate life prediction is critical to successful use of ceramic matrix composites (CMC). The tools to accomplish this are immature and not oriented toward the behavior of carbon fiber reinforced silicon carbide (C/SiC), the primary system of interest for many reusable and single mission launch vehicle propulsion and airframe applications. This paper describes an approach and process made to satisfy the need to develop an integrated life prediction system that addresses mechanical durability and environmental degradation of C/SiC. Issues such as oxidation, steam and hydrogen effects on material behavior are discussed. Preliminary tests indicate that steam will aggressively remove SiC seal coat and matrix in line with past experience. The kinetics of water vapor reaction with carbon fibers is negligible at 600 C, but comparable to air attack at 1200 C. The mitigating effect of steam observed in fiber oxidation studies has also been observed in stress rupture tests. Detailed microscopy of oxidized specimens is being carried out to develop the oxidation model. Carbon oxidation kinetics are reaction controlled at intermediate temperatures and diffusion controlled at high temperatures (approximately 1000 C). Activation energies for T-300 and interface pyrolytic carbon were determined as key inputs to the oxidation model. Crack opening as a function of temperature and stress was calculated. Mechanical property tests to develop and verify the probabilistic life model are very encouraging except for residual strength prediction. Gage width is a key variable governing edge oxidation of seal coated specimens. Future efforts will include architectural effects, enhanced coatings, biaxial tests, and LCF. Modeling will need to account for combined effects.

  12. C/SIC Life Prediction for Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R.; Verrilli, Michael J.; Opula, Elizabeth J.; Halbig, Michael C.; Calomino, Anthony M.; Thomas, David J.

    2002-01-01

    Accurate life prediction is critical to successful use of ceramic matrix composites (CMC). The tools to accomplish this are immature and not oriented toward the behavior of carbon fiber reinforced silicon carbide (C/SiC), the primary system of interest for many reusable and single mission launch vehicle propulsion and airframe applications. This paper describes an approach and progress made to satisfy the need to develop an integrated life prediction system that addresses mechanical durability and environmental degradation of C/SiC. Issues such as oxidation, steam and hydrogen effects on material behavior are discussed. Preliminary tests indicate that stream will aggressively remove SiC seal coat and matrix in line with past experience. The kinetics of water vapor reaction with carbon fibers is negligible at 600 C, but comparable to air attack at 1200 C. The mitigating effect of steam observed in fiber oxidation studies has also been observed in stress rupture tests. Detailed microscopy of oxidized specimens is being carried out to develop the oxidation model. Carbon oxidation kinetics are reaction controlled at intermediate temperatures and diffusion controlled at high temperatures (approx. 1000 C). Activation energies for T-300 and interface pyrolytic carbon were determined as key inputs to the oxidation model. Crack opening as a function of temperature and stress was calculated. Mechanical property tests to develop and verify the probabilistic life model are very encouraging except for residual strength prediction. Gage width is a key variable governing edge oxidation of seal coated specimens. Future efforts will include architectural effects, enhanced coatings, biaxial tests, and LCF. Modeling will need to account for combined effects.

  13. Cumulative early life adversity predicts longevity in wild baboons

    PubMed Central

    Tung, Jenny; Archie, Elizabeth A.; Altmann, Jeanne; Alberts, Susan C.

    2016-01-01

    In humans and other animals, harsh circumstances in early life predict morbidity and mortality in adulthood. Multiple adverse conditions are thought to be especially toxic, but this hypothesis has rarely been tested in a prospective, longitudinal framework, especially in long-lived mammals. Here we use prospective data on 196 wild female baboons to show that cumulative early adversity predicts natural adult lifespan. Females who experience ≥3 sources of early adversity die a median of 10 years earlier than females who experience ≤1 adverse circumstances (median lifespan is 18.5 years). Females who experience the most adversity are also socially isolated in adulthood, suggesting that social processes partially explain the link between early adversity and adult survival. Our results provide powerful evidence for the developmental origins of health and disease and indicate that close ties between early adversity and survival arise even in the absence of health habit and health care-related explanations. PMID:27091302

  14. Cumulative early life adversity predicts longevity in wild baboons.

    PubMed

    Tung, Jenny; Archie, Elizabeth A; Altmann, Jeanne; Alberts, Susan C

    2016-01-01

    In humans and other animals, harsh circumstances in early life predict morbidity and mortality in adulthood. Multiple adverse conditions are thought to be especially toxic, but this hypothesis has rarely been tested in a prospective, longitudinal framework, especially in long-lived mammals. Here we use prospective data on 196 wild female baboons to show that cumulative early adversity predicts natural adult lifespan. Females who experience ≥3 sources of early adversity die a median of 10 years earlier than females who experience ≤1 adverse circumstances (median lifespan is 18.5 years). Females who experience the most adversity are also socially isolated in adulthood, suggesting that social processes partially explain the link between early adversity and adult survival. Our results provide powerful evidence for the developmental origins of health and disease and indicate that close ties between early adversity and survival arise even in the absence of health habit and health care-related explanations.

  15. Cumulative early life adversity predicts longevity in wild baboons.

    PubMed

    Tung, Jenny; Archie, Elizabeth A; Altmann, Jeanne; Alberts, Susan C

    2016-01-01

    In humans and other animals, harsh circumstances in early life predict morbidity and mortality in adulthood. Multiple adverse conditions are thought to be especially toxic, but this hypothesis has rarely been tested in a prospective, longitudinal framework, especially in long-lived mammals. Here we use prospective data on 196 wild female baboons to show that cumulative early adversity predicts natural adult lifespan. Females who experience ≥3 sources of early adversity die a median of 10 years earlier than females who experience ≤1 adverse circumstances (median lifespan is 18.5 years). Females who experience the most adversity are also socially isolated in adulthood, suggesting that social processes partially explain the link between early adversity and adult survival. Our results provide powerful evidence for the developmental origins of health and disease and indicate that close ties between early adversity and survival arise even in the absence of health habit and health care-related explanations. PMID:27091302

  16. Development of a Composite Delamination Fatigue Life Prediction Methodology

    NASA Technical Reports Server (NTRS)

    OBrien, Thomas K.

    2009-01-01

    Delamination is one of the most significant and unique failure modes in composite structures. Because of a lack of understanding of the consequences of delamination and the inability to predict delamination onset and growth, many composite parts are unnecessarily rejected upon inspection, both immediately after manufacture and while in service. NASA Langley is leading the efforts in the U.S. to develop a fatigue life prediction methodology for composite delamination using fracture mechanics. Research being performed to this end will be reviewed. Emphasis will be placed on the development of test standards for delamination characterization, incorporation of approaches for modeling delamination in commercial finite element codes, and efforts to mature the technology for use in design handbooks and certification documents.

  17. Fatigue life prediction in bending from axial fatigue information

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Muralidharan, U.

    1982-01-01

    Bending fatigue in the low cyclic life range differs from axial fatigue due to the plastic flow which alters the linear stress-strain relation normally used to determine the nominal stresses. An approach is presented to take into account the plastic flow in calculating nominal bending stress (S sub bending) based on true surface stress. These functions are derived in closed form for rectangular and circular cross sections. The nominal bending stress and the axial fatigue stress are plotted as a function of life (N sub S) and these curves are shown for several materials of engineering interest.

  18. The construction of life prediction models for the design of Stirling engine heater components

    NASA Technical Reports Server (NTRS)

    Petrovich, A.; Bright, A.; Cronin, M.; Arnold, S.

    1983-01-01

    The service life of Stirling-engine heater structures of Fe-based high-temperature alloys is predicted using a numerical model based on a linear-damage approach and published test data (engine test data for a Co-based alloy and tensile-test results for both the Co-based and the Fe-based alloys). The operating principle of the automotive Stirling engine is reviewed; the economic and technical factors affecting the choice of heater material are surveyed; the test results are summarized in tables and graphs; the engine environment and automotive duty cycle are characterized; and the modeling procedure is explained. It is found that the statistical scatter of the fatigue properties of the heater components needs to be reduced (by decreasing the porosity of the cast material or employing wrought material in fatigue-prone locations) before the accuracy of life predictions can be improved.

  19. CARES/LIFE Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Powers, Lynn M.; Janosik, Lesley A.; Gyekenyesi, John P.

    2003-01-01

    This manual describes the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction (CARES/LIFE) computer program. The program calculates the time-dependent reliability of monolithic ceramic components subjected to thermomechanical and/or proof test loading. CARES/LIFE is an extension of the CARES (Ceramic Analysis and Reliability Evaluation of Structures) computer program. The program uses results from MSC/NASTRAN, ABAQUS, and ANSYS finite element analysis programs to evaluate component reliability due to inherent surface and/or volume type flaws. CARES/LIFE accounts for the phenomenon of subcritical crack growth (SCG) by utilizing the power law, Paris law, or Walker law. The two-parameter Weibull cumulative distribution function is used to characterize the variation in component strength. The effects of multiaxial stresses are modeled by using either the principle of independent action (PIA), the Weibull normal stress averaging method (NSA), or the Batdorf theory. Inert strength and fatigue parameters are estimated from rupture strength data of naturally flawed specimens loaded in static, dynamic, or cyclic fatigue. The probabilistic time-dependent theories used in CARES/LIFE, along with the input and output for CARES/LIFE, are described. Example problems to demonstrate various features of the program are also included.

  20. Life Prediction for a CMC Component Using the NASALIFE Computer Code

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Murthy, Pappu L. N.; Mital, Subodh K.

    2005-01-01

    The computer code, NASALIFE, was used to provide estimates for life of an SiC/SiC stator vane under varying thermomechanical loading conditions. The primary intention of this effort is to show how the computer code NASALIFE can be used to provide reasonable estimates of life for practical propulsion system components made of advanced ceramic matrix composites (CMC). Simple loading conditions provided readily observable and acceptable life predictions. Varying the loading conditions such that low cycle fatigue and creep were affected independently provided expected trends in the results for life due to varying loads and life due to creep. Analysis was based on idealized empirical data for the 9/99 Melt Infiltrated SiC fiber reinforced SiC.

  1. Development of a Generic Creep-Fatigue Life Prediction Model

    NASA Technical Reports Server (NTRS)

    Goswami, Tarun

    2002-01-01

    The objective of this research proposal is to further compile creep-fatigue data of steel alloys and superalloys used in military aircraft engines and/or rocket engines and to develop a statistical multivariate equation. The newly derived model will be a probabilistic fit to all the data compiled from various sources. Attempts will be made to procure the creep-fatigue data from NASA Glenn Research Center and other sources to further develop life prediction models for specific alloy groups. In a previous effort [1-3], a bank of creep-fatigue data has been compiled and tabulated under a range of known test parameters. These test parameters are called independent variables, namely; total strain range, strain rate, hold time, and temperature. The present research attempts to use these variables to develop a multivariate equation, which will be a probabilistic equation fitting a large database. The data predicted by the new model will be analyzed using the normal distribution fits, the closer the predicted lives are with the experimental lives (normal line 1 to 1 fit) the better the prediction. This will be evaluated in terms of a coefficient of correlation, R 2 as well. A multivariate equation developed earlier [3] has the following form, where S, R, T, and H have specific meaning discussed later.

  2. Tension fatigue analysis and life prediction for composite laminates

    NASA Technical Reports Server (NTRS)

    Obrien, T. K.; Rigamonti, M.; Zanotti, C.

    1988-01-01

    A tension fatigue life prediction methodology for composite laminates is presented. Tension fatigue tests were conducted on quasi-isotropic and orthotropic glass epoxy, graphite epoxy, and glass/graphite epoxy hybrid laminates. Edge delamination onset data were used to generate plots of strain energy release rate as a function of cycles to delamination onset. These plots were then used along with strain energy release rate analyses of delaminations initiating at matrix cracks to predict local delamination onset. Stiffness loss was measured experimentally to account for the accumulation of matrix cracks and for delamination growth. Fatigue failure was predicted by comparing the increase in global strain resulting from stiffness loss to the decrease in laminate failure strain resulting from delaminations forming at matrix cracks through the laminate thickness. Good agreement between measured and predicted lives indicated that the through-thickness damage accumulation model can accurately describe fatigue failure for laminates where the delamination onset behavior in fatigue is well characterized, and stiffness loss can be monitored in real time to account for damage growth.

  3. WHAT PREDICTS A SUCCESSFUL LIFE? A LIFE-COURSE MODEL OF WELL-BEING*

    PubMed Central

    Layard, Richard; Clark, Andrew E.; Cornaglia, Francesca; Powdthavee, Nattavudh; Vernoit, James

    2014-01-01

    Policy-makers who care about well-being need a recursive model of how adult life-satisfaction is predicted by childhood influences, acting both directly and (indirectly) through adult circumstances. We estimate such a model using the British Cohort Study (1970). We show that the most powerful childhood predictor of adult life-satisfaction is the child’s emotional health, followed by the child’s conduct. The least powerful predictor is the child’s intellectual development. This may have implications for educational policy. Among adult circumstances, family income accounts for only 0.5% of the variance of life-satisfaction. Mental and physical health are much more important. PMID:25422527

  4. Data-Based Predictive Control with Multirate Prediction Step

    NASA Technical Reports Server (NTRS)

    Barlow, Jonathan S.

    2010-01-01

    Data-based predictive control is an emerging control method that stems from Model Predictive Control (MPC). MPC computes current control action based on a prediction of the system output a number of time steps into the future and is generally derived from a known model of the system. Data-based predictive control has the advantage of deriving predictive models and controller gains from input-output data. Thus, a controller can be designed from the outputs of complex simulation code or a physical system where no explicit model exists. If the output data happens to be corrupted by periodic disturbances, the designed controller will also have the built-in ability to reject these disturbances without the need to know them. When data-based predictive control is implemented online, it becomes a version of adaptive control. One challenge of MPC is computational requirements increasing with prediction horizon length. This paper develops a closed-loop dynamic output feedback controller that minimizes a multi-step-ahead receding-horizon cost function with multirate prediction step. One result is a reduced influence of prediction horizon and the number of system outputs on the computational requirements of the controller. Another result is an emphasis on portions of the prediction window that are sampled more frequently. A third result is the ability to include more outputs in the feedback path than in the cost function.

  5. Life prediction and constitutive models for engine hot section anisotropic materials program

    NASA Technical Reports Server (NTRS)

    Nissley, D. M.; Meyer, T. G.; Walker, K. P.

    1992-01-01

    This report presents a summary of results from a 7 year program designed to develop generic constitutive and life prediction approaches and models for nickel-based single crystal gas turbine airfoils. The program was composed of a base program and an optional program. The base program addressed the high temperature coated single crystal regime above the airfoil root platform. The optional program investigated the low temperature uncoated single crystal regime below the airfoil root platform including the notched conditions of the airfoil attachment. Both base and option programs involved experimental and analytical efforts. Results from uniaxial constitutive and fatigue life experiments of coated and uncoated PWA 1480 single crystal material formed the basis for the analytical modeling effort. Four single crystal primary orientations were used in the experiments: group of zone axes (001), group of zone axes (011), group of zone axes (111), and group of zone axes (213). Specific secondary orientations were also selected for the notched experiments in the optional program. Constitutive models for an overlay coating and PWA 1480 single crystal materials were developed based on isothermal hysteresis loop data and verified using thermomechanical (TMF) hysteresis loop data. A fatigue life approach and life models were developed for TMF crack initiation of coated PWA 1480. A life model was developed for smooth and notched fatigue in the option program. Finally, computer software incorporating the overlay coating and PWA 1480 constitutive and life models was developed.

  6. Fatigue life prediction of liquid rocket engine combustor with subscale test verification

    NASA Astrophysics Data System (ADS)

    Sung, In-Kyung

    Reusable rocket systems such as the Space Shuttle introduced a new era in propulsion system design for economic feasibility. Practical reusable systems require an order of magnitude increase in life. To achieve this improved methods are needed to assess failure mechanisms and to predict life cycles of rocket combustor. A general goal of the research was to demonstrate the use of subscale rocket combustor prototype in a cost-effective test program. Life limiting factors and metal behaviors under repeated loads were surveyed and reviewed. The life prediction theories are presented, with an emphasis on studies that used subscale test hardware for model validation. From this review, low cycle fatigue (LCF) and creep-fatigue interaction (ratcheting) were identified as the main life limiting factors of the combustor. Several life prediction methods such as conventional and advanced viscoplastic models were used to predict life cycle due to low cycle thermal stress, transient effects, and creep rupture damage. Creep-fatigue interaction and cyclic hardening were also investigated. A prediction method based on 2D beam theory was modified using 3D plate deformation theory to provide an extended prediction method. For experimental validation two small scale annular plug nozzle thrusters were designed, built and tested. The test article was composed of a water-cooled liner, plug annular nozzle and 200 psia precombustor that used decomposed hydrogen peroxide as the oxidizer and JP-8 as the fuel. The first combustor was tested cyclically at the Advanced Propellants and Combustion Laboratory at Purdue University. Testing was stopped after 140 cycles due to an unpredicted failure mechanism due to an increasing hot spot in the location where failure was predicted. A second combustor was designed to avoid the previous failure, however, it was over pressurized and deformed beyond repair during cold-flow test. The test results are discussed and compared to the analytical and numerical

  7. Life test data and flight predictions for nickel-hydrogen (Ni-H/sub 2/) batteries

    SciTech Connect

    Levy, E.

    1982-08-01

    A substantial test data base is accumulating on Ni-H/sub 2/ cells, batteries and positive plates to support life predictions of greater than 10 years in synchronous and elliptical orbits and greater than 5000 cycles in low earth orbit, all at high (80 percent) depth of discharge. All cells, batteries, and positive plates used for this test data base are of a common design. The cell is the Air Force/ Hughes ''pineapple slice'' cell. The positive plate is the Air Force/EPI Colorado Springs dry sinter electrochemically impregnated plate. Cell testing includes real time tests of cells and/or batteries in all three (low earth, elliptical, synchronous) orbits. Plate testing includes real time and accelerated tests in boilerplate assemblies. Life predictions are based on understanding cell wearout modes and comparing wearout rates of nickel-hydrogen components to those of nickel-cadmium cells.

  8. Teachers' assessments of children aged eight predict life satisfaction in adolescence.

    PubMed

    Honkanen, Meri; Meri, Honkanen; Hurtig, Tuula; Tuula, Hurtig; Taanila, Anja; Anja, Taanila; Moilanen, Irma; Irma, Moilanen; Koponen, Hannu; Hannu, Koponen; Mäki, Pirjo; Pirjo, Mäki; Veijola, Juha; Juha, Veijola; Puustjärvi, Anita; Anita, Puustjärvi; Ebeling, Hanna; Hanna, Ebeling; Koivumaa-Honkanen, Heli; Heli, Koivumaa-Honkanen

    2011-09-01

    The objective was to investigate how teachers' assessments of children predict life satisfaction in adolescence. This is a prospective cohort study on the population-based Northern Finland Birth Cohort 1986 (n = 8,959). Information was gathered from parents, teachers and adolescents using questionnaires at the age of 7, 8 and 15. Response rates were 80-90%. Emotional and behavioural problems were assessed with Rutter Children's Behavioural Questionnaires for teachers (RB2) and parents (RA2) during the first grade at age 8. At adolescence, self-reported life satisfaction was measured with a question including five response alternatives. According to teachers' assessments, 13.9% of the children had high emotional or behavioural problems (RB2 ≥9). These assessments predicted life dissatisfaction in adolescence (OR(crude) = 1.77; 95% CI 1.43-2.20) in several models including also health behaviour and use of psychotropic medicine. However, introducing all the significant variables in the same model, RB2 lost its significance (OR = 1.28; 0.96-1.70), but good school achievement assessed by teachers was still a significant predictor. Life satisfaction in adolescence was associated with a variety of favourable concurrent factors. In conclusion teachers' assessments of children during the first school year predicted life satisfaction in adolescence. In mental health promotion, teachers' early assessments should be utilized for the benefit of children. PMID:21789735

  9. Automatic quality of life prediction using electronic medical records.

    PubMed

    Pakhomov, Sergeui; Shah, Nilay; Hanson, Penny; Balasubramaniam, Saranya; Smith, Steven A; Smith, Steven Allan

    2008-11-06

    Health related quality of life (HRQOL) is an important variable used for prognosis and measuring outcomes in clinical studies and for quality improvement. We explore the use of a general pur-pose natural language processing system Metamap in combination with Support Vector Machines (SVM) for predicting patient responses on standardized HRQOL assessment instruments from text of physicians notes. We surveyed 669 patients in the Mayo Clinic diabetes registry using two instruments designed to assess functioning: EuroQoL5D and SF36/SD6. Clinical notes for these patients were represented as sets of medical concepts using Metamap. SVM classifiers were trained using various feature selection strategies. The best concordance between the HRQOL instruments and automatic classification was achieved along the pain dimension (positive agreement .76, negative agreement .78, kappa .54) using Metamap. We conclude that clinicians notes may be used to develop a surrogate measure of patients HRQOL status.

  10. Fatigue life prediction of an intermetallic matrix composite at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Bartolotta, P. A.

    1991-01-01

    A strain-based fatigue life prediction method is proposed for an intermetallic matrix composite (IMC) under tensile cyclic loadings at elevated temperatures. Styled after the 'Universal Slopes' method, the model utilizes the composite's tensile properties to estimate fatigue life. Factors such as fiber volume ratio (Vf), number of plys and temperature dependence are implicitly incorporated into the model through these properties. The model constants are determined by using unidirectional fatigue data at temperatures of 425 and 815 C. Fatigue lives from two independent sources are used to verify the model at temperatures of 650 and 760 C. Cross-ply lives at 760 C are also predicted. It is demonstrated that the correlation between experimental and predicted lives is within a factor of two.

  11. Fatigue life prediction of an intermetallic matrix composite at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Bartolotta, Paul A.

    1991-01-01

    A strain-based fatigue life prediction method is proposed for an intermetallic matrix composite (IMC) under tensile cyclic loadings at elevated temperatures. Styled after the Universal Slopes method, the model utilizes the composite's tensile properties to estimate fatigue life. Factors such as fiber volume ratio, number of plys and temperature dependence are implicitly incorporated into the model through these properties. The model constants are determined by using unidirectional fatigue data at temperatures of 425 and 815 C. Fatigue lives from two independent sources are used to verify the model at temperatures of 650 and 760 C. Cross-ply lives at 760 C are also predicted. It is demonstrated that the correlation between experimental and predicted lives is within a factor of two.

  12. Thermomechanical Fatigue of Ductile Cast Iron and Its Life Prediction

    NASA Astrophysics Data System (ADS)

    Wu, Xijia; Quan, Guangchun; MacNeil, Ryan; Zhang, Zhong; Liu, Xiaoyang; Sloss, Clayton

    2015-06-01

    Thermomechanical fatigue (TMF) behaviors of ductile cast iron (DCI) were investigated under out-of-phase (OP), in-phase (IP), and constrained strain-control conditions with temperature hold in various temperature ranges: 573 K to 1073 K, 723 K to 1073 K, and 433 K to 873 K (300 °C to 800 °C, 450 °C to 800 °C, and 160 °C to 600 °C). The integrated creep-fatigue theory (ICFT) model was incorporated into the finite element method to simulate the hysteresis behavior and predict the TMF life of DCI under those test conditions. With the consideration of four deformation/damage mechanisms: (i) plasticity-induced fatigue, (ii) intergranular embrittlement, (iii) creep, and (iv) oxidation, as revealed from the previous study on low cycle fatigue of the material, the model delineates the contributions of these physical mechanisms in the asymmetrical hysteresis behavior and the damage accumulation process leading to final TMF failure. This study shows that the ICFT model can simulate the stress-strain response and life of DCI under complex TMF loading profiles (OP and IP, and constrained with temperature hold).

  13. Thermal barrier coating life-prediction model development

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Neumann, J.

    1985-01-01

    Life predictions are made for two types of strain-tolerant and oxidation-resistant Thermal Barrier Coating (TBC) systems produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system, composed of a low-pressure plasma spray (LPPS) applied oxidation-resistant NiCrAlY bond coating and an air-plasma-sprayed yttria (8 percent) partially stabilized zirconia insulative layer, is applied by both Chromalloy and Klock. The second type of TBC is applied by the electron-beam/physical vapor deposition process by Temescal. Thermomechanical and thermochemical testing of the program TBCs is in progress. A number of the former tests has been completed. Fracture mechanics data for the Chromalloy plasma-sprayed TBC system indicate that the cohesive toughness of the zirconia layer is increased by thermal cycling and reduced by high temperature exposure at 1150 C. Eddy current technology feasibility has been established with respect to nondestructively measuring zirconia layer thickness of a TBC system. High pressure turbine blades have been coated with program TBC systems for a piggyback test in a TFE731-5 turbofan factory engine test. Data from this test will be used to validate the TBC life models.

  14. Life prediction and constitutive models for engine hot section anisotropic materials program

    NASA Technical Reports Server (NTRS)

    Nissley, D. M.; Meyer, T. G.

    1992-01-01

    This report presents the results from a 35 month period of a program designed to develop generic constitutive and life prediction approaches and models for nickel-based single crystal gas turbine airfoils. The program is composed of a base program and an optional program. The base program addresses the high temperature coated single crystal regime above the airfoil root platform. The optional program investigates the low temperature uncoated single crystal regime below the airfoil root platform including the notched conditions of the airfoil attachment. Both base and option programs involve experimental and analytical efforts. Results from uniaxial constitutive and fatigue life experiments of coated and uncoated PWA 1480 single crystal material form the basis for the analytical modeling effort. Four single crystal primary orientations were used in the experiments: (001), (011), (111), and (213). Specific secondary orientations were also selected for the notched experiments in the optional program. Constitutive models for an overlay coating and PWA 1480 single crystal material were developed based on isothermal hysteresis loop data and verified using thermomechanical (TMF) hysteresis loop data. A fatigue life approach and life models were selected for TMF crack initiation of coated PWA 1480. An initial life model used to correlate smooth and notched fatigue data obtained in the option program shows promise. Computer software incorporating the overlay coating and PWA 1480 constitutive models was developed.

  15. Prediction of drug terminal half-life and terminal volume of distribution after intravenous dosing based on drug clearance, steady-state volume of distribution, and physiological parameters of the body.

    PubMed

    Berezhkovskiy, Leonid M

    2013-02-01

    The steady state, V(ss), terminal volume of distribution, V(β), and the terminal half-life, t(1/2), are commonly obtained from the drug plasma concentration-time profile, C(p)(t), following intravenous dosing. Unlike V(ss) that can be calculated based on the physicochemical properties of drugs considering the equilibrium partitioning between plasma and organ tissues, t(1/2) and V(β) cannot be calculated that way because they depend on the rates of drug transfer between blood and tissues. Considering the physiological pharmacokinetic model pertinent to the terminal phase of drug elimination, a novel equation that calculates t(1/2) (and consequently V(β)) was derived. It turns out that V(ss), the total body clearance, Cl, equilibrium blood-plasma concentration ratio, r; and the physiological parameters of the body such as cardiac output, and blood and tissue volumes are sufficient for determination of terminal kinetics. Calculation of t(1/2) by the obtained equation appears to be in good agreement with the experimentally observed vales of this parameter in pharmacokinetic studies in rat, monkey, dog, and human. The equation for the determination of the pre-exponent of the terminal phase of C(p)(t) is also found. The obtained equation allows to predict t(1/2) in human assuming that V(ss) and Cl were either obtained by allometric scaling or, respectively, calculated in silico or based on in vitro drug stability measurements. For compounds that have high clearance, the derived equation may be applied to calculate r just using the routine data on Cl, V(ss), and t(1/2), rather than doing the in vitro assay to measure this parameter.

  16. Ways that Social Change Predicts Personal Quality of Life

    ERIC Educational Resources Information Center

    Cheung, Chau-Kiu; Leung, Kwok

    2010-01-01

    A notable way that social change affects personal quality of life would rely on the person's experience with social change. This experience may influence societal quality of life and quality of work life, which may in turn affect personal quality of life. Additionally, the experience of social change is possibly less detrimental to personal…

  17. [Measured and Predicted Aquatic Life Criteria and Risk Assessment of Chromium (VI) in Liaohe River].

    PubMed

    Wang, Xiao-nan; Yan, Zhen-guang; Liu, Zheng-tao; Zhang, Cong; Wang, Wei-li

    2015-07-01

    In this study, toxicity data of aquatic species in Liaohe River for heavy metal chromium (VI) was collected and selected. The aquatic life criteria for chromium (VI) in Liaohe River was derived based on these toxicity data. Moreover, water samples of 25 sites in Liaohe River were collected, and the concentrations of chromium (VI) in these samples were analyzed. Finally, ecological risk assessment of chromium (VI) in Liaohe River was performed. Moreover, interspecies correlation estimation method (ICE) established by US EPA was used to predict the acute toxicity of species in Liaohe River, and aquatic life criteria based on predicted toxicity data was derived. The results showed that: the measured CMC (criteria maximum concentration), measured CCC (criteria continuous concentration) and the predicted CMC were 17. 73, 12. 15 and 13. 97 µg . L -1, respectively. Therefore, the ICE method could be used to predict the aquatic life criteria, because the predicted criteria value was very similar to the measured criteria value. Analysis of chromium (V) showed that the chromium (VI) concentrations of the 25 sites in Liaohe River were all below Class I or Class II water quality standards (GB 3838-2002), and the water quality was in good condition. However, for the potential risk of chromium (VI) exposure to the aquatic life of Liaohe River, the result of ecological risk assessment showed that chromium (V) concentrations in 7 sites exceeded the CCC in July, and chromium (VI) concentrations in 6 sites exceeded the CCC in December. Therefore, unacceptable effect on aquatic species caused by chromium (VI) exposure might have occurred in some sites of Liaohe River.

  18. Prediction of fatigue life of plain concrete beams from fracture tests

    SciTech Connect

    Ramsamooj, D.V. )

    1994-05-01

    A mathematical model, based on the principles of fracture mechanics, is proposed for the prediction of the flexural fatigue life of plain concrete beams. The model predictions are compared with about 400 experimental data from four separate collections, published earlier, covering materials with wide ranges of compressive strengths, 20 Mpa to 44.8 MPa, stress range ratios (minimum/maximum bending stress) of 0 to 0.75, and flexing frequencies of 1 to 20 Hz. There is good agreement between the model and the regression lines fitted to the experiment data.

  19. Synthetic Microstructure-Based Lifing of Nickel-Based Superalloys

    NASA Astrophysics Data System (ADS)

    Tucker, Joseph C.

    This work focuses on the root cause of life limiting behavior in Ni-based superalloys for high pressure and temperature turbine disks applications in low cycle fatigue (LCF) by generating statistical volume elements (SVEs) of directly measured 3D microstructures for finite element method (FEM) simulations with crystal plasticity. Synthetic microstructures with experimentally determined microstructurally small fatigue crack (MSFC) weakest link features of as large as (ALA) grains and long annealing twins comprise the test cases. Upper limit truncated log-normal distributions account for the log-normal upper tail departure in grain size distributions of Ni-based superalloys more accurately representing ALA grains. Probability plots quantify the log-normality of grain sizes more effectively than traditional histograms. Twins are inserted into synthetic microstructures according to the coherent Sigma3 orientation relationship. A 3D measured dataset of the Inconel 100 (IN100) validates the Saltykov method stereology technique for estimating 3D grain size distributions from 2D; the 3D grain size distribution mean field and upper tail of IN100 is accurately predicted. The Saltykov method gave 3D grain sizes from a Rene 88 Damage Tolerant (R88DT) 2D dataset resulting in fatigue SVEs of approximately 1.5 million elements and 200 grains from FEM sensitivity studies. Changing mesh resolution minimally impacted global damage response, but converging locally requires significantly higher refinement. Fatigue interrogating FEM studies evolved hot spots in the local MSFC environment in one SVE, but not in another SVE with different crystallographic orientations, suggesting strong 3D full-field neighbor effects. The study revealed a need for slip line length considerations in crystal plasticity to better capture life limiting behavior. The findings point towards strictly limiting the ALA grain size in Ni-based superalloys to extend service life.

  20. Method and apparatus to predict the remaining service life of an operating system

    DOEpatents

    Greitzer, Frank L.; Kangas, Lars J.; Terrones, Kristine M.; Maynard, Melody A.; Pawlowski, Ronald A. , Ferryman; Thomas A.; Skorpik, James R.; Wilson, Bary W.

    2008-11-25

    A method and computer-based apparatus for monitoring the degradation of, predicting the remaining service life of, and/or planning maintenance for, an operating system are disclosed. Diagnostic information on degradation of the operating system is obtained through measurement of one or more performance characteristics by one or more sensors onboard and/or proximate the operating system. Though not required, it is preferred that the sensor data are validated to improve the accuracy and reliability of the service life predictions. The condition or degree of degradation of the operating system is presented to a user by way of one or more calculated, numeric degradation figures of merit that are trended against one or more independent variables using one or more mathematical techniques. Furthermore, more than one trendline and uncertainty interval may be generated for a given degradation figure of merit/independent variable data set. The trendline(s) and uncertainty interval(s) are subsequently compared to one or more degradation figure of merit thresholds to predict the remaining service life of the operating system. The present invention enables multiple mathematical approaches in determining which trendline(s) to use to provide the best estimate of the remaining service life.

  1. DYNAMIC PREDICTION OF TREATMENT RESPONSE IN LATE-LIFE DEPRESSION

    PubMed Central

    Joel, Ian; Begley, Amy E.; Mulsant, Benoit H.; Lenze, Eric J.; Mazumdar, Sati; Dew, Mary Amanda; Blumberger, Daniel; Butters, Meryl; Reynolds, Charles F.

    2013-01-01

    Objective 1) identify actionable predictors of remission to antidepressant pharmacotherapy in depressed older adults and 2) use signal detection theory to develop decision trees to guide clinical decision making Method We treated 277 participants with current major depression using open-label venlafaxine XR (up to 300 mg/day) for 12 weeks, in an NIMH-sponsored randomized, placebo-controlled augmentation trial of adjunctive aripiprazole. Multiple logistic regression and signal detection approaches identified predictors of remission in both completer and intent-to-treat samples. Results Higher baseline depressive symptom severity (OR, 0.86, 95% CI, 0.80-0.93; p <0.001), smaller symptom improvement during the first two weeks of treatment (OR, 0.96, 95% CI, 0.94-0.97; p <0.001), male sex (OR, 0.41 95% CI, 0.18-0.93, p=0.03), duration of current episode ≥ 2 years (OR, 0.26 95% CI, 0.12-0.57, p<0.001) and adequate past depression treatment (ATHF >=3) (OR, 0.34 95% CI, 0.16-0.74, p=0.006) predicted lower probability of remission in the completer sample. Subjects with Montgomery Asberg (MADRS) decreasing by >27% in the first two weeks and with baseline MADRS scores of <27 (percentile rank = 51) had the best chance of remission (89%). Subjects with small symptom decrease in the first 2 weeks with adequate prior treatment and younger than 75 yrs old had the lowest chance of remission (16%). Conclusion Our results suggest the clinical utility of measuring pre-treatment illness severity and change during the first two weeks of treatment in predicting remission of late-life major depression. PMID:23567441

  2. Renal parenchymal histopathology predicts life-threatening chronic kidney disease as a result of radical nephrectomy.

    PubMed

    Sejima, Takehiro; Honda, Masashi; Takenaka, Atsushi

    2015-01-01

    The preoperative prediction of post-radical nephrectomy renal insufficiency plays an important role in the decision-making process regarding renal surgery options. Furthermore, the prediction of both postoperative renal insufficiency and postoperative cardiovascular disease occurrence, which is suggested to be an adverse consequence caused by renal insufficiency, contributes to the preoperative policy decision as well as the precise informed consent for a renal cell carcinoma patient. Preoperative nomograms for the prediction of post-radical nephrectomy renal insufficiency, calculated using patient backgrounds, are advocated. The use of these nomograms together with other types of nomograms predicting oncological outcome is beneficial. Post-radical nephrectomy attending physicians can predict renal insufficiency based on the normal renal parenchymal pathology in addition to preoperative patient characteristics. It is suggested that a high level of global glomerulosclerosis in nephrectomized normal renal parenchyma is closely associated with severe renal insufficiency. Some studies showed that post-radical nephrectomy severe renal insufficiency might have an association with increased mortality as a result of cardiovascular disease. Therefore, such pathophysiology should be recognized as life-threatening, surgically-related chronic kidney disease. On the contrary, the investigation of the prediction of mild post-radical nephrectomy renal insufficiency, which is not related to adverse consequences in the postoperative long-term period, is also promising because the prediction of mild renal insufficiency might be the basis for the substitution of radical nephrectomy for nephron-sparing surgery in technically difficult or compromised cases. The deterioration of quality of life caused by post-radical nephrectomy renal insufficiency should be investigated in conjunction with life-threatening matters.

  3. Life-history traits predict perennial species response to fire in a desert ecosystem.

    PubMed

    Shryock, Daniel F; DeFalco, Lesley A; Esque, Todd C

    2014-08-01

    The Mojave Desert of North America has become fire-prone in recent decades due to invasive annual grasses that fuel wildfires following years of high rainfall. Perennial species are poorly adapted to fire in this system, and post-fire shifts in species composition have been substantial but variable across community types. To generalize across a range of conditions, we investigated whether simple life-history traits could predict how species responded to fire. Further, we classified species into plant functional types (PFTs) based on combinations of life-history traits and evaluated whether these groups exhibited a consistent fire-response. Six life-history traits varied significantly between burned and unburned areas in short (up to 4 years) or long-term (up to 52 years) post-fire datasets, including growth form, lifespan, seed size, seed dispersal, height, and leaf longevity. Forbs and grasses consistently increased in abundance after fire, while cacti were reduced and woody species exhibited a variable response. Woody species were classified into three PFTs based on combinations of life-history traits. Species in Group 1 increased in abundance after fire and were characterized by short lifespans, small, wind-dispersed seeds, low height, and deciduous leaves. Species in Group 2 were reduced by fire and distinguished from Group 1 by longer lifespans and evergreen leaves. Group 3 species, which also decreased after fire, were characterized by long lifespans, large non-wind dispersed seeds, and taller heights. Our results show that PFTs based on life-history traits can reliably predict the responses of most species to fire in the Mojave Desert. Dominant, long-lived species of this region possess a combination of traits limiting their ability to recover, presenting a clear example of how a novel disturbance regime may shift selective environmental pressures to favor alternative life-history strategies. PMID:25247062

  4. Life-history traits predict perennial species response to fire in a desert ecosystem

    PubMed Central

    Shryock, Daniel F; DeFalco, Lesley A; Esque, Todd C

    2014-01-01

    The Mojave Desert of North America has become fire-prone in recent decades due to invasive annual grasses that fuel wildfires following years of high rainfall. Perennial species are poorly adapted to fire in this system, and post-fire shifts in species composition have been substantial but variable across community types. To generalize across a range of conditions, we investigated whether simple life-history traits could predict how species responded to fire. Further, we classified species into plant functional types (PFTs) based on combinations of life-history traits and evaluated whether these groups exhibited a consistent fire-response. Six life-history traits varied significantly between burned and unburned areas in short (up to 4 years) or long-term (up to 52 years) post-fire datasets, including growth form, lifespan, seed size, seed dispersal, height, and leaf longevity. Forbs and grasses consistently increased in abundance after fire, while cacti were reduced and woody species exhibited a variable response. Woody species were classified into three PFTs based on combinations of life-history traits. Species in Group 1 increased in abundance after fire and were characterized by short lifespans, small, wind-dispersed seeds, low height, and deciduous leaves. Species in Group 2 were reduced by fire and distinguished from Group 1 by longer lifespans and evergreen leaves. Group 3 species, which also decreased after fire, were characterized by long lifespans, large non-wind dispersed seeds, and taller heights. Our results show that PFTs based on life-history traits can reliably predict the responses of most species to fire in the Mojave Desert. Dominant, long-lived species of this region possess a combination of traits limiting their ability to recover, presenting a clear example of how a novel disturbance regime may shift selective environmental pressures to favor alternative life-history strategies. PMID:25247062

  5. Life-history traits predict perennial species response to fire in a desert ecosystem

    USGS Publications Warehouse

    Shryock, Daniel F.; DeFalco, Lesley A.; Esque, Todd C.

    2014-01-01

    The Mojave Desert of North America has become fire-prone in recent decades due to invasive annual grasses that fuel wildfires following years of high rainfall. Perennial species are poorly adapted to fire in this system, and post-fire shifts in species composition have been substantial but variable across community types. To generalize across a range of conditions, we investigated whether simple life-history traits could predict how species responded to fire. Further, we classified species into plant functional types (PFTs) based on combinations of life-history traits and evaluated whether these groups exhibited a consistent fire-response. Six life-history traits varied significantly between burned and unburned areas in short (up to 4 years) or long-term (up to 52 years) post-fire datasets, including growth form, lifespan, seed size, seed dispersal, height, and leaf longevity. Forbs and grasses consistently increased in abundance after fire, while cacti were reduced and woody species exhibited a variable response. Woody species were classified into three PFTs based on combinations of life-history traits. Species in Group 1 increased in abundance after fire and were characterized by short lifespans, small, wind-dispersed seeds, low height, and deciduous leaves. Species in Group 2 were reduced by fire and distinguished from Group 1 by longer lifespans and evergreen leaves. Group 3 species, which also decreased after fire, were characterized by long lifespans, large non-wind dispersed seeds, and taller heights. Our results show that PFTs based on life-history traits can reliably predict the responses of most species to fire in the Mojave Desert. Dominant, long-lived species of this region possess a combination of traits limiting their ability to recover, presenting a clear example of how a novel disturbance regime may shift selective environmental pressures to favor alternative life-history strategies.

  6. Durability and life prediction modeling in polyimide composites

    NASA Technical Reports Server (NTRS)

    Binienda, Wieslaw K.

    1995-01-01

    Sudden appearance of cracks on a macroscopically smooth surface of brittle materials due to cooling or drying shrinkage is a phenomenon related to many engineering problems. Although conventional strength theories can be used to predict the necessary condition for crack appearance, they are unable to predict crack spacing and depth. On the other hand, fracture mechanics theory can only study the behavior of existing cracks. The theory of crack initiation can be summarized into three conditions, which is a combination of a strength criterion and laws of energy conservation, the average crack spacing and depth can thus be determined. The problem of crack initiation from the surface of an elastic half plane is solved and compares quite well with available experimental evidence. The theory of crack initiation is also applied to concrete pavements. The influence of cracking is modeled by the additional compliance according to Okamura's method. The theoretical prediction by this structural mechanics type of model correlates very well with the field observation. The model may serve as a theoretical foundation for future pavement joint design. The initiation of interactive cracks of quasi-brittle material is studied based on a theory of cohesive crack model. These cracks may grow simultaneously, or some of them may close during certain stages. The concept of crack unloading of cohesive crack model is proposed. The critical behavior (crack bifurcation, maximum loads) of the cohesive crack model are characterized by rate equations. The post-critical behavior of crack initiation is also studied.

  7. Creep fatigue life prediction for engine hot section materials (isotropic)

    NASA Technical Reports Server (NTRS)

    Nelson, R. S.; Levan, G. W.; Harvey, P. R.

    1992-01-01

    This Final Report covers the activities completed under the optional program of the NASA HOST Contract, NAS3-23288. The initial effort of the optional program was report-in NASA CR189221, which consisted of high temperature strain controlled fatigue tests to study the effects of thermomechanical fatigue, multiaxial loading, reactive environments, and imposed stresses. The baseline alloy used in the tests included B1900+Hf (with or without coating) and wrought INCO 718. Tests conducted on B1900+Hf included environmental tests using various atmospheres (75 psig oxygen, purified argon, or block exposures) and specimen tests of wrought INCO 718 included tensile, creep, stress rupture, TMF, multiaxial, and mean stress tests. Results of these testings were used to calibrate a CDA model for INCO 718 alloy and to develop modifications or corrections to the CDA model to handle additional failure mechanisms. The Socie parameter was found to provide the best correlation for INCO multiaxial loading. Microstructural evaluations consisting of optical, Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM) techniques, and surface replication techniques to determine crack initiation lives provided data which were used to develop life prediction models.

  8. Life prediction of 808nm high power semiconductor laser by accelerated life test of constant current stress

    NASA Astrophysics Data System (ADS)

    Yao, Nan; Li, Wei; Zhao, Yihao; Zhong, Li; Liu, Suping; Ma, Xiaoyu

    2015-10-01

    High power semiconductor laser is widely used because of its high transformation efficiency, good working stability, compact volume and simple driving requirements. Laser's lifetime is very long, but tests at high levels of stress can speed up the failure process and shorten the times to failure significantly. So accelerated life test is used here for forecasting the lifetime of 808nm CW GaAs/AlGaAs high power semiconductor laser that has an output power of 1W under 1.04A. Accelerated life test of constant current stress based on the Inverse Power Law Relationship was designed. Tests were conducted under 1.3A, 1.6A and 1.9A at room temperature. It is the first time that this method is used in the domestic research of laser's lifetime prediction. Applying Weibull Distribution to describe the lifetime distribution and analyzing the data of times to failure, characteristics lifetime's functional relationship model with current is achieved. Then the characteristics lifetime under normal current is extrapolated, which is 9473h. Besides, to confirm the validity of the functional relationship model, we conduct an additional accelerated life test under 1.75A. Based on this experimental data we calculated the characteristics lifetime corresponding to 1.75A that is 171h, while the extrapolated characteristics lifetime from the former functional relationship model is 162h. The two results shows 5% deviation that is very low and acceptable, which indicates that the test design is reasonable and authentic.

  9. International Space Station Bacteria Filter Element Post-Flight Testing and Service Life Prediction

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; von Jouanne, R. G.; Turner, E. H.

    2003-01-01

    The International Space Station uses high efficiency particulate air (HEPA) filters to remove particulate matter from the cabin atmosphere. Known as Bacteria Filter Elements (BFEs), there are 13 elements deployed on board the ISS's U.S. Segment. The pre-flight service life prediction of 1 year for the BFEs is based upon performance engineering analysis of data collected during developmental testing that used a synthetic dust challenge. While this challenge is considered reasonable and conservative from a design perspective, an understanding of the actual filter loading is required to best manage the critical ISS Program resources. Thus testing was conducted on BFEs returned from the ISS to refine the service life prediction. Results from this testing and implications to ISS resource management are discussed. Recommendations for realizing significant savings to the ISS Program are presented.

  10. Basic traits predict the prevalence of personality disorder across the life span: the example of psychopathy.

    PubMed

    Vachon, David D; Lynam, Donald R; Widiger, Thomas A; Miller, Joshua D; McCrae, Robert R; Costa, Paul T

    2013-05-01

    Personality disorders (PDs) may be better understood in terms of dimensions of general personality functioning rather than as discrete categorical conditions. Personality-trait descriptions of PDs are robust across methods and settings, and PD assessments based on trait measures show good construct validity. The study reported here extends research showing that basic traits (e.g., impulsiveness, warmth, straightforwardness, modesty, and deliberation) can re-create the epidemiological characteristics associated with PDs. Specifically, we used normative changes in absolute trait levels to simulate age-related differences in the prevalence of psychopathy in a forensic setting. Results demonstrated that trait information predicts the rate of decline for psychopathy over the life span; discriminates the decline of psychopathy from that of a similar disorder, antisocial PD; and accurately predicts the differential decline of subfactors of psychopathy. These findings suggest that basic traits provide a parsimonious account of PD prevalence across the life span.

  11. A total life prediction model for stress concentration sites

    NASA Technical Reports Server (NTRS)

    Hartman, G. A.; Dawicke, D. S.

    1983-01-01

    Fatigue crack growth tests were performed on center crack panels and radial crack hole samples. The data were reduced and correlated with the elastic parameter K taking into account finite width and corner crack corrections. The anomalous behavior normally associated with short cracks was not observed. Total life estimates for notches were made by coupling an initiation life estimate with a propagation life estimate.

  12. Deconstructing environmental predictability: seasonality, environmental colour and the biogeography of marine life histories.

    PubMed

    Marshall, Dustin J; Burgess, Scott C

    2015-02-01

    Environmental predictability is predicted to shape the evolution of life histories. Two key types of environmental predictability, seasonality and environmental colour, may influence life-history evolution independently but formal considerations of both and how they relate to life history are exceedingly rare. Here, in a global biogeographical analysis of over 800 marine invertebrates, we explore the relationships between both forms of environmental predictability and three fundamental life-history traits: location of larval development (aplanktonic vs. planktonic), larval developmental mode (feeding vs. non-feeding) and offspring size. We found that both dispersal potential and offspring size related to environmental predictability, but the relationships depended on both the environmental factor as well as the type of predictability. Environments that were more seasonal in food availability had a higher prevalence of species with a planktonic larval stage. Future studies should consider both types of environmental predictability as each can strongly affect life-history evolution.

  13. Life prediction methodology for ceramic components of advanced heat engines. Phase 1: Volume 1, Final report

    SciTech Connect

    Cuccio, J.C.; Brehm, P.; Fang, H.T.

    1995-03-01

    Emphasis of this program is to develop and demonstrate ceramics life prediction methods, including fast fracture, stress rupture, creep, oxidation, and nondestructive evaluation. Significant advancements were made in these methods and their predictive capabilities successfully demonstrated.

  14. RandomForest4Life: a Random Forest for predicting ALS disease progression.

    PubMed

    Hothorn, Torsten; Jung, Hans H

    2014-09-01

    We describe a method for predicting disease progression in amyotrophic lateral sclerosis (ALS) patients. The method was developed as a submission to the DREAM Phil Bowen ALS Prediction Prize4Life Challenge of summer 2012. Based on repeated patient examinations over a three- month period, we used a random forest algorithm to predict future disease progression. The procedure was set up and internally evaluated using data from 1197 ALS patients. External validation by an expert jury was based on undisclosed information of an additional 625 patients; all patient data were obtained from the PRO-ACT database. In terms of prediction accuracy, the approach described here ranked third best. Our interpretation of the prediction model confirmed previous reports suggesting that past disease progression is a strong predictor of future disease progression measured on the ALS functional rating scale (ALSFRS). We also found that larger variability in initial ALSFRS scores is linked to faster future disease progression. The results reported here furthermore suggested that approaches taking the multidimensionality of the ALSFRS into account promise some potential for improved ALS disease prediction.

  15. Application of cyclic damage accumulation life prediction model to high temperature components

    NASA Technical Reports Server (NTRS)

    Nelson, Richard S.

    1989-01-01

    A high temperature, low cycle fatigue life prediction method was developed. This method, Cyclic Damage Accumulation (CDA), was developed for use in predicting the crack initiation lifetime of gas turbine engine materials, but it can be applied to other materials as well. The method is designed to account for the effects on creep-fatigue life of complex loading such as thermomechanical fatigue, hold periods, waveshapes, mean stresses, multiaxiality, cumulative damage, coatings, and environmental attack. Several features of this model were developed to make it practical for application to actual component analysis, such as the ability to handle nonisothermal loading (including TMF), arbitrary cycle paths, and multiple damage modes. The CDA life prediction model was derived from extensive specimen tests conducted on cast nickel-base superalloy B1900 + Hf. These included both monotonic tests (tensile and creep) and strain-controlled fatigue experiments (uniaxial, biaxial, TMF, mixed creep-fatigue, and controlled mean stress). Additional specimen tests were conducted on wrought INCO 718 to verify the applicability of the final CDA model to other high-temperature alloys. The model will be available to potential users in the near future in the form of a FORTRAN-77 computer program.

  16. A total life prediction model for stress concentration sites

    NASA Technical Reports Server (NTRS)

    Hartman, G. A.; Dawicke, D. S.

    1983-01-01

    Fatigue crack growth tests were performed on center crack panels and radial crack hole samples. The data were reduced and correlated with the elastic parameter-K taking into account finite width and corner crack corrections. The anomalous behavior normally associated with short cracks was not observed. Total life estimates for notches were made by coupling an initiation life estimate with a propagation life estimate.

  17. NDE: A key to engine rotor life prediction

    NASA Technical Reports Server (NTRS)

    Doherty, J. E.

    1977-01-01

    A key ingredient in the establishment of safe life times for critical components is the means of reliably detecting flaws which may potentially exist. Currently used nondestructive evaluation procedures are successful in detecting life limiting defects; however, the development of automated and computer aided NDE technology permits even greater assurance of flight safety.

  18. Does Life Satisfaction Predict Victimization Experiences in Adolescence?

    ERIC Educational Resources Information Center

    Martin, Kellie; Huebner, E. Scott; Valois, Robert F.

    2008-01-01

    Longitudinal relationships between adolescents' life satisfaction and peer victimization and prosocial experiences were assessed. A total of 417 students in Grades 6-8 completed the Multidimensional Students' Life Satisfaction Scale (MSLSS: Huebner, 1994) and the Children's Social Experience Questionnaire - Self Report (SEQ-SR: Crick & Grotpeter,…

  19. Creep-fatigue life prediction for engine hot section materials (isotropic)

    NASA Technical Reports Server (NTRS)

    Moreno, V.

    1982-01-01

    The objectives of this program are the investigation of fundamental approaches to high temperature crack initiation life prediction, identification of specific modeling strategies and the development of specific models for component relevant loading conditions. A survey of the hot section material/coating systems used throughout the gas turbine industry is included. Two material/coating systems will be identified for the program. The material/coating system designated as the base system shall be used throughout Tasks 1-12. The alternate material/coating system will be used only in Task 12 for further evaluation of the models developed on the base material. In Task II, candidate life prediction approaches will be screened based on a set of criteria that includes experience of the approaches within the literature, correlation with isothermal data generated on the base material, and judgements relative to the applicability of the approach for the complex cycles to be considered in the option program. The two most promising approaches will be identified. Task 3 further evaluates the best approach using additional base material fatigue testing including verification tests. Task 4 consists of technical, schedular, financial and all other reporting requirements in accordance with the Reports of Work clause.

  20. Generation of Finite Life Distributional Goodman Diagrams for Reliability Prediction

    NASA Technical Reports Server (NTRS)

    Kececioglu, D.; Guerrieri, W. N.

    1971-01-01

    The methodology of developing finite life distributional Goodman diagrams and surfaces is described for presenting allowable combinations of alternating stress and mean stress to the design engineer. The combined stress condition is that of an alternating bending stress and a constant shear stress. The finite life Goodman diagrams and surfaces are created from strength distributions developed at various ratios of alternating to mean stress at particular cycle life values. The conclusions indicate that the Von Mises-Hencky ellipse, for cycle life values above 1000 cycles, is an adequate model of the finite life Goodman diagram. In addition, suggestions are made which reduce the number of experimental data points required in a fatigue data acquisition program.

  1. Life prediction and constitutive models for engine hot section anisotropic materials

    NASA Technical Reports Server (NTRS)

    Swanson, G. A.; Linask, I.; Nissley, D. M.; Norris, P. P.; Meyer, T. G.; Walker, K. P.

    1987-01-01

    The results are presented of a program designed to develop life prediction and constitutive models for two coated single crystal alloys used in gas turbine airfoils. The two alloys are PWA 1480 and Alloy 185. The two oxidation resistant coatings are PWA 273, an aluminide coating, and PWA 286, an overlay NiCoCrAlY coating. To obtain constitutive and fatigue data, tests were conducted on uncoated and coated specimens loaded in the CH76 100 CH110 , CH76 110 CH110 , CH76 111 CH110 and CH76 123 CH110 crystallographic directions. Two constitutive models are being developed and evaluated for the single crystal materials: a micromechanic model based on crystallographic slip systems, and a macroscopic model which employs anisotropic tensors to model inelastic deformation anisotropy. Based on tests conducted on the overlay coating material, constitutive models for coatings also appear feasible and two initial models were selected. A life prediction approach was proposed for coated single crystal materials, including crack initiation either in the coating or in the substrate. The coating initiated failures dominated in the tests at load levels typical of gas turbine operation. Coating life was related to coating stress/strain history which was determined from specimen data using the constitutive models.

  2. A novel health indicator for on-line lithium-ion batteries remaining useful life prediction

    NASA Astrophysics Data System (ADS)

    Zhou, Yapeng; Huang, Miaohua; Chen, Yupu; Tao, Ye

    2016-07-01

    Prediction of lithium-ion batteries remaining useful life (RUL) plays an important role in an intelligent battery management system. The capacity and internal resistance are often used as the batteries health indicator (HI) for quantifying degradation and predicting RUL. However, on-line measurement of capacity and internal resistance are hardly realizable due to the not fully charged and discharged condition and the extremely expensive cost, respectively. Therefore, there is a great need to find an optional way to deal with this plight. In this work, a novel HI is extracted from the operating parameters of lithium-ion batteries for degradation modeling and RUL prediction. Moreover, Box-Cox transformation is employed to improve HI performance. Then Pearson and Spearman correlation analyses are utilized to evaluate the similarity between real capacity and the estimated capacity derived from the HI. Next, both simple statistical regression technique and optimized relevance vector machine are employed to predict the RUL based on the presented HI. The correlation analyses and prediction results show the efficiency and effectiveness of the proposed HI for battery degradation modeling and RUL prediction.

  3. Calculation of thermomechanical fatigue life based on isothermal behavior

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Saltsman, J. F.

    1987-01-01

    The isothermal and thermomechanical fatigue (TMF) crack initiation response of a hypothetical material was analyzed. Expected thermomechanical behavior was evaluated numerically based on simple, isothermal, cyclic stress-strain-time characteristics and on strainrange versus cyclic life relations that have been assigned to the material. The attempt was made to establish basic minimum requirements for the development of a physically accurate TMF life-prediction model. A worthy method must be able to deal with the simplest of conditions: that is, those for which thermal cycling, per se, introduces no damage mechanisms other than those found in isothermal behavior. Under these assumed conditions, the TMF life should be obtained uniquely from known isothermal behavior. The ramifications of making more complex assumptions will be dealt with in future studies. Although analyses are only in their early stages, considerable insight has been gained in understanding the characteristics of several existing high-temperature life-prediction methods. The present work indicates that the most viable damage parameter is based on the inelastic strainrange.

  4. Calculation of thermomechanical fatigue life based on isothermal behavior

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Saltsman, James F.

    1987-01-01

    The isothermal and thermomechanical fatigue (TMF) crack initiation response of a hypothetical material was analyzed. Expected thermomechanical behavior was evaluated numerically based on simple, isothermal, cyclic stress-strain - time characteristics and on strainrange versus cyclic life relations that have been assigned to the material. The attempt was made to establish basic minimum requirements for the development of a physically accurate TMF life-prediction model. A worthy method must be able to deal with the simplest of conditions: that is, those for which thermal cycling, per se, introduces no damage mechanisms other than those found in isothermal behavior. Under these assumed conditions, the TMF life should be obtained uniquely from known isothermal behavior. The ramifications of making more complex assumptions will be dealt with in future studies. Although analyses are only in their early stages, considerable insight has been gained in understanding the characteristics of several existing high-temperature life-prediction methods. The present work indicates that the most viable damage parameter is based on the inelastic strainrange.

  5. Age at the onset of senescence in birds and mammals is predicted by early-life performance.

    PubMed

    Péron, Guillaume; Gimenez, Olivier; Charmantier, Anne; Gaillard, Jean-Michel; Crochet, Pierre-André

    2010-09-22

    Life-history theory predicts that traits involved in maturity, reproduction and survival correlate along a fast-slow continuum of life histories. Evolutionary theories and empirical results indicate that senescence-related traits vary along this continuum, with slow species senescing later and at a slower pace than fast species. Because senescence patterns are typically difficult to estimate from studies in the wild, here we propose to predict the associated trait values in the frame of life-history theory. From a comparative analysis based on 81 free-ranging populations of 72 species of birds and mammals, we find that a nonlinear combination of fecundity, age at first reproduction and survival over the immature stage can account for ca two-thirds of the variance in the age at the onset of actuarial senescence. Our life-history model performs better than a model predicting the onset based on generation time, and it only includes life-history traits during early life as explanatory variables, i.e. parameters that are both theoretically expected to shape senescence and are measurable within relatively short studies. We discuss the good-fit of our life-history model to the available data in the light of current evolutionary theories of senescence. We further use it to evaluate whether studies that provided no evidence for senescence lasted long enough to include the onset of senescence.

  6. Dispersal syndromes and the use of life-histories to predict dispersal

    PubMed Central

    Stevens, Virginie M; Trochet, Audrey; Blanchet, Simon; Moulherat, Sylvain; Clobert, Jean; Baguette, Michel

    2013-01-01

    Due to its impact on local adaptation, population functioning or range shifts, dispersal is considered a central process for population persistence and species evolution. However, measuring dispersal is complicated, which justifies the use of dispersal proxies. Although appealing, and despite its general relationship with dispersal, body size has however proven unsatisfactory as a dispersal proxy. Our hypothesis here is that, given the existence of dispersal syndromes, suites of life-history traits may be alternative, more appropriate proxies for dispersal. We tested this idea by using butterflies as a model system. We demonstrate that different elements of the dispersal process (i.e., individual movement rates, distances, and gene flow) are correlated with different suites of life-history traits: these various elements of dispersal form separate syndromes and must be considered real axes of a species' niche. We then showed that these syndromes allowed accurate predictions of dispersal. The use of life-history traits improved the precision of the inferences made from wing size alone by up to five times. Such trait-based predictions thus provided reliable dispersal inferences that can feed simulation models aiming at investigating the dynamics and evolution of butterfly populations, and possibly of other organisms, under environmental changes, to help their conservation. PMID:23789030

  7. The Social Life of a Data Base

    NASA Technical Reports Server (NTRS)

    Linde, Charlotte; Wales, Roxana; Clancy, Dan (Technical Monitor)

    2002-01-01

    This paper presents the complex social life of a large data base. The topics include: 1) Social Construction of Mechanisms of Memory; 2) Data Bases: The Invisible Memory Mechanism; 3) The Human in the Machine; 4) Data of the Study: A Large-Scale Problem Reporting Data Base; 5) The PRACA Study; 6) Description of PRACA; 7) PRACA and Paper; 8) Multiple Uses of PRACA; 9) The Work of PRACA; 10) Multiple Forms of Invisibility; 11) Such Systems are Everywhere; and 12) Two Morals to the Story. This paper is in viewgraph form.

  8. Towards Practical Carbonation Prediction and Modelling for Service Life Design of Reinforced Concrete Structures

    NASA Astrophysics Data System (ADS)

    Ekolu, O. S.

    2015-11-01

    Amongst the scientific community, the interest in durability of concrete structures has been high for quite a long time of over 40 years. Of the various causes of degradation of concrete structures, corrosion is the most widespread durability problem and carbonation is one of the two causes of steel reinforcement corrosion. While much scientific understanding has been gained from the numerous carbonation studies undertaken over the past years, it is still presently not possible to accurately predict carbonation and apply it in design of structures. This underscores the complex nature of the mechanisms as influenced by several interactive factors. Based on critical literature and some experience of the author, it is found that there still exist major challenges in establishing a mathematical constitutive relation for realistic carbonation prediction. While most current models employ permeability /diffusion as the main model property, analysis shows that the most practical material property would be compressive strength, which has a low coefficient of variation of 20% compared to 30 to 50% for permeability. This important characteristic of compressive strength, combined with its merit of simplicity and data availability at all stages of a structure's life, promote its potential use in modelling over permeability. By using compressive strength in carbonation prediction, the need for accelerated testing and permeability measurement can be avoided. This paper attempts to examine the issues associated with carbonation prediction, which could underlie the current lack of a sound established prediction method. Suggestions are then made for possible employment of different or alternative approaches.

  9. Temperament and Parenting during the First Year of Life Predict Future Child Conduct Problems

    ERIC Educational Resources Information Center

    Lahey, Benjamin B.; Van Hulle, Carol A.; Keenan, Kate; Rathouz, Paul J.; D'Onofrio, Brian M.; Rodgers, Joseph Lee; Waldman, Irwin D.

    2008-01-01

    Predictive associations between parenting and temperament during the first year of life and child conduct problems were assessed longitudinally in 1,863 offspring of a representative sample of women. Maternal ratings of infant fussiness, activity level, predictability, and positive affect each independently predicted maternal ratings of conduct…

  10. Extended Aging Theories for Predictions of Safe Operational Life of Critical Airborne Structural Components

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Chen, Tony

    2006-01-01

    The previously developed Ko closed-form aging theory has been reformulated into a more compact mathematical form for easier application. A new equivalent loading theory and empirical loading theories have also been developed and incorporated into the revised Ko aging theory for the prediction of a safe operational life of airborne failure-critical structural components. The new set of aging and loading theories were applied to predict the safe number of flights for the B-52B aircraft to carry a launch vehicle, the structural life of critical components consumed by load excursion to proof load value, and the ground-sitting life of B-52B pylon failure-critical structural components. A special life prediction method was developed for the preflight predictions of operational life of failure-critical structural components of the B-52H pylon system, for which no flight data are available.

  11. A combined approach to buffet response analyses and fatigue life prediction

    NASA Astrophysics Data System (ADS)

    Jacobs, J. H.; Perez, R.

    1994-03-01

    Experimental measurement and neural network based prediction of wind tunnel model empennage random pressures are discussed. Artificially generated neural network power spectral densities of surface pressures are used to augment existing data and then load an elastic finite element model to obtain response spectra. Details on the use of actual response spectra from flight test data are also discussed. A random spectra fatigue method is described which effectively combines buffet and maneuver loads into a time series based on aircraft usage data. A peak-valley damage analysis procedure is employed to compute the aggregate fatigue life of the structure based on five combined load time series information. Applications of the method as a continual learning tool for buffet response spectra is elaborated.

  12. Life systems for a lunar base

    NASA Technical Reports Server (NTRS)

    Nelson, Mark; Hawes, Philip B.; Augustine, Margret

    1992-01-01

    The Biosphere 2 project is pioneering work on life systems that can serve as a prototype for long-term habitation on the Moon. This project will also facilitate the understanding of the smaller systems that will be needed for initial lunar base life-support functions. In its recommendation for a policy for the next 50 years in space, the National Commission on Space urged, 'To explore and settle the inner Solar System, we must develop biospheres of smaller size, and learn how to build and maintain them' (National Commission on Space, 1986). The Biosphere 2 project, along with its Biospheric Research and Development Center, is a materially closed and informationally and energetically open system capable of supporting a human crew of eight, undertaking work to meet this need. This paper gives an overview of the Space Biospheres Ventures' endeavor and its lunar applications.

  13. Factors Predicting Life Satisfaction: A Process Model of Personality, Multidimensional Self-Concept, and Life Satisfaction

    ERIC Educational Resources Information Center

    Parker, Philip D.; Martin, Andrew J.; Marsh, Herbert W.

    2008-01-01

    Life satisfaction is an important component of psychological health and wellbeing. Although personality is consistently linked to life satisfaction, its "innate" and stable nature can make it a difficult target for intervention by practitioners. More malleable and context-specific factors such as multidimensional self-concept may prove…

  14. Late-life Depressive Symptoms: Prediction Models of Change

    PubMed Central

    García-Peña, Carmen; Wagner, Fernando A.; Sánchez-García, Sergio; Espinel-Bermúdez, Claudia; Juárez-Cedillo, Teresa; Pérez-Zepeda, Mario; Arango-Lopera, Victoria; Franco-Marina, Francisco; Ramírez-Aldana, Ricardo; Gallo, Joseph

    2013-01-01

    Background Depression is a well-recognised problem in the elderly. The aim of this study was to determine the factors associated with predictors of change in depressive symptoms, both in subjects with and without baseline significant depressive symptoms. Methods Longitudinal study of community-dwelling elderly people (>60 years or older), baseline evaluations, and two additional evaluations were reported. Depressive symptoms were measured using a 30-item Geriatric Depression Scale, and a score of 11 was used as cutoff point for significant depressive symptoms in order to stratify the analyses in two groups: with significant depressive symptoms and without significant depressive symptoms. Sociodemographic data, social support, anxiety, cognition, positive affect, control locus, activities of daily living, recent traumatic life events, physical activity, comorbidities, and quality of life were evaluated. Multi-level generalised estimating equation model was used to assess the impact on the trajectory of depressive symptoms. Results 7,882 subjects were assessed, with 29.42% attrition. At baseline assessment, mean age was 70.96 years, 61.15% were women. Trajectories of depressive symptoms had a decreasing trend. Stronger associations in those with significant depressive symptoms, were social support (OR .971, p<.001), chronic pain (OR 2.277, p<.001) and higher locus of control (OR .581, p<.001). In contrast for those without baseline significant depressive symptoms anxiety and a higher locus of control were the strongest associations. Conclusions New insights into late-life depression are provided, with special emphasis in differentiated factors influencing the trajectory when stratifying regarding basal status of significant depressive symptoms. Limitations The study has not included clinical evaluations and nutritional assessments PMID:23731940

  15. Prediction-based threshold for medication alert.

    PubMed

    Kawazoe, Yoshimasa; Miyo, Kengo; Kurahashi, Issei; Sakurai, Ryota; Ohe, Kazuhiko

    2013-01-01

    This study presents a prediction-based approach to determine thresholds for a medication alert in a computerized physician order entry. Traditional static thresholds can sometimes lead to physician's alert fatigue or overlook potentially excessive medication even if the doses are belowthe configured threshold. To address this problem, we applied a random forest algorithm to develop a prediction model for medication doses, and applied a boxplot to determine the thresholds based on the prediction results. An evaluation of the eight drugs most frequently causing alerts in our hospital showed that the performances of the prediction were high, except for two drugs. It was also found that using the thresholds based on the predictions would reduce the alerts to a half of those when using the static thresholds. Notably, some cases were detected only by the prediction thresholds. The significance of the thresholds should be discussed in terms of the trade-offs between gains and losses; however, our approach, which relies on physicians' collective experiences, has practical advantages. PMID:23920550

  16. Fundamental understanding and life prediction of stress corrosion cracking in BWRs and energy systems

    SciTech Connect

    Andresen, P.L.; Ford, F.P.

    1998-03-01

    The objective of this paper is to present an approach for design and lifetime evaluation of environmental cracking based on experimental and fundamental modeling of the underlying processes operative in crack advance. In detailed this approach and its development and quantification for energy (hot water) systems, the requirements for a life prediction methodology will be highlighted and the shortcomings of the existing design and lifetime evaluation codes reviewed. Examples are identified of its use in a variety of cracking systems, such as stainless steels, low alloy steels, nickel base alloys, and irradiation assisted stress corrosion cracking in boiling water reactor (BWR) water, as well as preliminary use for low alloy steel and Alloy 600 in pressurized water reactors (PWRs) and turbine steels in steam turbines. Identification of the common aspects with environmental cracking in other hot water systems provides a secure basis for its extension to related energy systems. 166 refs., 49 figs.

  17. Academic Life Satisfaction Scale (ALSS) and Its Effectiveness in Predicting Academic Success

    ERIC Educational Resources Information Center

    Kumar, P.K. Sudheesh; P., Dileep

    2006-01-01

    This study is undertaken to examine the effectiveness of a newly constructed psychometric instrument to assess Academic Life Satisfaction along with the components of Emotional Intelligence. The Academic Life Satisfaction Scale is used to predict the scholastic achievement as an index of Academic success. The investigators found that Academic Life…

  18. Appraisal, Social Support, and Life Events: Predicting Outcome Behavior in School-Age Children.

    ERIC Educational Resources Information Center

    Jackson, Yo; Warren, Jared S.

    2000-01-01

    Examined relationship between social support and appraisal of life events in predicting adaptive, externalizing, and internalizing behavior in 265 seven- to 13-year-olds. Found support for both the main effects and moderator models of the association between life events and global social support. Gender differences were found. Appraisal of life…

  19. Predicting Trajectories of Offending over the Life Course: Findings from a Dutch Conviction Cohort

    ERIC Educational Resources Information Center

    Bersani, Bianca E.; Nieuwbeerta, Paul; Laub, John H.

    2009-01-01

    Distinguishing trajectories of criminal offending over the life course, especially the prediction of high-rate offenders, has received considerable attention over the past two decades. Motivated by a recent study by Sampson and Laub (2003), this study uses longitudinal data on conviction histories from the Dutch Criminal Career and Life-Course…

  20. Contact Stress Analysis and Fatigue Life Prediction of a Turbine Fan Disc

    NASA Astrophysics Data System (ADS)

    Yang, Liang; Zhu, Shun-Peng; Lv, Zhiqiang; Zuo, Fang-Jun; Huang, Hong-Zhong

    2016-06-01

    Fan discs are critical components of an aero engine. In this paper, contact stress and life prediction of a turbine fan disc were investigated. A simplified pin/disc model was conducted to simulate the practical working condition under applied loads using finite element (FE) analysis. This study is devoted to examining the effects of interface condition of pin/disc such as gap and coefficient upon the maximum stress. The FE model indicated that the maximum stress occurs at the top right corner in the second pin hole, and larger gap or friction coefficient has a significant effect on the maximum stress. In addition, FE analysis without considering friction is also conducted. The results show that the dangerous point is similar to the result which considers friction and the stress state is relatively larger than that of considering friction. Finally, based on FE analysis result, life prediction for the fan disc is conducted to combine the material S-N curve, mean stress effects and concentration stress factor obtained by means of FE method.

  1. NASALife-Component Fatigue and Creep Life Prediction Program and Illustrative Examples

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Mital, Subodh K.; Gyekenyesi, John Z.

    2005-01-01

    NASALife is a life prediction program for propulsion system components made of ceramic matrix composites (CMC) under cyclic thermo-mechanical loading and creep rupture conditions. Although, the primary focus was for CMC components the underlying methodologies are equally applicable to other material systems as well. The program references data for low cycle fatigue (LCF), creep rupture, and static material properties as part of the life prediction process. Multiaxial stresses are accommodated by Von Mises based methods and a Walker model is used to address mean stress effects. Varying loads are reduced by the Rainflow counting method. Lastly, damage due to cyclic loading (Miner s rule) and creep are combined to determine the total damage per mission and the number of missions the component can survive before failure are calculated. Illustration of code usage is provided through example problem of a CMC turbine stator vane made of melt-infiltrated, silicon carbide fiber-reinforced, silicon carbide matrix composite (MI SiC/SiC)

  2. A creep cavity growth model for creep-fatigue life prediction of a unidirectional W/Cu composite

    NASA Technical Reports Server (NTRS)

    Kim, Young-Suk; Verrilli, Michael J.; Halford, Gary R.

    1992-01-01

    A microstructural model was developed to predict creep-fatigue life in a (0)(sub 4), 9 volume percent tungsten fiber-reinforced copper matrix composite at the temperature of 833 K. The mechanism of failure of the composite is assumed to be governed by the growth of quasi-equilibrium cavities in the copper matrix of the composite, based on the microscopically observed failure mechanisms. The methodology uses a cavity growth model developed for prediction of creep fracture. Instantaneous values of strain rate and stress in the copper matrix during fatigue cycles were calculated and incorporated in the model to predict cyclic life. The stress in the copper matrix was determined by use of a simple two-bar model for the fiber and matrix during cyclic loading. The model successfully predicted the composite creep-fatigue life under tension-tension cyclic loading through the use of this instantaneous matrix stress level. Inclusion of additional mechanisms such as cavity nucleation, grain boundary sliding, and the effect of fibers on matrix-stress level would result in more generalized predictions of creep-fatigue life.

  3. Ductility normalized-strain-range partitioning life relations for creep-fatigue life predictions

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Saltsman, J. F.; Hirschberg, M. H.

    1978-01-01

    Techniques utilizing strainrange partitioning may be used to estimate the effects of the environment on the high-temperature, low-cycle, creep-fatigue resistance of alloys. Three levels of ductility-normalized strainrange-partitioning life relations are discussed: (1) strainrange partitioning relations from ductility data, (2) strainrange partitioning relations scaled by ductility ratios, and (3) strainrange partitioning life relations with measured PP lines. The procedures have demonstrated good agreement with available creep-fatigue data.

  4. Testing and Life Prediction for Composite Rotor Hub Flexbeams

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen B.

    2004-01-01

    A summary of several studies of delamination in tapered composite laminates with internal ply-drops is presented. Initial studies used 2D FE models to calculate interlaminar stresses at the ply-ending locations in linear tapered laminates under tension loading. Strain energy release rates for delamination in these laminates indicated that delamination would likely start at the juncture of the tapered and thin regions and grow unstably in both directions. Tests of glass/epoxy and graphite/epoxy linear tapered laminates under axial tension delaminated as predicted. Nonlinear tapered specimens were cut from a full-size helicopter rotor hub and were tested under combined constant axial tension and cyclic transverse bending loading to simulate the loading experienced by a rotorhub flexbeam in flight. For all the tested specimens, delamination began at the tip of the outermost dropped ply group and grew first toward the tapered region. A 2D FE model was created that duplicated the test flexbeam layup, geometry, and loading. Surface strains calculated by the model agreed very closely with the measured surface strains in the specimens. The delamination patterns observed in the tests were simulated in the model by releasing pairs of MPCs along those interfaces. Strain energy release rates associated with the delamination growth were calculated for several configurations and using two different FE analysis codes. Calculations from the codes agreed very closely. The strain energy release rate results were used with material characterization data to predict fatigue delamination onset lives for nonlinear tapered flexbeams with two different ply-dropping schemes. The predicted curves agreed well with the test data for each case studied.

  5. A Fatigue Life Prediction Model of Welded Joints under Combined Cyclic Loading

    NASA Astrophysics Data System (ADS)

    Goes, Keurrie C.; Camarao, Arnaldo F.; Pereira, Marcos Venicius S.; Ferreira Batalha, Gilmar

    2011-01-01

    A practical and robust methodology is developed to evaluate the fatigue life in seam welded joints when subjected to combined cyclic loading. The fatigue analysis was conducted in virtual environment. The FE stress results from each loading were imported to fatigue code FE-Fatigue and combined to perform the fatigue life prediction using the S x N (stress x life) method. The measurement or modelling of the residual stresses resulting from the welded process is not part of this work. However, the thermal and metallurgical effects, such as distortions and residual stresses, were considered indirectly through fatigue curves corrections in the samples investigated. A tube-plate specimen was submitted to combined cyclic loading (bending and torsion) with constant amplitude. The virtual durability analysis result was calibrated based on these laboratory tests and design codes such as BS7608 and Eurocode 3. The feasibility and application of the proposed numerical-experimental methodology and contributions for the technical development are discussed. Major challenges associated with this modelling and improvement proposals are finally presented.

  6. Recent advances in elastomer service-life prediction

    NASA Technical Reports Server (NTRS)

    Landel, R. F.; Fedors, R. F.; Moacanin, J.

    1973-01-01

    The mechanical properties of an elastomer, including rupture and its time dependence, are defined uniquely by a tensile property surface in normalized stress-strain-time coordinates. In practice, the property surface is determined from short-time constant strain-rate uniaxial tests. By using the time reduction properties of both temperature and cross-link density, an effective time scale of over ten decades of log time can be covered. Changes in cross-link density, filler content, or swelling do not affect the limits of the property surface when plotted in logarithmic coordinates but merely shift their positions. The shape, however, may be modified in certain cases. The service life of an elastomer in the absence of aging reactions can be estimated from the property surface and expected in-use conditions such as strains (static or dynamic).

  7. Fatigue-Life Prediction Methodology Using Small-Crack Theory

    NASA Technical Reports Server (NTRS)

    Newmann, James C., Jr.; Phillips, Edward P.; Swain, M. H.

    1997-01-01

    This paper reviews the capabilities of a plasticity-induced crack-closure model to predict fatigue lives of metallic materials using 'small-crack theory' for various materials and loading conditions. Crack-tip constraint factors, to account for three-dimensional state-of-stress effects, were selected to correlate large-crack growth rate data as a function of the effective-stress-intensity factor range (delta K(eff)) under constant-amplitude loading. Some modifications to the delta k(eff)-rate relations were needed in the near-threshold regime to fit measured small-crack growth rate behavior and fatigue endurance limits. The model was then used to calculate small- and large-crack growth rates, and to predict total fatigue lives, for notched and un-notched specimens made of two aluminum alloys and a steel under constant-amplitude and spectrum loading. Fatigue lives were calculated using the crack-growth relations and microstructural features like those that initiated cracks for the aluminum alloys and steel for edge-notched specimens. An equivalent-initial-flaw-size concept was used to calculate fatigue lives in other cases. Results from the tests and analyses agreed well.

  8. Predicting negative life outcomes from early aggressive-disruptive behavior trajectories: gender differences in maladaptation across life domains.

    PubMed

    Bradshaw, Catherine P; Schaeffer, Cindy M; Petras, Hanno; Ialongo, Nicholas

    2010-08-01

    Transactional theories of development suggest that displaying high levels of antisocial behavior early in life and persistently over time causes disruption in multiple life domains, which in turn places individuals at risk for negative life outcomes. We used longitudinal data from 1,137 primarily African American urban youth (49.1% female) to determine whether different trajectories of aggressive and disruptive behavior problems were associated with a range of negative life outcomes in young adulthood. General growth mixture modeling was used to classify the youths' patterns of aggressive-disruptive behavior across elementary school. These trajectories were then used to predict early sexual activity, early pregnancy, school dropout, unemployment, and drug abuse in young adulthood. The trajectories predicted the number but not type of negative life outcomes experienced. Girls with the chronic high aggression-disruption (CHAD) pattern experienced more negative outcomes than girls with consistently moderate levels, who were at greater risk than nonaggressive-nondisruptive girls. Boys with CHAD and boys with an increasing pattern had equal levels of risk for experiencing negative outcomes. The findings are consistent with transactional models of development and have implications for preventive interventions.

  9. Creep fatigue life prediction for engine hot section materials (ISOTROPIC)

    NASA Technical Reports Server (NTRS)

    Nelson, R. S.; Schoendorf, J. F.; Lin, L. S.

    1986-01-01

    The specific activities summarized include: verification experiments (base program); thermomechanical cycling model; multiaxial stress state model; cumulative loading model; screening of potential environmental and protective coating models; and environmental attack model.

  10. Predicting Learned Helplessness Based on Personality

    ERIC Educational Resources Information Center

    Maadikhah, Elham; Erfani, Nasrollah

    2014-01-01

    Learned helplessness as a negative motivational state can latently underlie repeated failures and create negative feelings toward the education as well as depression in students and other members of a society. The purpose of this paper is to predict learned helplessness based on students' personality traits. The research is a predictive…

  11. Predicting water quality criteria for protecting aquatic life from physicochemical properties of metals or metalloids.

    PubMed

    Wu, Fengchang; Mu, Yunsong; Chang, Hong; Zhao, Xiaoli; Giesy, John P; Wu, K Benjamin

    2013-01-01

    Metals are widely distributed pollutants in water and can have detrimental effects on some aquatic life and humans. Over the past few decades, the United States Environmental Protection Agency (U.S. EPA) has published a series of criteria guidelines, which contain specific criteria maximum concentrations (CMCs) for 10 metals. However, CMCs for other metals are still lacking because of financial, practical, or ethical restrictions on toxicity testing. Herein, a quantitative structure activity relationship (QSAR) method was used to develop a set of predictive relationships, based on physical and chemical characteristics of metals, and predict acute toxicities of each species for five phyla and eight families of organisms for 25 metals or metalloids. In addition, species sensitivity distributions (SSDs) were developed as independent methods for determining predictive CMCs. The quantitative ion character-activity relationships (QICAR) analysis showed that the softness index (σp), maximum complex stability constants (log -β(n)), electrochemical potential (ΔE(0)), and covalent index (X(m)(2)r) were the minimum set of structure parameters required to predict toxicity of metals to eight families of representative organisms. Predicted CMCs for 10 metals are in reasonable agreement with those recommended previously by U.S. EPA within a difference of 1.5 orders of magnitude. CMCs were significantly related to σp (r(2) = 0.76, P = 7.02 × 10(-9)) and log -β(n) (r(2) = 0.73, P = 3.88 × 10(-8)). The novel QICAR-SSD model reported here is a rapid, cost-effective, and reasonably accurate method, which can provide a beneficial supplement to existing methodologies for developing preliminarily screen level toxicities or criteria for metals, for which little or no relevant information on the toxicity to particular classes of aquatic organisms exists.

  12. Life prediction and constitutive models for engine hot section anisotropic materials program

    NASA Technical Reports Server (NTRS)

    Swanson, G. A.

    1985-01-01

    The purpose is to develop life prediction models for coated anisotropic materials used in gas temperature airfoils. Two single crystal alloys and two coatings are now being tested. These include PWA 1480; Alloy 185; overlay coating, PWA 286; and aluminide coating, PWA 273. Constitutive models are also being developed for these materials to predict the plastic and creep strain histories of the materials in the lab tests and for actual design conditions. This nonlinear material behavior is particularily important for high temperature gas turbine applications and is basic to any life prediction system.

  13. Modeling and life prediction methodology for Titanium Matrix Composites subjected to mission profiles

    NASA Technical Reports Server (NTRS)

    Mirdamadi, M.; Johnson, W. S.

    1994-01-01

    Titanium matrix composites (TMC) are being evaluated as structural materials for elevated temperature applications in future generation hypersonic vehicles. In such applications, TMC components are subjected to complex thermomechanical loading profiles at various elevated temperatures. Therefore, thermomechanical fatigue (TMF) testing, using a simulated mission profile, is essential for evaluation and development of life prediction methodologies. The objective of the research presented in this paper was to evaluate the TMF response of the (0/90)2s SCS-6/Timetal-21S subjected to a generic hypersonic flight profile and its portions with a temperature ranging from -130 C to 816 C. It was found that the composite modulus, prior to rapid degradation, had consistent values for all the profiles tested. A micromechanics based analysis was used to predict the stress-strain response of the laminate and of the constituents in each ply during thermomechanical loading conditions by using only constituent properties as input. The fiber was modeled as elastic with transverse orthotropic and temperature dependent properties. The matrix was modeled using a thermoviscoplastic constitutive relation. In the analysis, the composite modulus degradation was assumed to result from matrix cracking and was modeled by reducing the matrix modulus. Fatigue lives of the composite subjected to the complex generic hypersonic flight profile were well correlated using the predicted stress in 0 degree fibers.

  14. Condition Assessment and End-of-Life Prediction System for Electric Machines and Their Loads

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Toliyat, Hamid A.

    2005-01-01

    An end-of-life prediction system developed for electric machines and their loads could be used in integrated vehicle health monitoring at NASA and in other government agencies. This system will provide on-line, real-time condition assessment and end-of-life prediction of electric machines (e.g., motors, generators) and/or their loads of mechanically coupled machinery (e.g., pumps, fans, compressors, turbines, conveyor belts, magnetic levitation trains, and others). In long-duration space flight, the ability to predict the lifetime of machinery could spell the difference between mission success or failure. Therefore, the system described here may be of inestimable value to the U.S. space program. The system will provide continuous monitoring for on-line condition assessment and end-of-life prediction as opposed to the current off-line diagnoses.

  15. Creep fatigue life prediction for engine hot section materials (isotropic)

    NASA Technical Reports Server (NTRS)

    Nelson, R. S.; Levan, G. W.; Schoendorf, J. F.

    1992-01-01

    A series of high temperature strain controlled fatigue tests have been completed to study the effects of thermomechanical fatigue, multiaxial loading, reactive environments, and imposed mean stresses. The baseline alloy used in these tests was cast B1900+Hf (with and without coatings); a small number of tests of wrought INCO 718 are also included. A strong path dependence was demonstrated during the thermomechanical fatigue testing, using in-phase, out-phase, and non-proportional (elliptical and 'dogleg') strain-temperature cycles. The multiaxial tests also demonstrated cycle path to be a significant variable, using both proportional and non-proportional tension-torsion loading. Environmental screening tests were conducted in moderate pressure oxygen and purified argon; the oxygen reduced the specimen lives by two, while the argon testing produced ambiguous data. Both NiCoCrAlY overlay and diffusion aluminide coatings were evaluated under isothermal and TMF conditions; in general, the lives of the coated specimens were higher that those of uncoated specimens. Controlled mean stress TMF tests showed that small mean stress changes could change initiation lives by orders of magnitude; these results are not conservatively predicted using traditional linear damage summation rules. Microstructures were evaluated using optical, SEM and TEM methods.

  16. TMC Behavior Modeling and Life Prediction Under Multiaxial Stresses

    NASA Technical Reports Server (NTRS)

    Merrick, H. F.; Aksoy, S. Z.; Costen, M.; Ahmad, J.

    1998-01-01

    The goal of this program was to manufacture and burst test small diameter SCS-6/Ti-6Al-4V composite rings for use in the design of an advanced titanium matrix composite (TMC) impeller. The Textron Specialty Metals grooved foil-fiber process was successfully used to make high quality TMC rings. A novel spin test arbor with "soft touch" fingers to retain the TMC ring was designed and manufactured. The design of the arbor took into account its use for cyclic experiments as well as ring burst tests. Spin testing of the instrumented ring was performed at ambient, 149C (300F), and 316C (600F) temperatures. Assembly vibration was encountered during spin testing but this was overcome through simple modification of the arbor. A spin-to-burst test was successfully completed at 316C (600F). The rotational speed of the TMC ring at burst was close to that predicted. In addition to the spin test program, a number of SCS-6/Ti-6Al-4V test panels were made. Neat Ti-6Al-4V panels also were made.

  17. Prediction of rigid silica based insulation conductivity

    NASA Technical Reports Server (NTRS)

    Williams, Stanley D.; Curry, Donald M.

    1993-01-01

    A method is presented for predicting the thermal conductivity of low density, silica based fibrous insulators. It is shown that the method can be used to extend data values to the upper material temperature limits from those obtained from the test data. It is demonstrated that once the conductivity is accurately determined by the analytical model the conductivity for other atmospheres can be predicted. The method is similar to that presented by previous investigators, but differs significantly in the contribution due to gas and internal radiation.

  18. Planner-Based Control of Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Kortenkamp, David; Fry, Chuck; Bell, Scott

    2005-01-01

    The paper describes an approach to the integration of qualitative and quantitative modeling techniques for advanced life support (ALS) systems. Developing reliable control strategies that scale up to fully integrated life support systems requires augmenting quantitative models and control algorithms with the abstractions provided by qualitative, symbolic models and their associated high-level control strategies. This will allow for effective management of the combinatorics due to the integration of a large number of ALS subsystems. By focusing control actions at different levels of detail and reactivity we can use faster: simpler responses at the lowest level and predictive but complex responses at the higher levels of abstraction. In particular, methods from model-based planning and scheduling can provide effective resource management over long time periods. We describe reference implementation of an advanced control system using the IDEA control architecture developed at NASA Ames Research Center. IDEA uses planning/scheduling as the sole reasoning method for predictive and reactive closed loop control. We describe preliminary experiments in planner-based control of ALS carried out on an integrated ALS simulation developed at NASA Johnson Space Center.

  19. Empirical modeling of environment-enhanced fatigue crack propagation in structural alloys for component life prediction

    NASA Technical Reports Server (NTRS)

    Richey, Edward, III

    1995-01-01

    This research aims to develop the methods and understanding needed to incorporate time and loading variable dependent environmental effects on fatigue crack propagation (FCP) into computerized fatigue life prediction codes such as NASA FLAGRO (NASGRO). In particular, the effect of loading frequency on FCP rates in alpha + beta titanium alloys exposed to an aqueous chloride solution is investigated. The approach couples empirical modeling of environmental FCP with corrosion fatigue experiments. Three different computer models have been developed and incorporated in the DOS executable program. UVAFAS. A multiple power law model is available, and can fit a set of fatigue data to a multiple power law equation. A model has also been developed which implements the Wei and Landes linear superposition model, as well as an interpolative model which can be utilized to interpolate trends in fatigue behavior based on changes in loading characteristics (stress ratio, frequency, and hold times).

  20. Structure-Based Predictions of Activity Cliffs

    PubMed Central

    Husby, Jarmila; Bottegoni, Giovanni; Kufareva, Irina; Abagyan, Ruben; Cavalli, Andrea

    2015-01-01

    In drug discovery, it is generally accepted that neighboring molecules in a given descriptors' space display similar activities. However, even in regions that provide strong predictability, structurally similar molecules can occasionally display large differences in potency. In QSAR jargon, these discontinuities in the activity landscape are known as ‘activity cliffs’. In this study, we assessed the reliability of ligand docking and virtual ligand screening schemes in predicting activity cliffs. We performed our calculations on a diverse, independently collected database of cliff-forming co-crystals. Starting from ideal situations, which allowed us to establish our baseline, we progressively moved toward simulating more realistic scenarios. Ensemble- and template-docking achieved a significant level of accuracy, suggesting that, despite the well-known limitations of empirical scoring schemes, activity cliffs can be accurately predicted by advanced structure-based methods. PMID:25918827

  1. The Search for Life on Other Planets: Sulfur-Based, Silicon-Based, Ammonia-Based Life

    NASA Astrophysics Data System (ADS)

    Rampelotto, H. Pabulo

    2010-02-01

    The search for extraterrestrial life is one of the most challenging and interesting scientific themes of the 21st century. This search has been guided by our understanding of the life's nature. Up to now, we only know life on Earth, which uses water as a solvent and the building blocks of which are based on carbon and oxygen. Hence, the search for extraterrestrial life has been the search for life as we know it as based on life which lives on Earth. However, living systems that may have originated elsewhere, even within our own solar system, could be unrecognizable compared with life here and thus not be detectable by telescopes and spacecraft landers designed to detect terrestrial biomolecules or their products.Therefore, we need to expand the boundaries of our Earth-centric concept of life and be open-minded and aware of the most general features of living systems. Life forms based on silicon, ammonia, and sulfur are among those who may have evolved on other worlds, and these possibilities are discussed.

  2. Life prediction of coated and uncoated metallic interconnect for solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Liu, W. N.; Sun, X.; Stephens, E.; Khaleel, M. A.

    In this paper, we present an integrated experimental and modeling methodology in predicting the life of coated and uncoated metallic interconnect (IC) for solid oxide fuel cell (SOFC) applications. The ultimate goal is to provide cell designer and manufacture with a predictive methodology such that the life of the IC system can be managed and optimized through different coating thickness to meet the overall cell designed life. Crofer 22 APU is used as the example IC material system. The life of coated and uncoated Crofer 22 APU under isothermal cooling was predicted by comparing the predicted interfacial strength and the interfacial stresses induced by the cooling process from the operating temperature to room temperature, together with the measured oxide scale growth kinetics. It was found that the interfacial strength between the oxide scale and the Crofer 22 APU substrate decreases with the growth of the oxide scale, and that the interfacial strength for the oxide scale/spinel coating interface is much higher than that of the oxide scale/Crofer 22 APU substrate interface. As expected, the predicted life of the coated Crofer 22 APU is significantly longer than that of the uncoated Crofer 22 APU.

  3. Validation of Framework Code Approach to a Life Prediction System for Fiber Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Gravett, Phillip

    1997-01-01

    The grant was conducted by the MMC Life Prediction Cooperative, an industry/government collaborative team, Ohio Aerospace Institute (OAI) acted as the prime contractor on behalf of the Cooperative for this grant effort. See Figure I for the organization and responsibilities of team members. The technical effort was conducted during the period August 7, 1995 to June 30, 1996 in cooperation with Erwin Zaretsky, the LERC Program Monitor. Phil Gravett of Pratt & Whitney was the principal technical investigator. Table I documents all meeting-related coordination memos during this period. The effort under this grant was closely coordinated with an existing USAF sponsored program focused on putting into practice a life prediction system for turbine engine components made of metal matrix composites (MMC). The overall architecture of the NMC life prediction system was defined in the USAF sponsored program (prior to this grant). The efforts of this grant were focussed on implementing and tailoring of the life prediction system, the framework code within it and the damage modules within it to meet the specific requirements of the Cooperative. T'he tailoring of the life prediction system provides the basis for pervasive and continued use of this capability by the industry/government cooperative. The outputs of this grant are: 1. Definition of the framework code to analysis modules interfaces, 2. Definition of the interface between the materials database and the finite element model, and 3. Definition of the integration of the framework code into an FEM design tool.

  4. Saliency-based gaze prediction based on head direction.

    PubMed

    Nakashima, Ryoichi; Fang, Yu; Hatori, Yasuhiro; Hiratani, Akinori; Matsumiya, Kazumichi; Kuriki, Ichiro; Shioiri, Satoshi

    2015-12-01

    Despite decades of attempts to create a model for predicting gaze locations by using saliency maps, a highly accurate gaze prediction model for general conditions has yet to be devised. In this study, we propose a gaze prediction method based on head direction that can improve the accuracy of any model. We used a probability distribution of eye position based on head direction (static eye-head coordination) and added this information to a model of saliency-based visual attention. Using empirical data on eye and head directions while observers were viewing natural scenes, we estimated a probability distribution of eye position. We then combined the relationship between eye position and head direction with visual saliency to predict gaze locations. The model showed that information on head direction improved the prediction accuracy. Further, there was no difference in the gaze prediction accuracy between the two models using information on head direction with and without eye-head coordination. Therefore, information on head direction is useful for predicting gaze location when it is available. Furthermore, this gaze prediction model can be applied relatively easily to many daily situations such as during walking.

  5. The fatigue life prediction of aluminium alloy using genetic algorithm and neural network

    NASA Astrophysics Data System (ADS)

    Susmikanti, Mike

    2013-09-01

    The behavior of the fatigue life of the industrial materials is very important. In many cases, the material with experiencing fatigue life cannot be avoided, however, there are many ways to control their behavior. Many investigations of the fatigue life phenomena of alloys have been done, but it is high cost and times consuming computation. This paper report the modeling and simulation approaches to predict the fatigue life behavior of Aluminum Alloys and resolves some problems of computation. First, the simulation using genetic algorithm was utilized to optimize the load to obtain the stress values. These results can be used to provide N-cycle fatigue life of the material. Furthermore, the experimental data was applied as input data in the neural network learning, while the samples data were applied for testing of the training data. Finally, the multilayer perceptron algorithm is applied to predict whether the given data sets in accordance with the fatigue life of the alloy. To achieve rapid convergence, the Levenberg-Marquardt algorithm was also employed. The simulations results shows that the fatigue behaviors of aluminum under pressure can be predicted. In addition, implementation of neural networks successfully identified a model for material fatigue life.

  6. Development of Probabilistic Life Prediction Methodologies and Testing Strategies for MEMS and CMC's

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama

    2003-01-01

    This effort is to investigate probabilistic life prediction methodologies for ceramic matrix composites and MicroElectroMechanical Systems (MEMS) and to analyze designs that determine stochastic properties of MEMS. For CMC's this includes a brief literature survey regarding lifing methodologies. Also of interest for MEMS is the design of a proper test for the Weibull size effect in thin film (bulge test) specimens. The Weibull size effect is a consequence of a stochastic strength response predicted from the Weibull distribution. Confirming that MEMS strength is controlled by the Weibull distribution will enable the development of a probabilistic design methodology for MEMS - similar to the GRC developed CARES/Life program for bulk ceramics. A main objective of this effort is to further develop and verify the ability of the Ceramics Analysis and Reliability Evaluation of Structures/Life (CARES/Life) code to predict the time-dependent reliability of MEMS structures subjected to multiple transient loads. A second set of objectives is to determine the applicability/suitability of the CARES/Life methodology for CMC analysis, what changes would be needed to the methodology and software, and if feasible, run a demonstration problem. Also important is an evaluation of CARES/Life coupled to the ANSYS Probabilistic Design System (PDS) and the potential of coupling transient reliability analysis to the ANSYS PDS.

  7. Early life insult from cigarette smoke may be predictive of chronic diseases later in life.

    PubMed

    Doherty, S P; Grabowski, J; Hoffman, C; Ng, S P; Zelikoff, J T

    2009-07-01

    Evidence is rapidly accumulating that links cigarette smoke (CS) exposure in utero with the development of a variety of disease pathologies in the older offspring including, type 2 diabetes, obesity, certain childhood cancers and respiratory disorders. The role that the fetal environment plays in these late-onset outcomes and the underlying cellular/molecular mechanisms by which these CS-induced effects may occur are currently unknown. Although we are becoming more aware of the fact that prenatal insult can underlie childhood/adult diseases, critical knowledge gaps still exist including gene-environment interactions, and how a CS-induced imbalance in immune dynamics (i.e. TH1/TH2) might affect asthma development and/or exacerbation later in life. In this mini-review we introduce the concept of sexual dimorphism in CS-induced late-onset disease outcomes, as well as explore the mechanisms by which CS exposure in utero can lead to cardiovascular, cancer and respiratory abnormalities in the exposed offspring. By addressing such questions using animal models, appropriate intervention strategies can be developed that will help to protect children's health and their long-term quality of life.

  8. Streamflow Prediction based on Chaos Theory

    NASA Astrophysics Data System (ADS)

    Li, X.; Wang, X.; Babovic, V. M.

    2015-12-01

    Chaos theory is a popular method in hydrologic time series prediction. Local model (LM) based on this theory utilizes time-delay embedding to reconstruct the phase-space diagram. For this method, its efficacy is dependent on the embedding parameters, i.e. embedding dimension, time lag, and nearest neighbor number. The optimal estimation of these parameters is thus critical to the application of Local model. However, these embedding parameters are conventionally estimated using Average Mutual Information (AMI) and False Nearest Neighbors (FNN) separately. This may leads to local optimization and thus has limitation to its prediction accuracy. Considering about these limitation, this paper applies a local model combined with simulated annealing (SA) to find the global optimization of embedding parameters. It is also compared with another global optimization approach of Genetic Algorithm (GA). These proposed hybrid methods are applied in daily and monthly streamflow time series for examination. The results show that global optimization can contribute to the local model to provide more accurate prediction results compared with local optimization. The LM combined with SA shows more advantages in terms of its computational efficiency. The proposed scheme here can also be applied to other fields such as prediction of hydro-climatic time series, error correction, etc.

  9. Life prediction of turbine components: On-going studies at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Spera, D. A.; Grisaffe, S. J.

    1973-01-01

    An overview is presented of the many studies at NASA-Lewis that form the turbine component life prediction program. This program has three phases: (1) development of life prediction methods for major failure modes through materials studies, (2) evaluation and improvement of these methods through a variety of burner rig studies on simulated components in research engines and advanced rigs. These three phases form a cooperative, interdisciplinary program. A bibliography of Lewis publications on fatigue, oxidation and coatings, and turbine engine alloys is included.

  10. Temperature-based bioclimatic parameters can predict nematode metabolic footprints.

    PubMed

    Bhusal, Daya Ram; Tsiafouli, Maria A; Sgardelis, Stefanos P

    2015-09-01

    Nematode metabolic footprints (MFs) refer to the lifetime amount of metabolized carbon per individual, indicating a connection to soil food web functions and eventually to processes supporting ecosystem services. Estimating and managing these at a convenient scale requires information upscaling from the soil sample to the landscape level. We explore the feasibility of predicting nematode MFs from temperature-based bioclimatic parameters across a landscape. We assume that temperature effects are reflected in MFs, since temperature variations determine life processes ranging from enzyme activities to community structure. We use microclimate data recorded for 1 year from sites differing by orientation, altitude and vegetation cover. At the same sites we estimate MFs for each nematode trophic group. Our models show that bioclimatic parameters, specifically those accounting for temporal variations in temperature and extremities, predict most of the variation in nematode MFs. Higher fungivorous and lower bacterivorous nematode MFs are predicted for sites with high seasonality and low isothermality (sites of low vegetation, mostly at low altitudes), indicating differences in the relative contribution of the corresponding food web channels to the metabolism of carbon across the landscape. Higher plant-parasitic MFs were predicted for sites with high seasonality. The fitted models provide realistic predictions of unknown cases within the range of the predictor's values, allowing for the interpolation of MFs within the sampled region. We conclude that upscaling of the bioindication potential of nematode communities is feasible and can provide new perspectives not only in the field of soil ecology but other research areas as well.

  11. FLAPS (Fatigue Life Analysis Programs): Computer Programs to Predict Cyclic Life Using the Total Strain Version of Strainrange Partitioning and Other Life Prediction Methods. Users' Manual and Example Problems, Version 1.0

    NASA Technical Reports Server (NTRS)

    Arya, Vinod K.; Halford, Gary R. (Technical Monitor)

    2003-01-01

    This manual presents computer programs FLAPS for characterizing and predicting fatigue and creep-fatigue resistance of metallic materials in the high-temperature, long-life regime for isothermal and nonisothermal fatigue. The programs use the Total Strain version of Strainrange Partitioning (TS-SRP), and several other life prediction methods described in this manual. The user should be thoroughly familiar with the TS-SRP and these life prediction methods before attempting to use any of these programs. Improper understanding can lead to incorrect use of the method and erroneous life predictions. An extensive database has also been developed in a parallel effort. The database is probably the largest source of high-temperature, creep-fatigue test data available in the public domain and can be used with other life-prediction methods as well. This users' manual, software, and database are all in the public domain and can be obtained by contacting the author. The Compact Disk (CD) accompanying this manual contains an executable file for the FLAPS program, two datasets required for the example problems in the manual, and the creep-fatigue data in a format compatible with these programs.

  12. Ceramic material life prediction: A program to translate ANSYS results to CARES/LIFE reliability analysis

    NASA Technical Reports Server (NTRS)

    Vonhermann, Pieter; Pintz, Adam

    1994-01-01

    This manual describes the use of the ANSCARES program to prepare a neutral file of FEM stress results taken from ANSYS Release 5.0, in the format needed by CARES/LIFE ceramics reliability program. It is intended for use by experienced users of ANSYS and CARES. Knowledge of compiling and linking FORTRAN programs is also required. Maximum use is made of existing routines (from other CARES interface programs and ANSYS routines) to extract the finite element results and prepare the neutral file for input to the reliability analysis. FORTRAN and machine language routines as described are used to read the ANSYS results file. Sub-element stresses are computed and written to a neutral file using FORTRAN subroutines which are nearly identical to those used in the NASCARES (MSC/NASTRAN to CARES) interface.

  13. Analytical Algorithms to Quantify the Uncertainty in Remaining Useful Life Prediction

    NASA Technical Reports Server (NTRS)

    Sankararaman, Shankar; Saxena, Abhinav; Daigle, Matthew; Goebel, Kai

    2013-01-01

    This paper investigates the use of analytical algorithms to quantify the uncertainty in the remaining useful life (RUL) estimate of components used in aerospace applications. The prediction of RUL is affected by several sources of uncertainty and it is important to systematically quantify their combined effect by computing the uncertainty in the RUL prediction in order to aid risk assessment, risk mitigation, and decisionmaking. While sampling-based algorithms have been conventionally used for quantifying the uncertainty in RUL, analytical algorithms are computationally cheaper and sometimes, are better suited for online decision-making. While exact analytical algorithms are available only for certain special cases (for e.g., linear models with Gaussian variables), effective approximations can be made using the the first-order second moment method (FOSM), the first-order reliability method (FORM), and the inverse first-order reliability method (Inverse FORM). These methods can be used not only to calculate the entire probability distribution of RUL but also to obtain probability bounds on RUL. This paper explains these three methods in detail and illustrates them using the state-space model of a lithium-ion battery.

  14. A Novel Creep-Fatigue Life Prediction Model for P92 Steel on the Basis of Cyclic Strain Energy Density

    NASA Astrophysics Data System (ADS)

    Ji, Dongmei; Ren, Jianxing; Zhang, Lai-Chang

    2016-09-01

    A novel creep-fatigue life prediction model was deduced based on an expression of the strain energy density in this study. In order to obtain the expression of the strain energy density, the load-controlled creep-fatigue (CF) tests of P92 steel at 873 K were carried out. Cyclic strain of P92 steel under CF load was divided into elastic strain, applying and unloading plastic strain, creep strain, and anelastic strain. Analysis of cyclic strain indicates that the damage process of P92 steel under CF load consists of three stages, similar to pure creep. According to the characteristics of the strains above, an expression was defined to describe the strain energy density for each cycle. The strain energy density at stable stage is inversely proportional to the total strain energy density dissipated by P92 steel. However, the total strain energy densities under different test conditions are proportional to the fatigue life. Therefore, the expression of the strain energy density at stable stage was chosen to predict the fatigue life. The CF experimental data on P92 steel were employed to verify the rationality of the novel model. The model obtained from the load-controlled CF test of P92 steel with short holding time could predict the fatigue life of P92 steel with long holding time.

  15. Microporosity Prediction and Validation for Ni-based Superalloy Castings

    NASA Astrophysics Data System (ADS)

    Guo, J.; Beckermann, C.; Carlson, K.; Hirvo, D.; Bell, K.; Moreland, T.; Gu, J.; Clews, J.; Scott, S.; Couturier, G.; Backman, D.

    2015-06-01

    Microporosityin high performance aerospace castings can reduce mechanical properties and consequently degrade both component life and durability. Therefore, casting engineers must be able to both predict and reduce casting microporosity. A dimensionless Niyama model has been developed [1] that predicts local microporosity by accounting for local thermal conditions during casting as well as the properties and solidification characteristics of the cast alloy. Unlike the well-known Niyama criterion, application of the dimensionless Niyama model avoids the need to find a threshold Niyama criterion below which shrinkage porosity forms - a criterion which can be determined only via extensive alloy dependent experimentation. In the present study, the dimensionless Niyama model is integrated with a commercial finite element casting simulation software, which can now more accurately predict the location-specific shrinkage porosity volume fraction during solidification of superalloy castings. These microporosity predictions are validated by comparing modelled results against radiographically and metallographically measured porosity for several Ni-based superalloy equiaxed castings that vary in alloy chemistry with a focus on plates of changing draft angle and thickness. The simulation results agree well with experimental measurements. The simulation results also show that the dimensionless Niyama model can not only identify the location but also the average volume fraction of microporosity distribution in these equiaxed investment cast Ni-based superalloy experiments of relatively simple geometry.

  16. Purpose in Life Predicts Treatment Outcome Among Adult Cocaine Abusers in Treatment

    PubMed Central

    Martin, Rosemarie A.; MacKinnon, Selene; Johnson, Jennifer; Rohsenow, Damaris J.

    2010-01-01

    A sense of purpose in life has been positively associated with mental health and well-being and has been negatively associated with alcohol use in correlational and longitudinal studies, but has not been studied as a predictor of cocaine treatment outcome. This study examined pre-treatment purpose in life as a predictor of response to a 30-day residential substance use treatment program among 154 participants with cocaine dependence. Purpose in life was unrelated to cocaine or alcohol use during the 6 months pretreatment. After controlling for age, baseline use, and depressive symptoms, purpose in life significantly (p < .01) predicted relapse to any use of cocaine and to alcohol, and the number of days cocaine or alcohol was used in the six months after treatment. Findings suggest that increasing purpose in life may be an important aspect of treatment among cocaine dependent patients. PMID:21129893

  17. Life Prediction/Reliability Data of Glass-Ceramic Material Determined for Radome Applications

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.

    2002-01-01

    Brittle materials, ceramics, are candidate materials for a variety of structural applications for a wide range of temperatures. However, the process of slow crack growth, occurring in any loading configuration, limits the service life of structural components. Therefore, it is important to accurately determine the slow crack growth parameters required for component life prediction using an appropriate test methodology. This test methodology also should be useful in determining the influence of component processing and composition variables on the slow crack growth behavior of newly developed or existing materials, thereby allowing the component processing and composition to be tailored and optimized to specific needs. Through the American Society for Testing and Materials (ASTM), the authors recently developed two test methods to determine the life prediction parameters of ceramics. The two test standards, ASTM 1368 for room temperature and ASTM C 1465 for elevated temperatures, were published in the 2001 Annual Book of ASTM Standards, Vol. 15.01. Briefly, the test method employs constant stress-rate (or dynamic fatigue) testing to determine flexural strengths as a function of the applied stress rate. The merit of this test method lies in its simplicity: strengths are measured in a routine manner in flexure at four or more applied stress rates with an appropriate number of test specimens at each applied stress rate. The slow crack growth parameters necessary for life prediction are then determined from a simple relationship between the strength and the applied stress rate. Extensive life prediction testing was conducted at the NASA Glenn Research Center using the developed ASTM C 1368 test method to determine the life prediction parameters of a glass-ceramic material that the Navy will use for radome applications.

  18. Dst Prediction Based on Solar Wind Parameters

    NASA Astrophysics Data System (ADS)

    Park, Yoon-Kyung; Ahn, Byung-Ho

    2009-12-01

    We reevaluate the Burton equation (Burton et al. 1975) of predicting Dst index using high quality hourly solar wind data supplied by the ACE satellite for the period from 1998 to 2006. Sixty magnetic storms with monotonously decreasing main phase are selected. In order to determine the injection term (Q) and the decay time (tau) of the equation, we examine the relationships between Dst^ast and VB_s, Delta Dst^ast and VB_s, and Delta Dst^ast and Dst^ast during the magnetic storms. For this analysis, we take into account one hour of the propagation time from the ACE satellite to the magnetopause, and a half hour of the response time of the magnetosphere/ring current to the solar wind forcing. The injection term is found to be Q({nT}/h)=-3.56VB_s for VB_s>0.5mV/m and Q({nT}/h)=0 for VB_s leq0.5mV/m. The tau (hour) is estimated as 0.060 Dst^ast + 16.65 for Dst^ast>-175nT and 6.15 hours for Dst^ast leq -175nT. Based on these empirical relationships, we predict the 60 magnetic storms and find that the correlation coefficient between the observed and predicted Dst^ast is 0.88. To evaluate the performance of our prediction scheme, the 60 magnetic storms are predicted again using the models by Burton et al. (1975) and O'Brien & McPherron (2000a). The correlation coefficients thus obtained are 0.85, the same value for both of the two models. In this respect, our model is slightly improved over the other two models as far as the correlation coefficients is concerned. Particularly our model does a better job than the other two models in predicting intense magnetic storms (Dst^ast lesssim -200nT).

  19. Life cycle cost based program decisions

    NASA Technical Reports Server (NTRS)

    Dick, James S.

    1991-01-01

    The following subject areas are covered: background (space propulsion facility assessment team final report); changes (Advanced Launch System, National Aerospace Plane, and space exploration initiative); life cycle cost analysis rationale; and recommendation to panel.

  20. Methodology for designing accelerated aging tests for predicting life of photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Gaines, G. B.; Thomas, R. E.; Derringer, G. C.; Kistler, C. W.; Bigg, D. M.; Carmichael, D. C.

    1977-01-01

    A methodology for designing aging tests in which life prediction was paramount was developed. The methodology builds upon experience with regard to aging behavior in those material classes which are expected to be utilized as encapsulant elements, viz., glasses and polymers, and upon experience with the design of aging tests. The experiences were reviewed, and results are discussed in detail.

  1. The Incremental Validity of Religious Constructs in Predicting Quality of Life, Racism, and Sexual Attitudes

    ERIC Educational Resources Information Center

    Csarny, Richard J.

    1997-01-01

    This study examined the degree to which certain religious/spiritual constructs simply reflect personality variables and to what extent they describe unique components of individual differences. It assessed the incremental validity of several recent or widely used religious measures over personality dimensions in predicting quality of life, racism,…

  2. Life prediction of materials exposed to monotonic and cyclic loading: A technology survey and bibliography

    NASA Technical Reports Server (NTRS)

    Stuhrke, W. F.; Carpenter, J. L., Jr.; Moya, N.; Mandel, G.

    1975-01-01

    Announced survey directs attention toward low cycle fatigue and thermal fatigue experienced at elevated temperatures equivalent to those found in hot end of gas turbine engine. Majority of bibliographic references are on life prediction for materials exposed to monotonic and cyclic loading in high temperature environments.

  3. The Level of Quality of Work Life to Predict Work Alienation

    ERIC Educational Resources Information Center

    Erdem, Mustafa

    2014-01-01

    The current research aims to determine the level of elementary school teachers' quality of work life (QWL) to predict work alienation. The study was designed using the relational survey model. The research population consisted of 1096 teachers employed at 25 elementary schools within the city of Van in the academic year 2010- 2011, and 346…

  4. Development of Probabilistic Life Prediction Methodologies and Testing Strategies for MEMS

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama M.

    2003-01-01

    This effort is to investigate probabilistic life prediction methodologies for MicroElectroMechanical Systems (MEMS) and to analyze designs that determine stochastic properties of MEMS. This includes completion of a literature survey regarding Weibull size effect in MEMS and strength testing techniques. Also of interest is the design of a proper test for the Weibull size effect in tensile specimens. The Weibull size effect is a consequence of a stochastic strength response predicted from the Weibull distribution. Confirming that MEMS strength is controlled by the Weibull distribution will enable the development of a probabilistic design methodology for MEMS - similar to the GRC developed CARES/Life program for bulk ceramics. Another potential item of interest is analysis and modeling of material interfaces for strength as well as developing a strategy to handle stress singularities at sharp corners, filets, and material interfaces. The ultimate objective of this effort is to further develop and verify the ability of the Ceramics Analysis and Reliability Evaluation of Structuredlife (CARES/Life) code to predict the time-dependent reliability of MEMS structures subjected to multiple transient loads. Along these lines work may also be performed on transient fatigue life prediction methodologies.

  5. The Role of Life Satisfaction and Parenting Styles in Predicting Delinquent Behaviors among High School Students

    ERIC Educational Resources Information Center

    Onder, Fulya Cenkseven; Yilmaz, Yasin

    2012-01-01

    The purpose of this study is to determine whether the parenting styles and life satisfaction predict delinquent behaviors frequently or not. Firstly the data were collected from 471 girls and 410 boys, a total of 881 high school students. Then the research was carried out with 502 students showing low (n = 262, 52.2%) and high level of delinquent…

  6. Finite Element Creep Damage Analyses and Life Prediction of P91 Pipe Containing Local Wall Thinning Defect

    NASA Astrophysics Data System (ADS)

    Xue, Jilin; Zhou, Changyu

    2016-03-01

    Creep continuum damage finite element (FE) analyses were performed for P91 steel pipe containing local wall thinning (LWT) defect subjected to monotonic internal pressure, monotonic bending moment and combined internal pressure and bending moment by orthogonal experimental design method. The creep damage lives of pipe containing LWT defect under different load conditions were obtained. Then, the creep damage life formulas were regressed based on the creep damage life results from FE method. At the same time a skeletal point rupture stress was found and used for life prediction which was compared with creep damage lives obtained by continuum damage analyses. From the results, the failure lives of pipe containing LWT defect can be obtained accurately by using skeletal point rupture stress method. Finally, the influence of LWT defect geometry was analysed, which indicated that relative defect depth was the most significant factor for creep damage lives of pipe containing LWT defect.

  7. Palliative radiotherapy during the last month of life: Predictability for referring physicians and radiation oncologists

    PubMed Central

    NIEDER, CARSTEN; ANGELO, KENT; DALHAUG, ASTRID; PAWINSKI, ADAM; HAUKLAND, ELLINOR; NORUM, JAN

    2015-01-01

    Oncologists commonly overestimate the survival time of patients receiving palliative therapy, which may result in the administration of treatments that are too aggressive for patients near the end of their lives. Previous studies have discussed the negative implications of palliative radiotherapy if administered during the last month of life. Models predicting a limited survival time may improve the ability of the oncologists to tailor the treatment according to the needs of each individual patient. In the present study, prognostic factors for survival time, and the use of palliative radiotherapy during the last month of life, were analyzed in 873 patients. Models predicting the likelihood of administering such therapy were examined, and the risk of receiving radiotherapy during the last month of life was observed to be lower in patients with non-metastatic cancer than in those with metastatic cancer (7 vs. 13%, respectively; P=0.12). On multivariate analysis, 11 factors that significantly influenced the survival time were identified. These findings emphasize the complexity of potential prediction models. The most important risk factor regarding the prediction of extremely short survival times was observed to be an Eastern Cooperative Oncology Group performance status (ECOG PS) of 4, followed by an ECOG PS of 3 (median survival times, 14 and 64 days, respectively). A limited number of patients who received palliative radiotherapy during their last month of life died unexpectedly. Disease-specific prediction models were developed; however, the small number of events available for analysis limited their immediate clinical impact. Furthermore, these prediction models identified a minority of patients who received radiotherapy during the last month of life. In conclusion, the majority of the palliative radiotherapy courses administered to patients with advanced cancer during their last month of life may be preventable if accurate decision models for the clinic are

  8. Predicting first onset of depression in young girls: Interaction of diurnal cortisol and negative life events.

    PubMed

    LeMoult, Joelle; Ordaz, Sarah J; Kircanski, Katharina; Singh, Manpreet K; Gotlib, Ian H

    2015-11-01

    Interactions between biological vulnerability and environmental adversity are central to the pathophysiology of depression. Given evidence that the hypothalamic-pituitary-adrenal (HPA) axis influences biological responses to environmental events, in the current longitudinal study the authors examined HPA-axis functioning, negative life events, and their interaction as predictors of the first onset of depression. At baseline, girls ages 9 to 14 years provided saliva samples to assess levels of diurnal cortisol production, quantified by total cortisol production (area under the curve with respect to ground; AUCg) and the cortisol awakening response (CAR). The authors then followed these participants until they reached age 18 in order to assess their subsequent experience of negative life events and the onset of a depressive episode. They found that the influence of negative life events on the subsequent onset of depression depended on HPA-axis functioning at baseline. Specifically, negative life events predicted the onset of depression in girls with higher levels of AUCg, but not in girls with lower levels of AUCg. In contrast, CAR did not predict the onset of depression either alone or in interaction with negative life events. These findings suggest that elevated total cortisol production in daily life potentiates susceptibility to environmental adversity and signals the need for early intervention. PMID:26595472

  9. Predicting First Onset of Depression in Young Girls: Interaction of Diurnal Cortisol and Negative Life Events

    PubMed Central

    LeMoult, Joelle; Ordaz, Sarah J.; Kircanski, Katharina; Singh, Manpreet K.; Gotlib, Ian H.

    2015-01-01

    Interactions between biological vulnerability and environmental adversity are central to the pathophysiology of depression. Given evidence that the hypothalamic-pituitary-adrenal (HPA) axis influences biological responses to environmental events, in the current longitudinal study we examined HPA-axis functioning, negative life events, and their interaction as predictors of the first onset of depression. At baseline, girls ages 9 to 14 years provided saliva samples to assess levels of diurnal cortisol production, quantified by total cortisol production (area under the curve with respect to ground; AUCg) and the cortisol awakening response (CAR). We then followed these participants until they reached age 18 in order to assess their subsequent experience of negative life events and the onset of a depressive episode. We found that the influence of negative life events on the subsequent onset of depression depended on HPA-axis functioning at baseline. Specifically, negative life events predicted the onset of depression in girls with higher levels AUCg, but not in girls with lower levels of AUCg. In contrast, CAR did not predict the onset of depression either alone or in interaction with negative life events. These findings suggest that elevated total cortisol production in daily life potentiates susceptibility to environmental adversity and signals the need for early intervention. PMID:26595472

  10. Predictability of sacral base levelness based on iliac crest measurements.

    PubMed

    Dott, G A; Hart, C L; McKay, C

    1994-05-01

    A level sacral base plane is necessary to allow normalization of complex lumbosacral mechanics. Palpatory examinations are often used to evaluate for leg length discrepancy and pelvic obliquity despite improved accuracy and consistency of radiographic techniques. Treatment based on palpatory examinations suppose a direct and consistent relationship between the pelvic bones (innominates) and the sacral base. To evaluate the relationship between iliac crest levelness and sacral base levelness, a radiographic postural survey in the upright, weight-bearing position was performed on 358 men and women thought to have pelvic obliquity. Of these subjects, 293 demonstrated unlevel iliac crest heights or sacral base > or = 3/16 inch (4.76 mm), with iliac crest heights accurately predicting sacral base position 62% of the time. At > or = 3/8 inch (9.53 mm), 68% of the cases were accurately predicted. When the criterion for unlevelness was increased to > or = 1/2 inch (12.70 mm), the predictive accuracy improved to 83%. Radiographic findings in this study demonstrate a significant difference between iliac crest heights and sacral base position. In cases of mild to moderate short leg syndromes, the iliac crest height is an unreliable predictor of the direction or degree of sacral base levelness. PMID:8056627

  11. Predictors and processes associated with home-based family therapists' professional quality of life.

    PubMed

    Macchi, C R; Johnson, Matthew D; Durtschi, Jared A

    2014-07-01

    This study examined whether home-based family therapists' (HBFT) workload and clinical experience were associated with therapists' professional quality of life directly and indirectly through self-care activities and frequency of clinical supervision. Hypotheses were tested using structural equation modeling with a sample of 225 home-based therapists. Results suggested that therapists' workload and HBFT experience significantly predicted therapists' professional quality of life. These associations between therapists' workload and HBFT experience were partially mediated through participation in self-care and frequency of clinical supervision. Implications for improving therapists' quality of life are discussed as a function of therapists' workload, clinical experience, self-care, and supervision.

  12. Does life history predict risk-taking behavior of wintering dabbling ducks?

    USGS Publications Warehouse

    Ackerman, J.T.; Eadie, J.M.; Moore, T.G.

    2006-01-01

    Life-history theory predicts that longer-lived, less fecund species should take fewer risks when exposed to predation than shorter-lived, more fecund species. We tested this prediction for seven species of dabbling ducks (Anas) by measuring the approach behavior (behavior of ducks when approaching potential landing sites) of 1099 duck flocks during 37 hunting trials and 491 flocks during 13 trials conducted immediately after the 1999-2000 waterfowl hunting season in California, USA. We also experimentally manipulated the attractiveness of the study site by using two decoy treatments: (1) traditional, stationary decoys only, and (2) traditional decoys in conjunction with a mechanical spinning-wing decoy. Approach behavior of ducks was strongly correlated with their life history. Minimum approach distance was negatively correlated with reproductive output during each decoy treatment and trial type. Similarly, the proportion of flocks taking risk (approaching landing sites to within 45 m) was positively correlated with reproductive output. We found similar patterns of approach behavior in relation to other life-history parameters (i.e., adult female body mass and annual adult female survival rate). Thus, species characterized by a slower life-history strategy (e.g., Northern Pintail [A. acuta]) were more risk-averse than species with a faster life-history strategy (e.g., Cinnamon Teal [A. cyanoptera]). Furthermore, although we were able to reduce risk-averseness using the spinning-wing decoy, we were unable to override the influence of life history on risk-taking behavior. Alternative explanations did not account for the observed correlation between approach behavior and life-history parameters. These results suggest that life history influences the risk-taking behavior of dabbling ducks and provide an explanation for the differential vulnerability of waterfowl to harvest. ?? The Cooper Ornithological Society 2006.

  13. Prediction of the fatigue life distribution for aluminum through its mechanical characteristics

    NASA Astrophysics Data System (ADS)

    Ramadan, S. Z.; Zaid, Adnan I. O.

    2016-08-01

    A novel and reliable theoretical model based on the Birnbaum-Saunders (BISA) distribution is presented from which the fatigue life can be determined. Experimental verification of the model is in progress and will be published in due course.

  14. Weather, knowledge base and life-style

    NASA Astrophysics Data System (ADS)

    Bohle, Martin

    2015-04-01

    Why to main-stream curiosity for earth-science topics, thus to appraise these topics as of public interest? Namely, to influence practices how humankind's activities intersect the geosphere. How to main-stream that curiosity for earth-science topics? Namely, by weaving diverse concerns into common threads drawing on a wide range of perspectives: be it beauty or particularity of ordinary or special phenomena, evaluating hazards for or from mundane environments, or connecting the scholarly investigation with concerns of citizens at large; applying for threading traditional or modern media, arts or story-telling. Three examples: First "weather"; weather is a topic of primordial interest for most people: weather impacts on humans lives, be it for settlement, for food, for mobility, for hunting, for fishing, or for battle. It is the single earth-science topic that went "prime-time" since in the early 1950-ties the broadcasting of weather forecasts started and meteorologists present their work to the public, daily. Second "knowledge base"; earth-sciences are a relevant for modern societies' economy and value setting: earth-sciences provide insights into the evolution of live-bearing planets, the functioning of Earth's systems and the impact of humankind's activities on biogeochemical systems on Earth. These insights bear on production of goods, living conditions and individual well-being. Third "life-style"; citizen's urban culture prejudice their experiential connections: earth-sciences related phenomena are witnessed rarely, even most weather phenomena. In the past, traditional rural communities mediated their rich experiences through earth-centric story-telling. In course of the global urbanisation process this culture has given place to society-centric story-telling. Only recently anthropogenic global change triggered discussions on geoengineering, hazard mitigation, demographics, which interwoven with arts, linguistics and cultural histories offer a rich narrative

  15. A Modified Nonlinear Damage Accumulation Model for Fatigue Life Prediction Considering Load Interaction Effects

    PubMed Central

    Huang, Hong-Zhong; Yuan, Rong

    2014-01-01

    Many structures are subjected to variable amplitude loading in engineering practice. The foundation of fatigue life prediction under variable amplitude loading is how to deal with the fatigue damage accumulation. A nonlinear fatigue damage accumulation model to consider the effects of load sequences was proposed in earlier literature, but the model cannot consider the load interaction effects, and sometimes it makes a major error. A modified nonlinear damage accumulation model is proposed in this paper to account for the load interaction effects. Experimental data of two metallic materials are used to validate the proposed model. The agreement between the model prediction and experimental data is observed, and the predictions by proposed model are more possibly in accordance with experimental data than that by primary model and Miner's rule. Comparison between the predicted cumulative damage by the proposed model and an existing model shows that the proposed model predictions can meet the accuracy requirement of the engineering project and it can be used to predict the fatigue life of welded aluminum alloy joint of Electric Multiple Units (EMU); meanwhile, the accuracy of approximation can be obtained from the proposed model though more simple computing process and less material parameters calling for extensive testing than the existing model. PMID:24574866

  16. Predictive Modeling for End-of-Life Pain Outcome using Electronic Health Records

    PubMed Central

    Lodhi, Muhammad K.; Stifter, Janet; Yao, Yingwei; Ansari, Rashid; Kee-nan, Gail M.; Wilkie, Diana J.; Khokhar, Ashfaq A.

    2016-01-01

    Electronic health record (EHR) systems are being widely used in the healthcare industry nowadays, mostly for monitoring the progress of the patients. EHR data analysis has become a big data problem as data is growing rapidly. Using a nursing EHR system, we built predictive models for determining what factors influence pain in end-of-life (EOL) patients. Utilizing different modeling techniques, we developed coarse-grained and fine-grained models to predict patient pain outcomes. The coarse-grained models help predict the outcome at the end of each hospitalization, whereas fine-grained models help predict the outcome at the end of each shift, thus providing a trajectory of predicted outcomes over the entire hospitalization. These models can help in determining effective treatments for individuals and groups of patients and support standardization of care where appropriate. Using these models may also lower the cost and increase the quality of end-of-life care. Results from these techniques show significantly accurate predictions. PMID:27500287

  17. A phenomenological model for predicting fatigue life in bovine trabecular bone.

    PubMed

    Ganguly, P; Moore, T L A; Gibson, L J

    2004-06-01

    Cyclic loading of bone during daily activities can lead to fatigue degradation and increased risk of fracture in both the young and elderly population. Damage processes under cyclic loading in trabecular bone result in the reduction of the elastic modulus and accumulation of residual strain. These effects increase with increasing stress levels, leading to a progressive reduction in fatigue life. The present work analyzes the effect of stress and strain variation on the above damage processes in bovine trabecular bone, and develops a phenomenological model relating fatigue life to the imposed stress level. The elastic modulus reduction of the bone specimens was observed to depend on the maximum compressive strain, while the rate of residual strain accumulation was a function of the stress level. A model was developed for the upper and lower bounds of bone elastic modulus reduction with increasing number of cycles, at each stress range. The experimental observations were described well by the model. The model predicted the bounds of the fatigue life with change in fatigue stress. The decrease in the fatigue life with increasing stress was related to corresponding increases in the residual strain accumulation rates at the elevated stress levels. The model shows the validity of fatigue predictions from relatively few cyclic experiments, by combining trends observed in the monotonic and the cyclic tests. The model also presents a relatively simple procedure for predicting the endurance limit for bovine trabecular bone specimens.

  18. Land colonisation by fish is associated with predictable changes in life history.

    PubMed

    Platt, Edward R M; Fowler, Ashley M; Ord, Terry J

    2016-07-01

    The colonisation of new environments is a central evolutionary process, yet why species make such transitions often remains unknown because of the difficulty in empirically investigating potential mechanisms. The most likely explanation for transitions to new environments is that doing so conveys survival benefits, either in the form of an ecological release or new ecological opportunity. Life history theory makes explicit predictions about how traits linked to survival and reproduction should change with shifts in age-specific mortality. We used these predictions to examine whether a current colonisation of land by fishes might convey survival benefits. We found that blenny species with more terrestrial lifestyles exhibited faster reproductive development and slower growth rates than species with more marine lifestyles; a life history trade off that is consistent with the hypothesis that mortality has become reduced in younger life stages on land. A plausible explanation for such a shift is that an ecological release or opportunity on land has conveyed survival benefits relative to the ancestral marine environment. More generally, our study illustrates how life history theory can be leveraged in novel ways to formulate testable predictions on why organisms might make transitions into novel environments. PMID:26932469

  19. Prediction of low-cycle fatigue-life by acoustic emission—2: 7075-T6 aluminum alloy

    SciTech Connect

    Baram, J.; Rosen, M.

    1981-01-01

    Low-cycle fatigue tests were conducted by tension-compression until rupture, on a 2024-T3 aluminum alloy sheet. Initial crack sizes and orientations in the fatigue specimens were found to be randomly distributed. Acoustic emission was continuously monitored during the tests. Every few hundred cycles, the acoustic signal having the highest peak-amplitude, was recorded as an extremal event for the elapsed period. This high peak-amplitude is related to a fast crack propagation rate through a phenomenological relationship. The extremal peakamplitudes are shown by an ordered statistics treatment, to be extremally distributed. The statistical treatment enables the prediction of the number of cycles left until failure. Predictions performed a-posteriori based on results gained early in each fatigue test are in good agreement with actual fatigue lives. The amplitude distribution analysis of the acoustic signals emitted during cyclic stress appears to be a promising nondestructive method of predicting fatigue life.

  20. BROAD-BASED ENVIRONMENTAL LIFE CYCLE ASSESSMENT

    EPA Science Inventory

    Pollution prevention through Life Cycle Assessment (LCA) is a departure from evaluating waste management options that look mainly at single issues such as recyclability or reduced toxicity. An LCA is a snapshot in time of inputs and outputs. It can be used as an objective technic...

  1. Integrated Design Software Predicts the Creep Life of Monolithic Ceramic Components

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Significant improvements in propulsion and power generation for the next century will require revolutionary advances in high-temperature materials and structural design. Advanced ceramics are candidate materials for these elevated-temperature applications. As design protocols emerge for these material systems, designers must be aware of several innate features, including the degrading ability of ceramics to carry sustained load. Usually, time-dependent failure in ceramics occurs because of two different, delayedfailure mechanisms: slow crack growth and creep rupture. Slow crack growth initiates at a preexisting flaw and continues until a critical crack length is reached, causing catastrophic failure. Creep rupture, on the other hand, occurs because of bulk damage in the material: void nucleation and coalescence that eventually leads to macrocracks which then propagate to failure. Successful application of advanced ceramics depends on proper characterization of material behavior and the use of an appropriate design methodology. The life of a ceramic component can be predicted with the NASA Lewis Research Center's Ceramics Analysis and Reliability Evaluation of Structures (CARES) integrated design programs. CARES/CREEP determines the expected life of a component under creep conditions, and CARES/LIFE predicts the component life due to fast fracture and subcritical crack growth. The previously developed CARES/LIFE program has been used in numerous industrial and Government applications.

  2. Life Predicted in a Probabilistic Design Space for Brittle Materials With Transient Loads

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Palfi, Tamas; Reh, Stefan

    2005-01-01

    Analytical techniques have progressively become more sophisticated, and now we can consider the probabilistic nature of the entire space of random input variables on the lifetime reliability of brittle structures. This was demonstrated with NASA s CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code combined with the commercially available ANSYS/Probabilistic Design System (ANSYS/PDS), a probabilistic analysis tool that is an integral part of the ANSYS finite-element analysis program. ANSYS/PDS allows probabilistic loads, component geometry, and material properties to be considered in the finite-element analysis. CARES/Life predicts the time dependent probability of failure of brittle material structures under generalized thermomechanical loading--such as that found in a turbine engine hot-section. Glenn researchers coupled ANSYS/PDS with CARES/Life to assess the effects of the stochastic variables of component geometry, loading, and material properties on the predicted life of the component for fully transient thermomechanical loading and cyclic loading.

  3. Wealth and happiness across the world: material prosperity predicts life evaluation, whereas psychosocial prosperity predicts positive feeling.

    PubMed

    Diener, Ed; Ng, Weiting; Harter, James; Arora, Raksha

    2010-07-01

    The Gallup World Poll, the first representative sample of planet Earth, was used to explore the reasons why happiness is associated with higher income, including the meeting of basic needs, fulfillment of psychological needs, increasing satisfaction with one's standard of living, and public goods. Across the globe, the association of log income with subjective well-being was linear but convex with raw income, indicating the declining marginal effects of income on subjective well-being. Income was a moderately strong predictor of life evaluation but a much weaker predictor of positive and negative feelings. Possessing luxury conveniences and satisfaction with standard of living were also strong predictors of life evaluation. Although the meeting of basic and psychological needs mediated the effects of income on life evaluation to some degree, the strongest mediation was provided by standard of living and ownership of conveniences. In contrast, feelings were most associated with the fulfillment of psychological needs: learning, autonomy, using one's skills, respect, and the ability to count on others in an emergency. Thus, two separate types of prosperity-economic and social psychological-best predict different types of well-being.

  4. Loading Analysis of Composite Wind Turbine Blade for Fatigue Life Prediction of Adhesively Bonded Root Joint

    NASA Astrophysics Data System (ADS)

    Salimi-Majd, Davood; Azimzadeh, Vahid; Mohammadi, Bijan

    2015-06-01

    Nowadays wind energy is widely used as a non-polluting cost-effective renewable energy resource. During the lifetime of a composite wind turbine which is about 20 years, the rotor blades are subjected to different cyclic loads such as aerodynamics, centrifugal and gravitational forces. These loading conditions, cause to fatigue failure of the blade at the adhesively bonded root joint, where the highest bending moments will occur and consequently, is the most critical zone of the blade. So it is important to estimate the fatigue life of the root joint. The cohesive zone model is one of the best methods for prediction of initiation and propagation of debonding at the root joint. The advantage of this method is the possibility of modeling the debonding without any requirement to the remeshing. However in order to use this approach, it is necessary to analyze the cyclic loading condition at the root joint. For this purpose after implementing a cohesive interface element in the Ansys finite element software, one blade of a horizontal axis wind turbine with 46 m rotor diameter was modelled in full scale. Then after applying loads on the blade under different condition of the blade in a full rotation, the critical condition of the blade is obtained based on the delamination index and also the load ratio on the root joint in fatigue cycles is calculated. These data are the inputs for fatigue damage growth analysis of the root joint by using CZM approach that will be investigated in future work.

  5. Slow Crack Growth and Fatigue Life Prediction of Ceramic Components Subjected to Variable Load History

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama

    2001-01-01

    Present capabilities of the NASA CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code include probabilistic life prediction of ceramic components subjected to fast fracture, slow crack growth (stress corrosion), and cyclic fatigue failure modes. Currently, this code has the capability to compute the time-dependent reliability of ceramic structures subjected to simple time-dependent loading. For example, in slow crack growth (SCG) type failure conditions CARES/Life can handle the cases of sustained and linearly increasing time-dependent loads, while for cyclic fatigue applications various types of repetitive constant amplitude loads can be accounted for. In real applications applied loads are rarely that simple, but rather vary with time in more complex ways such as, for example, engine start up, shut down, and dynamic and vibrational loads. In addition, when a given component is subjected to transient environmental and or thermal conditions, the material properties also vary with time. The objective of this paper is to demonstrate a methodology capable of predicting the time-dependent reliability of components subjected to transient thermomechanical loads that takes into account the change in material response with time. In this paper, the dominant delayed failure mechanism is assumed to be SCG. This capability has been added to the NASA CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code, which has also been modified to have the ability of interfacing with commercially available FEA codes executed for transient load histories. An example involving a ceramic exhaust valve subjected to combustion cycle loads is presented to demonstrate the viability of this methodology and the CARES/Life program.

  6. Profiling crop pollinators: life history traits predict habitat use and crop visitation by Mediterranean wild bees.

    PubMed

    Pisanty, Gideon; Mandelik, Yael

    2015-04-01

    Wild pollinators, bees in particular, may greatly contribute to crop pollination and provide a safety net against declines in commercial pollinators. However, the identity, life history traits, and environmental sensitivities of main crop pollinator species.have received limited attention. These are crucial for predicting pollination services of different communities and for developing management practices that enhance crop pollinators. We sampled wild bees in three crop systems (almond, confection sunflower, and seed watermelon) in a mosaic Israeli Mediterranean landscape. Bees were sampled in field/orchard edges and interiors, and in seminatural scrub surrounding the fields/orchards. We also analyzed land cover at 50-2500 m radii around fields/orchards. We used this data to distinguish crop from non-crop pollinators based on a set of life history traits (nesting, lecty, sociality, body size) linked to habitat preference and crop visitation. Bee abundance and species richness decreased from the surrounding seminatural habitat to the field/orchard interior, especially across the seminatural habitat-field edge ecotone. Thus, although rich bee communities were found near fields, only small fractions crossed the ecotone and visited crop flowers in substantial numbers. The bee assemblage in agricultural fields/orchards and on crop flowers was dominated by ground-nesting bees of the tribe Halictini, which tend to nest within fields. Bees' habitat preferences were determined mainly by nesting guild, whereas crop visitation was determined mainly by sociality. Lecty and body size also affected both measures. The percentage of surrounding seminatural habitat at 250-2500 m radii had a positive effect on wild bee diversity in field edges, for all bee guilds, while at 50-100 m radii, only aboveground nesters were positively affected. In sum, we found that crop and non-crop pollinators are distinguished by behavioral and morphological traits. Hence, analysis of life

  7. Profiling crop pollinators: life history traits predict habitat use and crop visitation by Mediterranean wild bees.

    PubMed

    Pisanty, Gideon; Mandelik, Yael

    2015-04-01

    Wild pollinators, bees in particular, may greatly contribute to crop pollination and provide a safety net against declines in commercial pollinators. However, the identity, life history traits, and environmental sensitivities of main crop pollinator species.have received limited attention. These are crucial for predicting pollination services of different communities and for developing management practices that enhance crop pollinators. We sampled wild bees in three crop systems (almond, confection sunflower, and seed watermelon) in a mosaic Israeli Mediterranean landscape. Bees were sampled in field/orchard edges and interiors, and in seminatural scrub surrounding the fields/orchards. We also analyzed land cover at 50-2500 m radii around fields/orchards. We used this data to distinguish crop from non-crop pollinators based on a set of life history traits (nesting, lecty, sociality, body size) linked to habitat preference and crop visitation. Bee abundance and species richness decreased from the surrounding seminatural habitat to the field/orchard interior, especially across the seminatural habitat-field edge ecotone. Thus, although rich bee communities were found near fields, only small fractions crossed the ecotone and visited crop flowers in substantial numbers. The bee assemblage in agricultural fields/orchards and on crop flowers was dominated by ground-nesting bees of the tribe Halictini, which tend to nest within fields. Bees' habitat preferences were determined mainly by nesting guild, whereas crop visitation was determined mainly by sociality. Lecty and body size also affected both measures. The percentage of surrounding seminatural habitat at 250-2500 m radii had a positive effect on wild bee diversity in field edges, for all bee guilds, while at 50-100 m radii, only aboveground nesters were positively affected. In sum, we found that crop and non-crop pollinators are distinguished by behavioral and morphological traits. Hence, analysis of life

  8. Prediction of expected years of life using whole-genome markers.

    PubMed

    de los Campos, Gustavo; Klimentidis, Yann C; Vazquez, Ana I; Allison, David B

    2012-01-01

    Genetic factors are believed to account for 25% of the interindividual differences in Years of Life (YL) among humans. However, the genetic loci that have thus far been found to be associated with YL explain a very small proportion of the expected genetic variation in this trait, perhaps reflecting the complexity of the trait and the limitations of traditional association studies when applied to traits affected by a large number of small-effect genes. Using data from the Framingham Heart Study and statistical methods borrowed largely from the field of animal genetics (whole-genome prediction, WGP), we developed a WGP model for the study of YL and evaluated the extent to which thousands of genetic variants across the genome examined simultaneously can be used to predict interindividual differences in YL. We find that a sizable proportion of differences in YL--which were unexplained by age at entry, sex, smoking and BMI--can be accounted for and predicted using WGP methods. The contribution of genomic information to prediction accuracy was even higher than that of smoking and body mass index (BMI) combined; two predictors that are considered among the most important life-shortening factors. We evaluated the impacts of familial relationships and population structure (as described by the first two marker-derived principal components) and concluded that in our dataset population structure explained partially, but not fully the gains in prediction accuracy obtained with WGP. Further inspection of prediction accuracies by age at death indicated that most of the gains in predictive ability achieved with WGP were due to the increased accuracy of prediction of early mortality, perhaps reflecting the ability of WGP to capture differences in genetic risk to deadly diseases such as cancer, which are most often responsible for early mortality in our sample.

  9. Life prediction methodology for ceramic components of advanced vehicular heat engines: Volume 1. Final report

    SciTech Connect

    Khandelwal, P.K.; Provenzano, N.J.; Schneider, W.E.

    1996-02-01

    One of the major challenges involved in the use of ceramic materials is ensuring adequate strength and durability. This activity has developed methodology which can be used during the design phase to predict the structural behavior of ceramic components. The effort involved the characterization of injection molded and hot isostatic pressed (HIPed) PY-6 silicon nitride, the development of nondestructive evaluation (NDE) technology, and the development of analytical life prediction methodology. Four failure modes are addressed: fast fracture, slow crack growth, creep, and oxidation. The techniques deal with failures initiating at the surface as well as internal to the component. The life prediction methodology for fast fracture and slow crack growth have been verified using a variety of confirmatory tests. The verification tests were conducted at room and elevated temperatures up to a maximum of 1371 {degrees}C. The tests involved (1) flat circular disks subjected to bending stresses and (2) high speed rotating spin disks. Reasonable correlation was achieved for a variety of test conditions and failure mechanisms. The predictions associated with surface failures proved to be optimistic, requiring re-evaluation of the components` initial fast fracture strengths. Correlation was achieved for the spin disks which failed in fast fracture from internal flaws. Time dependent elevated temperature slow crack growth spin disk failures were also successfully predicted.

  10. Prediction of service life of aircraft structural components using the half-cycle method

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1987-01-01

    The service life of aircraft structural components undergoing random stress cycling was analyzed by the application of fracture mechanics. The initial crack sizes at the critical stress points for the fatigue-crack growth analysis were established through proof load tests. The fatigue-crack growth rates for random stress cycles were calculated using the half-cycle method. A new equation was developed for calculating the number of remaining flights for the structural components. The number of remaining flights predicted by the new equation is much lower than that predicted by the conventional equation.

  11. Life prediction of materials exposed to monotonic and cyclic loading: Bibliography

    NASA Technical Reports Server (NTRS)

    Carpenter, J. L., Jr.; Moya, N.; Stuhrke, W. F.

    1975-01-01

    This bibliography is comprised of approximately 1200 reference citations related to the mechanics of failure in aerospace structures. Most of the references are for information on life prediction for materials exposed to monotonic and cyclic loading in elevated temperature environments such as that in the hot end of a gas turbine engine. Additional citations listed are for documents on the thermal and mechanical effects on solar cells in the cryogenic vacuum environment; radiation effects on high temperature mechanical properties; and high cycle fatigue technology as applicable to gas turbine engine bearings. The bibliography represents a search of the literature published in the period April 1962 through April 1974 and is largely limited to documents published in the United States. It is a companion volume to NASA CR-134750, Life Prediction of Materials Exposed to Monotonic and cyclic Loading - A Technology Survey.

  12. Measurement techniques and instruments suitable for life-prediction testing of photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Noel, G. T.; Sliemers, F. A.; Deringer, G. C.; Wood, V. E.; Wilkes, K. E.; Gaines, G. B.; Carmichael, D. C.

    1978-01-01

    Array failure modes, relevant materials property changes, and primary degradation mechanisms are discussed as a prerequisite to identifying suitable measurement techniques and instruments. Candidate techniques and instruments are identified on the basis of extensive reviews of published and unpublished information. These methods are organized in six measurement categories - chemical, electrical, optical, thermal, mechanical, and other physicals. Using specified evaluation criteria, the most promising techniques and instruments for use in life prediction tests of arrays were selected.

  13. Accuracy of Life Tables in Predicting Overall Survival in Candidates for Radiotherapy for Prostate Cancer

    SciTech Connect

    Walz, Jochen; Gallina, Andrea; Hutterer, Georg; Perrotte, Paul; Shariat, Shahrokh F.; Graefen, Markus; McCormack, Michael; Benard, Francois; Valiquette, Luc; Saad, Fred; Karakiewicz, Pierre I.

    2007-09-01

    Purpose: To test the accuracy of life tables (LTs) in predicting survival in men treated with radiotherapy for localized prostate cancer. Methods and Materials: We selected the records of 3,176 patients treated with radiotherapy and who had no clinical evidence of disease relapse. Life table-derived life expectancy (LE) was defined for every individual using a population-specific LT. Age, Charlson Comorbidity Index (CCI), and LT-derived LE were then used as predictors of overall mortality in Cox regression models. Predictive accuracy (PA) was estimated with the Harrell's concordance index and was internally validated with 200 bootstrap resamples. Results: The actuarial median survival was 4.7 years (mean, 6.4 years). At radiotherapy, median age was 70.6 years, median CCI was 2, and median LT-derived LE was 12 years. All variables were statistically significant predictors of overall mortality (all p values <0.001). Age (PA, 60.2%), CCI (PA, 60.1%), and LT-derived LE (PA, 60.2%) were equally accurate. Finally, when age and CCI were combined (PA, 63.2%), both variables provided more accurate mortality predictions than either variable alone (all p values = 0.01). Conclusions: Life tables have a limited ability to predict LE in patients treated with radiotherapy for prostate cancer. We, therefore, recommend the use of multivariate prognostic models that integrate several variables, such as at least age and comorbidities, to estimate LE. This might help to improve LE estimation during prostate cancer treatment decision making.

  14. Life prediction of materials exposed to monotonic and cyclic loading: A new technology survey

    NASA Technical Reports Server (NTRS)

    Stuhrke, W. F.; Carpenter, J. L., Jr.

    1975-01-01

    Reviewed and evaluated technical abstracts for about 100 significant documents are reported relating primarily to life prediction for structural materials exposed to monotonic and cyclic loading, particularly in elevated temperature environments. The abstracts in the report are mostly for publications in the period April 1962 through April 1974. The purpose of this report is to provide, in quick reference form, a dependable source for current information

  15. Profiles of observed infant anger predict preschool behavior problems: moderation by life stress.

    PubMed

    Brooker, Rebecca J; Buss, Kristin A; Lemery-Chalfant, Kathryn; Aksan, Nazan; Davidson, Richard J; Goldsmith, H Hill

    2014-10-01

    Using both traditional composites and novel profiles of anger, we examined associations between infant anger and preschool behavior problems in a large, longitudinal data set (N = 966). We also tested the role of life stress as a moderator of the link between early anger and the development of behavior problems. Although traditional measures of anger were largely unrelated to later behavior problems, profiles of anger that dissociated typical from atypical development predicted behavior problems during preschool. Moreover, the relation between infant anger profiles and preschool behavior problems was moderated such that, when early life stress was low, infants with atypical profiles of early anger showed more preschool behavior problems than did infants with normative anger profiles. However, when early life stress was high, infants with atypical and normative profiles of infant anger did not differ in preschool behavior problems. We conclude that a discrete emotions approach including latent profile analysis is useful for elucidating biological and environmental developmental pathways to early problem behaviors.

  16. Predicting the Reliability of Ceramics Under Transient Loads and Temperatures With CARES/Life

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Jadaan, Osama M.; Palfi, Tamas; Baker, Eric H.

    2003-01-01

    A methodology is shown for predicting the time-dependent reliability of ceramic components against catastrophic rupture when subjected to transient thermomechanical loads (including cyclic loads). The methodology takes into account the changes in material response that can occur with temperature or time (i.e., changing fatigue and Weibull parameters with temperature or time). This capability has been added to the NASA CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code. The code has been modified to have the ability to interface with commercially available finite element analysis (FEA) codes executed for transient load histories. Examples are provided to demonstrate the features of the methodology as implemented in the CARES/Life program.

  17. Toward a theoretically based measurement model of the good life.

    PubMed

    Cheung, C K

    1997-06-01

    A theoretically based conceptualization of the good life should differentiate 4 dimensions-the hedonist good life, the dialectical good life, the humanist good life, and the formalist good life. These 4 dimensions incorporate previous fragmentary measures, such as life satisfaction, depression, work alienation, and marital satisfaction, to produce an integrative view. In the present study, 276 Hong Kong Chinese husbands and wives responded to a survey of 13 indicators for these 4 good life dimensions. Confirmatory hierarchical factor analysis showed that these indicators identified the 4 dimensions of the good life, which in turn converged to identify a second-order factor of the overall good life. The model demonstrates discriminant validity in that the first-order factors had high loadings on the overall good life factor despite being linked by a social desirability factor. Analysis further showed that the second-order factor model applied equally well to husbands and wives. Thus, the conceptualization appears to be theoretically and empirically adequate in incorporating previous conceptualizations of the good life. PMID:9168589

  18. Life span decrements in fluid intelligence and processing speed predict mortality risk.

    PubMed

    Aichele, Stephen; Rabbitt, Patrick; Ghisletta, Paolo

    2015-09-01

    We examined life span changes in 5 domains of cognitive performance as predictive of mortality risk. Data came from the Manchester Longitudinal Study of Cognition, a 20-plus-year investigation of 6,203 individuals ages 42-97 years. Cognitive domains were general crystallized intelligence, general fluid intelligence, verbal memory, visuospatial memory, and processing speed. Life span decrements were evident across these domains, controlling for baseline performance at age 70 and adjusting for retest effects. Survival analyses stratified by sex and conducted independently by cognitive domain showed that lower baseline performance levels in all domains-and larger life span decrements in general fluid intelligence and processing speed-were predictive of increased mortality risk for both women and men. Critically, analyses of the combined predictive power of cognitive performance variables showed that baseline levels of processing speed (in women) and general fluid intelligence (in men), and decrements in processing speed (in women and in men) and general fluid intelligence (in women), accounted for most of the explained variation in mortality risk. In light of recent evidence from brain-imaging studies, we speculate that cognitive abilities closely linked to cerebral white matter integrity (such as processing speed and general fluid intelligence) may represent particularly sensitive markers of mortality risk. In addition, we presume that greater complexity in cognition-survival associations observed in women (in analyses incorporating all cognitive predictors) may be a consequence of longer and more variable cognitive declines in women relative to men. PMID:26098167

  19. Life span decrements in fluid intelligence and processing speed predict mortality risk.

    PubMed

    Aichele, Stephen; Rabbitt, Patrick; Ghisletta, Paolo

    2015-09-01

    We examined life span changes in 5 domains of cognitive performance as predictive of mortality risk. Data came from the Manchester Longitudinal Study of Cognition, a 20-plus-year investigation of 6,203 individuals ages 42-97 years. Cognitive domains were general crystallized intelligence, general fluid intelligence, verbal memory, visuospatial memory, and processing speed. Life span decrements were evident across these domains, controlling for baseline performance at age 70 and adjusting for retest effects. Survival analyses stratified by sex and conducted independently by cognitive domain showed that lower baseline performance levels in all domains-and larger life span decrements in general fluid intelligence and processing speed-were predictive of increased mortality risk for both women and men. Critically, analyses of the combined predictive power of cognitive performance variables showed that baseline levels of processing speed (in women) and general fluid intelligence (in men), and decrements in processing speed (in women and in men) and general fluid intelligence (in women), accounted for most of the explained variation in mortality risk. In light of recent evidence from brain-imaging studies, we speculate that cognitive abilities closely linked to cerebral white matter integrity (such as processing speed and general fluid intelligence) may represent particularly sensitive markers of mortality risk. In addition, we presume that greater complexity in cognition-survival associations observed in women (in analyses incorporating all cognitive predictors) may be a consequence of longer and more variable cognitive declines in women relative to men.

  20. Failure Mode Classification for Life Prediction Modeling of Solid-State Lighting

    SciTech Connect

    Sakalaukus, Peter Joseph

    2015-08-01

    light power” of the SSL luminaire. The use of the Arrhenius equation necessitates two different temperature conditions, 25°C and 45°C are suggested by TM28, to determine the SSL lamp specific activation energy. One principal issue with TM28 is the lack of additional stresses or parameters needed to characterize non-temperature dependent failure mechanisms. Another principal issue with TM28 is the assumption that lumen maintenance or lumen depreciation gives an adequate comparison between SSL luminaires. Additionally, TM28 has no process for the determination of acceleration factors or lifetime estimations. Currently, a literature gap exists for established accelerated test methods for SSL devices to assess quality, reliability and durability before being introduced into the marketplace. Furthermore, there is a need for Physics-of-Failure based approaches to understand the processes and mechanisms that induce failure for the assessment of SSL reliability in order to develop generalized acceleration factors that better represent SSL product lifetime. This and the deficiencies in TM28 validate the need behind the development of acceleration techniques to quantify SSL reliability under a variety of environmental conditions. The ability to assess damage accrual and investigate reliability of SSL components and systems is essential to understanding the life time of the SSL device itself. The methodologies developed in this work increases the understanding of SSL devices iv through the investigation of component and device reliability under a variety of accelerated test conditions. The approaches for suitable lifetime predictions through the development of novel generalized acceleration factors, as well as a prognostics and health management framework, will greatly reduce the time and effort needed to produce SSL acceleration factors for the development of lifetime predictions.

  1. Enhancing College Students' Life Skills through Project Based Learning

    ERIC Educational Resources Information Center

    Wurdinger, Scott; Qureshi, Mariam

    2015-01-01

    This study examined whether life skills could be developed in a Project Based Learning (PBL) course. The participants were students enrolled in a graduate level PBL course. The same 35-question survey was given to students at the beginning and end of the course, and students were asked to rank their life skills using a Likert scale. Additionally,…

  2. Cultivating Life Skills at a Project-Based Charter School

    ERIC Educational Resources Information Center

    Wurdinger, Scott; Enloe, Walter

    2011-01-01

    Surveys that focused on academic and life skill development were collected from alumni who attended Avalon Charter School in St Paul, Minnesota. Avalon is a small public charter school that uses project-based learning as their primary teaching method. Forty-two alumni responded to the online survey. Students ranked life skills such as creativity,…

  3. Theory-Based Approaches to the Concept of Life

    ERIC Educational Resources Information Center

    El-Hani, Charbel Nino

    2008-01-01

    In this paper, I argue that characterisations of life through lists of properties have several shortcomings and should be replaced by theory-based accounts that explain the coexistence of a set of properties in living beings. The concept of life should acquire its meaning from its relationships with other concepts inside a theory. I illustrate…

  4. Can infant lung function predict respiratory morbidity during the first year of life in preterm infants?

    PubMed

    Proietti, Elena; Riedel, Thomas; Fuchs, Oliver; Pramana, Isabelle; Singer, Florian; Schmidt, Anne; Kuehni, Claudia; Latzin, Philipp; Frey, Urs

    2014-06-01

    Compared with term-born infants, preterm infants have increased respiratory morbidity in the first year of life. We investigated whether lung function tests performed near term predict subsequent respiratory morbidity during the first year of life and compared this to standard clinical parameters in preterms. The prospective birth cohort included randomly selected preterm infants with and without bronchopulmonary dysplasia. Lung function (tidal breathing and multiple-breath washout) was measured at 44 weeks post-menstrual age during natural sleep. We assessed respiratory morbidity (wheeze, hospitalisation, inhalation and home oxygen therapy) after 1 year using a standardised questionnaire. We first assessed the association between lung function and subsequent respiratory morbidity. Secondly, we compared the predictive power of standard clinical predictors with and without lung function data. In 166 preterm infants, tidal volume, time to peak tidal expiratory flow/expiratory time ratio and respiratory rate were significantly associated with subsequent wheeze. In comparison with standard clinical predictors, lung function did not improve the prediction of later respiratory morbidity in an individual child. Although associated with later wheeze, noninvasive infant lung function shows large physiological variability and does not add to clinically relevant risk prediction for subsequent respiratory morbidity in an individual preterm.

  5. Prediction of Mortality Based on Facial Characteristics

    PubMed Central

    Delorme, Arnaud; Pierce, Alan; Michel, Leena; Radin, Dean

    2016-01-01

    Recent studies have shown that characteristics of the face contain a wealth of information about health, age and chronic clinical conditions. Such studies involve objective measurement of facial features correlated with historical health information. But some individuals also claim to be adept at gauging mortality based on a glance at a person’s photograph. To test this claim, we invited 12 such individuals to see if they could determine if a person was alive or dead based solely on a brief examination of facial photographs. All photos used in the experiment were transformed into a uniform gray scale and then counterbalanced across eight categories: gender, age, gaze direction, glasses, head position, smile, hair color, and image resolution. Participants examined 404 photographs displayed on a computer monitor, one photo at a time, each shown for a maximum of 8 s. Half of the individuals in the photos were deceased, and half were alive at the time the experiment was conducted. Participants were asked to press a button if they thought the person in a photo was living or deceased. Overall mean accuracy on this task was 53.8%, where 50% was expected by chance (p < 0.004, two-tail). Statistically significant accuracy was independently obtained in 5 of the 12 participants. We also collected 32-channel electrophysiological recordings and observed a robust difference between images of deceased individuals correctly vs. incorrectly classified in the early event related potential (ERP) at 100 ms post-stimulus onset. Our results support claims of individuals who report that some as-yet unknown features of the face predict mortality. The results are also compatible with claims about clairvoyance warrants further investigation. PMID:27242466

  6. Prediction Model for the Life of Nickel-cadmium Batteries in Geosynchronous Orbit Satellites

    NASA Technical Reports Server (NTRS)

    Engleman, J. H.; Zirkes-Falco, M. B.; Bogner, R. S.; Pickett, D. F., Jr.

    1984-01-01

    A mathematical model is described which predicts the service life of nickel-cadmium batteries designed for geosynchronous orbit satellites. Regression analysis technique is used to analyze orbital data on second generation trickle charged batteries. The model gives average cell voltage as a function of design parameters, operating parameters and time. The voltage model has the properties of providing a good fit to the data, good predictive capability, and agreement with known battery performance characteristics. Average cell voltage can be predicted to within 0.02 volts for up to 8 years. This modeling shows that these batteries will operate reliably for 10 years. Third-generation batteries are expected to operate even longer.

  7. A Model to Predict Shelf-Life Loss Ofhorticultural Produce During Distribution Withfluctuated Temperature and Vehicle Vibration

    NASA Astrophysics Data System (ADS)

    Gong, Weiwei; Li, Daoliang; Liu, Xue; Yue, Jun; Fu, Zetian

    Fresh fruits and vegetables has become a public concern from the food security aspect. And the prediction of shelf-life loss under the fluctuated temperature becomes one of the key problems in food supply chain operation. So this paper identifies the impact aspects of produce decaying during distribution. For the key temperature factor, the process is divided into three phases: sorting, traveling and door-opening. Based on time-temperature function, a model of shelf-life loss of horticultural produce during distribution is developed by evaluating respiration rate of vegetables and fruits considering both the environment fluctuated temperature and vehicle vibration during traveling. Taking eggplant as an example, the numerical experiment result demonstrates that the average cost for ambient distribution is 2.8 times of the insulation way.

  8. Flexural fatigue life prediction of closed hat-section using materially nonlinear axial fatigue characteristics

    NASA Technical Reports Server (NTRS)

    Razzaq, Zia

    1989-01-01

    Straight or curved hat-section members are often used as structural stiffeners in aircraft. For instance, they are employed as stiffeners for the dorsal skin as well as in the aerial refueling adjacent area structure in F-106 aircraft. The flanges of the hat-section are connected to the aircraft skin. Thus, the portion of the skin closing the hat-section interacts with the section itself when resisting the stresses due to service loads. The flexural fatigue life of such a closed section is estimated using materially nonlinear axial fatigue characteristics. It should be recognized that when a structural shape is subjected to bending, the fatigue life at the neutral axis is infinity since the normal stresses are zero at that location. Conversely, the fatigue life at the extreme fibers where the normal bending stresses are maximum can be expected to be finite. Thus, different fatigue life estimates can be visualized at various distances from the neural axis. The problem becomes compounded further when significant portions away from the neutral axis are stressed into plastic range. A theoretical analysis of the closed hat-section subjected to flexural cyclic loading is first conducted. The axial fatigue characteristics together with the related axial fatigue life formula and its inverted form given by Manson and Muralidharan are adopted for an aluminum alloy used in aircraft construction. A closed-form expression for predicting the flexural fatigue life is then derived for the closed hat-section including materially nonlinear action. A computer program is written to conduct a study of the variables such as the thicknesses of the hat-section and the skin, and the type of alloy used. The study has provided a fundamental understanding of the flexural fatigue life characteristics of a practical structural component used in aircraft when materially nonlinear action is present.

  9. Practical life log video indexing based on content and context

    NASA Astrophysics Data System (ADS)

    Tancharoen, Datchakorn; Yamasaki, Toshihiko; Aizawa, Kiyoharu

    2006-01-01

    Today, multimedia information has gained an important role in daily life and people can use imaging devices to capture their visual experiences. In this paper, we present our personal Life Log system to record personal experiences in form of wearable video and environmental data; in addition, an efficient retrieval system is demonstrated to recall the desirable media. We summarize the practical video indexing techniques based on Life Log content and context to detect talking scenes by using audio/visual cues and semantic key frames from GPS data. Voice annotation is also demonstrated as a practical indexing method. Moreover, we apply body media sensors to record continuous life style and use body media data to index the semantic key frames. In the experiments, we demonstrated various video indexing results which provided their semantic contents and showed Life Log visualizations to examine personal life effectively.

  10. Infants Generate Goal-Based Action Predictions

    ERIC Educational Resources Information Center

    Cannon, Erin N.; Woodward, Amanda L.

    2012-01-01

    Predicting the actions of others is critical to smooth social interactions. Prior work suggests that both understanding and anticipation of goal-directed actions appears early in development. In this study, on-line goal prediction was tested explicitly using an adaptation of Woodward's (1998) paradigm for an eye-tracking task. Twenty 11-month-olds…

  11. Definition of data bases, codes, and technologies for cable life extension

    SciTech Connect

    Bustard, L.D.

    1986-01-01

    The substantial number of cables inside containment for a typical nuclear facility provides a strong motivation to extend cable life rather than replace cables. Hence, it is important to understand what information is necessary to accomplish life extension. This paper defines utility-specific as well as collective industry actions that would facilitate extending cable life. The focus of these recommendations is (1) to more realistically define the environmental profiles during which cables must function, (2) to better understand the validity of accelerated aging methodology through examination of naturally aged cables, (3) to better understand the validity of accelerated aging methodology via selected experimentation, (4) to support cable aging analysis by improving nonproprietary data bases, (5) to reduce the impact of the design basis accident assumptions on cable performance so additional cable aging can be accommodated during extended life, and (6) to complement life predictions with more powerful cable condition monitoring techniques than those currently available.

  12. Fatigue, fracture, and life prediction criteria for composite materials in magnets

    SciTech Connect

    Wong, F.M.G.

    1990-06-01

    An explosively-bonded copper/Inconel 718/copper laminate conductor was proposed to withstand the severe face compression stresses in the central core of the Alcator C-MOD tokamak toroidal field (TF) magnet. Due to the severe duty of the TF magnet, it is critical that an accurate estimate of useful life be determined. As part of the effort to formulate an appropriate life prediction, fatigue crack growth experiments were performed on the laminate as well as its components. Metallographic evaluation of the laminate interface revealed many shear bands in the Inconel 718. Shear bands and shear band cracks were produced in the Inconel 718 as a result of the explosion bonding process. These shear bands were shown to have a detrimental effect on the crack growth behavior of the laminate, by significantly reducing the load carrying capability of the reinforcement layer and providing for easy crack propagation paths. Fatigue crack growth rate was found not only to be dependent on temperature but also on orientation. Fatigue cracks grew faster in directions which contained shear bands in the plane of the propagating crack. Fractography showed crack advancement by fatigue cracking in the Inconel 718 and ductile tearing of the copper at the interface. However, further away from the interfaces, the copper exhibited fatigue striations indicating that cracks were now propagating by fatigue. Laminate life prediction results showed a strong dependence on shear band orientation, and exhibited little variation between room temperature and 77{degree}K. Predicted life of this laminate was lower when the crack propagation was along a shear band than when crack propagation was across the shear bands. Shear bands appear to have a dominating effect on crack growth behavior.

  13. Leaf and life history traits predict plant growth in a green roof ecosystem.

    PubMed

    Lundholm, Jeremy; Heim, Amy; Tran, Stephanie; Smith, Tyler

    2014-01-01

    Green roof ecosystems are constructed to provide services such as stormwater retention and urban temperature reductions. Green roofs with shallow growing media represent stressful conditions for plant survival, thus plants that survive and grow are important for maximizing economic and ecological benefits. While field trials are essential for selecting appropriate green roof plants, we wanted to determine whether plant leaf traits could predict changes in abundance (growth) to provide a more general framework for plant selection. We quantified leaf traits and derived life-history traits (Grime's C-S-R strategies) for 13 species used in a four-year green roof experiment involving five plant life forms. Changes in canopy density in monocultures and mixtures containing one to five life forms were determined and related to plant traits using multiple regression. We expected traits related to stress-tolerance would characterize the species that best grew in this relatively harsh setting. While all species survived to the end of the experiment, canopy species diversity in mixture treatments was usually much lower than originally planted. Most species grew slower in mixture compared to monoculture, suggesting that interspecific competition reduced canopy diversity. Species dominant in mixture treatments tended to be fast-growing ruderals and included both native and non-native species. Specific leaf area was a consistently strong predictor of final biomass and the change in abundance in both monoculture and mixture treatments. Some species in contrasting life-form groups showed compensatory dynamics, suggesting that life-form mixtures can maximize resilience of cover and biomass in the face of environmental fluctuations. This study confirms that plant traits can be used to predict growth performance in green roof ecosystems. While rapid canopy growth is desirable for green roofs, maintenance of species diversity may require engineering of conditions that favor less

  14. Leaf and Life History Traits Predict Plant Growth in a Green Roof Ecosystem

    PubMed Central

    Lundholm, Jeremy; Heim, Amy; Tran, Stephanie; Smith, Tyler

    2014-01-01

    Green roof ecosystems are constructed to provide services such as stormwater retention and urban temperature reductions. Green roofs with shallow growing media represent stressful conditions for plant survival, thus plants that survive and grow are important for maximizing economic and ecological benefits. While field trials are essential for selecting appropriate green roof plants, we wanted to determine whether plant leaf traits could predict changes in abundance (growth) to provide a more general framework for plant selection. We quantified leaf traits and derived life-history traits (Grime’s C-S-R strategies) for 13 species used in a four-year green roof experiment involving five plant life forms. Changes in canopy density in monocultures and mixtures containing one to five life forms were determined and related to plant traits using multiple regression. We expected traits related to stress-tolerance would characterize the species that best grew in this relatively harsh setting. While all species survived to the end of the experiment, canopy species diversity in mixture treatments was usually much lower than originally planted. Most species grew slower in mixture compared to monoculture, suggesting that interspecific competition reduced canopy diversity. Species dominant in mixture treatments tended to be fast-growing ruderals and included both native and non-native species. Specific leaf area was a consistently strong predictor of final biomass and the change in abundance in both monoculture and mixture treatments. Some species in contrasting life-form groups showed compensatory dynamics, suggesting that life-form mixtures can maximize resilience of cover and biomass in the face of environmental fluctuations. This study confirms that plant traits can be used to predict growth performance in green roof ecosystems. While rapid canopy growth is desirable for green roofs, maintenance of species diversity may require engineering of conditions that favor less

  15. Nomogram for Predicting Time to Death After Withdrawal of Life-Sustaining Treatment in Patients With Devastating Neurological Injury.

    PubMed

    He, X; Xu, G; Liang, W; Liu, B; Xu, Y; Luan, Z; Lu, Y; Ko, D S C; Manyalich, M; Schroder, P M; Guo, Z

    2015-08-01

    Reliable prediction of time of death after withdrawal of life-sustaining treatment in patients with devastating neurological injury is crucial to successful donation after cardiac death. Herein, we conducted a study of 419 neurocritical patients who underwent life support withdrawal at four neurosurgical centers in China. Based on a retrospective cohort, we used multivariate Cox regression analysis to identify prognostic factors for patient death, which were then integrated into a nomogram. The model was calibrated and validated using data from an external retrospective cohort and a prospective cohort. We identified 10 variables that were incorporated into a nomogram. The C-indexes for predicting the 60-min death probability in the training, external validation and prospective validation cohorts were 0.96 (0.93-0.98), 0.94 (0.91-0.97), and 0.99 (0.97-1.00), respectively. The calibration plots after WLST showed an optimal agreement between the prediction of time to death by the nomogram and the actual observation for all cohorts. Then we identified 22, 26 and 37 as cut-points for risk stratification into four groups. Kaplan-Meier curves indicated distinct prognoses between patients in the different risk groups (p < 0.001). In conclusion, we have developed and validated a nomogram to accurately identify potential cardiac death donors in neurocritical patients in a Chinese population.

  16. Predicting RAD-seq Marker Numbers across the Eukaryotic Tree of Life

    PubMed Central

    Herrera, Santiago; Reyes-Herrera, Paula H.; Shank, Timothy M.

    2015-01-01

    High-throughput sequencing of reduced representation libraries obtained through digestion with restriction enzymes—generically known as restriction site associated DNA sequencing (RAD-seq)—is a common strategy to generate genome-wide genotypic and sequence data from eukaryotes. A critical design element of any RAD-seq study is knowledge of the approximate number of genetic markers that can be obtained for a taxon using different restriction enzymes, as this number determines the scope of a project, and ultimately defines its success. This number can only be directly determined if a reference genome sequence is available, or it can be estimated if the genome size and restriction recognition sequence probabilities are known. However, both scenarios are uncommon for nonmodel species. Here, we performed systematic in silico surveys of recognition sequences, for diverse and commonly used type II restriction enzymes across the eukaryotic tree of life. Our observations reveal that recognition sequence frequencies for a given restriction enzyme are strikingly variable among broad eukaryotic taxonomic groups, being largely determined by phylogenetic relatedness. We demonstrate that genome sizes can be predicted from cleavage frequency data obtained with restriction enzymes targeting “neutral” elements. Models based on genomic compositions are also effective tools to accurately calculate probabilities of recognition sequences across taxa, and can be applied to species for which reduced representation data are available (including transcriptomes and neutral RAD-seq data sets). The analytical pipeline developed in this study, PredRAD (https://github.com/phrh/PredRAD), and the resulting databases constitute valuable resources that will help guide the design of any study using RAD-seq or related methods. PMID:26537225

  17. Application of thermal life prediction model to high-temperature aerospace alloys B1900+Hf and Haynes 188

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Saltsman, James F.; Verrilli, Michael J.; Arya, Vinod K.

    1990-01-01

    The results of the application of a newly proposed thermomechanical fatigue (TMF) life prediction method to a series of laboratory TMF results on two high-temperature aerospace engine alloys are presented. The method, referred to as TMF/TS-SRP, is based on three relatively recent developments: the total strain version of the method of Strainrange Partitioning (TS-SRP), the bithermal testing technique for characterizing TMF behavior, and advanced viscoplastic constitutive models. The high-temperature data reported in a companion publication are used to evaluate the constants in the model and to provide the TMF verification data to check its accuracy. Predicted lives are in agreement with the experimental lives to within a factor of approximately 2.

  18. Predicting mortality based on body composition analysis.

    PubMed Central

    Tellado, J M; Garcia-Sabrido, J L; Hanley, J A; Shizgal, H M; Christou, N V

    1989-01-01

    The role of the Nae/Ke ratio (the ratio of exchangeable sodium to exchangeable potassium) was examined as a nutritional marker in surgical patients in relation to anthropometrical and biochemical indexes by its ability to identify patients at risk for mortality after hospitalization. In 73 patients with sepsis and malnutrition (Training Group, Madrid) the following were determined: percentage of recent weight loss, triceps skin fold, midarm muscle circumference, serum albumin, serum transferrin, delayed hypersensitivity skin test response, total lymphocytes, and Nae/Ke ratio by multiple isotope dilution. The predictive power of Nae/Ke ratio was so strong (F = 105.1; p less than 0.00001) that it displaced anthropometric, biochemical, and immunologic variables from the linear equation derived from stepwise discriminant analysis using hospital mortality as the dependent variable. A theoretical curve of expected deaths was developed, based on an equation obtained by logistic regression analysis: Pr/death/ = 1/(1 + e[11.8-5.2 Nae/Ke]). Pre- and post-test probabilities on that curve allowed us to determine two cut-off values, Nae/Ke ratios of 1.5 and 2.5, which were markers for nonrisk and mortality, respectively. The model was tested in a heterogeneous data base of surgical patients (n = 417) in another hospital (Validation Group, Montreal). For patients exhibiting an abnormal Nae/Ke ratio (greater than 1.2) and a greater than 10% of probability of death, 54 deaths were expected and 53 observed (X2 = 1.8 NS). Two tests confirmed the basic agreement between the model and its performance, a G statistic of -0.704 and the area beneath the "receiver-operating-characteristic" (ROC) curve (Az = 0.904 + 0.0516 for the Madrid group vs. Az = 0.915 + 0.0349 for the Montreal group, NS). It was concluded from this analysis that, compared with the usual anthropometric measurements, the Nae/Ke ratio, if available, is the best method for identifying malnourished patients at risk of

  19. Incorporation of Half-Cycle Theory Into Ko Aging Theory for Aerostructural Flight-Life Predictions

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Tran, Van T.; Chen, Tony

    2007-01-01

    The half-cycle crack growth theory was incorporated into the Ko closed-form aging theory to improve accuracy in the predictions of operational flight life of failure-critical aerostructural components. A new crack growth computer program was written for reading the maximum and minimum loads of each half-cycle from the random loading spectra for crack growth calculations and generation of in-flight crack growth curves. The unified theories were then applied to calculate the number of flights (operational life) permitted for B-52B pylon hooks and Pegasus adapter pylon hooks to carry the Hyper-X launching vehicle that air launches the X-43 Hyper-X research vehicle. A crack growth curve for each hook was generated for visual observation of the crack growth behavior during the entire air-launching or captive flight. It was found that taxiing and the takeoff run induced a major portion of the total crack growth per flight. The operational life theory presented can be applied to estimate the service life of any failure-critical structural components.

  20. Mathematical Model of Load Pass and Prediction of Fatigue Life on Bolt Threads with Reduced Lead

    NASA Astrophysics Data System (ADS)

    Asayama, Yukiteru

    A mathematical model is proposed in order to elucidate the mechanism that the fatigue strength of external threads increases by reducing the lead on a thread system such as a bolt and nut. The model is constructed from the concept that a local strain proportional to the reducing degree of the lead, although the local strain is at first produced in the bolt thread farthest from the bearing surface of the nut, is induced in each thread root with an increase of applied load. The fatigue life predicted from the mathematical model shows good agreement with the experimental fatigue life of cadmium-plated external threads with the reduced lead on the material having strength as high as 1270MPa. The model can provide useful suggestions for the design of fasteners for aerospace, which are required to satisfy severe requirements of fatigue strengths and dimensions.

  1. Measurement Techniques and Instruments Suitable for Life-prediction Testing of Photovoltaic Arrays

    NASA Technical Reports Server (NTRS)

    Noel, G. T.; Wood, V. E.; Mcginniss, V. D.; Hassell, J. A.; Richard, N. A.; Gaines, G. B.; Carmichael, D. C.

    1979-01-01

    The validation of a 20-year service life for low-cost photovoltaic arrays is a critical requirement in the Low-Cost Solar Array (LSA) Project. The validation is accomplished through accelerated life-prediction tests. A two-phase study was conducted to address the needs before such tests are carried out. The results and recommended techniques from the Phase 1 investigation are summarized in the appendix. Phase 2 of the study is covered in this report and consisted of experimental evaluations of three techniques selected from these recommended as a results of the Phase 1 findings. The three techniques evaluated were specular and nonspecular optical reflectometry, chemiluminescence measurements, and electric current noise measurements.

  2. Rapid weight gain after birth predicts life history and reproductive strategy in Filipino males.

    PubMed

    Kuzawa, Christopher W; McDade, Thomas W; Adair, Linda S; Lee, Nanette

    2010-09-28

    Ecological cues during prenatal and postnatal development may allow organisms to adjust reproductive strategy. The hypothalamic-pituitary-gonadal (HPG) axis is a prime candidate for adaptive plasticity as a result of its critical period of birth to 6 mo (B6M) in humans and the role of testosterone in the development and maintenance of costly sexually dimorphic somatic and behavioral traits. We hypothesized that weight velocity specific to B6M would predict male life history characteristics, including maturational timing, reproductive hormones, adult size, strength, and sexual activity. Data come from 770 Filipino men (age 20.5-22.5 y) followed since birth, with predictor variables including birth weight and weight velocities calculated at 6-mo intervals during the first 2 y of life. As expected, infants who were breastfed experienced less diarrhea, lived in wealthier households with better hygiene, and grew faster from B6M. Males with rapid B6M growth reached puberty earlier and, as young adults, had higher testosterone levels, were taller, more muscular, and had higher grip strength. They also had sex earlier and were more likely to report having had sex in the past month, resulting in more lifetime sex partners. Relationships between B6M weight gain and physical outcomes were generally not present or weaker in female subjects. We conclude that rapid weight gain specific to the brief postnatal hypothalamic-pituitary-gonadal critical period predicts early maturation and sexual activity, elevated hormone production, and more costly adult somatic characteristics among the male subjects in this sample. These findings provide evidence for early life developmental plasticity in male life history and reproductive strategy in humans.

  3. Isothermal Fatigue, Damage Accumulation, and Life Prediction of a Woven PMC

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.

    1998-01-01

    This dissertation focuses on the characterization of the fully reversed fatigue behavior exhibited by a carbon fiber/polyimide resin, woven laminate at room and elevated temperatures. Nondestructive video edge view microscopy and destructive sectioning techniques were used to study the microscopic damage mechanisms that evolved. The residual elastic stiffness was monitored and recorded throughout the fatigue life of the coupon. In addition, residual compressive strength tests were conducted on fatigue coupons with various degrees of damage as quantified by stiffness reduction. Experimental results indicated that the monotonic tensile properties were only minimally influenced by temperature, while the monotonic compressive and fully reversed fatigue properties displayed noticeable reductions due to the elevated temperature. The stiffness degradation, as a function of cycles, consisted of three stages; a short-lived high degradation period, a constant degradation rate segment composing the majority of the life, and a final stage demonstrating an increasing rate of degradation up to failure. Concerning the residual compressive strength tests at room and elevated temperatures, the elevated temperature coupons appeared much more sensitive to damage. At elevated temperatures, coupons experienced a much larger loss in compressive strength when compared to room temperature coupons with equivalent damage. The fatigue damage accumulation law proposed for the model incorporates a scalar representation for damage, but admits a multiaxial, anisotropic evolutionary law. The model predicts the current damage (as quantified by residual stiffness) and remnant life of a composite that has undergone a known load at temperature. The damage/life model is dependent on the applied multiaxial stress state as well as temperature. Comparisons between the model and data showed good predictive capabilities concerning stiffness degradation and cycles to failure.

  4. Rapid weight gain after birth predicts life history and reproductive strategy in Filipino males

    PubMed Central

    Kuzawa, Christopher W.; McDade, Thomas W.; Adair, Linda S.; Lee, Nanette

    2010-01-01

    Ecological cues during prenatal and postnatal development may allow organisms to adjust reproductive strategy. The hypothalamic-pituitary-gonadal (HPG) axis is a prime candidate for adaptive plasticity as a result of its critical period of birth to 6 mo (B6M) in humans and the role of testosterone in the development and maintenance of costly sexually dimorphic somatic and behavioral traits. We hypothesized that weight velocity specific to B6M would predict male life history characteristics, including maturational timing, reproductive hormones, adult size, strength, and sexual activity. Data come from 770 Filipino men (age 20.5–22.5 y) followed since birth, with predictor variables including birth weight and weight velocities calculated at 6-mo intervals during the first 2 y of life. As expected, infants who were breastfed experienced less diarrhea, lived in wealthier households with better hygiene, and grew faster from B6M. Males with rapid B6M growth reached puberty earlier and, as young adults, had higher testosterone levels, were taller, more muscular, and had higher grip strength. They also had sex earlier and were more likely to report having had sex in the past month, resulting in more lifetime sex partners. Relationships between B6M weight gain and physical outcomes were generally not present or weaker in female subjects. We conclude that rapid weight gain specific to the brief postnatal hypothalamic-pituitary-gonadal critical period predicts early maturation and sexual activity, elevated hormone production, and more costly adult somatic characteristics among the male subjects in this sample. These findings provide evidence for early life developmental plasticity in male life history and reproductive strategy in humans. PMID:20837542

  5. Prediction-based dynamic load-sharing heuristics

    NASA Technical Reports Server (NTRS)

    Goswami, Kumar K.; Devarakonda, Murthy; Iyer, Ravishankar K.

    1993-01-01

    The authors present dynamic load-sharing heuristics that use predicted resource requirements of processes to manage workloads in a distributed system. A previously developed statistical pattern-recognition method is employed for resource prediction. While nonprediction-based heuristics depend on a rapidly changing system status, the new heuristics depend on slowly changing program resource usage patterns. Furthermore, prediction-based heuristics can be more effective since they use future requirements rather than just the current system state. Four prediction-based heuristics, two centralized and two distributed, are presented. Using trace driven simulations, they are compared against random scheduling and two effective nonprediction based heuristics. Results show that the prediction-based centralized heuristics achieve up to 30 percent better response times than the nonprediction centralized heuristic, and that the prediction-based distributed heuristics achieve up to 50 percent improvements relative to their nonprediction counterpart.

  6. Progressive failure methodologies for predicting residual strength and life of laminated composites

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Allen, David H.; Obrien, T. Kevin

    1991-01-01

    Two progressive failure methodologies currently under development by the Mechanics of Materials Branch at NASA Langley Research Center are discussed. The damage tolerance/fail safety methodology developed by O'Brien is an engineering approach to ensuring adequate durability and damage tolerance by treating only delamination onset and the subsequent delamination accumulation through the laminate thickness. The continuum damage model developed by Allen and Harris employs continuum damage laws to predict laminate strength and life. The philosophy, mechanics framework, and current implementation status of each methodology are presented.

  7. Creep fatigue life prediction for engine hot section materials (isotropic): Fourth year progress review

    NASA Technical Reports Server (NTRS)

    Nelson, Richard S.; Schoendorf, John F.

    1986-01-01

    As gas turbine technology continues to advance, the need for advanced life prediction methods for hot section components is becoming more and more evident. The complex local strain and temperature histories at critical locations must be accurately interpreted to account for the effects of various damage mechanisms (such as fatigue, creep, and oxidation) and their possible interactions. As part of the overall NASA HOST effort, this program is designed to investigate these fundamental damage processes, identify modeling strategies, and develop practical models which can be used to guide the early design and development of new engines and to increase the durability of existing engines.

  8. Electrical Resistance of Ceramic Matrix Composites for Damage Detection and Life-Prediction

    NASA Technical Reports Server (NTRS)

    Smith, Craig; Morscher, Gregory N.; Xia, Zhenhai

    2008-01-01

    The electric resistance of woven SiC fiber reinforced SiC matrix composites were measured under tensile loading conditions. The results show that the electrical resistance is closely related to damage and that real-time information about the damage state can be obtained through monitoring of the resistance. Such self-sensing capability provides the possibility of on-board/in-situ damage detection or inspection of a component during "down time". The correlation of damage with appropriate failure mechanism can then be applied to accurate life prediction for high-temperature ceramic matrix composites.

  9. The neurobiology of memory based predictions.

    PubMed

    Eichenbaum, Howard; Fortin, Norbert J

    2009-05-12

    Recent findings indicate that, in humans, the hippocampal memory system is involved in the capacity to imagine the future as well as remember the past. Other studies have suggested that animals may also have the capacity to recall the past and plan for the future. Here, we will consider data that bridge between these sets of findings by assessing the role of the hippocampus in memory and prediction in rats. We will argue that animals have the capacity for recollection and that the hippocampus plays a central and selective role in binding information in the service of recollective memory. Then we will consider examples of transitive inference, a paradigm that requires the integration of overlapping memories and flexible use of the resulting relational memory networks for generating predictions in novel situations. Our data show that animals have the capacity for transitive inference and that the hippocampus plays a central role in the ability to predict outcomes of events that have not yet occurred.

  10. Prediction of Service Life of Cordierite-Mullite Refractory Materials by Non-Destructive Methods

    SciTech Connect

    Boccaccini, D. N.; Kamseu, Elie; Cannio, M.; Romagnoli, M.; Veronesi, P.; Leonelli, C.; Volkov-Husoviae, T. D.; Dlouhy, I.; Boccaccini, A. R.

    2008-02-15

    Ultrasonic pulse velocity testing was used to perform non-destructive quality control of refractory plates used as substrates in fast firing of porcelain whitewares. The measurement of the ultrasonic velocity was used to asses the presence of internal voids or cracks originated from the manufacturing procedure. Image analysis was used to predict thermal stability of the refractory materials. Two cordierite-mullite compositions were investigated that are characterized by different microstructure morphologies and crack propagation behaviour. A brief discussion about the correlation between microstructure, crack propagation behaviour and thermal shock resistance is presented. Moreover, empirical models were developed to predict the service life of refractory plates from measured values of ultrasonic velocities in plates in the as-received state.

  11. The Potential United Kingdom Energy Gap and Creep Life Prediction Methodologies

    NASA Astrophysics Data System (ADS)

    Evans, Mark

    2013-01-01

    The United Kingdom faces a looming energy gap with around 20 pct of its generating capacity due for closure in the next 10 to 15 years as a result of plant age and new European legislation on environmental protection and safety at work. A number of solutions exist for this problem including the use of new materials so that new plants can operate at higher temperatures, new technologies related to carbon capture and gasification, development of renewable resources, and less obviously the use of accurate models for predicting creep life. This article reviews, with illustrations, some of the more applicable and successful creep prediction methodologies used by academics and industrialists and highlights how these techniques can help alleviate the looming energy gap. The role that these approaches can play in solving the energy gap is highlighted throughout.

  12. Sensor Based Engine Life Calculation: A Probabilistic Perspective

    NASA Technical Reports Server (NTRS)

    Guo, Ten-Huei; Chen, Philip

    2003-01-01

    It is generally known that an engine component will accumulate damage (life usage) during its lifetime of use in a harsh operating environment. The commonly used cycle count for engine component usage monitoring has an inherent range of uncertainty which can be overly costly or potentially less safe from an operational standpoint. With the advance of computer technology, engine operation modeling, and the understanding of damage accumulation physics, it is possible (and desirable) to use the available sensor information to make a more accurate assessment of engine component usage. This paper describes a probabilistic approach to quantify the effects of engine operating parameter uncertainties on the thermomechanical fatigue (TMF) life of a selected engine part. A closed-loop engine simulation with a TMF life model is used to calculate the life consumption of different mission cycles. A Monte Carlo simulation approach is used to generate the statistical life usage profile for different operating assumptions. The probabilities of failure of different operating conditions are compared to illustrate the importance of the engine component life calculation using sensor information. The results of this study clearly show that a sensor-based life cycle calculation can greatly reduce the risk of component failure as well as extend on-wing component life by avoiding unnecessary maintenance actions.

  13. Predicting US Infants' and Toddlers' TV/Video Viewing Rates: Mothers' Cognitions and Structural Life Circumstances.

    PubMed

    Vaala, Sarah E; Hornik, Robert C

    2014-04-01

    There has been rising international concern over media use with children under two. As little is known about the factors associated with more or less viewing among very young children, this study examines maternal factors predictive of TV/video viewing rates among American infants and toddlers. Guided by the Integrative Model of Behavioral Prediction, this survey study examines relationships between children's rates of TV/video viewing and their mothers' structural life circumstances (e.g., number of children in the home; mother's screen use), and cognitions (e.g., attitudes; norms). Results suggest that mothers' structural circumstances and cognitions respectively contribute independent explanatory power to the prediction of children's TV/video viewing. Influence of structural circumstances is partially mediated through cognitions. Mothers' attitudes as well as their own TV/video viewing behavior were particularly predictive of children's viewing. Implications of these findings for international efforts to understand and reduce infant/toddler TV/video exposure are discussed. PMID:25489335

  14. Predicting Negative Life Outcomes from Early Aggressive-Disruptive Behavior Trajectories: Gender Differences in Maladaptation across Life Domains

    ERIC Educational Resources Information Center

    Bradshaw, Catherine P.; Schaeffer, Cindy M.; Petras, Hanno; Ialongo, Nicholas

    2010-01-01

    Transactional theories of development suggest that displaying high levels of antisocial behavior early in life and persistently over time causes disruption in multiple life domains, which in turn places individuals at risk for negative life outcomes. We used longitudinal data from 1,137 primarily African American urban youth (49.1% female) to…

  15. Deterministic and Probabilistic Creep and Creep Rupture Enhancement to CARES/Creep: Multiaxial Creep Life Prediction of Ceramic Structures Using Continuum Damage Mechanics and the Finite Element Method

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama M.; Powers, Lynn M.; Gyekenyesi, John P.

    1998-01-01

    High temperature and long duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. A previous model advanced by the authors described a methodology by which the creep rupture life of a loaded component can be predicted. That model was based on the life fraction damage accumulation rule in association with the modified Monkman-Grant creep ripture criterion However, that model did not take into account the deteriorating state of the material due to creep damage (e.g., cavitation) as time elapsed. In addition, the material creep parameters used in that life prediction methodology, were based on uniaxial creep curves displaying primary and secondary creep behavior, with no tertiary regime. The objective of this paper is to present a creep life prediction methodology based on a modified form of the Kachanov-Rabotnov continuum damage mechanics (CDM) theory. In this theory, the uniaxial creep rate is described in terms of stress, temperature, time, and the current state of material damage. This scalar damage state parameter is basically an abstract measure of the current state of material damage due to creep deformation. The damage rate is assumed to vary with stress, temperature, time, and the current state of damage itself. Multiaxial creep and creep rupture formulations of the CDM approach are presented in this paper. Parameter estimation methodologies based on nonlinear regression analysis are also described for both, isothermal constant stress states and anisothermal variable stress conditions This creep life prediction methodology was preliminarily added to the integrated design code CARES/Creep (Ceramics Analysis and Reliability Evaluation of Structures/Creep), which is a postprocessor program to commercially available finite element analysis (FEA) packages. Two examples, showing comparisons between experimental and predicted creep lives of ceramic specimens, are used to demonstrate the viability of this methodology and

  16. Correlate Life Predictions and Condition Indicators in Helicopter Tail Gearbox Bearings

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Bolander, Nathan; Haynes, Chris; Branning, Jeremy; Wade, Daniel R.

    2010-01-01

    Research to correlate bearing remaining useful life (RUL) predictions with Helicopter Health Usage Monitoring Systems (HUMS) condition indicators (CI) to indicate the damage state of a transmission component has been developed. Condition indicators were monitored and recorded on UH-60M (Black Hawk) tail gearbox output shaft thrust bearings, which had been removed from helicopters and installed in a bearing spall propagation test rig. Condition indicators monitoring the tail gearbox output shaft thrust bearings in UH-60M helicopters were also recorded from an on-board HUMS. The spal-lpropagation data collected in the test rig was used to generate condition indicators for bearing fault detection. A damage progression model was also developed from this data. Determining the RUL of this component in a helicopter requires the CI response to be mapped to the damage state. The data from helicopters and a test rig were analyzed to determine if bearing remaining useful life predictions could be correlated with HUMS condition indicators (CI). Results indicate data fusion analysis techniques can be used to map the CI response to the damage levels.

  17. Experimental and numerical life prediction of thermally cycled thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Persson, C.; Wigren, J.

    2004-09-01

    This article addresses the predominant degradation modes and life prediction of a plasma-sprayed thermal barrier coating (TBC). The studied TBC system consists of an air-plasma-sprayed bond coat and an air-plasma-sprayed, yttria partially stabilized zirconia top layer on a conventional Hastelloy X substrate. Thermal shock tests of as-sprayed TBC and pre-oxidized TBC specimens were conducted under different burner flame conditions at Volvo Aero Corporation (Trollhättan, Sweden). Finite element models were used to simulate the thermal shock tests. Transient temperature distributions and thermal mismatch stresses in different layers of the coatings during thermal cycling were calculated. The roughness of the interface between the ceramic top coat and the bond coat was modeled through an ideally sinusoidal wavy surface. Bond coat oxidation was simulated through adding an aluminum oxide layer between the ceramic top coat and the bond coat. The calculated stresses indicated that interfacial delamination cracks, initiated in the ceramic top coat at the peak of the asperity of the interface, together with surface cracking, are the main reasons for coating failure. A phenomenological life prediction model for the coating was proposed. This model is accurate within a factor of 3.

  18. Life and death in the Lone Star State: three decades of violence predictions by capital juries.

    PubMed

    Cunningham, Mark D; Sorensen, Jon R; Vigen, Mark P; Woods, S O

    2011-01-01

    The accuracy of three decades of Texas jury predictions of future violence by capital defendants was tested through retrospective review of the disciplinary records of former death row (FDR) inmates in Texas (N = 111) who had been sentenced to death under this "special issue" and subsequently obtained relief from their death sentences between 1989 and 2008. FDR inmates typically had extended tenures on death row (M = 9.9 years) and post-relief in the general prison population (M = 8.4 years). FDR prevalence of serious assault was low, both on death row (3.6%) and upon entering the prison population (4.5%). None of the assaults resulted in life-threatening injuries to the victims. Violence among the FDR inmates was not disproportionate compared with life-sentenced capital offenders. Consistent with other research, juror expectations of serious prison violence by these offenders had high error (i.e., false positive) rates. The confidence of legislators and courts in the violence prediction capabilities of capital jurors is misplaced.

  19. Fatigue Strength Prediction of Drilling Materials Based on the Maximum Non-metallic Inclusion Size

    NASA Astrophysics Data System (ADS)

    Zeng, Dezhi; Tian, Gang; Liu, Fei; Shi, Taihe; Zhang, Zhi; Hu, Junying; Liu, Wanying; Ouyang, Zhiying

    2015-12-01

    In this paper, the statistics of the size distribution of non-metallic inclusions in five drilling materials were performed. Based on the maximum non-metallic inclusion size, the fatigue strength of the drilling material was predicted. The sizes of non-metallic inclusions in drilling materials were observed to follow the inclusion size distribution rule. Then the maximum inclusion size in the fatigue specimens was deduced. According to the prediction equation of the maximum inclusion size and fatigue strength proposed by Murakami, fatigue strength of drilling materials was obtained. Moreover, fatigue strength was also measured through rotating bending tests. The predicted fatigue strength was significantly lower than the measured one. Therefore, according to the comparison results, the coefficients in the prediction equation were revised. The revised equation allowed the satisfactory prediction results of fatigue strength of drilling materials at the fatigue life of 107 rotations and could be used in the fast prediction of fatigue strength of drilling materials.

  20. A trait-based framework to understand life history of mycorrhizal fungi.

    PubMed

    Chagnon, Pierre-Luc; Bradley, Robert L; Maherali, Hafiz; Klironomos, John N

    2013-09-01

    Despite the growing appreciation for the functional diversity of arbuscular mycorrhizal (AM) fungi, our understanding of the causes and consequences of this diversity is still poor. In this opinion article, we review published data on AM fungal functional traits and attempt to identify major axes of life history variation. We propose that a life history classification system based on the grouping of functional traits, such as Grime's C-S-R (competitor, stress tolerator, ruderal) framework, can help to explain life history diversification in AM fungi, successional dynamics, and the spatial structure of AM fungal assemblages. Using a common life history classification framework for both plants and AM fungi could also help in predicting probable species associations in natural communities and increase our fundamental understanding of the interaction between land plants and AM fungi.

  1. On local prediction based reversible watermarking.

    PubMed

    Dragoi, Ioan-Catalin; Coltuc, Dinu

    2015-04-01

    The use of local prediction in difference expansion reversible watermarking provides very good results, but at the cost of computing for each pixel a least square predictor in a square block centered on the pixel. This correspondence investigates the reduction of the mathematical complexity by computing distinct predictors not for pixels, but for groups of pixels. The same predictors are recovered at detection. Experimental results for the case of prediction on the rhombus defined by the four horizontal and vertical neighbors are provided. It is shown that by computing a predictor for a pair of pixels, the computational cost is halved without any loss in performance. A small loss appears for groups of three and four pixels with the advantage of reducing the mathematical complexity to a third and a fourth, respectively.

  2. In Your Eyes: Does Theory of Mind Predict Impaired Life Functioning in Bipolar Disorder?

    PubMed Central

    Purcell, Amanda L.; Phillips, Mary; Gruber, June

    2013-01-01

    Background Deficits in emotion perception and social functioning are strongly implicated in bipolar disorder (BD). Examining theory of mind (ToM) may provide one potential mechanism to explain observed socio-emotional impairments in this disorder. The present study prospectively investigated the relationship between theory of mind performance and life functioning in individuals diagnosed with BD compared to unipolar depression and healthy control groups. Methods Theory of mind (ToM) performance was examined in 26 individuals with remitted bipolar I disorder (BD), 29 individuals with remitted unipolar depression (UD), and 28 healthy controls (CTL) using a well-validated advanced theory of mind task. Accuracy and response latency scores were calculated from the task. Life functioning was measured during a 12 month follow-up session. Results No group differences for ToM accuracy emerged. However, the BD group exhibited significantly shorter response times than the UD and CTL groups. Importantly, quicker response times in the BD group predicted greater life functioning impairment at a 12-month follow-up, even after controlling for baseline symptoms. Limitations The stimuli were static representations of emotional states and do not allow for evaluating the appropriateness of context during emotional communication; due to sample size, neither specific comorbidities nor medication effects were analyzed for the BD and UD groups; preliminary status of theory of mind as a construct. Conclusions Results suggest that quickened socio-emotional decision making may represent a risk factor for future functional impairment in BD. PMID:23896318

  3. Life history predicts risk of species decline in a stochastic world

    PubMed Central

    Van Allen, Benjamin G.; Dunham, Amy E.; Asquith, Christopher M.; Rudolf, Volker H. W.

    2012-01-01

    Understanding what traits determine the extinction risk of species has been a long-standing challenge. Natural populations increasingly experience reductions in habitat and population size concurrent with increasing novel environmental variation owing to anthropogenic disturbance and climate change. Recent studies show that a species risk of decline towards extinction is often non-random across species with different life histories. We propose that species with life histories in which all stage-specific vital rates are more evenly important to population growth rate may be less likely to decline towards extinction under these pressures. To test our prediction, we modelled declines in population growth rates under simulated stochastic disturbance to the vital rates of 105 species taken from the literature. Populations with more equally important vital rates, determined using elasticity analysis, declined more slowly across a gradient of increasing simulated environmental variation. Furthermore, higher evenness of elasticity was significantly correlated with a reduced chance of listing as Threatened on the International Union for Conservation of Nature Red List. The relative importance of life-history traits of diverse species can help us infer how natural assemblages will be affected by novel anthropogenic and climatic disturbances. PMID:22398172

  4. Attachment style predicts affect, cognitive appraisals, and social functioning in daily life.

    PubMed

    Sheinbaum, Tamara; Kwapil, Thomas R; Ballespí, Sergi; Mitjavila, Mercè; Chun, Charlotte A; Silvia, Paul J; Barrantes-Vidal, Neus

    2015-01-01

    The way in which attachment styles are expressed in the moment as individuals navigate their real-life settings has remained an area largely untapped by attachment research. The present study examined how adult attachment styles are expressed in daily life using experience sampling methodology (ESM) in a sample of 206 Spanish young adults. Participants were administered the Attachment Style Interview (ASI) and received personal digital assistants that signaled them randomly eight times per day for 1 week to complete questionnaires about their current experiences and social context. As hypothesized, participants' momentary affective states, cognitive appraisals, and social functioning varied in meaningful ways as a function of their attachment style. Individuals with an anxious attachment, as compared with securely attached individuals, endorsed experiences that were congruent with hyperactivating tendencies, such as higher negative affect, stress, and perceived social rejection. By contrast, individuals with an avoidant attachment, relative to individuals with a secure attachment, endorsed experiences that were consistent with deactivating tendencies, such as decreased positive states and a decreased desire to be with others when alone. Furthermore, the expression of attachment styles in social contexts was shown to be dependent upon the subjective appraisal of the closeness of social contacts, and not merely upon the presence of social interactions. The findings support the ecological validity of the ASI and the person-by-situation character of attachment theory. Moreover, they highlight the utility of ESM for investigating how the predictions derived from attachment theory play out in the natural flow of real life.

  5. Do Metacognitions and Intolerance of Uncertainty Predict Worry in Everyday Life? An Ecological Momentary Assessment Study.

    PubMed

    Thielsch, Carolin; Andor, Tanja; Ehring, Thomas

    2015-07-01

    Cognitive models of generalized anxiety disorder (GAD) suggest that excessive worry is due to positive and negative metacognitive beliefs and/or intolerance of uncertainty. Empirical support mainly derives from cross-sectional studies with limited conclusiveness, using self-report measures and thereby possibly causing recall biases. The aim of the present study therefore was to examine the power of these cognitive variables to predict levels of worry in everyday life using Ecological Momentary Assessment (EMA). Metacognitions and intolerance of uncertainty were assessed using well-established self-report questionnaires in 41 nonclinical participants who subsequently completed ratings on worry intensity and burden on a portable device for 1week at seven times a day once every 2hours. Results showed significant associations of negative metacognitive beliefs and intolerance of uncertainty, but not positive metacognitive beliefs, with worry in everyday life. In multilevel regression analyses, a substantial proportion of variance of everyday worry could be accounted for by negative metacognitions over and above trait worry and daily hassles. Intolerance of uncertainty likewise emerged as a valid predictor when tested in isolation, but did not explain additional variance once negative metacognitions were controlled. The findings support current cognitive models of excessive worry and highlight the role of negative metacognitions. By using EMA to assess levels of worry in everyday life, they extend earlier findings focusing exclusively on retrospective questionnaire measures.

  6. Profiles of observed infant anger predict preschool behavior problems: Moderation by life stress

    PubMed Central

    Brooker, Rebecca J.; Buss, Kristin A.; Lemery-Chalfant, Kathryn; Aksan, Nazan; Davidson, Richard J.; Goldsmith, H. Hill

    2014-01-01

    Using both traditional composites and novel profiles of anger, we examined associations between infant anger and preschool behavior problems in a large, longitudinal data set (N = 966). We also tested the role of life stress as a moderator of the link between early anger and the development of behavior problems. Although traditional measures of anger were largely unrelated to later behavior problems, profiles of anger that dissociated typical from atypical development predicted behavior problems during preschool. Moreover, the relation between infant anger profiles and preschool behavior problems was moderated such that, when early life stress was low, infants with atypical profiles of early anger showed more preschool behavior problems than did infants with normative anger profiles. However, when early life stress was high, infants with atypical and normative profiles of infant anger did not differ in preschool behavior problems. We conclude that a discrete emotions approach including latent profile analysis is useful for elucidating biological and environmental developmental pathways to early problem behaviors. PMID:25151247

  7. Continuum Damage Mechanics Used to Predict the Creep Life of Monolithic Ceramics

    NASA Technical Reports Server (NTRS)

    Powers, Lynn M.; Jadaan, Osama M.

    1998-01-01

    Significant improvements in propulsion and power generation for the next century will require revolutionary advances in high-temperature materials and structural design. Advanced ceramics are candidate materials for these elevated temperature applications. High-temperature and long-duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. An analytical methodology in the form of the integrated design program-Ceramics Analysis and Reliability Evaluation of Structures/Creep (CARES/Creep) has been developed by the NASA Lewis Research Center to predict the life of ceramic structural components subjected to creep rupture conditions. This program utilizes commercially available finite element packages and takes into account the transient state of stress and creep strain distributions (stress relaxation as well as the asymmetric response to tension and compression). The creep life of a component is discretized into short time steps, during which the stress distribution is assumed constant. Then, the damage is calculated for each time step on the basis of a modified Monkman-Grant (MMG) creep rupture criterion. The cumulative damage is subsequently calculated as time elapses in a manner similar to Miner's rule for cyclic fatigue loading. Failure is assumed to occur when the normalized cumulative damage at any point in the component reaches unity. The corresponding time is the creep rupture life for that component.

  8. From First Life to Second Life: Evaluating Task-Based Language Learning in a New Environment

    ERIC Educational Resources Information Center

    Jee, Min Jung

    2014-01-01

    With its growing number of users, Second Life as one of the avatar-based 3D virtual worlds has received attention from educators and researchers in various fields to explore its pedagogical benefits. Given the increasing implementation of technologies broadly in much instruction, this study investigated how ESL students negotiated meanings in…

  9. Predictive Models for Tomato Spotted Wilt Virus Spread Dynamics, Considering Frankliniella occidentalis Specific Life Processes as Influenced by the Virus.

    PubMed

    Ogada, Pamella Akoth; Moualeu, Dany Pascal; Poehling, Hans-Michael

    2016-01-01

    Several models have been studied on predictive epidemics of arthropod vectored plant viruses in an attempt to bring understanding to the complex but specific relationship between the three cornered pathosystem (virus, vector and host plant), as well as their interactions with the environment. A large body of studies mainly focuses on weather based models as management tool for monitoring pests and diseases, with very few incorporating the contribution of vector's life processes in the disease dynamics, which is an essential aspect when mitigating virus incidences in a crop stand. In this study, we hypothesized that the multiplication and spread of tomato spotted wilt virus (TSWV) in a crop stand is strongly related to its influences on Frankliniella occidentalis preferential behavior and life expectancy. Model dynamics of important aspects in disease development within TSWV-F. occidentalis-host plant interactions were developed, focusing on F. occidentalis' life processes as influenced by TSWV. The results show that the influence of TSWV on F. occidentalis preferential behaviour leads to an estimated increase in relative acquisition rate of the virus, and up to 33% increase in transmission rate to healthy plants. Also, increased life expectancy; which relates to improved fitness, is dependent on the virus induced preferential behaviour, consequently promoting multiplication and spread of the virus in a crop stand. The development of vector-based models could further help in elucidating the role of tri-trophic interactions in agricultural disease systems. Use of the model to examine the components of the disease process could also boost our understanding on how specific epidemiological characteristics interact to cause diseases in crops. With this level of understanding we can efficiently develop more precise control strategies for the virus and the vector.

  10. Predictive Models for Tomato Spotted Wilt Virus Spread Dynamics, Considering Frankliniella occidentalis Specific Life Processes as Influenced by the Virus

    PubMed Central

    Ogada, Pamella Akoth; Moualeu, Dany Pascal; Poehling, Hans-Michael

    2016-01-01

    Several models have been studied on predictive epidemics of arthropod vectored plant viruses in an attempt to bring understanding to the complex but specific relationship between the three cornered pathosystem (virus, vector and host plant), as well as their interactions with the environment. A large body of studies mainly focuses on weather based models as management tool for monitoring pests and diseases, with very few incorporating the contribution of vector’s life processes in the disease dynamics, which is an essential aspect when mitigating virus incidences in a crop stand. In this study, we hypothesized that the multiplication and spread of tomato spotted wilt virus (TSWV) in a crop stand is strongly related to its influences on Frankliniella occidentalis preferential behavior and life expectancy. Model dynamics of important aspects in disease development within TSWV-F. occidentalis-host plant interactions were developed, focusing on F. occidentalis’ life processes as influenced by TSWV. The results show that the influence of TSWV on F. occidentalis preferential behaviour leads to an estimated increase in relative acquisition rate of the virus, and up to 33% increase in transmission rate to healthy plants. Also, increased life expectancy; which relates to improved fitness, is dependent on the virus induced preferential behaviour, consequently promoting multiplication and spread of the virus in a crop stand. The development of vector–based models could further help in elucidating the role of tri-trophic interactions in agricultural disease systems. Use of the model to examine the components of the disease process could also boost our understanding on how specific epidemiological characteristics interact to cause diseases in crops. With this level of understanding we can efficiently develop more precise control strategies for the virus and the vector. PMID:27159134

  11. Predictive Models for Tomato Spotted Wilt Virus Spread Dynamics, Considering Frankliniella occidentalis Specific Life Processes as Influenced by the Virus.

    PubMed

    Ogada, Pamella Akoth; Moualeu, Dany Pascal; Poehling, Hans-Michael

    2016-01-01

    Several models have been studied on predictive epidemics of arthropod vectored plant viruses in an attempt to bring understanding to the complex but specific relationship between the three cornered pathosystem (virus, vector and host plant), as well as their interactions with the environment. A large body of studies mainly focuses on weather based models as management tool for monitoring pests and diseases, with very few incorporating the contribution of vector's life processes in the disease dynamics, which is an essential aspect when mitigating virus incidences in a crop stand. In this study, we hypothesized that the multiplication and spread of tomato spotted wilt virus (TSWV) in a crop stand is strongly related to its influences on Frankliniella occidentalis preferential behavior and life expectancy. Model dynamics of important aspects in disease development within TSWV-F. occidentalis-host plant interactions were developed, focusing on F. occidentalis' life processes as influenced by TSWV. The results show that the influence of TSWV on F. occidentalis preferential behaviour leads to an estimated increase in relative acquisition rate of the virus, and up to 33% increase in transmission rate to healthy plants. Also, increased life expectancy; which relates to improved fitness, is dependent on the virus induced preferential behaviour, consequently promoting multiplication and spread of the virus in a crop stand. The development of vector-based models could further help in elucidating the role of tri-trophic interactions in agricultural disease systems. Use of the model to examine the components of the disease process could also boost our understanding on how specific epidemiological characteristics interact to cause diseases in crops. With this level of understanding we can efficiently develop more precise control strategies for the virus and the vector. PMID:27159134

  12. Predicting the life-cycle performance of an EGS by numerical simulation

    NASA Astrophysics Data System (ADS)

    Blöcher, G.; Zimmermann, G.; Moeck, I.; Brandt, W.; Huenges, E.

    2009-04-01

    matrix and fractures were determined by laboratory and field experiments. We present the predicted temperature change during 30 years life-cycle due to continuous injection of 70°C cold water /after serving as the heat source for a ORC power cycle) with a flow rate of 75m³/h.

  13. Early life trauma predicts self-reported levels of depressive and anxiety symptoms in nonclinical community adults: relative contributions of early life stressor types and adult trauma exposure.

    PubMed

    Chu, Denise A; Williams, Leanne M; Harris, Anthony W F; Bryant, Richard A; Gatt, Justine M

    2013-01-01

    Exposure to early life trauma is a known risk factor for depression and anxiety disorders in adulthood. This study aimed to evaluate the relative contributions of early life versus adult trauma in predicting levels of depressive and anxiety symptoms in nonclinical community adults. 1209 nonclinical community adults (18-70 years; 45% male) were assessed for mental health status, early life stressors, lifetime trauma exposure, and self-reported levels of depressive and anxiety symptoms. A subset of the full sample subjected to group comparisons (n = 1088) indicated that early life stressor exposure primarily accounted for significantly higher depressive and anxiety symptom scores when compared against adults reporting to be free of childhood stressor or adult trauma exposure. Subsequent hierarchical multiple regression analyses of this subset using five distinct early life stressor types, namely 'Interpersonal violation', 'Family breakup', 'Disasters/war', 'Familial health trauma/death' and 'Personal health trauma' derived from principal component analysis of a wide range of self-reported early stressor events in the full sample, showed childhood 'Interpersonal violation' differentially predicted higher self-reported depressive and anxiety symptom scores in both males and females. Adult trauma exposure did not significantly predict these symptom scores. These findings underline the relative importance of exposure to 'interpersonal violation' relative to other types of early life stressors and adult trauma in the risk of depressive and anxiety symptoms in nonclinical community adults.

  14. A Review of Quality of Life after Predictive Testing for and Earlier Identification of Neurodegenerative Diseases

    PubMed Central

    Paulsen, Jane S.; Nance, Martha; Kim, Ji-In; Carlozzi, Noelle E.; Panegyres, Peter K.; Erwin, Cheryl; Goh, Anita; McCusker, Elizabeth; Williams, Janet K.

    2013-01-01

    The past decade has witnessed an explosion of evidence suggesting that many neurodegenerative diseases can be detected years, if not decades, earlier than previously thought. To date, these scientific advances have not provoked any parallel translational or clinical improvements. There is an urgency to capitalize on this momentum so earlier detection of disease can be more readily translated into improved health-related quality of life for families at risk for, or suffering with, neurodegenerative diseases. In this review, we discuss health-related quality of life (HRQOL) measurement in neurodegenerative diseases and the importance of these “patient reported outcomes” for all clinical research. Next, we address HRQOL following early identification or predictive genetic testing in some neurodegenerative diseases: Huntington disease, Alzheimer's disease, Parkinson's disease, Dementia with Lewy bodies, frontotemporal dementia, amyotrophic lateral sclerosis, prion diseases, hereditary ataxias, Dentatorubral-pallidoluysian atrophy and Wilson's disease. After a brief report of available direct-to-consumer genetic tests, we address the juxtaposition of earlier disease identification with assumed reluctance towards predictive genetic testing. Forty-one studies examining health related outcomes following predictive genetic testing for neurodegenerative disease suggested that (a) extreme or catastrophic outcomes are rare; (b) consequences commonly include transiently increased anxiety and/or depression; (c) most participants report no regret; (d) many persons report extensive benefits to receiving genetic information; and (e) stigmatization and discrimination for genetic diseases are poorly understood and policy and laws are needed. Caution is appropriate for earlier identification of neurodegenerative diseases but findings suggest further progress is safe, feasible and likely to advance clinical care. PMID:24036231

  15. A review of quality of life after predictive testing for and earlier identification of neurodegenerative diseases.

    PubMed

    Paulsen, Jane S; Nance, Martha; Kim, Ji-In; Carlozzi, Noelle E; Panegyres, Peter K; Erwin, Cheryl; Goh, Anita; McCusker, Elizabeth; Williams, Janet K

    2013-11-01

    The past decade has witnessed an explosion of evidence suggesting that many neurodegenerative diseases can be detected years, if not decades, earlier than previously thought. To date, these scientific advances have not provoked any parallel translational or clinical improvements. There is an urgency to capitalize on this momentum so earlier detection of disease can be more readily translated into improved health-related quality of life for families at risk for, or suffering with, neurodegenerative diseases. In this review, we discuss health-related quality of life (HRQOL) measurement in neurodegenerative diseases and the importance of these "patient reported outcomes" for all clinical research. Next, we address HRQOL following early identification or predictive genetic testing in some neurodegenerative diseases: Huntington disease, Alzheimer's disease, Parkinson's disease, Dementia with Lewy bodies, frontotemporal dementia, amyotrophic lateral sclerosis, prion diseases, hereditary ataxias, Dentatorubral-pallidoluysian atrophy and Wilson's disease. After a brief report of available direct-to-consumer genetic tests, we address the juxtaposition of earlier disease identification with assumed reluctance toward predictive genetic testing. Forty-one studies examining health-related outcomes following predictive genetic testing for neurodegenerative disease suggested that (a) extreme or catastrophic outcomes are rare; (b) consequences commonly include transiently increased anxiety and/or depression; (c) most participants report no regret; (d) many persons report extensive benefits to receiving genetic information; and (e) stigmatization and discrimination for genetic diseases are poorly understood and policy and laws are needed. Caution is appropriate for earlier identification of neurodegenerative diseases but findings suggest further progress is safe, feasible and likely to advance clinical care. PMID:24036231

  16. Bayesian probabilistic model for life prediction and fault mode classification of solid state luminaires

    SciTech Connect

    Lall, Pradeep; Wei, Junchao; Sakalaukus, Peter

    2014-06-22

    A new method has been developed for assessment of the onset of degradation in solid state luminaires to classify failure mechanisms by using metrics beyond lumen degradation that are currently used for identification of failure. Luminous Flux output, Correlated Color Temperature Data on Philips LED Lamps has been gathered under 85°C/85%RH till lamp failure. Failure modes of the test population of the lamps have been studied to understand the failure mechanisms in 85°C/85%RH accelerated test. Results indicate that the dominant failure mechanism is the discoloration of the LED encapsulant inside the lamps which is the likely cause for the luminous flux degradation and the color shift. The acquired data has been used in conjunction with Bayesian Probabilistic Models to identify luminaires with onset of degradation much prior to failure through identification of decision boundaries between lamps with accrued damage and lamps beyond the failure threshold in the feature space. In addition luminaires with different failure modes have been classified separately from healthy pristine luminaires. The α-λ plots have been used to evaluate the robustness of the proposed methodology. Results show that the predicted degradation for the lamps tracks the true degradation observed during 85°C/85%RH during accelerated life test fairly closely within the ±20% confidence bounds. Correlation of model prediction with experimental results indicates that the presented methodology allows the early identification of the onset of failure much prior to development of complete failure distributions and can be used for assessing the damage state of SSLs in fairly large deployments. It is expected that, the new prediction technique will allow the development of failure distributions without testing till L70 life for the manifestation of failure.

  17. Mechanical Component Lifetime Estimation Based on Accelerated Life Testing with Singularity Extrapolation

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Chuckpaiwong, I.; Liang, S. Y.; Seth, B. B.

    2002-07-01

    Life testing under nominal operating conditions of mechanical parts with high mean lifetime between failure (MTBF) often consumes a significant amount of time and resources, rendering such procedures expensive and impractical. As a result, the technology of accelerated life testing (ALT) has been developed for testing at high stress levels (e.g. temperature, voltage, pressure, corrosive media, load, vibration amplitude, etc.) so that it can be extrapolated—through a physically reasonable statistical model—to obtain estimations of life at lower, normal stress levels or even limit stress levels. However, the issue of prediction accuracy associated with extrapolating data outside the range of testing, or even to a singularity level (no stress), has not yet been fully addressed. In this research, an accelerator factor is introduced into an inverse power law model to estimate the life distribution in terms of time and stresses. Also, a generalized Eyring model is set up for singularity extrapolation in handling limit stress level conditions. The procedure to calibrate the associated shape factors based on the maximum likelihood principle is also formulated. The methodology implementation, based on a one-main-step, multiple-step-stress test scheme, is experimentally illustrated with tapered roller bearing under the stress of environmental corrosion as a case study. The experimental results show that the developed accelerated life test model can effectively evaluate the life probability of a bearing based on accelerated testing data when extrapolating to the stress levels within or outside the range of testing.

  18. Analysis of some predictive factors of quality of life among type 2 diabetic patients

    PubMed Central

    Tol, Azar; Sharifirad, Gholamreza; Eslami, Ahmadali; Shojaeizadeh, Davoud; Alhani, Fatemeh; Tehrani, Mohamadreza Mohajeri

    2015-01-01

    Introduction: Considering the chronic nature of diabetes and its significant effect on quality of life of patients, the present study was conducted to evaluate predictors of quality of life in these patients in order to facilitate planning health promotion intervention programs. Materials and Methods: The present study was designed as a cross-sectional study on 140 type 2 diabetic patients of Om-ol-Banin Diabetes Center of Isfahan. Data collection tool was a multidimensional questionnaire including demographic and disease related data (12 items), the standard scale for diabetes distress (17 items), the standard scale for self-efficacy in diabetic patients (8 items), and standard scale for specific quality of life of diabetic patients (15 items). Collected data were evaluated by SPSS version 11.5 using the Chi-square test, Independent T-test, ANOVA, Pearson correlation and multivariate regression analysis. Results: Results showed that the quality of life of diabetic patients had a statistically significant correlation with diabetes distress variable (P < 0.001) and self-efficacy variable (P < 0.001). In this study R2 (predictive power) was 0.66. Multivariate regression model indicated diabetes distress (β = -0.277, P = 0.01) and self-efficacy (β = -0.161, P < 0.001) as variables influencing adjusted self-management for other variables. Conclusion: The result of the present study urges that in planning health promotion interventions in the field of diabetes, more attention be paid to self-efficacy and diabetes distress variables in order to improve the efficiency and effectiveness of the interventions carried out. PMID:25767820

  19. Link prediction based on path entropy

    NASA Astrophysics Data System (ADS)

    Xu, Zhongqi; Pu, Cunlai; Yang, Jian

    2016-08-01

    Information theory has been taken as a prospective tool for quantifying the complexity of complex networks. In this paper, first we study the information entropy or uncertainty of a path using the information theory. After that, we apply the path entropy to the link prediction problem in real-world networks. Specifically, we propose a new similarity index, namely Path Entropy (PE) index, which considers the information entropies of shortest paths between node pairs with penalization to long paths. Empirical experiments demonstrate that PE index outperforms the mainstream of link predictors.

  20. Template-based prediction of protein function.

    PubMed

    Petrey, Donald; Chen, T Scott; Deng, Lei; Garzon, Jose Ignacio; Hwang, Howook; Lasso, Gorka; Lee, Hunjoong; Silkov, Antonina; Honig, Barry

    2015-06-01

    We discuss recent approaches for structure-based protein function annotation. We focus on template-based methods where the function of a query protein is deduced from that of a template for which both the structure and function are known. We describe the different ways of identifying a template. These are typically based on sequence analysis but new methods based on purely structural similarity are also being developed that allow function annotation based on structural relationships that cannot be recognized by sequence. The growing number of available structures of known function, improved homology modeling techniques and new developments in the use of structure allow template-based methods to be applied on a proteome-wide scale and in many different biological contexts. This progress significantly expands the range of applicability of structural information in function annotation to a level that previously was only achievable by sequence comparison.

  1. Life-history traits and landscape characteristics predict macro-moth responses to forest fragmentation.

    PubMed

    Slade, Eleanor M; Merckx, Thomas; Riutta, Terhi; Bebber, Daniel P; Redhead, David; Riordan, Philip; Macdonald, David W

    2013-07-01

    How best to manage forest patches, mitigate the consequences of forest fragmentation, and enable landscape permeability are key questions facing conservation scientists and managers. Many temperate forests have become increasingly fragmented, resulting in reduced interior forest habitat, increased edge habitats, and reduced connectivity. Using a citizen science landscape-scale mark-release-recapture study on 87 macro-moth species, we investigated how both life-history traits and landscape characteristics predicted macro-moth responses to forest fragmentation. Wingspan, wing shape, adult feeding, and larval feeding guild predicted macro-moth mobility, although the predictive power of wingspan and wing shape depended on the species' affinity to the forest. Solitary trees and small fragments functioned as "stepping stones," especially when their landscape connectivity was increased, by being positioned within hedgerows or within a favorable matrix. Mobile forest specialists were most affected by forest fragmentation: despite their high intrinsic dispersal capability, these species were confined mostly to the largest of the forest patches due to their strong affinity for the forest habitat, and were also heavily dependent on forest connectivity in order to cross the agricultural matrix. Forest fragments need to be larger than five hectares and to have interior forest more than 100 m from the edge in order to sustain populations of forest specialists. Our study provides new insights into the movement patterns of a functionally important insect group, with implications for the landscape-scale management of forest patches within agricultural landscapes.

  2. LocTree2 predicts localization for all domains of life

    PubMed Central

    Goldberg, Tatyana; Hamp, Tobias; Rost, Burkhard

    2012-01-01

    Motivation: Subcellular localization is one aspect of protein function. Despite advances in high-throughput imaging, localization maps remain incomplete. Several methods accurately predict localization, but many challenges remain to be tackled. Results: In this study, we introduced a framework to predict localization in life's three domains, including globular and membrane proteins (3 classes for archaea; 6 for bacteria and 18 for eukaryota). The resulting method, LocTree2, works well even for protein fragments. It uses a hierarchical system of support vector machines that imitates the cascading mechanism of cellular sorting. The method reaches high levels of sustained performance (eukaryota: Q18=65%, bacteria: Q6=84%). LocTree2 also accurately distinguishes membrane and non-membrane proteins. In our hands, it compared favorably with top methods when tested on new data. Availability: Online through PredictProtein (predictprotein.org); as standalone version at http://www.rostlab.org/services/loctree2. Contact: localization@rostlab.org Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:22962467

  3. Metabotypes with properly functioning mitochondria and anti-inflammation predict extended productive life span in dairy cows

    PubMed Central

    Huber, K.; Dänicke, S.; Rehage, J.; Sauerwein, H.; Otto, W.; Rolle-Kampczyk, U.; von Bergen, M.

    2016-01-01

    The failure to adapt metabolism to the homeorhetic demands of lactation is considered as a main factor in reducing the productive life span of dairy cows. The so far defined markers of production performance and metabolic health in dairy cows do not predict the length of productive life span satisfyingly. This study aimed to identify novel pathways and biomarkers related to productive life in dairy cows by means of (targeted) metabolomics. In a longitudinal study from 42 days before up to 100 days after parturition, we identified metabolites such as long-chain acylcarnitines and biogenic amines associated with extended productive life spans. These metabolites are mainly secreted by the liver and depend on the functionality of hepatic mitochondria. The concentrations of biogenic amines and some acylcarnitines differed already before the onset of lactation thus indicating their predictive potential for continuation or early ending of productive life. PMID:27089826

  4. Definition of data base, code, and technologies for cable life extension

    SciTech Connect

    Bustard, L.D.

    1987-03-01

    The substantial number of cables inside containment for a typical nuclear facility provides a strong motivation to extend cable life rather than replace cables as part of an overall plant life extension strategy. Hence, it is important to understand what information is necessary to accomplish life extension. This paper defines utility-specific as well as collective-industry actions that would facilitate extending cable life. The focus of these recommendations is (1) to more realistically define the environmental profiles during which cables must function, (2) to define plant configuration and operational changes which may enahnce cable life, (3) to better understand the validity of accelerated aging methodology through examination of naturally aged cables, (4) to better understand the validity of accelerated aging methodology via selected experimentation, (5) to support cable aging analysis by improving nonproprietary data bases, (6) to reduce the impact of the design basis accident assumptions on cable performance so additional cable aging can be accommodated during extended life, and (7) to complement life predictions with more effective cable condition monitoring techniques than those currently available.

  5. A windows based mechanistic subsidence prediction model for longwall mining

    SciTech Connect

    Begley, R.; Beheler, P.; Khair, A.W.

    1996-12-31

    The previously developed Mechanistic Subsidence Prediction Model (MSPM) has been incorporated into the graphical interface environment of MS Windows. MSPM has the unique capability of predicting maximum subsidence, angle of draw and the subsidence profile of a longwall panel at various locations for both the transverse and longitudinal orientations. The resultant enhanced model can be operated by individuals with little knowledge of subsidence prediction theories or little computer programming experience. In addition, predictions of subsidence can be made in a matter of seconds without the need to develop input data files or use the keyboard in some cases. The predictions are based upon the following input parameters: panel width, mining height, overburden depth, rock quality designation, and percent hard rock in the immediate roof, main roof and the entire overburden. The recently developed enhanced model has the capability to compare predictions in a graphical format for one half of the predicted subsidence profile based upon changes in input parameters easily and instantly on the same screen. In addition another screen can be obtained from a pull down menu where the operator can compare predictions for the entire subsidence profiles. This paper presents the background of the subsidence prediction model and the methodology of the enhanced model development. The paper also presents comparisons of subsidence predictions for several different sets of input parameters in addition to comparisons of the subsidence predictions with actual field data.

  6. Models for Prediction of Factor VIII Half-Life in Severe Haemophiliacs: Distinct Approaches for Blood Group O and Non-O Patients

    PubMed Central

    Fischer, Kathelijn; van Dijk, Karin; Denis, Cécile V.; van den Berg, H. Marijke; Lenting, Peter J.

    2009-01-01

    Background Von Willebrand factor (VWF) is critical for the in vivo survival of factor VIII (FVIII). Since FVIII half-life correlates with VWF-antigen pre-infusion levels, we hypothesized that VWF levels are useful to predict FVIII half-life. Methodology Standardized half-life studies and analysis of pre-infusion VWF and VWF-propeptide levels were performed in a cohort of 38 patients with severe haemophilia A (FVIII <1 IU/ml), aged 15–44 years. Nineteen patients had blood-group O. Using multivariate linear regression-analysis (MVLR-analysis), the association of VWF-antigen, VWF-propeptide, age and body-weight with FVIII half-life was evaluated. Principal Findings FVIII half-life was shorter in blood-group O-patients compared to non-O-patients (11.5±2.6 h versus 14.3±3.0 h; p = 0.004). VWF-antigen levels correlated with FVIII half-life considerably better in patients with blood-group non-O than O (Pearson-rank = 0.70 and 0.47, respectively). Separate prediction models evolved from MVLR-analysis for blood-group O and non-O patients, based on VWF-antigen and VWF/propeptide ratio. Predicted half-lives deviated less than 3 h of observed half-life in 34/38 patients (89%) or less than 20% in 31/38 patients (82%). Conclusion Our approach may identify patients with shorter FVIII half-lives, and adapt treatment protocols when half-life studies are unavailable. In addition, our data indicate that survival of FVIII is determined by survival of endogenous VWF rather than VWF levels per se. PMID:19707594

  7. Failure Mechanisms and Life Prediction of Thermal and Environmental Barrier Coatings under Thermal Gradients

    NASA Technical Reports Server (NTRS)

    Zju, Dongming; Ghosn, Louis J.; Miller, Robert A.

    2008-01-01

    Ceramic thermal and environmental barrier coatings (TEBCs) will play an increasingly important role in gas turbine engines because of their ability to further raise engine temperatures. However, the issue of coating durability is of major concern under high-heat-flux conditions. In particular, the accelerated coating delamination crack growth under the engine high heat-flux conditions is not well understood. In this paper, a laser heat flux technique is used to investigate the coating delamination crack propagation under realistic temperature-stress gradients and thermal cyclic conditions. The coating delamination mechanisms are investigated under various thermal loading conditions, and are correlated with coating dynamic fatigue, sintering and interfacial adhesion test results. A coating life prediction framework may be realized by examining the crack initiation and propagation driving forces for coating failure under high-heat-flux test conditions.

  8. NASA Langley developments in response calculations needed for failure and life prediction

    NASA Technical Reports Server (NTRS)

    Housner, Jerrold M.

    1993-01-01

    NASA Langley developments in response calculations needed for failure and life predictions are discussed. Topics covered include: structural failure analysis in concurrent engineering; accuracy of independent regional modeling demonstrated on classical example; functional interface method accurately joins incompatible finite element models; interface method for insertion of local detail modeling extended to curve pressurized fuselage window panel; interface concept for joining structural regions; motivation for coupled 2D-3D analysis; compression panel with discontinuous stiffener coupled 2D-3D model and axial surface strains at the middle of the hat stiffener; use of adaptive refinement with multiple methods; adaptive mesh refinement; and studies on quantity effect of bow-type initial imperfections on reliability of stiffened panels.

  9. Speech perception in infancy predicts language development in the second year of life: a longitudinal study.

    PubMed

    Tsao, Feng-Ming; Liu, Huei-Mei; Kuhl, Patricia K

    2004-01-01

    Infants' early phonetic perception is hypothesized to play an important role in language development. Previous studies have not assessed this potential link in the first 2 years of life. In this study, speech discrimination was measured in 6-month-old infants using a conditioned head-turn task. At 13, 16, and 24 months of age, language development was assessed in these same children using the MacArthur Communicative Development Inventory. Results demonstrated significant correlations between speech perception at 6 months of age and later language (word understanding, word production, phrase understanding). The finding that speech perception performance at 6 months predicts language at 2 years supports the idea that phonetic perception may play an important role in language acquisition. PMID:15260865

  10. Implicit theories about willpower predict self-regulation and grades in everyday life.

    PubMed

    Job, Veronika; Walton, Gregory M; Bernecker, Katharina; Dweck, Carol S

    2015-04-01

    Laboratory research shows that when people believe that willpower is an abundant (rather than highly limited) resource they exhibit better self-control after demanding tasks. However, some have questioned whether this "nonlimited" theory leads to squandering of resources and worse outcomes in everyday life when demands on self-regulation are high. To examine this, we conducted a longitudinal study, assessing students' theories about willpower and tracking their self-regulation and academic performance. As hypothesized, a nonlimited theory predicted better self-regulation (better time management and less procrastination, unhealthy eating, and impulsive spending) for students who faced high self-regulatory demands. Moreover, among students taking a heavy course load, those with a nonlimited theory earned higher grades, which was mediated by less procrastination. These findings contradict the idea that a limited theory helps people allocate their resources more effectively; instead, it is people with the nonlimited theory who self-regulate well in the face of high demands.

  11. Development and Life Prediction of Erosion Resistant Turbine Low Conductivity Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.

    2010-01-01

    Future rotorcraft propulsion systems are required to operate under highly-loaded conditions and in harsh sand erosion environments, thereby imposing significant material design and durability issues. The incorporation of advanced thermal barrier coatings (TBC) in high pressure turbine systems enables engine designs with higher inlet temperatures, thus improving the engine efficiency, power density and reliability. The impact and erosion resistance of turbine thermal barrier coating systems are crucial to the turbine coating technology application, because a robust turbine blade TBC system is a prerequisite for fully utilizing the potential coating technology benefit in the rotorcraft propulsion. This paper describes the turbine blade TBC development in addressing the coating impact and erosion resistance. Advanced thermal barrier coating systems with improved performance have also been validated in laboratory simulated engine erosion and/or thermal gradient environments. A preliminary life prediction modeling approach to emphasize the turbine blade coating erosion is also presented.

  12. Empirical modeling of environment-enhanced fatigue crack propagation in structural alloys for component life prediction. Final report

    SciTech Connect

    Richey, E. III

    1995-10-01

    This research aims to develop the methods and understanding needed to incorporate time and loading variable dependent environmental effects on fatigue crack propagation (FCP) into computerized fatigue life prediction codes such as NASA FLAGRO (NASGRO). In particular, the effect of loading frequency on FCP rates in alpha + beta titanium alloys exposed to an aqueous chloride solution is investigated. The approach couples empirical modeling of environmental FCP with corrosion fatigue experiments. Three different computer models have been developed and incorporated in the DOS executable program. UVAFAS. A multiple power law model is available, and can fit a set of fatigue data to a multiple power law equation. A model has also been developed which implements the Wei and Landes linear superposition model, as well as an interpolative model which can be utilized to interpolate trends in fatigue behavior based on changes in loading characteristics (stress ratio, frequency, and hold times).

  13. Science gateways for semantic-web-based life science applications.

    PubMed

    Ardizzone, Valeria; Bruno, Riccardo; Calanducci, Antonio; Carrubba, Carla; Fargetta, Marco; Ingrà, Elisa; Inserra, Giuseppina; La Rocca, Giuseppe; Monforte, Salvatore; Pistagna, Fabrizio; Ricceri, Rita; Rotondo, Riccardo; Scardaci, Diego; Barbera, Roberto

    2012-01-01

    In this paper we present the architecture of a framework for building Science Gateways supporting official standards both for user authentication and authorization and for middleware-independent job and data management. Two use cases of the customization of the Science Gateway framework for Semantic-Web-based life science applications are also described.

  14. Bringing Strength-Based Philosophy to Life in Juvenile Justice

    ERIC Educational Resources Information Center

    Nissen, Laura

    2006-01-01

    The strength-based approach is an organizing principle for a family of theories and practice strategies that encourage helping professionals to seek out clients' abilities, resources, and gifts and apply them to current life challenges. Despite its successful use in many human service sectors, this approach has not been embraced in the juvenile…

  15. Life Skills Based in Nation Building Character Value Tauhidullah

    ERIC Educational Resources Information Center

    Yapandi, H.

    2015-01-01

    This study discusses the values Tauhidullah as a base in the training process of life skills can be developed in the community to build the character of the nation, by describing and simultaneously evaluate the education and training system that we've experienced. The paper argues that builds the character of the nation through education…

  16. Group-Based Life Design Counseling in an Italian Context

    ERIC Educational Resources Information Center

    Di Fabio, Annamaria; Maree, Jacobus Gideon

    2012-01-01

    This study examined the effectiveness of group-based Life Design Counseling using the Career-Story Interview. Written exercises were used to implement the seven topics in the Career-Story Interview. The present study employed an experimental design that involved two groups of Italian entrepreneurs from the agricultural and trade sectors, namely an…

  17. Copula-based prediction of economic movements

    NASA Astrophysics Data System (ADS)

    García, J. E.; González-López, V. A.; Hirsh, I. D.

    2016-06-01

    In this paper we model the discretized returns of two paired time series BM&FBOVESPA Dividend Index and BM&FBOVESPA Public Utilities Index using multivariate Markov models. The discretization corresponds to three categories, high losses, high profits and the complementary periods of the series. In technical terms, the maximal memory that can be considered for a Markov model, can be derived from the size of the alphabet and dataset. The number of parameters needed to specify a discrete multivariate Markov chain grows exponentially with the order and dimension of the chain. In this case the size of the database is not large enough for a consistent estimation of the model. We apply a strategy to estimate a multivariate process with an order greater than the order achieved using standard procedures. The new strategy consist on obtaining a partition of the state space which is constructed from a combination, of the partitions corresponding to the two marginal processes and the partition corresponding to the multivariate Markov chain. In order to estimate the transition probabilities, all the partitions are linked using a copula. In our application this strategy provides a significant improvement in the movement predictions.

  18. Cyclic fatigue damage characteristics observed for simple loadings extended to multiaxial life prediction

    NASA Technical Reports Server (NTRS)

    Jones, David J.; Kurath, Peter

    1988-01-01

    Fully reversed uniaxial strain controlled fatigue tests were performed on smooth cylindrical specimens made of 304 stainless steel. Fatigue life data and cracking observations for uniaxial tests were compared with life data and cracking behavior observed in fully reversed torsional tests. It was determined that the product of maximum principle strain amplitude and maximum principle stress provided the best correlation of fatigue lives for these two loading conditions. Implementation of this parameter is in agreement with observed physical damage and it accounts for the variation of stress-strain response, which is unique to specific loading conditions. Biaxial fatigue tests were conducted on tubular specimens employing both in-phase and out-of-phase tension torsion cyclic strain paths. Cracking observations indicated that the physical damage which occurred in the biaxial tests was similar to the damage observed in uniaxial and torsional tests. The Smith, Watson, and Topper parameter was then extended to predict the fatigue lives resulting from the more complex loading conditions.

  19. Life prediction and constitutive models for engine hot section anisotropic materials program. Annual Status Report

    SciTech Connect

    Swanson, G.A.; Linask, I.; Nissley, D.M.; Norris, P.P.; Meyer, T.G.; Walker, K.P.

    1986-02-01

    This report presents the results of the first year of a program designed to develop life prediction and constitutive models for two coated single crystal alloys used in gas turbine airfoils. The two alloys are PWA 1480 and Alloy 185. The two oxidation resistant coatings are PWA 273, an aluminide coating, and PWA 286, an overlay NiCoCrAlY coating. To obtain constitutive and/or fatigue data, tests were conducted on coated and uncoated PWA 1480 specimens tensilely loaded in the 100, 110, 111, and 123 directions. A literature survey of constitutive models was completed for both single crystal alloys and metallic coating materials; candidate models were selected. One constitutive model under consideration for single crystal alloys applies Walker's micromechanical viscoplastic formulation to all slip systems participating in the single crystal deformation. The constitutive models for the overlay coating correlate the viscoplastic data well. For the aluminide coating, a unique test method is under development. LCF and TMF tests are underway. The two coatings caused a significant drop in fatigue life, and each produced a much different failure mechanism.

  20. Development of a simplified procedure for rocket engine thrust chamber life prediction with creep

    NASA Technical Reports Server (NTRS)

    Badlani, M. L.; Porowski, J. S.; Odonnell, W. J.; Peterson, D. B.

    1983-01-01

    An analytical method for predicting engine thrust chamber life is developed. The method accounts for high pressure differentials and time-dependent creep effects both of which are significant in limiting the useful life of the shuttle main engine thrust chamber. The hot-gas-wall ligaments connecting adjacent cooling channels ribs and separating the coolant flow from the combustion gas are subjected to a high pressure induced primary stress superimposed on an alternating cyclic thermal strain field. The pressure load combined with strain-controlled cycling produces creep ratcheting and consequent bulging and thinning of these ligaments. This mechanism of creep-enhanced ratcheting is analyzed for determining the hot-gas-wall deformation and accumulated strain. Results are confirmed by inelastic finite element analysis. Fatigue and creep rupture damage as well as plastic tensile instability are evaluated as potential failure modes. It is demonstrated for the NARloy Z cases analyzed that when pressure differentials across the ligament are high, creep rupture damage is often the primary failure mode for the cycle times considered.

  1. Learning impairments identified early in life are predictive of future impairments associated with aging

    PubMed Central

    Hullinger, Rikki; Burger, Corinna

    2016-01-01

    The Morris water maze (MWM) behavioral paradigm is commonly used to measure spatial learning and memory in rodents. It is widely accepted that performance in the MWM declines with age. However, young rats ubiquitously perform very well on established versions of the water maze, suggesting that more challenging tasks may be required to reveal subtle differences in young animals. Therefore, we have used a one-day water maze and novel object recognition to test whether more sensitive paradigms of memory in young animals could identify subtle cognitive impairments early in life that might become accentuated later with senescence. We have found that these two tasks reliably separate young rats into inferior and superior learners, are highly correlated, and that performance on these tasks early in life is predictive of performance at 12 months of age. Furthermore, we have found that repeated training in this task selectively improves the performance of inferior learners, suggesting that behavioral training from an early age may provide a buffer against age-related cognitive decline. PMID:26283528

  2. Life prediction and constitutive models for engine hot section anisotropic materials program

    NASA Technical Reports Server (NTRS)

    Swanson, G. A.; Linask, I.; Nissley, D. M.; Norris, P. P.; Meyer, T. G.; Walker, K. P.

    1986-01-01

    This report presents the results of the first year of a program designed to develop life prediction and constitutive models for two coated single crystal alloys used in gas turbine airfoils. The two alloys are PWA 1480 and Alloy 185. The two oxidation resistant coatings are PWA 273, an aluminide coating, and PWA 286, an overlay NiCoCrAlY coating. To obtain constitutive and/or fatigue data, tests were conducted on coated and uncoated PWA 1480 specimens tensilely loaded in the 100 , 110 , 111 , and 123 directions. A literature survey of constitutive models was completed for both single crystal alloys and metallic coating materials; candidate models were selected. One constitutive model under consideration for single crystal alloys applies Walker's micromechanical viscoplastic formulation to all slip systems participating in the single crystal deformation. The constitutive models for the overlay coating correlate the viscoplastic data well. For the aluminide coating, a unique test method is under development. LCF and TMF tests are underway. The two coatings caused a significant drop in fatigue life, and each produced a much different failure mechanism.

  3. Transmission line icing prediction based on DWT feature extraction

    NASA Astrophysics Data System (ADS)

    Ma, T. N.; Niu, D. X.; Huang, Y. L.

    2016-08-01

    Transmission line icing prediction is the premise of ensuring the safe operation of the network as well as the very important basis for the prevention of freezing disasters. In order to improve the prediction accuracy of icing, a transmission line icing prediction model based on discrete wavelet transform (DWT) feature extraction was built. In this method, a group of high and low frequency signals were obtained by DWT decomposition, and were fitted and predicted by using partial least squares regression model (PLS) and wavelet least square support vector model (w-LSSVM). Finally, the final result of the icing prediction was obtained by adding the predicted values of the high and low frequency signals. The results showed that the method is effective and feasible in the prediction of transmission line icing.

  4. Quality and shelf-life prediction for retail fresh hake (Merluccius merluccius).

    PubMed

    García, Míriam R; Vilas, Carlos; Herrera, Juan R; Bernárdez, Marta; Balsa-Canto, Eva; Alonso, Antonio A

    2015-09-01

    Fish quality has a direct impact on market price and its accurate assessment and prediction are of main importance to set prices, increase competitiveness, resolve conflicts of interest and prevent food wastage due to conservative product shelf-life estimations. In this work we present a general methodology to derive predictive models of fish freshness under different storage conditions. The approach makes use of the theory of optimal experimental design, to maximize data information and in this way reduce the number of experiments. The resulting growth model for specific spoilage microorganisms in hake (Merluccius merluccius) is sufficiently informative to estimate quality sensory indexes under time-varying temperature profiles. In addition it incorporates quantitative information of the uncertainty induced by fish variability. The model has been employed to test the effect of factors such as fishing gear or evisceration, on fish spoilage and therefore fish quality. Results show no significant differences in terms of microbial growth between hake fished by long-line or bottom-set nets, within the implicit uncertainty of the model. Similar conclusions can be drawn for gutted and un-gutted hake along the experiment horizon. In addition, whenever there is the possibility to carry out the necessary experiments, this approach is sufficiently general to be used in other fish species and under different stress variables.

  5. A 3.5 year diary study: Remembering and life story importance are predicted by different event characteristics.

    PubMed

    Thomsen, Dorthe Kirkegaard; Jensen, Thomas; Holm, Tine; Olesen, Martin Hammershøj; Schnieber, Anette; Tønnesvang, Jan

    2015-11-01

    Forty-five participants described and rated two events each week during their first term at university. After 3.5 years, we examined whether event characteristics rated in the diary predicted remembering, reliving, and life story importance at the follow-up. In addition, we examined whether ratings of life story importance were consistent across a three year interval. Approximately 60% of events were remembered, but only 20% of these were considered above medium importance to life stories. Higher unusualness, rehearsal, and planning predicted whether an event was remembered 3.5 years later. Higher goal-relevance, importance, emotional intensity, and planning predicted life story importance 3.5 years later. There was a moderate correlation between life story importance rated three months after the diary and rated at the 3.5 year follow-up. The results suggest that autobiographical memory and life stories are governed by different mechanisms and that life story memories are characterized by some degree of stability.

  6. The myth of science-based predictive modeling.

    SciTech Connect

    Hemez, F. M.

    2004-01-01

    A key aspect of science-based predictive modeling is the assessment of prediction credibility. This publication argues that the credibility of a family of models and their predictions must combine three components: (1) the fidelity of predictions to test data; (2) the robustness of predictions to variability, uncertainty, and lack-of-knowledge; and (3) the prediction accuracy of models in cases where measurements are not available. Unfortunately, these three objectives are antagonistic. A recently published Theorem that demonstrates the irrevocable trade-offs between fidelity-to-data, robustness-to-uncertainty, and confidence in prediction is summarized. High-fidelity models cannot be made increasingly robust to uncertainty and lack-of-knowledge. Similarly, robustness-to-uncertainty can only be improved at the cost of reducing the confidence in prediction. The concept of confidence in prediction relies on a metric for total uncertainty, capable of aggregating different representations of uncertainty (probabilistic or not). The discussion is illustrated with an engineering application where a family of models is developed to predict the acceleration levels obtained when impacts of varying levels propagate through layers of crushable hyper-foam material of varying thicknesses. Convex modeling is invoked to represent a severe lack-of-knowledge about the constitutive material behavior. The analysis produces intervals of performance metrics from which the total uncertainty and confidence levels are estimated. Finally, performance, robustness and confidence are extrapolated throughout the validation domain to assess the predictive power of the family of models away from tested configurations.

  7. Hospital at home: home-based end of life care

    PubMed Central

    Shepperd, Sasha; Wee, Bee; Straus, Sharon E

    2014-01-01

    Background The policy in a number of countries is to provide people with a terminal illness the choice of dying at home. This policy is supported by surveys indicating that the general public and patients with a terminal illness would prefer to receive end of life care at home. Objectives To determine if providing home-based end of life care reduces the likelihood of dying in hospital and what effect this has on patients’ symptoms, quality of life, health service costs and care givers compared with inpatient hospital or hospice care. Search methods We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library) to October 2009, Ovid MED-LINE(R) 1950 to March 2011, EMBASE 1980 to October 2009, CINAHL 1982 to October 2009 and EconLit to October 2009. We checked the reference lists of articles identified for potentially relevant articles. Selection criteria Randomised controlled trials, interrupted time series or controlled before and after studies evaluating the effectiveness of home-based end of life care with inpatient hospital or hospice care for people aged 18 years and older. Data collection and analysis Two authors independently extracted data and assessed study quality. We combined the published data for dichotomous outcomes using fixed-effect Mantel-Haenszel meta-analysis. When combining outcome data was not possible we presented the data in narrative summary tables. Main results We included four trials in this review. Those receiving home-based end of life care were statistically significantly more likely to die at home compared with those receiving usual care (RR 1.33, 95% CI 1.14 to 1.55, P = 0.0002; Chi 2 = 1.72, df = 2, P = 0.42, I2 = 0% (three trials; N=652)). We detected no statistically significant differences for functional status (measured by the Barthel Index), psychological well-being or cognitive status, between patients receiving home-based end of life care compared with those receiving standard care (which

  8. Probabilistic Study Conducted on Sensor-Based Engine Life Calculation

    NASA Technical Reports Server (NTRS)

    Guo, Ten-Huei

    2004-01-01

    Turbine engine life management is a very complicated process to ensure the safe operation of an engine subjected to complex usage. The challenge of life management is to find a reasonable compromise between the safe operation and the maximum usage of critical parts to reduce maintenance costs. The commonly used "cycle count" approach does not take the engine operation conditions into account, and it oversimplifies the calculation of the life usage. Because of the shortcomings, many engine components are regularly pulled for maintenance before their usable life is over. And, if an engine has been running regularly under more severe conditions, components might not be taken out of service before they exceed their designed risk of failure. The NASA Glenn Research Center and its industrial and academic partners have been using measurable parameters to improve engine life estimation. This study was based on the Monte Carlo simulation of 5000 typical flights under various operating conditions. First a closed-loop engine model was developed to simulate the engine operation across the mission profile and a thermomechanical fatigue (TMF) damage model was used to calculate the actual damage during takeoff, where the maximum TMF accumulates. Next, a Weibull distribution was used to estimate the implied probability of failure for a given accumulated cycle count. Monte Carlo simulations were then employed to find the profiles of the TMF damage under different operating assumptions including parameter uncertainties. Finally, probabilities of failure for different operating conditions were analyzed to demonstrate the importance of a sensor-based damage calculation in order to better manage the risk of failure and on-wing life.

  9. Model-based Heart rate prediction during Lokomat walking.

    PubMed

    Koenig, Alexander C; Somaini, Luca; Pulfer, Michael; Holenstein, Thomas; Omlin, Ximena; Wieser, Martin; Riener, Robert

    2009-01-01

    We implemented a model for prediction of heart rate during Lokomat walking. Using this model, we can predict potential overstressing of the patient and adapt the physical load accordingly. Current models for treadmill based heart rate control neglect the fact that the interaction torques between Lokomat and human can have a significant effect on heart rate. Tests with five healthy subjects lead to a model of sixth order with walking speed and power expenditure as inputs and heart rate prediction as output. Recordings with five different subjects were used for model validation. Future work includes model identification and predictive heart rate control with spinal cord injured and stroke patients. PMID:19963765

  10. Growth inhibition in early life-stage tests predicts full life-cycle toxicity effects of lead in the freshwater pulmonate snail, Lymnaea stagnalis.

    PubMed

    Munley, Kathleen M; Brix, Kevin V; Panlilio, Jennifer; Deforest, David K; Grosell, Martin

    2013-03-15

    The freshwater pulmonate snail, Lymnaea stagnalis, is the most sensitive freshwater organism tested to date for several metals (Co, Cu, Pb, Ni) based on 28 d early life-stage (ELS) tests in which growth was the most sensitive endpoint. The United States Environmental Protection Agency (USEPA) has expressed concern that growth in 28 d ELS tests with mollusks may overpredict toxicity because of the potential for recovery in a full life-cycle (LC) test. Consequently, the USEPA only accepts the survival endpoint for these tests in establishing water quality criteria (WQC). To address this concern, the current study aimed to test the sensitivity of L. stagnalis to Pb in a 56 d full LC test evaluating survival, growth, reproductive and embryonic growth endpoints and compare the estimated effect levels to those established using the 28 d ELS test design. The most sensitive endpoints in this study were 28 d growth and 56 d egg mass production, both with a NOEC of <1.0 μg L(-1) and a LOEC of 1.0 μg L(-1), showing that the ELS growth endpoint is predictive of the 56 d reproduction endpoint. Snails exposed to 1.0 and 2.7 μg L(-1) Pb showed full and partial recovery from growth inhibition between 28 and 56 d. While this recovery supports the USEPA's concern about the 28 d growth endpoint; considering the reproductive lifespan of L. stagnalis and the recovery dose-response, we conclude that the 28 d growth endpoint will be within a factor of 3 of full LC endpoints. This is consistent with the level of precision previously determined for fish ELS tests, which the USEPA accepts for WQC derivation, and suggests that tests using 28 d ELS growth endpoint for L. stagnalis may be acceptable for inclusion in WQC derivation.

  11. Protein-Based Urine Test Predicts Kidney Transplant Outcomes

    MedlinePlus

    ... News Releases News Release Thursday, August 22, 2013 Protein-based urine test predicts kidney transplant outcomes NIH- ... supporting development of noninvasive tests. Levels of a protein in the urine of kidney transplant recipients can ...

  12. Evaluating the real-world predictive validity of the Body Image Quality of Life Inventory using Ecological Momentary Assessment.

    PubMed

    Heron, Kristin E; Mason, Tyler B; Sutton, Tiphanie G; Myers, Taryn A

    2015-09-01

    Perceptions of physical appearance, or body image, can affect psychosocial functioning and quality of life (QOL). The present study evaluated the real-world predictive validity of the Body Image Quality of Life Inventory (BIQLI) using Ecological Momentary Assessment (EMA). College women reporting subclinical disordered eating/body dissatisfaction (N=131) completed the BIQLI and related measures. For one week they then completed five daily EMA surveys of mood, social interactions, stress, and eating behaviors on palmtop computers. Results showed better body image QOL was associated with less negative affect, less overwhelming emotions, more positive affect, more pleasant social interactions, and higher self-efficacy for handling stress. Lower body image QOL was marginally related to less overeating and lower loss of control over eating in daily life. To our knowledge, this is the first study to support the real-world predictive validity of the BIQLI by identifying social, affective, and behavioral correlates in everyday life using EMA. PMID:26302376

  13. Improving Computational Efficiency of Prediction in Model-Based Prognostics Using the Unscented Transform

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew John; Goebel, Kai Frank

    2010-01-01

    Model-based prognostics captures system knowledge in the form of physics-based models of components, and how they fail, in order to obtain accurate predictions of end of life (EOL). EOL is predicted based on the estimated current state distribution of a component and expected profiles of future usage. In general, this requires simulations of the component using the underlying models. In this paper, we develop a simulation-based prediction methodology that achieves computational efficiency by performing only the minimal number of simulations needed in order to accurately approximate the mean and variance of the complete EOL distribution. This is performed through the use of the unscented transform, which predicts the means and covariances of a distribution passed through a nonlinear transformation. In this case, the EOL simulation acts as that nonlinear transformation. In this paper, we review the unscented transform, and describe how this concept is applied to efficient EOL prediction. As a case study, we develop a physics-based model of a solenoid valve, and perform simulation experiments to demonstrate improved computational efficiency without sacrificing prediction accuracy.

  14. Local-prediction-based difference expansion reversible watermarking.

    PubMed

    Dragoi, Ioan-Catalin; Coltuc, Dinu

    2014-04-01

    This paper investigates the use of local prediction in difference expansion reversible watermarking. For each pixel, a least square predictor is computed on a square block centered on the pixel and the corresponding prediction error is expanded. The same predictor is recovered at detection without any additional information. The proposed local prediction is general and it applies regardless of the predictor order or the prediction context. For the particular cases of least square predictors with the same context as the median edge detector, gradient-adjusted predictor or the simple rhombus neighborhood, the local prediction-based reversible watermarking clearly outperforms the state-of-the-art schemes based on the classical counterparts. Experimental results are provided.

  15. Pace of life, predators and parasites: predator-induced life-history evolution in Trinidadian guppies predicts decrease in parasite tolerance.

    PubMed

    Stephenson, J F; van Oosterhout, C; Cable, J

    2015-11-01

    A common evolutionary response to predation pressure is increased investment in reproduction, ultimately resulting in a fast life history. Theory and comparative studies suggest that short-lived organisms invest less in defence against parasites than those that are longer lived (the pace of life hypothesis). Combining these tenets of evolutionary theory leads to the specific, untested prediction that within species, populations experiencing higher predation pressure invest less in defence against parasites. The Trinidadian guppy, Poecilia reticulata, presents an excellent opportunity to test this prediction: guppy populations in lower courses of rivers experience higher predation pressure, and as a consequence have evolved faster life histories, than those in upper courses. Data from a large-scale field survey showed that fish infected with Gyrodactylus parasites were of a lower body condition (quantified using the scaled mass index) than uninfected fish, but only in lower course populations. Although the evidence we present is correlational, it suggests that upper course guppies sustain lower fitness costs of infection, i.e. are more tolerant, than lower course guppies. The data are therefore consistent with the pace of life hypothesis of parasite defence allocation, and suggest that life-history traits mediate the indirect effect of predators on the parasites of their prey.

  16. Making the normal deviant: the introduction of predictive medicine in life insurance.

    PubMed

    Van Hoyweghen, Ine; Horstman, Klasien; Schepers, Rita

    2006-09-01

    Over the past years, one of the most discussed topics in policy debates on genetics has been the use of genetic testing in insurance. Many of these debates have been rather speculative and abstract. In a recent contribution to this journal, Kaufert therefore urged for "a proper research agenda" to study the issue, arguing for the need of anthropological and sociological research of the insurance world. This article will make a start with this. Based on ethnographic fieldwork in two Belgium insurance companies, this study analyses the ways insurers account for predictive medicine (lifestyle, genetics) during underwriting. We demonstrate how insurers highlight predictive lifestyle health information and how this articulates with a fault based approach in underwriting. Individual responsibility for health risks becomes the golden standard for assessing one's fitness for membership of the insurance pool. Moreover, these developments imply a changed concept of "normal standard" in insurance, increasing the conditions to fulfil to be part of the insurance group. Predictive medicine constitutes new ground in the old debates about individual control, responsibility and blame for health. This goes to the heart of the basis for citizenship and how this articulates with membership--or, if you want, exclusion--of the insurance pool.

  17. Pre-operative factors predicting good outcome in terms of health-related quality of life after ACL reconstruction.

    PubMed

    Månsson, O; Kartus, J; Sernert, N

    2013-02-01

    The life situation of many patients changes after an anterior cruciate ligament (ACL) rupture and subsequent reconstruction, and this may affect their health-related quality of life in many ways. It is well known that the overall clinical results after ACL reconstruction are considered good, but pre-operative predictive factors for a good post-operative clinical outcome after ACL reconstruction have not been studied in as much detail. The purpose of this study was to identify pre-operative factors that predict a good post-operative outcome as measured by the Short Form 36 (SF-36) and Knee Osteoarthritis Outcome Score (KOOS) 3-6 years after ACL reconstruction. Seventy-three patients scheduled for ACL reconstruction were clinically examined pre-operatively. The SF-36 and KOOS questionnaires were sent by mail to these patients 3-6 years after reconstruction. Predictive factors for health-related quality of life were investigated using a stepwise regression analysis. In conclusion, pre-operative factors, such as pivot shift, knee function, and range of motion, may predict a good post-operative outcome and explain up to 25% in terms of health-related quality of life after ACL reconstruction. Furthermore, it appears that the patients' pre-injury and pre-operative Tegner activity levels are important predictors of post-operative health-related quality of life.

  18. Degradation Prediction Model Based on a Neural Network with Dynamic Windows

    PubMed Central

    Zhang, Xinghui; Xiao, Lei; Kang, Jianshe

    2015-01-01

    Tracking degradation of mechanical components is very critical for effective maintenance decision making. Remaining useful life (RUL) estimation is a widely used form of degradation prediction. RUL prediction methods when enough run-to-failure condition monitoring data can be used have been fully researched, but for some high reliability components, it is very difficult to collect run-to-failure condition monitoring data, i.e., from normal to failure. Only a certain number of condition indicators in certain period can be used to estimate RUL. In addition, some existing prediction methods have problems which block RUL estimation due to poor extrapolability. The predicted value converges to a certain constant or fluctuates in certain range. Moreover, the fluctuant condition features also have bad effects on prediction. In order to solve these dilemmas, this paper proposes a RUL prediction model based on neural network with dynamic windows. This model mainly consists of three steps: window size determination by increasing rate, change point detection and rolling prediction. The proposed method has two dominant strengths. One is that the proposed approach does not need to assume the degradation trajectory is subject to a certain distribution. The other is it can adapt to variation of degradation indicators which greatly benefits RUL prediction. Finally, the performance of the proposed RUL prediction model is validated by real field data and simulation data. PMID:25806873

  19. Electrical Resistance of SiC/SiC Ceramic Matrix Composites for Damage Detection and Life-Prediction

    NASA Technical Reports Server (NTRS)

    Smith, Craig; Morscher, Gregory; Xia, Zhenhai

    2009-01-01

    Ceramic matrix composites (CMC) are suitable for high temperature structural applications such as turbine airfoils and hypersonic thermal protection systems due to their low density high thermal conductivity. The employment of these materials in such applications is limited by the ability to accurately monitor and predict damage evolution. Current nondestructive methods such as ultrasound, x-ray, and thermal imaging are limited in their ability to quantify small scale, transverse, in-plane, matrix cracks developed over long-time creep and fatigue conditions. CMC is a multifunctional material in which the damage is coupled with the material s electrical resistance, providing the possibility of real-time information about the damage state through monitoring of resistance. Here, resistance measurement of SiC/SiC composites under mechanical load at both room temperature monotonic and high temperature creep conditions, coupled with a modal acoustic emission technique, can relate the effects of temperature, strain, matrix cracks, fiber breaks, and oxidation to the change in electrical resistance. A multiscale model can in turn be developed for life prediction of in-service composites, based on electrical resistance methods. Results of tensile mechanical testing of SiC/SiC composites at room and high temperatures will be discussed. Data relating electrical resistivity to composite constituent content, fiber architecture, temperature, matrix crack formation, and oxidation will be explained, along with progress in modeling such properties.

  20. Report on three Genomes to Life Workshops: Data Infrastructure, Modeling and Simulation, and Protein Structure Prediction

    SciTech Connect

    Geist, GA

    2003-09-16

    On July 22, 23, 24, 2003, three one day workshops were held in Gaithersburg, Maryland. Each was attended by about 30 computational biologists, mathematicians, and computer scientists who were experts in the respective workshop areas The first workshop discussed the data infrastructure needs for the Genomes to Life (GTL) program with the objective to identify gaps in the present GTL data infrastructure and define the GTL data infrastructure required for the success of the proposed GTL facilities. The second workshop discussed the modeling and simulation needs for the next phase of the GTL program and defined how these relate to the experimental data generated by genomics, proteomics, and metabolomics. The third workshop identified emerging technical challenges in computational protein structure prediction for DOE missions and outlining specific goals for the next phase of GTL. The workshops were attended by representatives from both OBER and OASCR. The invited experts at each of the workshops made short presentations on what they perceived as the key needs in the GTL data infrastructure, modeling and simulation, and structure prediction respectively. Each presentation was followed by a lively discussion by all the workshop attendees. The following findings and recommendations were derived from the three workshops. A seamless integration of GTL data spanning the entire range of genomics, proteomics, and metabolomics will be extremely challenging but it has to be treated as the first-class component of the GTL program to assure GTL's chances for success. High-throughput GTL facilities and ultrascale computing will make it possible to address the ultimate goal of modern biology: to achieve a fundamental, comprehensive, and systematic understanding of life. But first the GTL community needs to address the problem of the massive quantities and increased complexity of biological data produced by experiments and computations. Genome-scale collection, analysis

  1. Thermal Cycling Life Prediction of Sn-3.0Ag-0.5Cu Solder Joint Using Type-I Censored Data

    PubMed Central

    Mi, Jinhua; Yang, Yuan-Jian; Huang, Hong-Zhong

    2014-01-01

    Because solder joint interconnections are the weaknesses of microelectronic packaging, their reliability has great influence on the reliability of the entire packaging structure. Based on an accelerated life test the reliability assessment and life prediction of lead-free solder joints using Weibull distribution are investigated. The type-I interval censored lifetime data were collected from a thermal cycling test, which was implemented on microelectronic packaging with lead-free ball grid array (BGA) and fine-pitch ball grid array (FBGA) interconnection structures. The number of cycles to failure of lead-free solder joints is predicted by using a modified Engelmaier fatigue life model and a type-I censored data processing method. Then, the Pan model is employed to calculate the acceleration factor of this test. A comparison of life predictions between the proposed method and the ones calculated directly by Matlab and Minitab is conducted to demonstrate the practicability and effectiveness of the proposed method. At last, failure analysis and microstructure evolution of lead-free solders are carried out to provide useful guidance for the regular maintenance, replacement of substructure, and subsequent processing of electronic products. PMID:25121138

  2. Thermal cycling life prediction of Sn-3.0Ag-0.5Cu solder joint using type-I censored data.

    PubMed

    Mi, Jinhua; Li, Yan-Feng; Yang, Yuan-Jian; Peng, Weiwen; Huang, Hong-Zhong

    2014-01-01

    Because solder joint interconnections are the weaknesses of microelectronic packaging, their reliability has great influence on the reliability of the entire packaging structure. Based on an accelerated life test the reliability assessment and life prediction of lead-free solder joints using Weibull distribution are investigated. The type-I interval censored lifetime data were collected from a thermal cycling test, which was implemented on microelectronic packaging with lead-free ball grid array (BGA) and fine-pitch ball grid array (FBGA) interconnection structures. The number of cycles to failure of lead-free solder joints is predicted by using a modified Engelmaier fatigue life model and a type-I censored data processing method. Then, the Pan model is employed to calculate the acceleration factor of this test. A comparison of life predictions between the proposed method and the ones calculated directly by Matlab and Minitab is conducted to demonstrate the practicability and effectiveness of the proposed method. At last, failure analysis and microstructure evolution of lead-free solders are carried out to provide useful guidance for the regular maintenance, replacement of substructure, and subsequent processing of electronic products. PMID:25121138

  3. Remaining Creep Life Assessment Techniques Based on Creep Cavitation Modeling

    NASA Astrophysics Data System (ADS)

    Ankit, Kumar

    2009-05-01

    The boiler and its components are built with assumed nominal design and reasonable life of operation about two to three decades (one or two hundred thousand hours). These units are generally replaced or life is extended at the end of this period. Under normal operating conditions, after the initial period of teething troubles, the reliability of these units remains fairly constant up to about two decades of normal operation. The failure rate then increases as a result of their time-dependent material damage. Further running of these units may become uneconomical and dangerous in some cases. In the following article, step-by-step methodology to quantify creep cavitation based on statistical probability analysis and continuum damage mechanics has been described. The concepts of creep cavity nucleation have also been discussed with a special emphasis on the need for development of a model based on creep cavity growth kinetics.

  4. Appreciation and Life Satisfaction: Does Appreciation Uniquely Predict Life Satisfaction above Gender, Coping Skills, Self-Esteem, and Positive Affectivity?

    ERIC Educational Resources Information Center

    Halle, Joshua Solomon

    2015-01-01

    The primary purpose of this research was to examine whether appreciation explains variance in life satisfaction after controlling for gender, positive affectivity, self-esteem, and coping skills. Two hundred ninety-eight undergraduates went to the informed consent page of the online survey composed of the Appreciation Scale, the Satisfaction With…

  5. Life history traits predict relative abundance in an assemblage of forest caterpillars.

    PubMed

    Lind, Eric M; Barbosa, Pedro

    2010-11-01

    Species in a given trophic level occur in vastly unequal abundance, a pattern commonly documented but poorly explained for most taxa. Theoretical predictions of species density such as those arising from the metabolic theory of ecology hold well at large spatial and temporal scales but are not supported in many communities sampled at a relatively small scale. At these scales ecological factors may be more important than the inherent limits to energy use set by allometric scaling of mass. These factors include the amount of resources available, and the ability of individuals to convert these resources successfully into population growth. While previous studies have demonstrated the limits of macroecological theory in explaining local abundance, few studies have tested alternative generalized mechanisms determining abundance at the community scale. Using an assemblage of forest moth species found co-occurring as caterpillars on a single host plant species, we tested whether species abundance on that plant could be explained by mass allometry, intrinsic population growth, diet breadth, or some combination of these traits. We parameterized life history traits of the caterpillars in association with the host plant in both field and laboratory settings, so that the population growth estimate was specific to the plant on which abundance was measured. Using a generalized least-squares regression method incorporating phylogenetic relatedness, we found no relationship between abundance and mass but found that abundance was best explained by both intrinsic population growth rate and diet breadth. Species population growth potential was most affected by survivorship and larval development time on the host plant. Metabolic constraints may determine upper limits to local abundance levels for species, but local community abundance is strongly predicted by the potential for population increase and the resources available to that species in the environment.

  6. Review of time-dependent fatigue behavior and life prediction for 2 1/4 Cr-1 Mo steel. [LMFBR

    SciTech Connect

    Booker, M.K.; Majumdar, S.

    1982-01-01

    Available data on creep-fatigue life and fracture behavior of 2 1/4 Cr-1 Mo steel are reviewed. Whereas creep-fatigue interaction is important for Type 304 stainless steel, oxidation effects appear to dominate the time-dependent fatigue behavior of 2 1/4 Cr-1 Mo steel. Four of the currently available predictive methods - the Linear Damage Rule, Frequency Separation Equation, Strain Range Partitioning Equation, and Damage Rate Equation - are evaluated for their predictive capability. Variations in the parameters for the various predictive methods with temperature, heat of material, heat treatment, and environment are investigated. Relative trends in the lives predicted by the various methods as functions of test duration, waveshape, etc., are discussed. The predictive methods will need modification in order to account for oxidation and aging effects in the 2 1/4 Cr-1 Mo steel. Future tests that will emphasize the difference between the various predictive methods are proposed.

  7. Fatigue life estimation for different notched specimens based on the volumetric approach

    NASA Astrophysics Data System (ADS)

    Zehsaz, M.; Hassanifard, S.; Esmaeili, F.

    2010-06-01

    In this paper, the effects of notch radius for different notched specimens has been studied on the values of stress concentration factor, notch strength reduction factor, and fatigue life duration of the specimens. The material which has been selected for this investigation is Al 2024T3 . Volumetric approach has been applied to obtain the values of notch strength reduction factor and results have been compared with those obtained from the Neuber and Peterson methods. Load controlled fatigue tests of mentioned specimens have been conducted on the 250kN servo-hydraulic Zwick/Amsler fatigue testing machine with the frequency of 10Hz. The fatigue lives of the specimens have also been predicted based on the available smooth S-N curve of Al2024-T3 and also the amounts of notch strength reduction factor which have been obtained from volumetric, Neuber and Peterson methods. The values of stress and strain around the notch roots are required to predict the fatigue life of notched specimens, so Ansys finite element code has been used and non-linear analyses have been performed to obtain the stress and strain distributions around the notches. The plastic deformations of the material have been simulated using multi-linear kinematic hardening and cyclic stress-strain relation. The work here shows that the volumetric approach does a very good job for predicting the fatigue life of the notched specimens.

  8. Do Early-Life Conditions Predict Functional Health Status in Adulthood? The Case of Mexico

    PubMed Central

    Huang, Cheng; Soldo, Beth J; Elo, Irma T

    2010-01-01

    Relatively few researchers have investigated early antecedents of adult functional limitations in developing countries. In this study, we assessed associations between childhood conditions and adult lower-body functional limitations (LBFL) as well as the potential mediating role of adult socioeconomic status, smoking, body mass index, and chronic diseases or symptoms. Based on data from the Mexican Health and Aging Study (MHAS) of individuals born prior to 1951 and contacted in 2001 and 2003, we found that childhood nutritional deprivation, serious health problems, and family background predict adult LBFL in Mexico. Adjustment for the potential mediators in adulthood attenuates these associations only to a modest degree. PMID:21074924

  9. Modeling, design, and life performance prediction for energy production from geothermal reservoirs. Final report

    SciTech Connect

    Swenson, D.

    1998-01-01

    System modeling supports the design and long-term, commercially successful operation of geothermal reservoirs. Modeling guides in the placement of the injection and production wells, in the stimulation of the reservoir, and in the operational strategies used to ensure continuing production. Without an understanding of the reservoir, it is possible to harm the reservoir by inappropriate operation (especially break-through of cold injection fluid) and the desired profitable lifetimes will not be reached. In this project the authors have continued to develop models for predicting the life of geothermal reservoirs. One of the goals has been to maintain and transfer existing Hot Dry Rock two-dimensional fractured reservoir analysis capability to the geothermal industry and to begin the extension of the analysis concepts to three dimensions. Primary focus has been on interaction with industry, maintenance of Geocrack2D, and development of the Geocrack3D model. It is important to emphasize that the modeling is complementary to current industry modeling, in that they focus on flow in fractured rock and on the coupled effect of thermal cooling. In the following sections the authors document activities as part of this research project: industry interaction; national and international collaboration; and model development.

  10. Accelerated Life Testing and Service Lifetime Prediction for PV Technologies in the Twenty-First Century

    SciTech Connect

    Czanderna, A. W.; Jorgensen, G. J.

    1999-07-13

    The purposes of this paper are to (1) discuss the necessity for conducting accelerated life testing (ALT) in the early stages of developing new photovoltaic (PV) technologies, (2) elucidate the crucial importance for combining ALT with real-time testing (RTT) in terrestrial environments for promising PV technologies for the 21st century, and (3) outline the essential steps for making a service lifetime prediction (SLP) for any PV technology. The specific objectives are to (a) illustrate the essential need for ALT of complete, encapsulated multilayer PV devices, (b) indicate the typical causes of degradation in PV stacks, (c) elucidate the complexity associated with quantifying the durability of the devices, (d) explain the major elements that constitute a generic SLP methodology, (e) show how the introduction of the SLP methodology in the early stages of new device development can reduce the cost of technology development, and (f) outline the procedure for combining the results of ALT and RTT, establishing degradation mechanisms, using sufficient numbers of samples, and applying the SLP methodology to produce a SLP for existing or new PV technologies.

  11. Acoustic study of dislocation rearrangement at later stages of fatigue: Noncontact prediction of remaining life

    NASA Astrophysics Data System (ADS)

    Ogi, Hirotsugu; Minami, Yoshikiyo; Hirao, Masahiko

    2002-02-01

    This study is devoted to clarifying the mechanism of the surface-shear-wave attenuation peak observed during rotating bending fatigue of carbon steels. We have developed electromagnetic acoustic resonance to make a contactless monitoring of the attenuation throughout the fatigue test. The attenuation peak occurs at a fixed fraction to lifetime, being independent of the bending stress (0.49-1.20 of the yield stresses) and the carbon content (0.22-0.45 mass %). Low-temperature heat treatment reduces the peak attenuation back to the previous value, which indicates a dominant contribution of dislocations. Microstructure observations with transmission electron microscopy, surface crack study with replicas and the acoustic measurements show that a large-scale change occurs in the dislocation structure (persistent slip bands to cells) at the attenuation peak and that it is triggered by the inward growth of cracks. This change is completed in a short time, a few percent of the total lifetime. The acoustic-resonance technique can be an important means for the exact prediction of the remaining life of fatigued steels.

  12. Implicit theories about willpower predict self-regulation and grades in everyday life.

    PubMed

    Job, Veronika; Walton, Gregory M; Bernecker, Katharina; Dweck, Carol S

    2015-04-01

    Laboratory research shows that when people believe that willpower is an abundant (rather than highly limited) resource they exhibit better self-control after demanding tasks. However, some have questioned whether this "nonlimited" theory leads to squandering of resources and worse outcomes in everyday life when demands on self-regulation are high. To examine this, we conducted a longitudinal study, assessing students' theories about willpower and tracking their self-regulation and academic performance. As hypothesized, a nonlimited theory predicted better self-regulation (better time management and less procrastination, unhealthy eating, and impulsive spending) for students who faced high self-regulatory demands. Moreover, among students taking a heavy course load, those with a nonlimited theory earned higher grades, which was mediated by less procrastination. These findings contradict the idea that a limited theory helps people allocate their resources more effectively; instead, it is people with the nonlimited theory who self-regulate well in the face of high demands. PMID:25844577

  13. Genetic-based prediction of disease traits: prediction is very difficult, especially about the future†

    PubMed Central

    Schrodi, Steven J.; Mukherjee, Shubhabrata; Shan, Ying; Tromp, Gerard; Sninsky, John J.; Callear, Amy P.; Carter, Tonia C.; Ye, Zhan; Haines, Jonathan L.; Brilliant, Murray H.; Crane, Paul K.; Smelser, Diane T.; Elston, Robert C.; Weeks, Daniel E.

    2014-01-01

    Translation of results from genetic findings to inform medical practice is a highly anticipated goal of human genetics. The aim of this paper is to review and discuss the role of genetics in medically-relevant prediction. Germline genetics presages disease onset and therefore can contribute prognostic signals that augment laboratory tests and clinical features. As such, the impact of genetic-based predictive models on clinical decisions and therapy choice could be profound. However, given that (i) medical traits result from a complex interplay between genetic and environmental factors, (ii) the underlying genetic architectures for susceptibility to common diseases are not well-understood, and (iii) replicable susceptibility alleles, in combination, account for only a moderate amount of disease heritability, there are substantial challenges to constructing and implementing genetic risk prediction models with high utility. In spite of these challenges, concerted progress has continued in this area with an ongoing accumulation of studies that identify disease predisposing genotypes. Several statistical approaches with the aim of predicting disease have been published. Here we summarize the current state of disease susceptibility mapping and pharmacogenetics efforts for risk prediction, describe methods used to construct and evaluate genetic-based predictive models, and discuss applications. PMID:24917882

  14. Bioregenerative life support system for a lunar base

    NASA Astrophysics Data System (ADS)

    Liu, H.; Wang, J.; Manukovsky, N. S.; Kovalev, V. S.; Gurevich, Yu. L.

    We have studied a modular approach to construction of bioregenerative life support system BLSS for a lunar base using soil-like substrate SLS for plant cultivation Calculations of massflow rates in BLSS were based mostly on a vegetarian diet and biological conversion of plant residues in SLS Plant candidate list for lunar BLSS includes the following basic species rice Oryza sativa soy Glycine max sweet potato Ipomoea batatas and wheat Triticum aestivum To reduce the time necessary for transition of the system to steady state we suggest that the first seeding and sprouting could be made on Earth

  15. Prediction of human pharmacokinetics using physiologically based modeling: a retrospective analysis of 26 clinically tested drugs.

    PubMed

    De Buck, Stefan S; Sinha, Vikash K; Fenu, Luca A; Nijsen, Marjoleen J; Mackie, Claire E; Gilissen, Ron A H J

    2007-10-01

    The aim of this study was to evaluate different physiologically based modeling strategies for the prediction of human pharmacokinetics. Plasma profiles after intravenous and oral dosing were simulated for 26 clinically tested drugs. Two mechanism-based predictions of human tissue-to-plasma partitioning (P(tp)) from physicochemical input (method Vd1) were evaluated for their ability to describe human volume of distribution at steady state (V(ss)). This method was compared with a strategy that combined predicted and experimentally determined in vivo rat P(tp) data (method Vd2). Best V(ss) predictions were obtained using method Vd2, providing that rat P(tp) input was corrected for interspecies differences in plasma protein binding (84% within 2-fold). V(ss) predictions from physicochemical input alone were poor (32% within 2-fold). Total body clearance (CL) was predicted as the sum of scaled rat renal clearance and hepatic clearance projected from in vitro metabolism data. Best CL predictions were obtained by disregarding both blood and microsomal or hepatocyte binding (method CL2, 74% within 2-fold), whereas strong bias was seen using both blood and microsomal or hepatocyte binding (method CL1, 53% within 2-fold). The physiologically based pharmacokinetics (PBPK) model, which combined methods Vd2 and CL2 yielded the most accurate predictions of in vivo terminal half-life (69% within 2-fold). The Gastroplus advanced compartmental absorption and transit model was used to construct an absorption-disposition model and provided accurate predictions of area under the plasma concentration-time profile, oral apparent volume of distribution, and maximum plasma concentration after oral dosing, with 74%, 70%, and 65% within 2-fold, respectively. This evaluation demonstrates that PBPK models can lead to reasonable predictions of human pharmacokinetics. PMID:17620347

  16. Protein Microarrays-Based Strategies for Life Detection in Astrobiology

    NASA Astrophysics Data System (ADS)

    Parro, Víctor; Rivas, Luis A.; Gómez-Elvira, Javier

    2008-03-01

    The detection of organic molecules of unambiguous biological origin is fundamental for the confirmation of present or past life. Planetary exploration requires the development of miniaturized apparatus for in situ life detection. Analytical techniques based on mass spectrometry have been traditionally used in space science. Following the Viking landers, gas chromatography-mass spectrometry (GC-MS) for organic detection has gained general acceptance and has been used successfully in the Cassini-Huygens mission to Titan. Microfluidics allows the development of miniaturized capillary electrophoresis devices for the detection of important molecules for life, like amino acids or nucleobases. Recently, a new approach is gaining acceptance in the space science community: the application of the well-known, highly specific, antibody-antigen affinity interaction for the detection and identification of organics and biochemical compounds. Antibodies can specifically bind a plethora of structurally different compounds of a broad range of molecular sizes, from amino acids level to whole cells. Antibody microarray technology allows us to look for the presence of thousands of different compounds in a single assay and in just one square centimeter. Herein, we discuss several important issues—most of which are common with other instruments dealing with life signature detection in the solar system—that must be addressed in order to use antibody microarrays for life detection and planetary exploration. These issues include (1) preservation of biomarkers, (2) the extraction techniques for biomarkers, (3) terrestrial analogues, (4) the antibody stability under space environments, (5) the selection of unequivocal biomarkers for the antibody production, or (6) the instrument design and implementation.

  17. Protein Microarrays-Based Strategies for Life Detection in Astrobiology

    NASA Astrophysics Data System (ADS)

    Parro, Víctor; Rivas, Luis A.; Gómez-Elvira, Javier

    The detection of organic molecules of unambiguous biological origin is fundamental for the confirmation of present or past life. Planetary exploration requires the development of miniaturized apparatus for in situ life detection. Analytical techniques based on mass spectrometry have been traditionally used in space science. Following the Viking landers, gas chromatography-mass spectrometry (GC-MS) for organic detection has gained general acceptance and has been used successfully in the Cassini-Huygens mission to Titan. Microfluidics allows the development of miniaturized capillary electrophoresis devices for the detection of important molecules for life, like amino acids or nucleobases. Recently, a new approach is gaining acceptance in the space science community: the application of the well-known, highly specific, antibody-antigen affinity interaction for the detection and identification of organics and biochemical compounds. Antibodies can specifically bind a plethora of structurally different compounds of a broad range of molecular sizes, from amino acids level to whole cells. Antibody microarray technology allows us to look for the presence of thousands of different compounds in a single assay and in just one square centimeter. Herein, we discuss several important issues—most of which are common with other instruments dealing with life signature detection in the solar system—that must be addressed in order to use antibody microarrays for life detection and planetary exploration. These issues include (1) preservation of biomarkers, (2) the extraction techniques for biomarkers, (3) terrestrial analogues, (4) the antibody stability under space environments, (5) the selection of unequivocal biomarkers for the antibody production, or (6) the instrument design and implementation.

  18. OPTIMIZATION BIAS IN ENERGY-BASED STRUCTURE PREDICTION

    PubMed Central

    Petrella, Robert J.

    2014-01-01

    Physics-based computational approaches to predicting the structure of macromolecules such as proteins are gaining increased use, but there are remaining challenges. In the current work, it is demonstrated that in energy-based prediction methods, the degree of optimization of the sampled structures can influence the prediction results. In particular, discrepancies in the degree of local sampling can bias the predictions in favor of the oversampled structures by shifting the local probability distributions of the minimum sampled energies. In simple systems, it is shown that the magnitude of the errors can be calculated from the energy surface, and for certain model systems, derived analytically. Further, it is shown that for energy wells whose forms differ only by a randomly assigned energy shift, the optimal accuracy of prediction is achieved when the sampling around each structure is equal. Energy correction terms can be used in cases of unequal sampling to reproduce the total probabilities that would occur under equal sampling, but optimal corrections only partially restore the prediction accuracy lost to unequal sampling. For multiwell systems, the determination of the correction terms is a multibody problem; it is shown that the involved cross-correlation multiple integrals can be reduced to simpler integrals. The possible implications of the current analysis for macromolecular structure prediction are discussed. PMID:25552783

  19. Coping Styles, Social Support, Relational Self-Construal, and Resilience in Predicting Students' Adjustment to University Life

    ERIC Educational Resources Information Center

    Rahat, Enes; Ilhan, Tahsin

    2016-01-01

    The purpose of the present study is to investigate how well coping styles, social support, relational self-construal, and resilience characteristics predict first year university students' ability to adjust to university life. Participants consisted of 527 at-risk students attending a state university in Turkey. The Personal Information Form, Risk…

  20. The Best Years of Our Lives? Coping with Stress Predicts School Grades, Life Satisfaction, and Feelings about High School

    ERIC Educational Resources Information Center

    MacCann, Carolyn; Lipnevich, Anastasiya A.; Burrus, Jeremy; Roberts, Richard D.

    2012-01-01

    This study examines whether problem-focused, emotion-focused, and avoidant coping strategies predict key outcomes in a sample of 354 high school students. The four outcomes considered are: academic achievement, life satisfaction, positive feelings towards school, and negative feelings towards school. Results demonstrate that coping incrementally…

  1. Cloud Based Metalearning System for Predictive Modeling of Biomedical Data

    PubMed Central

    Vukićević, Milan

    2014-01-01

    Rapid growth and storage of biomedical data enabled many opportunities for predictive modeling and improvement of healthcare processes. On the other side analysis of such large amounts of data is a difficult and computationally intensive task for most existing data mining algorithms. This problem is addressed by proposing a cloud based system that integrates metalearning framework for ranking and selection of best predictive algorithms for data at hand and open source big data technologies for analysis of biomedical data. PMID:24892101

  2. Thrust chamber life prediction. Volume 1: Mechanical and physical properties of high performance rocket nozzle materials

    NASA Technical Reports Server (NTRS)

    Esposito, J. J.; Zabora, R. F.

    1975-01-01

    Pertinent mechanical and physical properties of six high conductivity metals were determined. The metals included Amzirc, NARloy Z, oxygen free pure copper, electroformed copper, fine silver, and electroformed nickel. Selection of these materials was based on their possible use in high performance reusable rocket nozzles. The typical room temperature properties determined for each material included tensile ultimate strength, tensile yield strength, elongation, reduction of area, modulus of elasticity, Poisson's ratio, density, specific heat, thermal conductivity, and coefficient of thermal expansion. Typical static tensile stress-strain curves, cyclic stress-strain curves, and low-cycle fatigue life curves are shown. Properties versus temperature are presented in graphical form for temperatures from 27.6K (-410 F) to 810.9K (1000 F).

  3. A criterion for high-cycle fatigue life and fatigue limit prediction in biaxial loading conditions

    NASA Astrophysics Data System (ADS)

    Pejkowski, Łukasz; Skibicki, Dariusz

    2016-08-01

    This paper presents a criterion for high-cycle fatigue life and fatigue strength estimation under periodic proportional and non-proportional cyclic loading. The criterion is based on the mean and maximum values of the second invariant of the stress deviator. Important elements of the criterion are: function of the non-proportionality of fatigue loading and the materials parameter that expresses the materials sensitivity to non-proportional loading. The methods for the materials parameters determination uses three S-N curves: tension-compression, torsion, and any non-proportional loading proposed. The criterion has been verified using experimental data, and the results are included in the paper. These results should be considered as promising. The paper also includes a proposal for multiaxial fatigue models classification due to the approach for the non-proportionality of loading.

  4. Environment enhanced fatigue crack propagation in metals: Inputs to fracture mechanics life prediction models

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Kim, Sang-Shik

    1993-01-01

    This report is a critical review of both environment-enhanced fatigue crack propagation data and the predictive capabilities of crack growth rate models. This information provides the necessary foundation for incorporating environmental effects in NASA FLAGRO and will better enable predictions of aerospace component fatigue lives. The review presents extensive literature data on 'stress corrosion cracking and corrosion fatigue.' The linear elastic fracture mechanics approach, based on stress intensity range (Delta(K)) similitude with microscopic crack propagation threshold and growth rates, provides a basis for these data. Results are presented showing enhanced growth rates for gases (viz., H2 and H2O) and electrolytes (e.g. NaCl and H2O) in aerospace alloys including: C-Mn and heat treated alloy steels, aluminum alloys, nickel-based superalloys, and titanium alloys. Environment causes purely time-dependent accelerated fatigue crack growth above the monotonic load cracking threshold (KIEAC) and promotes cycle-time dependent cracking below (KIEAC). These phenomenon are discussed in terms of hydrogen embrittlement, dissolution, and film rupture crack tip damage mechanisms.

  5. Perceived social support predicted quality of life in patients with heart failure, but the effect is mediated by depressive symptoms

    PubMed Central

    Chung, Misook L; Mosor, Debra K; Lennie, Terry A; Frazier, Susan K.

    2012-01-01

    Purpose Depressive symptoms and inadequate social support are well-known independent predictors of increased mortality and morbidity in heart failure (HF). However, it is unclear how depressive symptoms and social support interact to influence quality of life. Thus, the purpose of this study was to determine the nature of the relationships (direct, mediator, and moderator) among depressive symptoms, social support, and quality of life in patients with HF. Methods We performed a secondary data analysis that included 362 patients with HF who completed measures of depressive symptoms (the Beck Depression Inventory-II), perceived social support (the Multidimensional Scale of Perceived Social Support), and quality of life (the Minnesota Living with Heart Failure Questionnaire) instruments. The direct, mediator, and moderator effects of both depressive symptoms and social support on quality of life were tested using multiple regressions and 2×2 ANCOVA. Results Less social support and greater depressive symptoms independently predicted poorer quality of life. The relationship between social support and quality of life was mediated by depressive symptoms. Neither social support nor depressive symptoms moderated quality of life. Conclusion Promotion of social support will improve quality of life only when depressive symptoms are also effectively managed. PMID:23076798

  6. An Efficient Deterministic Approach to Model-based Prediction Uncertainty Estimation

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew J.; Saxena, Abhinav; Goebel, Kai

    2012-01-01

    Prognostics deals with the prediction of the end of life (EOL) of a system. EOL is a random variable, due to the presence of process noise and uncertainty in the future inputs to the system. Prognostics algorithm must account for this inherent uncertainty. In addition, these algorithms never know exactly the state of the system at the desired time of prediction, or the exact model describing the future evolution of the system, accumulating additional uncertainty into the predicted EOL. Prediction algorithms that do not account for these sources of uncertainty are misrepresenting the EOL and can lead to poor decisions based on their results. In this paper, we explore the impact of uncertainty in the prediction problem. We develop a general model-based prediction algorithm that incorporates these sources of uncertainty, and propose a novel approach to efficiently handle uncertainty in the future input trajectories of a system by using the unscented transformation. Using this approach, we are not only able to reduce the computational load but also estimate the bounds of uncertainty in a deterministic manner, which can be useful to consider during decision-making. Using a lithium-ion battery as a case study, we perform several simulation-based experiments to explore these issues, and validate the overall approach using experimental data from a battery testbed.

  7. New methodology for shaft design based on life expectancy

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.

    1986-01-01

    The design of power transmission shafting for reliability has not historically received a great deal of attention. However, weight sensitive aerospace and vehicle applications and those where the penalties of shaft failure are great, require greater confidence in shaft design than earlier methods provided. This report summarizes a fatigue strength-based, design method for sizing shafts under variable amplitude loading histories for limited or nonlimited service life. Moreover, applications factors such as press-fitted collars, shaft size, residual stresses from shot peening or plating, corrosive environments can be readily accommodated into the framework of the analysis. Examples are given which illustrate the use of the method, pointing out the large life penalties due to occasional cyclic overloads.

  8. Conceptual designs for lunar base life support systems

    NASA Technical Reports Server (NTRS)

    Dall-Bauman, Liese; Edeen, Marybeth; Brown, Mariann

    1991-01-01

    Three designs for lunar-base life support are described emphasizing the choices of individual processes for initial, intermediate, and advanced systems. Mass balances for the systems are employed to demonstrate the interactions of air, water, and waste loops, and several waste-treatment processes are considered for the initial life-support system. NASA space-station technologies are adopted for the start-up air, water, and waste treatment subsystems, and the intermediate subsystems provide enhanced capabilities. The intermediate waste-management subsystem permits the recovery of reusable waste, and the advanced system provides biological waste treatment. The reduction of resupply requirements and power use are identified as critical issues as is the ability to operate over extended periods.

  9. A model for a knowledge-based system's life cycle

    NASA Technical Reports Server (NTRS)

    Kiss, Peter A.

    1990-01-01

    The American Institute of Aeronautics and Astronautics has initiated a Committee on Standards for Artificial Intelligence. Presented here are the initial efforts of one of the working groups of that committee. The purpose here is to present a candidate model for the development life cycle of Knowledge Based Systems (KBS). The intent is for the model to be used by the Aerospace Community and eventually be evolved into a standard. The model is rooted in the evolutionary model, borrows from the spiral model, and is embedded in the standard Waterfall model for software development. Its intent is to satisfy the development of both stand-alone and embedded KBSs. The phases of the life cycle are detailed as are and the review points that constitute the key milestones throughout the development process. The applicability and strengths of the model are discussed along with areas needing further development and refinement by the aerospace community.

  10. The Cumulative Impact of Nonsevere Life Events Predicts Depression Recurrence during Maintenance Treatment with Interpersonal Psychotherapy

    ERIC Educational Resources Information Center

    Lenze, Shannon N.; Cyranowski, Jill M.; Thompson, Wesley K.; Anderson, Barbara; Frank, Ellen

    2008-01-01

    Although much research has focused on the role of severe life events as risk factors for depression onset, less is known about the relationship between nonsevere life events and depression recurrence. The current study examined the cumulative effects of nonsevere and positive life events on depression recurrence in an outpatient sample of…

  11. A Human Life-Stage Physiologically Based Pharmacokinetic and Pharmacodynamic Model for Chlorpyrifos: Development and Validation

    SciTech Connect

    Smith, Jordan N.; Hinderliter, Paul M.; Timchalk, Charles; Bartels, M. J.; Poet, Torka S.

    2014-08-01

    Sensitivity to chemicals in animals and humans are known to vary with age. Age-related changes in sensitivity to chlorpyrifos have been reported in animal models. A life-stage physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model was developed to computationally predict disposition of CPF and its metabolites, chlorpyrifos-oxon (the ultimate toxicant) and 3,5,6-trichloro-2-pyridinol (TCPy), as well as B-esterase inhibition by chlorpyrifos-oxon in humans. In this model, age-dependent body weight was calculated from a generalized Gompertz function, and compartments (liver, brain, fat, blood, diaphragm, rapid, and slow) were scaled based on body weight from polynomial functions on a fractional body weight basis. Blood flows among compartments were calculated as a constant flow per compartment volume. The life-stage PBPK/PD model was calibrated and tested against controlled adult human exposure studies. Model simulations suggest age-dependent pharmacokinetics and response may exist. At oral doses ≥ 0.55 mg/kg of chlorpyrifos (significantly higher than environmental exposure levels), 6 mo old children are predicted to have higher levels of chlorpyrifos-oxon in blood and higher levels of red blood cell cholinesterase inhibition compared to adults from equivalent oral doses of chlorpyrifos. At lower doses that are more relevant to environmental exposures, the model predicts that adults will have slightly higher levels of chlorpyrifos-oxon in blood and greater cholinesterase inhibition. This model provides a computational framework for age-comparative simulations that can be utilized to predict CPF disposition and biological response over various postnatal life-stages.

  12. Testing life history predictions in a long-lived seabird: a population matrix approach with improved parameter estimation

    USGS Publications Warehouse

    Doherty, P.F.; Schreiber, E.A.; Nichols, J.D.; Hines, J.E.; Link, W.A.; Schenk, G.A.; Schreiber, R.W.

    2004-01-01

    Life history theory and associated empirical generalizations predict that population growth rate (lambda) in long-lived animals should be most sensitive to adult survival; the rates to which lambda is most sensitive should be those with the smallest temporal variances; and stochastic environmental events should most affect the rates to which lambda is least sensitive. To date, most analyses attempting to examine these predictions have been inadequate, their validity being called into question by problems in estimating parameters, problems in estimating the variability of parameters, and problems in measuring population sensitivities to parameters. We use improved methodologies in these three areas and test these life-history predictions in a population of red-tailed tropicbirds (Phaethon rubricauda). We support our first prediction that lambda is most sensitive to survival rates. However the support for the second prediction that these rates have the smallest temporal variance was equivocal. Previous support for the second prediction may be an artifact of a high survival estimate near the upper boundary of 1 and not a result of natural selection canalizing variances alone. We did not support our third prediction that effects of environmental stochasticity (El Ni?o) would most likely be detected in vital rates to which lambda was least sensitive and which are thought to have high temporal variances. Comparative data-sets on other seabirds, within and among orders, and in other locations, are needed to understand these environmental effects.

  13. Operation assistance for the Bio-Remote environmental control system using a Bayesian Network-based prediction model.

    PubMed

    Shibanoki, Taro; Nakamura, Go; Shima, Keisuke; Chin, Takaaki; Tsuji, Toshio

    2015-08-01

    This paper proposes a Bayesian Network (BN) based prediction model for a layer-based selection and its application to an operation assistance for the environmental control system Bio-Remote (BR). In the proposed method, each node of the BN model is involved in the layer-based selection function, which corresponds to an individual operation command, appliance, etc., and previous logs of operation commands and time division are used as input factors to predict the user's intended operation. The prediction results are displayed on the layer-based selection for the BR, and the number of times of operations and time taken for the operations can be reduced with the proposed prediction model. In the experiments, life-logs were collected from a cervical spinal injury patient who used the BR in daily life, and the proposed model was trained based on these recorded life-logs. The prediction accuracy for control devices of the BR system using the proposed model was 84.3 ± 6.5 %. The results indicated that the proposed prediction model could be useful for the operation assistance of the BR system. PMID:26736472

  14. Operationalizing climate-based epidemic prediction models: Rift Valley fever prediction system experience

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background There is considerable optimism that climate data and predictions will facilitate early warning of infectious disease epidemics. Interest in climate-based epidemic forecasting stems from climate-disease associations and global climate change (rising temperatures may extend arthropod vecto...

  15. Prediction Assessments: Using Video-Based Predictions to Assess Prospective Teachers' Knowledge of Students' Mathematical Thinking

    ERIC Educational Resources Information Center

    Norton, Anderson; McCloskey, Andrea; Hudson, Rick A.

    2011-01-01

    In order to evaluate the effectiveness of an experimental elementary mathematics field experience course, we have designed a new assessment instrument. These video-based prediction assessments engage prospective teachers in a video analysis of a child solving mathematical tasks. The prospective teachers build a model of that child's mathematics…

  16. CRYSTALP2: sequence-based protein crystallization propensity prediction

    PubMed Central

    Kurgan, Lukasz; Razib, Ali A; Aghakhani, Sara; Dick, Scott; Mizianty, Marcin; Jahandideh, Samad

    2009-01-01

    Background Current protocols yield crystals for <30% of known proteins, indicating that automatically identifying crystallizable proteins may improve high-throughput structural genomics efforts. We introduce CRYSTALP2, a kernel-based method that predicts the propensity of a given protein sequence to produce diffraction-quality crystals. This method utilizes the composition and collocation of amino acids, isoelectric point, and hydrophobicity, as estimated from the primary sequence, to generate predictions. CRYSTALP2 extends its predecessor, CRYSTALP, by enabling predictions for sequences of unrestricted size and provides improved prediction quality. Results A significant majority of the collocations used by CRYSTALP2 include residues with high conformational entropy, or low entropy and high potential to mediate crystal contacts; notably, such residues are utilized by surface entropy reduction methods. We show that the collocations provide complementary information to the hydrophobicity and isoelectric point. Tests on four datasets show that CRYSTALP2 outperforms several existing sequence-based predictors (CRYSTALP, OB-score, and SECRET). CRYSTALP2's accuracy, MCC, and AROC range between 69.3 and 77.5%, 0.39 and 0.55, and 0.72 and 0.79, respectively. Our predictions are similar in quality and are complementary to the predictions of the most recent ParCrys and XtalPred methods. Our results also suggest that, as work in protein crystallization continues (thereby enlarging the population of proteins with known crystallization propensities), the prediction quality of the CRYSTALP2 method should increase. The prediction model and the datasets used in this contribution can be downloaded from . Conclusion CRYSTALP2 provides relatively accurate crystallization propensity predictions for a given protein chain that either outperform or complement the existing approaches. The proposed method can be used to support current efforts towards improving the success rate in obtaining

  17. Reliability-Based Life Assessment of Stirling Convertor Heater Head

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Halford, Gary R.; Korovaichuk, Igor

    2004-01-01

    Onboard radioisotope power systems being developed and planned for NASA's deep-space missions require reliable design lifetimes of up to 14 yr. The structurally critical heater head of the high-efficiency Stirling power convertor has undergone extensive computational analysis of operating temperatures, stresses, and creep resistance of the thin-walled Inconel 718 bill of material. A preliminary assessment of the effect of uncertainties in the material behavior was also performed. Creep failure resistance of the thin-walled heater head could show variation due to small deviations in the manufactured thickness and in uncertainties in operating temperature and pressure. Durability prediction and reliability of the heater head are affected by these deviations from nominal design conditions. Therefore, it is important to include the effects of these uncertainties in predicting the probability of survival of the heater head under mission loads. Furthermore, it may be possible for the heater head to experience rare incidences of small temperature excursions of short duration. These rare incidences would affect the creep strain rate and, therefore, the life. This paper addresses the effects of such rare incidences on the reliability. In addition, the sensitivities of variables affecting the reliability are quantified, and guidelines developed to improve the reliability are outlined. Heater head reliability is being quantified with data from NASA Glenn Research Center's accelerated benchmark testing program.

  18. Decadal prediction of Sahel rainfall using dynamics-based indices

    NASA Astrophysics Data System (ADS)

    Otero, Noelia; Mohino, Elsa; Gaetani, Marco

    2015-07-01

    At decadal time scales, the capability of state-of-the-art atmosphere-ocean coupled climate models in predicting the precipitation in Sahel is assessed. A set of 14 models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) is selected and two experiments are analysed, namely initialized decadal hindcasts and forced historical simulations. Considering the strong linkage of the atmospheric circulation signatures over West Africa with the rainfall variability, this study aims to investigate the potential of using wind fields for decadal predictions. Namely, a West African monsoon index (WAMI) is defined, based on the coherence of low (925 hPa) and high (200 hPa) troposphere wind fields, which accounts for the intensity of the monsoonal circulation. A combined empirical orthogonal functions analysis is applied to explore the wind fields' covariance modes, and a set of indices is defined on the basis of the identified patterns. The WAMI predictive skill is assessed by comparing WAMI from coupled models with WAMI from reanalysis products and with a standardized precipitation index (SPI) from observations. Results suggest that the predictive skill is highly model dependent and it is strongly related to the WAMI definition. In addition, hindcasts are more skilful than historical simulations in both deterministic and probability forecasts, which suggests an added value of initialization for decadal predictability. Moreover, coupled models are more skilful in predicting the observed SPI than the WAMI obtained from reanalysis. WAMI performance is also compared with decadal predictions from CMIP5 models based on a Sahelian precipitation index, and an improvement in predictive skill is observed in some models when WAMI is used. Therefore, we conclude that dynamics-based indices are potentially more effective for decadal prediction of precipitation in Sahel than precipitation-based indices for those models in which Sahel rainfall variability is not well

  19. CMC Property Variability and Life Prediction Methods for Turbine Engine Component Application

    NASA Technical Reports Server (NTRS)

    Cheplak, Matthew L.

    2004-01-01

    The ever increasing need for lower density and higher temperature-capable materials for aircraft engines has led to the development of Ceramic Matrix Composites (CMCs). Today's aircraft engines operate with >3000"F gas temperatures at the entrance to the turbine section, but unless heavily cooled, metallic components cannot operate above approx.2000 F. CMCs attempt to push component capability to nearly 2700 F with much less cooling, which can help improve engine efficiency and performance in terms of better fuel efficiency, higher thrust, and reduced emissions. The NASA Glenn Research Center has been researching the benefits of the SiC/SiC CMC for engine applications. A CMC is made up of a matrix material, fibers, and an interphase, which is a protective coating over the fibers. There are several methods or architectures in which the orientation of the fibers can be manipulated to achieve a particular material property objective as well as a particular component geometric shape and size. The required shape manipulation can be a limiting factor in the design and performance of the component if there is a lack of bending capability of the fiber as making the fiber more flexible typically sacrifices strength and other fiber properties. Various analysis codes are available (pcGINA, CEMCAN) that can predict the effective Young's Moduli, thermal conductivities, coefficients of thermal expansion (CTE), and various other properties of a CMC. There are also various analysis codes (NASAlife) that can be used to predict the life of CMCs under expected engine service conditions. The objective of this summer study is to utilize and optimize these codes for examining the tradeoffs between CMC properties and the complex fiber architectures that will be needed for several different component designs. For example, for the pcGINA code, there are six variations of architecture available. Depending on which architecture is analyzed, the user is able to specify the fiber tow size, tow

  20. Abnormal energy regulation in early life: childhood gene expression may predict subsequent chronic mountain sickness

    PubMed Central

    Huicho, Luis; Xing, Guoqiang; Qualls, Clifford; Rivera-Ch, María; Gamboa, Jorge L; Verma, Ajay; Appenzeller, Otto

    2008-01-01

    Background Life at altitude depends on adaptation to ambient hypoxia. In the Andes, susceptibility to chronic mountain sickness (CMS), a clinical condition that occurs to native highlanders or to sea level natives with prolonged residence at high altitude, remains poorly understood. We hypothesized that hypoxia-associated gene expression in children of men with CMS might identify markers that predict the development of CMS in adults. We assessed distinct patterns of gene expression of hypoxia-responsive genes in children of highland Andean men, with and without CMS. Methods We compared molecular signatures in children of highland (HA) men with CMS (n = 10), without CMS (n = 10) and in sea level (SL) children (n = 20). Haemoglobin, haematocrit, and oxygen saturation were measured. Gene expression in white cells was assessed at HA and then, in the same subjects, within one hour of arrival at sea level. Results HA children showed higher expression levels of genes regulated by HIF (hypoxia inducible factor) and lower levels of those involved in glycolysis and in the tricarboxilic acid (TCA) cycle. Pyruvate dehydrogenase kinase 1(PDK1) and HIF prolyl hydroxylase 3 (HPH3) mRNA expressions were lowest in children of CMS fathers at altitude. At sea level the pattern of gene expression in the 3 children's groups was indistinguishable. Conclusion The molecular signatures of children of CMS patients show impaired adaptation to hypoxia. At altitude children of CMS fathers had defective coupling between glycolysis and mitochondria TCA cycle, which may be a key mechanism/biomarker for adult CMS. Early biologic markers of disease susceptibility in Andeans might impact health services and social planning. PMID:18954447

  1. Application of chaotic prediction model based on wavelet transform on water quality prediction

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Zou, Z. H.; Zhao, Y. F.

    2016-08-01

    Dissolved oxygen (DO) is closely related to water self-purification capacity. In order to better forecast its concentration, the chaotic prediction model, based on the wavelet transform, is proposed and applied to a certain monitoring section of the Mentougou area of the Haihe River Basin. The result is compared with the simple application of the chaotic prediction model. The study indicates that the new model aligns better with the real data and has a higher accuracy. Therefore, it will provide significant decision support for water protection and water environment treatment.

  2. [Predicting suicide or predicting the unpredictable in an uncertain world: Reinforcement Learning Model-Based analysis].

    PubMed

    Desseilles, Martin

    2012-01-01

    In general, it appears that the suicidal act is highly unpredictable with the current scientific means available. In this article, the author submits the hypothesis that predicting suicide is complex because it results in predicting a choice, in itself unpredictable. The article proposes a Reinforcement learning model-based analysis. In this model, we integrate on the one hand, four ascending modulatory neurotransmitter systems (acetylcholine, noradrenalin, serotonin, and dopamine) with their regions of respective projections and afferences, and on the other hand, various observations of brain imaging identified until now in the suicidal process.

  3. Prediction on carbon dioxide emissions based on fuzzy rules

    NASA Astrophysics Data System (ADS)

    Pauzi, Herrini; Abdullah, Lazim

    2014-06-01

    There are several ways to predict air quality, varying from simple regression to models based on artificial intelligence. Most of the conventional methods are not sufficiently able to provide good forecasting performances due to the problems with non-linearity uncertainty and complexity of the data. Artificial intelligence techniques are successfully used in modeling air quality in order to cope with the problems. This paper describes fuzzy inference system (FIS) to predict CO2 emissions in Malaysia. Furthermore, adaptive neuro-fuzzy inference system (ANFIS) is used to compare the prediction performance. Data of five variables: energy use, gross domestic product per capita, population density, combustible renewable and waste and CO2 intensity are employed in this comparative study. The results from the two model proposed are compared and it is clearly shown that the ANFIS outperforms FIS in CO2 prediction.

  4. Does early-life income inequality predict self-reported health in later life? Evidence from the United States.

    PubMed

    Lillard, Dean R; Burkhauser, Richard V; Hahn, Markus H; Wilkins, Roger

    2015-03-01

    We investigate the association between adult health and the income inequality they experienced as children up to 80 years earlier. Our inequality data track shares of national income held by top percentiles from 1913 to 2009. We average those data over the same early-life years and merge them to individual data from the Panel Study of Income Dynamics data for 1984-2009. Controlling for demographic and economic factors, we find both men and women are statistically more likely to report poorer health if income was more unequally distributed during the first years of their lives. The association is robust to alternative specifications of income inequality and time trends and remains significant even when we control for differences in overall childhood health. Our results constitute prima facie evidence that adults' health may be adversely affected by the income inequality they experienced as children.

  5. NASA's Evolutionary Xenon Thruster (NEXT) Project Qualification Propellant Throughput Milestone: Performance, Erosion, and Thruster Service Life Prediction After 450 kg

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.

    2010-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) program is tasked with significantly improving and extending the capabilities of current state-of-the-art NSTAR thruster. The service life capability of the NEXT ion thruster is being assessed by thruster wear test and life-modeling of critical thruster components, such as the ion optics and cathodes. The NEXT Long-Duration Test (LDT) was initiated to validate and qualify the NEXT thruster propellant throughput capability. The NEXT thruster completed the primary goal of the LDT; namely to demonstrate the project qualification throughput of 450 kg by the end of calendar year 2009. The NEXT LDT has demonstrated 28,500 hr of operation and processed 466 kg of xenon throughput--more than double the throughput demonstrated by the NSTAR flight-spare. Thruster performance changes have been consistent with a priori predictions. Thruster erosion has been minimal and consistent with the thruster service life assessment, which predicts the first failure mode at greater than 750 kg throughput. The life-limiting failure mode for NEXT is predicted to be loss of structural integrity of the accelerator grid due to erosion by charge-exchange ions.

  6. Fast prediction unit selection method for HEVC intra prediction based on salient regions

    NASA Astrophysics Data System (ADS)

    Feng, Lei; Dai, Ming; Zhao, Chun-lei; Xiong, Jing-ying

    2016-07-01

    In order to reduce the computational complexity of the high efficiency video coding (HEVC) standard, a new algorithm for HEVC intra prediction, namely, fast prediction unit (PU) size selection method for HEVC based on salient regions is proposed in this paper. We first build a saliency map for each largest coding unit (LCU) to reduce its texture complexity. Secondly, the optimal PU size is determined via a scheme that implements an information entropy comparison among sub-blocks of saliency maps. Finally, we apply the partitioning result of saliency map on the original LCUs, obtaining the optimal partitioning result. Our algorithm can determine the PU size in advance to the angular prediction in intra coding, reducing computational complexity of HEVC. The experimental results show that our algorithm achieves a 37.9% reduction in encoding time, while producing a negligible loss in Bjontegaard delta bit rate ( BDBR) of 0.62%.

  7. THE FUTURE OF COMPUTER-BASED TOXICITY PREDICTION: MECHANISM-BASED MODELS VS. INFORMATION MINING APPROACHES

    EPA Science Inventory


    The Future of Computer-Based Toxicity Prediction:
    Mechanism-Based
    Models vs. Information Mining Approaches

    When we speak of computer-based toxicity prediction, we are generally referring to a broad array of approaches which rely primarily upon chemical structure ...

  8. One-year mortality, quality of life and predicted life-time cost-utility in critically ill patients with acute respiratory failure

    PubMed Central

    2010-01-01

    Introduction High daily intensive care unit (ICU) costs are associated with the use of mechanical ventilation (MV) to treat acute respiratory failure (ARF), and assessment of quality of life (QOL) after critical illness and cost-effectiveness analyses are warranted. Methods Nationwide, prospective multicentre observational study in 25 Finnish ICUs. During an eight-week study period 958 consecutive adult ICU patients were treated with ventilatory support over 6 hours. Of those 958, 619 (64.6%) survived one year, of whom 288 (46.5%) answered the quality of life questionnaire (EQ-5D). We calculated EQ-5D index and predicted lifetime quality-adjusted life years (QALYs) gained using the age- and sex-matched life expectancy for survivors after one year. For expired patients the exact lifetime was used. We divided all hospital costs for all ARF patients by the number of hospital survivors, and by all predicted lifetime QALYs. We also adjusted for those who died before one year and for those with missing QOL to be able to estimate the total QALYs. Results One-year mortality was 35% (95% CI 32 to 38%). For the 288 respondents median [IQR] EQ-5D index after one year was lower than that of the age- and sex-matched general population 0.70 [0.45 to 0.89] vs. 0.84 [0.81 to 0.88]. For these 288, the mean (SD) predicted lifetime QALYs was 15.4 (13.3). After adjustment for missing QOL the mean predicted lifetime (SD) QALYs was 11.3 (13.0) for all the 958 ARF patients. The mean estimated costs were 20.739 € per hospital survivor, and mean predicted lifetime cost-utility for all ARF patients was 1391 € per QALY. Conclusions Despite lower health-related QOL compared to reference values, our result suggests that cost per hospital survivor and lifetime cost-utility remain reasonable regardless of age, disease severity, and type or duration of ventilation support in patients with ARF. PMID:20384998

  9. Stress-System Genes and Life Stress Predict Cortisol Levels and Amygdala and Hippocampal Volumes in Children

    PubMed Central

    Pagliaccio, David; Luby, Joan L; Bogdan, Ryan; Agrawal, Arpana; Gaffrey, Michael S; Belden, Andrew C; Botteron, Kelly N; Harms, Michael P; Barch, Deanna M

    2014-01-01

    Depression has been linked to increased cortisol reactivity and differences in limbic brain volumes, yet the mechanisms underlying these alterations are unclear. One main hypothesis is that stress causes these effects. This is supported by animal studies showing that chronic stress or glucocorticoid administration can lead to alterations in hippocampal and amygdala structures. Relatedly, life stress is cited as one of the major risk factors for depression and candidate gene studies have related variation in stress-system genes to increased prevalence and severity of depression. The present study tested the hypothesis that genetic profile scores combining variance across 10 single nucleotide polymorphisms from four stress-system genes (CRHR1, NR3C2, NR3C1, and FKBP5) and early life stress would predict increases in cortisol levels during laboratory stressors in 120 preschool-age children (3–5 years old), as well as hippocampal and amygdala volumes assessed with MRI in these same children at school age (7–12 years old). We found that stress-system genetic profile scores positively predicted cortisol levels while the number of stressful/traumatic life events experienced by 3–5 years old negatively predicted cortisol levels. The interaction of genetic profile scores and early life stress predicted left hippocampal and left amygdala volumes. Cortisol partially mediated the effects of genetic variation and life stress on limbic brain volumes, particularly on left amygdala volume. These results suggest that stress-related genetic and early environmental factors contribute to variation in stress cortisol reactivity and limbic brain volumes in children, phenotypes associated with depression in adulthood. PMID:24304824

  10. Improving structure-based function prediction using molecular dynamics

    PubMed Central

    Glazer, Dariya S.; Radmer, Randall J.; Altman, Russ B.

    2009-01-01

    Summary The number of molecules with solved three-dimensional structure but unknown function is increasing rapidly. Particularly problematic are novel folds with little detectable similarity to molecules of known function. Experimental assays can determine the functions of such molecules, but are time-consuming and expensive. Computational approaches can identify potential functional sites; however, these approaches generally rely on single static structures and do not use information about dynamics. In fact, structural dynamics can enhance function prediction: we coupled molecular dynamics simulations with structure-based function prediction algorithms that identify Ca2+ binding sites. When applied to 11 challenging proteins, both methods showed substantial improvement in performance, revealing 22 more sites in one case and 12 more in the other, with a modest increase in apparent false positives. Thus, we show that treating molecules as dynamic entities improves the performance of structure-based function prediction methods. PMID:19604472

  11. LES based urban dispersal predictions for consequence management

    SciTech Connect

    Grinstein, Fernando Franklin; Bos, Randall; Dey, Tom

    2008-01-01

    It is unlikely that we will ever have a deterministic predictive framework for the study of flows in urban scale scenarios purely based on computational fluid dynamics. This is due to the inherent difficulty in modeling and validating all relevant physical sub-processes and acquiring all the necessary and relevant boundary condition information. On the other hand, this case is representative of very fundamental ones for which whole-domain scalable laboratory (or field) studies are impossible or very difficult, but for which it is also crucial to develop predictability. In this paper, we discuss a framework for detailed dispersal predictions in urban and regional settings based on effective linkage of strong motion codes - capable of simulating detailed energetic and contaminant sources, and large-eddy simulation - capable of emulating contaminant transport due to wind and turbulence fields in built-up areas. Challenging technical aspects of the simulation approach are outlined and recent progress is reviewed in th is context.

  12. Development of a diagnostic decision tree for obstructive pulmonary diseases based on real-life data

    PubMed Central

    in ’t Veen, Johannes C.C.M.; Dekhuijzen, P.N. Richard; van Heijst, Ellen; Kocks, Janwillem W.H.; Muilwijk-Kroes, Jacqueline B.; Chavannes, Niels H.; van der Molen, Thys

    2016-01-01

    The aim of this study was to develop and explore the diagnostic accuracy of a decision tree derived from a large real-life primary care population. Data from 9297 primary care patients (45% male, mean age 53±17 years) with suspicion of an obstructive pulmonary disease was derived from an asthma/chronic obstructive pulmonary disease (COPD) service where patients were assessed using spirometry, the Asthma Control Questionnaire, the Clinical COPD Questionnaire, history data and medication use. All patients were diagnosed through the Internet by a pulmonologist. The Chi-squared Automatic Interaction Detection method was used to build the decision tree. The tree was externally validated in another real-life primary care population (n=3215). Our tree correctly diagnosed 79% of the asthma patients, 85% of the COPD patients and 32% of the asthma–COPD overlap syndrome (ACOS) patients. External validation showed a comparable pattern (correct: asthma 78%, COPD 83%, ACOS 24%). Our decision tree is considered to be promising because it was based on real-life primary care patients with a specialist's diagnosis. In most patients the diagnosis could be correctly predicted. Predicting ACOS, however, remained a challenge. The total decision tree can be implemented in computer-assisted diagnostic systems for individual patients. A simplified version of this tree can be used in daily clinical practice as a desk tool. PMID:27730177

  13. Predicting shifts in dynamics of cannibalistic field populations using individual-based models.

    PubMed

    Persson, Lennart; de Roos, André M; Bertolo, Andrea

    2004-12-01

    The occurrence of qualitative shifts in population dynamical regimes has long been the focus of population biologists. Nonlinear ecological models predict that these shifts in dynamical regimes may occur as a result of parameter shifts, but unambiguous empirical evidence is largely restricted to laboratory populations. We used an individual-based modelling approach to predict dynamical shifts in field fish populations where the capacity to cannibalize differed between species. Model-generated individual growth trajectories that reflect different population dynamics were confronted with empirically observed growth trajectories, showing that our ordering and quantitative estimates of the different cannibalistic species in terms of life-history characteristics led to correct qualitative predictions of their dynamics. PMID:15590600

  14. Fuzzy-Based Trust Prediction Model for Routing in WSNs

    PubMed Central

    Anita, X.; Bhagyaveni, M. A.; Manickam, J. Martin Leo

    2014-01-01

    The cooperative nature of multihop wireless sensor networks (WSNs) makes it vulnerable to varied types of attacks. The sensitive application environments and resource constraints of WSNs mandate the requirement of lightweight security scheme. The earlier security solutions were based on historical behavior of neighbor but the security can be enhanced by predicting the future behavior of the nodes in the network. In this paper, we proposed a fuzzy-based trust prediction model for routing (FTPR) in WSNs with minimal overhead in regard to memory and energy consumption. FTPR incorporates a trust prediction model that predicts the future behavior of the neighbor based on the historical behavior, fluctuations in trust value over a period of time, and recommendation inconsistency. In order to reduce the control overhead, FTPR received recommendations from a subset of neighbors who had maximum number of interactions with the requestor. Theoretical analysis and simulation results of FTPR protocol demonstrate higher packet delivery ratio, higher network lifetime, lower end-to-end delay, and lower memory and energy consumption than the traditional and existing trust-based routing schemes. PMID:25133236

  15. Improving protein structure prediction using multiple sequence-based contact predictions

    PubMed Central

    Wu, Sitao; Szilagyi, Andras; Zhang, Yang

    2011-01-01

    Summary Although residue-residue contact maps dictate the topology of proteins, sequence-based ab initio contact predictions have been found little use in actual structure prediction due to the low accuracy. We developed a composite set of nine SVM-based contact predictors which are used in I-TASSER simulation in combination with sparse template contact restraints. When testing the strategy on 273 non-homologous targets, remarkable improvements of I-TASSER models were observed for both easy and hard targets, with P-value by student s t-test below 0.00001 and 0.001, respectively. In several cases, TM-score increases by >30%, which essentially converts “non-foldable” targets into “foldable” ones. In CASP9, I-TASSER employed ab initio contact predictions, and generated models for 26 FM targets with a GDT-score 16% and 44% higher than the second and third best servers from other groups, respectively. These findings demonstrate a new avenue to improve the accuracy of protein structure prediction especially for free-modeling targets. PMID:21827953

  16. Predicting Difficult Laparoscopic Cholecystectomy Based on Clinicoradiological Assessment

    PubMed Central

    Udachan, Tejaswini V; Sasnur, Prasad; Baloorkar, Ramakanth; Sindgikar, Vikram; Narasangi, Basavaraj

    2015-01-01

    Introduction Laparoscopic cholecystectomy (LC) is the gold standard treatment for symptomatic cholelithiasis. However, of all Laparoscopic cholecystectomies, 1-13% requires conversion to an open for various reasons. Thus, for surgeons it would be helpful to establish criteria that would predict difficult laparoscopic cholecystectomy and conversion preoperatively. But there is no clear consensus among the laparoscopic surgeons regarding the parameters predicting the difficult dissection and conversion to open cholecystectomy. Aim To assess the clinical and radiological parameters for predicting the difficult laparoscopic cholecystectomy and its conversion. Materials and Methods This was a prospective study conducted from October 2010 to October 2014. Total of 180 patients meeting the inclusion criteria undergoing LC were included in the study. Four parameters were assessed to predict the difficult LC. These parameters were: 1) Gallbladder wall thickness; 2) Pericholecystic fluid collection; 3) Number of attacks; 4) Total leucocyte count. The statistical analysis was done using Z-test. Results Out of 180 patients included in this study 126 (70%) were easy, 44 (24.44%) were difficult and 3 (5.56%) patients required conversion to open cholecystectomy. The overall conversion rate was 5.6%. The TLC>11000, more than 2 previous attacks of cholecystitis, GB wall thickness of >3mm and Pericholecystic collection were all statistically significant for predicting the difficult LC and its conversion. Conclusion The difficult laparoscopic cholecystectomy and conversion to open surgery can be predicted preoperatively based on number of previous attacks of cholecystitis, WBC count, Gall bladder wall thickness and Pericholecystic collection. PMID:26816942

  17. Predicting carcinogenicity of organic compounds based on CPDB.

    PubMed

    Wu, Xiuchao; Zhang, Qingzhu; Wang, Hui; Hu, Jingtian

    2015-11-01

    Cancer is a major killer of human health and predictions for the carcinogenicity of chemicals are of great importance. In this article, predictive models for the carcinogenicity of organic compounds using QSAR methods for rats and mice were developed based on the data from CPDB. The models was developed based on the data of specific target site liver and classified according to sex of rats and mice. Meanwhile, models were also classified according to whether there is a ring in the molecular structure in order to reduce the diversity of molecular structure. Therefore, eight local models were developed in the final. Taking into account the complexity of carcinogenesis and in order to obtain as much information, DRAGON descriptors were selected as the variables used to develop models. Fitting ability, robustness and predictive power of the models were assessed according to the OECD principles. The external predictive coefficients for validation sets of each model were in the range of 0.711-0.906, and for the whole data in each model were all greater than 0.8, which represents that all models have good predictivity. In order to study the mechanism of carcinogenesis, standardized regression coefficients were calculated for all predictor variables. In addition, the effect of animal sex on carcinogenesis was compared and a trend that female showed stronger tolerance for cancerogen than male in both species was appeared. PMID:26070146

  18. A burnout prediction model based around char morphology

    SciTech Connect

    Tao Wu; Edward Lester; Michael Cloke

    2006-05-15

    Several combustion models have been developed that can make predictions about coal burnout and burnout potential. Most of these kinetic models require standard parameters such as volatile content and particle size to make a burnout prediction. This article presents a new model called the char burnout (ChB) model, which also uses detailed information about char morphology in its prediction. The input data to the model is based on information derived from two different image analysis techniques. One technique generates characterization data from real char samples, and the other predicts char types based on characterization data from image analysis of coal particles. The pyrolyzed chars in this study were created in a drop tube furnace operating at 1300{sup o}C, 200 ms, and 1% oxygen. Modeling results were compared with a different carbon burnout kinetic model as well as the actual burnout data from refiring the same chars in a drop tube furnace operating at 1300{sup o}C, 5% oxygen, and residence times of 200, 400, and 600 ms. A good agreement between ChB model and experimental data indicates that the inclusion of char morphology in combustion models could well improve model predictions. 38 refs., 5 figs., 6 tabs.

  19. The Role of Social Relationships in Predicting Loneliness: The National Social Life, Health, and Aging Project

    ERIC Educational Resources Information Center

    Shiovitz-Ezra, Sharon; Leitsch, Sara A.

    2010-01-01

    The authors explore associations between objective and subjective social network characteristics and loneliness in later life, using data from the National Social Life, Health, and Aging Project, a nationally representative sample of individuals ages 57 to 85 in the United States. Hierarchical linear regression was used to examine the associations…

  20. The Future Is Bright and Predictable: The Development of Prospective Life Stories across Childhood and Adolescence

    ERIC Educational Resources Information Center

    Bohn, Annette; Berntsen, Dorthe

    2013-01-01

    When do children develop the ability to imagine their future lives in terms of a coherent prospective life story? We investigated whether this ability develops in parallel with the ability to construct a life story for the past and narratives about single autobiographical events in the past and future. Four groups of school children aged 9 to 15…

  1. Stress corrosion cracking and life prediction evaluation of austenitic stainless steels in calcium chloride solution

    SciTech Connect

    Leinonen, H.

    1996-05-01

    The stress corrosion cracking (SCC) susceptibility of austenitic stainless steels (SS) in calcium chloride solutions was studied using a constant-load method. Initiation and propagation of stress corrosion cracks were examined using fractography. The distribution of cracks was classified. A physical cracking was introduced, and creep deformation measurements were performed. The steady-state strain rate obtained from the corrosion elongation curve (elongation-vs-time curve) showed a linear function of time to failure (t{sub f}). This implied that {var_epsilon}{sub ss} can be applied as a parameter for prediction of t{sub f}. Furthermore, {var_epsilon}{sub ss} below which no failure occurs within a laboratory time scale was estimated. Based on results obtained, the critical values of stress below which no SCC occurred were evaluated. Based upon creep measurements in a noncorrosive environment, the influence of environment on {var_epsilon}{sub ss} was more than fivefold. Cracking characteristics were divided into three categories according to the crack initiation distribution. Transgranular cracking predominated at relatively low {sigma} and {var_epsilon}{sub ss}.

  2. Perceptual Negativity Predicts Greater Reactivity to Negative Events in Daily Life.

    PubMed

    Robinson, Michael D; Liu, Tianwei

    2013-11-01

    Reinforcement sensitivity theory includes the idea that people differ in their sensitivity to negative events, but relevant process-based assessments have not been developed. The present studies assessed sensitivity to negative events in terms of the extent to which negative word stimuli were perceived to be larger than neutral word stimuli. There was a general tendency to overestimate the size of negative relative to neutral words, but individuals differed substantially in this form of what is termed perceptual negativity. Of more importance, two studies (total N = 151) found systematic relationships between individual differences in perceptual negativity and reactivity to negative events in daily diary protocols. Study 1 found that within-person variations in the occurrence of daily negative events undermined goal-related optimism to a greater extent at higher, relative to lower, levels of perceptual negativity. Study 2 conceptually replicated this interaction in the context of within-person associations between the occurrence of daily negative events and antisocial behavior. These findings are important in advancing reinforcement sensitivity theory, in operationalizing a particular component of it, and in extending it to reactivity processes in daily life.

  3. Perceptual Negativity Predicts Greater Reactivity to Negative Events in Daily Life.

    PubMed

    Robinson, Michael D; Liu, Tianwei

    2013-11-01

    Reinforcement sensitivity theory includes the idea that people differ in their sensitivity to negative events, but relevant process-based assessments have not been developed. The present studies assessed sensitivity to negative events in terms of the extent to which negative word stimuli were perceived to be larger than neutral word stimuli. There was a general tendency to overestimate the size of negative relative to neutral words, but individuals differed substantially in this form of what is termed perceptual negativity. Of more importance, two studies (total N = 151) found systematic relationships between individual differences in perceptual negativity and reactivity to negative events in daily diary protocols. Study 1 found that within-person variations in the occurrence of daily negative events undermined goal-related optimism to a greater extent at higher, relative to lower, levels of perceptual negativity. Study 2 conceptually replicated this interaction in the context of within-person associations between the occurrence of daily negative events and antisocial behavior. These findings are important in advancing reinforcement sensitivity theory, in operationalizing a particular component of it, and in extending it to reactivity processes in daily life. PMID:24163492

  4. Fatigue behavior and life prediction of a SiC/Ti-24Al-11Nb composite under isothermal conditions. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bartolotta, Paul A.

    1991-01-01

    Metal Matrix Composites (MMC) and Intermetallic Matrix Composites (IMC) were identified as potential material candidates for advanced aerospace applications. They are especially attractive for high temperature applications which require a low density material that maintains its structural integrity at elevated temperatures. High temperature fatigue resistance plays an important role in determining the structural integrity of the material. This study attempts to examine the relevance of test techniques, failure criterion, and life prediction as they pertain to an IMC material, specifically, unidirectional SiC fiber reinforced titanium aluminide. A series of strain and load controlled fatigue tests were conducted on unidirectional SiC/Ti-24Al-11Nb composite at 425 and 815 C. Several damage mechanism regimes were identified by using a strain-based representation of the data, Talreja's fatigue life diagram concept. Results of these tests were then used to address issues of test control modes, definition of failure, and testing techniques. Finally, a strain-based life prediction method was proposed for an IMC under tensile cyclic loadings at elevated temperatures.

  5. FKBP5 genotype interacts with early life trauma to predict heavy drinking in college students.

    PubMed

    Lieberman, Richard; Armeli, Stephen; Scott, Denise M; Kranzler, Henry R; Tennen, Howard; Covault, Jonathan

    2016-09-01

    Alcohol use disorder (AUD) is debilitating and costly. Identification and better understanding of risk factors influencing the development of AUD remain a research priority. Although early life exposure to trauma increases the risk of adulthood psychiatric disorders, including AUD, many individuals exposed to early life trauma do not develop psychopathology. Underlying genetic factors may contribute to differential sensitivity to trauma experienced in childhood. The hypothalamic-pituitary-adrenal (HPA) axis is susceptible to long-lasting changes in function following childhood trauma. Functional genetic variation within FKBP5, a gene encoding a modulator of HPA axis function, is associated with the development of psychiatric symptoms in adulthood, particularly among individuals exposed to trauma early in life. In the current study, we examined interactions between self-reported early life trauma, past-year life stress, past-year trauma, and a single nucleotide polymorphism (rs1360780) in FKBP5 on heavy alcohol consumption in a sample of 1,845 college students from two university settings. Although we found no effect of early life trauma on heavy drinking in rs1360780*T-allele carriers, rs1360780*C homozygotes exposed to early life trauma had a lower probability of heavy drinking compared to rs1360780*C homozygotes not exposed to early life trauma (P < 0.01). The absence of an interaction between either current life stress or past-year trauma, and FKBP5 genotype on heavy drinking suggests that there exists a developmental period of susceptibility to stress that is moderated by FKBP5 genotype. These findings implicate interactive effects of early life trauma and FKBP5 genetic variation on heavy drinking. © 2016 Wiley Periodicals, Inc. PMID:27196697

  6. FKBP5 genotype interacts with early life trauma to predict heavy drinking in college students.

    PubMed

    Lieberman, Richard; Armeli, Stephen; Scott, Denise M; Kranzler, Henry R; Tennen, Howard; Covault, Jonathan

    2016-09-01

    Alcohol use disorder (AUD) is debilitating and costly. Identification and better understanding of risk factors influencing the development of AUD remain a research priority. Although early life exposure to trauma increases the risk of adulthood psychiatric disorders, including AUD, many individuals exposed to early life trauma do not develop psychopathology. Underlying genetic factors may contribute to differential sensitivity to trauma experienced in childhood. The hypothalamic-pituitary-adrenal (HPA) axis is susceptible to long-lasting changes in function following childhood trauma. Functional genetic variation within FKBP5, a gene encoding a modulator of HPA axis function, is associated with the development of psychiatric symptoms in adulthood, particularly among individuals exposed to trauma early in life. In the current study, we examined interactions between self-reported early life trauma, past-year life stress, past-year trauma, and a single nucleotide polymorphism (rs1360780) in FKBP5 on heavy alcohol consumption in a sample of 1,845 college students from two university settings. Although we found no effect of early life trauma on heavy drinking in rs1360780*T-allele carriers, rs1360780*C homozygotes exposed to early life trauma had a lower probability of heavy drinking compared to rs1360780*C homozygotes not exposed to early life trauma (P < 0.01). The absence of an interaction between either current life stress or past-year trauma, and FKBP5 genotype on heavy drinking suggests that there exists a developmental period of susceptibility to stress that is moderated by FKBP5 genotype. These findings implicate interactive effects of early life trauma and FKBP5 genetic variation on heavy drinking. © 2016 Wiley Periodicals, Inc.

  7. Gene prediction in metagenomic fragments based on the SVM algorithm

    PubMed Central

    2013-01-01

    Background Metagenomic sequencing is becoming a powerful technology for exploring micro-ogranisms from various environments, such as human body, without isolation and cultivation. Accurately identifying genes from metagenomic fragments is one of the most fundamental issues. Results In this article, we present a novel gene prediction method named MetaGUN for metagenomic fragments based on a machine learning approach of SVM. It implements in a three-stage strategy to predict genes. Firstly, it classifies input fragments into phylogenetic groups by a k-mer based sequence binning method. Then, protein-coding sequences are identified for each group independently with SVM classifiers that integrate entropy density profiles (EDP) of codon usage, translation initiation site (TIS) scores and open reading frame (ORF) length as input patterns. Finally, the TISs are adjusted by employing a modified version of MetaTISA. To identify protein-coding sequences, MetaGun builds the universal module and the novel module. The former is based on a set of representative species, while the latter is designed to find potential functionary DNA sequences with conserved domains. Conclusions Comparisons on artificial shotgun fragments with multiple current metagenomic gene finders show that MetaGUN predicts better results on both 3' and 5' ends of genes with fragments of various lengths. Especially, it makes the most reliable predictions among these methods. As an application, MetaGUN was used to predict genes for two samples of human gut microbiome. It identifies thousands of additional genes with significant evidences. Further analysis indicates that MetaGUN tends to predict more potential novel genes than other current metagenomic gene finders. PMID:23735199

  8. Life cycle environmental impacts of wastewater-based algal biofuels.

    PubMed

    Mu, Dongyan; Min, Min; Krohn, Brian; Mullins, Kimberley A; Ruan, Roger; Hill, Jason

    2014-10-01

    Recent research has proposed integrating wastewater treatment with algae cultivation as a way of producing algal biofuels at a commercial scale more sustainably. This study evaluates the environmental performance of wastewater-based algal biofuels with a well-to-wheel life cycle assessment (LCA). Production pathways examined include different nutrient sources (municipal wastewater influent to the activated sludge process, centrate from the sludge drying process, swine manure, and freshwater with synthetic fertilizers) combined with emerging biomass conversion technologies (microwave pyrolysis, combustion, wet lipid extraction, and hydrothermal liquefaction). Results show that the environmental performance of wastewater-based algal biofuels is generally better than freshwater-based algal biofuels, but depends on the characteristics of the wastewater and the conversion technologies. Of 16 pathways compared, only the centrate cultivation with wet lipid extraction pathway and the centrate cultivation with combustion pathway have lower impacts than petroleum diesel in all environmental categories examined (fossil fuel use, greenhouse gas emissions, eutrophication potential, and consumptive water use). The potential for large-scale implementation of centrate-based algal biofuel, however, is limited by availability of centrate. Thus, it is unlikely that algal biofuels can provide a large-scale and environmentally preferable alternative to petroleum transportation fuels without considerable improvement in current production technologies. Additionally, the cobenefit of wastewater-based algal biofuel production as an alternate means of treating various wastewaters should be further explored.

  9. Life cycle environmental impacts of wastewater-based algal biofuels.

    PubMed

    Mu, Dongyan; Min, Min; Krohn, Brian; Mullins, Kimberley A; Ruan, Roger; Hill, Jason

    2014-10-01

    Recent research has proposed integrating wastewater treatment with algae cultivation as a way of producing algal biofuels at a commercial scale more sustainably. This study evaluates the environmental performance of wastewater-based algal biofuels with a well-to-wheel life cycle assessment (LCA). Production pathways examined include different nutrient sources (municipal wastewater influent to the activated sludge process, centrate from the sludge drying process, swine manure, and freshwater with synthetic fertilizers) combined with emerging biomass conversion technologies (microwave pyrolysis, combustion, wet lipid extraction, and hydrothermal liquefaction). Results show that the environmental performance of wastewater-based algal biofuels is generally better than freshwater-based algal biofuels, but depends on the characteristics of the wastewater and the conversion technologies. Of 16 pathways compared, only the centrate cultivation with wet lipid extraction pathway and the centrate cultivation with combustion pathway have lower impacts than petroleum diesel in all environmental categories examined (fossil fuel use, greenhouse gas emissions, eutrophication potential, and consumptive water use). The potential for large-scale implementation of centrate-based algal biofuel, however, is limited by availability of centrate. Thus, it is unlikely that algal biofuels can provide a large-scale and environmentally preferable alternative to petroleum transportation fuels without considerable improvement in current production technologies. Additionally, the cobenefit of wastewater-based algal biofuel production as an alternate means of treating various wastewaters should be further explored. PMID:25220843

  10. Quality of life following endonasal skull base surgery.

    PubMed

    Pant, Harshita; Bhatki, Amol M; Snyderman, Carl H; Vescan, Allan D; Carrau, Ricardo L; Gardner, Paul; Prevedello, Daniel; Kassam, Amin B

    2010-01-01

    The importance of quality of life (QOL) outcomes following treatments for head and neck tumors are now increasingly appreciated and measured to improve medical and surgical care for these patients. An understanding of the definitions in the setting of health care and the use of appropriate QOL instruments and measures are critical to obtain meaningful information that guides decision making in various aspects of patient health care. QOL outcomes following cranial base surgery is only recently being defined. In this article, we describe the current published data on QOL outcomes following cranial base surgery and provide preliminary prospective data on QOL outcomes and sinonasal morbidity in patients who underwent endonasal cranial base surgery for management of various skull base tumors at our institution. We used a disease-specific multidimensional instrument to measure QOL outcomes in these patients. Our results show that although sinonasal morbidity is increased, this is temporary, and the vast majority of patients have a very good QOL by 4 to 6 months after endonasal approach to the cranial base. PMID:20592856

  11. Rate-Based Model Predictive Control of Turbofan Engine Clearance

    NASA Technical Reports Server (NTRS)

    DeCastro, Jonathan A.

    2006-01-01

    An innovative model predictive control strategy is developed for control of nonlinear aircraft propulsion systems and sub-systems. At the heart of the controller is a rate-based linear parameter-varying model that propagates the state derivatives across the prediction horizon, extending prediction fidelity to transient regimes where conventional models begin to lose validity. The new control law is applied to a demanding active clearance control application, where the objectives are to tightly regulate blade tip clearances and also anticipate and avoid detrimental blade-shroud rub occurrences by optimally maintaining a predefined minimum clearance. Simulation results verify that the rate-based controller is capable of satisfying the objectives during realistic flight scenarios where both a conventional Jacobian-based model predictive control law and an unconstrained linear-quadratic optimal controller are incapable of doing so. The controller is evaluated using a variety of different actuators, illustrating the efficacy and versatility of the control approach. It is concluded that the new strategy has promise for this and other nonlinear aerospace applications that place high importance on the attainment of control objectives during transient regimes.

  12. Deformation, Failure, and Fatigue Life of SiC/Ti-15-3 Laminates Accurately Predicted by MAC/GMC

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2002-01-01

    NASA Glenn Research Center's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) (ref.1) has been extended to enable fully coupled macro-micro deformation, failure, and fatigue life predictions for advanced metal matrix, ceramic matrix, and polymer matrix composites. Because of the multiaxial nature of the code's underlying micromechanics model, GMC--which allows the incorporation of complex local inelastic constitutive models--MAC/GMC finds its most important application in metal matrix composites, like the SiC/Ti-15-3 composite examined here. Furthermore, since GMC predicts the microscale fields within each constituent of the composite material, submodels for local effects such as fiber breakage, interfacial debonding, and matrix fatigue damage can and have been built into MAC/GMC. The present application of MAC/GMC highlights the combination of these features, which has enabled the accurate modeling of the deformation, failure, and life of titanium matrix composites.

  13. CD-Based Indices for Link Prediction in Complex Network

    PubMed Central

    Wang, Tao; Wang, Hongjue; Wang, Xiaoxia

    2016-01-01

    Lots of similarity-based algorithms have been designed to deal with the problem of link prediction in the past decade. In order to improve prediction accuracy, a novel cosine similarity index CD based on distance between nodes and cosine value between vectors is proposed in this paper. Firstly, node coordinate matrix can be obtained by node distances which are different from distance matrix and row vectors of the matrix are regarded as coordinates of nodes. Then, cosine value between node coordinates is used as their similarity index. A local community density index LD is also proposed. Then, a series of CD-based indices include CD-LD-k, CD*LD-k, CD-k and CDI are presented and applied in ten real networks. Experimental results demonstrate the effectiveness of CD-based indices. The effects of network clustering coefficient and assortative coefficient on prediction accuracy of indices are analyzed. CD-LD-k and CD*LD-k can improve prediction accuracy without considering the assortative coefficient of network is negative or positive. According to analysis of relative precision of each method on each network, CD-LD-k and CD*LD-k indices have excellent average performance and robustness. CD and CD-k indices perform better on positive assortative networks than on negative assortative networks. For negative assortative networks, we improve and refine CD index, referred as CDI index, combining the advantages of CD index and evolutionary mechanism of the network model BA. Experimental results reveal that CDI index can increase prediction accuracy of CD on negative assortative networks. PMID:26752405

  14. CD-Based Indices for Link Prediction in Complex Network.

    PubMed

    Wang, Tao; Wang, Hongjue; Wang, Xiaoxia

    2016-01-01

    Lots of similarity-based algorithms have been designed to deal with the problem of link prediction in the past decade. In order to improve prediction accuracy, a novel cosine similarity index CD based on distance between nodes and cosine value between vectors is proposed in this paper. Firstly, node coordinate matrix can be obtained by node distances which are different from distance matrix and row vectors of the matrix are regarded as coordinates of nodes. Then, cosine value between node coordinates is used as their similarity index. A local community density index LD is also proposed. Then, a series of CD-based indices include CD-LD-k, CD*LD-k, CD-k and CDI are presented and applied in ten real networks. Experimental results demonstrate the effectiveness of CD-based indices. The effects of network clustering coefficient and assortative coefficient on prediction accuracy of indices are analyzed. CD-LD-k and CD*LD-k can improve prediction accuracy without considering the assortative coefficient of network is negative or positive. According to analysis of relative precision of each method on each network, CD-LD-k and CD*LD-k indices have excellent average performance and robustness. CD and CD-k indices perform better on positive assortative networks than on negative assortative networks. For negative assortative networks, we improve and refine CD index, referred as CDI index, combining the advantages of CD index and evolutionary mechanism of the network model BA. Experimental results reveal that CDI index can increase prediction accuracy of CD on negative assortative networks.

  15. CD-Based Indices for Link Prediction in Complex Network.

    PubMed

    Wang, Tao; Wang, Hongjue; Wang, Xiaoxia

    2016-01-01

    Lots of similarity-based algorithms have been designed to deal with the problem of link prediction in the past decade. In order to improve prediction accuracy, a novel cosine similarity index CD based on distance between nodes and cosine value between vectors is proposed in this paper. Firstly, node coordinate matrix can be obtained by node distances which are different from distance matrix and row vectors of the matrix are regarded as coordinates of nodes. Then, cosine value between node coordinates is used as their similarity index. A local community density index LD is also proposed. Then, a series of CD-based indices include CD-LD-k, CD*LD-k, CD-k and CDI are presented and applied in ten real networks. Experimental results demonstrate the effectiveness of CD-based indices. The effects of network clustering coefficient and assortative coefficient on prediction accuracy of indices are analyzed. CD-LD-k and CD*LD-k can improve prediction accuracy without considering the assortative coefficient of network is negative or positive. According to analysis of relative precision of each method on each network, CD-LD-k and CD*LD-k indices have excellent average performance and robustness. CD and CD-k indices perform better on positive assortative networks than on negative assortative networks. For negative assortative networks, we improve and refine CD index, referred as CDI index, combining the advantages of CD index and evolutionary mechanism of the network model BA. Experimental results reveal that CDI index can increase prediction accuracy of CD on negative assortative networks. PMID:26752405

  16. Prediction of COPD-specific health-related quality of life in primary care COPD patients: a prospective cohort study

    PubMed Central

    Siebeling, Lara; Musoro, Jammbe Z; Geskus, Ronald B; Zoller, Marco; Muggensturm, Patrick; Frei, Anja; Puhan, Milo A; ter Riet, Gerben

    2014-01-01

    Background: Health-related quality of life (HRQL) is an important patient-reported outcome for chronic obstructive pulmonary disease (COPD). Aim: We developed models predicting chronic respiratory questionnaire (CRQ) dyspnoea, fatigue, emotional function, mastery and overall HRQL at 6 and 24 months using predictors easily available in primary care. Methods: We used the “least absolute shrinkage and selection operator” (lasso) method to build the models and assessed their predictive performance. Results were displayed using nomograms. Results: For each domain-specific CRQ outcome, the corresponding score at baseline was the best predictor. Depending on the domain, these predictions could be improved by adding one to six other predictors, such as the other domain-specific CRQ scores, health status and depression score. To predict overall HRQL, fatigue and dyspnoea scores were the best predictors. Predicted and observed values were on average the same, indicating good calibration. Explained variance ranged from 0.23 to 0.58, indicating good discrimination. Conclusions: To predict COPD-specific HRQL in primary care COPD patients, previous HRQL was the best predictor in our models. Asking patients explicitly about dyspnoea, fatigue, depression and how they cope with COPD provides additional important information about future HRQL whereas FEV1 or other commonly used predictors add little to the prediction of HRQL. PMID:25164146

  17. Life-history traits predict species responses to habitat area and isolation: a cross-continental synthesis.

    PubMed

    Ockinger, Erik; Schweiger, Oliver; Crist, Thomas O; Debinski, Diane M; Krauss, Jochen; Kuussaari, Mikko; Petersen, Jessica D; Pöyry, Juha; Settele, Josef; Summerville, Keith S; Bommarco, Riccardo

    2010-08-01

    There is a lack of quantitative syntheses of fragmentation effects across species and biogeographic regions, especially with respect to species life-history traits. We used data from 24 independent studies of butterflies and moths from a wide range of habitats and landscapes in Europe and North America to test whether traits associated with dispersal capacity, niche breadth and reproductive rate modify the effect of habitat fragmentation on species richness. Overall, species richness increased with habitat patch area and connectivity. Life-history traits improved the explanatory power of the statistical models considerably and modified the butterfly species-area relationship. Species with low mobility, a narrow feeding niche and low reproduction were most strongly affected by habitat loss. This demonstrates the importance of considering life-history traits in fragmentation studies and implies that both species richness and composition change in a predictable manner with habitat loss and fragmentation.

  18. Prediction of blast-induced air overpressure: a hybrid AI-based predictive model.

    PubMed

    Jahed Armaghani, Danial; Hajihassani, Mohsen; Marto, Aminaton; Shirani Faradonbeh, Roohollah; Mohamad, Edy Tonnizam

    2015-11-01

    Blast operations in the vicinity of residential areas usually produce significant environmental problems which may cause severe damage to the nearby areas. Blast-induced air overpressure (AOp) is one of the most important environmental impacts of blast operations which needs to be predicted to minimize the potential risk of damage. This paper presents an artificial neural network (ANN) optimized by the imperialist competitive algorithm (ICA) for the prediction of AOp induced by quarry blasting. For this purpose, 95 blasting operations were precisely monitored in a granite quarry site in Malaysia and AOp values were recorded in each operation. Furthermore, the most influential parameters on AOp, including the maximum charge per delay and the distance between the blast-face and monitoring point, were measured and used to train the ICA-ANN model. Based on the generalized predictor equation and considering the measured data from the granite quarry site, a new empirical equation was developed to predict AOp. For comparison purposes, conventional ANN models were developed and compared with the ICA-ANN results. The results demonstrated that the proposed ICA-ANN model is able to predict blast-induced AOp more accurately than other presented techniques. PMID:26433903

  19. Prediction of blast-induced air overpressure: a hybrid AI-based predictive model.

    PubMed

    Jahed Armaghani, Danial; Hajihassani, Mohsen; Marto, Aminaton; Shirani Faradonbeh, Roohollah; Mohamad, Edy Tonnizam

    2015-11-01

    Blast operations in the vicinity of residential areas usually produce significant environmental problems which may cause severe damage to the nearby areas. Blast-induced air overpressure (AOp) is one of the most important environmental impacts of blast operations which needs to be predicted to minimize the potential risk of damage. This paper presents an artificial neural network (ANN) optimized by the imperialist competitive algorithm (ICA) for the prediction of AOp induced by quarry blasting. For this purpose, 95 blasting operations were precisely monitored in a granite quarry site in Malaysia and AOp values were recorded in each operation. Furthermore, the most influential parameters on AOp, including the maximum charge per delay and the distance between the blast-face and monitoring point, were measured and used to train the ICA-ANN model. Based on the generalized predictor equation and considering the measured data from the granite quarry site, a new empirical equation was developed to predict AOp. For comparison purposes, conventional ANN models were developed and compared with the ICA-ANN results. The results demonstrated that the proposed ICA-ANN model is able to predict blast-induced AOp more accurately than other presented techniques.

  20. The Attribute for Hydrocarbon Prediction Based on Attenuation

    NASA Astrophysics Data System (ADS)

    Hermana, Maman; Harith, Z. Z. T.; Sum, C. W.; Ghosh, D. P.

    2014-03-01

    Hydrocarbon prediction is a crucial issue in the oil and gas industry. Currently, the prediction of pore fluid and lithology are based on amplitude interpretation which has the potential to produce pitfalls in certain conditions of reservoir. Motivated by this fact, this work is directed to find out other attributes that can be used to reduce the pitfalls in the amplitude interpretation. Some seismic attributes were examined and studies showed that the attenuation attribute is a better attribute for hydrocarbon prediction. Theoretically, the attenuation mechanism of wave propagation is associated with the movement of fluid in the pore; hence the existence of hydrocarbon in the pore will be represented by attenuation attribute directly. In this paper we evaluated the feasibility of the quality factor ratio of P-wave and S-wave (Qp/Qs) as hydrocarbon indicator using well data and also we developed a new attribute based on attenuation for hydrocarbon prediction -- Normalized Energy Reduction Stack (NERS). To achieve these goals, this work was divided into 3 main parts; estimating the Qp/Qs on well log data, testing the new attribute in the synthetic data and applying the new attribute on real data in Malay Basin data. The result show that the Qp/Qs is better than Poisson's ratio and Lamda over Mu as hydrocarbon indicator. The curve, trend analysis and contrast of Qp/Qs is more powerful at distinguishing pore fluid than Poisson ratio and Lamda over Mu. The NERS attribute was successful in distinguishing the hydrocarbon from brine on synthetic data. Applying this attribute on real data on Malay basin, the NERS attribute is qualitatively conformable with the structure and location where the gas is predicted. The quantitative interpretation of this attribute for hydrocarbon prediction needs to be investigated further.

  1. High accuracy operon prediction method based on STRING database scores.

    PubMed

    Taboada, Blanca; Verde, Cristina; Merino, Enrique

    2010-07-01

    We present a simple and highly accurate computational method for operon prediction, based on intergenic distances and functional relationships between the protein products of contiguous genes, as defined by STRING database (Jensen,L.J., Kuhn,M., Stark,M., Chaffron,S., Creevey,C., Muller,J., Doerks,T., Julien,P., Roth,A., Simonovic,M. et al. (2009) STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res., 37, D412-D416). These two parameters were used to train a neural network on a subset of experimentally characterized Escherichia coli and Bacillus subtilis operons. Our predictive model was successfully tested on the set of experimentally defined operons in E. coli and B. subtilis, with accuracies of 94.6 and 93.3%, respectively. As far as we know, these are the highest accuracies ever obtained for predicting bacterial operons. Furthermore, in order to evaluate the predictable accuracy of our model when using an organism's data set for the training procedure, and a different organism's data set for testing, we repeated the E. coli operon prediction analysis using a neural network trained with B. subtilis data, and a B. subtilis analysis using a neural network trained with E. coli data. Even for these cases, the accuracies reached with our method were outstandingly high, 91.5 and 93%, respectively. These results show the potential use of our method for accurately predicting the operons of any other organism. Our operon predictions for fully-sequenced genomes are available at http://operons.ibt.unam.mx/OperonPredictor/. PMID:20385580

  2. Non-suicidal self-injury prospectively predicts interpersonal stressful life events and depressive symptoms among adolescent girls.

    PubMed

    Burke, Taylor A; Hamilton, Jessica L; Abramson, Lyn Y; Alloy, Lauren B

    2015-08-30

    Non-suicidal self-injury (NSSI) is the deliberate self-harm of one's tissue, engaged in without lethal intent, and occurs frequently among late adolescents. Although research has indicated that NSSI predicts depression, the potential psychosocial mechanisms through which engagement in NSSI makes one susceptible to future depressive symptoms remain unclear. The present study examined whether NSSI increases the risk of experiencing stressful life events, which, in turn, heightens the risk for subsequent depressive symptoms. Drawn from a sample specifically selected for adolescents at high and low risk for developing bipolar spectrum disorders, a total of 110 late-adolescents (mean age=18.74, SD=.69; 73% female) were administered measures of lifetime and past year engagement in NSSI and current depressive symptomatology. Approximately 6 months later, they completed a measure of depressive symptoms and a questionnaire and interview assessing life events that occurred over the 6-month interval. Results suggest that the frequency of lifetime and past year NSSI predicted the occurrence of interpersonal stressful life events beyond the effects of initial depressive symptoms, but only for late adolescent girls. Results further suggest that higher levels of interpersonal stressful life events mediated the relationship between NSSI frequency and prospective increases in depressive symptoms among girls.

  3. Small Crack Growth and Fatigue Life Predictions for High-Strength Aluminium Alloys. Part 1; Experimental and Fracture Mechanics Analysis

    NASA Technical Reports Server (NTRS)

    Wu, X. R.; Newman, J. C.; Zhao, W.; Swain, M. H.; Ding, C. F.; Phillips, E. P.

    1998-01-01

    The small crack effect was investigated in two high-strength aluminium alloys: 7075-T6 bare and LC9cs clad alloy. Both experimental and analytical investigations were conducted to study crack initiation and growth of small cracks. In the experimental program, fatigue tests, small crack and large crack tests A,ere conducted under constant amplitude and Mini-TWIST spectrum loading conditions. A pronounced small crack effect was observed in both materials, especially for the negative stress ratios. For all loading conditions, most of the fatigue life of the SENT specimens was shown to be crack propagation from initial material defects or from the cladding layer. In the analysis program, three-dimensional finite element and A weight function methods were used to determine stress intensity factors and to develop SIF equations for surface and corner cracks at the notch in the SENT specimens. A plastisity-induced crack-closure model was used to correlate small and large crack data, and to make fatigue life predictions, Predicted crack-growth rates and fatigue lives agreed well with experiments. A total fatigue life prediction method for the aluminum alloys was developed and demonstrated using the crack-closure model.

  4. Prediction of future disposal of end-of-life refrigerators containing CFC-11.

    PubMed

    Yazici, Burcu; Can, Zehra S; Calli, Baris

    2014-01-01

    The objective of this study was to predict the number of refrigerators containing CFC-11 blown isolation foam and the amount of CFC-11 banked in these refrigerators. By using a Weibull-based survival function, the number of CFC-11 containing and still-functioning refrigerators was estimated to be approximately 1.6 million in 2013 in Turkey. In order to determine the amount of CFC-11 in the isolation foam of these refrigerators, polyurethane (PU) foam samples were taken from a refrigerator manufactured in 1993 and the quantity of CFC-11 was analyzed by a GC-MS. It was determined that 113-195 mg CFC-11/g PU remains in the PU foam depending on the location such as door, sides, top and bottom. Knowing that a mid-sized refrigerator contains 4 kg PU on average, the total amount of PU foam to be disposed of is 6344 tons when the CFC-11 containing refrigerators in Turkey become obsolete in the near future. Furthermore, 717-1237 tons of CFC-11 are expected to be banked in the PU foam of these refrigerators which will exert an equivalent amount of ozone depleting potential (ODP). In addition, the global warming potential will vary between 3.4 and 5.9 million tons of CO2. PMID:24112854

  5. Neptune radio emission - Predictions based on planetary scaling laws

    NASA Technical Reports Server (NTRS)

    Desch, Michael D.

    1988-01-01

    In this paper a prediction is advanced concerning Neptune's low-frequency radio emission based on the radiometric Bode's law for radio planets in combination with the magnetostrophic scaling law for magnetized planets. The total emitted radio power is predicted to be about 1.6 x 10 to the 7th W, very nearly the same as that predicted and observed for Uranus. Possible emission spectral shapes, based on Saturn and earth-like models, are shown. Using these models, the radio emission frequency range is predicted to extend from approximately 100 to just over 1000 kHz, with a spectral peak between 350 and 500 kHz. If radiation is beamed approximately in the sunward direction, Neptune should be detectable by the planetary radio astronomy experiment onboard the Voyager spacecraft sometime between 45 and 90 days before closest approach. This detection is likely to represent the first direct evidence of a Neptune magnetic field. Possible implications for Neptune's magnetosphere with regard to the time of first detection are discussed.

  6. GIS-BASED PREDICTION OF HURRICANE FLOOD INUNDATION

    SciTech Connect

    JUDI, DAVID; KALYANAPU, ALFRED; MCPHERSON, TIMOTHY; BERSCHEID, ALAN

    2007-01-17

    A simulation environment is being developed for the prediction and analysis of the inundation consequences for infrastructure systems from extreme flood events. This decision support architecture includes a GIS-based environment for model input development, simulation integration tools for meteorological, hydrologic, and infrastructure system models and damage assessment tools for infrastructure systems. The GIS-based environment processes digital elevation models (30-m from the USGS), land use/cover (30-m NLCD), stream networks from the National Hydrography Dataset (NHD) and soils data from the NRCS (STATSGO) to create stream network, subbasins, and cross-section shapefiles for drainage basins selected for analysis. Rainfall predictions are made by a numerical weather model and ingested in gridded format into the simulation environment. Runoff hydrographs are estimated using Green-Ampt infiltration excess runoff prediction and a 1D diffusive wave overland flow routing approach. The hydrographs are fed into the stream network and integrated in a dynamic wave routing module using the EPA's Storm Water Management Model (SWMM) to predict flood depth. The flood depths are then transformed into inundation maps and exported for damage assessment. Hydrologic/hydraulic results are presented for Tropical Storm Allison.

  7. Chaos Time Series Prediction Based on Membrane Optimization Algorithms

    PubMed Central

    Li, Meng; Yi, Liangzhong; Pei, Zheng; Gao, Zhisheng

    2015-01-01

    This paper puts forward a prediction model based on membrane computing optimization algorithm for chaos time series; the model optimizes simultaneously the parameters of phase space reconstruction (τ, m) and least squares support vector machine (LS-SVM) (γ, σ) by using membrane computing optimization algorithm. It is an important basis for spectrum management to predict accurately the change trend of parameters in the electromagnetic environment, which can help decision makers to adopt an optimal action. Then, the model presented in this paper is used to forecast band occupancy rate of frequency modulation (FM) broadcasting band and interphone band. To show the applicability and superiority of the proposed model, this paper will compare the forecast model presented in it with conventional similar models. The experimental results show that whether single-step prediction or multistep prediction, the proposed model performs best based on three error measures, namely, normalized mean square error (NMSE), root mean square error (RMSE), and mean absolute percentage error (MAPE). PMID:25874249

  8. A Predictive Based Regression Algorithm for Gene Network Selection

    PubMed Central

    Guerrier, Stéphane; Mili, Nabil; Molinari, Roberto; Orso, Samuel; Avella-Medina, Marco; Ma, Yanyuan

    2016-01-01

    Gene selection has become a common task in most gene expression studies. The objective of such research is often to identify the smallest possible set of genes that can still achieve good predictive performance. To do so, many of the recently proposed classification methods require some form of dimension-reduction of the problem which finally provide a single model as an output and, in most cases, rely on the likelihood function in order to achieve variable selection. We propose a new prediction-based objective function that can be tailored to the requirements of practitioners and can be used to assess and interpret a given problem. Based on cross-validation techniques and the idea of importance sampling, our proposal scans low-dimensional models under the assumption of sparsity and, for each of them, estimates their objective function to assess their predictive power in order to select. Two applications on cancer data sets and a simulation study show that the proposal compares favorably with competing alternatives such as, for example, Elastic Net and Support Vector Machine. Indeed, the proposed method not only selects smaller models for better, or at least comparable, classification errors but also provides a set of selected models instead of a single one, allowing to construct a network of possible models for a target prediction accuracy level. PMID:27379155

  9. A Predictive Based Regression Algorithm for Gene Network Selection.

    PubMed

    Guerrier, Stéphane; Mili, Nabil; Molinari, Roberto; Orso, Samuel; Avella-Medina, Marco; Ma, Yanyuan

    2016-01-01

    Gene selection has become a common task in most gene expression studies. The objective of such research is often to identify the smallest possible set of genes that can still achieve good predictive performance. To do so, many of the recently proposed classification methods require some form of dimension-reduction of the problem which finally provide a single model as an output and, in most cases, rely on the likelihood function in order to achieve variable selection. We propose a new prediction-based objective function that can be tailored to the requirements of practitioners and can be used to assess and interpret a given problem. Based on cross-validation techniques and the idea of importance sampling, our proposal scans low-dimensional models under the assumption of sparsity and, for each of them, estimates their objective function to assess their predictive power in order to select. Two applications on cancer data sets and a simulation study show that the proposal compares favorably with competing alternatives such as, for example, Elastic Net and Support Vector Machine. Indeed, the proposed method not only selects smaller models for better, or at least comparable, classification errors but also provides a set of selected models instead of a single one, allowing to construct a network of possible models for a target prediction accuracy level. PMID:27379155

  10. Predicting online ratings based on the opinion spreading process

    NASA Astrophysics Data System (ADS)

    He, Xing-Sheng; Zhou, Ming-Yang; Zhuo, Zhao; Fu, Zhong-Qian; Liu, Jian-Guo

    2015-10-01

    Predicting users' online ratings is always a challenge issue and has drawn lots of attention. In this paper, we present a rating prediction method by combining the user opinion spreading process with the collaborative filtering algorithm, where user similarity is defined by measuring the amount of opinion a user transfers to another based on the primitive user-item rating matrix. The proposed method could produce a more precise rating prediction for each unrated user-item pair. In addition, we introduce a tunable parameter λ to regulate the preferential diffusion relevant to the degree of both opinion sender and receiver. The numerical results for Movielens and Netflix data sets show that this algorithm has a better accuracy than the standard user-based collaborative filtering algorithm using Cosine and Pearson correlation without increasing computational complexity. By tuning λ, our method could further boost the prediction accuracy when using Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) as measurements. In the optimal cases, on Movielens and Netflix data sets, the corresponding algorithmic accuracy (MAE and RMSE) are improved 11.26% and 8.84%, 13.49% and 10.52% compared to the item average method, respectively.

  11. Casting dimensional control and fatigue life prediction for permanent mold casting dies. Technical report, September 29, 1993--May 31, 1997

    SciTech Connect

    1997-06-01

    Efforts as part of a three year program to address metal casting dimensional control and fatigue life prediction for permanent mold casting dies are described. Procedures have been developed and implemented to collect dimensional variability data from production steel casting. The influence of process variation and casting geometry variables on dimensional tolerances have been investigated. Also efforts leading to the developments and validation of a CAD/CAE model to predict the thermal fatigue life of permanent molds for aluminum castings are described. An appropriate thermomechanical property database for metal, mold and coating materials has been constructed. A finite element model has been developed to simulate the mold temperature distribution during repeated casting cycles. Validation trials using a permanent mold casting machine have indicated the success of the temperature distribution model developed. A combination of experimental and modeling techniques have been employed to extend their knowledge of permanent mold casting. The influence of coatings on casting solidification and mold temperatures has been determined. The computer model has been extended to predict thermally induced stresses and strains in the mold and to predict the number of cycles required to crack the mold. Experimental results have been used to validate the extended model.

  12. Composition-based prediction of dielectric properties of foods.

    PubMed

    Sun, E; Datta, A; Lobo, S

    1995-01-01

    Prediction of accurate dielectric property data from fundamental principles for systems as complex as foods has not been possible. Simple prediction models based on easily measurable composition data can serve many useful purposes. Literature dielectric data on foods and their composition were statistically correlated. Dielectric data on salt solutions were measured to explain some of the results. When composition data were not available, standard handbook compositions were used. Inclusion of all types of foods (meats, fruits, and vegetables) inhibited any useful correlation with composition. Based on a smaller data set of meats, both dielectric constant and loss increased with water and salt content. Dielectric constant generally decreased with temperature whereas dielectric loss decreased with temperature at lower salt concentrations and increased with temperature at higher salt concentrations.

  13. A Prediction Model for Membrane Proteins Using Moments Based Features.

    PubMed

    Butt, Ahmad Hassan; Khan, Sher Afzal; Jamil, Hamza; Rasool, Nouman; Khan, Yaser Daanial

    2016-01-01

    The most expedient unit of the human body is its cell. Encapsulated within the cell are many infinitesimal entities and molecules which are protected by a cell membrane. The proteins that are associated with this lipid based bilayer cell membrane are known as membrane proteins and are considered to play a significant role. These membrane proteins exhibit their effect in cellular activities inside and outside of the cell. According to the scientists in pharmaceutical organizations, these membrane proteins perform key task in drug interactions. In this study, a technique is presented that is based on various computationally intelligent methods used for the prediction of membrane protein without the experimental use of mass spectrometry. Statistical moments were used to extract features and furthermore a Multilayer Neural Network was trained using backpropagation for the prediction of membrane proteins. Results show that the proposed technique performs better than existing methodologies.

  14. A Prediction Model for Membrane Proteins Using Moments Based Features

    PubMed Central

    Butt, Ahmad Hassan; Khan, Sher Afzal; Jamil, Hamza; Rasool, Nouman; Khan, Yaser Daanial

    2016-01-01

    The most expedient unit of the human body is its cell. Encapsulated within the cell are many infinitesimal entities and molecules which are protected by a cell membrane. The proteins that are associated with this lipid based bilayer cell membrane are known as membrane proteins and are considered to play a significant role. These membrane proteins exhibit their effect in cellular activities inside and outside of the cell. According to the scientists in pharmaceutical organizations, these membrane proteins perform key task in drug interactions. In this study, a technique is presented that is based on various computationally intelligent methods used for the prediction of membrane protein without the experimental use of mass spectrometry. Statistical moments were used to extract features and furthermore a Multilayer Neural Network was trained using backpropagation for the prediction of membrane proteins. Results show that the proposed technique performs better than existing methodologies. PMID:26966690

  15. Stabilisation of difference equations with noisy prediction-based control

    NASA Astrophysics Data System (ADS)

    Braverman, E.; Kelly, C.; Rodkina, A.

    2016-07-01

    We consider the influence of stochastic perturbations on stability of a unique positive equilibrium of a difference equation subject to prediction-based control. These perturbations may be multiplicative We begin by relaxing the control parameter in the deterministic equation, and deriving a range of values for the parameter over which all solutions eventually enter an invariant interval. Then, by allowing the variation to be stochastic, we derive sufficient conditions (less restrictive than known ones for the unperturbed equation) under which the positive equilibrium will be globally a.s. asymptotically stable: i.e. the presence of noise improves the known effectiveness of prediction-based control. Finally, we show that systemic noise has a "blurring" effect on the positive equilibrium, which can be made arbitrarily small by controlling the noise intensity. Numerical examples illustrate our results.

  16. Predictive Potential Field-Based Collision Avoidance for Multicopters

    NASA Astrophysics Data System (ADS)

    Nieuwenhuisen, M.; Schadler, M.; Behnke, S.

    2013-08-01

    Reliable obstacle avoidance is a key to navigating with UAVs in the close vicinity of static and dynamic obstacles. Wheel-based mobile robots are often equipped with 2D or 3D laser range finders that cover the 2D workspace sufficiently accurate and at a high rate. Micro UAV platforms operate in a 3D environment, but the restricted payload prohibits the use of fast state-of-the-art 3D sensors. Thus, perception of small obstacles is often only possible in the vicinity of the UAV and a fast collision avoidance system is necessary. We propose a reactive collision avoidance system based on artificial potential fields, that takes the special dynamics of UAVs into account by predicting the influence of obstacles on the estimated trajectory in the near future using a learned motion model. Experimental evaluation shows that the prediction leads to smoother trajectories and allows to navigate collision-free through passageways.

  17. Predictive value of obsessive compulsive symptoms involving the skin on quality of life in patients with acne vulgaris.

    PubMed

    Bez, Yasin; Yesilova, Yavuz; Arı, Mustafa; Kaya, Mehmet Cemal; Alpak, Gokay; Bulut, Mahmut

    2013-11-01

    Acne is one of the most common dermatological diseases, and obsessive compulsive disorder is among the most frequent psychiatric conditions seen in dermatology clinics. Comorbidity of these conditions may therefore be expected. The aim of this study was to measure obsessive compulsive symptoms and quality of life in patients with acne vulgaris, compare them with those of healthy control subjects, and determine whether there is any predictive value of obsessive compulsive symptoms for quality of life in patients with acne. Obsessive compulsive symptoms and quality of life measurements of 146 patients with acne vulgaris and 94 healthy control subjects were made using the Maudsley Obsessive Compulsive Questionnaire and Short Form-36 in a cross-sectional design. Patients with acne vulgaris had lower scores for physical functioning, physical role dysfunction, general health perception, vitality, and emotional role dysfunction. They also had higher scores for checking, slowness, and rumination. The only predictor of physical functioning and vitality dimensions of health-related quality of life in these patients was rumination score. Obsessive compulsive symptoms in patients with acne vulgaris are higher than in controls, and this may correlate with both disease severity and quality of life for patients.

  18. Association between mid-life marital status and cognitive function in later life: population based cohort study

    PubMed Central

    Håkansson, Krister; Rovio, Suvi; Helkala, Eeva-Liisa; Vilska, Anna-Riitta; Winblad, Bengt; Soininen, Hilkka; Nissinen, Aulikki; Mohammed, Abdul H

    2009-01-01

    Objectives To evaluate whether mid-life marital status is related to cognitive function in later life. Design Prospective population based study with an average follow-up of 21 years. Setting Kuopio and Joensuu regions in eastern Finland. Participants Participants were derived from random, population based samples previously investigated in 1972, 1977, 1982, or 1987; 1449 individuals (73%), aged 65-79, underwent re-examination in 1998. Main outcome measures Alzheimer’s disease and mild cognitive impairment. Results People cohabiting with a partner in mid-life (mean age 50.4) were less likely than all other categories (single, separated, or widowed) to show cognitive impairment later in life at ages 65-79. Those widowed or divorced in mid-life and still so at follow-up had three times the risk compared with married or cohabiting people. Those widowed both at mid-life and later life had an odds ratio of 7.67 (1.6 to 40.0) for Alzheimer’s disease compared with married or cohabiting people. The highest increased risk for Alzheimer’s disease was in carriers of the apolipoprotein E e4 allele who lost their partner before mid-life and were still widowed or divorced at follow-up. The progressive entering of several adjustment variables from mid-life did not alter these associations. Conclusions Living in a relationship with a partner might imply cognitive and social challenges that have a protective effect against cognitive impairment later in life, consistent with the brain reserve hypothesis. The specific increased risk for widowed and divorced people compared with single people indicates that other factors are needed to explain parts of the results. A sociogenetic disease model might explain the dramatic increase in risk of Alzheimer’s disease for widowed apolipoprotein E e4 carriers. PMID:19574312

  19. Quality of life among long-term survivors of breast cancer: Different types of antecedents predict different classes of outcomes.

    PubMed

    Carver, Charles S; Smith, Roselyn G; Petronis, Vida M; Antoni, Michael H

    2006-09-01

    Quality of life (QOL) has many aspects, both in the short-term and in the long-term. Different aspects of QOL may have different types of precursors: demographic, medical, and psychosocial. We examined this possibility in a group of long-term breast cancer survivors. Early-stage breast cancer patients (N = 163) who had provided information about medical, demographic, and psychosocial variables during the year after surgery completed a multidimensional measure of QOL 5-13 years later. Initial chemotherapy and higher stage predicted greater financial problems and greater worry about appearance at follow-up. Being partnered at diagnosis predicted many psychosocial benefits at follow-up. Hispanic women reported greater distress and social avoidance at follow-up. Initial trait optimism predicted diverse aspects of better psychosocial QOL at follow-up, but not other aspects of QOL. Thus, different aspects of QOL at long-term follow-up had different antecedents. Overall, psychological outcomes were predicted by psychosocial variables, presence of a partner at diagnosis, and ethnicity. Financial outcomes, in contrast, were predicted by medical variables, which otherwise predicted little about long-term QOL. This divergence among aspects of QOL should receive closer attention in future work. PMID:16304622

  20. Data base for the prediction of inlet external drag

    NASA Technical Reports Server (NTRS)

    Mcmillan, O. J.; Perkins, E. W.; Perkins, S. C., Jr.

    1980-01-01

    Results are presented from a study to define and evaluate the data base for predicting an airframe/propulsion system interference effect shown to be of considerable importance, inlet external drag. The study is focused on supersonic tactical aircraft with highly integrated jet propulsion systems, although some information is included for supersonic strategic aircraft and for transport aircraft designed for high subsonic or low supersonic cruise. The data base for inlet external drag is considered to consist of the theoretical and empirical prediction methods as well as the experimental data identified in an extensive literature search. The state of the art in the subsonic and transonic speed regimes is evaluated. The experimental data base is organized and presented in a series of tables in which the test article, the quantities measured and the ranges of test conditions covered are described for each set of data; in this way, the breadth of coverage and gaps in the existing experimental data are evident. Prediction methods are categorized by method of solution, type of inlet and speed range to which they apply, major features are given, and their accuracy is assessed by means of comparison to experimental data.

  1. Application of disability-adjusted life years to predict the burden of injuries and fatalities due to public exposure to engineering technologies

    PubMed Central

    2014-01-01

    Background As a public safety regulator, the Technical Standards and Safety Authority (TSSA) of Ontario, Canada predicts and measures the burden of injuries and fatalities as its primary means of characterizing the state of public safety and for decision-making purposes through the use of a simulation model. The paper proposes a simulation-based predictive model and the use of disability-adjusted life years (DALYs) as a population health metric for the purposes of reporting, benchmarking, public safety decision-making, and organizational goal setting. The proposed approach could be viewed as advancement in the application of traditional population health metrics, used primarily for public health policy decisions, for the measurement and prediction of safety risks across a wide variety of engineering technologies to which the general public is exposed. Results The proposed model is generic and applicable to a wide range of devices and technologies that are typically used by the general public. As an example, a measure of predicted risk that could result from the use of and exposure to elevating devices in the province of Ontario is presented in terms of the DALY metric. The predictions are further categorized in terms of the causal attribution of the risks for the purposes of identifying and focusing decision-making efforts. The results are also presented by taking into consideration factors such as near-misses or precursor events as termed in certain industries. Conclusions The ability to predict potential health impacts has three significant advantages for a public safety regulator – external reporting, decision-making to ensure public safety, and organizational benchmarking. The application of the well-known Monte Carlo simulation has been proposed to predict the health impacts expressed in terms of DALYs. The practicality of the proposed ideas has been demonstrated through the application of the prediction model to characterizing and managing risks associated

  2. Life-Prediction Parameters of Sapphire Determined for the Design of a Space Station Combustion Facility Window

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.

    2003-01-01

    To characterize the stress corrosion parameters and predict the life of a sapphire window being considered for use in the International Space Station's Fluids and Combustion Facility, researchers at the NASA Glenn Research Center conducted stress corrosion tests, fracture toughness tests, and reliability analyses, as shown in the figures. Standardized test methods, developed and updated by the author under the auspices of American Society for Testing and Materials, were employed. One interesting finding is that sapphire exhibits a susceptibility to stress corrosion in water similar to that of glass. In addition to generating the stress corrosion parameters and fracture toughness data, closed-form expressions for the variances of the crack growth parameters were derived. The expressions allow confidence bands to be easily placed on life predictions of ceramic components. Brittle materials such as sapphire and quartz are required for windows in a variety of applications such as the Fluids and Combustion Facility. To minimize the launch weight of such facilities, researchers must design the windows to be as lightweight as possible. The safe use of lightweight, brittle windows in structural applications is limited by two factors: low fracture toughness and slow crack growth, or stress corrosion. Stress corrosion of these and other optical materials can occur in relatively common environments, such as humid air. Access to the data has been requested by designers for use in the life prediction of a Northrop Grumman F16 instrument window and a Jet Propulsion Laboratory instrument window. One Space Act Agreement has been formed. Future work includes the measurement of the life of subscale windows.

  3. [The quality control based on the predictable performance].

    PubMed

    Zheng, D X

    2016-09-01

    The clinical performance can only be evaluated when it comes to the last step in the conventional way of prosthesis. However, it often causes the failure because of the unconformity between the expectation and final performance. Resulting from this kind of situation, quality control based on the predictable results has been suggested. It is a new idea based on the way of reverse thinking, and focuses on the need of patient and puts the final performance of the prosthesis to the first place. With the prosthodontically driven prodedure, dentists can complete the unification with the expectation and the final performance. PMID:27596338

  4. Fatigue Life Prediction of Carbon Fiber-Reinforced Ceramic-Matrix Composites at Room and Elevated Temperatures. Part II: Experimental Comparisons

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2015-12-01

    This paper follows on from the earlier study (Part I) which investigated the fatigue behavior of unidirectional, cross-ply and 2.5D C/SiC composites at room and elevated temperatures. In this paper, a micromechanics approach to predict the fatigue life S-N curves of fiber-reinforced CMCs has been developed considering the fatigue damage mechanism of interface wear or interface oxidation. Upon first loading to fatigue peak stress, matrix multicracking and fiber/matrix interface debonding occur. The two-parameter Weibull model is used to describe fibers strength distribution. The stress carried by broken and intact fibres on the matrix crack plane under fatigue loading is determined based on the Global Load Sharing (GLS) criterion. The fibres failure probabilities under fatigue loading considering the degradation of interface shear stress and fibres strength have been obtained. When the broken fibres fraction approaches critical value, the composite would fatigue fail. The fatigue life S-N curves of unidirectional, cross-ply and 2.5D C/SiC composites at room and elevated temperatures have been predicted. The predicted results agreed with experimental data.

  5. Protein function prediction based on data fusion and functional interrelationship.

    PubMed

    Meng, Jun; Wekesa, Jael-Sanyanda; Shi, Guan-Li; Luan, Yu-Shi

    2016-04-01

    One of the challenging tasks of bioinformatics is to predict more accurate and confident protein functions from genomics and proteomics datasets. Computational approaches use a variety of high throughput experimental data, such as protein-protein interaction (PPI), protein sequences and phylogenetic profiles, to predict protein functions. This paper presents a method that uses transductive multi-label learning algorithm by integrating multiple data sources for classification. Multiple proteomics datasets are integrated to make inferences about functions of unknown proteins and use a directed bi-relational graph to assign labels to unannotated proteins. Our method, bi-relational graph based transductive multi-label function annotation (Bi-TMF) uses functional correlation and topological PPI network properties on both the training and testing datasets to predict protein functions through data fusion of the individual kernel result. The main purpose of our proposed method is to enhance the performance of classifier integration for protein function prediction algorithms. Experimental results demonstrate the effectiveness and efficiency of Bi-TMF on multi-sources datasets in yeast, human and mouse benchmarks. Bi-TMF outperforms other recently proposed methods. PMID:26869536

  6. Benchmark data sets for structure-based computational target prediction.

    PubMed

    Schomburg, Karen T; Rarey, Matthias

    2014-08-25

    Structure-based computational target prediction methods identify potential targets for a bioactive compound. Methods based on protein-ligand docking so far face many challenges, where the greatest probably is the ranking of true targets in a large data set of protein structures. Currently, no standard data sets for evaluation exist, rendering comparison and demonstration of improvements of methods cumbersome. Therefore, we propose two data sets and evaluation strategies for a meaningful evaluation of new target prediction methods, i.e., a small data set consisting of three target classes for detailed proof-of-concept and selectivity studies and a large data set consisting of 7992 protein structures and 72 drug-like ligands allowing statistical evaluation with performance metrics on a drug-like chemical space. Both data sets are built from openly available resources, and any information needed to perform the described experiments is reported. We describe the composition of the data sets, the setup of screening experiments, and the evaluation strategy. Performance metrics capable to measure the early recognition of enrichments like AUC, BEDROC, and NSLR are proposed. We apply a sequence-based target prediction method to the large data set to analyze its content of nontrivial evaluation cases. The proposed data sets are used for method evaluation of our new inverse screening method iRAISE. The small data set reveals the method's capability and limitations to selectively distinguish between rather similar protein structures. The large data set simulates real target identification scenarios. iRAISE achieves in 55% excellent or good enrichment a median AUC of 0.67 and RMSDs below 2.0 Å for 74% and was able to predict the first true target in 59 out of 72 cases in the top 2% of the protein data set of about 8000 structures.

  7. Reflectance Prediction Modelling for Residual-Based Hyperspectral Image Coding

    PubMed Central

    Xiao, Rui; Gao, Junbin; Bossomaier, Terry

    2016-01-01

    A Hyperspectral (HS) image provides observational powers beyond human vision capability but represents more than 100 times the data compared to a traditional image. To transmit and store the huge volume of an HS image, we argue that a fundamental shift is required from the existing “original pixel intensity”-based coding approaches using traditional image coders (e.g., JPEG2000) to the “residual”-based approaches using a video coder for better compression performance. A modified video coder is required to exploit spatial-spectral redundancy using pixel-level reflectance modelling due to the different characteristics of HS images in their spectral and shape domain of panchromatic imagery compared to traditional videos. In this paper a novel coding framework using Reflectance Prediction Modelling (RPM) in the latest video coding standard High Efficiency Video Coding (HEVC) for HS images is proposed. An HS image presents a wealth of data where every pixel is considered a vector for different spectral bands. By quantitative comparison and analysis of pixel vector distribution along spectral bands, we conclude that modelling can predict the distribution and correlation of the pixel vectors for different bands. To exploit distribution of the known pixel vector, we estimate a predicted current spectral band from the previous bands using Gaussian mixture-based modelling. The predicted band is used as the additional reference band together with the immediate previous band when we apply the HEVC. Every spectral band of an HS image is treated like it is an individual frame of a video. In this paper, we compare the proposed method with mainstream encoders. The experimental results are fully justified by three types of HS dataset with different wavelength ranges. The proposed method outperforms the existing mainstream HS encoders in terms of rate-distortion performance of HS image compression. PMID:27695102

  8. Long Cyclic Life in Manganese Oxide-Based Electrodes.

    PubMed

    Wang, Zhaoming; Qin, Qingqing; Xu, Wei; Yan, Jian; Wu, Yucheng

    2016-07-20

    Long cyclic life is very important to the practical application of the pseudocapacitors. A systematic study has been carried out to reveal what key factors and how they affecting the cycling behaviors of manganese oxides. The specific capacitance degradation of MnOx is usually attributed to the so-called "dissolution" issue. Our results indicate that "dissoluted MnOx" is in the form of the "flotsam" derived from the detached active materials instead of Mn(2+) in the solution, which causes color change of electrolyte and the loss of specific capacitance. During the cycling, the morphology of manganese oxides transformed to flower-like flakes regardless of the starting structures. After that, it tends to form nanowires especially at elevated temperatures. According to the relative low electrochemical utility of nanowires, specific capacitance might decrease at this stage. These results put forward new questions on charge storage mechanism. Besides, electrochemical oxidation of MnOx leads to an increase in specific capacitance. The cycling behavior of MnOx is mainly determined by these three factors. Excitingly, a very stable cycling performance with no capacitance degradation over 40 000 cycles has been achieved in MnO2 hierarchical sphere-based electrodes. This study provides insightful understanding of the fundamental cycling behavior of MnOx-based electrodes and useful instructions for developing highly stable supercapacitors. PMID:27347779

  9. Brief summary of the evolution of high-temperature creep-fatigue life prediction models for crack initiation

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    1993-01-01

    The evolution of high-temperature, creep-fatigue, life-prediction methods used for cyclic crack initiation is traced from inception in the late 1940's. The methods reviewed are material models as opposed to structural life prediction models. Material life models are used by both structural durability analysts and by material scientists. The latter use micromechanistic models as guidance to improve a material's crack initiation resistance. Nearly one hundred approaches and their variations have been proposed to date. This proliferation poses a problem in deciding which method is most appropriate for a given application. Approaches were identified as being combinations of thirteen different classifications. This review is intended to aid both developers and users of high-temperature fatigue life prediction methods by providing a background from which choices can be made. The need for high-temperature, fatigue-life prediction methods followed immediately on the heels of the development of large, costly, high-technology industrial and aerospace equipment immediately following the second world war. Major advances were made in the design and manufacture of high-temperature, high-pressure boilers and steam turbines, nuclear reactors, high-temperature forming dies, high-performance poppet valves, aeronautical gas turbine engines, reusable rocket engines, etc. These advances could no longer be accomplished simply by trial and error using the 'build-em and bust-em' approach. Development lead times were too great and costs too prohibitive to retain such an approach. Analytic assessments of anticipated performance, cost, and durability were introduced to cut costs and shorten lead times. The analytic tools were quite primitive at first and out of necessity evolved in parallel with hardware development. After forty years more descriptive, more accurate, and more efficient analytic tools are being developed. These include thermal-structural finite element and boundary element

  10. Precocity Predicts Shorter Life for Major League Baseball Players: Confirmation of Mccann's Precocity-Longevity Hypothesis

    ERIC Educational Resources Information Center

    Abel, Ernest L.; Kruger, Michael L.

    2007-01-01

    We tested McCann's precocity-longevity hypothesis, which proposes that early career achievement is related to premature death, for Major League baseball players (N = 3,760). Age at debut was the definition for precocity. We controlled for possible artifacts of life expectancy selection, the "healthy worker" effect, player position, and body-mass…

  11. Profiles of Observed Infant Anger Predict Preschool Behavior Problems: Moderation by Life Stress

    ERIC Educational Resources Information Center

    Brooker, Rebecca J.; Buss, Kristin A.; Lemery-Chalfant, Kathryn; Aksan, Nazan; Davidson, Richard J.; Goldsmith, H. Hill

    2014-01-01

    Using both traditional composites and novel profiles of anger, we examined associations between infant anger and preschool behavior problems in a large, longitudinal data set (N = 966). We also tested the role of life stress as a moderator of the link between early anger and the development of behavior problems. Although traditional measures of…

  12. Emotional Outlook on Life Predicts Increases in Physical Activity among Initially Inactive Men

    ERIC Educational Resources Information Center

    Baruth, Meghan; Lee, Duck-Chul; Sui, Xuemei; Church, Timothy S.; Marcus, Bess H.; Wilcox, Sara; Blair, Steven N.

    2011-01-01

    This study examined the relationship between emotional outlook on life and change in physical activity among inactive adults in the Aerobics Center Longitudinal Study. A total of 2,132 sedentary adults completed a baseline medical examination and returned for a follow-up examination at least 6 months later. Participants self-reported physical…

  13. Speech Perception in Infancy Predicts Language Development in the Second Year of Life: A Longitudinal Study

    ERIC Educational Resources Information Center

    Tsao, Feng-Ming; Liu, Huei-Mei; Kuhl, Patricia K.

    2004-01-01

    Infants' early phonetic perception is hypothesized to play an important role in language development. Previous studies have not assessed this potential link in the first 2 years of life. In this study, speech discrimination was measured in 6-month-old infants using a conditioned head-turn task. At 13, 16, and 24 months of age, language development…

  14. Predicting the Job and Life Satisfaction of Italian Teachers: Test of a Social Cognitive Model

    ERIC Educational Resources Information Center

    Lent, Robert W.; Nota, Laura; Soresi, Salvatore; Ginevra, Maria C.; Duffy, Ryan D.; Brown, Steven D.

    2011-01-01

    This study tested a social cognitive model of work and life satisfaction (Lent & Brown, 2006, 2008) in a sample of 235 Italian school teachers. The model offered good overall fit to the data, though not all individual path coefficients were significant. Three of five predictors (favorable work conditions, efficacy-relevant supports, and…

  15. Acoustic fatigue life prediction for nonlinear structures with multiple resonant modes

    NASA Technical Reports Server (NTRS)

    Miles, R. N.

    1992-01-01

    This report documents an effort to develop practical and accurate methods for estimating the fatigue lives of complex aerospace structures subjected to intense random excitations. The emphasis of the current program is to construct analytical schemes for performing fatigue life estimates for structures that exhibit nonlinear vibration behavior and that have numerous resonant modes contributing to the response.

  16. Life stress in adolescence predicts early adult reward-related brain function and alcohol dependence

    PubMed Central

    Shaw, Daniel S.; Sitnick, Stephanie L.; Musselman, Samuel C.; Forbes, Erika E.

    2015-01-01

    Stressful life events increase vulnerability to problematic alcohol use, and they may do this by disrupting reward-related neural circuitry. This is particularly relevant for adolescents because alcohol use rises sharply after mid-adolescence and alcohol abuse peaks at age 20. Adolescents also report more stressors compared with children, and neural reward circuitry may be especially vulnerable to stressors during adolescence because of prefrontal cortex remodeling. Using a large sample of male participants in a longitudinal functional magnetic resonance imaging study (N = 157), we evaluated whether cumulative stressful life events between the ages of 15 and 18 were associated with reward-related brain function and problematic alcohol use at age 20 years. Higher cumulative stressful life events during adolescence were associated with decreased response in the medial prefrontal cortex (mPFC) during monetary reward anticipation and following the receipt of monetary rewards. Stress-related decreases in mPFC response during reward anticipation and following rewarding outcomes were associated with the severity of alcohol dependence. Furthermore, mPFC response mediated the association between stressful life events and later symptoms of alcohol dependence. These data are consistent with neurobiological models of addiction that propose that stressors during adolescence increase risk for problematic alcohol use by disrupting reward circuit function. PMID:24795442

  17. Life stress in adolescence predicts early adult reward-related brain function and alcohol dependence.

    PubMed

    Casement, Melynda D; Shaw, Daniel S; Sitnick, Stephanie L; Musselman, Samuel C; Forbes, Erika E

    2015-03-01

    Stressful life events increase vulnerability to problematic alcohol use, and they may do this by disrupting reward-related neural circuitry. This is particularly relevant for adolescents because alcohol use rises sharply after mid-adolescence and alcohol abuse peaks at age 20. Adolescents also report more stressors compared with children, and neural reward circuitry may be especially vulnerable to stressors during adolescence because of prefrontal cortex remodeling. Using a large sample of male participants in a longitudinal functional magnetic resonance imaging study (N = 157), we evaluated whether cumulative stressful life events between the ages of 15 and 18 were associated with reward-related brain function and problematic alcohol use at age 20 years. Higher cumulative stressful life events during adolescence were associated with decreased response in the medial prefrontal cortex (mPFC) during monetary reward anticipation and following the receipt of monetary rewards. Stress-related decreases in mPFC response during reward anticipation and following rewarding outcomes were associated with the severity of alcohol dependence. Furthermore, mPFC response mediated the association between stressful life events and later symptoms of alcohol dependence. These data are consistent with neurobiological models of addiction that propose that stressors during adolescence increase risk for problematic alcohol use by disrupting reward circuit function.

  18. Calibration of Radar Based Re-Entry Predictions

    NASA Astrophysics Data System (ADS)

    Lemmens, S.; Bastida Virgili, B.; Flohrer, T.; Gini, F.; Krag, H.; Steiger, C.

    2015-03-01

    The availability of GPS observations via the telemetry during GOCE’s (Gravity Field and Steady-State Ocean Circulation Explorer) entire re-entry campaign enabled the generation of high quality orbit products which can be used as input to re-entry predictions. These high precision orbits can be used as reference to assess the quality of orbits generated from other sources. Here we verify the accuracy of orbits based on radar tracking data, obtained by dedicated observations with the Tracking & Imaging Radar system from the Fraunhofer High Frequency Physics and Radar Techniques institute, with respect to the a post-processed GPS based reference orbit. This leads to time-depended quantification of the orbit determination uncertainties on the re-entry predictions. Furthermore, the ballistic coefficient determined by the orbit determination and its time dependent evolution can be used to a priori estimate the attitude behaviour of GOCE, which can be compared to the telemetry. The attitude behaviour can be analysed by the use of inverse synthetic aperture radar (ISAR) images, also obtained by dedicated observation by TIRA. The effect of adding this knowledge on the attitude evolution to the re-entry predictions is evaluated.

  19. Towards an evolutionary theory of the origin of life based on kinetics and thermodynamics.

    PubMed

    Pascal, Robert; Pross, Addy; Sutherland, John D

    2013-11-06

    A sudden transition in a system from an inanimate state to the living state-defined on the basis of present day living organisms-would constitute a highly unlikely event hardly predictable from physical laws. From this uncontroversial idea, a self-consistent representation of the origin of life process is built up, which is based on the possibility of a series of intermediate stages. This approach requires a particular kind of stability for these stages-dynamic kinetic stability (DKS)-which is not usually observed in regular chemistry, and which is reflected in the persistence of entities capable of self-reproduction. The necessary connection of this kinetic behaviour with far-from-equilibrium thermodynamic conditions is emphasized and this leads to an evolutionary view for the origin of life in which multiplying entities must be associated with the dissipation of free energy. Any kind of entity involved in this process has to pay the energetic cost of irreversibility, but, by doing so, the contingent emergence of new functions is made feasible. The consequences of these views on the studies of processes by which life can emerge are inferred.

  20. Towards an evolutionary theory of the origin of life based on kinetics and thermodynamics.

    PubMed

    Pascal, Robert; Pross, Addy; Sutherland, John D

    2013-11-01

    A sudden transition in a system from an inanimate state to the living state-defined on the basis of present day living organisms-would constitute a highly unlikely event hardly predictable from physical laws. From this uncontroversial idea, a self-consistent representation of the origin of life process is built up, which is based on the possibility of a series of intermediate stages. This approach requires a particular kind of stability for these stages-dynamic kinetic stability (DKS)-which is not usually observed in regular chemistry, and which is reflected in the persistence of entities capable of self-reproduction. The necessary connection of this kinetic behaviour with far-from-equilibrium thermodynamic conditions is emphasized and this leads to an evolutionary view for the origin of life in which multiplying entities must be associated with the dissipation of free energy. Any kind of entity involved in this process has to pay the energetic cost of irreversibility, but, by doing so, the contingent emergence of new functions is made feasible. The consequences of these views on the studies of processes by which life can emerge are inferred. PMID:24196781