Mathematical modeling of acid-base physiology.
Occhipinti, Rossana; Boron, Walter F
2015-01-01
pH is one of the most important parameters in life, influencing virtually every biological process at the cellular, tissue, and whole-body level. Thus, for cells, it is critical to regulate intracellular pH (pHi) and, for multicellular organisms, to regulate extracellular pH (pHo). pHi regulation depends on the opposing actions of plasma-membrane transporters that tend to increase pHi, and others that tend to decrease pHi. In addition, passive fluxes of uncharged species (e.g., CO2, NH3) and charged species (e.g., HCO3(-), [Formula: see text] ) perturb pHi. These movements not only influence one another, but also perturb the equilibria of a multitude of intracellular and extracellular buffers. Thus, even at the level of a single cell, perturbations in acid-base reactions, diffusion, and transport are so complex that it is impossible to understand them without a quantitative model. Here we summarize some mathematical models developed to shed light onto the complex interconnected events triggered by acids-base movements. We then describe a mathematical model of a spherical cells-which to our knowledge is the first one capable of handling a multitude of buffer reactions-that our team has recently developed to simulate changes in pHi and pHo caused by movements of acid-base equivalents across the plasma membrane of a Xenopus oocyte. Finally, we extend our work to a consideration of the effects of simultaneous CO2 and HCO3(-) influx into a cell, and envision how future models might extend to other cell types (e.g., erythrocytes) or tissues (e.g., renal proximal-tubule epithelium) important for whole-body pH homeostasis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mathematical modeling of acid-base physiology
Occhipinti, Rossana; Boron, Walter F.
2015-01-01
pH is one of the most important parameters in life, influencing virtually every biological process at the cellular, tissue, and whole-body level. Thus, for cells, it is critical to regulate intracellular pH (pHi) and, for multicellular organisms, to regulate extracellular pH (pHo). pHi regulation depends on the opposing actions of plasma-membrane transporters that tend to increase pHi, and others that tend to decrease pHi. In addition, passive fluxes of uncharged species (e.g., CO2, NH3) and charged species (e.g., HCO3− , NH4+) perturb pHi. These movements not only influence one another, but also perturb the equilibria of a multitude of intracellular and extracellular buffers. Thus, even at the level of a single cell, perturbations in acid-base reactions, diffusion, and transport are so complex that it is impossible to understand them without a quantitative model. Here we summarize some mathematical models developed to shed light onto the complex interconnected events triggered by acids-base movements. We then describe a mathematical model of a spherical cell–which to our knowledge is the first one capable of handling a multitude of buffer reaction–that our team has recently developed to simulate changes in pHi and pHo caused by movements of acid-base equivalents across the plasma membrane of a Xenopus oocyte. Finally, we extend our work to a consideration of the effects of simultaneous CO2 and HCO3− influx into a cell, and envision how future models might extend to other cell types (e.g., erythrocytes) or tissues (e.g., renal proximal-tubule epithelium) important for whole-body pH homeostasis. PMID:25617697
An agent-based mathematical model about carp aggregation
NASA Astrophysics Data System (ADS)
Liang, Yu; Wu, Chao
2005-05-01
This work presents an agent-based mathematical model to simulate the aggregation of carp, a harmful fish in North America. The referred mathematical model is derived from the following assumptions: (1) instead of the consensus among every carps involved in the aggregation, the aggregation of carp is completely a random and spontaneous physical behavior of numerous of independent carp; (2) carp aggregation is a collective effect of inter-carp and carp-environment interaction; (3) the inter-carp interaction can be derived from the statistical analytics about large-scale observed data. The proposed mathematical model is mainly based on empirical inter-carp force field, whose effect is featured with repulsion, parallel orientation, attraction, out-of-perception zone, and blind. Based on above mathematical model, the aggregation behavior of carp is formulated and preliminary simulation results about the aggregation of small number of carps within simple environment are provided. Further experiment-based validation about the mathematical model will be made in our future work.
Validation and upgrading of physically based mathematical models
NASA Technical Reports Server (NTRS)
Duval, Ronald
1992-01-01
The validation of the results of physically-based mathematical models against experimental results was discussed. Systematic techniques are used for: (1) isolating subsets of the simulator mathematical model and comparing the response of each subset to its experimental response for the same input conditions; (2) evaluating the response error to determine whether it is the result of incorrect parameter values, incorrect structure of the model subset, or unmodeled external effects of cross coupling; and (3) modifying and upgrading the model and its parameter values to determine the most physically appropriate combination of changes.
Information system based on the mathematical model of the EPS
NASA Astrophysics Data System (ADS)
Kalimoldayev, Maksat N.; Abdildayeva, Assel A.; Mamyrbayev, Orken Zh.; Akhmetzhanov, Maksat
2016-11-01
This article discusses the structure of an information system, the mathematical and information models of electric power systems. Currently, the major application areas include system relaying data communication systems and automation, automated dispatching and technological management of electric power facilities, as well as computer-aided calculation of energy resources. Automatic control of excitation (ARV) synchronous machines is one of the most effective ways to ensure the stability of power systems. However, the variety of possible options and modes even in a single grid pose significant obstacles to the development of the best means of ensuring sustainability. Thus, the use of ARVs to ensure stability in some cases may not be sufficient. Therefore, there is a need to develop an information system based on a mathematical model.
Mathematical model for light scanning system based on circular laser
NASA Astrophysics Data System (ADS)
Xu, Peiquan; Yao, Shun; Lu, Fenggui; Tang, Xinhua; Zhang, Wei
2005-11-01
A novel light scanning system based on circular laser trajectory for welding robot is developed. With the help of image processing technique, intelligent laser welding could be realized. According to laser triangulation algorithm and Scheimpflug condition, mathematical model for circular laser vision is built. This scanning system projects circular laser onto welded seams and recovers the depth of the welded seams, escapes from shortcomings of less information, explains ambiguity and single tracking direction inherent in "spot" or "line" type laser trajectory. Three-dimensional (3D) model for welded seams could be recognized after depth recovery. The imaging error is investigated also.
A Cellular Automata-Based Mathematical Model for Thymocyte Development
Souza-e-Silva, Hallan; Savino, Wilson; Feijóo, Raúl A.; Vasconcelos, Ana Tereza Ribeiro
2009-01-01
Intrathymic T cell development is an important process necessary for the normal formation of cell-mediated immune responses. Importantly, such a process depends on interactions of developing thymocytes with cellular and extracellular elements of the thymic microenvironment. Additionally, it includes a series of oriented and tunely regulated migration events, ultimately allowing mature cells to cross endothelial barriers and leave the organ. Herein we built a cellular automata-based mathematical model for thymocyte migration and development. The rules comprised in this model take into account the main stages of thymocyte development, two-dimensional sections of the normal thymic microenvironmental network, as well as the chemokines involved in intrathymic cell migration. Parameters of our computer simulations with further adjusted to results derived from previous experimental data using sub-lethally irradiated mice, in which thymus recovery can be evaluated. The model fitted with the increasing numbers of each CD4/CD8-defined thymocyte subset. It was further validated since it fitted with the times of permanence experimentally ascertained in each CD4/CD8-defined differentiation stage. Importantly, correlations using the whole mean volume of young normal adult mice revealed that the numbers of cells generated in silico with the mathematical model fall within the range of total thymocyte numbers seen in these animals. Furthermore, simulations made with a human thymic epithelial network using the same mathematical model generated similar profiles for temporal evolution of thymocyte developmental stages. Lastly, we provided in silico evidence that the thymus architecture is important in the thymocyte development, since changes in the epithelial network result in different theoretical profiles for T cell development/migration. This model likely can be used to predict thymocyte evolution following therapeutic strategies designed for recovery of the thymus in diseases
Retrospective Study on Mathematical Modeling Based on Computer Graphic Processing
NASA Astrophysics Data System (ADS)
Zhang, Kai Li
Graphics & image making is an important field in computer application, in which visualization software has been widely used with the characteristics of convenience and quick. However, it was thought by modeling designers that the software had been limited in it's function and flexibility because mathematics modeling platform was not built. A non-visualization graphics software appearing at this moment enabled the graphics & image design has a very good mathematics modeling platform. In the paper, a polished pyramid is established by multivariate spline function algorithm, and validate the non-visualization software is good in mathematical modeling.
Mathematical Modeling and Pure Mathematics
ERIC Educational Resources Information Center
Usiskin, Zalman
2015-01-01
Common situations, like planning air travel, can become grist for mathematical modeling and can promote the mathematical ideas of variables, formulas, algebraic expressions, functions, and statistics. The purpose of this article is to illustrate how the mathematical modeling that is present in everyday situations can be naturally embedded in…
Mathematical Modeling and Pure Mathematics
ERIC Educational Resources Information Center
Usiskin, Zalman
2015-01-01
Common situations, like planning air travel, can become grist for mathematical modeling and can promote the mathematical ideas of variables, formulas, algebraic expressions, functions, and statistics. The purpose of this article is to illustrate how the mathematical modeling that is present in everyday situations can be naturally embedded in…
A Proposal for Improving Students' Mathematical Attitude Based on Mathematical Modelling
ERIC Educational Resources Information Center
Falsetti, Marcela C.; Rodriguez, Mabel A.
2005-01-01
On the occasion of having to design an introductory course of mathematics for the University (UNGS, Buenos Aires, Argentina) we took into account the perspective of mathematical modelling. In this article we present the theoretical framework that we elaborated on to design our course. This framework allowed us to adapt the generic perspectives of…
Mathematical modelling of microtumour infiltration based on in vitro experiments.
Luján, Emmanuel; Guerra, Liliana N; Soba, Alejandro; Visacovsky, Nicolás; Gandía, Daniel; Calvo, Juan C; Suárez, Cecilia
2016-08-08
The present mathematical models of microtumours consider, in general, volumetric growth and spherical tumour invasion shapes. Nevertheless in many cases, such as in gliomas, a need for more accurate delineation of tumour infiltration areas in a patient-specific manner has arisen. The objective of this study was to build a mathematical model able to describe in a case-specific way as well as to predict in a probabilistic way the growth and the real invasion pattern of multicellular tumour spheroids (in vitro model of an avascular microtumour) immersed in a collagen matrix. The two-dimensional theoretical model was represented by a reaction-convection-diffusion equation that considers logistic proliferation, volumetric growth, a rim with proliferative cells at the tumour surface and invasion with diffusive and convective components. Population parameter values of the model were extracted from the experimental dataset and a shape function that describes the invasion area was derived from each experimental case by image processing. New possible and aleatory shape functions were generated by data mining and Monte Carlo tools by means of a satellite EGARCH model, which were fed with all the shape functions of the dataset. Then the main model is used in two different ways: to reproduce the growth and invasion of a given experimental tumour in a case-specific manner when fed with the corresponding shape function (descriptive simulations) or to generate new possible tumour cases that respond to the general population pattern when fed with an aleatory-generated shape function (predictive simulations). Both types of simulations are in good agreement with empirical data, as it was revealed by area quantification and Bland-Altman analysis. This kind of experimental-numerical interaction has wide application potential in designing new strategies able to predict as much as possible the invasive behaviour of a tumour based on its particular characteristics and microenvironment.
PREFACE: Physics-Based Mathematical Models for Nanotechnology
NASA Astrophysics Data System (ADS)
Voon, Lok C. Lew Yan; Melnik, Roderick; Willatzen, Morten
2008-03-01
stain-resistant clothing, but with thousands more anticipated. The focus of this interdisciplinary workshop was on determining what kind of new theoretical and computational tools will be needed to advance the science and engineering of nanomaterials and nanostructures. Thanks to the stimulating environment of the BIRS, participants of the workshop had plenty of opportunity to exchange new ideas on one of the main topics of this workshop—physics-based mathematical models for the description of low-dimensional semiconductor nanostructures (LDSNs) that are becoming increasingly important in technological innovations. The main objective of the workshop was to bring together some of the world leading experts in the field from each of the key research communities working on different aspects of LDSNs in order to (a) summarize the state-of-the-art models and computational techniques for modeling LDSNs, (b) identify critical problems of major importance that require solution and prioritize them, (c) analyze feasibility of existing mathematical and computational methodologies for the solution of some such problems, and (d) use some of the workshop working sessions to explore promising approaches in addressing identified challenges. With the possibility of growing practically any shape and size of heterostructures, it becomes essential to understand the mathematical properties of quantum-confined structures including properties of bulk states, interface states, and surface states as a function of shape, size, and internal strain. This workshop put strong emphasis on discussions of the new mathematics needed in nanotechnology especially in relation to geometry and material-combination optimization of device properties such as electronic, optical, and magnetic properties. The problems that were addressed at this meeting are of immense importance in determining such quantum-mechanical properties and the group of invited participants covered very well all the relevant disciplines
Hybrid modelling framework by using mathematics-based and information-based methods
NASA Astrophysics Data System (ADS)
Ghaboussi, J.; Kim, J.; Elnashai, A.
2010-06-01
Mathematics-based computational mechanics involves idealization in going from the observed behaviour of a system into mathematical equations representing the underlying mechanics of that behaviour. Idealization may lead mathematical models that exclude certain aspects of the complex behaviour that may be significant. An alternative approach is data-centric modelling that constitutes a fundamental shift from mathematical equations to data that contain the required information about the underlying mechanics. However, purely data-centric methods often fail for infrequent events and large state changes. In this article, a new hybrid modelling framework is proposed to improve accuracy in simulation of real-world systems. In the hybrid framework, a mathematical model is complemented by information-based components. The role of informational components is to model aspects which the mathematical model leaves out. The missing aspects are extracted and identified through Autoprogressive Algorithms. The proposed hybrid modelling framework has a wide range of potential applications for natural and engineered systems. The potential of the hybrid methodology is illustrated through modelling highly pinched hysteretic behaviour of beam-to-column connections in steel frames.
Teaching Mathematical Modelling.
ERIC Educational Resources Information Center
Jones, Mark S.
1997-01-01
Outlines a course at the University of Glamorgan in the United Kingdom in which a computer algebra system (CAS) teaches mathematical modeling. The format is based on continual assessment of group and individual work stating the problem, a feature list, and formulation of the models. No additional mathematical word processing package is necessary.…
ERIC Educational Resources Information Center
Wright, Vince
2014-01-01
Pirie and Kieren (1989 "For the learning of mathematics", 9(3)7-11, 1992 "Journal of Mathematical Behavior", 11, 243-257, 1994a "Educational Studies in Mathematics", 26, 61-86, 1994b "For the Learning of Mathematics":, 14(1)39-43) created a model (P-K) that describes a dynamic and recursive process by which…
ERIC Educational Resources Information Center
Wright, Vince
2014-01-01
Pirie and Kieren (1989 "For the learning of mathematics", 9(3)7-11, 1992 "Journal of Mathematical Behavior", 11, 243-257, 1994a "Educational Studies in Mathematics", 26, 61-86, 1994b "For the Learning of Mathematics":, 14(1)39-43) created a model (P-K) that describes a dynamic and recursive process by which…
ERIC Educational Resources Information Center
Tan, Liang Soon; Ang, Keng Cheng
2016-01-01
A school-based professional development programme (SBPD) aimed at developing secondary school mathematics teachers' competencies to teach mathematical modelling in Singapore is presented and evaluated in this article. The SBPD is characterized by two key features--content elements to develop teachers' knowledge and skills, and transformative…
ERIC Educational Resources Information Center
Tan, Liang Soon; Ang, Keng Cheng
2016-01-01
A school-based professional development programme (SBPD) aimed at developing secondary school mathematics teachers' competencies to teach mathematical modelling in Singapore is presented and evaluated in this article. The SBPD is characterized by two key features--content elements to develop teachers' knowledge and skills, and transformative…
Mathematical modeling of laser based potato cutting and peeling.
Ferraz, A Carlos O; Mittal, Gauri S; Bilanski, Walter K; Abdullah, Hussein A
2007-01-01
A mathematical model is developed and validated to predict the depth of cut in potato tuber slabs as a function of laser power and travel speed. The model considers laser processing parameters such as input power, spot size and exposure time as well as the properties of the material being cut such as specific heat, thermal conductivity, surface reflectance, etc. The model also considers the phase change of water in potato and the ignition temperature of the solid portion. The composition of the potato tuber is assumed to be of water and solid. The model also assumes that the ablation process is accomplished through ejection of liquid water, debris and water vapour, and combustion of solid. A CO(2) laser operating in c.w. mode was chosen for the experimental work because water absorbs laser energy highly at 10.6 microm, and CO(2) laser units with relatively high output power are available. Slabs of potato tuber were chosen to be laser processed since potato contains high moisture and large amounts of relatively homogeneous tissue. The results of the preliminary calculations and experiments concluded that the model is able to predict the depth of cut in potato tuber parenchyma when subjected to a CO(2) laser beam.
A mathematical framework for agent based models of complex biological networks.
Hinkelmann, Franziska; Murrugarra, David; Jarrah, Abdul Salam; Laubenbacher, Reinhard
2011-07-01
Agent-based modeling and simulation is a useful method to study biological phenomena in a wide range of fields, from molecular biology to ecology. Since there is currently no agreed-upon standard way to specify such models, it is not always easy to use published models. Also, since model descriptions are not usually given in mathematical terms, it is difficult to bring mathematical analysis tools to bear, so that models are typically studied through simulation. In order to address this issue, Grimm et al. proposed a protocol for model specification, the so-called ODD protocol, which provides a standard way to describe models. This paper proposes an addition to the ODD protocol which allows the description of an agent-based model as a dynamical system, which provides access to computational and theoretical tools for its analysis. The mathematical framework is that of algebraic models, that is, time-discrete dynamical systems with algebraic structure. It is shown by way of several examples how this mathematical specification can help with model analysis. This mathematical framework can also accommodate other model types such as Boolean networks and the more general logical models, as well as Petri nets.
Application of an OCT data-based mathematical model of the foveal pit in Parkinson disease.
Ding, Yin; Spund, Brian; Glazman, Sofya; Shrier, Eric M; Miri, Shahnaz; Selesnick, Ivan; Bodis-Wollner, Ivan
2014-11-01
Spectral-domain Optical coherence tomography (OCT) has shown remarkable utility in the study of retinal disease and has helped to characterize the fovea in Parkinson disease (PD) patients. We developed a detailed mathematical model based on raw OCT data to allow differentiation of foveae of PD patients from healthy controls. Of the various models we tested, a difference of a Gaussian and a polynomial was found to have "the best fit". Decision was based on mathematical evaluation of the fit of the model to the data of 45 control eyes versus 50 PD eyes. We compared the model parameters in the two groups using receiver-operating characteristics (ROC). A single parameter discriminated 70 % of PD eyes from controls, while using seven of the eight parameters of the model allowed 76 % to be discriminated. The future clinical utility of mathematical modeling in study of diffuse neurodegenerative conditions that also affect the fovea is discussed.
Applying Mathematical Optimization Methods to an ACT-R Instance-Based Learning Model.
Said, Nadia; Engelhart, Michael; Kirches, Christian; Körkel, Stefan; Holt, Daniel V
2016-01-01
Computational models of cognition provide an interface to connect advanced mathematical tools and methods to empirically supported theories of behavior in psychology, cognitive science, and neuroscience. In this article, we consider a computational model of instance-based learning, implemented in the ACT-R cognitive architecture. We propose an approach for obtaining mathematical reformulations of such cognitive models that improve their computational tractability. For the well-established Sugar Factory dynamic decision making task, we conduct a simulation study to analyze central model parameters. We show how mathematical optimization techniques can be applied to efficiently identify optimal parameter values with respect to different optimization goals. Beyond these methodological contributions, our analysis reveals the sensitivity of this particular task with respect to initial settings and yields new insights into how average human performance deviates from potential optimal performance. We conclude by discussing possible extensions of our approach as well as future steps towards applying more powerful derivative-based optimization methods.
Mathematical Modelling Approach in Mathematics Education
ERIC Educational Resources Information Center
Arseven, Ayla
2015-01-01
The topic of models and modeling has come to be important for science and mathematics education in recent years. The topic of "Modeling" topic is especially important for examinations such as PISA which is conducted at an international level and measures a student's success in mathematics. Mathematical modeling can be defined as using…
Teaching Mathematical Modeling in Mathematics Education
ERIC Educational Resources Information Center
Saxena, Ritu; Shrivastava, Keerty; Bhardwaj, Ramakant
2016-01-01
Mathematics is not only a subject but it is also a language consisting of many different symbols and relations. Taught as a compulsory subject up the 10th class, students are then able to choose whether or not to study mathematics as a main subject. The present paper discusses mathematical modeling in mathematics education. The article provides…
NASA Astrophysics Data System (ADS)
Fasni, Nurli; Fatimah, Siti; Yulanda, Syerli
2017-05-01
This research aims to achieve some purposes such as: to know whether mathematical problem solving ability of students who have learned mathematics using Multiple Intelligences based teaching model is higher than the student who have learned mathematics using cooperative learning; to know the improvement of the mathematical problem solving ability of the student who have learned mathematics using Multiple Intelligences based teaching model., to know the improvement of the mathematical problem solving ability of the student who have learned mathematics using cooperative learning; to know the attitude of the students to Multiple Intelligences based teaching model. The method employed here is quasi-experiment which is controlled by pre-test and post-test. The population of this research is all of VII grade in SMP Negeri 14 Bandung even-term 2013/2014, later on two classes of it were taken for the samples of this research. A class was taught using Multiple Intelligences based teaching model and the other one was taught using cooperative learning. The data of this research were gotten from the test in mathematical problem solving, scale questionnaire of the student attitudes, and observation. The results show the mathematical problem solving of the students who have learned mathematics using Multiple Intelligences based teaching model learning is higher than the student who have learned mathematics using cooperative learning, the mathematical problem solving ability of the student who have learned mathematics using cooperative learning and Multiple Intelligences based teaching model are in intermediate level, and the students showed the positive attitude in learning mathematics using Multiple Intelligences based teaching model. As for the recommendation for next author, Multiple Intelligences based teaching model can be tested on other subject and other ability.
ERIC Educational Resources Information Center
Toumasis, Charalampos
2004-01-01
Emphasis on problem solving and mathematical modeling has gained considerable attention in the last few years. Connecting mathematics to other subjects and to the real world outside the classroom has received increased attention in mathematics programs. This article describes an application of simple differential equations in the field of…
ERIC Educational Resources Information Center
Saragih, Sahat; Napitupulu, E. Elvis; Fauzi, Amin
2017-01-01
This research aims to develop a student-centered learning model based on local culture and instrument of mathematical higher order thinking of junior high school students in the frame of the 2013-Curriculum in North Sumatra, Indonesia. The subjects of the research are seventh graders which are taken proportionally random consisted of three public…
NASA Technical Reports Server (NTRS)
Petersen, Richard H.
1997-01-01
The objectives of the Institute were: (a) increase participants' content knowledge about aeronautics, science, mathematics, and technology, (b) model and promote the use of scientific inquiry through problem-based learning, (c) investigate the use of instructional technologies and their applications to curricula, and (d) encourage the dissemination of TEI experiences to colleagues, students, and parents.
Approaching mathematical model of the immune network based DNA Strand Displacement system.
Mardian, Rizki; Sekiyama, Kosuke; Fukuda, Toshio
2013-12-01
One biggest obstacle in molecular programming is that there is still no direct method to compile any existed mathematical model into biochemical reaction in order to solve a computational problem. In this paper, the implementation of DNA Strand Displacement system based on nature-inspired computation is observed. By using the Immune Network Theory and Chemical Reaction Network, the compilation of DNA-based operation is defined and the formulation of its mathematical model is derived. Furthermore, the implementation on this system is compared with the conventional implementation by using silicon-based programming. From the obtained results, we can see a positive correlation between both. One possible application from this DNA-based model is for a decision making scheme of intelligent computer or molecular robot.
NASA Astrophysics Data System (ADS)
Wright, Vince
2014-03-01
Pirie and Kieren (1989 For the learning of mathematics, 9(3)7-11, 1992 Journal of Mathematical Behavior, 11, 243-257, 1994a Educational Studies in Mathematics, 26, 61-86, 1994b For the Learning of Mathematics, 14(1)39-43) created a model (P-K) that describes a dynamic and recursive process by which learners develop their mathematical understanding. The model was adapted to create the teaching model used in the New Zealand Numeracy Development Projects (Ministry of Education, 2007). A case study of a 3-week sequence of instruction with a group of eight 12- and 13-year-old students provided the data. The teacher/researcher used folding back to materials and images and progressing from materials to imaging to number properties to assist students to develop their understanding of frequencies as proportions. The data show that successful implementation of the model is dependent on the teacher noticing and responding to the layers of understanding demonstrated by the students and the careful selection of materials, problems and situations. It supports the use of the model as a useful part of teachers' instructional strategies and the importance of pedagogical content knowledge to the quality of the way the model is used.
ERIC Educational Resources Information Center
Yilmaz, Suha; Tekin-Dede, Ayse
2016-01-01
Mathematization competency is considered in the field as the focus of modelling process. Considering the various definitions, the components of the mathematization competency are determined as identifying assumptions, identifying variables based on the assumptions and constructing mathematical model/s based on the relations among identified…
Mathematical modeling in neuroendocrinology.
Bertram, Richard
2015-04-01
Mathematical models are commonly used in neuroscience, both as tools for integrating data and as devices for designing new experiments that test model predictions. The wide range of relevant spatial and temporal scales in the neuroendocrine system makes neuroendocrinology a branch of neuroscience with great potential for modeling. This article provides an overview of concepts that are useful for understanding mathematical models of the neuroendocrine system, as well as design principles that have been illuminated through the use of mathematical models. These principles are found over and over again in cellular dynamics, and serve as building blocks for understanding some of the complex temporal dynamics that are exhibited throughout the neuroendocrine system.
Modelers' Perception of Mathematical Modeling in Epidemiology: A Web-Based Survey
Hejblum, Gilles; Setbon, Michel; Temime, Laura; Lesieur, Sophie; Valleron, Alain-Jacques
2011-01-01
Background Mathematical modeling in epidemiology (MME) is being used increasingly. However, there are many uncertainties in terms of definitions, uses and quality features of MME. Methodology/Principal Findings To delineate the current status of these models, a 10-item questionnaire on MME was devised. Proposed via an anonymous internet-based survey, the questionnaire was completed by 189 scientists who had published in the domain of MME. A small minority (18%) of respondents claimed to have in mind a concise definition of MME. Some techniques were identified by the researchers as characterizing MME (e.g. Markov models), while others–at the same level of sophistication in terms of mathematics–were not (e.g. Cox regression). The researchers' opinions were also contrasted about the potential applications of MME, perceived as higly relevant for providing insight into complex mechanisms and less relevant for identifying causal factors. The quality criteria were those of good science and were not related to the size and the nature of the public health problems addressed. Conclusions/Significance This study shows that perceptions on the nature, uses and quality criteria of MME are contrasted, even among the very community of published authors in this domain. Nevertheless, MME is an emerging discipline in epidemiology and this study underlines that it is associated with specific areas of application and methods. The development of this discipline is likely to deserve a framework providing recommendations and guidance at various steps of the studies, from design to report. PMID:21304976
[Mathematical model of dispersive infrared gas analyzer based on pyroelectric detector].
Zhang, Yong-huai; Liu, Jun-hua
2004-03-01
This paper analyzes the characteristics of the pyroelectric detector based on its working principle. The input andoutput mathematical model of DIGA (Dispersive Infrared Gas Analyzer) system with pyroelectric detector was established according to the design principle of DIGA. We have manufactured a novel multi-gas DIGA on the basis of this model, then pointed out several problems that should be taken into account in the design. Application indicates that this model is of considerable practical value for the design, study, performance analysis and further improvement of DIGA.
Phase errors elimination in compact digital holoscope (CDH) based on a reasonable mathematical model
NASA Astrophysics Data System (ADS)
Wen, Yongfu; Qu, Weijuan; Cheng, Cheeyuen; Wang, Zhaomin; Asundi, Anand
2015-03-01
In the compact digital holoscope (CDH) measurement process, theoretically, we need to ensure the distances between the reference wave and object wave to the hologram plane exactly match. However, it is not easy to realize in practice due to the human factors. This can lead to a phase error in the reconstruction result. In this paper, the strict theoretical analysis of the wavefront interference is performed to demonstrate the mathematical model of the phase error and then a phase errors elimination method is proposed based on the advanced mathematical model, which has a more explicit physical meaning. Experiments are carried out to verify the performance of the presented method and the results indicate that it is effective and allows the operator can make operation more flexible.
A biologically based mathematical model for the induction of liver tumors in mice by dichloroacetic acid (DCA) has been developed from histopathologic analysis of the livers of exposed mice. This analysis suggests that following chronic exposure to DCA, carcinomas can arise dire...
A biologically based mathematical model for the induction of liver tumors in mice by dichloroacetic acid (DCA) has been developed from histopathologic analysis of the livers of exposed mice. This analysis suggests that following chronic exposure to DCA, carcinomas can arise dire...
Facial plastic surgery area acquisition method based on point cloud mathematical model solution.
Li, Xuwu; Liu, Fei
2013-09-01
It is one of the hot research problems nowadays to find a quick and accurate method of acquiring the facial plastic surgery area to provide sufficient but irredundant autologous or in vitro skin source for covering extensive wound, trauma, and burnt area. At present, the acquisition of facial plastic surgery area mainly includes model laser scanning, point cloud data acquisition, pretreatment of point cloud data, three-dimensional model reconstruction, and computation of area. By using this method, the area can be computed accurately, but it is hard to control the random error, and it requires a comparatively longer computation period. In this article, a facial plastic surgery area acquisition method based on point cloud mathematical model solution is proposed. This method applies symmetric treatment to the point cloud based on the pretreatment of point cloud data, through which the comparison diagram color difference map of point cloud error before and after symmetry is obtained. The slicing mathematical model of facial plastic area is got through color difference map diagram. By solving the point cloud data in this area directly, the facial plastic area is acquired. The point cloud data are directly operated in this method, which can accurately and efficiently complete the surgery area computation. The result of the comparative analysis shows the method is effective in facial plastic surgery area.
Aging mathematical model of InGaN/GaN LEDs based on non-radiative recombination
NASA Astrophysics Data System (ADS)
Xu, Linwang; Qian, Keyuan
2017-08-01
This paper proposes a new aging mathematical model for InGaN/GaN-based light-emitting diodes (LEDs) based on non-radiative recombination. Light attenuation is an important index of the performance of LEDs, Arrhenius model as the main aging mathematical model of light attenuation is poorly targeted and cannot reflect the physical significance. Based on the physical theory of deep level defects and non-radiation recombination centers, we analyze the aging mechanism of LED chips and then establish the aging mathematical model. Meanwhile, a batch of GaN-based blue LED chips are selected to conduct accelerated life tests with constant current stresses, and the experimental data is obtained to verify the new model. The result shows that compared with the traditional Arrhenius model, the new model has many advantages such as more accurate, strong pertinence and obvious physical meaning.
NASA Astrophysics Data System (ADS)
Parshin, D. V.; Ufimtseva, I. V.; Cherevko, A. A.; Khe, A. K.; Orlov, K. Yu; Krivoshapkin, A. L.; Chupakhin, A. P.
2016-06-01
The present paper discusses the method of identification (diseased/healthy) human cerebral vessels by using of mathematical model. Human cerebral circulation as a single tuned circuit, which consists of blood flow, elastic vessels and elastic brain gel tissue is under consideration. Non linear Van der Pol-Duffing equation is assumed as mathematical model of cerebrovascular circulation. Hypothesis of vascular pathology existence in some position of blood vessel, based on mathematical model properties for this position is formulated. Good reliability of hypothesis is proved statistically for 7 patients with arterial aneurysms.
SEQAID: a DNA sequence assembling program based on a mathematical model.
Peltola, H; Söderlund, H; Ukkonen, E
1984-01-01
A program package, called SEQAID, to support DNA sequencing is presented. The program automatically assembles long DNA sequences from short fragments with minimal user interaction. Various tools for controlling the assembling process are also available. The main novel features of the system are that SEQAID implements several new well-behaved algorithms based on a mathematical model of the problem. It also utilizes available information on restriction fragments to detect illegitimate overlaps and to find relationships between separately assembled sequence blocks. Experiences with the system are reported including an extremely pathological real sequence which offers an interesting benchmark for this kind of programs. PMID:6320092
Mathematical Modeling: A Structured Process
ERIC Educational Resources Information Center
Anhalt, Cynthia Oropesa; Cortez, Ricardo
2015-01-01
Mathematical modeling, in which students use mathematics to explain or interpret physical, social, or scientific phenomena, is an essential component of the high school curriculum. The Common Core State Standards for Mathematics (CCSSM) classify modeling as a K-12 standard for mathematical practice and as a conceptual category for high school…
Mathematical Modeling: A Structured Process
ERIC Educational Resources Information Center
Anhalt, Cynthia Oropesa; Cortez, Ricardo
2015-01-01
Mathematical modeling, in which students use mathematics to explain or interpret physical, social, or scientific phenomena, is an essential component of the high school curriculum. The Common Core State Standards for Mathematics (CCSSM) classify modeling as a K-12 standard for mathematical practice and as a conceptual category for high school…
A biophysically based mathematical model for the catalytic mechanism of glutathione reductase.
Pannala, Venkat R; Bazil, Jason N; Camara, Amadou K S; Dash, Ranjan K
2013-12-01
Glutathione reductase (GR) catalyzes the reduction of oxidized glutathione (GSSG) to reduced glutathione (GSH) using NADPH as the reducing cofactor, and thereby maintains a constant GSH level in the system. GSH scavenges superoxide (O2(*-)) and hydroxyl radicals (OH) nonenzymatically or by serving as an electron donor to several enzymes involved in reactive oxygen species (ROS) detoxification. In either case, GSH oxidizes to GSSG and is subsequently regenerated by the catalytic action of GR. Although the GR kinetic mechanism has been extensively studied under various experimental conditions with variable substrates and products, the catalytic mechanism has not been studied in terms of a mechanistic model that accounts for the effects of the substrates and products on the reaction kinetics. The aim of this study is therefore to develop a comprehensive mathematical model for the catalytic mechanism of GR. We use available experimental data on GR kinetics from various species/sources to develop the mathematical model and estimate the associated model parameters. The model simulations are consistent with the experimental observation that GR operates via both ping-pong and sequential branching mechanisms based on relevant concentrations of its reaction substrate GSSG. Furthermore, we show the observed pH-dependent substrate inhibition of GR activity by GSSG and bimodal behavior of GR activity with pH. The model presents a unique opportunity to understand the effects of products on the kinetics of GR. The model simulations show that under physiological conditions, where both substrates and products are present, the flux distribution depends on the concentrations of both GSSG and NADP(+), with ping-pong flux operating at low levels and sequential flux dominating at higher levels. The kinetic model of GR may serve as a key module for the development of integrated models for ROS-scavenging systems to understand protection of cells under normal and oxidative stress
Mathematical model for adaptive evolution of populations based on a complex domain
Ibrahim, Rabha W.; Ahmad, M.Z.; Al-Janaby, Hiba F.
2015-01-01
A mutation is ultimately essential for adaptive evolution in all populations. It arises all the time, but is mostly fixed by enzymes. Further, most do consider that the evolution mechanism is by a natural assortment of variations in organisms in line for random variations in their DNA, and the suggestions for this are overwhelming. The altering of the construction of a gene, causing a different form that may be communicated to succeeding generations, produced by the modification of single base units in DNA, or the deletion, insertion, or rearrangement of larger units of chromosomes or genes. This altering is called a mutation. In this paper, a mathematical model is introduced to this reality. The model describes the time and space for the evolution. The tool is based on a complex domain for the space. We show that the evolution is distributed with the hypergeometric function. The Boundedness of the evolution is imposed by utilizing the Koebe function. PMID:26858564
Mathematical modeling of PDC bit drilling process based on a single-cutter mechanics
Wojtanowicz, A.K.; Kuru, E.
1993-12-01
An analytical development of a new mechanistic drilling model for polycrystalline diamond compact (PDC) bits is presented. The derivation accounts for static balance of forces acting on a single PDC cutter and is based on assumed similarity between bit and cutter. The model is fully explicit with physical meanings given to all constants and functions. Three equations constitute the mathematical model: torque, drilling rate, and bit life. The equations comprise cutter`s geometry, rock properties drilling parameters, and four empirical constants. The constants are used to match the model to a PDC drilling process. Also presented are qualitative and predictive verifications of the model. Qualitative verification shows that the model`s response to drilling process variables is similar to the behavior of full-size PDC bits. However, accuracy of the model`s predictions of PDC bit performance is limited primarily by imprecision of bit-dull evaluation. The verification study is based upon the reported laboratory drilling and field drilling tests as well as field data collected by the authors.
Salloum, Maher N.; Gharagozloo, Patricia E.
2013-10-01
Metal particle beds have recently become a major technique for hydrogen storage. In order to extract hydrogen from such beds, it is crucial to understand the decomposition kinetics of the metal hydride. We are interested in obtaining a a better understanding of the uranium hydride (UH3) decomposition kinetics. We first developed an empirical model by fitting data compiled from different experimental studies in the literature and quantified the uncertainty resulting from the scattered data. We found that the decomposition time range predicted by the obtained kinetics was in a good agreement with published experimental results. Secondly, we developed a physics based mathematical model to simulate the rate of hydrogen diffusion in a hydride particle during the decomposition. We used this model to simulate the decomposition of the particles for temperatures ranging from 300K to 1000K while propagating parametric uncertainty and evaluated the kinetics from the results. We compared the kinetics parameters derived from the empirical and physics based models and found that the uncertainty in the kinetics predicted by the physics based model covers the scattered experimental data. Finally, we used the physics-based kinetics parameters to simulate the effects of boundary resistances and powder morphological changes during decomposition in a continuum level model. We found that the species change within the bed occurring during the decomposition accelerates the hydrogen flow by increasing the bed permeability, while the pressure buildup and the thermal barrier forming at the wall significantly impede the hydrogen extraction.
Chemically Based Mathematical Model for Development of Cerebral Cortical Folding Patterns
Striegel, Deborah A.; Hurdal, Monica K.
2009-01-01
The mechanism for cortical folding pattern formation is not fully understood. Current models represent scenarios that describe pattern formation through local interactions, and one recent model is the intermediate progenitor model. The intermediate progenitor (IP) model describes a local chemically driven scenario, where an increase in intermediate progenitor cells in the subventricular zone correlates to gyral formation. Here we present a mathematical model that uses features of the IP model and further captures global characteristics of cortical pattern formation. A prolate spheroidal surface is used to approximate the ventricular zone. Prolate spheroidal harmonics are applied to a Turing reaction-diffusion system, providing a chemically based framework for cortical folding. Our model reveals a direct correlation between pattern formation and the size and shape of the lateral ventricle. Additionally, placement and directionality of sulci and the relationship between domain scaling and cortical pattern elaboration are explained. The significance of this model is that it elucidates the consistency of cortical patterns among individuals within a species and addresses inter-species variability based on global characteristics and provides a critical piece to the puzzle of cortical pattern formation. PMID:19779554
[Mathematical models of hysteresis
Mayergoyz, I.D.
1991-01-01
The research described in this proposal is currently being supported by the US Department of Energy under the contract Mathematical Models of Hysteresis''. Thus, before discussing the proposed research in detail, it is worthwhile to describe and summarize the main results achieved in the course of our work under the above contract. Our ongoing research has largely been focused on the development of mathematical models of hysteretic nonlinearities with nonlocal memories''. The distinct feature of these nonlinearities is that their current states depend on past histories of input variations. It turns out that memories of hysteretic nonlinearities are quite selective. Indeed, experiments show that only some past input extrema leave their marks upon future states of hysteretic nonlinearities. Thus special mathematical tools are needed in order to describe nonlocal selective memories of hysteretic nonlinearities. Our research has been primarily concerned with Preisach-type models of hysteresis. All these models have a common generic feature; they are constructed as superpositions of simplest hysteretic nonlinearities-rectangular loops. Our study has by and large been centered around the following topics: various generalizations and extensions of the classical Preisach model, finding of necessary and sufficient conditions for the representation of actual hysteretic nonlinearities by various Preisach type models, solution of identification problems for these models, numerical implementation and experimental testing of Preisach type models. Although the study of Preisach type models has constituted the main direction of the research, some effort has also been made to establish some interesting connections between these models and such topics as: the critical state model for superconducting hysteresis, the classical Stoner-Wohlfarth model of vector magnetic hysteresis, thermal activation type models for viscosity, magnetostrictive hysteresis and neural networks.
NASA Astrophysics Data System (ADS)
Kamdoum Tamba, V.; Fotsin, H. B.; Kengne, J.; Kapche Tagne, F.; Talla, P. K.
2015-07-01
This paper deals with the mathematical modelling and synchronization of a new controlled Colpitts oscillator. The new electronic oscillator is constructed by considering standard/classical Colpitts oscillator with two further elements (coupled inductors and variable resistor). An accurate mathematical model is provided. The dynamics of the new controlled Colpitts oscillator is investigated theoretically and experimentally by examining dissipativity, equilibrium point, stability, bifurcation and Lyapunov exponent. It is found that the oscillator moves from the limit cycle motion to chaos via the usual paths of period-doubling, intermittency and interior crisis routes as the control resistor R L is monitored. The electronic circuit of the oscillator is implemented, and a very good qualitative agreement is obtained between the theoretical and experimental results. Furthermore, the problem of synchronization is investigated, in order to promote chaos-based synchronization designs of this type of oscillators. Firstly, we design a coupling function for unidirectional coupling in identical and mismatched controlled Colpitts oscillators to realize a modified function projective synchronization through the open-plus-closed-loop (OPCL) method. Secondly, two different coupling configurations, namely, coupled collector nodes (C-C) and coupled emitter nodes (E-E) of controlled Colpitts oscillators, are studied. Numerical simulations and experimental results are performed to show the effectiveness and robustness of the proposed control schemes.
NASA Astrophysics Data System (ADS)
Carrejo, David John
construction of the learners' models included several robust conceptions of average velocity and considerations of what constitutes a "good enough" model to use when describing and predicting motion. The emergence of these themes has implications for teaching and learning mathematics through an inquiry-based approach to kinematics.
Authenticity of Mathematical Modeling
ERIC Educational Resources Information Center
Tran, Dung; Dougherty, Barbara J.
2014-01-01
Some students leave high school never quite sure of the relevancy of the mathematics they have learned. They fail to see links between school mathematics and the mathematics of everyday life that requires thoughtful decision making and often complex problem solving. Is it possible to bridge the gap between school mathematics and the mathematics in…
Richardson, mathematical modeller
NASA Astrophysics Data System (ADS)
Vreugdenhil, C. B.
1994-03-01
On the occasion of the 70th anniversary of Richardson's book Weather Prediction by Numerical Process (Cambridge University Press, Cambridge), a review is given of Richardson's scientific work. He made lasting contributions to very diverse fields of interest, such as finite-difference methods and related numerical methods, weather forecasting by computer, turbulence, international relations, and fractals. Although he was an original experimenter, the main present-day interest is in his mathematical modelling work.
Examples of Mathematical Modeling
Johnston, Matthew D.; Edwards, Carina M.; Bodmer, Walter F.; Maini, Philip K.; Chapman, S. Jonathan
2008-01-01
Mathematical modeling is being increasingly recognized within the biomedical sciences as an important tool that can aid the understanding of biological systems. The heavily regulated cell renewal cycle in the colonic crypt provides a good example of how modeling can be used to find out key features of the system kinetics, and help to explain both the breakdown of homeostasis and the initiation of tumorigenesis. We use the cell population model by Johnston et al.5 to illustrate the power of mathematical modeling by considering two key questions about the cell population dynamics in the colonic crypt. We ask: how can a model describe both homeostasis and unregulated growth in tumorigenesis; and to which parameters in the system is the model most sensitive? In order to address these questions, we discuss what type of modeling approach is most appropriate in the crypt. We use the model to argue why tumorigenesis is observed to occur in stages with long lag phases between periods of rapid growth, and we identify the key parameters. PMID:17873520
ERIC Educational Resources Information Center
Mumcu, Hayal Yavuz
2016-01-01
The purpose of this theoretical study is to explore the relationships between the concepts of using mathematics in the daily life, mathematical applications, mathematical modelling, and mathematical literacy. As these concepts are generally taken as independent concepts in the related literature, they are confused with each other and it becomes…
Analysis of laser remote fusion cutting based on a mathematical model
Matti, R. S.; Ilar, T.; Kaplan, A. F. H.
2013-12-21
Laser remote fusion cutting is analyzed by the aid of a semi-analytical mathematical model of the processing front. By local calculation of the energy balance between the absorbed laser beam and the heat losses, the three-dimensional vaporization front can be calculated. Based on an empirical model for the melt flow field, from a mass balance, the melt film and the melting front can be derived, however only in a simplified manner and for quasi-steady state conditions. Front waviness and multiple reflections are not modelled. The model enables to compare the similarities, differences, and limits between laser remote fusion cutting, laser remote ablation cutting, and even laser keyhole welding. In contrast to the upper part of the vaporization front, the major part only slightly varies with respect to heat flux, laser power density, absorptivity, and angle of front inclination. Statistical analysis shows that for high cutting speed, the domains of high laser power density contribute much more to the formation of the front than for low speed. The semi-analytical modelling approach offers flexibility to simplify part of the process physics while, for example, sophisticated modelling of the complex focused fibre-guided laser beam is taken into account to enable deeper analysis of the beam interaction. Mechanisms like recast layer generation, absorptivity at a wavy processing front, and melt film formation are studied too.
Analysis of laser remote fusion cutting based on a mathematical model
NASA Astrophysics Data System (ADS)
Matti, R. S.; Ilar, T.; Kaplan, A. F. H.
2013-12-01
Laser remote fusion cutting is analyzed by the aid of a semi-analytical mathematical model of the processing front. By local calculation of the energy balance between the absorbed laser beam and the heat losses, the three-dimensional vaporization front can be calculated. Based on an empirical model for the melt flow field, from a mass balance, the melt film and the melting front can be derived, however only in a simplified manner and for quasi-steady state conditions. Front waviness and multiple reflections are not modelled. The model enables to compare the similarities, differences, and limits between laser remote fusion cutting, laser remote ablation cutting, and even laser keyhole welding. In contrast to the upper part of the vaporization front, the major part only slightly varies with respect to heat flux, laser power density, absorptivity, and angle of front inclination. Statistical analysis shows that for high cutting speed, the domains of high laser power density contribute much more to the formation of the front than for low speed. The semi-analytical modelling approach offers flexibility to simplify part of the process physics while, for example, sophisticated modelling of the complex focused fibre-guided laser beam is taken into account to enable deeper analysis of the beam interaction. Mechanisms like recast layer generation, absorptivity at a wavy processing front, and melt film formation are studied too.
Whole body acid-base and fluid-electrolyte balance: a mathematical model.
Wolf, Matthew B
2013-10-15
A cellular compartment was added to our previous mathematical model of steady-state acid-base and fluid-electrolyte chemistry to gain further understanding and aid diagnosis of complex disorders involving cellular involvement in critically ill patients. An important hypothesis to be validated was that the thermodynamic, standard free-energy of cellular H(+) and Na(+) pumps remained constant under all conditions. In addition, a hydrostatic-osmotic pressure balance was assumed to describe fluid exchange between plasma and interstitial fluid, including incorporation of compliance curves of vascular and interstitial spaces. The description of the cellular compartment was validated by close comparison of measured and model-predicted cellular pH and electrolyte changes in vitro and in vivo. The new description of plasma-interstitial fluid exchange was validated using measured changes in fluid volumes after isoosmotic and hyperosmotic fluid infusions of NaCl and NaHCO3. The validated model was used to explain the role of cells in the mechanism of saline or dilutional acidosis and acid-base effects of acidic or basic fluid infusions and the acid-base disorder due to potassium depletion. A module was created that would allow users, who do not possess the software, to determine, for free, the results of fluid infusions and urinary losses of water and solutes to the whole body.
ERIC Educational Resources Information Center
Cheriani, Cheriani; Mahmud, Alimuddin; Tahmir, Suradi; Manda, Darman; Dirawan, Gufran Darma
2015-01-01
This study aims to determine the differences in learning output by using Problem Based Model combines with the "Buginese" Local Cultural Knowledge (PBL-Culture). It is also explores the students activities in learning mathematics subject by using PBL-Culture Models. This research is using Mixed Methods approach that combined quantitative…
Mathematical Models in Cancer Therapy.
Jordão, Giuseppe; Tavares, João Nuno
2017-08-30
In this article, deterministic mathematical models are derived from biochemical models within a human cell in two distinct cases, for comparison: healthy cell and cancerous cell. The former model is based in the cell cycle model by Novak and Tyson and its adaptation by Conradie, and makes use of the MAPK cascade pathway and the PI3K/AKT pathway for signalling transduction, to create a wider updated model for the regulation of a healthy cell. The latter model, for the cancer cell, is derived from the healthy cell model by altering specific pathways and interpreting the outcome in the light of literature in cancer. This last study is done in two approaches: simulation of common deregulations and specific cancer simulation, colon cancer. After studying both models, we propose targeting therapies and simulate their consequences. We thus explore mathematical modeling efficacy and usefulness in providing enough information from which to derive ideas for therapies. The purpose is to validate mathematics, once again, as a powerful tool with which one can model the underlying nature of chaotic systems and extract useful conclusions to real-life problems. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Canelas, Ricardo; Heleno, Sandra; Pestana, Rita; Ferreira, Rui M. L.
2014-05-01
The objective of the present work is to devise a methodology to validate 2DH shallow-water models suitable to simulate flow hydrodynamics and channel morphology. For this purpose, a 2DH mathematical model, assembled at CEHIDRO, IST, is employed to model Tagus river floods over a 70 km reach and Synthetic Aperture Radar (SAR) images are collected to retrieve planar inundation extents. The model is suited for highly unsteady discontinuous flows over complex, time-evolving geometries, employing a finite-volume discretization scheme, based on a flux-splitting technique incorporating a reviewed version of the Roe Riemann solver. Novel closure terms for the non-equilibrium sediment transport model are included. New boundary conditions are employed, based on the Riemann variables associated the outgoing characteristic fields, coping with the provided hydrographs in a mathematically coherent manner. A high resolution Digital Elevation Model (DEM) is used and levee structures are considered as fully erodible elements. Spatially heterogeneous roughness characteristics are derived from land-use databases such as CORINE LandCover 2006. SAR satellite imagery of the floods is available and is used to validate the simulation results, with particular emphasis on the 2000/2001 flood. The delimited areas from the satellite and simulations are superimposed. The quality of the adjustment depends on the calibration of roughness coefficients and the spatial discretization of with small structures, with lengths at the order of the spatial discretization. Flow depths and registered discharges are recovered from the simulation and compared with data from a measuring station in the domain, with the comparison revealing remarkably high accuracy, both in terms of amplitudes and phase. Further inclusion of topographical detail should improve the comparison of flood extents regarding satellite data. The validated model was then employed to simulate 100-year floods in the same reach. The
Mathematical Modeling: Convoying Merchant Ships
ERIC Educational Resources Information Center
Mathews, Susann M.
2004-01-01
This article describes a mathematical model that connects mathematics with social studies. Students use mathematics to model independent versus convoyed ship deployments and sinkings to determine if the British should have convoyed their merchant ships during World War I. During the war, the British admiralty opposed sending merchant ships grouped…
Mathematical Modelling in European Education
ERIC Educational Resources Information Center
Ferri, Rita Borromeo
2013-01-01
Teaching and learning of mathematical modelling has become a key competence within school curricula and educational standards in many countries of the world. The term mathematical modelling, its meaning, and how it can be implemented in mathematics lessons have been intensively discussed during several Conferences of the European Society for…
Mathematical Modelling in European Education
ERIC Educational Resources Information Center
Ferri, Rita Borromeo
2013-01-01
Teaching and learning of mathematical modelling has become a key competence within school curricula and educational standards in many countries of the world. The term mathematical modelling, its meaning, and how it can be implemented in mathematics lessons have been intensively discussed during several Conferences of the European Society for…
A Primer for Mathematical Modeling
ERIC Educational Resources Information Center
Sole, Marla
2013-01-01
With the implementation of the National Council of Teachers of Mathematics recommendations and the adoption of the Common Core State Standards for Mathematics, modeling has moved to the forefront of K-12 education. Modeling activities not only reinforce purposeful problem-solving skills, they also connect the mathematics students learn in school…
Mathematical Modeling: Convoying Merchant Ships
ERIC Educational Resources Information Center
Mathews, Susann M.
2004-01-01
This article describes a mathematical model that connects mathematics with social studies. Students use mathematics to model independent versus convoyed ship deployments and sinkings to determine if the British should have convoyed their merchant ships during World War I. During the war, the British admiralty opposed sending merchant ships grouped…
A Primer for Mathematical Modeling
ERIC Educational Resources Information Center
Sole, Marla
2013-01-01
With the implementation of the National Council of Teachers of Mathematics recommendations and the adoption of the Common Core State Standards for Mathematics, modeling has moved to the forefront of K-12 education. Modeling activities not only reinforce purposeful problem-solving skills, they also connect the mathematics students learn in school…
NASA Astrophysics Data System (ADS)
Ataei, Sh; Mahmud, Z.; Khalid, M. N.
2014-04-01
The students learning outcomes clarify what students should know and be able to demonstrate after completing their course. So, one of the issues on the process of teaching and learning is how to assess students' learning. This paper describes an application of the dichotomous Rasch measurement model in measuring the cognitive process of engineering students' learning of mathematics. This study provides insights into the perspective of 54 engineering students' cognitive ability in learning Calculus III based on Bloom's Taxonomy on 31 items. The results denote that some of the examination questions are either too difficult or too easy for the majority of the students. This analysis yields FIT statistics which are able to identify if there is data departure from the Rasch theoretical model. The study has identified some potential misfit items based on the measurement of ZSTD where the removal misfit item was accomplished based on the MNSQ outfit of above 1.3 or less than 0.7 logit. Therefore, it is recommended that these items be reviewed or revised to better match the range of students' ability in the respective course.
2013-01-01
Many advances in research regarding immuno-interactions with cancer were developed with the help of ordinary differential equation (ODE) models. These models, however, are not effectively capable of representing problems involving individual localisation, memory and emerging properties, which are common characteristics of cells and molecules of the immune system. Agent-based modelling and simulation is an alternative paradigm to ODE models that overcomes these limitations. In this paper we investigate the potential contribution of agent-based modelling and simulation when compared to ODE modelling and simulation. We seek answers to the following questions: Is it possible to obtain an equivalent agent-based model from the ODE formulation? Do the outcomes differ? Are there any benefits of using one method compared to the other? To answer these questions, we have considered three case studies using established mathematical models of immune interactions with early-stage cancer. These case studies were re-conceptualised under an agent-based perspective and the simulation results were then compared with those from the ODE models. Our results show that it is possible to obtain equivalent agent-based models (i.e. implementing the same mechanisms); the simulation output of both types of models however might differ depending on the attributes of the system to be modelled. In some cases, additional insight from using agent-based modelling was obtained. Overall, we can confirm that agent-based modelling is a useful addition to the tool set of immunologists, as it has extra features that allow for simulations with characteristics that are closer to the biological phenomena. PMID:23734575
Figueredo, Grazziela P; Siebers, Peer-Olaf; Aickelin, Uwe
2013-01-01
Many advances in research regarding immuno-interactions with cancer were developed with the help of ordinary differential equation (ODE) models. These models, however, are not effectively capable of representing problems involving individual localisation, memory and emerging properties, which are common characteristics of cells and molecules of the immune system. Agent-based modelling and simulation is an alternative paradigm to ODE models that overcomes these limitations. In this paper we investigate the potential contribution of agent-based modelling and simulation when compared to ODE modelling and simulation. We seek answers to the following questions: Is it possible to obtain an equivalent agent-based model from the ODE formulation? Do the outcomes differ? Are there any benefits of using one method compared to the other? To answer these questions, we have considered three case studies using established mathematical models of immune interactions with early-stage cancer. These case studies were re-conceptualised under an agent-based perspective and the simulation results were then compared with those from the ODE models. Our results show that it is possible to obtain equivalent agent-based models (i.e. implementing the same mechanisms); the simulation output of both types of models however might differ depending on the attributes of the system to be modelled. In some cases, additional insight from using agent-based modelling was obtained. Overall, we can confirm that agent-based modelling is a useful addition to the tool set of immunologists, as it has extra features that allow for simulations with characteristics that are closer to the biological phenomena.
Chronology of DIC technique based on the fundamental mathematical modeling and dehydration impact.
Alias, Norma; Saipol, Hafizah Farhah Saipan; Ghani, Asnida Che Abd
2014-12-01
A chronology of mathematical models for heat and mass transfer equation is proposed for the prediction of moisture and temperature behavior during drying using DIC (Détente Instantanée Contrôlée) or instant controlled pressure drop technique. DIC technique has the potential as most commonly used dehydration method for high impact food value including the nutrition maintenance and the best possible quality for food storage. The model is governed by the regression model, followed by 2D Fick's and Fourier's parabolic equation and 2D elliptic-parabolic equation in a rectangular slice. The models neglect the effect of shrinkage and radiation effects. The simulations of heat and mass transfer equations with parabolic and elliptic-parabolic types through some numerical methods based on finite difference method (FDM) have been illustrated. Intel®Core™2Duo processors with Linux operating system and C programming language have been considered as a computational platform for the simulation. Qualitative and quantitative differences between DIC technique and the conventional drying methods have been shown as a comparative.
Wei, Hua; Siyit, Telet; Wan, Lei; Ying, Chong-liang; Wang, Ya-hui
2013-10-01
To explore the correlation between CT volume rendering (VR) statistics and living age and to build the mathematical models for skeletal age evaluation based on the growth rules of medial clavicular epiphysis of teenagers in China. The thin layer CT scan and VR 3D imaging reconstruction of both sides of sternal ends of clavicles were examined for 684 teenagers aged from 15 to 25 in East and South China. The parameters of sternal end of clavicle including the longest diameter of epiphysis, the longest diameter of metaphysis, their length radio, area of epiphysis, area of metaphysic, their area ratio, and other data were measured and calculated in order to establish mathematical models of skeletal age evaluation. Fifty trained subjects were tested to verify the accuracy of the mathematical models. In the same age group, the length ratio and the area ratio had significant difference in genders (P < 0.05). The established mathematical models showed that the growth rules of medial clavicular epiphysis were highly correlated with the living ages. The accuracies of these models were higher than 70.5% +/- 1.0 year) and 82.5% (+/- 1.5 year). The mathematical models have easy operability and high accuracy. It can be used to confirm and sustain the conclusion of atlas method. Meanwhile, it is of great significance to study the other single skeletal age evaluation in the future.
Han, Jinxiang; Huang, Jinzhao
2012-03-01
In this study, based on the resonator model and exciplex model of electromagnetic radiation within the human body, mathematical model of biological order state, also referred to as syndrome in traditional Chinese medicine, was established and expressed as: "Sy = v/ 1n(6I + 1)". This model provides the theoretical foundation for experimental research addressing the order state of living system, especially the quantitative research syndrome in traditional Chinese medicine.
Causality, mathematical models and statistical association: dismantling evidence-based medicine.
Thompson, R Paul
2010-04-01
From humble beginnings, largely at the medical school at McMaster University, Canada, the evidence-based medicine (EBM) movement has enjoyed a spectacular rise in international acceptance over the last 25 years. Randomized controlled trials (RCTs) and systematic reviews based on them have pride of place (the gold standard) in EBM's hierarchy of evidence; models and theories are relegated to the bottom of the hierarchy. In the last decade, RCTs have been extensively criticized. I briefly rehearse those criticisms because they are an important backdrop to the criticism of EBM developed in this paper. In essence, the argument developed here is that RCTs use mathematics solely as a tool of analysis rather than as the language of the science and that this fundamentally affects the validity of causal claims. As EBM gives pride of place to RCTs and devalues theoretical models - a devaluation that would be incomprehensible to a physicist or biologist - the validity of EBM's causal claims and knowledge claims are weak and far from a 'gold standard'.
Ballesta, Annabelle; Clairambault, Jean
2014-01-01
Understanding and improving the effects of combined drug treatments in metastatic colorectal Cancer (mCRC) is a multidisciplinary and multiscale problem, that can benefit from a systems biology approach. Although a quite limited number of active drugs have been approved for clinical applications, a variety of combined delivery regimen options are actually used in the clinic, so that choosing between them, or designing new ones, is not an obvious task, which calls for some rationalization based on physiological principles. We propose some physiologically based molecular pharmacokinetics-pharmacodynamics models for the main cytotoxic drugs used in the clinic and call for others describing more recently used agents, such as associated with monoclonal antibodies. We also advocate simultaneously designing models of the proliferating cell populations under therapeutic control, as cancer is primarily a disruption of physiological control on tissue proliferation. These two types of models are based on differential equations to continuously describe both the fate of drugs in the organism, from infusion until pharmacological effects, and their impact on the proliferation of cell populations, healthy and tumor. The multiscale nature of colorectal cancer, from the disruption of intracellular pathways to tumor growth observed at the macroscopic level, together with its frequent multilocal extension by simultaneous metastases in various healthy tissues of the organism at the time of diagnosis, and later, call for multiscale mathematical models. We thus propose a multi-level vision of cytotoxic drug use in the clinic, in which the weapon in the hands of clinicians, a drug combination regimen, the targets -wanted and unwanted -on which it exerts its effects, molecular pathways in proliferating cell populations, and the environment of the latter in a whole organism, are all considered in order to design a rationale for appropriate shooting, i.e., treatment optimization under
A mathematical model for crop spectral-temporal trajectories based on a plant growth model
NASA Technical Reports Server (NTRS)
Woolford, T. L.
1983-01-01
The Kubelka-Munk radiative transfer model is combined with an approximation of Kauth-Thomas greeness and brightness transforms to derive approximate closed form expressions for crop greeness and brightness surrogates in terms of canopy biomass. The greeness relation derived resembles an existing empirical relation between leaf area index and greeness. A simple growth model based on interception and utilization of photosynthetically active radiation is developed and used to describe the time evolution of greeness and brightness. The model developed does not yet yield definitive profile calculations but suggests a conceptual framework which may be found useful for further profile analysis.
Mathematical models of vaccination.
Scherer, Almut; McLean, Angela
2002-01-01
Mathematical models of epidemics have a long history of contributing to the understanding of the impact of vaccination programmes. Simple, one-line models can predict target vaccination coverage that will eradicate an infectious agent, whilst other questions require complex simulations of stochastic processes in space and time. This review introduces some simple ordinary differential equation models of mass vaccination that can be used to address important questions about the predicted impact of vaccination programmes. We show how to calculate the threshold vaccination coverage rate that will eradicate an infection, explore the impact of vaccine-induced immunity that wanes through time, and study the competitive interactions between vaccine susceptible and vaccine resistant strains of infectious agent.
Teaching Conceptual Model-Based Word Problem Story Grammar to Enhance Mathematics Problem Solving
ERIC Educational Resources Information Center
Xin, Yan Ping; Wiles, Ben; Lin, Yu-Ying
2008-01-01
Borrowing the concept of story grammar from reading comprehension literature, the purpose of this study was to examine the effect of teaching "word problem (WP) story grammar" on arithmetic WP solving that emphasizes the algebraic expression of mathematical relations in conceptual models. Participants were five students in Grades 4 and 5 with or…
Physical and mathematical cochlear models
NASA Astrophysics Data System (ADS)
Lim, Kian-Meng
2000-10-01
The cochlea is an intricate organ in the inner ear responsible for our hearing. Besides acting as a transducer to convert mechanical sound vibrations to electrical neural signals, the cochlea also amplifies and separates the sound signal into its spectral components for further processing in the brain. It operates over a broad-band of frequency and a huge dynamic range of input while maintaining a low power consumption. The present research takes the approach of building cochlear models to study and understand the underlying mechanics involved in the functioning of the cochlea. Both physical and mathematical models of the cochlea are constructed. The physical model is a first attempt to build a life- sized replica of the human cochlea using advanced micro- machining techniques. The model takes a modular design, with a removable silicon-wafer based partition membrane encapsulated in a plastic fluid chamber. Preliminary measurements in the model are obtained and they compare roughly with simulation results. Parametric studies on the design parameters of the model leads to an improved design of the model. The studies also revealed that the width and orthotropy of the basilar membrane in the cochlea have significant effects on the sharply tuned responses observed in the biological cochlea. The mathematical model is a physiologically based model that includes three-dimensional viscous fluid flow and a tapered partition with variable properties along its length. A hybrid asymptotic and numerical method provides a uniformly valid and efficient solution to the short and long wave regions in the model. Both linear and non- linear activity are included in the model to simulate the active cochlea. The mathematical model has successfully reproduced many features of the response in the biological cochlea, as observed in experiment measurements performed on animals. These features include sharply tuned frequency responses, significant amplification with inclusion of activity
Mathematical Modelling of Data: Software for Pedagogy.
ERIC Educational Resources Information Center
Bellomonte, L.; Sperandeo-Mineo, R. M.
1993-01-01
Discussion of mathematical modeling, particularly for high school physics curricula, focuses on software that is connected with laboratory work and the inference of mathematical models based on measurements of physical quantities. Fitting procedures are described, and user interface is explained. (Contains nine references.) (LRW)
Modelling and Optimizing Mathematics Learning in Children
ERIC Educational Resources Information Center
Käser, Tanja; Busetto, Alberto Giovanni; Solenthaler, Barbara; Baschera, Gian-Marco; Kohn, Juliane; Kucian, Karin; von Aster, Michael; Gross, Markus
2013-01-01
This study introduces a student model and control algorithm, optimizing mathematics learning in children. The adaptive system is integrated into a computer-based training system for enhancing numerical cognition aimed at children with developmental dyscalculia or difficulties in learning mathematics. The student model consists of a dynamic…
Modelling and Optimizing Mathematics Learning in Children
ERIC Educational Resources Information Center
Käser, Tanja; Busetto, Alberto Giovanni; Solenthaler, Barbara; Baschera, Gian-Marco; Kohn, Juliane; Kucian, Karin; von Aster, Michael; Gross, Markus
2013-01-01
This study introduces a student model and control algorithm, optimizing mathematics learning in children. The adaptive system is integrated into a computer-based training system for enhancing numerical cognition aimed at children with developmental dyscalculia or difficulties in learning mathematics. The student model consists of a dynamic…
Modeling Zombie Outbreaks: A Problem-Based Approach to Improving Mathematics One Brain at a Time
ERIC Educational Resources Information Center
Lewis, Matthew; Powell, James A.
2016-01-01
A great deal of educational literature has focused on problem-based learning (PBL) in mathematics at the primary and secondary level, but arguably there is an even greater need for PBL in college math courses. We present a project centered around the Humans versus Zombies moderated tag game played on the Utah State University campus. We discuss…
Modeling Zombie Outbreaks: A Problem-Based Approach to Improving Mathematics One Brain at a Time
ERIC Educational Resources Information Center
Lewis, Matthew; Powell, James A.
2016-01-01
A great deal of educational literature has focused on problem-based learning (PBL) in mathematics at the primary and secondary level, but arguably there is an even greater need for PBL in college math courses. We present a project centered around the Humans versus Zombies moderated tag game played on the Utah State University campus. We discuss…
ADMET: ADipocyte METabolism mathematical model.
Micheloni, Alessio; Orsi, Gianni; De Maria, Carmelo; Vozzi, Giovanni
2015-01-01
White fat cells have an important physiological role in maintaining triglyceride and free fatty acid levels due to their fundamental storage property, as well as determining insulin resistance. ADipocyte METabolism is a mathematical model that mimics the main metabolic pathways of human white fat cell, connecting inputs (composition of culture medium) to outputs (glycerol and free fatty acid release). It is based on a set of nonlinear differential equations, implemented in Simulink® and controlled by cellular energetic state. The validation of this model is based on a comparison between the simulation results and a set of experimental data collected from the literature.
Mathematical Modeling in Mathematics Education: Basic Concepts and Approaches
ERIC Educational Resources Information Center
Erbas, Ayhan Kürsat; Kertil, Mahmut; Çetinkaya, Bülent; Çakiroglu, Erdinç; Alacaci, Cengiz; Bas, Sinem
2014-01-01
Mathematical modeling and its role in mathematics education have been receiving increasing attention in Turkey, as in many other countries. The growing body of literature on this topic reveals a variety of approaches to mathematical modeling and related concepts, along with differing perspectives on the use of mathematical modeling in teaching and…
NASA Astrophysics Data System (ADS)
Lage, Claudia; Cardoso, Janine; Czary, Ivan; Leitao, Alvaro; Boatto, Stefanella
2010-09-01
Bacterial populations are current models to assay biological effects of a number of different treatments on the basis of a high-number statistics. One typical bacterial inoculum grows at doubling rates as fast as some 30 min per generation, reaching up to ˜109 cells per ml of medium in a few hours. Given the features of such experimental protocol, it is easy to test the impact of environmental modifications during bacteria growth, by scoring doubling rates time, final cell concentration, oxygen consumption, mutagenesis rates, cell viability under different selective pressures, etc. The drawing of a actual dose-response or kinetic curves can feed parameters on a given mathematical model on population dynamics by weighting each equation term. The purpose of this talk is to present experimental schemes with bacterial populations so as to serve as parallel two-hands testing of different mathematical models on populations dynamics.
Mathematical model of orbital and ground-based cross-dispersion spectrographs
NASA Astrophysics Data System (ADS)
Yushkin, M. V.; Fatkhullin, T. A.; Panchuk, V. E.
2016-07-01
We present the technique and algorithm of numerical modeling of high-resolution spectroscopic equipment. The software is implemented in C++ using nVidia CUDA technology. We report the results of currently developedmodeling of new-generation echelle spectrographs. To validate the algorithms used to construct the mathematical model, we present the results of modeling of NES spectrograph of the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. A comparison of simulated and real images of the spectra acquired with NES spectrograph demonstrates good agreement between the model constructed and experimental data.
Teaching and Assessing Mathematical Modelling.
ERIC Educational Resources Information Center
Lingefjard, T.
2002-01-01
Reports on the observed actions of prospective Swedish secondary mathematics teachers as they were working in a modeling situation. Discusses the way the students tackled the modeling situation and their strategies and attitudes as well as the difficulties in assessing mathematical modeling performance. (KHR)
Chou, C.P.
1987-01-01
Many methods exist for quantifying diffuse daylight distribution for use in the design of buildings, but the methods vary widely both in technique and capability. Moreover, no present method deals with direct daylight (sunshine) distribution. Additionally, none have taken advantage of improvements in computer technology that make feasible more-complex mathematical computational models for dealing with direct and diffuse daylight together. This dissertation describes the theoretical development and computer implementation of a new mathematical approach to analyzing the distribution of direct and diffuse daylight. This approach examines light transfer from extraterrestrial space to the inside of a room based on the principles of astrometry, solid geometry, and radiation transfer. This study discusses and analyzes certain aspects critical to develop a mathematical model for evaluating daylight performance and compares the results of the proposed model with 48 scale-model studies to determine the validity of using this mathematical model to predict the daylight distribution of a room. Subsequent analysis revealed no significant variation between scale-model studies and this computer simulation.
X-ray Tomographic System Behavior Prediction Based on a Mathematical Model
NASA Astrophysics Data System (ADS)
Baus, S. S.; Redko, L. A.; Yanushevskaya, M. N.
2017-04-01
There appear certain challenges in defining the dependence of the X-ray radiation intensity change in passing through the material (as fixed by the detector) conditioned by various parameters of an X-ray optical system while designing new modifications of X-ray tomographs. At present, this problem is experimentally solved by selection of voltage corresponding parameter values on an X-ray tube with thickness and type of the studied material considered. To reduce the design time and complexity, a mathematical model of parameter behavior is required to characterize the X-ray optical system in the major working range of values. The present paper investigates the X-ray optical system behavior using methods of mathematical statistics. A regression model has been obtained which matches the change of the X-ray intensity value to the intensity in the X-ray tube. The research has defined the further study direction of X -ray optical system parameters.
NASA Astrophysics Data System (ADS)
Paranin, Y.; Burmistrov, A.; Salikeev, S.; Fomina, M.
2015-08-01
Basic propositions of calculation procedures for oil free scroll compressors characteristics are presented. It is shown that mathematical modelling of working process in a scroll compressor makes it possible to take into account such factors influencing the working process as heat and mass exchange, mechanical interaction in working chambers, leakage through slots, etc. The basic mathematical model may be supplemented by taking into account external heat exchange, elastic deformation of scrolls, inlet and outlet losses, etc. To evaluate the influence of procedure on scroll compressor characteristics calculations accuracy different calculations were carried out. Internal adiabatic efficiency was chosen as a comparative parameter which evaluates the perfection of internal thermodynamic and gas-dynamic compressor processes. Calculated characteristics are compared with experimental values obtained for the compressor pilot sample.
Mathematical Modeling of Kidney Transport
Layton, Anita T.
2013-01-01
In addition to metabolic waste and toxin excretion, the kidney also plays an indispensable role in regulating the balance of water, electrolytes, nitrogen, and acid-base. In this review, we describe representative mathematical models that have been developed to better understand kidney physiology and pathophysiology, including the regulation of glomerular filtration, the regulation of renal blood flow by means of the tubuloglomerular feedback mechanisms and of the myogenic mechanism, the urine concentrating mechanism, epithelial transport, and regulation of renal oxygen transport. We discuss the extent to which these modeling efforts have expanded our understanding of renal function in both health and disease. PMID:23852667
ERIC Educational Resources Information Center
Karagiannakis, Giannis N.; Baccaglini-Frank, Anna E.; Roussos, Petros
2016-01-01
Through a review of the literature on mathematical learning disabilities (MLD) and low achievement in mathematics (LA) we have proposed a model classifying mathematical skills involved in learning mathematics into four domains (Core number, Memory, Reasoning, and Visual-spatial). In this paper we present a new experimental computer-based battery…
Mathematical modeling of the human energy metabolism based on the Selfish Brain Theory.
Chung, Matthias; Göbel, Britta
2012-01-01
Deregulations in the human energy metabolism may cause diseases such as obesity and type 2 diabetes mellitus. The origins of these pathologies are fairly unknown. The key role of the brain is the regulation of the complex whole body energy metabolism. The Selfish Brain Theory identifies the priority of brain energy supply in the competition for available energy resources within the organism. Here, we review mathematical models of the human energy metabolism supporting central aspects of the Selfish Brain Theory. First, we present a dynamical system modeling the whole body energy metabolism. This model takes into account the two central control mechanisms of the brain, i.e., allocation and appetite. Moreover, we present mathematical models of regulatory subsystems. We examine a neuronal model which specifies potential elements of the brain to sense and regulate cerebral energy content. We investigate a model of the HPA system regulating the allocation of energy within the organism. Finally, we present a robust modeling approach of appetite regulation. All models account for a systemic understanding of the human energy metabolism and thus do shed light onto defects causing metabolic diseases.
NASA Astrophysics Data System (ADS)
Sari, F. A.; Yandari, I. A. V.; Fakhrudin
2017-02-01
The background of the research was due to the lack skill of student mathematical literacy. The objective of the research is to know the ability and the improvement of the students in term of the mathematical literacy skill and the independent learning of the students by using problem based learning model better than students who received conventional learning. This research conducted in one of Junior High School in Serang in academic year of 2013/2014. The samples of the research were two classes. The test instrument consists of four essay items. The results showed that ability and the improvement of the students in term of the mathematical literacy skill and the independent learning of the students by using problem based learning model better than students who received conventional learning. Based on the research results, as well as the improvement of the research, we suggest that the learning model of problem based learning can be taken into consideration by the teacher as an alternative learning at school. Additionally, we recommend further research that examines the effects of problem based learning models on different aspects for a more diverse material.
Mathematical Modeling and Computational Thinking
ERIC Educational Resources Information Center
Sanford, John F.; Naidu, Jaideep T.
2017-01-01
The paper argues that mathematical modeling is the essence of computational thinking. Learning a computer language is a valuable assistance in learning logical thinking but of less assistance when learning problem-solving skills. The paper is third in a series and presents some examples of mathematical modeling using spreadsheets at an advanced…
Explorations in Elementary Mathematical Modeling
ERIC Educational Resources Information Center
Shahin, Mazen
2010-01-01
In this paper we will present the methodology and pedagogy of Elementary Mathematical Modeling as a one-semester course in the liberal arts core. We will focus on the elementary models in finance and business. The main mathematical tools in this course are the difference equations and matrix algebra. We also integrate computer technology and…
Kadakia, Ekta; Shah, Lipa; Amiji, Mansoor M
2017-07-01
Nanoemulsions have shown potential in delivering drug across epithelial and endothelial cell barriers, which express efflux transporters. However, their transport mechanisms are not entirely understood. Our goal was to investigate the cellular permeability of nanoemulsion-encapsulated drugs and apply mathematical modeling to elucidate transport mechanisms and sensitive nanoemulsion attributes. Transport studies were performed in Caco-2 cells, using fish oil nanoemulsions and a model substrate, rhodamine-123. Permeability data was modeled using a semi-mechanistic approach, capturing the following cellular processes: endocytotic uptake of the nanoemulsion, release of rhodamine-123 from the nanoemulsion, efflux and passive permeability of rhodamine-123 in aqueous solution. Nanoemulsions not only improved the permeability of rhodamine-123, but were also less sensitive to efflux transporters. The model captured bidirectional permeability results and identified sensitive processes, such as the release of the nanoemulsion-encapsulated drug and cellular uptake of the nanoemulsion. Mathematical description of cellular processes, improved our understanding of transport mechanisms, such as nanoemulsions don't inhibit efflux to improve drug permeability. Instead, their endocytotic uptake, results in higher intracellular drug concentrations, thereby increasing the concentration gradient and transcellular permeability across biological barriers. Modeling results indicated optimizing nanoemulsion attributes like the droplet size and intracellular drug release rate, may further improve drug permeability.
The mathematical modeling of aluminum reduction cells
NASA Astrophysics Data System (ADS)
Arkhipov, G. V.
2006-02-01
In order to expand its primary aluminum capacity, Rusal has focused on improving its technological base. Toward that end, the company created the Engineering and Technological Center (ETC). Within the ETC the Division of Mathematical Modeling was established to enable technical decisions to be made based not only on engineering intuition and practical experience, but also on the calculations of technological processes and constructions. This article describes the ETC's work in the mathematical modeling of aluminum reduction cells.
Are Clade Specific HIV Vaccines a Necessity? An Analysis Based on Mathematical Models.
Dimitrov, Dobromir; Kublin, James G; Ramsey, Scott; Corey, Lawrence
2015-12-01
As HIV-1 envelope immune responses are critical to vaccine related protection, most candidate HIV vaccines entering efficacy trials are based upon a clade specific design. This need for clade specific vaccine prototypes markedly reduces the implementation of potentially effective HIV vaccines. We utilized a mathematical model to determine the effectiveness of immediate roll-out of a non-clade matched vaccine with reduced efficacy compared to constructing clade specific vaccines, which would take considerable time to manufacture and test in safety and efficacy trials. We simulated the HIV epidemic in San Francisco (SF) and South Africa (SA) and projected effectiveness of three vaccination strategies: i) immediate intervention with a 20-40% vaccine efficacy (VE) non-matched vaccine, ii) delayed intervention by developing a 50% VE clade-specific vaccine, and iii) immediate intervention with a non-matched vaccine replaced by a clade-specific vaccine when developed. Immediate vaccination with a non-clade matched vaccine, even with reduced efficacy, would prevent thousands of new infections in SF and millions in SA over 30 years. Vaccination with 50% VE delayed for five years needs six and 12 years in SA to break-even with immediate 20 and 30% VE vaccination, respectively, while not able to surpass the impact of immediate 40% VE vaccination over 30 years. Replacing a 30% VE with a 50% VE vaccine after 5 years reduces the HIV acquisition by 5% compared to delayed vaccination. The immediate use of an HIV vaccine with reduced VE in high risk communities appears desirable over a short time line but higher VE should be the pursued to achieve strong long-term impact. Our analysis illustrates the importance of developing surrogate markers (correlates of protection) to allow bridging types of immunogenicity studies to support more rapid assessment of clade specific vaccines.
Water network cost optimization in a paper mill based on a new library of mathematical models.
Lizarralde, I; Claeys, F; Ordóñez, R; de Gracia, M; Sancho, L; Grau, P
2012-01-01
The increasing costs associated with water supply and the disposal of wastewater has stimulated industries to seek more efficient water management systems. Mathematical modelling and simulation can be a very valuable tool for the study of the multiple alternatives available whilst assessing optimum solutions for water management in industry. This study introduces a new steady state model library able to reproduce industrial water circuits. It has been implemented in a novel software framework for the representation, simulation and optimization of industrial water networks. A water circuit representing a paper mill has been modelled and simulated showing the capability to reproduce real case studies. Alternative scenarios for the water network have also been tested to assess the capability of the models to optimize water circuits minimizing total cost.
ERIC Educational Resources Information Center
Pace, Sydney
2000-01-01
Presents a methodology for teaching mathematical modeling skills to A-level students. Gives an example illustrating how mathematics teachers and design teachers can take joint perspective in devising learning opportunities that develop mathematical and design skills concurrently. (Contains 14 references.) (Author/ASK)
Students' Mathematical Modeling of Motion
ERIC Educational Resources Information Center
Marshall, Jill A.; Carrejo, David J.
2008-01-01
We present results of an investigation of university students' development of mathematical models of motion in a physical science course for preservice teachers and graduate students in science and mathematics education. Although some students were familiar with the standard concepts of position, velocity, and acceleration from physics classes,…
Mathematical modelling in developmental biology.
Vasieva, Olga; Rasolonjanahary, Manan'Iarivo; Vasiev, Bakhtier
2013-06-01
In recent decades, molecular and cellular biology has benefited from numerous fascinating developments in experimental technique, generating an overwhelming amount of data on various biological objects and processes. This, in turn, has led biologists to look for appropriate tools to facilitate systematic analysis of data. Thus, the need for mathematical techniques, which can be used to aid the classification and understanding of this ever-growing body of experimental data, is more profound now than ever before. Mathematical modelling is becoming increasingly integrated into biological studies in general and into developmental biology particularly. This review outlines some achievements of mathematics as applied to developmental biology and demonstrates the mathematical formulation of basic principles driving morphogenesis. We begin by describing a mathematical formalism used to analyse the formation and scaling of morphogen gradients. Then we address a problem of interplay between the dynamics of morphogen gradients and movement of cells, referring to mathematical models of gastrulation in the chick embryo. In the last section, we give an overview of various mathematical models used in the study of the developmental cycle of Dictyostelium discoideum, which is probably the best example of successful mathematical modelling in developmental biology.
Mathematical modeling of glycerol biotransformation
NASA Astrophysics Data System (ADS)
Popova-Krumova, Petya; Yankova, Sofia; Ilieva, Biliana
2013-12-01
A method for mathematical modeling of glycerol biotransformation by Klebsiella oxytoca is presented. Glycerol is a renewable resource for it is formed as a by-product during biodiesel production. Because of its large volume production, it seems to be a good idea to develop a technology that converts this waste into products of high value (1, 3-Propanediol; 2, 3-Butanediol). The kinetic model of this process consists of many equations and parameters. The minimization of the least square function will be used for model parameters identification. In cases of parameters identification in multiparameter models the minimization of the least square function is very difficult because it is multiextremal. This is the main problem in the multiextremal function minimization which will be solved on the base a hierarchical approach, using a polynomial approximation of the experimental data.
Wolf, Matthew B; Deland, Edward C
2011-04-01
We developed mathematical models that predict equilibrium distribution of water and electrolytes (proteins and simple ions), metabolites, and other species between plasma and erythrocyte fluids (blood) and interstitial fluid. The models use physicochemical principles of electroneutrality in a fluid compartment and osmotic equilibrium between compartments and transmembrane Donnan relationships for mobile species. Across the erythrocyte membrane, the significant mobile species Cl⁻ is assumed to reach electrochemical equilibrium, whereas Na(+) and K(+) distributions are away from equilibrium because of the Na(+)/K(+) pump, but movement from this steady state is restricted because of their effective short-term impermeability. Across the capillary membrane separating plasma and interstitial fluid, Na(+), K(+), Ca²(+), Mg²(+), Cl⁻, and H(+) are mobile and establish Donnan equilibrium distribution ratios. In each compartment, attainment of equilibrium by carbonates, phosphates, proteins, and metabolites is determined by their reactions with H(+). These relationships produce the recognized exchange of Cl(-) and bicarbonate across the erythrocyte membrane. The blood submodel was validated by its close predictions of in vitro experimental data, blood pH, pH-dependent ratio of H(+), Cl⁻, and HCO₃⁻ concentrations in erythrocytes to that in plasma, and blood hematocrit. The blood-interstitial model was validated against available in vivo laboratory data from humans with respiratory acid-base disorders. Model predictions were used to gain understanding of the important acid-base disorder caused by addition of saline solutions. Blood model results were used as a basis for estimating errors in base excess predictions in blood by the traditional approach of Siggaard-Andersen (acid-base status) and more recent approaches by others using measured blood pH and Pco₂ values. Blood-interstitial model predictions were also used as a basis for assessing prediction errors of
Mathematical model for gyroscope effects
NASA Astrophysics Data System (ADS)
Usubamatov, Ryspek
2015-05-01
Gyroscope effects are used in many engineering calculations of rotating parts, and a gyroscope is the basic unit of numerous devices and instruments used in aviation, space, marine and other industries. The primary attribute of a gyroscope is a spinning rotor that persists in maintaining its plane of rotation, creating gyroscope effects. Numerous publications represent the gyroscope theory using mathematical models based on the law of kinetic energy conservation and the rate of change in angular momentum of a spinning rotor. Gyroscope theory still attracts many researchers who continue to discover new properties of gyroscopic devices. In reality, gyroscope effects are more complex and known mathematical models do not accurately reflect the actual motions. Analysis of forces acting on a gyroscope shows that four dynamic components act simultaneously: the centrifugal, inertial and Coriolis forces and the rate of change in angular momentum of the spinning rotor. The spinning rotor generates a rotating plane of centrifugal and Coriols forces that resist the twisting of the spinning rotor with external torque applied. The forced inclination of the spinning rotor generates inertial forces, resulting in precession torque of a gyroscope. The rate of change of the angular momentum creates resisting and precession torques which are not primary one in gyroscope effects. The new mathematical model for the gyroscope motions under the action of the external torque applied can be as base for new gyroscope theory. At the request of the author of the paper, this corrigendum was issued on 24 May 2016 to correct an incomplete Table 1 and errors in Eq. (47) and Eq. (48).
ERIC Educational Resources Information Center
Juska, Alfonsas; Gedminiene, Genovaite; Ivanec, Ruta
2006-01-01
This paper has arisen as a result of teaching Models in Biology to undergraduates of Bioengineering at the Gediminas Technical University of Vilnius. The aim is to teach the students to use a fresh approach to the problems they are familiar with, to come up with an articulate verbal model after a mental effort, to express it in rigorous…
ERIC Educational Resources Information Center
Juska, Alfonsas; Gedminiene, Genovaite; Ivanec, Ruta
2006-01-01
This paper has arisen as a result of teaching Models in Biology to undergraduates of Bioengineering at the Gediminas Technical University of Vilnius. The aim is to teach the students to use a fresh approach to the problems they are familiar with, to come up with an articulate verbal model after a mental effort, to express it in rigorous…
Mathematical Modeling of Diverse Phenomena
NASA Technical Reports Server (NTRS)
Howard, J. C.
1979-01-01
Tensor calculus is applied to the formulation of mathematical models of diverse phenomena. Aeronautics, fluid dynamics, and cosmology are among the areas of application. The feasibility of combining tensor methods and computer capability to formulate problems is demonstrated. The techniques described are an attempt to simplify the formulation of mathematical models by reducing the modeling process to a series of routine operations, which can be performed either manually or by computer.
Mathematical modelling of cucumber (cucumis sativus) drying
NASA Astrophysics Data System (ADS)
Shahari, N.; Hussein, S. M.; Nursabrina, M.; Hibberd, S.
2014-07-01
This paper investigates the applicability of using an experiment based mathematical model (empirical model) and a single phase mathematical model with shrinkage to describe the drying curve of cucumis sativus (cucumber). Drying experiments were conducted using conventional air drying and data obtained from these experiments were fitted to seven empirical models using non-linear least square regression based on the Levenberg Marquardt algorithm. The empirical models were compared according to their root mean square error (RMSE), sum of square error (SSE) and coefficient of determination (R2). A logarithmic model was found to be the best empirical model to describe the drying curve of cucumber. The numerical result of a single phase mathematical model with shrinkage was also compared with experiment data for cucumber drying. A good agreement was obtained between the model predictions and the experimental data.
Establishing an Explanatory Model for Mathematics Identity.
Cribbs, Jennifer D; Hazari, Zahra; Sonnert, Gerhard; Sadler, Philip M
2015-04-01
This article empirically tests a previously developed theoretical framework for mathematics identity based on students' beliefs. The study employs data from more than 9,000 college calculus students across the United States to build a robust structural equation model. While it is generally thought that students' beliefs about their own competence in mathematics directly impact their identity as a "math person," findings indicate that students' self-perceptions related to competence and performance have an indirect effect on their mathematics identity, primarily by association with students' interest and external recognition in mathematics. Thus, the model indicates that students' competence and performance beliefs are not sufficient for their mathematics identity development, and it highlights the roles of interest and recognition.
Mathematical Models of Waiting Time.
ERIC Educational Resources Information Center
Gordon, Sheldon P.; Gordon, Florence S.
1990-01-01
Considered are several mathematical models that can be used to study different waiting situations. Problems involving waiting at a red light, bank, restaurant, and supermarket are discussed. A computer program which may be used with these problems is provided. (CW)
Automatic mathematical modeling for space application
NASA Technical Reports Server (NTRS)
Wang, Caroline K.
1987-01-01
A methodology for automatic mathematical modeling is described. The major objective is to create a very friendly environment for engineers to design, maintain and verify their model and also automatically convert the mathematical model into FORTRAN code for conventional computation. A demonstration program was designed for modeling the Space Shuttle Main Engine simulation mathematical model called Propulsion System Automatic Modeling (PSAM). PSAM provides a very friendly and well organized environment for engineers to build a knowledge base for base equations and general information. PSAM contains an initial set of component process elements for the Space Shuttle Main Engine simulation and a questionnaire that allows the engineer to answer a set of questions to specify a particular model. PSAM is then able to automatically generate the model and the FORTRAN code. A future goal is to download the FORTRAN code to the VAX/VMS system for conventional computation.
Mathematical Models of Elementary Mathematics Learning and Performance. Final Report.
ERIC Educational Resources Information Center
Suppes, Patrick
This project was concerned with the development of mathematical models of elementary mathematics learning and performance. Probabilistic finite automata and register machines with a finite number of registers were developed as models and extensively tested with data arising from the elementary-mathematics strand curriculum developed by the…
Mathematical Models for Doppler Measurements
NASA Technical Reports Server (NTRS)
Lear, William M.
1987-01-01
Error analysis increases precision of navigation. Report presents improved mathematical models of analysis of Doppler measurements and measurement errors of spacecraft navigation. To take advantage of potential navigational accuracy of Doppler measurements, precise equations relate measured cycle count to position and velocity. Drifts and random variations in transmitter and receiver oscillator frequencies taken into account. Mathematical models also adapted to aircraft navigation, radar, sonar, lidar, and interferometry.
Shankar Subramaniam
2009-04-01
This final project report summarizes progress made towards the objectives described in the proposal entitled “Developing New Mathematical Models for Multiphase Flows Based on a Fundamental Probability Density Function Approach”. Substantial progress has been made in theory, modeling and numerical simulation of turbulent multiphase flows. The consistent mathematical framework based on probability density functions is described. New models are proposed for turbulent particle-laden flows and sprays.
Annual Perspectives in Mathematics Education 2016: Mathematical Modeling and Modeling Mathematics
ERIC Educational Resources Information Center
Hirsch, Christian R., Ed.; McDuffie, Amy Roth, Ed.
2016-01-01
Mathematical modeling plays an increasingly important role both in real-life applications--in engineering, business, the social sciences, climate study, advanced design, and more--and within mathematics education itself. This 2016 volume of "Annual Perspectives in Mathematics Education" ("APME") focuses on this key topic from a…
Annual Perspectives in Mathematics Education 2016: Mathematical Modeling and Modeling Mathematics
ERIC Educational Resources Information Center
Hirsch, Christian R., Ed.; McDuffie, Amy Roth, Ed.
2016-01-01
Mathematical modeling plays an increasingly important role both in real-life applications--in engineering, business, the social sciences, climate study, advanced design, and more--and within mathematics education itself. This 2016 volume of "Annual Perspectives in Mathematics Education" ("APME") focuses on this key topic from a…
ERIC Educational Resources Information Center
Yuliani, Kiki; Saragih, Sahat
2015-01-01
The purpose of this research was to: 1) development of learning devices based guided discovery model in improving of understanding concept and critical thinking mathematically ability of students at Islamic Junior High School; 2) describe improvement understanding concept and critical thinking mathematically ability of students at MTs by using…
Kramer, R; Vieira, J W; Khoury, H J; de Andrade Lima, F
2004-03-21
The International Commission on Radiological Protection intends to revise the organ and tissue equivalent dose conversion coefficients published in various reports. For this purpose the mathematical human medical internal radiation dose (MIRD) phantoms, actually in use, have to be replaced by recently developed voxel-based phantoms. This study investigates the dosimetric consequences, especially with respect to the effective male dose, if not only a MIRD phantom is replaced by a voxel phantom, but also if the tissue compositions and the radiation transport codes are changed. This task will be resolved by systematically replacing in the mathematical ADAM/GSF exposure model, first the radiation transport code, then the tissue composition and finally the phantom anatomy, in order to arrive at the voxel-based MAX/EGS4 exposure model. The results show that the combined effect of these replacements can decrease the effective male dose by up to 25% for external exposures to photons for incident energies above 30 keV for different field geometries, mainly because of increased shielding by a heterogeneous skeleton and by the overlying adipose and muscle tissue, and also because of the positions internal organs have in a realistically designed human body compared to their positions in the mathematically constructed phantom.
NASA Astrophysics Data System (ADS)
Kramer, R.; Vieira, J. W.; Khoury, H. J.; Lima, F. de Andrade
2004-03-01
The International Commission on Radiological Protection intends to revise the organ and tissue equivalent dose conversion coefficients published in various reports. For this purpose the mathematical human medical internal radiation dose (MIRD) phantoms, actually in use, have to be replaced by recently developed voxel-based phantoms. This study investigates the dosimetric consequences, especially with respect to the effective male dose, if not only a MIRD phantom is replaced by a voxel phantom, but also if the tissue compositions and the radiation transport codes are changed. This task will be resolved by systematically replacing in the mathematical ADAM/GSF exposure model, first the radiation transport code, then the tissue composition and finally the phantom anatomy, in order to arrive at the voxel-based MAX/EGS4 exposure model. The results show that the combined effect of these replacements can decrease the effective male dose by up to 25% for external exposures to photons for incident energies above 30 keV for different field geometries, mainly because of increased shielding by a heterogeneous skeleton and by the overlying adipose and muscle tissue, and also because of the positions internal organs have in a realistically designed human body compared to their positions in the mathematically constructed phantom.
The mathematics behind modeling.
Rosenblatt, J
1998-01-01
The purpose of this chapter has been to furnish insight into the theoretical background on which compartmental modeling software packages are based. To accomplish this goal, only the basic ideas were stressed, avoiding discussion of the intricacies required for efficiency. The object was to remove the mystery from these powerful programs by examining the fundamental ideas which make them tick. The first section was concerned with how compartmental models are built up and how to obtain information concerning the system behavior described by these models. The cornerstone here is to describe a system by determining how it behaves over (typically) very short time periods. This leads to a differential equation description of a compartmental system. Information can be extracted from these equations by returning to their basic meaning, illustrated in their derivation. Computers are ideal for obtaining this information by piecing together the results obtained over short time periods, to find the behavior over long time periods. In an actual situation governed by a compartmental model, it's often the case that we may know only the form of the model, but not the values of the rate constants which must be known for its effective use. The second section of the chapter was devoted to the practical problem of determining the rate constants of the model, based on observed data. This is a matter of searching for those values which, in some sense, best fit the data. To attack this problem we need a reasonable criterion to judge how well a proposed model fits the data. We chose to use the total squared deviation, psi, which is the most common such criterion--but not the only reasonable one. The search technique we examined--steepest descent--is based on a simple idea: looking at the total squared deviation criterion geometrically. In graphical terms, the best fit corresponds to finding the low point on a surface, whose height above any point at sea level is computable. If we could
A new mathematical modelling based shape extraction technique for Forensic Odontology.
G, Jaffino; A, Banumathi; Gurunathan, Ulaganathan; B, Vijayakumari; J, Prabin Jose
2017-04-01
Forensic Odontology is a specific means for identifying a person in which deceased, and particularly in fatality incidents. The algorithm can be proposed to identify a person by comparing both postmortem (PM) and antemortem (AM) dental radiographs and photographs. This work aims to introduce a new mathematical algorithm for photographs in addition with radiographs. Isoperimetric graph partitioning method is used to extract the shape of dental images in forensic identification. Shape matching is done by comparing AM and PM dental images using both similarity and distance measures. Experimental results prove that the higher matching distance is observed by distance metric rather than similarity measures. The results of this algorithm show that a high hit rate is observed for distance based performance measures and it is well suited for forensic odontologist to identify a person. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Alba-Martínez, Jose; Trujillo, Macarena; Blasco-Gimenez, Ramon; Berjano, Enrique
2012-01-01
Radiofrequency cardiac ablation (RFCA) has been used to treat certain types of cardiac arrhythmias by producing a thermal lesion. Even though a tissue temperature higher than 50ºC is required to destroy the target, thermal mapping is not currently used during RFCA. Our aim was thus to develop mathematical models capable of estimating tissue temperature from tissue characteristics acquired or estimated at the beginning of the procedure (electrical conductivity, thermal conductivity, specific heat and density) and the applied voltage at any time. Biological tissue was considered as a system with an input (applied voltage) and output (tissue temperature), and so the mathematical models were based on transfer functions relating these variables. We used theoretical models based on finite element method to verify the mathematical models. Firstly, we solved finite element models to identify the transfer functions between the temperature at a depth of 4 mm and a constant applied voltage using a 7Fr and 4 mm electrode. The results showed that the relationships can be expressed as first-order transfer functions. Changes in electrical conductivity only affected the static gain of the system, while specific heat variations produced a change in the dynamic system response. In contrast, variations in thermal conductivity modified both the static gain and the dynamic system response. Finally, to assess the performance of the transfer functions obtained, we conducted a new set of computer simulations using a controlled temperature protocol and considering the temperature dependence of the thermal and electrical conductivities, i.e. conditions closer to those found in clinical use. The results showed that the difference between the values estimated from transfer functions and the temperatures obtained from finite element models was less than 4ºC, which suggests that the proposed method could be used to estimate tissue temperature in real time.
ERIC Educational Resources Information Center
Street, Garrett M.; Laubach, Timothy A.
2013-01-01
We provide a 5E structured-inquiry lesson so that students can learn more of the mathematics behind the logistic model of population biology. By using models and mathematics, students understand how population dynamics can be influenced by relatively simple changes in the environment.
ERIC Educational Resources Information Center
Street, Garrett M.; Laubach, Timothy A.
2013-01-01
We provide a 5E structured-inquiry lesson so that students can learn more of the mathematics behind the logistic model of population biology. By using models and mathematics, students understand how population dynamics can be influenced by relatively simple changes in the environment.
Mathematics Teachers' Ideas about Mathematical Models: A Diverse Landscape
ERIC Educational Resources Information Center
Bautista, Alfredo; Wilkerson-Jerde, Michelle H.; Tobin, Roger G.; Brizuela, Bárbara M.
2014-01-01
This paper describes the ideas that mathematics teachers (grades 5-9) have regarding mathematical models of real-world phenomena, and explores how teachers' ideas differ depending on their educational background. Participants were 56 United States in-service mathematics teachers. We analyzed teachers' written responses to three open-ended…
NASA Astrophysics Data System (ADS)
Solovyova, N. V.; Lobkovsky, L. I.
2015-09-01
This paper proposes a method of mathematical modelling of ecological risk based on a synthesis of dynamic and probabilistic risk assessment techniques. The probability of assessment of an acceptable probability of an anthropogenic impact to minimize economic costs is proposed. The dependence of an acceptable probability of an anthropogenic impact on the ecological risk is demonstrated with an example calculation. The results of the modelling of the state of a shelf ecosystem based on the dynamic model are used for the calculation as source information. Based on this synthesis, the calculation results bring about the opportunity to balance ecological-economic goals of achieving safe development of the shelf and to satisfy the involuntary necessity to reduce the costs on environmental protection measures, while maintaining the priority of environmental requirements.
Mathematical modeling in soil science
NASA Astrophysics Data System (ADS)
Tarquis, Ana M.; Gasco, Gabriel; Saa-Requejo, Antonio; Méndez, Ana; Andina, Diego; Sánchez, M. Elena; Moratiel, Rubén; Antón, Jose Manuel
2015-04-01
Teaching in context can be defined as teaching a mathematical idea or process by using a problem, situation, or data to enhance the teaching and learning process. The same problem or situation may be used many times, at different mathematical levels to teach different objectives. A common misconception exists that assigning/teaching applications is teaching in context. While both use problems, the difference is in timing, in purpose, and in student outcome. In this work, one problem situation is explored thoroughly at different levels of understanding and other ideas are suggested for classroom explorations. Some teachers, aware of the difficulties some students have with mathematical concepts, try to teach quantitative sciences without using mathematical tools. Such attempts are not usually successful. The answer is not in discarding the mathematics, but in finding ways to teach mathematically-based concepts to students who need them but who find them difficult. The computer is an ideal tool for this purpose. To this end, teachers of the Soil Science and Mathematics Departments of the UPM designed a common practice to teach to the students the role of soil on the carbon sequestration. The objective of this work is to explain the followed steps to the design of the practice. Acknowledgement Universidad Politécnica de Madrid (UPM) for the Projects in Education Innovation IE12_13-02009 and IE12_13-02012 is gratefully acknowledge.
Using Covariation Reasoning to Support Mathematical Modeling
ERIC Educational Resources Information Center
Jacobson, Erik
2014-01-01
For many students, making connections between mathematical ideas and the real world is one of the most intriguing and rewarding aspects of the study of mathematics. In the Common Core State Standards for Mathematics (CCSSI 2010), mathematical modeling is highlighted as a mathematical practice standard for all grades. To engage in mathematical…
Mathematical Models of Gene Regulation
NASA Astrophysics Data System (ADS)
Mackey, Michael C.
2004-03-01
This talk will focus on examples of mathematical models for the regulation of repressible operons (e.g. the tryptophan operon), inducible operons (e.g. the lactose operon), and the lysis/lysogeny switch in phage λ. These ``simple" gene regulatory elements can display characteristics experimentally of rapid response to perturbations and bistability, and biologically accurate mathematical models capture these aspects of the dynamics. The models, if realistic, are always nonlinear and contain significant time delays due to transcriptional and translational delays that pose substantial problems for the analysis of the possible ranges of dynamics.
Dambacher, Jeffrey M; Rothlisberg, Peter C; Loneragan, Neil R
2015-01-01
A major decline in the catch of the banana prawn [shrimp], Penaeus (Fenneropenaeus) merguiensis, occurred over a six-year period in the Weipa region of the northeastern Gulf of Carpentaria, Australia. Three main hypotheses have been developed to explain this decline: (1) prawn recruitment collapsed due to overfishing; (2) recruitment collapsed due to a change in the prawn's environment; and (3) adult banana prawns were still present, but fishers could no longer effectively find or catch them. Qualitative mathematical models were used to link population biology, environmental factors, and fishery dynamics to evaluate the alternative hypotheses. This modeling approach provides the means to rapidly integrate knowledge across disciplines and consider alternative hypotheses about how the structure and function of an ecosystem affects its dynamics. Alternative models were constructed to address the different hypotheses and also to encompass a diversity of opinion about the underlying dynamics of the system. Key findings from these analyses are that: instability in the system can arise when discarded fishery bycatch supports relatively high predation pressure; system stability can be enhanced by management of fishing effort or stock catchability; catch per unit effort is not necessarily a reliable indicator of stock abundance; a change in early-season rainfall should affect all stages in the banana prawn's life cycle; and a reduced catch in the Weipa region can create and reinforce a shift in fishing effort away from Weipa. Results from the models informed an approach to test the hypotheses (i.e., an experimental fishing program), and promoted understanding of the system among researchers, management agencies, and industry. The analytical tools developed in this work to address stages of a prawn life cycle and fishery dynamics are generally applicable to any exploited natural. resource.
ASTP ranging system mathematical model
NASA Technical Reports Server (NTRS)
Ellis, M. R.; Robinson, L. H.
1973-01-01
A mathematical model is presented of the VHF ranging system to analyze the performance of the Apollo-Soyuz test project (ASTP). The system was adapted for use in the ASTP. The ranging system mathematical model is presented in block diagram form, and a brief description of the overall model is also included. A procedure for implementing the math model is presented along with a discussion of the validation of the math model and the overall summary and conclusions of the study effort. Detailed appendices of the five study tasks are presented: early late gate model development, unlock probability development, system error model development, probability of acquisition and model development, and math model validation testing.
The 24-Hour Mathematical Modeling Challenge
ERIC Educational Resources Information Center
Galluzzo, Benjamin J.; Wendt, Theodore J.
2015-01-01
Across the mathematics curriculum there is a renewed emphasis on applications of mathematics and on mathematical modeling. Providing students with modeling experiences beyond the ordinary classroom setting remains a challenge, however. In this article, we describe the 24-hour Mathematical Modeling Challenge, an extracurricular event that exposes…
Mathematical Modeling: A Bridge to STEM Education
ERIC Educational Resources Information Center
Kertil, Mahmut; Gurel, Cem
2016-01-01
The purpose of this study is making a theoretical discussion on the relationship between mathematical modeling and integrated STEM education. First of all, STEM education perspective and the construct of mathematical modeling in mathematics education is introduced. A review of literature is provided on how mathematical modeling literature may…
The 24-Hour Mathematical Modeling Challenge
ERIC Educational Resources Information Center
Galluzzo, Benjamin J.; Wendt, Theodore J.
2015-01-01
Across the mathematics curriculum there is a renewed emphasis on applications of mathematics and on mathematical modeling. Providing students with modeling experiences beyond the ordinary classroom setting remains a challenge, however. In this article, we describe the 24-hour Mathematical Modeling Challenge, an extracurricular event that exposes…
Ping, Qingyun; Abu-Reesh, Ibrahim M; He, Zhen
2016-11-01
Boron removal is an arising issue in desalination plants due to boron's toxicity. As an emerging treatment concept, bioelectrochemical systems (BES) can achieve potentially cost-effective boron removal by taking advantage of cathodic-produced alkali. Prior studies have demonstrated successful removal of boron in microbial desalination cells (MDCs) and microbial fuel cells (MFCs), both of which are representative BES. Herein, mathematical models were developed to further evaluate boron removal by different BES and understand the key operating factors. The models delivered very good prediction of the boron concentration in the MDC integrated with Donnan Dialysis (DD) system with the lowest relative root-mean-square error (RMSE) of 0.00%; the predication of the MFC performance generated the highest RMSE of 18.55%. The model results of salt concentration, solution pH, and current generation were well fitted with experimental data for RMSE values mostly below 10%. The long term simulation of the MDC-DD system suggests that the accumulation of salt in the catholyte/stripping solution could have a positive impact on the removal of boron due to osmosis-driven convection. The current generation in the MDC may have little influence on the boron removal, while in the MFC the current-driven electromigration can contribute up to 40% of boron removal. Osmosis-induced convection transport of boron could be the major driving force for boron removal to a low level <2mgL(-1). The ratio between the anolyte and the catholyte flow rates should be kept >22.2 in order to avoid boron accumulation in the anolyte effluent.
Comprehensive Mathematical Model Of Real Fluids
NASA Technical Reports Server (NTRS)
Anderson, Peter G.
1996-01-01
Mathematical model of thermodynamic properties of water, steam, and liquid and gaseous hydrogen and oxygen developed for use in computational simulations of flows of mass and heat in main engine of space shuttle. Similar models developed for other fluids and applications. Based on HBMS equation of state.
A mathematical model of a cloud
NASA Astrophysics Data System (ADS)
Wang, A. P.
1980-07-01
The model under consideration is a pencil of radiation incident on a cloud, and the problem is to determine the reflection and transmitted radiation. Based on the method of 'principle of invariance', three mathematical models are constructed. The first is the basic model, which describes the radiation system completely. The second is the flux integral model, in which the integral average intensity is considered. The third is the diffusion model, which gives the most important information about the diffused radiation field.
Lee, Taek-Soo; Frey, Eric C; Tsui, Benjamin M W
2015-04-07
This paper presents two 4D mathematical observer models for the detection of motion defects in 4D gated medical images. Their performance was compared with results from human observers in detecting a regional motion abnormality in simulated 4D gated myocardial perfusion (MP) SPECT images. The first 4D mathematical observer model extends the conventional channelized Hotelling observer (CHO) based on a set of 2D spatial channels and the second is a proposed model that uses a set of 4D space-time channels. Simulated projection data were generated using the 4D NURBS-based cardiac-torso (NCAT) phantom with 16 gates/cardiac cycle. The activity distribution modelled uptake of (99m)Tc MIBI with normal perfusion and a regional wall motion defect. An analytical projector was used in the simulation and the filtered backprojection (FBP) algorithm was used in image reconstruction followed by spatial and temporal low-pass filtering with various cut-off frequencies. Then, we extracted 2D image slices from each time frame and reorganized them into a set of cine images. For the first model, we applied 2D spatial channels to the cine images and generated a set of feature vectors that were stacked for the images from different slices of the heart. The process was repeated for each of the 1,024 noise realizations, and CHO and receiver operating characteristics (ROC) analysis methodologies were applied to the ensemble of the feature vectors to compute areas under the ROC curves (AUCs). For the second model, a set of 4D space-time channels was developed and applied to the sets of cine images to produce space-time feature vectors to which the CHO methodology was applied. The AUC values of the second model showed better agreement (Spearman's rank correlation (SRC) coefficient = 0.8) to human observer results than those from the first model (SRC coefficient = 0.4). The agreement with human observers indicates the proposed 4D mathematical observer model provides a good predictor of the
NASA Astrophysics Data System (ADS)
Lee, Taek-Soo; Frey, Eric C.; Tsui, Benjamin M. W.
2015-04-01
This paper presents two 4D mathematical observer models for the detection of motion defects in 4D gated medical images. Their performance was compared with results from human observers in detecting a regional motion abnormality in simulated 4D gated myocardial perfusion (MP) SPECT images. The first 4D mathematical observer model extends the conventional channelized Hotelling observer (CHO) based on a set of 2D spatial channels and the second is a proposed model that uses a set of 4D space-time channels. Simulated projection data were generated using the 4D NURBS-based cardiac-torso (NCAT) phantom with 16 gates/cardiac cycle. The activity distribution modelled uptake of 99mTc MIBI with normal perfusion and a regional wall motion defect. An analytical projector was used in the simulation and the filtered backprojection (FBP) algorithm was used in image reconstruction followed by spatial and temporal low-pass filtering with various cut-off frequencies. Then, we extracted 2D image slices from each time frame and reorganized them into a set of cine images. For the first model, we applied 2D spatial channels to the cine images and generated a set of feature vectors that were stacked for the images from different slices of the heart. The process was repeated for each of the 1,024 noise realizations, and CHO and receiver operating characteristics (ROC) analysis methodologies were applied to the ensemble of the feature vectors to compute areas under the ROC curves (AUCs). For the second model, a set of 4D space-time channels was developed and applied to the sets of cine images to produce space-time feature vectors to which the CHO methodology was applied. The AUC values of the second model showed better agreement (Spearman’s rank correlation (SRC) coefficient = 0.8) to human observer results than those from the first model (SRC coefficient = 0.4). The agreement with human observers indicates the proposed 4D mathematical observer model provides a good predictor of the
Mathematical circulatory system model
NASA Technical Reports Server (NTRS)
Lakin, William D. (Inventor); Stevens, Scott A. (Inventor)
2010-01-01
A system and method of modeling a circulatory system including a regulatory mechanism parameter. In one embodiment, a regulatory mechanism parameter in a lumped parameter model is represented as a logistic function. In another embodiment, the circulatory system model includes a compliant vessel, the model having a parameter representing a change in pressure due to contraction of smooth muscles of a wall of the vessel.
Dallon, J C; Newren, Elijah; Hansen, Marc D H
2009-03-01
The actin cytoskeleton plays a role in cell-cell adhesion but its specific function is not clear. Actin might anchor cadherins or drive membrane protrusions in order to facilitate cell-cell adhesion. Using a mathematical model of the forces involved in cadherin-based adhesion, we investigate its possible functions. The immersed boundary method is used to model the cell membrane and cortex with cadherin binding forces added as linear springs. The simulations indicate that cells in suspension can develop normal cell-cell contacts without actin-based cadherin anchoring or membrane protrusions. The cadherins can be fixed in the membrane or free to move, and the end results are similar. For adherent cells, simulations suggest that the actin cytoskeleton must play an active role for the cells to establish cell-cell contact regions similar to those observed in vitro.
Teachers' Conceptions of Mathematical Modeling
ERIC Educational Resources Information Center
Gould, Heather
2013-01-01
The release of the "Common Core State Standards for Mathematics" in 2010 resulted in a new focus on mathematical modeling in United States curricula. Mathematical modeling represents a way of doing and understanding mathematics new to most teachers. The purpose of this study was to determine the conceptions and misconceptions held by…
Mathematical Modeling in the Undergraduate Curriculum
ERIC Educational Resources Information Center
Toews, Carl
2012-01-01
Mathematical modeling occupies an unusual space in the undergraduate mathematics curriculum: typically an "advanced" course, it nonetheless has little to do with formal proof, the usual hallmark of advanced mathematics. Mathematics departments are thus forced to decide what role they want the modeling course to play, both as a component of the…
Teachers' Conceptions of Mathematical Modeling
ERIC Educational Resources Information Center
Gould, Heather
2013-01-01
The release of the "Common Core State Standards for Mathematics" in 2010 resulted in a new focus on mathematical modeling in United States curricula. Mathematical modeling represents a way of doing and understanding mathematics new to most teachers. The purpose of this study was to determine the conceptions and misconceptions held by…
Mathematical modeling of biological ensembles
Harlow, F.H.; Sandoval, D.L.; Ruppel, H.M.
1986-07-01
Mathematical models are proposed for three distinctly different aspects of biophysical dynamics: mental dynamics, mob dynamics, and the evolution of species. Each section is self-contained, but the approaches are unified by the employment of stochastic equations for the interactive dynamics of numerous discrete entities.
Mathematical Modelling with Young Children
ERIC Educational Resources Information Center
English, Lyn D.; Watters, James J.
2004-01-01
This paper addresses the first year of a three-year, longitudinal study which introduces mathematical modeling to young children and provides professional development for their teachers. Four classes of third-graders (8 years of age) and their teachers participated in the first year of the program, which involved several preliminary modeling…
Development of mathematical models of environmental physiology
NASA Technical Reports Server (NTRS)
Stolwijk, J. A. J.; Mitchell, J. W.; Nadel, E. R.
1971-01-01
Selected articles concerned with mathematical or simulation models of human thermoregulation are presented. The articles presented include: (1) development and use of simulation models in medicine, (2) model of cardio-vascular adjustments during exercise, (3) effective temperature scale based on simple model of human physiological regulatory response, (4) behavioral approach to thermoregulatory set point during exercise, and (5) importance of skin temperature in sweat regulation.
Chen, W; Desai, D; Good, D; Crison, J; Timmins, P; Paruchuri, S; Wang, J; Ha, K
2016-08-01
A computational fluid dynamic (CFD) model was developed to predict metformin release from a hydroxypropylmethylcellulose (HPMC) matrix-based extended-release formulation that took into consideration the physical and chemical properties of the drug substance, composition, as well as size and shape of the tablet. New high dose strength (1000 mg) tablet geometry was selected based on the surface area/volume (SA/V) approach advocated by Lapidus/Lordi/Reynold to obtain the desired equivalent metformin release kinetics. Maintaining a similar SA/V ratio across all extended-release metformin hydrochloride (Met XR) tablet strengths that had different geometries provided similar simulations of dissolution behavior. Experimental dissolution profiles of three lots of high-strength tablets agreed with the simulated release kinetics. Additionally, a pharmacokinetic absorption model was developed using GastroPlus™ software and known physicochemical, pharmacokinetic, and in vitro dissolution properties of metformin to predict the clinical exposure of the new high strength (1000 mg) tablet prior to conducting a human clinical bioequivalence study. In vitro metformin release kinetics were utilized in the absorption model to predict exposures in humans for new 1000-mg Met XR tablets, and the absorption model correctly projected equivalent in vivo exposure across all dose strengths. A clinical bioequivalence study was pursued based on the combined modeling results and demonstrated equivalent exposure as predicted by the simulations.
Exploring optimal air ambulance base locations in Norway using advanced mathematical modelling
Røislien, Jo; van den Berg, Pieter L; Lindner, Thomas; Zakariassen, Erik; Aardal, Karen; van Essen, J Theresia
2017-01-01
Background Helicopter emergency medical services are an important part of many healthcare systems. Norway has a nationwide physician staffed air ambulance service with 12 bases servicing a country with large geographical variations in population density. The aim of the study was to estimate optimal air ambulance base locations. Methods We used high resolution population data for Norway from 2015, dividing Norway into >300 000 1 km×1 km cells. Inhabited cells had a median (5–95 percentile) of 13 (1–391) inhabitants. Optimal helicopter base locations were estimated using the maximal covering location problem facility location optimisation model, exploring the number of bases needed to cover various fractions of the population for time thresholds 30 and 45 min, both in green field scenarios and conditioning on the current base structure. We reanalysed on municipality level data to explore the potential information loss using coarser population data. Results For a 45 min threshold, 90% of the population could be covered using four bases, and 100% using nine bases. Given the existing bases, the calculations imply the need for two more bases to achieve full coverage. Decreasing the threshold to 30 min approximately doubles the number of bases needed. Results using municipality level data were remarkably similar to those using fine grid information. Conclusions The whole population could be reached in 45 min or less using nine optimally placed bases. The current base structure could be improved by moving or adding one or two select bases. Municipality level data appears sufficient for proper analysis. PMID:27325670
Mathematical Modeling of Cellular Metabolism.
Berndt, Nikolaus; Holzhütter, Hermann-Georg
Cellular metabolism basically consists of the conversion of chemical compounds taken up from the extracellular environment into energy (conserved in energy-rich bonds of organic phosphates) and a wide array of organic molecules serving as catalysts (enzymes), information carriers (nucleic acids), and building blocks for cellular structures such as membranes or ribosomes. Metabolic modeling aims at the construction of mathematical representations of the cellular metabolism that can be used to calculate the concentration of cellular molecules and the rates of their mutual chemical interconversion in response to varying external conditions as, for example, hormonal stimuli or supply of essential nutrients. Based on such calculations, it is possible to quantify complex cellular functions as cellular growth, detoxification of drugs and xenobiotic compounds or synthesis of exported molecules. Depending on the specific questions to metabolism addressed, the methodological expertise of the researcher, and available experimental information, different conceptual frameworks have been established, allowing the usage of computational methods to condense experimental information from various layers of organization into (self-) consistent models. Here, we briefly outline the main conceptual frameworks that are currently exploited in metabolism research.
NASA Astrophysics Data System (ADS)
Skormin, Victor A.; Herman, Carl R.; Tasullo, Mark A.; Nicholson, Donald J.
1993-11-01
A mathematical model of a pointing, acquisition, and tracking (PAT) system intended for laser-based intersatellite communication is developed and implemented in software in the form of a simulator. It represents major dynamic channels of the system and complex interaction of operational conditions, disturbances, and design parameters thus facilitating the solution of various analysis, design, and control problems. Application of computer graphics and animated schematics, driven by the model, provides accurate display of the most intricate phenomena behind the PAT operation. Coupled with a working laboratory prototype of the PAT system through a data communication board, the simulator is capable of displaying both simulated and real variables serving as a diagnostic tool. The simulator has been applied for development and verification of a novel jitter compensation scheme.
Mathematical modeling of molecular diffusion through mucus
Cu, Yen; Saltzman, W. Mark
2008-01-01
The rate of molecular transport through the mucus gel can be an important determinant of efficacy for therapeutic agents delivered by oral, intranasal, intravaginal/rectal, and intraocular routes. Transport through mucus can be described by mathematical models based on principles of physical chemistry and known characteristics of the mucus gel, its constituents, and of the drug itself. In this paper, we review mathematical models of molecular diffusion in mucus, as well as the techniques commonly used to measure diffusion of solutes in the mucus gel, mucus gel mimics, and mucosal epithelia. PMID:19135488
NASA Astrophysics Data System (ADS)
Faria, Ana; Bateira, Carlos; Laura, Soares; Fernandes, Joana; Gonçalves, José; Marques, Fernando
2016-04-01
The work focuses the evaluation of landslide susceptibility in Douro Region agricultural terraces, supported by dry stone walls and earth embankments, using two physically based models. The applied models, SHALSTAB (Montgomery et al.,1994; Dietrich et al., 1995) and SINMAP (PACK et al., 2005), combine an infinite slope stability model with a steady state hydrological model, and both use the following geophysical parameters: cohesion, friction angle, specific weight and soil thickness. The definition of the contributing areas is different in both models. The D∞ methodology used by SINMAP model suggests a great influence of the terraces morphology, providing a much more diffuse flow on the internal flow modelling. The MD8 used in SHALSTAB promotes an important degree of flow concentration, representing an internal flow based on preferential paths of the runoff as the areas more susceptible to saturation processes. The model validation is made through the contingency matrix method (Fawcett, 2006; Raia et al., 2014) and implies the confrontation with the inventory of past landslides. The True Positive Rate shows that SHALSTAB classifies 77% of the landslides on the high susceptibility areas, while SINMAP reaches 90%. The SINMAP has a False Positive Rate (represents the percentage of the slipped area that is classified as unstable but without landslides) of 83% and the SHALSTAB has 67%. The reliability (analyzes the areas that were correctly classified on the total area) of SHALSTAB is better (33% against 18% of SINMAP). Relative to Precision (refers to the ratio of the slipped area correctly classified over the whole area classified as unstable) SHALSTAB has better results (0.00298 against 0.00283 of SINMAP). It was elaborate the index TPR/FPR and better results obtained by SHALSTAB (1.14 against 1.09 of SINMAP). SHALSTAB shows a better performance in the definition of susceptibility most prone areas to instability processes. One of the reasons for the difference of
Establishing an Explanatory Model for Mathematics Identity
ERIC Educational Resources Information Center
Cribbs, Jennifer D.; Hazari, Zahra; Sonnert, Gerhard; Sadler, Philip M.
2015-01-01
This article empirically tests a previously developed theoretical framework for mathematics identity based on students' beliefs. The study employs data from more than 9,000 college calculus students across the United States to build a robust structural equation model. While it is generally thought that students' beliefs about their own competence…
Establishing an Explanatory Model for Mathematics Identity
ERIC Educational Resources Information Center
Cribbs, Jennifer D.; Hazari, Zahra; Sonnert, Gerhard; Sadler, Philip M.
2015-01-01
This article empirically tests a previously developed theoretical framework for mathematics identity based on students' beliefs. The study employs data from more than 9,000 college calculus students across the United States to build a robust structural equation model. While it is generally thought that students' beliefs about their own competence…
Mathematical Modeling in the High School Curriculum
ERIC Educational Resources Information Center
Hernández, Maria L.; Levy, Rachel; Felton-Koestler, Mathew D.; Zbiek, Rose Mary
2016-01-01
In 2015, mathematics leaders and instructors from the Society for Industrial and Applied Mathematics (SIAM) and the Consortium for Mathematics and Its Applications (COMAP), with input from NCTM, came together to write the "Guidelines for Assessment and Instruction in Mathematical Modeling Education" (GAIMME) report as a resource for…
Strategies to Support Students' Mathematical Modeling
ERIC Educational Resources Information Center
Jung, Hyunyi
2015-01-01
An important question for mathematics teachers is this: "How can we help students learn mathematics to solve everyday problems, rather than teaching them only to memorize rules and practice mathematical procedures?" Teaching students using modeling activities can help them learn mathematics in real-world problem-solving situations that…
Exploring Yellowstone National Park with Mathematical Modeling
ERIC Educational Resources Information Center
Wickstrom, Megan H.; Carr, Ruth; Lackey, Dacia
Mathematical modeling, a practice standard in the Common Core State Standards for Mathematics (CCSSM) (CCSSI 2010), is a process by which students develop and use mathematics as a tool to make sense of the world around them. Students investigate a real-world situation by asking mathematical questions; along the way, they need to decide how to use…
Strategies to Support Students' Mathematical Modeling
ERIC Educational Resources Information Center
Jung, Hyunyi
2015-01-01
An important question for mathematics teachers is this: "How can we help students learn mathematics to solve everyday problems, rather than teaching them only to memorize rules and practice mathematical procedures?" Teaching students using modeling activities can help them learn mathematics in real-world problem-solving situations that…
Mathematical Modeling in the High School Curriculum
ERIC Educational Resources Information Center
Hernández, Maria L.; Levy, Rachel; Felton-Koestler, Mathew D.; Zbiek, Rose Mary
2016-01-01
In 2015, mathematics leaders and instructors from the Society for Industrial and Applied Mathematics (SIAM) and the Consortium for Mathematics and Its Applications (COMAP), with input from NCTM, came together to write the "Guidelines for Assessment and Instruction in Mathematical Modeling Education" (GAIMME) report as a resource for…
Mathematical modelling of the human foetal cardiovascular system based on Doppler ultrasound data.
Pennati, G; Bellotti, M; Fumero, R
1997-06-01
A lumped parameter model of the human foetal circulation primarily based on blood velocity data derived from the Doppler analysis was developed in this study. It consists of two major parts, the heart and the foetal vascular circulation. The heart model accounts for both ventricular and atrial contractility. The circulation was divided into 19 compliant vascular compartments in order to describe all of the clinically monitored sites. The model parameters refer to the final gestation period and were derived either from literature on foetal sheep circulation or from anatomical dimension monitoring of the human foetus. No control mechanism is incorporated into the model. The model was validated by comparing several index values of simulated velocity curves to those of the experimental Doppler waveforms. The mean and maximum percentual errors in the estimation of the experimental results by the model are 7.7% and 20.1%, respectively. Velocity and pressure tracings of the foetal circulation were investigated, as well as regional blood flow rate distribution.
Problem Posing and Solving with Mathematical Modeling
ERIC Educational Resources Information Center
English, Lyn D.; Fox, Jillian L.; Watters, James J.
2005-01-01
Mathematical modeling is explored as both problem posing and problem solving from two perspectives, that of the child and the teacher. Mathematical modeling provides rich learning experiences for elementary school children and their teachers.
A Biophysically Based Mathematical Model for the Kinetics of Mitochondrial Na+-Ca2+ Antiporter
Pradhan, Ranjan K.; Beard, Daniel A.; Dash, Ranjan K.
2010-01-01
Sodium-calcium antiporter is the primary efflux pathway for Ca2+ in respiring mitochondria, and hence plays an important role in mitochondrial Ca2+ homeostasis. Although experimental data on the kinetics of Na+-Ca2+ antiporter are available, the structure and composition of its functional unit and kinetic mechanisms associated with the Na+-Ca2+ exchange (including the stoichiometry) remains unclear. To gain a quantitative understanding of mitochondrial Ca2+ homeostasis, a biophysical model of Na+-Ca2+ antiporter is introduced that is thermodynamically balanced and satisfactorily describes a number of independent data sets under a variety of experimental conditions. The model is based on a multistate catalytic binding mechanism for carrier-mediated facilitated transport and Eyring's free energy barrier theory for interconversion and electrodiffusion. The model predicts the activating effect of membrane potential on the antiporter function for a 3Na+:1Ca2+ electrogenic exchange as well as the inhibitory effects of both high and low pH seen experimentally. The model is useful for further development of mechanistic integrated models of mitochondrial Ca2+ handling and bioenergetics to understand the mechanisms by which Ca2+ plays a role in mitochondrial signaling pathways and energy metabolism. PMID:20338843
Opinions of Secondary School Mathematics Teachers on Mathematical Modelling
ERIC Educational Resources Information Center
Tutak, Tayfun; Güder, Yunus
2013-01-01
The aim of this study is to identify the opinions of secondary school mathematics teachers about mathematical modelling. Qualitative research was used. The participants of the study were 40 secondary school teachers working in the Bingöl Province in Turkey during 2012-2013 education year. Semi-structured interview form prepared by the researcher…
Opinions of Secondary School Mathematics Teachers on Mathematical Modelling
ERIC Educational Resources Information Center
Tutak, Tayfun; Güder, Yunus
2013-01-01
The aim of this study is to identify the opinions of secondary school mathematics teachers about mathematical modelling. Qualitative research was used. The participants of the study were 40 secondary school teachers working in the Bingöl Province in Turkey during 2012-2013 education year. Semi-structured interview form prepared by the researcher…
Using a Functional Model to Develop a Mathematical Formula
ERIC Educational Resources Information Center
Otto, Charlotte A.; Everett, Susan A.; Luera, Gail R.
2008-01-01
The unifying theme of models was incorporated into a required Science Capstone course for pre-service elementary teachers based on national standards in science and mathematics. A model of a teeter-totter was selected for use as an example of a functional model for gathering data as well as a visual model of a mathematical equation for developing…
Using a Functional Model to Develop a Mathematical Formula
ERIC Educational Resources Information Center
Otto, Charlotte A.; Everett, Susan A.; Luera, Gail R.
2008-01-01
The unifying theme of models was incorporated into a required Science Capstone course for pre-service elementary teachers based on national standards in science and mathematics. A model of a teeter-totter was selected for use as an example of a functional model for gathering data as well as a visual model of a mathematical equation for developing…
Summer Camp of Mathematical Modeling in China
ERIC Educational Resources Information Center
Tian, Xiaoxi; Xie, Jinxing
2013-01-01
The Summer Camp of Mathematical Modeling in China is a recently created experience designed to further Chinese students' academic pursuits in mathematical modeling. Students are given more than three months to research on a mathematical modeling project. Researchers and teams with outstanding projects are invited to the Summer Camp to present…
Summer Camp of Mathematical Modeling in China
ERIC Educational Resources Information Center
Tian, Xiaoxi; Xie, Jinxing
2013-01-01
The Summer Camp of Mathematical Modeling in China is a recently created experience designed to further Chinese students' academic pursuits in mathematical modeling. Students are given more than three months to research on a mathematical modeling project. Researchers and teams with outstanding projects are invited to the Summer Camp to present…
Mathematical models of diabetes progression.
De Gaetano, Andrea; Hardy, Thomas; Beck, Benoit; Abu-Raddad, Eyas; Palumbo, Pasquale; Bue-Valleskey, Juliana; Pørksen, Niels
2008-12-01
Few attempts have been made to model mathematically the progression of type 2 diabetes. A realistic representation of the long-term physiological adaptation to developing insulin resistance is necessary for effectively designing clinical trials and evaluating diabetes prevention or disease modification therapies. Writing a good model for diabetes progression is difficult because the long time span of the disease makes experimental verification of modeling hypotheses extremely awkward. In this context, it is of primary importance that the assumptions underlying the model equations properly reflect established physiology and that the mathematical formulation of the model give rise only to physically plausible behavior of the solutions. In the present work, a model of the pancreatic islet compensation is formulated, its physiological assumptions are presented, some fundamental qualitative characteristics of its solutions are established, the numerical values assigned to its parameters are extensively discussed (also with reference to available cross-sectional epidemiologic data), and its performance over the span of a lifetime is simulated under various conditions, including worsening insulin resistance and primary replication defects. The differences with respect to two previously proposed models of diabetes progression are highlighted, and therefore, the model is proposed as a realistic, robust description of the evolution of the compensation of the glucose-insulin system in healthy and diabetic individuals. Model simulations can be run from the authors' web page.
Mathematical modeling of drug delivery.
Siepmann, J; Siepmann, F
2008-12-08
Due to the significant advances in information technology mathematical modeling of drug delivery is a field of steadily increasing academic and industrial importance with an enormous future potential. The in silico optimization of novel drug delivery systems can be expected to significantly increase in accuracy and easiness of application. Analogous to other scientific disciplines, computer simulations are likely to become an integral part of future research and development in pharmaceutical technology. Mathematical programs can be expected to be routinely used to help optimizing the design of novel dosage forms. Good estimates for the required composition, geometry, dimensions and preparation procedure of various types of delivery systems will be available, taking into account the desired administration route, drug dose and release profile. Thus, the number of required experimental studies during product development can be significantly reduced, saving time and reducing costs. In addition, the quantitative analysis of the physical, chemical and potentially biological phenomena, which are involved in the control of drug release, offers another fundamental advantage: The underlying drug release mechanisms can be elucidated, which is not only of academic interest, but a pre-requisite for an efficient improvement of the safety of the pharmaco-treatments and for effective trouble-shooting during production. This article gives an overview on the current state of the art of mathematical modeling of drug delivery, including empirical/semi-empirical and mechanistic realistic models. Analytical as well as numerical solutions are described and various practical examples are given. One of the major challenges to be addressed in the future is the combination of mechanistic theories describing drug release out of the delivery systems with mathematical models quantifying the subsequent drug transport within the human body in a realistic way. Ideally, the effects of the design
Zhang, Zili; Gao, Chao; Liu, Yuxin; Qian, Tao
2014-09-01
Ant colony optimization (ACO) algorithms often fall into the local optimal solution and have lower search efficiency for solving the travelling salesman problem (TSP). According to these shortcomings, this paper proposes a universal optimization strategy for updating the pheromone matrix in the ACO algorithms. The new optimization strategy takes advantages of the unique feature of critical paths reserved in the process of evolving adaptive networks of the Physarum-inspired mathematical model (PMM). The optimized algorithms, denoted as PMACO algorithms, can enhance the amount of pheromone in the critical paths and promote the exploitation of the optimal solution. Experimental results in synthetic and real networks show that the PMACO algorithms are more efficient and robust than the traditional ACO algorithms, which are adaptable to solve the TSP with single or multiple objectives. Meanwhile, we further analyse the influence of parameters on the performance of the PMACO algorithms. Based on these analyses, the best values of these parameters are worked out for the TSP.
Antonopoulos, Markos; Stamatakos, Georgios
2015-01-01
Intensive glioma tumor infiltration into the surrounding normal brain tissues is one of the most critical causes of glioma treatment failure. To quantitatively understand and mathematically simulate this phenomenon, several diffusion-based mathematical models have appeared in the literature. The majority of them ignore the anisotropic character of diffusion of glioma cells since availability of pertinent truly exploitable tomographic imaging data is limited. Aiming at enriching the anisotropy-enhanced glioma model weaponry so as to increase the potential of exploiting available tomographic imaging data, we propose a Brownian motion-based mathematical analysis that could serve as the basis for a simulation model estimating the infiltration of glioblastoma cells into the surrounding brain tissue. The analysis is based on clinical observations and exploits diffusion tensor imaging (DTI) data. Numerical simulations and suggestions for further elaboration are provided.
Developing mathematical models of neurobehavioral performance for the "real world".
Dean, Dennis A; Fletcher, Adam; Hursh, Steven R; Klerman, Elizabeth B
2007-06-01
Work-related operations requiring extended wake durations, night, or rotating shifts negatively affect worker neurobehavioral performance and health. These types of work schedules are required in many industries, including the military, transportation, and health care. These industries are increasingly using or considering the use of mathematical models of neurobehavioral performance as a means to predict the neurobehavioral deficits due to these operational demands, to develop interventions that decrease these deficits, and to provide additional information to augment existing decision-making processes. Recent advances in mathematical modeling have allowed its application to real-world problems. Developing application-specific expertise is necessary to successfully apply mathematical models, in part because development of new algorithms and methods linking the models to the applications may be required. During a symposium, "Modeling Human Neurobehavioral Performance II: Towards Operational Readiness," at the 2006 SIAM-SMB Conference on the Life Sciences, examples of the process of applying mathematical models, including model construction, model validation, or developing model-based interventions, were presented. The specific applications considered included refining a mathematical model of sleep/wake patterns of airline flight crew, validating a mathematical model using railroad operations data, and adapting a mathematical model to develop appropriate countermeasure recommendations based on known constraints. As mathematical models and their associated analytical methods continue to transition into operational settings, such additional development will be required. However, major progress has been made in using mathematical model outputs to inform those individuals making schedule decisions for their workers.
An, Guohua; Widness, John A; Mock, Donald M; Veng-Pedersen, Peter
2016-09-01
Direct measurement of red blood cell (RBC) survival in humans has improved from the original accurate but limited differential agglutination technique to the current reliable, safe, and accurate biotin method. Despite this, all of these methods are time consuming and require blood sampling over several months to determine the RBC lifespan. For situations in which RBC survival information must be obtained quickly, these methods are not suitable. With the exception of adults and infants, RBC survival has not been extensively investigated in other age groups. To address this need, we developed a novel, physiology-based mathematical model that quickly estimates RBC lifespan in healthy individuals at any age. The model is based on the assumption that the total number of RBC recirculations during the lifespan of each RBC (denoted by N max) is relatively constant for all age groups. The model was initially validated using the data from our prior infant and adult biotin-labeled red blood cell studies and then extended to the other age groups. The model generated the following estimated RBC lifespans in 2-year-old, 5-year-old, 8-year-old, and 10-year-old children: 62, 74, 82, and 86 days, respectively. We speculate that this model has useful clinical applications. For example, HbA1c testing is not reliable in identifying children with diabetes because HbA1c is directly affected by RBC lifespan. Because our model can estimate RBC lifespan in children at any age, corrections to HbA1c values based on the model-generated RBC lifespan could improve diabetes diagnosis as well as therapy in children.
Mathematical Modelling of Folate Metabolism
Panetta, John C.; Paugh, Steven W.
2013-01-01
Folate metabolism is a complex biological process that is influenced by many variables including transporters, co-factors and enzymes. Mathematical models provide a useful tool to evaluate this complex system and to elucidate hypotheses that would be otherwise untenable to test in vitro or in vivo. Forty years of model development and refinement along with enhancements in technology have led to systematic improvement in our biological understanding from these models. However, increased complexity does not always lead to increased understanding, and a balanced approach to modelling the system is often advantageous. This approach should address questions about sensitivity of the model to variation and incorporate genomic data. The folate model is a useful platform for investigating the effects of antifolates on the folate pathway. The utility of the model is demonstrated through interrogation of drug resistance, drug-drug interactions, drug selectivity, and drug doses and schedules. Mathematics can be used to create models with the ability to design and improve rationale therapeutic interventions. PMID:23703958
NASA Astrophysics Data System (ADS)
Yan, Lincan; Zhou, Chenming; Reyes, Miguel; Whisner, Bruce; Damiano, Nicholas
2017-06-01
There are two types of through-the-earth (TTE) wireless communication in the mining industry: magnetic loop TTE and electrode-based (or linear) TTE. While the magnetic loop systems send signal through magnetic fields, the transmitter of an electrode-based TTE system sends signal directly through the mine overburden by driving an extremely low frequency (ELF) or ultralow frequency (ULF) AC current into the earth. The receiver at the other end (underground or surface) detects the resultant current and receives it as a voltage. A wireless communication link between surface and underground is then established. For electrode-based TTE communications, the signal is transmitted through the established electric field and is received as a voltage detected at the receiver. It is important to understand the electric field distribution within the mine overburden for the purpose of designing and improving the performance of the electrode-based TTE systems. In this paper, a complete explicit solution for all three electric field components for the electrode-based TTE communication was developed. An experiment was conducted using a prototype electrode-based TTE system developed by National Institute for Occupational Safety and Health. The mathematical model was then compared and validated with test data. A reasonable agreement was found between them.
Yan, Lincan; Zhou, Chenming; Reyes, Miguel; Whisner, Bruce; Damiano, Nicholas
2017-01-01
There are two types of through-the-earth (TTE) wireless communication in the mining industry: magnetic loop TTE and electrode-based (or linear) TTE. While the magnetic loop systems send signal through magnetic fields, the transmitter of an electrode-based TTE system sends signal directly through the mine overburden by driving an extremely low frequency (ELF) or ultralow frequency (ULF) AC current into the earth. The receiver at the other end (underground or surface) detects the resultant current and receives it as a voltage. A wireless communication link between surface and underground is then established. For electrode-based TTE communications, the signal is transmitted through the established electric field and is received as a voltage detected at the receiver. It is important to understand the electric field distribution within the mine overburden for the purpose of designing and improving the performance of the electrode-based TTE systems. In this paper, a complete explicit solution for all three electric field components for the electrode-based TTE communication was developed. An experiment was conducted using a prototype electrode-based TTE system developed by National Institute for Occupational Safety and Health. The mathematical model was then compared and validated with test data. A reasonable agreement was found between them. PMID:28845062
Mathematical modeling of laser lipolysis
Mordon, Serge R; Wassmer, Benjamin; Reynaud, Jean Pascal; Zemmouri, Jaouad
2008-01-01
Background and Objectives Liposuction continues to be one of the most popular procedures performed in cosmetic surgery. As the public's demand for body contouring continues, laser lipolysis has been proposed to improve results, minimize risk, optimize patient comfort, and reduce the recovery period. Mathematical modeling of laser lipolysis could provide a better understanding of the laser lipolysis process and could determine the optimal dosage as a function of fat volume to be removed. Study design/Materials and Methods An Optical-Thermal-Damage Model was formulated using finite-element modeling software (Femlab 3.1, Comsol Inc). The general model simulated light distribution using the diffusion approximation of the transport theory, temperature rise using the bioheat equation and laser-induced injury using the Arrhenius damage model. Biological tissue was represented by two homogenous regions (dermis and fat layer) with a nonlinear air-tissue boundary condition including free convection. Video recordings were used to gain a better understanding of the back and forth movement of the cannula during laser lipolysis in order to consider them in our mathematical model. Infrared video recordings were also performed in order to compare the actual surface temperatures to our calculations. The reduction in fat volume was determined as a function of the total applied energy and subsequently compared to clinical data reported in the literature. Results In patients, when using cooled tumescent anesthesia, 1064 nm Nd:YAG laser or 980 nm diode laser: (6 W, back and forth motion: 100 mm/s) give similar skin surface temperature (max: 41°C). These measurements are in accordance with those obtained by mathematical modeling performed with a 1 mm cannula inserted inside the hypodermis layer at 0.8 cm below the surface. Similarly, the fat volume reduction observed in patients at 6-month follow up can be determined by mathematical modeling. This fat reduction depends on the applied
Mathematical modeling of laser lipolysis.
Mordon, Serge R; Wassmer, Benjamin; Reynaud, Jean Pascal; Zemmouri, Jaouad
2008-02-29
Liposuction continues to be one of the most popular procedures performed in cosmetic surgery. As the public's demand for body contouring continues, laser lipolysis has been proposed to improve results, minimize risk, optimize patient comfort, and reduce the recovery period. Mathematical modeling of laser lipolysis could provide a better understanding of the laser lipolysis process and could determine the optimal dosage as a function of fat volume to be removed. An Optical-Thermal-Damage Model was formulated using finite-element modeling software (Femlab 3.1, Comsol Inc). The general model simulated light distribution using the diffusion approximation of the transport theory, temperature rise using the bioheat equation and laser-induced injury using the Arrhenius damage model. Biological tissue was represented by two homogenous regions (dermis and fat layer) with a nonlinear air-tissue boundary condition including free convection. Video recordings were used to gain a better understanding of the back and forth movement of the cannula during laser lipolysis in order to consider them in our mathematical model. Infrared video recordings were also performed in order to compare the actual surface temperatures to our calculations. The reduction in fat volume was determined as a function of the total applied energy and subsequently compared to clinical data reported in the literature. In patients, when using cooled tumescent anesthesia, 1064 nm Nd:YAG laser or 980 nm diode laser: (6 W, back and forth motion: 100 mm/s) give similar skin surface temperature (max: 41 degrees C). These measurements are in accordance with those obtained by mathematical modeling performed with a 1 mm cannula inserted inside the hypodermis layer at 0.8 cm below the surface. Similarly, the fat volume reduction observed in patients at 6-month follow up can be determined by mathematical modeling. This fat reduction depends on the applied energy, typically 5 cm3 for 3000 J. At last, skin retraction
NASA Technical Reports Server (NTRS)
Gassaway, J. D.; Mahmood, Q.; Trotter, J. D.
1978-01-01
A system was developed for depositing aluminum and aluminum alloys by the D.C. sputtering technique. This system which was designed for a high level of cleanliness and ion monitoring the deposition parameters during film preparation is ready for studying the deposition and annealing parameters upon double level metal preparation. The finite element method was studied for use in the computer modeling of two dimensional MOS transistor structures. An algorithm was developed for implementing a computer study which is based upon the finite difference method. The program was modified and used to calculate redistribution data for boron and phosphorous which had been predeposited by ion implantation with range and straggle conditions typical of those used at MSFC. Data were generated for 111 oriented SOS films with redistribution in N2, dry O2 and steam ambients. Data are given showing both two dimensional effects and the evolution of the junction depth, sheet resistance and integrated dose with redistribution time.
Shakeel, Faiyaz; Alanazi, Fars K; Alsarra, Ibrahim A; Haq, Nazrul
2014-09-01
Temperature-dependent solubility data of glibenclamide (GBN) in various ethanol-water mixtures is not reported in literature so far. Therefore, the aim of this study was to determine the mole fraction solubility of GBN in various ethanol-water mixtures at the temperature range of 293.15 to 318.15 K. The solubility of GBN was determined by reported shake flask method and the experimental data was fitted in thermodynamics-based modified Apelblat model. The solubility of GBN was found to be increased with increase in temperature and mass fraction of ethanol in ethanol-water mixtures. The experimental data of GBN was well correlated with the modified Apelblat model at each temperature range with correlation coefficient of 0.9940-1.0000. The relative absolute deviation (AD) was found to be less than 0.1% except in pure ethanol and water. The positive values of enthalpies and entropies for GBN dissolution indicated that its dissolution is endothermic and an entropy-driven process.
Mathematical modeling of moving boundary problems in thermal energy storage
NASA Technical Reports Server (NTRS)
Solomon, A. D.
1980-01-01
The capability for predicting the performance of thermal energy storage (RES) subsystems and components using PCM's based on mathematical and physical models is developed. Mathematical models of the dynamic thermal behavior of (TES) subsystems using PCM's based on solutions of the moving boundary thermal conduction problem and on heat and mass transfer engineering correlations are also discussed.
Mathematical models of skin permeability: an overview.
Mitragotri, Samir; Anissimov, Yuri G; Bunge, Annette L; Frasch, H Frederick; Guy, Richard H; Hadgraft, Jonathan; Kasting, Gerald B; Lane, Majella E; Roberts, Michael S
2011-10-10
Mathematical models of skin permeability play an important role in various fields including prediction of transdermal drug delivery and assessment of dermal exposure to industrial chemicals. Extensive research has been performed over the last several decades to yield predictions of skin permeability to various molecules. These efforts include the development of empirical approaches such as quantitative structure-permeability relationships and porous pathway theories as well as the establishment of rigorous structure-based models. In addition to establishing the necessary mathematical framework to describe these models, efforts have also been dedicated to determining the key parameters that are required to use these models. This article provides an overview of various modeling approaches with respect to their advantages, limitations and future prospects.
Mathematical Modeling of Loop Heat Pipes
NASA Technical Reports Server (NTRS)
Kaya, Tarik; Ku, Jentung; Hoang, Triem T.; Cheung, Mark L.
1998-01-01
The primary focus of this study is to model steady-state performance of a Loop Heat Pipe (LHP). The mathematical model is based on the steady-state energy balance equations at each component of the LHP. The heat exchange between each LHP component and the surrounding is taken into account. Both convection and radiation environments are modeled. The loop operating temperature is calculated as a function of the applied power at a given loop condition. Experimental validation of the model is attempted by using two different LHP designs. The mathematical model is tested at different sink temperatures and at different elevations of the loop. Tbc comparison of the calculations and experimental results showed very good agreement (within 3%). This method proved to be a useful tool in studying steady-state LHP performance characteristics.
A mathematical model to optimize the drain phase in gravity-based peritoneal dialysis systems.
Akonur, Alp; Lo, Ying-Cheng; Cizman, Borut
2010-01-01
Use of patient-specific drain-phase parameters has previously been suggested to improve peritoneal dialysis (PD) adequacy. Improving management of the drain period may also help to minimize intraperitoneal volume (IPV). A typical gravity-based drain profile consists of a relatively constant initial fast-flow period, followed by a transition period and a decaying slow-flow period. That profile was modeled using the equation VD(t) = (V(D0) - Q(MAX) x t) xphi + (V(D0) x e(-alphat)) x (1 - phi), where V(D)(t) is the time-dependent dialysate volume; V(D0), the dialysate volume at the start of the drain; Q(MAX), the maximum drain flow rate; alpha, the exponential drain constant; and phi, the unit step function with respect to the flow transition. We simulated the effects of the assumed patient-specific maximum drain flow (Q(MAX)) and transition volume (psi), and the peritoneal volume percentage when transition occurs,for fixed device-specific drain parameters. Average patient transport parameters were assumed during 5-exchange therapy with 10 L of PD solution. Changes in therapy performance strongly depended on the drain parameters. Comparing 400 mL/85% with 200 mL/65% (Q(MAX/psi), drain time (7.5 min vs. 13.5 min) and IPV (2769 mL vs. 2355 mL) increased when the initial drain flow was low and the transition quick. Ultrafiltration and solute clearances remained relatively similar. Such differences were augmented up to a drain time of 22 minutes and an IPV of more than 3 L when Q(MAX) was 100 mL/min. The ability to model individual drain conditions together with water and solute transport may help to prevent patient discomfort with gravity-based PD. However, it is essential to note that practical difficulties such as displaced catheters and obstructed flow paths cause variability in drain characteristics even for the same patient, limiting the clinical applicability of this model.
Inquiry-Based Mathematics Curriculum Design for Young Children-Teaching Experiment and Reflection
ERIC Educational Resources Information Center
Wu, Su-Chiao; Lin, Fou-Lai
2016-01-01
A group of teacher educators and practitioners in mathematics education and early childhood education generalized a set of inquiry-based mathematics models for Taiwanese young children of ages 3-6 and designed a series of inquiry-based mathematics curriculum tasks in cultivate the children's diverse mathematical concepts and mathematical power. In…
Inquiry-Based Mathematics Curriculum Design for Young Children-Teaching Experiment and Reflection
ERIC Educational Resources Information Center
Wu, Su-Chiao; Lin, Fou-Lai
2016-01-01
A group of teacher educators and practitioners in mathematics education and early childhood education generalized a set of inquiry-based mathematics models for Taiwanese young children of ages 3-6 and designed a series of inquiry-based mathematics curriculum tasks in cultivate the children's diverse mathematical concepts and mathematical power. In…
Mathematical Model for Mapping Students' Cognitive Capability
ERIC Educational Resources Information Center
Tambunan, Hardi
2016-01-01
The quality mapping of educational unit program is important issue in education in Indonesia today in an effort to improve the quality of education. The objective of this study is to make a mathematical model to find out the map of students' capability in mathematics. It has been made a mathematical model to be used in the mapping of students'…
Mathematical models in medicine: Diseases and epidemics
Witten, M.
1987-01-01
This volume presents the numerous applications of mathematics in the life sciences and medicine, and demonstrates how mathematics and computers have taken root in these fields. The work covers a variety of techniques and applications including mathematical and modelling methodology, modelling/simulation technology, and philosophical issues in model formulation, leading to speciality medical modelling, artificial intelligence, psychiatric models, medical decision making, and molecular modelling.
Mathematical models of bipolar disorder
NASA Astrophysics Data System (ADS)
Daugherty, Darryl; Roque-Urrea, Tairi; Urrea-Roque, John; Troyer, Jessica; Wirkus, Stephen; Porter, Mason A.
2009-07-01
We use limit cycle oscillators to model bipolar II disorder, which is characterized by alternating hypomanic and depressive episodes and afflicts about 1% of the United States adult population. We consider two non-linear oscillator models of a single bipolar patient. In both frameworks, we begin with an untreated individual and examine the mathematical effects and resulting biological consequences of treatment. We also briefly consider the dynamics of interacting bipolar II individuals using weakly-coupled, weakly-damped harmonic oscillators. We discuss how the proposed models can be used as a framework for refined models that incorporate additional biological data. We conclude with a discussion of possible generalizations of our work, as there are several biologically-motivated extensions that can be readily incorporated into the series of models presented here.
Identification of the noise using mathematical modelling
NASA Astrophysics Data System (ADS)
Dobeš, Josef; Kozubková, Milada; Mahdal, Miroslav
2016-03-01
In engineering applications the noisiness of a component or the whole device is a common problem. Currently, a lot of effort is put to eliminate noise of the already produced devices, to prevent generation of acoustic waves during the design of new components, or to specify the operating problems based on noisiness change. The experimental method and the mathematical modelling method belong to these identification methods. With the power of today's computers the ability to identify the sources of the noise on the mathematical modelling level is a very appreciated tool for engineers. For example, the noise itself may be generated by the vibration of the solid object, combustion, shock, fluid flow around an object or cavitation at the fluid flow in an object. For the given task generating the noise using fluid flow on the selected geometry and propagation of the acoustic waves and their subsequent identification are solved and evaluated. In this paper the principle of measurement of variables describing the fluid flow field and acoustic field are described. For the solution of fluid flow a mathematical model implemented into the CFD code is used. The mathematical modelling evaluation of the flow field is compared to the experimental data.
On Religion and Language Evolutions Seen Through Mathematical and Agent Based Models
NASA Astrophysics Data System (ADS)
Ausloos, M.
Religions and languages are social variables, like age, sex, wealth or political opinions, to be studied like any other organizational parameter. In fact, religiosity is one of the most important sociological aspects of populations. Languages are also obvious characteristics of the human species. Religions, languages appear though also disappear. All religions and languages evolve and survive when they adapt to the society developments. On the other hand, the number of adherents of a given religion, or the number of persons speaking a language is not fixed in time, - nor space. Several questions can be raised. E.g. from a oscopic point of view : How many religions/languages exist at a given time? What is their distribution? What is their life time? How do they evolve? From a "microscopic" view point: can one invent agent based models to describe oscopic aspects? Do simple evolution equations exist? How complicated must be a model? These aspects are considered in the present note. Basic evolution equations are outlined and critically, though briefly, discussed. Similarities and differences between religions and languages are summarized. Cases can be illustrated with historical facts and data. It is stressed that characteristic time scales are different. It is emphasized that "external fields" are historically very relevant in the case of religions, rending the study more " interesting" within a mechanistic approach based on parity and symmetry of clusters concepts. Yet the modern description of human societies through networks in reported simulations is still lacking some mandatory ingredients, i.e. the non scalar nature of the nodes, and the non binary aspects of nodes and links, though for the latter this is already often taken into account, including directions. From an analytical point of view one can consider a population independently of the others. It is intuitively accepted, but also found from the statistical analysis of the frequency distribution that an
Mathematical Models Of Turbulence In Hypersonic Flow
NASA Technical Reports Server (NTRS)
Marvin, J. G.; Coakley, T. J.
1991-01-01
Report discusses mathematical models of turbulence used in numerical simulations of complicated viscous, hypersonic flows. Includes survey of essential features of models and their statuses in applications.
Mathematical models of malaria - a review
2011-01-01
Mathematical models have been used to provide an explicit framework for understanding malaria transmission dynamics in human population for over 100 years. With the disease still thriving and threatening to be a major source of death and disability due to changed environmental and socio-economic conditions, it is necessary to make a critical assessment of the existing models, and study their evolution and efficacy in describing the host-parasite biology. In this article, starting from the basic Ross model, the key mathematical models and their underlying features, based on their specific contributions in the understanding of spread and transmission of malaria have been discussed. The first aim of this article is to develop, starting from the basic models, a hierarchical structure of a range of deterministic models of different levels of complexity. The second objective is to elaborate, using some of the representative mathematical models, the evolution of modelling strategies to describe malaria incidence by including the critical features of host-vector-parasite interactions. Emphasis is more on the evolution of the deterministic differential equation based epidemiological compartment models with a brief discussion on data based statistical models. In this comprehensive survey, the approach has been to summarize the modelling activity in this area so that it helps reach a wider range of researchers working on epidemiology, transmission, and other aspects of malaria. This may facilitate the mathematicians to further develop suitable models in this direction relevant to the present scenario, and help the biologists and public health personnel to adopt better understanding of the modelling strategies to control the disease PMID:21777413
ERIC Educational Resources Information Center
Partnership for Assessment of Readiness for College and Careers (NJ1), 2011
2011-01-01
The PARCC Model Content Frameworks for Mathematics and ELA/Literacy have been developed through a state-led process in collaboration with members of the Common Core State Standards (CCSS) writing teams. The frameworks were reviewed by the public between August 3-31, 2011. Nearly 1,000 responses were collected, and respondents included K-12…
Mathematical model of induction heating
NASA Astrophysics Data System (ADS)
Rak, Josef
2017-07-01
One of mathematical models of induction heating can be described by a parabolic differential equation with the specific Joule looses in the body. Advantage of this method is that the detailed knowledge of the 3D-magnetic field is not necessary and move of the body or the inductor can be easily implemented. The specific Joule looses can computed by solving the Fredholm integral equation of the second kind for the eddy current of density by the Nyström method with the singularity subtraction.
Teaching Mathematical Modelling for Earth Sciences via Case Studies
NASA Astrophysics Data System (ADS)
Yang, Xin-She
2010-05-01
Mathematical modelling is becoming crucially important for earth sciences because the modelling of complex systems such as geological, geophysical and environmental processes requires mathematical analysis, numerical methods and computer programming. However, a substantial fraction of earth science undergraduates and graduates may not have sufficient skills in mathematical modelling, which is due to either limited mathematical training or lack of appropriate mathematical textbooks for self-study. In this paper, we described a detailed case-study-based approach for teaching mathematical modelling. We illustrate how essential mathematical skills can be developed for students with limited training in secondary mathematics so that they are confident in dealing with real-world mathematical modelling at university level. We have chosen various topics such as Airy isostasy, greenhouse effect, sedimentation and Stokes' flow,free-air and Bouguer gravity, Brownian motion, rain-drop dynamics, impact cratering, heat conduction and cooling of the lithosphere as case studies; and we use these step-by-step case studies to teach exponentials, logarithms, spherical geometry, basic calculus, complex numbers, Fourier transforms, ordinary differential equations, vectors and matrix algebra, partial differential equations, geostatistics and basic numeric methods. Implications for teaching university mathematics for earth scientists for tomorrow's classroom will also be discussed. Refereces 1) D. L. Turcotte and G. Schubert, Geodynamics, 2nd Edition, Cambridge University Press, (2002). 2) X. S. Yang, Introductory Mathematics for Earth Scientists, Dunedin Academic Press, (2009).
Mathematical modeling of cold cap
Pokorny, Richard; Hrma, Pavel R.
2012-10-13
The ultimate goal of studies of cold cap behavior in glass melters is to increase the rate of glass processing in an energy-efficient manner. Regrettably, mathematical models, which are ideal tools for assessing the responses of melters to process parameters, have not paid adequate attention to the cold cap. In this study, we consider a cold cap resting on a pool of molten glass from which it receives a steady heat flux while temperature, velocity, and extent of conversion are functions of the position along the vertical coordinate. A one-dimensional (1D) mathematical model simulates this process by solving the differential equations for mass and energy balances with appropriate boundary conditions and constitutive relationships for material properties. The sensitivity analyses on the effects of incoming heat fluxes to the cold cap through its lower and upper boundaries show that the cold cap thickness increases as the heat flux from above increases, and decreases as the total heat flux increases. We also discuss the effects of foam, originating from batch reactions and from redox reactions in molten glass and argue that models must represent the foam layer to achieve a reliable prediction of the melting rate as a function of feed properties and melter conditions.
Mathematical models for principles of gyroscope theory
NASA Astrophysics Data System (ADS)
Usubamatov, Ryspek
2017-01-01
Gyroscope devices are primary units for navigation and control systems that have wide application in engineering. The main property of the gyroscope device is maintaining the axis of a spinning rotor. This gyroscope peculiarity is represented in terms of gyroscope effects in which known mathematical models have been formulated on the law of kinetic energy conservation and the change in the angular momentum. The gyroscope theory is represented by numerous publications, which mathematical models do not match the actual torques and motions in these devices.. The nature of gyroscope effects is more complex than represented in known publications. Recent investigations in this area have demonstrated that on a gyroscope can act until eleven internal torques simultaneously and interdependently around two axes. These gyroscope torques are generated by spinning rotor's mass-elements and by the gyroscope center-mass based on action of several inertial forces. The change in the angular momentum does not play first role for gyroscope motions. The external load generates several internal torques which directions may be distinguished. This situation leads changing of the angular velocities of gyroscope motions around two axes. Formulated mathematical models of gyroscope internal torques are representing the fundamental principle of gyroscope theory. In detail, the gyroscope is experienced the resistance torque generated by the centrifugal and Coriolis forces of the spinning rotor and the precession torque generated by the common inertial forces and the change in the angular momentum. The new mathematical models for the torques and motions of the gyroscope confirmed for most unsolvable problems. The mathematical models practically tested and the results are validated the theoretical approach.
Li, Han; Soroka, Stephen D; Taylor, Thomas H; Stamey, Karen L; Stinson, Kelly Wallace; Freeman, Alison E; Abramson, Darbi R; Desai, Rita; Cronin, Li X; Oxford, J Wade; Caba, Joseph; Pleatman, Cynthia; Pathak, Sonal; Schmidt, Daniel S; Semenova, Vera A; Martin, Sandra K; Wilkins, Patricia P; Quinn, Conrad P
2008-04-20
Quantification of anthrax lethal toxin (LTx) neutralization activity (TNA) is pivotal in assessing protective antibody responses to anthrax vaccines and for evaluation of immunotherapies for anthrax. We have adapted and redesigned the TNA assay to establish a unifying, standardized, quantitative and validated technology platform for LTx neutralization in the J774A.1 murine cell line. Critical design features of this platform are 1) the application of a free-form or constrained 4 parameter logistic (4-PL) function to model neutralization responses within and between boundary limits of 100% cell survival and 95% cell lysis and 2) to exploit innovative assay curve recognition algorithms for interpretive endpoints. The assay was validated using human serum ED50 (dilution of serum effecting 50% neutralization) as the primary reportable value (RV). Intra-operator and intermediate precision, expressed as the coefficient of variation (%CV), were high at 10.5-15.5%CV and 13.5-14.5%CV respectively. TNA assay dilutional linearity was demonstrated for human sera using linear regression analysis of log(10) transformed data with slope=0.99, intercept=-0.03 and r(2)=0.985. Assay accuracy, inferred from the precision and linearity data and using a spike-recovery approach, was high with a percent error (%E) range of only 3.4-20.5%E. The lower limit of detection (LLOD) was ED50=12 and the lower limit of quantification (LLOQ) was ED50=36. The cell-based assay was robust, tolerating incubation temperatures from 35 to 39 degrees C, CO(2) concentrations from 3% to 7% and reporter substrate (MTT) concentrations of 2.5-7.5 mg/ml. Strict assay quality control parameters were met for up to 25 cell culture passages. The long term (50 month) assay stability, determined using human reference standards AVR414 and AVR801, indicated high precision, consistent accuracy and no detectable assay drift. A customized software program provided two additional assay metrics, Quantification Titer (QT) and
A Generative Model of Mathematics Learning
ERIC Educational Resources Information Center
Wittrock, M. C.
1974-01-01
The learning of mathematics is presented as a cognitive process rather than as a behavioristic one. A generative model of mathematics learning is described. Learning with understanding can occur with discovery or reception treatments. Relevant empirical research is discussed and implications for teaching mathematics as a generative process are…
Mathematical modeling of the wood ignition process
NASA Astrophysics Data System (ADS)
Grishin, A. M.; Yakimov, A. S.
2013-12-01
The statements and numerical solution of the problem of igniting the wood wall as a result of the fire seat effect based on the mathematical model of a porous reacting medium are proposed. The original reagent ignition is found to be determined by the processes of drying, pyrolysis (decomposition and synthesis reactions) of dry wood, reaction of the carbon oxide oxidation as well as by the wood thermophysical properties.
On mathematical modelling of flameless combustion
Mancini, Marco; Schwoeppe, Patrick; Weber, Roman; Orsino, Stefano
2007-07-15
A further analysis of the IFRF semi-industrial-scale experiments on flameless (mild) combustion of natural gas is carried out. The experimental burner features a strong oxidizer jet and two weak natural gas jets. Numerous publications have shown the inability of various RANS-based mathematical models to predict the structure of the weak jet. We have proven that the failure is in error predictions of the entrainment and therefore is not related to any chemistry submodels, as has been postulated. (author)
Mathematical model for classification of EEG signals
NASA Astrophysics Data System (ADS)
Ortiz, Victor H.; Tapia, Juan J.
2015-09-01
A mathematical model to filter and classify brain signals from a brain machine interface is developed. The mathematical model classifies the signals from the different lobes of the brain to differentiate the signals: alpha, beta, gamma and theta, besides the signals from vision, speech, and orientation. The model to develop further eliminates noise signals that occur in the process of signal acquisition. This mathematical model can be used on different platforms interfaces for rehabilitation of physically handicapped persons.
Students' Approaches to Learning a New Mathematical Model
ERIC Educational Resources Information Center
Flegg, Jennifer A.; Mallet, Daniel G.; Lupton, Mandy
2013-01-01
In this article, we report on the findings of an exploratory study into the experience of undergraduate students as they learn new mathematical models. Qualitative and quantitative data based around the students' approaches to learning new mathematical models were collected. The data revealed that students actively adopt three approaches to…
Mathematical Modelling Research in Turkey: A Content Analysis Study
ERIC Educational Resources Information Center
Çelik, H. Coskun
2017-01-01
The aim of the present study was to examine the mathematical modelling studies done between 2004 and 2015 in Turkey and to reveal their tendencies. Forty-nine studies were selected using purposeful sampling based on the term, "mathematical modelling" with Higher Education Academic Search Engine. They were analyzed with content analysis.…
Students' Approaches to Learning a New Mathematical Model
ERIC Educational Resources Information Center
Flegg, Jennifer A.; Mallet, Daniel G.; Lupton, Mandy
2013-01-01
In this article, we report on the findings of an exploratory study into the experience of undergraduate students as they learn new mathematical models. Qualitative and quantitative data based around the students' approaches to learning new mathematical models were collected. The data revealed that students actively adopt three approaches to…
A mathematical description of a growing cell colony based on the mechanical bidomain model
NASA Astrophysics Data System (ADS)
Auddya, Debabrata; Roth, Bradley J.
2017-03-01
The mechanical bidomain model is used to describe a colony of cells growing on a substrate. Analytical expressions are derived for the intracellular and extracellular displacements. Mechanotransduction events are driven by the difference between the displacements in the two spaces, corresponding to the force acting on integrins. The equation for the displacement consists of two terms: one proportional to the radius that is the same in the intracellular and extracellular spaces (the monodomain term) and one that is proportional to a modified Bessel function that is responsible for mechanotransduction (the bidomain term). The model predicts that mechanotransduction occurs within a few length constants of the colony’s edge, and an expression for the length constant contains the intracellular and extracellular shear moduli and the spring constant of the integrins coupling the two spaces. The model predictions are qualitatively consistent with experiments on human embryonic stem cell colonies, in which differentiation is localized near the edge.
Mathematical modelling of leprosy and its control.
Blok, David J; de Vlas, Sake J; Fischer, Egil A J; Richardus, Jan Hendrik
2015-03-01
Leprosy or Hansen's disease is an infectious disease caused by the bacterium Mycobacterium leprae. The annual number of new leprosy cases registered worldwide has remained stable over the past years at over 200,000. Early case finding and multidrug therapy have not been able interrupt transmission completely. Elimination requires innovation in control and sustained commitment. Mathematical models can be used to predict the course of leprosy incidence and the effect of intervention strategies. Two compartmental models and one individual-based model have been described in the literature. Both compartmental models investigate the course of leprosy in populations and the long-term impact of control strategies. The individual-based model focusses on transmission within households and the impact of case finding among contacts of new leprosy patients. Major improvement of these models should result from a better understanding of individual differences in exposure to infection and developing leprosy after exposure. Most relevant are contact heterogeneity, heterogeneity in susceptibility and spatial heterogeneity. Furthermore, the existing models have only been applied to a limited number of countries. Parameterization of the models for other areas, in particular those with high incidence, is essential to support current initiatives for the global elimination of leprosy. Many challenges remain in understanding and dealing with leprosy. The support of mathematical models for understanding leprosy epidemiology and supporting policy decision making remains vital.
Arepyeva, M A; Kolbin, A S; Sidorenko, S V; Lawson, R; Kurylev, A A; Balykina, Yu E; Mukhina, N V; Spiridonova, A A
2017-03-01
Infections that are inadequately treated owing to acquired bacterial resistance are a leading cause of mortality. Rates of multidrug-resistant bacteria are rising, resulting in increased antibiotic failures and worsening patient outcomes. Mathematical modelling makes it possible to predict the future spread of bacterial antimicrobial resistance. The aim of this study was to construct a mathematical model that can describe the dependency between the level of antimicrobial resistance and the amount of antibiotic usage. After reviewing existing mathematical models, a cross-sectional, retrospective study was carried out to collect clinical and microbiological data across 3000 patients for the construction of the mathematical model. Based on these data, a model was developed and tested to determine the dependency between antibiotic usage and resistance. Consumption of inhibitor/cephalosporins and fluoroquinolones increases inhibitor/penicillin resistance. Consumption of inhibitor/penicillins increases cephalosporin resistance. Consumption of inhibitor/penicillins increases inhibitor/cephalosporin resistance. It was demonstrated that in some antibiotic-micro-organism pairs, the level of antibiotic usage significantly influences the level of resistance. The model makes it possible to predict the change in resistance and also shows the quantitative effect of antibiotic consumption on the level of bacterial resistance. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.
Brace, Robert A; Anderson, Debra F; Cheung, Cecilia Y
2014-11-15
Experimentation in late-gestation fetal sheep has suggested that regulation of amniotic fluid (AF) volume occurs primarily by modulating the rate of intramembranous transport of water and solutes across the amnion into underlying fetal blood vessels. In order to gain insight into intramembranous transport mechanisms, we developed a computer model that allows simulation of experimentally measured changes in AF volume and composition over time. The model included fetal urine excretion and lung liquid secretion as inflows into the amniotic compartment plus fetal swallowing and intramembranous absorption as outflows. By using experimental flows and solute concentrations for urine, lung liquid, and swallowed fluid in combination with the passive and active transport mechanisms of the intramembranous pathway, we simulated AF responses to basal conditions, intra-amniotic fluid infusions, fetal intravascular infusions, urine replacement, and tracheoesophageal occlusion. The experimental data are consistent with four intramembranous transport mechanisms acting in concert: 1) an active unidirectional bulk transport of AF with all dissolved solutes out of AF into fetal blood presumably by vesicles; 2) passive bidirectional diffusion of solutes, such as sodium and chloride, between fetal blood and AF; 3) passive bidirectional water movement between AF and fetal blood; and 4) unidirectional transport of lactate into the AF. Further, only unidirectional bulk transport is dynamically regulated. The simulations also identified areas for future study: 1) identifying intramembranous stimulators and inhibitors, 2) determining the semipermeability characteristics of the intramembranous pathway, and 3) characterizing the vesicles that are the primary mediators of intramembranous transport. Copyright © 2014 the American Physiological Society.
Basic Perforator Flap Hemodynamic Mathematical Model.
Tao, Youlun; Ding, Maochao; Wang, Aiguo; Zhuang, Yuehong; Chang, Shi-Min; Mei, Jin; Tang, Maolin; Hallock, Geoffrey G
2016-05-01
A mathematical model to help explain the hemodynamic characteristics of perforator flaps based on blood flow resistance systems within the flap will serve as a theoretical guide for the future study and clinical applications of these flaps. There are 3 major blood flow resistance network systems of a perforator flap. These were defined as the blood flow resistance of an anastomosis between artery and artery of adjacent perforasomes, between artery and vein within a perforasome, and then between vein and vein corresponding to the outflow of that perforasome. From this, a calculation could be made of the number of such blood flow resistance network systems that must be crossed for all perforasomes within a perforator flap to predict whether that arrangement would be viable. The summation of blood flow resistance networks from each perforasome in a given perforator flap could predict which portions would likely survive. This mathematical model shows how this is directly dependent on the location of the vascular pedicle to the flap and whether supercharging or superdrainage maneuvers have been added. These configurations will give an estimate of the hemodynamic characteristics for the given flap design. This basic mathematical model can (1) conveniently determine the degree of difficulty for each perforasome within a perforator flap to survive; (2) semiquantitatively allow the calculation of basic hemodynamic parameters; and (3) allow the assessment of the pros and cons expected for each pattern of perforasomes encountered clinically based on predictable hemodynamic observations.
The Activity System of School-Teaching Mathematics and Mathematical Modelling.
ERIC Educational Resources Information Center
Julie, Cyril
2002-01-01
Focuses on the activity system of school-teaching mathematics and the impact of mathematical modeling. Describes the Applications of and Modeling in School Mathematics Project (AMSMAP) which investigates teachers' mathematical modeling and its relationship to a hypothesized school mathematical modeling activity system. Discusses the notion of an…
Mathematical models for plant-herbivore interactions
Feng, Zhilan; DeAngelis, Donald L.
2017-01-01
Mathematical Models of Plant-Herbivore Interactions addresses mathematical models in the study of practical questions in ecology, particularly factors that affect herbivory, including plant defense, herbivore natural enemies, and adaptive herbivory, as well as the effects of these on plant community dynamics. The result of extensive research on the use of mathematical modeling to investigate the effects of plant defenses on plant-herbivore dynamics, this book describes a toxin-determined functional response model (TDFRM) that helps explains field observations of these interactions. This book is intended for graduate students and researchers interested in mathematical biology and ecology.
Mathematical modeling of deformation during hot rolling
Jin, D.; Stachowiak, R.G.; Samarasekera, I.V.; Brimacombe, J.K.
1994-12-31
The deformation that occurs in the roll bite during the hot rolling of steel, particularly the strain-rate and strain distribution, has been mathematically modeled using finite-element analysis. In this paper three different finite-element models are compared with one another and with industrial measurements. The first model is an Eulerian analysis based on the flow formulation method, while the second utilizes an Updated Lagrangian approach. The third model is based on a commercially available program DEFORM which also utilizes a Lagrangian reference frame. Model predictions of strain and strain-rate distribution, particularly near the surface of the slab, are strongly influenced by the treatment of friction at the boundary and the magnitude of the friction coefficient or shear factor. Roll forces predicted by the model have been compared with industrial rolling loads from a seven-stand hot-strip mill.
How parrots talk: insights based on CT scans, image processing, and mathematical models
NASA Astrophysics Data System (ADS)
Patterson, Dianne K.; Pepperberg, Irene M.; Story, Brad H.; Hoffman, Eric A.
1997-05-01
Little is known about mechanisms of speech production in parrots. Recently, however, techniques for correlating vocal tract shape with vowel production in humans have become more sophisticated and we have adapted these techniques for use with parrots. We scanned two grey parrot heads with intact vocal tracts. One specimen, 'Oldbird' was fixed with its beak propped open; the second 'Youngbird' was fixed with its beak closed. Using VIDA software, we (1) established that differences in tongue and larynx positioning resulted from opening or closing the beak; and (2) obtained lengths and area functions for the trachea, glottis, pharynx, mouth, and choana for both specimens and esophageal length and area functions for the first specimen. We entered lengths and area functions into a 1D wave propagation model to determine the natural formant frequencies associated with an open versus closed beak. We also determined how manipulating lengths and area functions could affect formant frequency and relative intensity. Finally, by comparing observed grey parrot vowel formant, we predict how the parrot uses its vocal tract to produce speech.
Mathematical form models of tree trunks
Rudolfs Ozolins
2000-01-01
Assortment structure analysis of tree trunks is a characteristic and proper problem that can be solved by using mathematical modeling and standard computer programs. Mathematical form model of tree trunks consists of tapering curve equations and their parameters. Parameters for nine species were obtained by processing measurements of 2,794 model trees and studying the...
Martin-Martin, L S; Latini, A; Pagano, A; Ragno, A; Stasi, R; Coppè, A; Davoli, G; Crescenzi, A; Alimonti, A; Migliore, A
2003-05-01
Sjögren's syndrome (SS) is a systemic autoimmune disease that mainly affects exocrine glands. A diagnosis of SS in its early stages has a potential clinical relevance, but it is difficult and cannot be made solely on clinical grounds. Several sets of diagnostic criteria have been proposed, but none has met with a general consensus. Minor salivary gland has been judged to be the "gold standard" for the diagnosis of SS. However, it is a painful procedure and has a small but significant proportion of both false positive and false negative results. The aim of our study was to develop a simple mathematical score that uses clinical and laboratory variables for diagnosing SS, thereby reducing the need of minor salivary gland. The following variables were included in the model: ANA, SS-A/SS-B, Schirmer's Test/BUT, C3/C4, serum gammaglobulin levels. One hundred consecutive individuals reporting clinical syndromes consistent with a sicca syndrome were included in the study. The application of our multifactorial mathematical model has shown a high predictive value for SS vs controls or vs patients with other autoimmune disorders (Sensitivity 93%, Specificity 100%), with an estimated minor salivary gland reduction of 77%. We conclude that our mathematical model can be considered a useful non-invasive approach for diagnosing Sjogren's Syndrome and recommend its validation on a larger scale.
Molina-Peña, Rodolfo; Álvarez, Mario Moisés
2012-01-01
Background The Cancer Stem Cell (CSC) hypothesis has gained credibility within the cancer research community. According to this hypothesis, a small subpopulation of cells within cancerous tissues exhibits stem-cell-like characteristics and is responsible for the maintenance and proliferation of cancer. Methodologies/Principal Findings We present a simple compartmental pseudo-chemical mathematical model for tumor growth, based on the CSC hypothesis, and derived using a “chemical reaction” approach. We defined three cell subpopulations: CSCs, transit progenitor cells, and differentiated cells. Each event related to cell division, differentiation, or death is then modeled as a chemical reaction. The resulting set of ordinary differential equations was numerically integrated to describe the time evolution of each cell subpopulation and the overall tumor growth. The parameter space was explored to identify combinations of parameter values that produce biologically feasible and consistent scenarios. Conclusions/Significance Certain kinetic relationships apparently must be satisfied to sustain solid tumor growth and to maintain an approximate constant fraction of CSCs in the tumor lower than 0.01 (as experimentally observed): (a) the rate of symmetrical and asymmetrical CSC renewal must be in the same order of magnitude; (b) the intrinsic rate of renewal and differentiation of progenitor cells must be half an order of magnitude higher than the corresponding intrinsic rates for cancer stem cells; (c) the rates of apoptosis of the CSC, transit amplifying progenitor (P) cells, and terminally differentiated (D) cells must be progressively higher by approximately one order of magnitude. Simulation results were consistent with reports that have suggested that encouraging CSC differentiation could be an effective therapeutic strategy for fighting cancer in addition to selective killing or inhibition of symmetric division of CSCs. PMID:22363395
Aircraft engine mathematical model - linear system approach
NASA Astrophysics Data System (ADS)
Rotaru, Constantin; Roateşi, Simona; Cîrciu, Ionicǎ
2016-06-01
This paper examines a simplified mathematical model of the aircraft engine, based on the theory of linear and nonlinear systems. The dynamics of the engine was represented by a linear, time variant model, near a nominal operating point within a finite time interval. The linearized equations were expressed in a matrix form, suitable for the incorporation in the MAPLE program solver. The behavior of the engine was included in terms of variation of the rotational speed following a deflection of the throttle. The engine inlet parameters can cover a wide range of altitude and Mach numbers.
NASA Astrophysics Data System (ADS)
Paterson, Judy; Sneddon, Jamie
2011-10-01
This article reports on the learning conversations between a mathematician and a mathematics educator as they worked together to change the delivery model of a third year discrete mathematics course from a traditional lecture mode to team-based learning (TBL). This change prompted the mathematician to create team tasks which increasingly focused on what he calls the 'unspoken curriculum': mathematical thinking. We consider the ways in which the TBL model promoted and enabled this in the light of literature on mathematical thinking, sense-making and behaviours, and strongly suggest that this approach warrants more attention from the mathematics teaching community. We also discuss shifts in the mathematician's thinking about task construction as he refined the tasks to encourage students to think and behave like mathematicians.
Mathematical models and the experimental analysis of behavior.
Mazur, James E
2006-03-01
The use of mathematical models in the experimental analysis of behavior has increased over the years, and they offer several advantages. Mathematical models require theorists to be precise and unambiguous, often allowing comparisons of competing theories that sound similar when stated in words. Sometimes different mathematical models may make equally accurate predictions for a large body of data. In such cases, it is important to find and investigate situations for which the competing models make different predictions because, unless two models are actually mathematically equivalent, they are based on different assumptions about the psychological processes that underlie an observed behavior. Mathematical models developed in basic behavioral research have been used to predict and control behavior in applied settings, and they have guided research in other areas of psychology. A good mathematical model can provide a common framework for understanding what might otherwise appear to be diverse and unrelated behavioral phenomena. Because psychologists vary in their quantitative skills and in their tolerance for mathematical equations, it is important for those who develop mathematical models of behavior to find ways (such as verbal analogies, pictorial representations, or concrete examples) to communicate the key premises of their models to nonspecialists.
Dermol, Janja; Miklavčič, Damijan
2014-12-01
High voltage electric pulses cause electroporation of the cell membrane. Consequently, flow of the molecules across the membrane increases. In our study we investigated possibility to predict the percentage of the electroporated cells in an inhomogeneous electric field on the basis of the experimental results obtained when cells were exposed to a homogeneous electric field. We compared and evaluated different mathematical models previously suggested by other authors for interpolation of the results (symmetric sigmoid, asymmetric sigmoid, hyperbolic tangent and Gompertz curve). We investigated the density of the cells and observed that it has the most significant effect on the electroporation of the cells while all four of the mathematical models yielded similar results. We were able to predict electroporation of cells exposed to an inhomogeneous electric field based on mathematical modeling and using mathematical formulations of electroporation probability obtained experimentally using exposure to the homogeneous field of the same density of cells. Models describing cell electroporation probability can be useful for development and presentation of treatment planning for electrochemotherapy and non-thermal irreversible electroporation. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Belyavskii, V. V.; Nikolayev, Yu. I.
2011-01-01
We propose a system for the analysis of magnetotelluric (MT) data, which makes use of the invariant characteristics of the impedance tensor such as the maximum and minimum induction curves and the phase tensor. We examine the coefficients of the appearance and normalization of principal values of the impedance tensor. By the case study for Koryakiya, it is shown that the three-dimensional (3D) mathematical modeling and the Wiese-Parkinson vectors allow one to correct the results of one-dimensional (1D) and two-dimensional (2D) inversion of MT curves. Comparison between model and observed data based on the 1D inversion of MTS curves provides a pictorial view of the distortions of MT curves and their sensitivity to the parameters of a geological cross section.
Mathematics in the Biology Classroom: A Model of Interdisciplinary Education
ERIC Educational Resources Information Center
Hodgson, Ted; Keck, Robert; Patterson, Richard; Maki, Dan
2005-01-01
This article describes an interdisciplinary course that develops essential mathematical modeling skills within an introductory biology setting. The course embodies recent recommendations regarding the need for interdisciplinary, inquiry-based mathematical preparation of undergraduates in the biological sciences. Evaluation indicates that the…
Scaffolding Mathematical Modelling with a Solution Plan
ERIC Educational Resources Information Center
Schukajlow, Stanislaw; Kolter, Jana; Blum, Werner
2015-01-01
In the study presented in this paper, we examined the possibility to scaffold mathematical modelling with strategies. The strategies were prompted using an instrument called "solution plan" as a scaffold. The effects of this step by step instrument on mathematical modelling competency and on self-reported strategies were tested using…
Mathematical Modelling as a Professional Task
ERIC Educational Resources Information Center
Frejd, Peter; Bergsten, Christer
2016-01-01
Educational research literature on mathematical modelling is extensive. However, not much attention has been paid to empirical investigations of its scholarly knowledge from the perspective of didactic transposition processes. This paper reports from an interview study of mathematical modelling activities involving nine professional model…
Scaffolding Mathematical Modelling with a Solution Plan
ERIC Educational Resources Information Center
Schukajlow, Stanislaw; Kolter, Jana; Blum, Werner
2015-01-01
In the study presented in this paper, we examined the possibility to scaffold mathematical modelling with strategies. The strategies were prompted using an instrument called "solution plan" as a scaffold. The effects of this step by step instrument on mathematical modelling competency and on self-reported strategies were tested using…
Constructing a Model of Mathematical Literacy.
ERIC Educational Resources Information Center
Pugalee, David K.
1999-01-01
Discusses briefly the call for mathematical literacy and the need for a model that articulates the fluid and dynamic nature of this form of literacy. Presents such a model which uses two concentric circles, one depicting the four processes of mathematical literacy (representing, manipulating, reasoning, and problem solving) and enablers that…
Constructing a Model of Mathematical Literacy.
ERIC Educational Resources Information Center
Pugalee, David K.
1999-01-01
Discusses briefly the call for mathematical literacy and the need for a model that articulates the fluid and dynamic nature of this form of literacy. Presents such a model which uses two concentric circles, one depicting the four processes of mathematical literacy (representing, manipulating, reasoning, and problem solving) and enablers that…
Mathematical Modelling as a Professional Task
ERIC Educational Resources Information Center
Frejd, Peter; Bergsten, Christer
2016-01-01
Educational research literature on mathematical modelling is extensive. However, not much attention has been paid to empirical investigations of its scholarly knowledge from the perspective of didactic transposition processes. This paper reports from an interview study of mathematical modelling activities involving nine professional model…
Mathematical model for alopecia areata.
Dobreva, Atanaska; Paus, Ralf; Cogan, N G
2015-09-07
Alopecia areata (AA) is an autoimmune disease, and its clinical phenotype is characterized by the formation of distinct hairless patterns on the scalp or other parts of the body. In most cases hair falls out in round patches. A well-established hypothesis for the pathogenesis of AA states that collapse of hair follicle immune privilege is one of the essential elements in disease development. To investigate the dynamics of alopecia areata, we develop a mathematical model that incorporates immune system components and hair follicle immune privilege agents whose involvement in AA has been confirmed in clinical studies and experimentally. We perform parameter sensitivity analysis in order to determine which inputs have the greatest effect on outcome variables. Our findings suggest that, among all processes reflected in the model, immune privilege guardians and the pro-inflammatory cytokine interferon-γ govern disease dynamics. These results agree with the immune privilege collapse hypothesis for the development of AA. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Effect of Teacher Beliefs on Student Competence in Mathematical Modeling--An Intervention Study
ERIC Educational Resources Information Center
Mischo, Christoph; Maaß, Katja
2013-01-01
This paper presents an intervention study whose aim was to promote teacher beliefs about mathematics and learning mathematics and student competences in mathematical modeling. In the intervention, teachers received written curriculum materials about mathematical modeling. The concept underlying the materials was based on constructivist ideas and…
Rival approaches to mathematical modelling in immunology
NASA Astrophysics Data System (ADS)
Andrew, Sarah M.; Baker, Christopher T. H.; Bocharov, Gennady A.
2007-08-01
In order to formulate quantitatively correct mathematical models of the immune system, one requires an understanding of immune processes and familiarity with a range of mathematical techniques. Selection of an appropriate model requires a number of decisions to be made, including a choice of the modelling objectives, strategies and techniques and the types of model considered as candidate models. The authors adopt a multidisciplinary perspective.
ERIC Educational Resources Information Center
Horton, Robert M.; Leonard, William H.
2005-01-01
In science, inquiry is used as students explore important and interesting questions concerning the world around them. In mathematics, one contemporary inquiry approach is to create models that describe real phenomena. Creating mathematical models using spreadsheets can help students learn at deep levels in both science and mathematics, and give…
ERIC Educational Resources Information Center
Horton, Robert M.; Leonard, William H.
2005-01-01
In science, inquiry is used as students explore important and interesting questions concerning the world around them. In mathematics, one contemporary inquiry approach is to create models that describe real phenomena. Creating mathematical models using spreadsheets can help students learn at deep levels in both science and mathematics, and give…
A Seminar in Mathematical Model-Building.
ERIC Educational Resources Information Center
Smith, David A.
1979-01-01
A course in mathematical model-building is described. Suggested modeling projects include: urban problems, biology and ecology, economics, psychology, games and gaming, cosmology, medicine, history, computer science, energy, and music. (MK)
A Seminar in Mathematical Model-Building.
ERIC Educational Resources Information Center
Smith, David A.
1979-01-01
A course in mathematical model-building is described. Suggested modeling projects include: urban problems, biology and ecology, economics, psychology, games and gaming, cosmology, medicine, history, computer science, energy, and music. (MK)
NASA Astrophysics Data System (ADS)
Nauta, Margaret Mary
1997-09-01
This study investigated a model of predictors of career aspirations among two groups of women: students in mathematics, physical science, and engineering majors and students in biological science majors. Based on theories of women's career development and social-cognitive theories, it was hypothesized that ability, self-efficacy, positivity of role model influence, and role conflict would influence the career aspirations of these women. It was further hypothesized that the students' year in school would contribute to this model as a predictor variable. Five hundred forty-six students (representing a 71% response rate) from Iowa State University were surveyed by mail to evaluate the fit of this model. The structural equation modeling procedure revealed that the career aspirations of the two groups of women were directly predicted by self-efficacy and role conflict and indirectly predicted by year in school, academic ability, and positivity of role model influence. The model for this combined group of students represented a good overall fit, explaining 94% of the covariation among the measured variables. When the two groups of students were compared, identical models for women in the two groups revealed different relationships among the variables. In contrast to the women in math, physical science, and engineering majors, the relationships between ability and self-efficacy and between positivity of role model influence and self-efficacy were significantly lower in magnitude for women in the biological sciences group. In addition to providing a parsimonious model for conceptualizing the experiences of women in traditionally male fields, this study's findings have implications for increasing the number of women who aspire to advanced careers in these occupations. Primarily, this study suggests that interventions designed to increase the degree to which students are influenced positively by role models may increase their self-efficacy expectations and may decrease the
Yilmaz, L. Safak; Parnerkar, Shreyas; Noguera, Daniel R.
2011-01-01
Mathematical models of RNA-targeted fluorescence in situ hybridization (FISH) for perfectly matched and mismatched probe/target pairs are organized and automated in web-based mathFISH (http://mathfish.cee.wisc.edu). Offering the users up-to-date knowledge of hybridization thermodynamics within a theoretical framework, mathFISH is expected to maximize the probability of success during oligonucleotide probe design. PMID:21148691
ERIC Educational Resources Information Center
Syahputra, Edi; Surya, Edy
2017-01-01
This paper is a summary study of team Postgraduate on 11th grade. The objective of this study is to develop a learning model based on problem solving which can construct high-order thinking on the learning mathematics in SMA/MA. The subject of dissemination consists of Students of 11th grade in SMA/MA in 3 kabupaten/kota in North Sumatera, namely:…
A mathematical model of leptin resistance.
Jacquier, Marine; Soula, Hédi A; Crauste, Fabien
2015-09-01
Obesity is often associated with leptin resistance, which leads to a physiological system with high leptin concentration but unable to respond to leptin signals and to regulate food intake. We propose a mathematical model of the leptin-leptin receptors system, based on the assumption that leptin is a regulator of its own receptor activity, and investigate its qualitative behavior. Based on current knowledge and previous models developed for body weight dynamics in rodents, the model includes the dynamics of leptin, leptin receptors and the regulation of food intake and body weight. It displays two stable equilibria, one representing a healthy state and the other one an obese and leptin resistant state. We show that a constant leptin injection can lead to leptin resistance and that a temporal variation in some parameter values influencing food intake can induce a change of equilibrium and a pathway to leptin resistance and obesity. Copyright © 2015. Published by Elsevier Inc.
Mathematical Modelling in the Early School Years
ERIC Educational Resources Information Center
English, Lyn D.; Watters, James J.
2005-01-01
In this article we explore young children's development of mathematical knowledge and reasoning processes as they worked two modelling problems (the "Butter Beans Problem" and the "Airplane Problem"). The problems involve authentic situations that need to be interpreted and described in mathematical ways. Both problems include tables of data,…
Mathematical Programming Models in Educational Planning.
ERIC Educational Resources Information Center
McNamara, James F.
This document begins by defining and discussing educational planning. A brief overview of mathematical programing with an explanation of the general linear programing model is then provided. Some recent applications of mathematical programing techniques to educational planning problems are reviewed, and their implications for educational research…
The mathematical bases for qualitative reasoning
NASA Technical Reports Server (NTRS)
Kalagnanam, Jayant; Simon, Herbert A.; Iwasaki, Yumi
1991-01-01
The practices of researchers in many fields who use qualitative reasoning are summarized and explained. The goal is to gain an understanding of the formal assumptions and mechanisms that underlie this kind of analysis. The explanations given are based on standard mathematical formalisms, particularly on ordinal properties, continuous differentiable functions, and the mathematics of nonlinear dynamic systems.
Computer-Game-Based Tutoring of Mathematics
ERIC Educational Resources Information Center
Ke, Fengfeng
2013-01-01
This in-situ, descriptive case study examined the potential of implementing computer mathematics games as an anchor for tutoring of mathematics. Data were collected from middle school students at a rural pueblo school and an urban Hispanic-serving school, through in-field observation, content analysis of game-based tutoring-learning interactions,…
Computer-Game-Based Tutoring of Mathematics
ERIC Educational Resources Information Center
Ke, Fengfeng
2013-01-01
This in-situ, descriptive case study examined the potential of implementing computer mathematics games as an anchor for tutoring of mathematics. Data were collected from middle school students at a rural pueblo school and an urban Hispanic-serving school, through in-field observation, content analysis of game-based tutoring-learning interactions,…
a Discrete Mathematical Model to Simulate Malware Spreading
NASA Astrophysics Data System (ADS)
Del Rey, A. Martin; Sánchez, G. Rodriguez
2012-10-01
With the advent and worldwide development of Internet, the study and control of malware spreading has become very important. In this sense, some mathematical models to simulate malware propagation have been proposed in the scientific literature, and usually they are based on differential equations exploiting the similarities with mathematical epidemiology. The great majority of these models study the behavior of a particular type of malware called computer worms; indeed, to the best of our knowledge, no model has been proposed to simulate the spreading of a computer virus (the traditional type of malware which differs from computer worms in several aspects). In this sense, the purpose of this work is to introduce a new mathematical model not based on continuous mathematics tools but on discrete ones, to analyze and study the epidemic behavior of computer virus. Specifically, cellular automata are used in order to design such model.
Study of Photovoltaic Cells Engineering Mathematical Model
NASA Astrophysics Data System (ADS)
Zhou, Jun; Yu, Zhengping; Lu, Zhengyi; Li, Chenhui; Zhang, Ruilan
2016-11-01
The characteristic curve of photovoltaic cells is the theoretical basis of PV Power, which simplifies the existing mathematical model, eventually, obtains a mathematical model used in engineering. The characteristic curve of photovoltaic cells contains both exponential and logarithmic calculation. The exponential and logarithmic spread out through Taylor series, which includes only four arithmetic and use single chip microcontroller as the control center. The result shows that: the use of single chip microcontroller for calculating exponential and logarithmic functions, simplifies mathematical model of PV curve, also can meet the specific conditions’ requirement for engineering applications.
A mathematical model for nonlinear fluorescence quenching
NASA Astrophysics Data System (ADS)
e Coura, Carla Patrícia de Morais; Schneider, Ayda Henriques; Cortez, Celia Martins; Cruz, Frederico Alan de Oliveira
2015-12-01
Here, we presents a mathematical model to describe the nonlinear processes of fluorescence quenching, showing that the Stern-Volmer model can be a particular case when the quenching occurs as a linear phenomenon. The preliminary simulation, using data from the interaction of risperidone, an antipsychotic drug, with human serum albumin showed that the mathematical model may reproduce with very good approximation the nonlinear fluorescence quenching process.
Corey, Katelyn C.
2016-01-01
Using a mathematical model with realistic demography, we analyze a large outbreak of measles in Muyinga sector in rural Burundi in 1988–1989. We generate simulated epidemic curves and age × time epidemic surfaces, which we qualitatively and quantitatively compare with the data. Our findings suggest that supplementary immunization activities (SIAs) should be used in places where routine vaccination cannot keep up with the increasing numbers of susceptible individuals resulting from population growth or from logistical problems such as cold chain maintenance. We use the model to characterize the relationship between SIA frequency and SIA age range necessary to suppress measles outbreaks. If SIAs are less frequent, they must expand their target age range. PMID:27672515
Matveeva, A I; Ivanov, A G; Gvetadze, R Sh; Gavriushin, S S; Karasev, A V
1997-01-01
Opportunities to increase prosthetic treatment efficiency by means of applying osseointegrated implants of traditional and prospective types are analysed. A technique of mathematical modelling of the interaction between implants and jaw bone is exposed. The numerical model and applied program, developed on the basis of finite element method, enabling to analyse a stress strain state of the bone and to determine extreme safe loads on implants are described. It is shown, that the most loaded zone is a layer of the compact bone directly contiguous to the neck of the implant. That is in good agreement with the results of clinical research, according to which just this zone has the highest percentage of complications. Methods for further optimisation of implants and prosthetic structures for the purpose to perfect the techniques of prosthetic treatment are discussed.
ERIC Educational Resources Information Center
Cetinkaya, Bulent; Kertil, Mahmut; Erbas, Ayhan Kursat; Korkmaz, Himmet; Alacaci, Cengiz; Cakiroglu, Erdinc
2016-01-01
Adopting a multitiered design-based research perspective, this study examines pre-service secondary mathematics teachers' developing conceptions about (a) the nature of mathematical modeling in simulations of "real life" problem solving, and (b) pedagogical principles and strategies needed to teach mathematics through modeling. Unlike…
ERIC Educational Resources Information Center
Cetinkaya, Bulent; Kertil, Mahmut; Erbas, Ayhan Kursat; Korkmaz, Himmet; Alacaci, Cengiz; Cakiroglu, Erdinc
2016-01-01
Adopting a multitiered design-based research perspective, this study examines pre-service secondary mathematics teachers' developing conceptions about (a) the nature of mathematical modeling in simulations of "real life" problem solving, and (b) pedagogical principles and strategies needed to teach mathematics through modeling. Unlike…
Mathematical Manipulative Models: In Defense of “Beanbag Biology”
Gaff, Holly; Weisstein, Anton E.
2010-01-01
Mathematical manipulative models have had a long history of influence in biological research and in secondary school education, but they are frequently neglected in undergraduate biology education. By linking mathematical manipulative models in a four-step process—1) use of physical manipulatives, 2) interactive exploration of computer simulations, 3) derivation of mathematical relationships from core principles, and 4) analysis of real data sets—we demonstrate a process that we have shared in biological faculty development workshops led by staff from the BioQUEST Curriculum Consortium over the past 24 yr. We built this approach based upon a broad survey of literature in mathematical educational research that has convincingly demonstrated the utility of multiple models that involve physical, kinesthetic learning to actual data and interactive simulations. Two projects that use this approach are introduced: The Biological Excel Simulations and Tools in Exploratory, Experiential Mathematics (ESTEEM) Project (http://bioquest.org/esteem) and Numerical Undergraduate Mathematical Biology Education (NUMB3R5 COUNT; http://bioquest.org/numberscount). Examples here emphasize genetics, ecology, population biology, photosynthesis, cancer, and epidemiology. Mathematical manipulative models help learners break through prior fears to develop an appreciation for how mathematical reasoning informs problem solving, inference, and precise communication in biology and enhance the diversity of quantitative biology education. PMID:20810952
Mathematical manipulative models: in defense of "beanbag biology".
Jungck, John R; Gaff, Holly; Weisstein, Anton E
2010-01-01
Mathematical manipulative models have had a long history of influence in biological research and in secondary school education, but they are frequently neglected in undergraduate biology education. By linking mathematical manipulative models in a four-step process-1) use of physical manipulatives, 2) interactive exploration of computer simulations, 3) derivation of mathematical relationships from core principles, and 4) analysis of real data sets-we demonstrate a process that we have shared in biological faculty development workshops led by staff from the BioQUEST Curriculum Consortium over the past 24 yr. We built this approach based upon a broad survey of literature in mathematical educational research that has convincingly demonstrated the utility of multiple models that involve physical, kinesthetic learning to actual data and interactive simulations. Two projects that use this approach are introduced: The Biological Excel Simulations and Tools in Exploratory, Experiential Mathematics (ESTEEM) Project (http://bioquest.org/esteem) and Numerical Undergraduate Mathematical Biology Education (NUMB3R5 COUNT; http://bioquest.org/numberscount). Examples here emphasize genetics, ecology, population biology, photosynthesis, cancer, and epidemiology. Mathematical manipulative models help learners break through prior fears to develop an appreciation for how mathematical reasoning informs problem solving, inference, and precise communication in biology and enhance the diversity of quantitative biology education.
NASA Technical Reports Server (NTRS)
Fortenbaugh, R. L.
1980-01-01
Equations incorporated in a VATOL six degree of freedom off-line digital simulation program and data for the Vought SF-121 VATOL aircraft concept which served as the baseline for the development of this program are presented. The equations and data are intended to facilitate the development of a piloted VATOL simulation. The equation presentation format is to state the equations which define a particular model segment. Listings of constants required to quantify the model segment, input variables required to exercise the model segment, and output variables required by other model segments are included. In several instances a series of input or output variables are followed by a section number in parentheses which identifies the model segment of origination or termination of those variables.
A mathematical model of elastic fin micromotors
NASA Astrophysics Data System (ADS)
Lu, Pin; Lee, Kwok Hong; Piang Lim, Siak; Dong, Shuxiang; Zhong Lin, Wu
2000-08-01
In the present work, a simplified mathematical model of ultrasonic elastic fin micromotors has been developed. According to the operating principle of this type of motor, the motions of a rotor in each cycle of the stator vibration are divided into several stages based on whether the fin tip and the stator are in contact with slip, contact without slip or separation. The equations of motion of the rotor in each stage are derived. The valid range of the model has been discussed through numerical examples. This work provides an initial effort to construct a model for the elastic fin motor by considering the dynamical deformation of the rotor as well as the intermittent contacts.
Mathematical Modelling as Problem Solving for Children in the Singapore Mathematics Classrooms
ERIC Educational Resources Information Center
Eric, Chan Chun Ming
2009-01-01
The newly revised mathematics curriculum in Singapore has recently factored Applications and Modelling to be part of the teaching and learning of mathematics. Its implication is that even children should now be involved in works of mathematical modelling. However, to be able to implement modelling activities in the primary mathematics classroom,…
Mathematical Modelling as Problem Solving for Children in the Singapore Mathematics Classrooms
ERIC Educational Resources Information Center
Eric, Chan Chun Ming
2009-01-01
The newly revised mathematics curriculum in Singapore has recently factored Applications and Modelling to be part of the teaching and learning of mathematics. Its implication is that even children should now be involved in works of mathematical modelling. However, to be able to implement modelling activities in the primary mathematics classroom,…
Mathematical modeling of human brain physiological data
NASA Astrophysics Data System (ADS)
Böhm, Matthias; Faltermeier, Rupert; Brawanski, Alexander; Lang, Elmar W.
2013-12-01
Recently, a mathematical model of the basic physiological processes regulating the cerebral perfusion and oxygen supply was introduced [Jung , J. Math. Biol.JMBLAJ0303-681210.1007/s00285-005-0343-5 51, 491 (2005)]. Although this model correctly describes the interdependence of arterial blood pressure (ABP) and intracranial pressure (ICP), it fails badly when it comes to explaining certain abnormal correlations seen in about 80% of the recordings of ABP together with ICP and the partial oxygen pressure (TiPO2) of the neuronal tissue, taken at an intensive care unit during neuromonitoring of patients with a severe brain trauma. Such recordings occasionally show segments, where the mean arterial blood pressure is correlated with the partial oxygen pressure in tissue but anticorrelated with the intracranial pressure. The origin of such abnormal correlations has not been fully understood yet. Here, two extensions to the previous approach are proposed which can reproduce such abnormal correlations in simulations quantitatively. Furthermore, as the simulations are based on a mathematical model, additional insight into the physiological mechanisms from which such abnormal correlations originate can be gained.
A mathematical model of aortic aneurysm formation
Hao, Wenrui; Gong, Shihua; Wu, Shuonan; Xu, Jinchao; Go, Michael R.; Friedman, Avner; Zhu, Dai
2017-01-01
Abdominal aortic aneurysm (AAA) is a localized enlargement of the abdominal aorta, such that the diameter exceeds 3 cm. The natural history of AAA is progressive growth leading to rupture, an event that carries up to 90% risk of mortality. Hence there is a need to predict the growth of the diameter of the aorta based on the diameter of a patient’s aneurysm at initial screening and aided by non-invasive biomarkers. IL-6 is overexpressed in AAA and was suggested as a prognostic marker for the risk in AAA. The present paper develops a mathematical model which relates the growth of the abdominal aorta to the serum concentration of IL-6. Given the initial diameter of the aorta and the serum concentration of IL-6, the model predicts the growth of the diameter at subsequent times. Such a prediction can provide guidance to how closely the patient’s abdominal aorta should be monitored. The mathematical model is represented by a system of partial differential equations taking place in the aortic wall, where the media is assumed to have the constituency of an hyperelastic material. PMID:28212412
A mathematical model of aortic aneurysm formation.
Hao, Wenrui; Gong, Shihua; Wu, Shuonan; Xu, Jinchao; Go, Michael R; Friedman, Avner; Zhu, Dai
2017-01-01
Abdominal aortic aneurysm (AAA) is a localized enlargement of the abdominal aorta, such that the diameter exceeds 3 cm. The natural history of AAA is progressive growth leading to rupture, an event that carries up to 90% risk of mortality. Hence there is a need to predict the growth of the diameter of the aorta based on the diameter of a patient's aneurysm at initial screening and aided by non-invasive biomarkers. IL-6 is overexpressed in AAA and was suggested as a prognostic marker for the risk in AAA. The present paper develops a mathematical model which relates the growth of the abdominal aorta to the serum concentration of IL-6. Given the initial diameter of the aorta and the serum concentration of IL-6, the model predicts the growth of the diameter at subsequent times. Such a prediction can provide guidance to how closely the patient's abdominal aorta should be monitored. The mathematical model is represented by a system of partial differential equations taking place in the aortic wall, where the media is assumed to have the constituency of an hyperelastic material.
Mathematical Model Development and Simulation Support
NASA Technical Reports Server (NTRS)
Francis, Ronald C.; Tobbe, Patrick A.
2000-01-01
This report summarizes the work performed in support of the Contact Dynamics 6DOF Facility and the Flight Robotics Lab at NASA/ MSFC in the areas of Mathematical Model Development and Simulation Support.
Cooking Potatoes: Experimentation and Mathematical Modeling.
ERIC Educational Resources Information Center
Chen, Xiao Dong
2002-01-01
Describes a laboratory activity involving a mathematical model of cooking potatoes that can be solved analytically. Highlights the microstructure aspects of the experiment. Provides the key aspects of the results, detailed background readings, laboratory procedures and data analyses. (MM)
Cooking Potatoes: Experimentation and Mathematical Modeling.
ERIC Educational Resources Information Center
Chen, Xiao Dong
2002-01-01
Describes a laboratory activity involving a mathematical model of cooking potatoes that can be solved analytically. Highlights the microstructure aspects of the experiment. Provides the key aspects of the results, detailed background readings, laboratory procedures and data analyses. (MM)
Mathematical Modeling of Chemical Stoichiometry
ERIC Educational Resources Information Center
Croteau, Joshua; Fox, William P.; Varazo, Kristofoland
2007-01-01
In beginning chemistry classes, students are taught a variety of techniques for balancing chemical equations. The most common method is inspection. This paper addresses using a system of linear mathematical equations to solve for the stoichiometric coefficients. Many linear algebra books carry the standard balancing of chemical equations as an…
Mathematical Modeling of Chemical Stoichiometry
ERIC Educational Resources Information Center
Croteau, Joshua; Fox, William P.; Varazo, Kristofoland
2007-01-01
In beginning chemistry classes, students are taught a variety of techniques for balancing chemical equations. The most common method is inspection. This paper addresses using a system of linear mathematical equations to solve for the stoichiometric coefficients. Many linear algebra books carry the standard balancing of chemical equations as an…
ERIC Educational Resources Information Center
Zeytun, Aysel Sen; Cetinkaya, Bulent; Erbas, Ayhan Kursat
2017-01-01
This paper investigates how prospective teachers develop mathematical models while they engage in modeling tasks. The study was conducted in an undergraduate elective course aiming to improve prospective teachers' mathematical modeling abilities, while enhancing their pedagogical knowledge for the integrating of modeling tasks into their future…
ERIC Educational Resources Information Center
Zeytun, Aysel Sen; Cetinkaya, Bulent; Erbas, Ayhan Kursat
2017-01-01
This paper investigates how prospective teachers develop mathematical models while they engage in modeling tasks. The study was conducted in an undergraduate elective course aiming to improve prospective teachers' mathematical modeling abilities, while enhancing their pedagogical knowledge for the integrating of modeling tasks into their future…
Ishikawa, Hirofumi; Shimogawara, Rieko; Fueda, Kaoru
2017-01-01
In the summer of 2014, an outbreak of autochthonous dengue fever occurred in Yoyogi Park and its vicinity, Tokyo, Japan. In this study, we investigated how the dengue fever outbreak progressed in Yoyogi Park using a mathematical model. This study was limited to the transmission of the dengue virus in Yoyogi Park and its vicinity. We estimated the distributions of the intrinsic incubation period and infection dates on the basis of epidemiological information on the dengue outbreak in 2014. We searched for an assumption that satisfactorily explains the outbreak in 2014 using rough estimates of secondary and tertiary infection cases. We constructed a mathematical model for the transmission of the dengue virus between humans and Aedes albopictus. We carried out 1,000-trial stochastic simulations for all combinations of three kinds of assumption about Ae. albopictus and asymptomatic infection with each of three levels. Simulation results showed that the scale of the outbreak was markedly affected by the daily survival rate of Ae. albopictus. The outbreak involved a small number of secondary infection cases, reached a peak at tertiary infection, and transformed to termination at the fourth infection. Under some assumptions, the daily progress of onset cases was within a range between the 1st-3rd quartiles of 1,000 trials for 87% of dates and within a range between the minimum and maximum for all dates. It is important to execute plans to detect asymptomatic cases and reduce the survival rate of Ae. albopictus to prevent the spread of tertiary infections unless an outbreak is suppressed at the secondary infection stage.
Jalali, Ali; Simpao, Allan F; Nadkarni, Vinay M; Berg, Robert A; Nataraj, C
2017-02-01
Cardiopulmonary resuscitation (CPR) is used widely to rescue cardiac arrest patients, yet some physiological aspects of the procedure remain poorly understood. We conducted this study to characterize the dynamic mechanical properties of the thorax during CPR in a swine model. This is an important step toward determining optimal CPR chest compression mechanics with the goals of improving the fidelity of CPR simulation manikins and ideally chest compression delivery in real-life resuscitations. This paper presents a novel nonlinear model of the thorax that captures the complex behavior of the chest during CPR. The proposed model consists of nonlinear elasticity and damping properties along with frequency dependent hysteresis. An optimization technique was used to estimate the model coefficients for force-compression using data collected from experiments conducted on swine. To track clinically relevant, time-dependent changes of the chest's properties, the data was divided into two time periods, from 1 to 10 min (early) and greater than 10 min (late) after starting CPR. The results showed excellent agreement between the actual and the estimated forces, and energy dissipation due to viscous damping in the late stages of CPR was higher when compared to the earlier stages. These findings provide insight into improving chest compression mechanics during CPR, and may provide the basis for developing CPR simulation manikins that more accurately represent the complex real world changes that occur in the chest during CPR.
The mathematical and computer modeling of the worm tool shaping
NASA Astrophysics Data System (ADS)
Panchuk, K. L.; Lyashkov, A. A.; Ayusheev, T. V.
2017-06-01
Traditionally mathematical profiling of the worm tool is carried out on the first T. Olivier method, known in the theory of gear gearings, with receiving an intermediate surface of the making lath. It complicates process of profiling and its realization by means of computer 3D-modeling. The purpose of the work is the improvement of mathematical model of profiling and its realization based on the methods of 3D-modeling. Research problems are: receiving of the mathematical model of profiling which excludes the presence of the making lath in it; realization of the received model by means of frame and superficial modeling; development and approbation of technology of solid-state modeling for the solution of the problem of profiling. As the basic, the kinematic method of research of the mutually envelope surfaces is accepted. Computer research is executed by means of CAD based on the methods of 3D-modeling. We have developed mathematical model of profiling of the worm tool; frame, superficial and solid-state models of shaping of the mutually enveloping surfaces of the detail and the tool are received. The offered mathematical models and the technologies of 3D-modeling of shaping represent tools for theoretical and experimental profiling of the worm tool. The results of researches can be used at design of metal-cutting tools.
Modelling Mathematical Reasoning in Physics Education
NASA Astrophysics Data System (ADS)
Uhden, Olaf; Karam, Ricardo; Pietrocola, Maurício; Pospiech, Gesche
2012-04-01
Many findings from research as well as reports from teachers describe students' problem solving strategies as manipulation of formulas by rote. The resulting dissatisfaction with quantitative physical textbook problems seems to influence the attitude towards the role of mathematics in physics education in general. Mathematics is often seen as a tool for calculation which hinders a conceptual understanding of physical principles. However, the role of mathematics cannot be reduced to this technical aspect. Hence, instead of putting mathematics away we delve into the nature of physical science to reveal the strong conceptual relationship between mathematics and physics. Moreover, we suggest that, for both prospective teaching and further research, a focus on deeply exploring such interdependency can significantly improve the understanding of physics. To provide a suitable basis, we develop a new model which can be used for analysing different levels of mathematical reasoning within physics. It is also a guideline for shifting the attention from technical to structural mathematical skills while teaching physics. We demonstrate its applicability for analysing physical-mathematical reasoning processes with an example.
Genetic demographic networks: Mathematical model and applications.
Kimmel, Marek; Wojdyła, Tomasz
2016-10-01
Recent improvement in the quality of genetic data obtained from extinct human populations and their ancestors encourages searching for answers to basic questions regarding human population history. The most common and successful are model-based approaches, in which genetic data are compared to the data obtained from the assumed demography model. Using such approach, it is possible to either validate or adjust assumed demography. Model fit to data can be obtained based on reverse-time coalescent simulations or forward-time simulations. In this paper we introduce a computational method based on mathematical equation that allows obtaining joint distributions of pairs of individuals under a specified demography model, each of them characterized by a genetic variant at a chosen locus. The two individuals are randomly sampled from either the same or two different populations. The model assumes three types of demographic events (split, merge and migration). Populations evolve according to the time-continuous Moran model with drift and Markov-process mutation. This latter process is described by the Lyapunov-type equation introduced by O'Brien and generalized in our previous works. Application of this equation constitutes an original contribution. In the result section of the paper we present sample applications of our model to both simulated and literature-based demographies. Among other we include a study of the Slavs-Balts-Finns genetic relationship, in which we model split and migrations between the Balts and Slavs. We also include another example that involves the migration rates between farmers and hunters-gatherers, based on modern and ancient DNA samples. This latter process was previously studied using coalescent simulations. Our results are in general agreement with the previous method, which provides validation of our approach. Although our model is not an alternative to simulation methods in the practical sense, it provides an algorithm to compute pairwise
HEMETβ: improvement of hepatocyte metabolism mathematical model.
Orsi, G; De Maria, C; Guzzardi, M; Vozzi, F; Vozzi, G
2011-10-01
This article describes hepatocyte metabolism mathematical model (HEMETβ), which is an improved version of HEMET, an effective and versatile virtual cell model based on hepatic cell metabolism. HEMET is based on a set of non-linear differential equations, implemented in Simulink®, which describes the biochemical reactions and energetic cell state, and completely mimics the principal metabolic pathways in hepatic cells. The cell energy function and modular structure are the core of this model. HEMETβ as HEMET model describes hepatic cellular metabolism in standard conditions (cell culture in a plastic multi-well placed in an incubator at 37° C with 5% of CO2) and with excess substrates concentration. The main improvements in HEMETβ are the introductions of Michaelis-Menten models for reversible reactions and enzymatic inhibition. In addition, we eliminated hard non-linearities and modelled cell proliferation and every single aminoacid degradation pathway. All these innovations, combined with a user-friendly aspect, allow researchers to create new cell types and validate new experimental protocols just varying 'peripheral' pathways or model inputs.
Mathematical modelling of the MAP kinase pathway using proteomic datasets.
Tian, Tianhai; Song, Jiangning
2012-01-01
The advances in proteomics technologies offer an unprecedented opportunity and valuable resources to understand how living organisms execute necessary functions at systems levels. However, little work has been done up to date to utilize the highly accurate spatio-temporal dynamic proteome data generated by phosphoprotemics for mathematical modeling of complex cell signaling pathways. This work proposed a novel computational framework to develop mathematical models based on proteomic datasets. Using the MAP kinase pathway as the test system, we developed a mathematical model including the cytosolic and nuclear subsystems; and applied the genetic algorithm to infer unknown model parameters. Robustness property of the mathematical model was used as a criterion to select the appropriate rate constants from the estimated candidates. Quantitative information regarding the absolute protein concentrations was used to refine the mathematical model. We have demonstrated that the incorporation of more experimental data could significantly enhance both the simulation accuracy and robustness property of the proposed model. In addition, we used the MAP kinase pathway inhibited by phosphatases with different concentrations to predict the signal output influenced by different cellular conditions. Our predictions are in good agreement with the experimental observations when the MAP kinase pathway was inhibited by phosphatase PP2A and MKP3. The successful application of the proposed modeling framework to the MAP kinase pathway suggests that our method is very promising for developing accurate mathematical models and yielding insights into the regulatory mechanisms of complex cell signaling pathways.
Mathematical biology modules based on modern molecular biology and modern discrete mathematics.
Robeva, Raina; Davies, Robin; Hodge, Terrell; Enyedi, Alexander
2010-01-01
We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to introduce students to mathematical methods beyond the interface of biology with calculus. Based on ongoing research, and designed to use the project-based-learning approach, the modules highlight applications of modern discrete mathematics and algebraic statistics to pressing problems in molecular biology. For the majority of projects, calculus is not a required prerequisite and, due to the modest amount of mathematical background needed for some of the modules, the materials can be used for an early introduction to mathematical modeling. At the same time, most modules are connected with topics in linear and abstract algebra, algebraic geometry, and probability, and they can be used as meaningful applied introductions into the relevant advanced-level mathematics courses. Open-source software is used to facilitate the relevant computations. As a detailed example, we outline a module that focuses on Boolean models of the lac operon network.
Mathematical Biology Modules Based on Modern Molecular Biology and Modern Discrete Mathematics
Davies, Robin; Hodge, Terrell; Enyedi, Alexander
2010-01-01
We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to introduce students to mathematical methods beyond the interface of biology with calculus. Based on ongoing research, and designed to use the project-based-learning approach, the modules highlight applications of modern discrete mathematics and algebraic statistics to pressing problems in molecular biology. For the majority of projects, calculus is not a required prerequisite and, due to the modest amount of mathematical background needed for some of the modules, the materials can be used for an early introduction to mathematical modeling. At the same time, most modules are connected with topics in linear and abstract algebra, algebraic geometry, and probability, and they can be used as meaningful applied introductions into the relevant advanced-level mathematics courses. Open-source software is used to facilitate the relevant computations. As a detailed example, we outline a module that focuses on Boolean models of the lac operon network. PMID:20810955
ERIC Educational Resources Information Center
Kartal, Ozgul; Dunya, Beyza Aksu; Diefes-Dux, Heidi A.; Zawojewski, Judith S.
2016-01-01
Critical to many science, technology, engineering, and mathematics (STEM) career paths is mathematical modeling--specifically, the creation and adaptation of mathematical models to solve problems in complex settings. Conventional standardized measures of mathematics achievement are not structured to directly assess this type of mathematical…
ERIC Educational Resources Information Center
Zbiek, Rose Mary; Conner, Annamarie
2006-01-01
Views of mathematical modeling in empirical, expository, and curricular references typically capture a relationship between real-world phenomena and mathematical ideas from the perspective that competence in mathematical modeling is a clear goal of the mathematics curriculum. However, we work within a curricular context in which mathematical…
ERIC Educational Resources Information Center
Czocher, Jennifer A.
2016-01-01
This study contributes a methodological tool to reconstruct the cognitive processes and mathematical activities carried out by mathematical modelers. Represented as Modeling Transition Diagrams (MTDs), individual modeling routes were constructed for four engineering undergraduate students. Findings stress the importance and limitations of using…
ERIC Educational Resources Information Center
Czocher, Jennifer A.
2016-01-01
This study contributes a methodological tool to reconstruct the cognitive processes and mathematical activities carried out by mathematical modelers. Represented as Modeling Transition Diagrams (MTDs), individual modeling routes were constructed for four engineering undergraduate students. Findings stress the importance and limitations of using…
Mathematical model of tumor-immune surveillance.
Mahasa, Khaphetsi Joseph; Ouifki, Rachid; Eladdadi, Amina; Pillis, Lisette de
2016-09-07
We present a novel mathematical model involving various immune cell populations and tumor cell populations. The model describes how tumor cells evolve and survive the brief encounter with the immune system mediated by natural killer (NK) cells and the activated CD8(+) cytotoxic T lymphocytes (CTLs). The model is composed of ordinary differential equations describing the interactions between these important immune lymphocytes and various tumor cell populations. Based on up-to-date knowledge of immune evasion and rational considerations, the model is designed to illustrate how tumors evade both arms of host immunity (i.e. innate and adaptive immunity). The model predicts that (a) an influx of an external source of NK cells might play a crucial role in enhancing NK-cell immune surveillance; (b) the host immune system alone is not fully effective against progression of tumor cells; (c) the development of immunoresistance by tumor cells is inevitable in tumor immune surveillance. Our model also supports the importance of infiltrating NK cells in tumor immune surveillance, which can be enhanced by NK cell-based immunotherapeutic approaches.
Mathematical biodynamic feedthrough model applied to rotorcraft.
Venrooij, Joost; Mulder, Mark; Abbink, David A; van Paassen, Marinus M; Mulder, Max; van der Helm, Frans C T; Bulthoff, Heinrich H
2014-07-01
Biodynamic feedthrough (BDFT) occurs when vehicle accelerations feed through the human body and cause involuntary control inputs. This paper proposes a model to quantitatively predict this effect in rotorcraft. This mathematical BDFT model aims to fill the gap between the currently existing black box BDFT models and physical BDFT models. The model structure was systematically constructed using asymptote modeling, a procedure described in detail in this paper. The resulting model can easily be implemented in many typical rotorcraft BDFT studies, using the provided model parameters. The model's performance was validated in both the frequency and time domain. Furthermore, it was compared with several recent BDFT models. The results show that the proposed mathematical model performs better than typical black box models and is easier to parameterize and implement than a recent physical model.
Learning and Teaching Mathematics through Real Life Models
ERIC Educational Resources Information Center
Takaci, Djurdjica; Budinski, Natalija
2011-01-01
This paper proposes modelling based learning as a tool for learning and teaching mathematics in high school. We report on an example of modelling real world problems in two high schools in Serbia where students were introduced for the first time to the basic concepts of modelling. Student use of computers and educational software, GeoGebra, was…
ERIC Educational Resources Information Center
Pieters, Stefanie; Roeyers, Herbert; Rosseel, Yves; Van Waelvelde, Hilde; Desoete, Annemie
2015-01-01
A relationship between motor and mathematical skills has been shown by previous research. However, the question of whether subtypes can be differentiated within developmental coordination disorder (DCD) and/or mathematical learning disability (MLD) remains unresolved. In a sample of children with and without DCD and/or MLD, a data-driven…
ERIC Educational Resources Information Center
Rattanatumma, Tawachai; Puncreobutr, Vichian
2016-01-01
The objective of this study was to compare the effectiveness of teaching methods in improving Mathematics Learning Achievement and Problem solving ability of students at an international college. This is a Quasi-Experimental Research which was done the study with the first year students who have registered to study Mathematics subject at St.…
ERIC Educational Resources Information Center
Pieters, Stefanie; Roeyers, Herbert; Rosseel, Yves; Van Waelvelde, Hilde; Desoete, Annemie
2015-01-01
A relationship between motor and mathematical skills has been shown by previous research. However, the question of whether subtypes can be differentiated within developmental coordination disorder (DCD) and/or mathematical learning disability (MLD) remains unresolved. In a sample of children with and without DCD and/or MLD, a data-driven…
Mathematical Modelling with 9-Year-Olds
ERIC Educational Resources Information Center
English, Lyn D.; Watters, James J.
2005-01-01
This paper reports on the mathematical modelling of four classes of 4th-grade children as they worked on a modelling problem involving the selection of an Australian swimming team for the 2004 Olympics. The problem was implemented during the second year of the children's participation in a 3-year longitudinal program of modelling experiences…
Mathematical model for contemplative amoeboid locomotion
NASA Astrophysics Data System (ADS)
Ueda, Kei-Ichi; Takagi, Seiji; Nishiura, Yasumasa; Nakagaki, Toshiyuki
2011-02-01
It has recently been reported that even single-celled organisms appear to be “indecisive” or “contemplative” when confronted with an obstacle. When the amoeboid organism Physarum plasmodium encounters the chemical repellent quinine during migration along a narrow agar lane, it stops for a period of time (typically several hours) and then suddenly begins to move again. When movement resumes, three distinct types of behavior are observed: The plasmodium continues forward, turns back, or migrates in both directions simultaneously. Here, we develop a continuum mathematical model of the cell dynamics of contemplative amoeboid movement. Our model incorporates the dynamics of the mass flow of the protoplasmic sol, in relation to the generation of pressure based on the autocatalytic kinetics of pseudopod formation and retraction (mainly, sol-gel conversion accompanying actin-myosin dynamics). The biological justification of the model is tested by comparing with experimentally measured spatiotemporal profiles of the cell thickness. The experimentally observed types of behavior are reproduced in simulations based on our model, and the core logic of the modeled behavior is clarified by means of nonlinear dynamics. An on-off transition between the refractory and activated states of the chemical reactivity that takes place at the leading edge of the plasmodium plays a key role in the emergence of contemplative behavior.
Incorporating neurophysiological concepts in mathematical thermoregulation models
NASA Astrophysics Data System (ADS)
Kingma, Boris R. M.; Vosselman, M. J.; Frijns, A. J. H.; van Steenhoven, A. A.; van Marken Lichtenbelt, W. D.
2014-01-01
Skin blood flow (SBF) is a key player in human thermoregulation during mild thermal challenges. Various numerical models of SBF regulation exist. However, none explicitly incorporates the neurophysiology of thermal reception. This study tested a new SBF model that is in line with experimental data on thermal reception and the neurophysiological pathways involved in thermoregulatory SBF control. Additionally, a numerical thermoregulation model was used as a platform to test the function of the neurophysiological SBF model for skin temperature simulation. The prediction-error of the SBF-model was quantified by root-mean-squared-residual (RMSR) between simulations and experimental measurement data. Measurement data consisted of SBF (abdomen, forearm, hand), core and skin temperature recordings of young males during three transient thermal challenges (1 development and 2 validation). Additionally, ThermoSEM, a thermoregulation model, was used to simulate body temperatures using the new neurophysiological SBF-model. The RMSR between simulated and measured mean skin temperature was used to validate the model. The neurophysiological model predicted SBF with an accuracy of RMSR < 0.27. Tskin simulation results were within 0.37 °C of the measured mean skin temperature. This study shows that (1) thermal reception and neurophysiological pathways involved in thermoregulatory SBF control can be captured in a mathematical model, and (2) human thermoregulation models can be equipped with SBF control functions that are based on neurophysiology without loss of performance. The neurophysiological approach in modelling thermoregulation is favourable over engineering approaches because it is more in line with the underlying physiology.
Incorporating neurophysiological concepts in mathematical thermoregulation models.
Kingma, Boris R M; Vosselman, M J; Frijns, A J H; van Steenhoven, A A; van Marken Lichtenbelt, W D
2014-01-01
Skin blood flow (SBF) is a key player in human thermoregulation during mild thermal challenges. Various numerical models of SBF regulation exist. However, none explicitly incorporates the neurophysiology of thermal reception. This study tested a new SBF model that is in line with experimental data on thermal reception and the neurophysiological pathways involved in thermoregulatory SBF control. Additionally, a numerical thermoregulation model was used as a platform to test the function of the neurophysiological SBF model for skin temperature simulation. The prediction-error of the SBF-model was quantified by root-mean-squared-residual (RMSR) between simulations and experimental measurement data. Measurement data consisted of SBF (abdomen, forearm, hand), core and skin temperature recordings of young males during three transient thermal challenges (1 development and 2 validation). Additionally, ThermoSEM, a thermoregulation model, was used to simulate body temperatures using the new neurophysiological SBF-model. The RMSR between simulated and measured mean skin temperature was used to validate the model. The neurophysiological model predicted SBF with an accuracy of RMSR < 0.27. Tskin simulation results were within 0.37 °C of the measured mean skin temperature. This study shows that (1) thermal reception and neurophysiological pathways involved in thermoregulatory SBF control can be captured in a mathematical model, and (2) human thermoregulation models can be equipped with SBF control functions that are based on neurophysiology without loss of performance. The neurophysiological approach in modelling thermoregulation is favourable over engineering approaches because it is more in line with the underlying physiology.
ERIC Educational Resources Information Center
Ciltas, Alper; Isik, Ahmet
2013-01-01
The aim of this study was to examine the modelling skills of prospective elementary mathematics teachers who were studying the mathematical modelling method. The research study group was composed of 35 prospective teachers. The exploratory case analysis method was used in the study. The data were obtained via semi-structured interviews and a…
Mathematical modeling of ultrafiltration of emulsions
Epshtein, S.I.
1992-07-10
The goal of this work is development of a mathematical model of the microfiltration process for oil emulsions. First of all to proceed to development of the basic equations describing the process of microfiltration, the authors study several rules obtained as a result of studies carried out in a cold rolling mill on an experimental setup of known construction, which included four F-1 BTU-0.5/2 ultrafilters connected in series, a pump, a 3 m{sup 3} settling tank, and a 1 m{sup 3} tank for the washing solution. An emulsion based on self-emulsifying oil T, which is used for preparing working emulsions for a four-stand cold rolling sheet mill, was purified. 9 refs., 4 figs.
Mathematical Models of Tuberculosis Reactivation and Relapse
Wallis, Robert S.
2016-01-01
The natural history of human infection with Mycobacterium tuberculosis (Mtb) is highly variable, as is the response to treatment of active tuberculosis. There is presently no direct means to identify individuals in whom Mtb infection has been eradicated, whether by a bactericidal immune response or sterilizing antimicrobial chemotherapy. Mathematical models can assist in such circumstances by measuring or predicting events that cannot be directly observed. The 3 models discussed in this review illustrate instances in which mathematical models were used to identify individuals with innate resistance to Mtb infection, determine the etiologic mechanism of tuberculosis in patients treated with tumor necrosis factor blockers, and predict the risk of relapse in persons undergoing tuberculosis treatment. These examples illustrate the power of various types of mathematic models to increase knowledge and thereby inform interventions in the present global tuberculosis epidemic. PMID:27242697
Dependability breakeven point mathematical model for production - quality strategy support
NASA Astrophysics Data System (ADS)
Vilcu, Adrian; Verzea, Ion; Chaib, Rachid
2016-08-01
This paper connects the field of dependability system with the production-quality strategies through a new mathematical model based on breakeven points. The novelties consist in the identification of the parameters of dependability system which, in safety control, represents the degree to which an item is capable of performing its required function at any randomly chosen time during its specified operating period disregarding non-operation related influences, as well as the analysis of the production-quality strategies, defining a mathematical model based on a new concept - dependability breakeven points, model validation on datasets and shows the practical applicability of this new approach.
Mathematical modeling in metal metabolism: overview and perspectives.
Curis, Emmanuel; Nicolis, Ioannis; Bensaci, Jalil; Deschamps, Patrick; Bénazeth, Simone
2009-10-01
A review of mathematical modeling in metal metabolism is presented. Both endogenous and exogenous metals are considered. Four classes of methods are considered: Petri nets, multi-agent systems, determinist models based on differential equations and stochastic models. For each, a basic theoretical background is given, then examples of applications are given, detailed and commented. Advantages and disadvantages of each class of model are presented. A special attention is given to determinist differential equation models, since almost all models belong to this class.
A Conceptual Model of Mathematical Reasoning for School Mathematics
ERIC Educational Resources Information Center
Jeannotte, Doris; Kieran, Carolyn
2017-01-01
The development of students' mathematical reasoning (MR) is a goal of several curricula and an essential element of the culture of the mathematics education research community. But what mathematical reasoning consists of is not always clear; it is generally assumed that everyone has a sense of what it is. Wanting to clarify the elements of MR,…
ERIC Educational Resources Information Center
McGinnis, J. Randy; Watanabe, Tad; McDuffie, Amy Roth
2005-01-01
This study was conducted in a reform-based mathematics and science teacher education program in the USA, the Maryland Collaborative for Teacher Preparation (MCTP). The goal of the undergraduate program was to prepare upper elementary/middle level specialists in mathematics and science. One significant aspect of the MCTP was the expectation that…
CREATING A BIOLOGICALLY-BASED DOSE-RESPONSE MODEL FOR DEVELOPMENTAL TOXICITY OF 5-FLUOROURACIL IN THE RAT. R W Setzer1, C Lau2, M L Mole2, M F Copeland2, J M Rogers2 and R J Kavlock2. 1ETD, 2RTD, NHEERL, ORD, US EPA, Research Triangle Park, NC, USA.
Biologically based dose-...
About a mathematical model of market
NASA Astrophysics Data System (ADS)
Kulikov, D. A.
2017-01-01
In the paper a famous mathematical model of macroeconomics, which is called “market model” was considered. Traditional versions of this model have no periodic solutions and, therefore, they cannot describe a cyclic recurrence of the market economy. In the paper for the corresponding equation a delay was added. It allows obtaining sufficient conditions for existence of the stable cycles.
Mathematical model for predicting human vertebral fracture
NASA Technical Reports Server (NTRS)
Benedict, J. V.
1973-01-01
Mathematical model has been constructed to predict dynamic response of tapered, curved beam columns in as much as human spine closely resembles this form. Model takes into consideration effects of impact force, mass distribution, and material properties. Solutions were verified by dynamic tests on curved, tapered, elastic polyethylene beam.
Mathematical Model For Scattering From Mirrors
NASA Technical Reports Server (NTRS)
Wang, Yaujen
1988-01-01
Additional terms account for effects of particulate contamination. Semiempirical mathematical model of scattering of light from surface of mirror gives improved account of effects of particulate contamination. Models that treated only scattering by microscopic irregularities in surface gave bidirectional reflectance distribution functions differing from measured scattering intensities over some ranges of angles.
Mathematical Modeling: Are Prior Experiences Important?
ERIC Educational Resources Information Center
Czocher, Jennifer A.; Moss, Diana L.
2017-01-01
Why are math modeling problems the source of such frustration for students and teachers? The conceptual understanding that students have when engaging with a math modeling problem varies greatly. They need opportunities to make their own assumptions and design the mathematics to fit these assumptions (CCSSI 2010). Making these assumptions is part…
Mathematical modelling of an electromagnetics automobile suspension
NASA Astrophysics Data System (ADS)
Amin, Ahmad Zaki Mohamad; Ahmad, Shamsuddin; Hoe, Yeak Su
2017-04-01
The mathematical modelling of the electromagnetic automobile suspension (EAS) is presented. The solution of the model is found using Runge-Kutta Method via MAPLE. The graphs of the vertical displacement, different vertical displacement and road profiles and acceleration of car body against time are investigated and validated using certain criteria.
Mathematical Modeling of Viral Zoonoses in Wildlife
Allen, L. J. S.; Brown, V. L.; Jonsson, C. B.; Klein, S. L.; Laverty, S. M.; Magwedere, K.; Owen, J. C.; van den Driessche, P.
2011-01-01
Zoonoses are a worldwide public health concern, accounting for approximately 75% of human infectious diseases. In addition, zoonoses adversely affect agricultural production and wildlife. We review some mathematical models developed for the study of viral zoonoses in wildlife and identify areas where further modeling efforts are needed. PMID:22639490
Mathematical modeling relevant to closed artificial ecosystems
DeAngelis, D.L.
2003-01-01
The mathematical modeling of ecosystems has contributed much to the understanding of the dynamics of such systems. Ecosystems can include not only the natural variety, but also artificial systems designed and controlled by humans. These can range from agricultural systems and activated sludge plants, down to mesocosms, microcosms, and aquaria, which may have practical or research applications. Some purposes may require the design of systems that are completely closed, as far as material cycling is concerned. In all cases, mathematical modeling can help not only to understand the dynamics of the system, but also to design methods of control to keep the system operating in desired ranges. This paper reviews mathematical modeling relevant to the simulation and control of closed or semi-closed artificial ecosystems designed for biological production and recycling in applications in space. Published by Elsevier Science Ltd on behalf of COSPAR.
Mathematical modeling relevant to closed artificial ecosystems.
DeAngelis, Donald L
2003-01-01
The mathematical modeling of ecosystems has contributed much to the understanding of the dynamics of such systems. Ecosystems can include not only the natural variety, but also artificial systems designed and controlled by humans. These can range from agricultural systems and activated sludge plants, down to mesocosms, microcosms, and aquaria, which may have practical or research applications. Some purposes may require the design of systems that are completely closed, as far as material cycling is concerned. In all cases, mathematical modeling can help not only to understand the dynamics of the system, but also to design methods of control to keep the system operating in desired ranges. This paper reviews mathematical modeling relevant to the simulation and control of closed or semi-closed artificial ecosystems designed for biological production and recycling in applications in space.
A Taxonomy-Based Approach to Shed Light on the Babel of Mathematical Models for Rice Simulation
NASA Technical Reports Server (NTRS)
Confalonieri, Roberto; Bregaglio, Simone; Adam, Myriam; Ruget, Francoise; Li, Tao; Hasegawa, Toshihiro; Yin, Xinyou; Zhu, Yan; Boote, Kenneth; Buis, Samuel; Ruane, Alex C.
2016-01-01
For most biophysical domains, differences in model structures are seldom quantified. Here, we used a taxonomy-based approach to characterise thirteen rice models. Classification keys and binary attributes for each key were identified, and models were categorised into five clusters using a binary similarity measure and the unweighted pair-group method with arithmetic mean. Principal component analysis was performed on model outputs at four sites. Results indicated that (i) differences in structure often resulted in similar predictions and (ii) similar structures can lead to large differences in model outputs. User subjectivity during calibration may have hidden expected relationships between model structure and behaviour. This explanation, if confirmed, highlights the need for shared protocols to reduce the degrees of freedom during calibration, and to limit, in turn, the risk that user subjectivity influences model performance.
A Taxonomy-Based Approach to Shed Light on the Babel of Mathematical Models for Rice Simulation
NASA Technical Reports Server (NTRS)
Confalonieri, Roberto; Bregaglio, Simone; Adam, Myriam; Ruget, Francoise; Li, Tao; Hasegawa, Toshihiro; Yin, Xinyou; Zhu, Yan; Boote, Kenneth; Buis, Samuel;
2016-01-01
For most biophysical domains, differences in model structures are seldom quantified. Here, we used a taxonomy-based approach to characterise thirteen rice models. Classification keys and binary attributes for each key were identified, and models were categorised into five clusters using a binary similarity measure and the unweighted pair-group method with arithmetic mean. Principal component analysis was performed on model outputs at four sites. Results indicated that (i) differences in structure often resulted in similar predictions and (ii) similar structures can lead to large differences in model outputs. User subjectivity during calibration may have hidden expected relationships between model structure and behaviour. This explanation, if confirmed, highlights the need for shared protocols to reduce the degrees of freedom during calibration, and to limit, in turn, the risk that user subjectivity influences model performance.
Mathematical Modeling of Electrochemical Flow Capacitors
Hoyt, NC; Wainright, JS; Savinell, RF
2015-01-13
Electrochemical flow capacitors (EFCs) for grid-scale energy storage are a new technology that is beginning to receive interest. Prediction of the expected performance of such systems is important as modeling can be a useful avenue in the search for design improvements. Models based off of circuit analogues exist to predict EFC performance, but these suffer from deficiencies (e.g. a multitude of fitting constants that are required and the ability to analyze only one spatial direction at a time). In this paper mathematical models based off of three-dimensional macroscopic balances (similar to models for porous electrodes) are reported. Unlike existing three-dimensional porous electrode-based approaches for modeling slurry electrodes, advection (i.e., transport associated with bulk fluid motion) of the overpotential is included in order to account for the surface charge at the interface between flowing particles and the electrolyte. Doing so leads to the presence of overpotential boundary layers that control the performance of EFCs. These models were used to predict the charging behavior of an EFC under both flowing and non-flowing conditions. Agreement with experimental data was good, including proper prediction of the steady-state current that is achieved during charging of a flowing EFC. (C) The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email: oa@electrochem.org. All rights reserved.
Attitudes of Pre-Service Mathematics Teachers towards Modelling: A South African Inquiry
ERIC Educational Resources Information Center
Jacobs, Gerrie J.; Durandt, Rina
2017-01-01
This study explores the attitudes of mathematics pre-service teachers, based on their initial exposure to a model-eliciting challenge. The new Curriculum and Assessment Policy Statement determines that mathematics students should be able to identify, investigate and solve problems via modelling. The unpreparedness of mathematics teachers in…
Attitudes of Pre-Service Mathematics Teachers towards Modelling: A South African Inquiry
ERIC Educational Resources Information Center
Jacobs, Gerrie J.; Durandt, Rina
2017-01-01
This study explores the attitudes of mathematics pre-service teachers, based on their initial exposure to a model-eliciting challenge. The new Curriculum and Assessment Policy Statement determines that mathematics students should be able to identify, investigate and solve problems via modelling. The unpreparedness of mathematics teachers in…
Mathematical modelling of tuberculosis epidemics.
Aparicio, Juan Pablo; Castillo-Chavez, Carlos
2009-04-01
The strengths and limitations of using homogeneous mixing and heterogeneous mixing epidemic models are explored in the context of the transmission dynamics of tuberculosis. The focus is on three types of models: a standard incidence homogeneous mixing model, a non-homogeneous mixing model that incorporates 'household' contacts, and an age-structured model. The models are parameterized using demographic and epidemiological data and the patterns generated from these models are compared. Furthermore, the effects of population growth, stochasticity, clustering of contacts, and age structure on disease dynamics are explored. This framework is used to asses the possible causes for the observed historical decline of tuberculosis notifications.
Performance-Based Curriculum for Mathematics: From Knowing to Showing.
ERIC Educational Resources Information Center
Burz, Helen L.; Marshall, Kit
This book provides a model for taking instruction from the traditional focus on content to a student-centered focus that aligns selected content with quality and context. The organization and alignment of curriculum, instruction, and assessment is based on practical classroom application. Numerous examples of performance-based mathematics are set…
Environmental factors in breast cancer invasion: a mathematical modelling review.
Simmons, Alex; Burrage, Pamela M; Nicolau, Dan V; Lakhani, Sunil R; Burrage, Kevin
2017-02-01
This review presents a brief overview of breast cancer, focussing on its heterogeneity and the role of mathematical modelling and simulation in teasing apart the underlying biophysical processes. Following a brief overview of the main known pathophysiological features of ductal carcinoma, attention is paid to differential equation-based models (both deterministic and stochastic), agent-based modelling, multi-scale modelling, lattice-based models and image-driven modelling. A number of vignettes are presented where these modelling approaches have elucidated novel aspects of breast cancer dynamics, and we conclude by offering some perspectives on the role mathematical modelling can play in understanding breast cancer development, invasion and treatment therapies.
Voters' Fickleness:. a Mathematical Model
NASA Astrophysics Data System (ADS)
Boccara, Nino
This paper presents a spatial agent-based model in order to study the evolution of voters' choice during the campaign of a two-candidate election. Each agent, represented by a point inside a two-dimensional square, is under the influence of its neighboring agents, located at a Euclidean distance less than or equal to d, and under the equal influence of both candidates seeking to win its support. Moreover, each agent located at time t at a given point moves at the next timestep to a randomly selected neighboring location distributed normally around its position at time t. Besides their location in space, agents are characterized by their level of awareness, a real a ∈ [0, 1], and their opinion ω ∈ {-1, 0, +1}, where -1 and +1 represent the respective intentions to cast a ballot in favor of one of the two candidates while 0 indicates either disinterest or refusal to vote. The essential purpose of the paper is qualitative; its aim is to show that voters' fickleness is strongly correlated to the level of voters' awareness and the efficiency of candidates' propaganda.
Cocaine addiction and personality: a mathematical model.
Caselles, Antonio; Micó, Joan C; Amigó, Salvador
2010-05-01
The existence of a close relation between personality and drug consumption is recognized, but the corresponding causal connection is not well known. Neither is it well known whether personality exercises an influence predominantly at the beginning and development of addiction, nor whether drug consumption produces changes in personality. This paper presents a dynamic mathematical model of personality and addiction based on the unique personality trait theory (UPTT) and the general modelling methodology. This model attempts to integrate personality, the acute effect of drugs, and addiction. The UPTT states the existence of a unique trait of personality called extraversion, understood as a dimension that ranges from impulsive behaviour and sensation-seeking (extravert pole) to fearful and anxious behaviour (introvert pole). As a consequence of drug consumption, the model provides the main patterns of extraversion dynamics through a system of five coupled differential equations. It combines genetic extraversion, as a steady state, and dynamic extraversion in a unique variable measured on the hedonic scale. The dynamics of this variable describes the effects of stimulant drugs on a short-term time scale (typical of the acute effect); while its mean time value describes the effects of stimulant drugs on a long-term time scale (typical of the addiction effect). This understanding may help to develop programmes of prevention and intervention in drug misuse.
Mathematical modelling of animate and intentional motion.
Rittscher, Jens; Blake, Andrew; Hoogs, Anthony; Stein, Gees
2003-01-01
Our aim is to enable a machine to observe and interpret the behaviour of others. Mathematical models are employed to describe certain biological motions. The main challenge is to design models that are both tractable and meaningful. In the first part we will describe how computer vision techniques, in particular visual tracking, can be applied to recognize a small vocabulary of human actions in a constrained scenario. Mainly the problems of viewpoint and scale invariance need to be overcome to formalize a general framework. Hence the second part of the article is devoted to the question whether a particular human action should be captured in a single complex model or whether it is more promising to make extensive use of semantic knowledge and a collection of low-level models that encode certain motion primitives. Scene context plays a crucial role if we intend to give a higher-level interpretation rather than a low-level physical description of the observed motion. A semantic knowledge base is used to establish the scene context. This approach consists of three main components: visual analysis, the mapping from vision to language and the search of the semantic database. A small number of robust visual detectors is used to generate a higher-level description of the scene. The approach together with a number of results is presented in the third part of this article. PMID:12689374
NASA Astrophysics Data System (ADS)
Wardono; Waluya, S. B.; Mariani, Scolastika; Candra D, S.
2016-02-01
This study aims to find out that there are differences in mathematical literacy ability in content Change and Relationship class VII Junior High School 19, Semarang by Problem Based Learning (PBL) model with an Indonesian Realistic Mathematics Education (called Pendidikan Matematika Realistik Indonesia or PMRI in Indonesia) approach assisted Elearning Edmodo, PBL with a PMRI approach, and expository; to know whether the group of students with learning PBL models with PMRI approach and assisted E-learning Edmodo can improve mathematics literacy; to know that the quality of learning PBL models with a PMRI approach assisted E-learning Edmodo has a good category; to describe the difficulties of students in working the problems of mathematical literacy ability oriented PISA. This research is a mixed methods study. The population was seventh grade students of Junior High School 19, Semarang Indonesia. Sample selection is done by random sampling so that the selected experimental class 1, class 2 and the control experiment. Data collected by the methods of documentation, tests and interviews. From the results of this study showed average mathematics literacy ability of students in the group PBL models with a PMRI approach assisted E-learning Edmodo better than average mathematics literacy ability of students in the group PBL models with a PMRI approach and better than average mathematics literacy ability of students in the expository models; Mathematics literacy ability in the class using the PBL model with a PMRI approach assisted E-learning Edmodo have increased and the improvement of mathematics literacy ability is higher than the improvement of mathematics literacy ability of class that uses the model of PBL learning with PMRI approach and is higher than the improvement of mathematics literacy ability of class that uses the expository models; The quality of learning using PBL models with a PMRI approach assisted E-learning Edmodo have very good category.
Mathematical modeling of endovenous laser treatment (ELT).
Mordon, Serge R; Wassmer, Benjamin; Zemmouri, Jaouad
2006-04-25
Endovenous laser treatment (ELT) has been recently proposed as an alternative in the treatment of reflux of the Great Saphenous Vein (GSV) and Small Saphenous Vein (SSV). Successful ELT depends on the selection of optimal parameters required to achieve an optimal vein damage while avoiding side effects. Mathematical modeling of ELT could provide a better understanding of the ELT process and could determine the optimal dosage as a function of vein diameter. The model is based on calculations describing the light distribution using the diffusion approximation of the transport theory, the temperature rise using the bioheat equation and the laser-induced injury using the Arrhenius damage model. The geometry to simulate ELT was based on a 2D model consisting of a cylindrically symmetric blood vessel including a vessel wall and surrounded by an infinite homogenous tissue. The mathematical model was implemented using the Macsyma-Pdease2D software (Macsyma Inc., Arlington, MA, USA). Damage to the vein wall for CW and single shot energy was calculated for 3 and 5 mm vein diameters. In pulsed mode, the pullback distance (3, 5 and 7 mm) was considered. For CW mode simulation, the pullback speed (1, 2, 3 mm/s) was the variable. The total dose was expressed as joules per centimeter in order to perform comparison to results already reported in clinical studies. In pulsed mode, for a 3 mm vein diameter, irrespective of the pullback distance (2, 5 or 7 mm), a minimum fluence of 15 J/cm is required to obtain a permanent damage of the intima. For a 5 mm vein diameter, 50 J/cm (15W-2s) is required. In continuous mode, for a 3 mm and 5 mm vein diameter, respectively 65 J/cm and 100 J/cm are required to obtain a permanent damage of the vessel wall. Finally, the use of different wavelengths (810 nm or 980 nm) played only a minor influence on these results. The parameters determined by mathematical modeling are in agreement with those used in clinical practice. They confirm that thermal
Primary School Pre-Service Mathematics Teachers' Views on Mathematical Modeling
ERIC Educational Resources Information Center
Karali, Diren; Durmus, Soner
2015-01-01
The current study aimed to identify the views of pre-service teachers, who attended a primary school mathematics teaching department but did not take mathematical modeling courses. The mathematical modeling activity used by the pre-service teachers was developed with regards to the modeling activities utilized by Lesh and Doerr (2003) in their…
Primary School Pre-Service Mathematics Teachers' Views on Mathematical Modeling
ERIC Educational Resources Information Center
Karali, Diren; Durmus, Soner
2015-01-01
The current study aimed to identify the views of pre-service teachers, who attended a primary school mathematics teaching department but did not take mathematical modeling courses. The mathematical modeling activity used by the pre-service teachers was developed with regards to the modeling activities utilized by Lesh and Doerr (2003) in their…
Owen, Markus R; Stamper, I Johanna; Muthana, Munitta; Richardson, Giles W; Dobson, Jon; Lewis, Claire E; Byrne, Helen M
2011-01-01
Tumor hypoxia is associated with low rates of cell proliferation and poor drug delivery, limiting the efficacy of many conventional therapies such as chemotherapy. Since many macrophages accumulate in hypoxic regions of tumors, one way to target tumor cells in these regions could be to use genetically engineered macrophages that express therapeutic genes when exposed to hypoxia. We describe here our use of a new mathematical model to simulate and compare the effects of conventional cyclophosphamide therapy with those induced when macrophages are used to deliver hypoxia-inducible cytochrome P450 to locally activate cyclophosphamide. Our mathematical model describes the spatio-temporal dynamics of vascular tumor growth and treats cells as distinct entities, each with its own cell cycle and subcellular signalling machinery. Moreover, the model simulates the delivery of systemically-applied therapies by a dynamic vascular network. We used this model to determine both the impact on tumors of combining conventional chemotherapy with macrophage-based gene delivery, and how the efficacy of macrophage-based therapies may be enhanced by pre-loading the cells with magnetic nanoparticles and applying a magnetic field to the tumor site. Major Findings Our results predict that combining conventional and macrophage-based therapies would be synergistic, producing greater anti-tumor effects than the additive effects of each form of therapy. Moreover, we found that timing is crucial in this combined approach with efficacy being greatest when the macrophage-based therapy is administered shortly before or concurrent with chemotherapy. Lastly, we show not only that macrophage delivery of therapeutic genes is markedly enhanced using the magnetic approach described above, but also that the disorganised nature of tumor blood vessels means that this enhancement depends mainly on the strength of the applied field, rather than its direction. This may be important in the treatment of non
ERIC Educational Resources Information Center
Carrejo, David J.; Marshall, Jill
2007-01-01
This paper focuses on the construction, development, and use of mathematical models by prospective science and mathematics teachers enrolled in a university physics course. By studying their involvement in an inquiry-based, experimental approach to learning kinematics, we address a fundamental question about the meaning and role of abstraction in…
Mathematical modeling plasma transport in tokamaks
Quiang, Ji
1997-01-01
In this work, the author applied a systematic calibration, validation and application procedure based on the methodology of mathematical modeling to international thermonuclear experimental reactor (ITER) ignition studies. The multi-mode plasma transport model used here includes a linear combination of drift wave branch and ballooning branch instabilities with two a priori uncertain constants to account for anomalous plasma transport in tokamaks. A Bayesian parameter estimation method is used including experimental calibration error/model offsets and error bar rescaling factors to determine the two uncertain constants in the transport model with quantitative confidence level estimates for the calibrated parameters, which gives two saturation levels of instabilities. This method is first tested using a gyroBohm multi-mode transport model with a pair of DIII-D discharge experimental data, and then applied to calibrating a nominal multi-mode transport model against a broad database using twelve discharges from seven different tokamaks. The calibrated transport model is then validated on five discharges from JT-60 with no adjustable constants. The results are in a good agreement with experimental data. Finally, the resulting class of multi-mode tokamak plasma transport models is applied to the transport analysis of the ignition probability in a next generation machine, ITER. A reference simulation of basic ITER engineering design activity (EDA) parameters shows that a self-sustained thermonuclear burn with 1.5 GW output power can be achieved provided that impurity control makes radiative losses sufficiently small at an average plasma density of 1.2 X 10^{20}/m^{3} with 50 MW auxiliary heating. The ignition probability of ITER for the EDA parameters, can be formally as high as 99.9% in the present context. The same probability for concept design activity (CDA) parameters of ITER, which has smaller size and lower current, is only 62.6%.
Mathematical modeling plasma transport in tokamaks
NASA Astrophysics Data System (ADS)
Qiang, Ji
1998-11-01
In this work, we have applied a systematic calibration, validation and application procedure based on the methodology of mathematical modeling to international thermonuclear experimental reactor (ITER) ignition studies. The multi-mode plasma transport model used here includes a linear combination of drift wave branch and ballooning branch instabilities with two a priori uncertain constants to account for anomalous plasma transport in tokamaks. A Bayesian parameter estimation method is used including experimental calibration error/model offsets and error bar rescaling factors to determine the two uncertain constants in the transport model with quantitative confidence level estimates for the calibrated parameters, which gives two saturation levels of instabilities. This method is first tested using a gyroBohm multi-mode transport model with a pair of DIII-D discharge experimental data, and then applied to calibrating a nominal multi-mode transport model against a broad database using twelve discharges from seven different tokamaks. The calibrated transport model is then validated on five discharges from JT-60 with no adjustable constants. The results are in a good agreement with experimental data. Finally, the resulting class of multi-mode tokamak plasma transport models is applied to the transport analysis of the ignition probability in the next generation machine, ITER. The ignition probability of ITER for engineering design activity (EDA) parameters can be formally as high as 99.9% in the present context. The same probability for conceptual design activity (CDA) parameters of ITER, which has smaller size and lower current, is only 62.6%. This suggests that EDA parameters for ITER tokamak are very likely to achieve the self- sustained thermonuclear reaction, but CDA parameters are risky for the realization of ignition.
Piantadosi, Steven
2017-01-01
This paper presents an approach to describing the three dimensional shape of a violin plate in mathematical form. The shape description begins with standard contour lines and ends with an equation for a surface in three dimensional space. The traditional specification of cross sectional arching is unnecessary. Advantages of this approach are that it employs simple and universal description of plate geometry and yields a complete, smoothed, precise mathematical equation of the plate that is suitable for modern three dimensional production. It is quite general and suitable for both exterior and interior plate surfaces, yielding the ability to control thicknesses along with shape. This method can produce mathematical descriptions with tolerances easily less than 0.001 millimeters suitable for modern computerized numerical control carving and hand finishing.
2017-01-01
This paper presents an approach to describing the three dimensional shape of a violin plate in mathematical form. The shape description begins with standard contour lines and ends with an equation for a surface in three dimensional space. The traditional specification of cross sectional arching is unnecessary. Advantages of this approach are that it employs simple and universal description of plate geometry and yields a complete, smoothed, precise mathematical equation of the plate that is suitable for modern three dimensional production. It is quite general and suitable for both exterior and interior plate surfaces, yielding the ability to control thicknesses along with shape. This method can produce mathematical descriptions with tolerances easily less than 0.001 millimeters suitable for modern computerized numerical control carving and hand finishing. PMID:28166230
Mathematical models to characterize early epidemic growth: A review
NASA Astrophysics Data System (ADS)
Chowell, Gerardo; Sattenspiel, Lisa; Bansal, Shweta; Viboud, Cécile
2016-09-01
There is a long tradition of using mathematical models to generate insights into the transmission dynamics of infectious diseases and assess the potential impact of different intervention strategies. The increasing use of mathematical models for epidemic forecasting has highlighted the importance of designing reliable models that capture the baseline transmission characteristics of specific pathogens and social contexts. More refined models are needed however, in particular to account for variation in the early growth dynamics of real epidemics and to gain a better understanding of the mechanisms at play. Here, we review recent progress on modeling and characterizing early epidemic growth patterns from infectious disease outbreak data, and survey the types of mathematical formulations that are most useful for capturing a diversity of early epidemic growth profiles, ranging from sub-exponential to exponential growth dynamics. Specifically, we review mathematical models that incorporate spatial details or realistic population mixing structures, including meta-population models, individual-based network models, and simple SIR-type models that incorporate the effects of reactive behavior changes or inhomogeneous mixing. In this process, we also analyze simulation data stemming from detailed large-scale agent-based models previously designed and calibrated to study how realistic social networks and disease transmission characteristics shape early epidemic growth patterns, general transmission dynamics, and control of international disease emergencies such as the 2009 A/H1N1 influenza pandemic and the 2014-2015 Ebola epidemic in West Africa.
Mathematical models to characterize early epidemic growth: A Review
Chowell, Gerardo; Sattenspiel, Lisa; Bansal, Shweta; Viboud, Cécile
2016-01-01
There is a long tradition of using mathematical models to generate insights into the transmission dynamics of infectious diseases and assess the potential impact of different intervention strategies. The increasing use of mathematical models for epidemic forecasting has highlighted the importance of designing reliable models that capture the baseline transmission characteristics of specific pathogens and social contexts. More refined models are needed however, in particular to account for variation in the early growth dynamics of real epidemics and to gain a better understanding of the mechanisms at play. Here, we review recent progress on modeling and characterizing early epidemic growth patterns from infectious disease outbreak data, and survey the types of mathematical formulations that are most useful for capturing a diversity of early epidemic growth profiles, ranging from sub-exponential to exponential growth dynamics. Specifically, we review mathematical models that incorporate spatial details or realistic population mixing structures, including meta-population models, individual-based network models, and simple SIR-type models that incorporate the effects of reactive behavior changes or inhomogeneous mixing. In this process, we also analyze simulation data stemming from detailed large-scale agent-based models previously designed and calibrated to study how realistic social networks and disease transmission characteristics shape early epidemic growth patterns, general transmission dynamics, and control of international disease emergencies such as the 2009 A/H1N1 influenza pandemic and the 2014-15 Ebola epidemic in West Africa. PMID:27451336
Mathematical modeling of renal hemodynamics in physiology and pathophysiology.
Sgouralis, Ioannis; Layton, Anita T
2015-06-01
In addition to the excretion of metabolic waste and toxin, the kidney plays an indispensable role in regulating the balance of water, electrolyte, acid-base, and blood pressure. For the kidney to maintain proper functions, hemodynamic control is crucial. In this review, we describe representative mathematical models that have been developed to better understand the kidney's autoregulatory processes. We consider mathematical models that simulate glomerular filtration, and renal blood flow regulation by means of the myogenic response and tubuloglomerular feedback. We discuss the extent to which these modeling efforts have expanded the understanding of renal functions in health and disease.
To Assess Students' Attitudes, Skills and Competencies in Mathematical Modeling
ERIC Educational Resources Information Center
Lingefjard, Thomas; Holmquist, Mikael
2005-01-01
Peer-to-peer assessment, take-home exams and a mathematical modeling survey were used to monitor and assess students' attitudes, skills and competencies in mathematical modeling. The students were all in a secondary mathematics, teacher education program with a comprehensive amount of mathematics studies behind them. Findings indicate that…
A mathematical model of the CH-53 helicopter
NASA Technical Reports Server (NTRS)
Sturgeon, W. R.; Phillips, J. D.
1980-01-01
A mathematical model suitable for real time simulation of the CH-53 helicopter is presented. This model, which is based on modified nonlinear classical rotor theory and nonlinear fuselage aerodynamics, will be used to support terminal-area guidance and navigation studies on a fixed-base simulator. Validation is achieved by comparing the model response with that of a similar aircraft and by a qualitative comparison of the handling characteristics made by experienced pilots.
The (Mathematical) Modeling Process in Biosciences
Torres, Nestor V.; Santos, Guido
2015-01-01
In this communication, we introduce a general framework and discussion on the role of models and the modeling process in the field of biosciences. The objective is to sum up the common procedures during the formalization and analysis of a biological problem from the perspective of Systems Biology, which approaches the study of biological systems as a whole. We begin by presenting the definitions of (biological) system and model. Particular attention is given to the meaning of mathematical model within the context of biology. Then, we present the process of modeling and analysis of biological systems. Three stages are described in detail: conceptualization of the biological system into a model, mathematical formalization of the previous conceptual model and optimization and system management derived from the analysis of the mathematical model. All along this work the main features and shortcomings of the process are analyzed and a set of rules that could help in the task of modeling any biological system are presented. Special regard is given to the formative requirements and the interdisciplinary nature of this approach. We conclude with some general considerations on the challenges that modeling is posing to current biology. PMID:26734063
The (Mathematical) Modeling Process in Biosciences.
Torres, Nestor V; Santos, Guido
2015-01-01
In this communication, we introduce a general framework and discussion on the role of models and the modeling process in the field of biosciences. The objective is to sum up the common procedures during the formalization and analysis of a biological problem from the perspective of Systems Biology, which approaches the study of biological systems as a whole. We begin by presenting the definitions of (biological) system and model. Particular attention is given to the meaning of mathematical model within the context of biology. Then, we present the process of modeling and analysis of biological systems. Three stages are described in detail: conceptualization of the biological system into a model, mathematical formalization of the previous conceptual model and optimization and system management derived from the analysis of the mathematical model. All along this work the main features and shortcomings of the process are analyzed and a set of rules that could help in the task of modeling any biological system are presented. Special regard is given to the formative requirements and the interdisciplinary nature of this approach. We conclude with some general considerations on the challenges that modeling is posing to current biology.
Biologically based dose-response (BBDR) models comprise one way to incorporate mechanistic information into a dose-response assessment to be used for risk assessments. The chemotherapeutic drug 5-fluorouracil (5-FU) has been used as a prototypic compound for the construction of ...
Turbulent motion of mass flows. Mathematical modeling
NASA Astrophysics Data System (ADS)
Eglit, Margarita; Yakubenko, Alexander; Yakubenko, Tatiana
2016-04-01
New mathematical models for unsteady turbulent mass flows, e.g., dense snow avalanches and landslides, are presented. Such models are important since most of large scale flows are turbulent. In addition to turbulence, the two other important points are taken into account: the entrainment of the underlying material by the flow and the nonlinear rheology of moving material. The majority of existing models are based on the depth-averaged equations and the turbulent character of the flow is accounted by inclusion of drag proportional to the velocity squared. In this paper full (not depth-averaged) equations are used. It is assumed that basal entrainment takes place if the bed friction equals the shear strength of the underlying layer (Issler D, M. Pastor Peréz. 2011). The turbulent characteristics of the flow are calculated using a three-parameter differential model (Lushchik et al., 1978). The rheological properties of moving material are modeled by one of the three types of equations: 1) Newtonian fluid with high viscosity, 2) power-law fluid and 3) Bingham fluid. Unsteady turbulent flows down long homogeneous slope are considered. The flow dynamical parameters and entrainment rate behavior in time as well as their dependence on properties of moving and underlying materials are studied numerically. REFERENCES M.E. Eglit and A.E. Yakubenko, 2014. Numerical modeling of slope flows entraining bottom material. Cold Reg. Sci. Technol., 108, 139-148 Margarita E. Eglit and Alexander E. Yakubenko, 2016. The effect of bed material entrainment and non-Newtonian rheology on dynamics of turbulent slope flows. Fluid Dynamics, 51(3) Issler D, M. Pastor Peréz. 2011. Interplay of entrainment and rheology in snow avalanches; a numerical study. Annals of Glaciology, 52(58), 143-147 Lushchik, V.G., Paveliev, A.A. , and Yakubenko, A.E., 1978. Three-parameter model of shear turbulence. Fluid Dynamics, 13, (3), 350-362
Mathematical Models of Cardiac Pacemaking Function
NASA Astrophysics Data System (ADS)
Li, Pan; Lines, Glenn T.; Maleckar, Mary M.; Tveito, Aslak
2013-10-01
Over the past half century, there has been intense and fruitful interaction between experimental and computational investigations of cardiac function. This interaction has, for example, led to deep understanding of cardiac excitation-contraction coupling; how it works, as well as how it fails. However, many lines of inquiry remain unresolved, among them the initiation of each heartbeat. The sinoatrial node, a cluster of specialized pacemaking cells in the right atrium of the heart, spontaneously generates an electro-chemical wave that spreads through the atria and through the cardiac conduction system to the ventricles, initiating the contraction of cardiac muscle essential for pumping blood to the body. Despite the fundamental importance of this primary pacemaker, this process is still not fully understood, and ionic mechanisms underlying cardiac pacemaking function are currently under heated debate. Several mathematical models of sinoatrial node cell membrane electrophysiology have been constructed as based on different experimental data sets and hypotheses. As could be expected, these differing models offer diverse predictions about cardiac pacemaking activities. This paper aims to present the current state of debate over the origins of the pacemaking function of the sinoatrial node. Here, we will specifically review the state-of-the-art of cardiac pacemaker modeling, with a special emphasis on current discrepancies, limitations, and future challenges.
On Mathematical Modeling Of Quantum Systems
Achuthan, P.; Narayanankutty, Karuppath
2009-07-02
The world of physical systems at the most fundamental levels is replete with efficient, interesting models possessing sufficient ability to represent the reality to a considerable extent. So far, quantum mechanics (QM) forming the basis of almost all natural phenomena, has found beyond doubt its intrinsic ingenuity, capacity and robustness to stand the rigorous tests of validity from and through appropriate calculations and experiments. No serious failures of quantum mechanical predictions have been reported, yet. However, Albert Einstein, the greatest theoretical physicist of the twentieth century and some other eminent men of science have stated firmly and categorically that QM, though successful by and large, is incomplete. There are classical and quantum reality models including those based on consciousness. Relativistic quantum theoretical approaches to clearly understand the ultimate nature of matter as well as radiation have still much to accomplish in order to qualify for a final theory of everything (TOE). Mathematical models of better, suitable character as also strength are needed to achieve satisfactory explanation of natural processes and phenomena. We, in this paper, discuss some of these matters with certain apt illustrations as well.
On Mathematical Modeling Of Quantum Systems
NASA Astrophysics Data System (ADS)
Achuthan, P.; Narayanankutty, Karuppath
2009-07-01
The world of physical systems at the most fundamental levels is replete with efficient, interesting models possessing sufficient ability to represent the reality to a considerable extent. So far, quantum mechanics (QM) forming the basis of almost all natural phenomena, has found beyond doubt its intrinsic ingenuity, capacity and robustness to stand the rigorous tests of validity from and through appropriate calculations and experiments. No serious failures of quantum mechanical predictions have been reported, yet. However, Albert Einstein, the greatest theoretical physicist of the twentieth century and some other eminent men of science have stated firmly and categorically that QM, though successful by and large, is incomplete. There are classical and quantum reality models including those based on consciousness. Relativistic quantum theoretical approaches to clearly understand the ultimate nature of matter as well as radiation have still much to accomplish in order to qualify for a final theory of everything (TOE). Mathematical models of better, suitable character as also strength are needed to achieve satisfactory explanation of natural processes and phenomena. We, in this paper, discuss some of these matters with certain apt illustrations as well.
Mathematical Modeling of Circadian and Homeostatic Interaction
2011-11-16
Williams and C. Diniz Behn. A Hodgkin- Huxley -type model orexin neuron. SLEEP 32, A25, 2009. 4) C. Diniz Behn, D. Pal, G. Vanini, R. Lydic, G. A. Mashour...Switzerland, September 2009. 11) K. Williams, “A Hodgkin- Huxley -type model orexin neuron”, Associated Professional Sleep Societies Annual Meeting...Seattle, WA, June 2009. 12) K. Williams, “Dynamics in a Hodgkin- Huxley -type model orexin neuron”, Society for Industrial and Applied Mathematics Annual
Two Mathematical Models of Nonlinear Vibrations
NASA Technical Reports Server (NTRS)
Brugarolas, Paul; Bayard, David; Spanos, John; Breckenridge, William
2007-01-01
Two innovative mathematical models of nonlinear vibrations, and methods of applying them, have been conceived as byproducts of an effort to develop a Kalman filter for highly precise estimation of bending motions of a large truss structure deployed in outer space from a space-shuttle payload bay. These models are also applicable to modeling and analysis of vibrations in other engineering disciplines, on Earth as well as in outer space.
Dog Mathematics: Exploring Base-4
ERIC Educational Resources Information Center
Kurz, Terri L.; Yanik, H. Bahadir; Lee, Mi Yeon
2016-01-01
Using a dog's paw as a basis for numerical representation, sixth grade students explored how to count and regroup using the dog's four digital pads. Teachers can connect these base-4 explorations to the conceptual meaning of place value and regrouping using base-10.
Dog Mathematics: Exploring Base-4
ERIC Educational Resources Information Center
Kurz, Terri L.; Yanik, H. Bahadir; Lee, Mi Yeon
2016-01-01
Using a dog's paw as a basis for numerical representation, sixth grade students explored how to count and regroup using the dog's four digital pads. Teachers can connect these base-4 explorations to the conceptual meaning of place value and regrouping using base-10.
Estill, Janne; Tweya, Hannock; Egger, Matthias; Wandeler, Gilles; Feldacker, Caryl; Johnson, Leigh F.; Blaser, Nello; Vizcaya, Luisa Salazar; Phiri, Sam; Keiser, Olivia
2014-01-01
Objectives Treatment as prevention depends on retaining HIV-infected patients in care. We investigated the effect on HIV transmission of bringing patients lost to follow up (LTFU) back into care. Design Mathematical model. Methods Stochastic mathematical model of cohorts of 1000 HIV-infected patients on antiretroviral therapy (ART), based on data from two clinics in Lilongwe, Malawi. We calculated cohort viral load (CVL; sum of individual mean viral loads each year) and used a mathematical relationship between viral load and transmission probability to estimate the number of new HIV infections. We simulated four scenarios: ‘no LTFU’ (all patients stay in care); ‘no tracing’ (patients LTFU are not traced); ‘immediate tracing’ (after missed clinic appointment); and, ‘delayed tracing’ (after six months). Results About 440 of 1000 patients were LTFU over five years. CVL (million copies/ml per 1000 patients) were 3.7 (95% prediction interval [PrI] 2.9-4.9) for no LTFU, 8.6 (95% PrI 7.3-10.0) for no tracing, 7.7 (95% PrI 6.2-9.1) for immediate, and 8.0 (95% PrI 6.7-9.5) for delayed tracing. Comparing no LTFU with no tracing the number of new infections increased from 33 (95% PrI 29-38) to 54 (95% PrI 47-60) per 1000 patients. Immediate tracing prevented 3.6 (95% PrI -3.3-12.8) and delayed tracing 2.5 (95% PrI -5.8-11.1) new infections per 1000. Immediate tracing was more efficient than delayed tracing: 116 and to 142 tracing efforts, respectively, were needed to prevent one new infection. Conclusion Tracing of patients LTFU enhances the preventive effect of ART, but the number of transmissions prevented is small. PMID:24326599
Effectiveness of discovery learning model on mathematical problem solving
NASA Astrophysics Data System (ADS)
Herdiana, Yunita; Wahyudin, Sispiyati, Ririn
2017-08-01
This research is aimed to describe the effectiveness of discovery learning model on mathematical problem solving. This research investigate the students' problem solving competency before and after learned by using discovery learning model. The population used in this research was student in grade VII in one of junior high school in West Bandung Regency. From nine classes, class VII B were randomly selected as the sample of experiment class, and class VII C as control class, which consist of 35 students every class. The method in this research was quasi experiment. The instrument in this research is pre-test, worksheet and post-test about problem solving of mathematics. Based on the research, it can be conclude that the qualification of problem solving competency of students who gets discovery learning model on level 80%, including in medium category and it show that discovery learning model effective to improve mathematical problem solving.
Introduction to mathematical models and methods
Siddiqi, A. H.; Manchanda, P.
2012-07-17
Some well known mathematical models in the form of partial differential equations representing real world systems are introduced along with fundamental concepts of Image Processing. Notions such as seismic texture, seismic attributes, core data, well logging, seismic tomography and reservoirs simulation are discussed.
Mathematical model of a smoldering log.
Fernando de Souza Costa; David. Sandberg
2004-01-01
A mathematical model is developed describing the natural smoldering of logs. It is considered the steady one dimensional propagation of infinitesimally thin fronts of drying, pyrolysis, and char oxidation in a horizontal semi-infinite log. Expressions for the burn rates, distribution profiles of temperature, and positions of the drying, pyrolysis, and smoldering fronts...
Pedagogical Content Knowledge in Mathematical Modelling Instruction
ERIC Educational Resources Information Center
Tan, Liang Soon; Ang, Keng Cheng
2012-01-01
This paper posits that teachers' pedagogical content knowledge in mathematical modelling instruction can be demonstrated in the crafting of action plans and expected teaching and learning moves via their lesson images (Schoenfeld, 1998). It can also be developed when teachers shape appropriate teaching moves in response to students' learning…
Mathematical Modeling of Wildfire Dynamics
NASA Astrophysics Data System (ADS)
Del Bene, Kevin; Drew, Donald
2012-11-01
Wildfires have been a long-standing problem in today's society. In this paper, we derive and solve a fluid dynamics model to study a specific type of wildfire, namely, a two dimensional flow around a rising plume above a concentrated heat source, modeling a fire line. This flow assumes a narrow plume of hot gas rising and entraining the surrounding air. The surrounding air is assumed to have constant density and is irrotational far from the fire line. The flow outside the plume is described by a Biot-Savart integral with jump conditions across the position of the plume. The plume model describes the unsteady evolution of the mass, momentum, energy, and vorticity inside the plume, with sources derived to model mixing in the style of Morton, et al. 1956]. The fire is then modeled using a conservation derivation, allowing the fire to propagate, coupling back to the plume model. The results show that this model is capable of capturing the complex interaction of the plume with the surrounding air and fuel layer. Funded by NSF GRFP.
NASA Astrophysics Data System (ADS)
Soleimani, Ali
Immersive 3D worlds can be designed to effectively engage students in peer-to-peer collaborative learning activities, supported by scientific visualization, to help with understanding complex concepts associated with learning science, technology, engineering, and mathematics (STEM). Previous research studies have shown STEM learning benefits associated with the use of scientific visualization tools involving model-based reasoning (MBR). Little is known, however, about collaborative use of scientific visualization, via MBR, within an immersive 3D-world learning environment for helping to improve perceived value of STEM learning and knowledge acquisition in a targeted domain such as geothermal energy. Geothermal energy was selected as the study's STEM focus, because understanding in the domain is highly dependent on successfully integrating science and mathematics concepts. This study used a 2x2 Mixed ANOVA, with repeated measures, design to analyze collaborative usage of a geothermal energy MBR model and its effects on learning within an immersive 3D world. The immersive 3D world used for the study is supported by the Open Simulator platform. Findings from this study can suggest ways to improve STEM learning and inform the design of MBR activities when conducted within an immersive 3D world.
A New Mathematical Model for the Heat Shock Response
NASA Astrophysics Data System (ADS)
Petre, Ion; Mizera, Andrzej; Hyder, Claire L.; Mikhailov, Andrey; Eriksson, John E.; Sistonen, Lea; Back, Ralph-Johan
We present in this paper a novel molecular model for the gene regulatory network responsible for the eukaryotic heat shock response. Our model includes the temperature-induced protein misfolding, the chaperone activity of the heat shock proteins, and the backregulation of their gene transcription. We then build a mathematical model for it, based on ordinary differential equations. Finally, we discuss the parameter fit and the implications of the sensitivity analysis for our model.
Mathematical model of the SH-3G helicopter
NASA Technical Reports Server (NTRS)
Phillips, J. D.
1982-01-01
A mathematical model of the Sikorsky SH-3G helicopter based on classical nonlinear, quasi-steady rotor theory was developed. The model was validated statically and dynamically by comparison with Navy flight-test data. The model incorporates ad hoc revisions which address the ideal assumptions of classical rotor theory and improve the static trim characteristics to provide a more realistic simulation, while retaining the simplicity of the classical model.
ERIC Educational Resources Information Center
Bukova-Guzel, Esra
2011-01-01
This study examines the approaches displayed by pre-service mathematics teachers in their experiences of constructing mathematical modelling problems and the extent to which they perform the modelling process when solving the problems they construct. This case study was carried out with 35 pre-service teachers taking the Mathematical Modelling…
Determining the Views of Mathematics Student Teachers Related to Mathematical Modelling
ERIC Educational Resources Information Center
Tekin, Ayse; Kula, Semiha; Hidiroglu, Caglar Naci; Bukova-Guzel, Esra; Ugurel, Isikhan
2012-01-01
The purpose of this qualitative research is to examine the views of 21 secondary mathematics student teachers attending Mathematical Modelling Course regarding mathematical modelling in a state university in Turkey; reasons why they chose this course and their expectations from the course in question. For this reason, three open-ended questions…
ERIC Educational Resources Information Center
Bukova-Guzel, Esra
2011-01-01
This study examines the approaches displayed by pre-service mathematics teachers in their experiences of constructing mathematical modelling problems and the extent to which they perform the modelling process when solving the problems they construct. This case study was carried out with 35 pre-service teachers taking the Mathematical Modelling…
Mathematical Models of Breast and Ovarian Cancers
Botesteanu, Dana-Adriana; Lipkowitz, Stanley; Lee, Jung-Min; Levy, Doron
2016-01-01
Women constitute the majority of the aging United States (US) population, and this has substantial implications on cancer population patterns and management practices. Breast cancer is the most common women's malignancy, while ovarian cancer is the most fatal gynecological malignancy in the US. In this review we focus on these subsets of women's cancers, seen more commonly in postmenopausal and elderly women. In order to systematically investigate the complexity of cancer progression and response to treatment in breast and ovarian malignancies, we assert that integrated mathematical modeling frameworks viewed from a systems biology perspective are needed. Such integrated frameworks could offer innovative contributions to the clinical women's cancers community, since answers to clinical questions cannot always be reached with contemporary clinical and experimental tools. Here, we recapitulate clinically known data regarding the progression and treatment of the breast and ovarian cancers. We compare and contrast the two malignancies whenever possible, in order to emphasize areas where substantial contributions could be made by clinically inspired and validated mathematical modeling. We show how current paradigms in the mathematical oncology community focusing on the two malignancies do not make comprehensive use of, nor substantially reflect existing clinical data, and we highlight the modeling areas in most critical need of clinical data integration. We emphasize that the primary goal of any mathematical study of women's cancers should be to address clinically relevant questions. PMID:27259061
Zhang, Pei; Li, Yi
2016-03-01
Existing prediction models of soil organic matter content (SOC) are restricted by some factors, such as sampling scale, soil type and spectral parameters of samples. Therefore, it is necessary to make a comparative analysis on larger scales to build a quantitative model with better feasibility and greater accuracy. A total of 225 soil samples were collected in an extensive region of the upper reaches of Heihe river basin. SOC and spectral reflectance were being measured. All the samples were divided into 2 subsets--a modeling subset (180 samples) and a validation subset (45 samples). Six indices were obtained through transformation of soil spectral reflectance (R), continuum-removal (CR), reciprocal (REC), logarithm of reciprocal (LR), first-order differential (FDR) and Kubelka-Munck transformation coefficient (K-M). To build the mathematical model of SOC with 12 spectral indices, two methods, i. e., stepwise linear regression and partial least-square regression were used based on the modeling subset, respectively; the validation subset is used for model evaluation. The results indicated that, (1) Regardless of different modeling methods, model between SOC and LR index was always the best among the 6 reflectance-related indices. LR was the best index for predicting SOC; (2) For the model based on the LR index, the accuracy of model using partial least-square regression method was better than that using stepwise linear regression method; (3) 225 samples were compared to verify the former available published SOC model. Both the predicted and measured values passed the mean value t-test, and the Pearson correlation coefficient reached 0.826. It shows that local prediction model can be applied to the research of predicting SOC in the larger scale.
ERIC Educational Resources Information Center
Bukova-Guzel, Esra; Canturk-Gunhan, Berna
2011-01-01
The purpose of the study is to determine prospective mathematics teachers' views about using computer-based instructional materials in constructing mathematical concepts and to reveal how the sample computer-based instructional materials for different mathematical concepts altered their views. This is a qualitative study involving twelve…
Mohan, Dinesh K; Molnar, Peter; Hickman, James J.
2010-01-01
The NG108-15 neuroblastoma / glioma hybrid cell line has been frequently used for toxin detection, pharmaceutical screening and as a whole-cell biosensor. However, detailed analysis of its action potentials during toxin or drug administration has not been accomplished previously using patch clamp electrophysiology. In order to explore the possibility of identifying toxins based on their effect on the shape of intracellularly or extracellularly detected action potentials, we created a computer model of the action potential generation of this cell type. To generate the experimental data to validate the model, voltage dependent sodium, potassium and high-threshold calcium currents, as well as action potentials, were recorded from NG108-15 cells with conventional whole-cell patch-clamp methods. Based on the classic Hodgkin-Huxley formalism and the linear thermodynamic description of the rate constants, ion-channel parameters were estimated using an automatic fitting method. Utilizing the established parameters, action potentials were generated in the model and were optimized to represent the actual recorded action potentials to establish baseline conditions. To demonstrate the applicability of the method for toxin detection and discrimination, the effect of tetrodotoxin (a sodium channel blocker) and tefluthrin (a pyrethroid that is a sodium channel opener) were studied. The two toxins affected the shape of the action potentials differently and their respective effects were identified based on the changes in the fitted parameters. Our results represent one of the first steps to establish a complex model of NG108-15 cells for quantitative toxin detection based on action potential shape analysis of the experimental results. PMID:16460924
Mathematical models of tumour angiogenesis
NASA Astrophysics Data System (ADS)
Kubo, Akisato; Suzuki, Takashi
2007-07-01
We first study a parabolic-ODE system modelling tumour growth proposed by Othmer and Stevens [Aggregation, blowup, and collapse: the ABC's of taxis in reinforced random walks, SIAM J. Appl. Math. 57 (4) (1997) 1044-1081]. According to Levine and Sleeman [A system of reaction and diffusion equations arising in the theory of reinforced random walks, SIAM J. Appl. Math. 57 (3) (1997) 683-730], we reduced it to a hyperbolic equation and showed the existence of collapse in [A. Kubo, T. Suzuki, Asymptotic behavior of the solution to a parabolic ODE system modeling tumour growth, Differential Integral Equations 17 (2004) 721-736]. We also deal with the system in case the reduced equation is elliptic and show the existence of collapse analogously. Next we apply the above result to another model proposed by Anderson and Chaplain arising from tumour angiogenesis and show the existence of collapse. Further we investigate a contact point between these two models and a common property to them.
A Mathematical Model of Forgetting and Amnesia
Murre, Jaap M. J.; Chessa, Antonio G.; Meeter, Martijn
2013-01-01
We describe a mathematical model of learning and memory and apply it to the dynamics of forgetting and amnesia. The model is based on the hypothesis that the neural systems involved in memory at different time scales share two fundamental properties: (1) representations in a store decline in strength (2) while trying to induce new representations in higher-level more permanent stores. This paper addresses several types of experimental and clinical phenomena: (i) the temporal gradient of retrograde amnesia (Ribot’s Law), (ii) forgetting curves with and without anterograde amnesia, and (iii) learning and forgetting curves with impaired cortical plasticity. Results are in the form of closed-form expressions that are applied to studies with mice, rats, and monkeys. In order to analyze human data in a quantitative manner, we also derive a relative measure of retrograde amnesia that removes the effects of non-equal item difficulty for different time periods commonly found with clinical retrograde amnesia tests. Using these analytical tools, we review studies of temporal gradients in the memory of patients with Korsakoff’s Disease, Alzheimer’s Dementia, Huntington’s Disease, and other disorders. PMID:23450438
A mathematical model of embodied consciousness.
Rudrauf, David; Bennequin, Daniel; Granic, Isabela; Landini, Gregory; Friston, Karl; Williford, Kenneth
2017-09-07
We introduce a mathematical model of embodied consciousness, the Projective Consciousness Model (PCM), which is based on the hypothesis that the spatial field of consciousness (FoC) is structured by a projective geometry and under the control of a process of active inference. The FoC in the PCM combines multisensory evidence with prior beliefs in memory and frames them by selecting points of view and perspectives according to preferences. The choice of projective frames governs how expectations are transformed by consciousness. Violations of expectation are encoded as free energy. Free energy minimization drives perspective taking, and controls the switch between perception, imagination and action. In the PCM, consciousness functions as an algorithm for the maximization of resilience, using projective perspective taking and imagination in order to escape local minima of free energy. The PCM can account for a variety of psychological phenomena: the characteristic spatial phenomenology of subjective experience, the distinctions and integral relationships between perception, imagination and action, the role of affective processes in intentionality, but also perceptual phenomena such as the dynamics of bistable figures and body swap illusions in virtual reality. It relates phenomenology to function, showing the computational advantages of consciousness. It suggests that changes of brain states from unconscious to conscious reflect the action of projective transformations and suggests specific neurophenomenological hypotheses about the brain, guidelines for designing artificial systems, and formal principles for psychology. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Xi; Liu, Rong; Luo, Zhi-Ying; Yan, Han; Huang, Wei-Hua; Yin, Ji-Ye; Mao, Xiao-Yuan; Chen, Xiao-Ping; Liu, Zhao-Qian; Zhou, Hong-Hao; Zhang, Wei
2015-01-01
This study is aimed to find the best predictive model for warfarin stable dosage. Seven models, namely multiple linear regression (MLR), artificial neural network, regression tree, boosted regression tree, support vector regression, multivariate adaptive regression spines and random forest regression, as well as the genetic and clinical data of two Chinese samples were employed. The average predicted achievement ratio and mean absolute error of the algorithms were ranging from 52.31 to 58.08% and 4.25 to 4.84 mg/week in validation samples, respectively. The algorithm based on MLR showed the highest predicted achievement ratio and the lowest mean absolute error. At present, MLR may be still the best model for warfarin stable dosage prediction in Chinese population. Original submitted 10 November 2014; Revision submitted 18 February 2015.
A Mathematical Model for Suppression Subtractive Hybridization
Gadgil, Chetan; Rink, Anette; Beattie, Craig
2002-01-01
Suppression subtractive hybridization (SSH) is frequently used to unearth differentially expressed genes on a whole-genome scale. Its versatility is based on combining cDNA library subtraction and normalization, which allows the isolation of sequences of varying degrees of abundance and differential expression. SSH is a complex process with many adjustable parameters that affect the outcome of gene isolation.We present a mathematical model of SSH based on DNA hybridization kinetics for assessing the effect of various parameters to facilitate its optimization. We derive an equation for the probability that a particular differentially expressed species is successfully isolated and use this to quantify the effect of the following parameters related to the cDNA sample: (a) mRNA abundance; (b) partial sequence complementarity to other species; and (3) degree of differential expression. We also evaluate the effect of parameters related to the process, including: (a) reaction times; and (b) extent of driver excess used in the two hybridization reactions. The optimum set of process parameters for successful isolation of differentially expressed species depends on transcript abundance. We show that the reaction conditions have a significant effect on the occurrence of false-positives and formulate strategies to isolate specific subsets of differentially expressed genes. We also quantify the effect of non-specific hybridization on the false-positive results and present strategies for spiking cDNA sequences to address this problem. PMID:18629052
Mathematical models for Isoptera (Insecta) mound growth.
Buschini, M L T; Abuabara, M A P; Petrere-Jr, Miguel
2008-08-01
In this research we proposed two mathematical models for Isoptera mound growth derived from the Von Bertalanffy growth curve, one appropriated for Nasutitermes coxipoensis, and a more general formulation. The mean height and the mean diameter of ten small colonies were measured each month for twelve months, from April, 1995 to April, 1996. Through these data, the monthly volumes were calculated for each of them. Then the growth in height and in volume was estimated and the models proposed.
Gifted Learners and Mathematical Achievement: An Analysis of Gifted Instructional Models
ERIC Educational Resources Information Center
Anderson, Lezley Barker
2013-01-01
The purpose of this causal-comparative study was to examine whether differences exist in the mathematics achievement of fifth grade gifted students based on the instructional delivery model used for mathematics instruction, cluster or collaborative, as defined by the Georgia Department of Education. The content area of mathematics, an area…
Mathematical modeling of the aerodynamic characteristics in flight dynamics
NASA Technical Reports Server (NTRS)
Tobak, M.; Chapman, G. T.; Schiff, L. B.
1984-01-01
Basic concepts involved in the mathematical modeling of the aerodynamic response of an aircraft to arbitrary maneuvers are reviewed. The original formulation of an aerodynamic response in terms of nonlinear functionals is shown to be compatible with a derivation based on the use of nonlinear functional expansions. Extensions of the analysis through its natural connection with ideas from bifurcation theory are indicated.
Implementing the Standards: Incorporating Mathematical Modeling into the Curriculum.
ERIC Educational Resources Information Center
Swetz, Frank
1991-01-01
Following a brief historical review of the mechanism of mathematical modeling, examples are included that associate a mathematical model with given data (changes in sea level) and that model a real-life situation (process of parallel parking). Also provided is the rationale for the curricular implementation of mathematical modeling. (JJK)
An Experimental Approach to Mathematical Modeling in Biology
ERIC Educational Resources Information Center
Ledder, Glenn
2008-01-01
The simplest age-structured population models update a population vector via multiplication by a matrix. These linear models offer an opportunity to introduce mathematical modeling to students of limited mathematical sophistication and background. We begin with a detailed discussion of mathematical modeling, particularly in a biological context.…
Mathematical Modeling for Preservice Teachers: A Problem from Anesthesiology.
ERIC Educational Resources Information Center
Lingefjard, Thomas
2002-01-01
Addresses the observed actions of prospective Swedish mathematics teachers as they worked with a modeling situation. Explores prospective teachers' preparation to teach in grades 4-12 during a course of mathematical modeling. Focuses on preservice teachers' understanding of modeling and how they relate mathematical models to the real world.…
Mathematical Modeling for Preservice Teachers: A Problem from Anesthesiology.
ERIC Educational Resources Information Center
Lingefjard, Thomas
2002-01-01
Addresses the observed actions of prospective Swedish mathematics teachers as they worked with a modeling situation. Explores prospective teachers' preparation to teach in grades 4-12 during a course of mathematical modeling. Focuses on preservice teachers' understanding of modeling and how they relate mathematical models to the real world.…
Implementing the Standards: Incorporating Mathematical Modeling into the Curriculum.
ERIC Educational Resources Information Center
Swetz, Frank
1991-01-01
Following a brief historical review of the mechanism of mathematical modeling, examples are included that associate a mathematical model with given data (changes in sea level) and that model a real-life situation (process of parallel parking). Also provided is the rationale for the curricular implementation of mathematical modeling. (JJK)
Mathematical modeling of biomass fuels formation process.
Gaska, Krzysztof; Wandrasz, Andrzej J
2008-01-01
The increasing demand for thermal and electric energy in many branches of industry and municipal management accounts for a drastic diminishing of natural resources (fossil fuels). Meanwhile, in numerous technical processes, a huge mass of wastes is produced. A segregated and converted combustible fraction of the wastes, with relatively high calorific value, may be used as a component of formed fuels. The utilization of the formed fuel components from segregated groups of waste in associated processes of co-combustion with conventional fuels causes significant savings resulting from partial replacement of fossil fuels, and reduction of environmental pollution resulting directly from the limitation of waste migration to the environment (soil, atmospheric air, surface and underground water). The realization of technological processes with the utilization of formed fuel in associated thermal systems should be qualified by technical criteria, which means that elementary processes as well as factors of sustainable development, from a global viewpoint, must not be disturbed. The utilization of post-process waste should be preceded by detailed technical, ecological and economic analyses. In order to optimize the mixing process of fuel components, a mathematical model of the forming process was created. The model is defined as a group of data structures which uniquely identify a real process and conversion of this data in algorithms based on a problem of linear programming. The paper also presents the optimization of parameters in the process of forming fuels using a modified simplex algorithm with a polynomial worktime. This model is a datum-point in the numerical modeling of real processes, allowing a precise determination of the optimal elementary composition of formed fuels components, with assumed constraints and decision variables of the task.
Mathematical models of ABE fermentation: review and analysis.
Mayank, Rahul; Ranjan, Amrita; Moholkar, Vijayanand S
2013-12-01
Among different liquid biofuels that have emerged in the recent past, biobutanol produced via fermentation processes is of special interest due to very similar properties to that of gasoline. For an effective design, scale-up, and optimization of the acetone-butanol-ethanol (ABE) fermentation process, it is necessary to have insight into the micro- and macro-mechanisms of the process. The mathematical models for ABE fermentation are efficient tools for this purpose, which have evolved from simple stoichiometric fermentation equations in the 1980s to the recent sophisticated and elaborate kinetic models based on metabolic pathways. In this article, we have reviewed the literature published in the area of mathematical modeling of the ABE fermentation. We have tried to present an analysis of these models in terms of their potency in describing the overall physiology of the process, design features, mode of operation along with comparison and validation with experimental results. In addition, we have also highlighted important facets of these models such as metabolic pathways, basic kinetics of different metabolites, biomass growth, inhibition modeling and other additional features such as cell retention and immobilized cultures. Our review also covers the mathematical modeling of the downstream processing of ABE fermentation, i.e. recovery and purification of solvents through flash distillation, liquid-liquid extraction, and pervaporation. We believe that this review will be a useful source of information and analysis on mathematical models for ABE fermentation for both the appropriate scientific and engineering communities.
NASA Astrophysics Data System (ADS)
Angraini, L. M.; Kartasasmita, B.; Dasari, D.
2017-02-01
This study examined the university students’ mathematically critical thinking ability through Concept Attainment Model learning. The Kolmogorov-Smirnov test, Levene test, t test, ANOVA one and two ways were used to analyse the data. The results of this study showed that (1) there is no difference grade on the student’s mathematical critical thinking ability between experimental group and conventional group as a whole, (2) there is no difference on the students’ mathematical critical thinking ability of experimental classes based on their mathematical early ability (3) there is no interaction between the learning that is used with the students’ mathematical early ability on the students’ mathematical critical thinking ability.
Building Mathematical Models of Simple Harmonic and Damped Motion.
ERIC Educational Resources Information Center
Edwards, Thomas
1995-01-01
By developing a sequence of mathematical models of harmonic motion, shows that mathematical models are not right or wrong, but instead are better or poorer representations of the problem situation. (MKR)
Mathematical modeling of complex regulatory networks.
Stelling, Jörg; Gilles, Ernst Dieter
2004-09-01
Cellular regulation comprises overwhelmingly complex interactions between genes and proteins that ultimately will only be rendered understandable by employing formal approaches. Developing large-scale mathematical models of such systems in an efficient and reliable way, however, requires careful evaluation of structuring principles for the models, of the description of the system dynamics, and of the experimental data basis for adjusting the models to reality. We discuss these three aspects of model development using the example of cell cycle regulation in yeast and suggest that capturing complex dynamic networks is feasible despite incomplete (quantitative) biological knowledge.
Mathematical Modelling of Turbidity Currents
NASA Astrophysics Data System (ADS)
Fay, G. L.; Fowler, A.; Howell, P.
2011-12-01
A turbidity current is a submarine sediment flow which propagates downslope through the ocean into the deep sea. Turbidity currents can occur randomly and without much warning and consequently are hard to observe and measure. The driving force in a turbidity current is the presence of sediment in the current - gravity acts on the sediment in suspension, causing it to move downstream through the ocean water. A phenomenon known as ignition or autosuspension has been observed in turbidity currents in submarine canyons, and it occurs when a current travelling downslope gathers speed as it erodes sediment from the sea floor in a self-reinforcing cycle. Using the turbidity current model of Parker et al. (Journal of Fluid Mechanics, 1986) we investigate the evolution of a 1-D turbidity current as it moves downstream. To seek a better understanding of the dynamics of flow as the current evolves in space and time, we present analytical results alongside computed numerical solutions, incorporating entrainment of water and erosion and deposition of sediment. We consider varying slope functions and inlet conditions and attempt to predict when the current will become extinct. We examine currents which are in both supercritical and subcritical flow regimes and consider the dynamics of the flow as the current switches regime.
Mathematical Models of College Myopia
Greene, Peter R.; Grill, Zachary W.; Medina, Antonio
2015-01-01
Experimental design phase of a pilot study at Annapolis is described, using reading glasses, +1.5 D. to +3.0 D. to alleviate college myopia. College students often become 1.0 to 2.0 diopters more myopic, so reading glasses were explored to partially cancel the effects of the study environment. N = 25 different sets of (+)Add lenses are evaluated, for required adjustment period and reading comfort. Three computer models are developed to predict refraction versus time. Basic control system equations predict exponential myopia shift of refractive state R(t) with time constant t0 = 100 days. Linear, exponential and Gompertz computer results are compared calculating refraction R(t) during the college years, showing correlation coefficients |r| = 0.96 to 0.97, accurate +/−0.31 D. over a 14 year interval. Typical college myopia rate is −0.3 to −0.4 D/yr. Reading glasses may be a simple, practical solution to stabilize college myopia. PMID:26709316
Zhang, Zili; Gao, Chao; Lu, Yuxiao; Liu, Yuxin; Liang, Mingxin
2016-01-01
Bi-objective Traveling Salesman Problem (bTSP) is an important field in the operations research, its solutions can be widely applied in the real world. Many researches of Multi-objective Ant Colony Optimization (MOACOs) have been proposed to solve bTSPs. However, most of MOACOs suffer premature convergence. This paper proposes an optimization strategy for MOACOs by optimizing the initialization of pheromone matrix with the prior knowledge of Physarum-inspired Mathematical Model (PMM). PMM can find the shortest route between two nodes based on the positive feedback mechanism. The optimized algorithms, named as iPM-MOACOs, can enhance the pheromone in the short paths and promote the search ability of ants. A series of experiments are conducted and experimental results show that the proposed strategy can achieve a better compromise solution than the original MOACOs for solving bTSPs.
Zhang, Zili; Gao, Chao; Lu, Yuxiao; Liu, Yuxin; Liang, Mingxin
2016-01-01
Bi-objective Traveling Salesman Problem (bTSP) is an important field in the operations research, its solutions can be widely applied in the real world. Many researches of Multi-objective Ant Colony Optimization (MOACOs) have been proposed to solve bTSPs. However, most of MOACOs suffer premature convergence. This paper proposes an optimization strategy for MOACOs by optimizing the initialization of pheromone matrix with the prior knowledge of Physarum-inspired Mathematical Model (PMM). PMM can find the shortest route between two nodes based on the positive feedback mechanism. The optimized algorithms, named as iPM-MOACOs, can enhance the pheromone in the short paths and promote the search ability of ants. A series of experiments are conducted and experimental results show that the proposed strategy can achieve a better compromise solution than the original MOACOs for solving bTSPs. PMID:26751562
NASA Astrophysics Data System (ADS)
Bucur, Amelia
2015-09-01
The aim of this paper is to present aspects of mathematical modeling for the hierarchization of study programs from universities, based on several quality characteristics. The tools used pertain to multicriterial optimization, to the different methods of assessing importance coefficients, to the utility theory, the fuzzy formalism, and to the fuzzy simple additive weighting method. The conclusion is that multicriterial decision-making methods can be efficiently used in assessing the quality of study programs, noting that, just like other methods from the decision theory, the multicriterial decision-making methods highlight aspects of problems differently, therefore, there can be no comparison or competitiveness between them, and choosing one over the other is up to the decision-maker.
Mathematical modeling of vertebrate limb development.
Zhang, Yong-Tao; Alber, Mark S; Newman, Stuart A
2013-05-01
In this paper, we review the major mathematical and computational models of vertebrate limb development and their roles in accounting for different aspects of this process. The main aspects of limb development that have been modeled include outgrowth and shaping of the limb bud, establishment of molecular gradients within the bud, and formation of the skeleton. These processes occur interdependently during development, although (as described in this review), there are various interpretations of the biological relationships among them. A wide range of mathematical and computational methods have been used to study these processes, including ordinary and partial differential equation systems, cellular automata and discrete, stochastic models, finite difference methods, finite element methods, the immersed boundary method, and various combinations of the above. Multiscale mathematical modeling and associated computational simulation have become integrated into the study of limb morphogenesis and pattern formation to an extent with few parallels in the field of developmental biology. These methods have contributed to the design and analysis of experiments employing microsurgical and genetic manipulations, evaluation of hypotheses for limb bud outgrowth, interpretation of the effects of natural mutations, and the formulation of scenarios for the origination and evolution of the limb skeleton.
ERIC Educational Resources Information Center
Jurow, A. Susan
2004-01-01
Generalizing or making claims that extend beyond particular situations is a central mathematical practice and a focus of classroom mathematics instruction. This study examines how aspects of generality are produced through the situated activities of a group of middle school mathematics students working on an 8-week population-modeling project. The…
ERIC Educational Resources Information Center
Lim, L. L.; Tso, T. -Y.; Lin, F. L.
2009-01-01
This article reports the attitudes of students towards mathematics after they had participated in an applied mathematical modelling project that was part of an Applied Mathematics course. The students were majoring in Earth Science at the National Taiwan Normal University. Twenty-six students took part in the project. It was the first time a…
ERIC Educational Resources Information Center
Martins, Ana Margarida; Vera-Licona, Paola; Laubenbacher, Reinhard
2008-01-01
This article describes a mathematical biology workshop given to secondary school teachers of the Danville area in Virginia, USA. The goal of the workshop was to enable teams of teachers with biology and mathematics expertise to incorporate lesson plans in mathematical modelling into the curriculum. The biological focus of the activities is the…
ERIC Educational Resources Information Center
Jurow, A. Susan
2004-01-01
Generalizing or making claims that extend beyond particular situations is a central mathematical practice and a focus of classroom mathematics instruction. This study examines how aspects of generality are produced through the situated activities of a group of middle school mathematics students working on an 8-week population-modeling project. The…
ERIC Educational Resources Information Center
Lim, L. L.; Tso, T. -Y.; Lin, F. L.
2009-01-01
This article reports the attitudes of students towards mathematics after they had participated in an applied mathematical modelling project that was part of an Applied Mathematics course. The students were majoring in Earth Science at the National Taiwan Normal University. Twenty-six students took part in the project. It was the first time a…
ERIC Educational Resources Information Center
Martins, Ana Margarida; Vera-Licona, Paola; Laubenbacher, Reinhard
2008-01-01
This article describes a mathematical biology workshop given to secondary school teachers of the Danville area in Virginia, USA. The goal of the workshop was to enable teams of teachers with biology and mathematics expertise to incorporate lesson plans in mathematical modelling into the curriculum. The biological focus of the activities is the…
Modeling eBook acceptance: A study on mathematics teachers
NASA Astrophysics Data System (ADS)
Jalal, Azlin Abd; Ayub, Ahmad Fauzi Mohd; Tarmizi, Rohani Ahmad
2014-12-01
The integration and effectiveness of eBook utilization in Mathematics teaching and learning greatly relied upon the teachers, hence the need to understand their perceptions and beliefs. The eBook, an individual laptop completed with digitized textbook sofwares, were provided for each students in line with the concept of 1 student:1 laptop. This study focuses on predicting a model on the acceptance of the eBook among Mathematics teachers. Data was collected from 304 mathematics teachers in selected schools using a survey questionnaire. The selection were based on the proportionate stratified sampling. Structural Equation Modeling (SEM) were employed where the model was tested and evaluated and was found to have a good fit. The variance explained for the teachers' attitude towards eBook is approximately 69.1% where perceived usefulness appeared to be a stronger determinant compared to perceived ease of use. This study concluded that the attitude of mathematics teachers towards eBook depends largely on the perception of how useful the eBook is on improving their teaching performance, implying that teachers should be kept updated with the latest mathematical application and sofwares to use with the eBook to ensure positive attitude towards using it in class.
Mathematical modelling of the lower urinary tract.
Paya, Antonio Soriano; Fernandez, Daniel Ruiz; Gil, David; Garcia Chamizo, Juan Manuel; Perez, Francisco Macia
2013-03-01
The lower urinary tract is one of the most complex biological systems of the human body as it involved hydrodynamic properties of urine and muscle. Moreover, its complexity is increased to be managed by voluntary and involuntary neural systems. In this paper, a mathematical model of the lower urinary tract it is proposed as a preliminary study to better understand its functioning. Furthermore, another goal of that mathematical model proposal is to provide a basis for developing artificial control systems. Lower urinary tract is comprised of two interacting systems: the mechanical system and the neural regulator. The latter has the function of controlling the mechanical system to perform the voiding process. The results of the tests reproduce experimental data with high degree of accuracy. Also, these results indicate that simulations not only with healthy patients but also of patients with dysfunctions with neurological etiology present urodynamic curves very similar to those obtained in clinical studies.
Mathematical Models and the Experimental Analysis of Behavior
ERIC Educational Resources Information Center
Mazur, James E.
2006-01-01
The use of mathematical models in the experimental analysis of behavior has increased over the years, and they offer several advantages. Mathematical models require theorists to be precise and unambiguous, often allowing comparisons of competing theories that sound similar when stated in words. Sometimes different mathematical models may make…
Mathematical Models and the Experimental Analysis of Behavior
ERIC Educational Resources Information Center
Mazur, James E.
2006-01-01
The use of mathematical models in the experimental analysis of behavior has increased over the years, and they offer several advantages. Mathematical models require theorists to be precise and unambiguous, often allowing comparisons of competing theories that sound similar when stated in words. Sometimes different mathematical models may make…
Mathematical Programming Model for Fighter Training Squadron Pilot Scheduling
2007-03-01
of Defense, or the United States Government. AFIT/GOR/ENS/07-17 MATHEMATICAL PROGAMMING MODEL FOR...March 2007 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT/GOR/ENS/07-17 MATHEMATICAL PROGAMMING MODEL FOR FIGHTER...80 x MATHEMATICAL PROGAMMING MODEL FOR FIGHTER TRAINING SQUADRON PILOT
Learning to teach mathematical modelling in secondary and tertiary education
NASA Astrophysics Data System (ADS)
Ferri, Rita Borromeo
2017-07-01
Since 2003 mathematical modelling in Germany is not only a topic for scientific disciplines in university mathematics courses, but also in school starting with primary school. This paper shows what mathematical modelling means in school and how it can be taught as a basis for complex modeling problems in tertiary education.
Mathematical model--tell us the future!
Huovinen, Pentti
2005-08-01
Studying bacterial resistance has direct importance for the antimicrobial treatment of individual patients. In addition, surveillance data pooled from individual diagnostic reports help physicians to choose the most effective drug for empirical therapy. However, this is not the limit of what can be done with the resistance data. There is an increasing need to synthesize the available strands of data in order to construct mathematical models that can be used as tools to predict the likely outcomes of various antibiotic policy options.
Mathematical Model For Deposition Of Soot
NASA Technical Reports Server (NTRS)
Makel, Darby B.
1991-01-01
Semiempirical mathematical model predicts deposition of soot in tubular gas generator in which hydrocarbon fuel burned in very-fuel-rich mixture with pure oxygen. Developed in response to concern over deposition of soot in gas generators and turbomachinery of rocket engines. Also of interest in terrestrial applications involving fuel-rich combustion or analogous process; e.g., purposeful deposition of soot to manufacture carbon black pigments.
Mathematical Model For Deposition Of Soot
NASA Technical Reports Server (NTRS)
Makel, Darby B.
1991-01-01
Semiempirical mathematical model predicts deposition of soot in tubular gas generator in which hydrocarbon fuel burned in very-fuel-rich mixture with pure oxygen. Developed in response to concern over deposition of soot in gas generators and turbomachinery of rocket engines. Also of interest in terrestrial applications involving fuel-rich combustion or analogous process; e.g., purposeful deposition of soot to manufacture carbon black pigments.
A Computational and Mathematical Model for Device Induced Thrombosis
NASA Astrophysics Data System (ADS)
Wu, Wei-Tao; Aubry, Nadine; Massoudi, Mehrdad; Antaki, James
2015-11-01
Based on the Sorenson's model of thrombus formation, a new mathematical model describing the process of thrombus growth is developed. In this model the blood is treated as a Newtonian fluid, and the transport and reactions of the chemical and biological species are modeled using CRD (convection-reaction-diffusion) equations. A computational fluid dynamic (CFD) solver for the mathematical model is developed using the libraries of OpenFOAM. Applying the CFD solver, several representative benchmark problems are studied: rapid thrombus growth in vivo by injecting Adenosine diphosphate (ADP) using iontophoretic method and thrombus growth in rectangular microchannel with a crevice which usually appears as a joint between components of devices and often becomes nidus of thrombosis. Very good agreements between the numerical and the experimental results validate the model and indicate its potential to study a host of complex and practical problems in the future, such as thrombosis in blood pumps and artificial lungs.
Unlocking the black box: teaching mathematical modeling with popular culture.
Lofgren, Eric T
2016-10-01
Mathematical modeling is an important tool in biological research, allowing for the synthesis of results from many studies into an understanding of a system. Despite this, the need for extensive subject matter knowledge and complex mathematics often leaves modeling as an esoteric subspecialty. A 2-fold approach can be used to make modeling more approachable for students and those interested in obtaining a functional knowledge of modeling. The first is the use of a popular culture disease system-a zombie epidemic-to allow for exploration of the concepts of modeling using a flexible framework. The second is the use of available interactive and non-calculus-based tools to allow students to work with and implement models to cement their understanding. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Biology by numbers: mathematical modelling in developmental biology.
Tomlin, Claire J; Axelrod, Jeffrey D
2007-05-01
In recent years, mathematical modelling of developmental processes has earned new respect. Not only have mathematical models been used to validate hypotheses made from experimental data, but designing and testing these models has led to testable experimental predictions. There are now impressive cases in which mathematical models have provided fresh insight into biological systems, by suggesting, for example, how connections between local interactions among system components relate to their wider biological effects. By examining three developmental processes and corresponding mathematical models, this Review addresses the potential of mathematical modelling to help understand development.
Preservice Mathematics Teachers' Perceptions of Drama Based Instruction
ERIC Educational Resources Information Center
Bulut, Neslihan
2016-01-01
The purpose of this study was to determine the perceptions of pre-service mathematics teachers related to drama-based instruction. For this purpose, effects of a drama-based mathematics course on senior class pre-service mathematics teachers' knowledge about drama-based instruction and teacher candidates' competencies for developing and…
Preservice Mathematics Teachers' Perceptions of Drama Based Instruction
ERIC Educational Resources Information Center
Bulut, Neslihan
2016-01-01
The purpose of this study was to determine the perceptions of pre-service mathematics teachers related to drama-based instruction. For this purpose, effects of a drama-based mathematics course on senior class pre-service mathematics teachers' knowledge about drama-based instruction and teacher candidates' competencies for developing and…
Yong, Kamuela E; Mubayi, Anuj; Kribs, Christopher M
2015-11-01
The parasite Trypanosoma cruzi, spread by triatomine vectors, affects over 100 mammalian species throughout the Americas, including humans, in whom it causes Chagas' disease. In the U.S., only a few autochthonous cases have been documented in humans, but prevalence is high in sylvatic hosts (primarily raccoons in the southeast and woodrats in Texas). The sylvatic transmission of T. cruzi is spread by the vector species Triatoma sanguisuga and Triatoma gerstaeckeri biting their preferred hosts and thus creating multiple interacting vector-host cycles. The goal of this study is to quantify the rate of contacts between different host and vector species native to Texas using an agent-based model framework. The contact rates, which represent bites, are required to estimate transmission coefficients, which can be applied to models of infection dynamics. In addition to quantitative estimates, results confirm host irritability (in conjunction with host density) and vector starvation thresholds and dispersal as determining factors for vector density as well as host-vector contact rates.
NASA Astrophysics Data System (ADS)
Leon, Arturo S.
2016-09-01
After the limnic eruptions at Nyos and Monoun in the 1980s, degassing pipes were installed to reduce the continuous increase of CO2 at the bottom of these lakes. The degassing system consists of a vertical pipe from the lake bottom to the surface and a small pump located near the top of the pipe, which raises water in the pipe up to a level where it becomes saturated with gas, which in turn leads to volume expansion and eruption. This paper describes two new mathematical models for predicting eruption velocity in degassing pipes based on exsolution of a single gas and the simultaneous exsolution of multiple gases. The models were applied to the degassing system of lakes Nyos and Monoun, which contain two main gases, namely CO2 and CH4. Because the volume proportion of CH4 is significant only in Lake Monoun, the Lake Nyos test case considered the CO2 gas only, while as the Lake Monoun test case considered the simultaneous exsolution of CO2 and CH4. Good agreement between the results of the models and observed data is found for both test cases. The results for the eruption in Lake Monoun considering the two main gases measured in this lake (CO2 and CH4) were found to have a better agreement with the measurements compared to the model results obtained considering the main gas only (CO2).
Eddy, David M; Schlessinger, Leonard
2016-04-01
Describe steps for deriving and validating equations for physiology processes for use in mathematical models. Illustrate the steps using glucose metabolism and Type 2 diabetes in the Archimedes model. The steps are as follows: identify relevant variables, describe their relationships, identify data sources that relate the variables, correct for biases in data sources, use curve fitting algorithms to estimate equations, validate the accuracy of curve fitting against empirical data, perform partially and fully independent external validations, examine any discrepancies to determine causes and make corrections, and periodically update and revalidate equations as necessary. Specific methods depend on the available data. Specific data sources and methods are illustrated for equations that represent the cause of Type 2 diabetes and its effect on fasting plasma glucose in the Archimedes model. Methods for validating the equations are illustrated. Applications enabled by including physiological equations in healthcare models are discussed. The methods can be used to derive equations that represent the relationships between physiological variables and the causes of diseases and that validate well against empirical data. © The Author(s) 2015.
ERIC Educational Resources Information Center
Costellano, Janet; Scaffa, Matthew
The product of a Special Studies Institute, this teacher developed resource guide for the emotionally handicapped (K-6) presents 37 activities designed to develop mathematics concepts and skills utilizing the urban out-of-doors. Focus is on experiencing math models, patterns, problems, and relationships found in an urban environment. Activities…
Mathematical model of induced flow on the airplane vertical tail
NASA Astrophysics Data System (ADS)
Rotaru, Constantin; Cîrciu, Ionicǎ; Edu, Raluca Ioana
2016-06-01
In this paper is presented a mathematical model of the flow around the vertical tail of an airplane, based on the general elements of the aerodynamic design, with details leading to the separate formulation of the Fourier coefficients in the series solution of the Prandtl's lifting-line equation. Numerical results are obtained in Maple soft environment, for a standard configuration of an airplane geometry. The results include the discussion of the vortex model for the sidewash gradient on the vertical stabilizer.
Thermoregulation in premature infants: A mathematical model.
Pereira, Carina Barbosa; Heimann, Konrad; Czaplik, Michael; Blazek, Vladimir; Venema, Boudewijn; Leonhardt, Steffen
2016-12-01
In 2010, approximately 14.9 million babies (11.1%) were born preterm. Because preterm infants suffer from an immature thermoregulatory system they have difficulty maintaining their core body temperature at a constant level. Therefore, it is essential to maintain their temperature at, ideally, around 37°C. For this, mathematical models can provide detailed insight into heat transfer processes and body-environment interactions for clinical applications. A new multi-node mathematical model of the thermoregulatory system of newborn infants is presented. It comprises seven compartments, one spherical and six cylindrical, which represent the head, thorax, abdomen, arms and legs, respectively. The model is customizable, i.e. it meets individual characteristics of the neonate (e.g. gestational age, postnatal age, weight and length) which play an important role in heat transfer mechanisms. The model was validated during thermal neutrality and in a transient thermal environment. During thermal neutrality the model accurately predicted skin and core temperatures. The difference in mean core temperature between measurements and simulations averaged 0.25±0.21°C and that of skin temperature averaged 0.36±0.36°C. During transient thermal conditions, our approach simulated the thermoregulatory dynamics/responses. Here, for all infants, the mean absolute error between core temperatures averaged 0.12±0.11°C and that of skin temperatures hovered around 0.30°C. The mathematical model appears able to predict core and skin temperatures during thermal neutrality and in case of a transient thermal conditions. Copyright Â© 2016 Elsevier Ltd. All rights reserved.
Modelling of and Conjecturing on a Soccer Ball in a Korean Eighth Grade Mathematics Classroom
ERIC Educational Resources Information Center
Lee, Kyeong-Hwa
2011-01-01
The purpose of this article was to describe the task design and implementation of cultural artefacts in a mathematics lesson based on the integration of modelling and conjecturing perspectives. The conceived process of integrating a soccer ball into mathematics lessons via modelling- and conjecturing-based instruction was first detailed. Next, the…
Modelling of and Conjecturing on a Soccer Ball in a Korean Eighth Grade Mathematics Classroom
ERIC Educational Resources Information Center
Lee, Kyeong-Hwa
2011-01-01
The purpose of this article was to describe the task design and implementation of cultural artefacts in a mathematics lesson based on the integration of modelling and conjecturing perspectives. The conceived process of integrating a soccer ball into mathematics lessons via modelling- and conjecturing-based instruction was first detailed. Next, the…
Mathematical models of human african trypanosomiasis epidemiology.
Rock, Kat S; Stone, Chris M; Hastings, Ian M; Keeling, Matt J; Torr, Steve J; Chitnis, Nakul
2015-03-01
Human African trypanosomiasis (HAT), commonly called sleeping sickness, is caused by Trypanosoma spp. and transmitted by tsetse flies (Glossina spp.). HAT is usually fatal if untreated and transmission occurs in foci across sub-Saharan Africa. Mathematical modelling of HAT began in the 1980s with extensions of the Ross-Macdonald malaria model and has since consisted, with a few exceptions, of similar deterministic compartmental models. These models have captured the main features of HAT epidemiology and provided insight on the effectiveness of the two main control interventions (treatment of humans and tsetse fly control) in eliminating transmission. However, most existing models have overestimated prevalence of infection and ignored transient dynamics. There is a need for properly validated models, evolving with improved data collection, that can provide quantitative predictions to help guide control and elimination strategies for HAT.
A mathematical model of 'Pride and Prejudice'.
Rinaldi, Sergio; Rossa, Fabio Della; Landi, Pietro
2014-04-01
A mathematical model is proposed for interpreting the love story between Elizabeth and Darcy portrayed by Jane Austen in the popular novel Pride and Prejudice. The analysis shows that the story is characterized by a sudden explosion of sentimental involvements, revealed by the existence of a saddle-node bifurcation in the model. The paper is interesting not only because it deals for the first time with catastrophic bifurcations in romantic relation-ships, but also because it enriches the list of examples in which love stories are described through ordinary differential equations.
Assessment of Primary 5 Students' Mathematical Modelling Competencies
ERIC Educational Resources Information Center
Chan, Chun Ming Eric; Ng, Kit Ee Dawn; Widjaja, Wanty; Seto, Cynthia
2012-01-01
Mathematical modelling is increasingly becoming part of an instructional approach deemed to develop students with competencies to function as 21st century learners and problem solvers. As mathematical modelling is a relatively new domain in the Singapore primary school mathematics curriculum, many teachers may not be aware of the learning outcomes…
Assessment of Primary 5 Students' Mathematical Modelling Competencies
ERIC Educational Resources Information Center
Chan, Chun Ming Eric; Ng, Kit Ee Dawn; Widjaja, Wanty; Seto, Cynthia
2012-01-01
Mathematical modelling is increasingly becoming part of an instructional approach deemed to develop students with competencies to function as 21st century learners and problem solvers. As mathematical modelling is a relatively new domain in the Singapore primary school mathematics curriculum, many teachers may not be aware of the learning outcomes…
Development of a Multidisciplinary Middle School Mathematics Infusion Model
ERIC Educational Resources Information Center
Russo, Maria; Hecht, Deborah; Burghardt, M. David; Hacker, Michael; Saxman, Laura
2011-01-01
The National Science Foundation (NSF) funded project "Mathematics, Science, and Technology Partnership" (MSTP) developed a multidisciplinary instructional model for connecting mathematics to science, technology and engineering content areas at the middle school level. Specifically, the model infused mathematics into middle school curriculum…
Exploring the Relationship between Mathematical Modelling and Classroom Discourse
ERIC Educational Resources Information Center
Redmond, Trevor; Sheehy, Joanne; Brown, Raymond
2010-01-01
This paper explores the notion that the discourse of the mathematics classroom impacts on the practices that students engage when modelling mathematics. Using excerpts of a Year 12 student's report on modelling Newton's law of cooling, this paper argues that when students engage with the discourse of their mathematics classroom in a manner that…
Mathematic models of a loudspeakers using in building alarm systems - Simulation process
NASA Astrophysics Data System (ADS)
Siczek, Rafal; Skorupka, Dariusz
2017-07-01
Mathematical models of different devices are used in almost every field of electronics. A system modeled using a mathematical description can be used in studies on parameters of electronic devices without using actual devices. A mathematical model is used very often as a substitute of a real device to be tested, which lowers significantly costs of measurements. Similarly to other electronic models, also a loudspeaker can be described using equations describing its performance and parameters. The mathematical model of a dynamic speaker is based on its equivalent circuit. The article describes a mathematic method of simulating distortions in loudspeakers used in alarm systems. It is possible a modeling of typical parameters in loudspeakers using electronic equivalent circuit and a mathematical model.
NASA Astrophysics Data System (ADS)
Petoshin, V. I.; Chasovnikov, E. A.
2011-05-01
Aerodynamic loads in problems of flight dynamics of passenger aircraft in stalled flow regimes are described using a mathematical model that includes an ordinary linear first-order differential equation. A procedure for determining the parameters of the mathematical model is proposed which is based on approximating experimental frequency characteristics with the frequency characteristics of the linearized mathematical model. The mathematical model was verified by tests of a modern passenger aircraft model in a wind tunnel.
Declarative representation of uncertainty in mathematical models.
Miller, Andrew K; Britten, Randall D; Nielsen, Poul M F
2012-01-01
An important aspect of multi-scale modelling is the ability to represent mathematical models in forms that can be exchanged between modellers and tools. While the development of languages like CellML and SBML have provided standardised declarative exchange formats for mathematical models, independent of the algorithm to be applied to the model, to date these standards have not provided a clear mechanism for describing parameter uncertainty. Parameter uncertainty is an inherent feature of many real systems. This uncertainty can result from a number of situations, such as: when measurements include inherent error; when parameters have unknown values and so are replaced by a probability distribution by the modeller; when a model is of an individual from a population, and parameters have unknown values for the individual, but the distribution for the population is known. We present and demonstrate an approach by which uncertainty can be described declaratively in CellML models, by utilising the extension mechanisms provided in CellML. Parameter uncertainty can be described declaratively in terms of either a univariate continuous probability density function or multiple realisations of one variable or several (typically non-independent) variables. We additionally present an extension to SED-ML (the Simulation Experiment Description Markup Language) to describe sampling sensitivity analysis simulation experiments. We demonstrate the usability of the approach by encoding a sample model in the uncertainty markup language, and by developing a software implementation of the uncertainty specification (including the SED-ML extension for sampling sensitivty analyses) in an existing CellML software library, the CellML API implementation. We used the software implementation to run sampling sensitivity analyses over the model to demonstrate that it is possible to run useful simulations on models with uncertainty encoded in this form.
A mathematical prognosis model for pancreatic cancer patients receiving immunotherapy.
Li, Xuefang; Xu, Jian-Xin
2016-10-07
Pancreatic cancer is one of the most deadly types of cancer since it typically spreads rapidly and can seldom be detected in its early stage. Pancreatic cancer therapy is thus a challenging task, and appropriate prognosis or assessment for pancreatic cancer therapy is of critical importance. In this work, based on available clinical data in Niu et al. (2013) we develop a mathematical prognosis model that can predict the overall survival of pancreatic cancer patients who receive immunotherapy. The mathematical model incorporates pancreatic cancer cells, pancreatic stellate cells, three major classes of immune effector cells CD8+ T cells, natural killer cells, helper T cells, and two major classes of cytokines interleukin-2 (IL-2) and interferon-γ (IFN-γ). The proposed model describes the dynamic interaction between tumor and immune cells. In order for the model to be able to generate appropriate prognostic results for disease progression, the distribution and stability properties of equilibria in the mathematical model are computed and analysed in absence of treatments. In addition, numerical simulations for disease progression with or without treatments are performed. It turns out that the median overall survival associated with CIK immunotherapy is prolonged from 7 to 13months compared with the survival without treatment, this is consistent with the clinical data observed in Niu et al. (2013). The validity of the proposed mathematical prognosis model is thus verified. Our study confirms that immunotherapy offers a better prognosis for pancreatic cancer patients. As a direct extension of this work, various new therapy methods that are under exploration and clinical trials could be assessed or evaluated using the newly developed mathematical prognosis model.
Mathematical Modeling of an Oscillating Droplet
NASA Technical Reports Server (NTRS)
Berry, S.; Hyers, R. W.; Racz, L. M.; Abedian, B.; Rose, M. Franklin (Technical Monitor)
2000-01-01
Oscillating droplets are of interest in a number of disciplines. A practical application is the oscillating drop method, which is a technique for measuring surface tension and viscosity of liquid metals. It is especially suited to undercooled and highly reactive metals, because it is performed by electromagnetic levitation. The natural oscillation frequency of the droplets is related to the surface tension of the material, and the decay of oscillations is related to its viscosity. The fluid flow inside the droplet must be laminar in order for this technique to yield good results. Because no experimental method has yet been developed to visualize flow in electromagnetically-levitated oscillating metal droplets, mathematical modeling is required to determine whether or not turbulence occurs. Three mathematical models of the flow: (1) assuming laminar conditions, (2) using the k-epsilon turbulence model, and (3) using the RNG turbulence model, respectively, are compared and contrasted to determine the physical characteristics of the flow. It is concluded that the RNG model is the best suited for describing this problem. The goal of the presented work was to characterize internal flow in an oscillating droplet of liquid metal, and to verify the accuracy of the characterization by comparing calculated surface tension and viscosity.
Mathematical Modeling and Simulation of Seated Stability
Tanaka, Martin L.; Ross, Shane D.; Nussbaum, Maury A.
2009-01-01
Various methods have been used to quantify the kinematic variability or stability of the human spine. However, each of these methods evaluates dynamic behavior within the stable region of state space. In contrast, our goal was to determine the extent of the stable region. A 2D mathematical model was developed for a human sitting on an unstable seat apparatus (i.e., the “wobble chair”). Forward dynamic simulations were used to compute trajectories based on the initial state. From these trajectories, a scalar field of trajectory divergence was calculated, specifically a finite time Lyapunov exponent (FTLE) field. Theoretically, ridges of local maxima within this field are expected to partition the state space into regions of qualitatively different behavior. We found that ridges formed at the boundary between regions of stability and failure (i.e., falling). The location of the basin of stability found using the FTLE field matched well with the basin of stability determined by an alternative method. In addition, an equilibrium manifold was found, which describes a set of equilibrium configurations that act as a low dimensional attractor in the controlled system. These simulations are a first step in developing a method to locate state space boundaries for torso stability. Identifying these boundaries may provide a framework for assessing factors that contribute to health risks associated with spinal injury and poor balance recovery (e.g., age, fatigue, load/weight and distribution). Furthermore, an approach is presented that can be adapted to find state space boundaries in other biomechanical applications. PMID:20018288
Santos, Guido; Díaz, Mario; Torres, Néstor V
2016-01-01
A connection between lipid rafts and Alzheimer's disease has been studied during the last decades. Mathematical modeling approaches have recently been used to correlate the effects of lipid composition changes in the physicochemical properties of raft-like membranes. Here we propose an agent based model to assess the effect of lipid changes in lipid rafts on the evolution and progression of Alzheimer's disease using lipid profile data obtained in an established model of familial Alzheimer's disease. We have observed that lipid raft size and lipid mobility in non-raft domains are two main factors that increase during age and are accelerated in the transgenic Alzheimer's disease mouse model. The consequences of these changes are discussed in the context of neurotoxic amyloid β production. Our agent based model predicts that increasing sterols (mainly cholesterol) and long-chain polyunsaturated fatty acids (LCPUFA) (mainly DHA, docosahexaenoic acid) proportions in the membrane composition might delay the onset and progression of the disease.
Santos, Guido; Díaz, Mario; Torres, Néstor V.
2016-01-01
A connection between lipid rafts and Alzheimer's disease has been studied during the last decades. Mathematical modeling approaches have recently been used to correlate the effects of lipid composition changes in the physicochemical properties of raft-like membranes. Here we propose an agent based model to assess the effect of lipid changes in lipid rafts on the evolution and progression of Alzheimer's disease using lipid profile data obtained in an established model of familial Alzheimer's disease. We have observed that lipid raft size and lipid mobility in non-raft domains are two main factors that increase during age and are accelerated in the transgenic Alzheimer's disease mouse model. The consequences of these changes are discussed in the context of neurotoxic amyloid β production. Our agent based model predicts that increasing sterols (mainly cholesterol) and long-chain polyunsaturated fatty acids (LCPUFA) (mainly DHA, docosahexaenoic acid) proportions in the membrane composition might delay the onset and progression of the disease. PMID:27014089
Mathematical modelling of submarine landslide motion
NASA Astrophysics Data System (ADS)
Burminskij, A.
2012-04-01
Mathematical modelling of submarine landslide motion The paper presents a mathematical model to calculate dynamic parameters of a submarine landslide. The problem of estimation possible submarine landslides dynamic parameters and run-out distances as well as their effect on submarine structures becomes more and more actual because they can have significant impacts on infrastructure such as the rupture of submarine cables and pipelines, damage to offshore drilling platforms, cause a tsunami. In this paper a landslide is considered as a viscoplastic flow and is described by continuum mechanics equations, averaged over the flow depth. The model takes into account friction at the bottom and at the landslide-water boundary, as well as the involvement of bottom material in motion. A software was created and series of test calculations were performed. Calculations permitted to estimate the contribution of various model coefficients and initial conditions. Motion down inclined bottom was studied both for constant and variable slope angle. Examples of typical distributions of the flow velocity, thickness and density along the landslide body at different stages of motion are given.
Development of a mathematical model of the human circulatory system.
Conlon, Martin J; Russell, Donald L; Mussivand, Tofy
2006-09-01
A mathematical lumped parameter model of the human circulatory system (HCS) has been developed to complement in vitro testing of ventricular assist devices. Components included in this model represent the major parts of the systemic HCS loop, with all component parameters based on physiological data available in the literature. Two model configurations are presented in this paper, the first featuring elements with purely linear constitutive relations, and the second featuring nonlinear constitutive relations for the larger vessels. Three different aortic compliance functions are presented, and a pressure-dependent venous flow resistance is used to simulate venous collapse. The mathematical model produces reasonable systemic pressure and flow behaviour, and graphs of this data are included.
Mathematical modeling to predict residential solid waste generation
Ojeda Benitez, Sara; Vega, Carolina Armijo de
2008-07-01
One of the challenges faced by waste management authorities is determining the amount of waste generated by households in order to establish waste management systems, as well as trying to charge rates compatible with the principle applied worldwide, and design a fair payment system for households according to the amount of residential solid waste (RSW) they generate. The goal of this research work was to establish mathematical models that correlate the generation of RSW per capita to the following variables: education, income per household, and number of residents. This work was based on data from a study on generation, quantification and composition of residential waste in a Mexican city in three stages. In order to define prediction models, five variables were identified and included in the model. For each waste sampling stage a different mathematical model was developed, in order to find the model that showed the best linear relation to predict residential solid waste generation. Later on, models to explore the combination of included variables and select those which showed a higher R{sup 2} were established. The tests applied were normality, multicolinearity and heteroskedasticity. Another model, formulated with four variables, was generated and the Durban-Watson test was applied to it. Finally, a general mathematical model is proposed to predict residential waste generation, which accounts for 51% of the total.
Mathematical Modeling of Extinction of Inhomogeneous Populations
Karev, G.P.; Kareva, I.
2016-01-01
Mathematical models of population extinction have a variety of applications in such areas as ecology, paleontology and conservation biology. Here we propose and investigate two types of sub-exponential models of population extinction. Unlike the more traditional exponential models, the life duration of sub-exponential models is finite. In the first model, the population is assumed to be composed clones that are independent from each other. In the second model, we assume that the size of the population as a whole decreases according to the sub-exponential equation. We then investigate the “unobserved heterogeneity”, i.e. the underlying inhomogeneous population model, and calculate the distribution of frequencies of clones for both models. We show that the dynamics of frequencies in the first model is governed by the principle of minimum of Tsallis information loss. In the second model, the notion of “internal population time” is proposed; with respect to the internal time, the dynamics of frequencies is governed by the principle of minimum of Shannon information loss. The results of this analysis show that the principle of minimum of information loss is the underlying law for the evolution of a broad class of models of population extinction. Finally, we propose a possible application of this modeling framework to mechanisms underlying time perception. PMID:27090117
Mathematical Models of Continuous Flow Electrophoresis
NASA Technical Reports Server (NTRS)
Saville, D. A.; Snyder, R. S.
1985-01-01
Development of high resolution continuous flow electrophoresis devices ultimately requires comprehensive understanding of the ways various phenomena and processes facilitate or hinder separation. A comprehensive model of the actual three dimensional flow, temperature and electric fields was developed to provide guidance in the design of electrophoresis chambers for specific tasks and means of interpreting test data on a given chamber. Part of the process of model development includes experimental and theoretical studies of hydrodynamic stability. This is necessary to understand the origin of mixing flows observed with wide gap gravitational effects. To insure that the model accurately reflects the flow field and particle motion requires extensive experimental work. Another part of the investigation is concerned with the behavior of concentrated sample suspensions with regard to sample stream stability particle-particle interactions which might affect separation in an electric field, especially at high field strengths. Mathematical models will be developed and tested to establish the roles of the various interactions.
Mathematical modelling of hepatic lipid metabolism.
Pratt, Adrian C; Wattis, Jonathan A D; Salter, Andrew M
2015-04-01
The aim of this paper is to develop a mathematical model capable of simulating the metabolic response to a variety of mixed meals in fed and fasted conditions with particular emphasis placed on the hepatic triglyceride element of the model. Model validation is carried out using experimental data for the ingestion of three mixed composition meals over a 24-h period. Comparison with experimental data suggests the model predicts key plasma lipids accurately given a prescribed insulin profile. One counter-intuitive observation to arise from simulations is that liver triglyceride initially decreases when a high fat meal is ingested, a phenomenon potentially explained by the carbohydrate portion of the meal raising plasma insulin. Copyright © 2015 Elsevier Inc. All rights reserved.
Mathematical modeling of the coating process.
Toschkoff, Gregor; Khinast, Johannes G
2013-12-05
Coating of tablets is a common unit operation in the pharmaceutical industry. In most cases, the final product must meet strict quality requirements; to meet them, a detailed understanding of the coating process is required. To this end, numerous experiment studies have been performed. However, to acquire a mechanistic understanding, experimental data must be interpreted in the light of mathematical models. In recent years, a combination of analytical modeling and computational simulations enabled deeper insights into the nature of the coating process. This paper presents an overview of modeling and simulation approaches of the coating process, covering various relevant aspects from scale-up considerations to coating mass uniformity investigations and models for drop atomization. The most important analytical and computational concepts are presented and the findings are compared.
Predictive mathematical models of cancer signalling pathways.
Bachmann, J; Raue, A; Schilling, M; Becker, V; Timmer, J; Klingmüller, U
2012-02-01
Complex intracellular signalling networks integrate extracellular signals and convert them into cellular responses. In cancer cells, the tightly regulated and fine-tuned dynamics of information processing in signalling networks is altered, leading to uncontrolled cell proliferation, survival and migration. Systems biology combines mathematical modelling with comprehensive, quantitative, time-resolved data and is most advanced in addressing dynamic properties of intracellular signalling networks. Here, we introduce different modelling approaches and their application to medical systems biology, focusing on the identifiability of parameters in ordinary differential equation models and their importance in network modelling to predict cellular decisions. Two related examples are given, which include processing of ligand-encoded information and dual feedback regulation in erythropoietin (Epo) receptor signalling. Finally, we review the current understanding of how systems biology could foster the development of new treatment strategies in the context of lung cancer and anaemia.
Mathematical modelling of risk reduction in reinsurance
NASA Astrophysics Data System (ADS)
Balashov, R. B.; Kryanev, A. V.; Sliva, D. E.
2017-01-01
The paper presents a mathematical model of efficient portfolio formation in the reinsurance markets. The presented approach provides the optimal ratio between the expected value of return and the risk of yield values below a certain level. The uncertainty in the return values is conditioned by use of expert evaluations and preliminary calculations, which result in expected return values and the corresponding risk levels. The proposed method allows for implementation of computationally simple schemes and algorithms for numerical calculation of the numerical structure of the efficient portfolios of reinsurance contracts of a given insurance company.
Mathematical model of laser PUVA psoriasis treatment
NASA Astrophysics Data System (ADS)
Medvedev, Boris A.; Tuchin, Valery V.; Yaroslavsky, Ilya V.
1991-05-01
In order to optimize laser PUVA psoriasis treatment we develop the mathematical model of the dynamics of cell processes within epidermis. We consider epidermis as a structure consisting of N cell monolayers. There are four kinds of cells that correspond to four epidermal strata. The different kinds of cells can exist within a given monolayer. We assume that the following cell processes take place: division, death and transition from one stratum to the following. Discrete transition of cells from stratum j to j + 1 approximates to real differentiation.
Mathematics of tsunami: modelling and identification
NASA Astrophysics Data System (ADS)
Krivorotko, Olga; Kabanikhin, Sergey
2015-04-01
Tsunami (long waves in the deep water) motion caused by underwater earthquakes is described by shallow water equations ( { ηtt = div (gH (x,y)-gradη), (x,y) ∈ Ω, t ∈ (0,T ); η|t=0 = q(x,y), ηt|t=0 = 0, (x,y) ∈ Ω. ( (1) Bottom relief H(x,y) characteristics and the initial perturbation data (a tsunami source q(x,y)) are required for the direct simulation of tsunamis. The main difficulty problem of tsunami modelling is a very big size of the computational domain (Ω = 500 × 1000 kilometres in space and about one hour computational time T for one meter of initial perturbation amplitude max|q|). The calculation of the function η(x,y,t) of three variables in Ω × (0,T) requires large computing resources. We construct a new algorithm to solve numerically the problem of determining the moving tsunami wave height S(x,y) which is based on kinematic-type approach and analytical representation of fundamental solution. Proposed algorithm of determining the function of two variables S(x,y) reduces the number of operations in 1.5 times than solving problem (1). If all functions does not depend on the variable y (one dimensional case), then the moving tsunami wave height satisfies of the well-known Airy-Green formula: S(x) = S(0)° --- 4H (0)/H (x). The problem of identification parameters of a tsunami source using additional measurements of a passing wave is called inverse tsunami problem. We investigate two different inverse problems of determining a tsunami source q(x,y) using two different additional data: Deep-ocean Assessment and Reporting of Tsunamis (DART) measurements and satellite altimeters wave-form images. These problems are severely ill-posed. The main idea consists of combination of two measured data to reconstruct the source parameters. We apply regularization techniques to control the degree of ill-posedness such as Fourier expansion, truncated singular value decomposition, numerical regularization. The algorithm of selecting the truncated number of
[Three dimensional mathematical model of tooth for finite element analysis].
Puskar, Tatjana; Vasiljević, Darko; Marković, Dubravka; Jevremović, Danimir; Pantelić, Dejan; Savić-Sević, Svetlana; Murić, Branka
2010-01-01
The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects) in programmes for solid modeling. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analysing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body) into simple geometric bodies (cylinder, cone, pyramid,...). Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.
Mathematical modeling of infectious disease dynamics
Siettos, Constantinos I.; Russo, Lucia
2013-01-01
Over the last years, an intensive worldwide effort is speeding up the developments in the establishment of a global surveillance network for combating pandemics of emergent and re-emergent infectious diseases. Scientists from different fields extending from medicine and molecular biology to computer science and applied mathematics have teamed up for rapid assessment of potentially urgent situations. Toward this aim mathematical modeling plays an important role in efforts that focus on predicting, assessing, and controlling potential outbreaks. To better understand and model the contagious dynamics the impact of numerous variables ranging from the micro host–pathogen level to host-to-host interactions, as well as prevailing ecological, social, economic, and demographic factors across the globe have to be analyzed and thoroughly studied. Here, we present and discuss the main approaches that are used for the surveillance and modeling of infectious disease dynamics. We present the basic concepts underpinning their implementation and practice and for each category we give an annotated list of representative works. PMID:23552814
1994-11-01
aircraft, and terrain. Results are provided as plots illustrating the predicted multipath levels, separation angles, and the resulting error plots from the...worst case contributors. Scenarios were modeled to determine the effects of the multipath sources in the modeled environment. These resulting errors ...were analyzed and compared to error tolerances (FAA-STD-022d) to determine if the errors are acceptable. The effects of the ADW environment were
Fernández Bou, Ángel S; Nascentes, Alexandre Lioi; Costa Pereira, Barbara; Da Silva, Leonardo Duarte Batista; Alberto Ferreira, João; Campos, Juacyara Carbonelli
2015-01-01
The experiments performed in this study consisted of 16 batch reactors fed different mixtures of landfill leachate combined with synthetic wastewater treated using the Powdered Activated Carbon Treatment (PACT) process. The objective was to measure the COD mass removal per liter each day for each reactor using two models: the first model combined the variables PAC concentration (0 g·L(-1), 2 g·L(-1), 4 g·L(-1), and 6 g·L(-1)) and leachate rate in the wastewater (0%, 2%, 5%, and 10%), and the second model combined the PAC concentration and the influent COD. The Response Surface Methodology with Central Composite Design was used to describe the response surface of both models considered in this study. Domestic wastewater was produced under controlled conditions in the laboratory where the experiments were performed. The results indicated that the PAC effect was null when the influent did not contain leachate; however, as the concentration of leachate applied to the mixture was increased, the addition of a higher PAC concentration resulted in a better COD mass removal in the reactors. The adjusted R(2) values of the two models were greater than 0.95, and the predicted R(2) values were greater than 0.93. The models may be useful for wastewater treatment companies to calculate PAC requirements in order to meet COD mass removal objectives in combined treatment.
Automatic mathematical modeling for real time simulation program (AI application)
NASA Technical Reports Server (NTRS)
Wang, Caroline; Purinton, Steve
1989-01-01
A methodology is described for automatic mathematical modeling and generating simulation models. The major objective was to create a user friendly environment for engineers to design, maintain, and verify their models; to automatically convert the mathematical models into conventional code for computation; and finally, to document the model automatically.
ERIC Educational Resources Information Center
Dalla Vecchia, Rodrigo
2015-01-01
This study discusses aspects of the association between Mathematical Modeling (MM) and Big Data in the scope of mathematical education. We present an example of an activity to discuss two ontological factors that involve MM. The first is linked to the modeling stages. The second involves the idea of pedagogical objectives. The main findings…
USDA-ARS?s Scientific Manuscript database
Metabolic reconstructions (MRs) are common denominators in systems biology and represent biochemical, genetic, and genomic (BiGG) knowledge-bases for target organisms by capturing currently available information in a consistent, structured manner. Salmonella enterica subspecies I serovar Typhimurium...
1994-08-30
then bromamines and chloramines are formed and the processes become even more complicated. [10]. 0 From the point of view of crevice corrosion ... Corrosion Propagation on Nickel Base Alloys in Natural and Chlorinated Sea Water Thi! os 7 -= n %:ý 7e~~r: :-ppcved tor piU&* : e --I . " dcktr!u-,J...Summary Crevice corrosion initiation and propagation of nickel base alloys Inconel 625, Hastelloy C276 and Hastelloy 22 in sea water and chlorinated sea
2011-01-01
Background A warm and humid climate triggers several water-associated diseases such as malaria. Climate- or weather-driven malaria models, therefore, allow for a better understanding of malaria transmission dynamics. The Liverpool Malaria Model (LMM) is a mathematical-biological model of malaria parasite dynamics using daily temperature and precipitation data. In this study, the parameter settings of the LMM are refined and a new mathematical formulation of key processes related to the growth and size of the vector population are developed. Methods One of the most comprehensive studies to date in terms of gathering entomological and parasitological information from the literature was undertaken for the development of a new version of an existing malaria model. The knowledge was needed to allow the justification of new settings of various model parameters and motivated changes of the mathematical formulation of the LMM. Results The first part of the present study developed an improved set of parameter settings and mathematical formulation of the LMM. Important modules of the original LMM version were enhanced in order to achieve a higher biological and physical accuracy. The oviposition as well as the survival of immature mosquitoes were adjusted to field conditions via the application of a fuzzy distribution model. Key model parameters, including the mature age of mosquitoes, the survival probability of adult mosquitoes, the human blood index, the mosquito-to-human (human-to-mosquito) transmission efficiency, the human infectious age, the recovery rate, as well as the gametocyte prevalence, were reassessed by means of entomological and parasitological observations. This paper also revealed that various malaria variables lack information from field studies to be set properly in a malaria modelling approach. Conclusions Due to the multitude of model parameters and the uncertainty involved in the setting of parameters, an extensive literature survey was carried out
Preparing Secondary Mathematics Teachers: A Focus on Modeling in Algebra
ERIC Educational Resources Information Center
Jung, Hyunyi; Mintos, Alexia; Newton, Jill
2015-01-01
This study addressed the opportunities to learn (OTL) modeling in algebra provided to secondary mathematics pre-service teachers (PSTs). To investigate these OTL, we interviewed five instructors of required mathematics and mathematics education courses that had the potential to include opportunities for PSTs to learn algebra at three universities.…
Adequate mathematical modelling of environmental processes
NASA Astrophysics Data System (ADS)
Chashechkin, Yu. D.
2012-04-01
In environmental observations and laboratory visualization both large scale flow components like currents, jets, vortices, waves and a fine structure are registered (different examples are given). The conventional mathematical modeling both analytical and numerical is directed mostly on description of energetically important flow components. The role of a fine structures is still remains obscured. A variety of existing models makes it difficult to choose the most adequate and to estimate mutual assessment of their degree of correspondence. The goal of the talk is to give scrutiny analysis of kinematics and dynamics of flows. A difference between the concept of "motion" as transformation of vector space into itself with a distance conservation and the concept of "flow" as displacement and rotation of deformable "fluid particles" is underlined. Basic physical quantities of the flow that are density, momentum, energy (entropy) and admixture concentration are selected as physical parameters defined by the fundamental set which includes differential D'Alembert, Navier-Stokes, Fourier's and/or Fick's equations and closing equation of state. All of them are observable and independent. Calculations of continuous Lie groups shown that only the fundamental set is characterized by the ten-parametric Galilelian groups reflecting based principles of mechanics. Presented analysis demonstrates that conventionally used approximations dramatically change the symmetries of the governing equations sets which leads to their incompatibility or even degeneration. The fundamental set is analyzed taking into account condition of compatibility. A high order of the set indicated on complex structure of complete solutions corresponding to physical structure of real flows. Analytical solutions of a number problems including flows induced by diffusion on topography, generation of the periodic internal waves a compact sources in week-dissipative media as well as numerical solutions of the same
Mathematical Modeling of Microbial Community Dynamics: A Methodological Review
Song, Hyun-Seob; Cannon, William R.; Beliaev, Alex S.; Konopka, Allan
2014-10-17
Microorganisms in nature form diverse communities that dynamically change in structure and function in response to environmental variations. As a complex adaptive system, microbial communities show higher-order properties that are not present in individual microbes, but arise from their interactions. Predictive mathematical models not only help to understand the underlying principles of the dynamics and emergent properties of natural and synthetic microbial communities, but also provide key knowledge required for engineering them. In this article, we provide an overview of mathematical tools that include not only current mainstream approaches, but also less traditional approaches that, in our opinion, can be potentially useful. We discuss a broad range of methods ranging from low-resolution supra-organismal to high-resolution individual-based modeling. Particularly, we highlight the integrative approaches that synergistically combine disparate methods. In conclusion, we provide our outlook for the key aspects that should be further developed to move microbial community modeling towards greater predictive power.
Place-Based Mathematics Education: A Conflated Pedagogy?
ERIC Educational Resources Information Center
Showalter, Daniel A.
2013-01-01
Place-based mathematics education (PBME) has the potential to engage students with the mathematics inherent in the local land, culture, and community. However, research has identified daunting barriers to this pedagogy, especially in abstract mathematics courses such as algebra and beyond. In this study, 15 graduates of a doctoral program in rural…
Place-Based Mathematics Education: A Conflated Pedagogy?
ERIC Educational Resources Information Center
Showalter, Daniel A.
2013-01-01
Place-based mathematics education (PBME) has the potential to engage students with the mathematics inherent in the local land, culture, and community. However, research has identified daunting barriers to this pedagogy, especially in abstract mathematics courses such as algebra and beyond. In this study, 15 graduates of a doctoral program in rural…
Mathematical Model of the Jet Engine Fuel System
NASA Astrophysics Data System (ADS)
Klimko, Marek
2015-05-01
The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor) engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator) will be described, with respect to advanced predetermined simplifications.
Ma, Jianlong; Pan, Hui; Zeng, Yan; Lv, Yehui; Zhang, Heng; Xue, Aimin; Jiang, Jieqing; Ma, Kaijun; Chen, Long
2015-12-01
Precise estimation of postmortem interval (PMI) is crucial in some criminal cases. This study aims to find some optimal markers for PMI estimation and build a mathematical model that could be used in various temperature conditions. Different mRNA and microRNA markers in rat brain samples were detected using real-time fluorescent quantitative PCR at 12 time points within 144 h postmortem and at temperatures of 4, 15, 25, and 35 °C. Samples from 36 other rats were used to verify the animal mathematical model. Brain-specific mir-9 and mir-125b are effective endogenous control markers that are not affected by PMI up to 144 h postmortem under these temperatures, whereas the commonly used U6 is not a suitable endogenous control in this study. Among all the candidate markers, ΔCt (β-actin) has the best correlation coefficient with PMI and was used to build a new model using R software which can simultaneously manage both PMI and temperature parameters. This animal mathematical model is verified using samples from 36 other rats and shows increased accuracy for higher temperatures and longer PMI. In this study, β-actin was found to be an optimal marker to estimate PMI and some other markers were found to be suitable to act as endogenous controls. Additionally, we have used R code software to build a model of PMI estimation that could be used in various temperature conditions.
Ito, Katsura; Tsunematsu, Miwako; Satoh, Kenichi; Kakehashi, Masayuki; Nagata, Yasushi
2013-01-01
Here we assessed the effectiveness of cervical cancer screening using data from the Hiroshima Prefecture Cancer Registry regarding patient age at the start of screening and differences in screening intervals. A screening model was created to calculate the health status in relation to prognosis following cervical cancer screening and its influence on life expectancy. Epidemiological data on the mortality rate of cervical cancer by age groups and mortality rates from the Hiroshima Prefecture Cancer Registry were used for the model projections. Our results showed that life expectancy when screening rate was 100% compared with 0% was extended by approximately 1 month. Furthermore, when the incidence of cervical cancer was 0% compared with the screening rate was 100%, life expectancy was extended by a maximum of 3 months. Moreover, among individuals affected by cervical cancer, a difference of 13 years in life expectancy was calculated between screened and unscreened groups.
A novel mathematical model for controllable near-field electrospinning
NASA Astrophysics Data System (ADS)
Ru, Changhai; Chen, Jie; Shao, Zhushuai; Pang, Ming; Luo, Jun
2014-01-01
Near-field electrospinning (NFES) had better controllability than conventional electrospinning. However, due to the lack of guidance of theoretical model, precise deposition of micro/nano fibers could only accomplished by experience. To analyze the behavior of charged jet in NFES using mathematical model, the momentum balance equation was simplified and a new expression between jet cross-sectional radius and axial position was derived. Using this new expression and mass conservation equation, expressions for jet cross-sectional radius and velocity were derived in terms of axial position and initial jet acceleration in the form of exponential functions. Based on Slender-body theory and Giesekus model, a quadratic equation for initial jet acceleration was acquired. With the proposed model, it was able to accurately predict the diameter and velocity of polymer fibers in NFES, and mathematical analysis rather than experimental methods could be applied to study the effects of the process parameters in NFES. Moreover, the movement velocity of the collector stage can be regulated by mathematical model rather than experience. Therefore, the model proposed in this paper had important guiding significance to precise deposition of polymer fibers.
Mathematical modelling of carbohydrate degradation by human colonic microbiota.
Muñoz-Tamayo, Rafael; Laroche, Béatrice; Walter, Eric; Doré, Joël; Leclerc, Marion
2010-09-07
The human colon is an anaerobic ecosystem that remains largely unexplored as a result of its limited accessibility and its complexity. Mathematical models can play a central role for a better insight into its dynamics. In this context, this paper presents the development of a mathematical model of carbohydrate degradation. Our aim was to provide an in silico approach to contribute to a better understanding of the fermentation patterns in such an ecosystem. Our mathematical model is knowledge-based, derived by writing down mass-balance equations. It incorporates physiology of the intestine, metabolic reactions and transport phenomena. The model was used to study various nutritional scenarios and to assess the role of the mucus on the system behavior. Model simulations provided an adequate qualitative representation of the human colon. Our model is complementary to experimental studies on human colonic fermentation, which, of course, is not meant to replace. It may be helpful to gain insight on questions that are still difficult to elucidate by experimentation and suggest future experiments.
A novel mathematical model for controllable near-field electrospinning
Ru, Changhai E-mail: luojun@shu.edu.cn; Chen, Jie; Shao, Zhushuai; Pang, Ming; Luo, Jun E-mail: luojun@shu.edu.cn
2014-01-15
Near-field electrospinning (NFES) had better controllability than conventional electrospinning. However, due to the lack of guidance of theoretical model, precise deposition of micro/nano fibers could only accomplished by experience. To analyze the behavior of charged jet in NFES using mathematical model, the momentum balance equation was simplified and a new expression between jet cross-sectional radius and axial position was derived. Using this new expression and mass conservation equation, expressions for jet cross-sectional radius and velocity were derived in terms of axial position and initial jet acceleration in the form of exponential functions. Based on Slender-body theory and Giesekus model, a quadratic equation for initial jet acceleration was acquired. With the proposed model, it was able to accurately predict the diameter and velocity of polymer fibers in NFES, and mathematical analysis rather than experimental methods could be applied to study the effects of the process parameters in NFES. Moreover, the movement velocity of the collector stage can be regulated by mathematical model rather than experience. Therefore, the model proposed in this paper had important guiding significance to precise deposition of polymer fibers.
Mathematical Modelling in Engineering: A Proposal to Introduce Linear Algebra Concepts
ERIC Educational Resources Information Center
Cárcamo Bahamonde, Andrea; Gómez Urgelles, Joan; Fortuny Aymemí, Josep
2016-01-01
The modern dynamic world requires that basic science courses for engineering, including linear algebra, emphasise the development of mathematical abilities primarily associated with modelling and interpreting, which are not exclusively calculus abilities. Considering this, an instructional design was created based on mathematical modelling and…
NASA Technical Reports Server (NTRS)
Nigro, N. J.; Elkouh, A. F.; Shen, K. S.; Nimityongskul, P.; Jhaveri, V. N.; Sethi, A.
1975-01-01
A mathematical model for predicting the three dimensional motion of the balloon system is developed, which includes the effects of bounce, pendulation and spin of each subsystem. Boundary layer effects are also examined, along with the aerodynamic forces acting on the balloon. Various simplified forms of the system mathematical model were developed, based on an order of magnitude analysis.
Multiscale mathematical modeling of the hypothalamo-pituitary-gonadal axis.
Clément, Frédérique
2016-07-01
Although the fields of systems and integrative biology are in full expansion, few teams are involved worldwide into the study of reproductive function from the mathematical modeling viewpoint. This may be due to the fact that the reproductive function is not compulsory for individual organism survival, even if it is for species survival. Alternatively, the complexity of reproductive physiology may be discouraging. Indeed, the hypothalamo-pituitary-gonadal (HPG) axis involves not only several organs and tissues but also intricate time (from the neuronal millisecond timescale to circannual rhythmicity) and space (from molecules to organs) scales. Yet, mathematical modeling, and especially multiscale modeling, can renew our approaches of the molecular, cellular, and physiological processes underlying the control of reproductive functions. In turn, the remarkable dynamic features exhibited by the HPG axis raise intriguing and challenging questions to modelers and applied mathematicians. In this article, we draw a panoramic review of some mathematical models designed in the framework of the female HPG, with a special focus on the gonadal and central control of follicular development. On the gonadal side, the modeling of follicular development calls to the generic formalism of structured cell populations, that allows one to make mechanistic links between the control of cell fate (proliferation, differentiation, or apoptosis) and that of the follicle fate (ovulation or degeneration) or to investigate how the functional interactions between the oocyte and its surrounding cells shape the follicle morphogenesis. On the central, mainly hypothalamic side, models based on dynamical systems with multiple timescales allow one to represent within a single framework both the pulsatile and surge patterns of the neurohormone GnRH. Beyond their interest in basic research investigations, mathematical models can also be at the source of useful tools to study the encoding and decoding of
Thiele, Ines; Hyduke, Daniel R; Steeb, Benjamin; Fankam, Guy; Allen, Douglas K; Bazzani, Susanna; Charusanti, Pep; Chen, Feng-Chi; Fleming, Ronan M T; Hsiung, Chao A; De Keersmaecker, Sigrid C J; Liao, Yu-Chieh; Marchal, Kathleen; Mo, Monica L; Özdemir, Emre; Raghunathan, Anu; Reed, Jennifer L; Shin, Sook-il; Sigurbjörnsdóttir, Sara; Steinmann, Jonas; Sudarsan, Suresh; Swainston, Neil; Thijs, Inge M; Zengler, Karsten; Palsson, Bernhard O; Adkins, Joshua N; Bumann, Dirk
2011-01-18
Metabolic reconstructions (MRs) are common denominators in systems biology and represent biochemical, genetic, and genomic (BiGG) knowledge-bases for target organisms by capturing currently available information in a consistent, structured manner. Salmonella enterica subspecies I serovar Typhimurium is a human pathogen, causes various diseases and its increasing antibiotic resistance poses a public health problem. Here, we describe a community-driven effort, in which more than 20 experts in S. Typhimurium biology and systems biology collaborated to reconcile and expand the S. Typhimurium BiGG knowledge-base. The consensus MR was obtained starting from two independently developed MRs for S. Typhimurium. Key results of this reconstruction jamboree include i) development and implementation of a community-based workflow for MR annotation and reconciliation; ii) incorporation of thermodynamic information; and iii) use of the consensus MR to identify potential multi-target drug therapy approaches. Taken together, with the growing number of parallel MRs a structured, community-driven approach will be necessary to maximize quality while increasing adoption of MRs in experimental design and interpretation.
Thiele, Ines; Hyduke, Daniel R.; Steeb, Benjamin; Fankam, Guy; Allen, Douglas K.; Bazzani, Susanna; Charusanti, Pep; Chen, Feng-Chi; Fleming, Ronan MT; Hsiung, Chao A.; De Keersmaecker, Sigrid CJ; Liao, Yu-Chieh; Marchal, Kathleen; Mo, Monica L.; Özdemir, Emre; Raghunathan, Anu; Reed, Jennifer L.; Shin, Sook-Il; Sigurbjörnsdóttir, Sara; Steinmann, Jonas; Sudarsan, Suresh; Swainston, Neil; Thijs, Inge M.; Zengler, Karsten; Palsson, Bernhard O.; Adkins, Joshua N.; Bumann, Dirk
2011-01-01
Metabolic reconstructions (MRs) are common denominators in systems biology and represent biochemical, genetic, and genomic (BiGG) knowledge-bases for target organisms by capturing currently available information in a consistent, structured manner. Salmonella enterica subspecies I serovar Typhimurium is a human pathogen, causes various diseases and its increasing antibiotic resistance poses a public health problem. Here, we describe a community-driven effort, in which more than 20 experts in S. Typhimurium biology and systems biology collaborated to reconcile and expand the S. Typhimurium BiGG knowledge-base. The consensus MR was obtained starting from two independently developed MRs for S. Typhimurium. Key results of this reconstruction jamboree include i) development and implementation of a community-based workflow for MR annotation and reconciliation; ii) incorporation of thermodynamic information; and iii) use of the consensus MR to identify potential multi-target drug therapy approaches. Finally, taken together, with the growing number of parallel MRs a structured, community-driven approach will be necessary to maximize quality while increasing adoption of MRs in experimental design and interpretation.
2011-01-01
Background Metabolic reconstructions (MRs) are common denominators in systems biology and represent biochemical, genetic, and genomic (BiGG) knowledge-bases for target organisms by capturing currently available information in a consistent, structured manner. Salmonella enterica subspecies I serovar Typhimurium is a human pathogen, causes various diseases and its increasing antibiotic resistance poses a public health problem. Results Here, we describe a community-driven effort, in which more than 20 experts in S. Typhimurium biology and systems biology collaborated to reconcile and expand the S. Typhimurium BiGG knowledge-base. The consensus MR was obtained starting from two independently developed MRs for S. Typhimurium. Key results of this reconstruction jamboree include i) development and implementation of a community-based workflow for MR annotation and reconciliation; ii) incorporation of thermodynamic information; and iii) use of the consensus MR to identify potential multi-target drug therapy approaches. Conclusion Taken together, with the growing number of parallel MRs a structured, community-driven approach will be necessary to maximize quality while increasing adoption of MRs in experimental design and interpretation. PMID:21244678
Missing the Promise of Mathematical Modeling
ERIC Educational Resources Information Center
Meyer, Dan
2015-01-01
The Common Core State Standards for Mathematics (CCSSM) have exerted enormous pressure on every participant in a child's education. Students are struggling to meet new standards for mathematics learning, and parents are struggling to understand how to help them. Teachers are growing in their capacity to develop new mathematical competencies, and…
Middle School Mathematics Clinic: A Theoretical Model.
ERIC Educational Resources Information Center
Gore, Ethel V.
This paper describes a middle school mathematics clinic in the District of Columbia Public Schools, which was designed to aid students in the transition from mathematics in the primary grades to high school mathematics courses. It is intended to provide the low achiever with effective diagnostic and corrective instruction by the best trained…
Problem based learning to improve proportional reasoning of students in mathematics learning
NASA Astrophysics Data System (ADS)
Misnasanti, Utami, Ratna Widianti; Suwanto, Fevi Rahmawati
2017-08-01
This paper reviews about the using of Problem Based Learning (PBL) to improve proportional reasoning of students in mathematics learning. Mathematics is one of the subjects at school which generally has a goal to help students preparing themselves in this growth century. To achieve the goal of mathematics learning, student's good reasoning is needed as the base of mathematics itself. This reasoning is an ability to think through logic ideas about mathematics concept. One of reasoning mathematics ability is the proportional reasoning. Proportional reasoning is knowing the multiplicative relationship between the base ratio and the proportional situation to which it's applied. Proportional reasoning is important to have by students in learning mathematics. Many topics within the school mathematics require knowledge and understanding of ratio and proportion, for examples problem solving and calculation activities in domains involving scale, probability, percent, rate, trigonometry, equivalence, measurement, the geometry of plane shapes, algebra are assisted through ratio and proportion knowledge. But, the mastership of proportional reasoning ability, of course, can't be apart from teacher's role. In learning, a teacher has to choose and apply the right model so that it can improve the proportional reasoning ability of students. One of the alternative ways which could be applied to improve proportional reasoning ability of students is by applying PBL Model. Applying PBL which based on problem indirectly has trained students to solve every problem in front of them. Thus, applying PBL can improve mathematics proportional reasoning of students in mathematics learning.
Mathematical modeling of a thermovoltaic cell
NASA Technical Reports Server (NTRS)
White, Ralph E.; Kawanami, Makoto
1992-01-01
A new type of battery named 'Vaporvolt' cell is in the early stage of its development. A mathematical model of a CuO/Cu 'Vaporvolt' cell is presented that can be used to predict the potential and the transport behavior of the cell during discharge. A sensitivity analysis of the various transport and electrokinetic parameters indicates which parameters have the most influence on the predicted energy and power density of the 'Vaporvolt' cell. This information can be used to decide which parameters should be optimized or determined more accurately through further modeling or experimental studies. The optimal thicknesses of electrodes and separator, the concentration of the electrolyte, and the current density are determined by maximizing the power density. These parameter sensitivities and optimal design parameter values will help in the development of a better CuO/Cu 'Vaporvolt' cell.
Lin, Z; Gehring, R; Mochel, J P; Lavé, T; Riviere, J E
2016-10-01
This review provides a tutorial for individuals interested in quantitative veterinary pharmacology and toxicology and offers a basis for establishing guidelines for physiologically based pharmacokinetic (PBPK) model development and application in veterinary medicine. This is important as the application of PBPK modeling in veterinary medicine has evolved over the past two decades. PBPK models can be used to predict drug tissue residues and withdrawal times in food-producing animals, to estimate chemical concentrations at the site of action and target organ toxicity to aid risk assessment of environmental contaminants and/or drugs in both domestic animals and wildlife, as well as to help design therapeutic regimens for veterinary drugs. This review provides a comprehensive summary of PBPK modeling principles, model development methodology, and the current applications in veterinary medicine, with a focus on predictions of drug tissue residues and withdrawal times in food-producing animals. The advantages and disadvantages of PBPK modeling compared to other pharmacokinetic modeling approaches (i.e., classical compartmental/noncompartmental modeling, nonlinear mixed-effects modeling, and interspecies allometric scaling) are further presented. The review finally discusses contemporary challenges and our perspectives on model documentation, evaluation criteria, quality improvement, and offers solutions to increase model acceptance and applications in veterinary pharmacology and toxicology.
Mathematical and computational modelling of skin biophysics: a review
NASA Astrophysics Data System (ADS)
Limbert, Georges
2017-07-01
The objective of this paper is to provide a review on some aspects of the mathematical and computational modelling of skin biophysics, with special focus on constitutive theories based on nonlinear continuum mechanics from elasticity, through anelasticity, including growth, to thermoelasticity. Microstructural and phenomenological approaches combining imaging techniques are also discussed. Finally, recent research applications on skin wrinkles will be presented to highlight the potential of physics-based modelling of skin in tackling global challenges such as ageing of the population and the associated skin degradation, diseases and traumas.
Mathematical and computational modelling of skin biophysics: a review
2017-01-01
The objective of this paper is to provide a review on some aspects of the mathematical and computational modelling of skin biophysics, with special focus on constitutive theories based on nonlinear continuum mechanics from elasticity, through anelasticity, including growth, to thermoelasticity. Microstructural and phenomenological approaches combining imaging techniques are also discussed. Finally, recent research applications on skin wrinkles will be presented to highlight the potential of physics-based modelling of skin in tackling global challenges such as ageing of the population and the associated skin degradation, diseases and traumas. PMID:28804267
The mathematical modelling of arc welding operation
Szekely, J.
1990-01-01
This report described the progress that was made during the grant period which examined the mathematical modeling of arc welding operations with emphasis on the transport phenomena occurring at the interface between the welding arc and weld pool. Work that has been carried out during the last three years of this specific project broke entirely new ground by quantifying the importance of free surface phenomena in arc welding systems. the most critical finding of this work was to emphasize the importance of the two way coupling between weld pool behavior and that of the energy source. More specifically, we have been able to model the interaction of a welding arc with a significantly deformed weld pool surface and we have shown that the deformed weld pool shape may have a very marked effect on the heat flux falling on the weld pool. This work is to be contrasted with most previous studies which model the weld pool independently of the welding arc and vice-versa. We have also been able to model the collapse of strongly deformed weld pools and the resultant gas occlusions. Furthermore, we have begun examination of the nature of the stability of the free surface using classical mathematics (Kelvin-Helmholtz instability). The importance in specifying the free surface lies in its effects on the arc behavior (nature of the heat and current flux). This in turn affects the surface temperature distribution on the weld pool which controls (a) the strength of Marangoni flows, and (b) the vaporization rates of volatile species. The former controls the type of pool shape that can be obtained due to convective flows while the latter controls, in part, the net heat input into the workpiece and limits the peak surface temperature. As a result of these understandings, heavy emphases are placed on quantifying the free surface. 49 refs., 15 figs.
Murav’ev, V. P. Kochetkov, A. V.; Glazova, E. G.
2016-09-15
A mathematical model and algorithms are proposed for automatic calculation of the optimum flow rate of cooling water in nuclear and thermal power plants with cooling systems of arbitrary complexity. An unlimited number of configuration and design variants are assumed with the possibility of obtaining a result for any computational time interval, from monthly to hourly. The structural solutions corresponding to an optimum cooling water flow rate can be used for subsequent engineering-economic evaluation of the best cooling system variant. The computerized mathematical model and algorithms make it possible to determine the availability and degree of structural changes for the cooling system in all stages of the life cycle of a plant.
Mathematical modelling of the growth of human fetus anatomical structures.
Dudek, Krzysztof; Kędzia, Wojciech; Kędzia, Emilia; Kędzia, Alicja; Derkowski, Wojciech
2016-07-08
The goal of this study was to present a procedure that would enable mathematical analysis of the increase of linear sizes of human anatomical structures, estimate mathematical model parameters and evaluate their adequacy. Section material consisted of 67 foetuses-rectus abdominis muscle and 75 foetuses- biceps femoris muscle. The following methods were incorporated to the study: preparation and anthropologic methods, image digital acquisition, Image J computer system measurements and statistical analysis method. We used an anthropologic method based on age determination with the use of crown-rump length-CRL (V-TUB) by Scammon and Calkins. The choice of mathematical function should be based on a real course of the curve presenting growth of anatomical structure linear size Ύ in subsequent weeks t of pregnancy. Size changes can be described with a segmental-linear model or one-function model with accuracy adequate enough for clinical purposes. The interdependence of size-age is described with many functions. However, the following functions are most often considered: linear, polynomial, spline, logarithmic, power, exponential, power-exponential, log-logistic I and II, Gompertz's I and II and von Bertalanffy's function. With the use of the procedures described above, mathematical models parameters were assessed for V-PL (the total length of body) and CRL body length increases, rectus abdominis total length h, its segments hI, hII, hIII, hIV, as well as biceps femoris length and width of long head (LHL and LHW) and of short head (SHL and SHW). The best adjustments to measurement results were observed in the exponential and Gompertz's models.
Mathematical modelling of biofilms and biofilm reactors for engineering design.
Boltz, J P; Morgenroth, E; Sen, D
2010-01-01
Mathematical models are critical to modern environmental biotechnology-both in research and in the engineering practice. Wastewater treatment plant (WWTP) simulators are used by consulting engineers and WWTP operators when planning, designing, optimizing, and evaluating the unit processes that comprise municipal and industrial WWTPs. Many WWTP simulators have been expanded to include a submerged completely-mixed biofilm reactor module that is based on the mathematical description of a one-dimensional biofilm. Leading consultants, equipment manufacturers, and WWTP modelling software developers have made meaningful contributions to advancing the use of biofilm models in engineering practice, but the bulk of the engineering community either does not use the now readily available biofilm reactor modules or utilizes them as 'black-box' design tools. The latter approach results in the mathematical biofilm models being no more useful than the empirical design criteria and formulations that have been historically applied to biofilm reactor design. The present work provides a consensus report on the state-of-the art, areas of uncertainty, and future needs for advancing the use of biofilm models in engineering design.
Hoijnen, J J; van Loosdrecht, M C; Tijhuis, L
1992-12-05
On the basis of the estimated Gibbs energy dissipation per C-mol biomass produced and a convenient black box description of microbial growth, a general equation for the calculation of the yield of biomass on electron donor has been obtained. This black box model defines four formal electron donating reactions for biomass, carbon source, electron donor, and electron acceptor. The proposed description leads to a simple equation which gives the biomass yield on electron donor for chemotrophic growth systems under carbon and energy limitation for which biomass is the only anabolic product. The variables involved are the degrees of reduction and the Gibbs energy characteristics of the four compounds, and the required Gibbs energy dissipation per C-mol produced of biomass. It appears that biomass yields on electron donor for auto- and heterotrophic growth under aerobic, denitrifying, and fermentative conditions can be estimated with 10-15% error in a range of Y(DX)-values of 0.01-0.80 C-mol/(C)-mol electron donor. Also, simple regularities in the Gibbs energy and enthalpy of organic substrates are found. Furthermore, simple relations are derived to calculate the thermodynamic maximal biomass yield, conditions required for growth to occur, heat production, biomass yield on electron acceptor, and anaerobic product yield. Finally a new definition of thermodynamic efficiency is derived. (c) 1992 John Wiley & Sons, Inc.
The use of mathematical models in teaching wastewater treatment engineering.
Morgenroth, E; Arvin, E; Vanrolleghem, P
2002-01-01
Mathematical modeling of wastewater treatment processes has become increasingly popular in recent years. To prepare students for their future careers, environmental engineering education should provide students with sufficient background and experiences to understand and apply mathematical models efficiently and responsibly. Approaches for introducing mathematical modeling into courses on wastewater treatment engineering are discussed depending on the learning objectives, level of the course and the time available.
Analysis of unstable modes distinguishes mathematical models of flagellar motion
Bayly, P. V.; Wilson, K. S.
2015-01-01
The mechanisms underlying the coordinated beating of cilia and flagella remain incompletely understood despite the fundamental importance of these organelles. The axoneme (the cytoskeletal structure of cilia and flagella) consists of microtubule doublets connected by passive and active elements. The motor protein dynein is known to drive active bending, but dynein activity must be regulated to generate oscillatory, propulsive waveforms. Mathematical models of flagellar motion generate quantitative predictions that can be analysed to test hypotheses concerning dynein regulation. One approach has been to seek periodic solutions to the linearized equations of motion. However, models may simultaneously exhibit both periodic and unstable modes. Here, we investigate the emergence and coexistence of unstable and periodic modes in three mathematical models of flagellar motion, each based on a different dynein regulation hypothesis: (i) sliding control; (ii) curvature control and (iii) control by interdoublet separation (the ‘geometric clutch’ (GC)). The unstable modes predicted by each model are used to critically evaluate the underlying hypothesis. In particular, models of flagella with ‘sliding-controlled’ dynein activity admit unstable modes with non-propulsive, retrograde (tip-to-base) propagation, sometimes at the same parameter values that lead to periodic, propulsive modes. In the presence of these retrograde unstable modes, stable or periodic modes have little influence. In contrast, unstable modes of the GC model exhibit switching at the base and propulsive base-to-tip propagation. PMID:25833248
Mechanical-mathematical modeling for landslide process
NASA Astrophysics Data System (ADS)
Svalova, V.
2009-04-01
500 m and displacement of a landslide in the plan over 1 m. Last serious activization of a landslide has taken place in 2002 with a motion on 53 cm. Catastrophic activization of the deep blockglide landslide in the area of Khoroshevo in Moscow took place in 2006-2007. A crack of 330 m long appeared in the old sliding circus, along which a new 220 m long creeping block was separated from the plateau and began sinking with a displaced surface of the plateau reaching to 12 m. Such activization of the landslide process was not observed in Moscow since mid XIX century. The sliding area of Khoroshevo was stable during long time without manifestations of activity. Revealing of the reasons of deformation and development of ways of protection from deep landslide motions is extremely actual and difficult problem which decision is necessary for preservation of valuable historical monuments and modern city constructions. The reasons of activization and protective measures are discussed. Structure of monitoring system for urban territories is elaborated. Mechanical-mathematical model of high viscous fluid was used for modeling of matter behavior on landslide slopes. Equation of continuity and an approximated equation of the Navier-Stockes for slow motions in a thin layer were used. The results of modelling give possibility to define the place of highest velocity on landslide surface, which could be the best place for monitoring post position. Model can be used for calibration of monitoring equipment and gives possibility to investigate some fundamental aspects of matter movement on landslide slope.
The force-frequency relationship: insights from mathematical modeling.
Puglisi, Jose L; Negroni, Jorge A; Chen-Izu, Ye; Bers, Donald M
2013-03-01
The force-frequency relationship has intrigued researchers since its discovery by Bowditch in 1871. Many attempts have been made to construct mathematical descriptions of this phenomenon, beginning with the simple formulation of Koch-Wesser and Blinks in 1963 to the most sophisticated ones of today. This property of cardiac muscle is amplified by β-adrenergic stimulation, and, in a coordinated way, the neurohumoral state alters both frequency (acting on the sinoatrial node) as well as force generation (modifying ventricular myocytes). This synchronized tuning is needed to meet new metabolic demands. Cardiac modelers have already linked mechanical and electrical activity in their formulations and showed how those activities feedback on each other. However, now it is necessary to include neurological control to have a complete description of heart performance, especially when changes in frequency are involved. Study of arrhythmias (or antiarrhythmic drugs) based on mathematical models should incorporate this effect to make useful predictions or point out potential pharmaceutical targets.
Mathematics Models in Chemistry--An Innovation for Non-Mathematics and Non-Science Majors
ERIC Educational Resources Information Center
Rash, Agnes M.; Zurbach, E. Peter
2004-01-01
The intention of this article is to present a year-long interdisciplinary course, Mathematical Models in Chemistry. The course is comprised of eleven units, each of which has both a mathematical and a chemical component. A syllabus of the course is given and the format of the class is explained. The interaction of the professors and the content is…
ERIC Educational Resources Information Center
Akgün, Levent
2015-01-01
The aim of this study is to identify prospective secondary mathematics teachers' opinions about the mathematical modeling method and the applicability of this method in high schools. The case study design, which is among the qualitative research methods, was used in the study. The study was conducted with six prospective secondary mathematics…
Mathematical Modelling: A Path to Political Reflection in the Mathematics Class
ERIC Educational Resources Information Center
Jacobini, Otavio Roberto; Wodewotzki, Maria Lucia L.
2006-01-01
This paper describes the construction of pedagogical environments in mathematics classes, centred on mathematical modelling and denominated "investigative scenarios", which stimulate students to investigation, to formulation of problems and to political reflection, as well as the sharing of acquired knowledge with other persons in the community.…
ERIC Educational Resources Information Center
Akgün, Levent
2015-01-01
The aim of this study is to identify prospective secondary mathematics teachers' opinions about the mathematical modeling method and the applicability of this method in high schools. The case study design, which is among the qualitative research methods, was used in the study. The study was conducted with six prospective secondary mathematics…
Mathematics Models in Chemistry--An Innovation for Non-Mathematics and Non-Science Majors
ERIC Educational Resources Information Center
Rash, Agnes M.; Zurbach, E. Peter
2004-01-01
The intention of this article is to present a year-long interdisciplinary course, Mathematical Models in Chemistry. The course is comprised of eleven units, each of which has both a mathematical and a chemical component. A syllabus of the course is given and the format of the class is explained. The interaction of the professors and the content is…
ERIC Educational Resources Information Center
Lamb, Janeen; Kawakami, Takashi; Saeki, Akihiko; Matsuzaki, Akio
2014-01-01
The aim of this study was to investigate the use of the "dual mathematical modelling cycle framework" as one way to meet the espoused goals of the Australian Curriculum Mathematics. This study involved 23 Year 6 students from one Australian primary school who engaged in an "Oil Tank Task" that required them to develop two…
ERIC Educational Resources Information Center
Biza, Irene; Nardi, Elena; Joel, Gareth
2015-01-01
In this paper we present the results from a study in which 21 mathematics trainee teachers engage with two practice-based tasks in which classroom management interferes with mathematical learning. We investigate the trainees' considerations when they make decisions in classroom situations and how these tasks can trigger their reflections on the…
ERIC Educational Resources Information Center
Jitendra, Asha K.; Nelson, Gena; Pulles, Sandra M.; Kiss, Allyson J.; Houseworth, James
2016-01-01
The purpose of the present review was to evaluate the quality of the research and evidence base for representation of problems as a strategy to enhance the mathematical performance of students with learning disabilities and those at risk for mathematics difficulties. The authors evaluated 25 experimental and quasiexperimental studies according to…
ERIC Educational Resources Information Center
Jitendra, Asha K.; Nelson, Gena; Pulles, Sandra M.; Kiss, Allyson J.; Houseworth, James
2016-01-01
The purpose of the present review was to evaluate the quality of the research and evidence base for representation of problems as a strategy to enhance the mathematical performance of students with learning disabilities and those at risk for mathematics difficulties. The authors evaluated 25 experimental and quasiexperimental studies according to…
Mathematical and computer modeling of component surface shaping
NASA Astrophysics Data System (ADS)
Lyashkov, A.
2016-04-01
The process of shaping technical surfaces is an interaction of a tool (a shape element) and a component (a formable element or a workpiece) in their relative movements. It was established that the main objects of formation are: 1) a discriminant of a surfaces family, formed by the movement of the shape element relatively the workpiece; 2) an enveloping model of the real component surface obtained after machining, including transition curves and undercut lines; 3) The model of cut-off layers obtained in the process of shaping. When modeling shaping objects there are a lot of insufficiently solved or unsolved issues that make up a single scientific problem - a problem of qualitative shaping of the surface of the tool and then the component surface produced by this tool. The improvement of known metal-cutting tools, intensive development of systems of their computer-aided design requires further improvement of the methods of shaping the mating surfaces. In this regard, an important role is played by the study of the processes of shaping of technical surfaces with the use of the positive aspects of analytical and numerical mathematical methods and techniques associated with the use of mathematical and computer modeling. The author of the paper has posed and has solved the problem of development of mathematical, geometric and algorithmic support of computer-aided design of cutting tools based on computer simulation of the shaping process of surfaces.
The Aircraft Availability Model: Conceptual Framework and Mathematics
1983-06-01
THE AIRCRAFT AVAILABILITY MODEL: CONCEPTUAL FRAMEWORK AND MATHEMATICS June 1983 T. J. O’Malley Prepared pursuant to Department of Defense Contract No...OF REPORT & PERIOD COVERED The Aircraft Availability Model: Model Documentation Conceptual Framework and Mathematics 6. PERFORMING ORG. REPORT NUMBER
Review and verification of CARE 3 mathematical model and code
NASA Technical Reports Server (NTRS)
Rose, D. M.; Altschul, R. E.; Manke, J. W.; Nelson, D. L.
1983-01-01
The CARE-III mathematical model and code verification performed by Boeing Computer Services were documented. The mathematical model was verified for permanent and intermittent faults. The transient fault model was not addressed. The code verification was performed on CARE-III, Version 3. A CARE III Version 4, which corrects deficiencies identified in Version 3, is being developed.
Some Reflections on the Teaching of Mathematical Modeling
ERIC Educational Resources Information Center
Warwick, Jon
2007-01-01
This paper offers some reflections on the difficulties of teaching mathematical modeling to students taking higher education courses in which modeling plays a significant role. In the author's experience, other aspects of the model development process often cause problems rather than the use of mathematics. Since these other aspects involve…