Sample records for based metal matrix

  1. Preparation of magnesium metal matrix composites by powder metallurgy process

    NASA Astrophysics Data System (ADS)

    Satish, J.; Satish, K. G., Dr.

    2018-02-01

    Magnesium is the lightest metal used as the source for constructional alloys. Today Magnesium based metal matrix composites are widely used in aerospace, structural, oceanic and automobile applications for its light weight, low density(two thirds that of aluminium), good high temperature mechanical properties and good to excellent corrosion resistance. The reason of designing metal matrix composite is to put in the attractive attributes of metals and ceramics to the base metal. In this study magnesium metal matrix hybrid composite are developed by reinforcing pure magnesium with silicon carbide (SiC) and aluminium oxide by method of powder metallurgy. This method is less expensive and very efficient. The Hardness test was performed on the specimens prepared by powder metallurgy method. The results revealed that the micro hardness of composites was increased with the addition of silicon carbide and alumina particles in magnesium metal matrix composites.

  2. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites

    PubMed Central

    Wang, Z.; Georgarakis, K.; Nakayama, K. S.; Li, Y.; Tsarkov, A. A.; Xie, G.; Dudina, D.; Louzguine-Luzgin, D. V.; Yavari, A. R.

    2016-01-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses. PMID:27067824

  3. Method of making metal matrix composites reinforced with ceramic particulates

    DOEpatents

    Cornie, James A.; Kattamis, Theodoulos; Chambers, Brent V.; Bond, Bruce E.; Varela, Raul H.

    1989-01-01

    Composite materials and methods for making such materials are disclosed in which dispersed ceramic particles are at chemical equilibrium with a base metal matrix, thereby permitting such materials to be remelted and subsequently cast or otherwise processed to form net weight parts and other finished (or semi-finished) articles while maintaining the microstructure and mechanical properties (e.g. wear resistance or hardness) of the original composite. The composite materials of the present invention are composed of ceramic particles in a base metal matrix. The ceramics are preferably carbides of titanium, zirconium, tungsten, molybdenum or other refractory metals. The base metal can be iron, nickel, cobalt, chromium or other high temperature metal and alloys thereof. For ferrous matrices, alloys suitable for use as the base metal include cast iron, carbon steels, stainless steels and iron-based superalloys.

  4. Method of making metal matrix composites reinforced with ceramic particulates

    DOEpatents

    Cornie, J.A.; Kattamis, T.; Chambers, B.V.; Bond, B.E.; Varela, R.H.

    1989-08-01

    Composite materials and methods for making such materials are disclosed in which dispersed ceramic particles are at chemical equilibrium with a base metal matrix, thereby permitting such materials to be remelted and subsequently cast or otherwise processed to form net weight parts and other finished (or semi-finished) articles while maintaining the microstructure and mechanical properties (e.g. wear resistance or hardness) of the original composite. The composite materials of the present invention are composed of ceramic particles in a base metal matrix. The ceramics are preferably carbides of titanium, zirconium, tungsten, molybdenum or other refractory metals. The base metal can be iron, nickel, cobalt, chromium or other high temperature metal and alloys thereof. For ferrous matrices, alloys suitable for use as the base metal include cast iron, carbon steels, stainless steels and iron-based superalloys. 2 figs.

  5. The Process of Nanostructuring of Metal (Iron) Matrix in Composite Materials for Directional Control of the Mechanical Properties

    PubMed Central

    Zemtsova, Elena

    2014-01-01

    We justified theoretical and experimental bases of synthesis of new class of highly nanostructured composite nanomaterials based on metal matrix with titanium carbide nanowires as dispersed phase. A new combined method for obtaining of metal iron-based composite materials comprising the powder metallurgy processes and the surface design of the dispersed phase is considered. The following stages of material synthesis are investigated: (1) preparation of porous metal matrix; (2) surface structuring of the porous metal matrix by TiC nanowires; (3) pressing and sintering to give solid metal composite nanostructured materials based on iron with TiC nanostructures with size 1–50 nm. This material can be represented as the material type “frame in the frame” that represents iron metal frame reinforcing the frame of different chemical compositions based on TiC. Study of material functional properties showed that the mechanical properties of composite materials based on iron with TiC dispersed phase despite the presence of residual porosity are comparable to the properties of the best grades of steel containing expensive dopants and obtained by molding. This will solve the problem of developing a new generation of nanostructured metal (iron-based) materials with improved mechanical properties for the different areas of technology. PMID:24695459

  6. The process of nanostructuring of metal (iron) matrix in composite materials for directional control of the mechanical properties.

    PubMed

    Zemtsova, Elena; Yurchuk, Denis; Smirnov, Vladimir

    2014-01-01

    We justified theoretical and experimental bases of synthesis of new class of highly nanostructured composite nanomaterials based on metal matrix with titanium carbide nanowires as dispersed phase. A new combined method for obtaining of metal iron-based composite materials comprising the powder metallurgy processes and the surface design of the dispersed phase is considered. The following stages of material synthesis are investigated: (1) preparation of porous metal matrix; (2) surface structuring of the porous metal matrix by TiC nanowires; (3) pressing and sintering to give solid metal composite nanostructured materials based on iron with TiC nanostructures with size 1-50 nm. This material can be represented as the material type "frame in the frame" that represents iron metal frame reinforcing the frame of different chemical compositions based on TiC. Study of material functional properties showed that the mechanical properties of composite materials based on iron with TiC dispersed phase despite the presence of residual porosity are comparable to the properties of the best grades of steel containing expensive dopants and obtained by molding. This will solve the problem of developing a new generation of nanostructured metal (iron-based) materials with improved mechanical properties for the different areas of technology.

  7. A micromechanics-based strength prediction methodology for notched metal matrix composites

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1992-01-01

    An analytical micromechanics based strength prediction methodology was developed to predict failure of notched metal matrix composites. The stress-strain behavior and notched strength of two metal matrix composites, boron/aluminum (B/Al) and silicon-carbide/titanium (SCS-6/Ti-15-3), were predicted. The prediction methodology combines analytical techniques ranging from a three dimensional finite element analysis of a notched specimen to a micromechanical model of a single fiber. In the B/Al laminates, a fiber failure criteria based on the axial and shear stress in the fiber accurately predicted laminate failure for a variety of layups and notch-length to specimen-width ratios with both circular holes and sharp notches when matrix plasticity was included in the analysis. For the SCS-6/Ti-15-3 laminates, a fiber failure based on the axial stress in the fiber correlated well with experimental results for static and post fatigue residual strengths when fiber matrix debonding and matrix cracking were included in the analysis. The micromechanics based strength prediction methodology offers a direct approach to strength prediction by modeling behavior and damage on a constituent level, thus, explicitly including matrix nonlinearity, fiber matrix debonding, and matrix cracking.

  8. A micromechanics-based strength prediction methodology for notched metal-matrix composites

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1993-01-01

    An analytical micromechanics-based strength prediction methodology was developed to predict failure of notched metal matrix composites. The stress-strain behavior and notched strength of two metal matrix composites, boron/aluminum (B/Al) and silicon-carbide/titanium (SCS-6/Ti-15-3), were predicted. The prediction methodology combines analytical techniques ranging from a three-dimensional finite element analysis of a notched specimen to a micromechanical model of a single fiber. In the B/Al laminates, a fiber failure criteria based on the axial and shear stress in the fiber accurately predicted laminate failure for a variety of layups and notch-length to specimen-width ratios with both circular holes and sharp notches when matrix plasticity was included in the analysis. For the SCS-6/Ti-15-3 laminates, a fiber failure based on the axial stress in the fiber correlated well with experimental results for static and postfatigue residual strengths when fiber matrix debonding and matrix cracking were included in the analysis. The micromechanics-based strength prediction methodology offers a direct approach to strength prediction by modeling behavior and damage on a constituent level, thus, explicitly including matrix nonlinearity, fiber matrix debonding, and matrix cracking.

  9. Material Processing and Design of Biodegradable Metal Matrix Composites for Biomedical Applications.

    PubMed

    Yang, Jingxin; Guo, Jason L; Mikos, Antonios G; He, Chunyan; Cheng, Guang

    2018-06-04

    In recent years, biodegradable metallic materials have played an important role in biomedical applications. However, as typical for the metal materials, their structure, general properties, preparation technology and biocompatibility are hard to change. Furthermore, biodegradable metals are susceptible to excessive degradation and subsequent disruption of their mechanical integrity; this phenomenon limits the utility of these biomaterials. Therefore, the use of degradable metals, as the base material to prepare metal matrix composite materials, it is an excellent alternative to solve the problems above described. Biodegradable metals can thus be successfully combined with other materials to form biodegradable metallic matrix composites for biomedical applications and functions. The present article describes the processing methods currently available to design biodegradable metal matrix composites for biomedical applications and provides an overview of the current existing biodegradable metal systems. At the end, the manuscript presents and discusses the challenges and future research directions for development of biodegradable metallic matrix composites for biomedical purposes.

  10. Functional Metal Matrix Composites: Self-lubricating, Self-healing, and Nanocomposites-An Outlook

    NASA Astrophysics Data System (ADS)

    Dorri Moghadam, Afsaneh; Schultz, Benjamin F.; Ferguson, J. B.; Omrani, Emad; Rohatgi, Pradeep K.; Gupta, Nikhil

    2014-06-01

    Many different types of advanced metal matrix composites are now available, some of which possess functional properties. Recent work on particle-reinforced, self-lubricating and self-healing metals and metal matrix nanocomposites (MMNCs) synthesized by solidification synthesis is reviewed. Particle-based MMNCs have been developed by several modern processing tools based on either solid- or liquid-phase synthesis techniques that are claimed to exhibit exciting mechanical properties including improvements of modulus, yield strength, and ultimate tensile strength. This article presents a brief and objective review of the work done over the last decade to identify the challenges and future opportunities in the area of functional nanocomposites. Increasing interest in lightweight materials has resulted in studies on hollow particle-filled metal matrix syntactic foams. Syntactic foams seem especially suitable for development with functional properties such as self-healing and self-lubrication. The metal matrix micro and nanocomposites, and syntactic foams having combinations of ultrahigh strength and wear resistance, self-lubricating, and/or self-healing properties can lead to increased energy efficiency, reliability, comfort of operation, reparability, and safety of vehicles. The focus of the present review is aluminum and magnesium matrix functional materials.

  11. The development and mechanical characterization of aluminium copper-carbon fiber metal matrix hybrid composite

    NASA Astrophysics Data System (ADS)

    Manzoor, M. U.; Feroze, M.; Ahmad, T.; Kamran, M.; Butt, M. T. Z.

    2018-04-01

    Metal matrix composites (MMCs) come under advanced materials that can be used for a wide range of industrial applications. MMCs contain a non-metallic reinforcement incorporated into a metallic matrix which can enhance properties over base metal alloys. Copper-Carbon fiber reinforced aluminium based hybrid composites were prepared by compo casting method. 4 weight % copper was used as alloying element with Al because of its precipitation hardened properties. Different weight compositions of composites were developed and characterized by mechanical testing. A significant improvement in tensile strength and micro hardness were found, before and after heat treatment of the composite. The SEM analysis of the fractured surfaces showed dispersed and embedded Carbon fibers within the network leading to the enhanced strength.

  12. Ultrafine Ceramic Grains Embedded in Metallic Glass Matrix: Achieving Superior Wear Resistance via Increase in Both Hardness and Toughness.

    PubMed

    Yang, Lina; Wen, Mao; Dai, Xuan; Cheng, Gang; Zhang, Kan

    2018-05-09

    As structural materials, crystalline or metallic glass materials have attracted scientific and practical interests. However, some mechanisms involving critical size and shear bands have adverse effects on their mechanical properties. Here, we counter these two effects by introducing a special structure with ultrafine ceramic grains (with a diameter of ∼2.0 nm) embedded into a metallic glass matrix, wherein the grains are mainly composed of a Ta-W-N solid solution structure in nature, surrounded by a W-based amorphous matrix that contains Ta and N atoms. Such a structure is in situ formed during preparation, which combines the merits of both phases to achieve simultaneous increase in hardness and toughness relative to references (pure TaN and W) and thus superior wear resistance. Even more remarkable, a favorable variation of increased hardness but reduced elasticity modulus can be induced by this structure. Intrinsically, ultrafine ceramic grains (free of dislocations), embedded in the metallic glass matrix, could prevent shear band propagation within the glass matrix and further improve the hardness of the matrix material. In return, such glass matrix allows for stiffness neutralization and structural relaxation to reduce the elasticity modulus of ceramic grains. This study will offer a new guidance to fabricate ultrahigh-performance metal-based composites.

  13. Metal- and intermetallic-matrix composites for aerospace propulsion and power systems

    NASA Astrophysics Data System (ADS)

    Doychak, J.

    1992-06-01

    Successful development and deployment of metal-matrix composites and intermetallic- matrix composites are critical to reaching the goals of many advanced aerospace propulsion and power development programs. The material requirements are based on the aerospace propulsion and power system requirements, economics, and other factors. Advanced military and civilian aircraft engines will require higher specific strength materials that operate at higher temperatures, and the civilian engines will also require long lifetimes. The specific space propulsion and power applications require hightemperature, high-thermal-conductivity, and high-strength materials. Metal-matrix composites and intermetallic-matrix composites either fulfill or have the potential of fulfilling these requirements.

  14. Synthesis of Mesoporous Metal Oxides by Structure Replication: Thermal Analysis of Metal Nitrates in Porous Carbon Matrices

    PubMed Central

    Weinberger, Christian; Roggenbuck, Jan; Hanss, Jan; Tiemann, Michael

    2015-01-01

    A variety of metal nitrates were filled into the pores of an ordered mesoporous CMK-3 carbon matrix by solution-based impregnation. Thermal conversion of the metal nitrates into the respective metal oxides, and subsequent removal of the carbon matrix by thermal combustion, provides a versatile means to prepare mesoporous metal oxides (so-called nanocasting). This study aims to monitor the thermally induced processes by thermogravimetric analysis (TGA), coupled with mass ion detection (MS). The highly dispersed metal nitrates in the pores of the carbon matrix tend to react to the respective metal oxides at lower temperature than reported in the literature for pure, i.e., carbon-free, metal nitrates. The subsequent thermal combustion of the CMK-3 carbon matrix also occurs at lower temperature, which is explained by a catalytic effect of the metal oxides present in the pores. This catalytic effect is particularly strong for oxides of redox active metals, such as transition group VII and VIII metals (Mn, Fe, Co, Ni), Cu, and Ce. PMID:28347073

  15. Feasibility study on development of metal matrix composite by microwave stir casting

    NASA Astrophysics Data System (ADS)

    Lingappa, S. M.; Srinath, M. S.; Amarendra, H. J.

    2018-04-01

    Need for better service oriented materials has boosted the demand for metal matrix composite materials, which can be developed to have necessary properties. One of the most widely utilized metal matrix composite is Al-SiC, which is having a matrix made of aluminium metal and SiC as reinforcement. Lightweight and conductivity of aluminium, when combined with hardness and wear resistance of SiC provides an excellent platform for various applications in the field of electronics, automotives, and aerospace and so on. However, uniform distribution of reinforcement particles is an issue and has to be addressed. The present study is an attempt made to develop Al-SiC metal matrix composite by melting base metal using microwave hybrid heating technique, followed by addition of reinforcement and stirring the mixture for obtaining homogenous mixture. X-Ray Diffraction analysis shows the presence of aluminium and SiC in the cast material. Further, microstructural study shows the distribution of SiC particles in the grain boundaries.

  16. Development of 10×10 Matrix-anode MCP-PMT

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Li, Yongbin; Xu, Pengxiao; Zhao, Wenjin

    2018-02-01

    10×10 matrix-anode is developed by high-temperature co-fired ceramics (HTCC) technology. Based on the new matrix-anode, a new kind of photon counting imaging detector - 10×10 matrix-anode MCP-PMT is developed, and its performance parameters are tested. HTCC technology is suitable for the MCP-PMT's air impermeability and its baking process. Its response uniformity is better than the metal-ceramic or metal-glass sealing anode, and it is also a promising method to realize a higher density matrix-anode.

  17. Metal- and intermetallic-matrix composites for aerospace propulsion and power systems

    NASA Technical Reports Server (NTRS)

    Doychak, J.

    1992-01-01

    The requirements for high specific strength refractory materials of prospective military, civil, and space propulsion systems are presently addressed in the context of emerging capabilities in metal- and intermetallic-matrix composites. The candidate systems encompass composite matrix compositions of superalloy, Nb-Zr refractory alloy, Cu-base, and Ti-base alloy types, as well as such intermetallics as TiAl, Ti3Al, NiAl, and MoSi2. The brittleness of intermetallic matrices remains a major consideration, as does their general difficulty of fabrication.

  18. Carbide-reinforced metal matrix composite by direct metal deposition

    NASA Astrophysics Data System (ADS)

    Novichenko, D.; Thivillon, L.; Bertrand, Ph.; Smurov, I.

    Direct metal deposition (DMD) is an automated 3D laser cladding technology with co-axial powder injection for industrial applications. The actual objective is to demonstrate the possibility to produce metal matrix composite objects in a single-step process. Powders of Fe-based alloy (16NCD13) and titanium carbide (TiC) are premixed before cladding. Volume content of the carbide-reinforced phase is varied. Relationships between the main laser cladding parameters and the geometry of the built-up objects (single track, 2D coating) are discussed. On the base of parametric study, a laser cladding process map for the deposition of individual tracks was established. Microstructure and composition of the laser-fabricated metal matrix composite objects are examined. Two different types of structures: (a) with the presence of undissolved and (b) precipitated titanium carbides are observed. Mechanism of formation of diverse precipitated titanium carbides is studied.

  19. Technology Base Enhancement Program. Metal Matrix Composites

    DTIC Science & Technology

    1993-08-30

    efficiency, improved structural reliability, and reduced maintenance when compared to carbon fiber reinforced composites . Aerospace engines (in particular...different materials. The composite consists of a metal matrix reinforced with particulates, flakes, whiskers,3 continuous fibers , filaments, wires, or...graphite and carbon to metals. They come in three general forms: particulates (or particles) with a length to diameter ratio of about 1; chopped fibers or

  20. A simple laminate theory using the orthotropic viscoplasticity theory based on overstress. I - In-plane stress-strain relationships for metal matrix composites

    NASA Technical Reports Server (NTRS)

    Krempl, Erhard; Hong, Bor Zen

    1989-01-01

    A macromechanics analysis is presented for the in-plane, anisotropic time-dependent behavior of metal matrix laminates. The small deformation, orthotropic viscoplasticity theory based on overstress represents lamina behavior in a modified simple laminate theory. Material functions and constants can be identified in principle from experiments with laminae. Orthotropic invariants can be repositories for tension-compression asymmetry and for linear elasticity in one direction while the other directions behave in a viscoplastic manner. Computer programs are generated and tested for either unidirectional or symmetric laminates under in-plane loading. Correlations with the experimental results on metal matrix composites are presented.

  1. Interfacial and capillary phenomena in solidification processing of metal-matrix composites

    NASA Technical Reports Server (NTRS)

    Asthana, R.; Tewari, S. N.

    1993-01-01

    Chemical and hydrodynamic aspects of wetting and interfacial phenomena during the solidification processing of metal-matrix composites are reviewed. Significant experimental results on fiber-matrix interactions and wetting under equilibrium and non-equilibrium conditions in composites of engineering interest have been compiled, based on a survey of the recent literature. Finally, certain aspects of wetting relevant to stir-casting and infiltration processing of composites are discussed.

  2. Probabilistic micromechanics for metal matrix composites

    NASA Astrophysics Data System (ADS)

    Engelstad, S. P.; Reddy, J. N.; Hopkins, Dale A.

    A probabilistic micromechanics-based nonlinear analysis procedure is developed to predict and quantify the variability in the properties of high temperature metal matrix composites. Monte Carlo simulation is used to model the probabilistic distributions of the constituent level properties including fiber, matrix, and interphase properties, volume and void ratios, strengths, fiber misalignment, and nonlinear empirical parameters. The procedure predicts the resultant ply properties and quantifies their statistical scatter. Graphite copper and Silicon Carbide Titanlum Aluminide (SCS-6 TI15) unidirectional plies are considered to demonstrate the predictive capabilities. The procedure is believed to have a high potential for use in material characterization and selection to precede and assist in experimental studies of new high temperature metal matrix composites.

  3. Processing of Hybrid Structures Consisting of Al-Based Metal Matrix Composites (MMCs) With Metallic Reinforcement of Steel or Titanium

    DTIC Science & Technology

    2013-09-01

    637 2. S.V. Prasad and R. Asthana, "Aluminum Metal-Matrix Composites for Automotive Applications : Tribological Considerations," Tribology Leiters, 11...seeing widespread use in thermal management, precision equipment, and automotive applications where composition and microstructure are tailored to...Key applications include high specific stiffuess panels and beams, fluid flow structures, thermal management substrates, and blast wave mitigation

  4. Micromechanical modeling of damage growth in titanium based metal-matrix composites

    NASA Technical Reports Server (NTRS)

    Sherwood, James A.; Quimby, Howard M.

    1994-01-01

    The thermomechanical behavior of continuous-fiber reinforced titanium based metal-matrix composites (MMC) is studied using the finite element method. A thermoviscoplastic unified state variable constitutive theory is employed to capture inelastic and strain-rate sensitive behavior in the Timetal-21s matrix. The SCS-6 fibers are modeled as thermoplastic. The effects of residual stresses generated during the consolidation process on the tensile response of the composites are investigated. Unidirectional and cross-ply geometries are considered. Differences between the tensile responses in composites with perfectly bonded and completely debonded fiber/matrix interfaces are discussed. Model simulations for the completely debonded-interface condition are shown to correlate well with experimental results.

  5. Manufacturing Techniques for Titanium Aluminide Based Alloys and Metal Matrix Composites

    DTIC Science & Technology

    2010-01-01

    aluminides are being used in the low pressure turbine (LPT) blades . In addition, titanium aluminides were also investigated for use in High Speed Civil... Titanium aluminides are also being used in General Electric’s GEnex gas turbine engine for the 6th and the 7th stage of the low pressure turbine blades ...ABSTRACT Title of Dissertation: MANUFACTURING TECHNIQUES FOR TITANIUM ALUMINIDE BASED ALLOYS AND METAL MATRIX COMPOSITES

  6. Comparison Of Models Of Metal-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.; Johnson, W. S.; Naik, R. A.

    1994-01-01

    Report presents comparative review of four mathematical models of micromechanical behaviors of fiber/metal-matrix composite materials. Models differ in various details, all based on properties of fiber and matrix constituent materials, all involve square arrays of fibers continuous and parallel and all assume complete bonding between constituents. Computer programs implementing models used to predict properties and stress-vs.-strain behaviors of unidirectional- and cross-ply laminated composites made of boron fibers in aluminum matrices and silicon carbide fibers in titanium matrices. Stresses in fiber and matrix constituent materials also predicted.

  7. Preparation of SiC based Aluminium metal matrix nano composites by high intensity ultrasonic cavitation process and evaluation of mechanical and tribological properties

    NASA Astrophysics Data System (ADS)

    Murthy, N. V.; Prasad Reddy, A.; Selvaraj, N.; Rao, C. S. P.

    2016-09-01

    Request augments on a worldwide scale for the new materials. The metal matrix nano composites can be used in numerous applications of helicopter structural parts, gas turbine exit guide vane's, space shuttle, and other structural applications. The key mailman to ameliorate performance of composite matrix in aluminium alloy metal reinforces nano particles in the matrix of alloy uniformly, which ameliorates composite properties without affecting limit of ductility. The ultrasonic assisted stir casting helped agitation was successfully used to fabricate Al 2219 metal matrix of alloy reinforced with (0.5, 1, 1.5 and 2) wt.% of nano silicon carbide (SiC) particles of different sizes 50nm and 150nm. The micrographs of scanning electron microscopy of nano composite were investigated it reveals that the uniform dispersion of nano particles silicon carbide in aluminium alloy 2219 matrix and with the low porosity. How the specific wear rate was vary with increasing weight percentage of nano particles at constant load and speed as shown in results and discussions. And the mechanical properties showed that the ultimate tensile strength and hardness of metal matrix nano composite AA 2219 / nano SiC of 50nm and 150nm lean to augment with increase weight percentage of silicon carbide content in the matrix alloy.

  8. 77 FR 32942 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-04

    .... Intended Use: The instrument will be used to fabricate bulk nanostructured metals and metallic glasses, in particular Mg based alloys, CuNb, NiAl, Nb based alloys and metal matrix composites with oxide nanoparticles... oxide nanoparticles during the melting of metals. Suction casting is required to achieve nanocrystalline...

  9. Formation of Metal-Related Ions in Matrix-Assisted Laser Desorption Ionization.

    PubMed

    Lee, Chuping; Lu, I-Chung; Hsu, Hsu Chen; Lin, Hou-Yu; Liang, Sheng-Ping; Lee, Yuan-Tseh; Ni, Chi-Kung

    2016-09-01

    In a study of the metal-related ion generation mechanism in matrix-assisted laser desorption ionization (MALDI), crystals of matrix used in MALDI were grown from matrix- and salt-containing solutions. The intensities of metal ion and metal adducts of the matrix ion obtained from unwashed crystals were higher than those from crystals washed with deionized water, indicating that metal ions and metal adducts of the matrix ions are mainly generated from the surface of crystals. The contributions of preformed metal ions and metal adducts of the matrix ions inside the matrix crystals were minor. Metal adducts of the matrix and analyte ion intensities generated from a mixture of dried matrix, salt, and analyte powders were similar to or higher than those generated from the powder of dried droplet crystals, indicating that the contributions of the preformed metal adducts of the matrix and analyte ions were insignificant. Correlation between metal-related ion intensity fluctuation and protonated ion intensity fluctuation was observed, indicating that the generation mechanism of the metal-related ions is similar to that of the protonated ions. Because the thermally induced proton transfer model effectively describes the generation of the protonated ions, we suggest that metal-related ions are mainly generated from the salt dissolution in the matrix melted by the laser. Graphical Abstract ᅟ.

  10. Time-dependent deformation of titanium metal matrix composites

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.; Bahei-El-din, Y. A.; Mirdamadi, M.

    1995-01-01

    A three-dimensional finite element program called VISCOPAC was developed and used to conduct a micromechanics analysis of titanium metal matrix composites. The VISCOPAC program uses a modified Eisenberg-Yen thermo-viscoplastic constitutive model to predict matrix behavior under thermomechanical fatigue loading. The analysis incorporated temperature-dependent elastic properties in the fiber and temperature-dependent viscoplastic properties in the matrix. The material model was described and the necessary material constants were determined experimentally. Fiber-matrix interfacial behavior was analyzed using a discrete fiber-matrix model. The thermal residual stresses due to the fabrication cycle were predicted with a failed interface, The failed interface resulted in lower thermal residual stresses in the matrix and fiber. Stresses due to a uniform transverse load were calculated at two temperatures, room temperature and an elevated temperature of 650 C. At both temperatures, a large stress concentration was calculated when the interface had failed. The results indicate the importance of accuracy accounting for fiber-matrix interface failure and the need for a micromechanics-based analytical technique to understand and predict the behavior of titanium metal matrix composites.

  11. Analysis of metal-matrix composite structures. I - Micromechanics constitutive theory. II - Laminate analyses

    NASA Technical Reports Server (NTRS)

    Arenburg, R. T.; Reddy, J. N.

    1991-01-01

    The micromechanical constitutive theory is used to examine the nonlinear behavior of continuous-fiber-reinforced metal-matrix composite structures. Effective lamina constitutive relations based on the Abouli micromechanics theory are presented. The inelastic matrix behavior is modeled by the unified viscoplasticity theory of Bodner and Partom. The laminate constitutive relations are incorporated into a first-order deformation plate theory. The resulting boundary value problem is solved by utilizing the finite element method. Attention is also given to computational aspects of the numerical solution, including the temporal integration of the inelastic strains and the spatial integration of bending moments. Numerical results the nonlinear response of metal matrix composites subjected to extensional and bending loads are presented.

  12. Thermo-mechanical response predictions for metal matrix composite laminates

    NASA Technical Reports Server (NTRS)

    Aboudi, J.; Hidde, J. S.; Herakovich, C. T.

    1991-01-01

    An analytical micromechanical model is employed for prediction of the stress-strain response of metal matrix composite laminates subjected to thermomechanical loading. The predicted behavior of laminates is based upon knowledge of the thermomechanical response of the transversely isotropic, elastic fibers and the elastic-viscoplastic, work-hardening matrix. The method is applied to study the behavior of silicon carbide/titanium metal matrix composite laminates. The response of laminates is compared with that of unidirectional lamina. The results demonstrate the effect of cooling from a stress-free temperature and the mismatch of thermal and mechanical properties of the constituent phases on the laminate's subsequent mechanical response. Typical results are presented for a variety of laminates subjected to monotonic tension, monotonic shear and cyclic tensile/compressive loadings.

  13. USE OF COMBUSTION SYNTHESIS IN PREPARING CERAMIC-MATRIX AND METAL-MATRIX COMPOSITE POWDERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weil, K. Scott; Hardy, John S.

    A standard combustion-based approach typically used to synthesize nanosize oxide powders has been modified to prepare composite oxide-metal powders for subsequent densification via sintering or hot-pressing into ceramic- or metal-matrix composites. Copper and cerium nitrate salts were dissolved in the appropriate ratio in water and combined with glycine, then heated to cause autoignition. The ratio of glycine-to-total nitrate concentration was found to have the largest effect on the composition, agglomerate size, crystallite size, and dispersivity of phases in the powder product. After consolidation and sintering under reducing conditions, the resulting composite compact consists of a well-dispersed mixture of sub-micron sizemore » reinforcement particles in a fine-grained matrix.« less

  14. Direct-laser metal writing of surface acoustic wave transducers for integrated-optic spatial light modulators in lithium niobate

    NASA Astrophysics Data System (ADS)

    Datta, Bianca C.; Savidis, Nickolaos; Moebius, Michael; Jolly, Sundeep; Mazur, Eric; Bove, V. Michael

    2017-02-01

    Recently, the fabrication of high-resolution silver nanostructures using a femtosecond laser-based direct write process in a gelatin matrix was reported. The application of direct metal writing towards feature development has also been explored with direct metal fusion, in which metal is fused onto the surface of the substrate via a femtosecond laser process. In this paper, we present a comparative study of gelatin matrix and metal fusion approaches for directly laser-written fabrication of surface acoustic wave transducers on a lithium niobate substrate for application in integrated optic spatial light modulators.

  15. Material Property Characterization of Potential Nanocarbon Metal-Matrix Composite: An Investigational Study

    NASA Astrophysics Data System (ADS)

    Zavala, Mitchel

    Metal-matrix composites (MMCs) are engineered combinations of two or more materials. Tailored properties are achieved by systematic combinations of different constituents. Specialized design and synthesis procedures allow unique sets of material properties in composites. Covetics are a new type of metal-matrix nano-composite (MMnC) material. These materials are formed from FCC metals which are super-saturated with up to 10 wt. % of activated nano-carbon powder. The idea is that the nano-carbon particles will enhance the material properties of the base metal matrix, however most of the physical and mechanical properties of covetics have not been well characterized. The foci of this study are to optimize the covetic casting synthesis process under controlled conditions, to understand and analyze the microstructures of the synthesized copper and aluminum covetic, to provide a thorough analysis of the chemical composition of the synthesized covetic materials, and to characterize physical and mechanical properties of both of these materials using meticulously prepared samples and test procedures.

  16. A Model for Siderophile Element Distribution in Planetary Differentiation

    NASA Technical Reports Server (NTRS)

    Humayun, M.; Rushmer, T.; Rankenburg, K.; Brandon, A. D.

    2005-01-01

    Planetary differentiation begins with partial melting of small planetesimals. At low degrees of partial melting, a sulfur-rich liquid segregates by physical mechanisms including deformation-assisted porous flow. Experimental studies of the physical mechanisms by which Fe-S melts segregate from the silicate matrix of a molten H chondrite are part of a companion paper. Geochemical studies of these experimental products revealed that metallic liquids were in equilibrium with residual metal in the H chondrite matrix. This contribution explores the geochemical signatures produced by early stages of core formation. Particularly, low-degree partial melt segregation of Fe-S liquids leaves residual metal in the silicate matrix. Some achondrites appear to be residues of partial melting, e.g., ureilites, which are known to contain metal. The metal in these achondrites may show a distinct elemental signature. To quantify the effect of sulfur on siderophile element contents of residual metal we have developed a model based on recent parametrizations of equilibrium solid metal-liquid metal partitioning experiments.

  17. Micro-mechanics modelling of smart materials

    NASA Astrophysics Data System (ADS)

    Shah, Syed Asim Ali

    Metal Matrix ceramic-reinforced composites are rapidly becoming strong candidates as structural materials for many high temperature and engineering applications. Metal matrix composites (MMC) combine the ductile properties of the matrix with a brittle phase of the reinforcement, leading to high stiffness and strength with a reduction in structural weight. The main objective of using a metal matrix composite system is to increase service temperature or improve specific mechanical properties of structural components by replacing existing super alloys.The purpose of the study is to investigate, develop and implement second phase reinforcement alloy strengthening empirical model with SiCp reinforced A359 aluminium alloy composites on the particle-matrix interface and the overall mechanical properties of the material.To predict the interfacial fracture strength of aluminium, in the presence of silicon segregation, an empirical model has been modified. This model considers the interfacial energy caused by segregation of impurities at the interface and uses Griffith crack type arguments to predict the formation energies of impurities at the interface. Based on this, model simulations were conducted at nano scale specifically at the interface and the interfacial strengthening behaviour of reinforced aluminium alloy system was expressed in terms of elastic modulus.The numerical model shows success in making prediction possible of trends in relation to segregation and interfacial fracture strength behaviour in SiC particle-reinforced aluminium matrix composites. The simulation models using various micro scale modelling techniques to the aluminum alloy matrix composite, strengthenedwith varying amounts of silicon carbide particulate were done to predict the material state at critical points with properties of Al-SiC which had been heat treated.In this study an algorithm is developed to model a hard ceramic particle in a soft matrix with a clear distinct interface and a strain based relationship has been proposed for the strengthening behaviour of the MMC at the interface rather than stress based, by successfully completing the numerical modelling of particulate reinforced metal matrix composites.

  18. Morphology and dispersion of FeCo alloy nanoparticles dispersed in a matrix of IR pyrolized polyvinyl alcohol

    NASA Astrophysics Data System (ADS)

    Vasilev, A. A.; Dzidziguri, E. L.; Muratov, D. G.; Zhilyaeva, N. A.; Efimov, M. N.; Karpacheva, G. P.

    2018-04-01

    Metal-carbon nanocomposites consisting of FeCo alloy nanoparticles dispersed in a carbon matrix were synthesized by the thermal decomposition method of a precursor based on polyvinyl alcohol and metals salts. The synthesized powders were investigated by X-ray diffraction (XRD), X-ray fluorescent spectrometry (XRFS), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Surface characteristics of materials were measured by BET-method. The morphology and dispersity of metal nanoparticles were studied depending on the metals ratio in the composite.

  19. Gradient-based stochastic estimation of the density matrix

    NASA Astrophysics Data System (ADS)

    Wang, Zhentao; Chern, Gia-Wei; Batista, Cristian D.; Barros, Kipton

    2018-03-01

    Fast estimation of the single-particle density matrix is key to many applications in quantum chemistry and condensed matter physics. The best numerical methods leverage the fact that the density matrix elements f(H)ij decay rapidly with distance rij between orbitals. This decay is usually exponential. However, for the special case of metals at zero temperature, algebraic decay of the density matrix appears and poses a significant numerical challenge. We introduce a gradient-based probing method to estimate all local density matrix elements at a computational cost that scales linearly with system size. For zero-temperature metals, the stochastic error scales like S-(d+2)/2d, where d is the dimension and S is a prefactor to the computational cost. The convergence becomes exponential if the system is at finite temperature or is insulating.

  20. Concurrent tailoring of fabrication process and interphase layer to reduce residual stresses in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Chamis, C. C.; Morel, M.

    1991-01-01

    A methodology is presented to reduce the residual matrix stresses in continuous fiber metal matrix composites (MMC) by optimizing the fabrication process and interphase layer characteristics. The response of the fabricated MMC was simulated based on nonlinear micromechanics. Application cases include fabrication tailoring, interphase tailoring, and concurrent fabrication-interphase optimization. Two composite systems, silicon carbide/titanium and graphite/copper, are considered. Results illustrate the merits of each approach, indicate that concurrent fabrication/interphase optimization produces significant reductions in the matrix residual stresses and demonstrate the strong coupling between fabrication and interphase tailoring.

  1. Considerations concerning fatigue life of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, V. M.; Bartolotta, Paul A.

    1993-01-01

    Since metal matrix composites (MMC) are composed from two very distinct materials each having their own physical and mechanical properties, it is feasible that the fatigue resistance depends on the strength of the weaker constituent. Based on this assumption, isothermal fatigue lives of several MMC's were analyzed utilizing a fatigue life diagram approach. For each MMC, the fatigue life diagram was quantified using the mechanical properties of its constituents. The fatigue life regions controlled by fiber fracture and matrix were also quantitatively defined.

  2. Role of segregation and precipitates on interfacial strengthening mechanisms in metal matrix composites when subjected to thermo-mechanical processing

    NASA Astrophysics Data System (ADS)

    Myriounis, Dimitrios

    Metal Matrix ceramic-reinforced composites are rapidly becoming strong candidates as structural materials for many high temperatures and aerospace applications. Metal matrix composites combine the ductile properties of the matrix with a brittle phase of the reinforcement, leading to high stiffness and strength with a reduction in structural weight. The main objective of using a metal matrix composite system is to increase service temperature or improve specific mechanical properties of structural components by replacing existing superalloys.The satisfactory performance of metal matrix composites depends critically on their integrity, the heart of which is the quality of the matrix-reinforcement interface. The nature of the interface depends on the processing of the metal matrix composite component. At the micro-level the development of local stress concentration gradients around the ceramic reinforcement, as the metal matrix attempts to deform during processing, can be very different to the nominal conditions and play a crucial role in important microstructural events such as segregation and precipitation at the matrix-reinforcement interface. These events dominate the cohesive strength and subsequent mechanical properties of the interface.At present the relationship between the strength properties of metal matrix composites and the details of the thermo-mechanical forming processes is not well understood.The purpose of the study is to investigate several strengthening mechanisms and the effect of thermo-mechanical processing of SiCp reinforced A359 aluminium alloy composites on the particle-matrix interface and the overall mechanical properties of the material. From experiments performed on composite materials subjected to various thermo-mechanical conditions and by observation using SEM microanalysis and mechanical testing, data were obtained, summarised and mathematically/statistically analysed upon their significance.The Al/SiCp composites studied, processed in specific thermo-mechanical conditions in order to attain higher values of interfacial fracture strength, due to precipitation hardening and segregation mechanisms, also exhibited enhanced bulk mechanical and fracture resistant properties.An analytical model to predict the interfacial fracture strength in the presence of material segregation was also developed during this research effort. Its validity was determined based on the data gathered from the experiments.The tailoring of the properties due to the microstructural modification of the composites was examined in relation to the experimental measurements obtained, which define the macroscopical behaviour of the material.

  3. Metal Matrix Composite Material by Direct Metal Deposition

    NASA Astrophysics Data System (ADS)

    Novichenko, D.; Marants, A.; Thivillon, L.; Bertrand, P. H.; Smurov, I.

    Direct Metal Deposition (DMD) is a laser cladding process for producing a protective coating on the surface of a metallic part or manufacturing layer-by-layer parts in a single-step process. The objective of this work is to demonstrate the possibility to create carbide-reinforced metal matrix composite objects. Powders of steel 16NCD13 with different volume contents of titanium carbide are tested. On the base of statistical analysis, a laser cladding processing map is constructed. Relationships between the different content of titanium carbide in a powder mixture and the material microstructure are found. Mechanism of formation of various precipitated titanium carbides is investigated.

  4. Temperature dependent nonlinear metal matrix laminae behavior

    NASA Technical Reports Server (NTRS)

    Barrett, D. J.; Buesking, K. W.

    1986-01-01

    An analytical method is described for computing the nonlinear thermal and mechanical response of laminated plates. The material model focuses upon the behavior of metal matrix materials by relating the nonlinear composite response to plasticity effects in the matrix. The foundation of the analysis is the unidirectional material model which is used to compute the instantaneous properties of the lamina based upon the properties of the fibers and matrix. The unidirectional model assumes that the fibers properties are constant with temperature and assumes that the matrix can be modelled as a temperature dependent, bilinear, kinematically hardening material. An incremental approach is used to compute average stresses in the fibers and matrix caused by arbitrary mechanical and thermal loads. The layer model is incorporated in an incremental laminated plate theory to compute the nonlinear response of laminated metal matrix composites of general orientation and stacking sequence. The report includes comparisons of the method with other analytical approaches and compares theoretical calculations with measured experimental material behavior. A section is included which describes the limitations of the material model.

  5. Evaluating the Long-Term Stability of Metals Precipitated In-Situ

    EPA Science Inventory

    Because metals (including metals and metalloids) cannot be destroyed, unlike organic contaminants, in-situ approaches for their removal from groundwater necessarily involves fixation/immobilization in the solid aquifer matrix. Consequently, the success of precipitation based in...

  6. Method for preparing porous metal hydride compacts

    DOEpatents

    Ron, M.; Gruen, D.M.; Mendelsohn, M.H.; Sheft, I.

    1980-01-21

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  7. Method for preparing porous metal hydride compacts

    DOEpatents

    Ron, Moshe; Gruen, Dieter M.; Mendelsohn, Marshall H.; Sheft, Irving

    1981-01-01

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  8. Development and Validation of a Shear Punch Test Fixture

    DTIC Science & Technology

    2013-08-01

    composites (MMC) manufactured by friction stir processing (FSP) that are being developed as part of a Technology Investment Fund (TIF) project, as the...leading a team of government departments and academics to develop a friction stir processing (FSP) based procedure to create metal matrix composite... friction stir process to fabricate surface metal matrix composites in aluminum alloys for potential application in light armoured vehicles. The

  9. Damage Mechanics Model Development for Monocrystalline Superalloys (PREPRINT)

    DTIC Science & Technology

    2010-02-01

    ferrite , austenite, martensite , and pearlite) colonies in alloy steels [17-20]  the structure of pitch-based carbon foams [21]  the γ-γ...reinforced metal-matrix composites [15, 16]  microstructure (cementite, ferrite , austenite, martensite , and pearlite) colonies in alloy steels [17-20... alloys [11, 12], and Pb-Sn alloys [13, 14]  reinforcement particle for particle -reinforced metal-matrix composites [15, 16] 

  10. Evaluation of Microstructure and Mechanical Properties in Dissimilar Austenitic/Super Duplex Stainless Steel Joint

    NASA Astrophysics Data System (ADS)

    Rahmani, Mehdi; Eghlimi, Abbas; Shamanian, Morteza

    2014-10-01

    To study the effect of chemical composition on microstructural features and mechanical properties of dissimilar joints between super duplex and austenitic stainless steels, welding was attempted by gas tungsten arc welding process with a super duplex (ER2594) and an austenitic (ER309LMo) stainless steel filler metal. While the austenitic weld metal had vermicular delta ferrite within austenitic matrix, super duplex stainless steel was mainly comprised of allotriomorphic grain boundary and Widmanstätten side plate austenite morphologies in the ferrite matrix. Also the heat-affected zone of austenitic base metal comprised of large austenite grains with little amounts of ferrite, whereas a coarse-grained ferritic region was observed in the heat-affected zone of super duplex base metal. Although both welded joints showed acceptable mechanical properties, the hardness and impact strength of the weld metal produced using super duplex filler metal were found to be better than that obtained by austenitic filler metal.

  11. On the Role of Processing Parameters in Producing Recycled Aluminum AA6061 Based Metal Matrix Composite (MMC-AlR) Prepared Using Hot Press Forging (HPF) Process

    PubMed Central

    Ahmad, Azlan; Lajis, Mohd Amri

    2017-01-01

    Solid-state recycling, which involves the direct recycling of scrap metal into bulk material using severe plastic deformation, has emerged as a potential alternative to the conventional remelting and recycling techniques. Hot press forging has been identified as a sustainable direct recycling technique that has fewer steps and maintains excellent material performance. An experimental investigation was conducted to explore the hardness and density of a recycled aluminum-based metal matrix composite by varying operating temperature and holding time. A mixture of recycled aluminum, AA6061, and aluminum oxide were simultaneously heated to 430, 480, and 530 °C and forged for 60, 90, and 120 min. We found a positive increase in microhardness and density for all composites. The hardness increased approximately 33.85%, while density improved by about 15.25% whenever the temperature or the holding time were increased. Based on qualitative analysis, the composite endures substantial plastic deformation due to the presence of hardness properties due to the aluminum oxide embedded in the aluminum matrix. These increases were significantly affected by the operating temperature; the holding time also had a subordinate role in enhancing the metal matrix composite properties. Furthermore, in an effort to curb the shortage of primary resources, this study reviewed the promising performance of secondary resources produced by using recycled aluminum and aluminum oxide as the base matrix and reinforcement constituent, respectively. This study is an outline for machining practitioners and the manufacturing industry to help increase industry sustainability with the aim of preserving the Earth for our community in the future. PMID:28925963

  12. On the Role of Processing Parameters in Producing Recycled Aluminum AA6061 Based Metal Matrix Composite (MMC-AlR) Prepared Using Hot Press Forging (HPF) Process.

    PubMed

    Ahmad, Azlan; Lajis, Mohd Amri; Yusuf, Nur Kamilah

    2017-09-19

    Solid-state recycling, which involves the direct recycling of scrap metal into bulk material using severe plastic deformation, has emerged as a potential alternative to the conventional remelting and recycling techniques. Hot press forging has been identified as a sustainable direct recycling technique that has fewer steps and maintains excellent material performance. An experimental investigation was conducted to explore the hardness and density of a recycled aluminum-based metal matrix composite by varying operating temperature and holding time. A mixture of recycled aluminum, AA6061, and aluminum oxide were simultaneously heated to 430, 480, and 530 °C and forged for 60, 90, and 120 min. We found a positive increase in microhardness and density for all composites. The hardness increased approximately 33.85%, while density improved by about 15.25% whenever the temperature or the holding time were increased. Based on qualitative analysis, the composite endures substantial plastic deformation due to the presence of hardness properties due to the aluminum oxide embedded in the aluminum matrix. These increases were significantly affected by the operating temperature; the holding time also had a subordinate role in enhancing the metal matrix composite properties. Furthermore, in an effort to curb the shortage of primary resources, this study reviewed the promising performance of secondary resources produced by using recycled aluminum and aluminum oxide as the base matrix and reinforcement constituent, respectively. This study is an outline for machining practitioners and the manufacturing industry to help increase industry sustainability with the aim of preserving the Earth for our community in the future.

  13. Lightweight armor system and process for producing the same

    DOEpatents

    Chu, Henry S.; Bruck, H. Alan; Strempek, Gary C.; Varacalle, Jr., Dominic J.

    2004-01-20

    A lightweight armor system may comprise a substrate having a graded metal matrix composite layer formed thereon by thermal spray deposition. The graded metal matrix composite layer comprises an increasing volume fraction of ceramic particles imbedded in a decreasing volume fraction of a metal matrix as a function of a thickness of the graded metal matrix composite layer. A ceramic impact layer is affixed to the graded metal matrix composite layer.

  14. Density matrix approach to the hot-electron stimulated photodesorption

    NASA Astrophysics Data System (ADS)

    Kühn, Oliver; May, Volkhard

    1996-07-01

    The dissipative dynamics of the laser-induced nonthermal desorption of small molecules from a metal surface is investigated here. Based on the density matrix formalism a multi-state model is introduced which explicitly takes into account the continuum of electronic states in the metal. Various relaxation mechanisms for the electronic degrees of freedom are shown to govern the desorption dynamics and hence the desorption probability. Particular attention is paid to the modeling of the time dependence of the electron energy distribution in the metal which reflects different excitation conditions.

  15. Insights from the Lattice-Strain Evolution on Deformation Mechanisms in Metallic-Glass-Matrix Composites

    DOE PAGES

    Jia, Haoling; Zheng, Lili; Li, Weidong; ...

    2015-02-18

    In this paper, in situ high-energy synchrotron X-ray diffraction experiments and micromechanics-based finite element simulations have been conducted to examine the lattice-strain evolution in metallic-glass-matrix composites (MGMCs) with dendritic crystalline phases dispersed in the metallic-glass matrix. Significant plastic deformation can be observed prior to failure from the macroscopic stress–strain curves in these MGMCs. The entire lattice-strain evolution curves can be divided into elastic–elastic (denoting deformation behavior of matrix and inclusion, respectively), elastic–plastic, and plastic–plastic stages. Characteristics of these three stages are governed by the constitutive laws of the two phases (modeled by free-volume theory and crystal plasticity) and geometric informationmore » (crystalline phase morphology and distribution). The load-partitioning mechanisms have been revealed among various crystalline orientations and between the two phases, as determined by slip strain fields in crystalline phase and by strain localizations in matrix. Finally, implications on ductility enhancement of MGMCs are also discussed.« less

  16. Fabrication and Mechanical Behavior of Ex Situ Mg-Based Bulk Metallic Glass Matrix Composite Reinforced with Electroless Cu-Coated SiC Particles.

    PubMed

    Wang, Xin; Zhao, Lichen; Hu, Ximei; Cheng, Yongjian; Liu, Shuiqing; Chen, Peng; Cui, Chunxiang

    2017-11-30

    Magnesium-based bulk metallic glass matrix composites (BMGMCs) have better plasticity than the corresponding bulk metallic glasses (BMGs); however, their strength and density are often compromised due to the fact that the effective reinforcement phase is mostly plastic heavy metal. For lightweight SiC-particle reinforced BMGMCs, interface wettability and the sharpness of the particles often reduce the strengthening effect. In this work, SiC particles were coated with a thin Cu coating by electroless plating, and added to Mg 54 Cu 26.5 Ag 8.5 Gd 11 melt in an amount of 5 wt % to prepare a BMGMC. The microstructure of the interface, mechanical behavior and fracture morphology of the BMGMC were studied by scanning electron microscopy and quasi-static compression testing. The results showed that the Cu coating improved the wettability between SiC and the matrix alloy without obvious interfacial reactions, leading to the dispersion of SiC particles in the matrix. The addition of Cu-coated SiC particles improved the plastic deformation ability of Mg 54 Cu 26.5 Ag 8.5 Gd 11 BMG, proving that electroless plating was an effective method for controlling the interface microstructure and mechanical behavior of BMGMCs.

  17. Fatigue damage accumulation in various metal matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1987-01-01

    The purpose of this paper is to review some of the latest understanding of the fatigue behavior of continuous fiber reinforced metal matrix composites. The emphasis is on the development of an understanding of different fatigue damage mechanisms and why and how they occur. The fatigue failure modes in continuous fiber reinforced metal matrix composites are controlled by the three constituents of the system: fiber, matrix, and fiber/matrix interface. The relative strains to fatigue failure of the fiber and matrix will determine the failure mode. Several examples of matrix, fiber, and self-similar damage growth dominated fatigue damage are given for several metal matrix composite systems. Composite analysis, failure modes, and damage modeling are discussed. Boron/aluminum, silicon-carbide/aluminum, FP/aluminum, and borsic/titanium metal matrix composites are discussed.

  18. Ceramic/metal and A15/metal superconducting composite materials exploiting the superconducting proximity effect and method of making the same

    DOEpatents

    Holcomb, Matthew J.

    1999-01-01

    A composite superconducting material made of coated particles of ceramic superconducting material and a metal matrix material. The metal matrix material fills the regions between the coated particles. The coating material is a material that is chemically nonreactive with the ceramic. Preferably, it is silver. The coating serves to chemically insulate the ceramic from the metal matrix material. The metal matrix material is a metal that is susceptible to the superconducting proximity effect. Preferably, it is a NbTi alloy. The metal matrix material is induced to become superconducting by the superconducting proximity effect when the temperature of the material goes below the critical temperature of the ceramic. The material has the improved mechanical properties of the metal matrix material. Preferably, the material consists of approximately 10% NbTi, 90% coated ceramic particles (by volume). Certain aspects of the material and method will depend upon the particular ceramic superconductor employed. An alternative embodiment of the invention utilizes A15 compound superconducting particles in a metal matrix material which is preferably a NbTi alloy.

  19. Metal-matrix radiation-protective composite materials based on aluminum

    NASA Astrophysics Data System (ADS)

    Cherdyntsev, V. V.; Gorshenkov, M. V.; Danilov, V. D.; Kaloshkin, S. D.; Gul'bin, V. N.

    2013-05-01

    A method of mechanical activation providing a homogeneous distribution of reinforcing boron-bearing components and tungsten nanopowder in the matrix is recommended for making an aluminum-based radiation- protective material. Joint mechanical activation and subsequent extrusion are used to produce aluminum- based composites. The structure and the physical, mechanical and tribological characteristics of the composite materials are studied.

  20. Metal-matrix composites: Status and prospects

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Applications of metal matrix composites for air frames and jet engine components are discussed. The current state of the art in primary and secondary fabrication is presented. The present and projected costs were analyzed to determine the cost effectiveness of metal matrix composites. The various types of metal matrix composites and their characteristics are described.

  1. Characteristics of Matrix Metals in Which Fast Diffusion of Foreign Metallic Elements Occurs

    NASA Astrophysics Data System (ADS)

    Mae, Yoshiharu

    2018-04-01

    A few foreign elements are known to diffuse faster than the self-diffusion of the matrix metal. However, the characteristics of the matrix metal, which contribute to such fast diffusion remain unknown. In this study, the diffusion coefficients of various elements were plotted on a TC-YM diagram. The matrix metals that show fast diffusion are located in the low thermal conductivity range of the TC-YM diagram, while diffuser elements that undergo fast diffusion are mainly gulf elements such as Fe, Ni, Co, Cr, and Cu. The gulf elements are those that show the largest combination of thermal conductivity and Young's modulus. The great difference in the electron mobility between the matrix metal and diffuser elements generates a repulsive force between them, and the repulsive force—acting between the soft and large atoms of the matrix metal and the hard and small atoms of the diffuser elements—deforms the atoms of the matrix metal to open passageways for fast diffusion of diffuser elements.

  2. Corrosion and wear resistance of titanium- and aluminum-based metal matrix composites fabricated by direct metal laser deposition

    NASA Astrophysics Data System (ADS)

    Waldera, Benjamin L.

    Titanium- and Aluminum-based metal matrix composites (MMC) have shown favorable properties for aerospace applications such as airframes, reinforcement materials and joining elements. In this research, such coatings were developed by direct metal laser deposition with a powder-fed fiber coupled diode laser. The MMC formulations consisted of pure titanium and aluminum matrices with reinforcing powder blends of chromium carbide and tungsten carbide nickel alloy. Two powder formulations were investigated for each matrix material (Ti1, Ti2, Al1 and Al2). Titanium based composites were deposited onto a Ti6Al4V plate while aluminum composites were deposited onto AA 7075 and AA 5083 for Al1 and Al2, respectively. Microstructures of the MMCs were studied by optical and scanning electron microscopy. The hardness and reduced Young's modulus (Er) were assessed through depth-sensing instrumented nanoindentation. microhardness (Vickers) was also analyzed for each composite. The corrosion resistance of the MMCs were compared by monitoring open circuit potential (OCP), polarization resistance (Rp) and potentiodynamic polarization in 0.5 M NaCl to simulate exposure to seawater. The Ti-MMCs demonstrated improvements in hardness between 205% and 350% over Ti6Al4V. Al-MMCs showed improvements between 47% and 79% over AA 7075 and AA 5083. The MMCs showed an increase in anodic current density indicating the formation of a less protective surface oxide than the base metals.

  3. Analysis of transition-metal acetylacetonate complexes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Wyatt, Mark F; Havard, Stephen; Stein, Bridget K; Brenton, A Gareth

    2008-01-01

    Transition-metal acetylacetonate complexes of the form Metal(acac)(2), where Metal = Fe(II), Co(II), Ni(II), Cu(II), and Zn(II), and Metal(acac)(3), where Metal = V(III), Cr(III), Mn(III), Fe(III), and Co(III), were investigated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). The data was acquired using the aprotic, electron transfer matrix, 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile (DCTB), and the observation of positive radical ions is shown clearly to depend on the metal element and the oxidation state it occupies. The ionization energy of DCTB was calculated to be 8.08 eV by density functional theory methods, which is notably lower than the experimental value, but within the range of other computational values. This value is very close to those of the analytes, so the existing electron transfer mechanism which is based on the ionization energies of the matrix and analyte, cannot be used predictively. Similarly, the data neither proves nor disproves the validity of the existing electron transfer ionization mechanism, with respect to metal coordination complexes without strong chromophores. In this case, periodic trends may be more useful in explaining the observed species and the prediction of species from sets of similar complexes. The addition of a sodium salt benefits the MALDI-TOFMS characterization of certain compounds studied, but the benefit of the addition of ammonium or silver salts is negligible.

  4. Influence of tool pin in friction stir welding on activated carbon reinforced aluminium metal matrix composite

    NASA Astrophysics Data System (ADS)

    DijuSamuel, G.; Raja Dhas, J. Edwin

    2017-10-01

    This paper focus on impact of tool pin in friction stir welding on activated carbon reinforced aluminium metal matrix composite. For fabrication of metal matrix composite AA6061 is used as matrix and activated carbon is used as reinforcement and it is casted using modified stir casting technique. After casting metal matrix composite has undergone various microstructure tests like SEM,EDAX and XRD. FSW is carried out in this metal matrix composite by choosing various tool pin profile like square,round,Threaded round, hexagon and taper. The quality of welded plates is measured in terms of ultimate tensile strength and hardness.

  5. Directly susceptible, noncarbon metal ceramic composite crucible

    DOEpatents

    Holcombe, Jr., Cressie E.; Kiggans, Jr., James O.; Morrow, S. Marvin; Rexford, Donald

    1999-01-01

    A sintered metal ceramic crucible suitable for high temperature induction melting of reactive metals without appreciable carbon or silicon contamination of the melt. The crucible comprises a cast matrix of a thermally conductive ceramic material; a perforated metal sleeve, which serves as a susceptor for induction heating of the crucible, embedded within the ceramic cast matrix; and a thermal-shock-absorber barrier interposed between the metal sleeve and the ceramic cast matrix to allow for differential thermal expansions between the matrix and the metal sleeve and to act as a thermal-shock-absorber which moderates the effects of rapid changes of sleeve temperature on the matrix.

  6. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, Robert G.; Wiberley, Stephen E.

    1987-01-01

    The development and application of composite materials to aerospace vehicle structures which began in the mid 1960's has now progressed to the point where what can be considered entire airframes are being designed and built using composites. Issues related to the fabrication of non-resin matrix composites and the micro, mezzo and macromechanics of thermoplastic and metal matrix composites are emphasized. Several research efforts are presented. They are entitled: (1) The effects of chemical vapor deposition and thermal treatments on the properties of pitch-based carbon fiber; (2) Inelastic deformation of metal matrix laminates; (3) Analysis of fatigue damage in fibrous MMC laminates; (4) Delamination fracture toughness in thermoplastic matrix composites; (5) Numerical investigation of the microhardness of composite fracture; and (6) General beam theory for composite structures.

  7. A differential CDM model for fatigue of unidirectional metal matrix composites

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Kruch, S.

    1992-01-01

    A multiaxial, isothermal, continuum damage mechanics (CDM) model for fatigue of a unidirectional metal matrix composite volume element is presented. The model is phenomenological, stress based, and assumes a single scalar internal damage variable, the evolution of which is anisotropic. The development of the fatigue damage model, (i.e., evolutionary law) is based on the definition of an initially transversely isotropic fatigue limit surface, a static fracture surface, and a normalized stress amplitude function. The anisotropy of these surfaces and function, and therefore the model, is defined through physically meaningful invariants reflecting the local stress and material orientation. This transversely isotropic model is shown, when taken to it's isotropic limit, to directly simplify to a previously developed and validated isotropic fatigue continuum damage model. Results of a nondimensional parametric study illustrate (1) the flexibility of the present formulation in attempting to characterize a class of composite materials, and (2) the capability of the formulation in predicting anticipated qualitative trends in the fatigue behavior of unidirectional metal matrix composites. Also, specific material parameters representing an initial characterization of the composite system SiC/Ti 15-3 and the matrix material (Ti 15-3) are reported.

  8. Interfacial Metal-Oxide Interactions in Resistive Switching Memories.

    PubMed

    Cho, Deok-Yong; Luebben, Michael; Wiefels, Stefan; Lee, Kug-Seung; Valov, Ilia

    2017-06-07

    Metal oxides are commonly used as electrolytes for redox-based resistive switching memories. In most cases, non-noble metals are directly deposited as ohmic electrodes. We demonstrate that irrespective of bulk thermodynamics predictions an intermediate oxide film a few nanometers in thickness is always formed at the metal/insulator interface, and this layer significantly contributes to the development of reliable switching characteristics. We have tested metal electrodes and metal oxides mostly used for memristive devices, that is, Ta, Hf, and Ti and Ta 2 O 5 , HfO 2 , and SiO 2 . Intermediate oxide layers are always formed at the interfaces, whereas only the rate of the electrode oxidation depends on the oxygen affinity of the metal and the chemical stability of the oxide matrix. Device failure is associated with complete transition of short-range order to a more disordered main matrix structure.

  9. Iron oxide nanomatrix facilitating metal ionization in matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Obena, Rofeamor P; Lin, Po-Chiao; Lu, Ying-Wei; Li, I-Che; del Mundo, Florian; Arco, Susan dR; Nuesca, Guillermo M; Lin, Chung-Chen; Chen, Yu-Ju

    2011-12-15

    The significance and epidemiological effects of metals to life necessitate the development of direct, efficient, and rapid method of analysis. Taking advantage of its simple, fast, and high-throughput features, we present a novel approach to metal ion detection by matrix-functionalized magnetic nanoparticle (matrix@MNP)-assisted MALDI-MS. Utilizing 21 biologically and environmentally relevant metal ion solutions, the performance of core and matrix@MNP against conventional matrixes in MALDI-MS and laser desorption ionization (LDI) MS were systemically tested to evaluate the versatility of matrix@MNP as ionization element. The matrix@MNPs provided 20- to >100-fold enhancement on detection sensitivity of metal ions and unambiguous identification through characteristic isotope patterns and accurate mass (<5 ppm), which may be attributed to its multifunctional role as metal chelator, preconcentrator, absorber, and reservoir of energy. Together with the comparison on the ionization behaviors of various metals having different ionization potentials (IP), we formulated a metal ionization mechanism model, alluding to the role of exciton pooling in matrix@MNP-assisted MALDI-MS. Moreover, the detection of Cu in spiked tap water demonstrated the practicability of this new approach as an efficient and direct alternative tool for fast, sensitive, and accurate determination of trace metal ions in real samples.

  10. Polymer-based metal nano-coated disposable target for matrix-assisted and matrix-free laser desorption/ionization mass spectrometry.

    PubMed

    Bugovsky, Stefan; Winkler, Wolfgang; Balika, Werner; Koranda, Manfred; Allmaier, Günter

    2016-07-15

    The ideal MALDI/LDI mass spectrometry sample target for an axial TOF instrument possesses a variety of properties. Primarily, it should be chemically inert to the sample, i.e. analyte, matrix and solvents, highly planar across the whole target, without any previous chemical contact and provide a uniform surface to facilitate reproducible measurements without artifacts from previous sample or matrix compounds. This can be hard to achieve with a metal target, which has to be extensively cleaned every time after use. Any cleaning step may leave residues behind, may change the surface properties due to the type of cleaning method used or even cause microscopic scratches over time hence altering matrix crystallization behavior. Alternatively, use of disposable targets avoids these problems. As each possesses the same surface they therefore have the potential to replace the conventional full metal targets so commonly employed. Furthermore, low cost single-use targets with high planarity promise an easier compliance with GLP guidelines as they alleviate the problem of low reproducibility due to inconsistent sample/matrix crystallization and changes to the target surface properties. In our tests, polymeric metal nano-coated targets were compared to a stainless steel reference. The polymeric metal nano-coated targets exhibited all the performance characteristics for a MALDI MS sample support, and even surpassed the - in our lab commonly used - reference in some aspects like limit of detection. The target exhibits all necessary features such as electrical conductivity, vacuum, laser and solvent compatibility. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Parametric studies to determine the effect of compliant layers on metal matrix composite systems

    NASA Technical Reports Server (NTRS)

    Caruso, J. J.; Chamis, C. C.; Brown, H. C.

    1990-01-01

    Computational simulation studies are conducted to identify compliant layers to reduce matrix stresses which result from the coefficient of thermal expansion mismatch and the large temperature range over which the current metal matrix composites will be used. The present study includes variations of compliant layers and their properties to determine their influence on unidirectional composite and constituent response. Two simulation methods are used for these studies. The first approach is based on a three-dimensional linear finite element analysis of a 9 fiber unidirectional composite system. The second approach is a micromechanics based nonlinear computer code developed to determine the behavior of metal matrix composite system for thermal and mechanical loads. The results show that an effective compliant layer for the SCS 6 (SiC)/Ti-24Al-11Nb (Ti3Al + Nb) and SCS 6 (SiC)/Ti-15V-3Cr-3Sn-3Al (Ti-15-3) composite systems should have modulus 15 percent that of the matrix and a coefficient of thermal expansion of the compliant layer roughly equal to that of the composite system without the CL. The matrix stress in the longitudinal and the transverse tangent (loop) direction are tensile for the Ti3Al + Nb and Ti-15-3 composite systems upon cool down from fabrication. The fiber longitudinal stress is compressive from fabrication cool down. Addition of a recommended compliant layer will result in a reduction in the composite modulus.

  12. Metal-Coated Cenospheres Obtained via Magnetron Sputter Coating: A New Precursor for Syntactic Foams

    NASA Astrophysics Data System (ADS)

    Shishkin, A.; Hussainova, I.; Kozlov, V.; Lisnanskis, M.; Leroy, P.; Lehmhus, D.

    2018-05-01

    Syntactic foams (SFs) and metal matrix syntactic foams (MMSFs) represent an advanced type of metal matrix composites (MMCs) based on hollow microspheres as particulate reinforcement. In general, SF and MMSFs allow tailoring of properties through choice of matrix, reinforcement, and volume fraction of the latter. A further handle for property adjustment is surface modification of the reinforcing particles. The present study introduces cenospheres for use as filler material in SF and MMSFs and as lightweight filler with electromagnetic interference shielding properties in civil engineering, which have been surface coated by means of physical vapor deposition, namely vibration-assisted sputter coating using a magnetron sputtering system. Altogether four types of such cenosphere-based composite powders (CPs) with an original particle size range of 50-125 µm (average particle size d50 75 µm) were studied. Surface films deposited on these were composed of Cu, stainless steel, Ti, and Ti-TiN double layers. For Cu coatings, the deposited metal film thickness was shown to be dependent on the sputtering energy. Scanning electron microscope backscattering images revealed nonporous films uniform in thickness directly after sputtering. Film thickness varied between 0.15 µm and 2.5 µm, depending on coating material and sputtering parameters. From these materials, samples were produced without addition of metal powders, exhibiting metal contents as low as 8-10 wt.% based on the coating alone. Obtained samples had an apparent density of 1.1-1.9 g/cm3 and compressive strengths ranging from 22 MPa to 135 MPa.

  13. Application of Pulse Processes in Fabrication of Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Sudnik, L. V.; Vityaz', P. A.; Il'yushchenko, A. F.; Smirnov, G. V.; Petrov, I. V.; Konoplyanik, V. N.; Komornyi, A. A.; Luchenok, A. R.

    2016-05-01

    Special features and advantages of metal matrix composites obtained by pulse loading are considered. Examples of effective use of metal matrix composites in various fields of engineering are presented.

  14. Effectiveness of metal matrix and ceramic matrix composites as orbital debris shield materials

    NASA Technical Reports Server (NTRS)

    Mcgill, Preston B.; Mount, Angela R.

    1992-01-01

    The effectiveness of two metal matrix composites and one ceramic matrix material in defeating hypervelocity impacts at about 3.8 km/s are evaluated to determine the potential of these composites as spacecraft shield materials. The metal matrix composites investigated consist of SiC particles (70 percent by volume) in an aluminum matrix and Al2O3 particles (50 percent by volume) in an Al matrix. The ceramic composite consists of ZrB2 platelets in a ZrC matrix. Both the metal matrix and ceramic matrix composites are found to perform as well or better than 6061-T6 aluminum, which is presently used in the Whipple type bumper shield of Space Station Freedom. Test results indicate that the composites tested may have applications as micrometeoroid/orbital debris shield materials.

  15. Ceramics reinforced metal base composite coatings produced by CO II laser cladding

    NASA Astrophysics Data System (ADS)

    Yang, Xichen; Wang, Yu; Yang, Nan

    2008-03-01

    Due to the excellent performance in high strength, anti-temperature and anti-wear, ceramics reinforced metal base composite material was used in some important fields of aircraft, aerospace, automobile and defense. The traditional bulk metal base composite materials are the expensive cost, which is limited in its industrial application. Development of laser coating of ceramics reinforced metal base composite is very interesting in economy. This paper is focused on three laser cladding ceramics coatings of SiC particle /Al matrix , Al IIO 3 powder/ Al matrix and WC + Co/mild steel matrix. Powder particle sizes are of 10-60μm. Chemical contents of aluminum matrix are of 3.8-4.0% Cu, 1.2-1.8% Mg, 0.3-0.99% Mn and balance Al. 5KW CO II laser, 5 axes CNC table, JKF-6 type powder feeder and co-axis feeder nozzle are used in laser cladding. Microstructure and performance of laser composite coatings have been respectively examined with OM,SEM and X-ray diffraction. Its results are as follows : Microstructures of 3C-,6H- and 5H- SiC particles + Al + Al 4SiC 4 + Si in SiC/Al composite, hexagonal α-Al IIO 3 + cubic γ-Al IIO 3 + f.c.c Al in Al IIO 3 powder/ Al composite and original WC particles + separated WC particles + eutectic WC + γ-Co solid solution + W IIC particles in WC + Co/steel coatings are respectively recognized. New microstructures of 5H-SiC in SiC/Al composite, cubic γ-Al IIO 3 in Al IIO 3 composite and W IIC in WC + Co/ steel composite by laser cladding have been respectively observed.

  16. A Study on 3-Body Abrasive Wear Behaviour of Aluminium 8011 / Graphite Metal Matrix Composite

    NASA Astrophysics Data System (ADS)

    Latha Shankar, B.; Anil, K. C.; Patil, Rahul

    2016-09-01

    Metals and alloys have found their vital role in many applications like structural, corrosive, tribological, etc., in engineering environment. The alloys/composites having high strength to low weight ratio have gained attention of many researchers recently. In this work, graphite reinforced Aluminium 8011 metal matrix composite was prepared by conventional stir casting route, by varying the weight % of reinforcement. Uniform distribution of Graphite in matrix alloy was confirmed by optical micrographs. Prepared composite specimens were subjected to 3-body abrasive testing by varying applied load and time, the silica particles of 400 grit size were used as abrasive particles. It was observed that with the increase of weight% of Graphite the wear resistance of composite was also increasing and on comparison it was found that reinforced composite gives good wear resistance than base alloy.

  17. Influence of Ni-P Coated SiC and Laser Scan Speed on the Microstructure and Mechanical Properties of IN625 Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Sateesh, N. H.; Kumar, G. C. Mohan; Krishna, Prasad

    2015-12-01

    Nickel based Inconel-625 (IN625) metal matrix composites (MMCs) were prepared using pre-heated nickel phosphide (Ni-P) coated silicon carbide (SiC) reinforcement particles by Direct Metal Laser Sintering (DMLS) additive manufacturing process under inert nitrogen atmosphere to obtain interface influences on MMCs. The distribution of SiC particles and microstructures were characterized using optical and scanning electron micrographs, and the mechanical behaviours were thoroughly examined. The results clearly reveal that the interface integrity between the SiC particles and the IN625 matrix, the mixed powders flowability, the SiC ceramic particles and laser beam interaction, and the hardness, and tensile characteristics of the DMLS processed MMCs were improved effectively by the use of Ni-P coated SiC particles.

  18. Method of joining metallic and composite components

    NASA Technical Reports Server (NTRS)

    Semmes, Edmund B. (Inventor)

    2010-01-01

    A method is provided for joining a metallic member to a structure made of a composite matrix material. One or more surfaces of a portion of the metallic member that is to be joined to the composite matrix structure is provided with a plurality of outwardly projecting studs. The surface including the studs is brought into engagement with a portion of an uncured composite matrix material so that fibers of the composite matrix material intertwine with the studs, and the metallic member and composite structure form an assembly. The assembly is then companion cured so as to join the metallic member to the composite matrix material structure.

  19. METCAN-PC - METAL MATRIX COMPOSITE ANALYZER

    NASA Technical Reports Server (NTRS)

    Murthy, P. L.

    1994-01-01

    High temperature metal matrix composites offer great potential for use in advanced aerospace structural applications. The realization of this potential however, requires concurrent developments in (1) a technology base for fabricating high temperature metal matrix composite structural components, (2) experimental techniques for measuring their thermal and mechanical characteristics, and (3) computational methods to predict their behavior. METCAN (METal matrix Composite ANalyzer) is a computer program developed to predict this behavior. METCAN can be used to computationally simulate the non-linear behavior of high temperature metal matrix composites (HT-MMC), thus allowing the potential payoff for the specific application to be assessed. It provides a comprehensive analysis of composite thermal and mechanical performance. METCAN treats material nonlinearity at the constituent (fiber, matrix, and interphase) level, where the behavior of each constituent is modeled accounting for time-temperature-stress dependence. The composite properties are synthesized from the constituent instantaneous properties by making use of composite micromechanics and macromechanics. Factors which affect the behavior of the composite properties include the fabrication process variables, the fiber and matrix properties, the bonding between the fiber and matrix and/or the properties of the interphase between the fiber and matrix. The METCAN simulation is performed as point-wise analysis and produces composite properties which are readily incorporated into a finite element code to perform a global structural analysis. After the global structural analysis is performed, METCAN decomposes the composite properties back into the localized response at the various levels of the simulation. At this point the constituent properties are updated and the next iteration in the analysis is initiated. This cyclic procedure is referred to as the integrated approach to metal matrix composite analysis. METCAN-PC is written in FORTRAN 77 for IBM PC series and compatible computers running MS-DOS. An 80286 machine with an 80287 math co-processor is required for execution. The executable requires at least 640K of RAM and DOS 3.1 or higher. The package includes sample executables which were compiled under Microsoft FORTRAN v. 5.1. The standard distribution medium for this program is one 5.25 inch 360K MS-DOS format diskette. The contents of the diskette are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. METCAN-PC was developed in 1992.

  20. Nanomaterials as Assisted Matrix of Laser Desorption/Ionization Time-of-Flight Mass Spectrometry for the Analysis of Small Molecules.

    PubMed

    Lu, Minghua; Yang, Xueqing; Yang, Yixin; Qin, Peige; Wu, Xiuru; Cai, Zongwei

    2017-04-21

    Matrix-assisted laser desorption/ionization (MALDI), a soft ionization method, coupling with time-of-flight mass spectrometry (TOF MS) has become an indispensible tool for analyzing macromolecules, such as peptides, proteins, nucleic acids and polymers. However, the application of MALDI for the analysis of small molecules (<700 Da) has become the great challenge because of the interference from the conventional matrix in low mass region. To overcome this drawback, more attention has been paid to explore interference-free methods in the past decade. The technique of applying nanomaterials as matrix of laser desorption/ionization (LDI), also called nanomaterial-assisted laser desorption/ionization (nanomaterial-assisted LDI), has attracted considerable attention in the analysis of low-molecular weight compounds in TOF MS. This review mainly summarized the applications of different types of nanomaterials including carbon-based, metal-based and metal-organic frameworks as assisted matrices for LDI in the analysis of small biological molecules, environmental pollutants and other low-molecular weight compounds.

  1. Nanomaterials as Assisted Matrix of Laser Desorption/Ionization Time-of-Flight Mass Spectrometry for the Analysis of Small Molecules

    PubMed Central

    Lu, Minghua; Yang, Xueqing; Yang, Yixin; Qin, Peige; Wu, Xiuru; Cai, Zongwei

    2017-01-01

    Matrix-assisted laser desorption/ionization (MALDI), a soft ionization method, coupling with time-of-flight mass spectrometry (TOF MS) has become an indispensible tool for analyzing macromolecules, such as peptides, proteins, nucleic acids and polymers. However, the application of MALDI for the analysis of small molecules (<700 Da) has become the great challenge because of the interference from the conventional matrix in low mass region. To overcome this drawback, more attention has been paid to explore interference-free methods in the past decade. The technique of applying nanomaterials as matrix of laser desorption/ionization (LDI), also called nanomaterial-assisted laser desorption/ionization (nanomaterial-assisted LDI), has attracted considerable attention in the analysis of low-molecular weight compounds in TOF MS. This review mainly summarized the applications of different types of nanomaterials including carbon-based, metal-based and metal-organic frameworks as assisted matrices for LDI in the analysis of small biological molecules, environmental pollutants and other low-molecular weight compounds. PMID:28430138

  2. Program For Analysis Of Metal-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Mital, S. K.

    1994-01-01

    METCAN (METal matrix Composite ANalyzer) is computer program used to simulate computationally nonlinear behavior of high-temperature metal-matrix composite structural components in specific applications, providing comprehensive analyses of thermal and mechanical performances. Written in FORTRAN 77.

  3. Ceramic superconductor/metal composite materials employing the superconducting proximity effect

    DOEpatents

    Holcomb, Matthew J.

    2002-01-01

    Superconducting composite materials having particles of superconducting material disposed in a metal matrix material with a high electron-boson coupling coefficient (.lambda.). The superconducting particles can comprise any type of superconductor including Laves phase materials, Chevrel phase materials, A15 compounds, and perovskite cuprate ceramics. The particles preferably have dimensions of about 10-500 nanometers. The particles preferably have dimensions larger than the superconducting coherence length of the superconducting material. The metal matrix material has a .lambda. greater than 0.2, preferably the .lambda. is much higher than 0.2. The metal matrix material is a good proximity superconductor due to its high .lambda.. When cooled, the superconductor particles cause the metal matrix material to become superconducting due to the proximity effect. In cases where the particles and the metal matrix material are chemically incompatible (i.e., reactive in a way that destroys superconductivity), the particles are provided with a thin protective metal coating. The coating is chemically compatible with the particles and metal matrix material. High Temperature Superconducting (HTS) cuprate ceramic particles are reactive and therefore require a coating of a noble metal resistant to oxidation (e.g., silver, gold). The proximity effect extends through the metal coating. With certain superconductors, non-noble metals can be used for the coating.

  4. Metal Matrix Composite LOX Turbopump Housing Via Novel Tool-Less Net-Shape Pressure Infiltration Casting Technology

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Lee, Jonathan; Bhat, Biliyar; Wells, Doug; Gregg, Wayne; Marsh, Matthew; Genge, Gary; Forbes, John; Salvi, Alex; Cornie, James A.; hide

    2002-01-01

    This presentation provides an overview of the effort by Metal Matrix Cast Composites, Inc. to redesign turbopump housing joints using metal matrix composite material and a toolless net-shape pressure infiltration casting technology. Topics covered include: advantage of metal matrix composites for propulsion components, baseline pump design and analysis, advanced toolless pressure infiltration casting process, subscale pump housing, preform splicing and joining for large components, and fullscale pump housing redesign.

  5. Refractive index inversion based on Mueller matrix method

    NASA Astrophysics Data System (ADS)

    Fan, Huaxi; Wu, Wenyuan; Huang, Yanhua; Li, Zhaozhao

    2016-03-01

    Based on Stokes vector and Jones vector, the correlation between Mueller matrix elements and refractive index was studied with the result simplified, and through Mueller matrix way, the expression of refractive index inversion was deduced. The Mueller matrix elements, under different incident angle, are simulated through the expression of specular reflection so as to analyze the influence of the angle of incidence and refractive index on it, which is verified through the measure of the Mueller matrix elements of polished metal surface. Research shows that, under the condition of specular reflection, the result of Mueller matrix inversion is consistent with the experiment and can be used as an index of refraction of inversion method, and it provides a new way for target detection and recognition technology.

  6. Spectral properties of nanocomposites based on fluorine-containing polymer and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Barmina, E. V.; Mel’nik, N. N.; Rakov, I. I.; Ivanov, V. E.; Simakin, A. V.; Gudkov, S. V.; Shafeev, G. A.

    2018-04-01

    The optical properties of nanocomposites of gold nanoparticles and fluorine-containing polymer have been studied. Gold nanoparticles were obtained by laser ablation of gold or terbium targets in organic solvents. The thus formed colloidal solutions were used to prepare nanocomposites of gold nanoparticles in polymer matrices of transparent and colorless fluorine-containing polymer. The polymer matrix is found to promote aggregation of nanoparticles of metal under study into elongated chains. In turn, metal nanoparticles influence on the polymer matrix. Gold nanoparticles amplify the Raman signal of the polymer matrix. In addition, the Raman spectra of nanocomposites indicate aggregation of disordered carbon around the nanoparticles obtained by laser ablation in organic solvents.

  7. Self-Repairing Fatigue Damage in Metallic Structures for Aerospace Vehicles Using Shape Memory Alloy Self-healing (SMASH) Technology

    NASA Technical Reports Server (NTRS)

    Wright, M. Clara; Manuel, Michele; Wallace, Terryl; Newman, Andy; Brinson, Kate

    2015-01-01

    This DAA is for the Phase II webinar presentation of the ARMD-funded SMASH technology. A self-repairing aluminum-based composite system has been developed using liquid-assisted healing theory in conjunction with the shape memory effect of wire reinforcements. The metal matrix composite was thermodynamically designed to have a matrix with a relatively even dispersion of low-melting phase, allowing for repair of cracks at a pre-determined temperature. Shape memory alloy wire reinforcements were used within the composite to provide crack closure. Investigators focused the research on fatigue cracks propagating through the matrix in order to optimize and computer model the SMASH technology for aeronautical applications.

  8. Creep of Refractory Fibers and Modeling of Metal and Ceramic Matrix Composite Creep Behavior

    NASA Technical Reports Server (NTRS)

    Tewari, S.N.

    1995-01-01

    Our concentration during this research was on the following subprograms. (1) Ultra high vacuum creep tests on 218, ST300 and WHfC tungsten and MoHfC molybdenum alloy wires, temperature range from 1100 K to 1500 K, creep time of 1 to 500 hours. (2) High temperature vacuum tensile tests on 218, ST300 and WHfC tungsten and MoHfC molybdenum alloy wires. (3) Air and vacuum tensile creep tests on polycrystalline and single crystal alumina fibers, such as alumina-mullite Nextel fiber, yttrium aluminum ganet (YAG) and Saphikon, temperature range from 1150 K to 1470 K, creep time of 2 to 200 hours. (4) Microstructural evaluation of crept fibers, TEM study on the crept metal wires, SEM study on the fracture surface of ceramic fibers. (5) Metal Matrix Composite creep models, based on the fiber creep properties and fiber-matrix interface zone formation.

  9. Graphene-and-Copper Artificial Nacre Fabricated by a Preform Impregnation Process: Bioinspired Strategy for Strengthening-Toughening of Metal Matrix Composite.

    PubMed

    Xiong, Ding-Bang; Cao, Mu; Guo, Qiang; Tan, Zhanqiu; Fan, Genlian; Li, Zhiqiang; Zhang, Di

    2015-07-28

    Metals can be strengthened by adding hard reinforcements, but such strategy usually compromises ductility and toughness. Natural nacre consists of hard and soft phases organized in a regular "brick-and-mortar" structure and exhibits a superior combination of mechanical strength and toughness, which is an attractive model for strengthening and toughening artificial composites, but such bioinspired metal matrix composite has yet to be made. Here we prepared nacre-like reduced graphene oxide (RGrO) reinforced Cu matrix composite based on a preform impregnation process, by which two-dimensional RGrO was used as "brick" and inserted into "□-and-mortar" ordered porous Cu preform (the symbol "□" means the absence of "brick"), followed by compacting. This process realized uniform dispersion and alignment of RGrO in Cu matrix simultaneously. The RGrO-and-Cu artificial nacres exhibited simultaneous enhancement on yield strength and ductility as well as increased modulus, attributed to RGrO strengthening, effective crack deflection and a possible combined failure mode of RGrO. The artificial nacres also showed significantly higher strengthening efficiency than other conventional Cu matrix composites, which might be related to the alignment of RGrO.

  10. Depth of cure of proximal composite resin restorations using a new perforated metal matrix.

    PubMed

    Nguyen, Duke P; Motyka, Nancy C; Meyers, Erik J; Vandewalle, Kraig S

    2018-01-01

    The purpose of this study was to compare the depths of cure of a proximal box preparation filled in bulk with various approaches: filled with a bulk-fill or conventional composite; placed with a new perforated metal matrix, a traditional metal matrix, or a clear matrix; and polymerized with either occlusal-only or tri-sited light curing. After tri-sited curing, the use of the new perforated metal matrix band resulted in a depth of cure that was not significantly different from that achieved with the use of metal bands (removed during curing) or transparent matrix bands. Adequate polymerization was obtained at depths of more than 5.0 mm for the bulk-fill composite and more than 4.0 mm for the conventional composite when tri-sited light curing was used. Tri-sited light curing resulted in a significantly greater depth of cure than occlusal-only curing. The perforated metal band may be used as an alternative to the use of solid metal bands or transparent matrix bands to provide similar depths of cure for composite resins, with the possible benefits of malleability and the ability to leave the band in place during tri-sited light curing.

  11. Method for the removal and recovery of mercury

    DOEpatents

    Easterly, Clay E.; Vass, Arpad A.; Tyndall, Richard L.

    1997-01-01

    The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

  12. Method for the removal and recovery of mercury

    DOEpatents

    Easterly, C.E.; Vass, A.A.; Tyndall, R.L.

    1997-01-28

    The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

  13. Liquid on Paper: Rapid Prototyping of Soft Functional Components for Paper Electronics.

    PubMed

    Han, Yu Long; Liu, Hao; Ouyang, Cheng; Lu, Tian Jian; Xu, Feng

    2015-07-01

    This paper describes a novel approach to fabricate paper-based electric circuits consisting of a paper matrix embedded with three-dimensional (3D) microchannels and liquid metal. Leveraging the high electric conductivity and good flowability of liquid metal, and metallophobic property of paper, it is possible to keep electric and mechanical functionality of the electric circuit even after a thousand cycles of deformation. Embedding liquid metal into paper matrix is a promising method to rapidly fabricate low-cost, disposable, and soft electric circuits for electronics. As a demonstration, we designed a programmable displacement transducer and applied it as variable resistors and pressure sensors. The unique metallophobic property, combined with softness, low cost and light weight, makes paper an attractive alternative to other materials in which liquid metal are currently embedded.

  14. Graphene-Reinforced Metal and Polymer Matrix Composites

    NASA Astrophysics Data System (ADS)

    Kasar, Ashish K.; Xiong, Guoping; Menezes, Pradeep L.

    2018-03-01

    Composites have tremendous applicability due to their excellent capabilities. The performance of composites mainly depends on the reinforcing material applied. Graphene is successful as an efficient reinforcing material due to its versatile as well as superior properties. Even at very low content, graphene can dramatically improve the properties of polymer and metal matrix composites. This article reviews the fabrication followed by mechanical and tribological properties of metal and polymer matrix composites filled with different kinds of graphene, including single-layer, multilayer, and functionalized graphene. Results reported to date in literature indicate that functionalized graphene or graphene oxide-polymer composites are promising materials offering significantly improved strength and frictional properties. A similar trend of improved properties has been observed in case of graphene-metal matrix composites. However, achieving higher graphene loading with uniform dispersion in metal matrix composites remains a challenge. Although graphene-reinforced composites face some challenges, such as understanding the graphene-matrix interaction or fabrication techniques, graphene-reinforced polymer and metal matrix composites have great potential for application in various fields due to their outstanding properties.

  15. Graphene-Reinforced Metal and Polymer Matrix Composites

    NASA Astrophysics Data System (ADS)

    Kasar, Ashish K.; Xiong, Guoping; Menezes, Pradeep L.

    2018-06-01

    Composites have tremendous applicability due to their excellent capabilities. The performance of composites mainly depends on the reinforcing material applied. Graphene is successful as an efficient reinforcing material due to its versatile as well as superior properties. Even at very low content, graphene can dramatically improve the properties of polymer and metal matrix composites. This article reviews the fabrication followed by mechanical and tribological properties of metal and polymer matrix composites filled with different kinds of graphene, including single-layer, multilayer, and functionalized graphene. Results reported to date in literature indicate that functionalized graphene or graphene oxide-polymer composites are promising materials offering significantly improved strength and frictional properties. A similar trend of improved properties has been observed in case of graphene-metal matrix composites. However, achieving higher graphene loading with uniform dispersion in metal matrix composites remains a challenge. Although graphene-reinforced composites face some challenges, such as understanding the graphene-matrix interaction or fabrication techniques, graphene-reinforced polymer and metal matrix composites have great potential for application in various fields due to their outstanding properties.

  16. Investigation of Laser Generation and Detection of Ultrasound in Ceramic Matrix Composites and Intermetallics

    NASA Technical Reports Server (NTRS)

    Ehrlich, Michael J.

    1998-01-01

    The goal of this program is to assess the feasibility of using laser based ultrasonic techniques for inspecting and characterizing materials of interest to NASA, specifically those used in propulsion and turbomachinery applications, such as ceramic composites, metal matrix composites, and intermetallics.

  17. A Coupled/Uncoupled Computational Scheme for Deformation and Fatigue Damage Analysis of Unidirectional Metal-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Wilt, Thomas E.; Arnold, Steven M.; Saleeb, Atef F.

    1997-01-01

    A fatigue damage computational algorithm utilizing a multiaxial, isothermal, continuum-based fatigue damage model for unidirectional metal-matrix composites has been implemented into the commercial finite element code MARC using MARC user subroutines. Damage is introduced into the finite element solution through the concept of effective stress that fully couples the fatigue damage calculations with the finite element deformation solution. Two applications using the fatigue damage algorithm are presented. First, an axisymmetric stress analysis of a circumferentially reinforced ring, wherein both the matrix cladding and the composite core were assumed to behave elastic-perfectly plastic. Second, a micromechanics analysis of a fiber/matrix unit cell using both the finite element method and the generalized method of cells (GMC). Results are presented in the form of S-N curves and damage distribution plots.

  18. A unique set of micromechanics equations for high temperature metal matrix composites

    NASA Technical Reports Server (NTRS)

    Hopkins, D. A.; Chamis, C. C.

    1985-01-01

    A unique set of micromechanic equations is presented for high temperature metal matrix composites. The set includes expressions to predict mechanical properties, thermal properties and constituent microstresses for the unidirectional fiber reinforced ply. The equations are derived based on a mechanics of materials formulation assuming a square array unit cell model of a single fiber, surrounding matrix and an interphase to account for the chemical reaction which commonly occurs between fiber and matrix. A three-dimensional finite element analysis was used to perform a preliminary validation of the equations. Excellent agreement between properties predicted using the micromechanics equations and properties simulated by the finite element analyses are demonstrated. Implementation of the micromechanics equations as part of an integrated computational capability for nonlinear structural analysis of high temperature multilayered fiber composites is illustrated.

  19. Metal matrix coated fiber composites and the methods of manufacturing such composites

    DOEpatents

    Weeks, Jr., Joseph K.; Gensse, Chantal

    1993-01-01

    A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials.

  20. Metal matrix coated fiber composites and the methods of manufacturing such composites

    DOEpatents

    Weeks, J.K. Jr.; Gensse, C.

    1993-09-14

    A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials. 8 figures.

  1. Source apportionment of atmospheric bulk deposition in the Belgrade urban area using Positive Matrix factorization

    NASA Astrophysics Data System (ADS)

    Tasić, M.; Mijić, Z.; Rajšić, S.; Stojić, A.; Radenković, M.; Joksić, J.

    2009-04-01

    The primary objective of the present study was to assess anthropogenic impacts of heavy metals to the environment by determination of total atmospheric deposition of heavy metals. Atmospheric depositions (wet + dry) were collected monthly, from June 2002 to December 2006, at three urban locations in Belgrade, using bulk deposition samplers. Concentrations of Fe, Al, Pb, Zn, Cu, Ni, Mn, Cr, V, As and Cd were analyzed using atomic absorption spectrometry. Based upon these results, the study attempted to examine elemental associations in atmospheric deposition and to elucidate the potential sources of heavy metal contaminants in the region by the use of multivariate receptor model Positive Matrix Factorization (PMF).

  2. Solidification/stabilization of fly ash from city refuse incinerator facility and heavy metal sludge with cement additives.

    PubMed

    Cerbo, Atlas Adonis V; Ballesteros, Florencio; Chen, Teng Chien; Lu, Ming-Chun

    2017-01-01

    Solidification and stabilization are well-known technologies used for treating hazardous waste. These technologies that use cementitious binder have been applied for decades as a final treatment procedure prior to the hazardous waste disposal. In the present work, hazardous waste like fly ash containing high concentrations of heavy metals such Zn (4715.56 mg/kg), Pb (1300.56 mg/kg), and Cu (534.72 mg/kg) and amounts of Ag, Cd, Co, Cr, Mn, and Ni was sampled from a city refuse incinerator facility. This fly ash was utilized in the solidification/stabilization of heavy metal sludge since fly ash has cement-like characteristics. Cement additives such as sodium sulfate, sodium carbonate, and ethylenediaminetetraacetic acid (EDTA) was incorporated to the solidified matrix in order to determine its effect on the solidification/stabilization performance. The solidified matrix was cured for 7, 14, 21, and 28 days prior for its physical and chemical characterizations. The results show that the solidified matrix containing 40% fly ash and 60% cement with heavy metal sludge was the formulation that has the highest fly ash content with a satisfactory strength. The solidified matrix was also able to immobilize the heavy metals both found in the fly ash and sludge based on the toxicity characteristic leaching procedure (TCLP) test. It also shows that the incorporation of sodium carbonate into the solidified matrix not only further improved the compressive strength from 0.36 MPa (without Na 2 CO 3 ) to 0.54 MPa (with Na 2 CO 3 ) but also increased its leaching resistance.

  3. Performance Enhancement Using Selective Reinforcement for Metallic Single- and Multi-Pin Loaded Holes

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.; Seshadri, Banavara R.

    2005-01-01

    An analysis based investigation of aluminum with metal matrix composite selectively reinforced single- and multi-hole specimens was performed and their results compared with results from geometrically comparable non-reinforced specimens. All reinforced specimens exhibited a significant increase in performance. Performance increase of up to 170 percent was achieved. Specimen failure modes were consistent with results from reinforced polymeric matrix composite specimens. Localized reinforcement application (circular) proved as effective as a broader area (strip) reinforcement. Also, selective reinforcement is an excellent method of increasing the performance of multi-hole specimens.

  4. Metal- matrix composite processing technologies for aircraft engine applications

    NASA Astrophysics Data System (ADS)

    Pank, D. R.; Jackson, J. J.

    1993-06-01

    Titanium metal-matrix composites (MMC) are prime candidate materials for aerospace applications be-cause of their excellent high-temperature longitudinal strength and stiffness and low density compared with nickel- and steel-base materials. This article examines the steps GE Aircraft Engines (GEAE) has taken to develop an induction plasma deposition (IPD) processing method for the fabrication of Ti6242/SiC MMC material. Information regarding process methodology, microstructures, and mechani-cal properties of consolidated MMC structures will be presented. The work presented was funded under the GE-Aircraft Engine IR & D program.

  5. Reuse of EAF Slag as Reinforcing Filler for Polypropylene Matrix Composites

    NASA Astrophysics Data System (ADS)

    Cornacchia, G.; Agnelli, S.; Gelfi, M.; Ramorino, G.; Roberti, R.

    2015-06-01

    Electric-arc furnace (EAF) slag, the by-product of steel fabricated at the EAF, is in most cases still sent to dumps, with serious environmental consequences. This work shows an innovative, economically convenient application for EAF slag: its use as reinforcing filler for polypropylene. Composites based on polypropylene containing 10-40 wt.% of EAF slag particles were prepared by melt compounding followed by injection molding. A physical-chemical analysis of the EAF slag was performed to determine microstructural features and main component phases. Leaching tests demonstrated that, although EAF slag can release small amounts of toxic elements, such as heavy metals, incorporating such material into the polymeric matrix immobilizes the heavy metals inside that matrix. The mechanical characterization of the polymer-based composites was performed. Incorporating EAF slag particles raises the Young's modulus and the tensile strength at yield, whereas elongation at break and the impact strength of the polymer-based composite are significantly reduced only when large amounts of filler are added, i.e., 30% or more.

  6. Influence of the porosity on the dispersion of the phase velocity of longitudinal acoustic waves in isotropic metal-matrix composites

    NASA Astrophysics Data System (ADS)

    Karabutov, A. A.; Podymova, N. B.

    2017-05-01

    The influence of the volumetric porosity of isotropic metal-matrix composite materials, which are reinforced with ceramic microparticles, on the dispersion of the phase velocity of longitudinal acoustic waves is investigated. For this purpose, the method of broadband acoustic spectroscopy with a laser source of ultrasound and piezoelectric detection of nanosecond ultrasonic pulses is used. Composite samples based on a silumin matrix with added silicon carbide (SiC) microparticles in different mass concentrations (3.8-15.5%) were investigated. As the concentration of SiC particles in a sample increases, its porosity that is determined using the hydrostatic-weighing method also increases. The simultaneous increase in the filler concentration and porosity leads to the appearance of a dispersion of the phase velocity of longitudinal acoustic waves in the sample within the frequency range of 3-25 MHz. The obtained empirical relationship between the relative change in the phase velocity and the sample porosity can be used to obtain a proximate quantitative estimate of the bulk porosity of the isotropic metal-matrix composite materials.

  7. Robust Joining and Integration Technologies for Advanced Metallic, Ceramic, and Composite Systems

    NASA Technical Reports Server (NTRS)

    Singh, M.; Shpargel, Tarah; Morscher, Gregory N.; Halbig, Michael H.; Asthana, Rajiv

    2006-01-01

    Robust integration and assembly technologies are critical for the successful implementation of advanced metallic, ceramic, carbon-carbon, and ceramic matrix composite components in a wide variety of aerospace, space exploration, and ground based systems. Typically, the operating temperature of these components varies from few hundred to few thousand Kelvin with different working times (few minutes to years). The wide ranging system performance requirements necessitate the use of different integration technologies which includes adhesive bonding, low temperature soldering, active metal brazing, diffusion bonding, ARCJoinT, and ultra high temperature joining technologies. In this presentation, a number of joining examples and test results will be provided related to the adhesive bonding and active metal brazing of titanium to C/C composites, diffusion bonding of silicon carbide to silicon carbide using titanium interlayer, titanium and hastelloy brazing to silicon carbide matrix composites, and ARCJoinT joining of SiC ceramics and SiC matrix composites. Various issues in the joining of metal-ceramic systems including thermal expansion mismatch and resulting residual stresses generated during joining will be discussed. In addition, joint design and testing issues for a wide variety of joints will be presented.

  8. Micromechanical Modeling of Woven Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Pindera, Marek-Jerzy

    1997-01-01

    This report presents the results of an extensive micromechanical modeling effort for woven metal matrix composites. The model is employed to predict the mechanical response of 8-harness (8H) satin weave carbon/copper (C/Cu) composites. Experimental mechanical results for this novel high thermal conductivity material were recently reported by Bednarcyk et al. along with preliminary model results. The micromechanics model developed herein is based on an embedded approach. A micromechanics model for the local (micro-scale) behavior of the woven composite, the original method of cells (Aboudi), is embedded in a global (macro-scale) micromechanics model (the three-dimensional generalized method of cells (GMC-3D) (Aboudi). This approach allows representation of true repeating unit cells for woven metal matrix composites via GMC-3D, and representation of local effects, such as matrix plasticity, yarn porosity, and imperfect fiber-matrix bonding. In addition, the equations of GMC-3D were reformulated to significantly reduce the number of unknown quantities that characterize the deformation fields at the microlevel in order to make possible the analysis of actual microstructures of woven composites. The resulting micromechanical model (WCGMC) provides an intermediate level of geometric representation, versatility, and computational efficiency with respect to previous analytical and numerical models for woven composites, but surpasses all previous modeling work by allowing the mechanical response of a woven metal matrix composite, with an elastoplastic matrix, to be examined for the first time. WCGMC is employed to examine the effects of composite microstructure, porosity, residual stresses, and imperfect fiber-matrix bonding on the predicted mechanical response of 8H satin C/Cu. The previously reported experimental results are summarized, and the model predictions are compared to monotonic and cyclic tensile and shear test data. By considering appropriate levels of porosity, residual stresses, and imperfect fiber-matrix debonding, reasonably good qualitative and quantitative correlation is achieved between model and experiment.

  9. High-Strain-Rate Constitutive Characterization and Modeling of Metal Matrix Composites

    DTIC Science & Technology

    2014-03-07

    protective coatings. Even though most MMCs studied to date are aluminum matrix composites, magnesium and its alloys have also been considered to be... plastic response of the matrix. Based on a simple analysis of the effect of misalignments of microscale kinks, Argon estimated that the compressive... deformations ; if the fibers break into small enough pieces, their stiffening effect could be reduced. We are examining both possibilities to explain

  10. Magnetic Properties and Phase Composition of Metamaterials Based on an Opal Matrix with 3 d-Transition Metal Particles

    NASA Astrophysics Data System (ADS)

    Rinkevich, A. B.; Korolev, A. V.; Samoilovich, M. I.; Perov, D. V.; Nemytova, O. V.

    2018-02-01

    The magnetic properties of metamaterials based on an opal matrix with transition-metal (iron, nickel, cobalt) particles have been studied. Magnetization curves and magnetic hysteresis loops have been measured and the dependences of real and imaginary parts of magnetization have been determined using the dynamic ac susceptibility measuring procedure. Structural studies of metamaterials have been performed. The saturation magnetization and coercive force of the studied metamaterials have been found to depend weakly on the temperature. The temperature dependence of magnetic susceptibility at a temperature above 30 K can be described adequately by Curie-Weiss law and, at lower temperature, deviates from the law.

  11. Model Determined for Predicting Fatigue Lives of Metal Matrix Composites Under Mean Stresses

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley

    1997-01-01

    Aircraft engine components invariably are subjected to mean stresses over and above the cyclic loads. In monolithic materials, it has been observed that tensile mean stresses are detrimental and compressive mean stresses are beneficial to fatigue life in comparison to a base of zero mean stress. Several mean stress models exist for monolithic metals, but each differ quantitatively in the extent to which detrimental or beneficial effects are ascribed. There have been limited attempts to apply these models to metal matrix composites. At the NASA Lewis Research Center, several mean stress models--the Smith-Watson- Topper, Walker, Normalized Goodman, and Soderberg models--were examined for applicability to this class of composite materials. The Soderberg approach, which normalizes the mean stress to a 0.02-percent yield strength, was shown to best represent the effect of mean stresses over the range covered. The other models varied significantly in their predictability and often failed to predict the composite behavior at very high tensile mean stresses. This work is the first to systematically demonstrate the influence of mean stresses on metal matrix composites and model their effects. Attention also was given to fatigue-cracking mechanisms in the Ti-15-3 matrix and to micromechanics analyses of mean stress effects.

  12. Metal matrix composite micromechanics: In-situ behavior influence on composite properties

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Hopkins, D. A.; Chamis, C. C.

    1989-01-01

    Recent efforts in computational mechanics methods for simulating the nonlinear behavior of metal matrix composites have culminated in the implementation of the Metal Matrix Composite Analyzer (METCAN) computer code. In METCAN material nonlinearity is treated at the constituent (fiber, matrix, and interphase) level where the current material model describes a time-temperature-stress dependency of the constituent properties in a material behavior space. The composite properties are synthesized from the constituent instantaneous properties by virtue of composite micromechanics and macromechanics models. The behavior of metal matrix composites depends on fabrication process variables, in situ fiber and matrix properties, bonding between the fiber and matrix, and/or the properties of an interphase between the fiber and matrix. Specifically, the influence of in situ matrix strength and the interphase degradation on the unidirectional composite stress-strain behavior is examined. These types of studies provide insight into micromechanical behavior that may be helpful in resolving discrepancies between experimentally observed composite behavior and predicted response.

  13. DARPA - Advanced Composite Materials Annual Presentation Held in Gainesville, Florida on 19-20 November 1992

    DTIC Science & Technology

    1992-11-20

    34 and M.D. Sacks 13) "Fabrication of SiC -Based Composites by Reactive Infiltration of Metals (RIM)" K. Wang," G.W. Scheiffele, P.J. Sanchez-Soto, and...Ig I I keactive Infiltration of Metals (RIM) Ii * Densification with little or no shrinkage e SIC -based composites with little or no residual metal...M.D. Sacks I) Indicates Presenter Intermetallic: Matrix Composites 14) *Processing of Compositionally Tailored Silica-Free MoSi 2/ SiC Composites ’ S

  14. 76 FR 2243 - List of Approved Spent Fuel Storage Casks: NUHOMS ® HD System Revision 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-13

    ... the requirements of reconstituted fuel assemblies; add requirements to qualify metal matrix composite... requirements to qualify metal matrix composite neutron absorbers with integral aluminum cladding; clarify the... requirements to qualify metal matrix composite neutron absorbers with integral aluminum cladding; clarify the...

  15. Cladding material, tube including such cladding material and methods of forming the same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garnier, John E.; Griffith, George W.

    A multi-layered cladding material including a ceramic matrix composite and a metallic material, and a tube formed from the cladding material. The metallic material forms an inner liner of the tube and enables hermetic sealing of thereof. The metallic material at ends of the tube may be exposed and have an increased thickness enabling end cap welding. The metallic material may, optionally, be formed to infiltrate voids in the ceramic matrix composite, the ceramic matrix composite encapsulated by the metallic material. The ceramic matrix composite includes a fiber reinforcement and provides increased mechanical strength, stiffness, thermal shock resistance and highmore » temperature load capacity to the metallic material of the inner liner. The tube may be used as a containment vessel for nuclear fuel used in a nuclear power plant or other reactor. Methods for forming the tube comprising the ceramic matrix composite and the metallic material are also disclosed.« less

  16. Factors affecting fixation of heavy metals in solidified/stabilized matrix: a review.

    PubMed

    Malviya, Rachana; Chaudhary, Rubina

    2010-07-01

    In this paper, an effort has been made to understand the factors, which affect fixation of heavy metals in solidified/stabilized matrix. Various aspects related to the solidification/stabilization of different heavy metals (Ar, Ba, Cu, Cr, Pb, Zn, Hg) are reviewed. A comparative study of different binders for the fixation of each metal has also been carried out to suggest the most suitable binder, pretreatment required for the metal. Valence, speciation, pH and other factors are also considered while reviewing metal retention capacity of different matrix.

  17. Surface modification by metal ion implantation forming metallic nanoparticles in an insulating matrix

    NASA Astrophysics Data System (ADS)

    Salvadori, M. C.; Teixeira, F. S.; Sgubin, L. G.; Cattani, M.; Brown, I. G.

    2014-08-01

    There is special interest in the incorporation of metallic nanoparticles in a surrounding dielectric matrix for obtaining composites with desirable characteristics such as for surface plasmon resonance, which can be used in photonics and sensing, and controlled surface electrical conductivity. We have investigated nanocomposites produced by metal ion implantation into insulating substrates, where the implanted metal self-assembles into nanoparticles. The nanoparticles nucleate near the maximum of the implantation depth profile (projected range), which can be estimated by computer simulation using the TRIDYN code. TRIDYN is a Monte Carlo simulation program based on the TRIM (Transport and Range of Ions in Matter) code that takes into account compositional changes in the substrate due to two factors: previously implanted dopant atoms, and sputtering of the substrate surface. Our study show that the nanoparticles form a bidimentional array buried a few nanometers below the substrate surface. We have studied Au/PMMA (polymethylmethacrylate), Pt/PMMA, Ti/alumina and Au/alumina systems. Transmission electron microscopy of the implanted samples show that metallic nanoparticles form in the insulating matrix. These nanocomposites have been characterized by measuring the resistivity of the composite layer as a function of the implantation dose. The experimental results are compared with a model based on percolation theory, in which electron transport through the composite is explained by conduction through a random resistor network formed by the metallic nanoparticles. Excellent agreement is found between the experimental results and the predictions of the theory. We conclude in that the conductivity process is due only to percolation (when the conducting elements are in geometric contact) and that the contribution from tunneling conduction is negligible.

  18. Vibrational response and mechanical properties characterization of aluminium alloy 6061/Sic composite

    NASA Astrophysics Data System (ADS)

    Kumbhar, A. P.; Vyavahare, R. T.; Kulkarni, S. G.

    2018-05-01

    Aluminium alloy based metal matrix composites (AAMMC) are mainly used in sliding wear application, automobile, Aircraft and aerospace components, Marine fittings, Transport and other industry are becoming highly advantageous due to their excellent wear resistance, lighter weight, higher strength and durability. In this paper the effect of reinforcement percentage on vibration response and mechanical properties of metal matrix composite has been investigated. Composite material was prepared by varying Sic (0, 3, 6, and 9 wt. %) by stir casting method. Natural frequency, tensile strength, rockwell hardness and compressive strength were analyzed. The result shows that, addition of sic in aluminium matrix increases natural frequency, hardness, tensile strength, compressive strength and 9 wt. % showed maximum natural frequency, hardness, tensile strength, compressive strength.

  19. In-situ deformation studies of an aluminum metal-matrix composite in a scanning electron microscope

    NASA Technical Reports Server (NTRS)

    Manoharan, M.; Lewandowski, J. J.

    1989-01-01

    Tensile specimens made of a metal-matrix composite (cast and extruded aluminum alloy-based matrix reinforced with Al2O3 particulate) were tested in situ in a scanning electron microscope equipped with a deformation stage, to directly monitor the crack propagation phenomenon. The in situ SEM observations revealed the presence of microcracks both ahead of and near the crack-tip region. The microcracks were primarily associated with cracks in the alumina particles. The results suggest that a region of intense deformation exists ahead of the crack and corresponds to the region of microcracking. As the crack progresses, a region of plastically deformed material and associated microcracks remains in the wake of the crack.

  20. Liquid metal porous matrix sliding electrical contact: A concept

    NASA Technical Reports Server (NTRS)

    Ferguson, H.

    1973-01-01

    Concept utilizes porous metal or nonmetal matrix containing liquid metal in porous structure and confines liquid metal to contact area between rotor and brush by capillary forces. System may also be used to lubricate bearing systems.

  1. Effects of fiber and interfacial layer architectures on the thermoplastic response of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Freed, Alan D.; Arnold, Steven M.

    1992-01-01

    Examined here is the effect of fiber and interfacial layer morphologies on thermal fields in metal matrix composites (MMCs). A micromechanics model based on an arbitrarily layered concentric cylinder configuration is used to calculate thermal stress fields in MMCs subjected to spatially uniform temperature changes. The fiber is modelled as a layered material with isotropic or orthotropic elastic layers, whereas the surrounding matrix, including interfacial layers, is treated as a strain-hardening, elastoplastic, von Mises solid with temperature-dependent parameters. The solution to the boundary-value problem of an arbitrarily layered concentric cylinder under the prescribed thermal loading is obtained using the local/global stiffness matrix formulation originally developed for stress analysis of multilayered elastic media. Examples are provided that illustrate how the morphology of the SCS6 silicon carbide fiber and the use of multiple compliant layers at the fiber/matrix interface affect the evolution of residual stresses in SiC/Ti composites during fabrication cool-down.

  2. Liquid on Paper: Rapid Prototyping of Soft Functional Components for Paper Electronics

    PubMed Central

    Long Han, Yu; Liu, Hao; Ouyang, Cheng; Jian Lu, Tian; Xu, Feng

    2015-01-01

    This paper describes a novel approach to fabricate paper-based electric circuits consisting of a paper matrix embedded with three-dimensional (3D) microchannels and liquid metal. Leveraging the high electric conductivity and good flowability of liquid metal, and metallophobic property of paper, it is possible to keep electric and mechanical functionality of the electric circuit even after a thousand cycles of deformation. Embedding liquid metal into paper matrix is a promising method to rapidly fabricate low-cost, disposable, and soft electric circuits for electronics. As a demonstration, we designed a programmable displacement transducer and applied it as variable resistors and pressure sensors. The unique metallophobic property, combined with softness, low cost and light weight, makes paper an attractive alternative to other materials in which liquid metal are currently embedded. PMID:26129723

  3. The Molecular Basis of Memory

    PubMed Central

    2012-01-01

    We propose a tripartite biochemical mechanism for memory. Three physiologic components are involved, namely, the neuron (individual and circuit), the surrounding neural extracellular matrix, and the various trace metals distributed within the matrix. The binding of a metal cation affects a corresponding nanostructure (shrinking, twisting, expansion) and dielectric sensibility of the chelating node (address) within the matrix lattice, sensed by the neuron. The neural extracellular matrix serves as an electro-elastic lattice, wherein neurons manipulate multiple trace metals (n > 10) to encode, store, and decode coginive information. The proposed mechanism explains brains low energy requirements and high rates of storage capacity described in multiples of Avogadro number (NA = 6 × 1023). Supportive evidence correlates memory loss to trace metal toxicity or deficiency, or breakdown in the delivery/transport of metals to the matrix, or its degradation. Inherited diseases revolving around dysfunctional trace metal metabolism and memory dysfunction, include Alzheimer's disease (Al, Zn, Fe), Wilson’s disease (Cu), thalassemia (Fe), and autism (metallothionein). The tripartite mechanism points to the electro-elastic interactions of neurons with trace metals distributed within the neural extracellular matrix, as the molecular underpinning of “synaptic plasticity” affecting short-term memory, long-term memory, and forgetting. PMID:23050060

  4. Laser desorption ionization mass spectrometry: Recent progress in matrix-free and label-assisted techniques.

    PubMed

    Mandal, Arundhoti; Singha, Monisha; Addy, Partha Sarathi; Basak, Amit

    2017-10-13

    The MALDI-based mass spectrometry, over the last three decades, has become an important analytical tool. It is a gentle ionization technique, usually applicable to detect and characterize analytes with high molecular weights like proteins and other macromolecules. The earlier difficulty of detection of analytes with low molecular weights like small organic molecules and metal ion complexes with this technique arose due to the cluster of peaks in the low molecular weight region generated from the matrix. To detect such molecules and metal ion complexes, a four-prong strategy has been developed. These include use of alternate matrix materials, employment of new surface materials that require no matrix, use of metabolites that directly absorb the laser light, and the laser-absorbing label-assisted LDI-MS (popularly known as LALDI-MS). This review will highlight the developments with all these strategies with a special emphasis on LALDI-MS. © 2017 Wiley Periodicals, Inc.

  5. Factors affecting miniature Izod impact strength of tungsten-fiber-metal-matrix

    NASA Technical Reports Server (NTRS)

    Winsa, E. A.; Petrasek, D. W.

    1973-01-01

    The miniature Izod and Charpy impact strengths of copper, copper-nickel, and nickel-base superalloy uniaxially reinforced with continuous tungsten fibers were studied. In most cases, impact strength was increased by increasing fiber or matrix toughness, decreasing fibermatrix reaction, increasing test temperature, hot working, or heat treating. Notch sensitivity was reduced by increasing fiber content or matrix toughness. An equation relating impact strength to fiber and matrix properties and fiber content was developed. Program results imply that tungsten alloy-fiber/superalloy matrix composites can be made with adequate impact resistance for turbine blade or vane applications.

  6. Abrasion resistant composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Keith D; Barnes, Christopher A; Henderson, Stephen L

    A surface covering composition of abrasion resistant character adapted for disposition in overlying bonded relation to a metal substrate. The surface covering composition includes metal carbide particles within a metal matrix at a packing factor of not less than about 0.6. Not less than about 40 percent by weight of the metal carbide particles are characterized by an effective diameter in the range of +14-32 mesh prior to introduction to the metal matrix. Not less than about 3 percent by weight of the metal carbide particles are characterized by an effective diameter of +60 mesh prior to introduction to themore » metal matrix.« less

  7. One-pot preparation of silica-supported hybrid immobilized metal affinity adsorbent with macroporous surface based on surface imprinting coating technique combined with polysaccharide incorporated sol--gel process.

    PubMed

    Li, Feng; Li, Xue-Mei; Zhang, Shu-Sheng

    2006-10-06

    A simple and reliable one-pot approach using surface imprinting coating technique combined with polysaccharide incorporated sol-gel process was established to synthesize a new organic-inorganic hybrid matrix possessing macroporous surface and functional ligand. Using mesoporous silica gel being a support, immobilized metal affinity adsorbent with a macroporous shell/mesoporous core structure was obtained after metal ion loading. In the prepared matrix, covalently bonded coating and morphology manipulation on silica gel was achieved by using one-pot sol-gel process starting from an inorganic precursor, -glycidoxypropyltrimethoxysiloxane (GPTMS), and a functional biopolymer, chitosan (CS) at the atmosphere of imprinting polyethylene glycol (PEG). Self-hydrolysis of GPTMS, self-condensation, and co-condensation of silanol groups (Si-OH) from siloxane and silica gel surface, and in situ covalent cross-linking of CS created an orderly coating on silica gel surface. PEG extraction using hot ammonium hydroxide solution gave a chemically and mechanically stabilized pore structure and deactivated residual epoxy groups. The prepared matrix was characterized by using X-ray energy dispersion spectroscopy (EDX), scanning electron microscopy (SEM) and mercury intrusion porosimetry. The matrix possessed a high capacity for copper ion loading. Protein adsorption performance of the new immobilized metal affinity adsorbent was evaluated by batch adsorption and column chromatographic experiment using bovine serum albumin (BSA) as a simple model protein. Under the optimized coating conditions, the obtained macroporous surface resulted in a fast kinetics and high capability for protein adsorption, while the matrix non-charged with metal ions offered a low non-specific adsorption.

  8. A 3/D finite element approach for metal matrix composites based on micromechanical models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svobodnik, A.J.; Boehm, H.J.; Rammerstorfer, F.G.

    Based on analytical considerations by Dvorak and Bahel-El-Din, a 3/D finite element material law has been developed for the elastic-plastic analysis of unidirectional fiber-reinforced metal matrix composites. The material law described in this paper has been implemented in the finite element code ABAQUS via the user subroutine UMAT. A constitutive law is described under the assumption that the fibers are linear-elastic and the matrix is of a von Mises-type with a Prager-Ziegler kinematic hardening rule. The uniaxial effective stress-strain relationship of the matrix in the plastic range is approximated by a Ramberg-Osgood law, a linear hardening rule or a nonhardeningmore » rule. Initial yield surface of the matrix material and for the fiber reinforced composite are compared to show the effect of reinforcement. Implementation of this material law in a finite element program is shown. Furthermore, the efficiency of substepping schemes and stress corrections for the numerical integration of the elastic-plastic stress-strain relations for anisotropic materials are investigated. The results of uniaxial monotonic tests of a boron/aluminum composite are compared to some finite element analyses based on micromechanical considerations. Furthermore a complete 3/D analysis of a tensile test specimen made of a silicon-carbide/aluminum MMC and the analysis of an MMC inlet inserted in a homogenous material are shown. 12 refs.« less

  9. Toxicity to Eisenia andrei and Folsomia candida of a metal mixture applied to soil directly or via an organic matrix.

    PubMed

    Natal-da-Luz, T; Ojeda, G; Pratas, J; Van Gestel, C A M; Sousa, J P

    2011-09-01

    Regulatory limits for chemicals and ecological risk assessment are usually based on the effects of single compounds, not taking into account mixture effects. The ecotoxicity of metal-contaminated sludge may, however, not only be due to its metal content. Both the sludge matrix and the presence of other toxicants may mitigate or promote metal toxicity. To test this assumption, the toxicity of soils recently amended with an industrial sludge predominantly contaminated with chromium, copper, nickel, and zinc and soils freshly spiked with the same mixture of metals was evaluated through earthworm (Eisenia andrei) and collembolan (Folsomia candida) reproduction tests. The sludge was less toxic than the spiked metal mixture for E. andrei but more toxic for F. candida. Results obtained for the earthworms suggest a decrease in metal bioavailability promoted by the high organic matter content of the sludge. The higher toxicity of the sludge for F. candida was probably due to the additive toxic effect of other pollutants. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Optimal fabrication processes for unidirectional metal-matrix composites: A computational simulation

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Murthy, P. L. N.; Morel, M.

    1990-01-01

    A method is proposed for optimizing the fabrication process of unidirectional metal matrix composites. The temperature and pressure histories are optimized such that the residual microstresses of the composite at the end of the fabrication process are minimized and the material integrity throughout the process is ensured. The response of the composite during the fabrication is simulated based on a nonlinear micromechanics theory. The optimal fabrication problem is formulated and solved with non-linear programming. Application cases regarding the optimization of the fabrication cool-down phases of unidirectional ultra-high modulus graphite/copper and silicon carbide/titanium composites are presented.

  11. Optimal fabrication processes for unidirectional metal-matrix composites - A computational simulation

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Murthy, P. L. N.; Morel, M.

    1990-01-01

    A method is proposed for optimizing the fabrication process of unidirectional metal matrix composites. The temperature and pressure histories are optimized such that the residual microstresses of the composite at the end of the fabrication process are minimized and the material integrity throughout the process is ensured. The response of the composite during the fabrication is simulated based on a nonlinear micromechanics theory. The optimal fabrication problem is formulated and solved with nonlinear programming. Application cases regarding the optimization of the fabrication cool-down phases of unidirectional ultra-high modulus graphite/copper and silicon carbide/titanium composites are presented.

  12. Effect of Multi-Pass Friction Stir Processing on Mechanical Properties for AA2024/Al2O3 Nanocomposites

    PubMed Central

    2017-01-01

    In the present work, an aluminum metal matrix reinforced with (Al2O3) nanoparticles was fabricated as a surface composite sheet using friction stir processing (FSP). The effects of processing parameters on mechanical properties, hardness, and microstructure grain were investigated. The results revealed that multi-pass FSP causes a homogeneous distribution and good dispersion of Al2O3 in the metal matrix, and consequently an increase in the hardness of the matrix composites. A finer grain is observed in the microstructure examination in specimens subjected to second and third passes of FSP. The improvement in the grain refinement is 80% compared to base metal. The processing parameters, particularly rotational tool speed and pass number in FSP, have a major effect on strength properties and surface hardness. The ultimate tensile strength (UTS) and the average hardness are improved by 25% and 46%, respectively, due to presence of reinforcement Al2O3 nanoparticles. PMID:28885575

  13. Recycling of Aluminum Alloy with Dimox and Rheocasting Functionalize High Performance Structural Foam Composite

    NASA Astrophysics Data System (ADS)

    Rabeeh, Bakr Mohamed

    Great efforts aiming towards the synthesis and the development of structural composite materials. Direct metal oxidation, DIMOX introduced for hybrid composite processing. However, oxidation temperatures around 1100°C lead to the formation of porous ceramic materials. To utilize this porosity intentionally for foam production, a new approach based on synergetic effect of alloying elements, DIMOX and semisolid (rheocsting) processing is developed. A semisolid reaction, rheocasting is introduced to control porosity shape and size. Aluminum alloy 6xxx (automobile scrap pistons) is recycled for this objective and DIMOX at 1100°C for 30 min, then rheocasting, at 750°C for 30 minutes. The effect of α-Fe powder, Mg powder, and Boric acid powder established for the objective of a hybrid structural metal matrix composite in bulk foam matrix. The kinetic of formation of hybrid metal matrix foam composite is introduced. Microstructural and mechanical characterization established for high performance Aluminum foam hybrid composite materials.

  14. Mechanical characterization of SiC particulate & E-glass fiber reinforced Al 3003 hybrid metal matrix composites

    NASA Astrophysics Data System (ADS)

    Narayana, K. S. Lakshmi; Shivanand, H. K.

    2018-04-01

    Metal matrix composites constitute a class of low cost high quality materials which offer high performance for various industrial applications. The orientation of this research is towards the study of mechanical properties of as cast silicon carbide (SiC) particulates and Short E-Glass fibers reinforced Aluminum matrix composites (AMCs). The Hybrid metal matrix composite is developed by reinforcing SiC particulates of 100 microns and short E-Glass fibers of 2-3 mm length with Al 3003 in different compositions. The vortex method of stir casting was employed, in which the reinforcements were introduced into the vortex created by the molten metal by means of mechanical stirrer. The mechanical properties of the prepared metal matrix composites were analyzed. From the studies it was noticed that an improvement in mechanical properties of the reinforced alloys compared to unreinforced alloys.

  15. Metallic and nonmetallic shine in luster: An elastic ion backscattering study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradell, T.; Climent-Font, A.; Molera, J.

    2007-05-15

    Luster is a metal glass nanocomposite layer first produced in the Middle East in early Islamic times (9th AD) made of metal copper or silver nanoparticles embedded in a silica-based glassy matrix. These nanoparticles are produced by ion exchange between Cu{sup +} and Ag{sup +} and alkaline ions from the glassy matrix and further growth in a reducing atmosphere. The most striking property of luster is its capability of reflecting light like a continuous metal layer and it was unexpectedly found to be linked to one single production parameter: the presence of lead in the glassy matrix composition. The purposemore » of this article is to describe the characteristics and differences of the nanoparticle layers developed on lead rich and lead free glasses. Copper luster layers obtained using the ancient recipes and methods are analyzed by means of elastic ion backscattering spectroscopy associated with other analytical techniques. The depth profile of the different elements is determined, showing that the luster layer formed in lead rich glasses is 5-6 times thinner and 3-4 times Cu richer. Therefore, the metal nanoparticles are more densely packed in the layer and this fact is related to its higher reflectivity. It is shown that lead influences the structure of the metal nanoparticle layer through the change of the precipitation kinetics.« less

  16. Elasto-plastic analysis of interface layers for fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Doghri, I.; Leckie, F. A.

    1991-01-01

    The mismatch in coefficients of thermal expansion (CTE) of fiber and matrix in metal matrix composites reinforced with ceramic fibers induces high thermal stresses in the matrix. Elasto-plastic analyses - with different degrees of simplification and modelization - show that an interface layer with a sufficiently high CTE can reduce the tensile hoop stress in the matrix substantially.

  17. Thermal analysis on Al7075/Al2O3 metal matrix composites fabricated by stir casting process

    NASA Astrophysics Data System (ADS)

    Jacob, S.; Shajin, S.; Gnanavel, C.

    2017-03-01

    Metal matrix Composites (MMC’s) have evoked a keen interest in recent times for various applications in aerospace, renewable energy and automotive industries due to their superior strength, low cost, easy availability and high temperature resistance [1]. The crack and propagation occurs in conventional materials without any appreciable indication in a short span. Hence composite materials are preferred nowadays to overcome this problem [2]. The process of metal matrix composites (MMC’s) is to unite the enviable attributes of metals and ceramics. The Stir casting method is used for producing aluminium metal matrix composites (AMC’s). A key challenge of the process is to spread the ceramic particles to achieve a defect free microstructure [2]. By carefully selecting stir casting processing specification, such as stirring time, temperature of the melt and blade angle, the desired microstructure can be obtained. The focus of this work is to develop a high strength particulate strengthen aluminium metal matrix composites, and Al7075 was selected which can offer high strength without much disturbing ductility of metal matrix [4]. The composites will be examined using standard metallurgical and mechanical tests. The cast composites are analysed to Laser flash analysis (LFA) to determine Thermal conductivity [5]. Also changes in microstructure are determined by using SEM analysis.

  18. Optical Properties of Metal-Dielectric Structures Based on Photon-Crystal Opal Matrices

    NASA Astrophysics Data System (ADS)

    Vanin, A. I.; Lukin, A. E.; Romanov, S. G.; Solovyev, V. G.; Khanin, S. D.; Yanikov, M. V.

    2018-04-01

    Optical properties of novel metal-dielectric nanocomposite materials based on opal matrices have been investigated. The position of optical resonances of nanocomposites, obtained by embedding of silver into the opal matrix by the electrothermodiffusion method, is explained by the Bragg diffraction, and an asymmetric form of resonance curves is attributed to the Fano resonance. An anomalous transmission and absorption of light by hybrid plasmon-photonic layered heterostructures, which is apparently associated with excitation of surface plasmon-polaritons, propagating along "metal-dielectric" interfaces, was revealed.

  19. Two-Dimensional Materials as Prospective Scaffolds for Mixed-Matrix Membrane-Based CO2 Separation.

    PubMed

    Zhu, Xiang; Tian, Chengcheng; Do-Thanh, Chi-Linh; Dai, Sheng

    2017-09-11

    Membrane-based CO 2 separation technology plays a significant role in environmental remediation and clean energy. Two-dimensional (2D) materials with atomically precise structures have emerged as prospective scaffolds to develop mixed-matrix membranes (MMMs) for gas separation. Summarized in this perspective review are the latest breakthrough studies in the synthesis of 2D-material-based MMMs to separate CO 2 from gas mixtures. 2D materials including graphene oxide (GO), metal-organic framework (MOF)-derived nanosheets, covalent organic frameworks (COFs), and transition metal dichalcogenides (TMDs), as fascinating building blocks, have been comprehensively summarized, together with a focus on synthetic processes and gas separation properties. Challenges and the latest advances in the manufacture of novel synthetic 2D materials are briefly discussed to foresee emerging opportunities for the development of new generations of 2D-material-based MMMs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Development of High Strength Ni-Cu-Zr-Ti-Si-Sn In-Situ Bulk Metallic Glass Composites Reinforced by Hard B2 Phase

    NASA Astrophysics Data System (ADS)

    Park, Hyo Jin; Hong, Sung Hwan; Park, Hae Jin; Kim, Young Seok; Kim, Jeong Tae; Na, Young Sang; Lim, Ka Ram; Wang, Wei-Min; Kim, Ki Buem

    2018-03-01

    In the present study, the influence of atomic ratio of Zr to Ti on the microstructure and mechanical properties of Ni-Cu-Zr-Ti-Si-Sn alloys is investigated. The alloys were designed by fine replacement of Ti for Zr from Ni39Cu20Zr36-xTixSi2Sn3. The increase of Ti content enhances glass forming ability of the alloy by suppression of formation of (Ni, Cu)10(Zr, Ti)7 phase during solidification. With further increasing Ti content up to 24 at.%, the B2 phase is introduced in the amorphous matrix with a small amount of B19' phase from alloy melt. The bulk metallic glass composite containing B2 phase with a volume fraction of 10 vol% exhibits higher fracture strength ( 2.5 GPa) than that of monolithic bulk metallic glass ( 2.3 GPa). This improvement is associated to the individual mechanical characteristics of the B2 phase and amorphous matrix. The B2 phase exhibits higher hardness and modulus than those of amorphous matrix as well as effective stress accommodation up to the higher stress level than the yield strength of amorphous matrix. The large stress accommodation capacity of the hard B2 phase plays an important factor to improve the mechanical properties of in situ Ni-based bulk metallic glass composites.

  1. Internal damping due to dislocation movements induced by thermal expansion mismatch between matrix and particles in metal matrix composites. [Al/SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girand, C.; Lormand, G.; Fougeres, R.

    In metal matrix composites (MMCs), the mechanical 1 of the reinforcement-matrix interface is an important parameter because it governs the load transfer from matrix to particles, from which the mechanical properties of these materials are derived. Therefore, it would be useful to set out an experimental method able to characterize the interface and the adjacent matrix behaviors. Thus, a study has been undertaken by means of internal damping (I.D.) measurements, which are well known to be very sensitive for studying irreversible displacements at the atomic scale. More especially, this investigation is based on the fact that, during cooling of MMC's,more » stress concentrations originating from differences in coefficients of thermal expansion (C.T.E.) of matrix and particles should induce dislocation movements in the matrix surrounding the reinforcement; that is, local microplastic strains occur. Therefore, during I.D. measurements vs temperature these movements should contribute to MMCs I.D. in a process similar to those involved around first order phase transitions in solids. The aim of this paper is to present, in the case of Al/SiC particulate composites, new developments of this approach that has previously led to promising results in the case of Al-Si alloys.« less

  2. Dry sliding wear of heat treated hybrid metal matrix composites

    NASA Astrophysics Data System (ADS)

    Naveed, Mohammed; Khan, A. R. Anwar

    2016-09-01

    In recent years, there has been an ever-increasing demand for enhancing mechanical properties of Aluminum Matrix Composites (AMCs), which are finding wide applications in the field of aerospace, automobile, defence etc,. Among all available aluminium alloys, Al6061 is extensively used owing to its excellent wear resistance and ease of processing. Newer techniques of improving the hardness and wear resistance of Al6061 by dispersing an appropriate mixture of hard ceramic powder and whiskers in the aluminium alloy are gaining popularity. The conventional aluminium based composites possess only one type of reinforcements. Addition of hard reinforcements such as silicon carbide, alumina, titanium carbide, improves hardness, strength and wear resistance of the composites. However, these composites possessing hard reinforcement do posses several problems during their machining operation. AMCs reinforced with particles of Gr have been reported to be possessing better wear characteristics owing to the reduced wear because of formation of a thin layer of Gr particles, which prevents metal to metal contact of the sliding surfaces. Further, heat treatment has a profound influence on mechanical properties of heat treatable aluminium alloys and its composites. For a solutionising temperature of 5500C, solutionising duration of 1hr, ageing temperature of 1750C, quenching media and ageing duration significantly alters mechanical properties of both aluminium alloy and its composites. In the light of the above, the present paper aims at developing aluminium based hybrid metal matrix composites containing both silicon carbide and graphite and characterize their mechanical properties by subjecting it to heat treatment. Results indicate that increase of graphite content increases wear resistance of hybrid composites reinforced with constant SiC reinforcement. Further heat treatment has a profound influence on the wear resistance of the matrix alloy as well as its hybrid composites. For all the heat treatment processes studied ice quenching with ageing duration of 6hrs resulted in improved wear resistance of both the unreinforced matrix alloy and its hybrid composites.

  3. Improved Mechanical and Tribological Properties of Metal-Matrix Composites Dispersion-Strengthened by Nanoparticles 

    PubMed Central

    Levashov, Evgenii; Kurbatkina, Victoria; Alexandr, Zaytsev

    2009-01-01

    Co- and Fe-based alloys produced by powder technology are being widely used as a matrix for diamond-containing composites in cutting, drilling, grinding pplications, etc. The severe service conditions demand that the mechanical and tribological properties of these alloys be improved. Development of metal-matrix composites (MMCs) and alloys reinforced with nanoparticles is a promising way to resolve this problem. In this work, we have investigated the effect of nano-sized WC, ZrO2, Al2O3, and Si3N4 additives on the properties of sintered dispersion-strengthened Co- and Fe-based MMCs. The results show an increase in the hardness (up to 10 HRB), bending strength (up to 50%), wear resistance (by a factor of 2–10) and a decrease in the friction coefficient (up to 4-fold) of the dispersion-strengthened materials. The use of designed alloys as a binder of cutting diamond tools gave a 4-fold increment in the service life, without reduction in their cutting speed.

  4. Electrochemical Behavior of Al-B4C Metal Matrix Composites in NaCl Solution

    PubMed Central

    Han, Yu-Mei; Chen, X.-Grant

    2015-01-01

    Aluminum based metal matrix composites (MMCs) have received considerable attention in the automotive, aerospace and nuclear industries. One of the main challenges using Al-based MMCs is the influence of the reinforcement particles on the corrosion resistance. In the present study, the corrosion behavior of Al-B4C MMCs in a 3.5 wt.% NaCl solution were investigated using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) techniques. Results indicated that the corrosion resistance of the composites decreased when increasing the B4C volume fraction. Al-B4C composite was susceptible to pitting corrosion and two types of pits were observed on the composite surface. The corrosion mechanism of the composite in the NaCl solution was primarily controlled by oxygen diffusion in the solution. In addition, the galvanic couples that formed between Al matrix and B4C particles could also be responsible for the lower corrosion resistance of the composites. PMID:28793574

  5. Relationships Between Abrasive Wear, Hardness, and Surface Grinding Characteristics of Titanium-Based Metal Matrix Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blau, Peter Julian; Jolly, Brian C

    2009-01-01

    The objective of this work was to support the development of grinding models for titanium metal-matrix composites (MMCs) by investigating possible relationships between their indentation hardness, low-stress belt abrasion, high-stress belt abrasion, and the surface grinding characteristics. Three Ti-based particulate composites were tested and compared with the popular titanium alloy Ti-6Al-4V. The three composites were a Ti-6Al-4V-based MMC with 5% TiB{sub 2} particles, a Ti-6Al-4V MMC with 10% TiC particles, and a Ti-6Al-4V/Ti-7.5%W binary alloy matrix that contained 7.5% TiC particles. Two types of belt abrasion tests were used: (a) a modified ASTM G164 low-stress loop abrasion test, and (b)more » a higher-stress test developed to quantify the grindability of ceramics. Results were correlated with G-ratios (ratio of stock removed to abrasives consumed) obtained from an instrumented surface grinder. Brinell hardness correlated better with abrasion characteristics than microindentation or scratch hardness. Wear volumes from low-stress and high-stress abrasive belt tests were related by a second-degree polynomial. Grindability numbers correlated with hard particle content but were also matrix-dependent.« less

  6. Variable tunneling barriers in FEBID based PtC metal-matrix nanocomposites as a transducing element for humidity sensing.

    PubMed

    Kolb, Florian; Schmoltner, Kerstin; Huth, Michael; Hohenau, Andreas; Krenn, Joachim; Klug, Andreas; List, Emil J W; Plank, Harald

    2013-08-02

    The development of simple gas sensing concepts is still of great interest for science and technology. The demands on an ideal device would be a single-step fabrication method providing a device which is sensitive, analyte-selective, quantitative, and reversible without special operating/reformation conditions such as high temperatures or special environments. In this study we demonstrate a new gas sensing concept based on a nanosized PtC metal-matrix system fabricated in a single step via focused electron beam induced deposition (FEBID). The sensors react selectively on polar H2O molecules quantitatively and reversibly without any special reformation conditions after detection events, whereas non-polar species (O2, CO2, N2) produce no response. The key elements are isolated Pt nanograins (2-3 nm) which are embedded in a dielectric carbon matrix. The electrical transport in such materials is based on tunneling effects in the correlated variable range hopping regime, where the dielectric carbon matrix screens the electric field between the particles, which governs the final conductivity. The specific change of these dielectric properties by the physisorption of polar gas molecules (H2O) can change the tunneling probability and thus the overall conductivity, allowing their application as a simple and straightforward sensing concept.

  7. Heat exchanger and method of making. [bonding rocket chambers with a porous metal matrix

    NASA Technical Reports Server (NTRS)

    Fortini, A.; Kazaroff, J. M. (Inventor)

    1978-01-01

    A heat exchanger of increased effectiveness is disclosed. A porous metal matrix is disposed in a metal chamber or between walls through which a heat-transfer fluid is directed. The porous metal matrix has internal bonds and is bonded to the chamber in order to remove all thermal contact resistance within the composite structure. Utilization of the invention in a rocket chamber is disclosed as a specific use. Also disclosed is a method of constructing the heat exchanger.

  8. Trace element analysis of extraterrestrial metal samples by inductively coupled plasma mass spectrometry: the standard solutions and digesting acids.

    PubMed

    Wang, Guiqin; Wu, Yangsiqian; Lin, Yangting

    2016-02-28

    Nearly 99% of the total content of extraterrestrial metals is composed of Fe and Ni, but with greatly variable trace element contents. The accuracy obtained in the inductively coupled plasma mass spectrometry (ICP-MS) analysis of solutions of these samples can be significantly influenced by matrix contents, polyatomic ion interference, and the concentrations of external standard solutions. An ICP-MS instrument (X Series 2) was used to determine 30 standard solutions with different concentrations of trace elements, and different matrix contents. Based on these measurements, the matrix effects were determined. Three iron meteorites were dissolved separately in aqua regia and HNO3. Deviations due to variation of matrix contents in the external standard solutions were evaluated and the analysis results of the two digestion methods for iron meteorites were assessed. Our results show obvious deviations due to unmatched matrix contents in the external standard solutions. Furthermore, discrepancy in the measurement of some elements was found between the sample solutions prepared with aqua regia and HNO3, due to loss of chloride during sample preparation and/or incomplete digestion of highly siderophile elements in iron meteorites. An accurate ICP-MS analysis method for extraterrestrial metal samples has been established using external standard solutions with matched matrix contents and digesting the samples with HNO3 and aqua regia. Using the data from this work, the Mundrabilla iron meteorite previously classified as IAB-ung is reclassified as IAB-MG. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Revealing Slip Bands In A Metal-Matrix/Fiber Composite

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.

    1995-01-01

    Experimental procedure includes heat treatments and metallographic techniques developed to facilitate studies of deformation of metal-matrix/fiber composite under stress. Reveals slip bands, indicative of plastic flow occurring in matrix during mechanical tests of specimens of composite.

  10. Effect of shock pressure on the structure and superconducting properties of Y-Ba-Cu-O in explosively fabricated bulk metal-matrix composites

    NASA Technical Reports Server (NTRS)

    Murr, L. E.; Niou, C. S.; Pradhan-Advani, M.

    1991-01-01

    While it is now well established that copper-oxide-based power, or virtually any other ceramic superconductor powder, can be consolidated and encapsulated within a metal matrix by explosive consolidation, the erratic superconductivity following fabrication has posed a major problem for bulk applications. The nature of this behavior was found to arise from microstructural damage created in the shock wave front, and the residual degradation in superconductivity was demonstrated to be directly related to the peak shock pressure. The explosively fabricated or shock loaded YBa2Cu3Ox examples exhibit drastically altered rho (or R) - T curves. The deterioration in superconductivity is even more noticeable in the measurement of ac magnetic susceptibility and flux exclusion or shielding fraction which is also reduced in proportion to increasing peak shock pressure. The high frequency surface resistance (in the GHz range) is also correspondingly compromised in explosively fabricated, bulk metal-matrix composites based on YBa2Cu3O7. Transmission electron microscopy (including lattice imaging techniques) is being applied in an effort to elucidate the fundamental (microstructural) nature of the shock-induced degradation of superconductivity and normal state conductivity. One focus of TEM observations has assumed that oxygen displaced from b-chains rather than oxygen-vacancy disorder in the basal plane of oxygen deficient YBa2Cu3Ox may be a prime mechanism. Shock-wave displaced oxygen may also be locked into new positions or interstitial clusters or chemically bound to displaced metal (possibly copper) atoms to form precipitates, or such displacements may cause the equivalent of local lattice cell changes as a result of stoichiometric changes. While the shock-induced suppression of T(sub c) is not desirable in the explosive fabrication of bulk metal-matrix superconductors, it may be turned into an advantage if the atomic-scale distortion can be understood and controlled as local flux pinning sites.

  11. Performance study of cementitious systems containing zeolite and silica fume: effects of four metal nitrates on the setting time, strength and leaching characteristics.

    PubMed

    Gervais, C; Ouki, S K

    2002-07-22

    The aim of this study is to investigate the effect of four metal nitrate contaminants, namely chromium, manganese, lead and zinc on the mechanical and leaching characteristics of cement-based materials. For this purpose, three different matrices made of: (i) Portland cement, (ii) Portland cement and silica fume, and (iii) Portland cement and natural zeolite were studied. The effects of metals on the stabilised/solidified (S/S) product characteristics were monitored by measuring: (i) setting time, (ii) compressive strength, (iii) acid neutralisation capacity (ANC), and (iv) solubility of the metal contaminants as a function of pH. The results of both mechanical and leaching tests showed the importance of the contaminant/matrix couple considered. Setting time was accelerated in presence of chromium, while in presence of manganese, lead and zinc it was delayed. However, for the last two contaminants, a 10% replacement of cement by silica fume and zeolite, markedly accelerated the setting time compared to the cement-only matrix. Although the early strength development was adversely affected in presence of all four contaminants, the long-term strength was less affected compared to the control materials. Although the ANC of the materials was not markedly affected by the presence of contaminants, the nature of the matrix did modify the ANC behaviour of the solidified materials. The increased strength and reduced ANC observed in the presence of silica fume are both due to pozzolanic reaction. The type of matrix used for solidification did not affect the solubility of the four metal contaminants. Overall, the results showed that the use of blended cements must be carried out with care and the performance assessment of waste-containing cement-based materials must take into consideration both the mechanical and leaching characteristics of the systems.

  12. Effect of shock pressure on the structure and superconducting properties of Y-Ba-Cu-O in explosively fabricated bulk metal-matrix composites

    NASA Technical Reports Server (NTRS)

    Murr, L. E.; Niou, C. S.; Pradhan, M.; Schoenlein, L. H.

    1990-01-01

    While it is now well established that copper-oxide-based powder, or virtually any other ceramic superconductor powder, can be consolidated and encapsulated within a metal matrix by explosive consolidation, the erratic superconductivity following fabrication has posed a major problem for bulk applications. The nature of this behavior was found to arise from microstructural damage created in the shock wave front, and the residual degradation in superconductivity was demonstrated to be directly related to the peak shock pressure. The explosively fabricated or shock loaded YBa2Cu3Ox examples exhibit drastically altered rho (or R) - T curves. The deterioration in superconductivity is even more noticeable in the measurement of ac magnetic susceptibility and flux exclusion or shielding fraction which is also reduced in proportion to increasing peak shock pressure. The high-frequency surface resistance (in the GHz range) is also correspondingly compromised in explosively fabricated, bulk metal-matrix composites based on YBa2Cu3O7. Transmission electron microscopy (including lattice imaging techniques) is being applied in an effort to elucidate the fundamental (microstructural) nature of the shock-induced degradation of superconductivity and normal state conductivity. One focus of TEM observations has assumed that oxygen displaced from b-chains rather than oxygen-vacancy disorder in the basal plane of oxygen deficient YBa2Cu3Ox may be a prime mechanism. Shock-wave displaced oxygen may also be locked into new positions or interstitial clusters or chemically bound to displaced metal (possibly copper) atoms to form precipitates, or such displacements may cause the equivalent of local lattice cell changes as a result of stoichiometric changes. While the shock-induced suppression of T(sub c) is not desirable in the explosive fabrication of bulk metal-matrix superconductors, it may be turned into an advantage if the atomic-scale distortion can be understood and controlled as local flux pinning sites.

  13. Wear study of Al-SiC metal matrix composites processed through microwave energy

    NASA Astrophysics Data System (ADS)

    Honnaiah, C.; Srinath, M. S.; Prasad, S. L. Ajit

    2018-04-01

    Particulate reinforced metal matrix composites are finding wider acceptance in many industrial applications due to their isotropic properties and ease of manufacture. Uniform distribution of reinforcement particulates and good bonding between matrix and reinforcement phases are essential features in order to obtain metal matrix composites with improved properties. Conventional powder metallurgy technique can successfully overcome the limitation of stir casting techniques, but it is time consuming and not cost effective. Use of microwave technology for processing particulate reinforced metal matrix composites through powder metallurgy technique is being increasingly explored in recent times because of its cost effectiveness and speed of processing. The present work is an attempt to process Al-SiC metal matrix composites using microwaves irradiated at 2.45 GHz frequency and 900 W power for 10 minutes. Further, dry sliding wear studies were conducted at different loads at constant velocity of 2 m/s for various sliding distances using pin-on-disc equipment. Analysis of the obtained results show that the microwave processed Al-SiC composite material shows around 34 % of resistance to wear than the aluminium alloy.

  14. Carbon Nanotubes Reinforced Composites for Biomedical Applications

    PubMed Central

    Wang, Wei; Zhu, Yuhe; Liao, Susan; Li, Jiajia

    2014-01-01

    This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matrix composites, and CNTs reinforced ceramic matrix composites), their mechanical properties, cell experiments in vitro, and biocompatibility tests in vivo. PMID:24707488

  15. Structural materials for NASP

    NASA Astrophysics Data System (ADS)

    Ronald, Terence M. F.

    1991-12-01

    Structural materials for the NASP X-30 experimental vehicle are briefly reviewed including titanium alloys, titanium-based metal-matrix composites, carbon-carbon composites, ceramic-matrix composites, and copper-matrix composites. Areas of application of these materials include the airframe where these materials would be used as lightweight skin panels for honeycomb-core, truss-core, or integrally stiffened thin sheet configuration; and the engine, where they would be used in the hot gas path of the ramjet/scramjet, and in the inlet and nozzle areas.

  16. Carbon nanotubes reinforced composites for biomedical applications.

    PubMed

    Wang, Wei; Zhu, Yuhe; Liao, Susan; Li, Jiajia

    2014-01-01

    This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matrix composites, and CNTs reinforced ceramic matrix composites), their mechanical properties, cell experiments in vitro, and biocompatibility tests in vivo.

  17. Seamless metal-clad fiber-reinforced organic matrix composite structures and process for their manufacture

    NASA Technical Reports Server (NTRS)

    Bluck, Raymond M. (Inventor); Bush, Harold G. (Inventor); Johnson, Robert R. (Inventor)

    1990-01-01

    A metallic outer sleeve is provided which is capable of enveloping a hollow metallic inner member having continuous reinforcing fibers attached to the distal end thereof. The inner member is then introduced into outer sleeve until inner member is completely enveloped by outer sleeve. A liquid matrix member is then injected into space between inner member and outer sleeve. A pressurized heat transfer medium is flowed through the inside of inner member, thereby forming a fiber reinforced matrix composite material. The wall thicknesses of both inner member and outer sleeve are then reduced to the appropriate size by chemical etching, to adjust the thermal expansion coefficient of the metal-clad composite structure to the desired value. thereby forming a fiber reinforced matrix composite material. The wall thicknesses of both inner member and outer sleeve are then reduced to the appropriate size by chemical etching, to adjust the thermal expansion coefficient of the metal-clad composite structure to the desired value. The novelty of this invention resides in the development of a efficient method of producing seamless metal clad fiber reinforced organic matrix composite structures.

  18. CEM V based special cementitious materials investigated by means of SANS method. Preliminary results

    NASA Astrophysics Data System (ADS)

    Dragolici, A. C.; Balasoiu, M.; Orelovich, O. L.; Ionascu, L.; Nicu, M.; Soloviov, D. V.; Kuklin, A. I.; Lizunov, E. I.; Dragolici, F.

    2017-05-01

    The management of the radioactive waste assume the conditioning in a cement matrix as an embedding, stable, disposal material. Cement matrix is the first and most important engineering barrier against the migration in the environment of the radionuclides contained in the waste packages. Knowing how the microstructure develops is therefore desirable in order to assess the compatibility of radioactive streams with cement and predict waste form performance during storage and disposal. For conditioning wastes containing radioactive aluminum new formulas of low basicity cements, using coatings as a barrier between the metal and the conditioning environment or introducing a corrosion inhibitor in the matrix system are required. Preliminary microstructure investigation of such improved CEM V based cement matrix is reported.

  19. Heat transfer enhancement of PCM melting in 2D horizontal elliptical tube using metallic porous matrix

    NASA Astrophysics Data System (ADS)

    Jourabian, Mahmoud; Farhadi, Mousa; Rabienataj Darzi, Ahmad Ali

    2016-12-01

    In this study, the melting process of ice as a phase-change material (PCM) saturated with a nickel-steel porous matrix inside a horizontal elliptical tube is investigated. Due to the low thermal conductivity of the PCM, it is motivated to augment the heat transfer performance of the system simultaneously by finding an optimum value of the aspect ratio and impregnating a metallic porous matrix into the base PCM. The lattice Boltzmann method with a double distribution function formulated based on the enthalpy method, is applied at the representative elementary volume scale under the local thermal equilibrium assumption between the PCM and porous matrix in the composite. While reducing or increasing the aspect ratio of the circular tubes leads to the expedited melting, the 90° inclination of each elliptical tube in the case of the pure PCM melting does not affect the melting rate. With the reduction in the porosity, the effective thermal conductivity and melting rate in all tubes promoted. Although the natural convection is fully suppressed due to the significant flow blockage in the porous structure, the melting rates are generally increased in all cases.

  20. Effect of Forging Parameters on Low Cycle Fatigue Behaviour of Al/Basalt Short Fiber Metal Matrix Composites

    PubMed Central

    Karthigeyan, R.; Ranganath, G.

    2013-01-01

    This paper deals with metal matrix composites (MMCs) of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10) basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface. PMID:24298207

  1. Effect of forging parameters on low cycle fatigue behaviour of Al/basalt short fiber metal matrix composites.

    PubMed

    Karthigeyan, R; Ranganath, G

    2013-01-01

    This paper deals with metal matrix composites (MMCs) of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10) basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface.

  2. Guanidine Soaps As Vehicles For Coating Ceramic Fibers

    NASA Technical Reports Server (NTRS)

    Philipp, Warren H.; Veitch, Lisa C.; Jaskowiak, Martha H.

    1994-01-01

    Soaps made from strong organic base guanidine and organic fatty acids serve as vehicles and binders for coating ceramic fibers, various smooth substrates, and other problematic surfaces with thin precious-metal or metal-oxide films. Films needed to serve as barriers to diffusion in fiber/matrix ceramic composite materials. Guanidine soaps entirely organic and burn off, leaving no residues.

  3. Modelling of End Milling of AA6061-TiCp Metal Matrix Composite

    NASA Astrophysics Data System (ADS)

    Vijay Kumar, S.; Cheepu, Muralimohan; Venkateswarlu, D.; Asohan, P.; Senthil Kumar, V.

    2018-03-01

    The metal-matrix composites (MMCs) are used in various applications hence lot of research has been carried out on MMCs. To increase the properties of Al-based MMCs many ceramic reinforcements have been identified, among which TiC is played vital role because of its properties like high hardness, stiffness and wear resistance. In the present work, a neural network and statistical modelling approach is going to use for the prediction of surface roughness (Ra) and cutting forces in computerised numerical control milling machine. Experiments conducted on a CNC milling machine based on the full factorial design and resulted data used to train and checking the network performance. The sample prepared from in-situ technique and heat treated to get uniform properties. The ANN model has shown satisfactory performance comparatively.

  4. Tailorable Dielectric Material with Complex Permittivity Characteristics

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G. (Inventor); Watson, Kent A. (Inventor); Elliott, Holly A (Inventor); Delozier, Donavon Mark (Inventor); Connell, John W. (Inventor); Ghose, Sayata (Inventor); Dudley, Kenneth L. (Inventor)

    2014-01-01

    A dielectric material includes a network of nanosubstrates, such as but not limited to nanotubes, nanosheets, or other nanomaterials or nanostructures, a polymer base material or matrix, and nanoparticles constructed at least partially of an elemental metal. The network has a predetermined nanosubstrate loading percentage by weight with respect to a total weight of the dielectric material, and a preferential or predetermined longitudinal alignment with respect to an orientation of an incident electrical field. A method of forming the dielectric material includes depositing the metal-based nanoparticles onto the nanosubstrates and subsequently mixing these with a polymer matrix. Once mixed, alignment can be achieved by melt extrusion or a similar mechanical shearing process. Alignment of the nanosubstrate may be in horizontal or vertical direction with respect to the orientation of an incident electrical field.

  5. Fatigue Resistance of Liquid-assisted Self-repairing Aluminum Alloys Reinforced with Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Wright, M. Clara; Manuel, Michele; Wallace, Terryl

    2013-01-01

    A self-repairing aluminum-based composite system has been developed using a liquid-assisted healing theory in conjunction with the shape memory effect of wire reinforcements. The metal-metal composite was thermodynamically designed to have a matrix with a relatively even dispersion of a low-melting eutectic phase, allowing for repair of cracks at a predetermined temperature. Additionally, shape memory alloy (SMA) wire reinforcements were used within the composite to provide crack closure. Investigators focused the research on fatigue cracks propagating through the matrix in order to show a proof-of-concept Shape Memory Alloy Self-Healing (SMASH) technology for aeronautical applications.

  6. Multiple Concentric Cylinder Model (MCCM) user's guide

    NASA Technical Reports Server (NTRS)

    Williams, Todd O.; Pindera, Marek-Jerzy

    1994-01-01

    A user's guide for the computer program mccm.f is presented. The program is based on a recently developed solution methodology for the inelastic response of an arbitrarily layered, concentric cylinder assemblage under thermomechanical loading which is used to model the axisymmetric behavior of unidirectional metal matrix composites in the presence of various microstructural details. These details include the layered morphology of certain types of ceramic fibers, as well as multiple fiber/matrix interfacial layers recently proposed as a means of reducing fabrication-induced, and in-service, residual stress. The computer code allows efficient characterization and evaluation of new fibers and/or new coating systems on existing fibers with a minimum of effort, taking into account inelastic and temperature-dependent properties and different morphologies of the fiber and the interfacial region. It also facilitates efficient design of engineered interfaces for unidirectional metal matrix composites.

  7. In-situ ductile metal/bulk metallic glass matrix composites formed by chemical partitioning

    DOEpatents

    Kim, Choong Paul; Hays, Charles C.; Johnson, William L.

    2004-03-23

    A composite metal object comprises ductile crystalline metal particles in an amorphous metal matrix. An alloy is heated above its liquidus temperature. Upon cooling from the high temperature melt, the alloy chemically partitions, forming dendrites in the melt. Upon cooling the remaining liquid below the glass transition temperature it freezes to the amorphous state, producing a two-phase microstructure containing crystalline particles in an amorphous metal matrix. The ductile metal particles have a size in the range of from 0.1 to 15 micrometers and spacing in the range of from 0.1 to 20 micrometers. Preferably, the particle size is in the range of from 0.5 to 8 micrometers and spacing is in the range of from 1 to 10 micrometers. The volume proportion of particles is in the range of from 5 to 50% and preferably 15 to 35%. Differential cooling can produce oriented dendrites of ductile metal phase in an amorphous matrix. Examples are given in the Zr--Ti--Cu--Ni--Be alloy bulk glass forming system with added niobium.

  8. In-situ ductile metal/bulk metallic glass matrix composites formed by chemical partitioning

    DOEpatents

    Kim, Choong Paul [Northridge, CA; Hays, Charles C [Pasadena, CA; Johnson, William L [Pasadena, CA

    2007-07-17

    A composite metal object comprises ductile crystalline metal particles in an amorphous metal matrix. An alloy is heated above its liquidus temperature. Upon cooling from the high temperature melt, the alloy chemically partitions, forming dendrites in the melt. Upon cooling the remaining liquid below the glass transition temperature it freezes to the amorphous state, producing a two-phase microstructure containing crystalline particles in an amorphous metal matrix. The ductile metal particles have a size in the range of from 0.1 to 15 micrometers and spacing in the range of from 0.1 to 20 micrometers. Preferably, the particle size is in the range of from 0.5 to 8 micrometers and spacing is in the range of from 1 to 10 micrometers. The volume proportion of particles is in the range of from 5 to 50% and preferably 15 to 35%. Differential cooling can produce oriented dendrites of ductile metal phase in an amorphous matrix. Examples are given in the Zr--Ti--Cu--Ni--Be alloy bulk glass forming system with added niobium.

  9. Composite-Metal-Matrix Arc-Spray Process

    NASA Technical Reports Server (NTRS)

    Westfall, Leonard J.

    1987-01-01

    Arc-spray "monotape" process automated, low in cost, and produces at high rate. Ideal for development of new metal-matrix composites. "Monotape" reproducible and of high quality. Process carried out in controlled gas environment with programmable matrix-deposition rates, resulting in significant cost saving

  10. Fabrication and Analysis of the Wear Properties of Hot-Pressed Al-Si/SiCp + Al-Si-Cu-Mg Metal Matrix Composite

    NASA Astrophysics Data System (ADS)

    Bang, Jeongil; Oak, Jeong-Jung; Park, Yong Ho

    2016-01-01

    The aim of this study was to characterize microstructures and mechanical properties of aluminum metal matrix composites (MMC's) prepared by powder metallurgy method. Consolidation of mixed powder with gas atomized Al-Si/SiCp powder and Al-14Si-2.5Cu-0.5Mg powder by hot pressing was classified according to sintering temperature and sintering time. Sintering condition was optimized using tensile properties of sintered specimens. Ultimate tensile strength of the optimized sintered specimen was 228 MPa with an elongation of 5.3% in longitudinal direction. In addition, wear properties and behaviors of the sintered aluminum-based MMC's were analyzed in accordance with vertical load and linear speed. As the linear speed and vertical load of the wear increased, change of the wear behavior occurred in order of oxidation of Al-Si matrix, formation of C-rich layer, Fe-alloying to matrix, and melting of the specimen

  11. Matrix-enhanced secondary ion mass spectrometry: The Alchemist's solution?

    NASA Astrophysics Data System (ADS)

    Delcorte, Arnaud

    2006-07-01

    Because of the requirements of large molecule characterization and high-lateral resolution SIMS imaging, the possibility of improving molecular ion yields by the use of specific sample preparation procedures has recently generated a renewed interest in the static SIMS community. In comparison with polyatomic projectiles, however, signal enhancement by a matrix might appear to some as the alchemist's versus the scientist's solution to the current problems of organic SIMS. In this contribution, I would like to discuss critically the pros and cons of matrix-enhanced SIMS procedures, in the new framework that includes polyatomic ion bombardment. This discussion is based on a short review of the experimental and theoretical developments achieved in the last decade with respect to the three following approaches: (i) blending the analyte with a low-molecular weight organic matrix (MALDI-type preparation procedure); (ii) mixing alkali/noble metal salts with the analyte; (iii) evaporating a noble metal layer on the analyte sample surface (organic molecules, polymers).

  12. Microstructure and Mechanical Behavior of Microwave Sintered Cu50Ti50 Amorphous Alloy Reinforced Al Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Reddy, M. Penchal; Ubaid, F.; Shakoor, R. A.; Mohamed, A. M. A.

    2018-06-01

    In the present work, Al metal matrix composites reinforced with Cu-based (Cu50Ti50) amorphous alloy particles synthesized by ball milling followed by a microwave sintering process were studied. The amorphous powders of Cu50Ti50 produced by ball milling were used to reinforce the aluminum matrix. They were examined by x-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness and compression testing. The analysis of XRD patterns of the samples containing 5 vol.%, 10 vol.% and 15 vol.% Cu50Ti50 indicates the presence of Al and Cu50Ti50 peaks. SEM images of the sintered composites show the uniform distribution of reinforced particles within the matrix. Mechanical properties of the composites were found to increase with an increasing volume fraction of Cu50Ti50 reinforcement particles. The hardness and compressive strength were enhanced to 89 Hv and 449 MPa, respectively, for the Al-15 vol.% Cu50Ti50 composites.

  13. Anisotropic Damage Mechanics Modeling in Metal Matrix Composites

    DTIC Science & Technology

    1993-05-15

    conducted on a titanium aluminide SiC-reinforced metal matrix composite. Center-cracked plates with laminate layups of (0/90) and (±45). were tested... interfacial damage mechanisms as debonding or delamination. Equations (2.14) and (2.15) represent the damage transformation equations for the stress... titanium aluminide SiC 46 continuous reinforced metal matrix composite. As a means of enforcing quality assurance, all manufacturing and cutting of the

  14. Thin film lithium-based batteries and electrochromic devices fabricated with nanocomposite electrode materials

    DOEpatents

    Gillaspie, Dane T; Lee, Se-Hee; Tracy, C. Edwin; Pitts, John Roland

    2014-02-04

    Thin-film lithium-based batteries and electrochromic devices (10) are fabricated with positive electrodes (12) comprising a nanocomposite material composed of lithiated metal oxide nanoparticles (40) dispersed in a matrix composed of lithium tungsten oxide.

  15. Method for gas-metal arc deposition

    DOEpatents

    Buhrmaster, C.L.; Clark, D.E.; Smartt, H.B.

    1990-11-13

    Method and apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites are disclosed. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment with the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspension of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite. 1 fig.

  16. Method for gas-metal arc deposition

    DOEpatents

    Buhrmaster, Carol L.; Clark, Denis E.; Smartt, Herschel B.

    1990-01-01

    Method and apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment wiht the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspension of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite.

  17. Apparatus for gas-metal arc deposition

    DOEpatents

    Buhrmaster, Carol L.; Clark, Denis E.; Smartt, Herschel B.

    1991-01-01

    Apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment with the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspenion of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite.

  18. Partially degradable fibers and microvascular materials formed from the fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Hefei; Pety, Stephen J.; Sottos, Nancy R.

    A partially degradable polymeric fiber includes a thermally degradable polymeric core and a coating surrounding at least a portion of the core. The thermally degradable polymeric core includes a polymeric matrix including a poly(hydroxyalkanoate), and a metal selected from the group consisting of an alkali earth metal and a transition metal, in the core polymeric matrix. The concentration of the metal in the polymeric matrix is at least 0.1 wt %. The partially degradable polymeric fiber may be used to form a microvascular system containing one or more microfluidic channels.

  19. Metal deposition by electroless plating on polydopamine functionalized micro- and nanoparticles.

    PubMed

    Mondin, Giovanni; Wisser, Florian M; Leifert, Annika; Mohamed-Noriega, Nasser; Grothe, Julia; Dörfler, Susanne; Kaskel, Stefan

    2013-12-01

    A novel approach for the fabrication of metal coated micro- and nanoparticles by functionalization with a thin polydopamine layer followed by electroless plating is reported. The particles are initially coated with polydopamine via self-polymerization. The resulting polydopamine coated particles have a surface rich in catechols and amino groups, resulting in a high affinity toward metal ions. Thus, they provide an effective platform for selective electroless metal deposition without further activation and sensitization steps. The combination of a polydopamine-based functionalization with electroless plating ensures a simple, scalable, and cost-effective metal coating strategy. Silver-plated tungsten carbide microparticles, copper-plated tungsten carbide microparticles, and copper-plated alumina nanoparticles were successfully fabricated, showing also the high versatility of the method, since the polymerization of dopamine leads to the formation of an adherent polydopamine layer on the surface of particles of any material and size. The metal coated particles produced with this process are particularly well suited for the production of metal matrix composites, since the metal coating increases the wettability of the particles by the metal, promoting their integration within the matrix. Such composite materials are used in a variety of applications including electrical contacts, components for the automotive industries, magnets, and electromagnetic interference shielding. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Metal- and Polymer-Matrix Composites: Functional Lightweight Materials for High-Performance Structures

    NASA Astrophysics Data System (ADS)

    Gupta, Nikhil; Paramsothy, Muralidharan

    2014-06-01

    The special topic "Metal- and Polymer-Matrix Composites" is intended to capture the state of the art in the research and practice of functional composites. The current set of articles related to metal-matrix composites includes reviews on functionalities such as self-healing, self-lubricating, and self-cleaning capabilities; research results on a variety of aluminum-matrix composites; and investigations on advanced composites manufacturing methods. In addition, the processing and properties of carbon nanotube-reinforced polymer-matrix composites and adhesive bonding of laminated composites are discussed. The literature on functional metal-matrix composites is relatively scarce compared to functional polymer-matrix composites. The demand for lightweight composites in the transportation sector is fueling the rapid development in this field, which is captured in the current set of articles. The possibility of simultaneously tailoring several desired properties is attractive but very challenging, and it requires significant advancements in the science and technology of composite materials. The progress captured in the current set of articles shows promise for developing materials that seem capable of moving this field from laboratory-scale prototypes to actual industrial applications.

  1. High power x-ray welding of metal-matrix composites

    DOEpatents

    Rosenberg, Richard A.; Goeppner, George A.; Noonan, John R.; Farrell, William J.; Ma, Qing

    1999-01-01

    A method for joining metal-matrix composites (MMCs) by using high power x-rays as a volumetric heat source is provided. The method involves directing an x-ray to the weld line between two adjacent MMCs materials to create an irradiated region or melt zone. The x-rays have a power density greater than about 10.sup.4 watts/cm.sup.2 and provide the volumetric heat required to join the MMC materials. Importantly, the reinforcing material of the metal-matrix composites remains uniformly distributed in the melt zone, and the strength of the MMCs are not diminished. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys.

  2. Continuum-Scale Modeling of Shear Banding in Bulk Metallic Glass-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Gibbons, Michael

    Metallic glasses represent a relatively new class of materials that have demonstrated enormous potential for functional and structural applications due to the unique set of properties attributed to them as a result of the disordered isotropic structure with metallically bonded elements. Amorphous metals benefit from the strong nature of the metallic bonds, but lack the crystallographic structure and polycrystalline nature of traditional metals which unsurprisingly has huge implications on the material properties, as all deformation mechanisms associated with a lattice are suppressed. This results in excellent strength, a high elastic strain limit, exceptional hardness, and improved corrosion and wear resistance. "Bulk" metallic glasses (BMG) represent the amorphous metals which can be produced at the cm length-scale, thus greatly expanding their applicability for structural applications. However, due to the catastrophic nature of the failure produced upon yielding, monolithic metallic glasses are seldomly used for structural applications. Bulk metallic glass-matrix composites (BMGMCs), however, are able to combine the excellent strength, hardness, and elastic strain limit of amorphous metallic glass with a ductile crystalline phase to achieve extraordinary toughness with minimal degradation in strength. In order to explore the mechanical interactions between the amorphous and crystalline phases, a full-field micromechanical model which couples the free-volume based constitutive behavior for the matrix phase with standard rate-dependent crystal plasticity for the dendrites, and its implementation via an elastic-viscoplastic Fast-Fourier Transform (FFT) solver. The model is calibrated to macroscale stress-strain data for Ti-Zr-V-Cu-Be BMGMCs with varying composition and furthermore by comparing the deformation behavior associated with the shear bands predicted by the model, to the artifacts observed from characterization microscopy analysis on the same failed BMGMC tensile specimens in which the macroscopic composite behavior predicted by the model was validated with. The FFT-based deformation modeling is then exercised to study the nature and origin of shear bands in metallic glass composites. Synthetic 3D microstructures were produced using images of real BMGMCs, and then subjected to uniaxial tension deformation simulations. The findings indicate that in BMGMCs, local inhomogeneities in the glass phase are less influential on the mechanical performance than the contrast in individual phase properties and the spatial distribution of the microstructure. Due to the strong contrast in mechanical properties between the phases, highly heterogeneous stress fields develop, contributing to regionally confined free-volume generation, localized flow and softening in the glass. These softened regions can link and plastic flow then rapidly localizes into a thin shear band with planar like geometry. The availability of finely resolved (spatially and temporally) 3D deformation maps allow for the determination of the mechanism corresponding with these macroscopic stick-slip oscillations apparent in the stress-strain curves. In addition to shedding light on the nature of shear banding in bulk metallic glass-matrix composites, this work also demonstrates the feasibility of using a spectral-based continuum-scale model to efficiently predict the microstructure and individual phase properties that lead to new materials, superior to those found using only experimental techniques.

  3. Corrosion behavior and pitting susceptibility of in-situ Ti-based metallic glass matrix composites in 3.5 wt.% NaCl solutions

    NASA Astrophysics Data System (ADS)

    Xu, K. K.; Lan, A. D.; Yang, H. J.; Han, P. D.; Qiao, J. W.

    2017-11-01

    The Ti62Zr12V13Cu4Be9, Ti58Zr16V10Cu4Be12, Ti46Zr20V12Cu5Be17, and Ti40Zr24V12Cu5Be19 metallic glass matrix composites (MGMCs) were prepared by copper mould casting. The corrosion resistance and the pitting susceptibility of Ti-based MGMCs were tested on their cross-sectional areas in 3.5 wt.% NaCl solutions by potentiodynamic polarization measurements. The composites with lower Ti contents (Ti40Zr24V12Cu5Be19 and Ti46Zr20V12Cu5Be17) exhibit a low resistance to the chloride induced pitting and local corrosion. The preferential dissolution of amorphous matrix is explained by the high chemical reactivity of beryllium element compared to that of stable dendrites and by the detected lower Ti and V contents. However, fairly good passivity was found in the composite with higher Ti contents (Ti62Zr12V13Cu4Be9). XPS measurements revealed that protective Ti-enriched oxide film was formed on the composite surface, additionally, lower content of beryllium element in amorphous matrix hinder the selective corrosion of amorphous matrix. The assessment of experimental observation leads to a proposed corrosion mechanism involving selective dissolution of amorphous matrix and chloride induced pitting process.

  4. Short-term changes of metal availability in soil. Part I: comparing sludge-amended with metal-spiked soils.

    PubMed

    Natal-da-Luz, T; Ojeda, G; Costa, M; Pratas, J; Lanno, R P; Van Gestel, C A M; Sousa, J P

    2012-08-01

    Sewage sludge application to soils is regulated by its total metal content. However, the real risk of metals is determined by the fraction that is biologically available. The available fraction is highly related to the strength of metal binding by the matrix, which is a dynamic process. The evaluation of the fate of metals in time can contribute increased accuracy of ecological risk assessment. Aiming to evaluate short-term changes in metal availability when metals were applied to soil directly (metal-spiked) or by way of an organic matrix (sludge-amended), a laboratory experiment was performed using open microcosms filled with agricultural soil. A concentration gradient of industrial sludge (11, 15, 55, and 75 t/ha) that was contaminated predominantly with chromium, copper, nickel, and zinc, or soil freshly spiked with the same concentrations of these metals, were applied on top of the agricultural soil. After 0, 3, 6, and 12 weeks, total (HNO(3) 69 %) and 0.01 M CaCl(2)-extractable metal concentrations in soil and metal content in the percolates were measured. Results demonstrated that comparison between sludge-amended and metal-spiked soils may give important information about the role of sludge matrix on metal mobility and availability in soil. In sludge-amended soils, extractable-metal concentrations were independent of the sludge concentration and did not change over time. In metal-spiked soils, metal extractability decreased with time due to ageing and transport of metals to deeper layers. In general, the sludge matrix increased the adsorption of metals, thus decreasing their mobility in soils.

  5. Development and fabrication of high strength alloy fibers for use in metal-metal matrix composites

    NASA Technical Reports Server (NTRS)

    King, G. W.; Petrasek, D. W.

    1979-01-01

    Metal fiber reinforced superalloys are being considered for construction of critical components in turbine engines that operate at high temperature. The problems involved in fabricating refractory metal alloys into wire form in such a manner as to maximize their strength properties without developing excessive structural defects are described. The fundamental principles underlying the development of such alloy fibers are also briefly discussed. The progress made to date in developing tungsten, tantalum and columbium base alloys for fiber reinforcement is reported and future prospects for alloy fiber development considered.

  6. Manufacturing techniques for titanium aluminide based alloys and metal matrix composites

    NASA Astrophysics Data System (ADS)

    Kothari, Kunal B.

    Dual phase titanium aluminides composed vastly of gamma phase (TiAl) with moderate amount of alpha2 phase (Ti3Al) have been considered for several high temperature aerospace and automobile applications. High specific strength coupled with good high temperature performance in the areas of creep and oxidation resistance makes titanium aluminides "materials of choice" for next generation propulsion systems. Titanium alumnides are primarily being considered as potential replacements for Ni-based superalloys in gas turbine engine components with aim of developing more efficient and leaner engines exhibiting high thrust-to-weight ratio. Thermo-mechanical treatments have shown to enhance the mechanical performance of titanium aluminides. Additionally, small additions of interstitial elements have shown further and significant improvement in the mechanical performance of titanium alumnide alloys. However, titanium aluminides lack considerably in room temperature ductility and as a result manufacturing processes of these aluminides have greatly suffered. Traditional ingot metallurgy and investment casting based methods to produce titanium aluminide parts in addition to being expensive, have also been unsuccessful in producing titanium aluminides with the desired mechanical properties. Hence, the manufacturing costs associated with these methods have completely outweighed the benefits offered by titanium aluminides. Over the last two decades, several powder metallurgy based manufacturing techniques have been studied to produce titanium aluminide parts. These techniques have been successful in producing titanium aluminide parts with a homogeneous and refined microstructure. These powder metallurgy techniques also hold the potential of significant cost reduction depending on the wide market acceptance of titanium aluminides. In the present study, a powder metallurgy based rapid consolidation technique has been used to produce near-net shape parts of titanium aluminides. Micron-sized titanium aluminide powders were rapidly consolidated to form near-net shape titanium aluminide parts in form of small discs and tiles. The rapidly consolidated titanium aluminide parts were found to be fully dense. The microstructure morphology was found to vary with consolidation conditions. The mechanical properties were found to be significantly dependent on microstructure morphology and grain size. Due to rapid consolidation, grain growth during consolidation was limited, which in turn led to enhanced mechanical properties. The high temperature mechanical properties for the consolidated titanium aluminide samples were characterized and were found to retain good mechanical performance up to 700°C. Micron-sized titanium aluminide powders with slightly less Aluminum and small Nb, and Cr additions were rapidly consolidated into near-net shape parts. The consolidated parts were found to exhibit enhanced mechanical performance in terms of ductility and yield strength. The negative effect of Oxygen on the flexural strength at high temperatures was found to be reduced with the addition of Nb. In an effort to further reduce the grain size of the consolidated titanium aluminide samples, the as-received titanium aluminide powders were milled in an attrition mill. The average powder particle size of the powders was reduced by 60% after milling. The milled powders were then rapidly consolidated. The grain size of the consolidated parts was found to be in the sub-micrometer range. The mechanical properties were found to be significantly enhanced due to reduction of grain size in the sub-micrometer range. In order to develop a metal matrix composite based on titanium aluminide matrix reinforced with titanium boride, an experiment to study the effect of rapid consolidation on titanium diboride powders was conducted. Micron-sized titanium diboride powders were consolidated and were found to be 93% dense and exhibited minimal grain growth. The low density of the consolidated part was attributed to low consolidation temperature. Titanium aluminide and titanium diboride powders were blended together in an attrition mill and rapidly consolidated. A metal matrix composite with titanium aluminide matrix reinforced with titanium monoboride plates was formed. The titanium diboride in the powder form was found to be transformed to titanium monoboroide plates during consolidation due to the thermodynamic equilibrium between titanium and titanium monoboride. The metal matrix composite was found to be 90% dense. The low density was due to particle size mismatch between the matrix and reinforcement powders and low consolidation temperature. An increase in the volume of titanium monoboride plates in the metal matrix composite was accompanied by an increase in the elastic modulus of the metal matrix composite.

  7. Magnetic process for removing heavy metals from water employing magnetites

    DOEpatents

    Prenger, F. Coyne; Hill, Dallas D.; Padilla, Dennis D.; Wingo, Robert M.; Worl, Laura A.; Johnson, Michael D.

    2003-07-22

    A process for removing heavy metals from water is provided. The process includes the steps of introducing magnetite to a quantity of water containing heavy metal. The magnetite is mixed with the water such that at least a portion of, and preferably the majority of, the heavy metal in the water is bound to the magnetite. Once this occurs the magnetite and absorbed metal is removed from the water by application of a magnetic field. In most applications the process is achieved by flowing the water through a solid magnetized matrix, such as steel wool, such that the magnetite magnetically binds to the solid matrix. The magnetized matrix preferably has remnant magnetism, but may also be subject to an externally applied magnetic field. Once the magnetite and associated heavy metal is bound to the matrix, it can be removed and disposed of, such as by reverse water or air and water flow through the matrix. The magnetite may be formed in-situ by the addition of the necessary quantities of Fe(II) and Fe(III) ions, or pre-formed magnetite may be added, or a combination of seed and in-situ formation may be used. The invention also relates to an apparatus for performing the removal of heavy metals from water using the process outlined above.

  8. Magnetic process for removing heavy metals from water employing magnetites

    DOEpatents

    Prenger, F. Coyne; Hill, Dallas D.

    2006-12-26

    A process for removing heavy metals from water is provided. The process includes the steps of introducing magnetite to a quantity of water containing heavy metal. The magnetite is mixed with the water such that at least a portion of, and preferably the majority of, the heavy metal in the water is bound to the magnetite. Once this occurs the magnetite and absorbed metal is removed from the water by application of a magnetic field. In most applications the process is achieved by flowing the water through a solid magnetized matrix, such as steel wool, such that the magnetite magnetically binds to the solid matrix. The magnetized matrix preferably has remnant magnetism, but may also be subject to an externally applied magnetic field. Once the magnetite and associated heavy metal is bound to the matrix, it can be removed and disposed of, such as by reverse water or air and water flow through the matrix. The magnetite may be formed in-situ by the addition of the necessary quantities of Fe(II) and Fe(III) ions, or pre-formed magnetite may be added, or a combination of seed and in-situ formation may be used. The invention also relates to an apparatus for performing the removal of heavy metals from water using the process outlined above.

  9. Additive Manufacturing of Reactive In Situ Zr Based Ultra-High Temperature Ceramic Composites

    NASA Astrophysics Data System (ADS)

    Sahasrabudhe, Himanshu; Bandyopadhyay, Amit

    2016-03-01

    Reactive in situ multi-material additive manufacturing of ZrB2-based ultra-high-temperature ceramics in a Zr metal matrix was demonstrated using LENS™. Sound metallurgical bonding was achieved between the Zr metal and Zr-BN composites with Ti6Al4V substrate. Though the feedstock Zr power had α phase, LENS™ processing of the Zr powder and Zr-BN premix powder mixture led to the formation of some β phase of Zr. Microstructure of the Zr-BN composite showed primary grains of zirconium diboride phase in zirconium metal matrix. The presence of ZrB2 ceramic phase was confirmed by X-ray diffraction (XRD) analysis. Hardness of pure Zr was measured as 280 ± 12 HV and, by increasing the BN content in the feedstock, the hardness was found to increase. In Zr-5%BN composite, the hardness was 421 ± 10 HV and the same for Zr-10%BN composite was 562 ± 10 HV. It is envisioned that such multi-materials additive manufacturing will enable products in the future that cannot be manufactured using traditional approaches particularly in the areas of high-temperature metal-ceramic composites with compositional and functional gradation.

  10. Formation of multicomponent matrix metal oxide films in anodic alumina matrixes by chemical deposition

    NASA Astrophysics Data System (ADS)

    Gorokh, G. G.; Zakhlebayeva, A. I.; Metla, A. I.; Zhilinskiy, V. V.; Murashkevich, A. N.; Bogomazova, N. V.

    2017-11-01

    The metal oxide films of SnxZnyOz and SnxMoyOz systems deposited onto anodic alumina matrixes by chemical and ion layering from an aqueous solutions were characterized by scanning electron microscopy, Raman spectroscopy, electron probe X-ray microanalysis and IR spectroscopy. The obtained matrix films had reproducible composition and structure and possessed certain morphological characteristics and properties.

  11. Achieving high strength and high ductility in metal matrix composites reinforced with a discontinuous three-dimensional graphene-like network.

    PubMed

    Zhang, Xiang; Shi, Chunsheng; Liu, Enzuo; He, Fang; Ma, Liying; Li, Qunying; Li, Jiajun; Bacsa, Wolfgang; Zhao, Naiqin; He, Chunnian

    2017-08-24

    Graphene or graphene-like nanosheets have been emerging as an attractive reinforcement for composites due to their unique mechanical and electrical properties as well as their fascinating two-dimensional structure. It is a great challenge to efficiently and homogeneously disperse them within a metal matrix for achieving metal matrix composites with excellent mechanical and physical performance. In this work, we have developed an innovative in situ processing strategy for the fabrication of metal matrix composites reinforced with a discontinuous 3D graphene-like network (3D GN). The processing route involves the in situ synthesis of the encapsulation structure of 3D GN powders tightly anchored with Cu nanoparticles (NPs) (3D GN@Cu) to ensure mixing at the molecular level between graphene-like nanosheets and metal, coating of Cu on the 3D GN@Cu (3D GN@Cu@Cu), and consolidation of the 3D GN@Cu@Cu powders. This process can produce GN/Cu composites on a large scale, in which the in situ synthesized 3D GN not only maintains the perfect 3D network structure within the composites, but also has robust interfacial bonding with the metal matrix. As a consequence, the as-obtained 3D GN/Cu composites exhibit exceptionally high strength and superior ductility (the uniform and total elongation to failure of the composite are even much higher than the unreinforced Cu matrix). To the best of our knowledge, this work is the first report validating that a discontinuous 3D graphene-like network can simultaneously remarkably enhance the strength and ductility of the metal matrix.

  12. Blood metal levels and third trimester maternal plasma matrix metalloproteinases (MMPs).

    PubMed

    Au, Felicia; Bielecki, Agnieszka; Blais, Erica; Fisher, Mandy; Cakmak, Sabit; Basak, Ajoy; Gomes, James; Arbuckle, Tye E; Fraser, William D; Vincent, Renaud; Kumarathasan, Prem

    2016-09-01

    While it is known that in utero exposure to environmental toxicants, namely heavy metals, can adversely affect the neonate, there remains a significant paucity of information on maternal biological changes specific to metal exposures during pregnancy. This study aims at identifying associations between maternal metal exposures and matrix metalloproteinases (MMPs) that are known to be engaged in pregnancy process. Third trimester maternal plasma (n = 1533) from a pregnancy cohort (Maternal-Infant Research on Environmental Chemicals Study, MIREC) were analyzed for MMP-1,-2,-7,-9 and -10 by affinity-based multiplex protein array analyses. Maternal metal concentrations (mercury, cadmium, lead, arsenic and manganese) in 1st and 3rd trimesters exhibited strong correlations (p < 0.05). Multivariate regression models were used to estimate odds ratio (OR) for the association between metal concentrations in quartiles and high (90%) and low (10%) maternal MMP levels. Significant (p < 0.05) metal exposure-related effects were observed with the different MMP isoform responses. MMP profiles were specific to the trimester at which the maternal blood metals were analyzed. Our findings suggest that the profiles of these MMP isoforms vary with the type of metal exposure, blood metal concentrations and the trimester at which metal levels were determined. These new findings on maternal metal-MMP relationships can guide future explorations on toxicity mechanisms relevant to metal exposure-mediated adverse birth outcomes. Copyright © 2016. Published by Elsevier Ltd.

  13. Twinning-induced plasticity (TWIP) and work hardening in Ti-based metallic glass matrix composites.

    PubMed

    Fan, J; Qiao, J W; Wang, Z H; Rao, W; Kang, G Z

    2017-05-12

    The present study demonstrates that Ti-based metallic glass matrix composites (MGMCs) with a normal composition of Ti 43 Zr 32 Ni 6 Ta 5 Be 14 containing ductile dendrites dispersed in the glass matrix has been developed, and deformation mechanisms about the tensile property have been investigated by focusing on twinning-induced plasticity (TWIP) effect. The Ti-based MGMC has excellent tensile properties and pronounced tensile work-hardening capacity, with a yield strength of 1100 MPa and homogeneous elongation of 4%. The distinguished strain hardening is ascribed to the formation of deformation twinning within the dendrites. Twinning generated in the dendrites works as an obstacle for the rapid propagation of shear bands, and then, the localized necking is avoided, which ensures the ductility of such kinds of composites. Besides, a finite-element model (FEM) has been established to explain the TWIP effect which brings out a work-hardening behavior in the present MGMC instead of a localized strain concentration. According to the plasticity theory of traditional crystal materials and some new alloys, TWIP effect is mainly controlled by stacking fault energy (SFE), which has been analyzed intensively in the present MGMC.

  14. Precursor composites for oxygen dispersion hardened silver sheathed superconductor composites

    DOEpatents

    Podtburg, E.R.

    1999-06-22

    An oxide superconductor composite having improved texture and durability is disclosed. The oxide superconductor composite includes an oxide superconductor phase substantially surrounded with/by a noble metal matrix, the noble metal matrix comprising a metal oxide in an amount effective to form metal oxide domains that increase hardness of the composite. The composite is characterized by a degree of texture at least 10% greater than a comparable oxide superconductor composite lacking metal oxide domains. An oxide superconducting composite may be prepared by oxidizing the precursor composite under conditions effective to form solute metal oxide domains within the silver matrix and to form a precursor oxide in the precursor alloy phase; subjecting the oxidized composite to a softening anneal under conditions effective to relieve stress within the noble metal phase; and converting the oxide precursor into an oxide superconductor. 1 fig.

  15. Precursor composites for oxygen dispersion hardened silver sheathed superconductor composites

    DOEpatents

    Podtburg, Eric R.

    1999-01-01

    An oxide superconductor composite having improved texture and durability. The oxide superconductor composite includes an oxide superconductor phase substantially surrounded with/by a noble metal matrix, the noble metal matrix comprising a metal oxide in an amount effective to form metal oxide domains that increase hardness of the composite. The composite is characterized by a degree of texture at least 10% greater than a comparable oxide superconductor composite lacking metal oxide domains. An oxide superconducting composite may be prepared by oxidizing the precursor composite under conditions effective to form solute metal oxide domains within the silver matrix and to form a precursor oxide in the precursor alloy phase; subjecting the oxidized composite to a softening anneal under conditions effective to relieve stress within the noble metal phase; and converting the oxide precursor into an oxide superconductor.

  16. Absorption and Reflection Contributions to the High Performance of Electromagnetic Waves Shielding Materials Fabricated by Compositing Leather Matrix with Metal Nanoparticles.

    PubMed

    Liu, Chang; Wang, Xiaoling; Huang, Xin; Liao, Xuepin; Shi, Bi

    2018-04-25

    Leather matrix (LM), a natural dielectric material, features a hierarchically suprafibrillar structure and abundant dipoles, which provides the possibility to dissipate electromagnetic waves (EW) energy via dipole relaxation combined with multiple diffuse reflections. Conventionally, metal-based materials are used as EW shielding materials due to that their high conductivity can reflect EW effectively. Herein, a lightweight and high-performance EW shielding composite with both absorption and reflection ability to EW was developed by coating metal nanoparticles (MNPs) onto LM. The as-prepared metal/LM membrane with only 4.58 wt % of coated MNPs showed excellent EW shielding effectiveness of ∼76.0 dB and specific shielding effectiveness of ∼200.0 dB cm 3 g -1 in the frequency range of 0.01-3.0 GHz, implying that more than 99.98% of EW was shielded. Further investigations indicated that the high shielding performances of the metal/LM membrane were attributed to the cooperative shielding mechanism between LM and the coating of MNPs.

  17. General classification of ``hot`` particles from the nearest Chernobyl contaminated areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shabalev, S.I.; Burakov, B.E.; Anderson, E.B.

    1997-12-31

    The morphology and composition both chemical and radionuclide of the main types of the solid-phase hot particles formed following the accident on the Chernobyl NPP have been studied by SEM, electron microprobe and gamma-spectrometry methods. Differences in many isotopes including: {sup 106}Ru, {sup 134}Cs, {sup 137}Cs dependent upon the hot particle matrix chemical composition was observed. The classification of hot particles based upon the chemical composition of their matrices has been done. It includes three main types: (1) fuel particles with UO{sub x} matrix; (2) fuel-constructional particles with Zr-U-O matrix, (3) hot particles with metallic inclusions of Fe-Cr-Ni. Moreover, theremore » are more rare types of hot particles with silicate or metal matrices. It was shown that only metallic inclusions of Fe-Cr-Ni are concentrators of {sup 106}Ru, which caused this nuclides assimilation in the molten stainless steel during the initial stages of the accident. Soils contamination of non-radioactive lead oxide particles in the Chernobyl NPP region were noticed. It was supposed that part of metallic lead, dropped from helicopters into burning reactor during first days of accident, was evaporated and oxidized accompanying solid oxide particles formation.« less

  18. Microstructure Characterization of Al-TiC Surface Composite Fabricated by Friction Stir Processing

    NASA Astrophysics Data System (ADS)

    Shiva, Apireddi; Cheepu, Muralimohan; Charan Kantumuchu, Venkata; Kumar, K. Ravi; Venkateswarlu, D.; Srinivas, B.; Jerome, S.

    2018-03-01

    Titanium carbide (TiC) is an exceedingly hard and wear refractory ceramic material. The surface properties of the material are very important and the corrosion, wear and fatigue resistance behaviour determines its ability and applications. It is necessary to modify the surface properties of the materials to enhance their performance. The present work aims on developing a new surface composite using commercially pure aluminum and TiC reinforcement powder with a significant fabrication technique called friction stir processing (FSP). The metal matrix composite of Al/TiC has been developed without any defects formation to investigate the particles distribution in the composite, microstructural changes and mechanical properties of the material. The microstructural observations exhibited that the grain refinement in the nugget compared to the base metal and FSP without TiC particles. The developed composite properties showed substantial improvement in micro-hardness, friction factor, wear resistance and microstructural characteristics in comparison to parent metal. On the other side, the ductility of the composite specimens was diminished over the substrate. The FSPed specimens were characterised using X-ray diffraction technique and revealed that the formation of AlTi compounds and the presence of Ti phases in the matrix. The microstructures of the samples illustrated the uniform distribution of particles in the newly developed metal matrix composite.

  19. Large enhancement of second harmonic generation from transition-metal dichalcogenide monolayer on grating near bound states in the continuum.

    PubMed

    Wang, Tiecheng; Zhang, Shihao

    2018-01-08

    Second harmonic generation from the two-layer structure where a transition-metal dichalcogenide monolayer is put on a one-dimensional grating has been studied. This grating supports bound states in the continuum which have no leakage lying within the continuum of radiation modes, we can enhance the second harmonic generation from the transition-metal dichalcogenide monolayer by more than four orders of magnitude based on the critical field enhancement near the bound states in the continuum. In order to complete this calculation, the scattering matrix theory has been extended to include the nonlinear effect and the scattering matrix of a two-dimensional material including nonlinear terms; furthermore, two methods to observe the bound states in the continuum are considered, where one is tuning the thickness of the grating and the other is changing the incident angle of the electromagnetic wave. We have also discussed various modulation of the second harmonic generation enhancement by adjusting the azimuthal angle of the transition-metal dichalcogenide monolayer.

  20. Empirical Monod-Beuneu relation of spin relaxation revisited for elemental metals

    NASA Astrophysics Data System (ADS)

    Szolnoki, L.; Kiss, A.; Forró, L.; Simon, F.

    2014-03-01

    Monod and Beuneu [P. Monod and F. Beuneu, Phys. Rev. B 19, 911 (1979), 10.1103/PhysRevB.19.911] established the validity of the Elliott-Yafet theory for elemental metals through correlating the experimental electron spin resonance linewidth with the so-called spin-orbit admixture coefficients and the momentum-relaxation theory. The spin-orbit admixture coefficients data were based on atomic spin-orbit splitting. We highlight two shortcomings of the previous description: (i) the momentum-relaxation involves the Debye temperature and the electron-phonon coupling whose variation among the elemental metals was neglected, (ii) the Elliott-Yafet theory involves matrix elements of the spin-orbit coupling (SOC), which are however not identical to the SOC induced energy splitting of the atomic levels, even though the two have similar magnitudes. We obtain the empirical spin-orbit admixture parameters for the alkali metals by considering the proper description of the momentum relaxation theory. In addition we present a model calculation, which highlights the difference between the SOC matrix element and energy splitting.

  1. Electrodeposition of Metal Matrix Composites and Materials Characterization for Thin-Film Solar Cells

    DTIC Science & Technology

    2017-12-04

    34High-Concentration III-V Multijunction Solar Cells," 2017, <http://www.nrel.gov/ pv /high-concentration-iii-v-multijunction- solar - cells.html>. O. K...AFRL-RV-PS- AFRL-RV-PS- TR-2017-0174 TR-2017-0174 ELECTRODEPOSITION OF METAL MATRIX COMPOSITES AND MATERIALS CHARACTERIZATION FOR THIN-FILM SOLAR ...0242 Electrodeposition of Metal Matrix Composites and Materials Characterization for Thin-Film Solar Cells 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  2. Metal Matrix Composite LOX Turbopump Housing via Novel Tool-less Net-Shape Pressure Infiltration Casting Technology

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Lee, Jonathan; Bhat, Biliyar; Wells, Doug; Gregg, Wayne; Marsh, Matthew; Genge, Gary; Forbes, John; Salvi, Alex; Cornie, James A.

    2003-01-01

    Metal matrix composites for propulsion components offer high performance and affordability, resulting in low weight and cost. The following sections in this viewgraph presentation describe the pressure infiltration casting of a metal matrix composite LOX turbopump housing: 1) Baseline Pump Design and Stress Analysis; 2) Tool-less Advanced Pressure Infiltration Casting Process; 3) Preform Splicing and Joining for Large Components such as Pump Housing; 4) Fullscale Pump Housing Redesign.

  3. Arc spray fabrication of metal matrix composite monotape

    NASA Technical Reports Server (NTRS)

    Westfall, L. J. (Inventor)

    1985-01-01

    Arc metal spraying is used to spray liquid metal onto an array of high strength fibers that were previously wound onto a large drum contained inside a controlled atmosphere chamber. This chamber is first evacuated to remove gaseous contaminants and then backfilled with a neutral gas up to atmospheric pressure. This process is used to produce a large size metal matrix composite monotape.

  4. Influence of Binder in Iron Matrix Composites

    NASA Astrophysics Data System (ADS)

    Shamsuddin, S.; Jamaludin, S. B.; Hussain, Z.; Ahmad, Z. A.

    2010-03-01

    The ability to use iron and its alloys as the matrix material in composite systems is of great importance because it is the most widely used metallic material with a variety of commercially available steel grades [1]. The aim of this study is to investigate the influence of binder in particulate iron based metal matrix composites. There are four types of binder that were used in this study; Stearic Acid, Gummi Arabisch, Polyvinyl alcohol 15000 MW and Polyvinyl alcohol 22000 MW. Six different weight percentage of each binder was prepared to produce the composite materials using powder metallurgy (P/M) route; consists of dry mixing, uniaxially compacting at 750 MPa and vacuum sintering at 1100° C for two hours. Their characterization included a study of density, porosity, hardness and microstructure. Results indicate that MMC was affected by the binder and stearic acid as a binder produced better properties of the composite.

  5. The prospects for composites based on boron fibers

    NASA Technical Reports Server (NTRS)

    Naslain, R.

    1978-01-01

    The fabrication of boron filaments and the production of composite materials consisting of boron filaments and organic or metallic matrices are discussed. Problem involving the use of tungsten substrates in the filament fabrication process, the protection of boron fibers with diffusion barrier cladings, and the application of alloy additives in the matrix to lessen the effects of diffusion are considered. Data on the kinetics of the boron fiber/matrix interaction at high temperatures, and the influence of the fiber/matrix interaction on the mechanical properties of the composite are presented.

  6. Flight-vehicle materials, structures, and dynamics - Assessment and future directions. Vol. 3 - Ceramics and ceramic-matrix composites

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R. (Editor)

    1992-01-01

    The present volume discusses ceramics and ceramic-matrix composites in prospective aerospace systems, monolithic ceramics, transformation-toughened and whisker-reinforced ceramic composites, glass-ceramic matrix composites, reaction-bonded Si3N4 and SiC composites, and chemical vapor-infiltrated composites. Also discussed are the sol-gel-processing of ceramic composites, the fabrication and properties of fiber-reinforced ceramic composites with directed metal oxidation, the fracture behavior of ceramic-matrix composites (CMCs), the fatigue of fiber-reinforced CMCs, creep and rupture of CMCs, structural design methodologies for ceramic-based materials systems, the joining of ceramics and CMCs, and carbon-carbon composites.

  7. Applications of Laser Cladded WC-Based Wear Resistant Coatings

    NASA Astrophysics Data System (ADS)

    Verwimp, Jo; Rombouts, Marleen; Geerinckx, Eric; Motmans, Filip

    Laser cladding is an additive process wherein a laser source is used to melt metal-based powder or wire on to a metal substrate. The technique is frequently used to produce wear resistant coatings consisting of a metal matrix and a ceramic strengthening phase. In this study mixtures of nickel based powders and various amounts of tungsten carbides have been used as feedstock for laser cladding on a range of steel substrates and for different applications. Crack-free low porosity coatings with a thickness of about 1 mm and carbide concentrations up to 50 vol% have been produced. The evaluation of the wear resistance of the different coatings is performed on lab scale or in the application itself.

  8. Thermoviscoplastic nonlinear constitutive relationships for structural analysis of high temperature metal matrix composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Hopkins, D. A.

    1985-01-01

    A set of thermoviscoplastic nonlinear constitutive relationships (1VP-NCR) is presented. The set was developed for application to high temperature metal matrix composites (HT-MMC) and is applicable to thermal and mechanical properties. Formulation of the TVP-NCR is based at the micromechanics level. The TVP-NCR are of simple form and readily integrated into nonlinear composite structural analysis. It is shown that the set of TVP-NCR is computationally effective. The set directly predicts complex materials behavior at all levels of the composite simulation, from the constituent materials, through the several levels of composite mechanics, and up to the global response of complex HT-MMC structural components.

  9. Plastic scintillators with high loading of one or more metal carboxylates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherepy, Nerine; Sanner, Robert Dean

    According to one embodiment, a method includes incorporating a metal carboxylate complex into a polymeric matrix to form an optically transparent material. According to another embodiment, a material includes at least one metal carboxylate complex incorporated into a polymeric matrix, where the material is optically transparent.

  10. Do adhesive systems leave resin coats on the surfaces of the metal matrix bands? An adhesive remnant characterization.

    PubMed

    Arhun, Neslihan; Cehreli, Sevi Burcak

    2013-01-01

    Reestablishing proximal contacts with composite resins may prove challenging since the applied adhesives may lead to resin coating that produces additional thickness. The aim of this study was to investigate the surface of metal matrix bands after application of adhesive systems and blowing or wiping off the adhesive before polymerization. Seventeen groups of matrix bands were prepared. The remnant particles were characterized by energy dispersive spectrum and scanning electron microscopy. Total etch and two-step self-etch adhesives did not leave any resin residues by wiping and blowing off. All-in-one adhesive revealed resin residues despite wiping off. Prime and Bond NT did not leave any remnant with compomer. Clinicians must be made aware of the consequences of possible adhesive remnants on matrix bands that may lead to a defective definitive restoration. The adhesive resin used for Class II restorations may leave resin coats on metal matrix bands after polymerization, resulting in additional thickness on the metal matrix bands and poor quality of the proximal surface of the definitive restoration when the adhesive system is incorporated in the restoration.

  11. Behavior of a Quasi-Isotropic Ply Metal Matrix Composite under Thermo-Mechanical and Isothermal Fatigue Loading

    DTIC Science & Technology

    1992-12-01

    tensile strength of the composite (20:14). After the heat treatment was accomplished, polishing was performed. Using an automated MAXIMET polishing machine ...AD-A258 902 AFIT/GAE/.ENY/92D-05 Behavior of a Quasi-Isotropic Ply Metal Matrix Composite Under Thermo- Mechanical and Isothermal Fatigue Loading...115 AFIT/GAE/ENY/92D-05 Behavior of a Quasi-Isotropic Ply Metal Matrix Composite Under Thermo- Mechanical and Isothermal Fatigue Loading THESIS

  12. Cracking evolution behaviors of lightweight materials based on in situ synchrotron X-ray tomography: A review

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Wu, S. C.; Hu, Y. N.; Fu, Y. N.

    2018-03-01

    Damage accumulation and failure behaviors are crucial concerns during the design and service of a critical component, leading researchers and engineers to thoroughly identifying the crack evolution. Third-generation synchrotron radiation X-ray computed microtomography can be used to detect the inner damage evolution of a large-density material or component. This paper provides a brief review of studying the crack initiation and propagation inside lightweight materials with advanced synchrotron three-dimensional (3D) X-ray imaging, such as aluminum materials. Various damage modes under both static and dynamic loading are elucidated for pure aluminum, aluminum alloy matrix, aluminum alloy metal matrix composite, and aluminum alloy welded joint. For aluminum alloy matrix, metallurgical defects (porosity, void, inclusion, precipitate, etc.) or artificial defects (notch, scratch, pit, etc.) strongly affect the crack initiation and propagation. For aluminum alloy metal matrix composites, the fracture occurs either from the particle debonding or voids at the particle/matrix interface, and the void evolution is closely related with fatigued cycles. For the hybrid laser welded aluminum alloy, fatigue cracks usually initiate from gas pores located at the surface or sub-surface and gradually propagate to a quarter ellipse or a typical semi-ellipse profile.

  13. Insight into the Effects of Reinforcement Shape on Achieving Continuous Martensite Transformation in Phase Transforming Matrix Composites

    NASA Astrophysics Data System (ADS)

    Zhang, Xudong; Ren, Junqiang; Wang, Xiaofei; Zong, Hongxiang; Cui, Lishan; Ding, Xiangdong

    2017-12-01

    A continuous martensite transformation is indispensable for achieving large linear superelasticity and low modulus in phase transforming metal-based composites. However, determining how to accurately condition the residual martensite in a shape memory alloy matrix though the reinforcement shape to achieve continuous martensite transformation has been a challenge. Here, we take the finite element method to perform a comparative study of the effects of nanoinclusion shape on the interaction and martensite phase transformation in this new composite. Two typical samples are compared: one reinforced by metallic nanowires and the other by nanoparticles. We find that the residual martensite within the shape memory alloy matrix after a pretreatment can be tailored by the reinforcement shape. In particular, our results show that the shape memory alloy matrix can retain enough residual martensite phases to achieve continuous martensite transformation in the subsequent loading when the aspect ratio of nanoreinforcement is larger than 20. In contrast, the composites reinforced with spherical or low aspect ratio reinforcement show a typical nonlinear superelasticity as a result of a low stress transfer-induced discontinuous martensite transformation within the shape memory alloy matrix.

  14. Densified waste form and method for forming

    DOEpatents

    Garino, Terry J.; Nenoff, Tina M.; Sava Gallis, Dorina Florentina

    2015-08-25

    Materials and methods of making densified waste forms for temperature sensitive waste material, such as nuclear waste, formed with low temperature processing using metallic powder that forms the matrix that encapsulates the temperature sensitive waste material. The densified waste form includes a temperature sensitive waste material in a physically densified matrix, the matrix is a compacted metallic powder. The method for forming the densified waste form includes mixing a metallic powder and a temperature sensitive waste material to form a waste form precursor. The waste form precursor is compacted with sufficient pressure to densify the waste precursor and encapsulate the temperature sensitive waste material in a physically densified matrix.

  15. Metal-oxide-based energetic materials and synthesis thereof

    DOEpatents

    Tillotson, Thomas M. , Simpson; Randall, L [Livermore, CA; Hrubesh, Lawrence W [Pleasanton, CA

    2006-01-17

    A method of preparing energetic metal-oxide-based energetic materials using sol-gel chemistry has been invented. The wet chemical sol-gel processing provides an improvement in both safety and performance. Essentially, a metal-oxide oxidizer skeletal structure is prepared from hydrolyzable metals (metal salts or metal alkoxides) with fuel added to the sol prior to gelation or synthesized within the porosity metal-oxide gel matrix. With metal salt precursors a proton scavenger is used to destabilize the sol and induce gelation. With metal alkoxide precursors standard well-known sol-gel hydrolysis and condensation reactions are used. Drying is done by standard sol-gel practices, either by a slow evaporation of the liquid residing within the pores to produce a high density solid nanocomposite, or by supercritical extraction to produce a lower density, high porous nanocomposite. Other ingredients may be added to this basic nanostructure to change physical and chemical properties, which include organic constituents for binders or gas generators during reactions, burn rate modifiers, or spectral emitters.

  16. Metal chloride cathode for a battery

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V. (Inventor); Distefano, Salvador (Inventor); Bankston, C. Perry (Inventor)

    1991-01-01

    A method of fabricating a rechargeable battery is disclosed which includes a positive electrode which contains a chloride of a selected metal when the electrode is in its active state. The improvement comprises fabricating the positive electrode by: providing a porous matrix composed of a metal; providing a solution of the chloride of the selected metal; and impregnating the matrix with the chloride from the solution.

  17. On the stability of the electronic system in transition metal dichalcogenides.

    PubMed

    Faraggi, M N; Zubizarreta, X; Arnau, A; Silkin, V M

    2016-05-11

    Based on first-principles calculations, we prove that the origin of charge-density wave formation in metallic layered transition metal dichalcogenides (TMDC) is not due to an electronic effect, like the Fermi surface (FS) nesting, as it had been proposed. In particular, we consider NbSe2, NbS2, TaSe2, and TaS2 as representative examples of 2H-TMDC polytypes. Our main result consists that explicit inclusion of the matrix elements in first-principles calculations of the electron susceptibility [Formula: see text] removes, due to strong momentum dependence of the matrix elements, almost all the information about the FS topologies in the resulting [Formula: see text]. This finding strongly supports an interpretation in which the momentum dependence of the electron-phonon interaction is the only reason why the phenomenon of charge-density waves appears in this class of materials.

  18. Controlling the length scale and distribution of the ductile phase in metallic glass composites through friction stir processing

    PubMed Central

    Arora, Harpreet Singh; Mridha, Sanghita; Grewal, Harpreet Singh; Singh, Harpreet; Hofmann, Douglas C; Mukherjee, Sundeep

    2014-01-01

    We demonstrate the refinement and uniform distribution of the crystalline dendritic phase by friction stir processing (FSP) of titanium based in situ ductile-phase reinforced metallic glass composite. The average size of the dendrites was reduced by almost a factor of five (from 24 μm to 5 μm) for the highest tool rotational speed of 900 rpm. The large inter-connected dendrites become more fragmented with increased circularity after processing. The changes in thermal characteristics were measured by differential scanning calorimetry. The reduction in crystallization enthalpy after processing suggests partial devitrification due to the high strain plastic deformation. FSP resulted in increased hardness and modulus for both the amorphous matrix and the crystalline phase. This is explained by interaction of shear bands in amorphous matrix with the strain-hardened dendritic phase. Our approach offers a new strategy for microstructural design in metallic glass composites. PMID:27877687

  19. Controlling the length scale and distribution of the ductile phase in metallic glass composites through friction stir processing.

    PubMed

    Arora, Harpreet Singh; Mridha, Sanghita; Grewal, Harpreet Singh; Singh, Harpreet; Hofmann, Douglas C; Mukherjee, Sundeep

    2014-06-01

    We demonstrate the refinement and uniform distribution of the crystalline dendritic phase by friction stir processing (FSP) of titanium based in situ ductile-phase reinforced metallic glass composite. The average size of the dendrites was reduced by almost a factor of five (from 24 μ m to 5 μ m) for the highest tool rotational speed of 900 rpm. The large inter-connected dendrites become more fragmented with increased circularity after processing. The changes in thermal characteristics were measured by differential scanning calorimetry. The reduction in crystallization enthalpy after processing suggests partial devitrification due to the high strain plastic deformation. FSP resulted in increased hardness and modulus for both the amorphous matrix and the crystalline phase. This is explained by interaction of shear bands in amorphous matrix with the strain-hardened dendritic phase. Our approach offers a new strategy for microstructural design in metallic glass composites.

  20. Parametric Study Of A Ceramic-Fiber/Metal-Matrix Composite

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Hopkins, D. A.; Chamis, C. C.

    1992-01-01

    Report describes computer-model parametric study of effects of degradation of constituent materials upon mechanical properties of ceramic-fiber/metal-matrix composite material. Contributes to understanding of weakening effects of large changes in temperature and mechanical stresses in fabrication and use. Concerned mainly with influences of in situ fiber and matrix properties upon behavior of composite. Particular attention given to influence of in situ matrix strength and influence of interphase degradation.

  1. Luminescence properties of femtosecond-laser-activated silver oxide nanoparticles embedded in a biopolymer matrix

    NASA Astrophysics Data System (ADS)

    Gleitsmann, T.; Bernhardt, T. M.; Wöste, L.

    2006-01-01

    Strong visible luminescence is observed from silver clusters generated by femtosecond-laser-induced reduction of silver oxide nanoparticles embedded in a polymeric gelatin matrix. Light emission from the femtosecond-laser-activated matrix areas considerably exceeds the luminescence intensity of similarly activated bare silver oxide nanoparticle films. Optical spectroscopy of the activated polymer films supports the assignment of the emissive properties to the formation of small silver clusters under focused femtosecond-laser irradiation. The size of the photogenerated clusters is found to sensitively depend on the laser exposure time, eventually leading to the formation of areas of metallic silver in the biopolymer matrix. In this case, luminescence can still be observed in the periphery of the metallic silver structures, emphasizing the importance of the organic matrix for the stabilization of the luminescent nanocluster structures at the metal matrix interface.

  2. Vacuum brazing of electroless Ni-P alloy-coated SiCp/Al composites using aluminum-based filler metal foil

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Xu, Dongxia; Niu, Jitai

    2016-12-01

    Using rapidly cooled (Al-10Si-20Cu-0.05Ce)-1Ti (wt%) foil as filler metal, the research obtained high-performance joints of electroless Ni-P alloy-coated aluminum matrix composites with high SiC particle content (60 vol%, SiCp/Al-MMCs). The effect of brazing process on joint properties and the formation of Al-Ni and Al-Cu-Ni intermetallic compounds were investigated, respectively. Due to the presence of Ni-P alloy coating, the wettability of liquid filler metal on the composites was improved obviously and its contact angle was only 21°. The formation of Al3Ni2 and Al3(CuNi)2 intermetallic compounds indicated that well metallurgical bonding occurred along the 6063Al matrix alloy/Ni-P alloy layer/filler metal foil interfaces by mutual diffusion and dissolution. And the joint shear strength increased with increasing the brazing temperature from 838 to 843 K or prolonging the soaking time from 15 to 35 min, while it decreased a lot because of corrosion occurring in the 6063Al matrix at high brazing temperature of 848 K. Sound joints with maximum shear strength of 112.5 MPa were obtained at 843 K for soaking time of 35 min. In this research, the beneficial effect of surface metallization by Ni-P alloy deposits on improving wettability on SiCp/Al-MMCs was demonstrated, and capable welding parameters were broadened as well.

  3. Nuclear waste storage container with metal matrix

    DOEpatents

    Sump, Kenneth R.

    1978-01-01

    The invention relates to a storage container for high-level waste having a metal matrix for the high-level waste, thereby providing greater impact strength for the waste container and increasing heat transfer properties.

  4. The dissimilar brazing of Kovar alloy to SiCp/Al composites using silver-based filler metal foil

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Xu, Dongxia; Zhai, Yahong; Niu, Jitai

    2017-09-01

    Aluminum metal matrix composites with high SiC content (60 vol.% SiCp/Al MMCs) were surface metallized with a Ni-P alloy coating, and vacuum brazing between the composites and Kovar alloy were performed using rapidly cooled Ag-22.0Cu-15.9In-10.86Sn-1.84Ti (wt%) foil. The effects of Ni-P alloy coating and brazing parameters on the joint microstructures and properties were researched by SEM, EDS, and single lap shear test, respectively. Results show that Ag-Al intermetallic strips were formed in the 6063Al matrix and filler metal layer because of diffusion, and they were arranged regularly and accumulated gradually as the brazing temperature was increased ( T/°C = 550-600) or the soaking time was prolonged ( t/min = 10-50). However, excessive strips would destroy the uniformity of seams and lead to a reduced bonding strength (at most 70 MPa). Using a Ni-P alloy coating, void free joints without those strips were obtained at 560 °C after 20 min soaking time, and a higher shear strength of 90 MPa was achieved. The appropriate interface reaction ( 2 μm transition layer) that occurred along the Ni-P alloy coating/filler metal/Kovar alloy interfaces resulted in better metallurgical bonding. In this research, the developed Ag-based filler metal was suitable for brazing the dissimilar materials of Ni-P alloy-coated SiCp/Al MMCs and Kovar alloy, and capable welding parameters were also broadened.

  5. The study of in-situ formed alumina and aluminide intermetallic reinforced aluminum-based metal matrix composites

    NASA Astrophysics Data System (ADS)

    Yu, Peng

    Aluminum-based metal matrix composites (MMCs) have been widely used as structural materials in the automobile and aerospace industry due to their specific properties. In this thesis, we report the fabrication of in-situ formed alumina and aluminide intermetallic reinforced aluminum-based metal matrix composites by the displacement reactions between Al and selected metal oxides (NiO, CuO and ZnO). These MMCs were produced when the Al-20wt% NiO, Al-20wt% CuO and Al-10wt% ZnO green compacts were reaction sintered in the tube furnaces. In this work, differential thermal analysis (DTA) was performed on the green samples. The green samples were then sintered separately in different tube furnaces for 30 minutes. In order to study the reaction mechanisms, the x-ray diffractometry (XRD) was used to obtain diffraction patterns of these sintered samples, the scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to study the microstructures of these samples. The elemental quantitative compositions of samples were determined by the energy dispersive x-ray spectrometry (EDX). In order to study the effect of cooling rate on the samples, the green samples were further sintered to 1000°C and cooled down to room temperature in different conditions: by furnace-cooling, air-quenching, oil-quenching or NaCl-solution-quenching. The SEM, TEM and atomic force microscopy (AFM) were conducted to investigate their microstructures. A microhardness tester was used to measure the hardness values of these samples. It was found that during sintering of the Al-20wt% NiO green sample, displacement reaction between Al and NiO initially occurred in solid-solid form and was soon halted by its products that separated the NiO particles from the Al matrix. The reaction then resumed in solid-liquid form as the temperature increased to the eutectic temperature of Al3Ni-Al when liquid (Al, Ni) phase appeared in the sample. After cooling, Al2O 3 particles, Al3Ni proeutectic phase and fiber-like Al 3Ni-Al eutectic were found in the sintered Al-MMC sample. (Abstract shortened by UMI.)

  6. Composite and Nanocomposite Metal Foams

    PubMed Central

    Duarte, Isabel; Ferreira, José M. F.

    2016-01-01

    Open-cell and closed-cell metal foams have been reinforced with different kinds of micro- and nano-sized reinforcements to enhance their mechanical properties of the metallic matrix. The idea behind this is that the reinforcement will strengthen the matrix of the cell edges and cell walls and provide high strength and stiffness. This manuscript provides an updated overview of the different manufacturing processes of composite and nanocomposite metal foams. PMID:28787880

  7. Metal matrix composite structural panel construction

    NASA Technical Reports Server (NTRS)

    Mcwithey, R. R.; Royster, D. M. (Inventor); Bales, T. T.

    1983-01-01

    Lightweight capped honeycomb stiffeners for use in fabricating metal or metal/matrix exterior structural panels on aerospace type vehicles and the process for fabricating same are disclosed. The stiffener stringers are formed in sheets, cut to the desired width and length and brazed in spaced relationship to a skin with the honeycomb material serving directly as the required lightweight stiffeners and not requiring separate metal encasement for the exposed honeycomb cells.

  8. Method and apparatus for fabricating a composite structure consisting of a filamentary material in a metal matrix

    DOEpatents

    Banker, J.G.; Anderson, R.C.

    1975-10-21

    A method and apparatus are provided for preparing a composite structure consisting of filamentary material within a metal matrix. The method is practiced by the steps of confining the metal for forming the matrix in a first chamber, heating the confined metal to a temperature adequate to effect melting thereof, introducing a stream of inert gas into the chamber for pressurizing the atmosphere in the chamber to a pressure greater than atmospheric pressure, confining the filamentary material in a second chamber, heating the confined filamentary material to a temperature less than the melting temperature of the metal, evacuating the second chamber to provide an atmosphere therein at a pressure, placing the second chamber in registry with the first chamber to provide for the forced flow of the molten metal into the second chamber to effect infiltration of the filamentary material with the molten metal, and thereafter cooling the metal infiltrated-filamentary material to form said composite structure.

  9. Understanding the solidification and microstructure evolution during CSC-MIG welding of Fe–Cr–B-based alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorour, A.A., E-mail: ahmad.sorour@mail.mcgill.ca; Chromik, R.R., E-mail: richard.chromik@mcgill.ca; Gauvin, R., E-mail: raynald.gauvin@mcgill.ca

    2013-12-15

    The present is a study of the solidification and microstructure of Fe–28.2%Cr–3.8%B–1.5%Si–1.5%Mn (wt.%) alloy deposited onto a 1020 plain carbon steel substrate using the controlled short-circuit metal inert gas welding process. The as-solidified alloy was a metal matrix composite with a hypereutectic microstructure. Thermodynamic calculation based on the Scheil–Gulliver model showed that a primary (Cr,Fe){sub 2}B phase formed first during solidification, followed by an eutectic formation of the (Cr,Fe){sub 2}B phase and a body-centered cubic Fe-based solid solution matrix, which contained Cr, Mn and Si. Microstructure analysis confirmed the formation of these phases and showed that the shape of themore » (Cr,Fe){sub 2}B phase was irregular plate. As the welding heat input increased, the weld dilution increased and thus the volume fraction of the (Cr,Fe){sub 2}B plates decreased while other microstructural characteristics were similar. - Highlights: • We deposit Fe–Cr–B-based alloy onto plain carbon steel using the CSC-MIG process. • We model the solidification behavior using thermodynamic calculation. • As deposited alloy consists of (Cr,Fe){sub 2}B plates embedded in Fe-based matrix. • We study the effect of the welding heat input on the microstructure.« less

  10. Reduced Graphene Oxide-Based Silver Nanoparticle-Containing Composite Hydrogel as Highly Efficient Dye Catalysts for Wastewater Treatment

    PubMed Central

    Jiao, Tifeng; Guo, Haiying; Zhang, Qingrui; Peng, Qiuming; Tang, Yongfu; Yan, Xuehai; Li, Bingbing

    2015-01-01

    New reduced graphene oxide-based silver nanoparticle-containing composite hydrogels were successfully prepared in situ through the simultaneous reduction of GO and noble metal precursors within the GO gel matrix. The as-formed hydrogels are composed of a network structure of cross-linked nanosheets. The reported method is based on the in situ co-reduction of GO and silver acetate within the hydrogel matrix to form RGO-based composite gel. The stabilization of silver nanoparticles was also achieved simultaneously within the gel composite system. The as-formed silver nanoparticles were found to be homogeneously and uniformly dispersed on the surface of the RGO nanosheets within the composite gel. More importantly, this RGO-based silver nanoparticle-containing composite hydrogel matrix acts as a potential catalyst for removing organic dye pollutants from an aqueous environment. Interestingly, the as-prepared catalytic composite matrix structure can be conveniently separated from an aqueous environment after the reaction, suggesting the potentially large-scale applications of the reduced graphene oxide-based nanoparticle-containing composite hydrogels for organic dye removal and wastewater treatment. PMID:26183266

  11. Development of Detonation Flame Sprayed Cu-Base Coatings Containing Large Ceramic Particles

    NASA Astrophysics Data System (ADS)

    Tillmann, Wolfgang; Vogli, Evelina; Nebel, Jan

    2007-12-01

    Metal-matrix composites (MMCs) containing large ceramic particles as superabrasives are typically used for grinding stone, minerals, and concrete. Sintering and brazing are the key manufacturing technologies for grinding tool production. However, restricted geometry flexibility and the absence of repair possibilities for damaged tool surfaces, as well as difficulties of controlling material interfaces, are the main weaknesses of these production processes. Thermal spraying offers the possibility to avoid these restrictions. The research for this paper investigated a fabrication method based on the use of detonation flame spraying technology to bond large superabrasive particles (150-600 μm, needed for grinding minerals and stones) in a metallic matrix. Layer morphology and bonding quality are evaluated with respect to superabrasive material, geometry, spraying, and powder-injection parameters. The influence of process temperature and the possibilities of thermal treatment of MMC layers are analyzed.

  12. Development of a metal-based composite actuator

    NASA Astrophysics Data System (ADS)

    Asanuma, Hiroshi; Haga, Osamu; Ishii, Toshio; Kurihara, Haruki; Ohira, Junichiro; Hakoda, Genji

    2000-06-01

    This paper describes a basic concept and elemental developments to realize a metal based composite actuator to be used for smart structures. In this study, CFRP prepreg was laminated on aluminum plate to develop an actuator and this laminate could perform unidirectional actuation. SiC continuous fiber/Al composite thin plate could also be used for form a modified type of actuator instead of using CFRP. As sensors to be embedded in this actuator, the following ones wee developed. (1) A pre-notched optical fiber filament could be embedded in aluminum matrix without fracture by the interphase forming/bonding method with copper insert and could be fractured in it at the notch, which enabled forming of an optical interference type strain sensor. (2) Nickel wire could be uniformly oxidized and embedded in aluminum matrix without fracture, which could successfully work as a temperature sensor and a strain sensor.

  13. Densified waste form and method for forming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garino, Terry J.; Nenoff, Tina M.; Sava Gallis, Dorina Florentina

    Materials and methods of making densified waste forms for temperature sensitive waste material, such as nuclear waste, formed with low temperature processing using metallic powder that forms the matrix that encapsulates the temperature sensitive waste material. The densified waste form includes a temperature sensitive waste material in a physically densified matrix, the matrix is a compacted metallic powder. The method for forming the densified waste form includes mixing a metallic powder and a temperature sensitive waste material to form a waste form precursor. The waste form precursor is compacted with sufficient pressure to densify the waste precursor and encapsulate themore » temperature sensitive waste material in a physically densified matrix.« less

  14. The effect of oxide film properties on the corrosion behavior of SiC/Al metal-matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golledge, S.L.

    1991-01-01

    Oxide growth on pure aluminum, aluminum alloy 6061, and the aluminum-based metal matrix composite SiC/AA6061 was studied, and the properties of the oxides related to the pit-initiation behavior of the materials. The objectives of the work were to identify the effect of alloying elements and SiC reinforcement on the oxide film, and to better understand how the oxide properties control pit initiation behavior. To this end, electrochemical and optical studies of the materials were carried out in a buffered sodium/boric acid solution at pH values of 8.4 and 7.2. The alloy and metal-matrix composite showed a slightly lesser tendency tomore » pit than pure aluminum, as measured by the pitting potential. The oxide on the composite was less resistant to pit initiation, and was found to exhibit slower repassivation rates than the other materials. The repassivation behavior and resistance to pit initiation were quite similar in the case of the alloy and the pure aluminum. Induction times for pit initiation were consistent with the predictions of Heusler's model for the breakdown of passivity.« less

  15. Investigation of the Matrix Effect on the Accuracy of Quantitative Analysis of Trace Metals in Liquids Using Laser-Induced Breakdown Spectroscopy with Solid Substrates.

    PubMed

    Xiu, Junshan; Dong, Lili; Qin, Hua; Liu, Yunyan; Yu, Jin

    2016-12-01

    The detection limit of trace metals in liquids has been improved greatly by laser-induced breakdown spectroscopy (LIBS) using solid substrate. A paper substrate and a metallic substrate were used as a solid substrate for the detection of trace metals in aqueous solutions and viscous liquids (lubricating oils) respectively. The matrix effect on quantitative analysis of trace metals in two types of liquids was investigated. For trace metals in aqueous solutions using paper substrate, the calibration curves established for pure solutions and mixed solutions samples presented large variation on both the slope and the intercept for the Cu, Cd, and Cr. The matrix effects among the different elements in mixed solutions were observed. However, good agreement was obtained between the measured and known values in real wastewater. For trace metals in lubricating oils, the matrix effect between the different oils is relatively small and reasonably negligible under the conditions of our experiment. A universal calibration curve can be established for trace metals in different types of oils. The two approaches are verified that it is possible to develop a feasible and sensitive method with accuracy results for rapid detection of trace metals in industrial wastewater and viscous liquids by laser-induced breakdown spectroscopy. © The Author(s) 2016.

  16. Post-processing of metal matrix composites by friction stir processing

    NASA Astrophysics Data System (ADS)

    Sharma, Vipin; Singla, Yogesh; Gupta, Yashpal; Raghuwanshi, Jitendra

    2018-05-01

    In metal matrix composites non-uniform distribution of reinforcement particles resulted in adverse affect on the mechanical properties. It is of great interest to explore post-processing techniques that can eliminate particle distribution heterogeneity. Friction stir processing is a relatively newer technique used for post-processing of metal matrix composites to improve homogeneity in particles distribution. In friction stir processing, synergistic effect of stirring, extrusion and forging resulted in refinement of grains, reduction of reinforcement particles size, uniformity in particles distribution, reduction in microstructural heterogeneity and elimination of defects.

  17. Method of forming fluorine-bearing diamond layer on substrates, including tool substrates

    DOEpatents

    Chang, R. P. H.; Grannen, Kevin J.

    2002-01-01

    A method of forming a fluorine-bearing diamond layer on non-diamond substrates, especially on tool substrates comprising a metal matrix and hard particles, such as tungsten carbide particles, in the metal matrix. The substrate and a fluorine-bearing plasma or other gas are then contacted under temperature and pressure conditions effective to nucleate fluorine-bearing diamond on the substrate. A tool insert substrate is treated prior to the diamond nucleation and growth operation by etching both the metal matrix and the hard particles using suitable etchants.

  18. Nanostructured transition metal oxides useful for water oxidation catalysis

    DOEpatents

    Frei, Heinz M; Jiao, Feng

    2013-12-24

    The present invention provides for a composition comprising a nanostructured transition metal oxide capable of oxidizing two H.sub.2O molecules to obtain four protons. In some embodiments of the invention, the composition further comprises a porous matrix wherein the nanocluster of the transition metal oxide is embedded on and/or in the porous matrix.

  19. Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers

    DTIC Science & Technology

    2016-06-15

    transition metal and non- pair electrons of amine allows us to develop scalable, stable and uniform composite films with numerous combinations of TMD...modification of TMDs sheets with amine-terminated polymers is introduced and the strong Lewis acid-base interaction between transition metal and non- pair ...can be readily entangled with other chains of the matrix polymer, thereby ensuring homogeneous PNC formation. The solvent medium offers an extra

  20. Design and analysis of aerospace structures at elevated temperatures. [aircraft, missiles, and space platforms

    NASA Technical Reports Server (NTRS)

    Chang, C. I.

    1989-01-01

    An account is given of approaches that have emerged as useful in the incorporation of thermal loading considerations into advanced composite materials-based aerospace structural design practices. Sources of structural heating encompass not only propulsion system heat and aerodynamic surface heating at supersonic speeds, but the growing possibility of intense thermal fluxes from directed-energy weapons. The composite materials in question range from intrinsically nonheat-resistant polymer matrix systems to metal-matrix composites, and increasingly to such ceramic-matrix composites as carbon/carbon, which are explicitly intended for elevated temperature operation.

  1. Low-Cost Resin Transfer Molding Process Developed for High-Temperature Polyimide Matrix Composites

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The use of high-temperature polymer matrix composites (PMC's) in aircraft engine applications can significantly reduce engine weight and improve performance and fuel efficiency. High-temperature PMC's, such as those based on the PMR-15 polyimide matrix resin developed by the NASA Lewis Research Center, have been used extensively in military applications where performance improvements have justified their use regardless of the cost involved in producing the component. However, in commercial engines cost is a primary driver, and PMC components must be produced at costs comparable to those of the metal components that they will replace.

  2. On 'large-scale' stable fiber displacement during interfacial failure in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Petrich, R. R.; Koss, D. A.; Hellmann, J. R.; Kallas, M. N.

    1993-01-01

    Experimental results are presented to show that interfacial failure in sapphire-reinforced niobium is characterized by 'large-scale' (5-15 microns) plasticity-controlled fiber displacements occurring under increasing loads. The results are based on the responses during thin-slice fiber pushout tests wherein the fiber is supported over a hole twice the fiber diameter. The results describe an interfacial failure process that should also occur near fiber ends during pullout when a fiber is well-bonded to a soft, ductile matrix, such that eventual failure occurs by shear within the matrix near the interface.

  3. Metal-bonded, carbon fiber-reinforced composites

    DOEpatents

    Sastri, Suri A.; Pemsler, J. Paul; Cooke, Richard A.; Litchfield, John K.; Smith, Mark B.

    1996-01-01

    Metal bonded carbon fiber-reinforced composites are disclosed in which the metal and the composite are strongly bound by (1) providing a matrix-depleted zone in the composite of sufficient depth to provide a binding site for the metal to be bonded and then (2) infiltrating the metal into the matrix-free zone to fill a substantial portion of the zone and also provide a surface layer of metal, thereby forming a strong bond between the composite and the metal. The invention also includes the metal-bound composite itself, as well as the provision of a coating over the metal for high-temperature performance or for joining to other such composites or to other substrates.

  4. Metal-bonded, carbon fiber-reinforced composites

    DOEpatents

    Sastri, S.A.; Pemsler, J.P.; Cooke, R.A.; Litchfield, J.K.; Smith, M.B.

    1996-03-05

    Metal bonded carbon fiber-reinforced composites are disclosed in which the metal and the composite are strongly bound by (1) providing a matrix-depleted zone in the composite of sufficient depth to provide a binding site for the metal to be bonded and then (2) infiltrating the metal into the matrix-free zone to fill a substantial portion of the zone and also provide a surface layer of metal, thereby forming a strong bond between the composite and the metal. The invention also includes the metal-bound composite itself, as well as the provision of a coating over the metal for high-temperature performance or for joining to other such composites or to other substrates. 2 figs.

  5. Modeling of Metallic Glass Matrix Composites Under Compression: Microstructure Effect on Shear Band Evolution

    NASA Astrophysics Data System (ADS)

    Jiang, Yunpeng; Qiu, Kun; Sun, Longgang; Wu, Qingqing

    2018-01-01

    The relationship among processing, microstructure, and mechanical performance is the most important for metallic glass matrix composites (MGCs). Numerical modeling was performed on the shear banding in MGCs, and the impacts of particle concentration, morphology, agglomerate, size, and thermal residual stress were revealed. Based on the shear damage criterion, the equivalent plastic strain acted as an internal state variable to depict the nucleation, growth, and coalescence of shear bands. The element deletion technique was employed to describe the process of transformation from shear band to micro-crack. The impedance effect of particle morphology on the propagation of shear bands was discussed, whereby the toughening mechanism was clearly interpreted. The present work contributes to the subsequent strengthening and toughening design of MGCs.

  6. Application and Analysis on Graphene Materials

    NASA Astrophysics Data System (ADS)

    Li, Guogang; Qi, Jiaojiao

    2018-01-01

    Graphene is made up of carbon six-member ring cycle of two dimensional honeycomb lattice structure, it can warp as zero dimension of fullerenes, roll into a one-dimensional of carbon nanotubes or stack into a three dimensional graphite. Because of this kind of structure makes it not only have excellent electrical and mechanical properties, but also can be used as reinforced metal matrix composites, which can be used in catalyst carrier, energy storage and environmental protection. It has become a hot topic in recent years. Based on the existing research both at home and abroad, this paper focuses on the importance of the choice of graphene dispersion method to improve the mechanical properties of graphene materials, and summarizes the existing problems of graphene reinforced metal matrix composites.

  7. Neutronic fuel element fabrication

    DOEpatents

    Korton, George

    2004-02-24

    This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure by encompassing the sides of the fuel element between the header plates.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, Andrew J

    A heterogeneous body having ceramic rich cermet regions in a more ductile metal matrix. The heterogeneous bodies are formed by thermal spray operations on metal substrates. The thermal spray operations apply heat to a cermet powder and project it onto a solid substrate. The cermet powder is composed of complex composite particles in which a complex ceramic-metallic core particle is coated with a matrix precursor. The cermet regions are generally comprised of complex ceramic-metallic composites that correspond approximately to the core particles. The cermet regions are approximately lenticular shaped with an average width that is at least approximately twice themore » average thickness. The cermet regions are imbedded within the matrix phase and generally isolated from one another. They have obverse and reverse surfaces. The matrix phase is formed from the matrix precursor coating on the core particles. The amount of heat applied during the formation of the heterogeneous body is controlled so that the core particles soften but do not become so fluid that they disperse throughout the matrix phase. The force of the impact on the surface of the substrate tends to flatten them. The flattened cermet regions tend to be approximately aligned with one another in the body.« less

  9. Symposium Review: Metal and Polymer Matrix Composites at MS&T 2013

    NASA Astrophysics Data System (ADS)

    Gupta, Nikhil; Paramsothy, Muralidharan

    2014-06-01

    This article reflects on the presentations made during the Metal and Polymer Matrix Composites symposium at Materials Science and Technology 2013 (MS&T'13) held in Montreal (Quebec, Canada) from October 27 to 31. The symposium had three sessions on metal matrix composites and one session on polymer matrix composites containing a total of 23 presentations. While the abstracts and full-text papers are available through databases, the discussion that took place during the symposium is often not captured in writing and gets immediately lost. We have tried to recap some of the discussion in this article and hope that it will supplement the information present in the proceedings. The strong themes in the symposium were porous composites, aluminum matrix composites, and nanocomposites. The development of processing methods was also of interest to the speakers and attendees.

  10. Effect of Carbide Dissolution on Chlorine Induced High Temperature Corrosion of HVOF and HVAF Sprayed Cr3C2-NiCrMoNb Coatings

    NASA Astrophysics Data System (ADS)

    Fantozzi, D.; Matikainen, V.; Uusitalo, M.; Koivuluoto, H.; Vuoristo, P.

    2018-01-01

    Highly corrosion- and wear-resistant thermally sprayed chromium carbide (Cr3C2)-based cermet coatings are nowadays a potential highly durable solution to allow traditional fluidized bed combustors (FBC) to be operated with ecological waste and biomass fuels. However, the heat input of thermal spray causes carbide dissolution in the metal binder. This results in the formation of carbon saturated metastable phases, which can affect the behavior of the materials during exposure. This study analyses the effect of carbide dissolution in the metal matrix of Cr3C2-50NiCrMoNb coatings and its effect on chlorine-induced high-temperature corrosion. Four coatings were thermally sprayed with HVAF and HVOF techniques in order to obtain microstructures with increasing amount of carbide dissolution in the metal matrix. The coatings were heat-treated in an inert argon atmosphere to induce secondary carbide precipitation. As-sprayed and heat-treated self-standing coatings were covered with KCl, and their corrosion resistance was investigated with thermogravimetric analysis (TGA) and ordinary high-temperature corrosion test at 550 °C for 4 and 72 h, respectively. High carbon dissolution in the metal matrix appeared to be detrimental against chlorine-induced high-temperature corrosion. The microstructural changes induced by the heat treatment hindered the corrosion onset in the coatings.

  11. Influence of different metal ions on the ultrastructure, biochemical properties, and protein localization of the K562 cell nuclear matrix.

    PubMed

    Neri, L M; Bortul, R; Zweyer, M; Tabellini, G; Borgatti, P; Marchisio, M; Bareggi, R; Capitani, S; Martelli, A M

    1999-06-01

    The higher order of chromatin organization is thought to be determined by the nuclear matrix, a mainly proteinaceous structure that would act as a nucleoskeleton. The matrix is obtained from isolated nuclei by a series of extraction steps involving the use of high salt and nonspecific nucleases, which remove chromatin and other loosely bound components. It is currently under debate whether these structures, isolated in vitro by unphysiological extraction buffers, correspond to a nucleoskeleton existing in vivo. In most cell types investigated, the nuclear matrix does not spontaneously resist these extractions steps; rather, it must be stabilized before the application of extracting agents. In this study nuclei, isolated from K562 human erythroleukemia cells, were stabilized by incubation with different metal ions (Ca2+, Cu2+, Zn2+, Cd2+), and the matrix was obtained by extraction with 2 M NaCl. By means of ultrastructural analysis of the resulting structures, we determined that, except for Ca2+, all the other metals induced a stabilization of the matrix, which retained the inner fibrogranular network and residual nucleoli. The biochemical composition, analyzed by two-dimensional gel electrophoresis separation, exhibited a distinct matrix polypeptide pattern, characteristic of each type of stabilizing ion employed. We also investigated to what extent metal ions could maintain in the final structures the original distribution of three inner matrix components, i.e. NuMA, topoisomerase IIalpha, and RNP. Confocal microscopy analysis showed that only NuMa, and, to a lesser extent, topoisomerase IIalpha, were unaffected by stabilization with divalent ions. On the contrary, the fluorescent RNP patterns detected in the resulting matrices were always disarranged, irrespective of the stabilization procedure. These results indicate that several metal ions are powerful stabilizing agents of the nuclear matrix prepared from K562 erythroleukemia cells and also strengthen the concept that NuMA and topoisomerase IIalpha may act as structural components of the nuclear matrix.

  12. METCAN simulation of candidate metal matrix composites for high temperature applications

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun

    1990-01-01

    The METCAN (Metal Matrix Composite Analyzer) computer code is used to simulate the nonlinear behavior of select metal matrix composites in order to assess their potential for high temperature structural applications. Material properties for seven composites are generated at a fiber volume ratio of 0.33 for two bonding conditions (a perfect bond and a weak interphase case) at various temperatures. A comparison of the two bonding conditions studied shows a general reduction in value of all properties (except CTE) for the weak interphase case from the perfect bond case. However, in the weak interphase case, the residual stresses that develop are considerably less than those that form in the perfect bond case. Results of the computational simulation indicate that among the metal matrix composites examined, SiC/NiAl is the best candidate for high temperature applications at the given fiber volume ratio.

  13. Hierarchical Simulation of Hot Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Murthy, P. L. N.; Singhal, S. N.

    1993-01-01

    Computational procedures are described to simulate the thermal and mechanical behavior of high temperature metal matrix composites (HT-MMC) in the following three broad areas: (1) Behavior of HT-MMC's from micromechanics to laminate via Metal Matrix Composite Analyzer (METCAN), (2) tailoring of HT-MMC behavior for optimum specific performance via Metal Matrix Laminate Tailoring (MMLT), and (3) HT-MMC structural response for hot structural components via High Temperature Composite Analyzer (HITCAN). Representative results from each area are presented to illustrate the effectiveness of computational simulation procedures. The sample case results show that METCAN can be used to simulate material behavior such as strength, stress-strain response, and cyclic life in HTMMC's; MMLT can be used to tailor the fabrication process for optimum performance such as that for in-service load carrying capacity of HT-MMC's; and HITCAN can be used to evaluate static fracture and fatigue life of hot pressurized metal matrix composite rings.

  14. Friction Stir Welding of SiC/Aluminum Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    1999-01-01

    Friction Stir Welding (FSW) is a new solid state process for joining metals by plasticizing and consolidating materials around the bond line using thermal energy producing from frictional forces. A feasibility study for FSW of Metal Matrix Composites (MMC) was investigated using aluminum 6092 alloy reinforced with 17% SiC particulates. FSW process consists of a special rotating pin tool that is positioned to plunge into the MMC surface at the bond line. As the tool rotates and move forward along the bond line, the material at the bond line is heated up and forced to flow around the rotating tip to consolidate on the tip's backside to form a solid state joint. FSW has the potential for producing sound welds with MMC because the processing temperature occurs well below the melting point of the metal matrix; thereby eliminating the reinforcement-to-matrix solidification defects, reducing the undesirable chemical reactions and porosity problems.

  15. Microstructural Features Controlling the Variability in Low-Cycle Fatigue Properties of Alloy Inconel 718DA at Intermediate Temperature

    NASA Astrophysics Data System (ADS)

    Texier, Damien; Gómez, Ana Casanova; Pierret, Stéphane; Franchet, Jean-Michel; Pollock, Tresa M.; Villechaise, Patrick; Cormier, Jonathan

    2016-03-01

    The low-cycle fatigue behavior of two direct-aged versions of the nickel-based superalloy Inconel 718 (IN718DA) was examined in the low-strain amplitude regime at intermediate temperature. High variability in fatigue life was observed, and abnormally short lifetimes were systematically observed to be due to crack initiation at (sub)-surface non-metallic inclusions. However, crack initiation within (sub)-surface non-metallic inclusions did not necessarily lead to short fatigue life. The macro- to micro-mechanical mechanisms of deformation and damage have been examined by means of detailed microstructural characterization, tensile and fatigue mechanical tests, and in situ tensile testing. The initial stages of crack micro-propagation from cracked non-metallic particles into the surrounding metallic matrix occupies a large fraction of the fatigue life and requires extensive local plastic straining in the matrix adjacent to the cracked inclusions. Differences in microstructure that influence local plastic straining, i.e., the δ-phase content and the grain size, coupled with the presence of non-metallic inclusions at the high end of the size distribution contribute strongly to the fatigue life variability.

  16. Low-workfunction photocathodes based on acetylide compounds

    DOEpatents

    Terdik, Joseph Z; Spentzouris, Linda; Terry, Jr., Jeffrey H; Harkay, Katherine C; Nemeth, Karoly; Srajer, George

    2014-05-20

    A low-workfunction photocathode includes a photoemissive material employed as a coating on the photocathode. The photoemissive material includes A.sub.nMC.sub.2, where A is a first metal element, the first element is an alkali metal, an alkali-earth element or the element Al; n is an integer that is 0, 1, 2, 3 or 4; M is a second metal element, the second metal element is a transition metal or a metal stand-in; and C.sub.2 is the acetylide ion C.sub.2.sup.2-. The photoemissive material includes a crystalline structure or non-crystalline structure of rod-like or curvy 1-dimensional polymeric substructures with MC.sub.2 repeating units embedded in a matrix of A.

  17. Interfacial Reaction During High Energy Ball Milling Dispersion of Carbon Nanotubes into Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Adegbenjo, A. O.; Olubambi, P. A.; Potgieter, J. H.; Nsiah-Baafi, E.; Shongwe, M. B.

    2017-12-01

    The unique thermal and mechanical properties of carbon nanotubes (CNTs) have made them choice reinforcements for metal matrix composites (MMCs). However, there still remains a critical challenge in achieving homogeneous dispersion of CNTs in metallic matrices. Although high energy ball milling (HEBM) has been reported as an effective method of dispersing CNTs into metal matrices, a careful selection of the milling parameters is important not to compromise the structural integrity of CNTs which may cause interfacial reactions with the matrix. In this study, multi-walled carbon nanotubes (MWCNTs) were purified by annealing in argon and vacuum atmospheres at 1000 and 1800 °C, respectively, for 5 h to remove possible metallic catalyst impurities. Subsequently, 1, 2 and 3 wt.% MWCNTs were dispersed by adapted HEBM into Ti6Al4V alloy metal matrix. Raman spectroscopy (RS), x-ray diffraction, scanning electron microscopy, energy-dispersive x-ray spectrometry and transmission electron microscopy techniques were used to characterize the as-received and annealed MWCNTs, as well as the admixed MWCNT/Ti6Al4V nanocomposite powders. The experimental results showed that vacuum annealing successfully eliminated retained nickel (Ni) catalysts from MWCNTs, while the adapted HEBM method achieved a relative homogeneous dispersion of MWCNTs into the Ti6Al4V matrix and helped to control interfacial reactions between defective MWCNTs and the metal matrix.

  18. Experimental and Computational Study of Interphase Properties and Mechanics in Titanium Metal Matrix Composites at Elevated Temperatures

    DTIC Science & Technology

    2005-03-01

    size of the interphase [22-24]. Yang and Jeng [45], in a study of the titanium aluminides Ti-24-11 and Ti-25-10, and a metastable beta titanium Ti-15-3... Titanium Aluminide Matrix Composites," Workshop proceedings on Titanium Matrix Components, P.R. Smith and W.C. Revelos, eds., Wright-Patterson AFB...Experimental and Computational Study of Interphase Properties and Mechanics in Titanium Metal Matrix Composites at Elevated Temperatures Final Report

  19. Flexible phosphorescent OLEDs on metal foil for military and commercial applications

    NASA Astrophysics Data System (ADS)

    Chwang, Anna; Lu, JengPing; Shih, Chinwen; Tung, Yeh-Jiun; Hewitt, Richard; Hack, Michael; Ho, Jackson; Brown, Julie

    2005-05-01

    We report recent advances in the development of low power consumption, emissive, flexible active matrix displays through integration of top emitting phosphorescent OLED (T-PHOLED) and poly-Si TFT backplane technologies. The displays are fabricated on flexible stainless steel foil. The T-PHOLEDs are based on UDC phosphorescent OLED technology, and the backplane is based on PARC's Excimer Laser Annealed (ELA) poly-Si TFT process. We also present progress in operational lifetime of encapsulated T-PHOLED pixels on planarized metal foil and discuss PHOLED encapsulation strategy.

  20. Chitosan based metallic nanocomposite scaffolds as antimicrobial wound dressings.

    PubMed

    Mohandas, Annapoorna; Deepthi, S; Biswas, Raja; Jayakumar, R

    2018-09-01

    Chitosan based nanocomposite scaffolds have attracted wider applications in medicine, in the area of drug delivery, tissue engineering and wound healing. Chitosan matrix incorporated with nanometallic components has immense potential in the area of wound dressings due to its antimicrobial properties. This review focuses on the different combinations of Chitosan metal nanocomposites such as Chitosan/nAg, Chitosan/nAu, Chitosan/nCu, Chitosan/nZnO and Chitosan/nTiO 2 towards enhancement of healing or infection control with special reference to the antimicrobial mechanism of action and toxicity.

  1. Heavy metal removal capacity of individual components of permeable reactive concrete

    NASA Astrophysics Data System (ADS)

    Holmes, Ryan R.; Hart, Megan L.; Kevern, John T.

    2017-01-01

    Permeable reactive barriers (PRBs) are a well-known technique for groundwater remediation using industrialized reactive media such as zero-valent iron and activated carbon. Permeable reactive concrete (PRC) is an alternative reactive medium composed of relatively inexpensive materials such as cement and aggregate. A variety of multimodal, simultaneous processes drive remediation of metals from contaminated groundwater within PRC systems due to the complex heterogeneous matrix formed during cement hydration. This research investigated the influence coarse aggregate, portland cement, fly ash, and various combinations had on the removal of lead, cadmium, and zinc in solution. Absorption, adsorption, precipitation, co-precipitation, and internal diffusion of the metals are common mechanisms of removal in the hydrated cement matrix and independent of the aggregate. Local aggregates can be used as the permeable structure also possessing high metal removal capabilities, however calcareous sources of aggregate are preferred due to improved removal with low leachability. Individual adsorption isotherms were linear or curvilinear up, indicating a preferred removal process. For PRC samples, metal saturation was not reached over the range of concentrations tested. Results were then used to compare removal against activated carbon and aggregate-based PRBs by estimating material costs for the remediation of an example heavy metal contaminated Superfund site located in the Midwestern United States, Joplin, Missouri.

  2. Optical properties of metal nanoparticles embedded in amorphous silicon analysed using discrete dipole approximation

    NASA Astrophysics Data System (ADS)

    Fantoni, Alessandro; Fernandes, Miguel; Vygranenko, Yuri; Vieira, Manuela; Oliveira-Silva, Rui P.; Prazeres, D. M. F.; Ribeiro, Ana P. C.; Alegria, Elisabete C. B. A.

    2018-02-01

    Localized surface plasmons (LSP) can be excited in metal nanoparticles (NP) by UV, visible or NIR light and are described as coherent oscillation of conduction electrons. Taking advantage of the tunable optical properties of NPs, we propose the realization of a plasmonic structure, based on the LSP interaction of NP with an embedding matrix of amorphous silicon. This study is directed to define the characteristics of NP and substrate necessary to the development of a LSP proteomics sensor that, once provided immobilized antibodies on its surface, will screen the concentration of selected antigens through the determination of LSPR spectra and peaks of light absorption. Metals of interest for NP composition are: Aluminium and Gold. Recent advances in nanoparticle production techniques allow almost full control over shapes and size, permitting full control over their optical and plasmonic properties and, above all, over their responsive spectra. Analytical solution is only possible for simple NP geometries, therefore our analysis, is realized recurring to computer simulation using the Discrete Dipole Approximation method (DDA). In this work we use the free software DDSCAT to study the optical properties of metal nanoparticles embedded in an amorphous silicon matrix, as a function of size, shape, aspect-ratio and metal type. Experimental measurements realized with arrays of metal nanoparticles are compared with the simulations.

  3. Local stresses in metal matrix composites subjected to thermal and mechanical loading

    NASA Technical Reports Server (NTRS)

    Highsmith, Alton L.; Shin, Donghee; Naik, Rajiv A.

    1990-01-01

    An elasticity solution has been used to analyze matrix stresses near the fiber/matrix interface in continuous fiber-reinforced metal-matrix composites, modeling the micromechanics in question in terms of a cylindrical fiber and cylindrical matrix sheath which is embedded in an orthotropic medium representing the composite. The model's predictions for lamina thermal and mechanical properties are applied to a laminate analysis determining ply-level stresses due to thermomechanical loading. A comparison is made between these results, which assume cylindrical symmetry, and the predictions yielded by a FEM model in which the fibers are arranged in a square array.

  4. Polymer matrix electroluminescent materials and devices

    DOEpatents

    Marrocco, III, Matthew L.; Motamedi, Farshad J [Claremont, CA; Abdelrazzaq, Feras Bashir [Covina, CA; Abdelrazzaq, legal representative, Bashir Twfiq

    2012-06-26

    Photoluminescent and electroluminescent compositions are provided which comprise a matrix comprising aromatic repeat units covalently coordinated to a phosphorescent or luminescent metal ion or metal ion complexes. Methods for producing such compositions, and the electroluminescent devices formed therefrom, are also disclosed.

  5. Metallic Contact between MoS2 and Ni via Au Nanoglue.

    PubMed

    Shi, Xinying; Posysaev, Sergei; Huttula, Marko; Pankratov, Vladimir; Hoszowska, Joanna; Dousse, Jean-Claude; Zeeshan, Faisal; Niu, Yuran; Zakharov, Alexei; Li, Taohai; Miroshnichenko, Olga; Zhang, Meng; Wang, Xiao; Huang, Zhongjia; Saukko, Sami; González, Diego López; van Dijken, Sebastiaan; Alatalo, Matti; Cao, Wei

    2018-05-01

    A critical factor for electronics based on inorganic layered crystals stems from the electrical contact mode between the semiconducting crystals and the metal counterparts in the electric circuit. Here, a materials tailoring strategy via nanocomposite decoration is carried out to reach metallic contact between MoS 2 matrix and transition metal nanoparticles. Nickel nanoparticles (NiNPs) are successfully joined to the sides of a layered MoS 2 crystal through gold nanobuffers, forming semiconducting and magnetic NiNPs@MoS 2 complexes. The intrinsic semiconducting property of MoS 2 remains unchanged, and it can be lowered to only few layers. Chemical bonding of the Ni to the MoS 2 host is verified by synchrotron radiation based photoemission electron microscopy, and further proved by first-principles calculations. Following the system's band alignment, new electron migration channels between metal and the semiconducting side contribute to the metallic contact mechanism, while semiconductor-metal heterojunctions enhance the photocatalytic ability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Inelastic deformation of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Lissenden, C. J.; Herakovich, C. T.; Pindera, M-J.

    1993-01-01

    A theoretical model capable of predicting the thermomechanical response of continuously reinforced metal matrix composite laminates subjected to multiaxial loading was developed. A micromechanical model is used in conjunction with nonlinear lamination theory to determine inelastic laminae response. Matrix viscoplasticity, residual stresses, and damage to the fiber/matrix interfacial zone are explicitly included in the model. The representative cell of the micromechanical model is considered to be in a state of generalized plane strain, enabling a quasi two-dimensional analysis to be performed. Constant strain finite elements are formulated with elastic-viscoplastic constitutive equations. Interfacial debonding is incorporated into the model through interface elements based on the interfacial debonding theory originally presented by Needleman, and modified by Tvergaard. Nonlinear interfacial constitutive equations relate interfacial tractions to displacement discontinuities at the interface. Theoretical predictions are compared with the results of an experimental program conducted on silicon carbide/titanium (SiC/Ti) unidirectional, (O4), and angle-ply, (+34)(sub s), tubular specimens. Multiaxial loading included increments of axial tension, compression, torque, and internal pressure. Loadings were chosen in an effort to distinguish inelastic deformation due to damage from matrix plasticity and separate time-dependent effects from time-independent effects. Results show that fiber/matrix debonding is nonuniform throughout the composite and is a major factor in the effective response. Also, significant creep behavior occurs at relatively low applied stress levels at room temperature.

  7. Advanced Constituents and Processes for Ceramic Composite Engine Components

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; DiCarlo, J. A.; Bhatt, R. T.

    2004-01-01

    The successful replacement of metal alloys by ceramic matrix composites (CMC) in hot-section engine components will depend strongly on optimizing the processes and properties of the CMC microstructural constituents so that they can synergistically provide the total CMC system with improved temperature capability and with the key properties required by the components for long-term structural service. This presentation provides the results of recent activities at NASA aimed at developing advanced silicon carbide (Sic) fiber-reinforced hybrid Sic matrix composite systems that can operate under mechanical loading and oxidizing conditions for hundreds of hours at 2400 and 2600 F, temperatures well above current metal capability. These SiC/SiC composite systems are lightweight (-30% metal density) and, in comparison to monolithic ceramics and carbon fiber-reinforced ceramic composites, are able to reliably retain their structural properties for long times under aggressive engine environments. It is shown that the improved temperature capability of the SiC/SiC systems is related first to the NASA development of the Sylramic-iBN Sic fiber, which displays high thermal stability, creep resistance, rupture resistance, and thermal conductivity, and possesses an in-situ grown BN surface layer for added environmental durability. This fiber is simply derived from Sylramic Sic fiber type that is currently produced at ATK COI Ceramics. Further capability is then derived by using chemical vapor infiltration (CVI) to form the initial portion of the hybrid Sic matrix. Because of its high creep resistance and thermal conductivity, the CVI Sic matrix is a required base constituent for all the high temperature SiC/SiC systems. By subsequently thermo- mechanical-treating the CMC preform, which consists of the S ylramic-iBN fibers and CVI Sic matrix, process-related defects in the matrix are removed, further improving matrix and CMC creep resistance and conductivity.

  8. Trace metal levels, sources, and ecological risk assessment in a densely agricultural area from Saudi Arabia.

    PubMed

    Al-Wabel, Mohammad I; Sallam, Abd El-Azeem S; Usman, Adel R A; Ahmad, Mahtab; El-Naggar, Ahmed Hamdy; El-Saeid, Mohammed Hamza; Al-Faraj, Abdulelah; El-Enazi, Khaled; Al-Romian, Fahad A

    2017-06-01

    The present study was conducted in one of the most densely cultivated area of Al-Qassim region in Kingdom of Saudi Arabia to (i) monitor trace metal (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) contents in surface and subsurface soils, (ii) assess the pollution and potential ecological risk levels of trace metals, and (iii) identify trace metal sources using enrichment factor (EF), correlation matrix, and principal component analysis (PCA). The pollution levels of the analyzed trace metals calculated by the geoaccumulation index (I geo ) and contamination factor (C f ) suggested that the soils were highly contaminated with Cd and moderately contaminated with Pb. Based on the average values of EF, soil samples were found to present extremely high enrichment for Cd, significant enrichment for Pb, moderate enrichment for Zn, and deficient to minimal enrichment for other trace metals. Among the analyzed trace metals, a very high ecological risk was observed only in the case of Cd at some sampling sites. Meanwhile, other investigated trace metals had a low ecological risk. The results of PCA combined with correlation matrix suggested that Fe, Mn, Zn, Cu, Cr Ni, Cu, and Co represent natural abundance in soil, but Cd, Pb, and Cu are of anthropogenic inputs, mainly due to agrochemical and fertilizer applications. It could be generally concluded that the obtained results can be useful for assessing and conducting a future program for trace metal monitoring in agricultural areas of Saudi Arabia.

  9. Bulk metallic glass matrix composites: Processing, microstructure, and application as a kinetic energy penetrator

    NASA Astrophysics Data System (ADS)

    Dandliker, Richard B.

    The development of alloys with high glass forming ability allows fabrication of bulk samples of amorphous metal. This capability makes these materials available for applications which require significant material thickness in all three dimensions. Superior mechanical properties and advantages in processing make metallic glass a choice candidate as a matrix material for composites. This study reports techniques for making composites by melt-infiltration casting using the alloy Zrsb{41.2}Tisb{13.8}Cusb{12.5}Nisb{10.0}Besb{22.5} (VitreloyspTM 1) as a matrix material. Composite rods 5 cm in length and 7 mm in diameter were made and found to have a nearly fully amorphous matrix; there was less than 3 volume percent crystallized matrix material. The samples were reinforced by continuous metal wires, tungsten powder, or silicon carbide particulate preforms. The most easily processed samples were made with uniaxially aligned tungsten and carbon steel continuous wire reinforcement; the majority of the analysis presented is of these samples. The measured porosity was typically less than 3%. The results also indicate necessary guidelines for developing processing techniques for large scale production, new reinforcement materials, and other metallic glass compositions. Analysis of the microstructure of the tungsten wire and steel wire reinforced composites was performed by x-ray diffraction, scanning electron microscopy, scanning Auger microscopy, transmission electron microscopy, and energy dispersive x-ray spectroscopy. The most common phase in the crystallized matrix is most likely a Laves phase with the approximate formula Besb{12}Zrsb3TiNiCu. In tungsten-reinforced composites, a crystalline reaction layer 240 nm thick of tungsten nanocrystals in an amorphous matrix formed. In the steel reinforced composites, the reaction layer was primarily composed of a mixed metal carbide, mainly ZrC. One promising application of the metallic glass matrix composite is as a kinetic energy penetrator material. Ballistic tests show that a composite of 80 volume percent uniaxially aligned tungsten wires and a VitreloyspTM 1 matrix has self-sharpening behavior, which is a necessary characteristic of superior penetrator materials. Small-scale tests with both aluminum and steel targets show that this composite performs better than tungsten heavy alloys typically used for penetrator applications, and comparably with depleted uranium.

  10. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode

    PubMed Central

    Liu, Yayuan; Lin, Dingchang; Liang, Zheng; Zhao, Jie; Yan, Kai; Cui, Yi

    2016-01-01

    Lithium metal is the ideal anode for the next generation of high-energy-density batteries. Nevertheless, dendrite growth, side reactions and infinite relative volume change have prevented it from practical applications. Here, we demonstrate a promising metallic lithium anode design by infusing molten lithium into a polymeric matrix. The electrospun polyimide employed is stable against highly reactive molten lithium and, via a conformal layer of zinc oxide coating to render the surface lithiophilic, molten lithium can be drawn into the matrix, affording a nano-porous lithium electrode. Importantly, the polymeric backbone enables uniform lithium stripping/plating, which successfully confines lithium within the matrix, realizing minimum volume change and effective dendrite suppression. The porous electrode reduces the effective current density; thus, flat voltage profiles and stable cycling of more than 100 cycles is achieved even at a high current density of 5 mA cm−2 in both carbonate and ether electrolyte. The advantages of the porous, polymeric matrix provide important insights into the design principles of lithium metal anodes. PMID:26987481

  11. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode

    DOE PAGES

    Liu, Yayuan; Lin, Dingchang; Liang, Zheng; ...

    2016-03-18

    Lithium metal is the ideal anode for the next generation of high-energy-density batteries. Nevertheless, dendrite growth, side reactions and infinite relative volume change have prevented it from practical applications. Here, we demonstrate a promising metallic lithium anode design by infusing molten lithium into a polymeric matrix. The electrospun polyimide employed is stable against highly reactive molten lithium and, via a conformal layer of zinc oxide coating to render the surface lithiophilic, molten lithium can be drawn into the matrix, affording a nano-porous lithium electrode. Importantly, the polymeric backbone enables uniform lithium stripping/plating, which successfully confines lithium within the matrix, realizingmore » minimum volume change and effective dendrite suppression. The porous electrode reduces the effective current density; thus, flat voltage profiles and stable cycling of more than 100 cycles is achieved even at a high current density of 5 mA cm -2 in both carbonate and ether electrolyte. Furthermore, the advantages of the porous, polymeric matrix provide important insights into the design principles of lithium metal anodes.« less

  12. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yayuan; Lin, Dingchang; Liang, Zheng

    Lithium metal is the ideal anode for the next generation of high-energy-density batteries. Nevertheless, dendrite growth, side reactions and infinite relative volume change have prevented it from practical applications. Here, we demonstrate a promising metallic lithium anode design by infusing molten lithium into a polymeric matrix. The electrospun polyimide employed is stable against highly reactive molten lithium and, via a conformal layer of zinc oxide coating to render the surface lithiophilic, molten lithium can be drawn into the matrix, affording a nano-porous lithium electrode. Importantly, the polymeric backbone enables uniform lithium stripping/plating, which successfully confines lithium within the matrix, realizingmore » minimum volume change and effective dendrite suppression. The porous electrode reduces the effective current density; thus, flat voltage profiles and stable cycling of more than 100 cycles is achieved even at a high current density of 5 mA cm -2 in both carbonate and ether electrolyte. Furthermore, the advantages of the porous, polymeric matrix provide important insights into the design principles of lithium metal anodes.« less

  13. Metal Cluster Models for Heterogeneous Catalysis: A Matrix-Isolation Perspective.

    PubMed

    Hübner, Olaf; Himmel, Hans-Jörg

    2018-02-19

    Metal cluster models are of high relevance for establishing new mechanistic concepts for heterogeneous catalysis. The high reactivity and particular selectivity of metal clusters is caused by the wealth of low-lying electronically excited states that are often thermally populated. Thereby the metal clusters are flexible with regard to their electronic structure and can adjust their states to be appropriate for the reaction with a particular substrate. The matrix isolation technique is ideally suited for studying excited state reactivity. The low matrix temperatures (generally 4-40 K) of the noble gas matrix host guarantee that all clusters are in their electronic ground-state (with only a very few exceptions). Electronically excited states can then be selectively populated and their reactivity probed. Unfortunately, a systematic research in this direction has not been made up to date. The purpose of this review is to provide the grounds for a directed approach to understand cluster reactivity through matrix-isolation studies combined with quantum chemical calculations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Californium--palladium metal neutron source material

    DOEpatents

    Dahlen, B.L.; Mosly, W.C. Jr.; Smith, P.K.; Albenesius, E.L.

    1974-01-22

    Californium, as metal or oxide, is uniformly dispersed throughout a noble metal matrix, provided in compact, rod or wire form. A solution of californium values is added to palladium metal powder, dried, blended and pressed into a compact having a uni-form distribution of californium. The californium values are decomposed to californium oxide or metal by heating in an inert or reducing atmosphere. Sintering the compact to a high density closes the matrix around the dispersed californium. The sintered compact is then mechanically shaped into an elongated rod or wire form. (4 claims, no drawings) (Official Gazette)

  15. Metal-Matrix Composite Parts With Metal Inserts

    NASA Technical Reports Server (NTRS)

    Majkowski, T.; Kashalikar, U.

    1995-01-01

    Developmental fabrication process produces metal-matrix composite (MMC) parts with integral metal inserts. With inserts, MMC parts readily joined to similar parts by use of brazing, welding, or mechanical fasteners. Process conceived to make strong, lightweight components of structures erected in outer space. Also useful on Earth, in such automotive parts as rocker arms, cylinder liners, and pistons. Potential industrial applications include parts subjected to high stresses at high temperatures, as in power-generation, mining, and oil-drilling equipment.

  16. The effect of TiB2 reinforcement on the mechanical properties of an Al-Cu-Li alloy-based metal-matrix composite

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The addition of ceramic particles to aluminum based alloys can substantially improve mechanical properties, especially Young's modulus and room and elevated temperature strengths. However, these improvements typically occur at the expense of tensile ductility. The mechanical properties are evaluated to a metal matrix composite (MMC) consisting of an ultrahigh strength aluminum lithium alloy, Weldalite (tm) 049, reinforced with TiB2 particles produced by an in situ precipitation technique called the XD (tm) process. The results are compared to the behavior of a nonreinforced Weldalite 049 variant. It is shown that both 049 and 049-TiB2 show very attractive warm temperature properties e.g., 625 MPa yield strength at 150 C after 100 h at temperature. Weldalite 049 reinforced with a nominal 4 v pct. TiB2 shows an approx. 8 pct. increase in modulus and a good combination of strength (529 MPa UTS) and ductility (6.5 pct.) in the T3 temper. And the high ductility of Weldalite 049 in the naturally aged and underaged tempers makes the alloy a good, high strength matrix for ceramic reinforcement.

  17. Dynamic mechanical properties of a Ti-based metallic glass matrix composite

    NASA Astrophysics Data System (ADS)

    Li, Jinshan; Cui, Jing; Qiao, Jichao; Bai, Jie; Kou, Hongchao; Wang, Jun

    2015-04-01

    Dynamic mechanical behavior of a Ti50Zr20Nb12Cu5Be13 bulk metallic glass composite was investigated using mechanical spectroscopy in both temperature and frequency domains. Storage modulus G' and loss modulus G″ are determined by temperature, and three distinct regions corresponding to different states in the bulk metallic glass composite are characterized. Physical parameters, such as atomic mobility and correlation factor χ, are introduced to analyze dynamic mechanical behavior of the bulk metallic glass composite in the framework of quasi-point defects (QPD) model. The experimental results are in good agreement with the prediction of QPD model.

  18. Dynamic mechanical properties of a Ti-based metallic glass matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jinshan, E-mail: ljsh@nwpu.edu.cn; Cui, Jing; Bai, Jie

    2015-04-21

    Dynamic mechanical behavior of a Ti{sub 50}Zr{sub 20}Nb{sub 12}Cu{sub 5}Be{sub 13} bulk metallic glass composite was investigated using mechanical spectroscopy in both temperature and frequency domains. Storage modulus G′ and loss modulus G″ are determined by temperature, and three distinct regions corresponding to different states in the bulk metallic glass composite are characterized. Physical parameters, such as atomic mobility and correlation factor χ, are introduced to analyze dynamic mechanical behavior of the bulk metallic glass composite in the framework of quasi-point defects (QPD) model. The experimental results are in good agreement with the prediction of QPD model.

  19. Correlation between the viscoelastic heterogeneity and the domain wall motion of Fe-based metallic glass

    NASA Astrophysics Data System (ADS)

    Ouyang, S.; Song, L. J.; Liu, Y. H.; Huo, J. T.; Wang, J. Q.; Xu, W.; Li, J. L.; Wang, C. T.; Wang, X. M.; Li, R. W.

    2018-06-01

    The soft magnetic properties of Fe-based metallic glasses are reduced significantly by external and residual stresses, e.g., the susceptibility decreases and coercivity increases, which limits their application severely. Unraveling the micromechanism of how the stress influences the soft magnetic properties is of great help for enhancing the performance of Fe-based metallic glasses. In this work, we investigate the effect of viscoelastic heterogeneity on the motion of magnetic domain wall surrounding nanoindentations. Compared to the matrix, dissipation of the viscoelastic heterogeneity increases toward the nanoindentation. Meanwhile, the motion of domain wall under external magnetic field becomes more difficult toward the nanoindentations. A correlation between the viscoelastic dissipation and the moving ability of magnetic domain walls is observed, which can be well fitted using magnetoelastic coupling theory. This suggests that manipulating the microscale viscoelastic heterogeneity is probably a helpful strategy for enhancing the soft magnetic properties of metallic glasses.

  20. Fatigue testing and damage development in continuous fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1988-01-01

    A general overview of the fatigue behavior of metal matrix composites (MMC) is presented. The first objective is to present experimental procedures and techniques for conducting a meaningful fatigue test to detect and quantify fatigue damage in MMC. These techniques include interpretation of stress-strain responses, acid etching of the matrix, edge replicas of the specimen under load, radiography, and micrographs of the failure surfaces. In addition, the paper will show how stiffness loss in continuous fiber reinforced metal matrix composites can be a useful parameter for detecting fatigue damage initiation and accumulation. Second, numerous examples of how fatigue damage can initiate and grow in various MMC are given. Depending on the relative fatigue behavior of the fiber and matrix, and the interface properties, the failure modes of MMC can be grouped into four categories: (1) matrix dominated, (2) fiber dominated, (3) self-similar damage growth, and (4) fiber/matrix interfacial failures. These four types of damage will be discussed and illustrated by examples with the emphasis on the fatigue of unnotched laminates.

  1. Fatigue testing and damage development in continuous fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1989-01-01

    A general overview of the fatigue behavior of metal matrix composites (MMC) is presented. The first objective is to present experimental procedures and techniques for conducting a meaningful fatigue test to detect and quantify fatigue damage in MMC. These techniques include interpretation of stress-strain responses, acid etching of the matrix, edge replicas of the specimen under load, radiography, and micrographs of the failure surfaces. In addition, the paper will show how stiffness loss in continuous fiber reinforced metal matrix composites can be a useful parameter for detecting fatigue damage initiation and accumulation. Second, numerous examples of how fatigue damage can initiate and grow in various MMC are given. Depending on the relative fatigue behavior of the fiber and matrix, and the interface properties, the failure modes of MMC can be grouped into four categories: (1) matrix dominated, (2) fiber dominated, (3) self-similar damage growth, and (4) fiber/matrix interfacial failures. These four types of damage will be discussed and illustrated by examples with the emphasis on the fatigue of unnotched laminates.

  2. Extension of photonic band gap in one-dimensional ternary metal-dielectric photonic crystal

    NASA Astrophysics Data System (ADS)

    Pandey, G. N.; Thapa, Khem B.

    2018-05-01

    In this paper, the photonic band gap structure in the visible and near infrared for a ternary metal dielectric photonic crystal has been theoretically investigated. At the normal incidence, the high reflectance range can be significantly enlarged at a thicker metal film. The transmission of the structure containing Cu has large compared to the other metals like Al and Ag metals. The transmission properties of the metal are dependent upon the value of the plasma frequency. In this paper we consider the effect of the variation of the thickness of the metal on the reflection bands of ternary metallic-dielectric photonic crystal (MDPC). Finally we find that the enlargement of band gap in MDPC is due to the addition of increase of the thickness of metallic film at normal incidence. All the theoretical calculations are made based on the transfer matrix method together with the Drude model of metal.

  3. Effect of geometrical constraint condition on the formation of nanoscale twins in the Ni-based metallic glass composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, M H; Kim, B S; Kim, D H

    2014-04-25

    We investigated the effect of geometrically constrained stress-strain conditions on the formation of nanotwins in alpha-brass phase reinforced Ni59Zr20Ti16Si2Sn3 metallic glass (MG) matrix deformed under macroscopic uniaxial compression. The specific geometrically constrained conditions in the samples lead to a deviation from a simple uniaxial state to a multi-axial stress state, for which nanocrystallization in the MG matrix together with nanoscale twinning of the brass reinforcement is observed in localized regions during plastic flow. The nanocrystals in the MG matrix and the appearance of the twinned structure in the reinforcements indicate that the strain energy is highly confined and the localmore » stress reaches a very high level upon yielding. Both the effective distribution of reinforcements on the strain enhancement of composite and the effects of the complicated stress states on the development of nanotwins in the second-phase brass particles are discussed.« less

  4. Characterization of Carbon Nanotube Reinforced Nickel

    NASA Technical Reports Server (NTRS)

    Gill, Hansel; Hudson, Steve; Bhat, Biliyar; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    Carbon nanotubes are cylindrical molecules composed of carbon atoms in a regular hexagonal arrangement. If nanotubes can be uniformly dispersed in a supporting matrix to form structural materials, the resulting structures could be significantly lighter and stronger than current aerospace materials. Work is currently being done to develop an electrolyte-based self-assembly process that produces a Carbon Nanotube/Nickel composite material with high specific strength. This process is expected to produce a lightweight metal matrix composite material, which maintains it's thermal and electrical conductivities, and is potentially suitable for applications such as advanced structures, space based optics, and cryogenic tanks.

  5. Combined bending and thermal fatigue of high-temperature metal-matrix composites - Computational simulation

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascal K.; Chamis, Christos C.

    1992-01-01

    The nonlinear behavior of a high-temperature metal-matrix composite (HT-MMC) was simulated by using the metal matrix composite analyzer (METCAN) computer code. The simulation started with the fabrication process, proceeded to thermomechanical cyclic loading, and ended with the application of a monotonic load. Classical laminate theory and composite micromechanics and macromechanics are used in METCAN, along with a multifactor interaction model for the constituents behavior. The simulation of the stress-strain behavior from the macromechanical and the micromechanical points of view, as well as the initiation and final failure of the constituents and the plies in the composite, were examined in detail. It was shown that, when the fibers and the matrix were perfectly bonded, the fracture started in the matrix and then propagated with increasing load to the fibers. After the fibers fractured, the composite lost its capacity to carry additional load and fractured.

  6. Combined thermal and bending fatigue of high-temperature metal-matrix composites: Computational simulation

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascal K.

    1991-01-01

    The nonlinear behavior of a high-temperature metal-matrix composite (HT-MMC) was simulated by using the metal matrix composite analyzer (METCAN) computer code. The simulation started with the fabrication process, proceeded to thermomechanical cyclic loading, and ended with the application of a monotonic load. Classical laminate theory and composite micromechanics and macromechanics are used in METCAN, along with a multifactor interaction model for the constituents behavior. The simulation of the stress-strain behavior from the macromechanical and the micromechanical points of view, as well as the initiation and final failure of the constituents and the plies in the composite, were examined in detail. It was shown that, when the fibers and the matrix were perfectly bonded, the fracture started in the matrix and then propagated with increasing load to the fibers. After the fibers fractured, the composite lost its capacity to carry additional load and fractured.

  7. Metal Matrix Composites: Fatigue and Fracture Testing. (Latest citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning techniques and results of testing metal matrix composites for fatigue and fracture. Methods include non-destructive testing techniques, and static and cyclic techniques for assessing compression, tensile, bending, and impact characteristics.

  8. Metal matrix composite analyzer (METCAN) user's manual, version 4.0

    NASA Technical Reports Server (NTRS)

    Lee, H.-J.; Gotsis, P. K.; Murthy, P. L. N.; Hopkins, D. A.

    1992-01-01

    The Metal Matrix Composite Analyzer (METCAN) is a computer code developed at Lewis Research Center to simulate the high temperature nonlinear behavior of metal matrix composites. An updated version of the METCAN User's Manual is presented. The manual provides the user with a step by step outline of the procedure necessary to run METCAN. The preparation of the input file is demonstrated, and the output files are explained. The sample problems are presented to highlight various features of METCAN. An overview of the geometric conventions, micromechanical unit cell, and the nonlinear constitutive relationships is also provided.

  9. Metal matrix composite of an iron aluminide and ceramic particles and method thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneibel, Joachim H.

    A metal matrix composite comprising an iron aluminide binder phase and a ceramic particulate phase such as titanium diboride, zirconium diboride, titanium carbide and tungsten carbide is made by heating a mixture of iron aluminide powder and particulates of one of the ceramics such as titanium diboride, zirconium diboride, titanium carbide and tungsten carbide in a alumina crucible at about 1450.degree. C. for about 15 minutes in an evacuated furnace and cooling the mixture to room temperature. The ceramic particulates comprise greater than 40 volume percent to about 99 volume percent of the metal matrix composite.

  10. Metal matrix composite of an iron aluminide and ceramic particles and method thereof

    DOEpatents

    Schneibel, J.H.

    1997-06-10

    A metal matrix composite comprising an iron aluminide binder phase and a ceramic particulate phase such as titanium diboride, zirconium diboride, titanium carbide and tungsten carbide is made by heating a mixture of iron aluminide powder and particulates of one of the ceramics such as titanium diboride, zirconium diboride, titanium carbide and tungsten carbide in a alumina crucible at about 1,450 C for about 15 minutes in an evacuated furnace and cooling the mixture to room temperature. The ceramic particulates comprise greater than 40 volume percent to about 99 volume percent of the metal matrix composite.

  11. Metal matrix composite of an iron aluminide and ceramic particles and method thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneibel, J.H.

    A metal matrix composite comprising an iron aluminide binder phase and a ceramic particulate phase such as titanium diboride, zirconium diboride, titanium carbide and tungsten carbide is made by heating a mixture of iron aluminide powder and particulates of one of the ceramics such as titanium diboride, zirconium diboride, titanium carbide and tungsten carbide in a alumina crucible at about 1,450 C for about 15 minutes in an evacuated furnace and cooling the mixture to room temperature. The ceramic particulates comprise greater than 40 volume percent to about 99 volume percent of the metal matrix composite.

  12. Metal-Matrix Composites: Status and Prospects

    DTIC Science & Technology

    1974-12-01

    increased to meet or exceed even the most severe engine requirements. This optimism is based largely on an order-of-magnitude improvement in Charpy test...relationships between coupon tests, subsize structural components, and structural component evaluations 4. The development of su-table design

  13. International Collaboration Program in Innovative Chemical Processing of Superior Electronic and Optical Materials

    DTIC Science & Technology

    1993-06-01

    Peyghambarian for X(3) measurements. 3. Research on Nonlinear Optical Materials based on Ultrafine Metal Clusters in ORMOSILS Another family of ultrafine ... particles which, when dispersed in a glassy matrix, has been show to have high X(3) involves metal clusters. Because of the importance of obtaining...NSG Workshop on: Science and Application of Photonic Materials II, Osaka, Japan, November (1992). Haixing, Z., and Mackenzie, J.D., " Ultrafine

  14. Micromechanism Based Modeling of Structural Life in Metal Matrix Composites

    DTIC Science & Technology

    1997-03-23

    wWchJndttees-^anätational eigenstrain ; and the embrittlement of material at the metal-ox^ interface, in addition, the influence of various heat...of two factors: the development of a surface layer consisting primarily of stoichiometric Ti02 which induces a dilatational eigenstrain ; and the...as the dilatational eigenstrain in order to capture the life reduction mechanism. As shown in Fig. 5, for the case of monotonic loading, the model

  15. Simulation of irradiation hardening of Zircaloy within plate-type dispersion nuclear fuel elements

    NASA Astrophysics Data System (ADS)

    Jiang, Yijie; Wang, Qiming; Cui, Yi; Huo, Yongzhong; Ding, Shurong

    2011-06-01

    Within plate-type dispersion nuclear fuel elements, the metal matrix and cladding attacked continuously by fast neutrons undergo irradiation hardening, which might have remarkable effects upon the mechanical behaviors within fuel elements. In this paper, with the irradiation hardening effect of metal materials mainly considered together with irradiation growth effect of the cladding, the three-dimensional large-deformation constitutive relations for the metal matrix and cladding are developed. The method of virtual temperature increase in the previous studies is further developed to model the irradiation swelling of fuel particles; the method of anisotropic thermal expansion is introduced to model irradiation growth of the cladding; and a method of multi-step-temperature loading is proposed to simulate the coupling features of irradiation-induced swelling of the fuel particles together with irradiation growth of the cladding. Above all, based on the developed relationship between irradiation growth at certain burnup and the loaded virtual temperatures, with considering that certain burnup corresponds to certain fast neutron fluence, the time-dependent constitutive relation due to irradiation hardening effect is replaced by the virtual-temperature-dependent one which is introduced into the commercial software to simulate the irradiation hardening effects of the matrix and cladding. Numerical simulations of the irradiation-induced mechanical behaviors are implemented with the finite element method in consideration of the micro-structure of the fuel meat. The obtained results indicate that when the irradiation hardening effects are introduced into the constitutive relations of the metal matrix and cladding: (1) higher maximum Mises stresses for certain burnup at the matrix exist with the equivalent plastic strains remaining almost the same at lower burnups; (2) the maximum Mises stresses for certain burnup at the cladding are enhanced while the maximum equivalent plastic strains are reduced; and (3) the maximum first principal stresses for certain burnup at the matrix or the cladding are lower than the ones without the hardening effect, and the differences are found to increase with burnup; and the variation rules of the interfacial stresses are similar.

  16. A sparse matrix-vector multiplication based algorithm for accurate density matrix computations on systems of millions of atoms

    NASA Astrophysics Data System (ADS)

    Ghale, Purnima; Johnson, Harley T.

    2018-06-01

    We present an efficient sparse matrix-vector (SpMV) based method to compute the density matrix P from a given Hamiltonian in electronic structure computations. Our method is a hybrid approach based on Chebyshev-Jackson approximation theory and matrix purification methods like the second order spectral projection purification (SP2). Recent methods to compute the density matrix scale as O(N) in the number of floating point operations but are accompanied by large memory and communication overhead, and they are based on iterative use of the sparse matrix-matrix multiplication kernel (SpGEMM), which is known to be computationally irregular. In addition to irregularity in the sparse Hamiltonian H, the nonzero structure of intermediate estimates of P depends on products of H and evolves over the course of computation. On the other hand, an expansion of the density matrix P in terms of Chebyshev polynomials is straightforward and SpMV based; however, the resulting density matrix may not satisfy the required constraints exactly. In this paper, we analyze the strengths and weaknesses of the Chebyshev-Jackson polynomials and the second order spectral projection purification (SP2) method, and propose to combine them so that the accurate density matrix can be computed using the SpMV computational kernel only, and without having to store the density matrix P. Our method accomplishes these objectives by using the Chebyshev polynomial estimate as the initial guess for SP2, which is followed by using sparse matrix-vector multiplications (SpMVs) to replicate the behavior of the SP2 algorithm for purification. We demonstrate the method on a tight-binding model system of an oxide material containing more than 3 million atoms. In addition, we also present the predicted behavior of our method when applied to near-metallic Hamiltonians with a wide energy spectrum.

  17. Method for producing chemically bonded phosphate ceramics and for stabilizing contaminants encapsulated therein utilizing reducing agents

    DOEpatents

    Singh, Dileep; Wagh, Arun S.; Jeong, Seung-Young

    2000-01-01

    Known phosphate ceramic formulations are improved and the ability to produce iron-based phosphate ceramic systems is enabled by the addition of an oxidizing or reducing step during the acid-base reactions that form the phosphate ceramic products. The additives allow control of the rate of the acid-base reactions and concomitant heat generation. In an alternate embodiment, waste containing metal anions are stabilized in phosphate ceramic products by the addition of a reducing agent to the phosphate ceramic mixture. The reduced metal ions are more stable and/or reactive with the phosphate ions, resulting in the formation of insoluble metal species within the phosphate ceramic matrix, such that the resulting chemically bonded phosphate ceramic product has greater leach resistance.

  18. Studies on microstructure and mechanical behaviour of A7075- Flyash/SiC hybrid metal matrix composites

    NASA Astrophysics Data System (ADS)

    Venkata Reddy, V.; Gopi Krishna, M.; Praveen Kumar, K.; Naga Kishore, B. S.; Babu Rao, J.; Bhargava, NRMR

    2018-02-01

    Experiments have been performed under laboratory condition to review the mechanical behaviour of the hybrid composites with aluminium matrix A7075 alloy, reinforced with silicon carbide (SiC) and Flyash. This has been possible by fabricating the samples through usual stir casting technique. Scanning electron microscopy was used for microstructure analysis. Chemical characterization of both matrix and composites was performed by using EDAX. Density, hardness, tensile and deformation studies were conceded out on both the base alloy and composites. Enhanced hardness and deformed properties were observed for all the composites. Interestingly improved tensile results were obtained for the composites than alloy. Dispersion of (SiC) and Flyash particles in aluminium matrix enhances the hardness of the composites.

  19. Metal-doped semiconductor nanoparticles and methods of synthesis thereof

    NASA Technical Reports Server (NTRS)

    Ren, Zhifeng (Inventor); Wang, Wenzhong (Inventor); Chen, Gang (Inventor); Dresselhaus, Mildred (Inventor); Poudel, Bed (Inventor); Kumar, Shankar (Inventor)

    2009-01-01

    The present invention generally relates to binary or higher order semiconductor nanoparticles doped with a metallic element, and thermoelectric compositions incorporating such nanoparticles. In one aspect, the present invention provides a thermoelectric composition comprising a plurality of nanoparticles each of which includes an alloy matrix formed of a Group IV element and Group VI element and a metallic dopant distributed within the matrix.

  20. Metal-doped semiconductor nanoparticles and methods of synthesis thereof

    DOEpatents

    Ren, Zhifeng [Newton, MA; Chen, Gang [Carlisle, MA; Poudel, Bed [West Newton, MA; Kumar, Shankar [Newton, MA; Wang, Wenzhong [Beijing, CN; Dresselhaus, Mildred [Arlington, MA

    2009-09-08

    The present invention generally relates to binary or higher order semiconductor nanoparticles doped with a metallic element, and thermoelectric compositions incorporating such nanoparticles. In one aspect, the present invention provides a thermoelectric composition comprising a plurality of nanoparticles each of which includes an alloy matrix formed of a Group IV element and Group VI element and a metallic dopant distributed within the matrix.

  1. Environmental Remediation and Application of Nanoscale Zero-Valent Iron and Its Composites for the Removal of Heavy Metal Ions: A Review.

    PubMed

    Zou, Yidong; Wang, Xiangxue; Khan, Ayub; Wang, Pengyi; Liu, Yunhai; Alsaedi, Ahmed; Hayat, Tasawar; Wang, Xiangke

    2016-07-19

    The presence of heavy metals in the industrial effluents has recently been a challenging issue for human health. Efficient removal of heavy metal ions from environment is one of the most important issues from biological and environmental point of view, and many studies have been devoted to investigate the environmental behavior of nanoscale zerovalent iron (NZVI) for the removal of toxic heavy metal ions, present both in the surface and underground wastewater. The aim of this review is to show the excellent removal capacity and environmental remediation of NZVI-based materials for various heavy metal ions. A new look on NZVI-based materials (e.g., modified or matrix-supported NZVI materials) and possible interaction mechanism (e.g., adsorption, reduction and oxidation) and the latest environmental application. The effects of various environmental conditions (e.g., pH, temperature, coexisting oxy-anions and cations) and potential problems for the removal of heavy metal ions on NZVI-based materials with the DFT theoretical calculations and EXAFS technology are discussed. Research shows that NZVI-based materials have satisfactory removal capacities for heavy metal ions and play an important role in the environmental pollution cleanup. Possible improvement of NZVI-based materials and potential areas for future applications in environment remediation are also proposed.

  2. Modeling & processing of ceramic and polymer precursor ceramic matrix composite materials

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolin

    Synthesis and processing of novel materials with various advanced approaches have attracted much attention of engineers and scientists for the past thirty years. Many advanced materials display a number of exceptional properties and can be produced with different novel processing techniques. For example, AlN is a promising candidate for electronic, optical and opto-electronic applications due to its high thermal conductivity, high electrical resistivity, high acoustic wave velocity and large band gap. Large bulk AlN crystal can be produced by sublimation of AlN powder. Novel nonostructured multicomponent refractory metal-based ceramics (carbides, borides and nitrides) show a lot of exceptional mechanical, thermal and chemical properties, and can be easily produced by pyrolysis of suitable preceramic precursors mixed with metal particles. The objective of this work is to study sublimation and synthesis of AlN powder, and synthesis of SiC-based metal ceramics. For AlN sublimation crystal growth, we will focus on modeling the processes in the powder source that affect significantly the sublimation growth as a whole. To understand the powder porosity evolution and vapor transport during powder sublimation, the interplay between vapor transport and powder sublimation will be studied. A physics-based computational model will be developed considering powder sublimation and porosity evolution. Based on the proposed model, the effect of a central hole in the powder on the sublimation rate is studied and the result is compared to the case of powder without a hole. The effect of hole size on the sublimation rate will be studied. The effects of initial porosity, particle size and driving force on the sublimation rate are also studied. Moreover, the optimal growth condition for large diameter crystal quality and high growth rate will be determined. For synthesis of SiC-based metal ceramics, we will focus on developing a multi-scale process model to describe the dynamic behavior of filler particle reaction, microstructure evolution, at the microscale as well as transient fluid flow, heat transfer, and species transport at the macroscale. The model comprises of (i) a microscale model and (ii) a macroscale transport model, and aims to provide optimal conditions for the fabrication process of the ceramics. The porous media macroscale model for SiC-based metal-ceramic materials processing will be developed to understand the thermal polymer pyrolysis, chemical reaction of active fillers and transport phenomena in the porous media. The macroscale model will include heat and mass transfer, curing, pyrolysis, chemical reaction and crystallization in a mixture of preceramic polymers and submicron/nano-sized metal particles of uranium, zirconium, niobium, or hafnium. The effects of heating rate, sample size, size and volume ratio of the metal particles on the reaction rate and product uniformity will be studied. The microscale model will be developed for modeling the synthesis of SiC matrix and metal particles. The macroscale model provides thermal boundary conditions to the microscale model. The microscale model applies to repetitive units in the porous structure and describes mass transport, composition changes and motion of metal particles. The unit-cell is the representation unit of the source material, and it consists of several metal particles, SiC matrix and other components produced from the synthesis process. The reactions between different components, the microstructure evolution of the product will be considered. The effects of heating rate and metal particle size on species uniformity and microstructure are investigated.

  3. Metal Immiscibility Route to Synthesis of Ultrathin Carbides, Borides, and Nitrides.

    PubMed

    Wang, Zixing; Kochat, Vidya; Pandey, Prafull; Kashyap, Sanjay; Chattopadhyay, Soham; Samanta, Atanu; Sarkar, Suman; Manimunda, Praveena; Zhang, Xiang; Asif, Syed; Singh, Abhisek K; Chattopadhyay, Kamanio; Tiwary, Chandra Sekhar; Ajayan, Pulickel M

    2017-08-01

    Ultrathin ceramic coatings are of high interest as protective coatings from aviation to biomedical applications. Here, a generic approach of making scalable ultrathin transition metal-carbide/boride/nitride using immiscibility of two metals is demonstrated. Ultrathin tantalum carbide, nitride, and boride are grown using chemical vapor deposition by heating a tantalum-copper bilayer with corresponding precursor (C 2 H 2 , B powder, and NH 3 ). The ultrathin crystals are found on the copper surface (opposite of the metal-metal junction). A detailed microscopy analysis followed by density functional theory based calculation demonstrates the migration mechanism, where Ta atoms prefer to stay in clusters in the Cu matrix. These ultrathin materials have good interface attachment with Cu, improving the scratch resistance and oxidation resistance of Cu. This metal-metal immiscibility system can be extended to other metals to synthesize metal carbide, boride, and nitride coatings. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Differential continuum damage mechanics models for creep and fatigue of unidirectional metal matrix composites

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Kruch, S.

    1991-01-01

    Three multiaxial isothermal continuum damage mechanics models for creep, fatigue, and creep/fatigue interaction of a unidirectional metal matrix composite volume element are presented, only one of which will be discussed in depth. Each model is phenomenological and stress based, with varying degrees of complexity to accurately predict the initiation and propagation of intergranular and transgranular defects over a wide range of loading conditions. The development of these models is founded on the definition of an initially transversely isotropic fatigue limit surface, static fracture surface, normalized stress amplitude function and isochronous creep damage failure surface, from which both fatigue and creep damage evolutionary laws can be obtained. The anisotropy of each model is defined through physically meaningful invariants reflecting the local stress and material orientation. All three transversely isotropic models have been shown, when taken to their isotropic limit, to directly simplify to previously developed and validated creep and fatigue continuum damage theories. Results of a nondimensional parametric study illustrate (1) the flexibility of the present formulation when attempting to characterize a large class of composite materials, and (2) its ability to predict anticipated qualitative trends in the fatigue behavior of unidirectional metal matrix composites. Additionally, the potential for the inclusion of various micromechanical effects (e.g., fiber/matrix bond strength, fiber volume fraction, etc.), into the phenomenological anisotropic parameters is noted, as well as a detailed discussion regarding the necessary exploratory and characterization experiments needed to utilize the featured damage theories.

  5. Modelling of End Milling of AA6061-TiCp Metal Matrix Composite

    NASA Astrophysics Data System (ADS)

    Vijay Kumar, S.; Cheepu, Muralimohan; Venkateswarlu, D.; Asohan, P.; Senthil Kumar, V.

    2018-03-01

    The metal-matrix composites (MMCs) are used in various applications hence lot of research has been carried out on MMCs. To increase the properties of Albased MMCs many ceramic reinforcements have been identified, among which TiC is played vital role because of its properties like high hardness, stiffness and wear resistance. In the present work, a neural network and statistical modelling approach is going to use for the prediction of surface roughness (Ra) and cutting forces in computerised numerical control milling machine. Experiments conducted on a CNC milling machine based on the full factorial design and resulted data used to train and checking the network performance. The sample prepared from in-situ technique and heat treated to get uniform properties. The ANN model has shown satisfactory performance comparatively.

  6. A coupled/uncoupled deformation and fatigue damage algorithm utilizing the finite element method

    NASA Technical Reports Server (NTRS)

    Wilt, Thomas E.; Arnold, Steven M.

    1994-01-01

    A fatigue damage computational algorithm utilizing a multiaxial, isothermal, continuum based fatigue damage model for unidirectional metal matrix composites has been implemented into the commercial finite element code MARC using MARC user subroutines. Damage is introduced into the finite element solution through the concept of effective stress which fully couples the fatigue damage calculations with the finite element deformation solution. An axisymmetric stress analysis was performed on a circumferentially reinforced ring, wherein both the matrix cladding and the composite core were assumed to behave elastic-perfectly plastic. The composite core behavior was represented using Hill's anisotropic continuum based plasticity model, and similarly, the matrix cladding was represented by an isotropic plasticity model. Results are presented in the form of S-N curves and damage distribution plots.

  7. [The bonding mechanisms of base metals for metal-ceramic crown microstructure analysis of bonding agent and gold bond between porcelain and base metals].

    PubMed

    Wang, C C; Hsu, C S

    1996-06-01

    The use of base metal alloys for porcelain fused to a metal crown and bridges has increased recently because of lower price, high hardness, high tensile strength and high elastic modulus. The addition of beryllium to base metal alloys increased fluidity and improved casting fitness. Beryllium also controlled surface oxidation and bonding strength. The bonding agent and gold bonding agent also affected the bonding strength between porcelain and metal alloys. Four commercially available ceramic base alloys were studied (two alloys contained beryllium element, another two did not). The purpose of this investigation was to study the microstructure between porcelain matrix, bonding agent and alloy matrix interfaces. A scanning electron micro-probe analyzer and energy dispersive X-ray spectroscopy (EDXS) were used to study the distribution of elements (Ni, Cr, Mo, Cu, O, Si, Sn, Al) in four base alloys. The following results were obtained: 1. The thickness of the oxidized layer of Rexillium III alloy and Unitbond alloy (contained beryllium) was thinner than Unibond alloy and Wiron 88 alloy (no beryllium). 2. The thickness of the oxidized layer of alloys in air (10 minutes and 30 minutes) was thinner in Unitbond (2.45 microns and 3.80 microns) and thicker in Wiron 88 (4.39 microns and 5.96 microns). 3. The thickness of the oxidized layer occurring for a duration of ten minutes (in vaccum) showed that the Rexillium III alloy was the thinnest (1.93 microns), and Wiron 88 alloy was the thickest (2.30 microns). But in thirty minutes (vacuum), Unitbond alloy was the thinnest (3.37 microns), and Wiron 88 alloy was the thickest (5.51 microns). 4. The intensity of Cr elements was increased obviously near the interface between Unitbond alloy, Wiron 88 alloy (no beryllium) and oxidized layer, but the intensity of Ni and Mo elements was slightly increased. The intensity of Cr element was not increased markedly between Rexillium III alloy, Unitbond alloy (beryllium) and oxidized layer. 5. A white-grayish oxidized layer appeared at the metal-ceramic interfaces but the thickness of oxidized layer was not obviously different. 6. The use of bonding agent at metal-ceramic interface leads to the deposition of many Sn elements at about 40 microns range within the porcelain surface. 7. Second interaction phases at the porcelain layer appeared when gold bonding agent was used, and a 50-100 microns microleakage occurred at the metal-ceramic interface.

  8. Thermal and mechanical behavior of metal matrix and ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Kennedy, John M. (Editor); Moeller, Helen H. (Editor); Johnson, W. S. (Editor)

    1990-01-01

    The present conference discusses local stresses in metal-matrix composites (MMCs) subjected to thermal and mechanical loads, the computational simulation of high-temperature MMCs' cyclic behavior, an analysis of a ceramic-matrix composite (CMC) flexure specimen, and a plasticity analysis of fibrous composite laminates under thermomechanical loads. Also discussed are a comparison of methods for determining the fiber-matrix interface frictional stresses of CMCs, the monotonic and cyclic behavior of an SiC/calcium aluminosilicate CMC, the mechanical and thermal properties of an SiC particle-reinforced Al alloy MMC, the temperature-dependent tensile and shear response of a graphite-reinforced 6061 Al-alloy MMC, the fiber/matrix interface bonding strength of MMCs, and fatigue crack growth in an Al2O3 short fiber-reinforced Al-2Mg matrix MMC.

  9. Composite materials: Fatigue and fracture. Vol. 3

    NASA Technical Reports Server (NTRS)

    O'Brien, T. K. (Editor)

    1991-01-01

    The present volume discusses topics in the fields of matrix cracking and delamination, interlaminar fracture toughness, delamination analysis, strength and impact characteristics, and fatigue and fracture behavior. Attention is given to cooling rate effects in carbon-reinforced PEEK, the effect of porosity on flange-web corner strength, mode II delamination in toughened composites, the combined effect of matrix cracking and free edge delamination, and a 3D stress analysis of plain weave composites. Also discussed are the compression behavior of composites, damage-based notched-strength modeling, fatigue failure processes in aligned carbon-epoxy laminates, and the thermomechanical fatigue of a quasi-isotropic metal-matrix composite.

  10. Nonlinear laminate analysis for metal matrix fiber composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1981-01-01

    A nonlinear laminate analysis is described for predicting the mechanical behavior (stress-strain relationships) of angleplied laminates in which the matrix is strained nonlinearly by both the residual stress and the mechanical load and in which additional nonlinearities are induced due to progressive fiber fractures and ply relative rotations. The nonlinear laminate analysis (NLA) is based on linear composite mechanics and a piece wise linear laminate analysis to handle the nonlinear responses. Results obtained by using this nonlinear analysis on boron fiber/aluminum matrix angleplied laminates agree well with experimental data. The results shown illustrate the in situ ply stress-strain behavior and synergistic strength enhancement.

  11. Thermal-mechanical fatigue test apparatus for metal matrix composites and joint attachments

    NASA Technical Reports Server (NTRS)

    Westfall, L. J.; Petrasek, D. W.

    1985-01-01

    Two thermal-mechanical fatigue (TMF) test facilities were designed and developed, one to test tungsten fiber reinforced metal matrix composite specimens at temperature up to 1430C (2600F) and another to test composite/metal attachment bond joints at temperatures up to 760C (1400 F). The TMF facility designed for testing tungsten fiber reinforced metal matrix composites permits test specimen temperature excursions from room temperature to 1430C (2600F) with controlled heating and loading rates. A strain-measuring device measures the strain in the test section of the specimen during each heating and cooling cycle with superimposed loads. Data is collected and recorded by a computer. The second facility is designed to test composite/metal attachment bond joints and to permit heating to a maximum temperature of 760C (1400F) within 10 min and cooling to 150C (300F) within 3 min. A computer controls specimen temperature and load cycling.

  12. Thermal-mechanical fatigue test apparatus for metal matrix composites and joint attachments

    NASA Technical Reports Server (NTRS)

    Westfall, Leonard J.; Petrasek, Donald W.

    1988-01-01

    Two thermal-mechanical fatigue (TMF) test facilities were designed and developed, one to test tungsten fiber reinforced metal matrix composite specimens at temperature up to 1430C (2600F) and another to test composite/metal attachment bond joints at temperatures up to 760F (1400F). The TMF facility designed for testing tungsten fiber reinforced metal matrix composites permits test specimen temperature excursions from room temperature to 1430C (2600F) with controlled heating and loading rates. A strain-measuring device measures the strain in the test section of the specimen during each heating and cooling cycle with superimposed loads. Data is collected and recorded by a computer. The second facility is designed to test composite/metal attachment bond joints and to permit heating to a maximum temperature of 760C (1400F) within 10 min and cooling to 150C (300F) within 3 min. A computer controls specimen temperature and load cycling.

  13. Fracture criteria for discontinuously reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Rack, H. J.; Goree, J. G.; Albritton, J.; Ratnaparkhi, P.

    1988-01-01

    Summarized is the progress achieved during the period September 16, 1987 to August 15, l988 on NASA Grant NAG1-724, Fracture Criteria for Discontinuously Reinforced Metal Matrix Composites. Appended are copies of three manuscripts prepared under NASA funding during the performance period.

  14. Tuning the surface properties of novel ternary iron(III) fluoride-based catalysts using the template effect of the matrix.

    PubMed

    Guo, Ying; Lippitz, Andreas; Saftien, Paul; Unger, Wolfgang E S; Kemnitz, Erhard

    2015-03-21

    Sol-gel prepared ternary FeF3-MgF2 materials have become promising heterogeneous catalysts due to their porosity and surface Lewis/Brønsted acidity (bi-acidity). Despite the good catalytic performance, nanoscopic characterisations of this type of material are still missing and the key factors controlling the surface properties have not yet been identified, impeding both a better understanding and further development of ternary fluoride catalysts. In this study, we characterised the interaction between the bi-acidic component (FeF3) and the matrix (MgF2) on the nano-scale. For the first time, the formation pathway of FeF3-MgF2 was profiled and the template effect of MgF2 during the synthesis process was discovered. Based on these new insights two novel materials, FeF3-CaF2 and FeF3-SrF2, were established, revealing that with decreasing the atomic numbers (from Sr to Mg), the ternary fluorides exhibited increasing surface acidity and surface area but decreasing pore size. These systematic changes gave rise to a panel of catalysts with tuneable surface and bulk properties either by changing the matrix alkaline earth metal fluoride or by adjusting their ratios to Fe or both. The template effect of the alkaline earth metal fluoride matrix was identified as the most probable key factor determining the surface properties and further influencing the catalytic performance in ternary fluoride based catalysts, and paves the way to targeted design of next-generation catalysts with tunable properties.

  15. Metallization of bacterial cellulose for electrical and electronic device manufacture

    DOEpatents

    Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN; Jansen, Valerie Malyvanh [Memphis, TN; Woodward, Jonathan [Knoxville, TN

    2011-06-07

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  16. Metallization of bacterial cellulose for electrical and electronic device manufacture

    DOEpatents

    Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN; Jansen, Valerie Malyvanh [Memphis, TN; Woodward, Jonathan [Knoxville, TN

    2010-09-28

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  17. High-energy, high-rate materials processing

    NASA Astrophysics Data System (ADS)

    Marcus, H. L.; Bourell, D. L.; Eliezer, Z.; Persad, C.; Weldon, W.

    1987-12-01

    The increasingly available range of pulsed-power, high energy kinetic storage devices, such as low-inductance pulse-forming networks, compulsators, and homopolar generators, is presently considered as a basis for industrial high energy/high rate (HEHR) processing to accomplish shock hardening, drilling, rapid surface alloying and melting, welding and cutting, transformation hardening, and cladding and surface melting in metallic materials. Time-temperature-transformation concepts furnish the basis for a fundamental understanding of the potential advantages of this direct pulsed power processing. Attention is given to the HEHR processing of a refractory molybdenum alloy, a nickel-base metallic glass, tungsten, titanium aluminides, and metal-matrix composites.

  18. NUCLEAR REACTOR FUEL ELEMENTS AND METHOD OF PREPARATION

    DOEpatents

    Kingston, W.E.; Kopelman, B.; Hausner, H.H.

    1963-07-01

    A fuel element consisting of uranium nitride and uranium carbide in the form of discrete particles in a solid coherent matrix of a metal such as steel, beryllium, uranium, or zirconium and clad with a metal such as steel, aluminum, zirconium, or beryllium is described. The element is made by mixing powdered uranium nitride and uranium carbide with powdered matrix metal, then compacting and sintering the mixture. (AEC)

  19. Surface Plasmon Resonance Evaluation of Colloidal Metal Aerogel Filters

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Sibille, Laurent; Cronise, Raymond J.; Noever, David A.

    1997-01-01

    Surface plasmon resonance imaging has in the past been applied to the characterization of thin films. In this study we apply the surface plasmon technique not to determine macroscopic spatial variations but rather to determine average microscopic information. Specifically, we deduce the dielectric properties of the surrounding gel matrix and information concerning the dynamics of the gelation process from the visible absorption characteristics of colloidal metal nanoparticles contained in aerogel pores. We have fabricated aerogels containing gold and silver nanoparticles. Because the dielectric constant of the metal particles is linked to that of the host matrix at the surface plasmon resonance, any change 'in the dielectric constant of the material surrounding the metal nanoparticles results in a shift in the surface plasmon wavelength. During gelation the surface plasmon resonance shifts to the red as the average or effective dielectric constant of the matrix increases. Conversely, formation of an aerogel or xerogel through supercritical extraction or evaporation of the solvent produces a blue shift in the resonance indicating a decrease in the dielectric constant of the matrix. From the magnitude of this shift we deduce the average fraction of air and of silica in contact with the metal particles. The surface area of metal available for catalytic gas reaction may thus be determined.

  20. Non-Gold Base Dental Casting Alloys. Volume 2. Porcelain-Fused-to-Metal Alloys.

    DTIC Science & Technology

    1986-08-01

    of the tooth . At the same time, enamel porcelains can be applied from the incisal one-third, through the middle one-third, and be subtly blended into...alumina (aluminum oxide) in a glass matrix. 1 Natural tooth color and opacification are obtained by the addition of metallic oxides to the porcelain...are classified as opaque, dentin (or body), and enamel (or incisal) porcelain powders with numerous color concentrates, such s opaque and dentin color

  1. Metal Matrix Laminate Tailoring (MMLT) code: User's manual

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Morel, M. R.; Saravanos, D. A.

    1993-01-01

    The User's Manual for the Metal Matrix Laminate Tailoring (MMLT) program is presented. The code is capable of tailoring the fabrication process, constituent characteristics, and laminate parameters (individually or concurrently) for a wide variety of metal matrix composite (MMC) materials, to improve the performance and identify trends or behavior of MMC's under different thermo-mechanical loading conditions. This document is meant to serve as a guide in the use of the MMLT code. Detailed explanations of the composite mechanics and tailoring analysis are beyond the scope of this document, and may be found in the references. MMLT was developed by the Structural Mechanics Branch at NASA Lewis Research Center (LeRC).

  2. Maximum entropy formalism for the analytic continuation of matrix-valued Green's functions

    NASA Astrophysics Data System (ADS)

    Kraberger, Gernot J.; Triebl, Robert; Zingl, Manuel; Aichhorn, Markus

    2017-10-01

    We present a generalization of the maximum entropy method to the analytic continuation of matrix-valued Green's functions. To treat off-diagonal elements correctly based on Bayesian probability theory, the entropy term has to be extended for spectral functions that are possibly negative in some frequency ranges. In that way, all matrix elements of the Green's function matrix can be analytically continued; we introduce a computationally cheap element-wise method for this purpose. However, this method cannot ensure important constraints on the mathematical properties of the resulting spectral functions, namely positive semidefiniteness and Hermiticity. To improve on this, we present a full matrix formalism, where all matrix elements are treated simultaneously. We show the capabilities of these methods using insulating and metallic dynamical mean-field theory (DMFT) Green's functions as test cases. Finally, we apply the methods to realistic material calculations for LaTiO3, where off-diagonal matrix elements in the Green's function appear due to the distorted crystal structure.

  3. Low-temperature fabrication of alkali metal-organic charge transfer complexes on cotton textile for optoelectronics and gas sensing.

    PubMed

    Ramanathan, Rajesh; Walia, Sumeet; Kandjani, Ahmad Esmaielzadeh; Balendran, Sivacarendran; Mohammadtaheri, Mahsa; Bhargava, Suresh Kumar; Kalantar-zadeh, Kourosh; Bansal, Vipul

    2015-02-03

    A generalized low-temperature approach for fabricating high aspect ratio nanorod arrays of alkali metal-TCNQ (7,7,8,8-tetracyanoquinodimethane) charge transfer complexes at 140 °C is demonstrated. This facile approach overcomes the current limitation associated with fabrication of alkali metal-TCNQ complexes that are based on physical vapor deposition processes and typically require an excess of 800 °C. The compatibility of soft substrates with the proposed low-temperature route allows direct fabrication of NaTCNQ and LiTCNQ nanoarrays on individual cotton threads interwoven within the 3D matrix of textiles. The applicability of these textile-supported TCNQ-based organic charge transfer complexes toward optoelectronics and gas sensing applications is established.

  4. Alkali metal-refractory metal biphase electrode for AMTEC

    NASA Technical Reports Server (NTRS)

    Williams, Roger M. (Inventor); Bankston, Clyde P. (Inventor); Cole, Terry (Inventor); Khanna, Satish K. (Inventor); Jeffries-Nakamura, Barbara (Inventor); Wheeler, Bob L. (Inventor)

    1989-01-01

    An electrode having increased output with slower degradation is formed of a film applied to a beta-alumina solid electrolyte (BASE). The film comprises a refractory first metal M.sup.1 such as a platinum group metal, suitably platinum or rhodium, capable of forming a liquid or a strong surface adsorption phase with sodium at the operating temperature of an alkali metal thermoelectric converter (AMTEC) and a second refractory metal insoluble in sodium or the NaM.sup.1 liquid phase such as a Group IVB, VB or VIB metal, suitably tungsten, molybdenum, tantalum or niobium. The liquid phase or surface film provides fast transport through the electrode while the insoluble refractory metal provides a structural matrix for the electrode during operation. A trilayer structure that is stable and not subject to deadhesion comprises a first, thin layer of tungsten, an intermediate co-deposited layer of tungsten-platinum and a thin surface layer of platinum.

  5. Ionic liquid-based extraction followed by graphite-furnace atomic absorption spectrometry for the determination of trace heavy metals in high-purity iron metal.

    PubMed

    Matsumiya, Hiroaki; Kato, Tatsuya; Hiraide, Masataka

    2014-02-01

    The analysis of high-purity materials for trace impurities is an important and challenging task. The present paper describes a facile and sensitive method for the determination of trace heavy metals in high-purity iron metal. Trace heavy metals in an iron sample solution were rapidly and selectively preconcentrated by the extraction into a tiny volume of an ionic liquid [1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide] for the determination by graphite-furnace atomic absorption spectrometry (GFAAS). A nitrogen-donating neutral ligand, 2,4,6-tris(2-pyridyl)-1,3,5-triazine (TPTZ), was found to be effective in the ionic liquid-based selective extraction, allowing the nearly complete (~99.8%) elimination of the iron matrix. The combination with the optimized GFAAS was successful. The detectability reached sub-μg g(-1) levels in iron metal. The novel use of TPTZ in ionic liquid-based extraction followed by GFAAS was successfully applied to the determination of traces of Co, Ni, Cu, Cd, and Pb in certified reference materials for high-purity iron metal. © 2013 Published by Elsevier B.V.

  6. Diamond like carbon nanocomposites with embedded metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Tamulevičius, Sigitas; Meškinis, Šarūnas; Tamulevičius, Tomas; Rubahn, Horst-Günter

    2018-02-01

    In this work we present an overview on structure formation, optical and electrical properties of diamond like carbon (DLC) based metal nanocomposites deposited by reactive magnetron sputtering and treated by plasma and laser ablation methods. The influence of deposition mode and other technological conditions on the properties of the nanosized filler, matrix components and composition were studied systematically in relation to the final properties of the nanocomposites. Applications of the nanocomposites in the development of novel biosensors combining resonance response of wave guiding structures in DLC based nanocomposites as well as plasmonic effects are also presented.

  7. Feasibility of producing cast-refractory metal-fiber superalloy composites

    NASA Technical Reports Server (NTRS)

    Mcintyre, R. D.

    1973-01-01

    A study was conducted to evaluate the feasibility of direct casting as a practical method for producing cast superalloy tungsten or columbium alloy fiber composites while retaining a high percentage of fiber strength. Fourteen nickel base, four cobalt, and three iron based matrices were surveyed for their degree of reaction with the metal fibers. Some stress-rupture results were obtained at temperatures of 760, 816, 871, and 1093 C for a few composite systems. The feasibility of producing acceptable composites of some cast nickel, cobalt, and iron matrix alloys with tungsten or columbium alloy fibers was demonstrated.

  8. Qualitative and quantitative metals liberation assessment for characterization of various waste printed circuit boards for recycling.

    PubMed

    Priya, Anshu; Hait, Subrata

    2017-12-01

    Metals liberation and composition are decisive attributes in characterization of e-waste for metal recycling. Though end-of-life printed circuit board (PCB) is an integral part of e-waste as secondary resource reservoir, yet no standardized procedure exists for metals liberation and dissolution for its characterization. Thus, the paper aims at assessment of metals liberation upon comminution employing scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) followed by comparative assessment of the existing United States Environmental Protection Agency (USEPA) digestion procedures, viz., USEPA 3050B, USEPA 3051A, and USEPA 3052, in effective dissolution of metals from comminuted particles of waste PCBs of computer, laptop, mobile phone, and television. Effect of comminution and digestion conditions was assessed to have significant role in metal liberation and dissolution from PCBs. The SEM-EDS analysis demonstrated partial release of metals from the silica matrix of PCBs. The USEPA digestion methods showed statistically significant (P < 0.05) difference with greater dissolution of metals complexed to PCB matrix by the USEPA 3052 method owing to use of strong acid like hydrofluoric acid. Base metals like Cu and Zn and toxic metals such as Pb and Cd were present in abundance in PCBs and in general exceeded the total threshold limit concentration (TTLC). The maximum contents of Cu (20.13 ± 0.04 wt.%) and Zn (1.89 ± 0.05 wt.%) in laptop PCBs, Pb (2.26 ± 0.08 wt.%) in TV PCBs, and Cd (0.0812 ± 0.0008 wt.%) in computer PCBs were observed.

  9. Machine learning reveals orbital interaction in materials

    NASA Astrophysics Data System (ADS)

    Lam Pham, Tien; Kino, Hiori; Terakura, Kiyoyuki; Miyake, Takashi; Tsuda, Koji; Takigawa, Ichigaku; Chi Dam, Hieu

    2017-12-01

    We propose a novel representation of materials named an 'orbital-field matrix (OFM)', which is based on the distribution of valence shell electrons. We demonstrate that this new representation can be highly useful in mining material data. Experimental investigation shows that the formation energies of crystalline materials, atomization energies of molecular materials, and local magnetic moments of the constituent atoms in bimetal alloys of lanthanide metal and transition-metal can be predicted with high accuracy using the OFM. Knowledge regarding the role of the coordination numbers of the transition-metal and lanthanide elements in determining the local magnetic moments of the transition-metal sites can be acquired directly from decision tree regression analyses using the OFM.

  10. Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa.

    PubMed

    Harrison, Joe J; Turner, Raymond J; Ceri, Howard

    2005-07-01

    In this study, we examined Pseudomonas aeruginosa ATCC 27853 biofilm and planktonic cell susceptibility to metal cations. The minimum inhibitory concentration (MIC), the minimum bactericidal concentration (MBC) required to eradicate 100% of the planktonic population (MBC 100), and the minimum biofilm eradication concentration (MBEC) were determined using the MBEC trade mark-high throughput assay. Six metals - Co(2+), Ni(2+), Cu(2+), Zn(2+), Al(3+) and Pb(2+)- were each tested at 2, 4, 6, 8, 10 and 27 h of exposure to biofilm and planktonic cultures grown in rich or minimal media. With 2 or 4 h of exposure, biofilms were approximately 2-25 times more tolerant to killing by metal cations than the corresponding planktonic cultures. However, by 27 h of exposure, biofilm and planktonic bacteria were eradicated at approximately the same concentration in every instance. Viable cell counts evaluated at 2 and 27 h of exposure revealed that at high concentrations, most of the metals assayed had killed greater than 99.9% of biofilm and planktonic cell populations. The surviving cells were propogated in vitro and gave rise to biofilm and planktonic cultures with normal sensitivity to metals. Further, retention of copper by the biofilm matrix was investigated using the chelator sodium diethlydithiocarbamate. Formation of visible brown metal-chelates in biofilms treated with Cu(2+) suggests that the biofilm matrix may coordinate and sequester metal cations from the aqueous surroundings. Overall, our data suggest that both metal sequestration in the biofilm matrix and the presence of a small population of 'persister' cells may be contributing factors in the time-dependent tolerance of both planktonic cells and biofilms to high concentrations of metal cations.

  11. Tribology of Polymer Matrix Composites (PMCs) Fabricated by Additive Manufacturing (AM)

    NASA Technical Reports Server (NTRS)

    Gupta, S.; Dunnigan, R.; Salem, A.; Kuentz, L.; Halbig, M. C.; Singh, M.

    2016-01-01

    The integral process of depositing thin layers of material, one after another, until the designed component is created is collectively referred to as Additive Manufacturing (AM). Fused deposition process (FDP) is a type of AM where feedstock is extruded into filaments which then are deposited by 3D printing, and the solidification occurs during cooling of the melt. Currently, complex structures are being fabricated by commercial and open source desktop 3D printers. Recently, metal powder containing composite filaments based on polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) have emerged, which could be utilized for multifunctional applications. For further deployment in the field, especially for aerospace and ground-based applications, it is critical to understand the tribological behavior of 3D printed materials. In this presentation, we will report the tribological behavior of different polymer matrix composites fabricated by fused deposition process. These results will be compared with the base polymer systems. During this study, the tribological behavior of all the samples will be evaluated with tab-on-disc method and compared for different metallic powder reinforcements.

  12. Structure and Compressive Properties of Invar-Cenosphere Syntactic Foams.

    PubMed

    Luong, Dung; Lehmhus, Dirk; Gupta, Nikhil; Weise, Joerg; Bayoumi, Mohamed

    2016-02-18

    The present study investigates the mechanical performance of syntactic foams produced by means of the metal powder injection molding process having an Invar (FeNi36) matrix and including cenospheres as hollow particles at weight fractions (wt.%) of 5 and 10, respectively, corresponding to approximately 41.6 and 60.0 vol.% in relation to the metal content and at 0.6 g/cm³ hollow particle density. The synthesis process results in survival of cenospheres and provides low density syntactic foams. The microstructure of the materials is investigated as well as the mechanical performance under quasi-static and high strain rate compressive loads. The compressive stress-strain curves of syntactic foams reveal a continuous strain hardening behavior in the plastic region, followed by a densification region. The results reveal a strain rate sensitivity in cenosphere-based Invar matrix syntactic foams. Differences in properties between cenosphere- and glass microsphere-based materials are discussed in relation to the findings of microstructural investigations. Cenospheres present a viable choice as filler material in iron-based syntactic foams due to their higher thermal stability compared to glass microspheres.

  13. NiTi-Enabled Composite Design for Exceptional Performances

    DOE PAGES

    Shao, Yang; Guo, Fangmin; Ren, Yang; ...

    2017-03-08

    In an effort to further develop shape memory alloys (SMAs) for functional applications, much focus has been given in recent years to design and create innovative forms of SMAs, such as functionally graded SMAs, architecture SMAs, and SMA-based metallic composites. Here, we reports on the progress in creating NiTi-based composites of exceptional properties stimulated by the recent discovery of the principle of lattice strain matching between the SMA matrix and superelastic nanoinclusions embedded in the matrix. And based on this principle, different SMA–metal composites have been designed to achieve extraordinary shape memory performances, such as complete pseudoelastic behavior at asmore » low as 77 K and stress plateau as high as 1600 MPa, and exceptional mechanical properties, such as tensile strength as high as 2000 MPa and Young’s modulus as low as 28 GPa. Details are given for a NiTi–W micro-fiber composite prepared by melt infiltration, hot pressing, forging, and cold rolling. Furthermore, the composite contained 63% in volume of W micro-fibers of ~0.6 μm thickness. In situ synchrotron X-ray diffraction revealed that the NiTi matrix underwent martensite transformation during tensile deformation while the W micro-fiber deformed elastically with a maximum strain of 0.83% in the loading direction, implying a W fiber stress of 3280 MPa. The composite showed a maximum high tensile strength of 2300 MPa.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Yang; Guo, Fangmin; Ren, Yang

    In an effort to further develop shape memory alloys (SMAs) for functional applications, much focus has been given in recent years to design and create innovative forms of SMAs, such as functionally graded SMAs, architecture SMAs, and SMA-based metallic composites. Here, we reports on the progress in creating NiTi-based composites of exceptional properties stimulated by the recent discovery of the principle of lattice strain matching between the SMA matrix and superelastic nanoinclusions embedded in the matrix. And based on this principle, different SMA–metal composites have been designed to achieve extraordinary shape memory performances, such as complete pseudoelastic behavior at asmore » low as 77 K and stress plateau as high as 1600 MPa, and exceptional mechanical properties, such as tensile strength as high as 2000 MPa and Young’s modulus as low as 28 GPa. Details are given for a NiTi–W micro-fiber composite prepared by melt infiltration, hot pressing, forging, and cold rolling. Furthermore, the composite contained 63% in volume of W micro-fibers of ~0.6 μm thickness. In situ synchrotron X-ray diffraction revealed that the NiTi matrix underwent martensite transformation during tensile deformation while the W micro-fiber deformed elastically with a maximum strain of 0.83% in the loading direction, implying a W fiber stress of 3280 MPa. The composite showed a maximum high tensile strength of 2300 MPa.« less

  15. Analysis of four toxic metals in a single rice seed by matrix solid phase dispersion -inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    He, Xiufen; Chen, Lixia; Chen, Xin; Yu, Huamei; Peng, Lixu; Han, Bingjun

    2016-12-01

    Toxic metals in rice pose great risks to human health. Metal bioaccumulation in rice grains is a criterion of breeding. Rice breeding requires a sensitive method to determine metal content in single rice grains to assist the variety selection. In the present study, four toxic metals of arsenic (As), cadmium (Cd), chromium (Cr) and lead (Pb) in a single rice grain were determined by a simple and rapid method. The developed method is based on matrix solid phase dispersion using multi-wall carbon nanotubes (MWCNTs) as dispersing agent and analyzed by inductively coupled plasma mass spectrometry. The experimental parameters were systematically investigated. The limits of detection (LOD) were 5.0, 0.6, 10 and 2.1 ng g-1 for As, Cd, Cr, and Pb, respectively, with relative standard deviations (n = 6) of <7.7%, demonstrating the good sensitivity and precision of the method. The results of 30 real world rice samples analyzed by this method agreed well with those obtained by the standard microwave digestion. The amount of sample required was reduced approximately 100 fold in comparison with the microwave digestion. The method has a high application potential for other sample matrices and elements with high sensitivity and sample throughput.

  16. Analysis of four toxic metals in a single rice seed by matrix solid phase dispersion -inductively coupled plasma mass spectrometry.

    PubMed

    He, Xiufen; Chen, Lixia; Chen, Xin; Yu, Huamei; Peng, Lixu; Han, Bingjun

    2016-12-06

    Toxic metals in rice pose great risks to human health. Metal bioaccumulation in rice grains is a criterion of breeding. Rice breeding requires a sensitive method to determine metal content in single rice grains to assist the variety selection. In the present study, four toxic metals of arsenic (As), cadmium (Cd), chromium (Cr) and lead (Pb) in a single rice grain were determined by a simple and rapid method. The developed method is based on matrix solid phase dispersion using multi-wall carbon nanotubes (MWCNTs) as dispersing agent and analyzed by inductively coupled plasma mass spectrometry. The experimental parameters were systematically investigated. The limits of detection (LOD) were 5.0, 0.6, 10 and 2.1 ng g -1 for As, Cd, Cr, and Pb, respectively, with relative standard deviations (n = 6) of <7.7%, demonstrating the good sensitivity and precision of the method. The results of 30 real world rice samples analyzed by this method agreed well with those obtained by the standard microwave digestion. The amount of sample required was reduced approximately 100 fold in comparison with the microwave digestion. The method has a high application potential for other sample matrices and elements with high sensitivity and sample throughput.

  17. Fabrication of cast particle-reinforced metals via pressure infiltration

    NASA Technical Reports Server (NTRS)

    Klier, E. M.; Mortensen, A.; Cornie, J. A.; Flemings, M. C.

    1991-01-01

    A new casting process for fabrication of particle-reinforced metals is presented whereby a composite of particulate reinforcing phase in metal is first produced by pressure infiltration. This composite is then diluted in additional molten metal to obtain the desired reinforcement volume fraction and metal composition. This process produces a pore-free as-cast particulate metal-matrix composite. This process is demonstrated for fabrication of magnesium-matrix composites containing SiC reinforcements of average diameter 30, 10 and 3 microns. It is compared with the compocasting process, which was investigated as well for similar SiC particles in Mg-10 wt pct Al, and resulted in unacceptable levels of porosity in the as-cast composite.

  18. Selective enrichment of metal-binding proteins based on magnetic core/shell microspheres functionalized with metal cations.

    PubMed

    Fang, Caiyun; Zhang, Lei; Zhang, Xiaoqin; Lu, Haojie

    2015-06-21

    Metal binding proteins play many important roles in a broad range of biological processes. Characterization of metal binding proteins is important for understanding their structure and biological functions, thus leading to a clear understanding of metal associated diseases. The present study is the first to investigate the effectiveness of magnetic microspheres functionalized with metal cations (Ca(2+), Cu(2+), Zn(2+) and Fe(3+)) as the absorbent matrix in IMAC technology to enrich metal containing/binding proteins. The putative metal binding proteins in rat liver were then globally characterized by using this strategy which is very easy to handle and can capture a number of metal binding proteins effectively. In total, 185 putative metal binding proteins were identified from rat liver including some known less abundant and membrane-bound metal binding proteins such as Plcg1, Acsl5, etc. The identified proteins are involved in many important processes including binding, catalytic activity, translation elongation factor activity, electron carrier activity, and so on.

  19. Corrosion of Graphite Aluminum Metal Matrix Composites

    DTIC Science & Technology

    1991-02-01

    cathodic protection of G/AI MMCs resulted in overprotection 13. Overprotection resulted from a local increase in pH near cathodic sites during...34Cathodic Overprotection of SiC/6061-T6 and G/6061- T6 Aluminum Alloy Metal Matrix Composites," Scripta Metallurgica, 22 (1988) 413-418. 14. R

  20. Spartan Auxiliary Mount Panel (SPAM): A Metal Matrix Composite Honeycomb Panel for Space Flight Use

    NASA Technical Reports Server (NTRS)

    Segal, Kenneth N.; Stevens, Edward J.

    1998-01-01

    This presentation focus on the use of metal matrix composite (MMC) material option in spaceflight hardware applications. It addresses the important questions and issues such as: what is SPAM; why the use of MMC; design requirements and flexibility; qualification testing; and flight concerns.

  1. Surface functionalization of metal organic frameworks for mixed matrix membranes

    DOEpatents

    Albenze, Erik; Lartey, Michael; Li, Tao; Luebke, David R.; Nulwala, Hunaid B.; Rosi, Nathaniel L.; Venna, Surendar R.

    2017-03-21

    Mixed Matrix Membrane (MMM) are composite membranes for gas separation and comprising a quantity of inorganic filler particles, in particular metal organic framework (MOF), dispersed throughout a polymer matrix comprising one or more polymers. This disclosure is directed to MOF functionalized through addition of a pendant functional group to the MOF, in order to improve interaction with a surrounding polymer matrix in a MMM. The improved interaction aids in avoiding defects in the MMM due to incompatible interfaces between the polymer matrix and the MOF particle, in turn increasing the mechanical and gas separation properties of the MMM. The disclosure is also directed to a MMM incorporating the surface functionalized MOF.

  2. The effect of process parameters in Aluminum Metal Matrix Composites with Powder Metallurgy

    NASA Astrophysics Data System (ADS)

    Vani, Vemula Vijaya; Chak, Sanjay Kumar

    2018-06-01

    Metal Matrix Composites are developed in recent years as an alternative over conventional engineering materials due to their improved properties. Among all, Aluminium Matrix Composites (AMCs) are increasing their demand due to low density, high strength-to-weight ratio, high toughness, corrosion resistance, higher stiffness, improved wear resistance, increased creep resistance, low co-efficient of thermal expansion, improved high temperature properties. Major applications of these materials have been in aerospace, automobile, military. There are different processing techniques for the fabrication of AMCs. Powder metallurgy is a one of the most promising and versatile routes for fabrication of particle reinforced AMCs as compared to other manufacturing methods. This method ensures the good wettability between matrix and reinforcement, homogeneous microstructure of the fabricated MMC, and prevents the formation of any undesirable phases. This article addresses mainly on the effect of process parameters like sintering time, temperature and particle size on the microstructure of aluminum metal matrix composites.

  3. Hydrogen transport membranes

    DOEpatents

    Mundschau, Michael V.

    2005-05-31

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  4. Interphase layer optimization for metal matrix composites with fabrication considerations

    NASA Technical Reports Server (NTRS)

    Morel, M.; Saravanos, D. A.; Chamis, C. C.

    1991-01-01

    A methodology is presented to reduce the final matrix microstresses for metal matrix composites by concurrently optimizing the interphase characteristics and fabrication process. Application cases include interphase tailoring with and without fabrication considerations for two material systems, graphite/copper and silicon carbide/titanium. Results indicate that concurrent interphase/fabrication optimization produces significant reductions in the matrix residual stresses and strong coupling between interphase and fabrication tailoring. The interphase coefficient of thermal expansion and the fabrication consolidation pressure are the most important design parameters and must be concurrently optimized to further reduce the microstresses to more desirable magnitudes.

  5. Binary synaptic connections based on memory switching in a-Si:H for artificial neural networks

    NASA Technical Reports Server (NTRS)

    Thakoor, A. P.; Lamb, J. L.; Moopenn, A.; Khanna, S. K.

    1987-01-01

    A scheme for nonvolatile associative electronic memory storage with high information storage density is proposed which is based on neural network models and which uses a matrix of two-terminal passive interconnections (synapses). It is noted that the massive parallelism in the architecture would require the ON state of a synaptic connection to be unusually weak (highly resistive). Memory switching using a-Si:H along with ballast resistors patterned from amorphous Ge-metal alloys is investigated for a binary programmable read only memory matrix. The fabrication of a 1600 synapse test array of uniform connection strengths and a-Si:H switching elements is discussed.

  6. Processable polyimide adhesive and matrix composite resin

    NASA Technical Reports Server (NTRS)

    Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Progar, Donald J. (Inventor)

    1990-01-01

    A high temperature polyimide composition prepared by reacting 4,4'-isophthaloyldiphthalic anhydride with metaphenylenediamine is employed to prepare matrix resins, adhesives, films, coatings, moldings, and laminates, especially those showing enhanced flow with retention of mechanical and adhesive properties. It can be used in the aerospace industry, for example, in joining metals to metals or metals to composite structures. One area of application is in the manufacture of lighter and stronger aircraft and spacecraft structures.

  7. Functionalized gold nanoparticles as additive to form polymer/metal composite matrix for improved DNA sequencing by capillary electrophoresis.

    PubMed

    Zhou, Dan; Yang, Liping; Yang, Runmiao; Song, Weihua; Peng, Shuhua; Wang, Yanmei

    2009-11-15

    A new matrix additive, poly (N,N-dimethylacrylamide)-functionalized gold nanoparticle (GNP-PDMA), was prepared by "grafting-to" approach, and then incorporated into quasi-interpenetrating network (quasi-IPN) composed of linear polyacrylamide (LPA, 3.3 MDa) and PDMA to form novel polymer/metal composite sieving matrix (quasi-IPN/GNP-PDMA) for DNA sequencing by capillary electrophoresis. Without complete optimization, quasi-IPN/GNP-PDMA yielded a readlength of 801 bases at 98% accuracy in about 64 min by using the ABI 310 Genetic Analyzer at 50 degrees C and 150 V/cm. Compared with previous quasi-IPN/GNPs, quasi-IPN/GNP-PDMA can further improve DNA sequencing performances. This is because the presence of GNP-PDMA can improve the compatibility of GNPs with the whole sequencing system, enhance the entanglement degree of networks, and increase the GNP concentration in system, which consequently lead to higher restriction and stability, higher apparent molecular weight (MW), and smaller pore size of the total sieving networks. Furthermore, the composite matrix was also compared with quasi-IPN containing higher-MW LPA and commercial POP-6. The results indicate that the composite matrix is a promising one for DNA sequencing to achieve full automation due to the separation provided with high resolution, speediness, excellent reproducibility, and easy loading in the presence of GNP-PDMA.

  8. Physical Training Methods For Mine Rescuers In 2015

    NASA Astrophysics Data System (ADS)

    Marin, Laurentiu; Pavel, Topala; Marin, Catalina Daniela; Sandu, Teodor

    2015-07-01

    Research and development activities presented were aimed at obtaining a nanocomposite polyurethane matrix with special anti-wear, anti-slip and fire-resistant properties. Research and development works were materialized by obtaining polyurethane nanocomposite matrix, by its physico-chemical modification in order to give the desired technological properties and by characterization of the obtained material. Polyurethane nanocomposite matrix was obtained by reacting a PETOL 3 type polyetherpolyol (having a molecular weight of 5000 UAM) with a diisocyanate under well-established reaction conditions. Target specific technological properties were obtained by physical and chemical modification of polyurethane nanocomposite matrix. The final result was getting a pellicle material based on modified nanocomposite polyurethane, with anti-wear, anti-slip and fire-resistant properties, compatible with most substrates encountered in civil and industrial construction: wood, concrete, metal.

  9. Shock Wave Response of Iron-based In Situ Metallic Glass Matrix Composites

    PubMed Central

    Khanolkar, Gauri R.; Rauls, Michael B.; Kelly, James P.; Graeve, Olivia A.; Hodge, Andrea M.; Eliasson, Veronica

    2016-01-01

    The response of amorphous steels to shock wave compression has been explored for the first time. Further, the effect of partial devitrification on the shock response of bulk metallic glasses is examined by conducting experiments on two iron-based in situ metallic glass matrix composites, containing varying amounts of crystalline precipitates, both with initial composition Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4. The samples, designated SAM2X5-600 and SAM2X5-630, are X-ray amorphous and partially crystalline, respectively, due to differences in sintering parameters during sample preparation. Shock response is determined by making velocity measurements using interferometry techniques at the rear free surface of the samples, which have been subjected to impact from a high-velocity projectile launched from a powder gun. Experiments have yielded results indicating a Hugoniot Elastic Limit (HEL) to be 8.58 ± 0.53 GPa for SAM2X5-600 and 11.76 ± 1.26 GPa for SAM2X5-630. The latter HEL result is higher than elastic limits for any BMG reported in the literature thus far. SAM2X5-600 catastrophically loses post-yield strength whereas SAM2X5-630, while showing some strain-softening, retains strength beyond the HEL. The presence of crystallinity within the amorphous matrix is thus seen to significantly aid in strengthening the material as well as preserving material strength beyond yielding. PMID:26932846

  10. Shock Wave Response of Iron-based In Situ Metallic Glass Matrix Composites.

    PubMed

    Khanolkar, Gauri R; Rauls, Michael B; Kelly, James P; Graeve, Olivia A; Hodge, Andrea M; Eliasson, Veronica

    2016-03-02

    The response of amorphous steels to shock wave compression has been explored for the first time. Further, the effect of partial devitrification on the shock response of bulk metallic glasses is examined by conducting experiments on two iron-based in situ metallic glass matrix composites, containing varying amounts of crystalline precipitates, both with initial composition Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4. The samples, designated SAM2X5-600 and SAM2X5-630, are X-ray amorphous and partially crystalline, respectively, due to differences in sintering parameters during sample preparation. Shock response is determined by making velocity measurements using interferometry techniques at the rear free surface of the samples, which have been subjected to impact from a high-velocity projectile launched from a powder gun. Experiments have yielded results indicating a Hugoniot Elastic Limit (HEL) to be 8.58 ± 0.53 GPa for SAM2X5-600 and 11.76 ± 1.26 GPa for SAM2X5-630. The latter HEL result is higher than elastic limits for any BMG reported in the literature thus far. SAM2X5-600 catastrophically loses post-yield strength whereas SAM2X5-630, while showing some strain-softening, retains strength beyond the HEL. The presence of crystallinity within the amorphous matrix is thus seen to significantly aid in strengthening the material as well as preserving material strength beyond yielding.

  11. Formation and characterization of metallic iron grains in coal-based reduction of oolitic iron ore

    NASA Astrophysics Data System (ADS)

    Sun, Yong-sheng; Han, Yue-xin; Li, Yan-feng; Li, Yan-jun

    2017-02-01

    To reveal the formation and characteristics of metallic iron grains in coal-based reduction, oolitic iron ore was isothermally reduced in various reduction times at various reduction temperatures. The microstructure and size of the metallic iron phase were investigated by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and a Bgrimm process mineralogy analyzer. In the results, the reduced Fe separates from the ore and forms metallic iron protuberances, and then the subsequent reduced Fe diffuses to the protuberances and grows into metallic iron grains. Most of the metallic iron grains exist in the quasi-spherical shape and inlaid in the slag matrix. The cumulative frequency of metallic iron grain size is markedly influenced by both reduction time and temperature. With increasing reduction temperature and time, the grain size of metallic iron obviously increases. According to the classical grain growth equation, the growth kinetic parameters, i.e., time exponent, growth activation energy, and pre-exponential constant, are estimated to be 1.3759 ± 0.0374, 103.18 kJ·mol-1, and 922.05, respectively. Using these calculated parameters, a growth model is established to describe the growth behavior of metallic iron grains.

  12. Monitoring the fracture behavior of metal matrix composites by combined NDE methodologies

    NASA Astrophysics Data System (ADS)

    Kordatos, E. Z.; Exarchos, D. A.; Mpalaskas, A. C.; Matikas, T. E.

    2015-03-01

    Current work deals with the non-destructive evaluation (NDE) of the fatigue behavior of metal matrix composites (MMCs) materials using Infrared Thermography (IRT) and Acoustic Emission (AE). AE monitoring was employed to record a wide spectrum of cracking events enabling the characterization of the severity of fracture in relation to the applied load. IR thermography as a non-destructive, real-time and non-contact technique, allows the detection of heat waves generated by the thermo-mechanical coupling during mechanical loading of the sample. In this study an IR methodology, based on the monitoring of the intrinsically dissipated energy, was applied for the determination of the fatigue limit of A359/SiCp composites. The thermographic monitoring is in agreement with the AE results enabling the reliable monitoring of the MMCs' fatigue behavior.

  13. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating.

    PubMed

    Liang, Zheng; Lin, Dingchang; Zhao, Jie; Lu, Zhenda; Liu, Yayuan; Liu, Chong; Lu, Yingying; Wang, Haotian; Yan, Kai; Tao, Xinyong; Cui, Yi

    2016-03-15

    Lithium metal-based battery is considered one of the best energy storage systems due to its high theoretical capacity and lowest anode potential of all. However, dendritic growth and virtually relative infinity volume change during long-term cycling often lead to severe safety hazards and catastrophic failure. Here, a stable lithium-scaffold composite electrode is developed by lithium melt infusion into a 3D porous carbon matrix with "lithiophilic" coating. Lithium is uniformly entrapped on the matrix surface and in the 3D structure. The resulting composite electrode possesses a high conductive surface area and excellent structural stability upon galvanostatic cycling. We showed stable cycling of this composite electrode with small Li plating/stripping overpotential (<90 mV) at a high current density of 3 mA/cm(2) over 80 cycles.

  14. Innovative cellular distance structures from polymeric and metallic threads

    NASA Astrophysics Data System (ADS)

    Wieczorek, F.; Trümper, W.; Cherif, C.

    2017-10-01

    Knitting allows a high individual adaptability of the geometry and properties of flat-knitted spacer fabrics. This offers advantages for the specific adjustment of the mechanical properties of innovative composites based on highly viscous matrix systems such as bone cement, elastomer or foam and cellular reinforcing structures made from e. g. polymeric monofilaments or metallic wires. The prerequisite is the availability of binding solutions for highly productive production of functional, cellular, self-stabilized spacer flat knitted fabrics as supporting and functionalized structures.

  15. Antimicrobial Polymers with Metal Nanoparticles

    PubMed Central

    Palza, Humberto

    2015-01-01

    Metals, such as copper and silver, can be extremely toxic to bacteria at exceptionally low concentrations. Because of this biocidal activity, metals have been widely used as antimicrobial agents in a multitude of applications related with agriculture, healthcare, and the industry in general. Unlike other antimicrobial agents, metals are stable under conditions currently found in the industry allowing their use as additives. Today these metal based additives are found as: particles, ions absorbed/exchanged in different carriers, salts, hybrid structures, etc. One recent route to further extend the antimicrobial applications of these metals is by their incorporation as nanoparticles into polymer matrices. These polymer/metal nanocomposites can be prepared by several routes such as in situ synthesis of the nanoparticle within a hydrogel or direct addition of the metal nanofiller into a thermoplastic matrix. The objective of the present review is to show examples of polymer/metal composites designed to have antimicrobial activities, with a special focus on copper and silver metal nanoparticles and their mechanisms. PMID:25607734

  16. METCAN: The metal matrix composite analyzer

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale A.; Murthy, Pappu L. N.

    1988-01-01

    Metal matrix composites (MMC) are the subject of intensive study and are receiving serious consideration for critical structural applications in advanced aerospace systems. MMC structural analysis and design methodologies are studied. Predicting the mechanical and thermal behavior and the structural response of components fabricated from MMC requires the use of a variety of mathematical models. These models relate stresses to applied forces, stress intensities at the tips of cracks to nominal stresses, buckling resistance to applied force, or vibration response to excitation forces. The extensive research in computational mechanics methods for predicting the nonlinear behavior of MMC are described. This research has culminated in the development of the METCAN (METal Matrix Composite ANalyzer) computer code.

  17. Combined-load buckling behavior of metal-matrix composite sandwich panels under different thermal environments

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Jackson, Raymond H.

    1991-01-01

    Combined compressive and shear buckling analysis was conducted on flat rectangular sandwich panels with the consideration of transverse shear effects of the core. The sandwich panel is fabricated with titanium honeycomb core and laminated metal matrix composite face sheets. The results show that the square panel has the highest combined load buckling strength, and that the buckling strength decreases sharply with the increases of both temperature and panel aspect ratio. The effect of layup (fiber orientation) on the buckling strength of the panels was studied in detail. The metal matrix composite sandwich panel was much more efficient than the sandwich panel with nonreinforced face sheets and had the same specific weight.

  18. Thermal expansion behavior of LDEF metal matrix composites

    NASA Technical Reports Server (NTRS)

    Le, T. D.; Steckel, G. L.

    1992-01-01

    The effects of the space environment on the thermal expansion stability of metal matrix composites (graphite/Al and graphite/Mg) will be presented. A sample from each category of metal matrix composites mounted on the leading and trailing edge was chosen for analysis of the temperature-time-thermal strain histories. Typical thermal expansion curves over the same range of temperature were selected at the beginning, mid, and end of the recording duration. The thermal expansion of selected post-flight LDEF samples were measured over the same range of temperature in the laboratory using a Michelson laser interferometer. The thermal strains were monitored concurrently with a laser interferometer and a mounted strain gage.

  19. Metal hydride composition and method of making

    DOEpatents

    Congdon, James W.

    1995-01-01

    A dimensionally stable hydride composition and a method for making such a composition. The composition is made by forming particles of a metal hydride into porous granules, mixing the granules with a matrix material, forming the mixture into pellets, and sintering the pellets in the absence of oxygen. The ratio of matrix material to hydride is preferably between approximately 2:1 and 4:1 by volume. The porous structure of the granules accommodates the expansion that occurs when the metal hydride particles absorb hydrogen. The porous matrix allows the flow of hydrogen therethrough to contact the hydride particles, yet supports the granules and contains the hydride fines that result from repeated absorption/desorption cycles.

  20. Investigations on Mechanical Behaviour of Micro Graphite Particulates Reinforced Al-7Si Alloy Composites

    NASA Astrophysics Data System (ADS)

    Nagaraj, N.; Mahendra, K. V.; Nagaral, Madeva

    2018-02-01

    Micro particulates reinforced metal matrix composites are finding wide range of applications in automotive and sports equipment manufacturing industries. In the present study, an attempt has been made to develop Al-7Si-micro graphite particulates reinforced composites by using liquid melt method. 3 and 6 wt. % of micro graphite particulates were added to the Al-7Si base matrix. Microstructural characterization was done by using scanning electron microscope and energy dispersive spectroscope. Mechanical behaviour of Al-7Si-3 and 6 wt. % composites were evaluated as per ASTM standards. Scanning electron micrographs revealed the uniform distribution of micro graphite particulates in the Al-7Si alloy matrix. EDS analysis confirmed the presence of B and C elements in graphite reinforced composites. Further, it was noted that ultimate tensile and yield strength of Al-7Si alloy increased with the addition of 3 and 6wt. % of graphite particulates. Hardness of graphite reinforced composites was lesser than the base matrix.

  1. Modeling study of a proposed field calibration source using K-40 and high-Z targets for sodium iodide detectors

    DOE PAGES

    Rogers, Jeremy; Marianno, Craig; Kallenbach, Gene; ...

    2016-06-01

    Calibration sources based on the primordial isotope potassium-40 ( 40K) have reduced controls on the source’s activity due to its terrestrial ubiquity and very low specific activity. Potassium–40’s beta emissions and 1,460.8 keV gamma ray can be used to induce K-shell fluorescence x rays in high-Z metals between 60 and 80 keV. A gamma ray calibration source that uses potassium chloride salt and a high-Z metal to create a two-point calibration for a sodium iodide field gamma spectroscopy instrument is thus proposed. The calibration source was designed in collaboration with the Sandia National Laboratory using the Monte Carlo N-Particle eXtendedmore » (MCNPX) transport code. Two methods of x-ray production were explored. First, a thin high-Z layer (HZL) was interposed between the detector and the potassium chloride-urethane source matrix. Second, bismuth metal powder was homogeneously mixed with a urethane binding agent to form a potassium chloride-bismuth matrix (KBM). The bismuth-based source was selected as the development model because it is inexpensive, nontoxic, and outperforms the high-Z layer method in simulation. As a result, based on the MCNPX studies, sealing a mixture of bismuth powder and potassium chloride into a thin plastic case could provide a light, inexpensive field calibration source.« less

  2. Producing Magnesium Metallic Glass By Disintegrated Melt Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanthi, M.; Dept. of Mechanical Engineering, National University of Singapore, Singapore 117576; Gupta, M.

    Bulk metallic glasses are new class of engineering materials that exhibit high resistance to crystallization in the under cooled liquid state. The development of bulk metallic glasses of thickness 1cm or less has opened new doors for fundamental studies of both liquid state and glass transition previously not feasible in metallic materials. Moreover, bulk metallic glasses exhibit superior hardness, strength, specific strength, and elastic strain limit, along with good corrosion and wear resistance. Thus they are potential candidates in various sports, structural, engineering and medical applications. Among several BMGs investigated, magnesium-based BMGs have attracted considerable attention because of their lowmore » density and superior mechanical properties. The major drawback of this magnesium based BMGs is poor ductility. This can be overcome by the addition of ductile particles/reinforcement to the matrix. In this study, a new technique named disintegrated melt deposition technique was used to synthesize magnesium based BMGs. Rods of different sizes are cast using the current method. Mechanical characterization studies revealed that the amorphous rods produced by the current technique showed superior mechanical properties.« less

  3. Producing Magnesium Metallic Glass By Disintegrated Melt Deposition

    NASA Astrophysics Data System (ADS)

    Shanthi, M.; Gupta, M.; Jarfors, A. E. W.; Tan, M. J.

    2011-01-01

    Bulk metallic glasses are new class of engineering materials that exhibit high resistance to crystallization in the under cooled liquid state. The development of bulk metallic glasses of thickness 1cm or less has opened new doors for fundamental studies of both liquid state and glass transition previously not feasible in metallic materials. Moreover, bulk metallic glasses exhibit superior hardness, strength, specific strength, and elastic strain limit, along with good corrosion and wear resistance. Thus they are potential candidates in various sports, structural, engineering and medical applications. Among several BMGs investigated, magnesium-based BMGs have attracted considerable attention because of their low density and superior mechanical properties. The major drawback of this magnesium based BMGs is poor ductility. This can be overcome by the addition of ductile particles/reinforcement to the matrix. In this study, a new technique named disintegrated melt deposition technique was used to synthesize magnesium based BMGs. Rods of different sizes are cast using the current method. Mechanical characterization studies revealed that the amorphous rods produced by the current technique showed superior mechanical properties.

  4. Leachability of heavy metals in geopolymer-based materials synthesized from red mud and rice husk ash

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoc Thang; Pham, Vo Thi Ha Quyen; Dang, Thanh Phong; Dao, Thanh Khe

    2018-04-01

    Red mud is an industrial waste generated during aluminum production from bauxite whereas rice husk ash is an agricultural waste from burning of rice husk that could cause negative impact on the environment if not properly managed. This study demonstrates the utilization of red mud in combination with rice husk ash to form a geopolymer-based material which can be used as bricks or replacement for traditional cement materials. The focus of this study is on the leachability of heavy metals in the raw materials and the geopolymer as this would be significant in assessing the environmental impact of the product. Leachability of metals such as Cu, Zn, Cd, Pb, Fe, and Cr was evaluated based on European (EN 124572-2 EU CEN TC292/ CEN TC 308) standard with pH value 7. Results indicate that the leachability of these metals in the geopolymer matrix is lower than that of the raw materials.

  5. Scanning and Transmission Electron Microscopy of High Temperature Materials

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Software and hardware updates to further extend the capability of the electron microscope were carried out. A range of materials such as intermetallics, metal-matrix composites, ceramic-matrix composites, ceramics and intermetallic compounds, based on refractory elements were examined under this research. Crystal structure, size, shape and volume fraction distribution of various phases which constitute the microstructures were examined. Deformed materials were studied to understand the effect of interfacial microstructure on the deformation and fracture behavior of these materials. Specimens tested for a range of mechanical property requirements, such as stress rupture, creep, low cycle fatigue, high cycle fatigue, thermomechanical fatigue, etc. were examined. Microstructural and microchemical stability of these materials exposed to simulated operating environments were investigated. The EOIM Shuttle post-flight samples were also examined to understand the influence of low gravity processing on microstructure. In addition, fractographic analyses of Nb-Zr-W, titanium aluminide, molybdenum silicide and silicon carbide samples were carried out. Extensive characterization of sapphire fibers in the fiber-reinforced composites made by powder cloth processing was made. Finally, pressure infiltration casting of metal-matrix composites was carried out.

  6. Mechanical intermixing of components in (CoMoNi)-based systems and the formation of (CoMoNi)/WC nanocomposite layers on Ti sheets under ball collisions

    NASA Astrophysics Data System (ADS)

    Romankov, S.; Park, Y. C.; Shchetinin, I. V.

    2017-11-01

    Cobalt (Co), molybdenum (Mo), and nickel (Ni) components were simultaneously introduced onto titanium (Ti) surfaces from a composed target using ball collisions. Tungsten carbide (WC) balls were selected for processing as the source of a cemented carbide reinforcement phase. During processing, ball collisions continuously introduced components from the target and the grinding media onto the Ti surface and induced mechanical intermixing of the elements, resulting in formation of a complex nanocomposite structure onto the Ti surface. The as-fabricated microstructure consisted of uniformly dispersed WC particles embedded within an integrated metallic matrix composed of an amorphous phase with nanocrystalline grains. The phase composition of the alloyed layers, atomic reactions, and the matrix grain sizes depended on the combination of components introduced onto the Ti surface during milling. The as-fabricated layer exhibited a very high hardness compared to industrial metallic alloys and tool steel materials. This approach could be used for the manufacture of both cemented carbides and amorphous matrix composite layers.

  7. High capacity adsorption media and method of producing

    DOEpatents

    Tranter, Troy J.; Mann, Nicholas R.; Todd, Terry A.; Herbst, Ronald S.

    2010-10-05

    A method of producing an adsorption medium to remove at least one constituent from a feed stream. The method comprises dissolving and/or suspending at least one metal compound in a solvent to form a metal solution, dissolving polyacrylonitrile into the metal solution to form a PAN-metal solution, and depositing the PAN-metal solution into a quenching bath to produce the adsorption medium. The at least one constituent, such as arsenic, selenium, or antimony, is removed from the feed stream by passing the feed stream through the adsorption medium. An adsorption medium having an increased metal loading and increased capacity for arresting the at least one constituent to be removed is also disclosed. The adsorption medium includes a polyacrylonitrile matrix and at least one metal hydroxide incorporated into the polyacrylonitrile matrix.

  8. High capacity adsorption media and method of producing

    DOEpatents

    Tranter, Troy J [Idaho Falls, ID; Herbst, R Scott [Idaho Falls, ID; Mann, Nicholas R [Blackfoot, ID; Todd, Terry A [Aberdeen, ID

    2008-05-06

    A method of producing an adsorption medium to remove at least one constituent from a feed stream. The method comprises dissolving at least one metal compound in a solvent to form a metal solution, dissolving polyacrylonitrile into the metal solution to form a PAN-metal solution, and depositing the PAN-metal solution into a quenching bath to produce the adsorption medium. The at least one constituent, such as arsenic, selenium, or antimony, is removed from the feed stream by passing the feed stream through the adsorption medium. An adsorption medium having an increased metal loading and increased capacity for arresting the at least one constituent to be removed is also disclosed. The adsorption medium includes a polyacrylonitrile matrix and at least one metal hydroxide incorporated into the polyacrylonitrile matrix.

  9. Heat exchanger and method of making. [rocket lining

    NASA Technical Reports Server (NTRS)

    Fortini, A.; Kazaroff, J. M. (Inventor)

    1980-01-01

    A heat exchange of increased effectiveness is disclosed. A porous metal matrix is disposed in a metal chamber or between walls through which a heat-transfer fluid is directed. The porous metal matrix has internal bonds and is bonded to the chamber in order to remove all thermal contact resistance within the composite structure. Utilization of the invention in a rocket chamber is disclosed as a specific use. Also disclosed is a method of constructing the heat exchanger.

  10. NEUTRONIC REACTOR CORE

    DOEpatents

    Thomson, W.B.; Corbin, A. Jr.

    1961-07-18

    An improved core for a gas-cooled power reactor which admits gas coolant at high temperatures while affording strong integral supporting structure and efficient moderation of neutrons is described. The multiplicities of fuel elements constituting the critical amassment of fissionable material are supported and confined by a matrix of metallic structure which is interspersed therebetween. Thermal insulation is interposed between substantially all of the metallic matrix and the fuel elements; the insulation then defines the principal conduit system for conducting the coolant gas in heat-transfer relationship with the fuel elements. The metallic matrix itseif comprises a system of ducts through which an externally-cooled hydrogeneous liquid, such as water, is circulated to serve as the principal neutron moderant for the core and conjointly as the principal coolant for the insulated metallic structure. In this way, use of substantially neutron transparent metals, such as aluminum, becomes possible for the supporting structure, despite the high temperatures of the proximate gas. The Aircraft Nuclear Propulsion program's "R-1" reactor design is a preferred embodiment.

  11. Effect of metal surfaces on matrix-assisted laser desorption/ionization analyte peak intensities.

    PubMed

    Kancharla, Vidhyullatha; Bashir, Sajid; Liu, Jingbo L; Ramirez, Oscar M; Derrick, Peter J; Beran, Kyle A

    2017-10-01

    Different metal surfaces in the form of transmission electron microscope grids were examined as support surfaces in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with a view towards enhancement of peptide signal intensity. The observed enhancement between 5-fold and 20-fold relative to the normal stainless steel slide was investigated by applying the thermal desorption model for matrix-assisted laser desorption/ionization. A simple model evaluates the impact that the thermal properties of the metals have on the ion yield of the analyte. It was observed that there was not a direct, or strong, correlation between the thermal properties of the metals and the corresponding ion yield of the peptides. The effects of both fixed and variable laser irradiances versus ion yield were also examined for the respective metals studied. In all cases the use of transmission electron microscope grids required much lower laser irradiances in order to generate similar peak intensities as those observed with a stainless steel surface.

  12. Aluminum/alkaline earth metal composites and method for producing

    DOEpatents

    Russell, Alan M; Anderson, Iver E; Kim, Hyong J; Freichs, Andrew E

    2014-02-11

    A composite is provided having an electrically conducting Al matrix and elongated filaments comprising Ca and/or Sr and/or Ba disposed in the matrix and extending along a longitudinal axis of the composite. The filaments initially comprise Ca and/or Sr and/or Ba metal or allow and then may be reacted with the Al matrix to form a strengthening intermetallic compound comprising Al and Ca and/or Sr and/or Ba. The composite is useful as a long-distance, high voltage power transmission conductor.

  13. Metal matrix composite fabrication processes for high performance aerospace structures

    NASA Astrophysics Data System (ADS)

    Ponzi, C.

    A survey is conducted of extant methods of metal matrix composite (MMC) production in order to serve as a basis for prospective MMC users' selection of a matrix/reinforcement combination, cost-effective primary fabrication methods, and secondary fabrication techniques for the achievement of desired performance levels. Attention is given to the illustrative cases of structural fittings, control-surface connecting rods, hypersonic aircraft air inlet ramps, helicopter swash plates, and turbine rotor disks. Methods for technical and cost analysis modeling useful in process optimization are noted.

  14. 75 FR 52369 - Notice of Inventory Completion: Wisconsin Historical Society, Museum Division, Madison, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ... individual. The textile fragment, beads, nails, and metal fragments were enveloped inside the soil matrix... identified. The one associated funerary object is a soil matrix, which includes within it a textile fragment, trade beads, nail fragments, and metal fragments. In 2008, staff at the Madeline Island Museum located a...

  15. Simulating Microfracture In Metal-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Chamis, Christos C.; Gotsis, Pascal K.

    1994-01-01

    Computational procedures developed for simulating microfracture in metal-matrix/fiber composite materials under mechanical and/or thermal loads at ambient and high temperatures. Procedures evaluate microfracture behavior of composites, establish hierarchies and sequences of fracture modes, and examine influences of compliant layers and partial debonding on properties of composites and on initiation of microfractures in them.

  16. Polymer, metal and ceramic matrix composites for advanced aircraft engine applications

    NASA Technical Reports Server (NTRS)

    Mcdanels, D. L.; Serafini, T. T.; Dicarlo, J. A.

    1985-01-01

    Advanced aircraft engine research within NASA Lewis is being focused on propulsion systems for subsonic, supersonic, and hypersonic aircraft. Each of these flight regimes requires different types of engines, but all require advanced materials to meet their goals of performance, thrust-to-weight ratio, and fuel efficiency. The high strength/weight and stiffness/weight properties of resin, metal, and ceramic matrix composites will play an increasingly key role in meeting these performance requirements. At NASA Lewis, research is ongoing to apply graphite/polyimide composites to engine components and to develop polymer matrices with higher operating temperature capabilities. Metal matrix composites, using magnesium, aluminum, titanium, and superalloy matrices, are being developed for application to static and rotating engine components, as well as for space applications, over a broad temperature range. Ceramic matrix composites are also being examined to increase the toughness and reliability of ceramics for application to high-temperature engine structures and components.

  17. The Mukundpura meteorite, a new fall of CM chondrite

    NASA Astrophysics Data System (ADS)

    Ray, Dwijesh; Shukla, Anil D.

    2018-02-01

    Mukundpura is a new CM chondrite fell near Jaipur, Rajasthan, India on June 6, 2017 at 5:15 IST. The fall was observed by local villager. According to eyewitness, the meteorite was fragmented into several pieces once the object hit the ground. Based on petrography, mineralogy and bulk composition, Mukundpura is classified as CM2 chondrite. The chondrules are mainly similar to type I (Olivine: Fo99). Olivines are often found associated with pyroxene (Wo10-35En62-87Fs2-7) phenocryst. However, occurrences of forsteritic and fayalitic olivine (Fa58-71) as isolated mineral clast in matrix are not uncommon. Other types of chondrules include porphyritic pyroxene (En86Fs14) and barred olivine (Fa32.7±0.3) clast. Chondrules are commonly rimmed by fine-grained accretionary dust mantles. Phyllosilicates are the most dominant secondary mineral in matrix and largely associated with poorly characterised phases (PCP). FeO/SiO2 and S/SiO2 of PCP are 2.7 and 0.4 respectively. Other phases in matrix generally include calcite (pure CaCO3), Fe-Ni metal and sulphides. Spinel and perovskite occur occasionally as inclusions. The spherical or elliptical shaped metals (within chondrule or in isolated grains) are low-Ni type (kamacite <7.5 wt%) and resembles the solar Ni/Co ratio. However, Ni content in metal rarely exceeds 8.5 wt% (up to 23 wt%, taenite). Pyrrhotite (Fe ∼62 wt%; S ∼38 wt%) and pentlandite (Fe ∼31-33 wt%, Ni ∼28-32 wt%, S ∼33 wt%)) are the common sulphides occur as isolated grains within the matrix, however, the former is the most dominant. The bulk chemical composition of Mukundpura is largely similar to other CM type chondrite (e.g. Paris CM). Based on petrography, we infer a modest aqueous alteration stage for Mukundpura while the effect of thermal metamorphism was negligible.

  18. Metal matrix composites: History, status, factors and future

    NASA Astrophysics Data System (ADS)

    Cyriac, Ajith James

    The history, status, and future of metal matrix composites are presented by evaluating the progression of available literature through time. The trends that existed and issues that still prevail are discussed and a prediction of the future for MMCs is presented. The factors that govern the performance of metal matrix composites are also discussed. In many developed countries and in several developing countries there exists continued interest in MMCs. Researchers tried numerous combinations of matrices and reinforcements since work strictly on MMCs began in the 1950s. This led to developments for aerospace and defense applications, but resultant commercial applications were limited. The introduction of ceramic whiskers as reinforcement and the development of 'in-situ' eutectics in the 1960s aided high temperature applications in aircraft engines. In the late 1970s the automobile industries started to take MMCs seriously. In the last 20 years, MMCs evolved from laboratories to a class of materials with numerous applications and commercial markets. After the collapse of the Berlin Wall, prevailing order in the world changed drastically. This effect was evident in the progression of metal matrix composites. The internet connected the world like never before and tremendous information was available for researchers around the world. Globalization and the internet resulted in the transformation of the world to a more level playing field, and this effect is evident in the nature and source of research on metal matrix composites happening around the world.

  19. Analytical model for force prediction when machining metal matrix composites

    NASA Astrophysics Data System (ADS)

    Sikder, Snahungshu

    Metal Matrix Composites (MMC) offer several thermo-mechanical advantages over standard materials and alloys which make them better candidates in different applications. Their light weight, high stiffness, and strength have attracted several industries such as automotive, aerospace, and defence for their wide range of products. However, the wide spread application of Meal Matrix Composites is still a challenge for industry. The hard and abrasive nature of the reinforcement particles is responsible for rapid tool wear and high machining costs. Fracture and debonding of the abrasive reinforcement particles are the considerable damage modes that directly influence the tool performance. It is very important to find highly effective way to machine MMCs. So, it is important to predict forces when machining Metal Matrix Composites because this will help to choose perfect tools for machining and ultimately save both money and time. This research presents an analytical force model for predicting the forces generated during machining of Metal Matrix Composites. In estimating the generated forces, several aspects of cutting mechanics were considered including: shearing force, ploughing force, and particle fracture force. Chip formation force was obtained by classical orthogonal metal cutting mechanics and the Johnson-Cook Equation. The ploughing force was formulated while the fracture force was calculated from the slip line field theory and the Griffith theory of failure. The predicted results were compared with previously measured data. The results showed very good agreement between the theoretically predicted and experimentally measured cutting forces.

  20. Identification of metal ion binding sites based on amino acid sequences

    PubMed Central

    Cao, Xiaoyong; Zhang, Xiaojin; Gao, Sujuan; Ding, Changjiang; Feng, Yonge; Bao, Weihua

    2017-01-01

    The identification of metal ion binding sites is important for protein function annotation and the design of new drug molecules. This study presents an effective method of analyzing and identifying the binding residues of metal ions based solely on sequence information. Ten metal ions were extracted from the BioLip database: Zn2+, Cu2+, Fe2+, Fe3+, Ca2+, Mg2+, Mn2+, Na+, K+ and Co2+. The analysis showed that Zn2+, Cu2+, Fe2+, Fe3+, and Co2+ were sensitive to the conservation of amino acids at binding sites, and promising results can be achieved using the Position Weight Scoring Matrix algorithm, with an accuracy of over 79.9% and a Matthews correlation coefficient of over 0.6. The binding sites of other metals can also be accurately identified using the Support Vector Machine algorithm with multifeature parameters as input. In addition, we found that Ca2+ was insensitive to hydrophobicity and hydrophilicity information and Mn2+ was insensitive to polarization charge information. An online server was constructed based on the framework of the proposed method and is freely available at http://60.31.198.140:8081/metal/HomePage/HomePage.html. PMID:28854211

  1. Identification of metal ion binding sites based on amino acid sequences.

    PubMed

    Cao, Xiaoyong; Hu, Xiuzhen; Zhang, Xiaojin; Gao, Sujuan; Ding, Changjiang; Feng, Yonge; Bao, Weihua

    2017-01-01

    The identification of metal ion binding sites is important for protein function annotation and the design of new drug molecules. This study presents an effective method of analyzing and identifying the binding residues of metal ions based solely on sequence information. Ten metal ions were extracted from the BioLip database: Zn2+, Cu2+, Fe2+, Fe3+, Ca2+, Mg2+, Mn2+, Na+, K+ and Co2+. The analysis showed that Zn2+, Cu2+, Fe2+, Fe3+, and Co2+ were sensitive to the conservation of amino acids at binding sites, and promising results can be achieved using the Position Weight Scoring Matrix algorithm, with an accuracy of over 79.9% and a Matthews correlation coefficient of over 0.6. The binding sites of other metals can also be accurately identified using the Support Vector Machine algorithm with multifeature parameters as input. In addition, we found that Ca2+ was insensitive to hydrophobicity and hydrophilicity information and Mn2+ was insensitive to polarization charge information. An online server was constructed based on the framework of the proposed method and is freely available at http://60.31.198.140:8081/metal/HomePage/HomePage.html.

  2. On Porosity Formation in Metal Matrix Composites Made with Dual-Scale Fiber Reinforcements Using Pressure Infiltration Process

    NASA Astrophysics Data System (ADS)

    Etemadi, Reihaneh; Pillai, Krishna M.; Rohatgi, Pradeep K.; Hamidi, Sajad Ahmad

    2015-05-01

    This is the first such study on porosity formation phenomena observed in dual-scale fiber preforms during the synthesis of metal matrix composites (MMCs) using the gas pressure infiltration process. In this paper, different mechanisms of porosity formation during pressure infiltration of Al-Si alloys into Nextel™ 3D-woven ceramic fabric reinforcements (a dual-porosity or dual-scale porous medium) are studied. The effect of processing conditions on porosity content of the ceramic fabric infiltrated by the alloys through the gas PIP (PIP stands for "Pressure Infiltration Process" in which liquid metal is injected under pressure into a mold packed with reinforcing fibers.) is investigated. Relative density (RD), defined as the ratio of the actual MMC density and the density obtained at ideal 100 pct saturation of the preform, was used to quantify the overall porosity. Increasing the infiltration temperature led to an increase in RD due to reduced viscosity of liquid metal and enhanced wettability leading to improved feedability of the liquid metal. Similarly, increasing the infiltration pressure led to enhanced penetration of fiber tows and resulted in higher RD and reduced porosity. For the first time, the modified Capillary number ( Ca*), which is found to predict formation of porosity in polymer matrix composites quite well, is employed to study porosity in MMCs made using PIP. It is observed that in the high Ca* regime which is common in PIP, the overall porosity shows a strong downward trend with increasing Ca*. In addition, the effect of matrix shrinkage on porosity content of the samples is studied through using a zero-shrinkage Al-Si alloy as the matrix; usage of this alloy as the matrix led to a reduction in porosity content.

  3. Ti-Based Metal Matrix Composites Reinforced with TiB Particles

    DTIC Science & Technology

    2006-05-16

    layer near the water-cooled crucible wall. Such microstructure gradient was observed in samples cooled in copper crucible 6 mm in diameter. III...melting and characterization of Scale 2 ingots. The Scale 2 ingots were melted in induction furnace inside a water-cooled sectioned copper crucible . As

  4. Debye potentials for heterogeneous media

    NASA Astrophysics Data System (ADS)

    Panamarev, N. S.; Donchenko, V. A.; Zemlyanov, Al. A.; Samokhvalov, I. V.; Apeksimov, D. V.; Panamaryova, A. N.; Trifonova, A. V.

    2017-11-01

    The paper presents the results of the Helmholtz equation solution by the method of perturbation theory in the spherical coordinate system for the Debye potentials for weakly heterogeneous media based on metal nanoparticles and the dielectric matrix. In that case, the dielectric function of a composite changes in space in the radial direction.

  5. Crystal Violet Lactone Salicylaldehyde Hydrazone Zn(II) Complex: a Reversible Photochromic Material both in Solution and in Solid Matrix

    PubMed Central

    Li, Kai; Li, Yuanyuan; Tao, Jing; Liu, Lu; Wang, Lili; Hou, Hongwei; Tong, Aijun

    2015-01-01

    Crystal violet lactone (CVL) is a classic halochromic dye which has been widely used as chromogenic reagent in thermochromic and piezochromic systems. In this work, a very first example of CVL-based reversible photochromic compound was developed, which showed distinct color change upon UV-visible light irradiation both in solution and in solid matrix. Moreover, metal complex of CVL salicylaldehyde hydrozone was facilely synthesized, exhibiting reversible photochromic properties with good fatigue resistance. It was served as promising solid material for photo-patterning. PMID:26412101

  6. Effect of TiC addition on fracture toughness of Al6061 alloy

    NASA Astrophysics Data System (ADS)

    Raviraj, M. S.; Sharanprabhu, C. M.; Mohankumar, G. C.

    2018-04-01

    Al 6061 matrix was reinforced with different proportions of TiC particles such as 3wt%, 5wt% and 7wt% and the effect on fracture toughness was studied. Al-TiC metal matrix composites were produced by stir casting method to ensure uniform distribution of the TiC particulates in the Al matrix. LEFM (Linear Elastic Fracture Mechanics) has been used to characterize the fracture toughness using various specimen geometries. The compact tension (CT) specimens with straight through notch were machined as per ASTM E399 specifications. All the specimens were machined to have constant a/W=0.5 and B/W was varied from 0.2 to 0.7. A sharp crack initiation was done at the end of notch by fatigue loading using servo-hydraulic controlled testing machine. Load v/s crack mouth opening displacement (CMOD) data was plotted and stress intensity factor, KQ determined. Critical stress intensity factor KIC was obtained by plotting KQ v/s thickness of specimen data. The fracture toughness of the composites varied between 16-19 MPa√m as compared to 23MPa√m for base alloy Al6061. Composites with 3wt% and 7wt% TiC showed better fracture toughness than 5wt% TiC reinforced Al metal matrix composites.

  7. Microstructure evolution and mechanical properties of TiCN-Cr nano/micro composite coatings prepared by reactive plasma spraying

    NASA Astrophysics Data System (ADS)

    Zhang, Fanyong; He, Jining; Chen, Kai; Qin, Yanfang; Li, Chao; Yin, Fuxing

    2018-01-01

    Nanostructured TiCN based composite coatings with various Cr content were prepared by reactive plasma spray (RPS) from mixed powder (Ti-graphite + Cr) under nitrogen atmosphere. Results showed that composite coatings consisted mainly of TiC0.7N0.3 phase and residual metal Cr. Metal Cr plates were homogeneously embedded in TiCN matrix with good interface bond. The TiCN-Cr composite coatings exhibited lower porosity than TiCN coatings, but increasing porosity with excess Cr addition (30 wt.%). The TiCN-20 wt.% Cr coating showed the highest hardness (1309 HV0.2) among composite coatings, slight lower than the TiCN matrix coating (1526 HV0.2). Compared with the TiCN matrix coating, the TiCN-Cr composite coatings showed higher variability in surface microhardness distribution. The TiCN-Cr composite coatings showed slight higher friction coefficients (0.4-0.6) than TiCN matrix coating (0.35). The wear resistance of TiCN-Cr composite coatings was improved with less mass loss compared with TiCN coating under the test load of 400 N. The TiCN-Cr composite coatings with high Cr content showed the mixture of abrasive and adhesive wear.

  8. Structural, mechanical and corrosion studies of Cr-rich inclusions in 152 cladding of dissimilar metal weld joint

    NASA Astrophysics Data System (ADS)

    Li, Yifeng; Wang, Jianqiu; Han, En-Hou; Yang, Chengdong

    2018-01-01

    Cr-rich inclusions were discovered in 152 cladding at the inner wall of domestic dissimilar metal weld joint, and their morphologies, microstructures, mechanical properties and corrosion behaviors were systematically characterized by SEM, TEM, nanoindentation and FIB. The results indicate that the Cr-rich inclusions originate from large-size Cr particles in 152 welding electrode flux, and they are 50-150 μm in size in most cases, and there is a continuous transition zone of 2-5 μm in width between the Cr inclusion core and 152 cladding matrix, and the transition zone consists of Ni & Fe-rich dendritic austenite and Cr23C6 and Cr matrix. The transition zone has the highest nanoindentation hardness (7.66 GPa), which is much harder than the inclusion core (5.14 GPa) and 152 cladding (3.71 GPa). In-situ microscopic tensile tests show that cracks initialize preferentially in transition zone, and then propagate into the inclusion core, and creep further into 152 cladding after penetrating the core area. The inclusion core and its transition zone both share similar oxide film structure with nickel-base 152 cladding matrix in simulated primary water, while those two parts present better general corrosion resistance than 152 cladding matrix due to higher Cr concentration.

  9. Reflectance properties of one-dimensional metal-dielectric ternary photonic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, G. N., E-mail: gnpandey2009@gmail.com; Kumar, Narendra; Thapa, Khem B.

    2016-05-06

    Metallic photonic crystal has a very important application in absorption enhancement in solar cells. It has been found that an ultra-thin metallic layer becomes transparent due to internal scattering of light through the each interface of the dielectric and metal surfaces. The metal has absorption due to their surface plasmon and the plasmon has important parameters for changing optical properties of the metal. We consider ternary metallic-dielectric photonic crystal (MDPC) for having large probabilities to change the optical properties of the MDPC and the photonic crystals may be changed by changing dimensionality, symmetry, lattice parameters, Filling fraction and effective refractivemore » index refractive index contrast. In this present communication, we try to show that the photonic band gap in ternary metal-dielectric photonic crystal can be significantly enlarged when air dielectric constant is considered. All the theoretical analyses are made based on the transfer matrix method together with the Drude model of metal.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng

    An electrically conductive laminate composition for fuel cell flow field plate or bipolar plate applications. The laminate composition comprises at least a thin metal sheet having two opposed exterior surfaces and a first exfoliated graphite composite sheet bonded to the first of the two exterior surfaces of the metal sheet wherein the exfoliated graphite composite sheet comprises: (a) expanded or exfoliated graphite and (b) a binder or matrix material to bond the expanded graphite for forming a cohered sheet, wherein the binder or matrix material is between 3% and 60% by weight based on the total weight of the firstmore » exfoliated graphite composite sheet. Preferably, the first exfoliated graphite composite sheet further comprises particles of non-expandable graphite or carbon in the amount of between 3% and 60% by weight based on the total weight of the non-expandable particles and the expanded graphite. Further preferably, the laminate comprises a second exfoliated graphite composite sheet bonded to the second surface of the metal sheet to form a three-layer laminate. Surface flow channels and other desired geometric features can be built onto the exterior surfaces of the laminate to form a flow field plate or bipolar plate. The resulting laminate has an exceptionally high thickness-direction conductivity and excellent resistance to gas permeation.« less

  11. Fabrication of metal matrix composites by powder metallurgy: A review

    NASA Astrophysics Data System (ADS)

    Manohar, Guttikonda; Dey, Abhijit; Pandey, K. M.; Maity, S. R.

    2018-04-01

    Now a day's metal matrix components are used in may industries and it finds the applications in many fields so, to make it as better performable materials. So, the need to increase the mechanical properties of the composites is there. As seen from previous studies major problem faced by the MMC's are wetting, interface bonding between reinforcement and matrix material while they are prepared by conventional methods like stir casting, squeeze casting and other techniques which uses liquid molten metals. So many researchers adopt PM to eliminate these defects and to increase the mechanical properties of the composites. Powder metallurgy is one of the better ways to prepare composites and Nano composites. And the major problem faced by the conventional methods are uniform distribution of the reinforcement particles in the matrix alloy, many researchers tried to homogeneously dispersion of reinforcements in matrix but they find it difficult through conventional methods, among all they find ultrasonic dispersion is efficient. This review article is mainly concentrated on importance of powder metallurgy in homogeneous distribution of reinforcement in matrix by ball milling or mechanical milling and how powder metallurgy improves the mechanical properties of the composites.

  12. Method of synthesizing bulk transition metal carbide, nitride and phosphide catalysts

    DOEpatents

    Choi, Jae Soon; Armstrong, Beth L; Schwartz, Viviane

    2015-04-21

    A method for synthesizing catalyst beads of bulk transmission metal carbides, nitrides and phosphides is provided. The method includes providing an aqueous suspension of transition metal oxide particles in a gel forming base, dropping the suspension into an aqueous solution to form a gel bead matrix, heating the bead to remove the binder, and carburizing, nitriding or phosphiding the bead to form a transition metal carbide, nitride, or phosphide catalyst bead. The method can be tuned for control of porosity, mechanical strength, and dopant content of the beads. The produced catalyst beads are catalytically active, mechanically robust, and suitable for packed-bed reactor applications. The produced catalyst beads are suitable for biomass conversion, petrochemistry, petroleum refining, electrocatalysis, and other applications.

  13. Treatment of toxic metal aqueous solutions: encapsulation in a phosphate-calcium aluminate matrix.

    PubMed

    Fernández, J M; Navarro-Blasco, I; Duran, A; Sirera, R; Alvarez, J I

    2014-07-01

    Polyphosphate-modified calcium aluminate cement matrices were prepared by using aqueous solutions polluted with toxic metals as mixing water to obtain waste-containing solid blocks with improved management and disposal. Synthetically contaminated waters containing either Pb or Cu or Zn were incorporated into phosphoaluminate cement mortars and the effects of the metal's presence on setting time and mechanical performance were assessed. Sorption and leaching tests were also executed and both retention and release patterns were investigated. For all three metals, high uptake capacities as well as percentages of retention larger than 99.9% were measured. Both Pb and Cu were seen to be largely compatible with this cementitious matrix, rendering the obtained blocks suitable for landfilling or for building purposes. However, Zn spoilt the compressive strength values because of its reaction with hydrogen phosphate anions, hindering the development of the binding matrix. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Design and development of high frequency matrix phased-array ultrasonic probes

    NASA Astrophysics Data System (ADS)

    Na, Jeong K.; Spencer, Roger L.

    2012-05-01

    High frequency matrix phased-array (MPA) probes have been designed and developed for more accurate and repeatable assessment of weld conditions of thin sheet metals commonly used in the auto industry. Unlike the line focused ultrasonic beam generated by a linear phased-array (LPA) probe, a MPA probe can form a circular shaped focused beam in addition to the typical beam steering capabilities of phased-array probes. A CIVA based modeling and simulation method has been used to design the probes in terms of various probe parameters such as number of elements, element size, overall dimensions, frequency etc. Challenges associated with the thicknesses of thin sheet metals have been resolved by optimizing these probe design parameters. A further improvement made on the design of the MPA probe proved that a three-dimensionally shaped matrix element can provide a better performing probe at a much lower probe manufacturing cost by reducing the total number of elements and lowering the operational frequency. This three dimensional probe naturally matches to the indentation shape of the weld on the thin sheet metals and hence a wider inspection area with the same level of spatial resolution obtained by a twodimensional flat MPA probe operating at a higher frequency. The two aspects, a wider inspection area and a lower probe manufacturing cost, make this three-dimensional MPA sensor more attractive to auto manufacturers demanding a quantitative nondestructive inspection method.

  15. Proceedings of Damping 󈨟, Held in San Diego, California on 13 - 15 February 1991. Volume 3

    DTIC Science & Technology

    1991-08-01

    Characteristics of Metal Matrix Ccomposites, Letter Report , Martin Marietta , Denver, CO, Report no. MCR -85-721, Issue 9, 1988. 23. J.A. DiCarlo and J.E. Maisel...MIT, December 1983. 2. S.P. Rawal, T.H. Armstrong, and M.S. Misra, Interfaces and Damping in Metal Matrx Composites, Final Report , Martin Marietta ... Report , Martin Marietta Denver Aerospace, Denver, Co, November 4. I.E. Schoutens, Internal Damping in Metal Matrix Composites, MMCIAC, Kaman Sciences

  16. Nanofocusing of the free-space optical energy with plasmonic Tamm states.

    PubMed

    Niu, Linyu; Xiang, Yinxiao; Luo, Weiwei; Cai, Wei; Qi, Jiwei; Zhang, Xinzheng; Xu, Jingjun

    2016-12-20

    To achieve extreme electromagnetic enhancement, we propose a plasmonic Tamm states (PTSs) configuration based on the metal-insulator-metal Bragg reflector, which is realized by periodically modulating the width of the insulator. Both the thick (2D) and thin (3D) structures are discussed. Through optimization performed by the impedance-based transfer matrix method and the finite difference time domain method, we find that both the electric field and magnetic field intensities can be increased by three orders of magnitude. The field-enhancement inside the PTSs configuration is not limited to extremely sharp waveguide terminal, which can greatly reduce processing difficulties.

  17. Metal organic framework-derived CoPS/N-doped carbon for efficient electrocatalytic hydrogen evolution.

    PubMed

    Li, Yuzhi; Niu, Siqi; Rakov, Dmitrii; Wang, Ying; Cabán-Acevedo, Miguel; Zheng, Shijian; Song, Bo; Xu, Ping

    2018-04-19

    Electrocatalytic hydrogen evolution has attracted a great deal of attention due to the urgent need for clean energy. Herein, we demonstrate the synthesis of ternary pyrite-type cobalt phosphosulphide (CoPS) nanoparticles supported on a nitrogen-doped carbon matrix, CoPS/N-C, through carbonization and subsequent phosphosulfurization of Co-based zeolitic imidazolate frameworks (ZIF-67), as promising hydrogen evolution reaction (HER) electrocatalysts in both acidic and alkaline solutions. The polyhedral structure of ZIF-67 can be well maintained in the as-prepared CoPS/N-C nanocomposites. In particular, CoPS/N-C provides a geometric catalytic current density of -10 mA cm-2 at overpotentials of -80 and -148 mV vs. a reversible hydrogen electrode (RHE) and a Tafel slope of 68 and 78 mV dec-1 in 0.5 M H2SO4 and 1 M KOH, respectively, which is superior to most of the transition metal phosphosulfide materials. This MOF-derived synthesis of a transition metal phosphosulfide supported heteroatom-doped carbon matrix provides a promising opportunity for the development of highly efficient electrocatalysts for renewable energy devices.

  18. Development of Graphene Nanoplatelet-Reinforced AZ91 Magnesium Alloy by Solidification Processing

    NASA Astrophysics Data System (ADS)

    Kandemir, Sinan

    2018-04-01

    It is a challenging task to effectively incorporate graphene nanoplatelets (GNPs) which have recently emerged as potential reinforcement for strengthening metals into magnesium-based matrices by conventional solidification processes due to their large surface areas and poor wettability. A solidification processing which combines mechanical stirring and ultrasonic dispersion of reinforcements in liquid matrix was employed to develop AZ91 magnesium alloy matrix composites reinforced with 0.25 and 0.5 wt.% GNPs. The microstructural studies conducted with scanning and transmission electron microscopes revealed that fairly uniform distribution and dispersion of GNPs through the matrix were achieved due to effective combination of mechanical and ultrasonic stirring. The GNPs embedded into the magnesium matrix led to significant enhancement in the hardness, tensile strength and ductility of the composites compared to those of unreinforced AZ91 alloy. The strength enhancement was predominantly attributed to the grain refinement by the GNP addition and dislocation generation strengthening due to the coefficient of thermal expansion mismatch between the matrix and reinforcement. The improved ductility was attributed to the refinement of β eutectics by transforming from lamellar to the divorced eutectics due to the GNP additions. In addition, the strengthening efficiency of the composite with 0.25 wt.% GNP was found to be higher than those of the composite with 0.5 wt.% GNP as the agglomeration tendency of GNPs is increased with increasing GNP content. These results were compared with those of the GNP-reinforced magnesium composites reported in the literature, indicating the potential of the process introduced in this study in terms of fabricating light and high-performance metal matrix composites.

  19. Computer simulation of the matrix-inclusion interphase in bulk metallic glass based nanocomposites

    NASA Astrophysics Data System (ADS)

    Kokotin, V.; Hermann, H.; Eckert, J.

    2011-10-01

    Atomistic models for matrix-inclusion systems are generated. Analyses of the systems show that interphase layers of finite thickness appear interlinking the surface of the nanocrystalline inclusion and the embedding amorphous matrix. In a first approximation, the interphase is characterized as an amorphous structure with a density slightly reduced compared to that of the matrix. This result holds for both monatomic hard sphere systems and a Cu47.5Zr47.5Al5 alloy simulated by molecular dynamics (MD). The elastic shear and bulk modulus of the interphase are calculated by simulated deformation of the MD systems. Both moduli diminish with decreasing density but the shear modulus is more sensitive against density reduction by one order of magnitude. This result explains recent observations of shear band initiation at the amorphous-crystalline interface during plastic deformation.

  20. Damage development in titanium metal matrix composites subjected to cyclic loading

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1992-01-01

    Several layups of SCS-6/Ti-15-3 composites were investigated. Fatigue tests were conducted and analyzed for both notched and unnotched specimens at room temperature and elevated temperatures. Thermo-mechanical fatigue results were analyzed. Test results indicated that the stress in the 0 degree fibers is the controlling factor in fatigue life. The static and fatigue strength of these materials is shown to be strongly dependent on the level of residual stresses and the fiber/matrix interfacial strength. Fatigue tests of notched specimens showed that cracks can initiate and grow many fiber spacings in the matrix materials without breaking fibers. Fiber bridging models were applied to characterize the crack growth behavior. The matrix cracks are shown to significantly reduce the residual strength of notched composites. The notch strength of these composites was accurately predicted using a micromechanics based methodology.

  1. Damage development in titanium metal-matrix composites subjected to cyclic loading

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1993-01-01

    Several layups of SCS-6/Ti-15-3 composites were investigated. Fatigue tests were conducted and analyzed for both notched and unnotched specimens at room temperature and elevated temperatures. Thermo-mechanical fatigue results were analyzed. Test results indicated that the stress in the 0 degree fibers is the controlling factor in fatigue life. The static and fatigue strength of these materials is shown to be strongly dependent on the level of residual stresses and the fiber/matrix interfacial strength. Fatigue tests of notched specimens showed that cracks can initiate and grow many fiber spacings in the matrix materials without breaking fibers. Fiber bridging models were applied to characterize the crack growth behavior. The matrix cracks are shown to significantly reduce the residual strength of notched composites. The notch strength of these composites was accurately predicted using a micromechanics based methodology.

  2. Damping Characteristics of Metal Matrix Composites

    DTIC Science & Technology

    1989-05-25

    DAMPING OF METAL MATRIX COMPOSITES - -.......... 7-1 7.1 EPERIMENTAL PROCEDURE .............................................................. 7-1 7.2 M...space structures (LSS). A critical design concern for LSS is suppression of vibrations, caused by onboard and hostile threat-related disturbances during...acquisi- tion pointing and tracing (APT) phases of maneuvering. Various active and passive control mea- sures can be incorporated in the designs of

  3. METCAN demonstration manual, version 1.0

    NASA Technical Reports Server (NTRS)

    Lee, H.-J.; Murthy, P. L. N.

    1992-01-01

    The various features of the Metal Matrix Composite Analyzer (METCAN) computer program to simulate the high temperature nonlinear behavior of continuous fiber reinforced metal matrix composites are demonstrated. Different problems are used to demonstrate various capabilities of METCAN for both static and cyclic analyses. A complete description of the METCAN output file is also included to help interpret results.

  4. Metal hydride composition and method of making

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Congdon, J.W.

    1995-08-22

    A dimensionally stable hydride composition and a method for making such a composition are disclosed. The composition is made by forming particles of a metal hydride into porous granules, mixing the granules with a matrix material, forming the mixture into pellets, and sintering the pellets in the absence of oxygen. The ratio of matrix material to hydride is preferably between approximately 2:1 and 4:1 by volume. The porous structure of the granules accommodates the expansion that occurs when the metal hydride particles absorb hydrogen. The porous matrix allows the flow of hydrogen there through to contact the hydride particles, yetmore » supports the granules and contains the hydride fines that result from repeated absorption/desorption cycles. 3 figs.« less

  5. Method of thermal strain hysteresis reduction in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Dries, Gregory A. (Inventor); Tompkins, Stephen S. (Inventor)

    1987-01-01

    A method is disclosed for treating graphite reinforced metal matrix composites so as to eliminate thermal strain hysteresis and impart dimensional stability through a large thermal cycle. The method is applied to the composite post fabrication and is effective on metal matrix materials using graphite fibers manufactured by both the hot roll bonding and diffusion bonding techniques. The method consists of first heat treating the material in a solution anneal oven followed by a water quench and then subjecting the material to a cryogenic treatment in a cryogenic oven. This heat treatment and cryogenic stress reflief is effective in imparting a dimensional stability and reduced thermal strain hysteresis in the material over a -250.degree. F. to +250.degree. F. thermal cycle.

  6. Immobilization of mercury and zinc in an alkali-activated slag matrix.

    PubMed

    Qian, Guangren; Sun, Darren Delai; Tay, Joo Hwa

    2003-07-04

    The behavior of heavy metals mercury and zinc immobilized in an alkali-activated slag (AAS) matrix has been evaluated using physical property tests, pore structure analysis and XRD, TG-DTG, FTIR and TCLP analysis. Low concentrations (0.5%) of mercury and zinc ions had only a slight affect on compressive strength, pore structure and hydration of AAS matrixes. The addition of 2% Hg ions to the AAS matrix resulted in a reduction in early compressive strength but no negative effects were noticed after 28 days of hydration. Meanwhile, 2% Hg ions can be effectively immobilized in the AAS matrix with the leachate meeting the USEPA TCLP mercury limit. For a 2% Zn-doped AAS matrix, the hydration of the AAS paste was greatly retarded and the zinc concentration in the leachate from this matrix was higher than 5mg/l even at 28 days. Based on these results, we conclude that the physical encapsulation and chemical fixation mechanisms were likely to be responsible for the immobilization of Hg ions in the AAS matrix while only chemical fixation mechanisms were responsible for the immobilization of Zn ions in the AAS matrix.

  7. TOF-SIMS investigation of metallic material surface after culturing cells

    NASA Astrophysics Data System (ADS)

    Aoyagi, Satoka; Hiromoto, Sachiko; Hanawa, Takao; Kudo, Masahiro

    2004-06-01

    Biomolecules such as extracellular matrix and adhesive proteins generated by adhered cells on metallic specimens were characterized by means of time-of-flight secondary ion mass spectrometry (TOF-SIMS) in order to clarify the interaction between cells and metal surfaces. Since composition and structure of the extracellular matrix depends on conditions of cells, characterization of the interaction between cells and metallic specimens is important in order to evaluate the biocompatibility and the degradation behavior of metallic biomaterials and artificial organs. Moreover, the obtained data can contribute to the development of new metallic biomaterials. TOF-SIMS spectra were analyzed by means of mutual information described by information theory and principal components analysis (PCA). The results show that cells have great influence on adsorption of biomolecules on metallic materials because they change surface conditions of the materials. Thus TOF-SIMS is a useful technique to investigate the interaction between metallic biomaterials and cells.

  8. Metallized Nanotube Polymer Composite (MNPC) and Methods for Making Same

    NASA Technical Reports Server (NTRS)

    Harrison, Joycelyn S. (Inventor); Lowther, Sharon E. (Inventor); Lillehei, Peter T. (Inventor); Park, Cheol (Inventor); Taylor, Larry (Inventor); Kang, Jin Ho (Inventor); Nazem, Negin (Inventor); Kim, Jae-Woo (Inventor); Sauti, Godfrey (Inventor)

    2017-01-01

    A novel method to develop highly conductive functional materials which can effectively shield various electromagnetic effects (EMEs) and harmful radiations. Metallized nanotube polymer composites (MNPC) are composed of a lightweight polymer matrix, superstrong nanotubes (NT), and functional nanoparticle inclusions. MNPC is prepared by supercritical fluid infusion of various metal precursors (Au, Pt, Fe, and Ni salts), incorporated simultaneously or sequentially, into a solid NT-polymer composite followed by thermal reduction. The infused metal precursor tends to diffuse toward the nanotube surface preferentially as well as the surfaces of the NT-polymer matrix, and is reduced to form nanometer-scale metal particles or metal coatings. The conductivity of the MNPC increases with the metallization, which provides better shielding capabilities against various EMEs and radiations by reflecting and absorbing EM waves more efficiently. Furthermore, the supercritical fluid infusion process aids to improve the toughness of the composite films significantly regardless of the existence of metal.

  9. Structure for HTS composite conductors and the manufacture of same

    DOEpatents

    Cotton, J.D.; Riley, G.N. Jr.

    1999-06-01

    A superconducting oxide composite structure including a superconducting oxide member, a metal layer surrounding the superconducting oxide member, and an insulating layer of a complex oxide formed in situ adjacent to the superconducting oxide member and the metal layer is provided together with a method of forming such a superconducting oxide composite structure including encapsulating a superconducting oxide member or precursor within a metal matrix layer from the group of: (1) a reactive metal sheath adjacent to the superconducting oxide member or precursor, the reactive metal sheath surrounded by a second metal layer or (2) an alloy containing a reactive metal; to form an intermediate product, and, heating the intermediate product at temperatures and for time sufficient to form an insulating layer of a complex oxide in situ, the insulating layer to the superconducting oxide member or precursor and the metal matrix layer. 10 figs.

  10. Structure for hts composite conductors and the manufacture of same

    DOEpatents

    Cotton, James D.; Riley, Jr., Gilbert Neal

    1999-01-01

    A superconducting oxide composite structure including a superconducting oxide member, a metal layer surrounding the superconducting oxide member, and an insulating layer of a complex oxide formed in situ adjacent to the superconducting oxide member and the metal layer is provided together with a method of forming such a superconducting oxide composite structure including encapsulating a superconducting oxide member or precursor within a metal matrix layer from the group of: (i) a reactive metal sheath adjacent to the superconducting oxide member or precursor, the reactive metal sheath surrounded by a second metal layer or (ii) an alloy containing a reactive metal; to form an intermediate product, and, heating the intermediate product at temperatures and for time sufficient to form an insulating layer of a complex oxide in situ, the insulating layer to the superconducting oxide member or precursor and the metal matrix layer.

  11. Methods of removing a constituent from a feed stream using adsorption media

    DOEpatents

    Tranter, Troy J [Idaho Falls, ID; Mann, Nicholas R [Rigby, ID; Todd, Terry A [Aberdeen, ID; Herbst, Ronald S [Idaho Falls, ID

    2011-05-24

    A method of producing an adsorption medium to remove at least one constituent from a feed stream. The method comprises dissolving and/or suspending at least one metal compound in a solvent to form a metal solution, dissolving polyacrylonitrile into the metal solution to form a PAN-metal solution, and depositing the PAN-metal solution into a quenching bath to produce the adsorption medium. The at least one constituent, such as arsenic, selenium, or antimony, is removed from the feed stream by passing the feed stream through the adsorption medium. An adsorption medium having an increased metal loading and increased capacity for arresting the at least one constituent to be removed is also disclosed. The adsorption medium includes a polyacrylonitrile matrix and at least one metal hydroxide incorporated into the polyacrylonitrile matrix.

  12. Kinetics and Mechanism of in situ Simultaneous Formation of Metal Nanoparticles in Stabilizing Polymer Matrix

    NASA Astrophysics Data System (ADS)

    Pomogailo, Anatolii D.; Dzhardimalieva, Gulzhian I.; Rozenberg, Aleksander S.; Muraviev, Dmitri N.

    2003-12-01

    The kinetic peculiarities of the thermal transformations of unsaturated metal carboxylates (transition metal acrylates and maleates as well as their cocrystallites) and properties of metal-polymer nanocomposites formed have been studied. The composition and structure of metal-containing precursors and the products of the thermolysis were identified by X-ray analysis, optical and electron microscopy, magnetic measurements, EXAFS, IR and mass spectroscopy. The thermal transformations of metal-containing monomers studied are the complex process including dehydration, solid phase polymerization, and thermolysis process which proceed at varied temperature ranges. At 200-300°C the rate of thermal decay can be described by first-order equations. The products of decompositions are nanometer-sized particles of metal or its oxides with a narrow size distribution (the mean particle diameter of 5-10nm) stabilized by the polymer matrix.

  13. Structure of mono- and bimetallic heterogeneous catalysts based on noble metals obtained by means of fluid technology and metal-vapor synthesis

    NASA Astrophysics Data System (ADS)

    Said-Galiev, E. E.; Vasil'kov, A. Yu.; Nikolaev, A. Yu.; Lisitsyn, A. I.; Naumkin, A. V.; Volkov, I. O.; Abramchuk, S. S.; Lependina, O. L.; Khokhlov, A. R.; Shtykova, E. V.; Dembo, K. A.; Erkey, C.

    2012-10-01

    Monometallic nanocomposites are obtained with the use of supercritical carbon dioxide (fluid technique) and metal-vapor synthesis (MVS), while bimetallic nanocomposites of Pt and Au noble metals and γ-Al2O3 oxide matrix are synthesized by a combination of these two methods. The structures, concentrations, and chemical states of metal atoms in composites are studied by means of small-angle X-ray scattering (SAXS), transparent electron microscopy (TEM), X-ray fluorescent analysis (XFA), and X-ray photoelectron spectroscopy (XPS). The neutral state of metal atoms in clusters is shown by XPS and their size distribution is found according to SAXS; as is shown, it is determined by the pore sizes of the oxide matrices and lies in the range of 1 to 50 nm. The obtained composites manifest themselves as effective catalysts in the oxidation of CO to CO2.

  14. Manufacturing Methods and Technology Project Summary Reports

    DTIC Science & Technology

    1984-06-01

    was selected as the composite material. This selection was based upon the following advantages in comparison to aluminum: 0 Stiffness to weight...closer to titanium than aluminum. Other composite candidate materials considered ( glass , Kevlar and metal matrix) did not offer all of these...of the bearing support ring, and the attachment of the bearing support ring to the composite gimbal base plate. A thermal test structure, which

  15. Proposed framework for thermomechanical life modeling of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Lerch, Bradley A.; Saltsman, James F.

    1993-01-01

    The framework of a mechanics of materials model is proposed for thermomechanical fatigue (TMF) life prediction of unidirectional, continuous-fiber metal matrix composites (MMC's). Axially loaded MMC test samples are analyzed as structural components whose fatigue lives are governed by local stress-strain conditions resulting from combined interactions of the matrix, interfacial layer, and fiber constituents. The metallic matrix is identified as the vehicle for tracking fatigue crack initiation and propagation. The proposed framework has three major elements. First, TMF flow and failure characteristics of in situ matrix material are approximated from tests of unreinforced matrix material, and matrix TMF life prediction equations are numerically calibrated. The macrocrack initiation fatigue life of the matrix material is divided into microcrack initiation and microcrack propagation phases. Second, the influencing factors created by the presence of fibers and interfaces are analyzed, characterized, and documented in equation form. Some of the influences act on the microcrack initiation portion of the matrix fatigue life, others on the microcrack propagation life, while some affect both. Influencing factors include coefficient of thermal expansion mismatch strains, residual (mean) stresses, multiaxial stress states, off-axis fibers, internal stress concentrations, multiple initiation sites, nonuniform fiber spacing, fiber debonding, interfacial layers and cracking, fractured fibers, fiber deflections of crack fronts, fiber bridging of matrix cracks, and internal oxidation along internal interfaces. Equations exist for some, but not all, of the currently identified influencing factors. The third element is the inclusion of overriding influences such as maximum tensile strain limits of brittle fibers that could cause local fractures and ensuing catastrophic failure of surrounding matrix material. Some experimental data exist for assessing the plausibility of the proposed framework.

  16. Novel, inorganic composites using porous, alkali-activated, aluminosilicate binders

    NASA Astrophysics Data System (ADS)

    Musil, Sean

    Geopolymers are an inorganic polymeric material composed of alumina, silica, and alkali metal oxides. Geopolymers are chemical and fire resistant, can be used as refractory adhesives, and are processed at or near ambient temperature. These properties make geopolymer an attractive choice as a matrix material for elevated temperature composites. This body of research investigated numerous different reinforcement possibilities and variants of geopolymer matrix material and characterized their mechanical performance in tension, flexure and flexural creep. Reinforcements can then be chosen based on the resulting properties to tailor the geopolymer matrix composites to a specific application condition. Geopolymer matrix composites combine the ease of processing of polymer matrix composites with the high temperature capability of ceramic matrix composites. This study incorporated particulate, unidirectional fiber and woven fiber reinforcements. Sodium, potassium, and cesium based geopolymer matrices were evaluated with cesium based geopolymer showing great promise as a high temperature matrix material. It showed the best strength retention at elevated temperature, as well as a very low coefficient of thermal expansion when crystallized into pollucite. These qualities made cesium geopolymer the best choice for creep resistant applications. Cesium geopolymer binders were combined with unidirectional continuous polycrystalline mullite fibers (Nextel(TM) 720) and single crystal mullite fibers, then the matrix was crystallized to form cubic pollucite. Single crystal mullite fibers were obtained by the internal crystallization method and show excellent creep resistance up to 1400°C. High temperature flexural strength and flexural creep resistance of pollucite and polycrystalline/single-crystal fibers was evaluated at 1000-1400°C.

  17. Biogeochemistry of carbonates: recorders of past oceans and climate.

    PubMed

    Rickaby, Rosalind E M; Schrag, Daniel P

    2005-01-01

    Trace metal proxies bound within the calcium carbonate tests of oceanic organisms provide a unique insight into how the climate system works on timescales which span eight orders of magnitude, from annual to hundreds of millions of years. Whilst the motivation for developing these proxies was the idea that thermodynamic equilibria control the chemistry during precipitation, in reality the application of trace metal proxies relies upon empirical calibration. Such calibration can be applied to a wide range of environmental reconstructions, but more accurate application of proxies requires a mechanistic understanding of the biomineralization process. The partitioning of trace metals into biogenic carbonates reflects to some extent the same pattern as an inorganic crystal, but there is an additional selectivity and differing environmental sensitivity to, e.g., temperature, which confirms that biochemical processes also play a role in the uptake and assembly of ions into a crystal. Different organisms display differing degrees of biological control on their carbonate chemistry. Aragonitic coral chemistry is most similar to inorganic precipitation from seawater whilst coccolithophores are most different, and these contrasts correlate with the degree of control of the organism over its biomineralization. Selectivity between Ca and trace metals during biomineralization arises during transport by pumps, channels, or nucleation upon an organic matrix. The biological selectivity of the transporters and matrix is strikingly similar in its base chemistry to the selective assembly of ions into a crystal. In each case, the selectivity between Ca2+ and trace metals derives from the balance between the energy required for dehydration of the hexaaqua complex of the cation, and the energy released from the new coordination geometry of binding with either carbonyl oxygen from polysaccharides or amino acids, or carbonate oxygen in the crystal. This is a speculative idea, but with some careful chemical calculations based on the energy of binding of Ca2+ or the trace metal ions to these macromolecular structures, it provides an alternative thermodynamic framework within which to consider the application of trace metal proxies.

  18. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating

    PubMed Central

    Liang, Zheng; Lin, Dingchang; Zhao, Jie; Lu, Zhenda; Liu, Yayuan; Liu, Chong; Lu, Yingying; Wang, Haotian; Yan, Kai; Tao, Xinyong; Cui, Yi

    2016-01-01

    Lithium metal-based battery is considered one of the best energy storage systems due to its high theoretical capacity and lowest anode potential of all. However, dendritic growth and virtually relative infinity volume change during long-term cycling often lead to severe safety hazards and catastrophic failure. Here, a stable lithium–scaffold composite electrode is developed by lithium melt infusion into a 3D porous carbon matrix with “lithiophilic” coating. Lithium is uniformly entrapped on the matrix surface and in the 3D structure. The resulting composite electrode possesses a high conductive surface area and excellent structural stability upon galvanostatic cycling. We showed stable cycling of this composite electrode with small Li plating/stripping overpotential (<90 mV) at a high current density of 3 mA/cm2 over 80 cycles. PMID:26929378

  19. Microbial specificity of metallic surfaces exposed to ambient seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaidi, B.R.; Bard, R.F.; Tosteson, T.R.

    1984-09-01

    High-molecular-weight materials associated with the extracellular matrix and film found on titanium and aluminum surfaces after exposure to flowing coastal seawater were isolated. This material was purified by hydroxylapatite chromatography and subsequently employed to produce antibodies in the toad, Bufo marinus. The antibodies were immobilized on a solid support and employed to isolate adhesion-enhancing, high-molecular-weight materials from the laboratory culture media of bacterial strains recovered from the respective metallic surfaces during the course of their exposure to seawater. The adhesion-enhancing materials produced by the surface-associated bacterial strains were immunologically related to the extracellular biofouling matrix material found on the surfacesmore » from which these bacteria were isolated. The surface selectivity of these bacterial strains appeared to be based on the specificity of the interaction between adhesion-enhancing macromolecules produced by these bacteria and the surfaces in question. 30 references, 6 tables.« less

  20. The Influence of Al4C3 Nanoparticles on the Physical and Mechanical Properties of Metal Matrix Composites at High Temperatures

    NASA Astrophysics Data System (ADS)

    Vorozhtsov, S.; Kolarik, V.; Promakhov, V.; Zhukov, I.; Vorozhtsov, A.; Kuchenreuther-Hummel, V.

    2016-05-01

    Metal matrix composites (MMC) based on aluminum and reinforced with nonmetallic particles are of great practical interest due to their potentially high physico-mechanical properties. In this work, Al-Al4C3 composites were obtained by a hot-compacting method. Introduction of nanodiamonds produced by detonation to the Al powder in an amount of 10 wt.% led to the formation of ~15 wt.% of aluminum carbide during hot compacting. It was found that composite materials with the diamond content of 10 wt.% in the initial powder mix have an average microhardness of 1550 MPa, whilst the similarly compacted aluminum powder without reinforcing particles shows a hardness of 750 MPa. The mechanical properties of an Al-Al4C3 MMC at elevated test temperatures exceeded those of commercial casting aluminum alloys such as A356.

  1. Development of Metal Matrix Composites for NASA'S Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2000-01-01

    The state-of-the-art development of several aluminum and copper based Metal Matrix Composites (MMC) for NASA's advanced propulsion systems will be presented. The presentation's goal is to provide an overview of NASA-Marshall Space Flight Center's planned and on-going activities in MMC for advanced liquid rocket engines such as the X-33 vehicle's Aerospike and X-34 Fastrac engine. The focus will be on lightweight and environmental compatibility with oxygen and hydrogen of key MMC materials, within each NASA's new propulsion application, that will provide a high payoff for NASA's reusable launch vehicle systems and space access vehicles. Advanced MMC processing techniques such as plasma spray, centrifugal casting, pressure infiltration casting will be discussed. Development of a novel 3D printing method for low cost production of composite preform, and functional gradient MMC to enhanced rocket engine's dimensional stability will be presented.

  2. The effects of artificial ageing on the leaching behaviour of heavy metals in stabilized/solidified industrial sludge.

    PubMed

    Keskes, M; Choura, M; Rouis, J

    2009-12-01

    The use of a hydraulic binder for the treatment of mineral-based industrial wastes, containing heavy metals, by the chemical fixation and solidification (CFS) technique has raised serious questions regarding the prediction of the behaviour of these pollutants in the obtained solid matrix. It seems necessary, for this reason, to study the behaviour of these metals in response to leaching in order to evaluate their chemical speciation within the solidified sludge over the medium and long-terms. Within the framework of the current research, we applied the CFS technique to metallic hydroxide sludge, produced by the electrotyping surface treatment industry, by using Portland artificial cement (PAC). Compaction at the paste phase of this treated sludge resulted in up to 35% enhancement of the retention of pollutants, mainly trivalent chromium, in a cementing matrix, as compared with the classical technique that uses a simple vibration of sludge at the paste phase. The implemented process led to an improvement in the compactness of the sludge, and thus assured a better retention of heavy metals in response to the leaching of this treated sludge. The evaluation of the chemical properties of the materials obtained after an artificial ageing process using humidity variation cycles and thermal chocks also revealed a significant improvement in the retention capacity of heavy metals in the solidified sludge, which was mainly favoured by the development of carbonation. In fact, the release of the heavy metals from the above mentioned treated sludge was reduced by 58% for zinc and 51% for trivalent chromium after the artificial ageing process.

  3. Investigation on Mechanical and Fatigue behaviour of Aluminium Based SiC/ZrO2 Particle Reinforced MMC

    NASA Astrophysics Data System (ADS)

    Ramesh, S.; Govindaraju, N.; Suryanarayan, C. P.

    2018-04-01

    The study is the work on Aluminium Metal Matrix Composites (MMC’s), which have wider applications in automobile, aerospace and defense industries, hi-tech engineering and power transmission due to their lightweight, high strength and other unique properties. The Aluminium Matrix Composites (AMC’s) refer to a kind of light weight high performance Aluminium centric material system. AMC’s consist of a non-metallic reinforcement which when included into aluminium matrix offers an advantage over the base material. Reinforcements like SiC, B4C, Al2O3, TiC, TiB2, TiO2 are normally preferred to improve mechanical properties of such composites. Here Aluminium 6061 is preferred as matrix material, while silicon carbide (SiC) and Zirconium di-oxide (ZrO2) is selected as reinforcement compounds. Conventional Stir casting procedure is employed to fabricate the necessary composites compositions, which are I. Al:SiC::100:5 and II. Al:ZrO2:SiC::100:3:2. Experimental results depict that the composition II provides higher hardness of 53.6 RHN as opposed to 45.8 RHN of composition I. In tensile strength composition II demonstrates 96.43 N/mm2 as opposed to 67.229 N/mm2 tensile strength of composition II. The fatigue test indicate a expected number of life cycles to failure of 105 cycles for composition II and over 104 cycles for composition I, at stress ranges of 79.062 MPa and 150.651 MPa respectively.

  4. Acousto-ultrasonic decay in metal matrix composite panels

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    1995-01-01

    Acousto-ultrasonic (A-U) decay rates (UD) were measured in metal matrix composite (MMC) panels. The MMC panels had fiber architectures and cross-sectional thicknesses corresponding to those designed for aerospace turbine engine structures. The wavelength-to-thickness ratio produced by the combination of experimental frequency setting conditions and specimen geometry was found to be a key parameter for identifying optimum conditions for UD measurements. The ratio was shown to be a useful rule of thumb when applied to ceramic matrix composites (CMC)s and monolithic thermo-plastics.

  5. The Role of Microstructural Variability on the Very High-Cycle Fatigue Behavior of Discontinuously-Reinforced Aluminum Metal Matrix Composites using Ultrasonic Fatigue (Preprint)

    DTIC Science & Technology

    2008-05-01

    controlled processing. Bhanu-Prasad et al .37 conducted a systematic study of PM-processed 2124/SiC/30p aluminum composites 4 5 in which matrix alloy...Mater., 27, 173-178. [5] Wang A, Rack HJ (1991). Transition wear behavior of SiC-particulate- and SiC- whisker-reinforced 7091 Al metal matrix...modeling of particle distribution effects on fatigue in Al -SiCp composites. Mater. Sci. Eng. A, Struct. Mater. Prop. Microstruct. Process., 300, 113-124

  6. Deformation, Failure, and Fatigue Life of SiC/Ti-15-3 Laminates Accurately Predicted by MAC/GMC

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2002-01-01

    NASA Glenn Research Center's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) (ref.1) has been extended to enable fully coupled macro-micro deformation, failure, and fatigue life predictions for advanced metal matrix, ceramic matrix, and polymer matrix composites. Because of the multiaxial nature of the code's underlying micromechanics model, GMC--which allows the incorporation of complex local inelastic constitutive models--MAC/GMC finds its most important application in metal matrix composites, like the SiC/Ti-15-3 composite examined here. Furthermore, since GMC predicts the microscale fields within each constituent of the composite material, submodels for local effects such as fiber breakage, interfacial debonding, and matrix fatigue damage can and have been built into MAC/GMC. The present application of MAC/GMC highlights the combination of these features, which has enabled the accurate modeling of the deformation, failure, and life of titanium matrix composites.

  7. A study of the diffusional behavior of a two-phase metal matrix composite exposed to a high temperature environment

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.

    1974-01-01

    The progress of diffusion-controlled filament-matrix interaction in a metal matrix composite where the filaments and matrix comprise a two-phase binary alloy system was studied by mathematically modeling compositional changes resulting from prolonged elevated temperature exposure. The analysis treats a finite, diffusion-controlled, two-phase moving-interface problem by means of a variable-grid finite-difference technique. The Ni-W system was selected as an example system. Modeling was carried out for the 1000 to 1200 C temperature range for unidirectional composites containing from 6 to 40 volume percent tungsten filaments in a Ni matrix. The results are displayed to show both the change in filament diameter and matrix composition as a function of exposure time. Compositional profiles produced between first and second nearest neighbor filaments were calculated by superposition of finite-difference solutions of the diffusion equations.

  8. Fabrication and Tribological Behavior of Stir Cast Mg/B4C Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Singh, Amandeep; Bala, Niraj

    2017-10-01

    Magnesium-based metal matrix composites (MMMCs) have emerged as good alternative material to conventional materials due to their promising advanced properties. In the present work, magnesium-based metal matrix composites (MMMCs) reinforced with B4C particles were successfully fabricated by cost-effective conventional stir casting technique. MMMCs with an average particle size of 63 µm and different weight percent (wt pct) of B4C between 3 and 12 were fabricated. Wear tests were carried out using a pin-on-disk against a steel disk under dry sliding condition at loads that varied between 1 and 5 kg at fixed sliding velocity of 1 m/s. The wear data clearly showed that wear resistance of cast composites is better than that of unreinforced magnesium, which is attributed to dispersion hardening caused by carbide particles. An increase in wt pct of B4C showed the wear resistance and hardness to increase significantly. The wear rate and coefficient of friction increased with an increase in applied load. The SEM and EDS analysis of the worn surfaces delineated the dominant wear mechanisms to be abrasion, adhesion, and oxidation under the different sliding conditions. At lower loads, the wear mechanism transformed from severe abrasive wear in pure magnesium (Mg) to mild abrasion, slight delamination, and oxidation in the Mg/12 wt pct B4C fabricated composite. At higher loads, severe abrasion, adhesion, delamination, and oxidation were found to be the major wear mechanisms in pure Mg, whereas in the Mg/12 wt pct B4C fabricated composites the corresponding mechanisms were mild abrasion, mild adhesion, slight delamination, and oxidation.

  9. Charge transport in metal oxide nanocrystal-based materials

    NASA Astrophysics Data System (ADS)

    Runnerstrom, Evan Lars

    There is probably no class of materials more varied, more widely used, or more ubiquitous than metal oxides. Depending on their composition, metal oxides can exhibit almost any number of properties. Of particular interest are the ways in which charge is transported in metal oxides: devices such as displays, touch screens, and smart windows rely on the ability of certain metal oxides to conduct electricity while maintaining visible transparency. Smart windows, fuel cells, and other electrochemical devices additionally rely on efficient transport of ionic charge in and around metal oxides. Colloidal synthesis has enabled metal oxide nanocrystals to emerge as a relatively new but highly tunable class of materials. Certain metal oxide nanocrystals, particularly highly doped metal oxides, have been enjoying rapid development in the last decade. As in myriad other materials systems, structure dictates the properties of metal oxide nanocrystals, but a full understanding of how nanocrystal synthesis, the processing of nanocrystal-based materials, and the structure of nanocrystals relate to the resulting properties of nanocrystal-based materials is still nascent. Gaining a fundamental understanding of and control over these structure-property relationships is crucial to developing a holistic understanding of metal oxide nanocrystals. The unique ability to tune metal oxide nanocrystals by changing composition through the introduction of dopants or by changing size and shape affords a way to study the interplay between structure, processing, and properties. This overall goal of this work is to chemically synthesize colloidal metal oxide nanocrystals, process them into useful materials, characterize charge transport in materials based on colloidal metal oxide nanocrystals, and develop ways to manipulate charge transport. In particular, this dissertation characterizes how the charge transport properties of metal oxide nanocrystal-based materials depend on their processing and structure. Charge transport can obviously be taken to mean the conduction of electrons, but it also refers to the motion of ions, such as lithium ions and protons. In many cases, the transport of ions is married to the motion of electrons as well, either through an external electrical circuit, or within the same material in the case of mixed ionic electronic conductors. The collective motion of electrons over short length scales, that is, within single nanocrystals, is also a subject of study as it pertains to plasmonic nanocrystals. Finally, charge transport can also be coupled to or result from the formation of defects in metal oxides. All of these modes of charge transport in metal oxides gain further complexity when considered in nanocrystalline systems, where the introduction of numerous surfaces can change the character of charge transport relative to bulk systems, providing opportunities to exploit new physical phenomena. Part I of this dissertation explores the combination of electronic and ionic transport in electrochromic devices based on nanocrystals. Colloidal chemistry and solution processing are used to fabricate nanocomposites based on electrochromic tin-doped indium oxide (ITO) nanocrystals. The nanocomposites, which are completely synthesized using solution processing, consist of ITO nanocrystals and lithium bis(trifluoromethylsulfonyl)amide (LiTFSI) salt dispersed in a lithium ion-conducting polymer matrix of either poly(ethylene oxide) (PEO) or poly(methyl methacrylate) (PMMA). ITO nanocrystals are prepared by colloidal synthetic methods and the nanocrystal surface chemistry is modified to achieve favorable nanocrystal-polymer interactions. Homogeneous solutions containing polymer, ITO nanocrystals, and lithium salt are thus prepared and deposited by spin casting. Characterization by DC electronic measurements, microscopy, and x-ray scattering techniques show that the ITO nanocrystals form a complete, connected electrode within a polymer electrolyte matrix, and that the morphology and properties of the nanocomposites can be manipulated by changing the chemical composition of the deposition solution. Careful application of AC impedance spectroscopy techniques and DC measurements are used to show that the nanocomposites exhibit mixed ionic and electronic conductivity, where electronic charge is transported through the ITO nanocrystal phase, and ionic charge is transported through the polymer matrix phase. The synthetic methods developed here and understanding of charge transport ultimately lead to the fabrication of a solid state nanocomposite electrochromic device based on nanocrystals of ITO and cerium oxide. Part II of this dissertation considers electron transport within individual metal oxide nanocrystals themselves. It primarily examines relationships between synthetic chemistry, doping mechanisms in metal oxides, and the accompanying physics of free carrier scattering within the interior of highly doped metal oxide nanocrystals, with particular mind paid to ITO nanocrystals. Additionally, synthetic methods as well as metal oxide defect chemistry influences the balance between activation and compensation of dopants, which limits the nanocrystals' free carrier concentration. Furthermore, because of ionized impurity scattering of the oscillating electrons by dopant ions, scattering must be treated in a fundamentally different way in semiconductor metal oxide materials when compared with conventional metals. (Abstract shortened by ProQuest.).

  10. Tungsten wire/FeCrAlY matrix turbine blade fabrication study

    NASA Technical Reports Server (NTRS)

    Melnyk, P.; Fleck, J. N.

    1979-01-01

    The objective was to establish a viable FRS monotape technology base to fabricate a complex, advanced turbine blade. All elements of monotape fabrication were addressed. A new process for incorporation of the matrix, including bi-alloy matrices, was developed. Bonding, cleaning, cutting, sizing, and forming parameters were established. These monotapes were then used to fabricate a 48 ply solid JT9D-7F 1st stage turbine blade. Core technology was then developed and first a 12 ply and then a 7 ply shell hollow airfoil was fabricated. As the fabrication technology advanced, additional airfoils incorporated further elements of sophistication, by introducing in sequence bonded root blocks, cross-plying, bi-metallic matrix, tip cap, trailing edge slots, and impingement inserts.

  11. Nanoscale assembly of high-temperature oxidation-resistant nanocomposites.

    PubMed

    Peng, Xiao

    2010-02-01

    Structural considerations for designing a high-temperature oxidation-resistant metallic material are proposed, based on the dependence of the material structure on a promotion of the development of a protective scale of chromia or alumina. The material should have numerous sites on its surface for nucleating the protective oxides at the onset of oxidation and abundant grain boundaries in deeper areas for simultaneously supplying sufficient flux of the protective-oxide-forming elements toward the surface for a rapid linkage of the oxide nuclei through their lateral growth. Based on these considerations, we fabricated, using an electrochemical deposition method, novel nanocomposites which have a nanocrystalline metal matrix containing Cr and/or Al nanoparticles dispersed at the nano length scale. The validity of the design considerations is verified by comparing the high-temperature oxidation of a typical Ni-Cr nanocomposite system with two types of conventional Ni-Cr materials having similar or higher Cr content but different structure: one is a composite having a nanocrystalline Ni matrix containing Cr microparticles dispersed at the microscale and the other are micron-grained Ni-Cr alloys with the Cr distribution at the atomic length scale.

  12. Nanoscale assembly of high-temperature oxidation-resistant nanocomposites

    NASA Astrophysics Data System (ADS)

    Peng, Xiao

    2010-02-01

    Structural considerations for designing a high-temperature oxidation-resistant metallic material are proposed, based on the dependence of the material structure on a promotion of the development of a protective scale of chromia or alumina. The material should have numerous sites on its surface for nucleating the protective oxides at the onset of oxidation and abundant grain boundaries in deeper areas for simultaneously supplying sufficient flux of the protective-oxide-forming elements toward the surface for a rapid linkage of the oxide nuclei through their lateral growth. Based on these considerations, we fabricated, using an electrochemical deposition method, novel nanocomposites which have a nanocrystalline metal matrix containing Cr and/or Al nanoparticles dispersed at the nano length scale. The validity of the design considerations is verified by comparing the high-temperature oxidation of a typical Ni-Cr nanocomposite system with two types of conventional Ni-Cr materials having similar or higher Cr content but different structure: one is a composite having a nanocrystalline Ni matrix containing Cr microparticles dispersed at the microscale and the other are micron-grained Ni-Cr alloys with the Cr distribution at the atomic length scale.

  13. Mechanical Properties of Steel Encapsulated Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Fudger, Sean; Klier, Eric; Karandikar, Prashant; McWilliams, Brandon; Ni, Chaoying

    This research evaluates a coefficient of thermal expansion (CTE) mismatch induced residual compressive stress approach as a means of improving the ductility of metal matrix composites (MMCs). MMCs are frequently incorporated into advanced material systems due to their tailorable material properties. However, they often have insufficient strength and ductility for many structural applications. By combining MMCs with high strength steels in a hybridized, macro composite materials system that exploits the CTE mismatch, materials systems with improved strength, damage tolerance, and structural efficiency can be obtained. Macro hybridized systems consisting of steel encapsulated light metal MMCs were produced with the goal of creating a system which takes advantage of the high strength, modulus, and damage tolerance of steels and high specific stiffness and low density of MMCs while mitigating the high density of steels and the poor ductility of MMCs. Aluminum and magnesium based particulate reinforced MMCs combine many of the desirable characteristic of metals and ceramics, particularly the unique ability to tailor their CTE. This work aims to compare the performance of macro hybridized material systems consisting of aluminum or magnesium MMCs reinforced with Al2O3, SiC, or B4C particles and encapsulated by A36 steel, 304 stainless steel, or cold worked Nitronic® 50 stainless steels.

  14. Solidification of Magnesium (AM50A) / vol%. SiCp composite

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Hu, H.

    2012-01-01

    Magnesium matrix composite is one of the advanced lightweight materials with high potential to be used in automotive and aircraft industries due to its low density and high specific mechanical properties. The magnesium composites can be fabricated by adding the reinforcements of fibers or/and particles. In the previous literature, extensive studies have been performed on the development of matrix grain structure of aluminum-based metal matrix composites. However, there is limited information available on the development of grain structure during the solidification of particulate-reinforced magnesium. In this work, a 5 vol.% SiCp particulate-reinforced magnesium (AM50A) matrix composite (AM50A/SiCp) was prepared by stir casting. The solidification behavior of the cast AM50A/SiCp composite was investigated by computer-based thermal analysis. Optical and scanning electron microscopies (SEM) were employed to examine the occurrence of nucleation and grain refinement involved. The results indicate that the addition of SiCp particulates leads to a finer grain structure in the composite compared with the matrix alloy. The refinement of grain structure should be attributed to both the heterogeneous nucleation and the restricted primary crystal growth.

  15. Modeling the Nonlinear, Strain Rate Dependent Deformation of Woven Ceramic Matrix Composites With Hydrostatic Stress Effects Included

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Carney, Kelly S.

    2004-01-01

    An analysis method based on a deformation (as opposed to damage) approach has been developed to model the strain rate dependent, nonlinear deformation of woven ceramic matrix composites with a plain weave fiber architecture. In the developed model, the differences in the tension and compression response have also been considered. State variable based viscoplastic equations originally developed for metals have been modified to analyze the ceramic matrix composites. To account for the tension/compression asymmetry in the material, the effective stress and effective inelastic strain definitions have been modified. The equations have also been modified to account for the fact that in an orthotropic composite the in-plane shear stiffness is independent of the stiffness in the normal directions. The developed equations have been implemented into a commercially available transient dynamic finite element code, LS-DYNA, through the use of user defined subroutines (UMATs). The tensile, compressive, and shear deformation of a representative plain weave woven ceramic matrix composite are computed and compared to experimental results. The computed values correlate well to the experimental data, demonstrating the ability of the model to accurately compute the deformation response of woven ceramic matrix composites.

  16. Ultrashort hybrid metal-insulator plasmonic directional coupler.

    PubMed

    Noghani, Mahmoud Talafi; Samiei, Mohammad Hashem Vadjed

    2013-11-01

    An ultrashort plasmonic directional coupler based on the hybrid metal-insulator slab waveguide is proposed and analyzed at the telecommunication wavelength of 1550 nm. It is first analyzed using the supermode theory based on mode analysis via the transfer matrix method in the interaction region. Then the 2D model of the coupler, including transition arms, is analyzed using a commercial finite-element method simulator. The hybrid slab waveguide is composed of a metallic layer of silver and two dielectric layers of silica (SiO2) and silicon (Si). The coupler is optimized to have a minimum coupling length and to transfer maximum power considering the layer thicknesses as optimization variables. The resulting coupling length in the submicrometer region along with a noticeable power transfer efficiency are advantages of the proposed coupler compared to previously reported plasmonic couplers.

  17. Burn-Resistant, Strong Metal-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M.; Tayal, Moti J.

    2003-01-01

    Ceramic particulate fillers increase the specific strengths and burn resistances of metals: This is the conclusion drawn by researchers at Johnson Space Center's White Sands Test Facility. The researchers had theorized that the inclusion of ceramic particles in metal tools and other metal objects used in oxygen-rich atmospheres (e.g., in hyperbaric chambers and spacecraft) could reduce the risk of fire and the consequent injury or death of personnel. In such atmospheres, metal objects act as ignition sources, creating fire hazards. However, not all metals are equally hazardous: some are more burn-resistant than others are. It was the researchers purpose to identify a burn-resistant, high-specific-strength ceramic-particle/metal-matrix composite that could be used in oxygen-rich atmospheres. The researchers studied several metals. Nickel and cobalt alloys exhibit high burn resistances and are dense. The researchers next turned to ceramics, which they knew do not act as ignition sources. Unlike metals, ceramics are naturally burn-resistant. Unfortunately, they also exhibit low fracture toughnesses.

  18. Corrosion of aluminium metal in OPC- and CAC-based cement matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinoshita, Hajime, E-mail: h.kinoshita@sheffield.ac.uk; Swift, Paul; Utton, Claire

    Corrosion of aluminium metal in ordinary Portland cement (OPC) based pastes produces hydrogen gas and expansive reaction products causing problems for the encapsulation of aluminium containing nuclear wastes. Although corrosion of aluminium in cements has been long known, the extent of aluminium corrosion in the cement matrices and effects of such reaction on the cement phases are not well established. The present study investigates the corrosion reaction of aluminium in OPC, OPC-blast furnace slag (BFS) and calcium aluminate cement (CAC) based systems. The total amount of aluminium able to corrode in an OPC and 4:1 BFS:OPC system was determined, andmore » the correlation between the amount of calcium hydroxide in the system and the reaction of aluminium obtained. It was also shown that a CAC-based system could offer a potential matrix to incorporate aluminium metal with a further reduction of pH by introduction of phosphate, producing a calcium phosphate cement.« less

  19. Electrocatalytic N-Doped Graphitic Nanofiber - Metal/Metal Oxide Nanoparticle Composites.

    PubMed

    Tang, Hongjie; Chen, Wei; Wang, Jiangyan; Dugger, Thomas; Cruz, Luz; Kisailus, David

    2018-03-01

    Carbon-based nanocomposites have shown promising results in replacing commercial Pt/C as high-performance, low cost, nonprecious metal-based oxygen reduction reaction (ORR) catalysts. Developing unique nanostructures of active components (e.g., metal oxides) and carbon materials is essential for their application in next generation electrode materials for fuel cells and metal-air batteries. Herein, a general approach for the production of 1D porous nitrogen-doped graphitic carbon fibers embedded with active ORR components, (M/MO x , i.e., metal or metal oxide nanoparticles) using a facile two-step electrospinning and annealing process is reported. Metal nanoparticles/nanoclusters nucleate within the polymer nanofibers and subsequently catalyze graphitization of the surrounding polymer matrix and following oxidation, create an interconnected graphite-metal oxide framework with large pore channels, considerable active sites, and high specific surface area. The metal/metal oxide@N-doped graphitic carbon fibers, especially Co 3 O 4 , exhibit comparable ORR catalytic activity but superior stability and methanol tolerance versus Pt in alkaline solutions, which can be ascribed to the synergistic chemical coupling effects between Co 3 O 4 and robust 1D porous structures composed of interconnected N-doped graphitic nanocarbon rings. This finding provides a novel insight into the design of functional electrocatalysts using electrospun carbon nanomaterials for their application in energy storage and conversion fields. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Investigation of the Self-Healing Behavior of Sn-Bi Metal Matrix Composite Reinforced with NiTi Shape Memory Alloy Strips Under Flexural Loading

    NASA Astrophysics Data System (ADS)

    Poormir, Mohammad Amin; Khalili, Seyed Mohammad Reza; Eslami-Farsani, Reza

    2018-03-01

    Utilizing intelligent materials such as shape memory alloys as reinforcement in metal matrix composites is a novel method to mimic self-healing behavior. In this study, the bending behavior of a self-healing metal matrix composite made from Sn-13 wt.% Bi alloy as matrix and NiTi shape memory alloy (SMA) strips as reinforcement is investigated. Specimens were fabricated in different reinforcement vol.% (0.78, 1.55, 2.33) and in various pre-strains (0, 2, 6%) and were healed at three healing temperatures (170°C, 180°C, 190°C). Results showed that shape recovery was accomplished in all the specimens, but not all of them were able to withstand second loading after healing. Only specimens with 2.33 vol.% of SMA strips, 1.55 vol.% of SMA, and 6% pre-strain could endure bending force after healing, and they gained 35.31-51.83% of bending force self-healing efficiency.

  1. Investigation of the Self-Healing Behavior of Sn-Bi Metal Matrix Composite Reinforced with NiTi Shape Memory Alloy Strips Under Flexural Loading

    NASA Astrophysics Data System (ADS)

    Poormir, Mohammad Amin; Khalili, Seyed Mohammad Reza; Eslami-Farsani, Reza

    2018-06-01

    Utilizing intelligent materials such as shape memory alloys as reinforcement in metal matrix composites is a novel method to mimic self-healing behavior. In this study, the bending behavior of a self-healing metal matrix composite made from Sn-13 wt.% Bi alloy as matrix and NiTi shape memory alloy (SMA) strips as reinforcement is investigated. Specimens were fabricated in different reinforcement vol.% (0.78, 1.55, 2.33) and in various pre-strains (0, 2, 6%) and were healed at three healing temperatures (170°C, 180°C, 190°C). Results showed that shape recovery was accomplished in all the specimens, but not all of them were able to withstand second loading after healing. Only specimens with 2.33 vol.% of SMA strips, 1.55 vol.% of SMA, and 6% pre-strain could endure bending force after healing, and they gained 35.31-51.83% of bending force self-healing efficiency.

  2. Microyielding of core-shell crystal dendrites in a bulk-metallic-glass matrix composite

    DOE PAGES

    Huang, E. -Wen; Qiao, Junwei; Winiarski, Bartlomiej; ...

    2014-03-18

    In-situ synchrotron x-ray experiments have been used to follow the evolution of the diffraction peaks for crystalline dendrites embedded in a bulk metallic glass matrix subjected to a compressive loading-unloading cycle. We observe irreversible diffraction-peak splitting even though the load does not go beyond half of the bulk yield strength. The chemical analysis coupled with the transmission electron microscopy mapping suggests that the observed peak splitting originates from the chemical heterogeneity between the core (major peak) and the stiffer shell (minor peak) of the dendrites. A molecular dynamics model has been developed to compare the hkl-dependent microyielding of the bulkmore » metallic-glass matrix composite. As a result, the complementary diffraction measurements and the simulation results suggest that the interfaces between the amorphous matrix and the (211) crystalline planes relax under prolonged load that causes a delay in the reload curve which ultimately catches up with the original path.« less

  3. The fundamental flaw of the HSAB principle is revealed by a complete speciation analysis of the [PtCl(6-n)Br(n)](2-) (n = 0-6) system.

    PubMed

    Gerber, W J; van Wyk, P-H; van Niekerk, D M E; Koch, K R

    2015-02-28

    Bjerrum's model of step-wise ligand exchange is extended to compute a complete speciation diagram for the [PtCl6-nBrn](2-) (n = 0-6) system including all 17 equilibrium constants concerning the Pt(IV) chlorido-bromido exchange reaction network (HERN). In contrast to what the hard soft acid base (HSAB) principle "predicts", the thermodynamic driving force for the replacement of chloride by bromide in an aqueous matrix, for each individual ligand exchange reaction present in the Pt(IV) HERN, is due to the difference in halide hydration energy and not bonding interactions present in the acid-base complex. A generalized thermodynamic test calculation was developed to illustrate that the HSAB classified class (b) metal cations Ag(+), Au(+), Au(3+), Rh(3+), Cd(2+), Pt(2+), Pt(4+), Fe(3+), Cd(2+), Sn(2+) and Zn(2+) all form thermodynamically stable halido complexes in the order F(-) ≫ Cl(-) > Br(-) > I(-) irrespective of the sample matrix. The bonding interactions in the acid-base complex, e.g. ionic-covalent σ-bonding, Π-bonding and electron correlation effects, play no actual role in the classification of these metal cations using the HSAB principle. Instead, it turns out that the hydration/solvation energy of halides is the reason why metal cations are categorized into two classes using the HSAB principle which highlights the fundamental flaw of the HSAB principle.

  4. Development of a Tabletop Model for the Generation of Amorphous/ Microcrystalline Metal Powders

    DTIC Science & Technology

    1980-04-30

    Voltage Characteristics for Wetting (si) and Non-wetting (AZ 4.5% Cu ) EHD Spray 2-57 28 Schematic of the Process of Electrohydrodynamic Droplet...Microscope Image of a Deposit , Fine Powders and "Matrix" Film of Fe-Ni-B-P Metallic Glass Alloy Produced by the EHD Technique 3-9 45 Selected Area...Transmission Electron Microscope Image of a Deposit , Fine Powders and "Matrix" Film of Fe-Ni-B-P Metallic Glass Alloy Produced by the EHD Technique 3-11 xi

  5. Coupling of metal-organic frameworks-containing monolithic capillary-based selective enrichment with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry for efficient analysis of protein phosphorylation.

    PubMed

    Li, Daojin; Yin, Danyang; Chen, Yang; Liu, Zhen

    2017-05-19

    Protein phosphorylation is a major post-translational modification, which plays a vital role in cellular signaling of numerous biological processes. Mass spectrometry (MS) has been an essential tool for the analysis of protein phosphorylation, for which it is a key step to selectively enrich phosphopeptides from complex biological samples. In this study, metal-organic frameworks (MOFs)-based monolithic capillary has been successfully prepared as an effective sorbent for the selective enrichment of phosphopeptides and has been off-line coupled with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) for efficient analysis of phosphopeptides. Using š-casein as a representative phosphoprotein, efficient phosphorylation analysis by this off-line platform was verified. Phosphorylation analysis of a nonfat milk sample was also demonstrated. Through introducing large surface areas and highly ordered pores of MOFs into monolithic column, the MOFs-based monolithic capillary exhibited several significant advantages, such as excellent selectivity toward phosphopeptides, superb tolerance to interference and simple operation procedure. Because of these highly desirable properties, the MOFs-based monolithic capillary could be a useful tool for protein phosphorylation analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Comparative study of post-growth annealing of Cu(hfac)2, Co2(CO)8 and Me2Au(acac) metal precursors deposited by FEBID.

    PubMed

    Puydinger Dos Santos, Marcos Vinicius; Szkudlarek, Aleksandra; Rydosz, Artur; Guerra-Nuñez, Carlos; Béron, Fanny; Pirota, Kleber Roberto; Moshkalev, Stanislav; Diniz, José Alexandre; Utke, Ivo

    2018-01-01

    Non-noble metals, such as Cu and Co, as well as noble metals, such as Au, can be used in a number modern technological applications, which include advanced scanning-probe systems, magnetic memory and storage, ferroelectric tunnel junction memristors, metal interconnects for high performance integrated circuits in microelectronics and nano-optics applications, especially in the areas of plasmonics and metamaterials. Focused-electron-beam-induced deposition (FEBID) is a maskless direct-write tool capable of defining 3-dimensional metal deposits at nanometre scale for above applications. However, codeposition of organic ligands when using organometallic precursors is a typical problem that limits FEBID of pure metal nanostructures. In this work, we present a comparative study using a post-growth annealing protocol at 100, 200, and 300 °C under high vacuum on deposits obtained from Co 2 (CO) 8 , Cu(II)(hfac) 2 , and Me 2 Au(acac) to study improvements on composition and electrical conductivity. Although the as-deposited material was similar for all precursors, metal grains embedded in a carbonaceous matrix, the post-growth annealing results differed. Cu-containing deposits showed the formation of pure Cu nanocrystals at the outer surface of the initial deposit for temperatures above 100 °C, due to the migration of Cu atoms from the carbonaceous matrix containing carbon, oxygen, and fluorine atoms. The average size of the Cu crystals doubles between 100 and 300 °C of annealing temperature, while the composition remains constant. In contrast, for Co-containing deposits oxygen release was observed upon annealing, while the carbon content remained approximately constant; the cobalt atoms coalesced to form a metallic film. The as-deposited Au-containing material shows subnanometric grains that coalesce at 100 °C, maintaining the same average size at annealing temperatures up to 300 °C. Raman analysis suggests that the amorphous carbonaceous matrix of the as-written Co, Cu and Au deposits turned into nanocrystalline graphite with comparable crystal sizes of 12-14 nm at 300 °C annealing temperature. However, we observed a more effective formation of graphite clusters in Co- than in Cu- and Au-containing deposits. The graphitisation has a minor influence on the electrical conductivity improvements of Co-C deposits, which is attributed to the high as-deposited Co content and the related metal grain percolation. On the contrary, electrical conductivity improvements by factors of 30 and 12 for, respectively, Cu-C and Au-C deposits with low metal content are mainly attributed to the graphitisation. This relatively simple vacuum-based post-growth annealing protocol may be useful for other precursors as it proved to be efficient in reliably tuning the electrical properties of as-deposited FEBID materials. Finally, a H 2 -assisted gold purification protocol is demonstrated at temperatures around 300 °C by fully removing the carbon matrix and drastically reducing the electrical resistance of the deposit.

  7. Metal/fiber laminate and fabrication using a porous metal/fiber preform

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J. (Inventor); Alexa, Joel A. (Inventor); Jensen, Brian J. (Inventor); Cano, Roberto J. (Inventor); Weiser, Erik S. (Inventor)

    2011-01-01

    A metal/fiber laminate has a plurality of adjacent layers. Each layer is porous and includes an arrangement of fibers. At least one of the layers has its fibers coated with a metal. A polymer matrix permeates each such arrangement.

  8. Metal/fiber laminate and fabrication using a porous metal/fiber preform

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J. (Inventor); Alexa, Joel A. (Inventor); Jensen, Brian J. (Inventor); Cano, Roberto J. (Inventor); Weiser, Erik S. (Inventor)

    2010-01-01

    A metal/fiber laminate has a plurality of adjacent layers. Each layer is porous and includes an arrangement of fibers. At least one of the layers has its fibers coated with a metal. A polymer matrix permeates each such arrangement.

  9. Catalytic potential of selected metal ions for bioleaching, and potential techno-economic and environmental issues: A critical review.

    PubMed

    Pathak, Ashish; Morrison, Liam; Healy, Mark Gerard

    2017-04-01

    Bioleaching is considered to be a low-cost, eco-friendly technique for leaching valuable metals from a variety of matrixes. However, the inherent slow dissolution kinetics and low metal leaching yields have restricted its wider commercial applicability. Recent advancements in bio-hydrometallurgy have suggested that these critical issues can be successfully alleviated through the addition of a catalyst. The catalyzing properties of a variety of metals ions (Ag + , Hg ++ , Bi +++ , Cu ++ , Co ++ etc.) during bioleaching have been successfully demonstrated. In this article, the role and mechanisms of these metal species in catalyzing bioleaching from different minerals (chalcopyrite, complex sulfides, etc.) and waste materials (spent batteries) are reviewed, techno-economic and environmental challenges associated with the use of metals ions as catalysts are identified, and future prospectives are discussed. Based on the analysis, it is suggested that metal ion-catalyzed bioleaching will play a key role in the development of future industrial bio-hydrometallurgical processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Correlation of Gas Permeability in a Metal-Organic Framework MIL-101(Cr)–Polysulfone Mixed-Matrix Membrane with Free Volume Measurements by Positron Annihilation Lifetime Spectroscopy (PALS)

    PubMed Central

    Jeazet, Harold B. Tanh; Koschine, Tönjes; Staudt, Claudia; Raetzke, Klaus; Janiak, Christoph

    2013-01-01

    Hydrothermally stable particles of the metal-organic framework MIL-101(Cr) were incorporated into a polysulfone (PSF) matrix to produce mixed-matrix or composite membranes with excellent dispersion of MIL-101 particles and good adhesion within the polymer matrix. Pure gas (O2, N2, CO2 and CH4) permeation tests showed a significant increase of gas permeabilities of the mixed-matrix membranes without any loss in selectivity. Positron annihilation lifetime spectroscopy (PALS) indicated that the increased gas permeability is due to the free volume in the PSF polymer and the added large free volume inside the MIL-101 particles. The trend of the gas transport properties of the composite membranes could be reproduced by a Maxwell model. PMID:24957061

  11. Dynamical simulation of electron transfer processes in self-assembled monolayers at metal surfaces using a density matrix approach.

    PubMed

    Prucker, V; Bockstedte, M; Thoss, M; Coto, P B

    2018-03-28

    A single-particle density matrix approach is introduced to simulate the dynamics of heterogeneous electron transfer (ET) processes at interfaces. The characterization of the systems is based on a model Hamiltonian parametrized by electronic structure calculations and a partitioning method. The method is applied to investigate ET in a series of nitrile-substituted (poly)(p-phenylene)thiolate self-assembled monolayers adsorbed at the Au(111) surface. The results show a significant dependence of the ET on the orbital symmetry of the donor state and on the molecular and electronic structure of the spacer.

  12. Sol-gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics.

    PubMed

    Bejarano, Julian; Caviedes, Pablo; Palza, Humberto

    2015-03-11

    Metal doping of bioactive glasses based on ternary 60SiO2-36CaO-4P2O5 (58S) and quaternary 60SiO2-25CaO-11Na2O-4P2O5 (NaBG) mol% compositions synthesized using a sol-gel process was analyzed. In particular, the effect of incorporating 1, 5 and 10 mol% of CuO and ZnO (replacing equivalent quantities of CaO) on the texture, in vitro bioactivity, and cytocompatibility of these materials was evaluated. Our results showed that the addition of metal ions can modulate the textural property of the matrix and its crystal structure. Regarding the bioactivity, after soaking in simulated body fluid (SBF) undoped 58S and NaBG glasses developed an apatite surface layer that was reduced in the doped glasses depending on the type of metal and its concentration with Zn displaying the largest inhibitions. Both the ion release from samples and the ion adsorption from the medium depended on the type of matrix with 58S glasses showing the highest values. Pure NaBG glass was more cytocompatible to osteoblast-like cells (SaOS-2) than pure 58S glass as tested by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The incorporation of metal ions decreased the cytocompatibility of the glasses depending on their concentration and on the glass matrix doped. Our results show that by changing the glass composition and by adding Cu or Zn, bioactive materials with different textures, bioactivity and cytocompatibility can be synthesized.

  13. Process for the manufacture of seamless metal-clad fiber-reinforced organic matrix composite structures

    NASA Technical Reports Server (NTRS)

    Bluck, Raymond M. (Inventor); Bush, Harold G. (Inventor); Johnson, Robert R. (Inventor)

    1991-01-01

    A process for producing seamless metal-clad composite structures includes providing a hollow, metallic inner member and an outer sleeve to surround the inner member and define an inner space therebetween. A plurality of continuous reinforcing fibers is attached to the distal end of the outside diameter of the inner member, and the inner member is then introduced, distal end first, into one end of the outer sleeve. The inner member is then moved, distal end first, into the outer sleeve until the inner member is completely enveloped by the outer sleeve. A liquid matrix material is then injected into the space containing the reinforcing fibers between the inner member and the outer sleeve. Next a pressurized heat transfer medium is passed through the inner member to cure the liquid matrix material. Finally, the wall thickness of both the inner member and the outer sleeve are reduced to desired dimensions by chemical etching, which adjusts the thermal expansion coefficient of the metal-clad composite structure to a desired value.

  14. Infrared spectra of group III A metal oxides

    NASA Technical Reports Server (NTRS)

    Lynch, D. A., Jr.

    1972-01-01

    The measurement of infrared frequencies of metal-oxygen species which could be formed in the matrix and to investigate with an oxygen-18 enrichment study the controversy on the vibrational assignments for the suboxide. Several new molecules, Al3O2, Ga3O, In3O, In4O2, IntaO, IntaO2, and In2WO4, were found by mass spectrometric sampling to exist in extremely minor concentrations in the vapor phase. The latter three species were formed by reaction with the crucible materials and were unimportant for an infrared analysis. The infrared spectroscopic measurements were obtained by the matrix isolation technique of molecular beam sampling. The MO2 species were formed by direct reaction between metal and O2 in the matrix. A C2v structure and an O-M-O bond angle near 40 deg was favored for these molecules by analogy with a similar investigation of the alkali metals. The vibrational frequencies which were determined are given.

  15. An analytical/numerical correlation study of the multiple concentric cylinder model for the thermoplastic response of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Salzar, Robert S.; Williams, Todd O.

    1993-01-01

    The utility of a recently developed analytical micromechanics model for the response of metal matrix composites under thermal loading is illustrated by comparison with the results generated using the finite-element approach. The model is based on the concentric cylinder assemblage consisting of an arbitrary number of elastic or elastoplastic sublayers with isotropic or orthotropic, temperature-dependent properties. The elastoplastic boundary-value problem of an arbitrarily layered concentric cylinder is solved using the local/global stiffness matrix formulation (originally developed for elastic layered media) and Mendelson's iterative technique of successive elastic solutions. These features of the model facilitate efficient investigation of the effects of various microstructural details, such as functionally graded architectures of interfacial layers, on the evolution of residual stresses during cool down. The available closed-form expressions for the field variables can readily be incorporated into an optimization algorithm in order to efficiently identify optimal configurations of graded interfaces for given applications. Comparison of residual stress distributions after cool down generated using finite-element analysis and the present micromechanics model for four composite systems with substantially different temperature-dependent elastic, plastic, and thermal properties illustrates the efficacy of the developed analytical scheme.

  16. Fabrication and tribological response of aluminium 6061 hybrid composite reinforced with bamboo char and boron carbide micro-fillers

    NASA Astrophysics Data System (ADS)

    Chethan, K. N.; Pai, Anand; Keni, Laxmikant G.; Singhal, Ashish; Sinha, Shubham

    2018-02-01

    Metal matrix composites (MMCs) have a wide scope of industrial applications and triumph over conventional materials due to their light weight, higher specific strength, good wear resistance and lower coefficient of thermal expansion. The present study aims at establishing the feasibility of using Bamboo charcoal particulate and boron carbide as reinforcements in Al-6061 alloy matrix and to investigate their effect on the wear of composites taking into consideration the interfacial adhesion of the reinforcements in the alloy. Al-6061 alloy was chosen as a base metallic alloy matrix. Sun-dried bamboo canes were used for charcoal preparation with the aid of a muffle furnace. The carbon content in the charcoal samples was determined by EDS (energy dispersive spectroscopy). In present study, stir casting technique was used to prepare the samples with 1%, 2%, and 3% weight of bamboo charcoal and boron carbide with Al-6061. The fabricated composites were homogenised at 570°C for 6 hours and cooled at room temperature. Wear studies were carried out on the specimens with different speed and loads. It was found that wear rate and coefficient of friction decreased with increase in the reinforcement content.

  17. Mechanical Behavior and Processing of Aluminum Metal Matrix Composites

    DTIC Science & Technology

    1992-02-21

    SUgeCT TERMS Spray Atomization and Co-Deposition; metal Matrix IS. NUMBER OF PAGeiS Composites; Solidification Mechanisms; Non -Equilibrium...continuously reinforced MMCs, such as: (a) fiber damage, (b) microstructural non -uniformity, (c) fiber to fiber contact, and (d) extensive...of the high reactiJity of lithium. The excessive high temperature reactivity of aluminum-lithium alloys results in the formation of non -protective

  18. Low-Earth orbit effects on organic composite materials flown on LDEF

    NASA Technical Reports Server (NTRS)

    George, Pete E.; Dursch, Harry W.

    1993-01-01

    Over 35 different types of organic matrix composites were flown as part of 11 different experiments onboard the NASA Long Duration Exposure Facility (LDEF) satellite. This materials and systems experiment satellite flew in low-earth orbit (LEO) for 69 months. For that period, the experiments were subjected to the LEO environment including atomic oxygen (AO), ultraviolet (UV) radiation, thermal cycling, microvacuum, meteoroid and space debris (M&D), and particle radiation. Since retrieval of the satellite in January of 1990, the principal experiment investigators have been deintegrating, examining, and testing the materials specimens flown. The most detrimental environmental effect on all organic matrix composites was material loss due to AO erosion. AO erosion of uncoated organic matrix composites (OMC) facing the satellite ram direction was responsible for significant mechanical property degradations. Also, thermal cycling-induced microcracking was observed in some nonunidirectional reinforced OMC's. Thermal cycling and outgassing caused significant but predictable dimensional changes as measured in situ on one experiment. Some metal and metal oxide-based coatings were found to be very effective at preventing AO erosion of OMC's. However, M&D impacts and coating fractures which compromised these coatings allowed AO erosion of the underlying OMC substrates. The findings for organic matrix composites flown on the LDEF are summarized and the LEO environmental factors, their effects, and the influence on space hardware design factors for LEO applications are identified.

  19. Development and agronomical validation of new fertilizer compositions of high bioavailability and reduced potential nutrient losses.

    PubMed

    Erro, Javier; Urrutia, Oscar; San Francisco, Sara; Garcia-Mina, Jose M

    2007-09-19

    To optimize the economical cost of each unit of fertilizer applied and to reduce the environmental contamination caused by nutrient losses, the development of highly efficient granulated fertilizers is of great importance. This study proposes a strategy that consists of developing specific fertilizers having nutrient release patterns that are dependent on plant activity in the rhizosphere. This type of fertilizer is named "rhizosphere-controlled fertilizer" (RCF fertilizer). This fertilizer is based on the introduction of an organomineral matrix composed of metal [Mg (Ca is also possible), Zn (Fe and other metals are also possible)]-humic phosphates. The presence of this matrix modifies the nutrient release pattern of the fertilizer. In this way there are two main nutrient fractions: (i) a water-soluble fraction or "starter" fraction and (ii) a "rhizosphere-controlled" fraction insoluble in water but soluble by the action of the rhizospheric acids released by plants and microorganisms. This study shows the chemical and structural characterization of the organomineral matrix, as well as its efficiency in slowing the nutrient release rate of the RCF fertilizer, principally with respect to P and N. It is demonstrated how these properties of the matrix were also reflected in the significant reduction in both ammonia volatilization and N leaching in a pot system consisting of wheat plants cultivated in a calcareous soil and fertilized with a RCF fertilizer.

  20. Synchrotron x-ray scattering investigations of oxygen-induced nucleation in a Zr-based glass-forming alloy.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, J. J.; Almer, J. D.; Vogel, S. C.

    The metallic glass-forming alloy VIT-105 (Zr{sub 52.5}Cu{sub 17.9}Ni{sub 14.6}Al{sub 10}Ti{sub 5}) was used to study the effect of oxygen on nucleation. Ex situ synchrotron X-ray scattering experiments performed on as-cast samples showed that oxygen leads to the formation of tetragonal and/or cubic phases, depending on oxygen content. The samples crystallized into either a primitive tetragonal phase or the so-called fcc 'big cube' phase in a glassy matrix. A subsequent discussion on the role of oxygen in heterogeneous nucleation in Zr-based bulk metallic glasses is presented.

  1. Transport properties in a monolayer graphene modulated by the realistic magnetic field and the Schottky metal stripe

    NASA Astrophysics Data System (ADS)

    Lu, Jian-Duo; Li, Yun-Bao; Liu, Hong-Yu; Peng, Shun-Jin; Zhao, Fei-Xiang

    2016-09-01

    Based on the transfer-matrix method, a systematic investigation of electron transport properties is done in a monolayer graphene modulated by the realistic magnetic field and the Schottky metal stripe. The strong dependence of the electron transmission and the conductance on the incident angle of carriers is clearly seen. The height, position as well as width of the barrier also play an important role on the electron transport properties. These interesting results are very useful for understanding the tunneling mechanism in the monolayer graphene and helpful for designing the graphene-based electrical device modulated by the realistic magnetic field and the electrical barrier.

  2. Vapor Phase Hydrogenolysis of Furanics Utilizing Reduced Cobalt Mixed Metal Oxide Catalysts

    DOE PAGES

    Sulmonetti, Taylor P.; Hu, Bo; Ifkovits, Zachary; ...

    2017-03-21

    Vapor phase hydrogenolysis of both furfuryl alcohol and furfural were investigated over reduced Co based mixed metal oxides derived from the calcination of a layered double hydroxide precursor. Although a reduced cobalt aluminate sample displays promising selectivity towards 2-methylfuran (2-MF) production, the addition of an Fe dopant into the oxide matrix significantly enhances the activity and selectivity per gram of catalyst. Approximately 82% 2-MF yield is achieved at high conversion when furfuryl alcohol is fed into the reactor at 180 °C over the reduced 3Co-0.25Fe-0.75Al catalyst. Based on structural characterization studies including TPR, XPS, and in-situ XAS it is suggestedmore » that Fe facilitates the reduction of Co, allowing for formation of more metallic species. Altogether, this study demonstrates that non-precious metal catalysts offer promise for the selective conversion of a key biomass oxygenate to a proposed fuel additive.« less

  3. Atmosphere

    NASA Astrophysics Data System (ADS)

    Ghosh, D.; Mitra, S. K.

    2014-05-01

    This paper investigates the high-temperature corrosion behavior of microstructurally different regions of the weldment of 9 Cr-1 Mo steel used in thermal power plant boiler in SO2 + O2 environment. The weldment is produced by tungsten inert gas welding method, and the different regions of the weldment (weld metal, heat-affected zone, and base metal) are exposed in SO2 + O2 (ratio 2:1) environment at 973 K for 120 h. The reaction kinetics and corrosion growth rate of different regions of weldment in isothermal condition are evaluated. The post corroded scales of the different specimens are studied in SEM, EDS, and XRD. The results indicate that the weld metal shows higher corrosion rate followed by HAZ and base metal. The higher rate of corrosion of weldmetal is mainly attributed to the least protective inner scale of Cr2O3 with minimum Cr Content. This is due to the formation of delta ferrite, which leads to the precipitation of the Cr-based secondary phases and depletes the free Cr from the matrix. The thermal cycles during welding at high temperature are favorable for the formation of delta ferrite. On the other hand, in absence of delta ferrite, the base metal and HAZ regions of the weldment show lower corrosion rate than weld metal. The difference in corrosion rate in the three regions of the weldment is supplemented by post-corroded scale characterizations.

  4. Investigation of damage mechanisms in a cross-ply metal-matrix composite under thermomechanical loading. Master's thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schubbe, J.J.

    1990-12-01

    Metal matrix composites (MMCs) are rapidly becoming strong candidates for high temperature and high stiffness structural applications such as the Advanced Tactical Fighter (ATF). This study systematically investigated the failure modes and associated damage in a cross-ply, (0/90)2s SCS6/Ti-15-3 metal matrix composite under in-phase and out-of-phase thermomechanic fatigue. Initiation and progression of fatigue damage were recorded and correlated to changes in Young's Modulus of the composite material. Experimental results show an internal stabilization of reaction zone size but degradation and separation from constituent materials under extended cyclic thermal loading. Critical to damage were transverse cracks initiating in the 90 degreesmore » plies, growing and coalescing from fiber/matrix interfaces internal to the specimen, progressing outward through the 0 degree plies before failure. Maximum mechanical strain at failure was determined to be approximately 0.0075 mm/mm. A correlation was made relating maximum matrix stress to failure life, resulting in a fatigue threshold limit of 280 MPa. An attempt was made to correlate the degradation in Young's Modulus (Damage=1-E/Eo) with the applied life cycles from different TMF tests.« less

  5. Inelastic response of metal matrix composites under biaxial loading

    NASA Technical Reports Server (NTRS)

    Lissenden, C. J.; Mirzadeh, F.; Pindera, M.-J.; Herakovich, C. T.

    1991-01-01

    Theoretical predictions and experimental results were obtained for inelastic response of unidirectional and angle ply composite tubes subjected to axial and torsional loading. The composite material consist of silicon carbide fibers in a titanium alloy matrix. This material is known to be susceptible to fiber matrix interfacial damage. A method to distinguish between matrix yielding and fiber matrix interfacial damage is suggested. Biaxial tests were conducted on the two different layup configurations using an MTS Axial/Torsional load frame with a PC based data acquisition system. The experimentally determined elastic moduli of the SiC/Ti system are compared with those predicted by a micromechanics model. The test results indicate that fiber matrix interfacial damage occurs at relatively low load levels and is a local phenomenon. The micromechanics model used is the method of cells originally proposed by Aboudi. Finite element models using the ABACUS finite element program were used to study end effects and fixture specimen interactions. The results to date have shown good correlation between theory and experiment for response prior to damage initiation.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panwar, Ranvir Singh, E-mail: ranvir.panwar@thapar.edu; Pandey, O.P., E-mail: oppandey@thapar.edu

    Particulate reinforced aluminum metal matrix composite is in high demand in automobile industry where the operational conditions vary from low to high temperature. In order to understand the wear mode at elevated temperature, this study was planned. For this purpose we developed a metal matrix composite containing aluminum alloy (LM13) as matrix and zircon sand as particulate reinforcement by stir casting process. Different amounts of zircon sand (5, 10, 15 and 20 wt.%) were incorporated in the matrix to study the effect of reinforcement on the wear resistance. Dispersion of zircon sand particles in the matrix was confirmed by usingmore » optical microscopy. Sliding wear tests were done to study the durability of the composite with respect to the base alloy. The effects of load and temperature on wear behavior from room temperature to 300 Degree-Sign C were studied to understand the wear mechanism deeply. Surface morphology of the worn surfaces after the wear tests as well as wear debris was observed under scanning electron microscope. Mild to severe wear transition was noticed in tests at high temperature and high load. However, there is interesting change in wear behavior of the composite near the critical temperature of the composite. All the observed behavior has been explained with reference to the observed microstructure of the wear track and debris. - Highlights: Black-Right-Pointing-Pointer Good interfacial bonding between zircon sand particles and Al matrix was observed. Black-Right-Pointing-Pointer The effect of temperature on the wear behavior of LM13/Zr composites was studied. Black-Right-Pointing-Pointer Wear resistance of the composite was improved with addition of zircon sand. Black-Right-Pointing-Pointer Transition temperature from mild to severe wear also improved in composite. Black-Right-Pointing-Pointer SEM analysis of the tracks and debris was done to establish wear mechanism.« less

  7. Heavy metal concentration in groundwater from Besant Nagar to Sathankuppam, South Chennai, Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Sridhar, S. G. D.; Sakthivel, A. M.; Sangunathan, U.; Balasubramanian, M.; Jenefer, S.; Mohamed Rafik, M.; Kanagaraj, G.

    2017-12-01

    The assessment of groundwater quality is an obligatory pre-requisite to developing countries like India with rural-based economy. Heavy metal concentration in groundwater from Besant Nagar to Sathankuppam, South Chennai was analyzed to assess the acquisition process. The study area has rapid urbanization since few decades, which deteriorated the condition of the aquifer of the area. Totally 30 groundwater samples were collected during pre-monsoon (June 2014) and post-monsoon (January 2015) from the same aquifer to assess the heavy metal concentration in groundwater. Groundwater samples were analyzed for heavy metals such as Fe, Pb, Zn, Cu, Ni, Cr, Co and Mn using atomic absorption spectrophotometry (AAS). Correlation matrix revealed that there is no significant correlation between heavy metals and other parameters during pre-monsoon except EC with Cr but Fe and Zn have good positive correlation during post-monsoon.

  8. Simulation of Fatigue Behavior of High Temperature Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Tong, Mike T.; Singhal, Suren N.; Chamis, Christos C.; Murthy, Pappu L. N.

    1996-01-01

    A generalized relatively new approach is described for the computational simulation of fatigue behavior of high temperature metal matrix composites (HT-MMCs). This theory is embedded in a specialty-purpose computer code. The effectiveness of the computer code to predict the fatigue behavior of HT-MMCs is demonstrated by applying it to a silicon-fiber/titanium-matrix HT-MMC. Comparative results are shown for mechanical fatigue, thermal fatigue, thermomechanical (in-phase and out-of-phase) fatigue, as well as the effects of oxidizing environments on fatigue life. These results show that the new approach reproduces available experimental data remarkably well.

  9. Microstructure, Friction and Wear of Aluminum Matrix Composites

    NASA Astrophysics Data System (ADS)

    Florea, R. M.

    2018-06-01

    MMCs are made by dispersing a reinforcing material into a metal matrix. They are prepared by casting, although several technical challenges exist with casting technology. Achieving a homogeneous distribution of reinforcement within the matrix is one such challenge, and this affects directly on the properties and quality of composite. The aluminum alloy composite materials consist of high strength, high stiffness, more thermal stability, more corrosion and wear resistance, and more fatigue life. Aluminum alloy materials found to be the best alternative with its unique capacity of designing the materials to give required properties. In this work a composite is developed by adding silicon carbide in Aluminum metal matrix by mass ratio 5%, 10% and 15%. Mechanical tests such as hardness test and microstructure test are conducted.

  10. One-Step Catalytic Synthesis of CuO/Cu2O in a Graphitized Porous C Matrix Derived from the Cu-Based Metal-Organic Framework for Li- and Na-Ion Batteries.

    PubMed

    Kim, A-Young; Kim, Min Kyu; Cho, Keumnam; Woo, Jae-Young; Lee, Yongho; Han, Sung-Hwan; Byun, Dongjin; Choi, Wonchang; Lee, Joong Kee

    2016-08-03

    The hybrid composite electrode comprising CuO and Cu2O micronanoparticles in a highly graphitized porous C matrix (CuO/Cu2O-GPC) has a rational design and is a favorable approach to increasing the rate capability and reversible capacity of metal oxide negative materials for Li- and Na-ion batteries. CuO/Cu2O-GPC is synthesized through a Cu-based metal-organic framework via a one-step thermal transformation process. The electrochemical performances of the CuO/Cu2O-GPC negative electrode in Li- and Na-ion batteries are systematically studied and exhibit excellent capacities of 887.3 mAh g(-1) at 60 mA g(-1) after 200 cycles in a Li-ion battery and 302.9 mAh g(-1) at 50 mA g(-1) after 200 cycles in a Na-ion battery. The high electrochemical stability was obtained via the rational strategy, mainly owing to the synergy effect of the CuO and Cu2O micronanoparticles and highly graphitized porous C formed by catalytic graphitization of Cu nanoparticles. Owing to the simple one-step thermal transformation process and resulting high electrochemical performance, CuO/Cu2O-GPC is one of the prospective negative active materials for rechargeable Li- and Na-ion batteries.

  11. A Simulation of Low and High Cycle Fatigue Failure Effects for Metal Matrix Composites Based on Innovative J2-Flow Elastoplasticity Model

    PubMed Central

    Wang, Zhaoling; Xiao, Heng

    2017-01-01

    New elastoplastic J2-flow constitutive equations at finite deformations are proposed for the purpose of simulating the fatigue failure behavior for metal matrix composites. A new, direct approach is established in a two-fold sense of unification. Namely, both low and high cycle fatigue failure effects of metal matrix composites may be simultaneously simulated for various cases of the weight percentage of reinforcing particles. Novel results are presented in four respects. First, both the yield condition and the loading–unloading conditions in a usual sense need not be involved but may be automatically incorporated into inherent features of the proposed constitutive equations; second, low-to-high cycle fatigue failure effects may be directly represented by a simple condition for asymptotic loss of the material strength, without involving any additional damage-like variables; third, both high and low cycle fatigue failure effects need not be separately treated but may be automatically derived as model predictions with a unified criterion for critical failure states, without assuming any ad hoc failure criteria; and, finally, explicit expressions for each incorporated model parameter changing with the weight percentage of reinforcing particles may be obtainable directly from appropriate test data. Numerical examples are presented for medium-to-high cycle fatigue failure effects and for complicated duplex effects from low to high cycle fatigue failure effects. Simulation results are in good agreement with experimental data. PMID:28946637

  12. Durability of Continuous Fiber Reinforced Metal Matrix Composites

    DTIC Science & Technology

    1987-10-01

    locations of highest matrix principal stress and propagate parallel to the fibers. Figure 1. In titani - um matrix materials the flaws will propagate...MMC) was removed and retained by Amercom for traceability. Consolidation pressure, temperature-time histories , and as-consolidated tensile strengths

  13. High Performance Composites. "Designed" Materials for the New Millennium. 2nd Module in a Series on Advanced Materials. Resources in Technology.

    ERIC Educational Resources Information Center

    Jacobs, James A.

    1994-01-01

    This learning module on composites such as polymer matrix, metal matrix, ceramic matrix, particulate, and laminar includes a design brief giving context, objectives, evaluation, student outcomes, and quiz. (SK)

  14. 19 CFR 10.90 - Master records and metal matrices.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301, containing...

  15. 19 CFR 10.90 - Master records and metal matrices.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301, containing...

  16. 19 CFR 10.90 - Master records and metal matrices.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301, containing...

  17. 19 CFR 10.90 - Master records and metal matrices.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301, containing...

  18. 19 CFR 10.90 - Master records and metal matrices.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301, containing...

  19. Lunar fiberglass: Properties and process design

    NASA Technical Reports Server (NTRS)

    Dalton, Robert; Nichols, Todd

    1987-01-01

    A Clemson University ceramic engineering design for a lunar fiberglass plant is presented. The properties of glass fibers and metal-matrix composites are examined. Lunar geology is also discussed. A raw material and site are selected based on this information. A detailed plant design is presented, and summer experiments to be carried out at Johnson Space Center are reviewed.

  20. Usefulness of laser ablation ICP-MS for analysis of metallic particles released to oral mucosa after insertion of dental implants.

    PubMed

    Sajnóg, Adam; Hanć, Anetta; Koczorowski, Ryszard; Makuch, Krzysztof; Barałkiewicz, Danuta

    2018-03-01

    Despite the fact that titanium is considered highly biocompatible, its presence in the oral cavity (an environment of frequently changing pH and temperature) may result in the release of titanium from intraosseous implants into the oral mucosa, causing a range of reactions from the human body. Fragments of oral mucosa collected from patients after dental implant insertion were analyzed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The study revealed an elevated content of elements (Ti, Al, V) which are components of the metal implants and temporary cover screws. Dynamic ablation of the tissue surface was used in order to obtain maps of the content and distribution of analyzed elements. The material consisted of 30 oral mucosa tissue fragments collected 3-5 months after implantation and 10 samples collected before implantation (control group). The application of optical microscope allowed for indication and confirmation of the location of metal particles prior to LA-ICP-MS analysis. The so-obtained map permitted location of regions containing metal particles. LA-ICP-MS analysis revealed groups of samples with similar properties of metal particles, thus confirming that those metal particles were the main source of the elevated content of metals (Ti, Al, V) in the tissue after implantation. A calibration strategy based on matrix matched solid standards with powdered egg white proteins as matrix material was applied with 34 S as an internal standard. The accuracy of the analytical method was verified by ablating pellets of certified reference material ERM-BB422 Fish muscle. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Microstructural characterization of dissimilar welds between Incoloy 800H and 321 Austenitic Stainless Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayiram, G., E-mail: sayiram.g@vit.ac.in; Arivazhagan, N.

    2015-04-15

    In this work, the microstructural character of dissimilar welds between Incoloy 800H and 321 Stainless Steel has been discussed. The microscopic examination of the base metals, fusion zones and interfaces was characterized using an optical microscope and scanning electron microscopy. The results revealed precipitates of Ti (C, N) in the austenitic matrix along the grain boundaries of the base metals. Migration of grain boundaries in the Inconel 82 weld metal was very extensive when compared to Inconel 617 weldment. Epitaxial growth was observed in the 617 weldment which increases the strength and ductility of the weld metal. Unmixed zone nearmore » the fusion line between 321 Stainless Steel and Inconel 82 weld metal was identified. From the results, it has been concluded that Inconel 617 filler metal is a preferable choice for the joint between Incoloy 800H and 321 Stainless Steel. - Highlights: • Failure mechanisms produced by dissimilar welding of Incoloy 800H to AISI 321SS • Influence of filler wire on microstructure properties • Contemplative comparisons of metallurgical aspects of these weldments • Microstructure and chemical studies including metallography, SEM–EDS • EDS-line scan study at interface.« less

  2. High temperature composites. Status and future directions

    NASA Technical Reports Server (NTRS)

    Signorelli, R. A.

    1982-01-01

    A summary of research investigations of manufacturing methods, fabrication methods, and testing of high temperature composites for use in gas turbine engines is presented. Ceramic/ceramic, ceramic/metal, and metal/metal composites are considered. Directional solidification of superalloys and eutectic alloys, fiber reinforced metal and ceramic composites, ceramic fibers and whiskers, refractory coatings, metal fiber/metal composites, matrix metal selection, and the preparation of test specimens are discussed.

  3. Silver metal nano-matrixes as high efficiency and versatile catalytic reactors for environmental remediation

    NASA Astrophysics Data System (ADS)

    Dumée, Ludovic F.; Yi, Zhifeng; Tardy, Blaise; Merenda, Andrea; Des Ligneris, Elise; Dagastine, Ray R.; Kong, Lingxue

    2017-03-01

    Nano-porous metallic matrixes (NMMs) offer superior surface to volume ratios as well as enhanced optical, photonic, and electronic properties to bulk metallic materials. Such behaviours are correlated to the nano-scale inter-grain metal domains that favour the presence of electronic vacancies. In this work, continuous 3D NMMs were synthesized for the first time through a simple diffusion-reduction process whereby the aerogel matrix was functionalized with (3-Mercaptopropyl)trimethoxysilane. The surface energy of the silica monolith templates was tuned to improve the homogeneity of the reduction process while thiol functionalization facilitated the formation of a high density of seeding points for metal ions to reduce. The diameter of NMMs was between 2 and 1000 nm, corresponding to a silver loading between 1.23 and 41.16 at.%. A rates of catalytic degradation kinetics of these NMMS which is three orders of magnitude higher than those of the non-functionalized silver-silica structures. Furthermore, the enhancement in mechanical stability at nanoscale which was evaluated by Atomic Force Microscopy force measurements, electronic density and chemical inertness was assessed and critically correlated to their catalytic potential. This strategy opens up new avenues for design of complex architectures of either single or multi-metal alloy NMMs with enhanced surface properties for various applications.

  4. Silver metal nano-matrixes as high efficiency and versatile catalytic reactors for environmental remediation

    PubMed Central

    Dumée, Ludovic F.; Yi, Zhifeng; Tardy, Blaise; Merenda, Andrea; des Ligneris, Elise; Dagastine, Ray R.; Kong, Lingxue

    2017-01-01

    Nano-porous metallic matrixes (NMMs) offer superior surface to volume ratios as well as enhanced optical, photonic, and electronic properties to bulk metallic materials. Such behaviours are correlated to the nano-scale inter-grain metal domains that favour the presence of electronic vacancies. In this work, continuous 3D NMMs were synthesized for the first time through a simple diffusion-reduction process whereby the aerogel matrix was functionalized with (3-Mercaptopropyl)trimethoxysilane. The surface energy of the silica monolith templates was tuned to improve the homogeneity of the reduction process while thiol functionalization facilitated the formation of a high density of seeding points for metal ions to reduce. The diameter of NMMs was between 2 and 1000 nm, corresponding to a silver loading between 1.23 and 41.16 at.%. A rates of catalytic degradation kinetics of these NMMS which is three orders of magnitude higher than those of the non-functionalized silver-silica structures. Furthermore, the enhancement in mechanical stability at nanoscale which was evaluated by Atomic Force Microscopy force measurements, electronic density and chemical inertness was assessed and critically correlated to their catalytic potential. This strategy opens up new avenues for design of complex architectures of either single or multi-metal alloy NMMs with enhanced surface properties for various applications. PMID:28332602

  5. Silicone metalization

    DOEpatents

    Maghribi, Mariam N [Livermore, CA; Krulevitch, Peter [Pleasanton, CA; Hamilton, Julie [Tracy, CA

    2006-12-05

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  6. Silicone metalization

    DOEpatents

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  7. Plastic scintillators with high loading of one or more metal carboxylates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherepy, Nerine; Sanner, Robert Dean

    In one embodiment, a material includes at least one metal compound incorporated into a polymeric matrix, where the metal compound includes a metal and one or more carboxylate ligands, where at least one of the one or more carboxylate ligands includes a tertiary butyl group, and where the material is optically transparent. In another embodiment, a method includes: processing pulse traces corresponding to light pulses from a scintillator material; and outputting a result of the processing, where the scintillator material comprises at least one metal compound incorporated into a polymeric matrix, the at least one metal compound including a metalmore » and one or more carboxylate ligands, where at least one of the one or more carboxylate ligands has a tertiary butyl group, and where the scintillator material is optically transparent and has an energy resolution at 662 keV of less than about 20%.« less

  8. The role of rapid solidification processing in the fabrication of fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Locci, Ivan E.; Noebe, Ronald D.

    1989-01-01

    Advanced composite processing techniques for fiber reinforced metal matrix composites require the flexibility to meet several widespread objectives. The development of uniquely desired matrix microstructures and uniformly arrayed fiber spacing with sufficient bonding between fiber and matrix to transmit load between them without degradation to the fiber or matrix are the minimum requirements necessary of any fabrication process. For most applications these criteria can be met by fabricating composite monotapes which are then consolidated into composite panels or more complicated components such as fiber reinforced turbine blades. Regardless of the end component, composite monotapes are the building blocks from which near net shape composite structures can be formed. The most common methods for forming composite monotapes are the powder cloth, foil/fiber, plasma spray, and arc spray processes. These practices, however, employ rapid solidification techniques in processing of the composite matrix phase. Consequently, rapid solidification processes play a vital and yet generally overlooked role in composite fabrication. The future potential of rapid solidification processing is discussed.

  9. Molecular organic crystalline matrix for hybrid organic-inorganic (nano) composite materials

    NASA Astrophysics Data System (ADS)

    Stanculescu, A.; Tugulea, L.; Alexandru, H. V.; Stanculescu, F.; Socol, M.

    2005-02-01

    Metal-doped benzil crystals have been grown by thermal gradient solidification in a vertical transparent growth configuration to investigate the effect of metallic guest on the ordered organic host. We have identified the conditions for growing homogeneous, optically good crystals of benzil doped with sodium and silver, limiting the effect of supercooling, low thermal conductivity and anisotropy of the growth speed (temperature gradient at the liquid-solid interface: 10-25 °C, moving speed of the growth interface 2.0 mm/h). The nature and concentration of the dopant are parameters affecting, through the growth process, the crystalline perfection and the optical properties of the organic matrix. Bulk optical characterisation, by spectrophotometrical methods, has offered details on some intrinsic properties of the system metal particles/benzil crystalline matrix. Analytical processing of the experimental data emphasised that benzil is a wide optical band gap organic semiconductor Eg=2.65 eV. We also have investigated the effect of sodium and silver on the properties of benzil crystal as potential transparent semiconductor matrix for (nano)composite metal/molecular organic material. With the increase of sodium concentration from c=1 to 6 wt%, a small narrowing of the band gap has been remarked. The same behaviour has been found for benzil doped with silver (c=2 wt%) compared to pure benzil.

  10. Residual strain gradient determination in metal matrix composites by synchrotron X-ray energy dispersive diffraction

    NASA Technical Reports Server (NTRS)

    Kuntz, Todd A.; Wadley, Haydn N. G.; Black, David R.

    1993-01-01

    An X-ray technique for the measurement of internal residual strain gradients near the continuous reinforcements of metal matrix composites has been investigated. The technique utilizes high intensity white X-ray radiation from a synchrotron radiation source to obtain energy spectra from small (0.001 cu mm) volumes deep within composite samples. The viability of the technique was tested using a model system with 800 micron Al203 fibers and a commercial purity titanium matrix. Good agreement was observed between the measured residual radial and hoop strain gradients and those estimated from a simple elastic concentric cylinders model. The technique was then used to assess the strains near (SCS-6) silicon carbide fibers in a Ti-14Al-21Nb matrix after consolidation processing. Reasonable agreement between measured and calculated strains was seen provided the probe volume was located 50 microns or more from the fiber/matrix interface.

  11. Critique of Macro Flow/Damage Surface Representations for Metal Matrix Composites Using Micromechanics

    NASA Technical Reports Server (NTRS)

    Lissenden, Cliff J.; Arnold, Steven M.

    1996-01-01

    Guidance for the formulation of robust, multiaxial, constitutive models for advanced materials is provided by addressing theoretical and experimental issues using micromechanics. The multiaxial response of metal matrix composites, depicted in terms of macro flow/damage surfaces, is predicted at room and elevated temperatures using an analytical micromechanical model that includes viscoplastic matrix response as well as fiber-matrix debonding. Macro flow/damage surfaces (i.e., debonding envelopes, matrix threshold surfaces, macro 'yield' surfaces, surfaces of constant inelastic strain rate, and surfaces of constant dissipation rate) are determined for silicon carbide/titanium in three stress spaces. Residual stresses are shown to offset the centers of the flow/damage surfaces from the origin and their shape is significantly altered by debonding. The results indicate which type of flow/damage surfaces should be characterized and what loadings applied to provide the most meaningful experimental data for guiding theoretical model development and verification.

  12. The interface in tungsten fiber reinforced niobium metal-matrix composites. Final Report Ph.D. Thesis - Case Western Reserve Univ., Cleveland, OH

    NASA Technical Reports Server (NTRS)

    Grobstein, Toni L.

    1989-01-01

    The creep resistance of tungsten fiber reinforced niobium metal-matrix composites was evaluated. The interface region between the fiber and matrix was characterized by microhardness and electron probe microanalysis measurements which indicated that its properties were between those of fiber and matrix. However, the measured properties of the composite exceeded those calculated by the rule of mixtures even when the interface zone was assumed to retain all the strength of the fiber. The composite structure appeared to enhance the strengths of both the fibers and the matrix above what they exhibited in stand-alone tests. The effect of fiber orientation and matrix alloy composition on the fiber/matrix interface were also evaluated. Small alloying additions of zirconium and tungsten to the niobium matrix affected the creep resistance of the composites only slightly. A decrease in the creep resistance of the composite with increasing zirconium content in the matrix was ascribed to an increase in the diffusion rate of the fiber/matrix interdiffusion reaction, and a slight increase in the creep resistance of the composite was observed with an addition of 9 w percent tungsten to the matrix. In addition, Kirkendall void formation was observed at the fiber/matrix interface; the void distribution differed depending on the fiber orientation relative to the stress axis.

  13. Tunable Graphitic Carbon Nano-Onions Development in Carbon Nanofibers for Multivalent Energy Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarz, Haiqing L.

    2016-01-01

    We developed a novel porous graphitic carbon nanofiber material using a synthesis strategy combining electrospinning and catalytic graphitization. RF hydrogel was used as carbon precursors, transition metal ions were successfully introduced into the carbon matrix by binding to the carboxylate groups of a resorcinol derivative. Transition metal particles were homogeneously distributed throughout the carbon matrix, which are used as in-situ catalysts to produce graphitic fullerene-like nanostructures surrounding the metals. The success design of graphitic carbons with enlarged interlayer spacing will enable the multivalent ion intercalation for the development of multivalent rechargeable batteries.

  14. Nanostructural self-organization and dynamic adaptation of metal-polymer tribosystems

    NASA Astrophysics Data System (ADS)

    Mashkov, Yu. K.

    2017-02-01

    The results of investigating the effect of nanosize modifiers of a polymer matrix on the nanostructural self-organization of polymer composites and dynamic adaptation of metal-polymer tribosystems, which considerably affect the wear resistance of polymer composite materials, have been analyzed. It has been shown that the physicochemical nanostructural self-organization processes are developed in metal-polymer tribosystems with the formation of thermotropic liquid-crystal structures of the polymer matrix, followed by the transition of the system to the stationary state with a negative feedback that ensures dynamic adaptation of the tribosystem to given operating conditions.

  15. Influence of particle size on Cutting Forces and Surface Roughness in Machining of B4Cp - 6061 Aluminium Matrix Composites

    NASA Astrophysics Data System (ADS)

    Hiremath, Vijaykumar; Badiger, Pradeep; Auradi, V.; Dundur, S. T.; Kori, S. A.

    2016-02-01

    Amongst advanced materials, metal matrix composites (MMC) are gaining importance as materials for structural applications in particular, particulate reinforced aluminium MMCs have received considerable attention due to their superior properties such as high strength to weight ratio, excellent low-temperature performance, high wear resistance, high thermal conductivity. The present study aims at studying and comparing the machinability aspects of B4Cp reinforced 6061Al alloy metal matrix composites reinforced with 37μm and 88μm particulates produced by stir casting method. The micro structural characterization of the prepared composites is done using Scanning Electron Microscopy equipped with EDX analysis (Hitachi Su-1500 model) to identify morphology and distribution of B4C particles in the 6061Al matrix. The specimens are turned on a conventional lathe machine using a Polly crystalline Diamond (PCD) tool to study the effect of particle size on the cutting forces and the surface roughness under varying machinability parameters viz., Cutting speed (29-45 m/min.), Feed rate (0.11-0.33 mm/rev.) and depth of cut (0.5-1mm). Results of micro structural characterization revealed fairly uniform distribution of B4C particles (in both cases i.e., 37μm and 88μm) in 6061Al matrix. The surface roughness of the composite is influenced by cutting speed. The feed rate and depth of cut have a negative influence on surface roughness. The cutting forces decreased with increase in cutting speed whereas cutting forces increased with increase in feed and depth of cut. Higher cutting forces are noticed while machining Al6061 base alloy compared to reinforced composites. Surface finish is high during turning of the 6061Al base alloy and surface roughness is high with 88μm size particle reinforced composites. As the particle size increases Surface roughness also increases.

  16. Photoinduced ethane formation from reaction of ethene with matrix-isolated Ti, V, or Nb atoms.

    PubMed

    Thompson, Matthew G K; Parnis, J Mark

    2005-10-27

    The reactions of matrix-isolated Ti, V, or Nb atoms with ethene (C(2)H(4)) have been studied by FTIR absorption spectroscopy. Under conditions where the ethene dimer forms, metal atoms react with the ethene dimer to yield matrix-isolated ethane (C(2)H(6)) and methane. Under lower ethene concentration conditions ( approximately 1:70 ethene/Ar), hydridic intermediates of the types HMC(2)H(3) and H(2)MC(2)H(2) are also observed, and the relative yield of hydrocarbons is diminished. Reactions of these metals with perdeuterioethene, and equimolar mixtures of C(2)H(4) and C(2)D(4), yield products that are consistent with the production of ethane via a metal atom reaction involving at least two C(2)H(4) molecules. The absence of any other observed products suggests the mechanism also involves production of small, highly symmetric species such as molecular hydrogen and metal carbides. Evidence is presented suggesting that ethane production from the ethene dimer is a general photochemical process for the reaction of excited-state transition-metal atoms with ethene at high concentrations of ethene.

  17. One-step direct-laser metal writing of sub-100 nm 3D silver nanostructures in a gelatin matrix

    NASA Astrophysics Data System (ADS)

    Kang, SeungYeon; Vora, Kevin; Mazur, Eric

    2015-03-01

    Developing an ability to fabricate high-resolution, 3D metal nanostructures in a stretchable 3D matrix is a critical step to realizing novel optoelectronic devices such as tunable bulk metal-dielectric optical devices and THz metamaterial devices that are not feasible with alternative techniques. We report a new chemistry method to fabricate high-resolution, 3D silver nanostructures using a femtosecond-laser direct metal writing technique. Previously, only fabrication of 3D polymeric structures or single-/few-layer metal structures was possible. Our method takes advantage of unique gelatin properties to overcome such previous limitations as limited freedom in 3D material design and short sample lifetime. We fabricate more than 15 layers of 3D silver nanostructures with a resolution of less than 100 nm in a stable dielectric matrix that is flexible and has high large transparency that is well-matched for potential applications in the optical and THz metamaterial regimes. This is a single-step process that does not require any further processing. This work will be of interest to those interested in fabrication methods that utilize nonlinear light-matter interactions and the realization of future metamaterials.

  18. Preparation of PVA/Co/Ag film and evaluation of its magnetic and microstructural properties

    NASA Astrophysics Data System (ADS)

    Banerjee, M.; Sachdev, Preeti; Mukherjee, G. S.

    2012-05-01

    PVA/Co/Ag film has been prepared by sputtering Co followed by Ag in polyvinyl alcohol (PVA) matrix film by IBS technique, so as to get a 9 nm (thick) layer of Co metal nanoparticles followed by a protective 4 nm (thick) layer of Ag nanoparticles. Grazing incidence x-ray diffraction (GIXRD) pattern of the film reveals the formation of nanocrystalline Co with hcp phase. GIXRD pattern also indicates that there is no change in the crystalline structure of PVA even after sputtering of the metallic nanoparticles. The average particle size of Co nanoparticles as evaluated using Scherrer formula is found to be about 2.64 nm. UV visible absorption pattern of the film sample showed SPR peaks of Co and Ag metals in their nano size level embedded in the PVA matrix system. XPS study confirms the metallic nature of Co and Ag nanoparticles; and the depth profiling study reveals that both the metal nanoparticles have been embedded in the PVA matrix system. Surface morphology of such film has been studied using AFM; and the magnetic behaviour of the film studied by using MOKE shows soft ferromagnetic behaviour in this PVA/Co/Ag system.

  19. Toenail as Non-invasive Biomarker in Metal Toxicity Measurement of Welding Fumes Exposure - A Review

    NASA Astrophysics Data System (ADS)

    Bakri, S. F. Z.; Hariri, A.; Ma'arop, N. F.; Hussin, N. S. A. W.

    2017-01-01

    Workers are exposed to a variety of heavy metal pollutants that are released into the environment as a consequence of workplace activities. This chemical pollutants are incorporated into the human by varies of routes entry and can then be stored and distributed in different tissues, consequently have a potential to lead an adverse health effects and/or diseases. As to minimize the impact, a control measures should be taken to avoid these effects and human biological marker is a very effective tool in the assessment of occupational exposure and potential related risk as the results is normally accurate and reproducible. Toenail is the ideal matrix for most common heavy metals due to its reliability and practicality compared to other biological samples as well as it is a non-invasive and this appears as a huge advantage of toenail as a biomarker. This paper reviews studies that measure the heavy metals concentration in toenail as non-invasive matrix which later may adapt in the investigation of metal fume emitted from welding process. The development of new methodology and modern analytical techniques has allowed the use of toenail as non-invasive approach. The presence of a heavy metal in this matrix reflects an exposure but the correlations between heavy metal levels in the toenail must be established to ensure that these levels are related to the total body burden. These findings suggest that further studies on interactions of these heavy metals in metal fumes utilizing toenail biomarker endpoints are highly warranted especially among welders.

  20. The foamed structures in numerical testing

    NASA Astrophysics Data System (ADS)

    John, Antoni; John, Małgorzata

    2018-01-01

    In the paper numerical simulation of the foamed metal structures using numerical homogenization algorithm is prescribed. From the beginning, numerical model of heterogeneous porous simplified structures of typical foamed metal, based on the FEM was built and material parameters (coefficients of elasticity matrix of the considered structure) were determined with use of numerical homogenization algorithm. During the work the different RVE models of structure were created and their properties were compared at different relative density, different numbers and the size and structure of the arrangement of voids. Finally, obtained results were used in modeling of typical elements made from foam metals structures - sandwich structure and profile filled with metal foam. Simulation were performed for different dimensions of cladding and core. Additionally, the test of influence material orientation (arrangement of voids in RVE element) on the maximum stresses and displacement during bending test was performed.

Top