Science.gov

Sample records for based metal semiconductor

  1. Hydrogen Sensors Using Nitride-Based Semiconductor Diodes: The Role of Metal/Semiconductor Interfaces

    PubMed Central

    Irokawa, Yoshihiro

    2011-01-01

    In this paper, I review my recent results in investigating hydrogen sensors using nitride-based semiconductor diodes, focusing on the interaction mechanism of hydrogen with the devices. Firstly, effects of interfacial modification in the devices on hydrogen detection sensitivity are discussed. Surface defects of GaN under Schottky electrodes do not play a critical role in hydrogen sensing characteristics. However, dielectric layers inserted in metal/semiconductor interfaces are found to cause dramatic changes in hydrogen sensing performance, implying that chemical selectivity to hydrogen could be realized. The capacitance-voltage (C–V) characteristics reveal that the work function change in the Schottky metal is not responsible mechanism for hydrogen sensitivity. The interface between the metal and the semiconductor plays a critical role in the interaction of hydrogen with semiconductor devises. Secondly, low-frequency C–V characterization is employed to investigate the interaction mechanism of hydrogen with diodes. As a result, it is suggested that the formation of a metal/semiconductor interfacial polarization could be attributed to hydrogen-related dipoles. In addition, using low-frequency C–V characterization leads to clear detection of 100 ppm hydrogen even at room temperature where it is hard to detect hydrogen by using conventional current-voltage (I–V) characterization, suggesting that low-frequency C–V method would be effective in detecting very low hydrogen concentrations. PMID:22346597

  2. Hydrogen sensors using nitride-based semiconductor diodes: the role of metal/semiconductor interfaces.

    PubMed

    Irokawa, Yoshihiro

    2011-01-01

    In this paper, I review my recent results in investigating hydrogen sensors using nitride-based semiconductor diodes, focusing on the interaction mechanism of hydrogen with the devices. Firstly, effects of interfacial modification in the devices on hydrogen detection sensitivity are discussed. Surface defects of GaN under Schottky electrodes do not play a critical role in hydrogen sensing characteristics. However, dielectric layers inserted in metal/semiconductor interfaces are found to cause dramatic changes in hydrogen sensing performance, implying that chemical selectivity to hydrogen could be realized. The capacitance-voltage (C-V) characteristics reveal that the work function change in the Schottky metal is not responsible mechanism for hydrogen sensitivity. The interface between the metal and the semiconductor plays a critical role in the interaction of hydrogen with semiconductor devises. Secondly, low-frequency C-V characterization is employed to investigate the interaction mechanism of hydrogen with diodes. As a result, it is suggested that the formation of a metal/semiconductor interfacial polarization could be attributed to hydrogen-related dipoles. In addition, using low-frequency C-V characterization leads to clear detection of 100 ppm hydrogen even at room temperature where it is hard to detect hydrogen by using conventional current-voltage (I-V) characterization, suggesting that low-frequency C-V method would be effective in detecting very low hydrogen concentrations. PMID:22346597

  3. Semiconductor metal oxide compounds based gas sensors: A literature review

    NASA Astrophysics Data System (ADS)

    Patil, Sunil Jagannath; Patil, Arun Vithal; Dighavkar, Chandrakant Govindrao; Thakare, Kashinath Shravan; Borase, Ratan Yadav; Nandre, Sachin Jayaram; Deshpande, Nishad Gopal; Ahire, Rajendra Ramdas

    2015-03-01

    This paper gives a statistical view about important contributions and advances on semiconductor metal oxide (SMO) compounds based gas sensors developed to detect the air pollutants such as liquefied petroleum gas (LPG), H2S, NH3, CO2, acetone, ethanol, other volatile compounds and hazardous gases. Moreover, it is revealed that the alloy/composite made up of SMO gas sensors show better gas response than their counterpart single component gas sensors, i.e., they are found to enhance the 4S characteristics namely speed, sensitivity, selectivity and stability. Improvement of such types of sensors used for detection of various air pollutants, which are reported in last two decades, is highlighted herein.

  4. High responsivity 4H-SiC based metal-semiconductor-metal ultraviolet photodetectors

    NASA Astrophysics Data System (ADS)

    Yang, Weifeng; Zhang, Feng; Liu, Zhuguang; Lü, Ying; Wu, Zhengyun

    2008-11-01

    4H-SiC based metal-semiconductor-metal (MSM) photodetectors with diverse spacing were designed, fabricated, and characterized, in which nickel Schottky contacts were needed. Current-voltage and spectral responsivity measurements were carried out at room temperature. The fabricated 4 μm-spacing device showed a very low dark current (0.25 pA at 5 V bias voltage), a typical responsivity of 0.103 A/W at 20 V, and a peak response wavelength at 290 nm. The fabricated devices held a high DUV to visible rejection ratio of >103.

  5. Nanomesh electrode on MgZnO-based metal-semiconductor-metal ultraviolet photodetectors

    NASA Astrophysics Data System (ADS)

    Lee, Ching-Ting; Lin, Heng-Yu; Tseng, Chun-Yen

    2015-09-01

    In this work, the nano-scaled mesh electrodes are fabricated by obliquely depositing metals through the highly ordered polystyrene nanosphere mask. Furthermore, the intrinsic MgZnO film is deposited as the absorption layer for the metal-semiconductor-metal ultraviolet photodetectors (MSM-UV-PDs) using the vapor cooling condensation system. The 100-nm-linewidth nanomesh electrodes with metal occupying a roughly 10% of the device surface region consequently render PDs with a high transmittance in the ultraviolet (UV) wavelength range. The photoresponsivity of MgZnO-based MSM-UV-PDs evaluated at the wavelength of 330 nm with the operating bias voltage of 5 V is elevated from 0.135 to 0.248 A/W when the thin metal electrode is replaced by the nanomesh electrode, and the corresponding quantum efficiency is improved from 50.75 to 93.23%. Finally, adopting the nanomesh electrode also helps to enhance the UV-visible rejection ratio (R330nm/R450nm) and the detectivity from 1663 and 1.78 × 1010 cmHz0.5W-1 to 2480 and 2.43 × 1010 cmHz0.5W-1, respectively.

  6. Terahertz Modulator based on Metamaterials integrated with Metal-Semiconductor-Metal Varactors

    NASA Astrophysics Data System (ADS)

    Nouman, Muhammad Tayyab; Kim, Hyun-Woong; Woo, Jeong Min; Hwang, Ji Hyun; Kim, Dongju; Jang, Jae-Hyung

    2016-05-01

    The terahertz (THz) band of the electromagnetic spectrum, with frequencies ranging from 300 GHz to 3 THz, has attracted wide interest in recent years owing to its potential applications in numerous areas. Significant progress has been made toward the development of devices capable of actively controlling terahertz waves; nonetheless, further advances in device functionality are necessary for employment of these devices in practical terahertz systems. Here, we demonstrate a low voltage, sharp switching terahertz modulator device based on metamaterials integrated with metal semiconductor metal (MSM) varactors, fabricated on an AlGaAs/InGaAs based heterostructure. By varying the applied voltage to the MSM-varactor located at the center of split ring resonator (SRR), the resonance frequency of the SRR-based metamaterial is altered. Upon varying the bias voltage from 0 V to 3 V, the resonance frequency exhibits a transition from 0.52 THz to 0.56 THz, resulting in a modulation depth of 45 percent with an insertion loss of 4.3 dB at 0.58 THz. This work demonstrates a new approach for realizing active terahertz devices with improved functionalities.

  7. Terahertz Modulator based on Metamaterials integrated with Metal-Semiconductor-Metal Varactors.

    PubMed

    Nouman, Muhammad Tayyab; Kim, Hyun-Woong; Woo, Jeong Min; Hwang, Ji Hyun; Kim, Dongju; Jang, Jae-Hyung

    2016-01-01

    The terahertz (THz) band of the electromagnetic spectrum, with frequencies ranging from 300 GHz to 3 THz, has attracted wide interest in recent years owing to its potential applications in numerous areas. Significant progress has been made toward the development of devices capable of actively controlling terahertz waves; nonetheless, further advances in device functionality are necessary for employment of these devices in practical terahertz systems. Here, we demonstrate a low voltage, sharp switching terahertz modulator device based on metamaterials integrated with metal semiconductor metal (MSM) varactors, fabricated on an AlGaAs/InGaAs based heterostructure. By varying the applied voltage to the MSM-varactor located at the center of split ring resonator (SRR), the resonance frequency of the SRR-based metamaterial is altered. Upon varying the bias voltage from 0 V to 3 V, the resonance frequency exhibits a transition from 0.52 THz to 0.56 THz, resulting in a modulation depth of 45 percent with an insertion loss of 4.3 dB at 0.58 THz. This work demonstrates a new approach for realizing active terahertz devices with improved functionalities. PMID:27194128

  8. Terahertz Modulator based on Metamaterials integrated with Metal-Semiconductor-Metal Varactors

    PubMed Central

    Nouman, Muhammad Tayyab; Kim, Hyun-Woong; Woo, Jeong Min; Hwang, Ji Hyun; Kim, Dongju; Jang, Jae-Hyung

    2016-01-01

    The terahertz (THz) band of the electromagnetic spectrum, with frequencies ranging from 300 GHz to 3 THz, has attracted wide interest in recent years owing to its potential applications in numerous areas. Significant progress has been made toward the development of devices capable of actively controlling terahertz waves; nonetheless, further advances in device functionality are necessary for employment of these devices in practical terahertz systems. Here, we demonstrate a low voltage, sharp switching terahertz modulator device based on metamaterials integrated with metal semiconductor metal (MSM) varactors, fabricated on an AlGaAs/InGaAs based heterostructure. By varying the applied voltage to the MSM-varactor located at the center of split ring resonator (SRR), the resonance frequency of the SRR-based metamaterial is altered. Upon varying the bias voltage from 0 V to 3 V, the resonance frequency exhibits a transition from 0.52 THz to 0.56 THz, resulting in a modulation depth of 45 percent with an insertion loss of 4.3 dB at 0.58 THz. This work demonstrates a new approach for realizing active terahertz devices with improved functionalities. PMID:27194128

  9. Influence of Deuterium Treatments on the Polysilicon-Based Metal-Semiconductor-Metal Photodetector.

    PubMed

    Lee, Jae-Sung

    2016-06-01

    The electrical behavior of metal-semiconductor-metal (MSM) Schottky barrier photodetector structure, depending on deuterium treatment, is analyzed by means of the dark current and the photocurrent measurements. Al/Ti bilayer was used as Schottky metal. The deuterium incorporation into the absorption layer, undoped polysilicon, was achieved with annealing process and with ion implantation process, respectively. In the photocurrent-to-dark current ratio measurement, deuterium-ion-implanted photodetector shows over hundred higher than the control device. It means that the heightening of the Schottky barrier and the passivation of grain boundary trap were achieved effectively through the deuterium ion implantation process. PMID:27427689

  10. Influence of Deuterium Treatments on the Polysilicon-Based Metal-Semiconductor-Metal Photodetector.

    PubMed

    Lee, Jae-Sung

    2016-06-01

    The electrical behavior of metal-semiconductor-metal (MSM) Schottky barrier photodetector structure, depending on deuterium treatment, is analyzed by means of the dark current and the photocurrent measurements. Al/Ti bilayer was used as Schottky metal. The deuterium incorporation into the absorption layer, undoped polysilicon, was achieved with annealing process and with ion implantation process, respectively. In the photocurrent-to-dark current ratio measurement, deuterium-ion-implanted photodetector shows over hundred higher than the control device. It means that the heightening of the Schottky barrier and the passivation of grain boundary trap were achieved effectively through the deuterium ion implantation process.

  11. Quasiparticle band structure of the almost-gapless transition-metal-based Heusler semiconductors

    NASA Astrophysics Data System (ADS)

    Tas, M.; Şaşıoǧlu, E.; Galanakis, I.; Friedrich, C.; Blügel, S.

    2016-05-01

    Transition-metal-based Heusler semiconductors are promising materials for a variety of applications ranging from spintronics to thermoelectricity. Employing the G W approximation within the framework of the FLAPW method, we study the quasiparticle band structure of a number of such compounds being almost gapless semiconductors. We find that in contrast to the s p -electron based semiconductors such as Si and GaAs, in these systems, the many-body corrections have a minimal effect on the electronic band structure and the energy band gap increases by less than 0.2 eV, which makes the starting point density functional theory (DFT) a good approximation for the description of electronic and optical properties of these materials. Furthermore, the band gap can be tuned either by the variation of the lattice parameter or by the substitution of the s p -chemical element.

  12. Flexible perovskite solar cells based on the metal-insulator-semiconductor structure.

    PubMed

    Wei, Jing; Li, Heng; Zhao, Yicheng; Zhou, Wenke; Fu, Rui; Pan, Huiyue; Zhao, Qing

    2016-09-14

    The metal-insulator-semiconductor (MIS) structure is applied to perovskite solar cells, in which the traditional compact layer TiO2 is replaced by Al2O3 as the hole blocking material to realize an all-low-temperature process. Flexible devices based on this structure are also realized with excellent flexibility, which hold 85% of their initial efficiency after bending 100 times. PMID:27524362

  13. Retinal Stimulation on Rabbit Using Complementary Metal Oxide Semiconductor Based Multichip Flexible Stimulator toward Retinal Prosthesis

    NASA Astrophysics Data System (ADS)

    Tokuda, Takashi; Asano, Ryosuke; Sugitani, Sachie; Taniyama, Mari; Terasawa, Yasuo; Nunoshita, Masahiro; Nakauchi, Kazuaki; Fujikado, Takashi; Tano, Yasuo; Ohta, Jun

    2008-04-01

    The Functionality of a complementary metal oxide semiconductor (CMOS) LSI-based, multichip flexible retinal stimulator was demonstrated in retinal stimulation experiments on rabbits. A 1×4-configured multichip stimulator was fabricated for application to experiments on animals. An experimental procedure including surgical operations was developed, and retinal stimulation was performed with the fabricated multichip stimulator. Neural responses on the visual cortex were successfully evoked by the fabricated stimulator. The stimulator is confirmed to be applicable to acute animal experiments.

  14. Graphene-based half-metal and spin-semiconductor for spintronic applications

    NASA Astrophysics Data System (ADS)

    Qi, Jingshan; Chen, Xiaofang; Hu, Kaige; Feng, Ji

    2016-03-01

    In this letter we propose a strategy to make graphene become a half-metal or spin-semiconductor by combining the magnetic proximity effects and sublattice symmetry breaking in graphone/graphene and graphone/graphene/BN heterostructures. Exchange interactions lift the spin degeneracy and sublattice symmetry breaking opens a band gap in graphene. More interestingly, the gap opening depends on the spin direction and the competition between the sublattice asymmetry and exchange field determines the system is a half-metal or a spin-semiconductor. By first-principles calculations and a low-energy effective model analysis, we elucidate the underlying physical mechanism of spin-dependent gap opening and spin degeneracy splitting. This offers an alternative practical platform for graphene-based spintronics.

  15. Printable Ultrathin Metal Oxide Semiconductor-Based Conformal Biosensors.

    PubMed

    Rim, You Seung; Bae, Sang-Hoon; Chen, Huajun; Yang, Jonathan L; Kim, Jaemyung; Andrews, Anne M; Weiss, Paul S; Yang, Yang; Tseng, Hsian-Rong

    2015-12-22

    Conformal bioelectronics enable wearable, noninvasive, and health-monitoring platforms. We demonstrate a simple and straightforward method for producing thin, sensitive In2O3-based conformal biosensors based on field-effect transistors using facile solution-based processing. One-step coating via aqueous In2O3 solution resulted in ultrathin (3.5 nm), high-density, uniform films over large areas. Conformal In2O3-based biosensors on ultrathin polyimide films displayed good device performance, low mechanical stress, and highly conformal contact determined using polydimethylsiloxane artificial skin having complex curvilinear surfaces or an artificial eye. Immobilized In2O3 field-effect transistors with self-assembled monolayers of NH2-terminated silanes functioned as pH sensors. Functionalization with glucose oxidase enabled d-glucose detection at physiologically relevant levels. The conformal ultrathin field-effect transistor biosensors developed here offer new opportunities for future wearable human technologies. PMID:26498319

  16. Printable Ultrathin Metal Oxide Semiconductor-Based Conformal Biosensors.

    PubMed

    Rim, You Seung; Bae, Sang-Hoon; Chen, Huajun; Yang, Jonathan L; Kim, Jaemyung; Andrews, Anne M; Weiss, Paul S; Yang, Yang; Tseng, Hsian-Rong

    2015-12-22

    Conformal bioelectronics enable wearable, noninvasive, and health-monitoring platforms. We demonstrate a simple and straightforward method for producing thin, sensitive In2O3-based conformal biosensors based on field-effect transistors using facile solution-based processing. One-step coating via aqueous In2O3 solution resulted in ultrathin (3.5 nm), high-density, uniform films over large areas. Conformal In2O3-based biosensors on ultrathin polyimide films displayed good device performance, low mechanical stress, and highly conformal contact determined using polydimethylsiloxane artificial skin having complex curvilinear surfaces or an artificial eye. Immobilized In2O3 field-effect transistors with self-assembled monolayers of NH2-terminated silanes functioned as pH sensors. Functionalization with glucose oxidase enabled d-glucose detection at physiologically relevant levels. The conformal ultrathin field-effect transistor biosensors developed here offer new opportunities for future wearable human technologies.

  17. Transmission enhancement based on strong interference in metal-semiconductor layered film for energy harvesting

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Du, Kaikai; Mao, Kening; Fang, Xu; Zhao, Ding; Ye, Hui; Qiu, Min

    2016-07-01

    A fundamental strategy to enhance optical transmission through a continuous metallic film based on strong interference dominated by interface phase shift is developed. In a metallic film coated with a thin semiconductor film, both transmission and absorption are simultaneously enhanced as a result of dramatically reduced reflection. For a 50-nm-thick Ag film, experimental transmission enhancement factors of 4.5 and 9.5 are realized by exploiting Ag/Si non-symmetric and Si/Ag/Si symmetric geometries, respectively. These planar layered films for transmission enhancement feature ultrathin thickness, broadband and wide-angle operation, and reduced resistance. Considering one of their potential applications as transparent metal electrodes in solar cells, a calculated 182% enhancement in the total transmission efficiency relative to a single metallic film is expected. This strategy relies on no patterned nanostructures and thereby may power up a wide spectrum of energy-harvesting applications such as thin-film photovoltaics and surface photocatalysis.

  18. Extended-Gate Metal Oxide Semiconductor Field Effect Transistor-Based Biosensor for Detection of Deoxynivalenol

    NASA Astrophysics Data System (ADS)

    Kwon, Insu; Lee, Hee-Ho; Choi, Jinhyeon; Shin, Jang-Kyoo; Seo, Sang-Ho; Choi, Sung-Wook; Chun, Hyang Sook

    2011-06-01

    In this work, we present an extended-gate metal oxide semiconductor field effect transistor (MOSFET)-based biosensor for the detection of deoxynivalenol using a null-balancing circuit. An extended-gate MOSFET-based biosensor was fabricated by a standard complementary metal oxide semiconductor (CMOS) process and its characteristics were measured. A null-balancing circuit was used to measure the output voltage of the sensor directly, instead of measuring the drain current of the sensor. Au was used as the gate metal, which has a chemical affinity with thiol, which leads to the immobilization of a self-assembled monolayer (SAM) of mercaptohexadecanoic acid (MHDA). The SAM was used to immobilize the anti-deoxynivalenol antibody. The carboxyl group of the SAM was bound to the anti-deoxynivalenol antibody. The anti-deoxynivalenol antibody and deoxynivalenol were bound by their antigen-antibody reaction. The measurements were performed in phosphate buffered saline (PBS; pH 7.4) solution. A standard Ag/AgCl electrode was employed as a reference electrode. The bindings of a SAM, anti-deoxynivalenol antibody, and deoxynivalenol caused a variation in the output voltage of the extended-gate MOSFET-based biosensor. Surface plasmon resonance (SPR) measurement was performed to verify the interaction among the SAM, deoxynivalenol-antibody, and deoxynivalenol.

  19. Silicon metal-semiconductor-metal photodetector

    DOEpatents

    Brueck, Steven R. J.; Myers, David R.; Sharma, Ashwani K.

    1995-01-01

    Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.

  20. Silicon metal-semiconductor-metal photodetector

    DOEpatents

    Brueck, Steven R. J.; Myers, David R.; Sharma, Ashwani K.

    1997-01-01

    Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.

  1. Spatially correlated two-dimensional arrays of semiconductor and metal quantum dots in GaAs-based heterostructures

    SciTech Connect

    Nevedomskiy, V. N. Bert, N. A.; Chaldyshev, V. V.; Preobrazhernskiy, V. V.; Putyato, M. A.; Semyagin, B. R.

    2015-12-15

    A single molecular-beam epitaxy process is used to produce GaAs-based heterostructures containing two-dimensional arrays of InAs semiconductor quantum dots and AsSb metal quantum dots. The twodimensional array of AsSb metal quantum dots is formed by low-temperature epitaxy which provides a large excess of arsenic in the epitaxial GaAs layer. During the growth of subsequent layers at a higher temperature, excess arsenic forms nanoinclusions, i.e., metal quantum dots in the GaAs matrix. The two-dimensional array of such metal quantum dots is created by the δ doping of a low-temperature GaAs layer with antimony which serves as a precursor for the heterogeneous nucleation of metal quantum dots and accumulates in them with the formation of AsSb metal alloy. The two-dimensional array of InAs semiconductor quantum dots is formed via the Stranski–Krastanov mechanism at the GaAs surface. Between the arrays of metal and semiconductor quantum dots, a 3-nm-thick AlAs barrier layer is grown. The total spacing between the arrays of metal and semiconductor quantum dots is 10 nm. Electron microscopy of the structure shows that the arrangement of metal quantum dots and semiconductor quantum dots in the two-dimensional arrays is spatially correlated. The spatial correlation is apparently caused by elastic strain and stress fields produced by both AsSb metal and InAs semiconductor quantum dots in the GaAs matrix.

  2. Hot-electron-based solar energy conversion with metal-semiconductor nanodiodes.

    PubMed

    Lee, Young Keun; Lee, Hyosun; Lee, Changhwan; Hwang, Euyheon; Park, Jeong Young

    2016-06-29

    Energy dissipation at metal surfaces or interfaces between a metal and a dielectric generally results from elementary excitations, including phonons and electronic excitation, once external energy is deposited to the surface/interface during exothermic chemical processes or an electromagnetic wave incident. In this paper, we outline recent research activities to develop energy conversion devices based on hot electrons. We found that photon energy can be directly converted to hot electrons and that hot electrons flow through the interface of metal-semiconductor nanodiodes where a Schottky barrier is formed and the energy barrier is much lower than the work function of the metal. The detection of hot electron flow can be successfully measured using the photocurrent; we measured the photoyield of photoemission with incident photons-to-current conversion efficiency (IPCE). We also show that surface plasmons (i.e. the collective oscillation of conduction band electrons induced by interaction with an electromagnetic field) are excited on a rough metal surface and subsequently decay into secondary electrons, which gives rise to enhancement of the IPCE. Furthermore, the unique optical behavior of surface plasmons can be coupled with dye molecules, suggesting the possibility for producing additional channels for hot electron generation. PMID:27168177

  3. Hot-electron-based solar energy conversion with metal-semiconductor nanodiodes.

    PubMed

    Lee, Young Keun; Lee, Hyosun; Lee, Changhwan; Hwang, Euyheon; Park, Jeong Young

    2016-06-29

    Energy dissipation at metal surfaces or interfaces between a metal and a dielectric generally results from elementary excitations, including phonons and electronic excitation, once external energy is deposited to the surface/interface during exothermic chemical processes or an electromagnetic wave incident. In this paper, we outline recent research activities to develop energy conversion devices based on hot electrons. We found that photon energy can be directly converted to hot electrons and that hot electrons flow through the interface of metal-semiconductor nanodiodes where a Schottky barrier is formed and the energy barrier is much lower than the work function of the metal. The detection of hot electron flow can be successfully measured using the photocurrent; we measured the photoyield of photoemission with incident photons-to-current conversion efficiency (IPCE). We also show that surface plasmons (i.e. the collective oscillation of conduction band electrons induced by interaction with an electromagnetic field) are excited on a rough metal surface and subsequently decay into secondary electrons, which gives rise to enhancement of the IPCE. Furthermore, the unique optical behavior of surface plasmons can be coupled with dye molecules, suggesting the possibility for producing additional channels for hot electron generation.

  4. Highly sensitive sensors for alkali metal ions based on complementary-metal-oxide-semiconductor-compatible silicon nanowires

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Jun; Agarwal, Ajay; Buddharaju, Kavitha D.; Singh, Navab; Gao, Zhiqiang

    2007-06-01

    Highly sensitive sensors for alkali metal ions based on complementary-metal-oxide- semiconductor-compatible silicon nanowires (SiNWs) with crown ethers covalently immobilized on their surface are presented. A densely packed organic monolayer terminated with amine groups is introduced to the SiNW surface via hydrosilylation. Amine-modified crown ethers, acting as sensing elements, are then immobilized onto the SiNWs through a cross-linking reaction with the monolayer. The crown ether-functionalized SiNWs recognize Na+ and K+ according to their complexation ability to the crown ethers. The SiNW sensors are highly selective and capable of achieving an ultralow detection limit down to 50nM, over three orders of magnitude lower than that of conventional crown ether-based ion-selective electrodes.

  5. High responsivity A-plane GaN-based metal-semiconductor-metal photodetectors for polarization-sensitive applications

    SciTech Connect

    Navarro, A.; Rivera, C.; Pereiro, J.; Munoz, E.; Imer, B.; DenBaars, S. P.; Speck, J. S.

    2009-05-25

    The fabrication and characterization of metal-semiconductor-metal polarization-sensitive photodetectors based on A-plane GaN grown on R-plane sapphire substrates is reported. These photodetectors take advantage of the in-plane crystal anisotropy, which results in linear dichroism near the band gap energy. The high resistivity of the A-plane GaN material leads to extremely low dark currents. For an optimized finger spacing of 1 {mu}m, dark current density and responsivity at 30 V are 0.3 nA/mm{sup 2} and 2 A/W, respectively. A maximum polarization sensitivity ratio of 1.8 was determined. In a differential configuration, the full width at half maximum of the polarization-sensitive region is 8.5 nm.

  6. The role of the substrate on the dispersion in accumulation in III-V compound semiconductor based metal-oxide-semiconductor gate stacks

    SciTech Connect

    Krylov, Igor; Ritter, Dan; Eizenberg, Moshe

    2015-09-07

    Dispersion in accumulation is a widely observed phenomenon in metal-oxide-semiconductor gate stacks based on III-V compound semiconductors. The physical origin of this phenomenon is attributed to border traps located in the dielectric material adjacent to the semiconductor. Here, we study the role of the semiconductor substrate on the electrical quality of the first layers at atomic layer deposited (ALD) dielectrics. For this purpose, either Al{sub 2}O{sub 3} or HfO{sub 2} dielectrics with variable thicknesses were deposited simultaneously on two technology important semiconductors—InGaAs and InP. Significantly larger dispersion was observed in InP based gate stacks compared to those based on InGaAs. The observed difference is attributed to a higher border trap density in dielectrics deposited on InP compared to those deposited on InGaAs. We therefore conclude that the substrate plays an important role in the determination of the electrical quality of the first dielectric monolayers deposited by ALD. An additional observation is that larger dispersion was obtained in HfO{sub 2} based capacitors compared to Al{sub 2}O{sub 3} based capacitors, deposited on the same semiconductor. This phenomenon is attributed to the lower conduction band offset rather than to a higher border trap density.

  7. Metal-Insulator-Semiconductor Photodetectors

    PubMed Central

    Lin, Chu-Hsuan; Liu, Chee Wee

    2010-01-01

    The major radiation of the Sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III–V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows. PMID:22163382

  8. Transmission enhancement based on strong interference in metal-semiconductor layered film for energy harvesting

    PubMed Central

    Li, Qiang; Du, Kaikai; Mao, Kening; Fang, Xu; Zhao, Ding; Ye, Hui; Qiu, Min

    2016-01-01

    A fundamental strategy to enhance optical transmission through a continuous metallic film based on strong interference dominated by interface phase shift is developed. In a metallic film coated with a thin semiconductor film, both transmission and absorption are simultaneously enhanced as a result of dramatically reduced reflection. For a 50-nm-thick Ag film, experimental transmission enhancement factors of 4.5 and 9.5 are realized by exploiting Ag/Si non-symmetric and Si/Ag/Si symmetric geometries, respectively. These planar layered films for transmission enhancement feature ultrathin thickness, broadband and wide-angle operation, and reduced resistance. Considering one of their potential applications as transparent metal electrodes in solar cells, a calculated 182% enhancement in the total transmission efficiency relative to a single metallic film is expected. This strategy relies on no patterned nanostructures and thereby may power up a wide spectrum of energy-harvesting applications such as thin-film photovoltaics and surface photocatalysis. PMID:27404510

  9. Transmission enhancement based on strong interference in metal-semiconductor layered film for energy harvesting.

    PubMed

    Li, Qiang; Du, Kaikai; Mao, Kening; Fang, Xu; Zhao, Ding; Ye, Hui; Qiu, Min

    2016-01-01

    A fundamental strategy to enhance optical transmission through a continuous metallic film based on strong interference dominated by interface phase shift is developed. In a metallic film coated with a thin semiconductor film, both transmission and absorption are simultaneously enhanced as a result of dramatically reduced reflection. For a 50-nm-thick Ag film, experimental transmission enhancement factors of 4.5 and 9.5 are realized by exploiting Ag/Si non-symmetric and Si/Ag/Si symmetric geometries, respectively. These planar layered films for transmission enhancement feature ultrathin thickness, broadband and wide-angle operation, and reduced resistance. Considering one of their potential applications as transparent metal electrodes in solar cells, a calculated 182% enhancement in the total transmission efficiency relative to a single metallic film is expected. This strategy relies on no patterned nanostructures and thereby may power up a wide spectrum of energy-harvesting applications such as thin-film photovoltaics and surface photocatalysis. PMID:27404510

  10. Semiconductor assisted metal deposition for nanolithography applications

    DOEpatents

    Rajh, Tijana; Meshkov, Natalia; Nedelijkovic, Jovan M.; Skubal, Laura R.; Tiede, David M.; Thurnauer, Marion

    2001-01-01

    An article of manufacture and method of forming nanoparticle sized material components. A semiconductor oxide substrate includes nanoparticles of semiconductor oxide. A modifier is deposited onto the nanoparticles, and a source of metal ions are deposited in association with the semiconductor and the modifier, the modifier enabling electronic hole scavenging and chelation of the metal ions. The metal ions and modifier are illuminated to cause reduction of the metal ions to metal onto the semiconductor nanoparticles.

  11. Semiconductor assisted metal deposition for nanolithography applications

    DOEpatents

    Rajh, Tijana; Meshkov, Natalia; Nedelijkovic, Jovan M.; Skubal, Laura R.; Tiede, David M.; Thurnauer, Marion

    2002-01-01

    An article of manufacture and method of forming nanoparticle sized material components. A semiconductor oxide substrate includes nanoparticles of semiconductor oxide. A modifier is deposited onto the nanoparticles, and a source of metal ions are deposited in association with the semiconductor and the modifier, the modifier enabling electronic hole scavenging and chelation of the metal ions. The metal ions and modifier are illuminated to cause reduction of the metal ions to metal onto the semiconductor nanoparticles.

  12. Low dielectric constant-based organic field-effect transistors and metal-insulator-semiconductor capacitors

    NASA Astrophysics Data System (ADS)

    Ukah, Ndubuisi Benjamin

    This thesis describes a study of PFB and pentacene-based organic field-effect transistors (OFET) and metal-insulator-semiconductor (MIS) capacitors with low dielectric constant (k) poly(methyl methacrylate) (PMMA), poly(4-vinyl phenol) (PVP) and cross-linked PVP (c-PVP) gate dielectrics. A physical method -- matrix assisted pulsed laser evaporation (MAPLE) -- of fabricating all-polymer field-effect transistors and MIS capacitors that circumvents inherent polymer dissolution and solvent-selectivity problems, is demonstrated. Pentacene-based OFETs incorporating PMMA and PVP gate dielectrics usually have high operating voltages related to the thickness of the dielectric layer. Reduced PMMA layer thickness (≤ 70 nm) was obtained by dissolving the PMMA in propylene carbonate (PC). The resulting pentacene-based transistors exhibited very low operating voltage (below -3 V), minimal hysteresis in their transfer characteristics, and decent electrical performance. Also low voltage (within -2 V) operation using thin (≤ 80 nm) low-k and hydrophilic PVP and c-PVP dielectric layers obtained via dissolution in high dipole moment and high-k solvents -- PC and dimethyl sulfoxide (DMSO), is demonstrated to be a robust means of achieving improved electrical characteristics and high operational stability in OFETs incorporating PVP and c-PVP dielectrics.

  13. High voltage trapping effects in GaN-based metal-insulator-semiconductor transistors

    NASA Astrophysics Data System (ADS)

    Meneghesso, Gaudenzio; Meneghini, Matteo; Silvestri, Riccardo; Vanmeerbeek, Piet; Moens, Peter; Zanoni, Enrico

    2016-01-01

    This paper presents an analysis of the high voltage trapping processes that take place in high-electron mobility transistors based on GaN, with a metal-insulator-semiconductor (MIS) structure. The study is based on combined pulsed and transient measurements, carried out with trapping voltages in the range from 50 to 500 V. The results indicate that: (i) dynamic Ron is maximum for trapping voltages between 200 and 300 V, and decreases for higher voltage levels; (ii) Ron-transient measurements reveal the presence of a dominant trap with activation energy Ea1 = 0.93 eV and of a second trap with activation energy equal to Ea2 = 0.61 eV; (iii) the deep level transient spectroscopy (DLTS) signal associated to trap Ea1 is completely suppressed for high trapping voltages (VDS = 500 V). The results are interpreted by considering that the trap Ea1 is located in the buffer, and originates from CN defects. The exposure to high drain voltages may favor the depletion of such traps, due to a field-assisted de-trapping process or to the presence of vertical leakage paths.

  14. Experimental characterization of a metal-oxide-semiconductor field-effect transistor-based Coulter counter.

    PubMed

    Sridhar, Manoj; Xu, Dongyan; Kang, Yuejun; Hmelo, Anthony B; Feldman, Leonard C; Li, Dongqing; Li, Deyu

    2008-05-15

    We report the detailed characterization of an ultrasensitive microfluidic device used to detect the translocation of small particles through a sensing microchannel. The device connects a fluidic circuit to the gate of a metal-oxide-semiconductor field-effect transistor (MOSFET) and detects particles by monitoring the MOSFET drain current modulation instead of the modulation in the ionic current through the sensing channel. The minimum volume ratio of the particle to the sensing channel detected is 0.006%, which is about ten times smaller than the lowest detected volume ratio previously reported in the literature. This volume ratio is detected at a noise level of about 0.6% of the baseline MOSFET drain current, clearly showing the amplification effects from the fluidic circuits and the MOSFETs. We characterize the device sensitivity as a function of the MOSFET gate potential and show that its sensitivity is higher when the MOSFET is operating below its threshold gate voltage than when it is operating above the threshold voltage. In addition, we demonstrate that the device sensitivity linearly increases with the applied electrical bias across the fluidic circuit. Finally, we show that polystyrene beads and glass beads with similar sizes can be distinguished from each other based on their different translocation times, and the size distribution of microbeads can be obtained with accuracy comparable to that of direct scanning electron microscopy measurements. PMID:19479001

  15. Mechanisms of current flow in metal-semiconductor ohmic contacts

    SciTech Connect

    Blank, T. V. Gol'dberg, Yu. A.

    2007-11-15

    Published data on the properties of metal-semiconductor ohmic contacts and mechanisms of current flow in these contacts (thermionic emission, field emission, thermal-field emission, and also current flow through metal shunts) are reviewed. Theoretical dependences of the resistance of an ohmic contact on temperature and the charge-carrier concentration in a semiconductor were compared with experimental data on ohmic contacts to II-VI semiconductors (ZnSe, ZnO), III-V semiconductors (GaN, AlN, InN, GaAs, GaP, InP), Group IV semiconductors (SiC, diamond), and alloys of these semiconductors. In ohmic contacts based on lightly doped semiconductors, the main mechanism of current flow is thermionic emission with the metal-semiconductor potential barrier height equal to 0.1-0.2 eV. In ohmic contacts based on heavily doped semiconductors, the current flow is effected owing to the field emission, while the metal-semiconductor potential barrier height is equal to 0.3-0.5 eV. In alloyed In contacts to GaP and GaN, a mechanism of current flow that is not characteristic of Schottky diodes (current flow through metal shunts formed by deposition of metal atoms onto dislocations or other imperfections in semiconductors) is observed.

  16. Investigation on Photoelectric Behavior of Metal-Insulator-Semiconductor Structure Based on Titania Nanotubes Arrays

    NASA Astrophysics Data System (ADS)

    Wang, Lili; Panaitescu, Eugen; Richter, Christiaan; Menon, Latika

    2014-03-01

    Titanium dioxide (TiO2) has attracted great interest as an inexpensive, earth-abundant and environment-friendly anode material for next generation photovoltaic devices and the metal-insulator-semiconductor (MIS) concept is one of the most promising approaches for improving solar cell cost effectiveness (in /W). We investigated hybrid MIS structures of semiconducting ordered titania nanotube arrays integrated with insulating iron oxide or copper oxide layers and metallic copper. The morphological and structural properties of the samples were analyzed by scanning and transmission electron microscopy, energy-dispersive X-ray spectroscopy with elemental mapping, and X-ray diffraction. The nanotubular morphology represents a step change from the current thin film approach, providing significantly larger surface area while facilitating the charge separation and electron transport. Photoelectric behavior of the new structures was estimated by transient response, quantum efficiency and spectral response, and a solar simulator was used for recording the photovoltaic response.

  17. Optical waveguide beam splitters based on hybrid metal-dielectric-semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Li, Yunyun; Liang, Junwu; Zhang, Qinglin; Zhou, Zidong; Li, Honglai; Fan, Xiaopeng; Wang, Xiaoxia; Fan, Peng; Yang, Yankun; Guo, Pengfei; Zhuang, Xiujuan; Zhu, Xiaoli; Liao, Lei; Pan, Anlian

    2015-11-01

    Miniature integration is desirable for the future photonics circuit. Low-dimensional semiconductor and metal nanostructures is the potential building blocks in compact photonic circuits for their unique electronic and optical properties. In this work, a hybrid metal-dielectric-semiconductor nanostructure is designed and fabricated to realizing a nano-scale optical waveguide beam splitter, which is constructed with the sandwiched structure of a single CdS nanoribbon/HfO2 thin film/Au nanodisk arrays. Micro-optical investigations reveal that the guided light outputting at the terminal end of the CdS ribbon is well separated into several light spots. Numerical simulations further demonstrate that the beam splitting mechanism is attributed to the strong electromagnetic coupling between the Au nanodisks and light guided in the nanoribbon. The number of the split beams (light spots) at the terminal end of the nanoribbon is mainly determined by the number of the Au nanodisk rows, as well as the distance of the blank region between the nanodisks array and the end of the CdS ribbon, owing to the interference between the split beams. These optical beam splitters may find potential applications in high-density integrated photonic circuits and systems.

  18. Monolithic integration of GaN-based light-emitting diodes and metal-oxide-semiconductor field-effect transistors.

    PubMed

    Lee, Ya-Ju; Yang, Zu-Po; Chen, Pin-Guang; Hsieh, Yung-An; Yao, Yung-Chi; Liao, Ming-Han; Lee, Min-Hung; Wang, Mei-Tan; Hwang, Jung-Min

    2014-10-20

    In this study, we report a novel monolithically integrated GaN-based light-emitting diode (LED) with metal-oxide-semiconductor field-effect transistor (MOSFET). Without additionally introducing complicated epitaxial structures for transistors, the MOSFET is directly fabricated on the exposed n-type GaN layer of the LED after dry etching, and serially connected to the LED through standard semiconductor-manufacturing technologies. Such monolithically integrated LED/MOSFET device is able to circumvent undesirable issues that might be faced by other kinds of integration schemes by growing a transistor on an LED or vice versa. For the performances of resulting device, our monolithically integrated LED/MOSFET device exhibits good characteristics in the modulation of gate voltage and good capability of driving injected current, which are essential for the important applications such as smart lighting, interconnection, and optical communication. PMID:25607316

  19. InAs-based metal-oxide-semiconductor structure formation in low-energy Townsend discharge

    NASA Astrophysics Data System (ADS)

    Aksenov, M. S.; Kokhanovskii, A. Yu.; Polovodov, P. A.; Devyatova, S. F.; Golyashov, V. A.; Kozhukhov, A. S.; Prosvirin, I. P.; Khandarkhaeva, S. E.; Gutakovskii, A. K.; Valisheva, N. A.; Tereshchenko, O. E.

    2015-10-01

    We developed and applied a method of InAs passivation in the low-energy plasma of Townsend discharge. The controlled interface oxidation in the Ar:O2:CF4 gas mixture under visualization of gas discharge plasma allowed growing thin homogeneous films in the range of 5-15 nm thickness. Oxidation with the addition of CF4 in gas-discharge plasma led to the formation of In and As oxyfluorides with a wide insulating gap and isostructural interface with unpinned Fermi level behavior. The metal-oxide-semiconductor structure showed excellent capacitance-voltage characteristics: small frequency dispersion (<15 mV), density of interface states (Dit) in the gap below 5 × 1010 eV-1cm-2, and fixed charge (Qfix) below 5 × 1011 cm-2.

  20. First principles study of Fe in diamond: A diamond-based half metallic dilute magnetic semiconductor

    SciTech Connect

    Benecha, E. M.; Lombardi, E. B.

    2013-12-14

    Half-metallic ferromagnetic ordering in semiconductors, essential in the emerging field of spintronics for injection and transport of highly spin polarised currents, has up to now been considered mainly in III–V and II–VI materials. However, low Curie temperatures have limited implementation in room temperature device applications. We report ab initio Density Functional Theory calculations on the properties of Fe in diamond, considering the effects of lattice site, charge state, and Fermi level position. We show that the lattice sites and induced magnetic moments of Fe in diamond depend strongly on the Fermi level position and type of diamond co-doping, with Fe being energetically most favorable at the substitutional site in p-type and intrinsic diamond, while it is most stable at a divacancy site in n-type diamond. Fe induces spin polarized bands in the band gap, with strong hybridization between Fe-3d and C-2s,2p bands. We further consider Fe-Fe spin interactions in diamond and show that substitutional Fe{sup +1} in p-type diamond exhibits a half-metallic character, with a magnetic moment of 1.0 μ{sub B} per Fe atom and a large ferromagnetic stabilization energy of 33 meV, an order of magnitude larger than in other semiconductors, with correspondingly high Curie temperatures. These results, combined with diamond's unique properties, demonstrate that Fe doped p-type diamond is likely to be a highly suitable candidate material for spintronics applications.

  1. Noble metal-free hydrogen-evolving photocathodes based on small molecule organic semiconductors

    NASA Astrophysics Data System (ADS)

    Morozan, A.; Bourgeteau, T.; Tondelier, D.; Geffroy, B.; Jousselme, B.; Artero, V.

    2016-09-01

    Organic semiconductors have great potential for producing hydrogen in a sustainable and economically-viable manner because they rely on readily available materials with highly tunable properties. We demonstrate here the relevance of heterojunctions to the construction of H2-evolving photocathodes, exclusively based on earth-abundant elements. Boron subnaphthalocyanine chloride proved a very promising acceptor in that perspective. It absorbs a part of the solar spectrum complementary to α-sexithiophene as a donor, thus generating large photocurrents and providing a record onset potential for light-driven H2 evolution under acidic aqueous conditions using a nanoparticulate amorphous molybdenum sulfide catalyst.

  2. Noble metal-free hydrogen-evolving photocathodes based on small molecule organic semiconductors.

    PubMed

    Morozan, A; Bourgeteau, T; Tondelier, D; Geffroy, B; Jousselme, B; Artero, V

    2016-09-01

    Organic semiconductors have great potential for producing hydrogen in a sustainable and economically-viable manner because they rely on readily available materials with highly tunable properties. We demonstrate here the relevance of heterojunctions to the construction of H2-evolving photocathodes, exclusively based on earth-abundant elements. Boron subnaphthalocyanine chloride proved a very promising acceptor in that perspective. It absorbs a part of the solar spectrum complementary to α-sexithiophene as a donor, thus generating large photocurrents and providing a record onset potential for light-driven H2 evolution under acidic aqueous conditions using a nanoparticulate amorphous molybdenum sulfide catalyst. PMID:27455142

  3. SLM based semiconductor maskwriter

    NASA Astrophysics Data System (ADS)

    Diez, Steffen; Jehle, Achim

    2015-09-01

    The high-end semiconductor mask fabrication is dominated by e-beam technology. But still more than 50% of all semiconductor masks are produced by laser writers. The current laser writers are based on the same technology that was used 25 years ago. They are reliable and fast but not very economical. Heidelberg Instruments has developed a new economical and fast laser writer based on the latest technologies.

  4. Metal to semiconductor transition in metallic transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Li, Yan; Tongay, Sefaattin; Yue, Qu; Kang, Jun; Wu, Junqiao; Li, Jingbo

    2013-11-01

    We report on tuning the electronic and magnetic properties of metallic transition metal dichalcogenides (mTMDCs) by 2D to 1D size confinement. The stability of the mTMDC monolayers and nanoribbons is demonstrated by the larger binding energy compared to the experimentally available semiconducting TMDCs. The 2D MX2 (M = Nb, Ta; X = S, Se) monolayers are non-ferromagnetic metals and mechanically softer compared to their semiconducting TMDCs counterparts. Interestingly, mTMDCs undergo metal-to-semiconductor transition when the ribbon width approaches to ˜13 Å and ˜7 Å for zigzag and armchair edge terminations, respectively; then these ribbons convert back to metal when the ribbon widths further decrease. Zigzag terminated nanoribbons are ferromagnetic semiconductors, and their magnetic properties can also be tuned by hydrogen edge passivation, whereas the armchair nanoribbons are non-ferromagnetic semiconductors. Our results display that the mTMDCs offer a broad range of physical properties spanning from metallic to semiconducting and non-ferromagnetic to ferromagnetic that is ideal for applications where stable narrow bandgap semiconductors with different magnetic properties are desired.

  5. Capacitance-voltage characteristics of Si and Ge nanomembrane based flexible metal-oxide-semiconductor devices under bending conditions

    NASA Astrophysics Data System (ADS)

    Cho, Minkyu; Seo, Jung-Hun; Park, Dong-Wook; Zhou, Weidong; Ma, Zhenqiang

    2016-06-01

    Metal-oxide-semiconductor (MOS) device is the basic building block for field effect transistors (FET). The majority of thin-film transistors (TFTs) are FETs. When MOSFET are mechanically bent, the MOS structure will be inevitably subject to mechanical strain. In this paper, flexible MOS devices using single crystalline Silicon (Si) and Germanium (Ge) nanomembranes (NM) with SiO2, SiO, and Al2O3 dielectric layers are fabricated on a plastic substrate. The relationships between semiconductor nanomembranes and various oxide materials are carefully investigated under tensile/compressive strain. The flatband voltage, threshold voltage, and effective charge density in various MOS combinations revealed that Si NM-SiO2 configuration shows the best interface charge behavior, while Ge NM-Al2O3 shows the worst. This investigation of flexible MOS devices can help us understand the impact of charges in the active region of the flexible TFTs and capacitance changes under the tensile/compressive strains on the change in electrical characteristics in flexible NM based TFTs.

  6. Performance improvement of GaN-based metal-semiconductor-metal photodiodes grown on Si(111) substrate by thermal cycle annealing process

    NASA Astrophysics Data System (ADS)

    Lin, Jyun-Hao; Huang, Shyh-Jer; Su, Yan-Kuin

    2014-01-01

    A simple thermal cycle annealing (TCA) process was used to improve the quality of GaN grown on a Si substrate. The X-ray diffraction (XRD) and etch pit density (EPD) results revealed that using more process cycles, the defect density cannot be further reduced. However, the performance of GaN-based metal-semiconductor-metal (MSM) photodiodes (PDs) prepared on Si substrates showed significant improvement. With a two-cycle TCA process, it is found that the dark current of the device was only 1.46 × 10-11 A, and the photo-to-dark-current contrast ratio was about 1.33 × 105 at 5 V. Also, the UV/visible rejection ratios can reach as high as 1077.

  7. HfO2-based InP n-channel metal-oxide-semiconductor field-effect transistors and metal-oxide-semiconductor capacitors using a germanium interfacial passivation layer

    NASA Astrophysics Data System (ADS)

    Kim, Hyoung-Sub; Ok, I.; Zhang, M.; Zhu, F.; Park, S.; Yum, J.; Zhao, H.; Lee, Jack C.; Majhi, Prashant

    2008-09-01

    In this letter, we present our experimental results of HfO2-based n-channel metal-oxide-semiconductor field-effect transistors (MOSFETs) and metal-oxide-semiconductor capacitors (MOSCAPs) on indium phosphide (InP) substrates using a thin germanium (Ge) interfacial passivation layer (IPL). We found that MOSCAPs on n-InP substrates showed good C-V characteristics such as a small capacitance equivalent thickness (14Å ), a small frequency dispersion (<10% and <200mV), and a low dielectric leakage current (˜5×10-4A/cm2 at Vg=1.5V), whereas MOSCAPs on p-InP exhibited poor characteristics, implying severe Fermi level pinning. It was also found that InP was more vulnerable to a high temperature process such that C-V curves showed a characteristic "bump" and inversion capacitance at relatively high frequencies. From n-channel MOSFETs on a semi-insulating InP substrate using Ge IPL, HfO2, and TaN gate electrodes, excellent electrical characteristics such as a large transconductance (9.3mS /mm) and large drain currents (12.3mA/mm at Vd=2V and Vg=Vth+2V) were achieved, which are comparable to other works.

  8. CdSe Nanowire-Based Flexible Devices: Schottky Diodes, Metal-Semiconductor Field-Effect Transistors, and Inverters.

    PubMed

    Jin, Weifeng; Zhang, Kun; Gao, Zhiwei; Li, Yanping; Yao, Li; Wang, Yilun; Dai, Lun

    2015-06-24

    Novel CdSe nanowire (NW)-based flexible devices, including Schottky diodes, metal-semiconductor field-effect transistors (MESFETs), and inverters, have been fabricated and investigated. The turn-on voltage of a typical Schottky diode is about 0.7 V, and the rectification ratio is larger than 1 × 10(7). The threshold voltage, on/off current ratio, subthreshold swing, and peak transconductance of a typical MESFET are about -0.3 V, 4 × 10(5), 78 mV/dec, and 2.7 μS, respectively. The inverter, constructed with two MESFETs, exhibits clear inverting behavior with the gain to be about 28, 34, and 38, at the supply voltages (V(DD)) of 3, 5, and 7 V, respectively. The inverter also shows good dynamic behavior. The rising and falling times of the output signals are about 0.18 and 0.09 ms, respectively, under 1000 Hz square wave signals input. The performances of the flexible devices are stable and reliable under different bending conditions. Our work demonstrates these flexible NW-based Schottky diodes, MESFETs, and inverters are promising candidate components for future portable transparent nanoelectronic devices.

  9. Metal insulator semiconductor solar cell devices based on a Cu{sub 2}O substrate utilizing h-BN as an insulating and passivating layer

    SciTech Connect

    Ergen, Onur; Gibb, Ashley; Vazquez-Mena, Oscar; Zettl, Alex; Regan, William Raymond

    2015-03-09

    We demonstrate cuprous oxide (Cu{sub 2}O) based metal insulator semiconductor Schottky (MIS-Schottky) solar cells with efficiency exceeding 3%. A unique direct growth technique is employed in the fabrication, and hexagonal boron nitride (h-BN) serves simultaneously as a passivation and insulation layer on the active Cu{sub 2}O layer. The devices are the most efficient of any Cu{sub 2}O based MIS-Schottky solar cells reported to date.

  10. Metal insulator semiconductor solar cell devices based on a Cu2O substrate utilizing h-BN as an insulating and passivating layer

    NASA Astrophysics Data System (ADS)

    Ergen, Onur; Gibb, Ashley; Vazquez-Mena, Oscar; Regan, William Raymond; Zettl, Alex

    2015-03-01

    We demonstrate cuprous oxide (Cu2O) based metal insulator semiconductor Schottky (MIS-Schottky) solar cells with efficiency exceeding 3%. A unique direct growth technique is employed in the fabrication, and hexagonal boron nitride (h-BN) serves simultaneously as a passivation and insulation layer on the active Cu2O layer. The devices are the most efficient of any Cu2O based MIS-Schottky solar cells reported to date.

  11. C-V measurements of micron diameter metal-oxide-semiconductor capacitors using a scanning-electron-microscope-based nanoprobe.

    PubMed

    Zheng, T; Jia, H; Wallace, R M; Gnade, B E

    2007-10-01

    The C-V electrical characterization of microstructures on a standard probe station is limited by the magnification of the imaging system and the precision of the probe manipulators. To overcome these limitations, we examine the combination of in situ electrical probing and a dual column scanning electron microscope/focused ion beam system. The imaging parameters and probing procedures are carefully chosen to reduce e-beam damage to the metal oxide semiconductor capacitor device under test. Estimation of shunt capacitance is critical when making femtofarad level measurements. C-V measurements of micron size metal-oxide-silicon capacitors are demonstrated. PMID:17979444

  12. Dopant in Near-Surface Semiconductor Layers of Metal-Insulator-Semiconductor Structures Based on Graded-Gap p-Hg0.78Cd0.22Te Grown by Molecular-Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.

    2016-02-01

    Peculiarities in determining the dopant concentration and dopant distribution profile in the near-surface layer of a semiconductor are investigated by measuring the admittance of metal-insulator-semiconductor structures (MIS structures) based on p-Hg0.78Cd0.22Te grown by molecular beam epitaxy. The dopant concentrations in the near-surface layer of the semiconductor are determined by measuring the admittance of MIS structures in the frequency range of 50 kHz to 1 MHz. It is shown that in this frequency range, the capacitance-voltage characteristics of MIS structures based on p-Hg0.78Cd0.22Te with a near-surface graded gap layer demonstrate a high-frequency behavior with respect to the recharge time of surface states located near the Fermi level for an intrinsic semiconductor. The formation time of the inversion layer is decreased by less than two times, if a near-surface graded-gap layer is created. The dopant distribution profile in the near-surface layer of the semiconductor is found, and it is shown that for structures based on p-Hg0.78Cd0.22Te with a near-surface graded-gap layer, the dopant concentration has a minimum near the interface with the insulator. For MIS structure based on n-Hg0.78Cd0.22Te, the dopant concentration is more uniformly distributed in the near-surface layer of the semiconductor.

  13. From heterojunction interfaces to metal-semiconductor interfaces

    NASA Astrophysics Data System (ADS)

    Niles, D. W.; Tang, M.; McKinley, J.; Zanoni, R.; Margaritondo, G.

    1989-11-01

    Systematic studies of Schottky barrier heights and heterojunction band discontinuities have revealed a clear correlation between these two fundamental semiconductor interface parameters. The correlation is qualitatively predicted by all major semiconductor interface models, i.e., the defect model, theories based on metal-induced gap states (MIGS), and Schottky-like models. However, the experimentally observed correlation substantially deviates from the common prediction of all these theories. We investigated the causes of this discrepancy by measuring band line-ups at semiconductor-semiconductor interfaces with metal intralayers of thickness ranging from zero to back-to-back Schottky barrier configurations. The photoemission experiments discussed here identify the chemical and morphological properties of the CdS/Al/Ge system, and indicate that the cause of the discrepancy is a Schottky-like correction term.

  14. From heterojunction interfaces to metal-semiconductor interfaces

    NASA Astrophysics Data System (ADS)

    Niles, D. W.; Tang, M.; McKinley, J.; Zanoni, R.; Margaritondo, G.

    1990-01-01

    Systematic studies of Schottky barrier heights and heterojunction band discontinuities have revealed a clear correlation between these two fundamental semiconductor interface parameters. The correlation is qualitatively predicted by all major semiconductor interface models, i.e., the defect model, theories based on metal-induced gap states (MIGS), and Schottky-like models. However, the experimentally observed correlation substantially deviates from the common prediction of all these theories. We investigated the causes of this discrepancy by measuring band line-ups at semiconductor-semiconductor interfaces with metal intralayers of thickness ranging from zero to back-to-back Schottky barrier configurations. The photoemission experiments discussed here identify the chemical and morphological properties of the CdS/Al/Ge system, and indicate that the cause of the discrepancy is a Schottky-like correction term.

  15. Flexible germanium nanomembrane metal-semiconductor-metal photodiodes

    NASA Astrophysics Data System (ADS)

    Kim, Munho; Seo, Jung-Hun; Yu, Zongfu; Zhou, Weidong; Ma, Zhenqiang

    2016-08-01

    We demonstrate flexible Ge nanomembrane (Ge NM) based metal-semiconductor-metal photodiodes. The effect of uniaxial tensile strain on Ge NM based photodiodes was investigated using bending fixtures. Dark current density is decreased from 21.5 to 4.8 mA/cm2 at 3 V by a tensile strain of 0.42% while photon responsivity is increased from 0.2 to 0.45 A/W at the wavelength of 1.5 μm. Enhanced responsivity is also observed at longer wavelengths up to 1.64 μm. The uniaxial tensile strain effectively reduces the direct bandgap energy of the Ge NM, leading to a shift of the absorption edge toward a longer wavelength.

  16. Hybrid Semiconductor-Metal Nanorods as Photocatalysts.

    PubMed

    Ben-Shahar, Yuval; Banin, Uri

    2016-08-01

    Semiconductor-metal hybrid nanoparticles manifest combined and often synergistic properties exceeding the functionality of the individual components, thereby opening up interesting opportunities for controlling their properties through the direct manipulation of their unique semiconductor-metal interface. Upon light absorption, these structures exhibit spatial charge separation across the semiconductor-metal junction. A significant and challenging application involves the use of these nanoparticles as photocatalysts. Through this process, the charge carriers transferred to the metal co-catalyst are available as reduction or oxidation reagents to drive the surface chemical reactions. In this review, we discuss synthesis approaches that offer a high degree of control over the hybrid nanoparticle structure and composition, the number of catalytic sites and the interfacial characteristics, including examples of a variety of photocatalyst architectures. We describe the structural and surface effects with regard to the functionality of hybrid nanosystems in photocatalysis, along with the effects of solution and chemical conditions on photocatalytic activity and efficiency. We conclude with a perspective on the rational design of advanced semiconductor-metal hybrid nanoparticles towards their functionality as highly efficient photocatalysts. PMID:27573406

  17. Hybrid Semiconductor-Metal Nanorods as Photocatalysts.

    PubMed

    Ben-Shahar, Yuval; Banin, Uri

    2016-08-01

    Semiconductor-metal hybrid nanoparticles manifest combined and often synergistic properties exceeding the functionality of the individual components, thereby opening up interesting opportunities for controlling their properties through the direct manipulation of their unique semiconductor-metal interface. Upon light absorption, these structures exhibit spatial charge separation across the semiconductor-metal junction. A significant and challenging application involves the use of these nanoparticles as photocatalysts. Through this process, the charge carriers transferred to the metal co-catalyst are available as reduction or oxidation reagents to drive the surface chemical reactions. In this review, we discuss synthesis approaches that offer a high degree of control over the hybrid nanoparticle structure and composition, the number of catalytic sites and the interfacial characteristics, including examples of a variety of photocatalyst architectures. We describe the structural and surface effects with regard to the functionality of hybrid nanosystems in photocatalysis, along with the effects of solution and chemical conditions on photocatalytic activity and efficiency. We conclude with a perspective on the rational design of advanced semiconductor-metal hybrid nanoparticles towards their functionality as highly efficient photocatalysts.

  18. Controlling the interface charge density in GaN-based metal-oxide-semiconductor heterostructures by plasma oxidation of metal layers

    SciTech Connect

    Hahn, Herwig Kalisch, Holger; Vescan, Andrei; Pécz, Béla; Kovács, András; Heuken, Michael

    2015-06-07

    In recent years, investigating and engineering the oxide-semiconductor interface in GaN-based devices has come into focus. This has been driven by a large effort to increase the gate robustness and to obtain enhancement mode transistors. Since it has been shown that deep interface states act as fixed interface charge in the typical transistor operating regime, it appears desirable to intentionally incorporate negative interface charge, and thus, to allow for a positive shift in threshold voltage of transistors to realise enhancement mode behaviour. A rather new approach to obtain such negative charge is the plasma-oxidation of thin metal layers. In this study, we present transmission electron microscopy and energy dispersive X-ray spectroscopy analysis as well as electrical data for Al-, Ti-, and Zr-based thin oxide films on a GaN-based heterostructure. It is shown that the plasma-oxidised layers have a polycrystalline morphology. An interfacial amorphous oxide layer is only detectable in the case of Zr. In addition, all films exhibit net negative charge with varying densities. The Zr layer is providing a negative interface charge density of more than 1 × 10{sup 13 }cm{sup –2} allowing to considerably shift the threshold voltage to more positive values.

  19. Metal-semiconductor contacts: electronic properties

    NASA Astrophysics Data System (ADS)

    Mönch, Winfried

    1994-01-01

    Rectification in metal-semiconductor contacts was first described by Braun in 1874. We owe the explanation of this observation to Schottky. He demonstrated that depletion layers exist on the semiconductor side of such interfaces. The current transport across such contacts is determined by their barrier heights, i.e., the respective energy difference between the Fermi level and the edge of the majority-carrier band. Since Schottky had published his pioneering work in 1938 the mechanisms, which determine the barrier heights of metal-semiconductor contacts, have remained under discussion. In 1947, Bardeen attributed the failure of the early Schottky-Mott rule to the neglect of electronic interface states. The foundations for a microscopic description of interface states in ideal Schottky contacts was laid by Heine in 1965. He demonstrated that a continuum of metal-induced gap states (MIGS), as they were called later, derives from the virtual gap states of the complex semiconductor band-structure. Neither this MIGS model nor any of the many other monocausal approaches, the most prominent is Spicer's Unified Defect Model, can explain the experimental data. In 1987, Mönch concluded that the continuum of MIG states represents the primary mechanism, which determines the barrier heights in ideal, i.e., intimate, abrupt, and homogeneous metal-semiconductor contacts. He attributed deviations from what is predicted by the MIGS model to other and then secondary mechanisms. In this respect, interface defects, structure-related interface dipoles. interface strain, interface compound formation, and interface intermixing, to name a few examples, were considered.

  20. CMOS array design automation techniques. [metal oxide semiconductors

    NASA Technical Reports Server (NTRS)

    Ramondetta, P.; Feller, A.; Noto, R.; Lombardi, T.

    1975-01-01

    A low cost, quick turnaround technique for generating custom metal oxide semiconductor arrays using the standard cell approach was developed, implemented, tested and validated. Basic cell design topology and guidelines are defined based on an extensive analysis that includes circuit, layout, process, array topology and required performance considerations particularly high circuit speed.

  1. Responsivity drop due to conductance modulation in GaN metal-semiconductor-metal Schottky based UV photodetectors on Si(111)

    NASA Astrophysics Data System (ADS)

    Ravikiran, L.; Radhakrishnan, K.; Dharmarasu, N.; Agrawal, M.; Wang, Zilong; Bruno, Annalisa; Soci, Cesare; Lihuang, Tng; Kian Siong, Ang

    2016-09-01

    GaN Schottky metal-semiconductor-metal (MSM) UV photodetectors were fabricated on a 600 nm thick GaN layer, grown on 100 mm Si (111) substrate using an ammonia-MBE growth technique. In this report, the effect of device dimensions, applied bias and input power on the linearity of the GaN Schottky-based MSM photodetectors on Si substrate were investigated. Devices with larger interdigitated spacing, ‘S’ of 9.0 μm between the fingers resulted in good linearity and flat responsivity characteristics as a function of input power with an external quantum efficiency (EQE) of ˜33% at an applied bias of 15 V and an input power of 0.8 W m-2. With the decrease of ‘S’ to 3.0 μm, the EQE was found to increase to ˜97%. However, devices showed non linearity and drop in responsivity from flatness at higher input power. Moreover, the position of dropping from flatter responsivity was found to shift to lower powers with increased bias. The drop in the responsivity was attributed to the modulation of conductance in the MSM due to the trapping of electrons at the dislocations, resulting in the formation of depletion regions around them. In devices with lower ‘S’, both the image force reduction and the enhanced collection efficiency increased the photocurrent as well as the charging of the dislocations. This resulted in the increased depletion regions around the dislocations leading to the modulation of conductance and non-linearity.

  2. Responsivity drop due to conductance modulation in GaN metal-semiconductor-metal Schottky based UV photodetectors on Si(111)

    NASA Astrophysics Data System (ADS)

    Ravikiran, L.; Radhakrishnan, K.; Dharmarasu, N.; Agrawal, M.; Wang, Zilong; Bruno, Annalisa; Soci, Cesare; Lihuang, Tng; Kian Siong, Ang

    2016-09-01

    GaN Schottky metal-semiconductor-metal (MSM) UV photodetectors were fabricated on a 600 nm thick GaN layer, grown on 100 mm Si (111) substrate using an ammonia-MBE growth technique. In this report, the effect of device dimensions, applied bias and input power on the linearity of the GaN Schottky-based MSM photodetectors on Si substrate were investigated. Devices with larger interdigitated spacing, ‘S’ of 9.0 μm between the fingers resulted in good linearity and flat responsivity characteristics as a function of input power with an external quantum efficiency (EQE) of ∼33% at an applied bias of 15 V and an input power of 0.8 W m‑2. With the decrease of ‘S’ to 3.0 μm, the EQE was found to increase to ∼97%. However, devices showed non linearity and drop in responsivity from flatness at higher input power. Moreover, the position of dropping from flatter responsivity was found to shift to lower powers with increased bias. The drop in the responsivity was attributed to the modulation of conductance in the MSM due to the trapping of electrons at the dislocations, resulting in the formation of depletion regions around them. In devices with lower ‘S’, both the image force reduction and the enhanced collection efficiency increased the photocurrent as well as the charging of the dislocations. This resulted in the increased depletion regions around the dislocations leading to the modulation of conductance and non-linearity.

  3. rf-microwave switches based on reversible semiconductor-metal transition of VO2 thin films synthesized by pulsed-laser deposition

    NASA Astrophysics Data System (ADS)

    Dumas-Bouchiat, F.; Champeaux, C.; Catherinot, A.; Crunteanu, A.; Blondy, P.

    2007-11-01

    Microwave switching devices based on the semiconductor-metal transition of VO2 thin films were developped on two types of substrates (C-plane sapphire and SiO2/Si), and in both shunt and series configurations. Under thermal activation, the switches achieved up to 30-40dB average isolation of the radio-frequency (rf) signal on 500MHz -35GHz frequency band with weak insertion losses. These VO2-based switches can be electrically activated with commutation times less than 100ns, which make them promising candidates for realizing efficient and simple rf switches.

  4. Toward Photochemical Water Splitting Using Band-Gap-Narrowed Semiconductors and Transition-Metal Based Molecular Catalysts

    SciTech Connect

    Muckerman,J.T.; Rodriguez, J.A.; Fujita, E.

    2009-06-07

    We are carrying out coordinated theoretical and experimental studies of toward photochemical water splitting using band-gap-narrowed semiconductors (BGNSCs) with attached multi-electron molecular water oxidation and hydrogen production catalysts. We focus on the coupling between the materials properties and the H{sub 2}O redox chemistry, with an emphasis on attaining a fundamental understanding of the individual elementary steps in the following four processes: (1) Light-harvesting and charge-separation of stable oxide or oxide-derived semiconductors for solar-driven water splitting, including the discovery and characterization of the behavior of such materials at the aqueous interface; (2) The catalysis of the four-electron water oxidation by dinuclear hydroxo transition-metal complexes with quinonoid ligands, and the rational search for improved catalysts; (3) Transfer of the design principles learned from the elucidation of the DuBois-type hydrogenase model catalysts in acetonitrile to the rational design of two-electron hydrogen production catalysts for aqueous solution; (4) Combining these three elements to examine the function of oxidation catalysts on BGNSC photoanode surfaces and hydrogen production catalysts on cathode surfaces at the aqueous interface to understand the challenges to the efficient coupling of the materials functions.

  5. The AMOS cell - An improved metal-semiconductor solar cell. [Antireflection coated Metal Oxide Semiconductor

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.; Yeh, Y.-C. M.

    1975-01-01

    A new fabrication process is being developed which significantly improves the efficiency of metal-semiconductor solar cells. The resultant effect, a marked increase in the open-circuit voltage, is produced by the addition of an interfacial layer oxide on the semiconductor. Cells using gold on n-type gallium arsenide have been made in small areas (0.17 sq cm) with conversion efficiencies of 15% in terrestrial sunlight.

  6. Complementary Metal Oxide Semiconductor Based Multimodal Sensor for In vivo Brain Function Imaging with a Function for Simultaneous Cell Stimulation

    NASA Astrophysics Data System (ADS)

    Tagawa, Ayato; Mitani, Masahiro; Minami, Hiroki; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2010-04-01

    We have developed a multimodal complementary metal oxide semiconductor (CMOS) sensor device embedded with Au electrodes for fluorescent imaging and cell stimulation in the deep brain of mice. The Au electrodes were placed on the pixel array of the image sensor. Windows over the photodiodes were opened in the electrode area for simultaneous fluorescent imaging and cell stimulation in the same area of the brain tissue. The sensor chip was shaped like a shank and was packaged by two packaging methods for high strength or minimal invasion. The experimental results showed that the 90 ×90 µm2 Au electrodes with windows were capable of injecting theta burst stimulation (TBS)-like current pulses at 0.2-1 mA in a saline solution. We successfully demonstrated that fluorescent imaging and TBS-like current injection can be simultaneously performed in the electrode area of a brain phantom.

  7. Complementary Metal Oxide Semiconductor Based Multimodal Sensor for In vivo Brain Function Imaging with a Function for Simultaneous Cell Stimulation

    NASA Astrophysics Data System (ADS)

    Ayato Tagawa,; Masahiro Mitani,; Hiroki Minami,; Toshihiko Noda,; Kiyotaka Sasagawa,; Takashi Tokuda,; Jun Ohta,

    2010-04-01

    We have developed a multimodal complementary metal oxide semiconductor (CMOS) sensor device embedded with Au electrodes for fluorescent imaging and cell stimulation in the deep brain of mice. The Au electrodes were placed on the pixel array of the image sensor. Windows over the photodiodes were opened in the electrode area for simultaneous fluorescent imaging and cell stimulation in the same area of the brain tissue. The sensor chip was shaped like a shank and was packaged by two packaging methods for high strength or minimal invasion. The experimental results showed that the 90 × 90 μm2 Au electrodes with windows were capable of injecting theta burst stimulation (TBS)-like current pulses at 0.2-1 mA in a saline solution. We successfully demonstrated that fluorescent imaging and TBS-like current injection can be simultaneously performed in the electrode area of a brain phantom.

  8. Ratiometric, filter-free optical sensor based on a complementary metal oxide semiconductor buried double junction photodiode.

    PubMed

    Yung, Ka Yi; Zhan, Zhiyong; Titus, Albert H; Baker, Gary A; Bright, Frank V

    2015-07-16

    We report a complementary metal oxide semiconductor integrated circuit (CMOS IC) with a buried double junction (BDJ) photodiode that (i) provides a real-time output signal that is related to the intensity ratio at two emission wavelengths and (ii) simultaneously eliminates the need for an optical filter to block Rayleigh scatter. We demonstrate the BDJ platform performance for gaseous NH3 and aqueous pH detection. We also compare the BDJ performance to parallel results obtained by using a slew scanned fluorimeter (SSF). The BDJ results are functionally equivalent to the SSF results without the need for any wavelength filtering or monochromators and the BDJ platform is not prone to errors associated with source intensity fluctuations or sensor signal drift.

  9. Ultra low-loss, isotropic optical negative-index metamaterial based on hybrid metal-semiconductor nanowires

    PubMed Central

    Paniagua-Domínguez, R.; Abujetas, D. R.; Sánchez-Gil, J. A.

    2013-01-01

    Recently, many fascinating properties predicted for metamaterials (negative refraction, superlensing, electromagnetic cloaking,…) were experimentally demonstrated. Unfortunately, the best achievements have no direct translation to the optical domain, without being burdened by technological and conceptual difficulties. Of particular importance within the realm of optical negative-index metamaterials (NIM), is the issue of simultaneously achieving strong electric and magnetic responses and low associated losses. Here, hybrid metal-semiconductor nanowires are proposed as building blocks of optical NIMs. The metamaterial thus obtained, highly isotropic in the plane normal to the nanowires, presents a negative index of refraction in the near-infrared, with values of the real part well below −1, and extremely low losses (an order of magnitude better than present optical NIMs). Tunability of the system allows to select the operating range in the whole telecom spectrum. The design is proven in configurations such as prisms and slabs, directly observing negative refraction. PMID:23514968

  10. Electrical Conduction in Metals and Semiconductors

    NASA Astrophysics Data System (ADS)

    Kasap, Safa; Koughia, Cyril; Ruda, Harry; Johanson, Robert

    Electrical transport through materials is a large and complex field, and in this chapter we cover only a few aspects that are relevant to practical applications. We start with a review of the semi-classical approach that leads to the concepts of drift velocity, mobility and conductivity, from which Matthiessen's Rule is derived. A more general approach based on the Boltzmann transport equation is also discussed. We review the conductivity of metals and include a useful collection of experimental data. The conductivity of nonuniform materials such as alloys, polycrystalline materials, composites and thin films is discussed in the context of Nordheim's rule for alloys, effective medium theories for inhomogeneous materials, and theories of scattering for thin films. We also discuss some interesting aspects of conduction in the presence of a magnetic field (the Hall effect). We present a simplified analysis of charge transport in semiconductors in a high electric field, including a modern avalanche theory (the theory of "lucky" drift). The properties of low-dimensional systems are briefly reviewed, including the quantum Hall effect.

  11. Monolayer MXenes: promising half-metals and spin gapless semiconductors

    NASA Astrophysics Data System (ADS)

    Gao, Guoying; Ding, Guangqian; Li, Jie; Yao, Kailun; Wu, Menghao; Qian, Meichun

    2016-04-01

    Half-metals and spin gapless semiconductors are promising candidates for spintronic applications due to the complete (100%) spin polarization of electrons around the Fermi level. Based on recent experimental and theoretical findings of graphene-like monolayer transition metal carbides and nitrides (also known as MXenes), we demonstrate using first-principles calculations that monolayers Ti2C and Ti2N exhibit nearly half-metallic ferromagnetism with the magnetic moments of 1.91 and 1.00μB per formula unit, respectively, while monolayer V2C is a metal with unstable antiferromagnetism, and monolayer V2N is a nonmagnetic metal. Interestingly, under a biaxial strain, there is a phase transition from a nearly half-metal to truly half-metal, spin gapless semiconductor, and metal for monolayer Ti2C. Monolayer Ti2N is still a nearly half-metal under a suitable biaxial strain. Large magnetic moments can be induced by the biaxial tensile and compressive strains for monolayer V2C and V2N, respectively. We also show that the structures of these four monolayer MXenes are stable according to the calculated formation energy and phonon spectrum. Our investigations suggest that, unlike monolayer graphene, monolayer MXenes Ti2C and Ti2N without vacancy, doping or external electric field exhibit intrinsic magnetism, especially the half-metallic ferromagnetism and spin gapless semiconductivity, which will stimulate further studies on possible spintronic applications for new two-dimensional materials of MXenes.

  12. ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis.

    PubMed

    Zeng, Haibo; Cai, Weiping; Liu, Peisheng; Xu, Xiaoxia; Zhou, Huijuan; Klingshirn, Claus; Kalt, Heinz

    2008-08-01

    A weak acid selective etching strategy was put forward to fabricate oxide-based hollow nanoparticles (HNPs) using core/shell nanostructures of active metal/oxide nanoparticles as sacrificial templates. ZnO-based HNPs, including pure ZnO, Au/ZnO, Pt/ZnO, and Au/Pt/ZnO HNPs with diameter below 50 nm and shell thickness below 6 nm has been first achieved at low temperature. The diameter, thickness, and even sizes of ZnO and noble metal ultrafine crystals of HNPs can be well adjusted by the etching process. Synchronous with the formation of HNPs, the internal metal-semiconductor interfaces can be controllably eliminated (Zn-ZnO) and reconstructed (noble metal-ZnO). Excitingly, such microstructure manipulation has endued them with giant improvements in related performances, including the very strong blue luminescence with enhancement over 3 orders of magnitude for the pure ZnO HNPs and the greatly improved photocatalytic activity for the noble metal/ZnO HNPs. These give them strong potentials in relevant applications, such as blue light emitting devices, environment remediation, drug delivery and release, energy storage and conversion, and sensors. The designed fabrication procedure is simple, feasible, and universal for a series of oxide and noble metal/oxide HNPs with controlled microstructure and improved performances.

  13. High-gain complementary metal-oxide-semiconductor inverter based on multi-layer WSe2 field effect transistors without doping

    NASA Astrophysics Data System (ADS)

    Kang, Won-Mook; Cho, In-Tak; Roh, Jeongkyun; Lee, Changhee; Lee, Jong-Ho

    2016-10-01

    A high-gain complementary metal-oxide-semiconductor (CMOS) logic inverter was implemented by fabricating p- and n-type field effect transistors (FETs) based on multi-layer WSe2 on the same wafer. Au as a high work-function metal is contacted to WSe2 for the source/drain of the p-type FET. The n-type FET has an Al electrode contacted to WSe2 for the source/drain. Both FETs were designed to have similar on-current densities (>10-7 A μm-1) and high on/off current ratios (>106). The inverter shows excellent switching characteristics including relatively high voltage gains (>25) and high noise margins (>0.9) in the range of supply voltage from 2 V to 8 V. This work has a great significance in the realization of a CMOS logic gate based on WSe2 without an additional doping scheme.

  14. Method of physical vapor deposition of metal oxides on semiconductors

    DOEpatents

    Norton, David P.

    2001-01-01

    A process for growing a metal oxide thin film upon a semiconductor surface with a physical vapor deposition technique in a high-vacuum environment and a structure formed with the process involves the steps of heating the semiconductor surface and introducing hydrogen gas into the high-vacuum environment to develop conditions at the semiconductor surface which are favorable for growing the desired metal oxide upon the semiconductor surface yet is unfavorable for the formation of any native oxides upon the semiconductor. More specifically, the temperature of the semiconductor surface and the ratio of hydrogen partial pressure to water pressure within the vacuum environment are high enough to render the formation of native oxides on the semiconductor surface thermodynamically unstable yet are not so high that the formation of the desired metal oxide on the semiconductor surface is thermodynamically unstable. Having established these conditions, constituent atoms of the metal oxide to be deposited upon the semiconductor surface are directed toward the surface of the semiconductor by a physical vapor deposition technique so that the atoms come to rest upon the semiconductor surface as a thin film of metal oxide with no native oxide at the semiconductor surface/thin film interface. An example of a structure formed by this method includes an epitaxial thin film of (001)-oriented CeO.sub.2 overlying a substrate of (001) Ge.

  15. New Concentric Electrode Metal-Semiconductor-Metal Photodetectors

    NASA Technical Reports Server (NTRS)

    Towe, Elias

    1996-01-01

    A new metal-semiconductor-metal (MSM) photodetector geometry is proposed. The new device has concentric metal electrodes which exhibit a high degree of symmetry and a design flexibility absent in the conventional MSM device. The concentric electrodes are biased to alternating potentials as in the conventional interdigitated device. Because of the high symmetry configuration, however, the new device also has a lower effective capacitance. This device and the conventional MSM structure are analyzed within a common theoretical framework which allows for the comparison of the important performance characteristics.

  16. Aqueous Based Semiconductor Nanocrystals.

    PubMed

    Jing, Lihong; Kershaw, Stephen V; Li, Yilin; Huang, Xiaodan; Li, Yingying; Rogach, Andrey L; Gao, Mingyuan

    2016-09-28

    This review summarizes traditional and recent nonconventional, bioinspired, methods for the aqueous synthesis of colloidal semiconductor quantum dots (QDs). The basic chemistry concepts are critically emphasized at the very beginning as these are strongly correlated with the selection of ligands and the optimal formation of aqueous QDs and their more sophisticated structures. The synergies of biomimetic and biosynthetic methods that can combine biospecific reactivity with the robust and strong optical responses of QDs have also resulted in new approaches to the synthesis of the nanoparticles themselves. A related new avenue is the recent extension of QD synthesis to form nanoparticles endowed with chiral optical properties. The optical characteristics of QD materials and their advanced forms such as core/shell heterostructures, alloys, and doped QDs are discussed: from the design considerations of optical band gap tuning, the control and reduction of the impact of surface traps, the consideration of charge carrier processes that affect emission and energy and charge transfer, to the impact and influence of lattice strain. We also describe the considerable progress in some selected QD applications such as in bioimaging and theranostics. The review concludes with future strategies and identification of key challenges that still need to be resolved in reaching very attractive, scalable, yet versatile aqueous syntheses that may widen the scope of commercial applications for semiconductor nanocrystals. PMID:27586892

  17. Nanoscale Metal Oxide Semiconductors for Gas Sensing

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Evans, Laura; Xu, Jennifer C.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Michael J.

    2011-01-01

    A report describes the fabrication and testing of nanoscale metal oxide semiconductors (MOSs) for gas and chemical sensing. This document examines the relationship between processing approaches and resulting sensor behavior. This is a core question related to a range of applications of nanotechnology and a number of different synthesis methods are discussed: thermal evaporation- condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed, providing a processing overview to developers of nanotechnology- based systems. The results of a significant amount of testing and comparison are also described. A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. The TECsynthesized single-crystal nanowires offer uniform crystal surfaces, resistance to sintering, and their synthesis may be done apart from the substrate. The TECproduced nanowire response is very low, even at the operating temperature of 200 C. In contrast, the electrospun polycrystalline nanofiber response is high, suggesting that junction potentials are superior to a continuous surface depletion layer as a transduction mechanism for chemisorption. Using a catalyst deposited upon the surface in the form of nanoparticles yields dramatic gains in sensitivity for both nanostructured, one-dimensional forms. For the nanowire materials, the response magnitude and response rate uniformly increase with increasing operating temperature. Such changes are interpreted in terms of accelerated surface diffusional processes, yielding greater access to chemisorbed oxygen species and faster dissociative chemisorption, respectively. Regardless of operating temperature, sensitivity of the nanofibers is a factor of 10 to 100 greater than that of nanowires with the same catalyst for the same test condition. In summary, nanostructure appears critical to governing the reactivity, as measured by electrical

  18. Metal oxide semiconductor thin-film transistors for flexible electronics

    NASA Astrophysics Data System (ADS)

    Petti, Luisa; Münzenrieder, Niko; Vogt, Christian; Faber, Hendrik; Büthe, Lars; Cantarella, Giuseppe; Bottacchi, Francesca; Anthopoulos, Thomas D.; Tröster, Gerhard

    2016-06-01

    The field of flexible electronics has rapidly expanded over the last decades, pioneering novel applications, such as wearable and textile integrated devices, seamless and embedded patch-like systems, soft electronic skins, as well as imperceptible and transient implants. The possibility to revolutionize our daily life with such disruptive appliances has fueled the quest for electronic devices which yield good electrical and mechanical performance and are at the same time light-weight, transparent, conformable, stretchable, and even biodegradable. Flexible metal oxide semiconductor thin-film transistors (TFTs) can fulfill all these requirements and are therefore considered the most promising technology for tomorrow's electronics. This review reflects the establishment of flexible metal oxide semiconductor TFTs, from the development of single devices, large-area circuits, up to entirely integrated systems. First, an introduction on metal oxide semiconductor TFTs is given, where the history of the field is revisited, the TFT configurations and operating principles are presented, and the main issues and technological challenges faced in the area are analyzed. Then, the recent advances achieved for flexible n-type metal oxide semiconductor TFTs manufactured by physical vapor deposition methods and solution-processing techniques are summarized. In particular, the ability of flexible metal oxide semiconductor TFTs to combine low temperature fabrication, high carrier mobility, large frequency operation, extreme mechanical bendability, together with transparency, conformability, stretchability, and water dissolubility is shown. Afterward, a detailed analysis of the most promising metal oxide semiconducting materials developed to realize the state-of-the-art flexible p-type TFTs is given. Next, the recent progresses obtained for flexible metal oxide semiconductor-based electronic circuits, realized with both unipolar and complementary technology, are reported. In particular

  19. A customized metal oxide semiconductor-based gas sensor array for onion quality evaluation: system development and characterization.

    PubMed

    Konduru, Tharun; Rains, Glen C; Li, Changying

    2015-01-12

    A gas sensor array, consisting of seven Metal Oxide Semiconductor (MOS) sensors that are sensitive to a wide range of organic volatile compounds was developed to detect rotten onions during storage. These MOS sensors were enclosed in a specially designed Teflon chamber equipped with a gas delivery system to pump volatiles from the onion samples into the chamber. The electronic circuit mainly comprised a microcontroller, non-volatile memory chip, and trickle-charge real time clock chip, serial communication chip, and parallel LCD panel. User preferences are communicated with the on-board microcontroller through a graphical user interface developed using LabVIEW. The developed gas sensor array was characterized and the discrimination potential was tested by exposing it to three different concentrations of acetone (ketone), acetonitrile (nitrile), ethyl acetate (ester), and ethanol (alcohol). The gas sensor array could differentiate the four chemicals of same concentrations and different concentrations within the chemical with significant difference. Experiment results also showed that the system was able to discriminate two concentrations (196 and 1964 ppm) of methlypropyl sulfide and two concentrations (145 and 1452 ppm) of 2-nonanone, two key volatile compounds emitted by rotten onions. As a proof of concept, the gas sensor array was able to achieve 89% correct classification of sour skin infected onions. The customized low-cost gas sensor array could be a useful tool to detect onion postharvest diseases in storage.

  20. A Customized Metal Oxide Semiconductor-Based Gas Sensor Array for Onion Quality Evaluation: System Development and Characterization

    PubMed Central

    Konduru, Tharun; Rains, Glen C.; Li, Changying

    2015-01-01

    A gas sensor array, consisting of seven Metal Oxide Semiconductor (MOS) sensors that are sensitive to a wide range of organic volatile compounds was developed to detect rotten onions during storage. These MOS sensors were enclosed in a specially designed Teflon chamber equipped with a gas delivery system to pump volatiles from the onion samples into the chamber. The electronic circuit mainly comprised a microcontroller, non-volatile memory chip, and trickle-charge real time clock chip, serial communication chip, and parallel LCD panel. User preferences are communicated with the on-board microcontroller through a graphical user interface developed using LabVIEW. The developed gas sensor array was characterized and the discrimination potential was tested by exposing it to three different concentrations of acetone (ketone), acetonitrile (nitrile), ethyl acetate (ester), and ethanol (alcohol). The gas sensor array could differentiate the four chemicals of same concentrations and different concentrations within the chemical with significant difference. Experiment results also showed that the system was able to discriminate two concentrations (196 and 1964 ppm) of methlypropyl sulfide and two concentrations (145 and 1452 ppm) of 2-nonanone, two key volatile compounds emitted by rotten onions. As a proof of concept, the gas sensor array was able to achieve 89% correct classification of sour skin infected onions. The customized low-cost gas sensor array could be a useful tool to detect onion postharvest diseases in storage. PMID:25587975

  1. Anomalous wear-out phenomena of europium-implanted light emitters based on a metal-oxide-semiconductor structure

    SciTech Connect

    Rebohle, L.; Lehmann, J.; Prucnal, S.; Nazarov, A.; Tyagulskii, I.; Tyagulskii, S.; Kanjilal, A.; Voelskow, M.; Grambole, D.; Skorupa, W.; Helm, M.

    2009-12-15

    The anomalous wear-out phenomena of Eu-implanted metal-oxide-semiconductor devices were investigated. It will be shown that in contrast to other rare earth elements the electroluminescence (EL) intensity of Eu-implanted SiO{sub 2} layers can rise under constant current injection before the known EL quenching will start. Under certain circumstances, this rise may amount up to two orders of magnitude. The EL behavior will be correlated with the microstructural and electrical properties of the devices. Transmission electron microscopy and Rutherford backscattering spectroscopy were applied to trace the development of Eu/Eu oxide clusters and the diffusion of Eu to the interfaces of the gate oxide layer. The hydrogen profile within the SiO{sub 2}-SiON interface region was determined by nuclear reaction analysis. Current-voltage characteristics, EL decay times, and the progression of the voltage and the EL spectrum with increasing charge injection were measured to study charge and trapping phenomena in the oxide layer to reveal details of the EL excitation mechanism. A first qualitative model for the anomalous life time behavior is proposed.

  2. Lattice matched semiconductor growth on crystalline metallic substrates

    SciTech Connect

    Norman, Andrew G; Ptak, Aaron J; McMahon, William E

    2013-11-05

    Methods of fabricating a semiconductor layer or device and said devices are disclosed. The methods include but are not limited to providing a metal or metal alloy substrate having a crystalline surface with a known lattice parameter (a). The methods further include growing a crystalline semiconductor alloy layer on the crystalline substrate surface by coincident site lattice matched epitaxy. The semiconductor layer may be grown without any buffer layer between the alloy and the crystalline surface of the substrate. The semiconductor alloy may be prepared to have a lattice parameter (a') that is related to the lattice parameter (a). The semiconductor alloy may further be prepared to have a selected band gap.

  3. Mesoporous metal and semiconductor nanowires and nanotubes

    NASA Astrophysics Data System (ADS)

    Luo, Hongmei

    Nanowires and nanotubes are central elements in nanoscience and nanotechnology for applications such as nanoelectronic devices, chemical sensors, and high-density data storage. Among various synthesis methods, the template assisted electrodeposition is particularly attractive because it provides an efficient route to fabricate arrays of nanomatenals of desired composition, size, and aspect ratio. Advanced applications need morphological control. Mesoporous materials with uniform and arranged pores with pore diameters between 2 and 50 nm have attracted much attention due to their unique structures and applications. This dissertation presents the fabrication, structure, and property investigation of magnetic, superconducting metal, and semiconductor nanostructures. We will report three-dimensional (3D) macroporous magnetic and superconducting metal films using opal templates, 2D hexagonal and 3D cubic metal nanowire thin films with tunable 3-10 nm wire diameters using mesoporous silica as templates, mesoporous cobalt and nickel films with hexagonal and lamellar structures direct templated by lyotropic liquid crystal phases. Compared with bulk and dense films, the porous magnetic films show higher coercivities. The cobalt nanowire thin films exhibit enhanced coercivities and controllable magnetic anisotropy through tuning the mesostructure and dimension of the nanowires. We will present a novel method, confined-assembly-template assisted (CATA) electrodeposition, by combination of nanoconfinement, supramolecular templating and electrodeposition technique to prepare mesoporous metal and semiconductor nanowires and nanotubes. Mesoporous palladium and cobalt nanowires are obtained by electrodeposition of hexagonal liquid crystal in porous membranes, mesoporous platinum and nickel nanotubes with controlled length are obtained by electrodeposition of lamellar liquid crystal, mesoporous zinc oxide nanowires are obtained by electrodeposition of interfacial SDS surfactant

  4. Metal-Insulator-Semiconductor Nanowire Network Solar Cells.

    PubMed

    Oener, Sebastian Z; van de Groep, Jorik; Macco, Bart; Bronsveld, Paula C P; Kessels, W M M; Polman, Albert; Garnett, Erik C

    2016-06-01

    Metal-insulator-semiconductor (MIS) junctions provide the charge separating properties of Schottky junctions while circumventing the direct and detrimental contact of the metal with the semiconductor. A passivating and tunnel dielectric is used as a separation layer to reduce carrier recombination and remove Fermi level pinning. When applied to solar cells, these junctions result in two main advantages over traditional p-n-junction solar cells: a highly simplified fabrication process and excellent passivation properties and hence high open-circuit voltages. However, one major drawback of metal-insulator-semiconductor solar cells is that a continuous metal layer is needed to form a junction at the surface of the silicon, which decreases the optical transmittance and hence short-circuit current density. The decrease of transmittance with increasing metal coverage, however, can be overcome by nanoscale structures. Nanowire networks exhibit precisely the properties that are required for MIS solar cells: closely spaced and conductive metal wires to induce an inversion layer for homogeneous charge carrier extraction and simultaneously a high optical transparency. We experimentally demonstrate the nanowire MIS concept by using it to make silicon solar cells with a measured energy conversion efficiency of 7% (∼11% after correction), an effective open-circuit voltage (Voc) of 560 mV and estimated short-circuit current density (Jsc) of 33 mA/cm(2). Furthermore, we show that the metal nanowire network can serve additionally as an etch mask to pattern inverted nanopyramids, decreasing the reflectivity substantially from 36% to ∼4%. Our extensive analysis points out a path toward nanowire based MIS solar cells that exhibit both high Voc and Jsc values. PMID:27172429

  5. Metal-Insulator-Semiconductor Nanowire Network Solar Cells.

    PubMed

    Oener, Sebastian Z; van de Groep, Jorik; Macco, Bart; Bronsveld, Paula C P; Kessels, W M M; Polman, Albert; Garnett, Erik C

    2016-06-01

    Metal-insulator-semiconductor (MIS) junctions provide the charge separating properties of Schottky junctions while circumventing the direct and detrimental contact of the metal with the semiconductor. A passivating and tunnel dielectric is used as a separation layer to reduce carrier recombination and remove Fermi level pinning. When applied to solar cells, these junctions result in two main advantages over traditional p-n-junction solar cells: a highly simplified fabrication process and excellent passivation properties and hence high open-circuit voltages. However, one major drawback of metal-insulator-semiconductor solar cells is that a continuous metal layer is needed to form a junction at the surface of the silicon, which decreases the optical transmittance and hence short-circuit current density. The decrease of transmittance with increasing metal coverage, however, can be overcome by nanoscale structures. Nanowire networks exhibit precisely the properties that are required for MIS solar cells: closely spaced and conductive metal wires to induce an inversion layer for homogeneous charge carrier extraction and simultaneously a high optical transparency. We experimentally demonstrate the nanowire MIS concept by using it to make silicon solar cells with a measured energy conversion efficiency of 7% (∼11% after correction), an effective open-circuit voltage (Voc) of 560 mV and estimated short-circuit current density (Jsc) of 33 mA/cm(2). Furthermore, we show that the metal nanowire network can serve additionally as an etch mask to pattern inverted nanopyramids, decreasing the reflectivity substantially from 36% to ∼4%. Our extensive analysis points out a path toward nanowire based MIS solar cells that exhibit both high Voc and Jsc values.

  6. (Plasmonic Metal Core)/(Semiconductor Shell) Nanostructures

    NASA Astrophysics Data System (ADS)

    Fang, Caihong

    Over the past several years, integration of metal nanocrystals that can support localized surface plasmon has been demonstrated as one of the most promising methods to the improvement of the light-harvesting efficiency of semiconductors. Ag and Au nanocrystals have been extensively hybridized with semiconductors by either deposition or anchoring. However, metal nanocrystals tend to aggregate, reshape, detach, or grow into large nanocrystals, leading to a loss of the unique properties seen in the original nanocrystals. Fortunately, core/shell nanostructures, circumventing the aforementioned problems, have been demonstrated to exhibit superior photoactivities. To further improve the light-harvesting applications of (plasmonic metal core)/(semiconductor shell) nanostructures, it is vital to understand the plasmonic and structural evolutions during the preparation processes, design novel hybrid nanostructures, and improve their light-harvesting performances. In this thesis, I therefore studied the plasmonic and structural evolutions during the formation of (Ag core)/(Ag2S shell) nanostructures. Moreover, I also prepared (noble metal core)/(TiO2 shell) nanostructures and investigated their plasmonic properties and photon-harvesting applications. Clear understanding of the sulfidation process can enable fine control of the plasmonic properties as well as the structural composition of Ag/Ag 2S nanomaterials. Therefore, I investigated the plasmonic and structural variations during the sulfidation process of Ag nanocubes both experimentally and numerically. The sulfidation reactions were carried out at both the ensemble and single-particle levels. Electrodynamic simulations were also employed to study the variations of the plasmonic properties and plasmon modes. Both experiment and simulation results revealed that sulfidation initiates at the vertices of Ag nanocubes. Ag nanocubes are then gradually truncated and each nanocube becomes a nanosphere eventually. The cubic

  7. Ferromagnet/semiconductor based spintronic devices

    NASA Astrophysics Data System (ADS)

    Saha, Dipankar

    Spintronics is an emerging field which is great interest for its potential to provide high-speed and low-power novel devices and eventually replace and/or complement conventional silicon-based metal-oxide-semiconductor (MOS) devices. Spin-based optoelectronic devices provide improved laser performance and polarized light sources for secure communication. Spintronics has therefore received a lot of interest with the potential for conventional and novel applications. Spintronics has been investigated both in all-metal and semiconductor based platforms. Spin-based ferromagnet/semiconductor heterojunction devices are particularly attractive compared to all-metal spintronic devices due to the versatility and the long electron spin coherence time in semiconductors. Here we have investigated semiconductor based spintronic devices for logic, memory and communication applications. We have demonstrated electrical injection and detection of spin in a MnAs/GaAs lateral spin valve. A peak magnetoresistance of 3.6% at 10 K and 1.1% at 125 K have been measured in these devices. Spin polarization in semiconductors is usually very small and difficult to detect. We have therefore theoretically designed and experimentally demonstrated a spin-current amplifier to alleviate this problem. A spin polarization of 100% has been measured at 150 K in these devices. We have emphasized the importance of finite sizes of ferromagnetic contact pads in terms of two-dimensional spin-diffusion in lateral spintronic devices, which enhances spin-polarization. We have discovered a new phenomenon observing electrically driven spin-dynamics of paramagnetic impurities. We have demonstrated a spin-capacitor using this novel phenomenon. In this study we have also demonstrated a spin-polarized quantum dot spin-laser which is a fundamental spin-based optoelectronic device. An output circular polarization of 8% and threshold current reduction of 14% have been measured at 200 K. We have also demonstrated

  8. Leakage Current Mechanism of InN-Based Metal-Insulator-Semiconductor Structures with Al2O3 as Dielectric Layers

    NASA Astrophysics Data System (ADS)

    Wang, X.; Zhang, G. Z.; Xu, Y.; Gan, X. W.; Chen, C.; Wang, Z.; Wang, Y.; Wang, J. L.; Wang, T.; Wu, H.; Liu, C.

    2016-01-01

    InN-based metal-insulator-semiconductor (MIS) structures were prepared with Al2O3 as the gate oxides. Surface morphologies of InN films are improved with increasing Mg doping concentrations. At high frequencies, the measured capacitance densities deviate from the real ones with turning frequencies inversely proportional to series resistances. An ultralow leakage current density of 1.35 × 10-9 A/cm2 at 1 V is obtained. Fowler-Nordheim tunneling is the main mechanism of the leakage current at high fields, while Schottky emission dominates at low fields. Capacitance densities shift with different biases, indicating that the InN-based MIS structures can serve as potential candidates for MIS field-effect transistors.

  9. Homostructured ZnO-based metal-oxide-semiconductor field-effect transistors deposited at low temperature by vapor cooling condensation system

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Shun; Lee, Ching-Ting

    2015-11-01

    The vapor cooling condensation system was designed and used to deposit homostructured ZnO-based metal-oxide-semiconductor field-effect transistors (MOSFETs) on sapphire substrates. Owing to the high quality of the deposited, various ZnO films and interfaces, the resulting MOSFETs manifested attractive characteristics, such as the low gate leakage current of 24 nA, the low average interface state density of 2.92 × 1011 cm-2 eV-1, and the complete pinch-off performance. The saturation drain-source current, the maximum transconductance, and the gate voltage swing of the resulting homostructured ZnO-based MOSFETs were 5.64 mA/mm, 1.31 mS/mm, and 3.2 V, respectively.

  10. GaAs metal-oxide-semiconductor based non-volatile flash memory devices with InAs quantum dots as charge storage nodes

    SciTech Connect

    Islam, Sk Masiul Chowdhury, Sisir; Sarkar, Krishnendu; Nagabhushan, B.; Banerji, P.; Chakraborty, S.

    2015-06-24

    Ultra-thin InP passivated GaAs metal-oxide-semiconductor based non-volatile flash memory devices were fabricated using InAs quantum dots (QDs) as charge storing elements by metal organic chemical vapor deposition technique to study the efficacy of the QDs as charge storage elements. The grown QDs were embedded between two high-k dielectric such as HfO{sub 2} and ZrO{sub 2}, which were used for tunneling and control oxide layers, respectively. The size and density of the QDs were found to be 5 nm and 1.8×10{sup 11} cm{sup −2}, respectively. The device with a structure Metal/ZrO{sub 2}/InAs QDs/HfO{sub 2}/GaAs/Metal shows maximum memory window equivalent to 6.87 V. The device also exhibits low leakage current density of the order of 10{sup −6} A/cm{sup 2} and reasonably good charge retention characteristics. The low value of leakage current in the fabricated memory device is attributed to the Coulomb blockade effect influenced by quantum confinement as well as reduction of interface trap states by ultra-thin InP passivation on GaAs prior to HfO{sub 2} deposition.

  11. Electronic states of semiconductor-metal-semiconductor quantum-well structures

    NASA Technical Reports Server (NTRS)

    Huberman, M. L.; Maserjian, J.

    1988-01-01

    Quantum-size effects are calculated in thin layered semiconductor-metal-semiconductor structures using an ideal free-electron model for the metal layer. The results suggest new quantum-well structures having device applications. Structures with sufficiently high-quality interfaces should exhibit effects such as negative differential resistance due to tunneling between allowed states. Similarly, optical detection by intersubband absorption may be possible. Ultrathin metal layers are predicted to behave as high-density dopant sheets.

  12. Origin of the performances degradation of two-dimensional-based metal-oxide-semiconductor field effect transistors in the sub-10 nm regime: A first-principles study

    NASA Astrophysics Data System (ADS)

    Lu, Anh Khoa Augustin; Pourtois, Geoffrey; Agarwal, Tarun; Afzalian, Aryan; Radu, Iuliana P.; Houssa, Michel

    2016-01-01

    The impact of the scaling of the channel length on the performances of metal-oxide-semiconductor field effect transistors, based on two-dimensional (2D) channel materials, is theoretically investigated, using density functional theory combined with the non-equilibrium Green's function method. It is found that the scaling of the channel length below 10 nm leads to strong device performance degradations. Our simulations reveal that this degradation is essentially due to the tunneling current flowing between the source and the drain in these aggressively scaled devices. It is shown that this electron tunneling process is modulated by the effective mass of the 2D channel material, and sets the limit of the scaling in future transistor designs.

  13. Valorization of GaN based metal-organic chemical vapor deposition dust a semiconductor power device industry waste through mechanochemical oxidation and leaching: A sustainable green process.

    PubMed

    Swain, Basudev; Mishra, Chinmayee; Lee, Chan Gi; Park, Kyung-Soo; Lee, Kun-Jae

    2015-07-01

    Dust generated during metal organic vapor deposition (MOCVD) process of GaN based semiconductor power device industry contains significant amounts of gallium and indium. These semiconductor power device industry wastes contain gallium as GaN and Ga0.97N0.9O0.09 is a concern for the environment which can add value through recycling. In the present study, this waste is recycled through mechanochemical oxidation and leaching. For quantitative recovery of gallium, two different mechanochemical oxidation leaching process flow sheets are proposed. In one process, first the Ga0.97N0.9O0.09 of the MOCVD dust is leached at the optimum condition. Subsequently, the leach residue is mechanochemically treated, followed by oxidative annealing and finally re-leached. In the second process, the MOCVD waste dust is mechanochemically treated, followed by oxidative annealing and finally leached. Both of these treatment processes are competitive with each other, appropriate for gallium leaching and treatment of the waste MOCVD dust. Without mechanochemical oxidation, 40.11 and 1.86 w/w% of gallium and Indium are leached using 4M HCl, 100°C and pulp density of 100 kg/m(3,) respectively. After mechanochemical oxidation, both these processes achieved 90 w/w% of gallium and 1.86 w/w% of indium leaching at their optimum condition.

  14. Vibronic states in organic semiconductors based on non-metal naphthalocyanine. Detection of heterocyclic phthalocyanine compounds in a flexible dielectric matrix

    SciTech Connect

    Belogorokhov, I. A.; Tikhonov, E. V.; Dronov, M. A.; Belogorokhova, L. I.; Ryabchikov, Yu. V.; Tomilova, L. G.; Khokhlov, D. R.

    2012-01-15

    The vibronic properties of semiconductor structures based on non-metal naphthalocyanine molecules are studied using IR and Raman spectroscopy methods. New absorption lines in the transmission spectra of such materials are detected and identified. Three transmission lines are observed in the range 2830-3028 cm{sup -1}, which characterize carbon-hydrogen bonds of peripheral molecular groups. Their spectral positions are 2959, 2906, and 2866 cm{sup -1}. It is detected that the phthalocyanine ring can also exhibit its specific vibronic properties in the Raman spectra at 767, 717, and 679 cm{sup -1}. The naphthalocyanine molecule in the organic dielectric matrix of microfibers is described using IR spectroscopy. It is shown that the set of vibrations characterizing the isoindol group, pyrrole ring, naphtha group, and C-H bonds, allows an accurate enough description of the vibronic states of the naphthalocyanine complex in complex heterostructures to be made. The spectral range with fundamental modes, characterizing a naphthalocyanine semiconductor in a heterostructure, is 600-1600 cm{sup -1}. A comparison of the compositions of complex systems with a similar heterostructure containing lutetium diphthalocyanine demonstrated few errors.

  15. SEMICONDUCTOR DEVICES: Improved light extraction in AlGaInP-based LEDs using a self-assembly metal nanomask

    NASA Astrophysics Data System (ADS)

    Wenjing, Jiang; Chen, Xu; Guangdi, Shen; Rong, Fang; Wei, Gao

    2010-06-01

    This paper reports a new method of fabricating AlGaInP-based nanorod light emitting diodes (LEDs) by using self-assembly metal layer nanomasks and inductively coupled plasma. Light-power measurements indicate that the scattering of photons considerably enhances the probability of escaping from the nanorod LEDs. The light-intensity of the nanorod LED is increased by 34% for a thin GaP window layer, and by 17% for an 8 μm GaP window layer. The light-power of the nanorod LED is increased by 25% and 13%, respectively.

  16. Spintronic effects in metallic, semiconductor, metal oxide and metal semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Bratkovsky, A. M.

    2008-02-01

    Spintronics is a rapidly growing field focusing on phenomena and related devices essentially dependent on spin transport. Some of them are already an established part of microelectronics. We review recent theoretical and experimental advances in achieving large spin injection efficiency (polarization of current) and accumulated spin polarization. These include tunnel and giant magnetoresistance, spin-torque and spin-orbit effects on electron transport in various heterostructures. We give a microscopic description of spin tunneling through oxide and modified Schottky barriers between a ferromagnet (FM) and a semiconductor (S). It is shown that in such FM-S junctions electrons with a certain spin projection can be efficiently injected into (or extracted from) S, while electrons with the opposite spin can accumulate in S near the interface. The criterion for efficient injection is opposite to a known Rashba criterion, since the barrier should be rather transparent. In degenerate semiconductors, extraction of spin can proceed at low temperatures. We mention a few novel spin-valve ultrafast devices with small dissipated power: a magnetic sensor, a spin transistor, an amplifier, a frequency multiplier, a square-law detector and a source of polarized radiation. We also discuss effects related to spin-orbital interactions, such as the spin Hall effect (SHE) and a recently predicted positive magnetoresistance accompanying SHE. Some esoteric devices such as 'spinFET', interacting spin logic and spin-based quantum computing are discussed and problems with their realization are highlighted. We demonstrate that the so-called 'ferroelectric tunnel junctions' are unlikely to provide additional functionality because in all realistic situations the ferroelectric barrier would be split into domains by the depolarizing field.

  17. Metal-oxide-semiconductor photocapacitor for sensing surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Khalilzade-Rezaie, Farnood; Peale, Robert E.; Panjwani, Deep; Smith, Christian W.; Nath, Janardan; Lodge, Michael; Ishigami, Masa; Nader, Nima; Vangala, Shiva; Yannuzzi, Mark; Cleary, Justin W.

    2015-09-01

    An electronic detector of surface plasmon polaritons (SPP) is reported. SPPs optically excited on a metal surface using a prism coupler are detected by using a close-coupled metal-oxide-semiconductor capacitor. Semitransparent metal and graphene gates function similarly. We report the dependence of the photoresponse on substrate carrier type, carrier concentration, and back-contact biasing.

  18. Fabrication of porous materials (metal, metal oxide and semiconductor) through an aerosol-assisted route

    NASA Astrophysics Data System (ADS)

    Sohn, Hiesang

    Porous materials have gained attraction owing to their vast applications in catalysts, sensors, energy storage devices, bio-devices and other areas. To date, various porous materials were synthesized through soft and hard templating approaches. However, a general synthesis method for porous non-oxide materials, metal alloys and semiconductors with tunable structure, composition and morphology has not been developed yet. To address this challenge, this thesis presents an aerosol method towards the synthesis of such materials and their applications for catalysis, hydrogen storage, Li-batteries and photo-catalysis. The first part of this thesis presents the synthesis of porous metals, metal oxides, and semiconductors with controlled pore structure, crystalline structure and morphology. In these synthesis processes, metal salts and organic ligands were employed as precursors to create porous metal-carbon frameworks. During the aerosol process, primary metal clusters and nanoparticles were formed, which were coagulated/ aggregated forming the porous particles. Various porous particles, such as those of metals (e.g., Ni, Pt, Co, Fe, and Ni xPt(1-x)), metal oxides (e.g., Fe3O4 and SnO2) and semiconductors (e.g., CdS, CuInS2, CuInS 2x-ZnS(1-x), and CuInS2x-TiO2(1-x)) were synthesized. The morphology, porous structure and crystalline structure of the particles were regulated through both templating and non-templating methods. The second part of this thesis explores the applications of these materials, including propylene hydrogenation and H2 uptake capacity of porous Ni, NiPt alloys and Ni-Pt composites, Li-storage of Fe3O4 and SnO2, photodegradation of CuInS2-based semiconductors. The effects of morphology, compositions, and porous structure on the device performance were systematically investigated. Overall, this dissertation work unveiled a simple synthesis approach for porous particles of metals, metal alloys, metal oxides, and semiconductors with controlled

  19. Thermoelectric Performance Enhancement by Surrounding Crystalline Semiconductors with Metallic Nanoparticles

    NASA Technical Reports Server (NTRS)

    Kim, Hyun-Jung; King, Glen C.; Park, Yeonjoon; Lee, Kunik; Choi, Sang H.

    2011-01-01

    Direct conversion of thermal energy to electricity by thermoelectric (TE) devices may play a key role in future energy production and utilization. However, relatively poor performance of current TE materials has slowed development of new energy conversion applications. Recent reports have shown that the dimensionless Figure of Merit, ZT, for TE devices can be increased beyond the state-of-the-art level by nanoscale structuring of materials to reduce their thermal conductivity. New morphologically designed TE materials have been fabricated at the NASA Langley Research Center, and their characterization is underway. These newly designed materials are based on semiconductor crystal grains whose surfaces are surrounded by metallic nanoparticles. The nanoscale particles are used to tailor the thermal and electrical conduction properties for TE applications by altering the phonon and electron transport pathways. A sample of bismuth telluride decorated with metallic nanoparticles showed less thermal conductivity and twice the electrical conductivity at room temperature as compared to pure Bi2Te3. Apparently, electrons cross easily between semiconductor crystal grains via the intervening metallic nanoparticle bridges, but phonons are scattered at the interfacing gaps. Hence, if the interfacing gap is larger than the mean free path of the phonon, thermal energy transmission from one grain to others is reduced. Here we describe the design and analysis of these new materials that offer substantial improvements in thermoelectric performance.

  20. Growth of metal and semiconductor nanostructures using localized photocatalysts

    SciTech Connect

    Shelnutt, John A.; Wang, Zhongchun; Medforth, Craig J.

    2006-03-08

    Our overall goal has been to understand and develop a light-driven approach to the controlled growth of novel metal and semiconductor nanostructures and nanomaterials. In this photochemical process, bio-inspired porphyrin-based photocatalysts reduce metal salts in aqueous solutions at ambient temperatures when exposed to visible light, providing metal nucleation and growth centers. The photocatalyst molecules are pre-positioned at the nanoscale to control the location of the deposition of metal and therefore the morphology of the nanostructures that are grown. Self-assembly, chemical confinement, and molecular templating are some of the methods we are using for nanoscale positioning of the photocatalyst molecules. When exposed to light, each photocatalyst molecule repeatedly reduces metal ions from solution, leading to deposition near the photocatalyst and ultimately the synthesis of new metallic nanostructures and nanostructured materials. Studies of the photocatalytic growth process and the resulting nanostructures address a number of fundamental biological, chemical, and environmental issues and draw on the combined nanoscience characterization and multi-scale simulation capabilities of the new DOE Center for Integrated Nanotechnologies at Sandia National Laboratories and the University of Georgia. Our main goals are to elucidate the processes involved in the photocatalytic growth of metal nanomaterials and provide the scientific basis for controlled nanosynthesis. The nanomaterials resulting from these studies have applications in nanoelectronics, photonics, sensors, catalysis, and micromechanical systems. Our specific goals for the past three years have been to understand the role of photocatalysis in the synthesis of dendritic metal (Pt, Pd, Au) nanostructures grown from aqueous surfactant solutions under ambient conditions and the synthesis of photocatalytic porphyrin nanostructures (e.g., nanotubes) as templates for fabrication of photo-active metal

  1. The MSFC complementary metal oxide semiconductor (including multilevel interconnect metallization) process handbook

    NASA Technical Reports Server (NTRS)

    Bouldin, D. L.; Eastes, R. W.; Feltner, W. R.; Hollis, B. R.; Routh, D. E.

    1979-01-01

    The fabrication techniques for creation of complementary metal oxide semiconductor integrated circuits at George C. Marshall Space Flight Center are described. Examples of C-MOS integrated circuits manufactured at MSFC are presented with functional descriptions of each. Typical electrical characteristics of both p-channel metal oxide semiconductor and n-channel metal oxide semiconductor discrete devices under given conditions are provided. Procedures design, mask making, packaging, and testing are included.

  2. Hybrid Semiconductor Nanowire-Metallic Yagi-Uda Antennas.

    PubMed

    Ramezani, Mohammad; Casadei, Alberto; Grzela, Grzegorz; Matteini, Federico; Tütüncüoglu, Gözde; Rüffer, Daniel; Fontcuberta i Morral, Anna; Gómez Rivas, Jaime

    2015-08-12

    We demonstrate the directional emission of individual GaAs nanowires by coupling this emission to Yagi-Uda optical antennas. In particular, we have replaced the resonant metallic feed element of the nanoantenna by an individual nanowire and measured with the microscope the photoluminescence of the hybrid structure as a function of the emission angle by imaging the back focal plane of the objective. The precise tuning of the dimensions of the metallic elements of the nanoantenna leads to a strong variation of the directionality of the emission, being able to change this emission from backward to forward. We explain the mechanism leading to this directional emission by finite difference time domain simulations of the scattering efficiency of the antenna elements. These results cast the first step toward the realization of electrically driven optical Yagi-Uda antenna emitters based on semiconductors nanowires.

  3. Note: A disposable x-ray camera based on mass produced complementary metal-oxide-semiconductor sensors and single-board computers

    NASA Astrophysics Data System (ADS)

    Hoidn, Oliver R.; Seidler, Gerald T.

    2015-08-01

    We have integrated mass-produced commercial complementary metal-oxide-semiconductor (CMOS) image sensors and off-the-shelf single-board computers into an x-ray camera platform optimized for acquisition of x-ray spectra and radiographs at energies of 2-6 keV. The CMOS sensor and single-board computer are complemented by custom mounting and interface hardware that can be easily acquired from rapid prototyping services. For single-pixel detection events, i.e., events where the deposited energy from one photon is substantially localized in a single pixel, we establish ˜20% quantum efficiency at 2.6 keV with ˜190 eV resolution and a 100 kHz maximum detection rate. The detector platform's useful intrinsic energy resolution, 5-μm pixel size, ease of use, and obvious potential for parallelization make it a promising candidate for many applications at synchrotron facilities, in laser-heating plasma physics studies, and in laboratory-based x-ray spectrometry.

  4. Three-Dimensional Flexible Complementary Metal-Oxide-Semiconductor Logic Circuits Based On Two-Layer Stacks of Single-Walled Carbon Nanotube Networks.

    PubMed

    Zhao, Yudan; Li, Qunqing; Xiao, Xiaoyang; Li, Guanhong; Jin, Yuanhao; Jiang, Kaili; Wang, Jiaping; Fan, Shoushan

    2016-02-23

    We have proposed and fabricated stable and repeatable, flexible, single-walled carbon nanotube (SWCNT) thin film transistor (TFT) complementary metal-oxide-semiconductor (CMOS) integrated circuits based on a three-dimensional (3D) structure. Two layers of SWCNT-TFT devices were stacked, where one layer served as n-type devices and the other one served as p-type devices. On the basis of this method, it is able to save at least half of the area required to construct an inverter and make large-scale and high-density integrated CMOS circuits easier to design and manufacture. The 3D flexible CMOS inverter gain can be as high as 40, and the total noise margin is more than 95%. Moreover, the input and output voltage of the inverter are exactly matched for cascading. 3D flexible CMOS NOR, NAND logic gates, and 15-stage ring oscillators were fabricated on PI substrates with high performance as well. Stable electrical properties of these circuits can be obtained with bending radii as small as 3.16 mm, which shows that such a 3D structure is a reliable architecture and suitable for carbon nanotube electrical applications in complex flexible and wearable electronic devices. PMID:26768020

  5. Gate-control efficiency and interface state density evaluated from capacitance-frequency-temperature mapping for GaN-based metal-insulator-semiconductor devices

    SciTech Connect

    Shih, Hong-An; Kudo, Masahiro; Suzuki, Toshi-kazu

    2014-11-14

    We present an analysis method for GaN-based metal-insulator-semiconductor (MIS) devices by using capacitance-frequency-temperature (C-f-T) mapping to evaluate the gate-control efficiency and the interface state density, both exhibiting correlations with the linear-region intrinsic transconductance. The effectiveness of the method was exemplified by application to AlN/AlGaN/GaN MIS devices to elucidate the properties of AlN-AlGaN interfaces depending on their formation processes. Using the C-f-T mapping, we extract the gate-bias-dependent activation energy with its derivative giving the gate-control efficiency, from which we evaluate the AlN-AlGaN interface state density through the Lehovec equivalent circuit in the DC limit. It is shown that the gate-control efficiency and the interface state density have correlations with the linear-region intrinsic transconductance, all depending on the interface formation processes. In addition, we give characterization of the AlN-AlGaN interfaces by using X-ray photoelectron spectroscopy, in relation with the results of the analysis.

  6. Note: A disposable x-ray camera based on mass produced complementary metal-oxide-semiconductor sensors and single-board computers

    SciTech Connect

    Hoidn, Oliver R.; Seidler, Gerald T.

    2015-08-15

    We have integrated mass-produced commercial complementary metal-oxide-semiconductor (CMOS) image sensors and off-the-shelf single-board computers into an x-ray camera platform optimized for acquisition of x-ray spectra and radiographs at energies of 2–6 keV. The CMOS sensor and single-board computer are complemented by custom mounting and interface hardware that can be easily acquired from rapid prototyping services. For single-pixel detection events, i.e., events where the deposited energy from one photon is substantially localized in a single pixel, we establish ∼20% quantum efficiency at 2.6 keV with ∼190 eV resolution and a 100 kHz maximum detection rate. The detector platform’s useful intrinsic energy resolution, 5-μm pixel size, ease of use, and obvious potential for parallelization make it a promising candidate for many applications at synchrotron facilities, in laser-heating plasma physics studies, and in laboratory-based x-ray spectrometry.

  7. Highly sensitive optically controlled tunable capacitor and photodetector based on a metal-insulator-semiconductor on silicon-on-insulator substrates

    NASA Astrophysics Data System (ADS)

    Mikhelashvili, V.; Cristea, D.; Meyler, B.; Yofis, S.; Shneider, Y.; Atiya, G.; Cohen-Hyams, T.; Kauffmann, Y.; Kaplan, W. D.; Eisenstein, G.

    2015-01-01

    We describe a new type of optically sensitive tunable capacitor with a wide band response ranging from the ultraviolet (245 nm) to the near infrared (880 nm). It is based on a planar Metal-Oxide-Semiconductor (MOS) structure fabricated on an insulator on silicon substrate where the insulator layer comprises a double layer dielectric stack of SiO2-HfO2. Two operating configurations have been examined, a single diode and a pair of back-to-back connected devices, where either one or both diodes are illuminated. The varactors exhibit, in all cases, very large sensitivities to illumination. Near zero bias, the capacitance dependence on illumination intensity is sub linear and otherwise it is nearly linear. In the back-to-back connected configuration, the reverse biased diode acts as a light tunable resistor whose value affects strongly the capacitance of the second, forward biased, diode and vice versa. The proposed device is superior to other optical varactors in its large sensitivity to illumination in a very broad wavelength range (245 nm-880 nm), the strong capacitance dependence on voltage and the superior current photo responsivity. Above and beyond that structure requires a very simple fabrication process which is CMOS compatible.

  8. Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters

    SciTech Connect

    Lee, Kyu-Tae; Seo, Sungyong; Yong Lee, Jae; Jay Guo, L.

    2014-06-09

    We present transmission visible wavelength filters based on strong interference behaviors in an ultrathin semiconductor material between two metal layers. The proposed devices were fabricated on 2 cm × 2 cm glass substrate, and the transmission characteristics show good agreement with the design. Due to a significantly reduced light propagation phase change associated with the ultrathin semiconductor layer and the compensation in phase shift of light reflecting from the metal surface, the filters show an angle insensitive performance up to ±70°, thus, addressing one of the key challenges facing the previously reported photonic and plasmonic color filters. This principle, described in this paper, can have potential for diverse applications ranging from color display devices to the image sensors.

  9. Integrated photo-responsive metal oxide semiconductor circuit

    NASA Technical Reports Server (NTRS)

    Jhabvala, Murzban D. (Inventor); Dargo, David R. (Inventor); Lyons, John C. (Inventor)

    1987-01-01

    An infrared photoresponsive element (RD) is monolithically integrated into a source follower circuit of a metal oxide semiconductor device by depositing a layer of a lead chalcogenide as a photoresistive element forming an ohmic bridge between two metallization strips serving as electrodes of the circuit. Voltage from the circuit varies in response to illumination of the layer by infrared radiation.

  10. Metal-doped semiconductor nanoparticles and methods of synthesis thereof

    NASA Technical Reports Server (NTRS)

    Ren, Zhifeng (Inventor); Chen, Gang (Inventor); Poudel, Bed (Inventor); Kumar, Shankar (Inventor); Wang, Wenzhong (Inventor); Dresselhaus, Mildred (Inventor)

    2009-01-01

    The present invention generally relates to binary or higher order semiconductor nanoparticles doped with a metallic element, and thermoelectric compositions incorporating such nanoparticles. In one aspect, the present invention provides a thermoelectric composition comprising a plurality of nanoparticles each of which includes an alloy matrix formed of a Group IV element and Group VI element and a metallic dopant distributed within the matrix.

  11. Metal-doped semiconductor nanoparticles and methods of synthesis thereof

    DOEpatents

    Ren, Zhifeng; Chen, Gang; Poudel, Bed; Kumar, Shankar; Wang, Wenzhong; Dresselhaus, Mildred

    2009-09-08

    The present invention generally relates to binary or higher order semiconductor nanoparticles doped with a metallic element, and thermoelectric compositions incorporating such nanoparticles. In one aspect, the present invention provides a thermoelectric composition comprising a plurality of nanoparticles each of which includes an alloy matrix formed of a Group IV element and Group VI element and a metallic dopant distributed within the matrix.

  12. Valence bond cluster studies of alkali metal/semiconductor bonding

    NASA Astrophysics Data System (ADS)

    Tatar, Robert C.; Messmer, Richard P.

    1986-12-01

    We present results of cluster studies of alkali metal/semiconductor bonding. Using the Generalized Valence Bond (GVB) method, we find a remarkable consistency in the behavoir of bonding orbitals for a variety of systems, including: LiH, CLi4, LiH4 and several hypervalent systems, such as SiH3Li2, SiH4Li2. Our results show that the metal-semiconductor bonding in these systems can be understood in terms of a pairing between McAdon-Goddard type metallic bonding orbitals and a set of equivalent orbitals of the non-metallic species. We propose that the results are relevant to the initial stages of alkali overlayer growth on semiconductor surfaces and lead to a simple picture of the bonding including the transition from a non-conducting to a conducting layer. We have considered numerous proposed hypervalent structures in light of the above results and find that they can be understood.

  13. Theory of semiconductor and transition metal alloys

    NASA Astrophysics Data System (ADS)

    Zunger, Alex

    1997-03-01

    There is a lot of talk about computer-aided discoveries/design of new materials, but the simple fact is that even limiting oneself to materials made of just two elements, (e.g., Cu-Au or Si-Ge), and to a substitutional system, there can exist as many as 2^N configurations that include compounds, alloys, superlattices, and impurities. Indeed, even for modest number of sites N, this is an astronomical number. Thus, the conventional energy minimization approach (e.g., first-principles pseudopotentials) for selecting the most stable crystal structure for A_qBq is hopeless if one considers the full 2^N space configurations of A, B on a lattice of N points. Molecular-dynamics is of no help, since it does not explore effectively the space of lattice configurations. Thus, contemporary energy minimization approaches use instead the method of ``rounding-up the usual suspects'': selecting the lowest energy from only a small number of well-known candidate configurations. The potential for missing new and important structures is obviously large. This talk gives an outline of the solution. It addresses the questions of (i) finding the lowest energy configuration of substitutional systems, (ii) calculating their composition-temperature phase diagram, and (iii) their finite-temperature thermodynamic properties, using the first-principles local density approximation (LDA). Mapping of the LDA energies of only 10-20 A_qBq compounds onto an Ising-like ``cluster-expansion'' enables use of lattice statistical mechanics techniques that elegantly solve the above problems. This extends the utility of the LDA from simple, perfectly-ordered compounds to truly complex structures, beyond the reach of direct LDA calculations. I will illustrate the method for semiconductor systems and transition-metal intermetallic systems, showing how previously unsuspected structures and materials are predicted, and how one can calculate free energies, short range-order and phase-diagrams of alloys. See

  14. Effect of Remote Oxygen Scavenging on Electrical Properties of Ge-Based Metal-Oxide-Semiconductor Capacitors

    NASA Astrophysics Data System (ADS)

    Fadida, Sivan; Nyns, Laura; Van Elshocht, Sven; Eizenberg, Moshe

    2016-08-01

    Remote oxygen scavenging has been studied in a metal/high-k dielectric/GeO2/Ge stack, where a thin Ti layer inserted into the metal/high-k dielectric interface serves as the scavenger. First, we established that remote oxygen scavenging indeed occurs specifically in the studied HfO2/Al2O3/GeO2/Ge stack. It was also established that the source for oxygen is decomposition of the GeO2 layer. Then, the effect of remote oxygen scavenging of the GeO2 layer on the electrical characteristics of the metal/oxide/Ge capacitors was investigated. The electrical properties were studied in comparison with identical gate stacks with a Pt electrode, before and after annealing. Although a decrease in effective oxide thickness was demonstrated as a result of this process, clear degradation of the interface electrical quality was observed after scavenging. Initiation of the scavenging process was witnessed upon deposition of Ti at room temperature, emphasizing that this process could not be controlled.

  15. Spin-dependent transport properties of a GaMnAs-based vertical spin metal-oxide-semiconductor field-effect transistor structure

    SciTech Connect

    Kanaki, Toshiki Asahara, Hirokatsu; Ohya, Shinobu Tanaka, Masaaki

    2015-12-14

    We fabricate a vertical spin metal-oxide-semiconductor field-effect transistor (spin-MOSFET) structure, which is composed of an epitaxial single-crystal heterostructure with a ferromagnetic-semiconductor GaMnAs source/drain, and investigate its spin-dependent transport properties. We modulate the drain-source current I{sub DS} by ∼±0.5% with a gate-source voltage of ±10.8 V and also modulate I{sub DS} by up to 60% with changing the magnetization configuration of the GaMnAs source/drain at 3.5 K. The magnetoresistance ratio is more than two orders of magnitude higher than that obtained in the previous studies on spin MOSFETs. Our result shows that a vertical structure is one of the hopeful candidates for spin MOSFET when the device size is reduced to a sub-micron or nanometer scale.

  16. Valorization of GaN based metal-organic chemical vapor deposition dust a semiconductor power device industry waste through mechanochemical oxidation and leaching: A sustainable green process

    SciTech Connect

    Swain, Basudev; Mishra, Chinmayee; Lee, Chan Gi; Park, Kyung-Soo; Lee, Kun-Jae

    2015-07-15

    Dust generated during metal organic vapor deposition (MOCVD) process of GaN based semiconductor power device industry contains significant amounts of gallium and indium. These semiconductor power device industry wastes contain gallium as GaN and Ga{sub 0.97}N{sub 0.9}O{sub 0.09} is a concern for the environment which can add value through recycling. In the present study, this waste is recycled through mechanochemical oxidation and leaching. For quantitative recovery of gallium, two different mechanochemical oxidation leaching process flow sheets are proposed. In one process, first the Ga{sub 0.97}N{sub 0.9}O{sub 0.09} of the MOCVD dust is leached at the optimum condition. Subsequently, the leach residue is mechanochemically treated, followed by oxidative annealing and finally re-leached. In the second process, the MOCVD waste dust is mechanochemically treated, followed by oxidative annealing and finally leached. Both of these treatment processes are competitive with each other, appropriate for gallium leaching and treatment of the waste MOCVD dust. Without mechanochemical oxidation, 40.11 and 1.86 w/w% of gallium and Indium are leached using 4 M HCl, 100 °C and pulp density of 100 kg/m{sup 3,} respectively. After mechanochemical oxidation, both these processes achieved 90 w/w% of gallium and 1.86 w/w% of indium leaching at their optimum condition. - Highlights: • Waste MOCVD dust is treated through mechanochemical leaching. • GaN is hardly leached, and converted to NaGaO{sub 2} through ball milling and annealing. • Process for gallium recovery from waste MOCVD dust has been developed. • Thermal analysis and phase properties of GaN to Ga{sub 2}O{sub 3} and GaN to NaGaO{sub 2} is revealed. • Solid-state chemistry involved in this process is reported.

  17. Multilayers of zinc-blende half-metals with semiconductors

    NASA Astrophysics Data System (ADS)

    Mavropoulos, Ph; Galanakis, I.; Dederichs, P. H.

    2004-06-01

    We report on first-principles calculations for multilayers of zinc-blende half-metallic ferromagnets CrAs and CrSb with III-V and II-VI semiconductors, in the [001] orientation. We examine the ideal and tetragonalized structures, as well as the case of an intermixed interface. We find that, as a rule, half-metallicity can be conserved throughout the heterostructures, provided that the character of the local coordination and bonding is not disturbed. We describe a mechanism operative at the interfaces with semiconductors that can also give a non-integer spin moment per interface transition atom, and derive a simple rule for evaluating it.

  18. Noble-metal-free plasmonic photocatalyst: hydrogen doped semiconductors

    PubMed Central

    Ma, Xiangchao; Dai, Ying; Yu, Lin; Huang, Baibiao

    2014-01-01

    The unique capacity of localized surface plasmon resonance (LSPR) offers a new opportunity to overcome the limited efficiency of semiconductor photocatalyst. Here we unravel that LSPR, which usually occurs in noble metal nanoparticles, can be realized by hydrogen doping in noble-metal-free semiconductor using TiO2 as a model photocatalyst. Moreover, its LSPR is located in infrared region, which supplements that of noble metal whose LSPR is generally in the visible region, making it possible to extend the light response of photocatalyst to infrared region. The near field enhancement is shown to be comparable with that of noble-metal nanoparticles, indicating that highly enhanced light absorption rate can be expected. The present work can provide a key guideline for the creation of highly efficient noble-metal-free plasmonic photocatalysts and have a much wider impact in infrared bioimaging and spectroscopy where infrared LSPR is essential. PMID:24496400

  19. Modeling of Metal-Ferroelectric-Semiconductor Field Effect Transistors

    NASA Technical Reports Server (NTRS)

    Duen Ho, Fat; Macleod, Todd C.

    1998-01-01

    The characteristics for a MFSFET (metal-ferroelectric-semiconductor field effect transistor) is very different than a conventional MOSFET and must be modeled differently. The drain current has a hysteresis shape with respect to the gate voltage. The position along the hysteresis curve is dependent on the last positive or negative polling of the ferroelectric material. The drain current also has a logarithmic decay after the last polling. A model has been developed to describe the MFSFET drain current for both gate voltage on and gate voltage off conditions. This model takes into account the hysteresis nature of the MFSFET and the time dependent decay. The model is based on the shape of the Fermi-Dirac function which has been modified to describe the MFSFET's drain current. This is different from the model proposed by Chen et. al. and that by Wu.

  20. A spectroscopic method for the evaluation of surface passivation treatments on metal-oxide-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Walsh, Lee A.; Hurley, Paul K.; Lin, Jun; Cockayne, Eric; O'Regan, T. P.; Woicik, Joseph C.; Hughes, Greg

    2014-05-01

    Combined hard x-ray photoelectron spectroscopy (HAXPES) and electrical characterisation measurements have been shown to provide complementary information on the electrical performance of Si and GaAs based metal-oxide-semiconductor (MOS) structures. The results obtained indicate that surface potential changes at the semiconductor/dielectric interface due to the presence of different work function metals can be detected from HAXPES measurements. Changes in the semiconductor band bending at zero gate voltage and the flat band voltage values derived from C-V measurements are in agreement with the semiconductor core level shifts measured from the HAXPES spectra. These results highlight the potential application of this measurement approach in the evaluation of the efficacy of surface passivation treatments: HAXPES—hard x-ray photoelectron spectroscopy; C-V—capacitance voltage; Dit—interface state density; BE—binding energy, at reducing defect states densities in MOS structures.

  1. Absorption properties of metal-semiconductor hybrid nanoparticles.

    PubMed

    Shaviv, Ehud; Schubert, Olaf; Alves-Santos, Marcelo; Goldoni, Guido; Di Felice, Rosa; Vallée, Fabrice; Del Fatti, Natalia; Banin, Uri; Sönnichsen, Carsten

    2011-06-28

    The optical response of hybrid metal-semiconductor nanoparticles exhibits different behaviors due to the proximity between the disparate materials. For some hybrid systems, such as CdS-Au matchstick-shaped hybrids, the particles essentially retain the optical properties of their original components, with minor changes. Other systems, such as CdSe-Au dumbbell-shaped nanoparticles, exhibit significant change in the optical properties due to strong coupling between the two materials. Here, we study the absorption of these hybrids by comparing experimental results with simulations using the discrete dipole approximation method (DDA) employing dielectric functions of the bare components as inputs. For CdS-Au nanoparticles, the DDA simulation provides insights on the gold tip shape and its interface with the semiconductor, information that is difficult to acquire by experimental means alone. Furthermore, the qualitative agreement between DDA simulations and experimental data for CdS-Au implies that most effects influencing the absorption of this hybrid system are well described by local dielectric functions obtained separately for bare gold and CdS nanoparticles. For dumbbell shaped CdSe-Au, we find a shortcoming of the electrodynamic model, as it does not predict the "washing out" of the optical features of the semiconductor and the metal observed experimentally. The difference between experiment and theory is ascribed to strong interaction of the metal and semiconductor excitations, which spectrally overlap in the CdSe case. The present study exemplifies the employment of theoretical approaches used to describe the optical properties of semiconductors and metal nanoparticles, to achieve better understanding of the behavior of metal-semiconductor hybrid nanoparticles.

  2. Ultrafast photoinduced charge separation in metal-semiconductor nanohybrids.

    PubMed

    Mongin, Denis; Shaviv, Ehud; Maioli, Paolo; Crut, Aurélien; Banin, Uri; Del Fatti, Natalia; Vallée, Fabrice

    2012-08-28

    Hybrid nano-objects formed by two or more disparate materials are among the most promising and versatile nanosystems. A key parameter in their properties is interaction between their components. In this context we have investigated ultrafast charge separation in semiconductor-metal nanohybrids using a model system of gold-tipped CdS nanorods in a matchstick architecture. Experiments are performed using an optical time-resolved pump-probe technique, exciting either the semiconductor or the metal component of the particles, and probing the light-induced change of their optical response. Electron-hole pairs photoexcited in the semiconductor part of the nanohybrids are shown to undergo rapid charge separation with the electron transferred to the metal part on a sub-20 fs time scale. This ultrafast gold charging leads to a transient red-shift and broadening of the metal surface plasmon resonance, in agreement with results for free clusters but in contrast to observation for static charging of gold nanoparticles in liquid environments. Quantitative comparison with a theoretical model is in excellent agreement with the experimental results, confirming photoexcitation of one electron-hole pair per nanohybrid followed by ultrafast charge separation. The results also point to the utilization of such metal-semiconductor nanohybrids in light-harvesting applications and in photocatalysis. PMID:22792998

  3. Trapping in GaN-based metal-insulator-semiconductor transistors: Role of high drain bias and hot electrons

    SciTech Connect

    Meneghini, M. Bisi, D.; Meneghesso, G.; Zanoni, E.

    2014-04-07

    This paper describes an extensive analysis of the role of off-state and semi-on state bias in inducing the trapping in GaN-based power High Electron Mobility Transistors. The study is based on combined pulsed characterization and on-resistance transient measurements. We demonstrate that—by changing the quiescent bias point from the off-state to the semi-on state—it is possible to separately analyze two relevant trapping mechanisms: (i) the trapping of electrons in the gate-drain access region, activated by the exposure to high drain bias in the off-state; (ii) the trapping of hot-electrons within the AlGaN barrier or the gate insulator, which occurs when the devices are operated in the semi-on state. The dependence of these two mechanisms on the bias conditions and on temperature, and the properties (activation energy and cross section) of the related traps are described in the text.

  4. Nanodiamond-based nanostructures for coupling nitrogen-vacancy centres to metal nanoparticles and semiconductor quantum dots

    PubMed Central

    Gong, Jianxiao; Steinsultz, Nat; Ouyang, Min

    2016-01-01

    The ability to control the interaction between nitrogen-vacancy centres in diamond and photonic and/or broadband plasmonic nanostructures is crucial for the development of solid-state quantum devices with optimum performance. However, existing methods typically employ top-down fabrication, which restrict scalable and feasible manipulation of nitrogen-vacancy centres. Here, we develop a general bottom-up approach to fabricate an emerging class of freestanding nanodiamond-based hybrid nanostructures with external functional units of either plasmonic nanoparticles or excitonic quantum dots. Precise control of the structural parameters (including size, composition, coverage and spacing of the external functional units) is achieved, representing a pre-requisite for exploring the underlying physics. Fine tuning of the emission characteristics through structural regulation is demonstrated by performing single-particle optical studies. This study opens a rich toolbox to tailor properties of quantum emitters, which can facilitate design guidelines for devices based on nitrogen-vacancy centres that use these freestanding hybrid nanostructures as building blocks. PMID:27273426

  5. Nanodiamond-based nanostructures for coupling nitrogen-vacancy centres to metal nanoparticles and semiconductor quantum dots

    DOE PAGESBeta

    Gong, Jianxiao; Steinsultz, Nat; Ouyang, Min

    2016-06-08

    The ability to control the interaction between nitrogen-vacancy centres in diamond and photonic and/or broadband plasmonic nanostructures is crucial for the development of solid-state quantum devices with optimum performance. However, existing methods typically employ top-down fabrication, which restrict scalable and feasible manipulation of nitrogen-vacancy centres. Here, we develop a general bottom-up approach to fabricate an emerging class of freestanding nanodiamond-based hybrid nanostructures with external functional units of either plasmonic nanoparticles or excitonic quantum dots. Precise control of the structural parameters ( including size, composition, coverage and spacing of the external functional units) is achieved, representing a pre-requisite for exploring themore » underlying physics. Fine tuning of the emission characteristics through structural regulation is demonstrated by performing single-particle optical studies. Lastly, this study opens a rich toolbox to tailor properties of quantum emitters, which can facilitate design guidelines for devices based on nitrogenvacancy centres that use these freestanding hybrid nanostructures as building blocks.« less

  6. Nanodiamond-based nanostructures for coupling nitrogen-vacancy centres to metal nanoparticles and semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Gong, Jianxiao; Steinsultz, Nat; Ouyang, Min

    2016-06-01

    The ability to control the interaction between nitrogen-vacancy centres in diamond and photonic and/or broadband plasmonic nanostructures is crucial for the development of solid-state quantum devices with optimum performance. However, existing methods typically employ top-down fabrication, which restrict scalable and feasible manipulation of nitrogen-vacancy centres. Here, we develop a general bottom-up approach to fabricate an emerging class of freestanding nanodiamond-based hybrid nanostructures with external functional units of either plasmonic nanoparticles or excitonic quantum dots. Precise control of the structural parameters (including size, composition, coverage and spacing of the external functional units) is achieved, representing a pre-requisite for exploring the underlying physics. Fine tuning of the emission characteristics through structural regulation is demonstrated by performing single-particle optical studies. This study opens a rich toolbox to tailor properties of quantum emitters, which can facilitate design guidelines for devices based on nitrogen-vacancy centres that use these freestanding hybrid nanostructures as building blocks.

  7. Nanodiamond-based nanostructures for coupling nitrogen-vacancy centres to metal nanoparticles and semiconductor quantum dots.

    PubMed

    Gong, Jianxiao; Steinsultz, Nat; Ouyang, Min

    2016-06-08

    The ability to control the interaction between nitrogen-vacancy centres in diamond and photonic and/or broadband plasmonic nanostructures is crucial for the development of solid-state quantum devices with optimum performance. However, existing methods typically employ top-down fabrication, which restrict scalable and feasible manipulation of nitrogen-vacancy centres. Here, we develop a general bottom-up approach to fabricate an emerging class of freestanding nanodiamond-based hybrid nanostructures with external functional units of either plasmonic nanoparticles or excitonic quantum dots. Precise control of the structural parameters (including size, composition, coverage and spacing of the external functional units) is achieved, representing a pre-requisite for exploring the underlying physics. Fine tuning of the emission characteristics through structural regulation is demonstrated by performing single-particle optical studies. This study opens a rich toolbox to tailor properties of quantum emitters, which can facilitate design guidelines for devices based on nitrogen-vacancy centres that use these freestanding hybrid nanostructures as building blocks.

  8. Metal/Semiconductor hybrid nanostructures for plasmon-enhanced applications.

    PubMed

    Jiang, Ruibin; Li, Benxia; Fang, Caihong; Wang, Jianfang

    2014-08-20

    Hybrid nanostructures composed of semiconductor and plasmonic metal components are receiving extensive attention. They display extraordinary optical characteristics that are derived from the simultaneous existence and close conjunction of localized surface plasmon resonance and semiconduction, as well as the synergistic interactions between the two components. They have been widely studied for photocatalysis, plasmon-enhanced spectroscopy, biotechnology, and solar cells. In this review, the developments in the field of (plasmonic metal)/semiconductor hybrid nanostructures are comprehensively described. The preparation of the hybrid nanostructures is first presented according to the semiconductor type, as well as the nanostructure morphology. The plasmonic properties and the enabled applications of the hybrid nanostructures are then elucidated. Lastly, possible future research in this burgeoning field is discussed.

  9. Ferromagnetic Resonance Spin Pumping and Electrical Spin Injection in Silicon-Based Metal-Oxide-Semiconductor Heterostructures

    NASA Astrophysics Data System (ADS)

    Pu, Y.; Odenthal, P. M.; Adur, R.; Beardsley, J.; Swartz, A. G.; Pelekhov, D. V.; Flatté, M. E.; Kawakami, R. K.; Pelz, J.; Hammel, P. C.; Johnston-Halperin, E.

    2015-12-01

    We present the measurement of ferromagnetic resonance (FMR-)driven spin pumping and three-terminal electrical spin injection within the same silicon-based device. Both effects manifest in a dc spin accumulation voltage Vs that is suppressed as an applied field is rotated to the out-of-plane direction, i.e., the oblique Hanle geometry. Comparison of Vs between these two spin injection mechanisms reveals an anomalously strong suppression of FMR-driven spin pumping with increasing out-of-plane field Happz . We propose that the presence of the large ac component to the spin current generated by the spin pumping approach, expected to exceed the dc value by 2 orders of magnitude, is the origin of this discrepancy through its influence on the spin dynamics at the oxide-silicon interface. This convolution, wherein the dynamics of both the injector and the interface play a significant role in the spin accumulation, represents a new regime for spin injection that is not well described by existing models of either FMR-driven spin pumping or electrical spin injection.

  10. High-temperature Complementary Metal Oxide Semiconductors (CMOS)

    NASA Technical Reports Server (NTRS)

    Mcbrayer, J. D.

    1981-01-01

    The results of an investigation into the possibility of using complementary metal oxide semiconductor (CMOS) technology for high temperature electronics are presented. A CMOS test chip was specifically developed as the test bed. This test chip incorporates CMOS transistors that have no gate protection diodes; these diodes are the major cause of leakage in commercial devices.

  11. Abrupt Depletion Layer Approximation for the Metal Insulator Semiconductor Diode.

    ERIC Educational Resources Information Center

    Jones, Kenneth

    1979-01-01

    Determines the excess surface change carrier density, surface potential, and relative capacitance of a metal insulator semiconductor diode as a function of the gate voltage, using the precise questions and the equations derived with the abrupt depletion layer approximation. (Author/GA)

  12. Different effects of electronic excitation on metals and semiconductors

    NASA Astrophysics Data System (ADS)

    Yan, Gai-Qin; Cheng, Xin-Lu; Zhang, Hong; Zhu, Zhi-Yang; Ren, Da-Hua

    2016-06-01

    We study the electronic excitation effect upon ultrafast and intense laser irradiation on the stability of target materials, using density functional perturbation theory. The target materials include metals (Li, Na, Mg, Al, K, W, Au), Bi as a semimetal, and Si as a semiconductor. We found that the electronic excitation had different effects on the two distinct materials. For metals, the electronic pressure induces an increase in the shear modulus and presents a negative effect on the phonon entropy, which increases the lattice vibration frequency and melting temperature, leading to a higher stability for the close-packed structure (Al, Au, Mg). Conversely, the electronic pressure induces a decreasing trend in all these quantities, leading to a lower degree of stability and even a structural destabilization in the case of bcc-structured metals (W, Na, K, and Li). For semimetals and semiconductors, the internal pressure induces a completely opposite behavior with respect to close-packed structure metals. This can lead to structural destabilization for semimetals and even collapse for semiconductors. Finally, a shift of the Raman and infrared active modes is revealed for semimetals and semiconductors.

  13. Dedicated optoelectronic stochastic parallel processor for real-time image processing: motion-detection demonstration and design of a hybrid complementary-metal-oxide semiconductor- self-electro-optic-device-based prototype.

    PubMed

    Cassinelli, A; Chavel, P; Desmulliez, M P

    2001-12-10

    We report experimental results and performance analysis of a dedicated optoelectronic processor that implements stochastic optimization-based image-processing tasks in real time. We first show experimental results using a proof-of-principle-prototype demonstrator based on standard silicon-complementary-metal-oxide-semiconductor (CMOS) technology and liquid-crystal spatial light modulators. We then elaborate on the advantages of using a hybrid CMOS-self-electro-optic-device-based smart-pixel array to monolithically integrate photodetectors and modulators on the same chip, providing compact, high-bandwidth intrachip optoelectronic interconnects. We have modeled the operation of the monolithic processor, clearly showing system-performance improvement.

  14. High-temperature MEMS Heater Platforms: Long-term Performance of Metal and Semiconductor Heater Materials

    PubMed Central

    Spannhake, Jan; Schulz, Olaf; Helwig, Andreas; Krenkow, Angelika; Müller, Gerhard; Doll, Theodor

    2006-01-01

    Micromachined thermal heater platforms offer low electrical power consumption and high modulation speed, i.e. properties which are advantageous for realizing non-dispersive infrared (NDIR) gas- and liquid monitoring systems. In this paper, we report on investigations on silicon-on-insulator (SOI) based infrared (IR) emitter devices heated by employing different kinds of metallic and semiconductor heater materials. Our results clearly reveal the superior high-temperature performance of semiconductor over metallic heater materials. Long-term stable emitter operation in the vicinity of 1300 K could be attained using heavily antimony-doped tin dioxide (SnO2:Sb) heater elements.

  15. Asymmetrically contacted germanium photodiode using a metal-interlayer-semiconductor-metal structure for extremely large dark current suppression.

    PubMed

    Zang, Hwan-Jun; Kim, Gwang-Sik; Park, Gil-Jae; Choi, Yong-Soo; Yu, Hyun-Yong

    2016-08-15

    In this study, we proposed germanium (Ge) metal-interlayer-semiconductor-metal (MISM) photodiodes (PD), with an anode of a metal-interlayer-semiconductor (MIS) contact and a cathode of a metal-semiconductor (MS) contact, to efficiently suppress the dark current of Ge PD. We selected titanium dioxide (TiO2) as an interlayer material for the MIS contact, due to its large valence band offset and negative conduction band offset to Ge. We significantly suppress the dark current of Ge PD by introducing the MISM structure with a TiO2 interlayer, as this enhances the hole Schottky barrier height, and thus acts as a large barrier for holes. In addition, it collects photo-generated carriers without degradation, due to its negative conduction band offset to Ge. This reduces the dark current of Ge MISM PDs by ×8000 for 7-nm-thick TiO2 interlayer, while its photo current is still comparable to that of Ge metal-semiconductor-metal (MSM) PDs. Furthermore, the proposed Ge PD shows ×6,600 improvement of the normalized photo-to-dark-current ratio (NPDR) at a wavelength of 1.55 μm. The proposed Ge MISM PD shows considerable promise for low power and high sensitivity Ge-based optoelectronic applications. PMID:27519063

  16. Metal Insulator Semiconductor Structures on Gallium Arsenide.

    NASA Astrophysics Data System (ADS)

    Connor, Sean Denis

    Available from UMI in association with The British Library. The compound semiconductor gallium arsenide and its associated aluminium alloys have been the subject of intensive research in recent years. These materials offer the advantage of high electron mobilities coupled with the ability to be 'barrier engineered' leading to high injection efficiencies in bipolar devices. From a technological viewpoint however these materials are difficult to work with and device realisation is a major problem. Both thermal and anodic oxidation of these materials fail to produce a dielectric of sufficient quality for device applications and as a result devices tend to be complex non planar, mesa structures. A technique is proposed whereby the electrical interface is separated from the dielectric by means of a thin layer of AlGaAs, carrier confinement in the active GaAs region being maintained by the potential barriers to holes and electrons formed by the GaAs-AlGaAs junction. The integrity of these barriers is maintained by the provision of a suitable 'capping' dielectric. The electrical characteristics of various dielectric systems on GaAs have been investigated by means of current -voltage, capacitance-voltage and electronic breakdown measurements. Transport mechanisms for leakage current through these systems are identified and the interface properties (viz Fermi level pinning etc.) assessed by means of a direct comparison between experimental capacitance-voltage curves and theoretical data obtained from classical theory. As a technique for producing a convenient, in house 'capping' dielectric with good electrical and mechanical properties, the plasma anodisation of deposited aluminium films has been investigated. The anodisation parameters have been optimised for oxidation of these films in a microwave sustained oxygen plasma to give alumina films of around 500 A. A qualitative model for the anodisation process, involving linear and parabolic growth kinetics is proposed and

  17. Semiconductor-based optical refrigerator

    DOEpatents

    Epstein, Richard I.; Edwards, Bradley C.; Sheik-Bahae, Mansoor

    2002-01-01

    Optical refrigerators using semiconductor material as a cooling medium, with layers of material in close proximity to the cooling medium that carries away heat from the cooling material and preventing radiation trapping. In addition to the use of semiconducting material, the invention can be used with ytterbium-doped glass optical refrigerators.

  18. Metal Semiconductor Heterostructures for Photocatalytic Conversion of Light Energy.

    PubMed

    Dutta, Sumit Kumar; Mehetor, Shyamal Kumar; Pradhan, Narayan

    2015-03-19

    For fast separation of the photogenerated charge carriers, metal semiconductor heterostructures have emerged as one of the leading materials in recent years. Among these, metal Au coupled with low bandgap semiconductors remain as ideal materials where both can absorb the solar light in the visible region. It is also established that on excitation, the plasmonic state of gold interacts with excited state of semiconductor and helps for the delocalization of the photogenerated electrons. Focusing these materials where electron transfer preferably occurs from semiconductor to metal Au on excitation, in this Perspective, we report the latest developments in the synthetic chemistry in designing such nano heterostructures and discuss their photocatalytic activities in organic dye degradation/reduction and/or photocatalytic water splitting for generation of hydrogen. Among these, materials such as Au-CZTS, Au-SnS, Au-Bi2S3, Au-ZnSe, and so forth are emphasized, and their formation chemistry as well as their photocatalytic activities are discussed in this Perspective. PMID:26262849

  19. Metal-insulator transition in films of doped semiconductor nanocrystals.

    PubMed

    Chen, Ting; Reich, K V; Kramer, Nicolaas J; Fu, Han; Kortshagen, Uwe R; Shklovskii, B I

    2016-03-01

    To fully deploy the potential of semiconductor nanocrystal films as low-cost electronic materials, a better understanding of the amount of dopants required to make their conductivity metallic is needed. In bulk semiconductors, the critical concentration of electrons at the metal-insulator transition is described by the Mott criterion. Here, we theoretically derive the critical concentration nc for films of heavily doped nanocrystals devoid of ligands at their surface and in direct contact with each other. In the accompanying experiments, we investigate the conduction mechanism in films of phosphorus-doped, ligand-free silicon nanocrystals. At the largest electron concentration achieved in our samples, which is half the predicted nc, we find that the localization length of hopping electrons is close to three times the nanocrystals diameter, indicating that the film approaches the metal-insulator transition.

  20. SEM evaluation of metallization on semiconductors. [Scanning Electron Microscope

    NASA Technical Reports Server (NTRS)

    Fresh, D. L.; Adolphsen, J. W.

    1974-01-01

    A test method for the evaluation of metallization on semiconductors is presented and discussed. The method has been prepared in MIL-STD format for submittal as a proposed addition to MIL-STD-883. It is applicable to discrete devices and to integrated circuits and specifically addresses batch-process oriented defects. Quantitative accept/reject criteria are given for contact windows, other oxide steps, and general interconnecting metallization. Figures are provided that illustrate typical types of defects. Apparatus specifications, sampling plans, and specimen preparation and examination requirements are described. Procedures for glassivated devices and for multi-metal interconnection systems are included.

  1. Cosmic Ray Measurements by Scintillators with Metal Resistor Semiconductor Avalanche Photo Diodes

    ERIC Educational Resources Information Center

    Blanco, Francesco; La Rocca, Paola; Riggi, Francesco; Akindinov, Alexandre; Mal'kevich, Dmitry

    2008-01-01

    An educational set-up for cosmic ray physics experiments is described. The detector is based on scintillator tiles with a readout through metal resistor semiconductor (MRS) avalanche photo diode (APD) arrays. Typical measurements of the cosmic angular distribution at sea level and a study of the East-West asymmetry obtained by such a device are…

  2. Effect of nitrogen incorporation into Al-based gate insulators in AlON/AlGaN/GaN metal-oxide-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Asahara, Ryohei; Nozaki, Mikito; Yamada, Takahiro; Ito, Joyo; Nakazawa, Satoshi; Ishida, Masahiro; Ueda, Tetsuzo; Yoshigoe, Akitaka; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2016-10-01

    The superior physical and electrical properties of aluminum oxynitride (AlON) gate dielectrics on AlGaN/GaN substrates in terms of thermal stability, reliability, and interface quality were demonstrated by direct AlON deposition and subsequent annealing. Nitrogen incorporation into alumina was proven to be beneficial both for suppressing intermixing at the insulator/AlGaN interface and reducing the number of electrical defects in Al2O3 films. Consequently, we achieved high-quality AlON/AlGaN/GaN metal-oxide-semiconductor capacitors with improved stability against charge injection and a reduced interface state density as low as 1.2 × 1011 cm-2 eV-1. The impact of nitrogen incorporation into the insulator will be discussed on the basis of experimental findings.

  3. P-Channel InGaN/GaN heterostructure metal-oxide-semiconductor field effect transistor based on polarization-induced two-dimensional hole gas.

    PubMed

    Zhang, Kexiong; Sumiya, Masatomo; Liao, Meiyong; Koide, Yasuo; Sang, Liwen

    2016-01-01

    The concept of p-channel InGaN/GaN heterostructure field effect transistor (FET) using a two-dimensional hole gas (2DHG) induced by polarization effect is demonstrated. The existence of 2DHG near the lower interface of InGaN/GaN heterostructure is verified by theoretical simulation and capacitance-voltage profiling. The metal-oxide-semiconductor FET (MOSFET) with Al2O3 gate dielectric shows a drain-source current density of 0.51 mA/mm at the gate voltage of -2 V and drain bias of -15 V, an ON/OFF ratio of two orders of magnitude and effective hole mobility of 10 cm(2)/Vs at room temperature. The normal operation of MOSFET without freeze-out at 8 K further proves that the p-channel behavior is originated from the polarization-induced 2DHG. PMID:27021054

  4. P-Channel InGaN/GaN heterostructure metal-oxide-semiconductor field effect transistor based on polarization-induced two-dimensional hole gas

    NASA Astrophysics Data System (ADS)

    Zhang, Kexiong; Sumiya, Masatomo; Liao, Meiyong; Koide, Yasuo; Sang, Liwen

    2016-03-01

    The concept of p-channel InGaN/GaN heterostructure field effect transistor (FET) using a two-dimensional hole gas (2DHG) induced by polarization effect is demonstrated. The existence of 2DHG near the lower interface of InGaN/GaN heterostructure is verified by theoretical simulation and capacitance-voltage profiling. The metal-oxide-semiconductor FET (MOSFET) with Al2O3 gate dielectric shows a drain-source current density of 0.51 mA/mm at the gate voltage of ‑2 V and drain bias of ‑15 V, an ON/OFF ratio of two orders of magnitude and effective hole mobility of 10 cm2/Vs at room temperature. The normal operation of MOSFET without freeze-out at 8 K further proves that the p-channel behavior is originated from the polarization-induced 2DHG.

  5. The empirical dependence of radiation-induced charge neutralization on negative bias in dosimeters based on the metal-oxide-semiconductor field-effect transistor

    SciTech Connect

    Benson, Chris; Albadri, Abdulrahman; Joyce, Malcolm J.; Price, Robert A.

    2006-08-15

    The dependence of radiation-induced charge neutralization (RICN) has been studied in metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters. These devices were first exposed to x rays under positive bias and then to further dose increments at a selection of reverse bias levels. A nonlinear empirical trend has been established that is consistent with that identified in the data obtained in this work. Estimates for the reverse bias level corresponding to the maximum rate of RICN have been extracted from the data. These optimum bias levels appear to be independent of the level of initial absorbed dose under positive bias. The established models for threshold voltage change have been considered and indicate a related nonlinear trend for neutralization cross section {sigma}{sub N} as a function of oxide field. These data are discussed in the context of dose measurement with MOSFETs and within the framework of statistical mechanics associated with neutral traps and their field dependence.

  6. Metal-Semiconductor Photodetectors for Optoelectric Receiver Applications.

    NASA Astrophysics Data System (ADS)

    Seo, Jong-Wook

    It has been found that the barrier height lowering observed in reverse-biased Schottky junction is due mainly to the change in electrical potential across the interfacial layer at the metal-semiconductor contact. The voltage dependence of barrier height is described, and excellent agreement with experimental data is shown. The surface state density and interfacial layer thickness of a (Ti/Au) /n-InAlAs Schottky junction are estimated from its I-V characteristics. The expressions of the barrier heights of junctions in a metal-semiconductor-metal photodiode (MSMPD) are derived, and excellent agreement with experiment is shown. The adjustment of barrier height and dark current by annealing is investigated based on the theory. The merit of transparent electrodes for MSMPD in an optoelectronic -integrated-circuit (OEIC) is described, and it is shown that the signal-to-noise-ratio (SNR) of a receiver can be improved by the employment of transparent electrodes. The design, fabrication, and characterization of MSMPDs for long- (lambda = 1.3 μm) and short-wavelength (lambda = 0.85 μm) applications are presented in detail. The deposition by RF magnetron sputtering and etching by reactive-ion-etching (RIE) of ITO film are described. It has been found that H_2 incorporation in an Ar plasma during ITO deposition improves the optical transmittance of the film at lambda = 1.3 mum. Responsivity was doubled by ITO electrodes and an anti-reflection (AR) coating. Bandwidths (3-dB) of 22 GHz and 16.6 GHz were obtained for long- and short-wavelength MSMPD, respectively. A 3-dB bandwidth of 6 GHz was obtained for both long-and short-wavelength ITO-MSMPDs. It is shown that the wide band-gap barrier enhancement layer reduces optical responsivity by capturing carriers at the heterointerface. The effects of surface and surface passivation on MSMPD performance are studied. The characterization of OEIC receiver with a transimpedance amplifier is described.

  7. Biomolecular detection using a metal semiconductor field effect transistor

    NASA Astrophysics Data System (ADS)

    Estephan, Elias; Saab, Marie-Belle; Buzatu, Petre; Aulombard, Roger; Cuisinier, Frédéric J. G.; Gergely, Csilla; Cloitre, Thierry

    2010-04-01

    In this work, our attention was drawn towards developing affinity-based electrical biosensors, using a MESFET (Metal Semiconductor Field Effect Transistor). Semiconductor (SC) surfaces must be prepared before the incubations with biomolecules. The peptides route was adapted to exceed and bypass the limits revealed by other types of surface modification due to the unwanted unspecific interactions. As these peptides reveal specific recognition of materials, then controlled functionalization can be achieved. Peptides were produced by phage display technology using a library of M13 bacteriophage. After several rounds of bio-panning, the phages presenting affinities for GaAs SC were isolated; the DNA of these specific phages were sequenced, and the peptide with the highest affinity was synthesized and biotinylated. To explore the possibility of electrical detection, the MESFET fabricated with the GaAs SC were used to detect the streptavidin via the biotinylated peptide in the presence of the bovine Serum Albumin. After each surface modification step, the IDS (current between the drain and the source) of the transistor was measured and a decrease in the intensity was detected. Furthermore, fluorescent microscopy was used in order to prove the specificity of this peptide and the specific localisation of biomolecules. In conclusion, the feasibility of producing an electrical biosensor using a MESFET has been demonstrated. Controlled placement, specific localization and detection of biomolecules on a MESFET transistor were achieved without covering the drain and the source. This method of functionalization and detection can be of great utility for biosensing application opening a new way for developing bioFETs (Biomolecular Field-Effect Transistor).

  8. SEMICONDUCTOR DEVICES: Simulation and optimization of a 6H-SiC metal-semiconductor-metal ultraviolet photodetector

    NASA Astrophysics Data System (ADS)

    Bin, Chen; Yintang, Yang; Yuejin, Li; Hongxia, Liu

    2010-06-01

    Based on thermionic emission theory, a model of a 6H-SiC metal-semiconductor-metal (MSM) ultraviolet photodetector is established with the simulation package ISE-TCAD. A device with 3 μm electrode width (W) and 3 μm electrode spacing (L) is simulated. The findings show that the MSM photodetector has quite a low dark current of 15 pA at 10 V bias and the photocurrent is two orders of magnitude higher than the dark current. The influences of different structures on dark and illuminated current-voltage characteristics of the MSM photodetector are investigated to optimize the device parameters. Simulation results indicate that the maximum photocurrent and the highest ratio of photocurrent to dark current at 15 V bias are 5.3 nA and 327 with device parameters of W = 6 μm, L = 3 μm and W = 3 μm, L = 6 μm, respectively.

  9. Strong and highly asymmetrical optical absorption in conformal metal-semiconductor-metal grating system for plasmonic hot-electron photodetection application

    PubMed Central

    Wu, Kai; Zhan, Yaohui; Zhang, Cheng; Wu, Shaolong; Li, Xiaofeng

    2015-01-01

    We propose an architecture of conformal metal-semiconductor-metal (MSM) device for hot-electron photodetection by asymmetrical alignment of the semiconductor barrier relative to the Fermi level of metals and strong energy localization through plasmonic resonances. Compared with the conventional grating design, the multi-layered grating system under conformal configuration is demonstrated to possess both optical and electrical advantages for high-sensitivity hot-electron photodetection. Finite-element simulation reveals that a strong and highly asymmetrical optical absorption (top metal absorption >99%) can be realized under such a conformal arrangement. An analytical probability-based electrical simulation verifies the strong unidirectional photocurrent, by taking advantage of the extremely high net absorption and a low metal/semiconductor barrier height, and predicts that the corresponding photoresponsivity can be ~3 times of that based on the conventional grating design in metal-insulator-metal (MIM) configuration. PMID:26387836

  10. Fisrt-principles calculations on metal-induced gap states at metal-semiconductor interfaces

    NASA Astrophysics Data System (ADS)

    Gohda, Y.; Tsuneyuki, S.

    2010-03-01

    Metal-induced gap states (MIGS) are responsible for Fermi-level pinning for narrow-gap semiconductors such as Si and GaAs. First-principles calculations have demonstrated that MIGS are related to the tails of metal states penetrating into the semiconductor corresponding to Bloch states with wave vectors having an imaginary part. Thus, their existence is a consequence of intrinsic properties of the bulk semiconductor. In contrast, a removal of FLP has been reported experimentally at atomically controlled Al-Si(100) interfaces, suggesting that MIGS play a less dominant role in determining the interface properties. This inconsistency between experimental results and the accepted view of MIGS calls for a detailed theoretical investigation. Here, we report our recent progresses on MIGS at a few metal-semiconductor interfaces investigated by means of first-principles calculations.

  11. Single-photon imaging in complementary metal oxide semiconductor processes

    PubMed Central

    Charbon, E.

    2014-01-01

    This paper describes the basics of single-photon counting in complementary metal oxide semiconductors, through single-photon avalanche diodes (SPADs), and the making of miniaturized pixels with photon-counting capability based on SPADs. Some applications, which may take advantage of SPAD image sensors, are outlined, such as fluorescence-based microscopy, three-dimensional time-of-flight imaging and biomedical imaging, to name just a few. The paper focuses on architectures that are best suited to those applications and the trade-offs they generate. In this context, architectures are described that efficiently collect the output of single pixels when designed in large arrays. Off-chip readout circuit requirements are described for a variety of applications in physics, medicine and the life sciences. Owing to the dynamic nature of SPADs, designs featuring a large number of SPADs require careful analysis of the target application for an optimal use of silicon real estate and of limited readout bandwidth. The paper also describes the main trade-offs involved in architecting such chips and the solutions adopted with focus on scalability and miniaturization. PMID:24567470

  12. Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring

    PubMed Central

    Fine, George F.; Cavanagh, Leon M.; Afonja, Ayo; Binions, Russell

    2010-01-01

    Metal oxide semiconductor gas sensors are utilised in a variety of different roles and industries. They are relatively inexpensive compared to other sensing technologies, robust, lightweight, long lasting and benefit from high material sensitivity and quick response times. They have been used extensively to measure and monitor trace amounts of environmentally important gases such as carbon monoxide and nitrogen dioxide. In this review the nature of the gas response and how it is fundamentally linked to surface structure is explored. Synthetic routes to metal oxide semiconductor gas sensors are also discussed and related to their affect on surface structure. An overview of important contributions and recent advances are discussed for the use of metal oxide semiconductor sensors for the detection of a variety of gases—CO, NOx, NH3 and the particularly challenging case of CO2. Finally a description of recent advances in work completed at University College London is presented including the use of selective zeolites layers, new perovskite type materials and an innovative chemical vapour deposition approach to film deposition. PMID:22219672

  13. Femtosecond laser color marking of metal and semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Ionin, Andrey A.; Kudryashov, Sergey I.; Makarov, Sergey V.; Seleznev, Leonid V.; Sinitsyn, Dmitry V.; Golosov, Evgeniy V.; Golosova, Ol'ga A.; Kolobov, Yuriy R.; Ligachev, Alexander E.

    2012-05-01

    Color marking of rough or smooth metal (Al, Cu, Ti) and semiconductor (Si) surfaces was realized via femtosecond laser fabrication of periodic surface nanorelief, representing one-dimensional diffraction gratings. Bright colors of the surface nanorelief, especially for longer electromagnetic wavelengths, were provided during marking through pre-determined variation of the laser incidence angle and the resulting change of the diffraction grating period. This coloration technique was demonstrated for the case of silicon and various metals to mark surfaces in any individual color with a controllable brightness level and almost without their accompanying chemical surface modification.

  14. Scalability of Schottky barrier metal-oxide-semiconductor transistors

    NASA Astrophysics Data System (ADS)

    Jang, Moongyu

    2016-05-01

    In this paper, the general characteristics and the scalability of Schottky barrier metal-oxide-semiconductor field effect transistors (SB-MOSFETs) are introduced and reviewed. The most important factors, i.e., interface-trap density, lifetime and Schottky barrier height of erbium-silicided Schottky diode are estimated using equivalent circuit method. The extracted interface trap density, lifetime and Schottky barrier height for hole are estimated as 1.5 × 1013 traps/cm2, 3.75 ms and 0.76 eV, respectively. The interface traps are efficiently cured by N2 annealing. Based on the diode characteristics, various sizes of erbium-silicided/platinum-silicided n/p-type SB-MOSFETs are manufactured and analyzed. The manufactured SB-MOSFETs show enhanced drain induced barrier lowering (DIBL) characteristics due to the existence of Schottky barrier between source and channel. DIBL and subthreshold swing characteristics are comparable with the ultimate scaling limit of double gate MOSFETs which shows the possible application of SB-MOSFETs in nanoscale regime.

  15. Fabrication and characterization of metal-semiconductor-metal nanorod using template synthesis

    SciTech Connect

    Kim, Kyohyeok; Kwon, Namyong; Hong, Junki; Chung, Ilsub

    2009-07-15

    The authors attempted to fabricate and characterize one dimensional metal-semiconductor-metal (MSM) nanorod using a template. Cadmium selenide (CdSe) and polypyrrole (Ppy) were chosen as n-type and p-type semiconductor materials, respectively, whereas Au was chosen as a metal electrode. The fabrication of the nanorod was achieved by ''template synthesis'' method using polycarbonate membrane. The structure of the fabricated nanorod was analyzed using scanning electron microscopy and energy dispersive spectroscopy. In addition, the electrical properties of MSM nanorods were characterized using scanning probe microscopy (Seiko Instruments, SPA 300 HV) by probing with a conductive cantilever. I-V characteristics as a function of the temperature give the activation energy, as well as the barrier height of a metal-semiconductor contact, which is useful to understand the conduction mechanism of MSM nanorods.

  16. Radiation hardening of metal-oxide semi-conductor (MOS) devices by boron

    NASA Technical Reports Server (NTRS)

    Danchenko, V.

    1974-01-01

    Technique using boron effectively protects metal-oxide semiconductor devices from ionizing radiation without using shielding materials. Boron is introduced into insulating gate oxide layer at semiconductor-insulator interface.

  17. 75 FR 75694 - Certain Semiconductor Integration Circuits Using Tungsten Metallization and Products Containing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-06

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Semiconductor Integration Circuits Using Tungsten Metallization and Products Containing... United States after importation of certain semiconductor integrated circuits using tungsten...

  18. Light sources based on semiconductor current filaments

    DOEpatents

    Zutavern, Fred J.; Loubriel, Guillermo M.; Buttram, Malcolm T.; Mar, Alan; Helgeson, Wesley D.; O'Malley, Martin W.; Hjalmarson, Harold P.; Baca, Albert G.; Chow, Weng W.; Vawter, G. Allen

    2003-01-01

    The present invention provides a new type of semiconductor light source that can produce a high peak power output and is not injection, e-beam, or optically pumped. The present invention is capable of producing high quality coherent or incoherent optical emission. The present invention is based on current filaments, unlike conventional semiconductor lasers that are based on p-n junctions. The present invention provides a light source formed by an electron-hole plasma inside a current filament. The electron-hole plasma can be several hundred microns in diameter and several centimeters long. A current filament can be initiated optically or with an e-beam, but can be pumped electrically across a large insulating region. A current filament can be produced in high gain photoconductive semiconductor switches. The light source provided by the present invention has a potentially large volume and therefore a potentially large energy per pulse or peak power available from a single (coherent) semiconductor laser. Like other semiconductor lasers, these light sources will emit radiation at the wavelength near the bandgap energy (for GaAs 875 nm or near infra red). Immediate potential applications of the present invention include high energy, short pulse, compact, low cost lasers and other incoherent light sources.

  19. Schottky source/drain germanium-based metal-oxide-semiconductor field-effect transistors with self-aligned NiGe/Ge junction and aggressively scaled high-k gate stack

    NASA Astrophysics Data System (ADS)

    Hosoi, Takuji; Minoura, Yuya; Asahara, Ryohei; Oka, Hiroshi; Shimura, Takayoshi; Watanabe, Heiji

    2015-12-01

    Schottky source/drain (S/D) Ge-based metal-oxide-semiconductor field-effect transistors (MOSFETs) were fabricated by combining high permittivity (high-k) gate stacks with ultrathin AlOx interlayers and Fermi level depinning process by means of phosphorous ion implantation into NiGe/Ge contacts. Improved thermal stability of the metal/high-k/Ge stacks enabled self-aligned integration scheme for Schottky S/D complementary MOS applications. Significantly reduced parasitic resistance and aggressively scaled high-k gate stacks with sub-1-nm equivalent oxide thickness were demonstrated for both p- and n-channel Schottky Ge-FETs with the proposed combined technology.

  20. A comparison between HfO2/Al2O3 nano-laminates and ternary HfxAlyO compound as the dielectric material in InGaAs based metal-oxide-semiconductor (MOS) capacitors

    NASA Astrophysics Data System (ADS)

    Krylov, Igor; Pokroy, Boaz; Eizenberg, Moshe; Ritter, Dan

    2016-09-01

    We compare the electrical properties of HfO2/Al2O3 nano-laminates with those of the ternary HfxAlyO compound in metal oxide semiconductor (MOS) capacitors. The dielectrics were deposited by atomic layer deposition on InGaAs. Water, ozone, and oxygen plasma were tested as oxygen precursors, and best results were obtained using water. The total dielectric thickness was kept constant in our experiments. It was found that the effective dielectric constant increased and the leakage current decreased with the number of periods. Best results were obtained for the ternary compound. The effect of the sublayer thicknesses on the electrical properties of the interface was carefully investigated, as well as the role of post-metallization annealing. Possible explanations for the observed trends are provided. We conclude that the ternary HfxAlyO compound is more favorable than the nano-laminates approach for InGaAs based MOS transistor applications.

  1. How many electrons make a semiconductor nanocrystal film metallic

    NASA Astrophysics Data System (ADS)

    Reich, Konstantin; Chen, Ting; Kramer, Nicolaas; Fu, Han; Kortshagen, Uwe; Shklovskii, Boris

    For films of semiconductor nanocrystals to achieve their potential as novel, low-cost electronic materials, a better understanding of their doping to tune their conductivity is required. So far, it not known how many dopants will turn a nanocrystal film from semiconducting to metallic. In bulk semiconductors, the critical concentration nM of electrons at the metal-insulator transition is described by the famous Mott criterion: nMaB3 ~= 0 . 02 , where aB is the effective Bohr radius. We show theoretically that in a dense NC film, where NCs touch each other by small facets, the concentration of electrons nc >>nM at the metal-insulator transition satisfies the condition: ncρ3 ~= 0 . 3 , where ρ is a radius of contact facets. In the accompanying experiments, we investigate the conduction mechanism in films of phosphorus-doped, ligand-free silicon nanocrystals. At the largest electron concentration achieved in our samples, which is half the predicted nc, we find that the localization length of hopping electrons is close to three times the nanocrystals diameter, indicating that the film approaches the metal-insulator transition. This work was supported primarily by the National Science Foundation through the University of Minnesota MRSEC under Award No. DMR-1420013.

  2. P-Channel InGaN/GaN heterostructure metal-oxide-semiconductor field effect transistor based on polarization-induced two-dimensional hole gas

    PubMed Central

    Zhang, Kexiong; Sumiya, Masatomo; Liao, Meiyong; Koide, Yasuo; Sang, Liwen

    2016-01-01

    The concept of p-channel InGaN/GaN heterostructure field effect transistor (FET) using a two-dimensional hole gas (2DHG) induced by polarization effect is demonstrated. The existence of 2DHG near the lower interface of InGaN/GaN heterostructure is verified by theoretical simulation and capacitance-voltage profiling. The metal-oxide-semiconductor FET (MOSFET) with Al2O3 gate dielectric shows a drain-source current density of 0.51 mA/mm at the gate voltage of −2 V and drain bias of −15 V, an ON/OFF ratio of two orders of magnitude and effective hole mobility of 10 cm2/Vs at room temperature. The normal operation of MOSFET without freeze-out at 8 K further proves that the p-channel behavior is originated from the polarization-induced 2DHG. PMID:27021054

  3. Defect production and annealing kinetics in elemental metals and semiconductors

    NASA Astrophysics Data System (ADS)

    de la Rubia, T. Diaz; Soneda, N.; Caturla, M. J.; Alonso, E. A.

    1997-11-01

    We present a review of recent results of molecular dynamics (MD) and kinetic Monte Carlo (KMC) simulations of defect production and annealing in irradiated metals and semiconductors. The MD simulations describe the primary damage state in elemental metals Fe, V and Au, and in an elemental semiconductor Si. We describe the production of interstitial and vacancy clusters in the cascades and highlight the differences among the various materials. In particular, we discuss how covalent bonding in Si affects defect production and amorphization resulting in a very different primary damage state from the metals. We also use MD simulations to extract prefactors and activation energies for migration of point defects, as well as to investigate the energetics, geometry and diffusivity of small vacancy and interstitial clusters. We show that, in the metals, small interstitial clusters are highly mobile and glide in one dimension along the direction of the Burger's vector. In silicon, we show that, in contrast to the metals, the neutral vacancy diffuses faster than the neutral self-interstitial. The results for the primary damage state and for the defect energetics and kinetics are then combined and used in a kinetic Monte Carlo simulation to investigate the escape efficiency of defects from their nascent cascade in metals, and the effect of dose rate on damage accumulation and amorphization in silicon. We show that in fee metals Au and Pb at or above stage V the escape probability is approximately 40% for 30 keV recoils so that the freely migrating defect fraction is approximately 10% of the dpa standard. In silicon, we show that damage accumulation at room temperature during light ion implantation can be significantly reduced by decreasing the dose rate. The results are compared to scanning tunneling microscopy experiments.

  4. Optical Biosensors Based on Semiconductor Nanostructures

    PubMed Central

    Martín-Palma, Raúl J.; Manso, Miguel; Torres-Costa, Vicente

    2009-01-01

    The increasing availability of semiconductor-based nanostructures with novel and unique properties has sparked widespread interest in their use in the field of biosensing. The precise control over the size, shape and composition of these nanostructures leads to the accurate control of their physico-chemical properties and overall behavior. Furthermore, modifications can be made to the nanostructures to better suit their integration with biological systems, leading to such interesting properties as enhanced aqueous solubility, biocompatibility or bio-recognition. In the present work, the most significant applications of semiconductor nanostructures in the field of optical biosensing will be reviewed. In particular, the use of quantum dots as fluorescent bioprobes, which is the most widely used application, will be discussed. In addition, the use of some other nanometric structures in the field of biosensing, including porous semiconductors and photonic crystals, will be presented. PMID:22346691

  5. Magnetoresistive properties of nanostructured magnetic metals, manganites, and magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Solin, N. I.; Romashev, L. N.; Naumov, S. V.; Saranin, A. A.; Zotov, A. V.; Olyanich, D. A.; Kotlyar, V. G.; Utas, O. A.

    2016-02-01

    We consider methods for controlling magnetoresistive parameters of magnetic metal superlattices, manganites, and magnetic semiconductors. By reducing the thickness of ferromagnetic layers in superlattices (e.g., Fe layers in Fe/Cr superlattices), it is possible to form superparamagnetic clustered-layered nanostructures with a magnetoresistance weakly depending on the direction of the external magnetic field, which is very important for applications of such type of materials. Producing Mn vacancies and additionally annealing lanthanum manganites in the oxygen atmosphere, it is possible to increase their magnetoresistance by more than four orders of magnitude. By changing the thickness of p- n junction in the structure of ferromagnetic semiconductors, their magnetoresistance can be increased by 2-3 orders of magnitude.

  6. Nonequilibrium carrier dynamics in transition metal dichalcogenide semiconductors

    NASA Astrophysics Data System (ADS)

    Steinhoff, A.; Florian, M.; Rösner, M.; Lorke, M.; Wehling, T. O.; Gies, C.; Jahnke, F.

    2016-09-01

    When exploring new materials for their potential in (opto)electronic device applications, it is important to understand the role of various carrier interaction and scattering processes. In atomically thin transition metal dichalcogenide semiconductors, the Coulomb interaction is known to be much stronger than in quantum wells of conventional semiconductors like GaAs, as witnessed by the 50 times larger exciton binding energy. The question arises, whether this directly translates into equivalently faster carrier–carrier Coulomb scattering of excited carriers. Here we show that a combination of ab initio band-structure and many-body theory predicts Coulomb-mediated carrier relaxation on a sub-100 fs time scale for a wide range of excitation densities, which is less than an order of magnitude faster than in quantum wells.

  7. Infrared detection with point contact-metal semiconductor diodes

    NASA Astrophysics Data System (ADS)

    Eisenstein, G.

    1980-03-01

    Point contact Schottky barrier diodes, operating as video detectors and harmonic mixers at infrared frequencies, are studied, and theoretical models are developed and tested. A model extending the frequency response of the nonlinear barrier into the infrared is developed. Conductive and capacitive detection in highly doped semiconductors is considered. A model in which the low frequency spreading resistance is replaced by a complex spreading impedance is developed. The model predicts that optimal operation requires a semiconductor whose plasma frequency is one-third the operation frequency. Physical processes taking place simultaneously in the active region and in general thermal in nature are investigated. A thermo-electric detection model is developed and confirmed experimentally. The manufacturing of bulk point contact diodes is described in detail. Experimental results are compared with theoretical predictions. A method for producing thin crystaline semiconducting films on a metallic substrate is described.

  8. Nonequilibrium carrier dynamics in transition metal dichalcogenide semiconductors

    NASA Astrophysics Data System (ADS)

    Steinhoff, A.; Florian, M.; Rösner, M.; Lorke, M.; Wehling, T. O.; Gies, C.; Jahnke, F.

    2016-09-01

    When exploring new materials for their potential in (opto)electronic device applications, it is important to understand the role of various carrier interaction and scattering processes. In atomically thin transition metal dichalcogenide semiconductors, the Coulomb interaction is known to be much stronger than in quantum wells of conventional semiconductors like GaAs, as witnessed by the 50 times larger exciton binding energy. The question arises, whether this directly translates into equivalently faster carrier-carrier Coulomb scattering of excited carriers. Here we show that a combination of ab initio band-structure and many-body theory predicts Coulomb-mediated carrier relaxation on a sub-100 fs time scale for a wide range of excitation densities, which is less than an order of magnitude faster than in quantum wells.

  9. Role of direct electron-phonon coupling across metal-semiconductor interfaces in thermal transport via molecular dynamics

    SciTech Connect

    Lin, Keng-Hua; Strachan, Alejandro

    2015-07-21

    Motivated by significant interest in metal-semiconductor and metal-insulator interfaces and superlattices for energy conversion applications, we developed a molecular dynamics-based model that captures the thermal transport role of conduction electrons in metals and heat transport across these types of interface. Key features of our model, denoted eleDID (electronic version of dynamics with implicit degrees of freedom), are the natural description of interfaces and free surfaces and the ability to control the spatial extent of electron-phonon (e-ph) coupling. Non-local e-ph coupling enables the energy of conduction electrons to be transferred directly to the semiconductor/insulator phonons (as opposed to having to first couple to the phonons in the metal). We characterize the effect of the spatial e-ph coupling range on interface resistance by simulating heat transport through a metal-semiconductor interface to mimic the conditions of ultrafast laser heating experiments. Direct energy transfer from the conduction electrons to the semiconductor phonons not only decreases interfacial resistance but also increases the ballistic transport behavior in the semiconductor layer. These results provide new insight for experiments designed to characterize e-ph coupling and thermal transport at the metal-semiconductor/insulator interfaces.

  10. Analysis of Carbon Nanotube Metal-Semiconductor Diode Device

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Biegel, Bryan (Technical Monitor)

    2002-01-01

    We study recently reported drain current Id-drain voltage Vd characteristics of a carbon nanotube metal semiconductor diode device with the gate voltage Vg applied to modulate the carrier density in the nanotube. The diode was kink-shaped at the metal-semiconductor interface. It was shown that (1) larger negative Vg blocked Id more effectively in the negative Vd region, resulting in the rectifying Id-Vd characteristics, and that (2) positive Vg allowed Id in the both Vd polarities, resulting in the non-rectifying characteristics. The negative Vd was the Schottky reverse direction, judging from the negligible Id behavior for a wide region of -4 V less than Vd less than 0 V, with Vg = -4 V. Such negative Vg would attract positive charges from the metallic electrodes (charge reservoir) to the nanotube and lower the nanotube Fermi energy (EF). With larger negative Vg, the experiment showed that the Schottky forward direction (Vd greater than 0) had a smaller turn-on voltage and the Schottky reverse direction (Vd less than 0) was more resistant to the tunneling breakdown. Therefore, the majority carriers in the transport would be electrons since they can see a lower tunneling barrier (shallower built-in potential) in the forward direction when EF is lowered, and a thicker tunneling barrier (Schottky barrier) in the reverse direction due to the reduction in the electron density when EF is lowered.

  11. Implementing Metal-to-Ligand Charge Transfer in Organic Semiconductor for Improved Visible-Near-Infrared Photocatalysis.

    PubMed

    Li, Yanrui; Wang, Zhaowu; Xia, Tong; Ju, Huanxin; Zhang, Ke; Long, Ran; Xu, Qian; Wang, Chengming; Song, Li; Zhu, Junfa; Jiang, Jun; Xiong, Yujie

    2016-08-01

    The coordination of organic semiconductors with metal cations can induce metal-to-ligand charge transfer, which broadens light absorption to cover the visible-near-infrared (vis-NIR) spectrum. As a proof-of-concept demonstration, the g-C3 N4 -based complex exhibits dramatically enhanced photocatalytic H2 production with excellent durability under vis-NIR irradiation.

  12. Ultraviolet GaN photodetectors on Si via oxide buffer heterostructures with integrated short period oxide-based distributed Bragg reflectors and leakage suppressing metal-oxide-semiconductor contacts

    SciTech Connect

    Szyszka, A. E-mail: adam.szyszka@pwr.wroc.pl; Haeberlen, M.; Storck, P.; Thapa, S. B.; Schroeder, T.

    2014-08-28

    Based on a novel double step oxide buffer heterostructure approach for GaN integration on Si, we present an optimized Metal-Semiconductor-Metal (MSM)-based Ultraviolet (UV) GaN photodetector system with integrated short-period (oxide/Si) Distributed Bragg Reflector (DBR) and leakage suppressing Metal-Oxide-Semiconductor (MOS) electrode contacts. In terms of structural properties, it is demonstrated by in-situ reflection high energy electron diffraction and transmission electron microscopy-energy dispersive x-ray studies that the DBR heterostructure layers grow with high thickness homogeneity and sharp interface structures sufficient for UV applications; only minor Si diffusion into the Y{sub 2}O{sub 3} films is detected under the applied thermal growth budget. As revealed by comparative high resolution x-ray diffraction studies on GaN/oxide buffer/Si systems with and without DBR systems, the final GaN layer structure quality is not significantly influenced by the growth of the integrated DBR heterostructure. In terms of optoelectronic properties, it is demonstrated that—with respect to the basic GaN/oxide/Si system without DBR—the insertion of (a) the DBR heterostructures and (b) dark current suppressing MOS contacts enhances the photoresponsivity below the GaN band-gap related UV cut-off energy by almost up to two orders of magnitude. Given the in-situ oxide passivation capability of grown GaN surfaces and the one order of magnitude lower number of superlattice layers in case of higher refractive index contrast (oxide/Si) systems with respect to classical III-N DBR superlattices, virtual GaN substrates on Si via functional oxide buffer systems are thus a promising robust approach for future GaN-based UV detector technologies.

  13. Effects of radiation and temperature on gallium nitride (GaN) metal-semiconductor-metal ultraviolet photodetectors

    NASA Astrophysics Data System (ADS)

    Chiamori, Heather C.; Angadi, Chetan; Suria, Ateeq; Shankar, Ashwin; Hou, Minmin; Bhattacharya, Sharmila; Senesky, Debbie G.

    2014-06-01

    The development of radiation-hardened, temperature-tolerant materials, sensors and electronics will enable lightweight space sub-systems (reduced packaging requirements) with increased operation lifetimes in extreme harsh environments such as those encountered during space exploration. Gallium nitride (GaN) is a ceramic, semiconductor material stable within high-radiation, high-temperature and chemically corrosive environments due to its wide bandgap (3.4 eV). These material properties can be leveraged for ultraviolet (UV) wavelength photodetection. In this paper, current results of GaN metal-semiconductor-metal (MSM) UV photodetectors behavior after irradiation up to 50 krad and temperatures of 15°C to 150°C is presented. These initial results indicate that GaN-based sensors can provide robust operation within extreme harsh environments. Future directions for GaN-based photodetector technology for down-hole, automotive and space exploration applications are also discussed.

  14. Spinodal nanodecomposition in semiconductors doped with transition metals

    NASA Astrophysics Data System (ADS)

    Dietl, T.; Sato, K.; Fukushima, T.; Bonanni, A.; Jamet, M.; Barski, A.; Kuroda, S.; Tanaka, M.; Hai, Pham Nam; Katayama-Yoshida, H.

    2015-10-01

    This review presents the recent progress in computational materials design, experimental realization, and control methods of spinodal nanodecomposition under three- and two-dimensional crystal-growth conditions in spintronic materials, such as magnetically doped semiconductors. The computational description of nanodecomposition, performed by combining first-principles calculations with kinetic Monte Carlo simulations, is discussed together with extensive electron microscopy, synchrotron radiation, scanning probe, and ion beam methods that have been employed to visualize binodal and spinodal nanodecomposition (chemical phase separation) as well as nanoprecipitation (crystallographic phase separation) in a range of semiconductor compounds with a concentration of transition metal (TM) impurities beyond the solubility limit. The role of growth conditions, codoping by shallow impurities, kinetic barriers, and surface reactions in controlling the aggregation of magnetic cations is highlighted. According to theoretical simulations and experimental results the TM-rich regions appear in the form of either nanodots (the dairiseki phase) or nanocolumns (the konbu phase) buried in the host semiconductor. Particular attention is paid to Mn-doped group III arsenides and antimonides, TM-doped group III nitrides, Mn- and Fe-doped Ge, and Cr-doped group II chalcogenides, in which ferromagnetic features persisting up to above room temperature correlate with the presence of nanodecomposition and account for the application-relevant magneto-optical and magnetotransport properties of these compounds. Finally, it is pointed out that spinodal nanodecomposition can be viewed as a new class of bottom-up approach to nanofabrication.

  15. Broadband terahertz generation using the semiconductor-metal transition in VO2

    NASA Astrophysics Data System (ADS)

    Charipar, Nicholas A.; Kim, Heungsoo; Mathews, Scott A.; Piqué, Alberto

    2016-01-01

    We report the design, fabrication, and characterization of broadband terahertz emitters based on the semiconductor-metal transition in thin film VO2 (vanadium dioxide). With the appropriate geometry, picosecond electrical pulses are generated by illuminating 120 nm thick VO2 with 280 fs pulses from a femtosecond laser. These ultrafast electrical pulses are used to drive a simple dipole antenna, generating broadband terahertz radiation.

  16. Comparison between highly doped semiconductor and metal infrared antenna

    NASA Astrophysics Data System (ADS)

    Yang, Yanxiang; Lai, Jianjun; Li, Hongwei; Chen, Changhong

    2015-10-01

    Optical antenna can strongly enhance the interaction of light with matter by their ability to localize electromagnetic fields on nano-metric scale. This allows for the engineering of absorption capabilities to visible and infrared detectors with very small active areas. In this study, we focused on the study of metal and semiconductor infrared antennas for nano-bolometer application. The infrared antennas are applied for increasing the effective absorbing across section, enhancing the field intensity at the gap of the antennas and improving the absorbance of bolometer materials located at the gap. We perform numerical simulation of the characteristics of infrared antennas and analysis the influence of various parameters of antennas (length, wide, and material types) and optimized these parameters to achieve the maximum field enhancement for an optical antenna. We also highlight the comparisons of field enhancement of infrared antenna materials between metal and highly doped semiconductor and discuss some practical issues related to the application of infrared antenna for infrared detectors.

  17. Alloyed 2D Metal-Semiconductor Heterojunctions: Origin of Interface States Reduction and Schottky Barrier Lowering.

    PubMed

    Kim, Yonghun; Kim, Ah Ra; Yang, Jin Ho; Chang, Kyoung Eun; Kwon, Jung-Dae; Choi, Sun Young; Park, Jucheol; Lee, Kang Eun; Kim, Dong-Ho; Choi, Sung Mook; Lee, Kyu Hwan; Lee, Byoung Hun; Hahm, Myung Gwan; Cho, Byungjin

    2016-09-14

    The long-term stability and superior device reliability through the use of delicately designed metal contacts with two-dimensional (2D) atomic-scale semiconductors are considered one of the critical issues related to practical 2D-based electronic components. Here, we investigate the origin of the improved contact properties of alloyed 2D metal-semiconductor heterojunctions. 2D WSe2-based transistors with mixed transition layers containing van der Waals (M-vdW, NbSe2/WxNb1-xSe2/WSe2) junctions realize atomically sharp interfaces, exhibiting long hot-carrier lifetimes of approximately 75,296 s (78 times longer than that of metal-semiconductor, Pd/WSe2 junctions). Such dramatic lifetime enhancement in M-vdW-junctioned devices is attributed to the synergistic effects arising from the significant reduction in the number of defects and the Schottky barrier lowering at the interface. Formation of a controllable mixed-composition alloyed layer on the 2D active channel would be a breakthrough approach to maximize the electrical reliability of 2D nanomaterial-based electronic applications. PMID:27552187

  18. Electrical characterization of the metal ferroelectric oxide semiconductor and metal ferroelectric nitride semiconductor gate stacks for ferroelectric field effect transistors

    NASA Astrophysics Data System (ADS)

    Verma, Ram Mohan; Rao, Ashwath; Singh, B. R.

    2014-03-01

    This paper presents our work on electrical characterization of metal-ferroelectric-oxide-semiconductor (MFeOS) and metal-ferroelectric-nitride-semiconductor (MFeNS) structures for nonvolatile memory applications. Thin films of lead zirconate titanate (PZT: 35:65) have been used as ferroelectric material on 2.5-5 nm thick thermally grown SiO2 and Si3N4 as buffer layer for MFeOS and MFeNS structures, respectively. Capacitance-Voltage (C-V) and Current-Voltage (I-V) characteristics were used for electrical characterization. Our comparative results reveal that the MFeNS structure with 2.5 nm thick buffer layer has higher memory window of about 3.6 V as compared to 3 V for similar MFeOS structure. Also superior electrical properties such as lower leakage current and higher dielectric strength were observed in MFeNS structures. Higher nitridation time was observed to deteriorate the polarization characteristics resulting in reduced memory window. The highest memory window of 6.5 V was observed for SiO2 buffer layer thickness of 5 nm. We also observed that the annealing temperature influences the leakage current characteristic and memory window of these structures.

  19. Synthesis of semiconductor nanowires by pulsed current electrodeposition of metal with subsequent sulfurization

    NASA Astrophysics Data System (ADS)

    Gavrilov, S.; Nosova, L.; Sieber, I.; Belaidi, A.; Dloczik, L.; Dittrich, Th.

    2005-06-01

    Semiconductor nanowires of CdS and CuxS were embedded into porous anodic alumina (PAA) by sulfurization of the metal precursors. Pores of PAA were filled with Cd and Cu by ac electrochemical preparation while the PAA layers remained on the Al-substrate. Deposited metal and semiconductor wires were characterized by scanning electron microscopy and X-ray diffraction. Photovoltage spectroscopy was applied to demonstrate semiconductor behaviour of CdS nanowires manufactured by the proposed technique.

  20. Analysis of Carbon Nanotube Metal-Semiconductor Diode Device

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Biegel, Bryan (Technical Monitor)

    2001-01-01

    We study recently reported drain current I(sub d)-drain voltage V(sub d) characteristics of a carbon nanotube metal-semiconductor diode device with the gate voltage V(sub g) applied to modulate the carrier density in the nanotube. The diode was kink-shaped at the metal-semiconductor interface. It was shown that (1) larger negative V(sub g) blocked I(sub d) more effectively in the negative V(sub d) region, resulting in the rectifying I(sub d)-V(sub d) characteristics, and that (2) positive V(sub g) allowed I(sub d) in the both V(sub d) polarities, resulting in the non-rectifying characteristics. The negative V(sub d) was the Schottky reverse direction, judging from the negligible I(sub d) behavior for a wide region of -4 V (is less than) V(sub d) (is less than) 0 V, with V(sub g) = -4 V. Such negative V(sub g) would attract positive charges from the metallic electrodes (charge reservoir) to the nanotube and lower the nanotube Fermi energy (E(sub F)). With larger negative V(sub g), the experiment showed that the Schottky forward direction (V(sub d) (is greater than) 0) had a smaller turn-on voltage and the Schottky reverse direction (V(sub d) (is less than) 0) was more resistant to the tunneling breakdown. Therefore, the majority carriers in the transport would be electrons since they can see a lower tunneling barrier (shallower built-in potential) in the forward direction when E(sub F) is lowered, and a thicker tunneling barrier (Schottky barrier) in the reverse direction due to the reduction in the electron density when E(sub F) is lowered.

  1. Generalized Electron Counting in Determination of Metal-Induced Reconstruction of Compound Semiconductor Surfaces

    SciTech Connect

    Zhang, Lixin; Wang, E. G.; Xue, Qi-Kun; Zhang, S. B.; Zhang, Zhenyu

    2006-01-01

    Based on theoretical analysis, first-principles calculations, and experimental observations, we establish a generic guiding principle, embodied in generalized electron counting (GEC), that governs the surface reconstruction of compound semiconductors induced by different metal adsorbates. Within the GEC model, the adsorbates serve as an electron bath, donating or accepting the right number of electrons as the host surface chooses a specific reconstruction that obeys the classic electron-counting model. The predictive power of the GEC model is illustrated for a wide range of metal adsorbates.

  2. Metal-oxide-semiconductor field effect nanostructure spin lattice devices

    NASA Astrophysics Data System (ADS)

    Yang, Jun

    This dissertation explored and developed technologies for silicon based spin lattice devices. Spin lattices are artificial electron spin systems with a periodic structure having one to a few electrons at each site. They are expected to have various magnetic and even superconducting properties when structured at an optimal scale with a specific number i of electrons. Silicon turns out to be a very good material choice in realizing spin lattices. A metal-oxide-semiconductor field-effect nanostructure (MOSFENS) device, which is closely related to a MOS transistor but with a nanostructured oxide-semiconductor interface, can define the spin lattices potential at the interface and alter the occupation i with the gate electrode potential to change the magnetic phase. The MOSFENS spin lattices engineering challenge addressed in this work has come from the practical difficulty of process integration in modifying a transistor fabrication process to accommodate the interface patterning requirements. Two distinct design choices for the fabrication sequences that create the nanostructure have been examined. Patterning the silicon surface before the MOS gate stack layers gives a "nanostructure first" process, and patterning the interface after forming the gate stack gives a "nanostructure last process." Both processes take advantage of a nano-LOCOS (nano-local oxidation of silicon) invention developed in this work. The nano-LOCOS process plays a central role in defining a clean, sharp confining potential for the spin lattice electrons. The MOSFENS process required a basic transistor fabrication process that can accommodate the nanostructures. The process developed for this purpose has a gate stack with a 15 nm polysilicon gate electrode and a 3 nm thermal gate oxide on a p-type silicon substrate. The measured threshold voltage is 0.25 V. Device processes were examined for either isolating the devices with windows in the field oxide or with mesas defined by the etched trenches

  3. First-principles analysis of ZrN/ScN metal/semiconductor superlattices for thermoelectric energy conversion

    NASA Astrophysics Data System (ADS)

    Saha, Bivas; Sands, Timothy D.; Waghmare, Umesh V.

    2011-04-01

    We present a first-principles density functional theory-based analysis of the electronic structure, vibrational spectra, and transport properties of ZrN/ScN metal/semiconductor superlattices aiming to understand its potential and suitability for thermoelectric applications. We demonstrate (a) the presence of Schottky barriers of 0.34 eV at the metal/semiconductor interface and (b) a large asymmetry in the electronic densities of states and flattening of electronic bands along the cross-plane directions near the Fermi energy of these superlattices, desirable for high Seebeck coefficient. The vibrational spectra of these superlattices show softening of transverse acoustic phonon modes along the growth direction and localization of ScN phonons in the vibrational energy gap between metal and semiconductor layers. Boltzmann transport theory-based analysis suggests a reduction of lattice thermal conductivity by an order of magnitude compared to its individual bulk components, which makes these materials suitable for thermoelectric applications.

  4. Scale dependence of resistance fluctuations at metal-semiconductor junctions

    SciTech Connect

    Boudville, W.J.; McGill, T.C.

    1988-05-15

    The resistance fluctuations at a metal-semiconductor junction have been simulated as a function of the cross-sectional area of the contact at the interface. The fluctuations are due to the random spatial configurations of the dopants in the depletion region. The semiconductor is taken to be heavily doped n-GaAs. The conductance is computed over a square area. Dopings in the range of 10/sup 18/--2.5 x 10/sup 19/ cm/sup -3/ and square contacts with linear dimensions between 200 and 2000 A are considered. An analysis of this problem yields the result that the standard deviation of the conductance of the contacts scales as 1ln/sup 34/, where n is the doping and l is the device size. From simulations, the relative fluctuations are found to fall significantly as the device sizes are increased beyond 1000 A and as the doping is increased. The results of our simulations are found to agree with our scaling arguments

  5. Metal-semiconductor interfacial reactions - Ni/Si system

    NASA Technical Reports Server (NTRS)

    Cheung, N. W.; Grunthaner, P. J.; Grunthaner, F. J.; Mayer, J. W.; Ullrich, B. M.

    1981-01-01

    X-ray photoelectron spectroscopy and channeling measurements with MeV He-4(+) ions have been used to probe the structure of the interface in the Ni/Si system. It is found that reactions occur where Ni is deposited on Si at 10 to the -10th torr: Si atoms are displaced from lattice sites, the Ni atoms are in an Si-rich environment, and the Ni/Si interface is graded in composition. Composition gradients are present at both interfaces in the Si/Ni2/Si/Ni system. For the Ni-Si system, cooling the substrate to 100 K slows down the reaction rate. The temperature dependence of the interfacial reactivity indicates the kinetic nature of metal-semiconductor interfaces.

  6. Quantifying coherent and incoherent cathodoluminescence in semiconductors and metals

    SciTech Connect

    Brenny, B. J. M.; Coenen, T.; Polman, A.

    2014-06-28

    We present a method to separate coherent and incoherent contributions to cathodoluminescence from bulk materials by using angle-resolved cathodoluminescence spectroscopy. Using 5 and 30 keV electrons, we measure the cathodoluminescence spectra for Si, GaAs, Al, Ag, Au, and Cu and determine the angular emission distributions for Al, GaAs, and Si. Aluminium shows a clear dipolar radiation profile due to coherent transition radiation, while GaAs shows incoherent luminescence characterized by a Lambertian angular distribution. Silicon shows both transition radiation and incoherent radiation. From the angular data, we determine the ratio between the two processes and decompose their spectra. This method provides a powerful way to separate different radiative cathodoluminescence processes, which is useful for material characterization and in studies of electron- and light-matter interaction in metals and semiconductors.

  7. NO2 sensitive Au gate metal-oxide-semiconductor capacitors

    NASA Astrophysics Data System (ADS)

    Filippini, D.; Aragón, R.; Weimar, U.

    2001-08-01

    Au gate metal-oxide-semiconductor capacitors are sensitive to NO2 in air up to 200 ppm, depending on operating temperature (100 °C to 200 °C), gate thickness (50 to 900 nm), and morphology. In the absence of catalytic properties or lattice diffusivity, a model invoking molecular surface adsorption and grain boundary diffusion is proposed, which quantitatively describes the transient and steady state response of the devices. Sensitivity is given by the arrival of the diffusing species to the gate-dielectric interface, where capacitive coupling of the adsorbed molecules induces work function changes, which shift the flat band voltage positively, opposite that observed for H2 with Pd gates, consistently with an oxidizing, rather than reducing, character.

  8. High-speed, efficient metal - semiconductor - metal photodetectors

    SciTech Connect

    Collin, St; Pardo, F; Bardou, N; Pelouard, J.-L.; Averin, S V

    2010-08-03

    Design principles and the fabrication technique of highly efficient, high-speed photodetectors based on MSM nanostructures are developed. To efficiently confine light in the region of the strong field as well as to decrease light losses due to reflection from the diode contacts, use is made of a nanoscale interdigital diffraction grating and a multilayer Bragg grating. Measurements of the reflection coefficients and the quantum efficiency for a multilayer structure are in good agreement with theoretical estimates. A record-high quantum efficiency (QE = 46 %) is obtained for high speed MSM photodetectors. The detector has a high spectral selectivity ({Delta}{lambda}{sub 1/2} = 17 nm) at a wavelength of 800 nm. Taking into account the diode capacitance and the drift time of photogenerated carriers, the performance of the detectors under study is {approx} 500 GHz. The low level of the dark current density in the structures under study (j={sup 1} pA {mu}m{sup -2}) makes it possible to realise on their basis highly sensitive, high-speed selective detectors of optical radiation.

  9. Hybrid Integration of Graphene Analog and Silicon Complementary Metal-Oxide-Semiconductor Digital Circuits.

    PubMed

    Hong, Seul Ki; Kim, Choong Sun; Hwang, Wan Sik; Cho, Byung Jin

    2016-07-26

    We demonstrate a hybrid integration of a graphene-based analog circuit and a silicon-based digital circuit in order to exploit the strengths of both graphene and silicon devices. This mixed signal circuit integration was achieved using a three-dimensional (3-D) integration technique where a graphene FET multimode phase shifter is fabricated on top of a silicon complementary metal-oxide-semiconductor field-effect transistor (CMOS FET) ring oscillator. The process integration scheme presented here is compatible with the conventional silicon CMOS process, and thus the graphene circuit can successfully be integrated on current semiconductor technology platforms for various applications. This 3-D integration technique allows us to take advantage of graphene's excellent inherent properties and the maturity of current silicon CMOS technology for future electronics. PMID:27403730

  10. Plasmonically-enhanced mid-infrared photoluminescence in a metal/narrow-gap semiconductor structure

    NASA Astrophysics Data System (ADS)

    Lu, Pengqi; Cai, Chunfeng; Zhang, Bingpo; Liu, Bozhi; Wu, Huizhen; Bi, Gang; Si, Jianxiao

    2016-05-01

    We report the enhancement of the mid-infrared (MIR) luminescence intensity in a nanoscale metal/semiconductor structure by the coupling of surface plasmon polaritons (SPPs) with excitons in a narrow-gap semiconductor. The SPPs are efficiently excited by the total internal reflection photons at a metal/semiconductor interface. The intense electric field induced by SPPs, in turn, greatly changes the radiative recombination rates of the excitons generated by the pumping laser and thus the MIR luminescence intensity. The finding avails the understanding of fundamental science of SPs in narrow-gap semiconductors and the development of novel MIR devices.

  11. Semiconductor nanocrystal-based phagokinetic tracking

    DOEpatents

    Alivisatos, A Paul; Larabell, Carolyn A; Parak, Wolfgang J; Le Gros, Mark; Boudreau, Rosanne

    2014-11-18

    Methods for determining metabolic properties of living cells through the uptake of semiconductor nanocrystals by cells. Generally the methods require a layer of neutral or hydrophilic semiconductor nanocrystals and a layer of cells seeded onto a culture surface and changes in the layer of semiconductor nanocrystals are detected. The observed changes made to the layer of semiconductor nanocrystals can be correlated to such metabolic properties as metastatic potential, cell motility or migration.

  12. Multiple percolation tunneling staircase in metal-semiconductor nanoparticle composites

    NASA Astrophysics Data System (ADS)

    Mukherjee, Rupam; Huang, Zhi-Feng; Nadgorny, Boris

    2014-10-01

    Multiple percolation transitions are observed in a binary system of RuO2-CaCu3Ti4O12 metal-semiconductor nanoparticle composites near percolation thresholds. Apart from a classical percolation transition, associated with the appearance of a continuous conductance path through RuO2 metal oxide nanoparticles, at least two additional tunneling percolation transitions are detected in this composite system. Such behavior is consistent with the recently emerged picture of a quantum conductivity staircase, which predicts several percolation tunneling thresholds in a system with a hierarchy of local tunneling conductance, due to various degrees of proximity of adjacent conducting particles distributed in an insulating matrix. Here, we investigate a different type of percolation tunneling staircase, associated with a more complex conductive and insulating particle microstructure of two types of non-spherical constituents. As tunneling is strongly temperature dependent, we use variable temperature measurements to emphasize the hierarchical nature of consecutive tunneling transitions. The critical exponents corresponding to specific tunneling percolation thresholds are found to be nonuniversal and temperature dependent.

  13. Multiple percolation tunneling staircase in metal-semiconductor nanoparticle composites

    SciTech Connect

    Mukherjee, Rupam; Huang, Zhi-Feng; Nadgorny, Boris

    2014-10-27

    Multiple percolation transitions are observed in a binary system of RuO{sub 2}-CaCu{sub 3}Ti{sub 4}O{sub 12} metal-semiconductor nanoparticle composites near percolation thresholds. Apart from a classical percolation transition, associated with the appearance of a continuous conductance path through RuO{sub 2} metal oxide nanoparticles, at least two additional tunneling percolation transitions are detected in this composite system. Such behavior is consistent with the recently emerged picture of a quantum conductivity staircase, which predicts several percolation tunneling thresholds in a system with a hierarchy of local tunneling conductance, due to various degrees of proximity of adjacent conducting particles distributed in an insulating matrix. Here, we investigate a different type of percolation tunneling staircase, associated with a more complex conductive and insulating particle microstructure of two types of non-spherical constituents. As tunneling is strongly temperature dependent, we use variable temperature measurements to emphasize the hierarchical nature of consecutive tunneling transitions. The critical exponents corresponding to specific tunneling percolation thresholds are found to be nonuniversal and temperature dependent.

  14. Surface potential determination in metal-oxide-semiconductor capacitors

    NASA Astrophysics Data System (ADS)

    Moragues, J. M.; Ciantar, E.; Jerisian, R.; Sagnes, B.; Oualid, J.

    1994-11-01

    Different methods using the relationship between surface potential Psi(sub S) and gate bias V(sub G) in metal-oxide-semiconductor (MOS) capacitors have been compared. These methods can be applied even if the doping profile is very abrupt and the interface state density very high. The shifts of midgap, flatband, and threshold voltages, observed after Fowler-Nordheim electron injection, and deduced from the various Psi(sub S(V (sub G)) relationships obtained by these different methods, are in good agreement. These shifts give the number of effective oxide trapped charges (N(sub ox)) per unit area and acceptor-like and donor-like interface states (N(sub SS)A and N(sub SS)D) which are created during the electron injection. We reveal that the number of positive charges created in the gate oxide, unlike the number of generated interface states, strongly depends on the position of the post-metallization annealing step in the process. After relaxation of the stressed MOS capacitors, most of the generated positive charges can be attributed, in the MOS capacitors studied, to hydrogen-related species. It seems that the interface states are essentially created by the recombination of holes generated by electron impact.

  15. Simulation of Submicronmeter Metal-Semiconductor-Metal Ultraviolet Photodiodes no Gallium Nitride

    SciTech Connect

    Li, J.; Donaldson, W.R.; Hsiang, T.Y.

    2004-09-15

    Ultrafast metal Semiconductor metal ultraviolet photodetectors on GaN with 0.3-mm finger width and spacing were fabricated and packaged with a specially designed fast circuit. The assembly was simulated using a distributed circuit approach with optical illumination at l = 270 nm. This is the first theoretical simulation report of this effect in ultrafast ultraviolet photodetectors on GaN. Comparison of simulations and measurements was made in a wide range of optical energies, and a close agreement was achieved with a single energy-scaling factor.

  16. Unusual nonlinear current-voltage characteristics of a metal-intrinsic semiconductor-metal barrierless structure

    NASA Astrophysics Data System (ADS)

    Meriuts, A. V.; Gurevich, Yu. G.

    2015-03-01

    A nonlinear model for the electric current in a metal-intrinsic semiconductor-metal structure without potential barriers in contacts is considered using a drift diffusion approach. An analytical solution of the continuity equations and the current-voltage characteristic for various recombination rates in the contacts are obtained. It is shown that the current-voltage characteristics of such a structure exhibit not only linear behavior, corresponding to Ohm's law, but may also possess properties of current-voltage characteristics of the rectifier diode. It is also possible current-voltage characteristics with saturation in both forward and backward directions. Physical model that explains the obtained results is proposed.

  17. Electrical properties of hybrid (ferromagnetic metal)-(layered semiconductor) Ni/p-GaSe structures

    SciTech Connect

    Bakhtinov, A. P. Vodopyanov, V. N.; Kovalyuk, Z. D.; Netyaga, V. V.; Lytvyn, O. S.

    2010-02-15

    Two-barrier Ni/n-Ga2Se3/p-GaSe structures with nanoscale Ni-alloy grains caused by reactions at the 'metal-layered semiconductor' interface were formed after growing Ni layers on the p-GaSe (0001) surface. Current-voltage and capacitance-voltage characteristics of hybrid structures were studied in the temperature range of 220-350 K. The dependence of the impedance spectra on the bias voltage was studied at various temperatures. The frequency dependences of the impedance at high frequencies (f = 10{sup 6} Hz) are discussed in terms of the phenomena of spin injection and extraction in structures with an ultrathin spin-selective Ni/n-Ga{sub 2}Se{sub 3} barrier and the effects of spin diffusion and relaxation in the semiconductor substrate. The room-temperature phenomena of the Coulomb blockade and negative differential capacitance were detected. These phenomena are explained based on an analysis of transport processes in a narrow region near the 'ferromagnetic metal-semiconductor' interface, where nanoscale grains are arranged.

  18. Physical model for trap-assisted inelastic tunneling in metal-oxide-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Jiménez-Molinos, F.; Palma, A.; Gámiz, F.; Banqueri, J.; López-Villanueva, J. A.

    2001-10-01

    A physical model for trap-assisted inelastic tunnel current through potential barriers in semiconductor structures has been developed. The model is based on the theory of multiphonon transitions between detrapped and trapped states and the only fitting parameters are those of the traps (energy level and concentration) and the Huang-Rhys factor. Therefore, dependences of the trapping and detrapping processes on the bias, position, and temperature can be obtained with this model. The results of the model are compared with experimental data of stress induced leakage current in metal-oxide-semiconductor devices. The average energy loss has been obtained and an interpretation is given of the curves of average energy loss versus oxide voltage. This allows us to identify the entrance of the assisted tunnel current in the Fowler-Nordheim regime. In addition, the dependence of the tunnel current and average energy loss on the model parameters has been studied.

  19. Adjustable metal-semiconductor transition of FeS thin films by thermal annealing

    SciTech Connect

    Fu Ganhua; Polity, Angelika; Volbers, Niklas; Meyer, Bruno K.; Mogwitz, Boris; Janek, Juergen

    2006-12-25

    FeS polycrystalline thin films were prepared on float glass at 500 deg. C by radio-frequency reactive sputtering. The influence of vacuum annealing on the metal-semiconductor transition of FeS films was investigated. It has been found that with the increase of the annealing temperature from 360 to 600 deg. C, the metal-semiconductor transition temperature of FeS films first decreases and then increases, associated with first a reduction and then an enhancement of hysteresis width. The thermal stress is considered to give rise to the abnormal change of the metal-semiconductor transition of the FeS film during annealing.

  20. General atomistic approach for modeling metal-semiconductor interfaces using density functional theory and nonequilibrium Green's function

    NASA Astrophysics Data System (ADS)

    Stradi, Daniele; Martinez, Umberto; Blom, Anders; Brandbyge, Mads; Stokbro, Kurt

    2016-04-01

    Metal-semiconductor contacts are a pillar of modern semiconductor technology. Historically, their microscopic understanding has been hampered by the inability of traditional analytical and numerical methods to fully capture the complex physics governing their operating principles. Here we introduce an atomistic approach based on density functional theory and nonequilibrium Green's function, which includes all the relevant ingredients required to model realistic metal-semiconductor interfaces and allows for a direct comparison between theory and experiments via I -Vbias curve simulations. We apply this method to characterize an Ag/Si interface relevant for photovoltaic applications and study the rectifying-to-Ohmic transition as a function of the semiconductor doping. We also demonstrate that the standard "activation energy" method for the analysis of I -Vbias data might be inaccurate for nonideal interfaces as it neglects electron tunneling, and that finite-size atomistic models have problems in describing these interfaces in the presence of doping due to a poor representation of space-charge effects. Conversely, the present method deals effectively with both issues, thus representing a valid alternative to conventional procedures for the accurate characterization of metal-semiconductor interfaces.

  1. Nanomechanoelectronic signal transduction scheme with metal-oxide-semiconductor field-effect transistor-embedded microcantilevers

    NASA Astrophysics Data System (ADS)

    Tark, Soo-Hyun; Srivastava, Arvind; Chou, Stanley; Shekhawat, Gajendra; Dravid, Vinayak P.

    2009-03-01

    We explore various metal-oxide-semiconductor field-effect transistor (MOSFET)-embedded microcantilever designs to assess their performance as an efficient nanomechanoelectronic signal transduction platform for monitoring deflection in microcantilever-based phenomena such as biochemical sensing and actuation. The current-voltage characteristics of embedded MOSFETs show current noise in the nanoampere range with a large signal-to-noise ratio sufficient to provide measureable output signal. The change in drain current with cantilever deflection is consistent with the effect of stress on carrier mobility and drain current reported in previous studies, validating that the MOSFET cantilevers can directly transduce deflection of a microcantilever into reproducible change in electrical signal.

  2. Strain-induced semiconductor to metal transition in few-layer black phosphorus from first principles

    NASA Astrophysics Data System (ADS)

    Ju, Weiwei; Li, Tongwei; Wang, Hui; Yong, Yongliang; Sun, Jinfeng

    2015-02-01

    Electronic structures of few-layer black phosphorus (BP) with biaxial strain are investigated by using methods based on density functional theory. The compressive strain can result in a semiconductor-metal transition (SMT) for few-layer BP, whereas the tensile strain only affects the band gaps. The critical compressive strain for the SMT is larger in the thinner 2D BP. The band structures and charge densities are calculated in order to provide imperative understanding on SMT. With the compressive strain, the energy of conduction bands moves down, which is induced by the structural change and is essential reason of SMT.

  3. Defect-induced semiconductor to metal transition in graphene monoxide.

    PubMed

    Woo, Jungwook; Yun, Kyung-Han; Cho, Sung Beom; Chung, Yong-Chae

    2014-07-14

    This study investigates the influence of point defects on the geometric and electronic structure of graphene monoxide (GMO) via density functional theory calculations. In aspects of defect formation energy, GMOs with oxygen vacancies and bridge interstitial defects are more likely to form when compared to GMOs with defects such as carbon vacancies and hollow interstitial defects. It was also found that the oxygen vacancy or the hollow interstitial defect induces local tensile strain around the defective site and this strain increases the band gap energy of the defective GMO. In addition, the band gaps of GMO with carbon vacancies or bridge interstitial defects decreased mainly due to the dangling bonds, not due to the strain effect. It is noted that the dangling bond derived from the defects forms the defect-level in the band gap of GMO. The semiconductor to metal transition by the band gap change (0-0.7 eV) implies the possibility for band gap engineering of GMO by vacancies and interstitial defects. PMID:24886723

  4. Nanostructured target fabrication with metal and semiconductor nanoparticles

    NASA Astrophysics Data System (ADS)

    Barberio, M.; Antici, P.

    2015-10-01

    The development of ultra-intense high-energy (≫1 J) short (<1 ps) laser pulses in the last decade has enabled the acceleration of high-energy short-pulse proton beams. A key parameter for enhancing the acceleration regime is the laser-to-target absorption, which heavily depends on the target structure and material. In this work, we present the realization of a nanostructured target with a sub-laser wavelength nano-layer in the front surface as a possible candidate for improving the absorption. The nanostructured film was realized by a simpler and cheaper method than using conventional lithographic techniques: A colloidal solution of metallic or semiconductor nanoparticles (NPs) was produced by laser ablation and, after a heating and sonication process, was spray-dried on the front surface of an aluminum target. The obtained nanostructured film with a thickness of 1 μm appears, at morphological and chemical analysis, uniformly nanostructured and distributed on the target surface without the presence of oxides or external contaminants. Finally, the size of the NPs can be tuned from tens to hundreds of nanometers simply by varying the growth parameters (i.e., irradiation time, fluence, and laser beam energy).

  5. Oxide charge accumulation in metal oxide semiconductor devices during irradiation

    SciTech Connect

    Lee, D. ); Chan, C. )

    1991-05-15

    An analysis of a simple physical model for radiation induced oxide charge accumulation in the SiO{sub 2} layer of metal oxide semiconductor (MOS) structure has been developed. The model assumes that both electron and hole traps exist in the oxide layer. These traps can capture electrons as well as holes during irradiation. Using this model, final oxide charge distributions in the oxide layer of MOS capacitors exposed to a total dose radiation can be predicted. The resulting charge distribution is calculated to yield the midgap voltage shifts as functions of total dose, bias voltage, and oxide thickness. The results are shown to agree well with the experimental data. Furthermore, the model successfully analyzes the radiation-induced negative oxide charge distribution in an ion-implanted, radiation-hard MOS capacitor. These negative oxide charge distributions not only partially compensate the effects of trapped positive oxide charges but also reduced the density of positive oxide charges trapped near the Si/SiO{sub 2} interface. We found the reduction of the positive oxide charge density near the Si/SiO{sub 2} interface is due to internal electric field modification in the oxide layer.

  6. Defect-induced semiconductor to metal transition in graphene monoxide.

    PubMed

    Woo, Jungwook; Yun, Kyung-Han; Cho, Sung Beom; Chung, Yong-Chae

    2014-07-14

    This study investigates the influence of point defects on the geometric and electronic structure of graphene monoxide (GMO) via density functional theory calculations. In aspects of defect formation energy, GMOs with oxygen vacancies and bridge interstitial defects are more likely to form when compared to GMOs with defects such as carbon vacancies and hollow interstitial defects. It was also found that the oxygen vacancy or the hollow interstitial defect induces local tensile strain around the defective site and this strain increases the band gap energy of the defective GMO. In addition, the band gaps of GMO with carbon vacancies or bridge interstitial defects decreased mainly due to the dangling bonds, not due to the strain effect. It is noted that the dangling bond derived from the defects forms the defect-level in the band gap of GMO. The semiconductor to metal transition by the band gap change (0-0.7 eV) implies the possibility for band gap engineering of GMO by vacancies and interstitial defects.

  7. Semiconductor-Nanowire-Based Superconducting Qubit.

    PubMed

    Larsen, T W; Petersson, K D; Kuemmeth, F; Jespersen, T S; Krogstrup, P; Nygård, J; Marcus, C M

    2015-09-18

    We introduce a hybrid qubit based on a semiconductor nanowire with an epitaxially grown superconductor layer. Josephson energy of the transmonlike device ("gatemon") is controlled by an electrostatic gate that depletes carriers in a semiconducting weak link region. Strong coupling to an on-chip microwave cavity and coherent qubit control via gate voltage pulses is demonstrated, yielding reasonably long relaxation times (~0.8 μs) and dephasing times (~1 μs), exceeding gate operation times by 2 orders of magnitude, in these first-generation devices. Because qubit control relies on voltages rather than fluxes, dissipation in resistive control lines is reduced, screening reduces cross talk, and the absence of flux control allows operation in a magnetic field, relevant for topological quantum information. PMID:26431009

  8. Semiconductor-Nanowire-Based Superconducting Qubit

    NASA Astrophysics Data System (ADS)

    Larsen, T. W.; Petersson, K. D.; Kuemmeth, F.; Jespersen, T. S.; Krogstrup, P.; Nygârd, J.; Marcus, C. M.

    2015-09-01

    We introduce a hybrid qubit based on a semiconductor nanowire with an epitaxially grown superconductor layer. Josephson energy of the transmonlike device ("gatemon") is controlled by an electrostatic gate that depletes carriers in a semiconducting weak link region. Strong coupling to an on-chip microwave cavity and coherent qubit control via gate voltage pulses is demonstrated, yielding reasonably long relaxation times (˜0.8 μ s ) and dephasing times (˜1 μ s ), exceeding gate operation times by 2 orders of magnitude, in these first-generation devices. Because qubit control relies on voltages rather than fluxes, dissipation in resistive control lines is reduced, screening reduces cross talk, and the absence of flux control allows operation in a magnetic field, relevant for topological quantum information.

  9. Ultraviolet random lasing from asymmetrically contacted MgZnO metal-semiconductor-metal device

    SciTech Connect

    Morshed, Muhammad M.; Suja, Mohammad; Zuo, Zheng; Liu, Jianlin

    2014-11-24

    Nitrogen-doped Mg{sub 0.12}Zn{sub 0.88}O nanocrystalline thin film was grown on c-plane sapphire substrate. Asymmetric Ni/Au and Ti/Au Schottky contacts and symmetric Ni/Au contacts were deposited on the thin film to form metal-semiconductor-metal (MSM) laser devices. Current-voltage, photocurrent, and electroluminescence characterizations were performed. Evident random lasing with a threshold current of ∼36 mA is demonstrated only from the asymmetric MSM device. Random lasing peaks are mostly distributed between 340 and 360 nm and an output power of 15 nW is measured at 43 mA injection current. The electron affinity difference between the contact metal and Mg{sub 0.12}Zn{sub 0.88}O:N layer plays an important role for electron and hole injection and subsequent stimulated random lasing.

  10. Role of the dielectric for the charging dynamics of the dielectric/barrier interface in AlGaN/GaN based metal-insulator-semiconductor structures under forward gate bias stress

    SciTech Connect

    Lagger, P.; Steinschifter, P.; Reiner, M.; Stadtmüller, M.; Denifl, G.; Ostermaier, C.; Naumann, A.; Müller, J.; Wilde, L.; Sundqvist, J.; Pogany, D.

    2014-07-21

    The high density of defect states at the dielectric/III-N interface in GaN based metal-insulator-semiconductor structures causes tremendous threshold voltage drifts, ΔV{sub th}, under forward gate bias conditions. A comprehensive study on different dielectric materials, as well as varying dielectric thickness t{sub D} and barrier thickness t{sub B}, is performed using capacitance-voltage analysis. It is revealed that the density of trapped electrons, ΔN{sub it}, scales with the dielectric capacitance under spill-over conditions, i.e., the accumulation of a second electron channel at the dielectric/AlGaN barrier interface. Hence, the density of trapped electrons is defined by the charging of the dielectric capacitance. The scaling behavior of ΔN{sub it} is explained universally by the density of accumulated electrons at the dielectric/III-N interface under spill-over conditions. We conclude that the overall density of interface defects is higher than what can be electrically measured, due to limits set by dielectric breakdown. These findings have a significant impact on the correct interpretation of threshold voltage drift data and are of relevance for the development of normally off and normally on III-N/GaN high electron mobility transistors with gate insulation.

  11. Metallization and packaging of compound semiconductor devices at Sandia National Laboratories

    SciTech Connect

    Seigal, P.K.; Armendariz, M.G.; Rieger, D.J.; Lear, K.L.; Sullivan, C.T.

    1996-11-01

    Recent advances in compound semiconductor technology utilize a variety of metal thin films fabricated by thermal and electron-beam evaporation, and electroplating. An overview of metal processes used by Sandia`s Compound Semiconductor Research Laboratory is presented. Descriptions of electrical n-type and p-type ohmic contact alloys, interconnect metal, and metal layers specifically included for packaging requirements are addressed. Several illustrations of devices incorporating gold plated air bridges are included. ``Back-end`` processes such as flip-chip under bump metallurgy with fluxless solder reflow and plated solder processes are mentioned as current research areas.

  12. GaN metal-semiconductor-metal UV sensor with multi-layer graphene as Schottky electrodes

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Ju; Kang, Sang-Bum; Cha, Hyeon-Gu; Won, Chul-Ho; Hong, Seul-Ki; Cho, Byung-Jin; Park, Hongsik; Lee, Jung-Hee; Hahm, Sung-Ho

    2015-06-01

    We fabricated a GaN-based metal-semiconductor-metal (MSM)-type UV sensor using a multilayer graphene as transparent Schottky electrodes. The fabricated GaN MSM UV sensor showed a high photo-to-dark current contrast ratio of 3.9 × 105 and a UV-to-visible rejection ratio of 1.8 × 103 at 7 V. The as-fabricated GaN MSM UV sensor with graphene electrodes has a low bias dependence of maximum photoresponsivity and a noise-like response at a visible wavelength in the 500 nm region. These problems were successfully solved by treatment with a buffered oxide etcher (BOE), and the photoresponse characteristics of the fabricated GaN MSM UV sensor after the treatment were better than those before the treatment.

  13. Effects of series and parallel resistances on the C-V characteristics of silicon-based metal oxide semiconductor (MOS) devices

    NASA Astrophysics Data System (ADS)

    Omar, Rejaiba; Mohamed, Ben Amar; Adel, Matoussi

    2015-04-01

    This paper investigates the electrical behavior of the Al/SiO2/Si MOS structure. We have used the complex admittance method to develop an analytical model of total capacitance applied to our proposed equivalent circuit. The charge density, surface potential, semiconductor capacitance, flatband and threshold voltages have been determined by resolving the Poisson transport equations. This modeling is used to predict in particular the effects of frequency, parallel and series resistance on the capacitance-voltage characteristic. Results show that the variation of both frequency and parallel resistance causes strong dispersion of the C-V curves in the inversion regime. It also reveals that the series resistance influences the shape of C-V curves essentially in accumulation and inversion modes. A significant decrease of the accumulation capacitance is observed when R s increases in the range 200-50000 Ω. The degradation of the C-V magnitude is found to be more pronounced when the series resistance depends on the substrate doping density. When R s varies in the range 100 Ω-50 kΩ, it shows a decrease in the flatband voltage from -1.40 to -1.26 V and an increase in the threshold voltage negatively from -0.28 to -0.74 V, respectively. Good agreement has been observed between simulated and measured C-V curves obtained at high frequency. This study is necessary to control the adverse effects that disrupt the operation of the MOS structure in different regimes and optimizes the efficiency of such electronic device before manufacturing.

  14. Synthesis of a nano-silver metal ink for use in thick conductive film fabrication applied on a semiconductor package.

    PubMed

    Yung, Lai Chin; Fei, Cheong Choke; Mandeep, Js; Binti Abdullah, Huda; Wee, Lai Khin

    2014-01-01

    The success of printing technology in the electronics industry primarily depends on the availability of metal printing ink. Various types of commercially available metal ink are widely used in different industries such as the solar cell, radio frequency identification (RFID) and light emitting diode (LED) industries, with limited usage in semiconductor packaging. The use of printed ink in semiconductor IC packaging is limited by several factors such as poor electrical performance and mechanical strength. Poor adhesion of the printed metal track to the epoxy molding compound is another critical factor that has caused a decline in interest in the application of printing technology to the semiconductor industry. In this study, two different groups of adhesion promoters, based on metal and polymer groups, were used to promote adhesion between the printed ink and the epoxy molding substrate. The experimental data show that silver ink with a metal oxide adhesion promoter adheres better than silver ink with a polymer adhesion promoter. This result can be explained by the hydroxyl bonding between the metal oxide promoter and the silane grouping agent on the epoxy substrate, which contributes a greater adhesion strength compared to the polymer adhesion promoter. Hypotheses of the physical and chemical functions of both adhesion promoters are described in detail.

  15. Synthesis of a Nano-Silver Metal Ink for Use in Thick Conductive Film Fabrication Applied on a Semiconductor Package

    PubMed Central

    Yung, Lai Chin; Fei, Cheong Choke; Mandeep, JS; Binti Abdullah, Huda; Wee, Lai Khin

    2014-01-01

    The success of printing technology in the electronics industry primarily depends on the availability of metal printing ink. Various types of commercially available metal ink are widely used in different industries such as the solar cell, radio frequency identification (RFID) and light emitting diode (LED) industries, with limited usage in semiconductor packaging. The use of printed ink in semiconductor IC packaging is limited by several factors such as poor electrical performance and mechanical strength. Poor adhesion of the printed metal track to the epoxy molding compound is another critical factor that has caused a decline in interest in the application of printing technology to the semiconductor industry. In this study, two different groups of adhesion promoters, based on metal and polymer groups, were used to promote adhesion between the printed ink and the epoxy molding substrate. The experimental data show that silver ink with a metal oxide adhesion promoter adheres better than silver ink with a polymer adhesion promoter. This result can be explained by the hydroxyl bonding between the metal oxide promoter and the silane grouping agent on the epoxy substrate, which contributes a greater adhesion strength compared to the polymer adhesion promoter. Hypotheses of the physical and chemical functions of both adhesion promoters are described in detail. PMID:24830317

  16. Structural and optical properties of silicon metal-oxide-semiconductor light-emitting devices

    NASA Astrophysics Data System (ADS)

    Xu, Kaikai; Zhang, Zhengyuan; Zhang, Zhengping

    2016-01-01

    A silicon p-channel metal oxide semiconductor field-effect transistor (Si-PMOSFET) that is fully compatible with the standard complementary metal oxide semiconductor process is investigated based on the phenomenon of optical radiation observed in the reverse-biased p-n junction in the Si-PMOSFET device. The device can be used either as a two-terminal silicon diode light-emitting device (Si-diode LED) or as a three-terminal silicon gate-controlled diode light-emitting device (Si gate-controlled diode LED). It is seen that the three-terminal operating mode could provide much higher power transfer efficiency than the two-terminal operating mode. A new solution based on the concept of a theoretical quantum efficiency model combined with calculated results is proposed for interpreting the evidence of light intensity reduction at high operating voltages. The Si-LED that can be easily integrated into CMOS fabrication process is an important step toward optical interconnects.

  17. Density functional studies on wurtzite piezotronic transistors: influence of different semiconductors and metals on piezoelectric charge distribution and Schottky barrier

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Zhang, Aihua; Zhang, Yan; Wang, Zhong Lin

    2016-05-01

    The mechanical-electrical coupling properties of piezoelectric semiconductors endow these materials with novel device applications in microelectromechanical systems, sensors, human-computer interfaces, etc. When an applied strain is exerted on a piezoelectric semiconductor, piezoelectric charges are generated at the surface or interface of the semiconductor, which can be utilized to control the electronic transport characteristics. This is the fundamental working mechanism of piezotronic devices, called the piezotronic effect. In the present report, a series of piezotronic transistors composed of different electrode metals and semiconductors is examined using density functional theory calculation. It is found that the influence of semiconductors on the piezotronic effect is larger than the impact of metals, and GaN and CdS are promising candidates for piezotronic and piezo-phototronic devices, respectively. The width of the piezoelectric charge distribution obtained in the present study can be used as a parameter in classical finite-element-method based simulations, which provide guidance on designing high-performance piezotronic devices.

  18. Density functional studies on wurtzite piezotronic transistors: influence of different semiconductors and metals on piezoelectric charge distribution and Schottky barrier.

    PubMed

    Liu, Wei; Zhang, Aihua; Zhang, Yan; Wang, Zhong Lin

    2016-05-20

    The mechanical-electrical coupling properties of piezoelectric semiconductors endow these materials with novel device applications in microelectromechanical systems, sensors, human-computer interfaces, etc. When an applied strain is exerted on a piezoelectric semiconductor, piezoelectric charges are generated at the surface or interface of the semiconductor, which can be utilized to control the electronic transport characteristics. This is the fundamental working mechanism of piezotronic devices, called the piezotronic effect. In the present report, a series of piezotronic transistors composed of different electrode metals and semiconductors is examined using density functional theory calculation. It is found that the influence of semiconductors on the piezotronic effect is larger than the impact of metals, and GaN and CdS are promising candidates for piezotronic and piezo-phototronic devices, respectively. The width of the piezoelectric charge distribution obtained in the present study can be used as a parameter in classical finite-element-method based simulations, which provide guidance on designing high-performance piezotronic devices. PMID:27053577

  19. Density functional studies on wurtzite piezotronic transistors: influence of different semiconductors and metals on piezoelectric charge distribution and Schottky barrier.

    PubMed

    Liu, Wei; Zhang, Aihua; Zhang, Yan; Wang, Zhong Lin

    2016-05-20

    The mechanical-electrical coupling properties of piezoelectric semiconductors endow these materials with novel device applications in microelectromechanical systems, sensors, human-computer interfaces, etc. When an applied strain is exerted on a piezoelectric semiconductor, piezoelectric charges are generated at the surface or interface of the semiconductor, which can be utilized to control the electronic transport characteristics. This is the fundamental working mechanism of piezotronic devices, called the piezotronic effect. In the present report, a series of piezotronic transistors composed of different electrode metals and semiconductors is examined using density functional theory calculation. It is found that the influence of semiconductors on the piezotronic effect is larger than the impact of metals, and GaN and CdS are promising candidates for piezotronic and piezo-phototronic devices, respectively. The width of the piezoelectric charge distribution obtained in the present study can be used as a parameter in classical finite-element-method based simulations, which provide guidance on designing high-performance piezotronic devices.

  20. Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures

    PubMed Central

    Gu, Haoshuang; Wang, Zhao; Hu, Yongming

    2012-01-01

    Recently, the hydrogen gas sensing properties of semiconductor oxide (SMO) nanostructures have been widely investigated. In this article, we provide a comprehensive review of the research progress in the last five years concerning hydrogen gas sensors based on SMO thin film and one-dimensional (1D) nanostructures. The hydrogen sensing mechanism of SMO nanostructures and some critical issues are discussed. Doping, noble metal-decoration, heterojunctions and size reduction have been investigated and proved to be effective methods for improving the sensing performance of SMO thin films and 1D nanostructures. The effect on the hydrogen response of SMO thin films and 1D nanostructures of grain boundary and crystal orientation, as well as the sensor architecture, including electrode size and nanojunctions have also been studied. Finally, we also discuss some challenges for the future applications of SMO nanostructured hydrogen sensors. PMID:22778599

  1. Recent progress in III-V based ferromagnetic semiconductors: Band structure, Fermi level, and tunneling transport

    SciTech Connect

    Tanaka, Masaaki; Ohya, Shinobu Nam Hai, Pham

    2014-03-15

    Spin-based electronics or spintronics is an emerging field, in which we try to utilize spin degrees of freedom as well as charge transport in materials and devices. While metal-based spin-devices, such as magnetic-field sensors and magnetoresistive random access memory using giant magnetoresistance and tunneling magnetoresistance, are already put to practical use, semiconductor-based spintronics has greater potential for expansion because of good compatibility with existing semiconductor technology. Many semiconductor-based spintronics devices with useful functionalities have been proposed and explored so far. To realize those devices and functionalities, we definitely need appropriate materials which have both the properties of semiconductors and ferromagnets. Ferromagnetic semiconductors (FMSs), which are alloy semiconductors containing magnetic atoms such as Mn and Fe, are one of the most promising classes of materials for this purpose and thus have been intensively studied for the past two decades. Here, we review the recent progress in the studies of the most prototypical III-V based FMS, p-type (GaMn)As and its heterostructures with focus on tunneling transport, Fermi level, and bandstructure. Furthermore, we cover the properties of a new n-type FMS, (In,Fe)As, which shows electron-induced ferromagnetism. These FMS materials having zinc-blende crystal structure show excellent compatibility with well-developed III-V heterostructures and devices.

  2. Quantum dot-doped porous silicon metal-semiconductor metal photodetector.

    PubMed

    Chou, Chia-Man; Cho, Hsing-Tzu; Hsiao, Vincent K S; Yong, Ken-Tye; Law, Wing-Cheung

    2012-06-06

    In this paper, we report on the enhancement of spectral photoresponsivity of porous silicon metal-semiconductor metal (PS-MSM) photodetector embedded with colloidal quantum dots (QDs) inside the pore layer. The detection efficiency of QDs/PS hybrid-MSM photodetector was enhanced by five times larger than that of the undoped PS-MSM photodetector. The bandgap alignment between PS (approximately 1.77 eV) and QDs (approximately 1.91 eV) facilitates the photoinduced electron transfer from QDs to PS whereby enhancing the photoresponsivity. We also showed that the photoresponsitivity of QD/PS hybrid-MSM photodetector depends on the number of layer coatings of QDs and the pore sizes of PS.

  3. Equivalent circuit modeling of metal-semiconductor-metal photodiodes with transparent conductor electrodes

    NASA Astrophysics Data System (ADS)

    Rommel, Sean L.; Erby, David N.; Gao, Wei; Berger, Paul R.; Zydzik, George J.; Rhodes, W. W.; O'Bryan, H. M.; Sivco, Deborah L.; Cho, Alfred Y.

    1997-04-01

    Metal-semiconductor-metal (MSM) photodiodes with electrodes fabricated from the transparent conductor cadmium tin oxide (CTO) have been shown to double photoresponsivity. Their bandwidths, however, are significantly lower than those of MSMs fabricated with standard Ti/Au contacts. Though MSMs are generally believed to be limited by the transit time of electrons, it is possible the larger resistivity of CTO has become a significant factor, making the MSMs RC time constant limited instead. Previous models of MSMs only account for one of the two back-to-back Schottky diodes. A new model which takes into account both the forward and reverse biased junctions has been developed from the small signal model of a Schottky diode. This new model was fit to data obtained from S-parameter measurements, and incorporates both the transit time response and RC time constant response.

  4. DOE/BES/NSET annual report on growth of metal and semiconductor nanostructures using localized photocatalysts.

    SciTech Connect

    Haddad, Raid Edward; Brinker, C. Jeffrey; Shelnutt, John Allen; Yang, Yi; Nuttall, H. Eric; Watt, Richard K.; Singl, Anup K.; Challa, Sivakumar R.; Wang, Zhongchun; van Swol, Frank B.; Pereira, Eulalia; Qiu, Yan; Jiang, Ying-Bing; Xu, Huifang; Medforth, Craig J.; Song, Yujiang

    2003-10-01

    Our overall goal is to understand and develop a novel light-driven approach to the controlled growth of unique metal and semiconductor nanostructures and nanomaterials. In this photochemical process, bio-inspired porphyrin-based photocatalysts reduce metal salts in aqueous solutions at ambient temperatures to provide metal nucleation and growth centers. Photocatalyst molecules are pre-positioned at the nanoscale to control the location and morphology of the metal nanostructures grown. Self-assembly, chemical confinement, and molecular templating are some of the methods used for nanoscale positioning of the photocatalyst molecules. When exposed to light, the photocatalyst molecule repeatedly reduces metal ions from solution, leading to deposition and the synthesis of the new nanostructures and nanostructured materials. Studies of the photocatalytic growth process and the resulting nanostructures address a number of fundamental biological, chemical, and environmental issues and draw on the combined nanoscience characterization and multi-scale simulation capabilities of the new DOE Center for Integrated Nanotechnologies, the University of New Mexico, and Sandia National Laboratories. Our main goals are to elucidate the processes involved in the photocatalytic growth of metal nanomaterials and provide the scientific basis for controlled synthesis. The nanomaterials resulting from these studies have applications in nanoelectronics, photonics, sensors, catalysis, and micromechanical systems. The proposed nanoscience concentrates on three thematic research areas: (1) the creation of nanoscale structures for realizing novel phenomena and quantum control, (2) understanding nanoscale processes in the environment, and (3) the development and use of multi-scale, multi-phenomena theory and simulation. Our goals for FY03 have been to understand the role of photocatalysis in the synthesis of dendritic platinum nanostructures grown from aqueous surfactant solutions under ambient

  5. Electrostatic analysis of n-doped SrTiO{sub 3} metal-insulator-semiconductor systems

    SciTech Connect

    Kamerbeek, A. M. Banerjee, T.; Hueting, R. J. E.

    2015-12-14

    Electron doped SrTiO{sub 3}, a complex-oxide semiconductor, possesses novel electronic properties due to its strong temperature and electric-field dependent permittivity. Due to the high permittivity, metal/n-SrTiO{sub 3} systems show reasonably strong rectification even when SrTiO{sub 3} is degenerately doped. Our experiments show that the insertion of a sub nanometer layer of AlO{sub x} in between the metal and n-SrTiO{sub 3} interface leads to a dramatic reduction of the Schottky barrier height (from around 0.90 V to 0.25 V). This reduces the interface resistivity by 4 orders of magnitude. The derived electrostatic analysis of the metal-insulator-semiconductor (n-SrTiO{sub 3}) system is consistent with this trend. When compared with a Si based MIS system, the change is much larger and mainly governed by the high permittivity of SrTiO{sub 3}. The non-linear permittivity of n-SrTiO{sub 3} leads to unconventional properties such as a temperature dependent surface potential non-existent for semiconductors with linear permittivity such as Si. This allows tuning of the interfacial band alignment, and consequently the Schottky barrier height, in a much more drastic way than in conventional semiconductors.

  6. Assembling non-ferromagnetic materials to ferromagnetic architectures using metal-semiconductor interfaces

    NASA Astrophysics Data System (ADS)

    Ma, Ji; Liu, Chunting; Chen, Kezheng

    2016-09-01

    In this work, a facile and versatile solution route was used to fabricate room-temperature ferromagnetic fish bone-like, pteridophyte-like, poplar flower-like, cotton-like Cu@Cu2O architectures and golfball-like Cu@ZnO architecture. The ferromagnetic origins in these architectures were found to be around metal-semiconductor interfaces and defects, and the root cause for their ferromagnetism lay in charge transfer processes from metal Cu to semiconductors Cu2O and ZnO. Owing to different metallization at their interfaces, these architectures exhibited different ferromagnetic behaviors, including coercivity, saturation magnetization as well as magnetic interactions.

  7. Assembling non-ferromagnetic materials to ferromagnetic architectures using metal-semiconductor interfaces

    PubMed Central

    Ma, Ji; Liu, Chunting; Chen, Kezheng

    2016-01-01

    In this work, a facile and versatile solution route was used to fabricate room-temperature ferromagnetic fish bone-like, pteridophyte-like, poplar flower-like, cotton-like Cu@Cu2O architectures and golfball-like Cu@ZnO architecture. The ferromagnetic origins in these architectures were found to be around metal-semiconductor interfaces and defects, and the root cause for their ferromagnetism lay in charge transfer processes from metal Cu to semiconductors Cu2O and ZnO. Owing to different metallization at their interfaces, these architectures exhibited different ferromagnetic behaviors, including coercivity, saturation magnetization as well as magnetic interactions. PMID:27680286

  8. Photoluminescence mechanisms of metallic Zn nanospheres, semiconducting ZnO nanoballoons, and metal-semiconductor Zn/ZnO nanospheres.

    PubMed

    Lin, Jin-Han; Patil, Ranjit A; Devan, Rupesh S; Liu, Zhe-An; Wang, Yi-Ping; Ho, Ching-Hwa; Liou, Yung; Ma, Yuan-Ron

    2014-11-10

    We utilized a thermal radiation method to synthesize semiconducting hollow ZnO nanoballoons and metal-semiconductor concentric solid Zn/ZnO nanospheres from metallic solid Zn nanospheres. The chemical properties, crystalline structures, and photoluminescence mechanisms for the metallic solid Zn nanospheres, semiconducting hollow ZnO nanoballoons, and metal-semiconductor concentric solid Zn/ZnO nanospheres are presented. The PL emissions of the metallic Zn solid nanospheres are mainly dependent on the electron transitions between the Fermi level (E(F)) and the 3d band, while those of the semiconducting hollow ZnO nanoballoons are ascribed to the near band edge (NBE) and deep level electron transitions. The PL emissions of the metal-semiconductor concentric solid Zn/ZnO nanospheres are attributed to the electron transitions across the metal-semiconductor junction, from the E(F) to the valence and 3d bands, and from the interface states to the valence band. All three nanostructures are excellent room-temperature light emitters.

  9. Irradiation effects of graphene-enhanced gallium nitride (GaN) metal-semiconductor-metal (MSM) ultraviolet photodetectors

    NASA Astrophysics Data System (ADS)

    Chiamori, Heather C.; Miller, Ruth; Suria, Ateeq; Broad, Nicholas; Senesky, Debbie G.

    2015-05-01

    Ultraviolet (UV) photodetectors are used for applications such as flame detection, space navigation, biomedical and environmental monitoring. Robust operation within large ranges of temperatures, radiation, salinity and/or corrosive chemicals require sensor materials with the ability to withstand and function reliably within these extreme harsh environments. For example, spacecraft can utilize a sun sensor (light-based sensor) to assist with determination of orientation and may be exposed to both ionizing radiation and extreme temperature swings during operation. Gallium nitride (GaN), a wide bandgap semiconductor material, has material properties enabling visible-blindness, tunable cutoff wavelength selection based on ternary alloy mole fraction, high current density, thermal/chemical stability and high radiation tolerance due to the strength of the chemical bond. Graphene, with outstanding electrical, optical and mechanical properties and a flat absorption spectrum from 300 to 2,500 nm, has potential use as a transparent conductor for GaN-based metal-semiconductor-metal (MSM) photodetectors. Here, graphene-enhanced MSM UV photodetectors are fabricated with transparent and conductive graphene interdigitated electrodes on thin film GaN-on-sapphire substrates serving as back-to-back Schottky contacts. We report on the irradiation response of graphene/GaN-based MSM UV photodetectors up to 750 krad total ionizing dose (TID) then tested under dark and UV light (365 nm) conditions. In addition, based on current-voltage measurements from 75 krad to 750 krad TID, calculated photodetector responsivity values change slightly by 25% and 11% at -5 V and -2 V, respectively. These initial findings suggest that graphene/GaN MSM UV photodetectors could potentially be engineered to reliably operate within radiation environments.

  10. Nonvolatile and tunable switching of lateral photo-voltage triggered by laser and electric pulse in metal dusted metal-oxide-semiconductor structures.

    PubMed

    Zhou, Peiqi; Gan, Zhikai; Huang, Xu; Mei, Chunlian; Huang, Meizhen; Xia, Yuxing; Wang, Hui

    2016-01-01

    Owing to the innate stabilization of built-in potential in p-n junction or metal-oxide-semiconductor structure, the sensitivity and linearity of most lateral photovoltaic effect (LPE) devices is always fixed after fabrication. Here we report a nonvolatile and tunable switching effect of lateral photo-voltage (LPV) in Cu dusted ultrathin metal-oxide-semiconductor structure. With the stimulation of electric pulse and local illumination, the sensitivity and linearity of LPV can be adjusted up and down in a nonvolatile manner. This phenomenon is attributed to a controllable change of the Schottky barrier formed between the metal layer and silicon substrate, including the consequent change of film resistivity. This work may widely improve the performance of existing LPE-based devices and suggest new applications for LPE in other areas. PMID:27535351

  11. Nonvolatile and tunable switching of lateral photo-voltage triggered by laser and electric pulse in metal dusted metal-oxide-semiconductor structures

    PubMed Central

    Zhou, Peiqi; Gan, Zhikai; Huang, Xu; Mei, Chunlian; Huang, Meizhen; Xia, Yuxing; Wang, Hui

    2016-01-01

    Owing to the innate stabilization of built-in potential in p–n junction or metal-oxide-semiconductor structure, the sensitivity and linearity of most lateral photovoltaic effect (LPE) devices is always fixed after fabrication. Here we report a nonvolatile and tunable switching effect of lateral photo-voltage (LPV) in Cu dusted ultrathin metal-oxide-semiconductor structure. With the stimulation of electric pulse and local illumination, the sensitivity and linearity of LPV can be adjusted up and down in a nonvolatile manner. This phenomenon is attributed to a controllable change of the Schottky barrier formed between the metal layer and silicon substrate, including the consequent change of film resistivity. This work may widely improve the performance of existing LPE-based devices and suggest new applications for LPE in other areas. PMID:27535351

  12. Nonvolatile and tunable switching of lateral photo-voltage triggered by laser and electric pulse in metal dusted metal-oxide-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Zhou, Peiqi; Gan, Zhikai; Huang, Xu; Mei, Chunlian; Huang, Meizhen; Xia, Yuxing; Wang, Hui

    2016-08-01

    Owing to the innate stabilization of built-in potential in p–n junction or metal-oxide-semiconductor structure, the sensitivity and linearity of most lateral photovoltaic effect (LPE) devices is always fixed after fabrication. Here we report a nonvolatile and tunable switching effect of lateral photo-voltage (LPV) in Cu dusted ultrathin metal-oxide-semiconductor structure. With the stimulation of electric pulse and local illumination, the sensitivity and linearity of LPV can be adjusted up and down in a nonvolatile manner. This phenomenon is attributed to a controllable change of the Schottky barrier formed between the metal layer and silicon substrate, including the consequent change of film resistivity. This work may widely improve the performance of existing LPE-based devices and suggest new applications for LPE in other areas.

  13. Nonvolatile and tunable switching of lateral photo-voltage triggered by laser and electric pulse in metal dusted metal-oxide-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Zhou, Peiqi; Gan, Zhikai; Huang, Xu; Mei, Chunlian; Huang, Meizhen; Xia, Yuxing; Wang, Hui

    2016-08-01

    Owing to the innate stabilization of built-in potential in p-n junction or metal-oxide-semiconductor structure, the sensitivity and linearity of most lateral photovoltaic effect (LPE) devices is always fixed after fabrication. Here we report a nonvolatile and tunable switching effect of lateral photo-voltage (LPV) in Cu dusted ultrathin metal-oxide-semiconductor structure. With the stimulation of electric pulse and local illumination, the sensitivity and linearity of LPV can be adjusted up and down in a nonvolatile manner. This phenomenon is attributed to a controllable change of the Schottky barrier formed between the metal layer and silicon substrate, including the consequent change of film resistivity. This work may widely improve the performance of existing LPE-based devices and suggest new applications for LPE in other areas.

  14. Optimal metal domain size for photocatalysis with hybrid semiconductor-metal nanorods

    PubMed Central

    Ben-Shahar, Yuval; Scotognella, Francesco; Kriegel, Ilka; Moretti, Luca; Cerullo, Giulio; Rabani, Eran; Banin, Uri

    2016-01-01

    Semiconductor-metal hybrid nanostructures offer a highly controllable platform for light-induced charge separation, with direct relevance for their implementation in photocatalysis. Advances in the synthesis allow for control over the size, shape and morphology, providing tunability of the optical and electronic properties. A critical determining factor of the photocatalytic cycle is the metal domain characteristics and in particular its size, a subject that lacks deep understanding. Here, using a well-defined model system of cadmium sulfide-gold nanorods, we address the effect of the gold tip size on the photocatalytic function, including the charge transfer dynamics and hydrogen production efficiency. A combination of transient absorption, hydrogen evolution kinetics and theoretical modelling reveal a non-monotonic behaviour with size of the gold tip, leading to an optimal metal domain size for the most efficient photocatalysis. We show that this results from the size-dependent interplay of the metal domain charging, the relative band-alignments, and the resulting kinetics. PMID:26783194

  15. Optimal metal domain size for photocatalysis with hybrid semiconductor-metal nanorods

    NASA Astrophysics Data System (ADS)

    Ben-Shahar, Yuval; Scotognella, Francesco; Kriegel, Ilka; Moretti, Luca; Cerullo, Giulio; Rabani, Eran; Banin, Uri

    2016-01-01

    Semiconductor-metal hybrid nanostructures offer a highly controllable platform for light-induced charge separation, with direct relevance for their implementation in photocatalysis. Advances in the synthesis allow for control over the size, shape and morphology, providing tunability of the optical and electronic properties. A critical determining factor of the photocatalytic cycle is the metal domain characteristics and in particular its size, a subject that lacks deep understanding. Here, using a well-defined model system of cadmium sulfide-gold nanorods, we address the effect of the gold tip size on the photocatalytic function, including the charge transfer dynamics and hydrogen production efficiency. A combination of transient absorption, hydrogen evolution kinetics and theoretical modelling reveal a non-monotonic behaviour with size of the gold tip, leading to an optimal metal domain size for the most efficient photocatalysis. We show that this results from the size-dependent interplay of the metal domain charging, the relative band-alignments, and the resulting kinetics.

  16. Optimal metal domain size for photocatalysis with hybrid semiconductor-metal nanorods.

    PubMed

    Ben-Shahar, Yuval; Scotognella, Francesco; Kriegel, Ilka; Moretti, Luca; Cerullo, Giulio; Rabani, Eran; Banin, Uri

    2016-01-01

    Semiconductor-metal hybrid nanostructures offer a highly controllable platform for light-induced charge separation, with direct relevance for their implementation in photocatalysis. Advances in the synthesis allow for control over the size, shape and morphology, providing tunability of the optical and electronic properties. A critical determining factor of the photocatalytic cycle is the metal domain characteristics and in particular its size, a subject that lacks deep understanding. Here, using a well-defined model system of cadmium sulfide-gold nanorods, we address the effect of the gold tip size on the photocatalytic function, including the charge transfer dynamics and hydrogen production efficiency. A combination of transient absorption, hydrogen evolution kinetics and theoretical modelling reveal a non-monotonic behaviour with size of the gold tip, leading to an optimal metal domain size for the most efficient photocatalysis. We show that this results from the size-dependent interplay of the metal domain charging, the relative band-alignments, and the resulting kinetics.

  17. Interface recombination feature in metal-semiconductor junction at high photo-excitation

    NASA Astrophysics Data System (ADS)

    Konin, A.

    2014-09-01

    A theory of the photo-induced electromotive force in a p-type semiconductor accounting for the energy band bending and interface recombination dependence on excitation level is developed. It is shown that at high photo-excitation the effective interface recombination velocity in the metal-semiconductor junction is negligible compared with the volume one, when the surface potential is less than its critical value. The photo-induced electromotive force value is maximal at this condition.

  18. Metal-semiconductor hybrid thin films in field-effect transistors

    SciTech Connect

    Okamura, Koshi Dehm, Simone; Hahn, Horst

    2013-12-16

    Metal-semiconductor hybrid thin films consisting of an amorphous oxide semiconductor and a number of aluminum dots in different diameters and arrangements are formed by electron beam lithography and employed for thin-film transistors (TFTs). Experimental and computational demonstrations systematically reveal that the field-effect mobility of the TFTs enhances but levels off as the dot density increases, which originates from variations of the effective channel length that strongly depends on the electric field distribution in a transistor channel.

  19. On practical charge injection at the metal/organic semiconductor interface.

    PubMed

    Kumatani, Akichika; Li, Yun; Darmawan, Peter; Minari, Takeo; Tsukagoshi, Kazuhito

    2013-01-01

    We have revealed practical charge injection at metal and organic semiconductor interface in organic field effect transistor configurations. We have developed a facile interface structure that consisted of double-layer electrodes in order to investigate the efficiency through contact metal dependence. The metal interlayer with few nanometers thickness between electrode and organic semiconductor drastically reduces the contact resistance at the interface. The improvement has clearly obtained when the interlayer is a metal with lower standard electrode potential of contact metals than large work function of the contact metals. The electrode potential also implies that the most dominant effect on the mechanism at the contact interface is induced by charge transfer. This mechanism represents a step forward towards understanding the fundamental physics of intrinsic charge injection in all organic devices.

  20. Reaction Current Phenomenon in Bifunctional Catalytic Metal-Semiconductor Nanostructures

    NASA Astrophysics Data System (ADS)

    Hashemian, Mohammad Amin

    Energy transfer processes accompany every elementary step of catalytic chemical processes on material surface including molecular adsorption and dissociation on atoms, interactions between intermediates, and desorption of reaction products from the catalyst surface. Therefore, detailed understanding of these processes on the molecular level is of great fundamental and practical interest in energy-related applications of nanomaterials. Two main mechanisms of energy transfer from adsorbed particles to a surface are known: (i) adiabatic via excitation of quantized lattice vibrations (phonons) and (ii) non-adiabatic via electronic excitations (electron/hole pairs). Electronic excitations play a key role in nanocatalysis, and it was recently shown that they can be efficiently detected and studied using Schottky-type catalytic nanostructures in the form of measureable electrical currents (chemicurrents) in an external electrical circuit. These nanostructures typically contain an electrically continuous nanocathode layers made of a catalytic metal deposited on a semiconductor substrate. The goal of this research is to study the direct observations of hot electron currents (chemicurrents) in catalytic Schottky structures, using a continuous mesh-like Pt nanofilm grown onto a mesoporous TiO2 substrate. Such devices showed qualitatively different and more diverse signal properties, compared to the earlier devices using smooth substrates, which could only be explained on the basis of bifunctionality. In particular, it was necessary to suggest that different stages of the reaction are occurring on both phases of the catalytic structure. Analysis of the signal behavior also led to discovery of a formerly unknown (very slow) mode of the oxyhydrogen reaction on the Pt/TiO2(por) system occurring at room temperature. This slow mode was producing surprisingly large stationary chemicurrents in the range 10--50 microA/cm2. Results of the chemicurrent measurements for the bifunctional

  1. Enhanced Optical Properties of Germanate and Tellurite Glasses Containing Metal or Semiconductor Nanoparticles

    PubMed Central

    de Araujo, Cid Bartolomeu; Silvério da Silva, Diego; Alves de Assumpção, Thiago Alexandre; Kassab, Luciana Reyes Pires; Mariano da Silva, Davinson

    2013-01-01

    Germanium- and tellurium-based glasses have been largely studied due to their recognized potential for photonics. In this paper, we review our recent studies that include the investigation of the Stokes and anti-Stokes photoluminescence (PL) in different glass systems containing metallic and semiconductor nanoparticles (NPs). In the case of the samples with metallic NPs, the enhanced PL was attributed to the increased local field on the rare-earth ions located in the proximity of the NPs and/or the energy transfer from the metallic NPs to the rare-earth ions. For the glasses containing silicon NPs, the PL enhancement was mainly due to the energy transfer from the NPs to the Er3+ ions. The nonlinear (NL) optical properties of PbO-GeO2 films containing gold NPs were also investigated. The experiments in the pico- and subpicosecond regimes revealed enhanced values of the NL refractive indices and large NL absorption coefficients in comparison with the films without gold NPs. The reported experiments demonstrate that germanate and tellurite glasses, having appropriate rare-earth ions doping and NPs concentration, are strong candidates for PL-based devices, all-optical switches, and optical limiting. PMID:23710138

  2. Strong coupling among semiconductor quantum dots induced by a metal nanoparticle

    PubMed Central

    2012-01-01

    Based on cavity quantum electrodynamics (QED), we investigate the light-matter interaction between surface plasmon polaritons (SPP) in a metal nanoparticle (MNP) and the excitons in semiconductor quantum dots (SQDs) in an SQD-MNP coupled system. We propose a quantum transformation method to strongly reveal the exciton energy shift and the modified decay rate of SQD as well as the coupling among SQDs. To obtain these parameters, a simple system composed of an SQD, an MNP, and a weak signal light is designed. Furthermore, we consider a model to demonstrate the coupling of two SQDs mediated by SPP field under two cases. It is shown that two SQDs can be entangled in the presence of MNP. A high concurrence can be achieved, which is the best evidence that the coupling among SQDs induced by SPP field in MNP. This scheme may have the potential applications in all-optical plasmon-enhanced nanoscale devices. PMID:22297024

  3. Novel half-metal and spin gapless semiconductor properties in N-doped silicene nanoribbons

    NASA Astrophysics Data System (ADS)

    Zheng, Fu-bao; Zhang, Chang-wen; Wang, Pei-ji; Li, Sheng-shi

    2013-04-01

    We carry out a spin polarized first-principles study on the energetic and electronic properties of zigzag silicene nanoribbons (ZSiNRs) doped with N atoms, as well as N and Si vacancy (VSi) complexes. The formation energy analysis shows that the doped N atom and N-VSi complex prefer the edge sites in ZSiNRs. Due to breaking the degeneracy of the spin-polarization in ZSiNR, the substitution of N for Si atom exhibits a spin gapless semiconductor (SGS) property. When the N-VSi complex is introduced forming so called pyridine- and pyrrole-like structure in ZSiNR, they also exhibit half-metal or SGS behaviors with 100% spin-polarized currents in the Fermi level. These interesting properties may further stimulate potential applications of silicene-based nanostructures in nanoelectronics.

  4. Flexible complementary metal oxide semiconductor microelectrode arrays with applications in single cell characterization

    NASA Astrophysics Data System (ADS)

    Pajouhi, H.; Jou, A. Y.; Jain, R.; Ziabari, A.; Shakouri, A.; Savran, C. A.; Mohammadi, S.

    2015-11-01

    A highly flexible microelectrode array with an embedded complementary metal oxide semiconductor (CMOS) instrumentation amplifier suitable for sensing surfaces of biological entities is developed. The array is based on ultrathin CMOS islands that are thermally isolated from each other and are interconnected by meandered nano-scale wires that can adapt to cellular surfaces with micro-scale curvatures. CMOS temperature sensors are placed in the islands and are optimally biased to have high temperature sensitivity. While no live cell thermometry is conducted, a measured temperature sensitivity of 0.15 °C in the temperature range of 35 to 40 °C is achieved by utilizing a low noise CMOS lock-in amplifier implemented in the same technology. The monolithic nature of CMOS sensors and amplifier circuits and their versatile flexible interconnecting wires overcome the sensitivity and yield limitations of microelectrode arrays fabricated in competing technologies.

  5. Electronic-Structure Theory of Organic Semiconductors: Charge-Transport Parameters and Metal/Organic Interfaces

    NASA Astrophysics Data System (ADS)

    Coropceanu, Veaceslav; Li, Hong; Winget, Paul; Zhu, Lingyun; Brédas, Jean-Luc

    2013-07-01

    We focus this review on the theoretical description, at the density functional theory level, of two key processes that are common to electronic devices based on organic semiconductors (such as organic light-emitting diodes, field-effect transistors, and solar cells), namely charge transport and charge injection from electrodes. By using representative examples of current interest, our main goal is to introduce some of the reliable theoretical methodologies that can best depict these processes. We first discuss the evaluation of the microscopic parameters that determine charge-carrier transport in organic molecular crystals, i.e., electronic couplings and electron-vibration couplings. We then examine the electronic structure at interfaces between an organic layer and a metal or conducting oxide electrode, with an emphasis on the work-function modifications induced by the organic layer and on the interfacial energy-level alignments.

  6. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor

    NASA Astrophysics Data System (ADS)

    Ugeda, Miguel M.; Bradley, Aaron J.; Shi, Su-Fei; da Jornada, Felipe H.; Zhang, Yi; Qiu, Diana Y.; Ruan, Wei; Mo, Sung-Kwan; Hussain, Zahid; Shen, Zhi-Xun; Wang, Feng; Louie, Steven G.; Crommie, Michael F.

    2014-12-01

    Two-dimensional (2D) transition metal dichalcogenides (TMDs) are emerging as a new platform for exploring 2D semiconductor physics. Reduced screening in two dimensions results in markedly enhanced electron-electron interactions, which have been predicted to generate giant bandgap renormalization and excitonic effects. Here we present a rigorous experimental observation of extraordinarily large exciton binding energy in a 2D semiconducting TMD. We determine the single-particle electronic bandgap of single-layer MoSe2 by means of scanning tunnelling spectroscopy (STS), as well as the two-particle exciton transition energy using photoluminescence (PL) spectroscopy. These yield an exciton binding energy of 0.55 eV for monolayer MoSe2 on graphene—orders of magnitude larger than what is seen in conventional 3D semiconductors and significantly higher than what we see for MoSe2 monolayers in more highly screening environments. This finding is corroborated by our ab initio GW and Bethe-Salpeter equation calculations which include electron correlation effects. The renormalized bandgap and large exciton binding observed here will have a profound impact on electronic and optoelectronic device technologies based on single-layer semiconducting TMDs.

  7. The friction behavior of semiconductors Si and GaAs in contact with pure metals

    NASA Technical Reports Server (NTRS)

    Mishina, H.

    1984-01-01

    The friction behavior of the semiconductors silicon and gallium arsenide in contact with pure metals was studied. Five transition and two nontransition metals, titanium, tantalum, nickel, palladium, platinum, copper, and silver, slid on a single crystal silicon (111) surface. Four metals, indium, nickel, copper and silver, slid on a single crystal gallium arsenide (100) surface. Experiments were conducted in room air and in a vacuum of 10 to the minus 7th power N/sq cm (10 to the minus 9th power torr). The results indicate that the sliding of silicon on the transition metals exhibits relatively higher friction than for the nontransition metals in contact with silicon. There is a clear correlation between friction and Schottky barrier height formed at the metal silicon interface for the transition metals. Transition metals with a higher barrier height on silicon had a lower friction. The same effect of barrier height was found for the friction of gallium arsenide in contact with metals.

  8. Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.

    PubMed

    Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin

    2016-03-01

    Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices.

  9. Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.

    PubMed

    Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin

    2016-03-01

    Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices. PMID:26839956

  10. Effect of realistic metal electronic structure on the lower limit of contact resistivity of epitaxial metal-semiconductor contacts

    SciTech Connect

    Hegde, Ganesh Chris Bowen, R.

    2014-08-04

    The effect of realistic metal electronic structure on the lower limit of resistivity in [100] oriented n-Si is investigated using full band Density Functional Theory and Semi-Empirical Tight Binding calculations. It is shown that the “ideal metal” assumption may fail in some situations and, consequently, underestimate the lower limit of contact resistivity in n-Si by at least an order of magnitude at high doping concentrations. The mismatch in transverse momentum space in the metal and the semiconductor, the so-called “valley filtering effect,” is shown to be sensitive to the details of the transverse boundary conditions for the unit cells used. The results emphasize the need for explicit inclusion of the metal atomic and electronic structure in the atomistic modeling of transport across metal-semiconductor contacts.

  11. Doped semiconductor nanocrystal based fluorescent cellular imaging probes

    NASA Astrophysics Data System (ADS)

    Maity, Amit Ranjan; Palmal, Sharbari; Basiruddin, Sk; Karan, Niladri Sekhar; Sarkar, Suresh; Pradhan, Narayan; Jana, Nikhil R.

    2013-05-01

    Doped semiconductor nanocrystals such as Mn doped ZnS, Mn doped ZnSe and Cu doped InZnS, are considered as new classes of fluorescent biological probes with low toxicity. Although the synthesis in high quality of such nanomaterials is now well established, transforming them into functional fluorescent probes remains a challenge. Here we report a fluorescent cellular imaging probe made of high quality doped semiconductor nanocrystals. We have identified two different coating approaches suitable for transforming the as synthesized hydrophobic doped semiconductor nanocrystals into water-soluble functional nanoparticles. Following these approaches we have synthesized TAT-peptide- and folate-functionalized nanoparticles of 10-80 nm hydrodynamic diameter and used them as a fluorescent cell label. The results shows that doped semiconductor nanocrystals can be an attractive alternative for conventional cadmium based quantum dots with low toxicity.Doped semiconductor nanocrystals such as Mn doped ZnS, Mn doped ZnSe and Cu doped InZnS, are considered as new classes of fluorescent biological probes with low toxicity. Although the synthesis in high quality of such nanomaterials is now well established, transforming them into functional fluorescent probes remains a challenge. Here we report a fluorescent cellular imaging probe made of high quality doped semiconductor nanocrystals. We have identified two different coating approaches suitable for transforming the as synthesized hydrophobic doped semiconductor nanocrystals into water-soluble functional nanoparticles. Following these approaches we have synthesized TAT-peptide- and folate-functionalized nanoparticles of 10-80 nm hydrodynamic diameter and used them as a fluorescent cell label. The results shows that doped semiconductor nanocrystals can be an attractive alternative for conventional cadmium based quantum dots with low toxicity. Electronic supplementary information available: Characterization details of coating and

  12. Long-term research in Japan: amorphous metals, metal oxide varistors, high-power semiconductors and superconducting generators

    SciTech Connect

    Hane, G.J.; Yorozu, M.; Sogabe, T.; Suzuki, S.

    1985-04-01

    The review revealed that significant activity is under way in the research of amorphous metals, but that little fundamental work is being pursued on metal oxide varistors and high-power semiconductors. Also, the investigation of long-term research program plans for superconducting generators reveals that activity is at a low level, pending the recommendations of a study currently being conducted through Japan's Central Electric Power Council.

  13. Photocurrents in semiconductors and semiconductor quantum wells analyzed by k.p-based Bloch equations

    NASA Astrophysics Data System (ADS)

    Podzimski, Reinold; Duc, Huynh Thanh; Priyadarshi, Shekhar; Schmidt, Christian; Bieler, Mark; Meier, Torsten

    2016-03-01

    Using a microscopic theory that combines k.p band structure calculations with multisubband semiconductor Bloch equations we are capable of computing coherent optically-induced rectification, injection, and shift currents in semiconductors and semiconductor nanostructures. A 14-band k.p theory has been employed to obtain electron states in non-centrosymmetric semiconductor systems. Numerical solutions of the multisubband Bloch equations provide a detailed and transparent description of the dynamics of the material excitations in terms of interband and intersubband polarizations/coherences and occupations. Our approach allows us to calculate and analyze photocurrents in the time and the frequency domains for bulk as well as quantum well and quantum wire systems with various growth directions. As examples, we present theoretical results on the rectification and shift currents in bulk GaAs and GaAs-based quantum wells. Moreover, we compare our results with experiments on shift currents. In the experiments the terahertz radiation emitted from the transient currents is detected via electro-optic sampling. This comparison is important from two perspectives. First, it helps to validate the theoretical model. Second, it allows us to investigate the microscopic origins of interesting features observed in the experiments.

  14. Modeling of metal-ferroelectric-insulator-semiconductor structure considering the effects of interface traps

    NASA Astrophysics Data System (ADS)

    Sun, Jing; Shi, Xiao Rong; Zheng, Xue Jun; Tian, Li; Zhu, Zhe

    2015-06-01

    An improved model, in which the interface traps effects are considered, is developed by combining with quantum mechanical model, dipole switching theory and silicon physics of metal-oxide-semiconductor structure to describe the electrical properties of metal-ferroelectric-insulator-semiconductor (MFIS) structure. Using the model, the effects of the interface traps on the surface potential (ϕSi) of the semiconductor, the low frequency (LF) capacitance-voltage (C-V) characteristics and memory window of MFIS structure are simulated, and the results show that the ϕSi- V and LF C-V curves are shifted toward the positive-voltage direction and the memory window become worse as the density of the interface trap states increases. This paper is expected to provide some guidance to the design and performance improvement of MFIS structure devices. In addition, the improved model can be integrated into electronic design automation (EDA) software for circuit simulation.

  15. Optical Design of Plant Canopy Measurement System and Fabrication of Two-Dimensional High-Speed Metal-Semiconductor-Metal Photodetector Arrays

    NASA Technical Reports Server (NTRS)

    Sarto, Anthony; VanZeghbroeck, Bart; Vanderbilt, Vern C.

    1996-01-01

    Electrical and optical designs for the prototype plant canopy architecture measurement system, including specified component and parts lists, are presented. Six single Metal-Semiconductor-Metal (MSM) detectors are mounted in high-speed packages.

  16. The role of heavy metal ions on spin transport in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Chen, B. B.; Wang, S.; Jiang, S. W.; Yu, Z. G.; Wan, X. G.; Ding, H. F.; Wu, D.

    2015-01-01

    It is generally believed that spin-orbit coupling (SOC) strength and the associated spin relaxation can be enhanced by introducing heavy metal ions in organic semiconductors. Here, we systematically study the spin transport in two organic semiconductors, tris(2-phenylpyridine)iridium (Ir(ppy)3) and tris-(8-hydroxyquinoline) aluminum (Alq3), which have similar chemical structures except that Ir(ppy)3 contains a heavy metal ion Ir. As expected, the photoluminescence spectroscopy measurements show that the SOC strength in Ir(ppy)3 is several orders of magnitude larger than in Alq3. Surprisingly, the spin diffusion length in Ir(ppy)3, deduced from magnetoresistance measurements in Ir(ppy)3-based organic spin valves, is longer than in Alq3. Considering the lower carrier mobility in Ir(ppy)3, the spin relaxation time in Ir(ppy)3 is much longer than in Alq3, implying that the SOC strength in Ir(ppy)3 is weaker than in Alq3. The seemingly contradictory results of photoluminescence spectroscopy and magneto-transport can be explained by the SOC strength depending on the electronic states of a material. The weak SOC strength in Ir(ppy)3 observed in magneto-transport measurements is due to the strong ligand field induced orbital moment quenching for Ir3+ and the polarons transporting in the ligands. However, the excitons involved in photoluminescence spectroscopy overlap with the Ir ion and transforms Ir3+ to Ir4+, which has non-zero spin and orbital moments and hence results in high SOC strength.

  17. Observation of quantum oscillation of work function in ultrathin-metal/semiconductor junctions

    SciTech Connect

    Takhar, Kuldeep; Meer, Mudassar; Khachariya, Dolar; Ganguly, Swaroop; Saha, Dipankar

    2015-09-15

    Quantization in energy level due to confinement is generally observed for semiconductors. This property is used for various quantum devices, and it helps to improve the characteristics of conventional devices. Here, the authors have demonstrated the quantum size effects in ultrathin metal (Ni) layers sandwiched between two large band-gap materials. The metal work function is found to oscillate as a function of its thickness. The thermionic emission current bears the signature of the oscillating work function, which has a linear relationship with barrier heights. This methodology allows direct observation of quantum oscillations in metals at room temperature using a Schottky diode and electrical measurements using source-measure-units. The observed phenomena can provide additional mechanism to tune the barrier height of metal/semiconductor junctions, which are used for various electronic devices.

  18. Low resistance barrier layer for isolating, adhering, and passivating copper metal in semiconductor fabrication

    DOEpatents

    Weihs, Timothy P.; Barbee, Jr., Troy W.

    2002-01-01

    Cubic or metastable cubic refractory metal carbides act as barrier layers to isolate, adhere, and passivate copper in semiconductor fabrication. One or more barrier layers of the metal carbide are deposited in conjunction with copper metallizations to form a multilayer characterized by a cubic crystal structure with a strong (100) texture. Suitable barrier layer materials include refractory transition metal carbides such as vanadium carbide (VC), niobium carbide (NbC), tantalum carbide (TaC), chromium carbide (Cr.sub.3 C.sub.2), tungsten carbide (WC), and molybdenum carbide (MoC).

  19. Formation of heteroepitaxy in different shapes of Au-CdSe metal-semiconductor hybrid nanostructures.

    PubMed

    Haldar, Krishna Kanta; Pradhan, Narayan; Patra, Amitava

    2013-10-25

    Formation of heteroepitaxy and designing different-shaped heterostructured nanomaterials of metal and semiconductor in solution remains a frontier area of research. However, it is evident that the synthesis of such materials is not straightforward and needs a selective approach to retain both metal and semiconductor identities in the reaction system during heterostructure formation. Herein, the epitaxial growth of semiconductor CdSe on selected facets of metal Au seeds is reported and different shapes (flower, tetrapod, and core/shell) hetero-nanostructures are designed. These results are achieved by controlling the reaction parameters, and by changing the sequence and timing for introduction of different reactant precursors. Direct evidence of the formation of heteroepitaxy between {111} facets of Au and (0001) of wurtzite CdSe is observed during the formation of these three heterostructures. The mechanism of the evolution of these hetero-nanostructures and formation of their heteroepitaxy with the planes having minimum lattice mismatch are also discussed. This shape-control growth mechanism in hetero-nanostructures should be helpful to provide more information for establishing the fundamental study of heteroepitaxial growth for designing new nanomaterials. Such metal-semiconductor nanostructures may have great potential for nonlinear optical properties, in photovoltaic devices, and as chemical sensors.

  20. Thermoelectric figure of merit of a material consisting of semiconductor or metal particles

    SciTech Connect

    Kharlamov, V. F.

    2013-07-15

    It is found that the dimensionless thermoelectric figure of merit of a material consisting of a large number of ball-shaped semiconductor or metal particles can be much more than unity. The introduction of an insulator into the space between the particles is shown to sharply increase the power of the converter of heat energy into electric current energy.

  1. Ultrahigh quality factor in a metal-embedded semiconductor microdisk cavity.

    PubMed

    Kurosawa, Hiroyuki; Kumano, Hidekazu; Suemune, Ikuo

    2015-12-15

    We numerically and theoretically investigate electrodynamics of a metal-embedded semiconductor microdisk cavity. The electrodynamics of a cavity mode is discussed from the viewpoint of quantum mechanics, which clarifies the condition for high Q factor. Using numerical calculations, we optimize the cavity structure and show that the Q factor can be increased up to 1,700,000. Our study suggests that the metal-embedded cavity is a promising candidate for cavity quantum electrodynamics (QED) devices.

  2. Ultrahigh quality factor in a metal-embedded semiconductor microdisk cavity.

    PubMed

    Kurosawa, Hiroyuki; Kumano, Hidekazu; Suemune, Ikuo

    2015-12-15

    We numerically and theoretically investigate electrodynamics of a metal-embedded semiconductor microdisk cavity. The electrodynamics of a cavity mode is discussed from the viewpoint of quantum mechanics, which clarifies the condition for high Q factor. Using numerical calculations, we optimize the cavity structure and show that the Q factor can be increased up to 1,700,000. Our study suggests that the metal-embedded cavity is a promising candidate for cavity quantum electrodynamics (QED) devices. PMID:26670507

  3. Semiconductor-to-metallic flipping in a ZnFe{sub 2}O{sub 4}–graphene based smart nano-system: Temperature/microwave magneto-dielectric spectroscopy

    SciTech Connect

    Ameer, Shahid; Gul, Iftikhar Hussain; Mahmood, Nasir; Mujahid, Muhammad

    2015-01-15

    Zn-(FeO{sub 2}){sub 2}–graphene smart nano-composites were synthesized using a novel modified solvothermal synthesis with different percentages of graphene. The structure of the nanocomposite was confirmed through X-ray diffraction, micro-Raman scattering spectroscopy, Ultraviolet–Visible spectroscopy, and Fourier transform infrared spectroscopy. The structural growth and morphological aspects were analyzed using scanning/transmission electron microscopy, revealing marvelous micro-structural features of the assembled nano-system resembling a maple leaf. To determine the composition, energy dispersive spectroscopy and X-ray photoelectron spectroscopy were used. Microwave magneto-dielectric spectroscopy revealed the improved dielectric properties of the nano-composite compared to those of the parent functional nanocrystals. Temperature gradient dielectric spectroscopy was used over the spectral range from 100 Hz to 5 MHz to reveal the phenomenological effect that the nanosystem flips from its usual semiconductor nature to a metallic nature with sensing temperature. Electrical conductivity and dielectric analysis indicated that the dielectric loss and the dielectric permittivity increased at room temperature. This extraordinary switching capability of the functionalized graphene nanosystem opens up a new dimension for engineering advanced and efficient smart composite materials. - Graphical abstract: Display Omitted - Highlights: • Zn-(FeO{sub 2}){sub 2}–graphene smart nano-composites were synthesized using a novel modified solvothermal synthesis. • The synthesized nano-system exhibits marvelous leaf like microstructure. • These nano-composites show improved magneto dielectric response. • This engineered smart nano-system shows phenomenological flipping from semiconductor like nature to metallic behavior.

  4. Ag-based semiconductor photocatalysts in environmental purification

    NASA Astrophysics Data System (ADS)

    Li, Jiade; Fang, Wen; Yu, Changlin; Zhou, Wanqin; zhu, Lihua; Xie, Yu

    2015-12-01

    Over the past decades, with the fast development of global industrial development, various organic pollutants discharged in water have become a major source of environmental pollution in waste fields. Photocatalysis, as green and environmentally friendly technology, has attracted much attention in pollutants degradation due to its efficient degradation rate. However, the practical application of traditional semiconductor photocatalysts, e.g. TiO2, ZnO, is limited by their weak visible light adsorption due to their wide band gaps. Nowadays, the study in photocatalysts focuses on new and narrow band gap semiconductors. Among them, Ag-based semiconductors as promising visible light-driven photocatalysts have aroused much interesting due to their strong visible light responsibility. Most of Ag-based semiconductors could exhibit high initial photocatalytic activity. But they easy suffer from poor stability because of photochemical corrosion. Design heterojunction, increasing specific surface area, enriching pore structure, regulating morphology, controlling crystal facets, and producing plasmonic effects were considered as the effective strategies to improve the photocatalytic performance of Ag-based photocatalyts. Moreover, combining the superior properties of carbon materials (e.g. carbon quantum dots, carbon nano-tube, carbon nanofibers, graphene) with Ag-based semiconductor could produce high efficient composite photocatalyts.

  5. Is DNA a metal, semiconductor or insulator? A theoretical approach

    NASA Astrophysics Data System (ADS)

    Rey-Gonzalez, Rafael; Fonseca-Romero, Karen; Plazas, Carlos; Grupo de Óptica e Información Cuántica Team

    Over the last years, scientific interest for designing and making low dimensional electronic devices with traditional or novel materials has been increased. These experimental and theoretical researches in electronic properties at molecular scale are looking for developing efficient devices able to carry out tasks which are currently done by silicon transistors and devices. Among the new materials DNA strands are highlighted, but the experimental results have been contradictories pointing to behaviors as conductor, semiconductor or insulator. To contribute to the understanding of the origin of the disparity of the measurements, we perform a numerical calculation of the electrical conductance of DNA segments, modeled as 1D disordered finite chains. The system is described into a Tight binding model with nearest neighbor interactions and a s orbital per site. Hydration effects are included as random variations of self-energies. The electronic current as a function of applied bias is calculated using Launder formalism, where the transmission probability is determined into the transfer matrix formalism. We find a conductor-to-semiconductor-to-insulator transition as a function of the three effects taken into account: chain size, intrinsic disorder, and hydration We thank Fundación para la Promoción de la Investigación y la Tecnología, Colombia, and Dirección de Investigación de Bogotá, Universidad Nacional de Colombia, for partial financial support.

  6. Π Band Dispersion along Conjugated Organic Nanowires Synthesized on a Metal Oxide Semiconductor

    PubMed Central

    2016-01-01

    Surface-confined dehalogenation reactions are versatile bottom-up approaches for the synthesis of carbon-based nanostructures with predefined chemical properties. However, for devices generally requiring low-conductivity substrates, potential applications are so far severely hampered by the necessity of a metallic surface to catalyze the reactions. In this work we report the synthesis of ordered arrays of poly(p-phenylene) chains on the surface of semiconducting TiO2(110) via a dehalogenative homocoupling of 4,4″-dibromoterphenyl precursors. The supramolecular phase is clearly distinguished from the polymeric one using low-energy electron diffraction and scanning tunneling microscopy as the substrate temperature used for deposition is varied. X-ray photoelectron spectroscopy of C 1s and Br 3d core levels traces the temperature of the onset of dehalogenation to around 475 K. Moreover, angle-resolved photoemission spectroscopy and tight-binding calculations identify a highly dispersive band characteristic of a substantial overlap between the precursor’s π states along the polymer, considered as the fingerprint of a successful polymerization. Thus, these results establish the first spectroscopic evidence that atomically precise carbon-based nanostructures can readily be synthesized on top of a transition-metal oxide surface, opening the prospect for the bottom-up production of novel molecule–semiconductor devices. PMID:27115554

  7. Two-dimensional device modeling and analysis of GaInAs metal-semiconductor-metal photodiode structures

    NASA Astrophysics Data System (ADS)

    Averin, S.; Sachot, R.; Hugi, J.; de Fays, M.; Ilegems, M.

    1996-08-01

    A two-dimensional self-consistent time-dependent simulation technique has been developed to investigate electron-hole transport processes in the active region of metal-semiconductor-metal (MSM) interdigitated photodiode structures and to analyze their high-speed response. The distribution of the electric field inside the MSM device is determined by numerically solving the two-dimensional Poisson's equation by the modified fast elliptic solver method. A set of superparticles photogenerated at a particular wavelength is analyzed with a given initial distribution of the potential and given boundary conditions, and the evolution of the particles is traced in time through the active region of the MSM device. Circuit loading, electric field effects in the MSM structure with various finger separations, background doping, carrier trapping, and recombination are included in the simulation program. Owing to miniaturization of devices, the classical scaling laws lose their validity while various performance degrading effects appear. The simulations show that the main problem in MSM devices with a small contact separation is the low electric field penetration depth. This results in different electron and hole collection rates and in a poor response time. The trade-off between the high-speed response and the internal quantum efficiency is examined and ways to improve the high-speed response are indicated. Modeling results are compared with experimental data on Ga0.47In0.53As based MSM photodiodes.

  8. Semiconductor-based DNA sequencing of histone modification states.

    PubMed

    Cheng, Christine S; Rai, Kunal; Garber, Manuel; Hollinger, Andrew; Robbins, Dana; Anderson, Scott; Macbeth, Alyssa; Tzou, Austin; Carneiro, Mauricio O; Raychowdhury, Raktima; Russ, Carsten; Hacohen, Nir; Gershenwald, Jeffrey E; Lennon, Niall; Nusbaum, Chad; Chin, Lynda; Regev, Aviv; Amit, Ido

    2013-01-01

    The recent development of a semiconductor-based, non-optical DNA sequencing technology promises scalable, low-cost and rapid sequence data production. The technology has previously been applied mainly to genomic sequencing and targeted re-sequencing. Here we demonstrate the utility of Ion Torrent semiconductor-based sequencing for sensitive, efficient and rapid chromatin immunoprecipitation followed by sequencing (ChIP-seq) through the application of sample preparation methods that are optimized for ChIP-seq on the Ion Torrent platform. We leverage this method for epigenetic profiling of tumour tissues. PMID:24157732

  9. Semiconductor-based DNA sequencing of histone modification states

    PubMed Central

    Cheng, Christine S.; Rai, Kunal; Garber, Manuel; Hollinger, Andrew; Robbins, Dana; Anderson, Scott; Macbeth, Alyssa; Tzou, Austin; Carneiro, Mauricio O.; Raychowdhury, Raktima; Russ, Carsten; Hacohen, Nir; Gershenwald, Jeffrey E.; Lennon, Niall; Nusbaum, Chad; Chin, Lynda; Regev, Aviv; Amit, Ido

    2013-01-01

    The recent development of a semiconductor-based, non-optical DNA sequencing technology promises scalable, low-cost and rapid sequence data production. The technology has previously been applied mainly to genomic sequencing and targeted re-sequencing. Here we demonstrate the utility of Ion Torrent semiconductor-based sequencing for sensitive, efficient and rapid chromatin immunoprecipitation followed by sequencing (ChIP-seq) through the application of sample preparation methods that are optimized for ChIP-seq on the Ion Torrent platform. We leverage this method for epigenetic profiling of tumour tissues. PMID:24157732

  10. Features of high-frequency measurements of the impedance of metal-insulator-semiconductor structures with an ultrathin oxide

    SciTech Connect

    Goldman, E. I.; Levashova, A. I.; Levashov, S. A.; Chucheva, G. V.

    2015-04-15

    The possibilities of using the data of high-frequency measurements of the impedance of metal-oxide-semiconductor structures with an ultrathin insulating layer for determining the parameters of the semiconductor and the tunneling characteristics of the insulator are considered. If the accuracy of the experiment makes it possible to record both the active and reactive impedance components, the thickness of the surface depletion layer, the resistance of the semiconductor base portion, the differential tunnel conductivity of the insulating layer, and the differential tunneling-stimulated current of the generation of electron-hole pairs are calculated using the values of the capacitance and conduction of the structure measured at two frequencies. In the case, where the values of the active component of the impedance is beyond the accuracy of measurements, analysis of the parameters is possible upon four-frequency organization of the experiment from the values of only the capacitances with an increased accuracy of their measurements. A test for the necessary accuracy of data of such an experiment is formulated. If the test fails, it is possible to determine only the capacitance of the surface depletion layer in the semiconductor and, in this case, it is sufficient to implement only the single-frequency experiment.

  11. Key techniques for space-based solar pumped semiconductor lasers

    NASA Astrophysics Data System (ADS)

    He, Yang; Xiong, Sheng-jun; Liu, Xiao-long; Han, Wei-hua

    2014-12-01

    In space, the absence of atmospheric turbulence, absorption, dispersion and aerosol factors on laser transmission. Therefore, space-based laser has important values in satellite communication, satellite attitude controlling, space debris clearing, and long distance energy transmission, etc. On the other hand, solar energy is a kind of clean and renewable resources, the average intensity of solar irradiation on the earth is 1353W/m2, and it is even higher in space. Therefore, the space-based solar pumped lasers has attracted much research in recent years, most research focuses on solar pumped solid state lasers and solar pumped fiber lasers. The two lasing principle is based on stimulated emission of the rare earth ions such as Nd, Yb, Cr. The rare earth ions absorb light only in narrow bands. This leads to inefficient absorption of the broad-band solar spectrum, and increases the system heating load, which make the system solar to laser power conversion efficiency very low. As a solar pumped semiconductor lasers could absorb all photons with energy greater than the bandgap. Thus, solar pumped semiconductor lasers could have considerably higher efficiencies than other solar pumped lasers. Besides, solar pumped semiconductor lasers has smaller volume chip, simpler structure and better heat dissipation, it can be mounted on a small satellite platform, can compose satellite array, which can greatly improve the output power of the system, and have flexible character. This paper summarizes the research progress of space-based solar pumped semiconductor lasers, analyses of the key technologies based on several application areas, including the processing of semiconductor chip, the design of small and efficient solar condenser, and the cooling system of lasers, etc. We conclude that the solar pumped vertical cavity surface-emitting semiconductor lasers will have a wide application prospects in the space.

  12. Chemical reactions at metallic and metal/semiconductor interfaces stimulated by pulsed laser annealing

    NASA Astrophysics Data System (ADS)

    Petit, E. J.; Caudano, R.

    1992-01-01

    Multilayer Al/Sb thin films have been evaporated on GaSb single crystals in ultra-high vacuum and pulsed-laser irradiated in-situ above the energy density threshold for surface melting. Superficial and interfacial chemical reactions have been characterized in-situ by Auger electron spectroscopy; and later, by X-ray photoelectron spectroscopy profiling, Rutherford backscattering spectrometry and scanning electron microscopy. The chemical reaction between the Al and Sb films is considered as a model reaction for laser-assisted synthesis of high-purity intermetallic compounds. The observation of a strong interfacial reaction between the melted film and the substrate is also a subject of great concern for optical data recording and laser alloying of ohmic contacts on semiconductors. We show that a suitable choice of the substrate and adding a low surface tension element into the metallic film can improve its stability during melting, and prevent inhomogeneous reaction and formation of holes, cracks and particles. Finally, other solutions are suggested to improve the control of these reactions.

  13. Radiation induced failures of complementary metal oxide semiconductor containing pacemakers: a potentially lethal complication

    SciTech Connect

    Lewin, A.A.; Serago, C.F.; Schwade, J.G.; Abitbol, A.A.; Margolis, S.C.

    1984-10-01

    New multi-programmable pacemakers frequently employ complementary metal oxide semiconductors (CMOS). This circuitry appears more sensitive to the effects of ionizing radiation when compared to the semiconductor circuits used in older pacemakers. A case of radiation induced runaway pacemaker in a CMOS device is described. Because of this and other recent reports of radiation therapy-induced CMOS type pacemaker failure, these pacemakers should not be irradiated. If necessary, the pacemaker can be shielded or moved to a site which can be shielded before institution of radiation therapy. This is done to prevent damage to the CMOS circuit and the life threatening arrythmias which may result from such damage.

  14. Enhanced adhesion of films to semiconductors or metals by high energy bombardment

    NASA Technical Reports Server (NTRS)

    Tombrello, Thomas A. (Inventor); Qiu, Yuanxun (Inventor); Mendenhall, Marcus H. (Inventor)

    1985-01-01

    Films (12) of a metal such as gold or other non-insulator materials are firmly bonded to other non-insulators such as semiconductor substrates (10), suitably silicon or gallium arsenide by irradiating the interface with high energy ions. The process results in improved adhesion without excessive doping and provides a low resistance contact to the semiconductor. Thick layers can be bonded by depositing or doping the interfacial surfaces with fissionable elements or alpha emitters. The process can be utilized to apply very small, low resistance electrodes (78) to light-emitting solid state laser diodes (60) to form a laser device 70.

  15. MBE Growth of Ferromagnetic Metal/Compound Semiconductor Heterostructures for Spintronics

    ScienceCinema

    Palmstrom, Chris [University of California, Santa Barbara, California, United States

    2016-07-12

    Electrical transport and spin-dependent transport across ferromagnet/semiconductor contacts is crucial in the realization of spintronic devices. Interfacial reactions, the formation of non-magnetic interlayers, and conductivity mismatch have been attributed to low spin injection efficiency. MBE has been used to grow epitaxial ferromagnetic metal/GA(1-x)AL(x)As heterostructures with the aim of controlling the interfacial structural, electronic, and magnetic properties. In situ, STM, XPS, RHEED and LEED, and ex situ XRD, RBS, TEM, magnetotransport, and magnetic characterization have been used to develop ferromagnetic elemental and metallic compound/compound semiconductor tunneling contacts for spin injection. The efficiency of the spin polarized current injected from the ferromagnetic contact has been determined by measuring the electroluminescence polarization of the light emitted from/GA(1-x)AL(x)As light-emitting diodes as a function of applied magnetic field and temperature. Interfacial reactions during MBE growth and post-growth anneal, as well as the semiconductor device band structure, were found to have a dramatic influence on the measured spin injection, including sign reversal. Lateral spin-transport devices with epitaxial ferromagnetic metal source and drain tunnel barrier contacts have been fabricated with the demonstration of electrical detection and the bias dependence of spin-polarized electron injection and accumulation at the contacts. This talk emphasizes the progress and achievements in the epitaxial growth of a number of ferromagnetic compounds/III-V semiconductor heterostructures and the progress towards spintronic devices.

  16. Electrical Characterization of Metal-Ferroelectric-Insulator- Semiconductor having Double Layered Insulator for Memory Applications

    NASA Astrophysics Data System (ADS)

    Ismail, L. N.; Wahid, M. H.; Habibah, Z.; Herman, S. H.; Rozana, M. D.; Rusop, M.

    2014-08-01

    Metal-ferroelectric-insulator-semiconductor (MFIS) devices were successfully fabricated using poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) and poly (methyl methacrylate): titanium dioxide (PMMA:TiO2) nanocomposite as ferroelectric and insulator films, respectively on n-type silicon (n-Si) substrate. Both ferroelectric and insulator films were prepared by sol-gel spin coating method. The electrical behaviour of metal-ferroelectric-metal (MFM) structure with PVDF-TrFE film and metal-insulator- metal (MIM) structure PMMA:TiO2 film exhibited different current characteristics. The capacitance of the MFIS devices was found to be 0.42 and 0.29 nF at frequency of 1kHz and 1 MHz respectively. Meanwhile, the dielectric loss values are constant (~60 × 10-3) in the frequency range from 100 Hz to 100 kHz. I-V results for MFIS are much higher than MIM and MFM is due to there is a trapped holes/electron located at the semiconductor- insulator interface which contributes to high leakage current in the MFIS device. We conclude, although interposing the PMMA :TiO2 nanocomposite insulator layer between the semiconductor and Al electrodes degrades the MFIS performance, nevertheless, they remain sufficiently good for use in organic electronic devices.

  17. Using a Semiconductor-to-Metal Transition to Control Optical Transmission through Subwavelength Hole Arrays

    DOE PAGESBeta

    Donev, E. U.; Suh, J. Y.; Lopez, R.; Feldman, L. C.; Haglund, R. F.

    2008-01-01

    We describe a simple configuration in which the extraordinary optical transmission effect through subwavelength hole arrays in noble-metal films can be switched by the semiconductor-to-metal transition in an underlying thin film of vanadium dioxide. In these experiments, the transition is brought about by thermal heating of the bilayer film. The surprising reverse hysteretic behavior of the transmission through the subwavelength holes in the vanadium oxide suggest that this modulation is accomplished by a dielectric-matching condition rather than plasmon coupling through the bilayer film. The results of this switching, including the wavelength dependence, are qualitatively reproduced by a transfer matrix model.more » The prospects for effecting a similar modulation on a much faster time scale by using ultrafast laser pulses to trigger the semiconductor-to-metal transition are also discussed.« less

  18. Using x-ray diffraction to identify precipitates in transition metal doped semiconductors

    NASA Astrophysics Data System (ADS)

    Zhou, Shengqiang; Potzger, K.; Talut, G.; von Borany, J.; Skorupa, W.; Helm, M.; Fassbender, J.

    2008-04-01

    In the past decade, room temperature ferromagnetism was often observed in transition metal doped semiconductors, which were claimed as diluted magnetic semiconductors (DMS). Nowadays intensive activities are devoted to clarify wether the observed ferromagnetism stems from carrier mediated magnetic impurities, ferromagnetic precipitates, or spinodal decomposition. In this paper, we have correlated the structural and magnetic properties of transition metal doped ZnO, TiO2, and Si, prepared by ion implantation. Crystalline precipitates, i.e., transition metal (Co, Ni) and Mn-silicide nanocrystals, are responsible for the magnetism. Additionally due to their orientation nature with respect to the host, these nanocrystals in some cases are not detectable by conventional x-ray diffraction (XRD). This nature results in the pitfall of using XRD to exclude magnetic precipitates in DMS materials.

  19. Hopping conductivity and insulator-metal transition in films of touching semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Fu, Han; Reich, K. V.; Shklovskii, B. I.

    2016-03-01

    This paper is focused on the variable-range hopping of electrons in semiconductor nanocrystal (NC) films below the critical doping concentration nc at which it becomes metallic. The hopping conductivity is described by the Efros-Shklovskii law, which depends on the localization length of electrons. We study how the localization length grows with the doping concentration n in the film of touching NCs. For that we calculate the electron transfer matrix element t (n ) between neighboring NCs for two models when NCs touch by small facets or just one point. We study two sources of disorder: variations of NC diameters and random Coulomb potentials originating from random numbers of donors in NCs. We use the ratio of t (n ) to the disorder-induced NC level dispersion to find the localization length of electrons due to the multistep elastic co-tunneling process. We found three different phases at n base, and (3) "blinking metal" where the localization length periodically diverges. The first two phases were seen experimentally and we discuss how one can see the more exotic third one. In all three, the localization length diverges at n =nc . This allows us to find nc.

  20. One-dimensional quantum transport in hybrid metal-semiconductor nanotube systems

    NASA Astrophysics Data System (ADS)

    Gelin, Maxim; Bondarev, Igor

    We study the inter-play between the intrinsic 1D conductance of metallic atomic wires (AWs) and plasmon mediated near-field effects for semiconducting single wall carbon nanotubes (CNs) that encapsulate AWs of finite length. We use the matrix Green's functions formalism to develop an electron transfer theory for such a hybrid quasi-1D metal-semiconductor nanotube system. The theory predicts Fano resonances in electron transmission through the system. That is the AW-CN near-field interaction blocks some of the pristine AW transmission band channels to open up new coherent channels in the CN forbidden gap outside the pristine AW transmission band. This makes the entire hybrid system transparent in the energy domain where neither of the individual pristine constituents, neither AW nor CN, are transparent. The effect can be used to control electron charge transfer in semiconducting CN based devices for nanoscale energy conversion, separation and storage. Nsf-ECCS-1306871 (M.G.), DOE-DE-SC0007117 (I.B.).

  1. Theoretical analysis of hot electron injection from metallic nanotubes into a semiconductor interface.

    PubMed

    Kumarasinghe, Chathurangi S; Premaratne, Malin; Gunapala, Sarath D; Agrawal, Govind P

    2016-07-21

    Metallic nanostructures under optical illumination can generate a non-equilibrium high-energy electron gas (also known as hot electrons) capable of being injected into neighbouring media over a potential barrier at particle boundaries. The nature of this process is highly nanoparticle shape and size dependent. Here, we have derived an analytical expression for the frequency dependent rate of injection of these energetic electrons from a metallic nanotube into a semiconductor layer in contact with its inner boundary. In our derivation, we have considered the quantum mechanical motion of the electron gas confined by the particle boundaries in determining the electron energy spectrum and wave functions. We present a comprehensive theoretical analysis of how different geometric parameters such as the outer to inner radius ratio, length and thickness of a nanotube and illumination frequency affect the hot electron injection and internal quantum efficiency of the nanotube. We reveal that longer nanotubes with thin shells and high inner to outer radius ratios show better performance at visible and infrared frequencies. Our derivations and results provide the much needed theoretical insight for optimization of thin nanotubes for different hot electron based applications. PMID:27332556

  2. Hybrid metal-semiconductor mirror for high power VECSEL

    NASA Astrophysics Data System (ADS)

    Laurain, Alexandre; Gbele, Kokou; Hader, Jorg; Stolz, Wolfgang; Koch, Stephan; Ruiz Perez, Antje; Moloney, Jerome V.

    2016-03-01

    We demonstrate a low thermal impedance hybrid mirror VECSEL. We used only 14 pairs of AlGaAs/AlAs, transparent at the pump wavelength, and we used a patterned mask to deposit pure gold on areas of the chip to be pumped, and Ti/Au on other area to circumvent the poor adhesion of gold on GaAs. A higher gain is observed on an area metallized with pure gold and an output power of 4W was obtained, showing the effectiveness of the metallic mirror and validating the bonding quality. Chip processing and laser characteristics are studied in detail and compared to simulations.

  3. Anisotropy-based crystalline oxide-on-semiconductor material

    DOEpatents

    McKee, Rodney Allen; Walker, Frederick Joseph

    2000-01-01

    A semiconductor structure and device for use in a semiconductor application utilizes a substrate of semiconductor-based material, such as silicon, and a thin film of a crystalline oxide whose unit cells are capable of exhibiting anisotropic behavior overlying the substrate surface. Within the structure, the unit cells of the crystalline oxide are exposed to an in-plane stain which influences the geometric shape of the unit cells and thereby arranges a directional-dependent quality of the unit cells in a predisposed orientation relative to the substrate. This predisposition of the directional-dependent quality of the unit cells enables the device to take beneficial advantage of characteristics of the structure during operation. For example, in the instance in which the crystalline oxide of the structure is a perovskite, a spinel or an oxide of similarly-related cubic structure, the structure can, within an appropriate semiconductor device, exhibit ferroelectric, piezoelectric, pyroelectric, electro-optic, ferromagnetic, antiferromagnetic, magneto-optic or large dielectric properties that synergistically couple to the underlying semiconductor substrate.

  4. Quantum spin liquids and the metal-insulator transition in doped semiconductors.

    PubMed

    Potter, Andrew C; Barkeshli, Maissam; McGreevy, John; Senthil, T

    2012-08-17

    We describe a new possible route to the metal-insulator transition in doped semiconductors such as Si:P or Si:B. We explore the possibility that the loss of metallic transport occurs through Mott localization of electrons into a quantum spin liquid state with diffusive charge neutral "spinon" excitations. Such a quantum spin liquid state can appear as an intermediate phase between the metal and the Anderson-Mott insulator. An immediate testable consequence is the presence of metallic thermal conductivity at low temperature in the electrical insulator near the metal-insulator transition. Further, we show that though the transition is second order, the zero temperature residual electrical conductivity will jump as the transition is approached from the metallic side. However, the electrical conductivity will have a nonmonotonic temperature dependence that may complicate the extrapolation to zero temperature. Signatures in other experiments and some comparisons with existing data are made. PMID:23006401

  5. Ring resonator based narrow-linewidth semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Ksendzov, Alexander (Inventor)

    2005-01-01

    The present invention is a method and apparatus for using ring resonators to produce narrow linewidth hybrid semiconductor lasers. According to one embodiment of the present invention, the narrow linewidths are produced by combining the semiconductor gain chip with a narrow pass band external feedback element. The semi conductor laser is produced using a ring resonator which, combined with a Bragg grating, acts as the external feedback element. According to another embodiment of the present invention, the proposed integrated optics ring resonator is based on plasma enhanced chemical vapor deposition (PECVD) SiO.sub.2 /SiON/SiO.sub.2 waveguide technology.

  6. A comprehensive study of charge trapping in organic field-effect devices with promising semiconductors and different contact metals by displacement current measurements

    NASA Astrophysics Data System (ADS)

    Bisoyi, Sibani; Rödel, Reinhold; Zschieschang, Ute; Kang, Myeong Jin; Takimiya, Kazuo; Klauk, Hagen; Tiwari, Shree Prakash

    2016-02-01

    A systematic and comprehensive study on the charge-carrier injection and trapping behavior was performed using displacement current measurements in long-channel capacitors based on four promising small-molecule organic semiconductors (pentacene, DNTT, C10-DNTT and DPh-DNTT). In thin-film transistors, these semiconductors showed charge-carrier mobilities ranging from 1.0 to 7.8 cm2 V-1 s-1. The number of charges injected into and extracted from the semiconductor and the density of charges trapped in the device during each measurement were calculated from the displacement current characteristics and it was found that the density of trapped charges is very similar in all devices and of the order 1012 cm-2, despite the fact that the four semiconductors show significantly different charge-carrier mobilities. The choice of the contact metal (Au, Ag, Cu, Pd) was also found to have no significant effect on the trapping behavior.

  7. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions.

    PubMed

    Wen, Zheng; Li, Chen; Wu, Di; Li, Aidong; Ming, Naiben

    2013-07-01

    Ferroelectric tunnel junctions (FTJs), composed of two metal electrodes separated by an ultrathin ferroelectric barrier, have attracted much attention as promising candidates for non-volatile resistive memories. Theoretical and experimental works have revealed that the tunnelling resistance switching in FTJs originates mainly from a ferroelectric modulation on the barrier height. However, in these devices, modulation on the barrier width is very limited, although the tunnelling transmittance depends on it exponentially as well. Here we propose a novel tunnelling heterostructure by replacing one of the metal electrodes in a normal FTJ with a heavily doped semiconductor. In these metal/ferroelectric/semiconductor FTJs, not only the height but also the width of the barrier can be electrically modulated as a result of a ferroelectric field effect, leading to a greatly enhanced tunnelling electroresistance. This idea is implemented in Pt/BaTiO3/Nb:SrTiO3 heterostructures, in which an ON/OFF conductance ratio above 10(4), about one to two orders greater than those reported in normal FTJs, can be achieved at room temperature. The giant tunnelling electroresistance, reliable switching reproducibility and long data retention observed in these metal/ferroelectric/semiconductor FTJs suggest their great potential in non-destructive readout non-volatile memories.

  8. Semiconductor-halfmetal-metal transition and magnetism of bilayer graphene nanoribbons/hexagonal boron nitride heterostructure

    NASA Astrophysics Data System (ADS)

    Ilyasov, V. V.; Meshi, B. C.; Nguyen, V. C.; Ershov, I. V.; Nguyen, D. C.

    2014-12-01

    The paper presents the results of ab initio study of electronic structure modulation and edge magnetism in the antiferromagnetic (AF) bilayer zigzag graphene nanoribbons (AF-BZGNR)/hexagonal boron nitride (h-BN(0001)) semiconductor heterostructure induced with transverse external electric field (Eext) and nanomechanical compression (extension), performed within the framework of the density functional theory using Grimme's DFT(PBE)-D2 scheme. For the first time we established critical values of Eext and interlayer distance in the bilayer for the BZGNR/h-BN(0001) heterostructure providing for semiconductor-halfmetal-metal phase transition for one of the electron spin configurations. We discovered the effect of preserved local magnetic moment (0.3μB) of edge carbon atoms of the lower (buffer) graphene nanoribbon during nanomechanical uniaxial compression (or extension) of the BZGNR/h-BN(0001) semiconductor heterostructure. It has been demonstrated that magnetic properties of the AF-BZGNR/h-BN(0001) semiconductor heterostructure can be controlled using Eext. In particular, the local magnetic moment of edge carbon atoms decreases by 10% at a critical value of the positive potential. We have established that local magnetic moments and band gaps can be altered in a wide range using nanomechanical uniaxial compression and Eext, thus making the AF-BZGNR/h-BN(0001) semiconductor heterostructure potentially promising for nanosensors, spin filters, and spintronics applications.

  9. Theoretical maximum efficiency of solar energy conversion in plasmonic metal-semiconductor heterojunctions.

    PubMed

    Cushing, Scott K; Bristow, Alan D; Wu, Nianqiang

    2015-11-28

    Plasmonics can enhance solar energy conversion in semiconductors by light trapping, hot electron transfer, and plasmon-induced resonance energy transfer (PIRET). The multifaceted response of the plasmon and multiple interaction pathways with the semiconductor makes optimization challenging, hindering design of efficient plasmonic architectures. Therefore, in this paper we use a density matrix model to capture the interplay between scattering, hot electrons, and dipole-dipole coupling through the plasmon's dephasing, including both the coherent and incoherent dynamics necessary for interactions on the plasmon's timescale. The model is extended to Shockley-Queisser limit calculations for both photovoltaics and solar-to-chemical conversion, revealing the optimal application of each enhancement mechanism based on plasmon energy, semiconductor energy, and plasmon dephasing. The results guide application of plasmonic solar-energy harvesting, showing which enhancement mechanism is most appropriate for a given semiconductor's weakness, and what nanostructures can achieve the maximum enhancement.

  10. Semiconductor-based, large-area, flexible, electronic devices

    DOEpatents

    Goyal, Amit

    2011-03-15

    Novel articles and methods to fabricate the same resulting in flexible, large-area, triaxially textured, single-crystal or single-crystal-like, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  11. Fast optical recording media based on semiconductor nanostructures for image recording and processing

    SciTech Connect

    Kasherininov, P. G. Tomasov, A. A.

    2008-11-15

    Fast optical recording media based on semiconductor nanostructures (CdTe, GaAs) for image recording and processing with a speed to 10{sup 6} cycle/s (which exceeds the speed of known recording media based on metal-insulator-semiconductor-(liquid crystal) (MIS-LC) structures by two to three orders of magnitude), a photosensitivity of 10{sup -2}V/cm{sup 2}, and a spatial resolution of 5-10 (line pairs)/mm are developed. Operating principles of nanostructures as fast optical recording media and methods for reading images recorded in such media are described. Fast optical processors for recording images in incoherent light based on CdTe crystal nanostructures are implemented. The possibility of their application to fabricate image correlators is shown.

  12. Controlled metal-semiconductor sintering/alloying by one-directional reverse illumination

    DOEpatents

    Sopori, Bhushan L.

    1993-01-01

    Metal strips deposited on a top surface of a semiconductor substrate are sintered at one temperature simultaneously with alloying a metal layer on the bottom surface at a second, higher temperature. This simultaneous sintering of metal strips and alloying a metal layer on opposite surfaces of the substrate at different temperatures is accomplished by directing infrared radiation through the top surface to the interface of the bottom surface with the metal layer where the radiation is absorbed to create a primary hot zone with a temperature high enough to melt and alloy the metal layer with the bottom surface of the substrate. Secondary heat effects, including heat conducted through the substrate from the primary hot zone and heat created by infrared radiation reflected from the metal layer to the metal strips, as well as heat created from some primary absorption by the metal strips, combine to create secondary hot zones at the interfaces of the metal strips with the top surface of the substrate. These secondary hot zones are not as hot as the primary hot zone, but they are hot enough to sinter the metal strips to the substrate.

  13. Mechanistic Studies of Charge Injection from Metallic Electrodes into Organic Semiconductors Mediated by Ionic Functionalities: Final Report

    SciTech Connect

    Nguyen, Thuc-Quyen; Bazan, Guillermo; Mikhailovsky, Alexander

    2014-04-15

    Metal-organic semiconductor interfaces are important because of their ubiquitous role in determining the performance of modern electronics such as organic light emitting diodes (OLEDs), fuel cells, batteries, field effect transistors (FETs), and organic solar cells. Interfaces between metal electrodes required for external wiring to the device and underlying organic structures directly affect the charge carrier injection/collection efficiency in organic-based electronic devices primarily due to the mismatch between energy levels in the metal and organic semiconductor. Environmentally stable and cost-effective electrode materials, such as aluminum and gold typically exhibit high potential barriers for charge carriers injection into organic devices leading to increased operational voltages in OLEDs and FETs and reduced charge extraction in photovoltaic devices. This leads to increased power consumption by the device, reduced overall efficiency, and decreased operational lifetime. These factors represent a significant obstacle for development of next generation of cheap and energy-efficient components based on organic semiconductors. It has been noticed that introduction of organic materials with conjugated backbone and ionic pendant groups known as conjugated poly- and oligoelectrolytes (CPEs and COEs), enables one to reduce the potential barriers at the metal-organic interface and achieve more efficient operation of a device, however exact mechanisms of the phenomenon have not been understood. The goal of this project was to delineate the function of organic semiconductors with ionic groups as electron injection layers. The research incorporated a multidisciplinary approach that encompassed the creation of new materials, novel processing techniques, examination of fundamental electronic properties and the incorporation of the resulting knowledgebase into development of novel organic electronic devices with increased efficiency, environmental stability, and reduced

  14. Quasi-One-Dimensional Metal-Insulator Transitions in Compound Semiconductor Surfaces.

    PubMed

    Zhao, J Z; Fan, W; Verstraete, M J; Zanolli, Z; Fan, J; Yang, X B; Xu, H; Tong, S Y

    2016-09-01

    Existing examples of Peierls-type 1D systems on surfaces involve depositing metallic overlayers on semiconducting substrates, in particular, at step edges. Here we propose a new class of Peierls system on the (101[over ¯]0) surface of metal-anion wurtzite semiconductors. When the anions are bonded to hydrogen or lithium atoms, we obtain rows of threefold coordinated metal atoms that act as one-atom-wide metallic structures. First-principles calculations show that the surface is metallic, and below a certain critical temperature the surface will condense to a semiconducting state. The idea of surface scaffolding is introduced in which the rows are constrained to move along simple up-down and/or sideways displacements, mirroring the paradigm envisioned in Peierls's description. We predict that this type of insulating state should be visible in the partially hydrogenated (101[over ¯]0) surface of many wurtzite compounds. PMID:27661702

  15. Quasi-One-Dimensional Metal-Insulator Transitions in Compound Semiconductor Surfaces

    NASA Astrophysics Data System (ADS)

    Zhao, J. Z.; Fan, W.; Verstraete, M. J.; Zanolli, Z.; Fan, J.; Yang, X. B.; Xu, H.; Tong, S. Y.

    2016-09-01

    Existing examples of Peierls-type 1D systems on surfaces involve depositing metallic overlayers on semiconducting substrates, in particular, at step edges. Here we propose a new class of Peierls system on the (10 1 ¯0 ) surface of metal-anion wurtzite semiconductors. When the anions are bonded to hydrogen or lithium atoms, we obtain rows of threefold coordinated metal atoms that act as one-atom-wide metallic structures. First-principles calculations show that the surface is metallic, and below a certain critical temperature the surface will condense to a semiconducting state. The idea of surface scaffolding is introduced in which the rows are constrained to move along simple up-down and/or sideways displacements, mirroring the paradigm envisioned in Peierls's description. We predict that this type of insulating state should be visible in the partially hydrogenated (10 1 ¯0 ) surface of many wurtzite compounds.

  16. Metal-inducd assembly of a semiconductor-island lattice: Getruncated pyramids on Au-patterned Si

    SciTech Connect

    Robinson, J.T.; Liddle, J.A.; Minor, A.; Radmilovic, V.; Yi,D.O.; Greaney, P.A.; Long, K.N.; Chrzan, D.C.; Dubon, O.D.

    2005-08-28

    We report the two-dimensional alignment of semiconductor islands using rudimentary metal patterning to control nucleation and growth. In the Ge on Si system, a square array of sub-micron Au dots on the Si (001) surface induces the assembly of deposited Ge adatoms into an extensive island lattice. Remarkably, these highly ordered Ge islands form between the patterned Au dots and are characterized by a unique truncated pyramidal shape. A model based on patterned diffusion barriers explains the observed ordering and establishes general criteria for the broader applicability of such a directed assembly process to quantum dot ordering.

  17. Long-wavelength metal-semiconductor-metal photodetectors with transparent and opaque electrodes

    NASA Astrophysics Data System (ADS)

    Wohlmuth, Walter A.; Adesida, Ilesanmi; Caneau, Catherine

    1995-09-01

    In this paper, we present a comparative study of transparent and opaque electrode InAlAs/InGaAs metal-semiconductor-metal photodiodes (MSMPDs) for operation at 1.31 and 1.55 micrometers . The transparent materials are indium-tin-oxide (ITO) and cadmium-tin-oxide (CTO) and the opaque material is Ti-Au. The rf magnetron sputtered films of ITO and CTO, deposited at a substrate temperature of 300 degrees C, exhibited as-deposited resistivities of 5.6(DOT)10-3 (Omega) (DOT)cm and 1.0(DOT)10-3 (Omega) (DOT)cm, respectively. The resistivity of the ITO and CTO films dropped to 1.1(DOT)10-3 (Omega) (DOT)cm and 5.2(DOT)10-4 (Omega) (DOT)cm, respectively, after a 4 minute 400 degree C anneal in an N2 ambient. The interdigitated ITO and CTO electrodes were made by etching in a methane:hydrogen (1 to 3) plasma. The responsivity of 1 micrometers finger by 1 micrometers spacing (1 by 1 micrometers ), 50 X 50 micrometers 2 active area, MSMPDs was 0.40 A/W for the Ti-Au, 0.66 A/W for the CTO, and 0.69 A/W for the ITO MSMPDs. The Ti-Au, CTO and ITO MSMPDs had 3- dB cut-off frequencies of 14.0 GHz, 7.5 GHz, and 5.0 GHz, respectively, from time-domain measurements performed at 1.3 micrometers and 11.26 GHz, 4.00 GHz, and 2.61 GHz, respectively, from frequency-domain measurements performed at 1.55 micrometers . Discrepencies between the 3-dB cut-off frequency obtained from the time-domain and the frequency-domain measurements are attributed to the time-domain measurement system's inability to accurately resolve low frequency behavior (below 2 GHz) and space charge effects.

  18. Metal-free ferromagnetic metal and intrinsic spin semiconductor: two different kinds of SWCNT functionalized BN nanoribbons.

    PubMed

    Lou, Ping

    2015-03-28

    Two different kinds of SWCNT functionalized zigzag edge BN nanoribbons with n chains (n-ZBNNRs), namely, (a) B-edge functionalized by (m,m)SWCNT and N-edge modified with H (nZBNNR-B-(m,m)SWCNTs); and (b) the B-edge modified with H and the N-edge functionalized by (m,m)SWCNT (nZBNNR-N-(m,m)SWCNTs), have been predicted. Amazingly, we find that unlike the semiconducting and nonmagnetic H-modified n-ZBNNRs, the nZBNNR-B-(m,m)SWCNTs are intrinsic ferromagnetic metals, regardless of ribbon widths n and tube diameters (m,m). At a given (m,m), their local magnetic moments, at first, exhibit oscillation with increasing n, whereas when n is larger than 5, they are independent of n. In contrast, unlike the metallic and nonmagnetic (m,m)SWCNTs, the nZBNNR-N-(m,m)SWCNTs are ferromagnetic intrinsic spin-semiconductors with direct band gaps, regardless of n and (m,m). Their local magnetic moments and band gaps are independent of n and (m,m). The DFT calculations reveal that the process of SWCNT functionalization of the n-ZBNNRs does not need any activation energy. Moreover, the formation energies of the SWCNT functionalized n-ZBNNRs are always less than zero. Therefore, the SWCNT functionalized n-ZBNNRs are not only stable, but can also be spontaneously formed. Furthermore, compared with n-ZBNNRs, the SWCNT functionalized n-ZBNNRs show significant improvements in their thermal and mechanical stabilities. Thus, (m,m)SWCNT functionalization of n-ZBNNRs may open new routes toward practical nanoelectronic and optoelectronic as well as spintronic devices based on BNC-based materials. PMID:25721493

  19. Metal-Insulator-Semiconductor Diode Consisting of Two-Dimensional Nanomaterials.

    PubMed

    Jeong, Hyun; Oh, Hye Min; Bang, Seungho; Jeong, Hyeon Jun; An, Sung-Jin; Han, Gang Hee; Kim, Hyun; Yun, Seok Joon; Kim, Ki Kang; Park, Jin Cheol; Lee, Young Hee; Lerondel, Gilles; Jeong, Mun Seok

    2016-03-01

    We present a novel metal-insulator-semiconductor (MIS) diode consisting of graphene, hexagonal BN, and monolayer MoS2 for application in ultrathin nanoelectronics. The MIS heterojunction structure was fabricated by vertically stacking layered materials using a simple wet chemical transfer method. The stacking of each layer was confirmed by confocal scanning Raman spectroscopy and device performance was evaluated using current versus voltage (I-V) and photocurrent measurements. We clearly observed better current rectification and much higher current flow in the MIS diode than in the p-n junction and the metal-semiconductor diodes made of layered materials. The I-V characteristic curve of the MIS diode indicates that current flows mainly across interfaces as a result of carrier tunneling. Moreover, we observed considerably high photocurrent from the MIS diode under visible light illumination. PMID:26886870

  20. Field-induced activation of metal oxide semiconductor for low temperature flexible transparent electronic device applications

    NASA Astrophysics Data System (ADS)

    Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony; Haglund, Amada; Ward, Thomas Zac; Mandrus, David; Rack, Philip

    Amorphous metal-oxide semiconductors have been extensively studied as an active channel material in thin film transistors due to their high carrier mobility, and excellent large-area uniformity. Here, we report the athermal activation of amorphous indium gallium zinc oxide semiconductor channels by an electric field-induced oxygen migration via gating through an ionic liquid. Using field-induced activation, a transparent flexible thin film transistor is demonstrated on a polyamide substrate with transistor characteristics having a current ON-OFF ratio exceeding 108, and saturation field effect mobility of 8.32 cm2/(V.s) without a post-deposition thermal treatment. This study demonstrates the potential of field-induced activation as an athermal alternative to traditional post-deposition thermal annealing for metal oxide electronic devices suitable for transparent and flexible polymer substrates. Materials Science and Technology Division, ORBL, Oak Ridge, TN 37831, USA.

  1. Effect of Temperature on GaGdO/GaN Metal Oxide Semiconductor Field Effect Transistors

    SciTech Connect

    Abernathy, C.R.; Baca, A.; Chu, S.N.G.; Hong, M.; Lothian, J.R.; Marcus, M.A.; Pearton, S.J.; Ren, F.; Schurman, M.J.

    1998-10-14

    GaGdO was deposited on GaN for use as a gate dielectric in order to fabricate a depletion metal oxide semiconductor field effect transistor (MOSFET). This is the fmt demonstration of such a device in the III-Nitride system. Analysis of the effect of temperature on the device shows that gate leakage is significantly reduced at elevated temperature relative to a conventional metal semiconductor field effeet transistor (MESFET) fabricated on the same GaN layer. MOSFET device operation in fact improved upon heating to 400 C. Modeling of the effeet of temperature on contact resistance suggests that the improvement is due to a reduction in the parasitic resistances present in the device.

  2. Metal-Insulator-Semiconductor Diode Consisting of Two-Dimensional Nanomaterials.

    PubMed

    Jeong, Hyun; Oh, Hye Min; Bang, Seungho; Jeong, Hyeon Jun; An, Sung-Jin; Han, Gang Hee; Kim, Hyun; Yun, Seok Joon; Kim, Ki Kang; Park, Jin Cheol; Lee, Young Hee; Lerondel, Gilles; Jeong, Mun Seok

    2016-03-01

    We present a novel metal-insulator-semiconductor (MIS) diode consisting of graphene, hexagonal BN, and monolayer MoS2 for application in ultrathin nanoelectronics. The MIS heterojunction structure was fabricated by vertically stacking layered materials using a simple wet chemical transfer method. The stacking of each layer was confirmed by confocal scanning Raman spectroscopy and device performance was evaluated using current versus voltage (I-V) and photocurrent measurements. We clearly observed better current rectification and much higher current flow in the MIS diode than in the p-n junction and the metal-semiconductor diodes made of layered materials. The I-V characteristic curve of the MIS diode indicates that current flows mainly across interfaces as a result of carrier tunneling. Moreover, we observed considerably high photocurrent from the MIS diode under visible light illumination.

  3. DNA detection using a complementary metal-oxide semiconductor ring oscillator circuit

    NASA Astrophysics Data System (ADS)

    Kocanda, Martin; Abdel-Motaleb, Ibrahim

    2010-10-01

    A DNA detection scheme has been implemented that utilizes a simple complementary metal-oxide semiconductor (CMOS) ring oscillator circuit. The detector oscillates at a fundamental frequency when using a nonhybridized single-strand DNA probe layer. Upon hybridization with a complimentary DNA strand, the oscillator output exhibits an increased frequency shift, indicating a genetic match. The probe assembly consists of a p-GaAs substrate containing a pulsed laser deposition-applied barium strontium titanate layer and an overlying sodium dodecyl sulfate lipid layer that serves to anchor a functionalized oligonucleotide probe. The oscillator circuit consisting of cascaded discrete complimentary n-channel and p-channel metal-oxide-semiconductor field-effect transistors was implemented using passive components arranged in a T-network to provide the associated fundamental time constant.

  4. Recent progress on metal core@semiconductor shell nanocomposites as a promising type of photocatalyst

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Liu, Siqi; Xu, Yi-Jun

    2012-03-01

    The creation of core-shell nanocomposites (CSNs) has attracted considerable attention and developed into an increasingly important research area at the frontier of advanced materials chemistry. CSNs, which are nanoscaled assemblies with a chemical composition that is different on the surface compared to the core region, have found versatile applications in many fields, such as electrooptics, quantum dots, microscopy labels, drug delivery, chemical sensors, nanoreactors and catalysis. This review is primarily focused on the applications of metal core@semiconductor shell nanocomposites in heterogeneous photocatalysis, including photocatalytic nonselective processes for environmental remediation, selective organic transformations to fine chemicals and water splitting to clean hydrogen energy. It is hoped that this minireview can inspire multidisciplinary research interest in the precisely morphology-controlled synthesis of a variety of metal core@semiconductor shell nanoassemblies and their wide applications in the realm of heterogeneous photocatalysis.

  5. Superatoms and Metal-Semiconductor Motifs for Cluster Materials

    SciTech Connect

    Castleman, A. W.

    2013-10-11

    A molecular understanding of catalysis and catalytically active materials is of fundamental importance in designing new substances for applications in energy and fuels. We have performed reactivity studies and ultrafast ionization and coulomb explosion studies on a variety of catalytically-relevant materials, including transition metal oxides of Fe, Co, Ni, Cu, Ti, V, Nb, and Ta. We demonstrate that differences in charge state, geometry, and elemental composition of clusters of such materials determine chemical reactivity and ionization behavior, crucial steps in improving performance of catalysts.

  6. Silicon Metal-oxide-semiconductor Quantum Dots for Single-electron Pumping

    PubMed Central

    Rossi, Alessandro; Tanttu, Tuomo; Hudson, Fay E.; Sun, Yuxin; Möttönen, Mikko; Dzurak, Andrew S.

    2015-01-01

    As mass-produced silicon transistors have reached the nano-scale, their behavior and performances are increasingly affected, and often deteriorated, by quantum mechanical effects such as tunneling through single dopants, scattering via interface defects, and discrete trap charge states. However, progress in silicon technology has shown that these phenomena can be harnessed and exploited for a new class of quantum-based electronics. Among others, multi-layer-gated silicon metal-oxide-semiconductor (MOS) technology can be used to control single charge or spin confined in electrostatically-defined quantum dots (QD). These QD-based devices are an excellent platform for quantum computing applications and, recently, it has been demonstrated that they can also be used as single-electron pumps, which are accurate sources of quantized current for metrological purposes. Here, we discuss in detail the fabrication protocol for silicon MOS QDs which is relevant to both quantum computing and quantum metrology applications. Moreover, we describe characterization methods to test the integrity of the devices after fabrication. Finally, we give a brief description of the measurement set-up used for charge pumping experiments and show representative results of electric current quantization. PMID:26067215

  7. Semiconductor to metal transition in bilayer phosphorene under normal compressive strain.

    PubMed

    Manjanath, Aaditya; Samanta, Atanu; Pandey, Tribhuwan; Singh, Abhishek K

    2015-02-20

    Phosphorene, a two-dimensional analog of black phosphorous, has been a subject of immense interest recently, due to its high carrier mobilities and a tunable bandgap. So far, tunability has been predicted to be obtained with very high compressive/tensile in-plane strains, and vertical electric field, which are difficult to achieve experimentally. Here, we show using density functional theory based calculations the possibility of tuning electronic properties by applying normal compressive strain in bilayer phosphorene. A complete and fully reversible semiconductor to metal transition has been observed at [Formula: see text] strain, which can be easily realized experimentally. Furthermore, a direct to indirect bandgap transition has also been observed at [Formula: see text] strain, which is a signature of unique band-gap modulation pattern in this material. The absence of negative frequencies in phonon spectra as a function of strain demonstrates the structural integrity of the sheets at relatively higher strain range. The carrier mobilities and effective masses also do not change significantly as a function of strain, keeping the transport properties nearly unchanged. This inherent ease of tunability of electronic properties without affecting the excellent transport properties of phosphorene sheets is expected to pave way for further fundamental research leading to phosphorene-based multi-physics devices.

  8. Silicon Metal-oxide-semiconductor Quantum Dots for Single-electron Pumping.

    PubMed

    Rossi, Alessandro; Tanttu, Tuomo; Hudson, Fay E; Sun, Yuxin; Möttönen, Mikko; Dzurak, Andrew S

    2015-06-03

    As mass-produced silicon transistors have reached the nano-scale, their behavior and performances are increasingly affected, and often deteriorated, by quantum mechanical effects such as tunneling through single dopants, scattering via interface defects, and discrete trap charge states. However, progress in silicon technology has shown that these phenomena can be harnessed and exploited for a new class of quantum-based electronics. Among others, multi-layer-gated silicon metal-oxide-semiconductor (MOS) technology can be used to control single charge or spin confined in electrostatically-defined quantum dots (QD). These QD-based devices are an excellent platform for quantum computing applications and, recently, it has been demonstrated that they can also be used as single-electron pumps, which are accurate sources of quantized current for metrological purposes. Here, we discuss in detail the fabrication protocol for silicon MOS QDs which is relevant to both quantum computing and quantum metrology applications. Moreover, we describe characterization methods to test the integrity of the devices after fabrication. Finally, we give a brief description of the measurement set-up used for charge pumping experiments and show representative results of electric current quantization.

  9. Integrating Partial Polarization into a Metal-Ferroelectric-Semiconductor Field Effect Transistor Model

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Ho, Fat Duen

    1999-01-01

    The ferroelectric channel in a Metal-Ferroelectric-Semiconductor Field Effect Transistor (MFSFET) can partially change its polarization when the gate voltage near the polarization threshold voltage. This causes the MFSFET Drain current to change with repeated pulses of the same gate voltage near the polarization threshold voltage. A previously developed model [11, based on the Fermi-Dirac function, assumed that for a given gate voltage and channel polarization, a sin-le Drain current value would be generated. A study has been done to characterize the effects of partial polarization on the Drain current of a MFSFET. These effects have been described mathematically and these equations have been incorporated into a more comprehensive mathematical model of the MFSFET. The model takes into account the hysteresis nature of the MFSFET and the time dependent decay as well as the effects of partial polarization. This model defines the Drain current based on calculating the degree of polarization from previous gate pulses, the present Gate voltage, and the amount of time since the last Gate volta-e pulse.

  10. Vertically integrated, three-dimensional nanowire complementary metal-oxide-semiconductor circuits.

    PubMed

    Nam, SungWoo; Jiang, Xiaocheng; Xiong, Qihua; Ham, Donhee; Lieber, Charles M

    2009-12-15

    Three-dimensional (3D), multi-transistor-layer, integrated circuits represent an important technological pursuit promising advantages in integration density, operation speed, and power consumption compared with 2D circuits. We report fully functional, 3D integrated complementary metal-oxide-semiconductor (CMOS) circuits based on separate interconnected layers of high-mobility n-type indium arsenide (n-InAs) and p-type germanium/silicon core/shell (p-Ge/Si) nanowire (NW) field-effect transistors (FETs). The DC voltage output (V(out)) versus input (V(in)) response of vertically interconnected CMOS inverters showed sharp switching at close to the ideal value of one-half the supply voltage and, moreover, exhibited substantial DC gain of approximately 45. The gain and the rail-to-rail output switching are consistent with the large noise margin and minimal static power consumption of CMOS. Vertically interconnected, three-stage CMOS ring oscillators were also fabricated by using layer-1 InAs NW n-FETs and layer-2 Ge/Si NW p-FETs. Significantly, measurements of these circuits demonstrated stable, self-sustained oscillations with a maximum frequency of 108 MHz, which represents the highest-frequency integrated circuit based on chemically synthesized nanoscale materials. These results highlight the flexibility of bottom-up assembly of distinct nanoscale materials and suggest substantial promise for 3D integrated circuits. PMID:19940239

  11. Vertically integrated, three-dimensional nanowire complementary metal-oxide-semiconductor circuits

    PubMed Central

    Nam, SungWoo; Jiang, Xiaocheng; Xiong, Qihua; Ham, Donhee; Lieber, Charles M.

    2009-01-01

    Three-dimensional (3D), multi-transistor-layer, integrated circuits represent an important technological pursuit promising advantages in integration density, operation speed, and power consumption compared with 2D circuits. We report fully functional, 3D integrated complementary metal-oxide-semiconductor (CMOS) circuits based on separate interconnected layers of high-mobility n-type indium arsenide (n-InAs) and p-type germanium/silicon core/shell (p-Ge/Si) nanowire (NW) field-effect transistors (FETs). The DC voltage output (Vout) versus input (Vin) response of vertically interconnected CMOS inverters showed sharp switching at close to the ideal value of one-half the supply voltage and, moreover, exhibited substantial DC gain of ≈45. The gain and the rail-to-rail output switching are consistent with the large noise margin and minimal static power consumption of CMOS. Vertically interconnected, three-stage CMOS ring oscillators were also fabricated by using layer-1 InAs NW n-FETs and layer-2 Ge/Si NW p-FETs. Significantly, measurements of these circuits demonstrated stable, self-sustained oscillations with a maximum frequency of 108 MHz, which represents the highest-frequency integrated circuit based on chemically synthesized nanoscale materials. These results highlight the flexibility of bottom-up assembly of distinct nanoscale materials and suggest substantial promise for 3D integrated circuits. PMID:19940239

  12. Effect of barrier recess on transport and electrostatic interface properties of GaN-based normally-off and normally-on metal oxide semiconductor heterostructure field effect transistors

    NASA Astrophysics Data System (ADS)

    Capriotti, M.; Bahat Treidel, E.; Fleury, C.; Bethge, O.; Ostermaier, C.; Rigato, M.; Lancaster, S. L. C.; Brunner, F.; Detz, H.; Hilt, O.; Würfl, J.; Pogany, D.; Strasser, G.

    2016-11-01

    We perform a comprehensive electrical transport and physical characterization of metal oxide semiconductor heterostructure field effect transistors with ZrO2 gate dielectrics, having partially (referred here as MOS-HFET) and fully (here called true-MOS-FET) recessed GaN/AlGaN/GaN barrier, giving normally-on and normally-off behavior, respectively. The mobility of the MOS-HFETs decreases with the proximity of the Coulomb scattering centers, situated at the ZrO2/AlGaN interface. The effect of the etching procedure and ZrO2 deposition on the formation of the interfacial charges, Nint, is evaluated by X-ray Photoelectron Spectroscopy and by fitting the threshold voltage values to numerical model. For the both device types, the extracted value of Nint lies within 15% around 2.8 × 1013 cm-2, which is of the order of polarization charge, showing that our low-damage three step etching procedure does not introduce extra interface states.

  13. Decoration of diatom biosilica with noble metal and semiconductor nanoparticles (<10 nm): assembly, characterization, and applications.

    PubMed

    Jantschke, Anne; Herrmann, Anne-Kristin; Lesnyak, Vladimir; Eychmüller, Alexander; Brunner, Eike

    2012-01-01

    Diatom-templated noble metal (Ag, Pt, Au) and semiconductor (CdTe) nanoparticle arrays were synthesized by the attachment of prefabricated nanoparticles of defined size. Two different attachment techniques-layer-by-layer deposition and covalent linking-could successfully be applied. The synthesized arrays were shown to be useful for surface-enhanced Raman spectroscopy (SERS) of components, for catalysis, and for improved image quality in scanning electron microscopy (SEM).

  14. Complementary Metal-Oxide-Semiconductor Image Sensor with Microchamber Array for Fluorescent Bead Counting

    NASA Astrophysics Data System (ADS)

    Sasagawa, Kiyotaka; Ando, Keisuke; Kobayashi, Takuma; Noda, Toshihiko; Tokuda, Takashi; Kim, Soo Hyeon; Iino, Ryota; Noji, Hiroyuki; Ohta, Jun

    2012-02-01

    We fabricated a complementary metal-oxide-semiconductor image sensor with a femtoliter microchamber array. The microchamber array plate is used for trapping microbeads and limiting the incident angle of light detected by the sensor. The sensor has an interference filter for fluorescent microbeads imaging. We detected fluorescent and nonfluorescent microbead with this sensor and showed its capability for counting the number of fluorescent chambers.

  15. Modular synthesis of a dual metal-dual semiconductor nano-heterostructure

    DOE PAGESBeta

    Amirav, Lilac; Oba, Fadekemi; Aloni, Shaul; Alivisatos, A. Paul

    2015-04-29

    Reported is the design and modular synthesis of a dual metal-dual semiconductor heterostructure with control over the dimensions and placement of its individual components. Analogous to molecular synthesis, colloidal synthesis is now evolving into a series of sequential synthetic procedures with separately optimized steps. Here we detail the challenges and parameters that must be considered when assembling such a multicomponent nanoparticle, and their solutions.

  16. Effect of barrier height on friction behavior of the semiconductors silicon and gallium arsenide in contact with pure metals

    NASA Technical Reports Server (NTRS)

    Mishina, H.; Buckley, D. H.

    1984-01-01

    Friction experiments were conducted for the semiconductors silicon and gallium arsenide in contact with pure metals. Polycrystalline titanium, tantalum, nickel, palladium, and platinum were made to contact a single crystal silicon (111) surface. Indium, nickel, copper, and silver were made to contact a single crystal gallium arsenide (100) surface. Sliding was conducted both in room air and in a vacuum of 10 to the minus 9th power torr. The friction of semiconductors in contact with metals depended on a Schottky barrier height formed at the metal semiconductor interface. Metals with a higher barrier height on semiconductors gave lower friction. The effect of the barrier height on friction behavior for argon sputtered cleaned surfaces in vacuum was more specific than that for the surfaces containing films in room air. With a silicon surface sliding on titanium, many silicon particles back transferred. In contrast, a large quantity of indium transferred to the gallium arsenide surface.

  17. Modeling electrochemical deposition inside nanotubes to obtain metal-semiconductor multiscale nanocables or conical nanopores.

    PubMed

    Lebedev, Konstantin; Mafé, Salvador; Stroeve, Pieter

    2005-08-01

    Nanocables with a radial metal-semiconductor heterostructure have recently been prepared by electrochemical deposition inside metal nanotubes. First, a bare nanoporous polycarbonate track-etched membrane is coated uniformly with a metal film by electroless deposition. The film forms a working electrode for further deposition of a semiconductor layer that grows radially inside the nanopore when the deposition rate is slow. We propose a new physical model for the nanocable synthesis and study the effects of the deposited species concentration, potential-dependent reaction rate, and nanopore dimensions on the electrochemical deposition. The problem involves both axial diffusion through the nanopore and radial transport to the nanopore surface, with a surface reaction rate that depends on the axial position and the time. This is so because the radial potential drop across the deposited semiconductor layer changes with the layer thickness through the nanopore. Since axially uniform nanocables are needed for most applications, we consider the relative role of reaction and axial diffusion rates on the deposition process. However, in those cases where partial, empty-core deposition should be desirable (e.g., for producing conical nanopores to be used in single nanoparticle detection), we give conditions where asymmetric geometries can be experimentally realized. PMID:16852830

  18. Modeling electrochemical deposition inside nanotubes to obtain metal-semiconductor multiscale nanocables or conical nanopores.

    PubMed

    Lebedev, Konstantin; Mafé, Salvador; Stroeve, Pieter

    2005-08-01

    Nanocables with a radial metal-semiconductor heterostructure have recently been prepared by electrochemical deposition inside metal nanotubes. First, a bare nanoporous polycarbonate track-etched membrane is coated uniformly with a metal film by electroless deposition. The film forms a working electrode for further deposition of a semiconductor layer that grows radially inside the nanopore when the deposition rate is slow. We propose a new physical model for the nanocable synthesis and study the effects of the deposited species concentration, potential-dependent reaction rate, and nanopore dimensions on the electrochemical deposition. The problem involves both axial diffusion through the nanopore and radial transport to the nanopore surface, with a surface reaction rate that depends on the axial position and the time. This is so because the radial potential drop across the deposited semiconductor layer changes with the layer thickness through the nanopore. Since axially uniform nanocables are needed for most applications, we consider the relative role of reaction and axial diffusion rates on the deposition process. However, in those cases where partial, empty-core deposition should be desirable (e.g., for producing conical nanopores to be used in single nanoparticle detection), we give conditions where asymmetric geometries can be experimentally realized.

  19. Nanochemistry at the atomic scale revealed in hydrogen-induced semiconductor surface metallization

    NASA Astrophysics Data System (ADS)

    Derycke, Vincent; Soukiassian, Patrick G.; Amy, Fabrice; Chabal, Yves J.; D'Angelo, Marie D.; Enriquez, Hanna B.; Silly, Mathieu G.

    2003-04-01

    Passivation of semiconductor surfaces against chemical attack can be achieved by terminating the surface-dangling bonds with a monovalent atom such as hydrogen. Such passivation invariably leads to the removal of all surface states in the bandgap, and thus to the termination of non-metallic surfaces. Here we report the first observation of semiconductor surface metallization induced by atomic hydrogen. This result, established by using photo-electron and photo-absorption spectroscopies and scanning tunnelling techniques, is achieved on a Si-terminated cubic silicon carbide (SiC) surface. It results from competition between hydrogen termination of surface-dangling bonds and hydrogen-generated steric hindrance below the surface. Understanding the ingredient for hydrogen-stabilized metallization directly impacts the ability to eliminate electronic defects at semiconductor interfaces critical for microelectronics, provides a means to develop electrical contacts on high-bandgap chemically passive materials, particularly for interfacing with biological systems, and gives control of surfaces for lubrication, for example of nanomechanical devices.

  20. Nanochemistry at the atomic scale revealed in hydrogen-induced semiconductor surface metallization.

    PubMed

    Derycke, Vincent; Soukiassian, Patrick G; Amy, Fabrice; Chabal, Yves J; D'angelo, Marie D; Enriquez, Hanna B; Silly, Mathieu G

    2003-04-01

    Passivation of semiconductor surfaces against chemical attack can be achieved by terminating the surface-dangling bonds with a monovalent atom such as hydrogen. Such passivation invariably leads to the removal of all surface states in the bandgap, and thus to the termination of non-metallic surfaces. Here we report the first observation of semiconductor surface metallization induced by atomic hydrogen. This result, established by using photo-electron and photo-absorption spectroscopies and scanning tunnelling techniques, is achieved on a Si-terminated cubic silicon carbide (SiC) surface. It results from competition between hydrogen termination of surface-dangling bonds and hydrogen-generated steric hindrance below the surface. Understanding the ingredient for hydrogen-stabilized metallization directly impacts the ability to eliminate electronic defects at semiconductor interfaces critical for microelectronics, provides a means to develop electrical contacts on high-bandgap chemically passive materials, particularly for interfacing with biological systems, and gives control of surfaces for lubrication, for example of nanomechanical devices.

  1. Electronic Characterization of Au/DNA/ITO Metal-Semiconductor-Metal Diode and Its Application as a Radiation Sensor

    PubMed Central

    Al-Ta’ii, Hassan Maktuff Jaber; Periasamy, Vengadesh; Amin, Yusoff Mohd

    2016-01-01

    Deoxyribonucleic acid or DNA molecules expressed as double-stranded (DSS) negatively charged polymer plays a significant role in electronic states of metal/silicon semiconductor structures. Electrical parameters of an Au/DNA/ITO device prepared using self-assembly method was studied by using current–voltage (I-V) characteristic measurements under alpha bombardment at room temperature. The results were analyzed using conventional thermionic emission model, Cheung and Cheung’s method and Norde’s technique to estimate the barrier height, ideality factor, series resistance and Richardson constant of the Au/DNA/ITO structure. Besides demonstrating a strongly rectifying (diode) characteristic, it was also observed that orderly fluctuations occur in various electrical parameters of the Schottky structure. Increasing alpha radiation effectively influences the series resistance, while the barrier height, ideality factor and interface state density parameters respond linearly. Barrier height determined from I–V measurements were calculated at 0.7284 eV for non-radiated, increasing to about 0.7883 eV in 0.036 Gy showing an increase for all doses. We also demonstrate the hypersensitivity phenomena effect by studying the relationship between the series resistance for the three methods, the ideality factor and low-dose radiation. Based on the results, sensitive alpha particle detectors can be realized using Au/DNA/ITO Schottky junction sensor. PMID:26799703

  2. Electronic Characterization of Au/DNA/ITO Metal-Semiconductor-Metal Diode and Its Application as a Radiation Sensor.

    PubMed

    Al-Ta'ii, Hassan Maktuff Jaber; Periasamy, Vengadesh; Amin, Yusoff Mohd

    2016-01-01

    Deoxyribonucleic acid or DNA molecules expressed as double-stranded (DSS) negatively charged polymer plays a significant role in electronic states of metal/silicon semiconductor structures. Electrical parameters of an Au/DNA/ITO device prepared using self-assembly method was studied by using current-voltage (I-V) characteristic measurements under alpha bombardment at room temperature. The results were analyzed using conventional thermionic emission model, Cheung and Cheung's method and Norde's technique to estimate the barrier height, ideality factor, series resistance and Richardson constant of the Au/DNA/ITO structure. Besides demonstrating a strongly rectifying (diode) characteristic, it was also observed that orderly fluctuations occur in various electrical parameters of the Schottky structure. Increasing alpha radiation effectively influences the series resistance, while the barrier height, ideality factor and interface state density parameters respond linearly. Barrier height determined from I-V measurements were calculated at 0.7284 eV for non-radiated, increasing to about 0.7883 eV in 0.036 Gy showing an increase for all doses. We also demonstrate the hypersensitivity phenomena effect by studying the relationship between the series resistance for the three methods, the ideality factor and low-dose radiation. Based on the results, sensitive alpha particle detectors can be realized using Au/DNA/ITO Schottky junction sensor.

  3. All-semiconductor metamaterial-based optical circuit board at the microscale

    SciTech Connect

    Min, Li; Huang, Lirong

    2015-07-07

    The newly introduced metamaterial-based optical circuit, an analogue of electronic circuit, is becoming a forefront topic in the fields of electronics, optics, plasmonics, and metamaterials. However, metals, as the commonly used plasmonic elements in an optical circuit, suffer from large losses at the visible and infrared wavelengths. We propose here a low-loss, all-semiconductor metamaterial-based optical circuit board at the microscale by using interleaved intrinsic GaAs and doped GaAs, and present the detailed design process for various lumped optical circuit elements, including lumped optical inductors, optical capacitors, optical conductors, and optical insulators. By properly combining these optical circuit elements and arranging anisotropic optical connectors, we obtain a subwavelength optical filter, which can always hold band-stop filtering function for various polarization states of the incident electromagnetic wave. All-semiconductor optical circuits may provide a new opportunity in developing low-power and ultrafast components and devices for optical information processing.

  4. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier

    DOE PAGESBeta

    Liu, Yuanyue; Stradins, Paul; Wei, Su -Huai

    2016-04-22

    Two-dimensional (2D) semiconductors have shown great potential for electronic and optoelectronic applications. However, their development is limited by a large Schottky barrier (SB) at the metal-semiconductor junction (MSJ), which is difficult to tune by using conventional metals because of the effect of strong Fermi level pinning (FLP). We show that this problem can be overcome by using 2D metals, which are bounded with 2D semiconductors through van der Waals (vdW) interactions. This success relies on a weak FLP at the vdW MSJ, which is attributed to the suppression of metal-induced gap states. Consequently, the SB becomes tunable and can vanishmore » with proper 2D metals (for example, H-NbS2). This work not only offers new insights into the fundamental properties of heterojunctions but also uncovers the great potential of 2D metals for device applications.« less

  5. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier

    PubMed Central

    Liu, Yuanyue; Stradins, Paul; Wei, Su-Huai

    2016-01-01

    Two-dimensional (2D) semiconductors have shown great potential for electronic and optoelectronic applications. However, their development is limited by a large Schottky barrier (SB) at the metal-semiconductor junction (MSJ), which is difficult to tune by using conventional metals because of the effect of strong Fermi level pinning (FLP). We show that this problem can be overcome by using 2D metals, which are bounded with 2D semiconductors through van der Waals (vdW) interactions. This success relies on a weak FLP at the vdW MSJ, which is attributed to the suppression of metal-induced gap states. Consequently, the SB becomes tunable and can vanish with proper 2D metals (for example, H-NbS2). This work not only offers new insights into the fundamental properties of heterojunctions but also uncovers the great potential of 2D metals for device applications. PMID:27152360

  6. Uniform Doping in Quantum-Dots-Based Dilute Magnetic Semiconductor.

    PubMed

    Saha, Avijit; Shetty, Amitha; Pavan, A R; Chattopadhyay, Soma; Shibata, Tomohiro; Viswanatha, Ranjani

    2016-07-01

    Effective manipulation of magnetic spin within a semiconductor leading to a search for ferromagnets with semiconducting properties has evolved into an important field of dilute magnetic semiconductors (DMS). Although a lot of research is focused on understanding the still controversial origin of magnetism, efforts are also underway to develop new materials with higher magnetic temperatures for spintronics applications. However, so far, efforts toward quantum-dots(QDs)-based DMS materials are plagued with problems of phase separation, leading to nonuniform distribution of dopant ions. In this work, we have developed a strategy to synthesize highly crystalline, single-domain DMS system starting from a small magnetic core and allowing it to diffuse uniformly inside a thick CdS semiconductor matrix and achieve DMS QDs. X-ray absorption fine structure (XAFS) spectroscopy and energy-dispersive X-ray spectroscopy-scanning transmission electron microscopy (STEM-EDX) indicates the homogeneous distribution of magnetic impurities inside the semiconductor QDs leading to superior magnetic property. Further, the versatility of this technique was demonstrated by obtaining ultra large particles (∼60 nm) with uniform doping concentration as well as demonstrating the high quality magnetic response. PMID:27295453

  7. Uniform Doping in Quantum-Dots-Based Dilute Magnetic Semiconductor.

    PubMed

    Saha, Avijit; Shetty, Amitha; Pavan, A R; Chattopadhyay, Soma; Shibata, Tomohiro; Viswanatha, Ranjani

    2016-07-01

    Effective manipulation of magnetic spin within a semiconductor leading to a search for ferromagnets with semiconducting properties has evolved into an important field of dilute magnetic semiconductors (DMS). Although a lot of research is focused on understanding the still controversial origin of magnetism, efforts are also underway to develop new materials with higher magnetic temperatures for spintronics applications. However, so far, efforts toward quantum-dots(QDs)-based DMS materials are plagued with problems of phase separation, leading to nonuniform distribution of dopant ions. In this work, we have developed a strategy to synthesize highly crystalline, single-domain DMS system starting from a small magnetic core and allowing it to diffuse uniformly inside a thick CdS semiconductor matrix and achieve DMS QDs. X-ray absorption fine structure (XAFS) spectroscopy and energy-dispersive X-ray spectroscopy-scanning transmission electron microscopy (STEM-EDX) indicates the homogeneous distribution of magnetic impurities inside the semiconductor QDs leading to superior magnetic property. Further, the versatility of this technique was demonstrated by obtaining ultra large particles (∼60 nm) with uniform doping concentration as well as demonstrating the high quality magnetic response.

  8. a Theory of the Metallization of Semiconductor Surfaces by Alkali Atoms.

    NASA Astrophysics Data System (ADS)

    Te, Ronald Lim

    Experimental evidence suggest that alkali metal atoms adsorbed on a semiconductor substrate undergo a transition from insulating to metallic at low coverage. The electrons in the adlayer initially occupy isolated exponentially localized atomic orbitals, and become metallic with increasing coverage. Several investigations have shown that the onset of metallization occurs at less than a quarter of a monolayer. Interpretation of second-harmonic data, where the signal increases sharply at 1/6 monolayer, suggests a metallization transition due to the delocalization of surface electrons. This dissertation provides a theoretical framework for understanding the metallization of alkali overlayers. The adlayer is simulated using a rectangular lattice with more than 80,000 sites that are randomly occupied by atomic-like orbitals up to densities commensurate with the different coverages. A new computational technique called dynamic recursion was developed to handle calculations with large numbers of basis orbitals. Each alkali orbital is taken to have the same on-site energy; however, the orbital interactions involve several nearest neighbors and are an exponentially decreasing function of the orbitals' separation. This model gives a tight-binding Hamiltonian with random off-diagonal disorder. An investigation of states at the Fermi level shows a sharp transition between strongly and weakly localized states as a function of coverage. This numerically observed transition is indicative of an Anderson-type metal-insulator transition where disorder causes states of different degrees of localization to cross the Fermi level. The Hamiltonian studied exhibits a delocalization transition for states at the Fermi level, and is proposed as a model for the metallization of the alkali metal atoms adsorbed on a semiconductor substrate. These results are consistent with other work which show the existence of a mobility edge that separates exponentially localized from power-law localized

  9. Method of plasma etching Ga-based compound semiconductors

    DOEpatents

    Qiu, Weibin; Goddard, Lynford L.

    2012-12-25

    A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent to the process chamber. The process chamber contains a sample comprising a Ga-based compound semiconductor. The sample is in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. The method includes flowing SiCl.sub.4 gas into the chamber, flowing Ar gas into the chamber, and flowing H.sub.2 gas into the chamber. RF power is supplied independently to the source electrode and the platen. A plasma is generated based on the gases in the process chamber, and regions of a surface of the sample adjacent to one or more masked portions of the surface are etched to create a substantially smooth etched surface including features having substantially vertical walls beneath the masked portions.

  10. Identifying airborne metal particles sources near an optoelectronic and semiconductor industrial park

    NASA Astrophysics Data System (ADS)

    Chen, Ho-Wen; Chen, Wei-Yea; Chang, Cheng-Nan; Chuang, Yen-Hsun; Lin, Yu-Hao

    2016-06-01

    The recently developed Central Taiwan Science Park (CTSP) in central Taiwan is home to an optoelectronic and semiconductor industrial cluster. Therefore, exploring the elemental compositions and size distributions of airborne particles emitted from the CTSP would help to prevent pollution. This study analyzed size-fractionated metal-rich particle samples collected in upwind and downwind areas of CTSP during Jan. and Oct. 2013 by using micro-orifice uniform deposited impactor (MOUDI). Correlation analysis, hierarchical cluster analysis and particle mass-size distribution analysis are performed to identify the source of metal-rich particle near the CTSP. Analyses of elemental compositions and particle size distributions emitted from the CTSP revealed that the CTSP emits some metals (V, As, In Ga, Cd and Cu) in the ultrafine particles (< 1 μm). The statistical analysis combines with the particle mass-size distribution analysis could provide useful source identification information. In airborne particles with the size of 0.32 μm, Ga could be a useful pollution index for optoelectronic and semiconductor emission in the CTSP. Meanwhile, the ratios of As/Ga concentration at the particle size of 0.32 μm demonstrates that humans near the CTSP would be potentially exposed to GaAs ultrafine particles. That is, metals such as Ga and As and other metals that are not regulated in Taiwan are potentially harmful to human health.

  11. Thickness dependent electronic structure and morphology of rubrene thin films on metal, semiconductor, and dielectric substrates

    NASA Astrophysics Data System (ADS)

    Sinha, Sumona; Mukherjee, M.

    2013-08-01

    The evolution of the electronic structure and morphology of rubrene thin films on noble-metal, semiconductor and dielectric substrates have been investigated as a function of thickness of deposited films by using photoelectron spectroscopy and atomic force microscopy. The clean polycrystalline Au and Ag were used as noble-metals, whereas, H passivated and SiO2 coated Si (100) were used as semiconductors and dielectric substrates. Discussion and comparison on interface dipole, energy level alignment, and surface morphology for the four cases are presented. The formation of dipole at metallic interfaces is found to occur due to push back effect. S parameter obtained from the variation of barrier height with the change of work function of the contacting metal indicates moderately weak interaction between rubrene and the metal substrates. The thickness dependent energy level alignment of the physisorbed rubrene films on different substrates is explained by a dielectric model in terms of electrostatic screening of photo-holes or photoemission final state relaxation energy. Films on all the substrates are found to grow following Stranski-Krastnov type growth mode and are more ordered at higher coverage.

  12. Alkyl monolayer passivated metal-semiconductor diodes: 2: Comparison with native silicon oxide.

    PubMed

    Liu, Yong-Jun; Yu, Hua-Zhong

    2003-04-14

    To understand the electrical properties at passivated metal-semiconductor interfaces, two types of mercury-insulator-silicon (n-type) junctions, Hg\\C10H21-Si and Hg\\SiO2-Si, were fabricated and their current-voltage and capacitance-voltage characteristics compared. Both of them exhibited near-ideal rectifying characteristics with an excellent saturation current at reverse bias, which is in contrast to the previously reported ohmic behavior of an unmodified mercury-silicon junction. The experimental results also indicated that the n-decyl monolayer passivated junction possesses a higher effective barrier height, a lower ideality factor (that is, closer to unity), and better reproducibility than that of native silicon oxide. In addition, the dopant density and build-in potential, extracted from capacitance-voltage measurements of these passivated mercury-silicon junctions, revealed that alkyl monolayer derivatization does not alter the intrinsic properties of the silicon substrate. The calculated surface state density at the alkyl monolayer\\silicon interface is lower than that of the silicon oxide\\silicon interface. The present study increases the possibility of using advanced organic materials as ultrathin insulator layers for miniaturized, silicon-based microelectronic devices.

  13. GMAG Dissertation Award Talk: Zero-moment Half-Metallic Ferrimagnetic Semiconductors

    NASA Astrophysics Data System (ADS)

    Jamer, Michelle E.

    2015-03-01

    Low- and zero-moment half-metallic ferrimagnetic semiconductors have been proposed for advanced applications, such as nonvolatile RAM memory and quantum computing. These inverse-Heusler materials could be used to generate spin-polarized electron or hole currents without the associated harmful fringing magnetic fields. Such materials are expected to exhibit low to zero magnetic moment at room temperature, which makes them well-positioned for future spin-based devices. However, these compounds have been shown to suffer from disorder. This work focuses on the synthesis of these compounds and the investigation of their structural, magnetic, and transport properties. Cr2CoGa and Mn3Al thin films were synthesized by molecular beam epitaxy, and V3Al and Cr2CoAl were synthesized via arc-melting. Rietveld analysis was used to determine the degree of ordering in the sublattices as a function of annealing. The atomic moments were measured by X-ray magnetic circular and linear dichroism confirmed antiferromagnetic alignment of sublattices and the desired near-zero moment in several compounds. In collaboration with George E. Sterbinsky, Photon Sciences Directorate, Brookhaven National Laboratory; Dario Arena Photon Sciences Directorate, Brookhaven National Laboratory; Laura H. Lewis, Chemical Engineering, Northeastern University; and Don Heiman, Physics, Northeastern University. NSF-ECCS-1402738, NSF-DMR-0907007.

  14. Cross-plane thermal conductivity of (Ti,W)N/(Al,Sc)N metal/semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Saha, Bivas; Koh, Yee Rui; Comparan, Jonathan; Sadasivam, Sridhar; Schroeder, Jeremy L.; Garbrecht, Magnus; Mohammed, Amr; Birch, Jens; Fisher, Timothy; Shakouri, Ali; Sands, Timothy D.

    2016-01-01

    Reduction of cross-plane thermal conductivity and understanding of the mechanisms of heat transport in nanostructured metal/semiconductor superlattices are crucial for their potential applications in thermoelectric and thermionic energy conversion devices, thermal management systems, and thermal barrier coatings. We have developed epitaxial (Ti,W)N/(Al,Sc)N metal/semiconductor superlattices with periodicity ranging from 1 nm to 240 nm that show significantly lower thermal conductivity compared to the parent TiN/(Al,Sc)N superlattice system. The (Ti,W)N/(Al,Sc)N superlattices grow with [001] orientation on the MgO(001) substrates with well-defined coherent layers and are nominally single crystalline with low densities of extended defects. Cross-plane thermal conductivity (measured by time-domain thermoreflectance) decreases with an increase in the superlattice interface density in a manner that is consistent with incoherent phonon boundary scattering. Thermal conductivity values saturate at 1.7 W m-1K-1 for short superlattice periods possibly due to a delicate balance between long-wavelength coherent phonon modes and incoherent phonon scattering from heavy tungsten atomic sites and superlattice interfaces. First-principles density functional perturbation theory based calculations are performed to model the vibrational spectrum of the individual component materials, and transport models are used to explain the interface thermal conductance across the (Ti,W)N/(Al,Sc)N interfaces as a function of periodicity. The long-wavelength coherent phonon modes are expected to play a dominant role in the thermal transport properties of the short-period superlattices. Our analysis of the thermal transport properties of (Ti,W)N/(Al,Sc)N metal/semiconductor superlattices addresses fundamental questions about heat transport in multilayer materials.

  15. An electrodeposited inhomogeneous metal-insulator-semiconductor junction for efficient photoelectrochemical water oxidation

    NASA Astrophysics Data System (ADS)

    Hill, James C.; Landers, Alan T.; Switzer, Jay A.

    2015-11-01

    The photoelectrochemical splitting of water into hydrogen and oxygen requires a semiconductor to absorb light and generate electron-hole pairs, and a catalyst to enhance the kinetics of electron transfer between the semiconductor and solution. A crucial question is how this catalyst affects the band bending in the semiconductor, and, therefore, the photovoltage of the cell. We introduce a simple and inexpensive electrodeposition method to produce an efficient n-Si/SiOx/Co/CoOOH photoanode for the photoelectrochemical oxidation of water to oxygen. The photoanode functions as a solid-state, metal-insulator-semiconductor photovoltaic cell with spatially non-uniform barrier heights in series with a low overpotential water-splitting electrochemical cell. The barrier height is a function of the Co coverage; it increases from 0.74 eV for a thick, continuous film to 0.91 eV for a thin, inhomogeneous film that has not reached coalescence. The larger barrier height leads to a 360 mV photovoltage enhancement relative to a solid-state Schottky barrier.

  16. Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors.

    PubMed

    Li, Song-Lin; Tsukagoshi, Kazuhito; Orgiu, Emanuele; Samorì, Paolo

    2016-01-01

    Two-dimensional (2D) van der Waals semiconductors represent the thinnest, air stable semiconducting materials known. Their unique optical, electronic and mechanical properties hold great potential for harnessing them as key components in novel applications for electronics and optoelectronics. However, the charge transport behavior in 2D semiconductors is more susceptible to external surroundings (e.g. gaseous adsorbates from air and trapped charges in substrates) and their electronic performance is generally lower than corresponding bulk materials due to the fact that the surface and bulk coincide. In this article, we review recent progress on the charge transport properties and carrier mobility engineering of 2D transition metal chalcogenides, with a particular focus on the markedly high dependence of carrier mobility on thickness. We unveil the origin of this unique thickness dependence and elaborate the devised strategies to master it for carrier mobility optimization. Specifically, physical and chemical methods towards the optimization of the major factors influencing the extrinsic transport such as electrode/semiconductor contacts, interfacial Coulomb impurities and atomic defects are discussed. In particular, the use of ad hoc molecules makes it possible to engineer the interface with the dielectric and heal the vacancies in such materials. By casting fresh light on the theoretical and experimental studies, we provide a guide for improving the electronic performance of 2D semiconductors, with the ultimate goal of achieving technologically viable atomically thin (opto)electronics.

  17. Cu2O-based solar cells using oxide semiconductors

    NASA Astrophysics Data System (ADS)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2016-01-01

    We describe significant improvements of the photovoltaic properties that were achieved in Al-doped ZnO (AZO)/n-type oxide semiconductor/p-type Cu2O heterojunction solar cells fabricated using p-type Cu2O sheets prepared by thermally oxidizing Cu sheets. The multicomponent oxide thin film used as the n-type semiconductor layer was prepared with various chemical compositions on non-intentionally heated Cu2O sheets under various deposition conditions using a pulsed laser deposition method. In Cu2O-based heterojunction solar cells fabricated using various ternary compounds as the n-type oxide thin-film layer, the best photovoltaic performance was obtained with an n-ZnGa2O4 thin-film layer. In most of the Cu2O-based heterojunction solar cells using multicomponent oxides composed of combinations of various binary compounds, the obtained photovoltaic properties changed gradually as the chemical composition was varied. However, with the ZnO-MgO and Ga2O3-Al2O3 systems, higher conversion efficiencies (η) as well as a high open circuit voltage (Voc) were obtained by using a relatively small amount of MgO or Al2O3, e.g., (ZnO)0.91-(MgO)0.09 and (Ga2O3)0.975-(Al2O3)0.025, respectively. When Cu2O-based heterojunction solar cells were fabricated using Al2O3-Ga2O3-MgO-ZnO (AGMZO) multicomponent oxide thin films deposited with metal atomic ratios of 10, 60, 10 and 20 at.% for the Al, Ga, Mg and Zn, respectively, a high Voc of 0.98 V and an η of 4.82% were obtained. In addition, an enhanced η and an improved fill factor could be achieved in AZO/n-type multicomponent oxide/p-type Cu2O heterojunction solar cells fabricated using Na-doped Cu2O (Cu2O:Na) sheets that featured a resistivity controlled by optimizing the post-annealing temperature and duration. Consequently, an η of 6.25% and a Voc of 0.84 V were obtained in a MgF2/AZO/n-(Ga2O3-Al2O3)/p-Cu2O:Na heterojunction solar cell fabricated using a Cu2O:Na sheet with a resistivity of approximately 10 Ω·cm and a (Ga0.975Al0

  18. Semiconductor-nanocrystals-based white light-emitting diodes.

    PubMed

    Dai, Quanqin; Duty, Chad E; Hu, Michael Z

    2010-08-01

    In response to the demands for energy and the concerns of global warming and climate change, energy efficient and environmentally friendly solid-state lighting, such as white light-emitting diodes (WLEDs), is considered to be the most promising and suitable light source. Because of their small size, high efficiency, and long lifetime, WLEDs based on colloidal semiconductor nanocrystals (or quantum dots) are emerging as a completely new technology platform for the development of flat-panel displays and solid-state lighting, exhibiting the potential to replace the conventionally used incandescent and fluorescent lamps. This replacement can cut the ever-increasing level of energy consumption, solve the problem of rapidly depleting fossil fuel reserves, and improve the quality of the global environment. In this review, the recent progress in semiconductor-nanocrystals-based WLEDs is highlighted, the different approaches for generating white light are compared, and the benefits and challenges of the solid-state lighting technology are discussed.

  19. Semiconductor Nanocrystals-Based White Light Emitting Diodes

    SciTech Connect

    Dai, Quanqin; Hu, Michael Z.; Duty, Chad E

    2010-01-01

    In response to the demands for energy and the concerns of global warming and climate change, energy efficient and environmentally friendly solid state lighting, such as white light emitting diodes (WLEDs), is considered to be the most promising and suitable light source. Because of their small size, high efficiency, and long lifetime, WLEDs based on colloidal semiconductor nanocrystals (or quantum dots) are emerging as a completely new technology platform for the development of flat-panel displays and solid state lighting, exhibiting the potential to replace the conventionally used incandescent and fluorescent lamps. This replacement could cut the ever-increasing energy consumption, solve the problem of rapidly depleting fossil fuel reserves, and improve the quality of the global environment. In this review, we highlight the recent progress in semiconductor nanocrystals-based WLEDs, compare different approaches for generating white light, and discuss the benefits and challenges of the solid state lighting technology.

  20. Semiconductor-Nanocrystals-Based White Light-Emitting Diodes

    SciTech Connect

    Dai, Quanqin; Duty, Chad E; Hu, Michael Z.

    2010-01-01

    In response to the demands for energy and the concerns of global warming and climate change, energy efficient and environmentally friendly solid-state lighting, such as white lightemitting diodes (WLEDs), is considered to be the most promising and suitable light source. Because of their small size, high efficiency, and long lifetime, WLEDs based on colloidal semiconductor nanocrystals (or quantum dots) are emerging as a completely new technology platform for the development of flat-panel displays and solid-state lighting, exhibiting the potential to replace the conventionally used incandescent and fluorescent lamps. This replacement can cut the ever-increasing level of energy consumption, solve the problem of rapidly depleting fossil fuel reserves, and improve the quality of the global environment. In this review, the recent progress in semiconductor-nanocrystals-based WLEDs is highlighted, the different approaches for generating white light are compared, and the benefits and challenges of the solid-state lighting technology are discussed.

  1. Method of plasma etching GA-based compound semiconductors

    DOEpatents

    Qiu, Weibin; Goddard, Lynford L.

    2013-01-01

    A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent thereto. The chamber contains a Ga-based compound semiconductor sample in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. SiCl.sub.4 and Ar gases are flowed into the chamber. RF power is supplied to the platen at a first power level, and RF power is supplied to the source electrode. A plasma is generated. Then, RF power is supplied to the platen at a second power level lower than the first power level and no greater than about 30 W. Regions of a surface of the sample adjacent to one or more masked portions of the surface are etched at a rate of no more than about 25 nm/min to create a substantially smooth etched surface.

  2. Semiconductor wire array structures, and solar cells and photodetectors based on such structures

    SciTech Connect

    Kelzenberg, Michael D.; Atwater, Harry A.; Briggs, Ryan M.; Boettcher, Shannon W.; Lewis, Nathan S.; Petykiewicz, Jan A.

    2014-08-19

    A structure comprising an array of semiconductor structures, an infill material between the semiconductor materials, and one or more light-trapping elements is described. Photoconverters and photoelectrochemical devices based on such structure also described.

  3. THz semiconductor-based front-end receiver technology for space applications

    NASA Technical Reports Server (NTRS)

    Mehdi, Imran; Siegel, Peter

    2004-01-01

    Advances in the design and fabrication of very low capacitance planar Schottky diodes and millimeter-wave power amplifiers, more accurate device and circuit models for commercial 3-D electromagnetic simulators, and the availability of both MEMS and high precision metal machining, have enabled RF engineers to extend traditional waveguide-based sensor and source technologies well into the TI-Iz frequency regime. This short paper will highlight recent progress in realizing THz space-qualified receiver front-ends based on room temperature semiconductor devices.

  4. Ultrasensitive NO2 Sensor Based on Ohmic Metal-Semiconductor Interfaces of Electrolytically Exfoliated Graphene/Flame-Spray-Made SnO2 Nanoparticles Composite Operating at Low Temperatures.

    PubMed

    Tammanoon, Nantikan; Wisitsoraat, Anurat; Sriprachuabwong, Chakrit; Phokharatkul, Ditsayut; Tuantranont, Adisorn; Phanichphant, Sukon; Liewhiran, Chaikarn

    2015-11-01

    In this work, flame-spray-made undoped SnO2 nanoparticles were loaded with 0.1-5 wt % electrolytically exfoliated graphene and systematically studied for NO2 sensing at low working temperatures. Characterizations by X-ray diffraction, transmission/scanning electron microscopy, and Raman and X-ray photoelectron spectroscopy indicated that high-quality multilayer graphene sheets with low oxygen content were widely distributed within spheriodal nanoparticles having polycrystalline tetragonal SnO2 phase. The 10-20 μm thick sensing films fabricated by spin coating on Au/Al2O3 substrates were tested toward NO2 at operating temperatures ranging from 25 to 350 °C in dry air. Gas-sensing results showed that the optimal graphene loading level of 0.5 wt % provided an ultrahigh response of 26,342 toward 5 ppm of NO2 with a short response time of 13 s and good recovery stabilization at a low optimal operating temperature of 150 °C. In addition, the optimal sensor also displayed high sensor response and relatively short response time of 171 and 7 min toward 5 ppm of NO2 at room temperature (25 °C). Furthermore, the sensors displayed very high NO2 selectivity against H2S, NH3, C2H5OH, H2, and H2O. Detailed mechanisms for the drastic NO2 response enhancement by graphene were proposed on the basis of the formation of graphene-undoped SnO2 ohmic metal-semiconductor junctions and accessible interfaces of graphene-SnO2 nanoparticles. Therefore, the electrolytically exfoliated graphene-loaded FSP-made SnO2 sensor is a highly promising candidate for fast, sensitive, and selective detection of NO2 at low operating temperatures. PMID:26479951

  5. Modeling small-signal response of GaN-based metal-insulator-semiconductor high electron mobility transistor gate stack in spill-over regime: Effect of barrier resistance and interface states

    SciTech Connect

    Capriotti, M. E-mail: dionyz.pogany@tuwien.ac.at; Fleury, C.; Oposich, M.; Bethge, O.; Strasser, G.; Pogany, D. E-mail: dionyz.pogany@tuwien.ac.at; Lagger, P.; Ostermaier, C.

    2015-01-14

    We provide theoretical and simulation analysis of the small signal response of SiO{sub 2}/AlGaN/GaN metal insulator semiconductor (MIS) capacitors from depletion to spill over region, where the AlGaN/SiO{sub 2} interface is accumulated with free electrons. A lumped element model of the gate stack, including the response of traps at the III-N/dielectric interface, is proposed and represented in terms of equivalent parallel capacitance, C{sub p}, and conductance, G{sub p}. C{sub p} -voltage and G{sub p} -voltage dependences are modelled taking into account bias dependent AlGaN barrier dynamic resistance R{sub br} and the effective channel resistance. In particular, in the spill-over region, the drop of C{sub p} with the frequency increase can be explained even without taking into account the response of interface traps, solely by considering the intrinsic response of the gate stack (i.e., no trap effects) and the decrease of R{sub br} with the applied forward bias. Furthermore, we show the limitations of the conductance method for the evaluation of the density of interface traps, D{sub it}, from the G{sub p}/ω vs. angular frequency ω curves. A peak in G{sub p}/ω vs. ω occurs even without traps, merely due to the intrinsic frequency response of gate stack. Moreover, the amplitude of the G{sub p}/ω vs. ω peak saturates at high D{sub it}, which can lead to underestimation of D{sub it}. Understanding the complex interplay between the intrinsic gate stack response and the effect of interface traps is relevant for the development of normally on and normally off MIS high electron mobility transistors with stable threshold voltage.

  6. Modeling small-signal response of GaN-based metal-insulator-semiconductor high electron mobility transistor gate stack in spill-over regime: Effect of barrier resistance and interface states

    NASA Astrophysics Data System (ADS)

    Capriotti, M.; Lagger, P.; Fleury, C.; Oposich, M.; Bethge, O.; Ostermaier, C.; Strasser, G.; Pogany, D.

    2015-01-01

    We provide theoretical and simulation analysis of the small signal response of SiO2/AlGaN/GaN metal insulator semiconductor (MIS) capacitors from depletion to spill over region, where the AlGaN/SiO2 interface is accumulated with free electrons. A lumped element model of the gate stack, including the response of traps at the III-N/dielectric interface, is proposed and represented in terms of equivalent parallel capacitance, Cp, and conductance, Gp. Cp -voltage and Gp -voltage dependences are modelled taking into account bias dependent AlGaN barrier dynamic resistance Rbr and the effective channel resistance. In particular, in the spill-over region, the drop of Cp with the frequency increase can be explained even without taking into account the response of interface traps, solely by considering the intrinsic response of the gate stack (i.e., no trap effects) and the decrease of Rbr with the applied forward bias. Furthermore, we show the limitations of the conductance method for the evaluation of the density of interface traps, Dit, from the Gp/ω vs. angular frequency ω curves. A peak in Gp/ω vs. ω occurs even without traps, merely due to the intrinsic frequency response of gate stack. Moreover, the amplitude of the Gp/ω vs. ω peak saturates at high Dit, which can lead to underestimation of Dit. Understanding the complex interplay between the intrinsic gate stack response and the effect of interface traps is relevant for the development of normally on and normally off MIS high electron mobility transistors with stable threshold voltage.

  7. Ionic Liquid Activation of Amorphous Metal-Oxide Semiconductors for Flexible Transparent Electronic Devices

    DOE PAGESBeta

    Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony T.; Ovchinnikova, Olga S.; Haglund, Amanda V.; Dai, Sheng; Ward, Thomas Zac; Mandrus, David; Rack, Philip D.

    2016-02-09

    To begin this abstract, amorphous metal-oxide semiconductors offer the high carrier mobilities and excellent large-area uniformity required for high performance, transparent, flexible electronic devices; however, a critical bottleneck to their widespread implementation is the need to activate these materials at high temperatures which are not compatible with flexible polymer substrates. The highly controllable activation of amorphous indium gallium zinc oxide semiconductor channels using ionic liquid gating at room temperature is reported. Activation is controlled by electric field-induced oxygen migration across the ionic liquid-semiconductor interface. In addition to activation of unannealed devices, it is shown that threshold voltages of a transistormore » can be linearly tuned between the enhancement and depletion modes. Finally, the first ever example of transparent flexible thin film metal oxide transistor on a polyamide substrate created using this simple technique is demonstrated. Finally, this study demonstrates the potential of field-induced activation as a promising alternative to traditional postdeposition thermal annealing which opens the door to wide scale implementation into flexible electronic applications.« less

  8. Barrier height enhancement of metal/semiconductor contact by an enzyme biofilm interlayer

    NASA Astrophysics Data System (ADS)

    Ocak, Yusuf Selim; Gul Guven, Reyhan; Tombak, Ahmet; Kilicoglu, Tahsin; Guven, Kemal; Dogru, Mehmet

    2013-06-01

    A metal/interlayer/semiconductor (Al/enzyme/p-Si) MIS device was fabricated using α-amylase enzyme as a thin biofilm interlayer. It was observed that the device showed an excellent rectifying behavior and the barrier height value of 0.78 eV for Al/α-amylase/p-Si was meaningfully larger than the one of 0.58 eV for conventional Al/p-Si metal/semiconductor (MS) contact. Enhancement of the interfacial potential barrier of Al/p-Si MS diode was realized using enzyme interlayer by influencing the space charge region of Si semiconductor. The electrical properties of the structure were executed by the help of current-voltage and capacitance-voltage measurements. The photovoltaic properties of the structure were executed under a solar simulator with AM1.5 global filter between 40 and 100 mW/cm2 illumination conditions. It was also reported that the α-amylase enzyme produced from Bacillus licheniformis had a 3.65 eV band gap value obtained from optical method.

  9. III-V Nanowire Complementary Metal-Oxide Semiconductor Transistors Monolithically Integrated on Si.

    PubMed

    Svensson, Johannes; Dey, Anil W; Jacobsson, Daniel; Wernersson, Lars-Erik

    2015-12-01

    III-V semiconductors have attractive transport properties suitable for low-power, high-speed complementary metal-oxide-semiconductor (CMOS) implementation, but major challenges related to cointegration of III-V n- and p-type metal-oxide-semiconductor field-effect transistors (MOSFETs) on low-cost Si substrates have so far hindered their use for large scale logic circuits. By using a novel approach to grow both InAs and InAs/GaSb vertical nanowires of equal length simultaneously in one single growth step, we here demonstrate n- and p-type III-V MOSFETs monolithically integrated on a Si substrate with high I(on)/I(off) ratios using a dual channel, single gate-stack design processed simultaneously for both types of transistors. In addition, we demonstrate fundamental CMOS logic gates, such as inverters and NAND gates, which illustrate the viability of our approach for large scale III-V MOSFET circuits on Si. PMID:26595174

  10. Hydrogen Doped Metal Oxide Semiconductors with Exceptional and Tunable Localized Surface Plasmon Resonances.

    PubMed

    Cheng, Hefeng; Wen, Meicheng; Ma, Xiangchao; Kuwahara, Yasutaka; Mori, Kohsuke; Dai, Ying; Huang, Baibiao; Yamashita, Hiromi

    2016-07-27

    Heavily doped semiconductors have recently emerged as a remarkable class of plasmonic alternative to conventional noble metals; however, controlled manipulation of their surface plasmon bands toward short wavelengths, especially in the visible light spectrum, still remains a challenge. Here we demonstrate that hydrogen doped given MoO3 and WO3 via a facile H-spillover approach, namely, hydrogen bronzes, exhibit strong localized surface plasmon resonances in the visible light region. Through variation of their stoichiometric compositions, tunable plasmon resonances could be observed in a wide range, which hinge upon the reduction temperatures, metal species, the nature and the size of metal oxide supports in the synthetic H2 reduction process as well as oxidation treatment in the postsynthetic process. Density functional theory calculations unravel that the intercalation of hydrogen atoms into the given host structures yields appreciable delocalized electrons, enabling their plasmonic properties. The plasmonic hybrids show potentials in heterogeneous catalysis, in which visible light irradiation enhanced catalytic performance toward p-nitrophenol reduction relative to dark condition. Our findings provide direct evidence for achieving plasmon resonances in hydrogen doped metal oxide semiconductors, and may allow large-scale applications with low-price and earth-abundant elements.

  11. Antiferromagnetic half-metals, gapless half-metals, and spin gapless semiconductors: The D0{sub 3}-type Heusler alloys

    SciTech Connect

    Gao, G. Y. Yao, Kai-Lun

    2013-12-02

    High-spin-polarization materials are desired for the realization of high-performance spintronic devices. We combine recent experimental and theoretical findings to theoretically design several high-spin-polarization materials in binary D0{sub 3}-type Heusler alloys: gapless (zero-gap) half-metallic ferrimagnets of V{sub 3}Si and V{sub 3}Ge, half-metallic antiferromagnets of Mn{sub 3}Al and Mn{sub 3}Ga, half-metallic ferrimagnets of Mn{sub 3}Si and Mn{sub 3}Ge, and a spin gapless semiconductor of Cr{sub 3}Al. The high spin polarization, zero net magnetic moment, zero energy gap, and slight disorder compared to the ternary and quaternary Heusler alloys make these binary materials promising candidates for spintronic applications. All results are obtained by the electronic structure calculations from first-principles.

  12. Antiferromagnetic half-metals, gapless half-metals, and spin gapless semiconductors: The D03-type Heusler alloys

    NASA Astrophysics Data System (ADS)

    Gao, G. Y.; Yao, Kai-Lun

    2013-12-01

    High-spin-polarization materials are desired for the realization of high-performance spintronic devices. We combine recent experimental and theoretical findings to theoretically design several high-spin-polarization materials in binary D03-type Heusler alloys: gapless (zero-gap) half-metallic ferrimagnets of V3Si and V3Ge, half-metallic antiferromagnets of Mn3Al and Mn3Ga, half-metallic ferrimagnets of Mn3Si and Mn3Ge, and a spin gapless semiconductor of Cr3Al. The high spin polarization, zero net magnetic moment, zero energy gap, and slight disorder compared to the ternary and quaternary Heusler alloys make these binary materials promising candidates for spintronic applications. All results are obtained by the electronic structure calculations from first-principles.

  13. Modeling of n-InAs metal oxide semiconductor capacitors with high-κ gate dielectric

    NASA Astrophysics Data System (ADS)

    Babadi, A. S.; Lind, E.; Wernersson, L. E.

    2014-12-01

    A qualitative analysis on capacitance-voltage and conductance data for high-κ/InAs capacitors is presented. Our measured data were evaluated with a full equivalent circuit model, including both majority and minority carriers, as well as interface and border traps, formulated for narrow band gap metal-oxide-semiconductor capacitors. By careful determination of interface trap densities, distribution of border traps across the oxide thickness, and taking into account the bulk semiconductor response, it is shown that the trap response has a strong effect on the measured capacitances. Due to the narrow bandgap of InAs, there can be a large surface concentration of electrons and holes even in depletion, so a full charge treatment is necessary.

  14. Large Rashba spin splitting of a metallic surface-state band on a semiconductor surface.

    PubMed

    Yaji, Koichiro; Ohtsubo, Yoshiyuki; Hatta, Shinichiro; Okuyama, Hiroshi; Miyamoto, Koji; Okuda, Taichi; Kimura, Akio; Namatame, Hirofumi; Taniguchi, Masaki; Aruga, Tetsuya

    2010-05-17

    The generation of spin-polarized electrons at room temperature is an essential step in developing semiconductor spintronic applications. To this end, we studied the electronic states of a Ge(111) surface, covered with a lead monolayer at a fractional coverage of 4/3, by angle-resolved photoelectron spectroscopy (ARPES), spin-resolved ARPES and first-principles electronic structure calculation. We demonstrate that a metallic surface-state band with a dominant Pb 6p character exhibits a large Rashba spin splitting of 200 meV and an effective mass of 0.028 m(e) at the Fermi level. This finding provides a material basis for the novel field of spin transport/accumulation on semiconductor surfaces. Charge density analysis of the surface state indicated that large spin splitting was induced by asymmetric charge distribution in close proximity to the nuclei of Pb atoms.

  15. Stark spectroscopy of CuPc organic semiconductor with a submicron metal-electrode grating

    NASA Astrophysics Data System (ADS)

    Blinov, L. M.; Lazarev, V. V.; Yudin, S. G.; Palto, S. P.

    2016-02-01

    The optical and electro-optical properties of organic copper phthalocyanine semiconductor (α- CuPc) have been investigated by Stark (electroabsorption) spectroscopy using a metal electrode grating with a submicron (0.88 μm) interelectrode distance. Differences between dipole moments (Δμ) and polarizabilities (Δα) in the excited and ground states of α-CuPc are measured for a nanoscale semiconductor film. It is concluded that the extremely high values of Δμ and Δα are in principle not parameters of individual α-CuPc molecules: they are determined by exciton effects specifically in the polycrystalline medium with a characteristic morphology of hyperfine films, which depends on the structure of the samples and their fabrication technology.

  16. Modeling of n-InAs metal oxide semiconductor capacitors with high-κ gate dielectric

    SciTech Connect

    Babadi, A. S. Lind, E.; Wernersson, L. E.

    2014-12-07

    A qualitative analysis on capacitance-voltage and conductance data for high-κ/InAs capacitors is presented. Our measured data were evaluated with a full equivalent circuit model, including both majority and minority carriers, as well as interface and border traps, formulated for narrow band gap metal-oxide-semiconductor capacitors. By careful determination of interface trap densities, distribution of border traps across the oxide thickness, and taking into account the bulk semiconductor response, it is shown that the trap response has a strong effect on the measured capacitances. Due to the narrow bandgap of InAs, there can be a large surface concentration of electrons and holes even in depletion, so a full charge treatment is necessary.

  17. Profiling Photoinduced Carrier Generation in Semiconductor Microwire Arrays via Photoelectrochemical Metal Deposition.

    PubMed

    Dasog, Mita; Carim, Azhar I; Yalamanchili, Sisir; Atwater, Harry A; Lewis, Nathan S

    2016-08-10

    Au was photoelectrochemically deposited onto cylindrical or tapered p-Si microwires on Si substrates to profile the photoinduced charge-carrier generation in individual wires in a photoactive semiconductor wire array. Similar experiments were repeated for otherwise identical Si microwires doped to be n-type. The metal plating profile was conformal for n-type wires, but for p-type wires was a function of distance from the substrate and was dependent on the illumination wavelength. Spatially resolved charge-carrier generation profiles were computed using full-wave electromagnetic simulations, and the localization of the deposition at the p-type wire surfaces observed experimentally correlated well with the regions of enhanced calculated carrier generation in the volumes of the microwires. This technique could potentially be extended to determine the spatially resolved carrier generation profiles in a variety of mesostructured, photoactive semiconductors. PMID:27322391

  18. Ferroelectric switching of poly(vinylidene difluoride-trifluoroethylene) in metal-ferroelectric-semiconductor non-volatile memories with an amorphous oxide semiconductor

    SciTech Connect

    Gelinck, G. H.; Breemen, A. J. J. M. van; Cobb, B.

    2015-03-02

    Ferroelectric polarization switching of poly(vinylidene difluoride-trifluoroethylene) is investigated in different thin-film device structures, ranging from simple capacitors to dual-gate thin-film transistors (TFT). Indium gallium zinc oxide, a high mobility amorphous oxide material, is used as semiconductor. We find that the ferroelectric can be polarized in both directions in the metal-ferroelectric-semiconductor (MFS) structure and in the dual-gate TFT under certain biasing conditions, but not in the single-gate thin-film transistors. These results disprove the common belief that MFS structures serve as a good model system for ferroelectric polarization switching in thin-film transistors.

  19. Ferroelectric switching of poly(vinylidene difluoride-trifluoroethylene) in metal-ferroelectric-semiconductor non-volatile memories with an amorphous oxide semiconductor

    NASA Astrophysics Data System (ADS)

    Gelinck, G. H.; van Breemen, A. J. J. M.; Cobb, B.

    2015-03-01

    Ferroelectric polarization switching of poly(vinylidene difluoride-trifluoroethylene) is investigated in different thin-film device structures, ranging from simple capacitors to dual-gate thin-film transistors (TFT). Indium gallium zinc oxide, a high mobility amorphous oxide material, is used as semiconductor. We find that the ferroelectric can be polarized in both directions in the metal-ferroelectric-semiconductor (MFS) structure and in the dual-gate TFT under certain biasing conditions, but not in the single-gate thin-film transistors. These results disprove the common belief that MFS structures serve as a good model system for ferroelectric polarization switching in thin-film transistors.

  20. Charging and exciton-mediated decharging of metal nanoparticles in organic semiconductor matrices

    SciTech Connect

    Ligorio, Giovanni; Vittorio Nardi, Marco Christodoulou, Christos; Florea, Ileana; Ersen, Ovidiu; Monteiro, Nicolas-Crespo; Brinkmann, Martin; Koch, Norbert

    2014-04-21

    Gold nanoparticles (Au-NPs) were deposited on the surface of n- and p-type organic semiconductors to form defined model systems for charge storage based electrically addressable memory elements. We used ultraviolet photoelectron spectroscopy to study the electronic properties and found that the Au-NPs become positively charged because of photoelectron emission, evidenced by spectral shifts to higher binding energy. Upon illumination with light that can be absorbed by the organic semiconductors, dynamic charge neutrality of the Au-NPs could be re-established through electron transfer from excitons. The light-controlled charge state of the Au-NPs could add optical addressability to memory elements.

  1. Optically induced transport through semiconductor-based molecular electronics

    SciTech Connect

    Li, Guangqi; Seideman, Tamar; Fainberg, Boris D.

    2015-04-21

    A tight binding model is used to investigate photoinduced tunneling current through a molecular bridge coupled to two semiconductor electrodes. A quantum master equation is developed within a non-Markovian theory based on second-order perturbation theory with respect to the molecule-semiconductor electrode coupling. The spectral functions are generated using a one dimensional alternating bond model, and the coupling between the molecule and the electrodes is expressed through a corresponding correlation function. Since the molecular bridge orbitals are inside the bandgap between the conduction and valence bands, charge carrier tunneling is inhibited in the dark. Subject to the dipole interaction with the laser field, virtual molecular states are generated via the absorption and emission of photons, and new tunneling channels open. Interesting phenomena arising from memory are noted. Such a phenomenon could serve as a switch.

  2. Chemically Derivatized Semiconductor Photoelectrodes.

    ERIC Educational Resources Information Center

    Wrighton, Mark S.

    1983-01-01

    Deliberate modification of semiconductor photoelectrodes to improve durability and enhance rate of desirable interfacial redox processes is discussed for a variety of systems. Modification with molecular-based systems or with metals/metal oxides yields results indicating an important role for surface modification in devices for fundamental study…

  3. Interfacial thermal conductance across metal-insulator/semiconductor interfaces due to surface states

    NASA Astrophysics Data System (ADS)

    Lu, Tingyu; Zhou, Jun; Nakayama, Tsuneyoshi; Yang, Ronggui; Li, Baowen

    2016-02-01

    We point out that the effective channel for the interfacial thermal conductance, the inverse of Kapitza resistance, of metal-insulator/semiconductor interfaces is governed by the electron-phonon interaction mediated by the surface states allowed in a thin region near the interface. Our detailed calculations demonstrate that the interfacial thermal conductance across Pb/Pt/Al/Au-diamond interfaces are only slightly different among these metals, and reproduce well the experimental results of the interfacial thermal conductance across metal-diamond interfaces observed by Stoner et al. [Phys. Rev. Lett. 68, 1563 (1992), 10.1103/PhysRevLett.68.1563] and most recently by Hohensee et al. [Nat. Commun. 6, 6578 (2015), 10.1038/ncomms7578].

  4. Chemical trends of barrier heights in metal-semiconductor contacts: on the theory of the slope parameter

    NASA Astrophysics Data System (ADS)

    Mönch, Winfried

    1996-02-01

    The barrier heights in ideal metal-semiconductor contacts are determined by the continuum of the metal-induced gap states (MIGS). In generalizing Pauling's concept, the charge transfer across such interfaces may be modeled by the difference Xm - Xs of the metal and the semiconductor electronegativities. For n-type semiconductors this MIGS-and-electronegativity model describes the chemical trends of the barrier heights as φBn = φcnl + Sx( Xm - Xs). The zero-chargetransfer barrier heights φcnl were calculated for almost all semiconductors. The slope parameters Sx are determined by the density of states of the MIG states, the thickness of the respective interfacial double layer, and the interface dielectric constant ɛi. The densities of states and decay lengths of the metal-induced gap states at their charge neutrality level were computed by others for some of the semiconductors. It is demonstrated that these theoretical data predict the slope parameters Sx to vary proportional to (ɛ ∞ - 1) 2/ɛ i where ɛ∞ is the electronic contribution to the static dielectric constant of the semiconductor. This result confirms a previously found semi-empirical rule.

  5. Near interface oxide trap capture kinetics in metal-oxide-semiconductor transistors: Modeling and measurements

    NASA Astrophysics Data System (ADS)

    Bauza, D.

    1998-12-01

    The traps situated in the oxide in the vicinity of the Si-SiO2 interface in metal-oxide-semiconductor (MOS) transistors, are studied. This is achieved using a new technique, based on the measurement of drain current transients and called T-CDLTS (tunnel-current deep level transient spectroscopy). For this, the traps are repeatedly filled with majority carriers using gate pulses which bias the device in accumulation. Each time the device returns in inversion, the drain current transient induced by the filling of the traps with minority carriers is monitored. A model for extracting the interface trap depth concentration profiles from the current transients is derived. It is based on Shockley-Read-Hall's statistics [R. N. Hall, Phys. Rev. 87, 387 (1952), W. Shockley and W. T. Read, Phys. Rev. 87, 835 (1952)] and on the Heiman and Warfield tunneling model [F. P. Heiman and G. Warfield, IEEE Trans. Electron Devices ED-12, 167 (1965)]. The slow trap densities measured in a virgin device agree with those obtained in state-of-the-art MOS transistors using noise measurements. In virgin and stressed devices they also compare favorably with the trap densities obtained using a recently proposed charge pumping technique. The evolution, with the experimental conditions, of the trap concentrations measured is discussed with respect to that expected from the model. In some experimental conditions, a very good agreement is obtained while in some others, discrepancies are observed. These discrepancies are discussed as regard to the hypothesis introduced in the model.

  6. High-efficiency photovoltaics based on semiconductor nanostructures

    SciTech Connect

    Yu, Paul K.L.; Yu, Edward T.; Wang, Deli

    2011-10-31

    The objective of this project was to exploit a variety of semiconductor nanostructures, specifically semiconductor quantum wells, quantum dots, and nanowires, to achieve high power conversion efficiency in photovoltaic devices. In a thin-film device geometry, the objectives were to design, fabricate, and characterize quantum-well and quantum-dot solar cells in which scattering from metallic and/or dielectric nanostructures was employed to direct incident photons into lateral, optically confined paths within a thin (~1-3um or less) device structure. Fundamental issues concerning nonequilibrium carrier escape from quantum-confined structures, removal of thin-film devices from an epitaxial growth substrate, and coherent light trapping in thin-film photovoltaic devices were investigated. In a nanowire device geometry, the initial objectives were to engineer vertical nanowire arrays to optimize optical confinement within the nanowires, and to extend this approach to core-shell heterostructures to achieve broadspectrum absorption while maintaining high opencircuit voltages. Subsequent work extended this approach to include fabrication of nanowire photovoltaic structures on low-cost substrates.

  7. Nanoscale semiconductor-insulator-metal core/shell heterostructures: facile synthesis and light emission

    NASA Astrophysics Data System (ADS)

    Li, Gong Ping; Chen, Rui; Guo, Dong Lai; Wong, Lai Mun; Wang, Shi Jie; Sun, Han Dong; Wu, Tom

    2011-08-01

    Controllably constructing hierarchical nanostructures with distinct components and designed architectures is an important theme of research in nanoscience, entailing novel but reliable approaches of bottom-up synthesis. Here, we report a facile method to reproducibly create semiconductor-insulator-metal core/shell nanostructures, which involves first coating uniform MgO shells onto metal oxide nanostructures in solution and then decorating them with Au nanoparticles. The semiconductor nanowire core can be almost any material and, herein, ZnO, SnO2 and In2O3 are used as examples. We also show that linear chains of short ZnO nanorods embedded in MgO nanotubes and porous MgO nanotubes can be obtained by taking advantage of the reduced thermal stability of the ZnO core. Furthermore, after MgO shell-coating and the appropriate annealing treatment, the intensity of the ZnO near-band-edge UV emission becomes much stronger, showing a 25-fold enhancement. The intensity ratio of the UV/visible emission can be increased further by decorating the surface of the ZnO/MgO nanowires with high-density plasmonic Au nanoparticles. These heterostructured semiconductor-insulator-metal nanowires with tailored morphologies and enhanced functionalities have great potential for use as nanoscale building blocks in photonic and electronic applications.Controllably constructing hierarchical nanostructures with distinct components and designed architectures is an important theme of research in nanoscience, entailing novel but reliable approaches of bottom-up synthesis. Here, we report a facile method to reproducibly create semiconductor-insulator-metal core/shell nanostructures, which involves first coating uniform MgO shells onto metal oxide nanostructures in solution and then decorating them with Au nanoparticles. The semiconductor nanowire core can be almost any material and, herein, ZnO, SnO2 and In2O3 are used as examples. We also show that linear chains of short ZnO nanorods embedded in

  8. Surface plasmon assisted hot electron collection in wafer-scale metallic-semiconductor photonic crystals.

    PubMed

    Chou, Jeffrey B; Li, Xin-Hao; Wang, Yu; Fenning, David P; Elfaer, Asmaa; Viegas, Jaime; Jouiad, Mustapha; Shao-Horn, Yang; Kim, Sang-Gook

    2016-09-01

    Plasmon assisted photoelectric hot electron collection in a metal-semiconductor junction can allow for sub-bandgap optical to electrical energy conversion. Here we report hot electron collection by wafer-scale Au/TiO2 metallic-semiconductor photonic crystals (MSPhC), with a broadband photoresponse below the bandgap of TiO2. Multiple absorption modes supported by the 2D nano-cavity structure of the MSPhC extend the photon-metal interaction time and fulfill a broadband light absorption. The surface plasmon absorption mode provides access to enhanced electric field oscillation and hot electron generation at the interface between Au and TiO2. A broadband sub-bandgap photoresponse centered at 590 nm was achieved due to surface plasmon absorption. Gold nanorods were deposited on the surface of MSPhC to study localized surface plasmon (LSP) mode absorption and subsequent injection to the TiO2 catalyst at different wavelengths. Applications of these results could lead to low-cost and robust photo-electrochemical applications such as more efficient solar water splitting.

  9. Metal-oxide-semiconductor-compatible ultra-long-range surface plasmon modes

    NASA Astrophysics Data System (ADS)

    Durfee, C. G.; Furtak, T. E.; Collins, R. T.; Hollingsworth, R. E.

    2008-06-01

    Long-range surface plasmons traveling on thin metal films have demonstrated promising potential in subwavelength waveguide applications. In work toward device applications that can leverage existing silicon microelectronics technology, it is of interest to explore the propagation of surface plasmons in a metal-oxide-semiconductor geometry. In such a structure, there is a high refractive index contrast between the semiconductor (n ≈3.5 for silicon) and the insulating oxide (typically n ≈1.5-2.5). However, the introduction of dielectrics with disparate refractive indices is known to strongly affect the guiding properties of surface plasmons. In this paper, we analyze the implications of high index contrast in 1D layered surface plasmon structures. We show that it is possible to introduce a thin dielectric layer with a low refractive index positioned next to the metal without adversely affecting the guiding quality. In fact, such a configuration can dramatically increase the propagation length of the conventional long-range mode. While this study is directed at silicon-compatible waveguides working at telecommunications wavelengths, this configuration has general implications for surface plasmon structure design using other materials and operating at alternative wavelengths.

  10. Amorphous silicon enhanced metal-insulator-semiconductor contacts for silicon solar cells

    NASA Astrophysics Data System (ADS)

    Bullock, J.; Cuevas, A.; Yan, D.; Demaurex, B.; Hessler-Wyser, A.; De Wolf, S.

    2014-10-01

    Carrier recombination at the metal-semiconductor contacts has become a significant obstacle to the further advancement of high-efficiency diffused-junction silicon solar cells. This paper provides the proof-of-concept of a procedure to reduce contact recombination by means of enhanced metal-insulator-semiconductor (MIS) structures. Lightly diffused n+ and p+ surfaces are passivated with SiO2/a-Si:H and Al2O3/a-Si:H stacks, respectively, before the MIS contacts are formed by a thermally activated alloying process between the a-Si:H layer and an overlying aluminum film. Transmission/scanning transmission electron microscopy (TEM/STEM) and energy dispersive x-ray spectroscopy are used to ascertain the nature of the alloy. Idealized solar cell simulations reveal that MIS(n+) contacts, with SiO2 thicknesses of ˜1.55 nm, achieve the best carrier-selectivity producing a contact resistivity ρc of ˜3 mΩ cm2 and a recombination current density J0c of ˜40 fA/cm2. These characteristics are shown to be stable at temperatures up to 350 °C. The MIS(p+) contacts fail to achieve equivalent results both in terms of thermal stability and contact characteristics but may still offer advantages over directly metallized contacts in terms of manufacturing simplicity.

  11. Surface plasmon assisted hot electron collection in wafer-scale metallic-semiconductor photonic crystals.

    PubMed

    Chou, Jeffrey B; Li, Xin-Hao; Wang, Yu; Fenning, David P; Elfaer, Asmaa; Viegas, Jaime; Jouiad, Mustapha; Shao-Horn, Yang; Kim, Sang-Gook

    2016-09-01

    Plasmon assisted photoelectric hot electron collection in a metal-semiconductor junction can allow for sub-bandgap optical to electrical energy conversion. Here we report hot electron collection by wafer-scale Au/TiO2 metallic-semiconductor photonic crystals (MSPhC), with a broadband photoresponse below the bandgap of TiO2. Multiple absorption modes supported by the 2D nano-cavity structure of the MSPhC extend the photon-metal interaction time and fulfill a broadband light absorption. The surface plasmon absorption mode provides access to enhanced electric field oscillation and hot electron generation at the interface between Au and TiO2. A broadband sub-bandgap photoresponse centered at 590 nm was achieved due to surface plasmon absorption. Gold nanorods were deposited on the surface of MSPhC to study localized surface plasmon (LSP) mode absorption and subsequent injection to the TiO2 catalyst at different wavelengths. Applications of these results could lead to low-cost and robust photo-electrochemical applications such as more efficient solar water splitting. PMID:27607726

  12. Demonstration of a home projector based on RGB semiconductor lasers.

    PubMed

    Zhang, Yunfang; Dong, Hui; Wang, Rui; Duan, Jingyuan; Shi, Ancun; Fang, Qing; Liu, Yuliang

    2012-06-01

    In this paper, we demonstrate a high-definition 3-liquid-crystal-on-silicon (3-LCOS) home cinema projection system based on RGB laser source modules. Both red and blue laser modules are composed of an array of laser diodes, and the green laser is based on an optically pumped semiconductor laser. The illumination engine is designed to realize high energy efficiency, uniform illumination, and suppression of speckle noise. The presented laser projection system producing 1362 lm D65 light has a volume of about 450×360×160  mm3.

  13. Demonstration of a home projector based on RGB semiconductor lasers.

    PubMed

    Zhang, Yunfang; Dong, Hui; Wang, Rui; Duan, Jingyuan; Shi, Ancun; Fang, Qing; Liu, Yuliang

    2012-06-01

    In this paper, we demonstrate a high-definition 3-liquid-crystal-on-silicon (3-LCOS) home cinema projection system based on RGB laser source modules. Both red and blue laser modules are composed of an array of laser diodes, and the green laser is based on an optically pumped semiconductor laser. The illumination engine is designed to realize high energy efficiency, uniform illumination, and suppression of speckle noise. The presented laser projection system producing 1362 lm D65 light has a volume of about 450×360×160  mm3. PMID:22695597

  14. Solar hydrogen production with semiconductor metal oxides: new directions in experiment and theory.

    PubMed

    Valdés, Álvaro; Brillet, Jeremie; Grätzel, Michael; Gudmundsdóttir, Hildur; Hansen, Heine A; Jónsson, Hannes; Klüpfel, Peter; Kroes, Geert-Jan; Le Formal, Florian; Man, Isabela C; Martins, Rafael S; Nørskov, Jens K; Rossmeisl, Jan; Sivula, Kevin; Vojvodic, Aleksandra; Zäch, Michael

    2012-01-01

    An overview of a collaborative experimental and theoretical effort toward efficient hydrogen production via photoelectrochemical splitting of water into di-hydrogen and di-oxygen is presented here. We present state-of-the-art experimental studies using hematite and TiO(2) functionalized with gold nanoparticles as photoanode materials, and theoretical studies on electro and photo-catalysis of water on a range of metal oxide semiconductor materials, including recently developed implementation of self-interaction corrected energy functionals. PMID:22083224

  15. Complementary metal-oxide-semiconductor compatible 1060 nm photodetector with ultrahigh gain under low bias.

    PubMed

    Hall, David; Li, Baoxia; Liu, Yu-Hsin; Yan, Lujiang; Lo, Yu-Hwa

    2015-10-01

    Falling on the tail of the absorption spectrum of silicon, 1060 nm Si detectors often suffer from low responsivity unless an exceedingly thick absorption layer is used, a design that requires high operation voltage and high purity epitaxial or substrate material. We report an all-silicon 1060 nm detector with ultrahigh gain to allow for low operation voltage (<4  V) and thin (200 nm) effective absorption layer, using the recently discovered cycling excitation process. With 1% external quantum efficiency, a responsivity of 93 A/W was demonstrated in a p/n junction device compatible with the complementary metal-oxide-semiconductor process. PMID:26421551

  16. Recombination, emission and EBIC contrast of metallic precipitate embedded in a semiconductor matrix

    NASA Astrophysics Data System (ADS)

    Tarento, R.-J.; Debez, M.; Mekki, D. E.; Djemel, A.

    2014-02-01

    The barrier height and the recombination velocity at the interface between a metallic precipitate and a semiconductor matrix are calculated self-consistently by taking into account both recombination and emission processes. The precipitate size is of great importance due to the precipitate surface charge density which is enhanced when the size decreases but reaches a constant value at small size controlled by the defect concentration at the interface. The EBIC contrast has been investigated versus the size, the temperature and the defect and doping concentrations.

  17. Generation and annihilation of traps in metal-oxide-semiconductor devices after negative air corona charging

    NASA Astrophysics Data System (ADS)

    Prasad, Ila; Srivastava, R. S.

    1993-07-01

    Surface and bulk traps along with positive oxide charge accumulation have been found to be generated in metal-oxide-semiconductor capacitors, when subjected to negative air corona discharge at slightly reduced pressure (≂10-1 Torr). The effects are neutralized and device quality improved when annealed at 200 °C in air. The bulk traps and a fraction of oxide charges were annealable when kept at room temperature for several months. The results have been analyzed by Nicollian-Goetzberger's conductance technique and a plausible explanation is given.

  18. Total dose effect on soft error rate for dynamic metal-oxide-semiconductor memory cells

    NASA Technical Reports Server (NTRS)

    Benumof, Reuben

    1989-01-01

    A simple model for the soft error rate for dynamic metal-oxide-semiconductor random access memories due to normal galactic radiation was devised and then used to calculate the rate of decrease of the single-event-upset rate with total radiation dose. The computation shows that the decrease in the soft error rate is less than 10 percent per day if the shielding is 0.5 g/sq cm and the spacecraft is in a geosynchronous orbit. The decrease is considerably less in a polar orbiting device.

  19. Alloy Engineering of Defect Properties in Semiconductors: Suppression of Deep Levels in Transition-Metal Dichalcogenides.

    PubMed

    Huang, Bing; Yoon, Mina; Sumpter, Bobby G; Wei, Su-Huai; Liu, Feng

    2015-09-18

    Developing practical approaches to effectively reduce the amount of deep defect levels in semiconductors is critical for their use in electronic and optoelectronic devices, but this still remains a very challenging task. In this Letter, we propose that specific alloying can provide an effective means to suppress the deep defect levels in semiconductors while maintaining their basic electronic properties. Specifically, we demonstrate that for transition-metal dichalcogenides, such as MoSe_{2} and WSe_{2}, where anion vacancies are the most abundant defects that can induce deep levels, the deep levels can be effectively suppressed in Mo_{1-x}W_{x}Se_{2} alloys at low W concentrations. This surprising phenomenon is associated with the fact that the band edge energies can be substantially tuned by the global alloy concentration, whereas the defect level is controlled locally by the preferred locations of Se vacancies around W atoms. Our findings illustrate a concept of alloy engineering and provide a promising approach to control the defect properties of semiconductors.

  20. Theoretical Study of the Effect of an AlGaAs Double Heterostructure on Metal-Semiconductor-Metal Photodetector Performance

    NASA Technical Reports Server (NTRS)

    Salem, Ali F.; Smith, Arlynn W.; Brennan, Kevin F.

    1994-01-01

    The impulse and square-wave input response of different GaAs metal-semiconductor-metal photodetector (MSM) designs are theoretically examined using a two dimensional drift- diffusion numerical calculation with a thermionic-field emission boundary condition model for the heterojunctions. The rise time and the fall time of the output signal current are calculated for a simple GaAs, epitaxially grown, MSM device as well as for various double-heterostructure barrier devices. The double heterostructure devices consist of an AlGaAs layer sandwiched between the top GaAs active, absorption layer and the bottom GaAs substrate. The effect of the depth of the AlGaAs layer on the speed and responsivity of the MSM devices is examined. It is found that there is an optimal depth, at fixed applied bias, of the AlGaAs layer within the structure that provides maximum responsivity at minimal compromise in speed.

  1. Direct observation of both contact and remote oxygen scavenging of GeO{sub 2} in a metal-oxide-semiconductor stack

    SciTech Connect

    Fadida, S. Shekhter, P.; Eizenberg, M.; Cvetko, D.; Floreano, L.; Verdini, A.; Kymissis, I.

    2014-10-28

    In the path to incorporating Ge based metal-oxide-semiconductor into modern nano-electronics, one of the main issues is the oxide-semiconductor interface quality. Here, the reactivity of Ti on Ge stacks and the scavenging effect of Ti were studied using synchrotron X-ray photoelectron spectroscopy measurements, with an in-situ metal deposition and high resolution transmission electron microscopy imaging. Oxygen removal from the Ge surface was observed both in direct contact as well as remotely through an Al{sub 2}O{sub 3} layer. The scavenging effect was studied in situ at room temperature and after annealing. We find that the reactivity of Ti can be utilized for improved scaling of Ge based devices.

  2. Semiconductor active plasmonics

    NASA Astrophysics Data System (ADS)

    Mendach, Stefan; Nötzel, Richard

    2013-12-01

    Plasmonics is a research area in nanophotonics attracting increasing interest due to the potential applications in sensing and detecting, sub-wavelength confinement of light, integrated circuits, and many others. In particular, when plasmonic structures such as metal nanostructures or highly doped semiconductor particles are combined with active semiconductor materials and nanostructures, novel exciting physics and applications arise. This special section on semiconductor active plasmonics covers several of the most important and complementary directions in the field. First is the modification of the optical properties of a semiconductor nanostructure due to the close proximity of a metallic film or nanostructure. These arise from the formation hybrid plasmon/exciton states and may lead to enhanced spontaneous emission rates, directional far field emission patterns, strong coupling phenomena, and many more. Second is the realization of sub-wavelength scale nanolasers by coupling a semiconductor gain medium with a plasmonic metallic cavity. Particular emphasis is given on the major technical challenges in the fabrication of these nanolasers, such as device patterning, surface passivation, and metal deposition. While the above topics address mainly active structures and devices operating in the visible or near-infrared wavelength region, in the third, the enhanced THz extinction by periodic arrays of semiconductor particles is discussed. This is based on the build-up of surface plasmon resonances in the doped semiconductor particles which can be resonantly coupled and widely tuned by the carrier density in the semiconductor. We believe these highly diverse aspects give insight into the wide variety of new physics and applications that semiconductor active plasmonics is offering. Finally, we would like to thank the IOP editorial staff, in particular Alice Malhador, for their support, and we would also like to thank the contributors for their efforts and participation

  3. Application of the exact exchange potential method for half metallic intermediate band alloy semiconductor.

    PubMed

    Fernández, J J; Tablero, C; Wahnón, P

    2004-06-01

    In this paper we present an analysis of the convergence of the band structure properties, particularly the influence on the modification of the bandgap and bandwidth values in half metallic compounds by the use of the exact exchange formalism. This formalism for general solids has been implemented using a localized basis set of numerical functions to represent the exchange density. The implementation has been carried out using a code which uses a linear combination of confined numerical pseudoatomic functions to represent the Kohn-Sham orbitals. The application of this exact exchange scheme to a half-metallic semiconductor compound, in particular to Ga(4)P(3)Ti, a promising material in the field of high efficiency solar cells, confirms the existence of the isolated intermediate band in this compound. PMID:15268104

  4. Metal semiconductor transition in undoped ZnO films deposited by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Kavasoglu, Nese; Sertap Kavasoglu, A.

    2008-08-01

    ZnO films were deposited on glass substrate by using spray pyrolysis method. Films were deposited at different solution molarities 0.02 and 0.1 M. The films are highly transparent in the visible range of the electromagnetic spectrum with a transmission reaching up values to 90%. Band gaps were calculated as 3.24 and 3.28 eV with the help of transmission spectrums. When the solution molarity of the sprayed solution is increased from 0.02 to 0.1 M, carrier concentrations of the films increase from 1.6×10 19 cm -3 to 5.1×10 19 cm -3. Temperature-dependent conductivity measurements of these conducting and transparent films also showed, for the first time, a metal-semiconductor transition (MST). The deposited ZnO films show metallic conductivity above ∼420 K and semiconducting behavior at temperatures below it.

  5. Novel photoinduced phase transitions in transition metal oxides and diluted magnetic semiconductors

    PubMed Central

    2012-01-01

    Some transition metal oxides have frustrated electronic states under multiphase competition due to strongly correlated d electrons with spin, charge, and orbital degrees of freedom and exhibit drastic responses to external stimuli such as optical excitation. Here, we present photoemission studies on Pr0.55(Ca1 − ySry)0.45MnO3 (y = 0.25), SrTiO3, and Ti1 − xCoxO2 (x = 0.05, 0.10) under laser illumination and discuss electronic structural changes induced by optical excitation in these strongly correlated oxides. We discuss the novel photoinduced phase transitions in these transition metal oxides and diluted magnetic semiconductors on the basis of polaronic pictures such as orbital, ferromagnetic, and ferroelectric polarons. PMID:23092248

  6. Photoelectrochemical water splitting enhanced by self-assembled metal nanopillars embedded in an oxide semiconductor photoelectrode

    NASA Astrophysics Data System (ADS)

    Kawasaki, Seiji; Takahashi, Ryota; Yamamoto, Takahisa; Kobayashi, Masaki; Kumigashira, Hiroshi; Yoshinobu, Jun; Komori, Fumio; Kudo, Akihiko; Lippmaa, Mikk

    2016-06-01

    Production of chemical fuels by direct solar energy conversion in a photoelectrochemical cell is of great practical interest for developing a sustainable energy system. Various nanoscale designs such as nanowires, nanotubes, heterostructures and nanocomposites have been explored to increase the energy conversion efficiency of photoelectrochemical water splitting. Here we demonstrate a self-organized nanocomposite material concept for enhancing the efficiency of photocarrier separation and electrochemical energy conversion. Mechanically robust photoelectrodes are formed by embedding self-assembled metal nanopillars in a semiconductor thin film, forming tubular Schottky junctions around each pillar. The photocarrier transport efficiency is strongly enhanced in the Schottky space charge regions while the pillars provide an efficient charge extraction path. Ir-doped SrTiO3 with embedded iridium metal nanopillars shows good operational stability in a water oxidation reaction and achieves over 80% utilization of photogenerated carriers under visible light in the 400- to 600-nm wavelength range.

  7. Implementation of Surface Acoustic Wave Vapor Sensor Using Complementary Metal-Oxide-Semiconductor Amplifiers

    NASA Astrophysics Data System (ADS)

    Chiu, Chia-Sung; Chang, Ching-Chun; Ku, Chia-Lin; Peng, Kang-Ming; Jeng, Erik S.; Chen, Wen-Lin; Huang, Guo-Wei; Wu, Lin-Kun

    2009-04-01

    A surface acoustic wave (SAW) vapor sensor is presented in this work. A SAW delay line oscillator on quartz substrate with the high gain complementary metal-oxide-semiconductor (CMOS) amplifier using a two-poly-two-metal (2P2M) 0.35 µm process was designed. The gain of the CMOS amplifier and its total power consumption are 20 dB and 70 mW, respectively. The achieved phase noise of this SAW oscillator is -150 dBc/Hz at 100 kHz offset. The sensing is successfully demonstrated by a thin poly(epichlorohydrin) (PECH) polymer film on a SAW oscillator with alcohol vapor. This two-in-one sensor unit includes the SAW device and the CMOS amplifier provides designers with comprehensive model for using these components for sensor circuit fabrication. Furthermore it will be promising for future chemical and biological sensing applications.

  8. Photoelectrochemical water splitting enhanced by self-assembled metal nanopillars embedded in an oxide semiconductor photoelectrode

    PubMed Central

    Kawasaki, Seiji; Takahashi, Ryota; Yamamoto, Takahisa; Kobayashi, Masaki; Kumigashira, Hiroshi; Yoshinobu, Jun; Komori, Fumio; Kudo, Akihiko; Lippmaa, Mikk

    2016-01-01

    Production of chemical fuels by direct solar energy conversion in a photoelectrochemical cell is of great practical interest for developing a sustainable energy system. Various nanoscale designs such as nanowires, nanotubes, heterostructures and nanocomposites have been explored to increase the energy conversion efficiency of photoelectrochemical water splitting. Here we demonstrate a self-organized nanocomposite material concept for enhancing the efficiency of photocarrier separation and electrochemical energy conversion. Mechanically robust photoelectrodes are formed by embedding self-assembled metal nanopillars in a semiconductor thin film, forming tubular Schottky junctions around each pillar. The photocarrier transport efficiency is strongly enhanced in the Schottky space charge regions while the pillars provide an efficient charge extraction path. Ir-doped SrTiO3 with embedded iridium metal nanopillars shows good operational stability in a water oxidation reaction and achieves over 80% utilization of photogenerated carriers under visible light in the 400- to 600-nm wavelength range. PMID:27255209

  9. One-dimensional transport in hybrid metal-semiconductor nanotube systems

    NASA Astrophysics Data System (ADS)

    Gelin, M. F.; Bondarev, I. V.

    2016-03-01

    We develop an electron transport theory for the hybrid system of a semiconducting carbon nanotube that encapsulates a one-atom-thick metallic wire. The theory predicts Fano resonances in electron transport through the system, whereby the interaction of electrons on the wire with nanotube plasmon generated near fields blocks some of the wire transmission channels to open up the new coherent plasmon-mediated channel in the nanotube forbidden gap outside the wire transmission band. Such a channel makes the entire hybrid system transparent in the energy domain where neither wire nor nanotube is individually transparent. This effect can be used to control and optimize charge transfer in hybrid nanodevices built on metal-semiconductor nanotube systems.

  10. Broken symmetry and strangeness of the semiconductor impurity band metal-insulator transition.

    PubMed

    Phillips, J C

    1998-06-23

    The filamentary model of the metal-insulator transition in randomly doped semiconductor impurity bands is geometrically equivalent to similar models for continuous transitions in dilute antiferromagnets and even to the lambda transition in liquid He, but the critical behaviors are different. The origin of these differences lies in two factors: quantum statistics and the presence of long range Coulomb forces on both sides of the transition in the electrical case. In the latter case, in addition to the main transition, there are two satellite transitions associated with disappearance of the filamentary structure in both insulating and metallic phases. These two satellite transitions were first identified by Fritzsche in 1958, and their physical origin is explained here in geometrical and topological terms that facilitate calculation of critical exponents.

  11. On the {1}/{f} noise parameter α in degenerate semiconductors and metals

    NASA Astrophysics Data System (ADS)

    Kleinpenning, T. G. M.; Bisschop, J.

    1985-01-01

    In a recent paper Kilmer et al. stated that in metals the number of carriers available for 1/f; scattering fluctuations is a fraction 3 kT/2( EF - Ec) of the total number of carriers in the conduction band. However, they did not make the appropriate integration of the mobility fluctuations over the conduction band. The right integration shows this fraction to be 3 kT/( EF - Ec). In degenerate semiconductors where lattice scattering prevails this fraction can be approximated by {1 + ( EF - Ec)/3 kT} -1 for EF ⩾ Ec. Here EF - Ec is the energy difference b etween Fermi level and bottom of the conduction band. As a consequence, the usual value of 2 X 10 -3 of the Hooge parameter α for metals has to be replaced by 10 -4.

  12. Photoelectrochemical water splitting enhanced by self-assembled metal nanopillars embedded in an oxide semiconductor photoelectrode.

    PubMed

    Kawasaki, Seiji; Takahashi, Ryota; Yamamoto, Takahisa; Kobayashi, Masaki; Kumigashira, Hiroshi; Yoshinobu, Jun; Komori, Fumio; Kudo, Akihiko; Lippmaa, Mikk

    2016-01-01

    Production of chemical fuels by direct solar energy conversion in a photoelectrochemical cell is of great practical interest for developing a sustainable energy system. Various nanoscale designs such as nanowires, nanotubes, heterostructures and nanocomposites have been explored to increase the energy conversion efficiency of photoelectrochemical water splitting. Here we demonstrate a self-organized nanocomposite material concept for enhancing the efficiency of photocarrier separation and electrochemical energy conversion. Mechanically robust photoelectrodes are formed by embedding self-assembled metal nanopillars in a semiconductor thin film, forming tubular Schottky junctions around each pillar. The photocarrier transport efficiency is strongly enhanced in the Schottky space charge regions while the pillars provide an efficient charge extraction path. Ir-doped SrTiO3 with embedded iridium metal nanopillars shows good operational stability in a water oxidation reaction and achieves over 80% utilization of photogenerated carriers under visible light in the 400- to 600-nm wavelength range. PMID:27255209

  13. Tunable surface plasmon polaritons in metal-strip waveguides with magnetized semiconductor substrates in Voigt configuration

    NASA Astrophysics Data System (ADS)

    Mathew, Gishamol; Mathew, Vincent

    2012-05-01

    The properties of surface plasmon polaritons (SPPs) in a magnetically tunable strip waveguide geometry comprising of a metal film of finite width deposited on a magnetized semiconductor and covered by an isotropic dielectric material were studied in Voigt configuration. The method of lines was used to compute the dispersion relation of fundamental modes, and the dependence of the propagation constant on metal film dimensions, material parameters and biasing magnetic field was considered. The bounded SPPs are nonreciprocal with respect to the direction of the biasing magnetic field, producing a nonreciprocal phase shift of the order of 2-18 rad mm-1 at a wavelength of excitation 1.55 μm. Moreover, controlled propagation of SPP modes and their effective tuning are possible in this strip geometry, which enables the design and development of tunable optoelectronic devices.

  14. Controlling the metal to semiconductor transition of MoS2 and WS2 in solution.

    PubMed

    Chou, Stanley S; Huang, Yi-Kai; Kim, Jaemyung; Kaehr, Bryan; Foley, Brian M; Lu, Ping; Dykstra, Conner; Hopkins, Patrick E; Brinker, C Jeffrey; Huang, Jiaxing; Dravid, Vinayak P

    2015-02-11

    Lithiation-exfoliation produces single to few-layered MoS2 and WS2 sheets dispersible in water. However, the process transforms them from the pristine semiconducting 2H phase to a distorted metallic phase. Recovery of the semiconducting properties typically involves heating of the chemically exfoliated sheets at elevated temperatures. Therefore, it has been largely limited to sheets deposited on solid substrates. Here, we report the dispersion of chemically exfoliated MoS2 sheets in high boiling point organic solvents enabled by surface functionalization and the controllable recovery of their semiconducting properties directly in solution. This process connects the scalability of chemical exfoliation with the simplicity of solution processing, ultimately enabling a facile method for tuning the metal to semiconductor transitions of MoS2 and WS2 within a liquid medium.

  15. Controlling the metal to semiconductor transition of MoS2 and WS2 in solution

    DOE PAGESBeta

    Chou, Stanley Shihyao; Yi-Kai Huang; Kim, Jaemyung; Kaehr, Bryan James; Foley, Brian M.; Lu, Ping; Conner Dykstra; Hopkins, Patrick E.; Brinker, C. Jeffrey; Jiaxing Huang; et al

    2015-01-22

    Lithiation-exfoliation produces single to few-layered MoS2 and WS2 sheets dispersible in water. However, the process transforms them from the pristine semiconducting 2H phase to a distorted metallic phase. Recovery of the semiconducting properties typically involves heating of the chemically exfoliated sheets at elevated temperatures. Therefore, it has been largely limited to sheets deposited on solid substrates. We report the dispersion of chemically exfoliated MoS2 sheets in high boiling point organic solvents enabled by surface functionalization and the controllable recovery of their semiconducting properties directly in solution. Ultimately, this process connects the scalability of chemical exfoliation with the simplicity of solutionmore » processing, enabling a facile method for tuning the metal to semiconductor transitions of MoS2 and WS2 within a liquid medium.« less

  16. Thermoelectric properties of semiconductor-metal composites produced by particle blending

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Cadavid, Doris; Ibáñez, Maria; Ortega, Silvia; Martí-Sánchez, Sara; Dobrozhan, Oleksandr; Kovalenko, Maksym V.; Arbiol, Jordi; Cabot, Andreu

    2016-10-01

    In the quest for more efficient thermoelectric material able to convert thermal to electrical energy and vice versa, composites that combine a semiconductor host having a large Seebeck coefficient with metal nanodomains that provide phonon scattering and free charge carriers are particularly appealing. Here, we present our experimental results on the thermal and electrical transport properties of PbS-metal composites produced by a versatile particle blending procedure, and where the metal work function allows injecting electrons to the intrinsic PbS host. We compare the thermoelectric performance of composites with microcrystalline or nanocrystalline structures. The electrical conductivity of the microcrystalline host can be increased several orders of magnitude with the metal inclusion, while relatively high Seebeck coefficient can be simultaneously conserved. On the other hand, in nanostructured materials, the host crystallites are not able to sustain a band bending at its interface with the metal, becoming flooded with electrons. This translates into even higher electrical conductivities than the microcrystalline material, but at the expense of lower Seebeck coefficient values.

  17. Thermal conductivity of (Zr,W)N/ScN metal/semiconductor multilayers and superlattices

    SciTech Connect

    Rawat, Vijay; Sands, Timothy D.; Koh, Yee Kan; Cahill, David G.

    2009-01-15

    The cross-plane thermal conductivities of metal/semiconductor multilayers and epitaxial superlattices have been measured as a function of period by time-domain thermoreflectance at room temperature. (001)-oriented ZrN (metal)/ScN (semiconductor) multilayers and (Zr,W)N/ScN epitaxial superlattices with the rocksalt crystal structure were grown on (001)MgO substrates by reactive magnetron sputtering. A distinct minimum in thermal conductivity at a period of {approx}6 nm is observed for ZrN/ScN multilayers. The minimum thermal conductivity of 5.25 W/m K is a factor of {approx}2.7 smaller than the mean of the thermal conductivities (including only the lattice contributions) of the values measured for films of the constituent materials, and approximately equal to the lattice component of the thermal conductivity of a Zr{sub 0.65}Sc{sub 0.35}N alloy film ({approx}5 W/m K). Alloying the ZrN layers with WN{sub x} reduces the lattice mismatch, yielding epitaxial (Zr,W)N/ScN superlattices. The addition of WN{sub x} also reduces the thermal conductivity to {approx}2 W/m K, a value that is sufficiently low to suggest promise for these materials as solid-state thermionic generators.

  18. Fabrication of Smooth Patterned Structures of Refractory Metals, Semiconductors, and Oxides via Template Stripping

    PubMed Central

    2013-01-01

    The template-stripping method can yield smooth patterned films without surface contamination. However, the process is typically limited to coinage metals such as silver and gold because other materials cannot be readily stripped from silicon templates due to strong adhesion. Herein, we report a more general template-stripping method that is applicable to a larger variety of materials, including refractory metals, semiconductors, and oxides. To address the adhesion issue, we introduce a thin gold layer between the template and the deposited materials. After peeling off the combined film from the template, the gold layer can be selectively removed via wet etching to reveal a smooth patterned structure of the desired material. Further, we demonstrate template-stripped multilayer structures that have potential applications for photovoltaics and solar absorbers. An entire patterned device, which can include a transparent conductor, semiconductor absorber, and back contact, can be fabricated. Since our approach can also produce many copies of the patterned structure with high fidelity by reusing the template, a low-cost and high-throughput process in micro- and nanofabrication is provided that is useful for electronics, plasmonics, and nanophotonics. PMID:24001174

  19. Plasmon‐Mediated Solar Energy Conversion via Photocatalysis in Noble Metal/Semiconductor Composites

    PubMed Central

    Wang, Mengye; Ye, Meidan; Iocozzia, James

    2016-01-01

    Plasmonics has remained a prominent and growing field over the past several decades. The coupling of various chemical and photo phenomenon has sparked considerable interest in plasmon‐mediated photocatalysis. Given plasmonic photocatalysis has only been developed for a relatively short period, considerable progress has been made in improving the absorption across the full solar spectrum and the efficiency of photo‐generated charge carrier separation. With recent advances in fundamental (i.e., mechanisms) and experimental studies (i.e., the influence of size, geometry, surrounding dielectric field, etc.) on plasmon‐mediated photocatalysis, the rational design and synthesis of metal/semiconductor hybrid nanostructure photocatalysts has been realized. This review seeks to highlight the recent impressive developments in plasmon‐mediated photocatalytic mechanisms (i.e., Schottky junction, direct electron transfer, enhanced local electric field, plasmon resonant energy transfer, and scattering and heating effects), summarize a set of factors (i.e., size, geometry, dielectric environment, loading amount and composition of plasmonic metal, and nanostructure and properties of semiconductors) that largely affect plasmonic photocatalysis, and finally conclude with a perspective on future directions within this rich field of research.

  20. Fabrication of smooth patterned structures of refractory metals, semiconductors, and oxides via template stripping.

    PubMed

    Park, Jong Hyuk; Nagpal, Prashant; McPeak, Kevin M; Lindquist, Nathan C; Oh, Sang-Hyun; Norris, David J

    2013-10-01

    The template-stripping method can yield smooth patterned films without surface contamination. However, the process is typically limited to coinage metals such as silver and gold because other materials cannot be readily stripped from silicon templates due to strong adhesion. Herein, we report a more general template-stripping method that is applicable to a larger variety of materials, including refractory metals, semiconductors, and oxides. To address the adhesion issue, we introduce a thin gold layer between the template and the deposited materials. After peeling off the combined film from the template, the gold layer can be selectively removed via wet etching to reveal a smooth patterned structure of the desired material. Further, we demonstrate template-stripped multilayer structures that have potential applications for photovoltaics and solar absorbers. An entire patterned device, which can include a transparent conductor, semiconductor absorber, and back contact, can be fabricated. Since our approach can also produce many copies of the patterned structure with high fidelity by reusing the template, a low-cost and high-throughput process in micro- and nanofabrication is provided that is useful for electronics, plasmonics, and nanophotonics.

  1. Graphene-based hybrid structures combined with functional materials of ferroelectrics and semiconductors

    NASA Astrophysics Data System (ADS)

    Jie, Wenjing; Hao, Jianhua

    2014-05-01

    Fundamental studies and applications of 2-dimensional (2D) graphene may be deepened and broadened via combining graphene sheets with various functional materials, which have been extended from the traditional insulator of SiO2 to a versatile range of dielectrics, semiconductors and metals, as well as organic compounds. Among them, ferroelectric materials have received much attention due to their unique ferroelectric polarization. As a result, many attractive characteristics can be shown in graphene/ferroelectric hybrid systems. On the other hand, graphene can be integrated with conventional semiconductors and some newly-discovered 2D layered materials to form distinct Schottky junctions, yielding fascinating behaviours and exhibiting the potential for various applications in future functional devices. This review article is an attempt to illustrate the most recent progress in the fabrication, operation principle, characterization, and promising applications of graphene-based hybrid structures combined with various functional materials, ranging from ferroelectrics to semiconductors. We focus on mechanically exfoliated and chemical-vapor-deposited graphene sheets integrated in numerous advanced devices. Some typical hybrid structures have been highlighted, aiming at potential applications in non-volatile memories, transparent flexible electrodes, solar cells, photodetectors, and so on.

  2. Strain-induced programmable half-metal and spin-gapless semiconductor in an edge-doped boron nitride nanoribbon

    NASA Astrophysics Data System (ADS)

    Zhu, Shuze; Li, Teng

    2016-03-01

    The search for half-metals and spin-gapless semiconductors has attracted extensive attention in material design for spintronics. Existing progress in such a search often requires peculiar atomistic lattice configuration and also lacks active control of the resulting electronic properties. Here we reveal that a boron nitride nanoribbon with a carbon-doped edge can be made a half-metal or a spin-gapless semiconductor in a programmable fashion. The mechanical strain serves as the on/off switches for functions of half-metal and spin-gapless semiconductor to occur. Our findings shed light on how the edge doping combined with strain engineering can affect electronic properties of two-dimensional materials.

  3. Semiconductor product analysis challenges based on the 1999 ITRS

    SciTech Connect

    JOSEPH,THOMAS W.; ANDERSON,RICHARD E.; GILFEATHER,GLEN; LECLAIRE,CAROLE; YIM,DANIEL

    2000-05-30

    One of the most significant challenges for technology characterization and future analysis is to keep instrumentation and techniques in step with the development of technology itself. Not only are dimensions shrinking and new materials being employed, but the rate of change is increasing. According to the 1999 International Technology Roadmap for Semiconductors (ITRS) the number and difficulty of the technical challenges continue to increase as technology moves forward. It could be argued that technology cannot be developed without appropriate analytical technique, nevertheless while much effort is being directed at materials and processes, only a small proportion is being directed at analysis. Whereas previous versions of the Semiconductor Industry Association roadmap contained a small number of implicit references to characterization and analysis, the 1999 ITRS contains many explicit references. It is clear that characterization is now woven through the roadmap, and technology developers in all areas appreciate the fact that new instrumentation and techniques will be required to sustain the rate of development the semiconductor industry has seen in recent years. Late in 1999, a subcommittee of the Sematech Product Analysis Forum reviewed the ITRS and identified a top-ten list of challenges which the failure analysis community will face as present technologies are extended and future technologies are developed. This paper discusses the PAF top-ten list of challenges, which is based primarily on the Difficult Challenges tables from each ITRS working group. Eight of the top-ten are challenges of significant technical magnitude, only two could be considered non-technical in nature. Most of these challenges cut across several working group areas and could be considered common threads in the roadmap, ranging from fault simulation and modeling to imaging small features, from electrical defect isolation to reprocessing.

  4. Semiconductor to metallic type transition in Ni1.5Fe1.5O4 ferrite

    NASA Astrophysics Data System (ADS)

    Aneeshkumar K., S.; Bhowmik, R. N.

    2016-05-01

    We have investigated electrical properties of Ni1.5Fe1.5O4 ferrite. The sample has been prepared by chemical coprecipitation route. The dc limit of conductivity has been derived from the fitting of ac conductivity data using Johnscher power law and Cole-Cole plot of impedance spectrum. The temperature dependence of dc conductivity data indicated a semiconductor to metallic type transition at 373K and metallic to semiconductor transition at 413K. Such electrical transition may be attributed to the effect of localization and de-localization of charge carriers in the hopping paths (Fe3+-O-Fe3+) and (Ni2+-O-Ni3+).

  5. Schottky or Ohmic metal-semiconductor contact: influence on photocatalytic efficiency of Ag/ZnO and Pt/ZnO model systems.

    PubMed

    Yan, Fengpo; Wang, Yonghao; Zhang, Jiye; Lin, Zhang; Zheng, Jinsheng; Huang, Feng

    2014-01-01

    The relationship between the contact type in metal-semiconductor junctions and their photocatalytic efficiencies is investigated. Two metal-semiconductor junctions, silver on zinc oxide (Ag/ZnO) and platinum on zinc oxide (Pt/ZnO) serve as model system for Ohmic and Schottky metal-semiconductor contact, respectively. Ag/ZnO, with Ohmic contact, exhibits a higher photocatalytic efficiency than Pt/ZnO, with Schottky contact. The direction of electric fields within the semiconductor is found to play a crucial role in the separation of photogenerated charges, and thus strongly influences the photocatalytic efficiency.

  6. Characterization of Interface State in Silicon Carbide Metal Oxide Semiconductor Capacitors

    NASA Astrophysics Data System (ADS)

    Kao, Wei-Chieh

    Silicon carbide (SiC) has always been considered as an excellent material for high temperature and high power devices. Since SiC is the only compound semiconductor whose native oxide is silicon dioxide (SiO2), it puts SiC in a unique position. Although SiC metal oxide semiconductor (MOS) technology has made significant progress in recent years, there are still a number of issues to be overcome before more commercial SiC devices can enter the market. The prevailing issues surrounding SiC MOSFET devices are the low channel mobility, the low quality of the oxide layer and the high interface state density at the SiC/SiO2 interface. Consequently, there is a need for research to be performed in order to have a better understanding of the factors causing the poor SiC/SiO2 interface properties. In this work, we investigated the generation lifetime in SiC materials by using the pulsed metal oxide semiconductor (MOS) capacitor method and measured the interface state density distribution at the SiC/SiO2 interface by using the conductance measurement and the high-low frequency capacitance technique. These measurement techniques have been performed on n-type and p-type SiC MOS capacitors. In the course of our investigation, we observed fast interface states at semiconductor-dielectric interfaces in SiC MOS capacitors that underwent three different interface passivation processes, such states were detected in the nitrided samples but not observed in PSG-passivated samples. This result indicate that the lack of fast states at PSG-passivated interface is one of the main reasons for higher channel mobility in PSG MOSFETs. In addition, the effect of mobile ions in the oxide on the response time of interface states has been investigated. In the last chapter we propose additional methods of investigation that can help elucidate the origin of the particular interface states, enabling a more complete understanding of the SiC/SiO2 material system.

  7. A compact quantum correction model for symmetric double gate metal-oxide-semiconductor field-effect transistor

    SciTech Connect

    Cho, Edward Namkyu; Shin, Yong Hyeon; Yun, Ilgu

    2014-11-07

    A compact quantum correction model for a symmetric double gate (DG) metal-oxide-semiconductor field-effect transistor (MOSFET) is investigated. The compact quantum correction model is proposed from the concepts of the threshold voltage shift (ΔV{sub TH}{sup QM}) and the gate capacitance (C{sub g}) degradation. First of all, ΔV{sub TH}{sup QM} induced by quantum mechanical (QM) effects is modeled. The C{sub g} degradation is then modeled by introducing the inversion layer centroid. With ΔV{sub TH}{sup QM} and the C{sub g} degradation, the QM effects are implemented in previously reported classical model and a comparison between the proposed quantum correction model and numerical simulation results is presented. Based on the results, the proposed quantum correction model can be applicable to the compact model of DG MOSFET.

  8. Microchamber Device Equipped with Complementary Metal Oxide Semiconductor Optical Polarization Analyzer Chip for Micro Total Analysis System

    NASA Astrophysics Data System (ADS)

    Minakawa, Kyosuke; Yamada, Hirofumi; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2009-04-01

    We fabricated a device equipped with a microchannel on a complementary metal oxide semiconductor (CMOS) sensor to observe the optical polarization rotation angle during in situ monitoring. The sensor is based on the integrated wire-grid polarization detection method. The microchannel is fabricated on a Si layer by deep reactive ion etching (DRIE). Using this device, we measured the optical rotation of chiral molecules in a microfluid. This showed that the device is applicable to in situ chiral measurement. Optical rotation angles of the linearly polarized light corresponded to different concentrations of sucrose solution. Sensor output reflecting the temporal concentration change of chiral molecules was also observed. These results clearly demonstrate that the CMOS sensor has the capability of measuring chiral molecules in situ.

  9. A complementary metal-oxide-semiconductor compatible monocantilever 12-point probe for conductivity measurements on the nanoscale

    NASA Astrophysics Data System (ADS)

    Gammelgaard, L.; Bøggild, P.; Wells, J. W.; Handrup, K.; Hofmann, Ph.; Balslev, M. B.; Hansen, J. E.; Petersen, P. R. E.

    2008-09-01

    We present a complementary metal-oxide-semiconductor compatible, nanoscale 12-point-probe based on TiW electrodes placed on a SiO2 monocantilever. Probes are mass fabricated on Si wafers by a combination of electron beam and UV lithography, realizing TiW electrode tips with a width down to 250nm and a probe pitch of 500nm. In-air four-point measurements have been performed on indium tin oxide, ruthenium, and titanium-tungsten, showing good agreement with values obtained by other four-point probes. In-vacuum four-point resistance measurements have been performed on clean Bi(111) using different probe spacings. The results show the expected behavior for bulk Bi, indicating that the contribution of electronic surface states to the transport properties is very small.

  10. Energy-band diagram configuration of Al2O3/oxygen-terminated p-diamond metal-oxide-semiconductor

    NASA Astrophysics Data System (ADS)

    Maréchal, A.; Aoukar, M.; Vallée, C.; Rivière, C.; Eon, D.; Pernot, J.; Gheeraert, E.

    2015-10-01

    Diamond metal-oxide-semiconductor capacitors were prepared using atomic layer deposition at 250 °C of Al2O3 on oxygen-terminated boron doped (001) diamond. Their electrical properties were investigated in terms of capacitance and current versus voltage measurements. Performing X-ray photoelectron spectroscopy based on the measured core level energies and valence band maxima, the interfacial energy band diagram configuration of the Al2O3/O-diamond is established. The band diagram alignment is concluded to be of type I with valence band offset Δ E v of 1.34 ± 0.2 eV and conduction band offset Δ E c of 0.56 ± 0.2 eV considering an Al2O3 energy band gap of 7.4 eV. The agreement with electrical measurement and the ability to perform a MOS transistor are discussed.

  11. Extraction of Channel Length Independent Series Resistance for Deeply Scaled Metal-Oxide-Semiconductor Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Ma, Li-Juan; Ji, Xiao-Li; Chen, Yuan-Cong; Xia, Hao-Guang; Zhu, Chen-Xin; Guo, Qiang; Yan, Feng

    2014-09-01

    The recently developed four Rsd extraction methods from a single device, involving the constant-mobility method, the direct Id—Vgs method, the conductance method and the Y-function method, are evaluated on 32 nm n-channel metal-oxide-semiconductor field-effect transistors (nMOSFETs). It is found that Rsd achieved from the constant-mobility method exhibits the channel length independent characteristics. The L-dependent Rsd extracted from the other three methods is proven to be associated with the gate-voltage-induced mobility degradation in the extraction procedures. Based on L-dependent behaviors of Rsd, a new method is proposed for accurate series resistance extraction on deeply scaled MOSFETs.

  12. Anisotropy of piezoresistance in n-channel inversion layers of metal-oxide-semiconductor transistors on (001)Si

    NASA Astrophysics Data System (ADS)

    Maruyama, T.; Zaima, S.; Koide, Y.; Kanda, Y.; Yasuda, Y.

    1990-12-01

    The crystallographic orientation dependence of piezoresistance of n-channel inversion layers in metal-oxide-semiconductor field-effect transistors on p-type (001)Si has been studied by using a diaphragm at room temperature. The experimental results have been compared with self-consistent calculations based on a surface quantization effect. The main feature of the crystallographic orientation dependence can be explained by an electron repopulation effect induced by applied strain and an effective mass anisotropy. It can be found that the difference between longitudinal and transverse piezoresistance in the devices nearly along the [110] directions is mainly due to an orthorhombic distortion of Si, and the shear deformation coefficients Ξu is determined to be 5.8 eV from comparing the experimental results with the calculated ones. An expression of the shear piezoresistance component π44 is also derived.

  13. Semiconductor-metal phase transition of vanadium dioxide nanostructures on silicon substrate: Applications for thermal control of spacecraft

    SciTech Connect

    Leahu, G. L. Li Voti, R. Larciprete, M. C. Belardini, A. Mura, F. Sibilia, C.; Bertolotti, M.; Fratoddi, I.

    2014-06-19

    We present a detailed infrared study of the semiconductor-to-metal transition (SMT) in a vanadium dioxide (VO2) film deposited on silicon wafer. The VO2 phase transition is studied in the mid-infrared (MIR) region by analyzing the transmittance and the reflectance measurements, and the calculated emissivity. The temperature behaviour of the emissivity during the SMT put into evidence the phenomenon of the anomalous absorption in VO2 which has been explained by applying the Maxwell Garnett effective medium approximation theory, together with a strong hysteresis phenomenon, both useful to design tunable thermal devices to be applied for the thermal control of spacecraft. We have also applied the photothermal radiometry in order to study the changes in the modulated emissivity induced by laser. Experimental results show how the use of these techniques represent a good tool for a quantitative measurement of the optothermal properties of vanadium dioxide based structures.

  14. Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide.

    PubMed

    Lightcap, Ian V; Kosel, Thomas H; Kamat, Prashant V

    2010-02-10

    Using reduced graphene oxide (RGO) as a two-dimensional support, we have succeeded in selective anchoring of semiconductor and metal nanoparticles at separate sites. Photogenerated electrons from UV-irradiated TiO(2) are transported across RGO to reduce silver ions into silver nanoparticles at a location distinct from the TiO(2) anchored site. The ability of RGO to store and shuttle electrons, as visualized via a stepwise electron transfer process, demonstrates its capability to serve as a catalyst nanomat and transfer electrons on demand to adsorbed species. These findings pave the way for the development of next generation catalyst systems and can spur advancements in graphene-based composites for chemical and biological sensors.

  15. Evaluation of a dual bias dual metal oxide-silicon semiconductor field effect transistor detector as radiation dosimeter.

    PubMed

    Soubra, M; Cygler, J; Mackay, G

    1994-04-01

    A new type of direct reading semiconductor dosimeter has been investigated as a radiation detector for photon and electron therapy beams of various energies. The operation of this device is based on the measurement of the threshold voltage shift in a custom-built metal oxide-silicon semiconductor field effect transistor (MOSFET). This voltage is a linear function of absorbed dose. The extent of the linearity region is dependent on the voltage controlled operation during irradiation. Operating two MOSFETS at two different biases simultaneously during irradiation will result in sensitivity (V/Gy) reproducibility better than +/- 3% over a range in dose of 100 Gy and at a dose per fraction greater than 20 x 10(-2) Gy. The modes of operation give this device many advantages, such as continuous monitoring during irradiation, immediate reading, and permanent storage of total dose after irradiation. The availability and ease of use of these MOSFET detectors make them very promising in clinical dosimetry. PMID:8058024

  16. Characterization of metal-functionalized flax orbitide as a new candidate for light-emitting semiconductor

    NASA Astrophysics Data System (ADS)

    Bauer, Robert; Bazylewski, Paul; Jadhav, Pramodkumar; Shen, Jianheng; Paskal Okinyo-Owiti, Denis; Yang, Jian; Chang, Gap Soo; Reaney, Martin; Sammynaiken, Ramaswami

    2015-06-01

    Organic materials display promise in numerous electronic applications, complimentary to traditional semi-conducting materials. Cyclolinopeptides show promise in light-emitting applications as an organic semiconductor. Photoluminescence measurements indicate charge transfer between the peptide and the metal, resulting in an increase in intensity of the emission from around the metal in the Cyclolinopeptide complex. Complementary X-ray absorption near-edge spectroscopy (XANES) shows a change in occupation of energy states in the peptide when complexed with the metal, indicating charge transfer, but peak positions show the peptide is not chemically changed by the metal. Combining X-ray emission and XANES provides element specific partial density of states, to estimate the element specific energy gap which is the proposed emission range for the peptide material. Organic light emitting diode devices have been fabricated, although no measurable emission has been seen as of yet. The devices have diode like current-voltage characteristics showing the peptide is semi-conducting with a threshold voltage of approximately 2.5 V.

  17. Amorphous silicon enhanced metal-insulator-semiconductor contacts for silicon solar cells

    SciTech Connect

    Bullock, J. Cuevas, A.; Yan, D.; Demaurex, B.; Hessler-Wyser, A.; De Wolf, S.

    2014-10-28

    Carrier recombination at the metal-semiconductor contacts has become a significant obstacle to the further advancement of high-efficiency diffused-junction silicon solar cells. This paper provides the proof-of-concept of a procedure to reduce contact recombination by means of enhanced metal-insulator-semiconductor (MIS) structures. Lightly diffused n{sup +} and p{sup +} surfaces are passivated with SiO{sub 2}/a-Si:H and Al{sub 2}O{sub 3}/a-Si:H stacks, respectively, before the MIS contacts are formed by a thermally activated alloying process between the a-Si:H layer and an overlying aluminum film. Transmission/scanning transmission electron microscopy (TEM/STEM) and energy dispersive x-ray spectroscopy are used to ascertain the nature of the alloy. Idealized solar cell simulations reveal that MIS(n{sup +}) contacts, with SiO{sub 2} thicknesses of ∼1.55 nm, achieve the best carrier-selectivity producing a contact resistivity ρ{sub c} of ∼3 mΩ cm{sup 2} and a recombination current density J{sub 0c} of ∼40 fA/cm{sup 2}. These characteristics are shown to be stable at temperatures up to 350 °C. The MIS(p{sup +}) contacts fail to achieve equivalent results both in terms of thermal stability and contact characteristics but may still offer advantages over directly metallized contacts in terms of manufacturing simplicity.

  18. Detection of Infrared Photons Using the Electronic Stress in Metal-Semiconductor Interfaces

    SciTech Connect

    Datskos, P.G.; Datskou, I.; Egert, C.M.; Rjic, S.

    1999-04-05

    It is well known that the work function of metals decreases when they are placed in a nonpolar liquid. A similar decrease occurs when the metal is placed into contact with a semiconductor forming a Schottky barrier. We report on a new method for detecting photons using the stress caused by photo-electrons emitted from a metal film surface in contact with a semiconductor microstructure. The photoelectrons diffuse into the microstructure and produce an electronic stress. The photon detection results from the measurement of the photo-induced bending of the microstructure. Internal photoemission has been used in the past to detect photons, however, in those cases the detection was accomplished by measuring the current due to photoelectrons and not due to electronic stress. Small changes in position (displacement) of microstructures are routinely measured in atomic force microscopy (AFM) where atomic imaging of surfaces relies on the measurement of small changes (< l0{sup -9} m) in the bending of microcantilevers. In the present work we studied the photon response of Si microcantilevers coated with a thin film of Pt. The Si microcantilevers were 500 nm thick and had a 30 nm layer of Pt. Photons with sufficient energies produce electrons from the platinum-silicon interface which diffuse into the Si and produce an electronic stress. Since the excess charge carriers cause the Si microcantilever to contract in length but not the Pt layer, the bimaterial microcantilever bends. In our present studies we used the optical detection technique to measure the photometric response of Pt-Si microcantilevers as a function of photon energy. The charge carriers responsible for the photo-induced stress in Si, were produced via internal photoemission using a diode laser with wavelength {lambda} = 1550 nm.

  19. Delay-based reservoir computing using semiconductor ring lasers

    NASA Astrophysics Data System (ADS)

    Nguimdo, Romain Modeste; Danckaert, Jan; Verschaffelt, Guy; Van der Sande, Guy

    2014-05-01

    Delay systems subject to delayed optical feedback have recently shown great potential in solving computationally hard tasks. By implementing a neuro-inspired computational scheme relying on the transient response to optical data injection, high processing speeds have been demonstrated. However, reservoir computing systems based on delay dynamics discussed in the literature are designed by coupling many different stand-alone components which lead to bulky, lack of long-term stability, non-monolithic systems. Here we numerically investigate the possibility of implementing reservoir computing schemes based on semiconductor ring lasers as they are scalable and can be easily implemented on chip. We numerically benchmark our system on a chaotic time-series prediction task.

  20. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges.

    PubMed

    Duan, Xidong; Wang, Chen; Pan, Anlian; Yu, Ruqin; Duan, Xiangfeng

    2015-12-21

    The discovery of graphene has ignited intensive interest in two-dimensional layered materials (2DLMs). These 2DLMs represent a new class of nearly ideal 2D material systems for exploring fundamental chemistry and physics at the limit of single-atom thickness, and have the potential to open up totally new technological opportunities beyond the reach of existing materials. In general, there are a wide range of 2DLMs in which the atomic layers are weakly bonded together by van der Waals interactions and can be isolated into single or few-layer nanosheets. The van der Waals interactions between neighboring atomic layers could allow much more flexible integration of distinct materials to nearly arbitrarily combine and control different properties at the atomic scale. The transition metal dichalcogenides (TMDs) (e.g., MoS2, WSe2) represent a large family of layered materials, many of which exhibit tunable band gaps that can undergo a transition from an indirect band gap in bulk crystals to a direct band gap in monolayer nanosheets. These 2D-TMDs have thus emerged as an exciting class of atomically thin semiconductors for a new generation of electronic and optoelectronic devices. Recent studies have shown exciting potential of these atomically thin semiconductors, including the demonstration of atomically thin transistors, a new design of vertical transistors, as well as new types of optoelectronic devices such as tunable photovoltaic devices and light emitting devices. In parallel, there have also been considerable efforts in developing diverse synthetic approaches for the rational growth of various forms of 2D materials with precisely controlled chemical composition, physical dimension, and heterostructure interface. Here we review the recent efforts, progress, opportunities and challenges in exploring the layered TMDs as a new class of atomically thin semiconductors.

  1. Direct in situ nitridation of nanostructured metal oxide deposited semiconductor interfaces: tuning the response of reversibly interacting sensor sites.

    PubMed

    Laminack, William I; Gole, James L

    2014-08-25

    Metal-oxide nanostructure-decorated extrinsic semiconductor interfaces modified through in situ nitridation greatly expand the range of sensor interface response. Select metal-oxide sites, deposited to an n-type nanopore-coated microporous interface, direct a dominant electron-transduction process for reversible chemical sensing, which minimizes chemical-bond formation. The oxides are modified to decrease their Lewis acidity through a weak interaction to form metal oxynitride sites. Conductometric and X-ray photoelectron spectroscopy measurements demonstrate that in situ treatment changes the reversible interaction with the analytes NH3 and NO. The sensor range is extended, which creates a distinct new family of responses determined by the Lewis acidity/basicity of a given analyte relative to that of the nanostructures chosen to decorate the interface. The analyte response, broadened in a substantial and predictable way by nitridation, is explained by the recently developing inverse hard/soft acid/base model (IHSAB) of reversible electron transduction. PMID:24862834

  2. Electron beam synthesis of metal and semiconductor nanoparticles using metal-organic frameworks as ordered precursors

    NASA Astrophysics Data System (ADS)

    Jacobs, Benjamin W.; Houk, Ronald J. T.; Wong, Bryan M.; Talin, A. Alec; Allendorf, Mark D.

    2011-09-01

    We demonstrate a versatile, bottom-up method of forming metal and semiconducting nanoparticles by exposing precursor metal-organic frameworks (MOFs) to an electron beam. Using a transmission electron microscope to initiate and observe growth, we show that the composition, size, and morphology of the nanoparticles are determined by the chemistry and structure of the MOF, as well as the electron beam properties. Zinc oxide, metallic indium and copper particles were produced with narrow and tunable size distributions comparable to those obtained from state-of-the-art methods. This method represents a first step toward the fabrication of nanoscale heterostructures using the highly controlled environment of the MOF pores as a scaffold or template.

  3. Structural Design Principle of Small-Molecule Organic Semiconductors for Metal-Free, Visible-Light-Promoted Photocatalysis.

    PubMed

    Wang, Lei; Huang, Wei; Li, Run; Gehrig, Dominik; Blom, Paul W M; Landfester, Katharina; Zhang, Kai A I

    2016-08-01

    Herein, we report on the structural design principle of small-molecule organic semiconductors as metal-free, pure organic and visible light-active photocatalysts. Two series of electron-donor and acceptor-type organic semiconductor molecules were synthesized to meet crucial requirements, such as 1) absorption range in the visible region, 2) sufficient photoredox potential, and 3) long lifetime of photogenerated excitons. The photocatalytic activity was demonstrated in the intermolecular C-H functionalization of electron-rich heteroaromates with malonate derivatives. A mechanistic study of the light-induced electron transport between the organic photocatalyst, substrate, and the sacrificial agent are described. With their tunable absorption range and defined energy-band structure, the small-molecule organic semiconductors could offer a new class of metal-free and visible light-active photocatalysts for chemical reactions.

  4. Inversion channel diamond metal-oxide-semiconductor field-effect transistor with normally off characteristics.

    PubMed

    Matsumoto, Tsubasa; Kato, Hiromitsu; Oyama, Kazuhiro; Makino, Toshiharu; Ogura, Masahiko; Takeuchi, Daisuke; Inokuma, Takao; Tokuda, Norio; Yamasaki, Satoshi

    2016-01-01

    We fabricated inversion channel diamond metal-oxide-semiconductor field-effect transistors (MOSFETs) with normally off characteristics. At present, Si MOSFETs and insulated gate bipolar transistors (IGBTs) with inversion channels are widely used because of their high controllability of electric power and high tolerance. Although a diamond semiconductor is considered to be a material with a strong potential for application in next-generation power devices, diamond MOSFETs with an inversion channel have not yet been reported. We precisely controlled the MOS interface for diamond by wet annealing and fabricated p-channel and planar-type MOSFETs with phosphorus-doped n-type body on diamond (111) substrate. The gate oxide of Al2O3 was deposited onto the n-type diamond body by atomic layer deposition at 300 °C. The drain current was controlled by the negative gate voltage, indicating that an inversion channel with a p-type character was formed at a high-quality n-type diamond body/Al2O3 interface. The maximum drain current density and the field-effect mobility of a diamond MOSFET with a gate electrode length of 5 μm were 1.6 mA/mm and 8.0 cm(2)/Vs, respectively, at room temperature. PMID:27545201

  5. Silicon carbide: A unique platform for metal-oxide-semiconductor physics

    SciTech Connect

    Liu, Gang; Tuttle, Blair R.; Dhar, Sarit

    2015-06-15

    A sustainable energy future requires power electronics that can enable significantly higher efficiencies in the generation, distribution, and usage of electrical energy. Silicon carbide (4H-SiC) is one of the most technologically advanced wide bandgap semiconductor that can outperform conventional silicon in terms of power handling, maximum operating temperature, and power conversion efficiency in power modules. While SiC Schottky diode is a mature technology, SiC power Metal Oxide Semiconductor Field Effect Transistors are relatively novel and there is large room for performance improvement. Specifically, major initiatives are under way to improve the inversion channel mobility and gate oxide stability in order to further reduce the on-resistance and enhance the gate reliability. Both problems relate to the defects near the SiO{sub 2}/SiC interface, which have been the focus of intensive studies for more than a decade. Here we review research on the SiC MOS physics and technology, including its brief history, the state-of-art, and the latest progress in this field. We focus on the two main scientific problems, namely, low channel mobility and bias temperature instability. The possible mechanisms behind these issues are discussed at the device physics level as well as the atomic scale, with the support of published physical analysis and theoretical studies results. Some of the most exciting recent progress in interface engineering for improving the channel mobility and fundamental understanding of channel transport is reviewed.

  6. Inversion channel diamond metal-oxide-semiconductor field-effect transistor with normally off characteristics

    NASA Astrophysics Data System (ADS)

    Matsumoto, Tsubasa; Kato, Hiromitsu; Oyama, Kazuhiro; Makino, Toshiharu; Ogura, Masahiko; Takeuchi, Daisuke; Inokuma, Takao; Tokuda, Norio; Yamasaki, Satoshi

    2016-08-01

    We fabricated inversion channel diamond metal-oxide-semiconductor field-effect transistors (MOSFETs) with normally off characteristics. At present, Si MOSFETs and insulated gate bipolar transistors (IGBTs) with inversion channels are widely used because of their high controllability of electric power and high tolerance. Although a diamond semiconductor is considered to be a material with a strong potential for application in next-generation power devices, diamond MOSFETs with an inversion channel have not yet been reported. We precisely controlled the MOS interface for diamond by wet annealing and fabricated p-channel and planar-type MOSFETs with phosphorus-doped n-type body on diamond (111) substrate. The gate oxide of Al2O3 was deposited onto the n-type diamond body by atomic layer deposition at 300 °C. The drain current was controlled by the negative gate voltage, indicating that an inversion channel with a p-type character was formed at a high-quality n-type diamond body/Al2O3 interface. The maximum drain current density and the field-effect mobility of a diamond MOSFET with a gate electrode length of 5 μm were 1.6 mA/mm and 8.0 cm2/Vs, respectively, at room temperature.

  7. Inversion channel diamond metal-oxide-semiconductor field-effect transistor with normally off characteristics

    PubMed Central

    Matsumoto, Tsubasa; Kato, Hiromitsu; Oyama, Kazuhiro; Makino, Toshiharu; Ogura, Masahiko; Takeuchi, Daisuke; Inokuma, Takao; Tokuda, Norio; Yamasaki, Satoshi

    2016-01-01

    We fabricated inversion channel diamond metal-oxide-semiconductor field-effect transistors (MOSFETs) with normally off characteristics. At present, Si MOSFETs and insulated gate bipolar transistors (IGBTs) with inversion channels are widely used because of their high controllability of electric power and high tolerance. Although a diamond semiconductor is considered to be a material with a strong potential for application in next-generation power devices, diamond MOSFETs with an inversion channel have not yet been reported. We precisely controlled the MOS interface for diamond by wet annealing and fabricated p-channel and planar-type MOSFETs with phosphorus-doped n-type body on diamond (111) substrate. The gate oxide of Al2O3 was deposited onto the n-type diamond body by atomic layer deposition at 300 °C. The drain current was controlled by the negative gate voltage, indicating that an inversion channel with a p-type character was formed at a high-quality n-type diamond body/Al2O3 interface. The maximum drain current density and the field-effect mobility of a diamond MOSFET with a gate electrode length of 5 μm were 1.6 mA/mm and 8.0 cm2/Vs, respectively, at room temperature. PMID:27545201

  8. Silicon carbide: A unique platform for metal-oxide-semiconductor physics

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Tuttle, Blair R.; Dhar, Sarit

    2015-06-01

    A sustainable energy future requires power electronics that can enable significantly higher efficiencies in the generation, distribution, and usage of electrical energy. Silicon carbide (4H-SiC) is one of the most technologically advanced wide bandgap semiconductor that can outperform conventional silicon in terms of power handling, maximum operating temperature, and power conversion efficiency in power modules. While SiC Schottky diode is a mature technology, SiC power Metal Oxide Semiconductor Field Effect Transistors are relatively novel and there is large room for performance improvement. Specifically, major initiatives are under way to improve the inversion channel mobility and gate oxide stability in order to further reduce the on-resistance and enhance the gate reliability. Both problems relate to the defects near the SiO2/SiC interface, which have been the focus of intensive studies for more than a decade. Here we review research on the SiC MOS physics and technology, including its brief history, the state-of-art, and the latest progress in this field. We focus on the two main scientific problems, namely, low channel mobility and bias temperature instability. The possible mechanisms behind these issues are discussed at the device physics level as well as the atomic scale, with the support of published physical analysis and theoretical studies results. Some of the most exciting recent progress in interface engineering for improving the channel mobility and fundamental understanding of channel transport is reviewed.

  9. 3-D perpendicular assembly of single walled carbon nanotubes for complimentary metal oxide semiconductor interconnects.

    PubMed

    Kim, Tae-Hoon; Yilmaz, Cihan; Somu, Sivasubramanian; Busnaina, Ahmed

    2014-05-01

    Due to their superior electrical properties such as high current density and ballistic transport, carbon nanotubes (CNT) are considered as a potential candidate for future Very Large Scale Integration (VLSI) interconnects. However, direct incorporation of CNTs into Complimentary Metal Oxide Semiconductor (CMOS) architecture by conventional chemical vapor deposition (CVD) growth method is problematic since it requires high temperatures that might damage insulators and doped semiconductors in the underlying CMOS circuits. In this paper, we present a directed assembly method to assemble aligned CNTs into pre-patterned vias and perpendicular to the substrate. A dynamic electric field with a static offset is applied to provide the force needed for directing the SWNT assembly. It is also shown that by adjusting assembly parameters the density of the assembled CNTs can be significantly enhanced. This highly scalable directed assembly method is conducted at room temperature and pressure and is accomplished in a few minutes. I-V characterization of the assembled CNTs was conducted using a Zyvex nanomanipulator in a scanning electron microscope (SEM) and the measured value of the resistance is found to be 270 komega s. PMID:24734611

  10. Chemoelectronic circuits based on metal nanoparticles.

    PubMed

    Yan, Yong; Warren, Scott C; Fuller, Patrick; Grzybowski, Bartosz A

    2016-07-01

    To develop electronic devices with novel functionalities and applications, various non-silicon-based materials are currently being explored. Nanoparticles have unique characteristics due to their small size, which can impart functions that are distinct from those of their bulk counterparts. The use of semiconductor nanoparticles has already led to improvements in the efficiency of solar cells, the processability of transistors and the sensitivity of photodetectors, and the optical and catalytic properties of metal nanoparticles have led to similar advances in plasmonics and energy conversion. However, metals screen electric fields and this has, so far, prevented their use in the design of all-metal nanoparticle circuitry. Here, we show that simple electronic circuits can be made exclusively from metal nanoparticles functionalized with charged organic ligands. In these materials, electronic currents are controlled by the ionic gradients of mobile counterions surrounding the 'jammed' nanoparticles. The nanoparticle-based electronic elements of the circuitry can be interfaced with metal nanoparticles capable of sensing various environmental changes (humidity, gas, the presence of various cations), creating electronic devices in which metal nanoparticles sense, process and ultimately report chemical signals. Because the constituent nanoparticles combine electronic and chemical sensing functions, we term these systems 'chemoelectronic'. The circuits have switching times comparable to those of polymer electronics, selectively transduce parts-per-trillion chemical changes into electrical signals, perform logic operations, consume little power (on the scale of microwatts), and are mechanically flexible. They are also 'green', in the sense that they comprise non-toxic nanoparticles cast at room temperature from alcohol solutions. PMID:26974958

  11. Chemoelectronic circuits based on metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Yan, Yong; Warren, Scott C.; Fuller, Patrick; Grzybowski, Bartosz A.

    2016-07-01

    To develop electronic devices with novel functionalities and applications, various non-silicon-based materials are currently being explored. Nanoparticles have unique characteristics due to their small size, which can impart functions that are distinct from those of their bulk counterparts. The use of semiconductor nanoparticles has already led to improvements in the efficiency of solar cells, the processability of transistors and the sensitivity of photodetectors, and the optical and catalytic properties of metal nanoparticles have led to similar advances in plasmonics and energy conversion. However, metals screen electric fields and this has, so far, prevented their use in the design of all-metal nanoparticle circuitry. Here, we show that simple electronic circuits can be made exclusively from metal nanoparticles functionalized with charged organic ligands. In these materials, electronic currents are controlled by the ionic gradients of mobile counterions surrounding the ‘jammed’ nanoparticles. The nanoparticle-based electronic elements of the circuitry can be interfaced with metal nanoparticles capable of sensing various environmental changes (humidity, gas, the presence of various cations), creating electronic devices in which metal nanoparticles sense, process and ultimately report chemical signals. Because the constituent nanoparticles combine electronic and chemical sensing functions, we term these systems ‘chemoelectronic’. The circuits have switching times comparable to those of polymer electronics, selectively transduce parts-per-trillion chemical changes into electrical signals, perform logic operations, consume little power (on the scale of microwatts), and are mechanically flexible. They are also ‘green’, in the sense that they comprise non-toxic nanoparticles cast at room temperature from alcohol solutions.

  12. The Photoresponse of the Gallium Arsenide Metal Semiconductor Field Effect Transistor

    NASA Astrophysics Data System (ADS)

    Paolella, Arthur

    The combining of optical and microwave technology is imminent, especially the integration of optical and microwave circuit functions on the same circuit or chip. Exploring the properties of the metal semiconductor field effect transistor (MESFET) as an optical detector for the detection of microwave and control signals in fiber optic links make sense because the MESFET is the main active component of GaAs MMICs. In this thesis, photocurrents and photovoltages of three MESFETs were measured as a function of the optical input (wavelength, intensity and modulation frequency), electrical input (gate voltage and gate resistance), and device characteristics. A model of the photoresponse, based on the drift and diffusion equations for the current density was developed, which established the internal photovoltaic effect at the channel-substrate interface as the dominant mechanism for the generation of photocurrent in the MESFET. The gain, bandwidth and gain-bandwidth products for each of the major photoeffects were determined mathematically. A maximum photocurrent of 16 mA, and an internal photovoltage of -0.5 volts was measured at 3.5 mW of optical power. The addition of a resistance in the gate circuit enhanced the photoresponse. With a resistor of 1 MOmega, the maximum photocurrent produced was 84.0 mA, resulting from an external photovoltage of 3.07 volts. The dynamic photoresponse of the MESFET as measured, showed a strong dependence with the intensity of the optical signal as well as with bias. The low frequency response varied from -15 dB to -41 dB, and the bandwidth changed from 50 MHz to 5 MHz as the optical signal decreased 18 dB. The low frequency response and bandwidth also showed strong dependence of bias. The low frequency response varied over a 7 dB range and the bandwidth changed from 45 MHz to 100 MHz as the gate was reversed biased (0 to -3.0 volts). Used as an optical detector, the MESFET function successfully in controlling the gain (15 dB) and phase

  13. Transport properties of silicon complementary-metal-oxide semiconductor quantum well field-effect transistors

    NASA Astrophysics Data System (ADS)

    Naquin, Clint Alan

    Introducing explicit quantum transport into silicon (Si) transistors in a manner compatible with industrial fabrication has proven challenging, yet has the potential to transform the performance horizons of large scale integrated Si devices and circuits. Explicit quantum transport as evidenced by negative differential transconductances (NDTCs) has been observed in a set of quantum well (QW) n-channel metal-oxide-semiconductor (NMOS) transistors fabricated using industrial silicon complementary MOS processing. The QW potential was formed via lateral ion implantation doping on a commercial 45 nm technology node process line, and measurements of the transfer characteristics show NDTCs up to room temperature. Detailed gate length and temperature dependence characteristics of the NDTCs in these devices have been measured. Gate length dependence of NDTCs shows a correlation of the interface channel length with the number of NDTCs formed as well as with the gate voltage (VG) spacing between NDTCs. The VG spacing between multiple NDTCs suggests a quasi-parabolic QW potential profile. The temperature dependence is consistent with partial freeze-out of carrier concentration against a degenerately doped background. A folding amplifier frequency multiplier circuit using a single QW NMOS transistor to generate a folded current-voltage transfer function via a NDTC was demonstrated. Time domain data shows frequency doubling in the kHz range at room temperature, and Fourier analysis confirms that the output is dominated by the second harmonic of the input. De-embedding the circuit response characteristics from parasitic cable and contact impedances suggests that in the absence of parasitics the doubling bandwidth could be as high as 10 GHz in a monolithic integrated circuit, limited by the transresistance magnitude of the QW NMOS. This is the first example of a QW device fabricated by mainstream Si CMOS technology being used in a circuit application and establishes the feasibility

  14. Newtype single-layer magnetic semiconductor in transition-metal dichalcogenides VX2 (X = S, Se and Te)

    PubMed Central

    Fuh, Huei-Ru; Chang, Ching-Ray; Wang, Yin-Kuo; Evans, Richard F. L.; Chantrell, Roy W.; Jeng, Horng-Tay

    2016-01-01

    We present a newtype 2-dimensional (2D) magnetic semiconductor based on transition-metal dichalcogenides VX2 (X = S, Se and Te) via first-principles calculations. The obtained indirect band gaps of monolayer VS2, VSe2, and VTe2 given from the generalized gradient approximation (GGA) are respectively 0.05, 0.22, and 0.20 eV, all with integer magnetic moments of 1.0 μB. The GGA plus on-site Coulomb interaction U (GGA + U) enhances the exchange splittings and raises the energy gap up to 0.38~0.65 eV. By adopting the GW approximation, we obtain converged G0W0 gaps of 1.3, 1.2, and 0.7 eV for VS2, VSe2, and VTe2 monolayers, respectively. They agree very well with our calculated HSE gaps of 1.1, 1.2, and 0.6 eV, respectively. The gap sizes as well as the metal-insulator transitions are tunable by applying the in-plane strain and/or changing the number of stacking layers. The Monte Carlo simulations illustrate very high Curie-temperatures of 292, 472, and 553 K for VS2, VSe2, and VTe2 monolayers, respectively. They are nearly or well beyond the room temperature. Combining the semiconducting energy gap, the 100% spin polarized valence and conduction bands, the room temperature TC, and the in-plane magnetic anisotropy together in a single layer VX2, this newtype 2D magnetic semiconductor shows great potential in future spintronics. PMID:27601195

  15. Newtype single-layer magnetic semiconductor in transition-metal dichalcogenides VX2 (X = S, Se and Te)

    NASA Astrophysics Data System (ADS)

    Fuh, Huei-Ru; Chang, Ching-Ray; Wang, Yin-Kuo; Evans, Richard F. L.; Chantrell, Roy W.; Jeng, Horng-Tay

    2016-09-01

    We present a newtype 2-dimensional (2D) magnetic semiconductor based on transition-metal dichalcogenides VX2 (X = S, Se and Te) via first-principles calculations. The obtained indirect band gaps of monolayer VS2, VSe2, and VTe2 given from the generalized gradient approximation (GGA) are respectively 0.05, 0.22, and 0.20 eV, all with integer magnetic moments of 1.0 μB. The GGA plus on-site Coulomb interaction U (GGA + U) enhances the exchange splittings and raises the energy gap up to 0.38~0.65 eV. By adopting the GW approximation, we obtain converged G0W0 gaps of 1.3, 1.2, and 0.7 eV for VS2, VSe2, and VTe2 monolayers, respectively. They agree very well with our calculated HSE gaps of 1.1, 1.2, and 0.6 eV, respectively. The gap sizes as well as the metal-insulator transitions are tunable by applying the in-plane strain and/or changing the number of stacking layers. The Monte Carlo simulations illustrate very high Curie-temperatures of 292, 472, and 553 K for VS2, VSe2, and VTe2 monolayers, respectively. They are nearly or well beyond the room temperature. Combining the semiconducting energy gap, the 100% spin polarized valence and conduction bands, the room temperature TC, and the in-plane magnetic anisotropy together in a single layer VX2, this newtype 2D magnetic semiconductor shows great potential in future spintronics.

  16. A Pt-Ti-O gate Si-metal-insulator-semiconductor field-effect transistor hydrogen gas sensor

    NASA Astrophysics Data System (ADS)

    Usagawa, Toshiyuki; Kikuchi, Yota

    2010-10-01

    A hydrogen gas sensor based on platinum-titanium-oxygen (Pt-Ti-O) gate silicon-metal-insulator-semiconductor field-effect transistors (Si-MISFETs) was developed. The sensor has a unique gate structure composed of titanium and oxygen accumulated around platinum grains on top of a novel mixed layer of nanocrystalline TiOx and superheavily oxygen-doped amorphous titanium formed on SiO2/Si substrates. The FET hydrogen sensor shows high reliability and high sensing amplitude (Δ Vg) defined by the magnitude of the threshold voltage shift. Δ Vg is well fitted by a linear function of the logarithm of air-diluted hydrogen concentration C (ppm), i.e., Δ Vg(V) =0.355 log C(ppm ) -0.610 , between 100 ppm and 1%. This high gradient coefficient of Δ Vg for the wide sensing range demonstrates that the sensor is suitable for most hydrogen-safety-monitoring sensor systems. The Pt-Ti-O structures of the sensor are typically realized by annealing Pt (15 nm)/Ti (5 nm)-gate Si-metal-oxide-semiconductor structures in air at 400 °C for 2 h. The Pt-Ti-O gate MIS structures were analyzed by transmission electron microscope (TEM), x-ray diffraction, Auger electron spectroscopy, and TEM energy dispersive x-ray spectroscopy. From the viewpoint of practical sensing applications, hydrogen postannealing of the Pt-Ti-O gate Si-MISFETs is necessary to reduce the residual sensing amplitudes with long tailing profiles.

  17. Newtype single-layer magnetic semiconductor in transition-metal dichalcogenides VX2 (X = S, Se and Te).

    PubMed

    Fuh, Huei-Ru; Chang, Ching-Ray; Wang, Yin-Kuo; Evans, Richard F L; Chantrell, Roy W; Jeng, Horng-Tay

    2016-01-01

    We present a newtype 2-dimensional (2D) magnetic semiconductor based on transition-metal dichalcogenides VX2 (X = S, Se and Te) via first-principles calculations. The obtained indirect band gaps of monolayer VS2, VSe2, and VTe2 given from the generalized gradient approximation (GGA) are respectively 0.05, 0.22, and 0.20 eV, all with integer magnetic moments of 1.0 μB. The GGA plus on-site Coulomb interaction U (GGA + U) enhances the exchange splittings and raises the energy gap up to 0.38~0.65 eV. By adopting the GW approximation, we obtain converged G0W0 gaps of 1.3, 1.2, and 0.7 eV for VS2, VSe2, and VTe2 monolayers, respectively. They agree very well with our calculated HSE gaps of 1.1, 1.2, and 0.6 eV, respectively. The gap sizes as well as the metal-insulator transitions are tunable by applying the in-plane strain and/or changing the number of stacking layers. The Monte Carlo simulations illustrate very high Curie-temperatures of 292, 472, and 553 K for VS2, VSe2, and VTe2 monolayers, respectively. They are nearly or well beyond the room temperature. Combining the semiconducting energy gap, the 100% spin polarized valence and conduction bands, the room temperature TC, and the in-plane magnetic anisotropy together in a single layer VX2, this newtype 2D magnetic semiconductor shows great potential in future spintronics. PMID:27601195

  18. A Novel Metal-Ferroelectric-Semiconductor Field-Effect Transistor Memory Cell Design

    NASA Technical Reports Server (NTRS)

    Phillips, Thomas A.; Bailey, Mark; Ho, Fat Duen

    2004-01-01

    The use of a Metal-Ferroelectric-Semiconductor Field-Effect Transistor (MFSFET) in a resistive-load SRAM memory cell has been investigated A typical two-transistor resistive-load SRAM memory cell architecture is modified by replacing one of the NMOS transistors with an n-channel MFSFET. The gate of the MFSFET is connected to a polling voltage pulse instead of the other NMOS transistor drain. The polling voltage pulses are of sufficient magnitude to saturate the ferroelectric gate material and force the MFSFET into a particular logic state. The memory cell circuit is further modified by the addition of a PMOS transistor and a load resistor in order to improve the retention characteristics of the memory cell. The retention characteristics of both the "1" and "0" logic states are simulated. The simulations show that the MFSFET memory cell design can maintain both the "1" and "0" logic states for a long period of time.

  19. Room Temperature Semiconductor-Metal Transition of MoTe2 Thin Films Engineered by Strain.

    PubMed

    Song, Seunghyun; Keum, Dong Hoon; Cho, Suyeon; Perello, David; Kim, Yunseok; Lee, Young Hee

    2016-01-13

    We demonstrate a room temperature semiconductor-metal transition in thin film MoTe2 engineered by strain. Reduction of the 2H-1T' phase transition temperature of MoTe2 to room temperature was realized by introducing a tensile strain of 0.2%. The observed first-order SM transition improved conductance ∼10 000 times and was made possible by an unusually large temperature-stress coefficient, which results from a large volume change and small latent heat. The demonstrated strain-modulation of the phase transition temperature is expected to be compatible with other TMDs enabling the 2D electronics utilizing polymorphism of TMDs along with the established materials. PMID:26713902

  20. High and low threshold P-channel metal oxide semiconductor process and description of microelectronics facility

    NASA Technical Reports Server (NTRS)

    Bouldin, D. L.; Feltner, W. R.; Hollis, B. R.; Routh, D. E.

    1976-01-01

    The fabrication techniques and detail procedures for creating P-channel Metal-Oxide-Semiconductor (P-MOS) integrated circuits at George C. Marshall Space Flight Center (MSFC) are described. Examples of P-MOS integrated circuits fabricated at MSFC together with functional descriptions of each are given. Typical electrical characteristics of high and low threshold P-MOS discrete devices under given conditions are provided. A general description of MSFC design, mask making, packaging, and testing procedures is included. The capabilities described in this report are being utilized in: (1) research and development of new technology, (2) education of individuals in the various disciplines and technologies of the field of microelectronics, and (3) fabrication of many types of specially designed integrated circuits which are not commercially feasible in small quantities for in-house research and development programs.

  1. Energy Harvesting Thermoelectric Generators Manufactured Using the Complementary Metal Oxide Semiconductor Process

    PubMed Central

    Yang, Ming-Zhi; Wu, Chyan-Chyi; Dai, Ching-Liang; Tsai, Wen-Jung

    2013-01-01

    This paper presents the fabrication and characterization of energy harvesting thermoelectric micro generators using the commercial complementary metal oxide semiconductor (CMOS) process. The micro generator consists of 33 thermocouples in series. Thermocouple materials are p-type and n-type polysilicon since they have a large Seebeck coefficient difference. The output power of the micro generator depends on the temperature difference in the hot and cold parts of the thermocouples. In order to increase this temperature difference, the hot part of the thermocouples is suspended to reduce heat-sinking. The micro generator needs a post-CMOS process to release the suspended structures of hot part, which the post-process includes an anisotropic dry etching to etch the sacrificial oxide layer and an isotropic dry etching to remove the silicon substrate. Experiments show that the output power of the micro generator is 9.4 μW at a temperature difference of 15 K. PMID:23396193

  2. Semiconductor- to metallic-like behavior in Bi thin films on KCl substrate

    NASA Astrophysics Data System (ADS)

    Bui, Thanh Nhan; Raskin, Jean-Pierre; Hackens, Benoit

    2016-04-01

    Bi thin films, with a thickness of 100 nm, are deposited by electron-beam evaporation on a freshly cleaved (100) KCl substrate. The substrate temperature during film growth (Tdep) ranges from room temperature up to 170 °C. Films deposited at room temperature exhibit a maze-like microstructure typical of the rhombohedral (110) texture, as confirmed by X-ray diffraction. For Tdep above 80 °C, a different microstructure appears, characterized by concentric triangular shapes corresponding to the trigonal (111) texture. Temperature dependence of the resistivity shows a transition from a semiconductor-like behavior for films deposited at room temperature to a metallic-like behavior for Tdep above 80 °C. From magnetoresistance measurements between room temperature and 1.6 K, we extract the electron and hole mobilities, concentrations, and mean free paths, which allow to draw a complete picture of the transport properties of both types of films.

  3. Effect of photovoltage on current flow in metal-semiconductor schottky-barrier contacts

    SciTech Connect

    Torkhov, N. A.

    2011-07-15

    It is shown that changes in device characteristics and an increase in the light-to-electrical energy conversion efficiency in metal-semiconductor Schottky barrier contacts are associated with a peripheral electric field built into the contact. For contacts with longer perimeters, variations in device characteristics and the light-to-electrical energy conversion efficiency are significantly larger. Since the photovoltage and peripheral electric fields in the contact region are codirected with the intrinsic electric field of the space-charge region, contact illumination results in a larger increase in the 'dead' zone in forward portions of current-voltage characteristics, a larger decrease in the effective Schottky barrier height, and an increase in the field electron emission. An increase in the reverse field emission under photovoltage leads to an increase in the recombination current in the space-charge region, which provides dc photocurrent flow in the circuit.

  4. Impedance analysis of Al2O3/H-terminated diamond metal-oxide-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Liao, Meiyong; Liu, Jiangwei; Sang, Liwen; Coathup, David; Li, Jiangling; Imura, Masataka; Koide, Yasuo; Ye, Haitao

    2015-02-01

    Impedance spectroscopy (IS) analysis is carried out to investigate the electrical properties of the metal-oxide-semiconductor (MOS) structure fabricated on hydrogen-terminated single crystal diamond. The low-temperature atomic layer deposition Al2O3 is employed as the insulator in the MOS structure. By numerically analysing the impedance of the MOS structure at various biases, the equivalent circuit of the diamond MOS structure is derived, which is composed of two parallel capacitive and resistance pairs, in series connection with both resistance and inductance. The two capacitive components are resulted from the insulator, the hydrogenated-diamond surface, and their interface. The physical parameters such as the insulator capacitance are obtained, circumventing the series resistance and inductance effect. By comparing the IS and capacitance-voltage measurements, the frequency dispersion of the capacitance-voltage characteristic is discussed.

  5. Studies of Thermophysical Properties of Metals and Semiconductors by Containerless Processing Under Microgravity

    NASA Technical Reports Server (NTRS)

    Seidel, A.; Soellner, W.; Stenzel, C.

    2012-01-01

    Electromagnetic levitation under microgravity provides unique opportunities for the investigation of liquid metals, alloys and semiconductors, both above and below their melting temperatures, with minimized disturbances of the sample under investigation. The opportunity to perform such experiments will soon be available on the ISS with the EML payload which is currently being integrated. With its high-performance diagnostics systems EML allows to measure various physical properties such as heat capacity, enthalpy of fusion, viscosity, surface tension, thermal expansion coefficient, and electrical conductivity. In studies of nucleation and solidification phenomena the nucleation kinetics, phase selection, and solidification velocity can be determined. Advanced measurement capabilities currently being studied include the measurement and control of the residual oxygen content of the process atmosphere and a complementary inductive technique to measure thermophysical properties.

  6. Magnetic ordering in digital alloys of group-IV semiconductors with 3d-transition metals

    SciTech Connect

    Otrokov, M. M.; Tugushev, V. V.; Ernst, A.; Ostanin, S. A.; Kuznetsov, V. M.; Chulkov, E. V.

    2011-04-15

    The ab initio investigation of the magnetic ordering in digital alloys consisting of monolayers of 3d-transition metals Ti, V, Cr, Mn, Fe, Co, and Ni introduced into the Si, Ge, and Si{sub 0.5}Ge{sub 0.5} semiconductor hosts is reported. The calculations of the parameters of the exchange interactions and total-energy calculations indicate that the ferromagnetic order appears only in the manganese monolayers, whereas the antiferromagnetic order is more probable in V, Cr, and Fe monolayers, and Ti, Co, and Ni monolayers are nonmagnetic. The stability of the ferromagnetic phase in digital alloys containing manganese monolayers has been analyzed using the calculations of magnon spectra.

  7. Strongly modified four-wave mixing in a coupled semiconductor quantum dot-metal nanoparticle system

    SciTech Connect

    Paspalakis, Emmanuel; Evangelou, Sofia; Kosionis, Spyridon G.; Terzis, Andreas F.

    2014-02-28

    We study the four-wave mixing effect in a coupled semiconductor quantum dot-spherical metal nanoparticle structure. Depending on the values of the pump field intensity and frequency, we find that there is a critical distance that changes the form of the spectrum. Above this distance, the four-wave mixing spectrum shows an ordinary three-peaked form and the effect of controlling its magnitude by changing the interparticle distance can be obtained. Below this critical distance, the four-wave mixing spectrum becomes single-peaked; and as the interparticle distance decreases, the spectrum is strongly suppressed. The behavior of the system is explained using the effective Rabi frequency that creates plasmonic metaresonances in the hybrid structure. In addition, the behavior of the effective Rabi frequency is explained via an analytical solution of the density matrix equations.

  8. Energy harvesting thermoelectric generators manufactured using the complementary metal oxide semiconductor process.

    PubMed

    Yang, Ming-Zhi; Wu, Chyan-Chyi; Dai, Ching-Liang; Tsai, Wen-Jung

    2013-02-08

    This paper presents the fabrication and characterization of energy harvesting thermoelectric micro generators using the commercial complementary metal oxide semiconductor (CMOS) process. The micro generator consists of 33 thermocouples in series. Thermocouple materials are p-type and n-type polysilicon since they have a large Seebeck coefficient difference. The output power of the micro generator depends on the temperature difference in the hot and cold parts of the thermocouples. In order to increase this temperature difference, the hot part of the thermocouples is suspended to reduce heat-sinking. The micro generator needs a post-CMOS process to release the suspended structures of hot part, which the post-process includes an anisotropic dry etching to etch the sacrificial oxide layer and an isotropic dry etching to remove the silicon substrate. Experiments show that the output power of the micro generator is 9.4 mW at a temperature difference of 15 K.

  9. Energy harvesting thermoelectric generators manufactured using the complementary metal oxide semiconductor process.

    PubMed

    Yang, Ming-Zhi; Wu, Chyan-Chyi; Dai, Ching-Liang; Tsai, Wen-Jung

    2013-01-01

    This paper presents the fabrication and characterization of energy harvesting thermoelectric micro generators using the commercial complementary metal oxide semiconductor (CMOS) process. The micro generator consists of 33 thermocouples in series. Thermocouple materials are p-type and n-type polysilicon since they have a large Seebeck coefficient difference. The output power of the micro generator depends on the temperature difference in the hot and cold parts of the thermocouples. In order to increase this temperature difference, the hot part of the thermocouples is suspended to reduce heat-sinking. The micro generator needs a post-CMOS process to release the suspended structures of hot part, which the post-process includes an anisotropic dry etching to etch the sacrificial oxide layer and an isotropic dry etching to remove the silicon substrate. Experiments show that the output power of the micro generator is 9.4 mW at a temperature difference of 15 K. PMID:23396193

  10. Electrical Conductivity and ESR Studies in Iodine-Doped Polythiophene from Semiconductor to Metallic Regime

    NASA Astrophysics Data System (ADS)

    Hayashi, Shigenori; Kaneto, Keiichi; Yoshino, Katsumi; Matsushita, Rokuji; Matsuyama, Tomochika

    1986-06-01

    Dependences of electrical conductivity and ESR of iodine-doped polythiophene films, (C4H2SIy)x, on iodine concentrations which are precisely determined by a neutron activation technique (from a dilute level of y˜4× 10-4 to a deep level of y˜4× 10-1) are reported. A drastic increase of conductivity from 10-8 to 10-2 S/cm is observed at the fairly narrow dopant concentration region of 2× 10-3semiconductor-to-metal transition in iodine-doped polythiophene, taking polaron and bipolaron models into account.

  11. Design issues for lateral double-diffused metal-oxide-semiconductor with higher breakdown voltage.

    PubMed

    Sung, Kunsik; Won, Taeyoung

    2013-05-01

    In this paper, we discuss a new High-Side nLDMOSFET whose breakdown voltage is over 100 V while meeting the thermal budget for the conventional process. The proposed n-channel lateral double-diffused metal-oxide-semiconductor field-effect transistor (LDMOSFET) has a feature in that the structure comprises a gap of 5 microm between the DEEP N-WELL and the center of the source, the surface of which is implanted by the NADJUST-layer for high breakdown voltage and simultaneously the low specific on-resistance. The computer simulation of the proposed High-Side nLDMOS exhibits BVdss of 126 V and R(ON,sp) of as low as 2.50 m(omega) x cm2. The NBL, which plays a significant role as a blocking layer against the punch-through seems to function as a hurdle for increasing the breakdown voltage. PMID:23858840

  12. Modeling of quasi-ballistic transport in nanowire metal-oxide-semiconductor field-effect transistors

    NASA Astrophysics Data System (ADS)

    Lee, Yeonghun; Kakushima, Kuniyuki; Natori, Kenji; Iwai, Hiroshi

    2015-10-01

    We developed a semi-analytical quasi-ballistic transport model for the nanowire metal-oxide-semiconductor field-effect transistors, dealing with finite lengths of source, channel, and drain. For the modeling, we used a combination of one-flux scattering matrices and analytical solutions of Boltzmann transport equations. The developed model was in quantitatively good agreement with numerical results, and well represented intermediate-scaled devices. In addition, we illustrated that the finite source seriously affect the distribution function of the carriers injected from the source, and the finite drain does for the backscattering into the channel from the drain. Finally, our model and results would help to understand physical aspects regarding quasi-ballistic transport in nanoscale devices.

  13. Control of Nanostructures and Interfaces of Metal Oxide Semiconductors for Quantum-Dots-Sensitized Solar Cells.

    PubMed

    Tian, Jianjun; Cao, Guozhong

    2015-05-21

    Nanostructured metal oxide semiconductors (MOS), such as TiO2 and ZnO, have been regarded as an attractive material for the quantum dots sensitized solar cells (QDSCs), owing to their large specific surface area for loading a large amount of quantum dots (QDs) and strong scattering effect for capturing a sufficient fraction of photons. However, the large surface area of such nanostructures also provides easy pathways for charge recombination, and surface defects and connections between adjacent nanoparticles may retard effective charge injection and charge transport, leading to a loss of power conversion efficiency. Introduction of the surface modification for MOS or QDs has been thought an effective approach to improve the performance of QDSC. In this paper, the recent advances in the control of nanostructures and interfaces in QDSCs and prospects for the further development with higher power conversion efficiency (PCE) have been discussed. PMID:26263261

  14. Sharp semiconductor-to-metal transition of VO{sub 2} thin films on glass substrates

    SciTech Connect

    Jian, Jie; Chen, Aiping; Zhang, Wenrui; Wang, Haiyan

    2013-12-28

    Outstanding phase transition properties of vanadium dioxide (VO{sub 2}) thin films on amorphous glass were achieved and compared with the ones grown on c-cut sapphire and Si (111) substrates, all by pulsed laser deposition. The films on glass substrate exhibit a sharp semiconductor-to-metal transition (∼4.3 °C) at a near bulk transition temperature of ∼68.4 °C with an electrical resistance change as high as 3.2 × 10{sup 3} times. The excellent phase transition properties of the films on glass substrate are correlated with the large grain size and low defects density achieved. The phase transition properties of VO{sub 2} films on c-cut sapphire and Si (111) substrates were found to be limited by the high defect density.

  15. Technology of GaAs metal-oxide-semiconductor solar cells

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.; Yeh, Y. C. M.

    1977-01-01

    The growth of an oxide interfacial layer was recently found to increase the open-circuit voltage (OCV) and efficiency by up to 60 per cent in GaAs metal-semiconductor solar cells. Details of oxidation techniques to provide the necessary oxide thickness and chemical structure and using ozone, water-vapor-saturated oxygen, or oxygen gas discharges are described, as well as apparent crystallographic orientation effects. Preliminary results of the oxide chemistry obtained from X-ray, photoelectron spectroscopy are given. Ratios of arsenic oxide to gallium oxide of unity or less seem to be preferable. Samples with the highest OVC predominantly have As(+3) in the arsenic oxide rather than As(+5). A major difficulty at this time is a reduction in OCV by 100-200 mV when the antireflection coating is vacuum deposited.

  16. High-Performance WSe2 Complementary Metal Oxide Semiconductor Technology and Integrated Circuits.

    PubMed

    Yu, Lili; Zubair, Ahmad; Santos, Elton J G; Zhang, Xu; Lin, Yuxuan; Zhang, Yuhao; Palacios, Tomás

    2015-08-12

    Because of their extraordinary structural and electrical properties, two-dimensional materials are currently being pursued for applications such as thin-film transistors and integrated circuit. One of the main challenges that still needs to be overcome for these applications is the fabrication of air-stable transistors with industry-compatible complementary metal oxide semiconductor (CMOS) technology. In this work, we experimentally demonstrate a novel high performance air-stable WSe2 CMOS technology with almost ideal voltage transfer characteristic, full logic swing and high noise margin with different supply voltages. More importantly, the inverter shows large voltage gain (∼38) and small static power (picowatts), paving the way for low power electronic system in 2D materials.

  17. Non-empirical interatomic potentials for transition metals, alloys, and semiconductors

    NASA Astrophysics Data System (ADS)

    Progress has been made on several fronts in the development and application of simplified energy and force functionals. These elucidate the basic features of bulk and defect structures, and are being coded in a form which can be used in atomistic simulations of materials properties. The main categories of materials which we have treated are transition metals, semiconductors, and aluminum alloys. We have analyzed the basic form of the angular dependence of the interatomic forces in these materials. We have then applied this understanding to the structures of polytetrahedrally packed transition metal compounds, icosahedral phase in the Ti-Mn system, and complex phases in Al-transition metal alloys. A force code for use in atomistic simulations of Si has also been developed. The Principal Investigator has completed a major review article on interatomic potentials for Solid State Physics: Advances in Research and Applications. The significance of the research accomplishment has also been recognized by several invited lectures, as well as solicitation to write an article entitled Cohesion (physics) for the upcoming new edition of the McGraw-Hill Encyclopedia of Science and Technology.

  18. Tin disulfide-an emerging layered metal dichalcogenide semiconductor: materials properties and device characteristics.

    PubMed

    Huang, Yuan; Sutter, Eli; Sadowski, Jerzy T; Cotlet, Mircea; Monti, Oliver L A; Racke, David A; Neupane, Mahesh R; Wickramaratne, Darshana; Lake, Roger K; Parkinson, Bruce A; Sutter, Peter

    2014-10-28

    Layered metal dichalcogenides have attracted significant interest as a family of single- and few-layer materials that show new physics and are of interest for device applications. Here, we report a comprehensive characterization of the properties of tin disulfide (SnS2), an emerging semiconducting metal dichalcogenide, down to the monolayer limit. Using flakes exfoliated from layered bulk crystals, we establish the characteristics of single- and few-layer SnS2 in optical and atomic force microscopy, Raman spectroscopy and transmission electron microscopy. Band structure measurements in conjunction with ab initio calculations and photoluminescence spectroscopy show that SnS2 is an indirect bandgap semiconductor over the entire thickness range from bulk to single-layer. Field effect transport in SnS2 supported by SiO2/Si suggests predominant scattering by centers at the support interface. Ultrathin transistors show on-off current ratios >10(6), as well as carrier mobilities up to 230 cm(2)/(V s), minimal hysteresis, and near-ideal subthreshold swing for devices screened by a high-k (deionized water) top gate. SnS2 transistors are efficient photodetectors but, similar to other metal dichalcogenides, show a relatively slow response to pulsed irradiation, likely due to adsorbate-induced long-lived extrinsic trap states.

  19. (Non-empirical interatomic potentials for transition metals, alloys, and semiconductors)

    SciTech Connect

    Not Available

    1990-01-01

    Progress has been made on several fronts in the development and application of simplified energy and force functionals. These elucidate the basic features of bulk and defect structures, and are being coded in a form which can be used in atomistic simulations of materials properties. The main categories of materials which we have treated are transition metals, semiconductors, and aluminium alloys. We have analyzed the basic form of the angular dependence of the interatomic forces in these materials. We have then applied this understanding to the structures of polytetrahedrally packed transition metal compounds, icosahedral phase in the Ti-Mn system, and complex phases in Al-transition metal alloys. A force code for use in atomistic simulations of Si has also been developed. The Principal Investigator has completed a major review article on interatomic potentials for Solid State Physics: Advances in Research and Applications. The significance of the research accomplishment has also been recognized by several invited lectures, as well as solicitation to write an article entitled Cohesion (physics) for the upcoming new edition of the McGraw-Hill Encyclopedia of Science and Technology.

  20. Optimization algorithm based characterization scheme for tunable semiconductor lasers.

    PubMed

    Chen, Quanan; Liu, Gonghai; Lu, Qiaoyin; Guo, Weihua

    2016-09-01

    In this paper, an optimization algorithm based characterization scheme for tunable semiconductor lasers is proposed and demonstrated. In the process of optimization, the ratio between the power of the desired frequency and the power except of the desired frequency is used as the figure of merit, which approximately represents the side-mode suppression ratio. In practice, we use tunable optical band-pass and band-stop filters to obtain the power of the desired frequency and the power except of the desired frequency separately. With the assistance of optimization algorithms, such as the particle swarm optimization (PSO) algorithm, we can get stable operation conditions for tunable lasers at designated frequencies directly and efficiently. PMID:27607701

  1. Supramolecular Luminescence from Oligofluorenol-Based Supramolecular Polymer Semiconductors

    PubMed Central

    Zhang, Guang-Wei; Wang, Long; Xie, Ling-Hai; Lin, Jin-Yi; Huang, Wei

    2013-01-01

    Supramolecular luminescence stems from non-covalent exciton behaviors of active π-segments in supramolecular entities or aggregates via intermolecular forces. Herein, a π-conjugated oligofluorenol, containing self-complementary double hydrogen bonds, was synthesized using Suzuki coupling as a supramolecular semiconductor. Terfluorenol-based random supramolecular polymers were confirmed via concentration-dependent nuclear magnetic resonance (NMR) and dynamic light scattering (DLS). The photoluminescent spectra of the TFOH-1 solution exhibit a green emission band (g-band) at approximately ~520 nm with reversible features, as confirmed through titration experiments. Supramolecular luminescence of TFOH-1 thin films serves as robust evidence for the aggregates of g-band. Our results suggest that the presence of polyfluorene ketone defects is a sufficient condition, rather than a sufficient-necessary condition for the g-band. Supramolecular electroluminescence will push organic devices into the fields of supramolecular optoelectronics, spintronics, and mechatronics. PMID:24232455

  2. Supramolecular luminescence from oligofluorenol-based supramolecular polymer semiconductors.

    PubMed

    Zhang, Guang-Wei; Wang, Long; Xie, Ling-Hai; Lin, Jin-Yi; Huang, Wei

    2013-11-13

    Supramolecular luminescence stems from non-covalent exciton behaviors of active π-segments in supramolecular entities or aggregates via intermolecular forces. Herein, a π-conjugated oligofluorenol, containing self-complementary double hydrogen bonds, was synthesized using Suzuki coupling as a supramolecular semiconductor. Terfluorenol-based random supramolecular polymers were confirmed via concentration-dependent nuclear magnetic resonance (NMR) and dynamic light scattering (DLS). The photoluminescent spectra of the TFOH-1 solution exhibit a green emission band (g-band) at approximately ~520 nm with reversible features, as confirmed through titration experiments. Supramolecular luminescence of TFOH-1 thin films serves as robust evidence for the aggregates of g-band. Our results suggest that the presence of polyfluorene ketone defects is a sufficient condition, rather than a sufficient-necessary condition for the g-band. Supramolecular electroluminescence will push organic devices into the fields of supramolecular optoelectronics, spintronics, and mechatronics.

  3. Measurement and simulation of top- and bottom-illuminated solar-blind AlGaN metal-semiconductor-metal photodetectors with high external quantum efficiencies

    SciTech Connect

    Brendel, Moritz Helbling, Markus; Knigge, Andrea; Brunner, Frank; Weyers, Markus

    2015-12-28

    A comprehensive study on top- and bottom-illuminated Al{sub 0.5}Ga{sub 0.5}N/AlN metal-semiconductor-metal (MSM) photodetectors having different AlGaN absorber layer thickness is presented. The measured external quantum efficiency (EQE) shows pronounced threshold and saturation behavior as a function of applied bias voltage up to 50 V reaching about 50% for 0.1 μm and 67% for 0.5 μm thick absorber layers under bottom illumination. All experimental findings are in very good accordance with two-dimensional drift-diffusion modeling results. By taking into account macroscopic polarization effects in the hexagonal metal-polar +c-plane AlGaN/AlN heterostructures, new insights into the general device functionality of AlGaN-based MSM photodetectors are obtained. The observed threshold/saturation behavior is caused by a bias-dependent extraction of photoexcited holes from the Al{sub 0.5}Ga{sub 0.5}N/AlN interface. While present under bottom illumination for any AlGaN layer thickness, under top illumination this mechanism influences the EQE-bias characteristics only for thin layers.

  4. The role of ultra-thin SiO2 layers in metal-insulator-semiconductor (MIS) photoelectrochemical devices (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Esposito, Daniel V.

    2015-08-01

    Solid-state junctions based on a metal-insulator-semiconductor (MIS) architecture are of great interest for a number of optoelectronic applications such as photovoltaics, photoelectrochemical cells, and photodetection. One major advantage of the MIS junction compared to the closely related metal-semiconductor junction, or Schottky junction, is that the thin insulating layer (1-3 nm thick) that separates the metal and semiconductor can significantly reduce the density of undesirable interfacial mid-gap states. The reduction in mid-gap states helps "un-pin" the junction, allowing for significantly higher built-in-voltages to be achieved. A second major advantage of the MIS junction is that the thin insulating layer can also protect the underlying semiconductor from corrosion in an electrochemical environment, making the MIS architecture well-suited for application in (photo)electrochemical applications. In this presentation, discontinuous Si-based MIS junctions immersed in electrolyte are explored for use as i.) photoelectrodes for solar-water splitting in photoelectrochemical cells (PECs) and ii.) position-sensitive photodetectors. The development and optimization of MIS photoelectrodes for both of these applications relies heavily on understanding how processing of the thin SiO2 layer impacts the properties of nano- and micro-scale MIS junctions, as well as the interactions of the insulating layer with the electrolyte. In this work, we systematically explore the effects of insulator thickness, synthesis method, and chemical treatment on the photoelectrochemical and electrochemical properties of these MIS devices. It is shown that electrolyte-induced inversion plays a critical role in determining the charge carrier dynamics within the MIS photoelectrodes for both applications.

  5. Surface Plasmon Enhanced Sensitive Detection for Possible Signature of Majorana Fermions via a Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System

    PubMed Central

    Chen, Hua-Jun; Zhu, Ka-Di

    2015-01-01

    In the present work, we theoretically propose an optical scheme to detect the possible signature of Majorana fermions via the optical pump-probe spectroscopy, which is very different from the current tunneling measurement based on electrical methods. The scheme consists of a metal nanoparticle and a semiconductor quantum dot coupled to a hybrid semiconductor/superconductor heterostructures. The results show that the probe absorption spectrum of the quantum dot presents a distinct splitting due to the existence of Majorana fermions. Owing to surface plasmon enhanced effect, this splitting will be more obvious, which makes Majorana fermions more easy to be detectable. The technique proposed here open the door for new applications ranging from robust manipulation of Majorana fermions to quantum information processing based on Majorana fermions. PMID:26310929

  6. High-performance AlGaN metal-semiconductor-metal solar-blind ultraviolet photodetectors by localized surface plasmon enhancement

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Xu, Jin; Ye, Wei; Li, Yang; Qi, Zhiqiang; Dai, Jiangnan; Wu, Zhihao; Chen, Changqing; Yin, Jun; Li, Jing; Jiang, Hao; Fang, Yanyan

    2015-01-01

    AlGaN-based solar-blind ultraviolet photodetectors have attractive potential applications in the fields of missile plume detection, biochemical sensing, solar astronomy, etc. In this work, significant deep ultraviolet detection enhancement is demonstrated on AlGaN-based metal-semiconductor-metal (MSM) solar-blind ultraviolet photodetectors by introducing the coupling of localized surface plasmon from Al nanoparticles with the high-Al-content AlGaN epilayer. The size-controlled Al nanoparticle arrays fabricated by nanosphere lithography can not only reduce the detectors' dark current but also bring about greatly enhanced responsivity. The peak responsivity of AlGaN-based MSM solar-blind ultraviolet photodetectors with Al nanoparticles can reach 2.34 A/W at 269 nm under 20 V bias, enhanced more than 25 times than that without Al nanoparticles. Our approach shows an efficient fabrication technique of high-performance and low-cost plasmonic enhanced AlGaN solar-blind MSM ultraviolet photodetectors.

  7. PRECISION CLEANING OF SEMICONDUCTOR SURFACES USING CARBON DIOXIDE-BASED FLUIDS

    SciTech Connect

    J. RUBIN; L. SIVILS; A. BUSNAINA

    1999-07-01

    The Los Alamos National Laboratory, on behalf of the Hewlett-Packard Company, is conducting tests of a closed-loop CO{sub 2}-based supercritical fluid process, known as Supercritical CO{sub 2} Resist Remover (SCORR). We have shown that this treatment process is effective in removing hard-baked, ion-implanted photoresists, and appears to be fully compatible with metallization systems. We are now performing experiments on production wafers to assess not only photoresist removal, but also residual surface contamination due to particulate and trace metals. Dense-phase (liquid or supercritical) CO{sub 2}, since it is non-polar, acts like an organic solvent and therefore has an inherently high volubility for organic compounds such as oils and greases. Also, dense CO{sub 2} has a low-viscosity and a low dielectric constant. Finally, CO{sub 2} in the liquid and supercritical fluid states can solubilize metal completing agents and surfactants. This combination of properties has interesting implications for the removal not only of organic films, but also trace metals and inorganic particulate. In this paper we discuss the possibility of using CO{sub 2} as a precision-cleaning solvent, with particular emphasis on semiconductor surfaces.

  8. Hot-electron-based solar energy conversion with metal–semiconductor nanodiodes

    NASA Astrophysics Data System (ADS)

    Lee, Young Keun; Lee, Hyosun; Lee, Changhwan; Hwang, Euyheon; Park, Jeong Young

    2016-06-01

    Energy dissipation at metal surfaces or interfaces between a metal and a dielectric generally results from elementary excitations, including phonons and electronic excitation, once external energy is deposited to the surface/interface during exothermic chemical processes or an electromagnetic wave incident. In this paper, we outline recent research activities to develop energy conversion devices based on hot electrons. We found that photon energy can be directly converted to hot electrons and that hot electrons flow through the interface of metal–semiconductor nanodiodes where a Schottky barrier is formed and the energy barrier is much lower than the work function of the metal. The detection of hot electron flow can be successfully measured using the photocurrent; we measured the photoyield of photoemission with incident photons-to-current conversion efficiency (IPCE). We also show that surface plasmons (i.e. the collective oscillation of conduction band electrons induced by interaction with an electromagnetic field) are excited on a rough metal surface and subsequently decay into secondary electrons, which gives rise to enhancement of the IPCE. Furthermore, the unique optical behavior of surface plasmons can be coupled with dye molecules, suggesting the possibility for producing additional channels for hot electron generation.

  9. Characterization and Modeling Analysis for Metal-Semiconductor-Metal GaAs Diodes with Pd/SiO2 Mixture Electrode

    PubMed Central

    Tan, Shih-Wei; Lai, Shih-Wen

    2012-01-01

    Characterization and modeling of metal-semiconductor-metal (MSM) GaAs diodes using to evaporate SiO2 and Pd simultaneously as a mixture electrode (called M-MSM diodes) compared with similar to evaporate Pd as the electrode (called Pd-MSM diodes) were reported. The barrier height (φb) and the Richardson constant (A*) were carried out for the thermionic-emission process to describe well the current transport for Pd-MSM diodes in the consideration of the carrier over the metal-semiconductor barrier. In addition, in the consideration of the carrier over both the metal-semiconductor barrier and the insulator-semiconductor barrier simultaneously, thus the thermionic-emission process can be used to describe well the current transport for M-MSM diodes. Furthermore, in the higher applied voltage, the carrier recombination will be taken into discussion. Besides, a composite-current (CC) model is developed to evidence the concepts. Our calculated results are in good agreement with the experimental ones. PMID:23226352

  10. Memory effects in a Al/Ti:HfO2/CuPc metal-oxide-semiconductor device

    NASA Astrophysics Data System (ADS)

    Tripathi, Udbhav; Kaur, Ramneek

    2016-05-01

    Metal oxide semiconductor structured organic memory device has been successfully fabricated. Ti doped hafnium oxide (Ti:HfO2) nanoparticles has been fabricated by precipitation method and further calcinated at 800 °C. Copper phthalocyanine, a hole transporting material has been utilized as an organic semiconductor. The electrical properties of the fabricated device have been studied by measuring the current-voltage and capacitance-voltage characteristics. The amount of charge stored in the nanoparticles has been calculated by using flat band condition. This simple approach for fabricating MOS memory device has opens up opportunities for the development of next generation memory devices.

  11. Unipolar resistive switching in metal oxide/organic semiconductor non-volatile memories as a critical phenomenon

    SciTech Connect

    Bory, Benjamin F.; Meskers, Stefan C. J.; Rocha, Paulo R. F.; Gomes, Henrique L.; Leeuw, Dago M. de

    2015-11-28

    Diodes incorporating a bilayer of an organic semiconductor and a wide bandgap metal oxide can show unipolar, non-volatile memory behavior after electroforming. The prolonged bias voltage stress induces defects in the metal oxide with an areal density exceeding 10{sup 17 }m{sup −2}. We explain the electrical bistability by the coexistence of two thermodynamically stable phases at the interface between an organic semiconductor and metal oxide. One phase contains mainly ionized defects and has a low work function, while the other phase has mainly neutral defects and a high work function. In the diodes, domains of the phase with a low work function constitute current filaments. The phase composition and critical temperature are derived from a 2D Ising model as a function of chemical potential. The model predicts filamentary conduction exhibiting a negative differential resistance and nonvolatile memory behavior. The model is expected to be generally applicable to any bilayer system that shows unipolar resistive switching.

  12. Metal-Semiconductor-Metal Near-Ultraviolet (~380 nm) Photodetectors by Selective Area Growth of ZnO Nanorods and SiO2 Passivation

    NASA Astrophysics Data System (ADS)

    Lee, Soo Hyun; Kim, Sang Hun; Yu, Jae Su

    2016-07-01

    Metal-semiconductor-metal near-ultraviolet (NUV) photodetectors (PDs) based on zinc oxide (ZnO) nanorods (NRs), operating at λ ~ 380 nm, were fabricated using conventional photolithography and hydrothermal synthesis processes. The vertically aligned ZnO NRs were selectively grown in the channel area of PDs. The performance of ZnO NR-based NUV PDs was optimized by varying the solution concentration and active channel width ( W ch). For the fabricated samples, their electrical and photoresponse properties were investigated under the dark state and the illumination at wavelength of ~380 nm, respectively. For the device ( W ch = 30 μm) with ZnO NRs at 25 mM, the highest photocurrent of 0.63 mA was obtained with the on/off ratio of 1720 at the bias of 5 V. The silicon dioxide passivation was also carried out to improve the photoresponse properties of PDs. The passivated devices exhibited faster rise and reset times rather than those of the unpassivated devices.

  13. Metal-Semiconductor-Metal Near-Ultraviolet (~380 nm) Photodetectors by Selective Area Growth of ZnO Nanorods and SiO2 Passivation.

    PubMed

    Lee, Soo Hyun; Kim, Sang Hun; Yu, Jae Su

    2016-12-01

    Metal-semiconductor-metal near-ultraviolet (NUV) photodetectors (PDs) based on zinc oxide (ZnO) nanorods (NRs), operating at λ ~ 380 nm, were fabricated using conventional photolithography and hydrothermal synthesis processes. The vertically aligned ZnO NRs were selectively grown in the channel area of PDs. The performance of ZnO NR-based NUV PDs was optimized by varying the solution concentration and active channel width (W ch). For the fabricated samples, their electrical and photoresponse properties were investigated under the dark state and the illumination at wavelength of ~380 nm, respectively. For the device (W ch = 30 μm) with ZnO NRs at 25 mM, the highest photocurrent of 0.63 mA was obtained with the on/off ratio of 1720 at the bias of 5 V. The silicon dioxide passivation was also carried out to improve the photoresponse properties of PDs. The passivated devices exhibited faster rise and reset times rather than those of the unpassivated devices. PMID:27422775

  14. Photoelectric energy conversion of plasmon-generated hot carriers in metal-insulator-semiconductor structures.

    PubMed

    García de Arquer, F Pelayo; Mihi, Agustín; Kufer, Dominik; Konstantatos, Gerasimos

    2013-04-23

    Plasmonic excitation in metals has received great attention for light localization and control of light-matter interactions at the nanoscale with a plethora of applications in absorption enhancement, surface-enhanced Raman scattering, or biosensing. Electrically active plasmonic devices, which had remained underexplored, have recently become a growing field of interest. In this report we introduce a metal-insulator-semiconductor heterostructure for plasmo-electric energy conversion, a novel architecture to harvest hot-electrons derived from plasmonic excitations. We demonstrate external quantum efficiency (EQE) of 4% at 460 nm using a Ag nanostructured electrode and EQE of 1.3% at 550 nm employing a Au nanostructured electrode. The insulator interfacial layer has been found to play a crucial role in interface passivation, a requisite in photovoltaic applications to achieving both high open-circuit voltages (0.5 V) and fill-factors (0.5), but its introduction simultaneously modifies hot-electron injection and transport. We investigate the influence passivation has on these processes for different material configurations, and characterize different types of transport depending on the initial plasmon energy band, reporting power conversion efficiencies of 0.03% for nanopatterned silver electrodes. PMID:23495769

  15. Deoxidation of (001) III-V semiconductors in metal-organic vapour phase epitaxy

    NASA Astrophysics Data System (ADS)

    Kaspari, Christian; Pristovsek, Markus; Richter, Wolfgang

    2016-08-01

    We studied the deoxidation of several (001) III-V semiconductors in metal-organic vapour phase epitaxy using in-situ reflectance anisotropy spectroscopy and in-situ spectroscopic ellipsometry. The oxide desorption started as soon as kBT reaches 1/15th of the bond strength of the crystal if there is hydrogen or group V precursor present. The oxide thickness decreases first and afterwards the surface slowly reconstructs. At a constant temperature the oxide thickness decreased according to a second order reaction. We found two processes on InAs and GaAs, but only a single one on InP. The activation energy for the removal of epi-ready oxide under group V flux was 0.64 eV, 1.1 eV, and 1.3 eV on InAs, GaAs, and InP, respectively. The end of oxide desorption is determined by the removal of the last metal rich oxides, at temperatures of 500 °C for InAs/InP and 600 °C for GaAs/GaP.

  16. Self-assembled bifunctional surface mimics an enzymatic and templating protein for the synthesis of a metal oxide semiconductor

    PubMed Central

    Kisailus, David; Truong, Quyen; Amemiya, Yosuke; Weaver, James C.; Morse, Daniel E.

    2006-01-01

    The recent discovery and characterization of silicatein, a mineral-synthesizing enzyme that assembles to form the filamentous organic core of the glassy skeletal elements (spicules) of a marine sponge, has led to the development of new low-temperature synthetic routes to metastable semiconducting metal oxides. These protein filaments were shown in vitro to catalyze the hydrolysis and structurally direct the polycondensation of metal oxides at neutral pH and low temperature. Based on the confirmation of the catalytic mechanism and the essential participation of specific serine and histidine residues (presenting a nucleophilic hydroxyl and a nucleophilicity-enhancing hydrogen-bonding imidazole nitrogen) in silicatein’s catalytic active site, we therefore sought to develop a synthetic mimic that provides both catalysis and the surface determinants necessary to template and structurally direct heterogeneous nucleation through condensation. Using lithographically patterned poly(dimethylsiloxane) stamps, bifunctional self-assembled monolayer surfaces containing the essential catalytic and templating elements were fabricated by using alkane thiols microcontact-printed on gold substrates. The interface between chemically distinct self-assembled monolayer domains provided the necessary juxtaposition of nucleophilic (hydroxyl) and hydrogen-bonding (imidazole) agents to catalyze the hydrolysis of a gallium oxide precursor and template the condensed product to form gallium oxohydroxide (GaOOH) and the defect spinel, gamma-gallium oxide (γ-Ga2O3). Using this approach, the production of patterned substrates for catalytic synthesis and templating of semiconductors for device applications can be envisioned. PMID:16585518

  17. Growth and metal-oxide-semiconductor field-effect transistors of corundum-structured alpha indium oxide semiconductors

    NASA Astrophysics Data System (ADS)

    Kaneko, Kentaro; Ito, Yoshito; Uchida, Takayuki; Fujita, Shizuo

    2015-09-01

    The growth of corundum-structured α-In2O3, showing an X-ray diffraction (0006) rocking curve full-width at half maximum of 185 arcsec and electron Hall mobility of 130 cm2 V-1 s-1, was demonstrated on a sapphire substrate with an α-Ga2O3 buffer layer. An MOSFET of α-In2O3 exhibited pinch-off characteristics and an on-off ratio of drain current of 106. The use of mist chemical vapor deposition for the insulator-semiconductor structure was advantageous for low-cost devices.

  18. Design of nanophotonic, hot-electron solar-blind ultraviolet detectors with a metal-oxide-semiconductor structure

    NASA Astrophysics Data System (ADS)

    Wang, Zhiyuan; Wang, Xiaoxin; Liu, Jifeng

    2014-12-01

    Solar-blind ultraviolet (UV) detection refers to photon detection specifically in the wavelength range of 200 nm-320 nm. Without background noises from solar radiation, it has broad applications from homeland security to environmental monitoring. The most commonly used solid state devices for this application are wide band gap (WBG) semiconductor photodetectors (Eg > 3.5 eV). However, WBG semiconductors are difficult to grow and integrate with Si readout integrated circuits (ROICs). In this paper, we design a nanophotonic metal-oxide-semiconductor structure on Si for solar-blind UV detectors. Instead of using semiconductors as the active absorber, we use Sn nano-grating structures to absorb UV photons and generate hot electrons for internal photoemission across the Sn/SiO2 interfacial barrier, thereby generating photocurrent between the metal and the n-type Si region upon UV excitation. Moreover, the transported hot electron has an excess kinetic energy >3 eV, large enough to induce impact ionization and generate another free electron in the conduction band of n-Si. This process doubles the quantum efficiency. On the other hand, the large metal/oxide interfacial energy barrier (>3.5 eV) also enables solar-blind UV detection by blocking the less energetic electrons excited by visible photons. With optimized design, ˜75% UV absorption and hot electron excitation can be achieved within the mean free path of ˜20 nm from the metal/oxide interface. This feature greatly enhances hot electron transport across the interfacial barrier to generate photocurrent. The simple geometry of the Sn nano-gratings and the MOS structure make it easy to fabricate and integrate with Si ROICs compared to existing solar-blind UV detection schemes. The presented device structure also breaks through the conventional notion that photon absorption by metal is always a loss in solid-state photodetectors, and it can potentially be extended to other active metal photonic devices.

  19. Electric-Field-Driven Dual Vacancies Evolution in Ultrathin Nanosheets Realizing Reversible Semiconductor to Half-Metal Transition.

    PubMed

    Lyu, Mengjie; Liu, Youwen; Zhi, Yuduo; Xiao, Chong; Gu, Bingchuan; Hua, Xuemin; Fan, Shaojuan; Lin, Yue; Bai, Wei; Tong, Wei; Zou, Youming; Pan, Bicai; Ye, Bangjiao; Xie, Yi

    2015-12-01

    Fabricating a flexible room-temperature ferromagnetic resistive-switching random access memory (RRAM) device is of fundamental importance to integrate nonvolatile memory and spintronics both in theory and practice for modern information technology and has the potential to bring about revolutionary new foldable information-storage devices. Here, we show that a relatively low operating voltage (+1.4 V/-1.5 V, the corresponding electric field is around 20,000 V/cm) drives the dual vacancies evolution in ultrathin SnO2 nanosheets at room temperature, which causes the reversible transition between semiconductor and half-metal, accompanyied by an abrupt conductivity change up to 10(3) times, exhibiting room-temperature ferromagnetism in two resistance states. Positron annihilation spectroscopy and electron spin resonance results show that the Sn/O dual vacancies in the ultrathin SnO2 nanosheets evolve to isolated Sn vacancy under electric field, accounting for the switching behavior of SnO2 ultrathin nanosheets; on the other hand, the different defect types correspond to different conduction natures, realizing the transition between semiconductor and half-metal. Our result represents a crucial step to create new a information-storage device realizing the reversible transition between semiconductor and half-metal with flexibility and room-temperature ferromagnetism at low energy consumption. The as-obtained half-metal in the low-resistance state broadens the application of the device in spintronics and the semiconductor to half-metal transition on the basis of defects evolution and also opens up a new avenue for exploring random access memory mechanisms and finding new half-metals for spintronics. PMID:26535800

  20. Ambipolar organic field-effect transistors based on a low band gap semiconductor with balanced hole and electron mobilities

    NASA Astrophysics Data System (ADS)

    Chikamatsu, Masayuki; Mikami, Takefumi; Chisaka, Jiro; Yoshida, Yuji; Azumi, Reiko; Yase, Kiyoshi; Shimizu, Akihiro; Kubo, Takashi; Morita, Yasushi; Nakasuji, Kazuhiro

    2007-07-01

    The authors have demonstrated the thin-film properties and the ambipolar transport of a delocalized singlet biradical hydrocarbon with two phenalenyl radical moieties (Ph2-IDPL). The organic field-effect transistors (OFETs) based on Ph2-IDPL exhibit ambipolar transport with balanced hole and electron mobilities in the order of 10-3cm2/Vs. The Ph2-IDPL film is an organic semiconductor with a low band gap of 0.8eV and has small injection barriers from gold electrodes to both the highest occupied molecular orbital and the lowest unoccupied molecular orbital. A complementary metal-oxide-semiconductor-like inverter using two identical Ph2-IDPL based ambipolar OFETs shows a sharp inversion of the input voltage with high gain.

  1. Development of epitaxial AlxSc1-xN for artificially structured metal/semiconductor superlattice metamaterials

    DOE PAGESBeta

    Sands, Timothy D.; Stach, Eric A.; Saha, Bivas; Saber, Sammy; Naik, Gururaj V.; Boltasseva, Alexandra; Kvam, Eric P.

    2015-02-01

    Epitaxial nitride rocksalt metal/semiconductor superlattices are emerging as a novel class of artificially structured materials that have generated significant interest in recent years for their potential application in plasmonic and thermoelectric devices. Though most nitride metals are rocksalt, nitride semiconductors in general have hexagonal crystal structure. We report rocksalt aluminum scandium nitride (Al,Sc)N alloys as the semiconducting component in epitaxial rocksalt metal/semiconductor superlattices. The AlxSc1-xN alloys when deposited directly on MgO substrates are stabilized in a homogeneous rocksalt (single) phase when x < 0.51. Employing 20 nm TiN as a seed layer on MgO substrates, the homogeneity range for stabilizingmore » the rocksalt phase has been extended to x < 0.82 for a 120 nm film. The rocksalt AlxSc1-xN alloys show moderate direct bandgap bowing with a bowing parameter, B = 1.41 ± 0.19 eV. The direct bandgap of metastable rocksalt AlN is extrapolated to be 4.70 ± 0.20 eV. The tunable lattice parameter, bandgap, dielectric permittivity, and electronic properties of rocksalt AlxSc1-xN alloys enable high quality epitaxial rocksalt metal/AlxSc1-xN superlattices with a wide range of accessible metamaterials properties.« less

  2. Trap densities and transport properties of pentacene metal-oxide-semiconductor transistors. I. Analytical modeling of time-dependent characteristics

    NASA Astrophysics Data System (ADS)

    Basile, A. F.; Cramer, T.; Kyndiah, A.; Biscarini, F.; Fraboni, B.

    2014-06-01

    Metal-oxide-semiconductor (MOS) transistors fabricated with pentacene thin films were characterized by temperature-dependent current-voltage (I-V) characteristics, time-dependent current measurements, and admittance spectroscopy. The channel mobility shows almost linear variation with temperature, suggesting that only shallow traps are present in the semiconductor and at the oxide/semiconductor interface. The admittance spectra feature a broad peak, which can be modeled as the sum of a continuous distribution of relaxation times. The activation energy of this peak is comparable to the polaron binding energy in pentacene. The absence of trap signals in the admittance spectra confirmed that both the semiconductor and the oxide/semiconductor interface have negligible density of deep traps, likely owing to the passivation of SiO2 before pentacene growth. Nevertheless, current instabilities were observed in time-dependent current measurements following the application of gate-voltage pulses. The corresponding activation energy matches the energy of a hole trap in SiO2. We show that hole trapping in the oxide can explain both the temperature and the time dependences of the current instabilities observed in pentacene MOS transistors. The combination of these experimental techniques allows us to derive a comprehensive model for charge transport in hybrid architectures where trapping processes occur at various time and length scales.

  3. Photoinduced 2-way electron transfer in composites of metal nanoclusters and semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Mondal, Navendu; Paul, Sneha; Samanta, Anunay

    2016-07-01

    In order to explore the potential of nanocomposites comprising semiconductor quantum dots (QDs) and metal nanoclusters (NCs) in photovoltaic and catalytic applications, the interaction between CdTe QDs and gold NCs, Au10 and Au25, stabilized by histidine, bovine serum albumin (BSA) and glutathione, is studied by an ultrafast transient absorption (TA) technique. Temporal and spectral studies of the transients reveal photoinduced 2-way electron transfer between the two constituents of the nanocomposites, where Au NCs, which generally act as electron donors when used as photosensitizers, perform the role of the efficient electron acceptor. Interestingly, it is found that the electron transfer dynamics in these composites is governed not by the distance of separation of the constituents but by the nature of the surface capping ligands. Despite a large separation between the QDs and NCs in a giant BSA-capped system, a higher electron transfer rate in this composite suggests that unlike other smaller capping agents, which act more like insulators, BSA allows much better electron conduction, as indicated previously.In order to explore the potential of nanocomposites comprising semiconductor quantum dots (QDs) and metal nanoclusters (NCs) in photovoltaic and catalytic applications, the interaction between CdTe QDs and gold NCs, Au10 and Au25, stabilized by histidine, bovine serum albumin (BSA) and glutathione, is studied by an ultrafast transient absorption (TA) technique. Temporal and spectral studies of the transients reveal photoinduced 2-way electron transfer between the two constituents of the nanocomposites, where Au NCs, which generally act as electron donors when used as photosensitizers, perform the role of the efficient electron acceptor. Interestingly, it is found that the electron transfer dynamics in these composites is governed not by the distance of separation of the constituents but by the nature of the surface capping ligands. Despite a large separation

  4. Low Temperature Processed Complementary Metal Oxide Semiconductor (CMOS) Device by Oxidation Effect from Capping Layer

    PubMed Central

    Wang, Zhenwei; Al-Jawhari, Hala A.; Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Wei, Nini; Hedhili, M. N.; Alshareef, H. N.

    2015-01-01

    In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190°C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field. PMID:25892711

  5. Low temperature processed complementary metal oxide semiconductor (CMOS) device by oxidation effect from capping layer.

    PubMed

    Wang, Zhenwei; Al-Jawhari, Hala A; Nayak, Pradipta K; Caraveo-Frescas, J A; Wei, Nini; Hedhili, M N; Alshareef, H N

    2015-04-20

    In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190 °C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field.

  6. Measurement of conduction band deformation potential constants using gate direct tunneling current in n-type metal oxide semiconductor field effect transistors under mechanical stress

    NASA Astrophysics Data System (ADS)

    Lim, Ji-Song; Yang, Xiaodong; Nishida, Toshikazu; Thompson, Scott E.

    2006-08-01

    An experimental method to determine both the hydrostatic and shear deformation potential constants is introduced. The technique is based on the change in the gate tunneling currents of Si-metal oxide semiconductor field effect transistors (MOSFETs) under externally applied mechanical stress and has been applied to industrial n-type MOSFETs. The conduction band hydrostatic and shear deformation potential constants (Ξd and Ξu) are extracted to be 1.0±0.1 and 9.6±1.0eV, respectively, which is consistent with recent theoretical works.

  7. Method to determine the position-dependant metal correction factor for dose-rate equivalent laser testing of semiconductor devices

    DOEpatents

    Horn, Kevin M.

    2013-07-09

    A method reconstructs the charge collection from regions beneath opaque metallization of a semiconductor device, as determined from focused laser charge collection response images, and thereby derives a dose-rate dependent correction factor for subsequent broad-area, dose-rate equivalent, laser measurements. The position- and dose-rate dependencies of the charge-collection magnitude of the device are determined empirically and can be combined with a digital reconstruction methodology to derive an accurate metal-correction factor that permits subsequent absolute dose-rate response measurements to be derived from laser measurements alone. Broad-area laser dose-rate testing can thereby be used to accurately determine the peak transient current, dose-rate response of semiconductor devices to penetrating electron, gamma- and x-ray irradiation.

  8. A study into the role of surface capping on energy transfer in metal cluster-semiconductor nanocomposites

    NASA Astrophysics Data System (ADS)

    Bain, Dipankar; Paramanik, Bipattaran; Sadhu, Suparna; Patra, Amitava

    2015-12-01

    Metal cluster-semiconductor nanocomposite materials remain a frontier area of research for the development of optoelectronic, photovoltaic and light harvesting devices because metal nanoclusters and semiconductor QDs are promising candidates for photon harvesting. Here, we have designed well defined metal cluster-semiconductor nanostructures using different surface capped negatively charged Au25 nanoclusters (Au NCs) and positively charged cysteamine capped CdTe quantum dots using electrostatic interactions. The main focus of this article is to address the impact of surface capping agents on the photophysical properties of Au cluster-CdTe QD hybrid nanocomposites. Steady state and time resolved spectroscopic studies reveal that photoluminescence quenching, radiative and nonradiative rate, and energy transfer between Au nanoclusters and CdTe QDs have been influenced by the nature of the capping agent. We have calculated the energy transfer related parameters such as the overlap integral, distance between donor and acceptor, Förster distance, efficiency of energy transfer and rate of energy transfer from CdTe QDs to three different Au NCs. Photoluminescence quenching varies from 73% to 43% when changing the capping agents from bovine serum albumin (BSA) to glutathione (GSH). The efficiency of the energy transfer from CdTe QDs to BSA-capped Au NCs is found to be 83%, for Cys-capped Au NCs it was 46% and for GSH-capped Au NCs it was 35%. The efficiency depends on the number of Au clusters attached per QD. This reveals that the nature of capping ligands plays a crucial role in the energy transfer phenomena from CdTe QDs to Au NCs. Interesting findings reveal that the efficient energy transfer in metal cluster-semiconductor nanocomposites may open up new possibilities in designing artificial light harvesting systems for future applications.Metal cluster-semiconductor nanocomposite materials remain a frontier area of research for the development of optoelectronic

  9. The Effect of Dynamical Image Forces on The Transport Properties of Charge Carriers and Excitons in Metal-Semiconductor Nanostructures

    NASA Astrophysics Data System (ADS)

    Cherqui, Charles

    We examine coupled metal nanoparticle/semiconductor hybrid nano-stuctures and analyze the effect that the surface response metal nanoparticles (MNP) has on the transport properties of the system. This analysis is accomplished by treating surface plasmons as quantum oscillators. We find that charge carriers traveling in the nearby semiconductors experience a repulsion due to the ground state energy of the quantum SP (QSP). This effect is shown to be the quantum analogue of the ponderomotive effect found in plasma physics. We then extend the theory to examine the transport properties of carbon nano-tube excitons in the presence of localized SPs and show that this system maps onto a Fano-Anderson Hamiltonian. Through numerical simulation, we show that the emission patterns of the system are severely modified by the presence of localized surface plasmons.

  10. Oxygen and germanium migration at low temperature influenced by the thermodynamic nature of the materials used in germanium metal-insulator-semiconductor structures

    SciTech Connect

    Kato, Kimihiko; Taoka, Noriyuki; Sakashita, Mitsuo; Nakatsuka, Osamu Zaima, Shigeaki

    2015-09-07

    The influence of the reductive character of the metals used for the gate electrode on O migration in gate stacks and following reductive or oxidative reactions at an interface between a high permittivity (high-k) insulating layer and Ge or Si was investigated. The magnitude of the increase or decrease of Ge or Si oxides in the gate stacks caused by the metal layer deposition can be systematically correlated with the oxygen chemical potential (μ{sub O}) of gate metals for both Ge and Si systems. However, the influence of the gate metals on oxidative/reductive reactions of a semiconductor element is more significant for the Ge gate stacks than the Si system. Detailed investigations of Ge oxide as a function of depth were used to determine that the strong μ{sub O} dependence of the increase or decrease in the Ge oxide is because of the high diffusivity of Ge into the high-k oxide. In particular, migration of Ge into the high-k oxide occurs concurrently with O migration towards the reductive metal layer, and the strong reductive character of the metal significantly influences the decrease in the amount of Ge oxide. These results indicate the importance of the selection of gate metals based on μ{sub O} for controlling high-k/Ge interfacial structures.

  11. Electroluminescence from metal-oxide-semiconductor devices with erbium-doped CeO{sub 2} films on silicon

    SciTech Connect

    Lv, Chunyan; Zhu, Chen; Wang, Canxing; Gao, Yuhan; Ma, Xiangyang Yang, Deren

    2015-04-06

    We report on erbium (Er)-related electroluminescence (EL) in the visible and near-infrared (NIR) from metal-oxide-semiconductor (MOS) devices with Er-doped CeO{sub 2} (CeO{sub 2}:Er) films on silicon. The onset voltage of such EL under either forward or reverse bias is smaller than 10 V. Moreover, the EL quenching can be avoidable for the CeO{sub 2}:Er-based MOS devices. Analysis on the current-voltage characteristic of the device indicates that the electron transportation at the EL-enabling voltages under either forward or reverse bias is dominated by trap-assisted tunneling mechanism. Namely, electrons in n{sup +}-Si/ITO can tunnel into the conduction band of CeO{sub 2} host via defect states at sufficiently high forward/reverse bias voltages. Then, a fraction of such electrons are accelerated by electric field to become hot electrons, which impact-excite the Er{sup 3+} ions, thus leading to characteristic emissions. It is believed that this work has laid the foundation for developing viable silicon-based emitters using CeO{sub 2}:Er films.

  12. Possible unified model for the Hooge parameter in inversion-layer-channel metal-oxide-semiconductor field-effect transistors

    NASA Astrophysics Data System (ADS)

    Omura, Yasuhisa

    2013-06-01

    This paper proposes a possible unified model for the Hooge parameter by considering the impact of transport dimensionality on the Hooge parameter behavior of various inversion-layer-channel metal-oxide-semiconductor field-effect transistors. Past experiments show that the Hooge parameter has a couple of peculiar behaviors. Based on a phenomenological consideration, the original mobility-based model for the Hooge parameter is shown to provide only a partial understanding of the results. It is also observed that, in contrast to past models, the interpretation of some aspects of the Hooge parameter strongly depends on how the two fluctuation modes, the carrier-density fluctuation and the mobility fluctuation, correlate. The phenomenological model proposed here gives a fundamental physical basis that allows important aspects of the Hooge parameter to be interpreted; the model also introduces three basic parameters (the Hooge parameter elements for the carrier-density fluctuation, the mobility fluctuation, and the cross-correlation component). Theoretical expressions for the three basic Hooge parameters are given by merging the fundamental Hooge model, Handel's theory, statistical physics, and quantum-mechanical transport physics. The gate voltage dependence of the Hooge parameter can be explained reasonably well by stating that the screening length rules the dielectric function and that the mobility fluctuation and carrier density fluctuation are correlated. Finally, the theoretical models are examined against the results of past experiments.

  13. Modeling of a Metal-Ferroelectric-Semiconductor Field-Effect Transistor NAND Gate

    NASA Technical Reports Server (NTRS)

    Phillips, Thomas A.; MacLeod, Todd C.; Ho, Fat Duen

    2005-01-01

    Considerable research has been performed by several organizations in the use of the Metal- Ferroelectric-Semiconductor Field-Effect Transistors (MFSFET) in memory circuits. However, research has been limited in expanding the use of the MFSFET to other electronic circuits. This research project investigates the modeling of a NAND gate constructed from MFSFETs. The NAND gate is one of the fundamental building blocks of digital electronic circuits. The first step in forming a NAND gate is to develop an inverter circuit. The inverter circuit was modeled similar to a standard CMOS inverter. A n-channel MFSFET with positive polarization was used for the n-channel transistor, and a n-channel MFSFET with negative polarization was used for the p-channel transistor. The MFSFETs were simulated by using a previously developed current model which utilized a partitioned ferroelectric layer. The inverter voltage transfer curve was obtained over a standard input of zero to five volts. Then a 2-input NAND gate was modeled similar to the inverter circuit. Voltage transfer curves were obtained for the NAND gate for various configurations of input voltages. The resultant data shows that it is feasible to construct a NAND gate with MFSFET transistors.

  14. Diamond logic inverter with enhancement-mode metal-insulator-semiconductor field effect transistor

    SciTech Connect

    Liu, J. W.; Liao, M. Y.; Imura, M.; Watanabe, E.; Oosato, H.; Koide, Y.

    2014-08-25

    A diamond logic inverter is demonstrated using an enhancement-mode hydrogenated-diamond metal-insulator-semiconductor field effect transistor (MISFET) coupled with a load resistor. The gate insulator has a bilayer structure of a sputtering-deposited LaAlO{sub 3} layer and a thin atomic-layer-deposited Al{sub 2}O{sub 3} buffer layer. The source-drain current maximum, extrinsic transconductance, and threshold voltage of the MISFET are measured to be −40.7 mA·mm{sup −1}, 13.2 ± 0.1 mS·mm{sup −1}, and −3.1 ± 0.1 V, respectively. The logic inverters show distinct inversion (NOT-gate) characteristics for input voltages ranging from 4.0 to −10.0 V. With increasing the load resistance, the gain of the logic inverter increases from 5.6 to as large as 19.4. The pulse response against the high and low input voltages shows the inversion response with the low and high output voltages.

  15. Metal-Ferroelectric-Semiconductor Field-Effect Transistor NAND Gate Switching Time Analysis

    NASA Technical Reports Server (NTRS)

    Phillips, Thomas A.; Macleod, Todd C.; Ho, Fat D.

    2006-01-01

    Previous research investigated the modeling of a N Wga te constructed of Metal-Ferroelectric- Semiconductor Field-Effect Transistors (MFSFETs) to obtain voltage transfer curves. The NAND gate was modeled using n-channel MFSFETs with positive polarization for the standard CMOS n-channel transistors and n-channel MFSFETs with negative polarization for the standard CMOS p-channel transistors. This paper investigates the MFSFET NAND gate switching time propagation delay, which is one of the other important parameters required to characterize the performance of a logic gate. Initially, the switching time of an inverter circuit was analyzed. The low-to-high and high-to-low propagation time delays were calculated. During the low-to-high transition, the negatively polarized transistor pulls up the output voltage, and during the high-to-low transition, the positively polarized transistor pulls down the output voltage. The MFSFETs were simulated by using a previously developed model which utilized a partitioned ferroelectric layer. Then the switching time of a 2-input NAND gate was analyzed similarly to the inverter gate. Extension of this technique to more complicated logic gates using MFSFETs will be studied.

  16. Polycrystalline silicon ring resonator photodiodes in a bulk complementary metal-oxide-semiconductor process.

    PubMed

    Mehta, Karan K; Orcutt, Jason S; Shainline, Jeffrey M; Tehar-Zahav, Ofer; Sternberg, Zvi; Meade, Roy; Popović, Miloš A; Ram, Rajeev J

    2014-02-15

    We present measurements on resonant photodetectors utilizing sub-bandgap absorption in polycrystalline silicon ring resonators, in which light is localized in the intrinsic region of a p+/p/i/n/n+ diode. The devices, operating both at λ=1280 and λ=1550  nm and fabricated in a complementary metal-oxide-semiconductor (CMOS) dynamic random-access memory emulation process, exhibit detection quantum efficiencies around 20% and few-gigahertz response bandwidths. We observe this performance at low reverse biases in the range of a few volts and in devices with dark currents below 50 pA at 10 V. These results demonstrate that such photodetector behavior, previously reported by Preston et al. [Opt. Lett. 36, 52 (2011)], is achievable in bulk CMOS processes, with significant improvements with respect to the previous work in quantum efficiency, dark current, linearity, bandwidth, and operating bias due to additional midlevel doping implants and different material deposition. The present work thus offers a robust realization of a fully CMOS-fabricated all-silicon photodetector functional across a wide wavelength range. PMID:24562278

  17. Metal oxide semiconductors for dye- and quantum-dot-sensitized solar cells.

    PubMed

    Concina, Isabella; Vomiero, Alberto

    2015-04-17

    This Review provides a brief summary of the most recent research developments in the synthesis and application of nanostructured metal oxide semiconductors for dye sensitized and quantum dot sensitized solar cells. In these devices, the wide bandgap semiconducting oxide acts as the photoanode, which provides the scaffold for light harvesters (either dye molecules or quantum dots) and electron collection. For this reason, proper tailoring of the optical and electronic properties of the photoanode can significantly boost the functionalities of the operating device. Optimization of the functional properties relies with modulation of the shape and structure of the photoanode, as well as on application of different materials (TiO2, ZnO, SnO2) and/or composite systems, which allow fine tuning of electronic band structure. This aspect is critical because it determines exciton and charge dynamics in the photoelectrochemical system and is strictly connected to the photoconversion efficiency of the solar cell. The different strategies for increasing light harvesting and charge collection, inhibiting charge losses due to recombination phenomena, are reviewed thoroughly, highlighting the benefits of proper photoanode preparation, and its crucial role in the development of high efficiency dye sensitized and quantum dot sensitized solar cells.

  18. Landau levels and Shubnikov-de Haas oscillations in monolayer transition metal dichalcogenide semiconductors

    NASA Astrophysics Data System (ADS)

    Kormányos, Andor; Rakyta, Péter; Burkard, Guido

    2015-10-01

    We study the Landau level (LL) spectrum using a multi-band {k}\\cdot {p} theory in monolayer transition metal dichalcogenide semiconductors. We find that in a wide magnetic field range the LL can be characterized by a harmonic oscillator spectrum and a linear-in-magnetic field term which describes the valley degeneracy breaking. The effect of the non-parabolicity of the band-dispersion on the LL spectrum is also discussed. Motivated by recent magnetotransport experiments, we use the self-consistent Born approximation and the Kubo formalism to calculate the Shubnikov-de Haas oscillations of the longitudinal conductivity. We investigate how the doping level, the spin-splitting of the bands and the broken valley degeneracy of the LLs affect the magnetoconductance oscillations. We consider monolayer MoS2 and WSe2 as concrete examples and compare the results of numerical calculations and an analytical formula which is valid in the semiclassical regime. Finally, we briefly analyze the recent experimental results (Cui et al 2015 Nat. Nanotechnol. 10 534) using the theoretical approach we have developed.

  19. Landau levels and Shubnikov-de Haas oscillations in monolayer transition metal dichalcogenide semiconductors

    NASA Astrophysics Data System (ADS)

    Kormanyos, Andor; Rakyta, Peter; Burkard, Guido

    We study the Landau level (LL) spectrum using a multi-band k . p theory in monolayer transition metal dichalcogenide semiconductors. We find that in a wide magnetic field range the LL can be characterized by a harmonic oscillator spectrum and a linear-in-magnetic field term which describes the valley degeneracy breaking. The effect of the non-parabolicity of the band-dispersion on the LL spectrum is also discussed. Motivated by recent magnetotransport experiments, we use the self-consistent Born approximation and the Kubo formalism to calculate the Shubnikov-de Haas oscillations of the longitudinal conductivity. We investigate how the doping level, the spin-splitting of the bands and the broken valley degeneracy of the LLs affect the magnetoconductance oscillations. We consider monolayer MoS2 and WSe2 as concrete examples and compare the results of numerical calculations and an analytical formula which is valid in the semiclassical regime. Finally, we briefly analyze the recent experimental results [Cui et al., Nat. Nanotechnol. 10 534 (2015)] using the theoretical approach we have developed.

  20. Numerical studies of anomalous fast diffusion in metallic alloys and semiconductors

    NASA Astrophysics Data System (ADS)

    Hasnaoui, A.; Benmakhlouf, A.; Hoummada, A.; Naciri, J. K.; Menai, A.

    2000-08-01

    The so-called anomalous fast diffusion in metallic alloys and semi-conductors is often analysed within an interstitial-substitutional model. The equations used for modelling these mechanisms are reaction-diffusion type whose analytical solutions are available only under drastic simplifications. The dissociative variety of this model is simulated using both finite difference (FD) and Monte Carlo (MC) methods. In MC simulation, diffusion of different species (interstitial impurities B i, substitutional B s, and vacancies V) and reaction jumps occur according to the suitable probabilities which are jump frequencies-dependent. Whereas in FD method, an implicit scheme is used to solve the system of non-linear partial differential equations. In both cases, the finite source conditions have been considered. A good agreement between results obtained by the two methods is found. On the other hand, the double-stages of simulated profiles are found to have similar shapes to those obtained experimentally in Nb(Co) and in GaAs(Zn). The first stage is well analysed by a Gaussian function, whereas the second one is well represented by an erfc type function. Furthermore, a detailed study of the two stages leads to a qualitative agreement with Stolwijk's analysis in two limited cases where the diffusion is vacancy- or foreign interstitial-controlled. However, the effective diffusion coefficients present a quantitative departure from those obtained by Stolwijk's expressions.