Sample records for based micro-grid connected

  1. Optimal Control of Micro Grid Operation Mode Seamless Switching Based on Radau Allocation Method

    NASA Astrophysics Data System (ADS)

    Chen, Xiaomin; Wang, Gang

    2017-05-01

    The seamless switching process of micro grid operation mode directly affects the safety and stability of its operation. According to the switching process from island mode to grid-connected mode of micro grid, we establish a dynamic optimization model based on two grid-connected inverters. We use Radau allocation method to discretize the model, and use Newton iteration method to obtain the optimal solution. Finally, we implement the optimization mode in MATLAB and get the optimal control trajectory of the inverters.

  2. The Design of Distributed Micro Grid Energy Storage System

    NASA Astrophysics Data System (ADS)

    Liang, Ya-feng; Wang, Yan-ping

    2018-03-01

    Distributed micro-grid runs in island mode, the energy storage system is the core to maintain the micro-grid stable operation. For the problems that it is poor to adjust at work and easy to cause the volatility of micro-grid caused by the existing energy storage structure of fixed connection. In this paper, an array type energy storage structure is proposed, and the array type energy storage system structure and working principle are analyzed. Finally, the array type energy storage structure model is established based on MATLAB, the simulation results show that the array type energy storage system has great flexibility, which can maximize the utilization of energy storage system, guarantee the reliable operation of distributed micro-grid and achieve the function of peak clipping and valley filling.

  3. Pyramid solar micro-grid

    NASA Astrophysics Data System (ADS)

    Huang, Bin-Juine; Hsu, Po-Chien; Wang, Yi-Hung; Tang, Tzu-Chiao; Wang, Jia-Wei; Dong, Xin-Hong; Hsu, Hsin-Yi; Li, Kang; Lee, Kung-Yen

    2018-03-01

    A novel pyramid solar micro-grid is proposed in the present study. All the members within the micro-grid can mutually share excess solar PV power each other through a binary-connection hierarchy. The test results of a 2+2 pyramid solar micro-grid consisting of 4 individual solar PV systems for self-consumption are reported.

  4. Aerodynamic load control strategy of wind turbine in microgrid

    NASA Astrophysics Data System (ADS)

    Wang, Xiangming; Liu, Heshun; Chen, Yanfei

    2017-12-01

    A control strategy is proposed in the paper to optimize the aerodynamic load of the wind turbine in micro-grid. In grid-connection mode, the wind turbine adopts a new individual variable pitch control strategy. The pitch angle of the blade is rapidly given by the controller, and the pitch angle of each blade is fine tuned by the weight coefficient distributor. In islanding mode, according to the requirements of energy storage system, a given power tracking control method based on fuzzy PID control is proposed. Simulation result shows that this control strategy can effectively improve the axial aerodynamic load of the blade under rated wind speed in grid-connection mode, and ensure the smooth operation of the micro-grid in islanding mode.

  5. LES-based generation of high-frequency fluctuation in wind turbulence obtained by meteorological model

    NASA Astrophysics Data System (ADS)

    Tamura, Tetsuro; Kawaguchi, Masaharu; Kawai, Hidenori; Tao, Tao

    2017-11-01

    The connection between a meso-scale model and a micro-scale large eddy simulation (LES) is significant to simulate the micro-scale meteorological problem such as strong convective events due to the typhoon or the tornado using LES. In these problems the mean velocity profiles and the mean wind directions change with time according to the movement of the typhoons or tornadoes. Although, a fine grid micro-scale LES could not be connected to a coarse grid meso-scale WRF directly. In LES when the grid is suddenly refined at the interface of nested grids which is normal to the mean advection the resolved shear stresses decrease due to the interpolation errors and the delay of the generation of smaller scale turbulence that can be resolved on the finer mesh. For the estimation of wind gust disaster the peak wind acting on buildings and structures has to be correctly predicted. In the case of meteorological model the velocity fluctuations have a tendency of diffusive variation without the high frequency component due to the numerically filtering effects. In order to predict the peak value of wind velocity with good accuracy, this paper proposes a LES-based method for generating the higher frequency components of velocity and temperature fields obtained by meteorological model.

  6. Intelligent Operation and Maintenance of Micro-grid Technology and System Development

    NASA Astrophysics Data System (ADS)

    Fu, Ming; Song, Jinyan; Zhao, Jingtao; Du, Jian

    2018-01-01

    In order to achieve the micro-grid operation and management, Studying the micro-grid operation and maintenance knowledge base. Based on the advanced Petri net theory, the fault diagnosis model of micro-grid is established, and the intelligent diagnosis and analysis method of micro-grid fault is put forward. Based on the technology, the functional system and architecture of the intelligent operation and maintenance system of micro-grid are studied, and the microcomputer fault diagnosis function is introduced in detail. Finally, the system is deployed based on the micro-grid of a park, and the micro-grid fault diagnosis and analysis is carried out based on the micro-grid operation. The system operation and maintenance function interface is displayed, which verifies the correctness and reliability of the system.

  7. Development of a Dynamic Operational Scheduling Algorithm for an Independent Micro-Grid with Renewable Energy

    NASA Astrophysics Data System (ADS)

    Obara, Shin'ya

    A micro-grid with the capacity for sustainable energy is expected to be a distributed energy system that exhibits quite a small environmental impact. In an independent micro-grid, “green energy,” which is typically thought of as unstable, can be utilized effectively by introducing a battery. In the past study, the production-of-electricity prediction algorithm (PAS) of the solar cell was developed. In PAS, a layered neural network is made to learn based on past weather data and the operation plan of the compound system of a solar cell and other energy systems was examined using this prediction algorithm. In this paper, a dynamic operational scheduling algorithm is developed using a neural network (PAS) and a genetic algorithm (GA) to provide predictions for solar cell power output. We also do a case study analysis in which we use this algorithm to plan the operation of a system that connects nine houses in Sapporo to a micro-grid composed of power equipment and a polycrystalline silicon solar cell. In this work, the relationship between the accuracy of output prediction of the solar cell and the operation plan of the micro-grid was clarified. Moreover, we found that operating the micro-grid according to the plan derived with PAS was far superior, in terms of equipment hours of operation, to that using past average weather data.

  8. A three-level support method for smooth switching of the micro-grid operation model

    NASA Astrophysics Data System (ADS)

    Zong, Yuanyang; Gong, Dongliang; Zhang, Jianzhou; Liu, Bin; Wang, Yun

    2018-01-01

    Smooth switching of micro-grid between the grid-connected operation mode and off-grid operation mode is one of the key technologies to ensure it runs flexible and efficiently. The basic control strategy and the switching principle of micro-grid are analyzed in this paper. The reasons for the fluctuations of the voltage and the frequency in the switching process are analyzed from views of power balance and control strategy, and the operation mode switching strategy has been improved targeted. From the three aspects of controller’s current inner loop reference signal, voltage outer loop control strategy optimization and micro-grid energy balance management, a three-level security strategy for smooth switching of micro-grid operation mode is proposed. From the three aspects of controller’s current inner loop reference signal tracking, voltage outer loop control strategy optimization and micro-grid energy balance management, a three-level strategy for smooth switching of micro-grid operation mode is proposed. At last, it is proved by simulation that the proposed control strategy can make the switching process smooth and stable, the fluctuation problem of the voltage and frequency has been effectively improved.

  9. Implementation of fuzzy-sliding mode based control of a grid connected photovoltaic system.

    PubMed

    Menadi, Abdelkrim; Abdeddaim, Sabrina; Ghamri, Ahmed; Betka, Achour

    2015-09-01

    The present work describes an optimal operation of a small scale photovoltaic system connected to a micro-grid, based on both sliding mode and fuzzy logic control. Real time implementation is done through a dSPACE 1104 single board, controlling a boost chopper on the PV array side and a voltage source inverter (VSI) on the grid side. The sliding mode controller tracks permanently the maximum power of the PV array regardless of atmospheric condition variations, while The fuzzy logic controller (FLC) regulates the DC-link voltage, and ensures via current control of the VSI a quasi-total transit of the extracted PV power to the grid under a unity power factor operation. Simulation results, carried out via Matlab-Simulink package were approved through experiment, showing the effectiveness of the proposed control techniques. Copyright © 2015. Published by Elsevier Ltd.

  10. Price Based Local Power Distribution Management System (Local Power Distribution Manager) v1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BROWN, RICHARD E.; CZARNECKI, STEPHEN; SPEARS, MICHAEL

    2016-11-28

    A trans-active energy micro-grid controller is implemented in the VOLTTRON distributed control platform. The system uses the price of electricity as the mechanism for conducting transactions that are used to manage energy use and to balance supply and demand. In order to allow testing and analysis of the control system, the implementation is designed to run completely as a software simulation, while allowing the inclusion of selected hardware that physically manages power. Equipment to be integrated with the micro-grid controller must have an IP (Internet Protocol)-based network connection and a software "driver" must exist to translate data communications between themore » device and the controller.« less

  11. Micro grid control strategy of DFIG unit based on improved DC grid connected topology

    NASA Astrophysics Data System (ADS)

    Zongze, Xia; Fei, Xia; Zhixiong, Yang

    2017-05-01

    Aiming to the application of the DFIG connected to DC-Microgrids, an improved topology for the DFIG connected to DC-Microgrids is taken into account in this thesis. The stator side loses the support of voltage and frequency of AC point of common coupling bus. A novel control method suitable to the stator side converter (SSC) and the rotor side converter (RSC) of the topology is proposed. The independent control of stator voltage and frequency, the decoupled control of power and variable speed constant frequency of DFIG are achieved in the doubly-fed induction generator connected to DC-Microgrids. which can enhance the capacity of active power transmission of DFIG during the voltage variation.

  12. A new detector concept for silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Sadigov, A.; Ahmadov, F.; Ahmadov, G.; Ariffin, A.; Khorev, S.; Sadygov, Z.; Suleymanov, S.; Zerrouk, F.; Madatov, R.

    2016-07-01

    A new design and principle of operation of silicon photomultipliers are presented. The new design comprises a semiconductor substrate and an array of independent micro-phototransistors formed on the substrate. Each micro-phototransistor comprises a photosensitive base operating in Geiger mode and an individual micro-emitter covering a small part of the base layer, thereby creating, together with this latter, a micro-transistor. Both micro-emitters and photosensitive base layers are connected with two respective independent metal grids via their individual micro-resistors. The total value of signal gain in the proposed silicon photomultiplier is a result of both the avalanche gain in the base layer and the corresponding gain in the micro-transistor. The main goals of the new design are: significantly lower both optical crosstalk and after-pulse effects at high signal amplification, improve speed of single photoelectron pulse formation, and significantly reduce the device capacitance.

  13. A derived heuristics based multi-objective optimization procedure for micro-grid scheduling

    NASA Astrophysics Data System (ADS)

    Li, Xin; Deb, Kalyanmoy; Fang, Yanjun

    2017-06-01

    With the availability of different types of power generators to be used in an electric micro-grid system, their operation scheduling as the load demand changes with time becomes an important task. Besides satisfying load balance constraints and the generator's rated power, several other practicalities, such as limited availability of grid power and restricted ramping of power output from generators, must all be considered during the operation scheduling process, which makes it difficult to decide whether the optimization results are accurate and satisfactory. In solving such complex practical problems, heuristics-based customized optimization algorithms are suggested. However, due to nonlinear and complex interactions of variables, it is difficult to come up with heuristics in such problems off-hand. In this article, a two-step strategy is proposed in which the first task deciphers important heuristics about the problem and the second task utilizes the derived heuristics to solve the original problem in a computationally fast manner. Specifically, the specific operation scheduling is considered from a two-objective (cost and emission) point of view. The first task develops basic and advanced level knowledge bases offline from a series of prior demand-wise optimization runs and then the second task utilizes them to modify optimized solutions in an application scenario. Results on island and grid connected modes and several pragmatic formulations of the micro-grid operation scheduling problem clearly indicate the merit of the proposed two-step procedure.

  14. A grid-connected single-phase photovoltaic micro inverter

    NASA Astrophysics Data System (ADS)

    Wen, X. Y.; Lin, P. J.; Chen, Z. C.; Wu, L. J.; Cheng, S. Y.

    2017-11-01

    In this paper, the topology of a single-phase grid-connected photovoltaic (PV) micro-inverter is proposed. The PV micro-inverter consists of DC-DC stage with high voltage gain boost and DC-AC conversion stage. In the first stage, we apply the active clamp circuit and two voltage multipliers to achieve soft switching technology and high voltage gain. In addition, the flower pollination algorithm (FPA) is employed for the maximum power point tracking (MPPT) in the PV module in this stage. The second stage cascades a H-bridge inverter and LCL filter. To feed high quality sinusoidal power into the grid, the software phase lock, outer voltage loop and inner current loop control method are adopted as the control strategy. The performance of the proposed topology is tested by Matlab/Simulink. A PV module with maximum power 300W and maximum power point voltage 40V is applied as the input source. The simulation results indicate that the proposed topology and the control strategy are feasible.

  15. Analysis of the Multi Strategy Goal Programming for Micro-Grid Based on Dynamic ant Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Qiu, J. P.; Niu, D. X.

    Micro-grid is one of the key technologies of the future energy supplies. Take economic planning. reliability, and environmental protection of micro grid as a basis for the analysis of multi-strategy objective programming problems for micro grid which contains wind power, solar power, and battery and micro gas turbine. Establish the mathematical model of each power generation characteristics and energy dissipation. and change micro grid planning multi-objective function under different operating strategies to a single objective model based on AHP method. Example analysis shows that in combination with dynamic ant mixed genetic algorithm can get the optimal power output of this model.

  16. 75 FR 57758 - Antrim Treatment Trust; Notice of Declaration of Intention and Soliciting Comments, Protests, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ...: Antrim Micro-Hydropower Project. f. Location: The proposed Antrim Micro-Hydropower Project will be..., protests, and/or motions filed. k. Description of Project: The proposed Antrim Micro-Hydropower Project... and the project will not be connected to an interstate grid. When a Declaration of Intention is filed...

  17. 75 FR 37788 - Antrim Treatment Trust; Notice of Declaration of Intention and Soliciting Comments, Protests, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-30

    ... Micro-Hydropower Project. f. Location: The proposed Antrim Micro-Hydropower Project will be located on... motions filed. k. Description of Project: The proposed Antrim Micro-Hydropower Project will consist of: (1...-feet to the treatment plant, where it will be connected to the interstate grid; and (6) appurtenant...

  18. Design of Energy Storage Management System Based on FPGA in Micro-Grid

    NASA Astrophysics Data System (ADS)

    Liang, Yafeng; Wang, Yanping; Han, Dexiao

    2018-01-01

    Energy storage system is the core to maintain the stable operation of smart micro-grid. Aiming at the existing problems of the energy storage management system in the micro-grid such as Low fault tolerance, easy to cause fluctuations in micro-grid, a new intelligent battery management system based on field programmable gate array is proposed : taking advantage of FPGA to combine the battery management system with the intelligent micro-grid control strategy. Finally, aiming at the problem that during estimation of battery charge State by neural network, initialization of weights and thresholds are not accurate leading to large errors in prediction results, the genetic algorithm is proposed to optimize the neural network method, and the experimental simulation is carried out. The experimental results show that the algorithm has high precision and provides guarantee for the stable operation of micro-grid.

  19. A Micro-Grid Simulator Tool (SGridSim) using Effective Node-to-Node Complex Impedance (EN2NCI) Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Udhay Ravishankar; Milos manic

    2013-08-01

    This paper presents a micro-grid simulator tool useful for implementing and testing multi-agent controllers (SGridSim). As a common engineering practice it is important to have a tool that simplifies the modeling of the salient features of a desired system. In electric micro-grids, these salient features are the voltage and power distributions within the micro-grid. Current simplified electric power grid simulator tools such as PowerWorld, PowerSim, Gridlab, etc, model only the power distribution features of a desired micro-grid. Other power grid simulators such as Simulink, Modelica, etc, use detailed modeling to accommodate the voltage distribution features. This paper presents a SGridSimmore » micro-grid simulator tool that simplifies the modeling of both the voltage and power distribution features in a desired micro-grid. The SGridSim tool accomplishes this simplified modeling by using Effective Node-to-Node Complex Impedance (EN2NCI) models of components that typically make-up a micro-grid. The term EN2NCI models means that the impedance based components of a micro-grid are modeled as single impedances tied between their respective voltage nodes on the micro-grid. Hence the benefit of the presented SGridSim tool are 1) simulation of a micro-grid is performed strictly in the complex-domain; 2) faster simulation of a micro-grid by avoiding the simulation of detailed transients. An example micro-grid model was built using the SGridSim tool and tested to simulate both the voltage and power distribution features with a total absolute relative error of less than 6%.« less

  20. Connection technology of HPTO type WECs and DC nano grid in island

    NASA Astrophysics Data System (ADS)

    Wang, Kun-lin; Tian, Lian-fang; You, Ya-ge; Wang, Xiao-hong; Sheng, Song-wei; Zhang, Ya-qun; Ye, Yin

    2016-07-01

    Wave energy fluctuating a great deal endangers the security of power grid especially micro grid in island. A DC nano grid supported by batteries is proposed to smooth the output power of wave energy converters (WECs). Thus, renewable energy converters connected to DC grid is a new subject. The characteristics of WECs are very important to the connection technology of HPTO type WECs and DC nano grid. Hydraulic power take-off system (HPTO) is the core unit of the largest category of WECs, with the functions of supplying suitable damping for a WEC to absorb wave energy, and converting captured wave energy to electricity. The HPTO is divided into a hydraulic energy storage system (HESS) and a hydraulic power generation system (HPGS). A primary numerical model for the HPGS is established in this paper. Three important basic characteristics of the HPGS are deduced, which reveal how the generator load determines the HPGS rotation rate. Therefore, the connector of HPTO type WEC and DC nano grid would be an uncontrollable rectifier with high reliability, also would be a controllable power converter with high efficiency, such as interleaved boost converter-IBC. The research shows that it is very flexible to connect to DC nano grid for WECs, but bypass resistance loads are indispensable for the security of WECs.

  1. Optimization of multi-objective micro-grid based on improved particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Gan, Yang

    2018-04-01

    The paper presents a multi-objective optimal configuration model for independent micro-grid with the aim of economy and environmental protection. The Pareto solution set can be obtained by solving the multi-objective optimization configuration model of micro-grid with the improved particle swarm algorithm. The feasibility of the improved particle swarm optimization algorithm for multi-objective model is verified, which provides an important reference for multi-objective optimization of independent micro-grid.

  2. Research on charging and discharging control strategy for electric vehicles as distributed energy storage devices

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Yang, Feng; Zhang, Dongqing; Tang, Pengcheng

    2018-02-01

    A large number of electric vehicles are connected to the family micro grid will affect the operation safety of the power grid and the quality of power. Considering the factors of family micro grid price and electric vehicle as a distributed energy storage device, a two stage optimization model is established, and the improved discrete binary particle swarm optimization algorithm is used to optimize the parameters in the model. The proposed control strategy of electric vehicle charging and discharging is of practical significance for the rational control of electric vehicle as a distributed energy storage device and electric vehicle participating in the peak load regulation of power consumption.

  3. Micro-grid platform based on NODE.JS architecture, implemented in electrical network instrumentation

    NASA Astrophysics Data System (ADS)

    Duque, M.; Cando, E.; Aguinaga, A.; Llulluna, F.; Jara, N.; Moreno, T.

    2016-05-01

    In this document, I propose a theory about the impact of systems based on microgrids in non-industrialized countries that have the goal to improve energy exploitation through alternatives methods of a clean and renewable energy generation and the creation of the app to manage the behavior of the micro-grids based on the NodeJS, Django and IOJS technologies. The micro-grids allow the optimal way to manage energy flow by electric injection directly in electric network small urban's cells in a low cost and available way. In difference from conventional systems, micro-grids can communicate between them to carry energy to places that have higher demand in accurate moments. This system does not require energy storage, so, costs are lower than conventional systems like fuel cells, solar panels or else; even though micro-grids are independent systems, they are not isolated. The impact that this analysis will generate, is the improvement of the electrical network without having greater control than an intelligent network (SMART-GRID); this leads to move to a 20% increase in energy use in a specified network; that suggest there are others sources of energy generation; but for today's needs, we need to standardize methods and remain in place to support all future technologies and the best option are the Smart Grids and Micro-Grids.

  4. Intelligent Control of Micro Grid: A Big Data-Based Control Center

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Wang, Yanping; Liu, Li; Wang, Zhiseng

    2018-01-01

    In this paper, a structure of micro grid system with big data-based control center is introduced. Energy data from distributed generation, storage and load are analized through the control center, and from the results new trends will be predicted and applied as a feedback to optimize the control. Therefore, each step proceeded in micro grid can be adjusted and orgnized in a form of comprehensive management. A framework of real-time data collection, data processing and data analysis will be proposed by employing big data technology. Consequently, a integrated distributed generation and a optimized energy storage and transmission process can be implemented in the micro grid system.

  5. Stability assessment of a multi-port power electronic interface for hybrid micro-grid applications

    NASA Astrophysics Data System (ADS)

    Shamsi, Pourya

    Migration to an industrial society increases the demand for electrical energy. Meanwhile, social causes for preserving the environment and reducing pollutions seek cleaner forms of energy sources. Therefore, there has been a growth in distributed generation from renewable sources in the past decade. Existing regulations and power system coordination does not allow for massive integration of distributed generation throughout the grid. Moreover, the current infrastructures are not designed for interfacing distributed and deregulated generation. In order to remedy this problem, a hybrid micro-grid based on nano-grids is introduced. This system consists of a reliable micro-grid structure that provides a smooth transition from the current distribution networks to smart micro-grid systems. Multi-port power electronic interfaces are introduced to manage the local generation, storage, and consumption. Afterwards, a model for this micro-grid is derived. Using this model, the stability of the system under a variety of source and load induced disturbances is studied. Moreover, pole-zero study of the micro-grid is performed under various loading conditions. An experimental setup of this micro-grid is developed, and the validity of the model in emulating the dynamic behavior of the system is verified. This study provides a theory for a novel hybrid micro-grid as well as models for stability assessment of the proposed micro-grid.

  6. Comprehensive risk assessment method of catastrophic accident based on complex network properties

    NASA Astrophysics Data System (ADS)

    Cui, Zhen; Pang, Jun; Shen, Xiaohong

    2017-09-01

    On the macro level, the structural properties of the network and the electrical characteristics of the micro components determine the risk of cascading failures. And the cascading failures, as a process with dynamic development, not only the direct risk but also potential risk should be considered. In this paper, comprehensively considered the direct risk and potential risk of failures based on uncertain risk analysis theory and connection number theory, quantified uncertain correlation by the node degree and node clustering coefficient, then established a comprehensive risk indicator of failure. The proposed method has been proved by simulation on the actual power grid. Modeling a network according to the actual power grid, and verified the rationality of the proposed method.

  7. Application of interleaved flyback micro inverter in a grid connected system

    NASA Astrophysics Data System (ADS)

    Brindha, R.; Ananthichristy, A.; Poornima, P. U.; Madhana, M.; Ashok Rathish, S.; Ragavi, Selvam

    2018-04-01

    The two control strategies CCM and DCM have various effects on the loss distribution and efficiency and thus were studied for the interleaved flyback micro inverter concentrating on the loss analysis under different load conditions. The dominant losses with heavy load include the conduction loss and the transformer loss in case of the interleaved flyback micro inverter; whereas driving of gate loss, the turn-off loss in the transformer core loss and in the powermosfets are included in the dominant losses with light load. A new hybrid control strategy which has the one-phase DCM and two-phase DCM control reduces the dominant losses in order to improving the efficiency based on the load in wide load range is proposed here.

  8. Transient Control of Synchronous Machine Active and Reactive Power in Micro-grid Power Systems

    NASA Astrophysics Data System (ADS)

    Weber, Luke G.

    There are two main topics associated with this dissertation. The first is to investigate phase-to-neutral fault current magnitude occurring in generators with multiple zero-sequence current sources. The second is to design, model, and tune a linear control system for operating a micro-grid in the event of a separation from the electric power system. In the former case, detailed generator, AC8B excitation system, and four-wire electric power system models are constructed. Where available, manufacturers data is used to validate the generator and exciter models. A gain-delay with frequency droop control is used to model an internal combustion engine and governor. The four wire system is connected through a transformer impedance to an infinite bus. Phase-to-neutral faults are imposed on the system, and fault magnitudes analyzed against three-phase faults to gauge their severity. In the latter case, a balanced three-phase system is assumed. The model structure from the former case - but using data for a different generator - is incorporated with a model for an energy storage device and a net load model to form a micro-grid. The primary control model for the energy storage device has a high level of detail, as does the energy storage device plant model in describing the LC filter and transformer. A gain-delay battery and inverter model is used at the front end. The net load model is intended to be the difference between renewable energy sources and load within a micro-grid system that has separated from the grid. Given the variability of both renewable generation and load, frequency and voltage stability are not guaranteed. This work is an attempt to model components of a proposed micro-grid system at the University of Wisconsin Milwaukee, and design, model, and tune a linear control system for operation in the event of a separation from the electric power system. The control module is responsible for management of frequency and active power, and voltage and reactive power. The scope of this work is to • develop a mathematical model for a salient pole, 2 damper winding synchronous generator with d axis saturation suitable for transient analysis, • develop a mathematical model for a voltage regulator and excitation system using the IEEE AC8B voltage regulator and excitation system template, • develop mathematical models for an energy storage primary control system, LC filter and transformer suitable for transient analysis, • combine the generator and energy storage models in a micro-grid context, • develop mathematical models for electric system components in the stationary abc frame and rotating dq reference frame, • develop a secondary control network for dispatch of micro-grid assets, • establish micro-grid limits of stable operation for step changes in load and power commands based on simulations of model data assuming net load on the micro-grid, and • use generator and electric system models to assess the generator current magnitude during phase-to-ground faults.

  9. A multi-mode operation control strategy for flexible microgrid based on sliding-mode direct voltage and hierarchical controls.

    PubMed

    Zhang, Qinjin; Liu, Yancheng; Zhao, Youtao; Wang, Ning

    2016-03-01

    Multi-mode operation and transient stability are two problems that significantly affect flexible microgrid (MG). This paper proposes a multi-mode operation control strategy for flexible MG based on a three-layer hierarchical structure. The proposed structure is composed of autonomous, cooperative, and scheduling controllers. Autonomous controller is utilized to control the performance of the single micro-source inverter. An adaptive sliding-mode direct voltage loop and an improved droop power loop based on virtual negative impedance are presented respectively to enhance the system disturbance-rejection performance and the power sharing accuracy. Cooperative controller, which is composed of secondary voltage/frequency control and phase synchronization control, is designed to eliminate the voltage/frequency deviations produced by the autonomous controller and prepare for grid connection. Scheduling controller manages the power flow between the MG and the grid. The MG with the improved hierarchical control scheme can achieve seamless transitions from islanded to grid-connected mode and have a good transient performance. In addition the presented work can also optimize the power quality issues and improve the load power sharing accuracy between parallel VSIs. Finally, the transient performance and effectiveness of the proposed control scheme are evaluated by theoretical analysis and simulation results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  10. The study on the control strategy of micro grid considering the economy of energy storage operation

    NASA Astrophysics Data System (ADS)

    Ma, Zhiwei; Liu, Yiqun; Wang, Xin; Li, Bei; Zeng, Ming

    2017-08-01

    To optimize the running of micro grid to guarantee the supply and demand balance of electricity, and to promote the utilization of renewable energy. The control strategy of micro grid energy storage system is studied. Firstly, the mixed integer linear programming model is established based on the receding horizon control. Secondly, the modified cuckoo search algorithm is proposed to calculate the model. Finally, a case study is carried out to study the signal characteristic of micro grid and batteries under the optimal control strategy, and the convergence of the modified cuckoo search algorithm is compared with others to verify the validity of the proposed model and method. The results show that, different micro grid running targets can affect the control strategy of energy storage system, which further affect the signal characteristics of the micro grid. Meanwhile, the convergent speed, computing time and the economy of the modified cuckoo search algorithm are improved compared with the traditional cuckoo search algorithm and differential evolution algorithm.

  11. Issues regarding the usage of MPPT techniques in micro grid systems

    NASA Astrophysics Data System (ADS)

    Szeidert, I.; Filip, I.; Dragan, F.; Gal, A.

    2018-01-01

    The main objective of the control strategies applied at hybrid micro grid systems (wind/hydro/solar), that function based on maximum power point tracking (MPPT) techniques is to improve the conversion system’s efficiency and to preserve the quality of the generated electrical energy (voltage and power factor). One of the main goals of maximum power point tracking strategy is to achieve the harvesting of the maximal possible energy within a certain time period. In order to implement the control strategies for micro grid, there are typically required specific transducers (sensor for wind speed, optical rotational transducers, etc.). In the technical literature, several variants of the MPPT techniques are presented and particularized at some applications (wind energy conversion systems, solar systems, hydro plants, micro grid hybrid systems). The maximum power point tracking implementations are mainly based on two-level architecture. The lower level controls the main variable and the superior level represents the MPPT control structure. The paper presents micro grid structures developed at Politehnica University Timisoara (PUT) within the frame of a research grant. The paper is focused on the application of MPPT strategies on hybrid micro grid systems. There are presented several structures and control strategies and are highlighted their advantages and disadvantages, together with practical implementation guidelines.

  12. Optimal scheduling of micro grids based on single objective programming

    NASA Astrophysics Data System (ADS)

    Chen, Yue

    2018-04-01

    Faced with the growing demand for electricity and the shortage of fossil fuels, how to optimally optimize the micro-grid has become an important research topic to maximize the economic, technological and environmental benefits of the micro-grid. This paper considers the role of the battery and the micro-grid and power grid to allow the exchange of power not exceeding 150kW preconditions, the main study of the economy to load for the goal is to minimize the electricity cost (abandonment of wind), to establish an optimization model, and to solve the problem by genetic algorithm. The optimal scheduling scheme is obtained and the utilization of renewable energy and the impact of the battery involved in regulation are analyzed.

  13. An orthogonal ferromagnetically coupled tetracopper(II) 2 x 2 homoleptic grid supported by micro-O4 bridges and its DFT study.

    PubMed

    Roy, Somnath; Mandal, Tarak Nath; Barik, Anil Kumar; Pal, Sachindranath; Butcher, Ray J; El Fallah, Mohamed Salah; Tercero, Javier; Kar, Susanta Kumar

    2007-03-28

    A pyrazole based ditopic ligand (PzOAP), prepared by the reaction between 5-methylpyrazole-3-carbohydrazide and methyl ester of imino picolinic acid, reacts with Cu(NO3)2.6H2O to form a self-assembled, ferromagnetically coupled, alkoxide bridged tetranuclear homoleptic Cu(II) square grid-complex [Cu4(PzOAP)4(NO3)2] (NO3)2.4H2O (1) with a central Cu4[micro-O4] core, involving four ligand molecules. In the Cu4[micro-O4] core, out of four copper centers, two copper centers are penta-coordinated and the remaining two are hexa-coordinated. In each case of hexa-coordination, the sixth position is occupied by the nitrate ion. The complex 1 has been characterized structurally and magnetically. Although Cu-O-Cu bridge angles are too large (138-141 degrees) and Cu-Cu distances are short (4.043-4.131 A), suitable for propagation of expected antiferromagnetic exchange interactions within the grid, yet intramolecular ferromagnetic exchange (J = 5.38 cm(-1)) is present with S = 4/2 magnetic ground state. This ferromagnetic interaction is quite obvious from the bridging connections (d(x2-y2)) lying almost orthogonally between the metal centers. The exchange pathways parameters have been evaluated from density functional calculations.

  14. A robust nonlinear stabilizer as a controller for improving transient stability in micro-grids.

    PubMed

    Azimi, Seyed Mohammad; Afsharnia, Saeed

    2017-01-01

    This paper proposes a parametric-Lyapunov approach to the design of a stabilizer aimed at improving the transient stability of micro-grids (MGs). This strategy is applied to electronically-interfaced distributed resources (EI-DRs) operating with a unified control configuration applicable to all operational modes (i.e. grid-connected mode, islanded mode, and mode transitions). The proposed approach employs a simple structure compared with other nonlinear controllers, allowing ready implementation of the stabilizer. A new parametric-Lyapunov function is proposed rendering the proposed stabilizer more effective in damping system transition transients. The robustness of the proposed stabilizer is also verified based on both time-domain simulations and mathematical proofs, and an ultimate bound has been derived for the frequency transition transients. The proposed stabilizer operates by deploying solely local information and there are no needs for communication links. The deteriorating effects of the primary resource delays on the transient stability are also treated analytically. Finally, the effectiveness of the proposed stabilizer is evaluated through time-domain simulations and compared with the recently-developed stabilizers performed on a multi-resource MG. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Review of Strategies and Technologies for Demand-Side Management on Isolated Mini-Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harper, Meg

    This review provides an overview of strategies and currently available technologies used for demandside management (DSM) on mini-grids throughout the world. For the purposes of this review, mini-grids are defined as village-scale electricity distribution systems powered by small local generation sources and not connected to a main grid.1 Mini-grids range in size from less than 1 kW to several hundred kW of installed generation capacity and may utilize different generation technologies, such as micro-hydro, biomass gasification, solar, wind, diesel generators, or a hybrid combination of any of these. This review will primarily refer to AC mini-grids, though much of themore » discussion could apply to DC grids as well. Many mini-grids include energy storage, though some rely solely on real-time generation.« less

  16. Advanced Micro Grid Energy Management Coupled with Integrated Volt/VAR Control for Improved Energy Efficiency, Energy Security, and Power Quality at DoD Installations

    DTIC Science & Technology

    2016-10-28

    assumptions. List of Assumptions: Price of electrical energy : $0.07/kWh flat rate for energy at the base Price of peak power: $15/MW peak power...EW-201147) Advanced Micro-Grid Energy Management Coupled with Integrated Volt/VAR Control for Improved Energy Efficiency, Energy Security, and...12-C-0002 5b. GRANT NUMBER Advanced Micro-Grid Energy Management Coupled with Integrated Volt/VAR Control for Improved Energy Efficiency, Energy

  17. Reduction of peak energy demand based on smart appliances energy consumption adjustment

    NASA Astrophysics Data System (ADS)

    Powroźnik, P.; Szulim, R.

    2017-08-01

    In the paper the concept of elastic model of energy management for smart grid and micro smart grid is presented. For the proposed model a method for reducing peak demand in micro smart grid has been defined. The idea of peak demand reduction in elastic model of energy management is to introduce a balance between demand and supply of current power for the given Micro Smart Grid in the given moment. The results of the simulations studies were presented. They were carried out on real household data available on UCI Machine Learning Repository. The results may have practical application in the smart grid networks, where there is a need for smart appliances energy consumption adjustment. The article presents a proposal to implement the elastic model of energy management as the cloud computing solution. This approach of peak demand reduction might have application particularly in a large smart grid.

  18. Study on improved Ip-iq APF control algorithm and its application in micro grid

    NASA Astrophysics Data System (ADS)

    Xie, Xifeng; Shi, Hua; Deng, Haiyingv

    2018-01-01

    In order to enhance the tracking velocity and accuracy of harmonic detection by ip-iq algorithm, a novel ip-iq control algorithm based on the Instantaneous reactive power theory is presented, the improved algorithm adds the lead correction link to adjust the zero point of the detection system, the Fuzzy Self-Tuning Adaptive PI control is introduced to dynamically adjust the DC-link Voltage, which meets the requirement of the harmonic compensation of the micro grid. Simulation and experimental results verify the proposed method is feasible and effective in micro grid.

  19. A Micro grid design for a kind of household energy efficiency management system based on high permeability

    NASA Astrophysics Data System (ADS)

    Li, Siwei; Li, Jun; Liu, Zhuochu; Wang, Min; Yue, Liang

    2017-05-01

    After the access of household distributed photovoltaic, conditions of high permeability generally occur, which cut off the connection between distributed power supply and major network rapidly and use energy storage device to realize electrical energy storage. The above operations cannot be adequate for the power grid health after distributed power supply access any more from the perspective of economy and rationality. This paper uses the integration between device and device, integration between device and system and integration between system and system of household microgrid and household energy efficiency management, to design household microgrid building program and operation strategy containing household energy efficiency management, to achieve efficient integration of household energy efficiency management and household microgrid, to effectively solve problems of high permeability of household distributed power supply and so on.

  20. Control strategy based on SPWM switching patterns for grid connected photovoltaic inverter

    NASA Astrophysics Data System (ADS)

    Hassaine, L.; Mraoui, A.

    2017-02-01

    Generally, for lower installation of photovoltaic systems connected to the grid, pulse width modulation (PWM) is a widely used technique for controlling the voltage source inverters injects currents into the grid. The current injected must be sinusoidal with reduced harmonic distortion. In this paper, a digital implementation of a control strategy based on PWM switching patterns for an inverter for photovoltaic system connected to the grid is presented. This strategy synchronize a sinusoidal inverter output current with a grid voltage The digital implementation of the proposed PWM switching pattern when is compared with the conventional one exhibit the advantage: Simplicity, reduction of the memory requirements and power calculation for the control

  1. A Brokering Protocol for Agent-Based Grid Resource Discovery

    NASA Astrophysics Data System (ADS)

    Kang, Jaeyong; Sim, Kwang Mong

    Resource discovery is one of the basic and key aspects in grid resource management, which aims at searching for the suitable resources for satisfying the requirement of users' applications. This paper introduces an agent-based brokering protocol which connects users and providers in grid environments. In particular, it focuses on addressing the problem of connecting users and providers. A connection algorithm that matches advertisements of users and requests from providers based on pre-specified multiple criteria is devised and implemented. The connection algorithm mainly consists of four stages: selection, evaluation, filtering, and recommendation. A series of experiments that were carried out in executing the protocol, and favorable results were obtained.

  2. Online Optimization Method for Operation of Generators in a Micro Grid

    NASA Astrophysics Data System (ADS)

    Hayashi, Yasuhiro; Miyamoto, Hideki; Matsuki, Junya; Iizuka, Toshio; Azuma, Hitoshi

    Recently a lot of studies and developments about distributed generator such as photovoltaic generation system, wind turbine generation system and fuel cell have been performed under the background of the global environment issues and deregulation of the electricity market, and the technique of these distributed generators have progressed. Especially, micro grid which consists of several distributed generators, loads and storage battery is expected as one of the new operation system of distributed generator. However, since precipitous load fluctuation occurs in micro grid for the reason of its smaller capacity compared with conventional power system, high-accuracy load forecasting and control scheme to balance of supply and demand are needed. Namely, it is necessary to improve the precision of operation in micro grid by observing load fluctuation and correcting start-stop schedule and output of generators online. But it is not easy to determine the operation schedule of each generator in short time, because the problem to determine start-up, shut-down and output of each generator in micro grid is a mixed integer programming problem. In this paper, the authors propose an online optimization method for the optimal operation schedule of generators in micro grid. The proposed method is based on enumeration method and particle swarm optimization (PSO). In the proposed method, after picking up all unit commitment patterns of each generators satisfied with minimum up time and minimum down time constraint by using enumeration method, optimal schedule and output of generators are determined under the other operational constraints by using PSO. Numerical simulation is carried out for a micro grid model with five generators and photovoltaic generation system in order to examine the validity of the proposed method.

  3. Unbalanced voltage control of virtual synchronous generator in isolated micro-grid

    NASA Astrophysics Data System (ADS)

    Cao, Y. Z.; Wang, H. N.; Chen, B.

    2017-06-01

    Virtual synchronous generator (VSG) control is recommended to stabilize the voltage and frequency in isolated micro-grid. However, common VSG control is challenged by widely used unbalance loads, and the linked unbalance voltage problem worsens the power quality of the micro-grid. In this paper, the mathematical model of VSG was presented. Based on the analysis of positive- and negative-sequence equivalent circuit of VSG, an approach was proposed to eliminate the negative-sequence voltage of VSG with unbalance loads. Delay cancellation method and PI controller were utilized to identify and suppress the negative-sequence voltages. Simulation results verify the feasibility of proposed control strategy.

  4. Analysis of turbine-grid interaction of grid-connected wind turbine using HHT

    NASA Astrophysics Data System (ADS)

    Chen, A.; Wu, W.; Miao, J.; Xie, D.

    2018-05-01

    This paper processes the output power of the grid-connected wind turbine with the denoising and extracting method based on Hilbert Huang transform (HHT) to discuss the turbine-grid interaction. At first, the detailed Empirical Mode Decomposition (EMD) and the Hilbert Transform (HT) are introduced. Then, on the premise of decomposing the output power of the grid-connected wind turbine into a series of Intrinsic Mode Functions (IMFs), energy ratio and power volatility are calculated to detect the unessential components. Meanwhile, combined with vibration function of turbine-grid interaction, data fitting of instantaneous amplitude and phase of each IMF is implemented to extract characteristic parameters of different interactions. Finally, utilizing measured data of actual parallel-operated wind turbines in China, this work accurately obtains the characteristic parameters of turbine-grid interaction of grid-connected wind turbine.

  5. Adaptive control paradigm for photovoltaic and solid oxide fuel cell in a grid-integrated hybrid renewable energy system.

    PubMed

    Mumtaz, Sidra; Khan, Laiq

    2017-01-01

    The hybrid power system (HPS) is an emerging power generation scheme due to the plentiful availability of renewable energy sources. Renewable energy sources are characterized as highly intermittent in nature due to meteorological conditions, while the domestic load also behaves in a quite uncertain manner. In this scenario, to maintain the balance between generation and load, the development of an intelligent and adaptive control algorithm has preoccupied power engineers and researchers. This paper proposes a Hermite wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control of photovoltaic (PV) systems to extract maximum power and a Hermite wavelet incorporated NeuroFuzzy indirect adaptive control of Solid Oxide Fuel Cells (SOFC) to obtain a swift response in a grid-connected hybrid power system. A comprehensive simulation testbed for a grid-connected hybrid power system (wind turbine, PV cells, SOFC, electrolyzer, battery storage system, supercapacitor (SC), micro-turbine (MT) and domestic load) is developed in Matlab/Simulink. The robustness and superiority of the proposed indirect adaptive control paradigm are evaluated through simulation results in a grid-connected hybrid power system testbed by comparison with a conventional PI (proportional and integral) control system. The simulation results verify the effectiveness of the proposed control paradigm.

  6. Adaptive control paradigm for photovoltaic and solid oxide fuel cell in a grid-integrated hybrid renewable energy system

    PubMed Central

    Khan, Laiq

    2017-01-01

    The hybrid power system (HPS) is an emerging power generation scheme due to the plentiful availability of renewable energy sources. Renewable energy sources are characterized as highly intermittent in nature due to meteorological conditions, while the domestic load also behaves in a quite uncertain manner. In this scenario, to maintain the balance between generation and load, the development of an intelligent and adaptive control algorithm has preoccupied power engineers and researchers. This paper proposes a Hermite wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control of photovoltaic (PV) systems to extract maximum power and a Hermite wavelet incorporated NeuroFuzzy indirect adaptive control of Solid Oxide Fuel Cells (SOFC) to obtain a swift response in a grid-connected hybrid power system. A comprehensive simulation testbed for a grid-connected hybrid power system (wind turbine, PV cells, SOFC, electrolyzer, battery storage system, supercapacitor (SC), micro-turbine (MT) and domestic load) is developed in Matlab/Simulink. The robustness and superiority of the proposed indirect adaptive control paradigm are evaluated through simulation results in a grid-connected hybrid power system testbed by comparison with a conventional PI (proportional and integral) control system. The simulation results verify the effectiveness of the proposed control paradigm. PMID:28329015

  7. Expanding access to off-grid rural electrification in Africa: An analysis of community-based micro-grids in Kenya

    NASA Astrophysics Data System (ADS)

    Kirubi, Charles Gathu

    Community micro-grids have played a central role in increasing access to off-grid rural electrification (RE) in many regions of the developing world, notably South Asia. However, the promise of community micro-grids in sub-Sahara Africa remains largely unexplored. My study explores the potential and limits of community micro-grids as options for increasing access to off-grid RE in sub-Sahara Africa. Contextualized in five community micro-grids in rural Kenya, my study is framed through theories of collective action and combines qualitative and quantitative methods, including household surveys, electronic data logging and regression analysis. The main contribution of my research is demonstrating the circumstances under which community micro-grids can contribute to rural development and the conditions under which individuals are likely to initiate and participate in such projects collectively. With regard to rural development, I demonstrate that access to electricity enables the use of electric equipment and tools by small and micro-enterprises, resulting in significant improvement in productivity per worker (100--200% depending on the task at hand) and a corresponding growth in income levels in the order of 20--70%, depending on the product made. Access to electricity simultaneously enables and improves delivery of social and business services from a wide range of village-level infrastructure (e.g. schools, markets, water pumps) while improving the productivity of agricultural activities. Moreover, when local electricity users have an ability to charge and enforce cost-reflective tariffs and electricity consumption is closely linked to productive uses that generate incomes, cost recovery is feasible. By their nature---a new technology delivering highly valued services by the elites and other members, limited local experience and expertise, high capital costs---community micro-grids are good candidates for elite-domination. Even so, elite control does not necessarily lead to elite capture. Experiences from different micro-grid settings illustrate the manner in which a coincidence of interest between the elites and the rest of members and access to external support can create incentives and mechanisms to enable community-wide access to scarce services, hence mitigating elite capture. Moreover, access to external support was found to increase the likelihood of participation for the relatively poor households. The policy-relevant message from this research is two-fold. In rural areas with suitable sites for micro-hydro power, the potential for community micro-grids appear considerable to the extent that this option would seem to represent "the road not taken" as far as policies and initiatives aimed at expanding RE are concerned in Kenya and other African countries with comparable settings. However, local participatory initiatives not complimented by external technical assistance run a considerable risk of locking rural households into relatively more costly and poor-quality services. By taking advantage of existing and/or building a dense network of local organizations, including micro-finance agencies, the government and development partners can make available to local communities the necessary support---financial, technical or regulatory---essential for efficient design of micro-grids in addition to facilitating equitable distribution of electricity benefits.

  8. A New Family of Multilevel Grid Connected Inverters Based on Packed U Cell Topology.

    PubMed

    Pakdel, Majid; Jalilzadeh, Saeid

    2017-09-29

    In this paper a novel packed U cell (PUC) based multilevel grid connected inverter is proposed. Unlike the U cell arrangement which consists of two power switches and one capacitor, in the proposed converter topology a lower DC power supply from renewable energy resources such as photovoltaic arrays (PV) is used as a base power source. The proposed topology offers higher efficiency and lower cost using a small number of power switches and a lower DC power source which is supplied from renewable energy resources. Other capacitor voltages are extracted from the base lower DC power source using isolated DC-DC power converters. The operation principle of proposed transformerless multilevel grid connected inverter is analyzed theoretically. Operation of the proposed multilevel grid connected inverter is verified through simulation studies. An experimental prototype using STM32F407 discovery controller board is performed to verify the simulation results.

  9. Robust Control of Wide Bandgap Power Electronics Device Enabled Smart Grid

    NASA Astrophysics Data System (ADS)

    Yao, Tong

    In recent years, wide bandgap (WBG) devices enable power converters with higher power density and higher efficiency. On the other hand, smart grid technologies are getting mature due to new battery technology and computer technology. In the near future, the two technologies will form the next generation of smart grid enabled by WBG devices. This dissertation deals with two applications: silicon carbide (SiC) device used for medium voltage level interface (7.2 kV to 240 V) and gallium nitride (GaN) device used for low voltage level interface (240 V/120 V). A 20 kW solid state transformer (SST) is designed with 6 kHz switching frequency SiC rectifier. Then three robust control design methods are proposed for each of its smart grid operation modes. In grid connected mode, a new LCL filter design method is proposed considering grid voltage THD, grid current THD and current regulation loop robust stability with respect to the grid impedance change. In grid islanded mode, micro synthesis method combined with variable structure control is used to design a robust controller for grid voltage regulation. For grid emergency mode, multivariable controller designed using Hinfinity synthesis method is proposed for accurate power sharing. Controller-hardware-in-the-loop (CHIL) testbed considering 7-SST system is setup with Real Time Digital Simulator (RTDS). The real TMS320F28335 DSP and Spartan 6 FPGA control board is used to interface a switching model SST in RTDS. And the proposed control methods are tested. For low voltage level application, a 3.3 kW smart grid hardware is built with 3 GaN inverters. The inverters are designed with the GaN device characterized using the proposed multi-function double pulse tester. The inverter is controlled by onboard TMS320F28379D dual core DSP with 200 kHz sampling frequency. Each inverter is tested to process 2.2 kW power with overall efficiency of 96.5 % at room temperature. The smart grid monitor system and fault interrupt devices (FID) based on Arduino Mega2560 are built and tested. The smart grid cooperates with GaN inverters through CAN bus communication. At last, the three GaN inverters smart grid achieved the function of grid connected to islanded mode smooth transition.

  10. Zero-voltage DC/DC converter with asymmetric pulse-width modulation for DC micro-grid system

    NASA Astrophysics Data System (ADS)

    Lin, Bor-Ren

    2018-04-01

    This paper presents a zero-voltage switching DC/DC converter for DC micro-grid system applications. The proposed circuit includes three half-bridge circuit cells connected in primary-series and secondary-parallel in order to lessen the voltage rating of power switches and current rating of rectifier diodes. Thus, low voltage stress of power MOSFETs can be adopted for high-voltage input applications with high switching frequency operation. In order to achieve low switching losses and high circuit efficiency, asymmetric pulse-width modulation is used to turn on power switches at zero voltage. Flying capacitors are used between each circuit cell to automatically balance input split voltages. Therefore, the voltage stress of each power switch is limited at Vin/3. Finally, a prototype is constructed and experiments are provided to demonstrate the circuit performance.

  11. Study on optimal configuration of the grid-connected wind-solar-battery hybrid power system

    NASA Astrophysics Data System (ADS)

    Ma, Gang; Xu, Guchao; Ju, Rong; Wu, Tiantian

    2017-08-01

    The capacity allocation of each energy unit in the grid-connected wind-solar-battery hybrid power system is a significant segment in system design. In this paper, taking power grid dispatching into account, the research priorities are as follows: (1) We establish the mathematic models of each energy unit in the hybrid power system. (2) Based on dispatching of the power grid, energy surplus rate, system energy volatility and total cost, we establish the evaluation system for the wind-solar-battery power system and use a number of different devices as the constraint condition. (3) Based on an improved Genetic algorithm, we put forward a multi-objective optimisation algorithm to solve the optimal configuration problem in the hybrid power system, so we can achieve the high efficiency and economy of the grid-connected hybrid power system. The simulation result shows that the grid-connected wind-solar-battery hybrid power system has a higher comprehensive performance; the method of optimal configuration in this paper is useful and reasonable.

  12. Performance optimization of a hybrid micro-grid based on double-loop MPPT and SVC-MERS

    NASA Astrophysics Data System (ADS)

    Wei, Yewen; Hou, Xilun; Zhang, Xiang; Xiong, Shengnan; Peng, Fei

    2018-02-01

    With ever-increasing concerns on environmental pollution and energy shortage, the development of renewable resource has attracted a lot of attention. This paper first reviews both the wind and photovoltaic (PV) generation techniques and approaches of micro-grid voltage control. Then, a novel islanded micro-grid, which consists of wind & PV generation and hybrid-energy storage device, is built for application to remote and isolated areas. For the PV power generation branch, a double- maximum power point tracking (MPPT) technique is developed to trace the sunlight and regulate the tilt angle of PV panels. For wind-power generation branch, squirrel cage induction generator (SCIG) is used as its simple structure, robustness and less cost. In order to stabilize the output voltage of SCIGs, a new Static Var Compensator named magnetic energy recovery switch (SVC-MERS) is applied. Finally, experimental results confirm that both of the proposed methods can improve the efficiency of PV power generation and voltage stability of the micro-grid, respectively.

  13. Robust optimisation-based microgrid scheduling with islanding constraints

    DOE PAGES

    Liu, Guodong; Starke, Michael; Xiao, Bailu; ...

    2017-02-17

    This paper proposes a robust optimization based optimal scheduling model for microgrid operation considering constraints of islanding capability. Our objective is to minimize the total operation cost, including generation cost and spinning reserve cost of local resources as well as purchasing cost of energy from the main grid. In order to ensure the resiliency of a microgrid and improve the reliability of the local electricity supply, the microgrid is required to maintain enough spinning reserve (both up and down) to meet local demand and accommodate local renewable generation when the supply of power from the main grid is interrupted suddenly,more » i.e., microgrid transitions from grid-connected into islanded mode. Prevailing operational uncertainties in renewable energy resources and load are considered and captured using a robust optimization method. With proper robust level, the solution of the proposed scheduling model ensures successful islanding of the microgrid with minimum load curtailment and guarantees robustness against all possible realizations of the modeled operational uncertainties. Numerical simulations on a microgrid consisting of a wind turbine, a PV panel, a fuel cell, a micro-turbine, a diesel generator and a battery demonstrate the effectiveness of the proposed scheduling model.« less

  14. Tariff Considerations for Micro-Grids in Sub-Saharan Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reber, Timothy J.; Booth, Samuel S.; Cutler, Dylan S.

    This report examines some of the key drivers and considerations policymakers and decision makers face when deciding if and how to regulate electricity tariffs for micro-grids. Presenting a range of tariff options, from mandating some variety of national (uniform) tariff to allowing micro-grid developers and operators to set fully cost-reflective tariffs, it examines various benefits and drawbacks of each. In addition, the report and explores various types of cross-subsidies and other transitional forms of regulation that may offer a regulatory middle ground that can help balance the often competing goals of providing price control on electricity service in the namemore » of social good while still providing a means for investors to ensure high enough returns on their investment to attract the necessary capital financing to the market. Using the REopt tool developed by the U.S. Department of Energy's National Renewable Energy Laboratory to inform their study, the authors modeled a few representative micro-grid systems and the resultant levelized cost of electricity, lending context and scale to the consideration of these tariff questions. This simple analysis provides an estimate of the gap between current tariff regimes and the tariffs that would be necessary for developers to recover costs and attract investment, offering further insight into the potential scale of subsidies or other grants that may be required to enable micro-grid development under current regulatory structures. It explores potential options for addressing this gap while trying to balance This report examines some of the key drivers and considerations policymakers and decision makers face when deciding if and how to regulate electricity tariffs for micro-grids. Presenting a range of tariff options, from mandating some variety of national (uniform) tariff to allowing micro-grid developers and operators to set fully cost-reflective tariffs, it examines various benefits and drawbacks of each. In addition, the report and explores various types of cross-subsidies and other transitional forms of regulation that may offer a regulatory middle ground that can help balance the often competing goals of providing price control on electricity service in the name of social good while still providing a means for investors to ensure high enough returns on their investment to attract the necessary capital financing to the market. Using the REopt tool developed by the U.S. Department of Energy's National Renewable Energy Laboratory to inform their study, the authors modeled a few representative micro-grid systems and the resultant levelized cost of electricity, lending context and scale to the consideration of these tariff questions. This simple analysis provides an estimate of the gap between current tariff regimes and the tariffs that would be necessary for developers to recover costs and attract investment, offering further insight into the potential scale of subsidies or other grants that may be required to enable micro-grid development under current regulatory structures. It explores potential options for addressing this gap while trying to balance stakeholder needs, from subsidized national tariffs to lightly regulated cost-reflective tariffs to more of a compromise approach, such as different standards of regulation based on the size of a micro-grid.takeholder needs, from subsidized national tariffs to lightly regulated cost-reflective tariffs to more of a compromise approach, such as different standards of regulation based on the size of a micro-grid.« less

  15. An evaluation method of power quality about electrified railways connected to power grid based on PSCAD/EMTDC

    NASA Astrophysics Data System (ADS)

    Liang, Weibin; Ouyang, Sen; Huang, Xiang; Su, Weijian

    2017-05-01

    The existing modeling process of power quality about electrified railways connected to power grid is complicated and the simulation scene is incomplete, so this paper puts forward a novel evaluation method of power quality based on PSCAD/ETMDC. Firstly, a model of power quality about electrified railways connected to power grid is established, which is based on testing report or measured data. The equivalent model of electrified locomotive contains power characteristic and harmonic characteristic, which are substituted by load and harmonic source. Secondly, in order to make evaluation more complete, an analysis scheme has been put forward. The scheme uses a combination of three-dimensions of electrified locomotive, which contains types, working conditions and quantity. At last, Shenmao Railway is taken as example to evaluate the power quality at different scenes, and the result shows electrified railways connected to power grid have significant effect on power quality.

  16. Smart electric vehicle (EV) charging and grid integration apparatus and methods

    DOEpatents

    Gadh, Rajit; Mal, Siddhartha; Prabhu, Shivanand; Chu, Chi-Cheng; Sheikh, Omar; Chung, Ching-Yen; He, Lei; Xiao, Bingjun; Shi, Yiyu

    2015-05-05

    An expert system manages a power grid wherein charging stations are connected to the power grid, with electric vehicles connected to the charging stations, whereby the expert system selectively backfills power from connected electric vehicles to the power grid through a grid tie inverter (if present) within the charging stations. In more traditional usage, the expert system allows for electric vehicle charging, coupled with user preferences as to charge time, charge cost, and charging station capabilities, without exceeding the power grid capacity at any point. A robust yet accurate state of charge (SOC) calculation method is also presented, whereby initially an open circuit voltage (OCV) based on sampled battery voltages and currents is calculated, and then the SOC is obtained based on a mapping between a previously measured reference OCV (ROCV) and SOC. The OCV-SOC calculation method accommodates likely any battery type with any current profile.

  17. Differential Evolution Based IDWNN Controller for Fault Ride-Through of Grid-Connected Doubly Fed Induction Wind Generators

    PubMed Central

    Manonmani, N.; Subbiah, V.; Sivakumar, L.

    2015-01-01

    The key objective of wind turbine development is to ensure that output power is continuously increased. It is authenticated that wind turbines (WTs) supply the necessary reactive power to the grid at the time of fault and after fault to aid the flowing grid voltage. At this juncture, this paper introduces a novel heuristic based controller module employing differential evolution and neural network architecture to improve the low-voltage ride-through rate of grid-connected wind turbines, which are connected along with doubly fed induction generators (DFIGs). The traditional crowbar-based systems were basically applied to secure the rotor-side converter during the occurrence of grid faults. This traditional controller is found not to satisfy the desired requirement, since DFIG during the connection of crowbar acts like a squirrel cage module and absorbs the reactive power from the grid. This limitation is taken care of in this paper by introducing heuristic controllers that remove the usage of crowbar and ensure that wind turbines supply necessary reactive power to the grid during faults. The controller is designed in this paper to enhance the DFIG converter during the grid fault and this controller takes care of the ride-through fault without employing any other hardware modules. The paper introduces a double wavelet neural network controller which is appropriately tuned employing differential evolution. To validate the proposed controller module, a case study of wind farm with 1.5 MW wind turbines connected to a 25 kV distribution system exporting power to a 120 kV grid through a 30 km 25 kV feeder is carried out by simulation. PMID:26516636

  18. Differential Evolution Based IDWNN Controller for Fault Ride-Through of Grid-Connected Doubly Fed Induction Wind Generators.

    PubMed

    Manonmani, N; Subbiah, V; Sivakumar, L

    2015-01-01

    The key objective of wind turbine development is to ensure that output power is continuously increased. It is authenticated that wind turbines (WTs) supply the necessary reactive power to the grid at the time of fault and after fault to aid the flowing grid voltage. At this juncture, this paper introduces a novel heuristic based controller module employing differential evolution and neural network architecture to improve the low-voltage ride-through rate of grid-connected wind turbines, which are connected along with doubly fed induction generators (DFIGs). The traditional crowbar-based systems were basically applied to secure the rotor-side converter during the occurrence of grid faults. This traditional controller is found not to satisfy the desired requirement, since DFIG during the connection of crowbar acts like a squirrel cage module and absorbs the reactive power from the grid. This limitation is taken care of in this paper by introducing heuristic controllers that remove the usage of crowbar and ensure that wind turbines supply necessary reactive power to the grid during faults. The controller is designed in this paper to enhance the DFIG converter during the grid fault and this controller takes care of the ride-through fault without employing any other hardware modules. The paper introduces a double wavelet neural network controller which is appropriately tuned employing differential evolution. To validate the proposed controller module, a case study of wind farm with 1.5 MW wind turbines connected to a 25 kV distribution system exporting power to a 120 kV grid through a 30 km 25 kV feeder is carried out by simulation.

  19. Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode.

    PubMed

    Poher, V; Zhang, H X; Kennedy, G T; Griffin, C; Oddos, S; Gu, E; Elson, D S; Girkin, M; French, P M W; Dawson, M D; Neil, M A

    2007-09-03

    We describe an optical sectioning microscopy system with no moving parts based on a micro-structured stripe-array light emitting diode (LED). By projecting arbitrary line or grid patterns onto the object, we are able to implement a variety of optical sectioning microscopy techniques such as grid-projection structured illumination and line scanning confocal microscopy, switching from one imaging technique to another without modifying the microscope setup. The micro-structured LED and driver are detailed and depth discrimination capabilities are measured and calculated.

  20. DISTRIBUTED GRID-CONNECTED PHOTOVOLTAIC POWER SYSTEM EMISSION OFFSET ASSESSMENT: STATISTICAL TEST OF SIMULATED- AND MEASURED-BASED DATA

    EPA Science Inventory

    This study assessed the pollutant emission offset potential of distributed grid-connected photovoltaic (PV) power systems. Computer-simulated performance results were utilized for 211 PV systems located across the U.S. The PV systems' monthly electrical energy outputs were based ...

  1. Vehicle-to-Grid Automatic Load Sharing with Driver Preference in Micro-Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yubo; Nazaripouya, Hamidreza; Chu, Chi-Cheng

    Integration of Electrical Vehicles (EVs) with power grid not only brings new challenges for load management, but also opportunities for distributed storage and generation. This paper comprehensively models and analyzes distributed Vehicle-to-Grid (V2G) for automatic load sharing with driver preference. In a micro-grid with limited communications, V2G EVs need to decide load sharing based on their own power and voltage profile. A droop based controller taking into account driver preference is proposed in this paper to address the distributed control of EVs. Simulations are designed for three fundamental V2G automatic load sharing scenarios that include all system dynamics of suchmore » applications. Simulation results demonstrate that active power sharing is achieved proportionally among V2G EVs with consideration of driver preference. In additional, the results also verify the system stability and reactive power sharing analysis in system modelling, which sheds light on large scale V2G automatic load sharing in more complicated cases.« less

  2. Business Pattern of Distributed Energy in Electric Power System Reformation

    NASA Astrophysics Data System (ADS)

    Liang, YUE; Zhuochu, LIU; Jun, LI; Siwei, LI

    2017-05-01

    Under the trend of the electric power system revolution, the operation mode of micro power grid that including distributed power will be more diversified. User’s demand response and different strategies on electricity all have great influence on the operation of distributed power grid. This paper will not only research sensitive factors of micro power grid operation, but also analyze and calculate the cost and benefit of micro power grid operation upon different types. Then it will build a tech-economic calculation model, which applies to different types of micro power grid under the reformation of electric power system.

  3. Solar Energy Grid Integration Systems (SEGIS): adding functionality while maintaining reliability and economics

    NASA Astrophysics Data System (ADS)

    Bower, Ward

    2011-09-01

    An overview of the activities and progress made during the US DOE Solar Energy Grid Integration Systems (SEGIS) solicitation, while maintaining reliability and economics is provided. The SEGIS R&D opened pathways for interconnecting PV systems to intelligent utility grids and micro-grids of the future. In addition to new capabilities are "value added" features. The new hardware designs resulted in smaller, less material-intensive products that are being viewed by utilities as enabling dispatchable generation and not just unpredictable negative loads. The technical solutions enable "advanced integrated system" concepts and "smart grid" processes to move forward in a faster and focused manner. The advanced integrated inverters/controllers can now incorporate energy management functionality, intelligent electrical grid support features and a multiplicity of communication technologies. Portals for energy flow and two-way communications have been implemented. SEGIS hardware was developed for the utility grid of today, which was designed for one-way power flow, for intermediate grid scenarios, AND for the grid of tomorrow, which will seamlessly accommodate managed two-way power flows as required by large-scale deployment of solar and other distributed generation. The SEGIS hardware and control developed for today meets existing standards and codes AND provides for future connections to a "smart grid" mode that enables utility control and optimized performance.

  4. Improvement of the grid-connect current quality using novel proportional-integral controller for photovoltaic inverters.

    PubMed

    Cheng, Yuhua; Chen, Kai; Bai, Libing; Yang, Jing

    2014-02-01

    Precise control of the grid-connected current is a challenge in photovoltaic inverter research. Traditional Proportional-Integral (PI) control technology cannot eliminate steady-state error when tracking the sinusoidal signal from the grid, which results in a very high total harmonic distortion in the grid-connected current. A novel PI controller has been developed in this paper, in which the sinusoidal wave is discretized into an N-step input signal that is decided by the control frequency to eliminate the steady state error of the system. The effect of periodical error caused by the dead zone of the power switch and conduction voltage drop can be avoided; the current tracking accuracy and current harmonic content can also be improved. Based on the proposed PI controller, a 700 W photovoltaic grid-connected inverter is developed and validated. The improvement has been demonstrated through experimental results.

  5. Research on improvement of power quality of Micro - grid based on SVG pulse load

    NASA Astrophysics Data System (ADS)

    Lv, Chuang; Xie, Pu

    2017-05-01

    Pulse load will make the micro-grid public bus power to produce a high peak pulse due to its cyclical pulsation characteristics,, and make the micro-grid voltage fluctuations, frequency fluctuations, voltage and current distortion, power factor reduction and other adverse effects. In order to suppress the adverse effects of the pulse load on the microgrid and improve the power quality of the microgrid, this paper established the SVG simulation model in Matlab / Simulink environment, the superiority of SVG is verified by comparing the improvement of power quality before and after adding the SVG to microgrid system. The results show that the SVG model can suppress the adverse effects effectively of the pulse load on the microgrid, which is of great value and significance to the reactive power compensation and harmonic suppression of the microgrid.

  6. AVQS: attack route-based vulnerability quantification scheme for smart grid.

    PubMed

    Ko, Jongbin; Lim, Hyunwoo; Lee, Seokjun; Shon, Taeshik

    2014-01-01

    A smart grid is a large, consolidated electrical grid system that includes heterogeneous networks and systems. Based on the data, a smart grid system has a potential security threat in its network connectivity. To solve this problem, we develop and apply a novel scheme to measure the vulnerability in a smart grid domain. Vulnerability quantification can be the first step in security analysis because it can help prioritize the security problems. However, existing vulnerability quantification schemes are not suitable for smart grid because they do not consider network vulnerabilities. We propose a novel attack route-based vulnerability quantification scheme using a network vulnerability score and an end-to-end security score, depending on the specific smart grid network environment to calculate the vulnerability score for a particular attack route. To evaluate the proposed approach, we derive several attack scenarios from the advanced metering infrastructure domain. The experimental results of the proposed approach and the existing common vulnerability scoring system clearly show that we need to consider network connectivity for more optimized vulnerability quantification.

  7. Modular AC Nano-Grid with Four-Quadrant Micro-Inverters and High-Efficiency DC-DC Conversion

    NASA Astrophysics Data System (ADS)

    Poshtkouhi, Shahab

    A significant portion of the population in developing countries live in remote communities, where the power infrastructure and the required capital investment to set up local grids do not exist. This is due to the fuel shipment and utilization costs required for fossil fuel based generators, which are traditionally used in these local grids, as well as high upfront costs associated with the centralized Energy Storage Systems (ESS). This dissertation targets modular AC nano-grids for these remote communities developed at minimal capital cost, where the generators are replaced with multiple inverters, connected to either Photovoltaic (PV) or battery modules, which can be gradually added to the nano-grid. A distributed droop-based control architecture is presented for the PV and battery Micro-Inverters (MIV) in order to achieve frequency and voltage stability, as well as active and reactive power sharing. The nano-grid voltage is regulated collectively in either one of four operational regions. Effective load sharing and transient handling are demonstrated experimentally by forming a nano-grid which consists of two custom 500 W MIVs. The MIVs forming the nano-grid have to meet certain requirements. A two-stage MIV architecture and control scheme with four-quadrant power-flow between the nano-grid, the PV/battery and optional short-term storage is presented. The short-term storage is realized using high energy-density Lithium-Ion Capacitor (LIC) technology. A real-time power smoothing algorithm utilizing LIC modules is developed and tested, while the performance of the 100 W MIV is experimentally verified under closed-loop dynamic conditions. Two main limitations of the DAB topology, as the core of the MIV architecture's dc-dc stage, are addressed: 1) This topology demonstrates poor efficiency and limited regulation accuracy at low power. These are improved by introducing a modified topology to operate the DAB in Flyback mode, achieving up to an 8% increase in converter efficiency. 2) The DAB topology needs four digital isolators for driving the active switches on the other side of the isolation boundary. Two Phase-Locked-Loop (PLL) based synchronization schemes are introduced in order to reduce the number of required digital isolators, hence increasing reliability and reducing the implementation costs. One of these schemes is demonstrated on a discrete 150 W DAB prototype, while both of them are implemented on-chip in a 0.18mum 80V BCD process. In addition, the power-stage of the primary-side of a 1 MHz, 50 W DAB converter is fully integrated on the same die. By using such a high switching frequency, the size of passive elements in the DAB is reduced, resulting in further cost reductions for the MIV. The results of this dissertation pave the way for affordable nano-grids with minimal capital cost, reliable performance and reduced complexity.

  8. Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results.

    PubMed

    Humada, Ali M; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M; Ahmed, Mushtaq N

    2016-01-01

    A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions.

  9. Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results

    PubMed Central

    Humada, Ali M.; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M.; Ahmed, Mushtaq N.

    2016-01-01

    A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions. PMID:27035575

  10. Study on Control Scheme for the Inverters in Low Voltage Microgrid with Nonlinear Loads

    NASA Astrophysics Data System (ADS)

    Xu, Jiqiang; Lu, Wenzhou; Wu, Lei

    2017-05-01

    There are a lot of nonlinear loads in real low voltage microgrid system. It will cause serious output voltage and grid current harmonic distortions problems in island and grid-connected modes, respectively. To solve this problem, this paper proposes a droop control scheme with quasi-proportion and resonant (quasi-PR) controller based on αβ stationary reference frame to make microgrid smoothly switch between grid-connected and island modes without changing control method. Moreover, in island mode, not only stable output voltage and frequency, but also reduced output voltage harmonics with added nonlinear loads can be achieved; In grid-connected mode, not only constant power, but also reduced grid current harmonics can be achieved. Simulation results verify the effectiveness of the proposed control scheme.

  11. The Optimization dispatching of Micro Grid Considering Load Control

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Xie, Jiqiang; Yang, Xiu; He, Hongli

    2018-01-01

    This paper proposes an optimization control of micro-grid system economy operation model. It coordinates the new energy and storage operation with diesel generator output, so as to achieve the economic operation purpose of micro-grid. In this paper, the micro-grid network economic operation model is transformed into mixed integer programming problem, which is solved by the mature commercial software, and the new model is proved to be economical, and the load control strategy can reduce the charge and discharge times of energy storage devices, and extend the service life of the energy storage device to a certain extent.

  12. Enhancement of Voltage Stability of DC Smart Grid During Islanded Mode by Load Shedding Scheme

    NASA Astrophysics Data System (ADS)

    Nassor, Thabit Salim; Senjyu, Tomonobu; Yona, Atsushi

    2015-10-01

    This paper presents the voltage stability of a DC smart grid based on renewable energy resources during grid connected and isolated modes. During the islanded mode the load shedding, based on the state of charge of the battery and distribution line voltage, was proposed for voltage stability and reservation of critical load power. The analyzed power system comprises a wind turbine, a photovoltaic generator, storage battery as controllable load, DC loads, and power converters. A fuzzy logic control strategy was applied for power consumption control of controllable loads and the grid-connected dual active bridge series resonant converters. The proposed DC Smart Grid operation has been verified by simulation using MATLAB® and PLECS® Blockset. The obtained results show the effectiveness of the proposed method.

  13. A Review on Development Practice of Smart Grid Technology in China

    NASA Astrophysics Data System (ADS)

    Han, Liu; Chen, Wei; Zhuang, Bo; Shen, Hongming

    2017-05-01

    Smart grid has become an inexorable trend of energy and economy development worldwide. Since the development of smart grid was put forward in China in 2009, we have obtained abundant research results and practical experiences as well as extensive attention from international community in this field. This paper reviews the key technologies and demonstration projects on new energy connection forecasts; energy storage; smart substations; disaster prevention and reduction for power transmission lines; flexible DC transmission; distribution automation; distributed generation access and micro grid; smart power consumption; the comprehensive demonstration of power distribution and utilization; smart power dispatching and control systems; and the communication networks and information platforms of China, systematically, on the basis of 5 fields, i.e., renewable energy integration, smart power transmission and transformation, smart power distribution and consumption, smart power dispatching and control systems and information and communication platforms. Meanwhile, it also analyzes and compares with the developmental level of similar technologies abroad, providing an outlook on the future development trends of various technologies.

  14. Research on Experiment of Islanding Protection Device of Grid-connected Photovoltaic System Based on RTDS

    NASA Astrophysics Data System (ADS)

    Zhou, Ning; Yang, Jia; Cheng, Zheng; Chen, Bo; Su, Yong Chun; Shu, Zhan; Zou, Jin

    2017-06-01

    Solar photovoltaic power generation is the power generation using solar cell module converting sunlight into DC electric energy. In the paper an equivalent model of solar photovoltaic power generation system is built in RTDS. The main circuit structure of the two-stage PV grid-connected system consists of the DC-DC, DC-AC circuit. The MPPT (Maximum Power Point Tracking) control of the PV array is controlled by adjusting the duty ratio of the DC-DC circuit. The proposed control strategy of constant voltage/constant reactive power (V/Q) control is successfully implemented grid-connected control of the inverter when grid-connected operation. The closed-loop experiment of islanding protection device of photovoltaic power plant on RTDS, verifies the correctness of the simulation model, and the experimental verification can be applied to this type of device.

  15. Impacts of P-f & Q-V Droop Control on MicroGrids Transient Stability

    NASA Astrophysics Data System (ADS)

    Zhao-xia, Xiao; Hong-wei, Fang

    Impacts of P-f & Q-V droop control on MicroGrid transient stability was investigated with a wind unit of asynchronous generator in the MicroGrid. The system frequency stability was explored when the motor load starts and its load power changes, and faults of different types and different locations occurs. The simulations were done by PSCAD/EMTDC.

  16. AVQS: Attack Route-Based Vulnerability Quantification Scheme for Smart Grid

    PubMed Central

    Lim, Hyunwoo; Lee, Seokjun; Shon, Taeshik

    2014-01-01

    A smart grid is a large, consolidated electrical grid system that includes heterogeneous networks and systems. Based on the data, a smart grid system has a potential security threat in its network connectivity. To solve this problem, we develop and apply a novel scheme to measure the vulnerability in a smart grid domain. Vulnerability quantification can be the first step in security analysis because it can help prioritize the security problems. However, existing vulnerability quantification schemes are not suitable for smart grid because they do not consider network vulnerabilities. We propose a novel attack route-based vulnerability quantification scheme using a network vulnerability score and an end-to-end security score, depending on the specific smart grid network environment to calculate the vulnerability score for a particular attack route. To evaluate the proposed approach, we derive several attack scenarios from the advanced metering infrastructure domain. The experimental results of the proposed approach and the existing common vulnerability scoring system clearly show that we need to consider network connectivity for more optimized vulnerability quantification. PMID:25152923

  17. On-site fuel cell field test support program

    NASA Astrophysics Data System (ADS)

    Staniunas, J. W.; Merten, G. P.

    1982-01-01

    In order to assess the impact of grid connection on the potential market for fuel cell service, applications studies were conducted to identify the fuel cell operating modes and corresponding fuel cell sizing criteria which offer the most potential for initial commercial service. The market for grid-connected fuel cell service was quantified using United's market analysis program and computerized building data base. Electric and gas consumption data for 268 buildings was added to our surveyed building data file, bringing the total to 407 buildings. These buildings were analyzed for grid-isolated and grid-connected fuel cell service. The results of the analyses indicated that the nursing home, restaurant and health club building sectors offer significant potential for fuel cell service.

  18. A techno-economic assessment of grid connected photovoltaic system for hospital building in Malaysia

    NASA Astrophysics Data System (ADS)

    Mat Isa, Normazlina; Tan, Chee Wei; Yatim, AHM

    2017-07-01

    Conventionally, electricity in hospital building are supplied by the utility grid which uses mix fuel including coal and gas. Due to enhancement in renewable technology, many building shall moving forward to install their own PV panel along with the grid to employ the advantages of the renewable energy. This paper present an analysis of grid connected photovoltaic (GCPV) system for hospital building in Malaysia. A discussion is emphasized on the economic analysis based on Levelized Cost of Energy (LCOE) and total Net Present Post (TNPC) in regards with the annual interest rate. The analysis is performed using Hybrid Optimization Model for Electric Renewables (HOMER) software which give optimization and sensitivity analysis result. An optimization result followed by the sensitivity analysis also being discuss in this article thus the impact of the grid connected PV system has be evaluated. In addition, the benefit from Net Metering (NeM) mechanism also discussed.

  19. The development and performance of smud grid-connected photovoltaic projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborn, D.E.; Collier, D.E.

    1995-11-01

    The utility grid-connected market has been identified as a key market to be developed to accelerate the commercialization of photovoltaics. The Sacramento Municipal Utility District (SMUD) has completed the first two years of a continuing commercialization effort based on two years of a continuing commercialization effort based on the sustained, orderly development of the grid-connected, utility PV market. This program is aimed at developing the experience needed to successfully integrate PV as distributed generation into the utility system and to stimulate the collaborative processes needed to accelerate the cost reductions necessary for PV to be cost-effective in these applications bymore » the year 2000. In the first two years, SMUD has installed over 240 residential and commercial building, grid-connected, rooftop, {open_quotes}PV Pioneer{close_quotes} systems totaling over 1MW of capacity and four substation sited, grid-support PV systems totaling 600 kW bringing the SMUD distributed PV power systems to over 3.7 MW. The 1995 SMUD PV Program will add another approximately 800 kW of PV systems to the District`s distributed PV power system. SMUD also established a partnership with its customers through the PV Pioneer {open_quotes}green pricing{close_quotes} program to advance PV commercialization.« less

  20. Real-time pricing strategy of micro-grid energy centre considering price-based demand response

    NASA Astrophysics Data System (ADS)

    Xu, Zhiheng; Zhang, Yongjun; Wang, Gan

    2017-07-01

    With the development of energy conversion technology such as power to gas (P2G), fuel cell and so on, the coupling between energy sources becomes more and more closely. Centralized dispatch among electricity, natural gas and heat will become a trend. With the goal of maximizing the system revenue, this paper establishes the model of micro-grid energy centre based on energy hub. According to the proposed model, the real-time pricing strategy taking into account price-based demand response of load is developed. And the influence of real-time pricing strategy on the peak load shifting is discussed. In addition, the impact of wind power predicted inaccuracy on real-time pricing strategy is analysed.

  1. The Impact of Transformer Winding Connections of A Grid-Connected PV on Voltage Quality Improvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, Eduard; Tumbelaka, Hanny H.; Gao, Wenzhong

    In this paper, the high-power PV plant is connected to the weak grid by means of a three-phase power transformer. The selection of transformer winding connection is critical especially when the PV inverter has a reactive power controller. In general, transformer winding connection can be arranged in star-star (with neutral earthed) or star-delta. The reactive power controller supports voltage regulation of the power system particularly under transient faults. Its control strategy is based on utilizing the grid currents to make a three-phase reactive unbalanced current with a small gain. The gain is determined by the system impedance. Simulation results exhibitmore » that the control strategy works very well particularly under disturbance conditions when the transformer winding connection is star-star with both neutrals grounded. The power quality in terms of the voltage quality is improved.« less

  2. Research on LLCL Filtering Grid - Connected inverter under the Control of PFI

    NASA Astrophysics Data System (ADS)

    Li, Ren-qing; Zong, Ke-yong; Wang, Yan-ping; Li, Yang; Zhang, Jing

    2018-03-01

    This passage puts forward a kind of LLCL inverter which is based on the proportional feedback integral(PFI) control so as so satisfy the request of the grid-current outputed by the renewable energy generation system. The passage builds the topological graph of grid-connected inverter and makes an analysis of principle of linear superposition aims to reveal the essence of the problem of steady-state error that exists in proportional integral control. We use LLCL filter and the method of passive damping to solve the problem of resonant peak. We make simulation of the grid system with the software named MATLAB/Simulink. The result shows that the grid current enters steady state quickly and in the same time, which has the identical phase and frequency of grid-voltage. The harmonic content in grid current satisfies the request of grid standard.

  3. Surfer: An Extensible Pull-Based Framework for Resource Selection and Ranking

    NASA Technical Reports Server (NTRS)

    Zolano, Paul Z.

    2004-01-01

    Grid computing aims to connect large numbers of geographically and organizationally distributed resources to increase computational power; resource utilization, and resource accessibility. In order to effectively utilize grids, users need to be connected to the best available resources at any given time. As grids are in constant flux, users cannot be expected to keep up with the configuration and status of the grid, thus they must be provided with automatic resource brokering for selecting and ranking resources meeting constraints and preferences they specify. This paper presents a new OGSI-compliant resource selection and ranking framework called Surfer that has been implemented as part of NASA's Information Power Grid (IPG) project. Surfer is highly extensible and may be integrated into any grid environment by adding information providers knowledgeable about that environment.

  4. Sean Esterly | NREL

    Science.gov Websites

    , micro and mini-grid policies and regulations, and international clean energy policy analysis. He has technologies, such as micro- and mini-grids. Strategic energy planning, focusing on both renewable and energy Considerations and Good Practices, NREL Technical Report (2015) Quality Assurance Framework for Mini-Grids, NREL

  5. A Key Pre-Distribution Scheme Based on µ-PBIBD for Enhancing Resilience in Wireless Sensor Networks.

    PubMed

    Yuan, Qi; Ma, Chunguang; Yu, Haitao; Bian, Xuefen

    2018-05-12

    Many key pre-distribution (KPD) schemes based on combinatorial design were proposed for secure communication of wireless sensor networks (WSNs). Due to complexity of constructing the combinatorial design, it is infeasible to generate key rings using the corresponding combinatorial design in large scale deployment of WSNs. In this paper, we present a definition of new combinatorial design, termed “µ-partially balanced incomplete block design (µ-PBIBD)”, which is a refinement of partially balanced incomplete block design (PBIBD), and then describe a 2-D construction of µ-PBIBD which is mapped to KPD in WSNs. Our approach is of simple construction which provides a strong key connectivity and a poor network resilience. To improve the network resilience of KPD based on 2-D µ-PBIBD, we propose a KPD scheme based on 3-D Ex-µ-PBIBD which is a construction of µ-PBIBD from 2-D space to 3-D space. Ex-µ-PBIBD KPD scheme improves network scalability and resilience while has better key connectivity. Theoretical analysis and comparison with the related schemes show that key pre-distribution scheme based on Ex-µ-PBIBD provides high network resilience and better key scalability, while it achieves a trade-off between network resilience and network connectivity.

  6. The effect of seasonal variation on the performances of grid connected photovoltaic system in southern of Algeria

    NASA Astrophysics Data System (ADS)

    Zaghba, L.; Khennane, M.; Terki, N.; Borni, A.; Bouchakour, A.; Fezzani, A.; Mahamed, I. Hadj; Oudjana, S. H.

    2017-02-01

    This paper presents modeling, simulation, and analysis evaluation of the grid-connected PV generation system performance under MATLAB/Simulink. The objective is to study the effect of seasonal variation on the performances of grid connected photovoltaic system in southern of Algeria. This system works with a power converter. This converter allows the connection to the network and extracts maximum power from photovoltaic panels with the MPPT algorithm based on robust neuro-fuzzy sliding approach. The photovoltaic energy produced by the PV generator will be completely injected on the network. Simulation results show that the system controlled by the neuro-fuzzy sliding adapts to changing external disturbances and show their effectiveness not only for continued maximum power point but also for response time and stability.

  7. Adaptive super-twisting sliding mode control for a three-phase single-stage grid-connected differential boost inverter based photovoltaic system.

    PubMed

    Pati, Akshaya K; Sahoo, N C

    2017-07-01

    This paper presents an adaptive super-twisting sliding mode control (STC) along with double-loop control for voltage tracking performance of three-phase differential boost inverter and DC-link capacitor voltage regulation in grid-connected PV system. The effectiveness of the proposed control strategies are demonstrated under realistic scenarios such as variations in solar insolation, load power demand, grid voltage, and transition from grid-connected to standalone mode etc. Additional supplementary power quality control functions such as harmonic compensation, and reactive power management are also investigated with the proposed control strategy. The results are compared with conventional proportional-integral controller, and PWM sliding mode controller. The system performance is evaluated in simulation and in real-time. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  8. MODFLOW–USG version 1: An unstructured grid version of MODFLOW for simulating groundwater flow and tightly coupled processes using a control volume finite-difference formulation

    USGS Publications Warehouse

    Panday, Sorab; Langevin, Christian D.; Niswonger, Richard G.; Ibaraki, Motomu; Hughes, Joseph D.

    2013-01-01

    A new version of MODFLOW, called MODFLOW–USG (for UnStructured Grid), was developed to support a wide variety of structured and unstructured grid types, including nested grids and grids based on prismatic triangles, rectangles, hexagons, and other cell shapes. Flexibility in grid design can be used to focus resolution along rivers and around wells, for example, or to subdiscretize individual layers to better represent hydrostratigraphic units. MODFLOW–USG is based on an underlying control volume finite difference (CVFD) formulation in which a cell can be connected to an arbitrary number of adjacent cells. To improve accuracy of the CVFD formulation for irregular grid-cell geometries or nested grids, a generalized Ghost Node Correction (GNC) Package was developed, which uses interpolated heads in the flow calculation between adjacent connected cells. MODFLOW–USG includes a Groundwater Flow (GWF) Process, based on the GWF Process in MODFLOW–2005, as well as a new Connected Linear Network (CLN) Process to simulate the effects of multi-node wells, karst conduits, and tile drains, for example. The CLN Process is tightly coupled with the GWF Process in that the equations from both processes are formulated into one matrix equation and solved simultaneously. This robustness results from using an unstructured grid with unstructured matrix storage and solution schemes. MODFLOW–USG also contains an optional Newton-Raphson formulation, based on the formulation in MODFLOW–NWT, for improving solution convergence and avoiding problems with the drying and rewetting of cells. Because the existing MODFLOW solvers were developed for structured and symmetric matrices, they were replaced with a new Sparse Matrix Solver (SMS) Package developed specifically for MODFLOW–USG. The SMS Package provides several methods for resolving nonlinearities and multiple symmetric and asymmetric linear solution schemes to solve the matrix arising from the flow equations and the Newton-Raphson formulation, respectively.

  9. The functional micro-organization of grid cells revealed by cellular-resolution imaging

    PubMed Central

    Heys, James G.; Rangarajan, Krsna V.; Dombeck, Daniel A.

    2015-01-01

    Summary Establishing how grid cells are anatomically arranged, on a microscopic scale, in relation to their firing patterns in the environment would facilitate a greater micro-circuit level understanding of the brain’s representation of space. However, all previous grid cell recordings used electrode techniques that provide limited descriptions of fine-scale organization. We therefore developed a technique for cellular-resolution functional imaging of medial entorhinal cortex (MEC) neurons in mice navigating a virtual linear track, enabling a new experimental approach to study MEC. Using these methods, we show that grid cells are physically clustered in MEC compared to non-grid cells. Additionally, we demonstrate that grid cells are functionally micro-organized: The similarity between the environment firing locations of grid cell pairs varies as a function of the distance between them according to a “Mexican Hat” shaped profile. This suggests that, on average, nearby grid cells have more similar spatial firing phases than those further apart. PMID:25467986

  10. Fuzzy comprehensive evaluation for grid-connected performance of integrated distributed PV-ES systems

    NASA Astrophysics Data System (ADS)

    Lv, Z. H.; Li, Q.; Huang, R. W.; Liu, H. M.; Liu, D.

    2016-08-01

    Based on the discussion about topology structure of integrated distributed photovoltaic (PV) power generation system and energy storage (ES) in single or mixed type, this paper focuses on analyzing grid-connected performance of integrated distributed photovoltaic and energy storage (PV-ES) systems, and proposes a comprehensive evaluation index system. Then a multi-level fuzzy comprehensive evaluation method based on grey correlation degree is proposed, and the calculations for weight matrix and fuzzy matrix are presented step by step. Finally, a distributed integrated PV-ES power generation system connected to a 380 V low voltage distribution network is taken as the example, and some suggestions are made based on the evaluation results.

  11. Study on Battery Capacity for Grid-connection Power Planning with Forecasts in Clustered Photovoltaic Systems

    NASA Astrophysics Data System (ADS)

    Shimada, Takae; Kawasaki, Norihiro; Ueda, Yuzuru; Sugihara, Hiroyuki; Kurokawa, Kosuke

    This paper aims to clarify the battery capacity required by a residential area with densely grid-connected photovoltaic (PV) systems. This paper proposes a planning method of tomorrow's grid-connection power from/to the external electric power system by using demand power forecasting and insolation forecasting for PV power predictions, and defines a operation method of the electricity storage device to control the grid-connection power as planned. A residential area consisting of 389 houses consuming 2390 MWh/year of electricity with 2390kW PV systems is simulated based on measured data and actual forecasts. The simulation results show that 8.3MWh of battery capacity is required in the conditions of half-hour planning and 1% or less of planning error ratio and PV output limiting loss ratio. The results also show that existing technologies of forecasting reduce required battery capacity to 49%, and increase the allowable installing PV amount to 210%.

  12. Module Embedded Micro-inverter Smart Grid Ready Residential Solar Electric System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agamy, Mohammed

    The “Module Embedded Micro-inverter Smart Grid Ready Residential Solar Electric System” program is focused on developing innovative concepts for residential photovoltaic (PV) systems with the following objectives: to create an Innovative micro-inverter topology that reduces the cost from the best in class micro-inverter and provides high efficiency (>96% CEC - California Energy Commission), and 25+ year warranty, as well as reactive power support; integrate micro-inverter and PV module to reduce system price by at least $0.25/W through a) accentuating dual use of the module metal frame as a large area heat spreader reducing operating temperature, and b) eliminating redundant wiringmore » and connectors; and create micro-inverter controller handles smart grid and safety functions to simplify implementation and reduce cost.« less

  13. Establishment of key grid-connected performance index system for integrated PV-ES system

    NASA Astrophysics Data System (ADS)

    Li, Q.; Yuan, X. D.; Qi, Q.; Liu, H. M.

    2016-08-01

    In order to further promote integrated optimization operation of distributed new energy/ energy storage/ active load, this paper studies the integrated photovoltaic-energy storage (PV-ES) system which is connected with the distribution network, and analyzes typical structure and configuration selection for integrated PV-ES generation system. By combining practical grid- connected characteristics requirements and technology standard specification of photovoltaic generation system, this paper takes full account of energy storage system, and then proposes several new grid-connected performance indexes such as paralleled current sharing characteristic, parallel response consistency, adjusting characteristic, virtual moment of inertia characteristic, on- grid/off-grid switch characteristic, and so on. A comprehensive and feasible grid-connected performance index system is then established to support grid-connected performance testing on integrated PV-ES system.

  14. Towards resiliency with micro-grids: Portfolio optimization and investment under uncertainty

    NASA Astrophysics Data System (ADS)

    Gharieh, Kaveh

    Energy security and sustained supply of power are critical for community welfare and economic growth. In the face of the increased frequency and intensity of extreme weather conditions which can result in power grid outage, the value of micro-grids to improve the communities' power reliability and resiliency is becoming more important. Micro-grids capability to operate in islanded mode in stressed-out conditions, dramatically decreases the economic loss of critical infrastructure in power shortage occasions. More wide-spread participation of micro-grids in the wholesale energy market in near future, makes the development of new investment models necessary. However, market and price risks in short term and long term along with risk factors' impacts shall be taken into consideration in development of new investment models. This work proposes a set of models and tools to address different problems associated with micro-grid assets including optimal portfolio selection, investment and financing in both community and a sample critical infrastructure (i.e. wastewater treatment plant) levels. The models account for short-term operational volatilities and long-term market uncertainties. A number of analytical methodologies and financial concepts have been adopted to develop the aforementioned models as follows. (1) Capital budgeting planning and portfolio optimization models with Monte Carlo stochastic scenario generation are applied to derive the optimal investment decision for a portfolio of micro-grid assets considering risk factors and multiple sources of uncertainties. (2) Real Option theory, Monte Carlo simulation and stochastic optimization techniques are applied to obtain optimal modularized investment decisions for hydrogen tri-generation systems in wastewater treatment facilities, considering multiple sources of uncertainty. (3) Public Private Partnership (PPP) financing concept coupled with investment horizon approach are applied to estimate public and private parties' revenue shares from a community-level micro-grid project over the course of assets' lifetime considering their optimal operation under uncertainty.

  15. Interim Report by Asia International Grid Connection Study Group

    NASA Astrophysics Data System (ADS)

    Omatsu, Ryo

    2018-01-01

    The Asia International Grid Connection Study Group Interim Report examines the feasibility of developing an international grid connection in Japan. The Group has investigated different cases of grid connections in Europe and conducted research on electricity markets in Northeast Asia, and identifies the barriers and challenges for developing an international grid network including Japan. This presentation introduces basic contents of the interim report by the Study Group.

  16. Making connections: Where STEM learning and Earth science data services meet

    NASA Astrophysics Data System (ADS)

    Bugbee, K.; Ramachandran, R.; Maskey, M.; Gatlin, P. N.; Weigel, A. M.

    2016-12-01

    STEM learning is most effective when students are encouraged to see the connections between science, technology and real world problems. Helping to make these connections has become an increasingly important aspect of Earth science data research. The Global Hydrology Resource Center (GHRC), one of NASA's 12 EOSDIS data centers, has developed a new type of documentation called the micro article to facilitate making connections between data and Earth science research problems. Micro articles are short academic texts that enable a reader to quickly understand a scientific phenomena, a case study, or an instrument used to collect data. While originally designed to increase data discovery and usability, micro articles also serve as a reliable starting point for project-based learning, an educational approach in STEM education, for high school and higher education environments. This presentation will highlight micro articles at the Global Hydrology Resource Center data center and will demonstrate the potential applications of micro articles in project-based learning.

  17. Optimal allocation of industrial PV-storage micro-grid considering important load

    NASA Astrophysics Data System (ADS)

    He, Shaohua; Ju, Rong; Yang, Yang; Xu, Shuai; Liang, Lei

    2018-03-01

    At present, the industrial PV-storage micro-grid has been widely used. This paper presents an optimal allocation model of PV-storage micro-grid capacity considering the important load of industrial users. A multi-objective optimization model is established to promote the local extinction of PV power generation and the maximum investment income of the enterprise as the objective function. Particle swarm optimization (PSO) is used to solve the case of a city in Jiangsu Province, the results are analyzed economically.

  18. Silicon nitride grids are compatible with correlative negative staining electron microscopy and tip-enhanced Raman spectroscopy for use in the detection of micro-organisms.

    PubMed

    Lausch, V; Hermann, P; Laue, M; Bannert, N

    2014-06-01

    Successive application of negative staining transmission electron microscopy (TEM) and tip-enhanced Raman spectroscopy (TERS) is a new correlative approach that could be used to rapidly and specifically detect and identify single pathogens including bioterrorism-relevant viruses in complex samples. Our objective is to evaluate the TERS-compatibility of commonly used electron microscopy (EM) grids (sample supports), chemicals and negative staining techniques and, if required, to devise appropriate alternatives. While phosphortungstic acid (PTA) is suitable as a heavy metal stain, uranyl acetate, paraformaldehyde in HEPES buffer and alcian blue are unsuitable due to their relatively high Raman scattering. Moreover, the low thermal stability of the carbon-coated pioloform film on copper grids (pioloform grids) negates their utilization. The silicon in the cantilever of the silver-coated atomic force microscope tip used to record TERS spectra suggested that Si-based grids might be employed as alternatives. From all evaluated Si-based TEM grids, the silicon nitride (SiN) grid was found to be best suited, with almost no background Raman signals in the relevant spectral range, a low surface roughness and good particle adhesion properties that could be further improved by glow discharge. Charged SiN grids have excellent particle adhesion properties. The use of these grids in combination with PTA for contrast in the TEM is suitable for subsequent analysis by TERS. The study reports fundamental modifications and optimizations of the negative staining EM method that allows a combination with near-field Raman spectroscopy to acquire a spectroscopic signature from nanoscale biological structures. This should facilitate a more precise diagnosis of single viral particles and other micro-organisms previously localized and visualized in the TEM. © 2014 The Society for Applied Microbiology.

  19. A meteorological distribution system for high-resolution terrestrial modeling (MicroMet)

    Treesearch

    Glen E. Liston; Kelly Elder

    2006-01-01

    An intermediate-complexity, quasi-physically based, meteorological model (MicroMet) has been developed to produce high-resolution (e.g., 30-m to 1-km horizontal grid increment) atmospheric forcings required to run spatially distributed terrestrial models over a wide variety of landscapes. The following eight variables, required to run most terrestrial models, are...

  20. Grid-connected photovoltaic (PV) systems with batteries storage as solution to electrical grid outages in Burkina Faso

    NASA Astrophysics Data System (ADS)

    Abdoulaye, D.; Koalaga, Z.; Zougmore, F.

    2012-02-01

    This paper deals with a key solution for power outages problem experienced by many African countries and this through grid-connected photovoltaic (PV) systems with batteries storage. African grids are characterized by an insufficient power supply and frequent interruptions. Due to this fact, users who especially use classical grid-connected photovoltaic systems are unable to profit from their installation even if there is sun. In this study, we suggest the using of a grid-connected photovoltaic system with batteries storage as a solution to these problems. This photovoltaic system works by injecting the surplus of electricity production into grid and can also deliver electricity as a stand-alone system with all security needed. To achieve our study objectives, firstly we conducted a survey of a real situation of one African electrical grid, the case of Burkina Faso (SONABEL: National Electricity Company of Burkina). Secondly, as study case, we undertake a sizing, a modeling and a simulation of a grid-connected PV system with batteries storage for the LAME laboratory at the University of Ouagadougou. The simulation shows that the proposed grid-connected system allows users to profit from their photovoltaic installation at any time even if the public electrical grid has some failures either during the day or at night.

  1. Task 4 completion report for 40 Kilowatt grid connected modification contract

    NASA Technical Reports Server (NTRS)

    Vogt, J. H.

    1983-01-01

    Startup, operation in grid connect mode, shutdown from grid connects, operation in isolated mode, shutdown from isolated mode, steady state operation, mode transfers, and voltage disconnects are addressed.

  2. Monitoring of a micro-smart grid: Power consumption data of some machineries of an agro-industrial test site.

    PubMed

    Fabrizio, Enrico; Biglia, Alessandro; Branciforti, Valeria; Filippi, Marco; Barbero, Silvia; Tecco, Giuseppe; Mollo, Paolo; Molino, Andrea

    2017-02-01

    For the management of a (micro)-smart grid it is important to know the patters of the load profiles and of the generators. In this article the power consumption data obtained through a monitoring activity developed on a micro-smart grid in an agro-industrial test-site are presented. In particular, this reports the synthesis of the monitoring results of 5 loads (5 industrial machineries for crop micronization, corncob crashing and other similar processes). How these data were used within a monitoring and managing scheme of a micro-smart grid can be found in (E. Fabrizio, V. Branciforti, A. Costantino, M. Filippi, S. Barbero, G. Tecco, P. Mollo, A. Molino, 2017) [1]. The data can be useful for other researchers in order to create benchmarks of energy use input appropriate energy demand values in optimization tools for the industrial sector.

  3. Fill and spill drives runoff connectivity over frozen ground

    NASA Astrophysics Data System (ADS)

    Coles, A. E.; McDonnell, J. J.

    2018-03-01

    Snowmelt-runoff processes on frozen ground are poorly understood at the hillslope scale. This is especially true for hillslopes on the northern Great Plains of North America where long periods of snow-covered frozen ground with very shallow slopes mask any spatial patterns and process controls on connectivity and hillslope runoff generation. This study examines a 4.66 ha (46,600 m2) hillslope on the northern Great Plains during the 2014 spring snowmelt season to explore hillslope runoff processes. Specifically, we explore the spatial patterns of runoff production source areas and examine how surface topography and patterns of snow cover, snow water equivalent, soil water content, and thawed layer depth - which we measured on a 10 m grid across our 46,600 m2 hillslope - affect melt water partitioning and runoff connectivity. A key question was whether or not the controls on connectivity are consistent with the fill and spill mechanism found in rain-dominated and unfrozen soil domains. The contrast between the slow infiltration rates into frozen soil and the relatively fast rates of snowmelt delivery to the soil surface resulted in water accumulation in small depressions under the snowpack. Consequently, infiltration was minimal over the 12 day melt period. Instead, nested filling of micro- and meso-depressions was followed by macro-scale, whole-slope spilling. This spilling occurred when large patches of ponded water exceeded the storage capacity behind downslope micro barriers in the surface topography, and flows from them coalesced to drive a rapid increase in runoff at the hillslope outlet. These observations of ponded water and flowpaths followed mapable fill and spill locations based on 2 m resolution digital topographic analysis. Interestingly, while surface topography is relatively unimportant under unfrozen conditions at our site because of low relief and high infiltrability, surface topography shows episodically critical importance for connectivity and runoff generation when the ground is frozen.

  4. Control and prediction for blackouts caused by frequency collapse in smart grids.

    PubMed

    Wang, Chengwei; Grebogi, Celso; Baptista, Murilo S

    2016-09-01

    The electric power system is one of the cornerstones of modern society. One of its most serious malfunctions is the blackout, a catastrophic event that may disrupt a substantial portion of the system, playing havoc to human life and causing great economic losses. Thus, understanding the mechanisms leading to blackouts and creating a reliable and resilient power grid has been a major issue, attracting the attention of scientists, engineers, and stakeholders. In this paper, we study the blackout problem in power grids by considering a practical phase-oscillator model. This model allows one to simultaneously consider different types of power sources (e.g., traditional AC power plants and renewable power sources connected by DC/AC inverters) and different types of loads (e.g., consumers connected to distribution networks and consumers directly connected to power plants). We propose two new control strategies based on our model, one for traditional power grids and another one for smart grids. The control strategies show the efficient function of the fast-response energy storage systems in preventing and predicting blackouts in smart grids. This work provides innovative ideas which help us to build up a robuster and more economic smart power system.

  5. Control and prediction for blackouts caused by frequency collapse in smart grids

    NASA Astrophysics Data System (ADS)

    Wang, Chengwei; Grebogi, Celso; Baptista, Murilo S.

    2016-09-01

    The electric power system is one of the cornerstones of modern society. One of its most serious malfunctions is the blackout, a catastrophic event that may disrupt a substantial portion of the system, playing havoc to human life and causing great economic losses. Thus, understanding the mechanisms leading to blackouts and creating a reliable and resilient power grid has been a major issue, attracting the attention of scientists, engineers, and stakeholders. In this paper, we study the blackout problem in power grids by considering a practical phase-oscillator model. This model allows one to simultaneously consider different types of power sources (e.g., traditional AC power plants and renewable power sources connected by DC/AC inverters) and different types of loads (e.g., consumers connected to distribution networks and consumers directly connected to power plants). We propose two new control strategies based on our model, one for traditional power grids and another one for smart grids. The control strategies show the efficient function of the fast-response energy storage systems in preventing and predicting blackouts in smart grids. This work provides innovative ideas which help us to build up a robuster and more economic smart power system.

  6. Smart Grid Maturity Model: SGMM Model Definition. Version 1.2

    DTIC Science & Technology

    2011-09-01

    electricity (e.g., solar power and wind) to be connected to the grid. If this were the case, any excess generated electricity would flow onto the grid, and... solar panels to the grid or electric vehicles to the grid. CUST-4.7 A common residential customer experience has been integrated. This experience is...individual devices (e.g., appliances) has been deployed. CUST-5.3 Plug-and-play customer-based generation (e.g., wind and solar ) is supported. This

  7. Model Predictive Control of A Matrix-Converter Based Solid State Transformer for Utility Grid Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Yaosuo

    The matrix converter solid state transformer (MC-SST), formed from the back-to-back connection of two three-to-single-phase matrix converters, is studied for use in the interconnection of two ac grids. The matrix converter topology provides a light weight and low volume single-stage bidirectional ac-ac power conversion without the need for a dc link. Thus, the lifetime limitations of dc-bus storage capacitors are avoided. However, space vector modulation of this type of MC-SST requires to compute vectors for each of the two MCs, which must be carefully coordinated to avoid commutation failure. An additional controller is also required to control power exchange betweenmore » the two ac grids. In this paper, model predictive control (MPC) is proposed for an MC-SST connecting two different ac power grids. The proposed MPC predicts the circuit variables based on the discrete model of MC-SST system and the cost function is formulated so that the optimal switch vector for the next sample period is selected, thereby generating the required grid currents for the SST. Simulation and experimental studies are carried out to demonstrate the effectiveness and simplicity of the proposed MPC for such MC-SST-based grid interfacing systems.« less

  8. Method of making a back contacted solar cell

    DOEpatents

    Gee, James M.

    1995-01-01

    A back-contacted solar cell having laser-drilled vias connecting the front-surface carrier-collector junction to an electrode grid on the back surface. The structure may also include a rear surface carrier-collector junction connected to the same grid. The substrate is connected to a second grid which is interdigitated with the first. Both grids are configured for easy series connection with neighboring cells. Several processes are disclosed to produce the cell.

  9. A calibration methodology of QCT BMD for human vertebral body with registered micro-CT images.

    PubMed

    Dall'Ara, E; Varga, P; Pahr, D; Zysset, P

    2011-05-01

    The accuracy of QCT-based homogenized finite element (FE) models is strongly related to the accuracy of the prediction of bone volume fraction (BV/TV) from bone mineral density (BMD). The goal of this study was to establish a calibration methodology to relate the BMD computed with QCT with the BV/TV computed with micro-CT (microCT) over a wide range of bone mineral densities and to investigate the effect of region size in which BMD and BV/TV are computed. Six human vertebral bodies were dissected from the spine of six donors and scanned submerged in water with QCT (voxel size: 0.391 x 0.391 x 0.450 mm3) and microCT (isotropic voxel size: 0.018(3) mm3). The microCT images were segmented with a single level threshold. Afterward, QCT-grayscale, microCT-grayscale, and microCT-segmented images were registered. Two isotropic grids of 1.230 mm (small) and 4.920 mm (large) were superimposed on every image, and QCT(BMD) was compared both with microCT(BMD) and microCT(BV/TV) for each grid cell. The ranges of QCT(BMD) for large and small regions were 9-559 mg/cm3 and -90 to 1006 mg/cm3, respectively. QCT(BMD) was found to overestimate microCT(BMD). No significant differences were found between the QCT(BMD)-microCT(BV/TV) regression parameters of the two grid sizes. However, the R2 was higher, and the standard error of the estimate (SEE) was lower for large regions when compared to small regions. For the pooled data, an extrapolated QCTBMD value equal to 1062 mg/ cm3 was found to correspond to 100% microCT(BV/TV). A calibration method was defined to evaluate BV/TV from QCTBMD values for cortical and trabecular bone in vitro. The QCT(BMD-microCT(BV/TV) calibration was found to be dependent on the scanned vertebral section but not on the size of the regions. However, the higher SEE computed for small regions suggests that the deleterious effect of QCT image noise on FE modelling increases with decreasing voxel size.

  10. Coordinated control of micro-grid based on distributed moving horizon control.

    PubMed

    Ma, Miaomiao; Shao, Liyang; Liu, Xiangjie

    2018-05-01

    This paper proposed the distributed moving horizon coordinated control scheme for the power balance and economic dispatch problems of micro-grid based on distributed generation. We design the power coordinated controller for each subsystem via moving horizon control by minimizing a suitable objective function. The objective function of distributed moving horizon coordinated controller is chosen based on the principle that wind power subsystem has the priority to generate electricity while photovoltaic power generation coordinates with wind power subsystem and the battery is only activated to meet the load demand when necessary. The simulation results illustrate that the proposed distributed moving horizon coordinated controller can allocate the output power of two generation subsystems reasonably under varying environment conditions, which not only can satisfy the load demand but also limit excessive fluctuations of output power to protect the power generation equipment. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Microgrid Restraining Strategy Based on Improved DC Grid Connected DFIG Torque Ripple

    NASA Astrophysics Data System (ADS)

    Fei, Xia; Yang, Zhixiong; Zongze, Xia

    2017-05-01

    Aiming to the voltage of the stator side is generated by the modulation of the SSC in the improved topology, especially under the circumstance with the asymmTeric fault of stator side, DFIG’s electromagnTeic torque, amplifies ripple of grid-connected power for the grid side. The novel control mTehod suitable to stator side converter and rotor side converter based on reduced-order resonant controller (RORC) is proposed in this thesis, DFIG’s torque and output power performance are improved. Under the RORC control conditions the transfer functions of stator current and torque control system are established, the amplitude characteristic and the system stability of RORC control are analysed. The simulation results in Matlab/Simulink verify the correctness and validity of the proposed mTehod.

  12. Method of making a back contacted solar cell

    DOEpatents

    Gee, J.M.

    1995-11-21

    A back-contacted solar cell is described having laser-drilled vias connecting the front-surface carrier-collector junction to an electrode grid on the back surface. The structure may also include a rear surface carrier-collector junction connected to the same grid. The substrate is connected to a second grid which is interdigitated with the first. Both grids are configured for easy series connection with neighboring cells. Several processes are disclosed to produce the cell. 2 figs.

  13. Design of an Internal Model Control strategy for single-phase grid-connected PWM inverters and its performance analysis with a non-linear local load and weak grid.

    PubMed

    Chaves, Eric N; Coelho, Ernane A A; Carvalho, Henrique T M; Freitas, Luiz C G; Júnior, João B V; Freitas, Luiz C

    2016-09-01

    This paper presents the design of a controller based on Internal Model Control (IMC) applied to a grid-connected single-phase PWM inverter. The mathematical modeling of the inverter and the LCL output filter, used to project the 1-DOF IMC controller, is presented and the decoupling of grid voltage by a Feedforward strategy is analyzed. A Proportional - Resonant Controller (P+Res) was used for the control of the same plant in the running of experimental results, thus moving towards the discussion of differences regarding IMC and P+Res performances, which arrived at the evaluation of the proposed control strategy. The results are presented for typical conditions, for weak-grid and for non-linear local load, in order to verify the behavior of the controller against such situations. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Research on wind power grid-connected operation and dispatching strategies of Liaoning power grid

    NASA Astrophysics Data System (ADS)

    Han, Qiu; Qu, Zhi; Zhou, Zhi; He, Xiaoyang; Li, Tie; Jin, Xiaoming; Li, Jinze; Ling, Zhaowei

    2018-02-01

    As a kind of clean energy, wind power has gained rapid development in recent years. Liaoning Province has abundant wind resources and the total installed capacity of wind power is in the forefront. With the large-scale wind power grid-connected operation, the contradiction between wind power utilization and peak load regulation of power grid has been more prominent. To this point, starting with the power structure and power grid installation situation of Liaoning power grid, the distribution and the space-time output characteristics of wind farm, the prediction accuracy, the curtailment and the off-grid situation of wind power are analyzed. Based on the deep analysis of the seasonal characteristics of power network load, the composition and distribution of main load are presented. Aiming at the problem between the acceptance of wind power and power grid adjustment, the scheduling strategies are given, including unit maintenance scheduling, spinning reserve, energy storage equipment settings by the analysis of the operation characteristics and the response time of thermal power units and hydroelectric units, which can meet the demand of wind power acceptance and provide a solution to improve the level of power grid dispatching.

  15. Human motor cortical activity recorded with Micro-ECoG electrodes, during individual finger movements.

    PubMed

    Wang, W; Degenhart, A D; Collinger, J L; Vinjamuri, R; Sudre, G P; Adelson, P D; Holder, D L; Leuthardt, E C; Moran, D W; Boninger, M L; Schwartz, A B; Crammond, D J; Tyler-Kabara, E C; Weber, D J

    2009-01-01

    In this study human motor cortical activity was recorded with a customized micro-ECoG grid during individual finger movements. The quality of the recorded neural signals was characterized in the frequency domain from three different perspectives: (1) coherence between neural signals recorded from different electrodes, (2) modulation of neural signals by finger movement, and (3) accuracy of finger movement decoding. It was found that, for the high frequency band (60-120 Hz), coherence between neighboring micro-ECoG electrodes was 0.3. In addition, the high frequency band showed significant modulation by finger movement both temporally and spatially, and a classification accuracy of 73% (chance level: 20%) was achieved for individual finger movement using neural signals recorded from the micro-ECoG grid. These results suggest that the micro-ECoG grid presented here offers sufficient spatial and temporal resolution for the development of minimally-invasive brain-computer interface applications.

  16. The Effect of DEM Source and Grid Size on the Index of Connectivity in Savanna Catchments

    NASA Astrophysics Data System (ADS)

    Jarihani, Ben; Sidle, Roy; Bartley, Rebecca; Roth, Christian

    2017-04-01

    The term "hydrological connectivity" is increasingly used instead of sediment delivery ratio to describe the linkage between the sources of water and sediment within a catchment to the catchment outlet. Sediment delivery ratio is an empirical parameter that is highly site-specific and tends to lump all processes, whilst hydrological connectivity focuses on the spatially-explicit hydrologic drivers of surficial processes. Detailed topographic information plays a fundamental role in geomorphological interpretations as well as quantitative modelling of sediment fluxes and connectivity. Geomorphometric analysis permits a detailed characterization of drainage area and drainage pattern together with the possibility of characterizing surface roughness. High resolution topographic data (i.e., LiDAR) are not available for all areas; however, remotely sensed topographic data from multiple sources with different grid sizes are used to undertake geomorphologic analysis in data-sparse regions. The Index of Connectivity (IC), a geomorphometric model based only on DEM data, is applied in two small savanna catchments in Queensland, Australia. The influence of the scale of the topographic data is explored by using DEMs from LiDAR ( 1 m), WorldDEM ( 10 m), raw SRTM and hydrologically corrected SRTM derived data ( 30 m) to calculate the index of connectivity. The effect of the grid size is also investigated by resampling the high resolution LiDAR DEM to multiple grid sizes (e.g. 5, 10, 20 m) and comparing the extracted IC.

  17. Deployment of 802.15.4 Sensor Networks for C4ISR Operations

    DTIC Science & Technology

    2006-06-01

    43 Figure 20.MSP410CA Dense Grid Monitoring (Crossbow User’s Manual, 2005). ....................................44 Figure 21.(a)MICA2 without...Deployment of Sensor Grid (COASTS OPORD, 2006). ...56 Figure 27.Topology View of Two Nodes and Base Station .......57 Figure 28.Nodes Employing Multi...Random Access Memory TCP/IP Transmission Control Protocol/Internet Protocol TinyOS Tiny Micro Threading Operating System UARTs Universal

  18. Analysis and experimental verification of new power flow control for grid-connected inverter with LCL filter in microgrid.

    PubMed

    Gu, Herong; Guan, Yajuan; Wang, Huaibao; Wei, Baoze; Guo, Xiaoqiang

    2014-01-01

    Microgrid is an effective way to integrate the distributed energy resources into the utility networks. One of the most important issues is the power flow control of grid-connected voltage-source inverter in microgrid. In this paper, the small-signal model of the power flow control for the grid-connected inverter is established, from which it can be observed that the conventional power flow control may suffer from the poor damping and slow transient response. While the new power flow control can mitigate these problems without affecting the steady-state power flow regulation. Results of continuous-domain simulations in MATLAB and digital control experiments based on a 32-bit fixed-point TMS320F2812 DSP are in good agreement, which verify the small signal model analysis and effectiveness of the proposed method.

  19. Finite Control Set Model Predictive Control for Multiple Distributed Generators Microgrids

    NASA Astrophysics Data System (ADS)

    Babqi, Abdulrahman Jamal

    This dissertation proposes two control strategies for AC microgrids that consist of multiple distributed generators (DGs). The control strategies are valid for both grid-connected and islanded modes of operation. In general, microgrid can operate as a stand-alone system (i.e., islanded mode) or while it is connected to the utility grid (i.e., grid connected mode). To enhance the performance of a micrgorid, a sophisticated control scheme should be employed. The control strategies of microgrids can be divided into primary and secondary controls. The primary control regulates the output active and reactive powers of each DG in grid-connected mode as well as the output voltage and frequency of each DG in islanded mode. The secondary control is responsible for regulating the microgrid voltage and frequency in the islanded mode. Moreover, it provides power sharing schemes among the DGs. In other words, the secondary control specifies the set points (i.e. reference values) for the primary controllers. In this dissertation, Finite Control Set Model Predictive Control (FCS-MPC) was proposed for controlling microgrids. FCS-MPC was used as the primary controller to regulate the output power of each DG (in the grid-connected mode) or the voltage of the point of DG coupling (in the islanded mode of operation). In the grid-connected mode, Direct Power Model Predictive Control (DPMPC) was implemented to manage the power flow between each DG and the utility grid. In the islanded mode, Voltage Model Predictive Control (VMPC), as the primary control, and droop control, as the secondary control, were employed to control the output voltage of each DG and system frequency. The controller was equipped with a supplementary current limiting technique in order to limit the output current of each DG in abnormal incidents. The control approach also enabled smooth transition between the two modes. The performance of the control strategy was investigated and verified using PSCAD/EMTDC software platform. This dissertation also proposes a control and power sharing strategy for small-scale microgrids in both grid-connected and islanded modes based on centralized FCS-MPC. In grid-connected mode, the controller was capable of managing the output power of each DG and enabling flexible power regulation between the microgrid and the utility grid. In islanded mode, the controller regulated the microgrid voltage and frequency, and provided a precise power sharing scheme among the DGs. In addition, the power sharing can be adjusted flexibly by changing the sharing ratio. The proposed control also enabled plug-and-play operation. Moreover, a smooth transition between the two modes of operation was achieved without any disturbance in the system. Case studies were carried out in order to validate the proposed control strategy with the PSCAD/EMTDA software package.

  20. Source Term Model for Steady Micro Jets in a Navier-Stokes Computer Code

    NASA Technical Reports Server (NTRS)

    Waithe, Kenrick A.

    2005-01-01

    A source term model for steady micro jets was implemented into a non-proprietary Navier-Stokes computer code, OVERFLOW. The source term models the mass flow and momentum created by a steady blowing micro jet. The model is obtained by adding the momentum and mass flow created by the jet to the Navier-Stokes equations. The model was tested by comparing with data from numerical simulations of a single, steady micro jet on a flat plate in two and three dimensions. The source term model predicted the velocity distribution well compared to the two-dimensional plate using a steady mass flow boundary condition, which was used to simulate a steady micro jet. The model was also compared to two three-dimensional flat plate cases using a steady mass flow boundary condition to simulate a steady micro jet. The three-dimensional comparison included a case with a grid generated to capture the circular shape of the jet and a case without a grid generated for the micro jet. The case without the jet grid mimics the application of the source term. The source term model compared well with both of the three-dimensional cases. Comparisons of velocity distribution were made before and after the jet and Mach and vorticity contours were examined. The source term model allows a researcher to quickly investigate different locations of individual or several steady micro jets. The researcher is able to conduct a preliminary investigation with minimal grid generation and computational time.

  1. Towards Stochastic Optimization-Based Electric Vehicle Penetration in a Novel Archipelago Microgrid.

    PubMed

    Yang, Qingyu; An, Dou; Yu, Wei; Tan, Zhengan; Yang, Xinyu

    2016-06-17

    Due to the advantage of avoiding upstream disturbance and voltage fluctuation from a power transmission system, Islanded Micro-Grids (IMG) have attracted much attention. In this paper, we first propose a novel self-sufficient Cyber-Physical System (CPS) supported by Internet of Things (IoT) techniques, namely "archipelago micro-grid (MG)", which integrates the power grid and sensor networks to make the grid operation effective and is comprised of multiple MGs while disconnected with the utility grid. The Electric Vehicles (EVs) are used to replace a portion of Conventional Vehicles (CVs) to reduce CO 2 emission and operation cost. Nonetheless, the intermittent nature and uncertainty of Renewable Energy Sources (RESs) remain a challenging issue in managing energy resources in the system. To address these issues, we formalize the optimal EV penetration problem as a two-stage Stochastic Optimal Penetration (SOP) model, which aims to minimize the emission and operation cost in the system. Uncertainties coming from RESs (e.g., wind, solar, and load demand) are considered in the stochastic model and random parameters to represent those uncertainties are captured by the Monte Carlo-based method. To enable the reasonable deployment of EVs in each MGs, we develop two scheduling schemes, namely Unlimited Coordinated Scheme (UCS) and Limited Coordinated Scheme (LCS), respectively. An extensive simulation study based on a modified 9 bus system with three MGs has been carried out to show the effectiveness of our proposed schemes. The evaluation data indicates that our proposed strategy can reduce both the environmental pollution created by CO 2 emissions and operation costs in UCS and LCS.

  2. Towards Stochastic Optimization-Based Electric Vehicle Penetration in a Novel Archipelago Microgrid

    PubMed Central

    Yang, Qingyu; An, Dou; Yu, Wei; Tan, Zhengan; Yang, Xinyu

    2016-01-01

    Due to the advantage of avoiding upstream disturbance and voltage fluctuation from a power transmission system, Islanded Micro-Grids (IMG) have attracted much attention. In this paper, we first propose a novel self-sufficient Cyber-Physical System (CPS) supported by Internet of Things (IoT) techniques, namely “archipelago micro-grid (MG)”, which integrates the power grid and sensor networks to make the grid operation effective and is comprised of multiple MGs while disconnected with the utility grid. The Electric Vehicles (EVs) are used to replace a portion of Conventional Vehicles (CVs) to reduce CO2 emission and operation cost. Nonetheless, the intermittent nature and uncertainty of Renewable Energy Sources (RESs) remain a challenging issue in managing energy resources in the system. To address these issues, we formalize the optimal EV penetration problem as a two-stage Stochastic Optimal Penetration (SOP) model, which aims to minimize the emission and operation cost in the system. Uncertainties coming from RESs (e.g., wind, solar, and load demand) are considered in the stochastic model and random parameters to represent those uncertainties are captured by the Monte Carlo-based method. To enable the reasonable deployment of EVs in each MGs, we develop two scheduling schemes, namely Unlimited Coordinated Scheme (UCS) and Limited Coordinated Scheme (LCS), respectively. An extensive simulation study based on a modified 9 bus system with three MGs has been carried out to show the effectiveness of our proposed schemes. The evaluation data indicates that our proposed strategy can reduce both the environmental pollution created by CO2 emissions and operation costs in UCS and LCS. PMID:27322281

  3. Indirect adaptive soft computing based wavelet-embedded control paradigms for WT/PV/SOFC in a grid/charging station connected hybrid power system.

    PubMed

    Mumtaz, Sidra; Khan, Laiq; Ahmed, Saghir; Bader, Rabiah

    2017-01-01

    This paper focuses on the indirect adaptive tracking control of renewable energy sources in a grid-connected hybrid power system. The renewable energy systems have low efficiency and intermittent nature due to unpredictable meteorological conditions. The domestic load and the conventional charging stations behave in an uncertain manner. To operate the renewable energy sources efficiently for harvesting maximum power, instantaneous nonlinear dynamics should be captured online. A Chebyshev-wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control paradigm is proposed for variable speed wind turbine-permanent synchronous generator (VSWT-PMSG). A Hermite-wavelet incorporated NeuroFuzzy indirect adaptive MPPT control strategy for photovoltaic (PV) system to extract maximum power and indirect adaptive tracking control scheme for Solid Oxide Fuel Cell (SOFC) is developed. A comprehensive simulation test-bed for a grid-connected hybrid power system is developed in Matlab/Simulink. The robustness of the suggested indirect adaptive control paradigms are evaluated through simulation results in a grid-connected hybrid power system test-bed by comparison with conventional and intelligent control techniques. The simulation results validate the effectiveness of the proposed control paradigms.

  4. Indirect adaptive soft computing based wavelet-embedded control paradigms for WT/PV/SOFC in a grid/charging station connected hybrid power system

    PubMed Central

    Khan, Laiq; Ahmed, Saghir; Bader, Rabiah

    2017-01-01

    This paper focuses on the indirect adaptive tracking control of renewable energy sources in a grid-connected hybrid power system. The renewable energy systems have low efficiency and intermittent nature due to unpredictable meteorological conditions. The domestic load and the conventional charging stations behave in an uncertain manner. To operate the renewable energy sources efficiently for harvesting maximum power, instantaneous nonlinear dynamics should be captured online. A Chebyshev-wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control paradigm is proposed for variable speed wind turbine-permanent synchronous generator (VSWT-PMSG). A Hermite-wavelet incorporated NeuroFuzzy indirect adaptive MPPT control strategy for photovoltaic (PV) system to extract maximum power and indirect adaptive tracking control scheme for Solid Oxide Fuel Cell (SOFC) is developed. A comprehensive simulation test-bed for a grid-connected hybrid power system is developed in Matlab/Simulink. The robustness of the suggested indirect adaptive control paradigms are evaluated through simulation results in a grid-connected hybrid power system test-bed by comparison with conventional and intelligent control techniques. The simulation results validate the effectiveness of the proposed control paradigms. PMID:28877191

  5. Subsurface to substrate: dual-scale micro/nanofluidic networks for investigating transport anomalies in tight porous media.

    PubMed

    Kelly, Shaina A; Torres-Verdín, Carlos; Balhoff, Matthew T

    2016-08-07

    Micro/nanofluidic experiments in synthetic representations of tight porous media, often referred to as "reservoir-on-a-chip" devices, are an emerging approach to researching anomalous fluid transport trends in energy-bearing and fluid-sequestering geologic porous media. We detail, for the first time, the construction of dual-scale micro/nanofluidic devices that are relatively large-scale, two-dimensional network representations of granular and fractured nanoporous media. The fabrication scheme used in the development of the networks on quartz substrates (master patterns) is facile and replicable: transmission electron microscopy (TEM) grids with lacey carbon support film were used as shadow masks in thermal evaporation/deposition and reactive ion etch (RIE) was used for hardmask pattern transfer. The reported nanoscale network geometries are heterogeneous and composed of hydraulically resistive paths (throats) meeting at junctures (pores) to mimic the low topological connectivity of nanoporous sedimentary rocks such as shale. The geometry also includes homogenous microscale grid patterns that border the nanoscale networks and represent microfracture pathways. Master patterns were successfully replicated with a sequence of polydimethylsiloxane (PDMS) and Norland Optical Adhesive (NOA) 63 polymers. The functionality of the fabricated quartz and polymer nanofluidic devices was validated with aqueous imbibition experiments and differential interference contrast microscopy. These dual-scale fluidic devices are promising predictive tools for hypothesis testing and calibration against bulk fluid measurements in tight geologic, biologic, and synthetic porous material of similar dual-scale pore structure. Applications to shale/mudrock transport studies in particular are focused on herein.

  6. A Review of Distributed Control Techniques for Power Quality Improvement in Micro-grids

    NASA Astrophysics Data System (ADS)

    Zeeshan, Hafiz Muhammad Ali; Nisar, Fatima; Hassan, Ahmad

    2017-05-01

    Micro-grid is typically visualized as a small scale local power supply network dependent on distributed energy resources (DERs) that can operate simultaneously with grid as well as in standalone manner. The distributed generator of a micro-grid system is usually a converter-inverter type topology acting as a non-linear load, and injecting harmonics into the distribution feeder. Hence, the negative effects on power quality by the usage of distributed generation sources and components are clearly witnessed. In this paper, a review of distributed control approaches for power quality improvement is presented which encompasses harmonic compensation, loss mitigation and optimum power sharing in multi-source-load distributed power network. The decentralized subsystems for harmonic compensation and active-reactive power sharing accuracy have been analysed in detail. Results have been validated to be consistent with IEEE standards.

  7. The marginalization of "small is beautiful": Micro-hydroelectricity, common property, and the politics of rural electricity provision in Thailand

    NASA Astrophysics Data System (ADS)

    Greacen, Christopher Edmund

    This study analyzes forces that constrain sustainable deployment of cost-effective renewable energy in a developing country. By many economic and social measures, community micro-hydro is a superior electrification option for remote mountainous communities in Thailand. Yet despite a 20 year government program, only 59 projects were built and of these less than half remain operating. By comparison, the national grid has extended to over 69,000 villages. Based on microeconomic, engineering, social barriers, common pool resource, and political economic theories, this study investigates first, why so few micro-hydro projects were built, and second, why so few remain operating. Drawing on historical information, site visits, interviews, surveys, and data logging, this study shows that the marginal status of micro-hydro arises from multiple linked factors spanning from village experiences to geopolitical concerns. The dominance of the parastatal rural electrification utility, the PEA, and its singular focus on grid extension are crucial in explaining why so few projects were built. Buffered from financial consequences by domestic and international subsidies, grid expansion proceeded without consideration of alternatives. High costs borne by villagers for micro-hydro discouraged village choice. PEA remains catalytic in explaining why few systems remain operating: grid expansion plans favor villages with existing loads and most villages abandon micro-hydro generators when the grid arrives. Village experiences are fundamental: most projects suffer blackouts, brownouts, and equipment failures due to poor equipment and collective over-consumption. Over-consumption is linked to mismatch between tariffs and generator technical characteristics. Opportunities to resolve problems languished as limited state support focused on building projects and immediate repairs rather than fundamentals. Despite frustrations, many remain proud of "their power plant". Interconnecting and selling electricity to PEA offers a mutually beneficial opportunity for the Thai public and for villagers, but one thus far thwarted by bureaucratic challenges. Explanations of renewable energy dissemination in countries with strong state involvement in rural electrification should borrow approaches from political economy concerning the ways in which politics and constellations of other factors eclipse rational economic behavior. At the village level, common pool resource theory reveals causal linkages between appliance use, equipment limitations, power quality, and equipment failures.

  8. MEMS Micropropulsion Activities at JPL

    NASA Technical Reports Server (NTRS)

    Mueller, Juergen; Chakraborty, Indrani; Vargo, Stephen; Bame, David; Marrese, Colleen; Tang, William C.

    1999-01-01

    A status of MEMS-based micropropulsion activities conducted at JPL will be given. These activities include work conducted on the so called Vaporizing Liquid Micro-Thruster (VLM) which recently underwent proof-of-concept testing, demonstrating the ability to vaporize water propellant at 2 W and 2 V. Micro-ion engine technologies, such m field emitter arrays and micro-grids are being studied. Focus in the field emitter area is on arrays able to survive in thruster plumes and micro-ion engine plasmas to serve as neutralizers aW engine cathodes. Integrated, batch-fabricated Ion repeller grid structures are being studied as well as different emitter tip materials are being investigated to meet these goals. A micro-isolation valve is being studied to isolate microspacecraft feed system during long interplanetary cruises, avoiding leakage and prolonging lifetime and reliability of such systems. This concept relies on the melting of a thin silicon barrier. Burst pressure values as high as 2,900 psig were obtained for these valves and power requirements to melt barriers ranging between 10 - 50 microns in thickness, as determined through thermal finite element calculations, varied between 10 - 30 W to be applied over a duration of merely 0.5 ms.

  9. SMOOTHING THE PEAKS: GRIDSHARE SMART GRID TECHNOLOGY TO REDUCE BROWNOUTS ON MICRO-HYDROELECTRIC MINI-GRIDS IN BHUTAN

    EPA Science Inventory

    Village scale micro-hydroelectric systems in countries like Bhutan, Thailand, Peru, Laos and China provide renewable electricity to thousands of self-reliant communities in remote locations. While promising, many of these systems are plagued by a common problem: brownouts occu...

  10. An Optimal Current Controller Design for a Grid Connected Inverter to Improve Power Quality and Test Commercial PV Inverters.

    PubMed

    Algaddafi, Ali; Altuwayjiri, Saud A; Ahmed, Oday A; Daho, Ibrahim

    2017-01-01

    Grid connected inverters play a crucial role in generating energy to be fed to the grid. A filter is commonly used to suppress the switching frequency harmonics produced by the inverter, this being passive, and either an L- or LCL-filter. The latter is smaller in size compared to the L-filter. But choosing the optimal values of the LCL-filter is challenging due to resonance, which can affect stability. This paper presents a simple inverter controller design with an L-filter. The control topology is simple and applied easily using traditional control theory. Fast Fourier Transform analysis is used to compare different grid connected inverter control topologies. The modelled grid connected inverter with the proposed controller complies with the IEEE-1547 standard, and total harmonic distortion of the output current of the modelled inverter has been just 0.25% with an improved output waveform. Experimental work on a commercial PV inverter is then presented, including the effect of strong and weak grid connection. Inverter effects on the resistive load connected at the point of common coupling are presented. Results show that the voltage and current of resistive load, when the grid is interrupted, are increased, which may cause failure or damage for connecting appliances.

  11. An Optimal Current Controller Design for a Grid Connected Inverter to Improve Power Quality and Test Commercial PV Inverters

    PubMed Central

    Altuwayjiri, Saud A.; Ahmed, Oday A.; Daho, Ibrahim

    2017-01-01

    Grid connected inverters play a crucial role in generating energy to be fed to the grid. A filter is commonly used to suppress the switching frequency harmonics produced by the inverter, this being passive, and either an L- or LCL-filter. The latter is smaller in size compared to the L-filter. But choosing the optimal values of the LCL-filter is challenging due to resonance, which can affect stability. This paper presents a simple inverter controller design with an L-filter. The control topology is simple and applied easily using traditional control theory. Fast Fourier Transform analysis is used to compare different grid connected inverter control topologies. The modelled grid connected inverter with the proposed controller complies with the IEEE-1547 standard, and total harmonic distortion of the output current of the modelled inverter has been just 0.25% with an improved output waveform. Experimental work on a commercial PV inverter is then presented, including the effect of strong and weak grid connection. Inverter effects on the resistive load connected at the point of common coupling are presented. Results show that the voltage and current of resistive load, when the grid is interrupted, are increased, which may cause failure or damage for connecting appliances. PMID:28540362

  12. An islanding detection methodology combining decision trees and Sandia frequency shift for inverter-based distributed generations

    DOE PAGES

    Azim, Riyasat; Li, Fangxing; Xue, Yaosuo; ...

    2017-07-14

    Distributed generations (DGs) for grid-connected applications require an accurate and reliable islanding detection methodology (IDM) for secure system operation. This paper presents an IDM for grid-connected inverter-based DGs. The proposed method is a combination of passive and active islanding detection techniques for aggregation of their advantages and elimination/minimisation of the drawbacks. In the proposed IDM, the passive method utilises critical system attributes extracted from local voltage measurements at target DG locations as well as employs decision tree-based classifiers for characterisation and detection of islanding events. The active method is based on Sandia frequency shift technique and is initiated only whenmore » the passive method is unable to differentiate islanding events from other system events. Thus, the power quality degradation introduced into the system by active islanding detection techniques can be minimised. Furthermore, a combination of active and passive techniques allows detection of islanding events under low power mismatch scenarios eliminating the disadvantage associated with the use of passive techniques alone. Finally, detailed case study results demonstrate the effectiveness of the proposed method in detection of islanding events under various power mismatch scenarios, load quality factors and in the presence of single or multiple grid-connected inverter-based DG units.« less

  13. An islanding detection methodology combining decision trees and Sandia frequency shift for inverter-based distributed generations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azim, Riyasat; Li, Fangxing; Xue, Yaosuo

    Distributed generations (DGs) for grid-connected applications require an accurate and reliable islanding detection methodology (IDM) for secure system operation. This paper presents an IDM for grid-connected inverter-based DGs. The proposed method is a combination of passive and active islanding detection techniques for aggregation of their advantages and elimination/minimisation of the drawbacks. In the proposed IDM, the passive method utilises critical system attributes extracted from local voltage measurements at target DG locations as well as employs decision tree-based classifiers for characterisation and detection of islanding events. The active method is based on Sandia frequency shift technique and is initiated only whenmore » the passive method is unable to differentiate islanding events from other system events. Thus, the power quality degradation introduced into the system by active islanding detection techniques can be minimised. Furthermore, a combination of active and passive techniques allows detection of islanding events under low power mismatch scenarios eliminating the disadvantage associated with the use of passive techniques alone. Finally, detailed case study results demonstrate the effectiveness of the proposed method in detection of islanding events under various power mismatch scenarios, load quality factors and in the presence of single or multiple grid-connected inverter-based DG units.« less

  14. Power Quality Control and Design of Power Converter for Variable-Speed Wind Energy Conversion System with Permanent-Magnet Synchronous Generator

    PubMed Central

    Oğuz, Yüksel; Güney, İrfan; Çalık, Hüseyin

    2013-01-01

    The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS) operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%. PMID:24453905

  15. Power quality control and design of power converter for variable-speed wind energy conversion system with permanent-magnet synchronous generator.

    PubMed

    Oğuz, Yüksel; Güney, İrfan; Çalık, Hüseyin

    2013-01-01

    The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS) operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%.

  16. Advanced correlation grid: Analysis and visualisation of functional connectivity among multiple spike trains.

    PubMed

    Masud, Mohammad Shahed; Borisyuk, Roman; Stuart, Liz

    2017-07-15

    This study analyses multiple spike trains (MST) data, defines its functional connectivity and subsequently visualises an accurate diagram of connections. This is a challenging problem. For example, it is difficult to distinguish the common input and the direct functional connection of two spike trains. The new method presented in this paper is based on the traditional pairwise cross-correlation function (CCF) and a new combination of statistical techniques. First, the CCF is used to create the Advanced Correlation Grid (ACG) correlation where both the significant peak of the CCF and the corresponding time delay are used for detailed analysis of connectivity. Second, these two features of functional connectivity are used to classify connections. Finally, the visualization technique is used to represent the topology of functional connections. Examples are presented in the paper to demonstrate the new Advanced Correlation Grid method and to show how it enables discrimination between (i) influence from one spike train to another through an intermediate spike train and (ii) influence from one common spike train to another pair of analysed spike trains. The ACG method enables scientists to automatically distinguish between direct connections from spurious connections such as common source connection and indirect connection whereas existing methods require in-depth analysis to identify such connections. The ACG is a new and effective method for studying functional connectivity of multiple spike trains. This method can identify accurately all the direct connections and can distinguish common source and indirect connections automatically. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Off-Grid Electricity Access and its Impact on Micro-Enterprises: Evidence from Rural Uganda

    NASA Astrophysics Data System (ADS)

    Muhoro, Peter N.

    The history of development shows convincingly that no country has substantially reduced poverty without massively increasing the use of electricity. The development of micro-enterprises in rural areas of Uganda is linked with increased access and use of electricity services. In this study, I combine quantitative and qualitative methods, including informal surveys, intra-business energy allocation studies and historical analysis, to analyze off-grid electricity access among micro-enterprises in rural western Uganda. I explore the linkages between of grid electricity access and the influence it has on micro- enterprises. Data is obtained from 56 micro-enterprises located in 11 village-towns within 3 districts in Uganda. In studying the micro-enterprises. the focus is on the services that are provided by electricity from modern energy carriers. The type of equipment used, forms of transportation, technical support, level of understanding and education of the entrepreneur, financing for energy equipment, and the role of donors are discussed in this thesis. Qualitative methods are used to allow for new insights and prioritization of concepts to emerge from the field rattier than from theory. Micro-enterprises in rural Uganda create income for the poor; they are resources for poverty reduction. With price adjustments, it becomes possible for those who live below the poverty line, nominally less than $1 a day, to afford the products and services and therefore mitigating the vicious cycle of poverty. Energy consumption among the micro-enterprises is at an average of 0.13kWh/day. The cost of accessing this amount of electricity attributes to about 50% of total revenue. I find that the "practices" used in off-grid electricity access lead to situations where the entrepreneurs have to evaluate pricing and output of products and services to generate higher profits. Such numbers indicate the need for appropriate technologies and profitable policies to be implemented. The data indicates that without subsidies, credit-based sales and better financing options, it is unlikely that access to electricity will increase beyond the levels established in the existing cash market. Concerns about equity and other social issues indicate a need for careful attention to the implications of policy choices and the processes that influence the use of technology.

  18. Optimal configuration of power grid sources based on optimal particle swarm algorithm

    NASA Astrophysics Data System (ADS)

    Wen, Yuanhua

    2018-04-01

    In order to optimize the distribution problem of power grid sources, an optimized particle swarm optimization algorithm is proposed. First, the concept of multi-objective optimization and the Pareto solution set are enumerated. Then, the performance of the classical genetic algorithm, the classical particle swarm optimization algorithm and the improved particle swarm optimization algorithm are analyzed. The three algorithms are simulated respectively. Compared with the test results of each algorithm, the superiority of the algorithm in convergence and optimization performance is proved, which lays the foundation for subsequent micro-grid power optimization configuration solution.

  19. Analysis and Experimental Verification of New Power Flow Control for Grid-Connected Inverter with LCL Filter in Microgrid

    PubMed Central

    Gu, Herong; Guan, Yajuan; Wang, Huaibao; Wei, Baoze; Guo, Xiaoqiang

    2014-01-01

    Microgrid is an effective way to integrate the distributed energy resources into the utility networks. One of the most important issues is the power flow control of grid-connected voltage-source inverter in microgrid. In this paper, the small-signal model of the power flow control for the grid-connected inverter is established, from which it can be observed that the conventional power flow control may suffer from the poor damping and slow transient response. While the new power flow control can mitigate these problems without affecting the steady-state power flow regulation. Results of continuous-domain simulations in MATLAB and digital control experiments based on a 32-bit fixed-point TMS320F2812 DSP are in good agreement, which verify the small signal model analysis and effectiveness of the proposed method. PMID:24672304

  20. The National Grid Project: A system overview

    NASA Technical Reports Server (NTRS)

    Gaither, Adam; Gaither, Kelly; Jean, Brian; Remotigue, Michael; Whitmire, John; Soni, Bharat; Thompson, Joe; Dannenhoffer,, John; Weatherill, Nigel

    1995-01-01

    The National Grid Project (NGP) is a comprehensive numerical grid generation software system that is being developed at the National Science Foundation (NSF) Engineering Research Center (ERC) for Computational Field Simulation (CFS) at Mississippi State University (MSU). NGP is supported by a coalition of U.S. industries and federal laboratories. The objective of the NGP is to significantly decrease the amount of time it takes to generate a numerical grid for complex geometries and to increase the quality of these grids to enable computational field simulations for applications in industry. A geometric configuration can be discretized into grids (or meshes) that have two fundamental forms: structured and unstructured. Structured grids are formed by intersecting curvilinear coordinate lines and are composed of quadrilateral (2D) and hexahedral (3D) logically rectangular cells. The connectivity of a structured grid provides for trivial identification of neighboring points by incrementing coordinate indices. Unstructured grids are composed of cells of any shape (commonly triangles, quadrilaterals, tetrahedra and hexahedra), but do not have trivial identification of neighbors by incrementing an index. For unstructured grids, a set of points and an associated connectivity table is generated to define unstructured cell shapes and neighboring points. Hybrid grids are a combination of structured grids and unstructured grids. Chimera (overset) grids are intersecting or overlapping structured grids. The NGP system currently provides a user interface that integrates both 2D and 3D structured and unstructured grid generation, a solid modeling topology data management system, an internal Computer Aided Design (CAD) system based on Non-Uniform Rational B-Splines (NURBS), a journaling language, and a grid/solution visualization system.

  1. A three-dimensional electrostatic particle-in-cell methodology on unstructured Delaunay-Voronoi grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gatsonis, Nikolaos A.; Spirkin, Anton

    2009-06-01

    The mathematical formulation and computational implementation of a three-dimensional particle-in-cell methodology on unstructured Delaunay-Voronoi tetrahedral grids is presented. The method allows simulation of plasmas in complex domains and incorporates the duality of the Delaunay-Voronoi in all aspects of the particle-in-cell cycle. Charge assignment and field interpolation weighting schemes of zero- and first-order are formulated based on the theory of long-range constraints. Electric potential and fields are derived from a finite-volume formulation of Gauss' law using the Voronoi-Delaunay dual. Boundary conditions and the algorithms for injection, particle loading, particle motion, and particle tracking are implemented for unstructured Delaunay grids. Error andmore » sensitivity analysis examines the effects of particles/cell, grid scaling, and timestep on the numerical heating, the slowing-down time, and the deflection times. The problem of current collection by cylindrical Langmuir probes in collisionless plasmas is used for validation. Numerical results compare favorably with previous numerical and analytical solutions for a wide range of probe radius to Debye length ratios, probe potentials, and electron to ion temperature ratios. The versatility of the methodology is demonstrated with the simulation of a complex plasma microsensor, a directional micro-retarding potential analyzer that includes a low transparency micro-grid.« less

  2. Non-linear control of the output stage of a solar microinverter

    NASA Astrophysics Data System (ADS)

    Lopez-Santos, Oswaldo; Garcia, Germain; Martinez-Salamero, Luis; Avila-Martinez, Juan C.; Seguier, Lionel

    2017-01-01

    This paper presents a proposal to control the output stage of a two-stage solar microinverter to inject real power into the grid. The input stage of the microinverter is used to extract the maximum available power of a photovoltaic module enforcing a power source behavior in the DC-link to feed the output stage. The work here reported is devoted to control a grid-connected power source inverter with a high power quality level at the grid side ensuring the power balance of the microinverter regulating the voltage of the DC-link. The proposed control is composed of a sinusoidal current reference generator and a cascade type controller composed by a current tracking loop and a voltage regulation loop. The current reference is obtained using a synchronized generator based on phase locked loop (PLL) which gives the shape, the frequency and phase of the current signal. The amplitude of the reference is obtained from a simple controller regulating the DC-link voltage. The tracking of the current reference is accomplished by means of a first-order sliding mode control law. The solution takes advantage of the rapidity and inherent robustness of the sliding mode current controller allowing a robust behavior in the regulation of the DC-link using a simple linear controller. The analytical expression to determine the power quality indicators of the micro-inverter's output is theoretically solved giving expressions relating the converter parameters. The theoretical approach is validated using simulation and experimental results.

  3. A general gridding, discretization, and coarsening methodology for modeling flow in porous formations with discrete geological features

    NASA Astrophysics Data System (ADS)

    Karimi-Fard, M.; Durlofsky, L. J.

    2016-10-01

    A comprehensive framework for modeling flow in porous media containing thin, discrete features, which could be high-permeability fractures or low-permeability deformation bands, is presented. The key steps of the methodology are mesh generation, fine-grid discretization, upscaling, and coarse-grid discretization. Our specialized gridding technique combines a set of intersecting triangulated surfaces by constructing approximate intersections using existing edges. This procedure creates a conforming mesh of all surfaces, which defines the internal boundaries for the volumetric mesh. The flow equations are discretized on this conforming fine mesh using an optimized two-point flux finite-volume approximation. The resulting discrete model is represented by a list of control-volumes with associated positions and pore-volumes, and a list of cell-to-cell connections with associated transmissibilities. Coarse models are then constructed by the aggregation of fine-grid cells, and the transmissibilities between adjacent coarse cells are obtained using flow-based upscaling procedures. Through appropriate computation of fracture-matrix transmissibilities, a dual-continuum representation is obtained on the coarse scale in regions with connected fracture networks. The fine and coarse discrete models generated within the framework are compatible with any connectivity-based simulator. The applicability of the methodology is illustrated for several two- and three-dimensional examples. In particular, we consider gas production from naturally fractured low-permeability formations, and transport through complex fracture networks. In all cases, highly accurate solutions are obtained with significant model reduction.

  4. Decentralized Energy Management System for Networked Microgrids in Grid-connected and Islanded Modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhaoyu; Chen, Bokan; Wang, Jianhui

    This paper proposes a decentralized energy management system (EMS) for the coordinated operation of networked Microgirds (MGs) in a distribution system. In the grid-connected mode, the distribution network operator (DNO) and each MG are considered as distinct entities with individual objectives to minimize their own operation costs. It is assumed that both dispatchable and renewable energy source (RES)-based distributed generators (DGs) exist in the distribution network and the networked MGs. In order to coordinate the operation of all entities, we apply a decentralized bi-level algorithm to solve the problem with the first level to conduct negotiations among all entities andmore » the second level to update the non-converging penalties. In the islanded mode, the objective of each MG is to maintain a reliable power supply to its customers. In order to take into account the uncertainties of DG outputs and load consumption, we formulate the problems as two-stage stochastic programs. The first stage is to determine base generation setpoints based on the forecasts and the second stage is to adjust the generation outputs based on the realized scenarios. Case studies of a distribution system with networked MGs demonstrate the effectiveness of the proposed methodology in both grid-connected and islanded modes.« less

  5. Smart Grid Maturity Model: Model Definition. A Framework for Smart Grid Transformation

    DTIC Science & Technology

    2010-09-01

    adoption of more efficient and reliable generation sources and would allow consumer-generated electricity (e.g., solar power and wind) to be connected to...program that pays customers (or credits their accounts) for customer-provided electricity such as from solar panels to the grid or electric vehicles...deployed. CUST-5.3 Plug-and-play customer-based generation (e.g., wind and solar ) is supported. This includes the necessary infrastructure, such

  6. Linear Look-Ahead in Conjunctive Cells: An Entorhinal Mechanism for Vector-Based Navigation

    PubMed Central

    Kubie, John L.; Fenton, André A.

    2012-01-01

    The crisp organization of the “firing bumps” of entorhinal grid cells and conjunctive cells leads to the notion that the entorhinal cortex may compute linear navigation routes. Specifically, we propose a process, termed “linear look-ahead,” by which a stationary animal could compute a series of locations in the direction it is facing. We speculate that this computation could be achieved through learned patterns of connection strengths among entorhinal neurons. This paper has three sections. First, we describe the minimal grid cell properties that will be built into our network. Specifically, the network relies on “rigid modules” of neurons, where all members have identical grid scale and orientation, but differ in spatial phase. Additionally, these neurons must be densely interconnected with synapses that are modifiable early in the animal’s life. Second, we investigate whether plasticity during short bouts of locomotion could induce patterns of connections amongst grid cells or conjunctive cells. Finally, we run a simulation to test whether the learned connection patterns can exhibit linear look-ahead. Our results are straightforward. A simulated 30-min walk produces weak strengthening of synapses between grid cells that do not support linear look-ahead. Similar training in a conjunctive cell module produces a small subset of very strong connections between cells. These strong pairs have three properties: the pre- and post-synaptic cells have similar heading direction. The cell pairs have neighboring grid bumps. Finally, the spatial offset of firing bumps of the cell pair is in the direction of the common heading preference. Such a module can produce strong and accurate linear look-ahead starting in any location and extending in any direction. We speculate that this process may: (1) compute linear paths to goals; (2) update grid cell firing during navigation; and (3) stabilize the rigid modules of grid cells and conjunctive cells. PMID:22557948

  7. The Design of Connection Solid Oxide Fuel Cell (SOFC) Integrated Grid with Three-Phase Inverter

    NASA Astrophysics Data System (ADS)

    Darjat; Sulistyo; Triwiyatno, Aris; Thalib, Humaid

    2018-03-01

    Fuel cell technology is a relatively new energy-saving technology that has the potential to replace conventional energy technologies. Among the different types of generation technologies, fuel cells is the generation technologies considered as a potential source of power generation because it is flexible and can be placed anywhere based distribution system. Modeling of SOFC is done by using Nernst equation. The output power of the fuel cell can be controlled by controlling the flow rate of the fuels used in the process. Three-phase PWM inverter is used to get the form of three-phase voltage which same with the grid. In this paper, the planning and design of the SOFC are connected to the grid.

  8. Impedance-Based Stability Analysis in Grid Interconnection Impact Study Owing to the Increased Adoption of Converter-Interfaced Generators

    DOE PAGES

    Cho, Youngho; Hur, Kyeon; Kang, Yong; ...

    2017-09-08

    This study investigates the emerging harmonic stability concerns to be addressed by grid planners in generation interconnection studies, owing to the increased adoption of renewable energy resources connected to the grid via power electronic converters. The wideband and high-frequency electromagnetic transient (EMT) characteristics of these converter-interfaced generators (CIGs) and their interaction with the grid impedance are not accurately captured in the typical dynamic studies conducted by grid planners. This paper thus identifies the desired components to be studied and subsequently develops a practical process for integrating a new CIG into a grid with the existing CIGs. The steps of thismore » process are as follows: the impedance equation of a CIG using its control dynamics and an interface filter to the grid, for example, an LCL filter (inductor-capacitor-inductor type), is developed; an equivalent impedance model including the existing CIGs nearby and the grid observed from the point of common coupling are derived; the system stability for credible operating scenarios is assessed. Detailed EMT simulations validate the accuracy of the impedance models and stability assessment for various connection scenarios. Here, by complementing the conventional EMT simulation studies, the proposed analytical approach enables grid planners to identify critical design parameters for seamlessly integrating a new CIG and ensuring the reliability of the grid.« less

  9. Micro-Grids for Colonias (TX)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dean Schneider; Michael Martin; Renee Berry

    2012-07-31

    This report describes the results of the final implementation and testing of a hybrid micro-grid system designed for off-grid applications in underserved Colonias along the Texas/Mexico border. The project is a federally funded follow-on to a project funded by the Texas State Energy Conservation Office in 2007 that developed and demonstrated initial prototype hybrid generation systems consisting of a proprietary energy storage technology, high efficiency charging and inverting systems, photovoltaic cells, a wind turbine, and bio-diesel generators. This combination of technologies provided continuous power to dwellings that are not grid connected, with a significant savings in fuel by allowing powermore » generation at highly efficient operating conditions. The objective of this project was to complete development of the prototype systems and to finalize and engineering design; to install and operate the systems in the intended environment, and to evaluate the technical and economic effectiveness of the systems. The objectives of this project were met. This report documents the final design that was achieved and includes the engineering design documents for the system. The system operated as designed, with the system availability limited by maintenance requirements of the diesel gensets. Overall, the system achieved a 96% availability over the operation of the three deployed systems. Capital costs of the systems were dependent upon both the size of the generation system and the scope of the distribution grid, but, in this instance, the systems averaged $0.72/kWh delivered. This cost would decrease significantly as utilization of the system increased. The system with the highest utilization achieved a capitol cost amortized value of $0.34/kWh produced. The average amortized fuel and maintenance cost was $0.48/kWh which was dependent upon the amount of maintenance required by the diesel generator. Economically, the system is difficult to justify as an alternative to grid power. However, the operational costs are reasonable if grid power is unavailable, e.g. in a remote area or in a disaster recovery situation. In fact, avoided fuel costs for the smaller of the systems in use during this project would have a payback of the capital costs of that system in 2.3 years, far short of the effective system life.« less

  10. Complete distributed computing environment for a HEP experiment: experience with ARC-connected infrastructure for ATLAS

    NASA Astrophysics Data System (ADS)

    Read, A.; Taga, A.; O-Saada, F.; Pajchel, K.; Samset, B. H.; Cameron, D.

    2008-07-01

    Computing and storage resources connected by the Nordugrid ARC middleware in the Nordic countries, Switzerland and Slovenia are a part of the ATLAS computing Grid. This infrastructure is being commissioned with the ongoing ATLAS Monte Carlo simulation production in preparation for the commencement of data taking in 2008. The unique non-intrusive architecture of ARC, its straightforward interplay with the ATLAS Production System via the Dulcinea executor, and its performance during the commissioning exercise is described. ARC support for flexible and powerful end-user analysis within the GANGA distributed analysis framework is also shown. Whereas the storage solution for this Grid was earlier based on a large, distributed collection of GridFTP-servers, the ATLAS computing design includes a structured SRM-based system with a limited number of storage endpoints. The characteristics, integration and performance of the old and new storage solutions are presented. Although the hardware resources in this Grid are quite modest, it has provided more than double the agreed contribution to the ATLAS production with an efficiency above 95% during long periods of stable operation.

  11. Novel octanuclear copper(I) metallomacrocycles and their transformation into hexanuclear 2-dimensional grids of copper(i) coordination polymers containing cyclodiphosphazanes, [(micro-NtBuP)2(NC4H8X)2] (X = NMe, O).

    PubMed

    Suresh, D; Balakrishna, Maravanji S; Mague, Joel T

    2008-07-07

    Novel octanuclear copper(I) macrocyclic complexes and hexanuclear 2-dimensional grid-like polymers containing [P(micro-NR)](2) scaffold in which the anionic moieties are trapped inside the cationic macrocyclic cavities are reported.

  12. Micro-assembly of three-dimensional rotary MEMS mirrors

    NASA Astrophysics Data System (ADS)

    Wang, Lidai; Mills, James K.; Cleghorn, William L.

    2009-02-01

    We present a novel approach to construct three-dimensional rotary micro-mirrors, which are fundamental components to build 1×N or N×M optical switching systems. A rotary micro-mirror consists of two microparts: a rotary micro-motor and a micro-mirror. Both of the two microparts are fabricated with PolyMUMPs, a surface micromachining process. A sequential robotic microassembly process is developed to join the two microparts together to construct a threedimensional device. In order to achieve high positioning accuracy and a strong mechanical connection, the micro-mirror is joined to the micro-motor using an adhesive mechanical fastener. The mechanical fastener has self-alignment ability and provides a temporary joint between the two microparts. The adhesive bonding can create a strong permanent connection, which does not require extra supporting plates for the micro-mirror. A hybrid manipulation strategy, which includes pick-and-place and pushing-based manipulations, is utilized to manipulation the micro-mirror. The pick-andplace manipulation has the ability to globally position the micro-mirror in six degrees of freedom. The pushing-based manipulation can achieve high positioning accuracy. This microassembly approach has great flexibility and high accuracy; furthermore, it does not require extra supporting plates, which greatly simplifies the assembly process.

  13. Amelioration de la qualite d'energie d'un systeme de conversion d'energie eolienne a base de machine asynchrone a double alimentation et connecte au reseau electrique =

    NASA Astrophysics Data System (ADS)

    Abderrahim, Iheb

    Wind power generation has grown strongly in the last decade. This results in the development of Wind Energy Conversion System WECS at the levels of modeling and electrical control. Modern WECS operate at varying wind speeds and are equipped with synchronous and asynchronous generators. Among these generators, the Doubly-Fed Induction Generator (DFIG) offers several advantages and capabilities of active and reactive power in four quadrants. WECS based DFIG also causes less conversion costs and minimum energy losses compared with a WECS based on a synchronous generator powered entirely by full scale of power converters. The connection of such a system to the electrical distribution network involves bidirectional operation of networks. This is clearly established in sub and super synchronous operating modes of DFIG. The grid provides the active power to the rotor of DFIG in sub synchronous operating mode and receives the active power of the rotor in super synchronous operating mode of DFIG. Energy quality is thus of major importance during the integration of wind power to the grid. Poor wave quality can affect network stability and could even cause major problems and consequences. This is even more critical where non-linear loads such as the switching power supplies and variable speed drives, are connected to the grid. The idea of this research work is how to mitigate the problems associated with the wave quality while ensuring better implementation of DFIG so that the whole of WECS remains insensitive to external disturbances and parametric variations. The Grid Side Converter (GSC) must be able to compensate harmonics, current unbalance and reactive power injected by a nonlinear three-phase unbalanced load connected to the grid. In addition to these innovative features to improve the conditions of operation of the grid, it provides also the power flow during different modes of operation of the DFIG. It is considered a simple, efficient and cost competitive solution by saving the use of other power equipment. At the same time, the energy efficiency of wind power conversion chain should be improved by extracting the MPPT. Searching allows us to select vector control and control in synchronous reference to achieve these objectives. WECS based DFIG is simulated in MATLAB SIMULINK in the presence of a non-linear balanced and unbalanced three-phase load.

  14. Design and performance analysis of generalised integrator-based controller for grid connected PV system

    NASA Astrophysics Data System (ADS)

    Saxena, Hemant; Singh, Alka; Rai, J. N.

    2018-07-01

    This article discusses the design and control of a single-phase grid-connected photovoltaic (PV) system. A 5-kW PV system is designed and integrated at the DC link of an H-bridge voltage source converter (VSC). The control of the VSC and switching logic is modelled using a generalised integrator (GI). The use of GI or its variants such as second-order GI have recently evolved for synchronisation and are being used as phase locked loop (PLL) circuits for grid integration. Design of PLL circuits and the use of transformations such as Park's and Clarke's are much easier in three-phase systems. But obtaining in-phase and quadrature components becomes an important and challenging issue in single-phase systems. This article addresses this issue and discusses an altogether different application of GI for the design of compensator based on the extraction of in-phase and quadrature components. GI is frequently used as a PLL; however, in this article, it is not used for synchronisation purposes. A new controller has been designed for a single-phase grid-connected PV system working as a single-phase active compensator. Extensive simulation results are shown for the working of integrated PV system under different atmospheric and operating conditions during daytime as well as night conditions. Experimental results showing the proposed control approach are presented and discussed for the hardware set-up developed in the laboratory.

  15. High-temperature solar receiver integrated with a short-term storage system

    NASA Astrophysics Data System (ADS)

    Giovannelli, Ambra; Bashir, Muhammad Anser; Archilei, Erika Maria

    2017-06-01

    Small-Scale Concentrated Solar Power Plants could have a potential market for off-grid applications in rural contexts with limited access to the electrical grid and favorable environmental characteristics. Some Small-Scale plants have already been developed, like the 25-30 kWe Dish-Stirling engine. Other ones are under development as, for example, plants based on Parabolic Trough Collectors coupled with Organic Rankine Cycles. Furthermore, the technological progress achieved in the development of new small high-temperature solar receiver, makes possible the development of interesting systems based on Micro Gas Turbines coupled with Dish collectors. Such systems could have several advantages in terms of costs, reliability and availability if compared with Dish-Stirling plants. In addition, Dish-Micro Gas Turbine systems are expected to have higher performance than Solar Organic Rankine Cycle plants. The present work focuses the attention on some challenging aspects related to the design of small high-temperature solar receivers for Dish-Micro Gas Turbine systems. Natural fluctuations in the solar radiation can reduce system performance and damage seriously the Micro Gas Turbine. To stabilize the system operation, the solar receiver has to assure a proper thermal inertia. Therefore, a solar receiver integrated with a short-term storage system based on high-temperature phase-change materials is proposed in this paper. Steady-state and transient analyses (for thermal storage charge and discharge phases) have been carried out using the commercial CFD code Ansys-Fluent. Results are presented and discussed.

  16. Wireless thin film transistor based on micro magnetic induction coupling antenna.

    PubMed

    Jun, Byoung Ok; Lee, Gwang Jun; Kang, Jong Gu; Kim, Seunguk; Choi, Ji-Woong; Cha, Seung Nam; Sohn, Jung Inn; Jang, Jae Eun

    2015-12-22

    A wireless thin film transistor (TFT) structure in which a source/drain or a gate is connected directly to a micro antenna to receive or transmit signals or power can be an important building block, acting as an electrical switch, a rectifier or an amplifier, for various electronics as well as microelectronics, since it allows simple connection with other devices, unlike conventional wire connections. An amorphous indium gallium zinc oxide (α-IGZO) TFT with magnetic antenna structure was fabricated and studied for this purpose. To enhance the induction coupling efficiency while maintaining the same small antenna size, a magnetic core structure consisting of Ni and nanowires was formed under the antenna. With the micro-antenna connected to a source/drain or a gate of the TFT, working electrical signals were well controlled. The results demonstrated the device as an alternative solution to existing wire connections which cause a number of problems in various fields such as flexible/wearable devices, body implanted devices, micro/nano robots, and sensors for the 'internet of things' (IoT).

  17. Wireless thin film transistor based on micro magnetic induction coupling antenna

    PubMed Central

    Jun, Byoung Ok; Lee, Gwang Jun; Kang, Jong Gu; Kim, Seunguk; Choi, Ji-Woong; Cha, Seung Nam; Sohn, Jung Inn; Jang, Jae Eun

    2015-01-01

    A wireless thin film transistor (TFT) structure in which a source/drain or a gate is connected directly to a micro antenna to receive or transmit signals or power can be an important building block, acting as an electrical switch, a rectifier or an amplifier, for various electronics as well as microelectronics, since it allows simple connection with other devices, unlike conventional wire connections. An amorphous indium gallium zinc oxide (α-IGZO) TFT with magnetic antenna structure was fabricated and studied for this purpose. To enhance the induction coupling efficiency while maintaining the same small antenna size, a magnetic core structure consisting of Ni and nanowires was formed under the antenna. With the micro-antenna connected to a source/drain or a gate of the TFT, working electrical signals were well controlled. The results demonstrated the device as an alternative solution to existing wire connections which cause a number of problems in various fields such as flexible/wearable devices, body implanted devices, micro/nano robots, and sensors for the ‘internet of things’ (IoT). PMID:26691929

  18. Wireless thin film transistor based on micro magnetic induction coupling antenna

    NASA Astrophysics Data System (ADS)

    Jun, Byoung Ok; Lee, Gwang Jun; Kang, Jong Gu; Kim, Seunguk; Choi, Ji-Woong; Cha, Seung Nam; Sohn, Jung Inn; Jang, Jae Eun

    2015-12-01

    A wireless thin film transistor (TFT) structure in which a source/drain or a gate is connected directly to a micro antenna to receive or transmit signals or power can be an important building block, acting as an electrical switch, a rectifier or an amplifier, for various electronics as well as microelectronics, since it allows simple connection with other devices, unlike conventional wire connections. An amorphous indium gallium zinc oxide (α-IGZO) TFT with magnetic antenna structure was fabricated and studied for this purpose. To enhance the induction coupling efficiency while maintaining the same small antenna size, a magnetic core structure consisting of Ni and nanowires was formed under the antenna. With the micro-antenna connected to a source/drain or a gate of the TFT, working electrical signals were well controlled. The results demonstrated the device as an alternative solution to existing wire connections which cause a number of problems in various fields such as flexible/wearable devices, body implanted devices, micro/nano robots, and sensors for the ‘internet of things’ (IoT).

  19. MIDG-Emerging grid technologies for multi-site preclinical molecular imaging research communities.

    PubMed

    Lee, Jasper; Documet, Jorge; Liu, Brent; Park, Ryan; Tank, Archana; Huang, H K

    2011-03-01

    Molecular imaging is the visualization and identification of specific molecules in anatomy for insight into metabolic pathways, tissue consistency, and tracing of solute transport mechanisms. This paper presents the Molecular Imaging Data Grid (MIDG) which utilizes emerging grid technologies in preclinical molecular imaging to facilitate data sharing and discovery between preclinical molecular imaging facilities and their collaborating investigator institutions to expedite translational sciences research. Grid-enabled archiving, management, and distribution of animal-model imaging datasets help preclinical investigators to monitor, access and share their imaging data remotely, and promote preclinical imaging facilities to share published imaging datasets as resources for new investigators. The system architecture of the Molecular Imaging Data Grid is described in a four layer diagram. A data model for preclinical molecular imaging datasets is also presented based on imaging modalities currently used in a molecular imaging center. The MIDG system components and connectivity are presented. And finally, the workflow steps for grid-based archiving, management, and retrieval of preclincial molecular imaging data are described. Initial performance tests of the Molecular Imaging Data Grid system have been conducted at the USC IPILab using dedicated VMware servers. System connectivity, evaluated datasets, and preliminary results are presented. The results show the system's feasibility, limitations, direction of future research. Translational and interdisciplinary research in medicine is increasingly interested in cellular and molecular biology activity at the preclinical levels, utilizing molecular imaging methods on animal models. The task of integrated archiving, management, and distribution of these preclinical molecular imaging datasets at preclinical molecular imaging facilities is challenging due to disparate imaging systems and multiple off-site investigators. A Molecular Imaging Data Grid design, implementation, and initial evaluation is presented to demonstrate the secure and novel data grid solution for sharing preclinical molecular imaging data across the wide-area-network (WAN).

  20. Optimal Parameter Selection for Support Vector Machine Based on Artificial Bee Colony Algorithm: A Case Study of Grid-Connected PV System Power Prediction.

    PubMed

    Gao, Xiang-Ming; Yang, Shi-Feng; Pan, San-Bo

    2017-01-01

    Predicting the output power of photovoltaic system with nonstationarity and randomness, an output power prediction model for grid-connected PV systems is proposed based on empirical mode decomposition (EMD) and support vector machine (SVM) optimized with an artificial bee colony (ABC) algorithm. First, according to the weather forecast data sets on the prediction date, the time series data of output power on a similar day with 15-minute intervals are built. Second, the time series data of the output power are decomposed into a series of components, including some intrinsic mode components IMFn and a trend component Res, at different scales using EMD. The corresponding SVM prediction model is established for each IMF component and trend component, and the SVM model parameters are optimized with the artificial bee colony algorithm. Finally, the prediction results of each model are reconstructed, and the predicted values of the output power of the grid-connected PV system can be obtained. The prediction model is tested with actual data, and the results show that the power prediction model based on the EMD and ABC-SVM has a faster calculation speed and higher prediction accuracy than do the single SVM prediction model and the EMD-SVM prediction model without optimization.

  1. Optimal Parameter Selection for Support Vector Machine Based on Artificial Bee Colony Algorithm: A Case Study of Grid-Connected PV System Power Prediction

    PubMed Central

    2017-01-01

    Predicting the output power of photovoltaic system with nonstationarity and randomness, an output power prediction model for grid-connected PV systems is proposed based on empirical mode decomposition (EMD) and support vector machine (SVM) optimized with an artificial bee colony (ABC) algorithm. First, according to the weather forecast data sets on the prediction date, the time series data of output power on a similar day with 15-minute intervals are built. Second, the time series data of the output power are decomposed into a series of components, including some intrinsic mode components IMFn and a trend component Res, at different scales using EMD. The corresponding SVM prediction model is established for each IMF component and trend component, and the SVM model parameters are optimized with the artificial bee colony algorithm. Finally, the prediction results of each model are reconstructed, and the predicted values of the output power of the grid-connected PV system can be obtained. The prediction model is tested with actual data, and the results show that the power prediction model based on the EMD and ABC-SVM has a faster calculation speed and higher prediction accuracy than do the single SVM prediction model and the EMD-SVM prediction model without optimization. PMID:28912803

  2. On automating domain connectivity for overset grids

    NASA Technical Reports Server (NTRS)

    Chiu, Ing-Tsau

    1994-01-01

    An alternative method for domain connectivity among systems of overset grids is presented. Reference uniform Cartesian systems of points are used to achieve highly efficient domain connectivity, and form the basis for a future fully automated system. The Cartesian systems are used to approximated body surfaces and to map the computational space of component grids. By exploiting the characteristics of Cartesian Systems, Chimera type hole-cutting and identification of donor elements for intergrid boundary points can be carried out very efficiently. The method is tested for a range of geometrically complex multiple-body overset grid systems.

  3. The functional micro-organization of grid cells revealed by cellular-resolution imaging.

    PubMed

    Heys, James G; Rangarajan, Krsna V; Dombeck, Daniel A

    2014-12-03

    Establishing how grid cells are anatomically arranged, on a microscopic scale, in relation to their firing patterns in the environment would facilitate a greater microcircuit-level understanding of the brain's representation of space. However, all previous grid cell recordings used electrode techniques that provide limited descriptions of fine-scale organization. We therefore developed a technique for cellular-resolution functional imaging of medial entorhinal cortex (MEC) neurons in mice navigating a virtual linear track, enabling a new experimental approach to study MEC. Using these methods, we show that grid cells are physically clustered in MEC compared to nongrid cells. Additionally, we demonstrate that grid cells are functionally micro-organized: the similarity between the environment firing locations of grid cell pairs varies as a function of the distance between them according to a "Mexican hat"-shaped profile. This suggests that, on average, nearby grid cells have more similar spatial firing phases than those further apart. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. On automating domain connectivity for overset grids

    NASA Technical Reports Server (NTRS)

    Chiu, Ing-Tsau; Meakin, Robert L.

    1995-01-01

    An alternative method for domain connectivity among systems of overset grids is presented. Reference uniform Cartesian systems of points are used to achieve highly efficient domain connectivity, and form the basis for a future fully automated system. The Cartesian systems are used to approximate body surfaces and to map the computational space of component grids. By exploiting the characteristics of Cartesian systems, Chimera type hole-cutting and identification of donor elements for intergrid boundary points can be carried out very efficiently. The method is tested for a range of geometrically complex multiple-body overset grid systems. A dynamic hole expansion/contraction algorithm is also implemented to obtain optimum domain connectivity; however, it is tested only for geometry of generic shapes.

  5. Efficiency enhancement of silicon nanowire solar cells by using UV/Ozone treatments and micro-grid electrodes

    NASA Astrophysics Data System (ADS)

    Chen, Junyi; Subramani, Thiyagu; Sun, Yonglie; Jevasuwan, Wipakorn; Fukata, Naoki

    2018-05-01

    Silicon nanowire solar cells were fabricated by metal catalyzed electroless etching (MCEE) followed by thermal chemical vapor deposition (CVD). In this study, we investigated two effects, a UV/ozone treatment and the use of a micro-grid electrodes, to enhance light absorption and reduce the optic losses in the solar cell device. The UV/ozone treatment successfully improved the conversion efficiency. The micro-grid electrodes were then applied in solar cell devices subjected to a back surface field (BSF) treatment and rapid thermal annealing (RTA). These effects improved the conversion efficiency from 9.4% to 10.9%. Moreover, to reduce surface recombination and improve the continuity of front electrodes, we optimized the etching time of the MCEE process, giving a high efficiency of 12.3%.

  6. Optimization of joint energy micro-grid with cold storage

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Luo, Simin; Tian, Yan; Chen, Xianda; Xiong, Botao; Zhou, Bowen

    2018-02-01

    To accommodate distributed photovoltaic (PV) curtailment, to make full use of the joint energy micro-grid with cold storage, and to reduce the high operating costs, the economic dispatch of joint energy micro-grid load is particularly important. Considering the different prices during the peak and valley durations, an optimization model is established, which takes the minimum production costs and PV curtailment fluctuations as the objectives. Linear weighted sum method and genetic-taboo Particle Swarm Optimization (PSO) algorithm are used to solve the optimization model, to obtain optimal power supply output. Taking the garlic market in Henan as an example, the simulation results show that considering distributed PV and different prices in different time durations, the optimization strategies are able to reduce the operating costs and accommodate PV power efficiently.

  7. Feasibility Study of Grid Connected PV-Biomass Integrated Energy System in Egypt

    NASA Astrophysics Data System (ADS)

    Barakat, Shimaa; Samy, M. M.; Eteiba, Magdy B.; Wahba, Wael Ismael

    2016-10-01

    The aim of this paper is to present a feasibility study of a grid connected photovoltaic (PV) and biomass Integrated renewable energy (IRE) system providing electricity to rural areas in the Beni Suef governorate, Egypt. The system load of the village is analyzed through the environmental and economic aspects. The model has been designed to provide an optimal system configuration based on daily data for energy availability and demands. A case study area, Monshaet Taher village (29° 1' 17.0718"N, 30° 52' 17.04"E) is identified for economic feasibility in this paper. HOMER optimization model plan imputed from total daily load demand, 2,340 kWh/day for current energy consuming of 223 households with Annual Average Insolation Incident on a Horizontal Surface of 5.79 (kWh/m2/day) and average biomass supplying 25 tons / day. It is found that a grid connected PV-biomass IRE system is an effective way of emissions reduction and it does not increase the investment of the energy system.

  8. Investigation of load current feed-forward control strategy for wind power grid connected inverter through VSC-HVDC

    NASA Astrophysics Data System (ADS)

    Liu, Hongbo; Liu, Haihan; Liu, Sitong; Peng, Huanhuan

    2018-06-01

    The VSC-HVDC connection system will be the effective transmission method for the large scale and long distance integrated wind farm. Because of the fluctuating power, the DC voltage will be over-voltage or under-voltage in transmission line which will affect the steady operation of the wind power integrating system. In order to mitigate the DC voltage variation of the grid-connected inverter on the grid side and improve the dynamic response of the system, a load current feed-forward control scheme is put forward. Firstly, this paper analyses stability of a system without additional feed-forward control based on double close loop. Secondly, the load current which can indicate the power changes is introduced to counteract the fluctuation of DC voltage in the improvement control scheme. By simulating the results show that the proposed control strategy can improve the dynamic response performance and mitigate the fluctuation of the active power output of the wind farm.

  9. Nonlinear adaptive control of grid-connected three-phase inverters for renewable energy applications

    NASA Astrophysics Data System (ADS)

    Mahdian-Dehkordi, N.; Namvar, M.; Karimi, H.; Piya, P.; Karimi-Ghartemani, M.

    2017-01-01

    Distributed generation (DG) units are often interfaced to the main grid using power electronic converters including voltage-source converters (VSCs). A VSC offers dc/ac power conversion, high controllability, and fast dynamic response. Because of nonlinearities, uncertainties, and system parameters' changes involved in the nature of a grid-connected renewable DG system, conventional linear control methods cannot completely and efficiently address all control objectives. In this paper, a nonlinear adaptive control scheme based on adaptive backstepping strategy is presented to control the operation of a grid-connected renewable DG unit. As compared to the popular vector control technique, the proposed controller offers smoother transient responses, and lower level of current distortions. The Lyapunov approach is used to establish global asymptotic stability of the proposed control system. Linearisation technique is employed to develop guidelines for parameters tuning of the controller. Extensive time-domain digital simulations are performed and presented to verify the performance of the proposed controller when employed in a VSC to control the operation of a two-stage DG unit and also that of a single-stage solar photovoltaic system. Desirable and superior performance of the proposed controller is observed.

  10. Structured grid technology to enable flow simulation in an integrated system environment

    NASA Astrophysics Data System (ADS)

    Remotigue, Michael Gerard

    An application-driven Computational Fluid Dynamics (CFD) environment needs flexible and general tools to effectively solve complex problems in a timely manner. In addition, reusable, portable, and maintainable specialized libraries will aid in rapidly developing integrated systems or procedures. The presented structured grid technology enables the flow simulation for complex geometries by addressing grid generation, grid decomposition/solver setup, solution, and interpretation. Grid generation is accomplished with the graphical, arbitrarily-connected, multi-block structured grid generation software system (GUM-B) developed and presented here. GUM-B is an integrated system comprised of specialized libraries for the graphical user interface and graphical display coupled with a solid-modeling data structure that utilizes a structured grid generation library and a geometric library based on Non-Uniform Rational B-Splines (NURBS). A presented modification of the solid-modeling data structure provides the capability for arbitrarily-connected regions between the grid blocks. The presented grid generation library provides algorithms that are reliable and accurate. GUM-B has been utilized to generate numerous structured grids for complex geometries in hydrodynamics, propulsors, and aerodynamics. The versatility of the libraries that compose GUM-B is also displayed in a prototype to automatically regenerate a grid for a free-surface solution. Grid decomposition and solver setup is accomplished with the graphical grid manipulation and repartition software system (GUMBO) developed and presented here. GUMBO is an integrated system comprised of specialized libraries for the graphical user interface and graphical display coupled with a structured grid-tools library. The described functions within the grid-tools library reduce the possibility of human error during decomposition and setup for the numerical solver by accounting for boundary conditions and connectivity. GUMBO is linked with a flow solver interface, to the parallel UNCLE code, to provide load balancing tools and solver setup. Weeks of boundary condition and connectivity specification and validation has been reduced to hours. The UNCLE flow solver is utilized for the solution of the flow field. To accelerate convergence toward a quick engineering answer, a full multigrid (FMG) approach coupled with UNCLE, which is a full approximation scheme (FAS), is presented. The prolongation operators used in the FMG-FAS method are compared. The procedure is demonstrated on a marine propeller in incompressible flow. Interpretation of the solution is accomplished by vortex feature detection. Regions of "Intrinsic Swirl" are located by interrogating the velocity gradient tensor for complex eigenvalues. The "Intrinsic Swirl" parameter is visualized on a solution of a marine propeller to determine if any vortical features are captured. The libraries and the structured grid technology presented herein are flexible and general enough to tackle a variety of complex applications. This technology has significantly enabled the capability of the ERC personnel to effectively calculate solutions for complex geometries.

  11. Research on grid connection control technology of double fed wind generator

    NASA Astrophysics Data System (ADS)

    Ling, Li

    2017-01-01

    The composition and working principle of variable speed constant frequency doubly fed wind power generation system is discussed in this thesis. On the basis of theoretical analysis and control on the modeling, the doubly fed wind power generation simulation control system is designed based on a TMS320F2407 digital signal processor (DSP), and has done a large amount of experimental research, which mainly include, variable speed constant frequency, constant pressure, Grid connected control experiment. The running results show that the design of simulation control system is reasonable and can meet the need of experimental research.

  12. Comparative Study of Standards for Grid-Connected Wind Power Plant in China and the U.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Wenzhong; Tian, Tian; Muljadi, Eduard

    2015-10-06

    The rapid deployment of wind power has made grid integration and operational issues focal points in industry discussions and research. Compliance with grid connection standards for wind power plants (WPP) is crucial to ensuring the safe and stable operation of the electric power grid. The standards for grid-connected WPPs in China and the United States are compared in this paper to facilitate further improvements to the standards and enhance the development of wind power equipment. Detailed analyses in power quality, low-voltage ride-through capability, active power control, reactive power control, voltage control, and wind power forecasting are provided to enhance themore » understanding of grid codes in the two largest markets of wind power.« less

  13. Chip-based device for parallel sorting, amplification, detection, and identification of nucleic acid subsequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, Neil Reginald; Colston, Jr, Billy W.

    An apparatus for chip-based sorting, amplification, detection, and identification of a sample having a planar substrate. The planar substrate is divided into cells. The cells are arranged on the planar substrate in rows and columns. Electrodes are located in the cells. A micro-reactor maker produces micro-reactors containing the sample. The micro-reactor maker is positioned to deliver the micro-reactors to the planar substrate. A microprocessor is connected to the electrodes for manipulating the micro-reactors on the planar substrate. A detector is positioned to interrogate the sample contained in the micro-reactors.

  14. Introduction Analysis of Refrigerating and Air-Conditioning Technologies in Micro Grid Type Food Industrial Park

    NASA Astrophysics Data System (ADS)

    Shimazaki, Yoichi

    The aim of this study was to evaluate the refrigerating and air-conditioning technologies in cases of introducing both cogeneration system and energy network in food industrial park. The energy data of 14 factories were classified into steam, hot water, heating, cooling, refrigerating, freezing and electric power by interviews. The author developed a micro grid model based on linear programming so as to minimize the total system costs. The industrial park was divided into the 2,500 square meter mesh in order to take steam transport into consideration. Four cases were investigated. It was found that the electric power driven freezer was introduced compared with the ammonia absorption freezer. The ammonia absorption freezer was introduced in the factory that there is a little steam demand and large freezing demand at the same time.

  15. A Modular Multilevel Converter with Power Mismatch Control for Grid-Connected Photovoltaic Systems

    DOE PAGES

    Duman, Turgay; Marti, Shilpa; Moonem, M. A.; ...

    2017-05-17

    A modular multilevel power converter configuration for grid connected photovoltaic (PV) systems is proposed. The converter configuration replaces the conventional bulky line frequency transformer with several high frequency transformers, potentially reducing the balance of systems cost of PV systems. The front-end converter for each port is a neutral-point diode clamped (NPC) multi-level dc-dc dual-active bridge (ML-DAB) which allows maximum power point tracking (MPPT). The integrated high frequency transformer provides the galvanic isolation between the PV and grid side and also steps up the low dc voltage from PV source. Following the ML-DAB stage, in each port, is a NPC inverter.more » N number of NPC inverters’ outputs are cascaded to attain the per-phase line-to-neutral voltage to connect directly to the distribution grid (i.e., 13.8 kV). The cascaded NPC (CNPC) inverters have the inherent advantage of using lower rated devices, smaller filters and low total harmonic distortion required for PV grid interconnection. The proposed converter system is modular, scalable, and serviceable with zero downtime with lower foot print and lower overall cost. A novel voltage balance control at each module based on power mismatch among N-ports, have been presented and verified in simulation. Analysis and simulation results are presented for the N-port converter. The converter performance has also been verified on a hardware prototype.« less

  16. A Modular Multilevel Converter with Power Mismatch Control for Grid-Connected Photovoltaic Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duman, Turgay; Marti, Shilpa; Moonem, M. A.

    A modular multilevel power converter configuration for grid connected photovoltaic (PV) systems is proposed. The converter configuration replaces the conventional bulky line frequency transformer with several high frequency transformers, potentially reducing the balance of systems cost of PV systems. The front-end converter for each port is a neutral-point diode clamped (NPC) multi-level dc-dc dual-active bridge (ML-DAB) which allows maximum power point tracking (MPPT). The integrated high frequency transformer provides the galvanic isolation between the PV and grid side and also steps up the low dc voltage from PV source. Following the ML-DAB stage, in each port, is a NPC inverter.more » N number of NPC inverters’ outputs are cascaded to attain the per-phase line-to-neutral voltage to connect directly to the distribution grid (i.e., 13.8 kV). The cascaded NPC (CNPC) inverters have the inherent advantage of using lower rated devices, smaller filters and low total harmonic distortion required for PV grid interconnection. The proposed converter system is modular, scalable, and serviceable with zero downtime with lower foot print and lower overall cost. A novel voltage balance control at each module based on power mismatch among N-ports, have been presented and verified in simulation. Analysis and simulation results are presented for the N-port converter. The converter performance has also been verified on a hardware prototype.« less

  17. Interdigitated photovoltaic power conversion device

    DOEpatents

    Ward, James Scott; Wanlass, Mark Woodbury; Gessert, Timothy Arthur

    1999-01-01

    A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device.

  18. Interdigitated photovoltaic power conversion device

    DOEpatents

    Ward, J.S.; Wanlass, M.W.; Gessert, T.A.

    1999-04-27

    A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device. 15 figs.

  19. Performance model for grid-connected photovoltaic inverters.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyson, William Earl; Galbraith, Gary M.; King, David L.

    2007-09-01

    This document provides an empirically based performance model for grid-connected photovoltaic inverters used for system performance (energy) modeling and for continuous monitoring of inverter performance during system operation. The versatility and accuracy of the model were validated for a variety of both residential and commercial size inverters. Default parameters for the model can be obtained from manufacturers specification sheets, and the accuracy of the model can be further refined using measurements from either well-instrumented field measurements in operational systems or using detailed measurements from a recognized testing laboratory. An initial database of inverter performance parameters was developed based on measurementsmore » conducted at Sandia National Laboratories and at laboratories supporting the solar programs of the California Energy Commission.« less

  20. Research on control strategy based on fuzzy PR for grid-connected inverter

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Guan, Weiguo; Miao, Wen

    2018-04-01

    In the traditional PI controller, there is static error in tracking ac signals. To solve the problem, the control strategy of a fuzzy PR and the grid voltage feed-forward is proposed. The fuzzy PR controller is to eliminate the static error of the system. It also adjusts parameters of PR controller in real time, which avoids the defect of fixed parameter fixed. The grid voltage feed-forward control can ensure the quality of current and improve the system's anti-interference ability when the grid voltage is distorted. Finally, the simulation results show that the system can output grid current with good quality and also has good dynamic and steady state performance.

  1. High-Efficiency Food Production in a Renewable Energy Based Micro-Grid Power System

    NASA Technical Reports Server (NTRS)

    Bubenheim, David; Meiners, Dennis

    2016-01-01

    Controlled Environment Agriculture (CEA) systems can be used to produce high-quality, desirable food year round, and the fresh produce can positively contribute to the health and well being of residents in communities with difficult supply logistics. While CEA has many positive outcomes for a remote community, the associated high electric demands have prohibited widespread implementation in what is typically already a fully subscribed power generation and distribution system. Recent advances in CEA technologies as well as renewable power generation, storage, and micro-grid management are increasing system efficiency and expanding the possibilities for enhancing community supporting infrastructure without increasing demands for outside supplied fuels. We will present examples of how new lighting, nutrient delivery, and energy management and control systems can enable significant increases in food production efficiency while maintaining high yields in CEA. Examples from Alaskan communities where initial incorporation of renewable power generation, energy storage and grid management techniques have already reduced diesel fuel consumption for electric generation by more than 40% and expanded grid capacity will be presented. We will discuss how renewable power generation, efficient grid management to extract maximum community service per kW, and novel energy storage approaches can expand the food production, water supply, waste treatment, sanitation and other community support services without traditional increases of consumable fuels supplied from outside the community. These capabilities offer communities with a range of choices to enhance their communities. The examples represent a synergy of technology advancement efforts to develop sustainable community support systems for future space-based human habitats and practical implementation of infrastructure components to increase efficiency and enhance health and well being in remote communities today and tomorrow.

  2. High-Efficiency Food Production in a Renewable Energy Based Micro-Grid

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.

    2017-01-01

    Controlled Environment Agriculture (CEA) systems can be used to produce high-quality, desirable food year round, and the fresh produce can positively contribute to the health and well being of residents in communities with difficult supply logistics. While CEA has many positive outcomes for a remote community, the associated high electric demands have prohibited widespread implementation in what is typically already a fully subscribed power generation and distribution system. Recent advances in CEA technologies as well as renewable power generation, storage, and micro-grid management are increasing system efficiency and expanding the possibilities for enhancing community supporting infrastructure without increasing demands for outside supplied fuels. We will present examples of how new lighting, nutrient delivery, and energy management and control systems can enable significant increases in food production efficiency while maintaining high yields in CEA.Examples from Alaskan communities where initial incorporation of renewable power generation, energy storage and grid management techniques have already reduced diesel fuel consumption for electric generation by more than 40 and expanded grid capacity will be presented. We will discuss how renewable power generation, efficient grid management to extract maximum community service per kW, and novel energy storage approaches can expand the food production, water supply, waste treatment, sanitation and other community support services without traditional increases of consumable fuels supplied from outside the community. These capabilities offer communities with a range of choices to enhance their communities. The examples represent a synergy of technology advancement efforts to develop sustainable community support systems for future space-based human habitats and practical implementation of infrastructure components to increase efficiency and enhance health and well-being in remote communities today and tomorrow.

  3. Performance evaluation of a 2-mode PV grid connected system in Thailand -- Case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jivacate, C.; Mongconvorawan, S.; Sinratanapukdee, E.

    A PV grid connected system with small battery bank has been set up in a rural district, North Thailand in order to demonstrate a 2-mode operation concept. The objective is to gain experience on the PV grid connected concept without battery storage. However, due to the evening peak demand and a rather weak distribution grid which is typical in rural areas, small battery bank is still required to enable the maximum energy transfer to grid for the time being before moving fully to the no battery mode. The analyzed data seems to indicate possible performance improvement by re-arranging the numbermore » of PV modules and battery in the string.« less

  4. Persistence of Rift Valley fever virus in East Africa

    NASA Astrophysics Data System (ADS)

    Gachohi, J.; Hansen, F.; Bett, B.; Kitala, P.

    2012-04-01

    Rift Valley fever virus (RVFv) is a mosquito-borne pathogen of livestock, wildlife and humans that causes severe outbreaks in intervals of several years. One of the open questions is how the virus persists between outbreaks. We developed a spatially-explicit, individual-based simulation model of the RVFv transmission dynamics to investigate this question. The model, is based on livestock and mosquito population dynamics. Spatial aspects are explicitly represented by a set of grid cells that represent mosquito breeding sites. A grid cell measures 500 by 500m and the model considers a grid of 100 by 100 grid cells; the model thus operates on the regional scale of 2500km2. Livestock herds move between grid cells, and provide connectivity between the cells. The model is used to explore the spatio-temporal dynamics of RVFv persistence in absence of a wildlife reservoir in an east African semi-arid context. Specifically, the model assesses the importance of local virus persistence in mosquito breeding sites relative to global virus persistence mitigated by movement of hosts. Local persistence is determined by the length of time the virus remains in a mosquito breeding site once introduced. In the model, this is a function of the number of mosquitoes that emerge infected and their lifespan. Global persistence is determined by the level of connectivity between isolated grid cells. Our work gives insights into the ecological and epidemiological conditions under which RVFv persists. The implication for disease surveillance and management are discussed.

  5. Three-dimensional microstructure simulation of Ni-based superalloy investment castings

    NASA Astrophysics Data System (ADS)

    Pan, Dong; Xu, Qingyan; Liu, Baicheng

    2011-05-01

    An integrated macro and micro multi-scale model for the three-dimensional microstructure simulation of Ni-based superalloy investment castings was developed, and applied to industrial castings to investigate grain evolution during solidification. A ray tracing method was used to deal with the complex heat radiation transfer. The microstructure evolution was simulated based on the Modified Cellular Automaton method, which was coupled with three-dimensional nested macro and micro grids. Experiments for Ni-based superalloy turbine wheel investment casting were carried out, which showed a good correspondence with the simulated results. It is indicated that the proposed model is able to predict the microstructure of the casting precisely, which provides a tool for the optimizing process.

  6. The CONNECT project: Combining macro- and micro-structure.

    PubMed

    Assaf, Yaniv; Alexander, Daniel C; Jones, Derek K; Bizzi, Albero; Behrens, Tim E J; Clark, Chris A; Cohen, Yoram; Dyrby, Tim B; Huppi, Petra S; Knoesche, Thomas R; Lebihan, Denis; Parker, Geoff J M; Poupon, Cyril; Anaby, Debbie; Anwander, Alfred; Bar, Leah; Barazany, Daniel; Blumenfeld-Katzir, Tamar; De-Santis, Silvia; Duclap, Delphine; Figini, Matteo; Fischi, Elda; Guevara, Pamela; Hubbard, Penny; Hofstetter, Shir; Jbabdi, Saad; Kunz, Nicolas; Lazeyras, Francois; Lebois, Alice; Liptrot, Matthew G; Lundell, Henrik; Mangin, Jean-François; Dominguez, David Moreno; Morozov, Darya; Schreiber, Jan; Seunarine, Kiran; Nava, Simone; Poupon, Cyril; Riffert, Till; Sasson, Efrat; Schmitt, Benoit; Shemesh, Noam; Sotiropoulos, Stam N; Tavor, Ido; Zhang, Hui Gary; Zhou, Feng-Lei

    2013-10-15

    In recent years, diffusion MRI has become an extremely important tool for studying the morphology of living brain tissue, as it provides unique insights into both its macrostructure and microstructure. Recent applications of diffusion MRI aimed to characterize the structural connectome using tractography to infer connectivity between brain regions. In parallel to the development of tractography, additional diffusion MRI based frameworks (CHARMED, AxCaliber, ActiveAx) were developed enabling the extraction of a multitude of micro-structural parameters (axon diameter distribution, mean axonal diameter and axonal density). This unique insight into both tissue microstructure and connectivity has enormous potential value in understanding the structure and organization of the brain as well as providing unique insights to abnormalities that underpin disease states. The CONNECT (Consortium Of Neuroimagers for the Non-invasive Exploration of brain Connectivity and Tracts) project aimed to combine tractography and micro-structural measures of the living human brain in order to obtain a better estimate of the connectome, while also striving to extend validation of these measurements. This paper summarizes the project and describes the perspective of using micro-structural measures to study the connectome. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Fuzzy logic, PSO based fuzzy logic algorithm and current controls comparative for grid-connected hybrid system

    NASA Astrophysics Data System (ADS)

    Borni, A.; Abdelkrim, T.; Zaghba, L.; Bouchakour, A.; Lakhdari, A.; Zarour, L.

    2017-02-01

    In this paper the model of a grid connected hybrid system is presented. The hybrid system includes a variable speed wind turbine controlled by aFuzzy MPPT control, and a photovoltaic generator controlled with PSO Fuzzy MPPT control to compensate the power fluctuations caused by the wind in a short and long term, the inverter currents injected to the grid is controlled by a decoupled PI current control. In the first phase, we start by modeling of the conversion system components; the wind system is consisted of a turbine coupled to a gearless permanent magnet generator (PMG), the AC/DC and DC-DC (Boost) converter are responsible to feed the electric energy produced by the PMG to the DC-link. The solar system consists of a photovoltaic generator (GPV) connected to a DC/DC boost converter controlled by a PSO fuzzy MPPT control to extract at any moment the maximum available power at the GPV terminals, the system is based on maximum utilization of both of sources because of their complementary. At the end. The active power reached to the DC-link is injected to the grid through a DC/AC inverter, this function is achieved by controlling the DC bus voltage to keep it constant and close to its reference value, The simulation studies have been performed using Matlab/Simulink. It can be concluded that a good control system performance can be achieved.

  8. Multi-scale recordings for neuroprosthetic control of finger movements.

    PubMed

    Baker, Justin; Bishop, William; Kellis, Spencer; Levy, Todd; House, Paul; Greger, Bradley

    2009-01-01

    We trained a rhesus monkey to perform individuated and combined finger flexions and extensions of the thumb, index, and middle finger. A Utah Electrode Array (UEA) was implanted into the hand region of the motor cortex contralateral to the monkey's trained hand. We also implanted a microwire electrocorticography grid (microECoG) epidurally so that it covered the UEA. The microECoG grid spanned the arm and hand regions of both the primary motor and somatosensory cortices. Previously this monkey had Implantable MyoElectric Sensors (IMES) surgically implanted into the finger muscles of the monkey's forearm. Action potentials (APs), local field potentials (LFPs), and microECoG signals were recorded from wired head-stage connectors for the UEA and microECoG grids, while EMG was recorded wirelessly. The monkey performed a finger flexion/extension task while neural and EMG data were acquired. We wrote an algorithm that uses the spike data from the UEA to perform a real-time decode of the monkey's finger movements. Also, analyses of the LFP and microECoG data indicate that these data show trial-averaged differences between different finger movements, indicating the data are potentially decodeable.

  9. Quantitative Analysis Method of Output Loss due to Restriction for Grid-connected PV Systems

    NASA Astrophysics Data System (ADS)

    Ueda, Yuzuru; Oozeki, Takashi; Kurokawa, Kosuke; Itou, Takamitsu; Kitamura, Kiyoyuki; Miyamoto, Yusuke; Yokota, Masaharu; Sugihara, Hiroyuki

    Voltage of power distribution line will be increased due to reverse power flow from grid-connected PV systems. In the case of high density grid connection, amount of voltage increasing will be higher than the stand-alone grid connection system. To prevent the over voltage of power distribution line, PV system's output will be restricted if the voltage of power distribution line is close to the upper limit of the control range. Because of this interaction, amount of output loss will be larger in high density case. This research developed a quantitative analysis method for PV systems output and losses to clarify the behavior of grid connected PV systems. All the measured data are classified into the loss factors using 1 minute average of 1 second data instead of typical 1 hour average. Operation point on the I-V curve is estimated to quantify the loss due to the output restriction using module temperature, array output voltage, array output current and solar irradiance. As a result, loss due to output restriction is successfully quantified and behavior of output restriction is clarified.

  10. Comparison of Standards and Technical Requirements of Grid-Connected Wind Power Plants in China and the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, David Wenzhong; Muljadi, Eduard; Tian, Tian

    The rapid deployment of wind power has made grid integration and operational issues focal points in industry discussions and research. Compliance with grid connection standards for wind power plants (WPPs) is crucial to ensuring the reliable and stable operation of the electric power grid. This report compares the standards for grid-connected WPPs in China to those in the United States to facilitate further improvements in wind power standards and enhance the development of wind power equipment. Detailed analyses of power quality, low-voltage ride-through capability, active power control, reactive power control, voltage control, and wind power forecasting are provided to enhancemore » the understanding of grid codes in the two largest markets of wind power. This study compares WPP interconnection standards and technical requirements in China to those in the United States.« less

  11. Fabrication and characterization of self-folding thermoplastic sheets using unbalanced thermal shrinkage.

    PubMed

    Danielson, Christian; Mehrnezhad, Ali; YekrangSafakar, Ashkan; Park, Kidong

    2017-06-14

    Self-folding or micro-origami technologies are actively investigated as a novel manufacturing process to fabricate three-dimensional macro/micro-structures. In this paper, we present a simple process to produce a self-folding structure with a biaxially oriented polystyrene sheet (BOPS) or Shrinky Dinks. A BOPS sheet is known to shrink to one-third of its original size in plane, when it is heated above 160 °C. A grid pattern is engraved on one side of the BOPS film with a laser engraver to decrease the thermal shrinkage of the engraved side. The thermal shrinkage of the non-engraved side remains the same and this unbalanced thermal shrinkage causes folding of the structure as the structure shrinks at high temperature. We investigated the self-folding mechanism and characterized how the grid geometry, the grid size, and the power of the laser engraver affect the bending curvature. The developed fabrication process to locally modulate thermomechanical properties of the material by engraving the grid pattern and the demonstrated design methodology to harness the unbalanced thermal shrinkage can be applied to develop complicated self-folding macro/micro structures.

  12. Vision-Based Navigation and Parallel Computing

    DTIC Science & Technology

    1990-08-01

    33 5.8. Behizad Kamgar-Parsi and Behrooz Karngar-Parsi,"On Problem 5- lving with Hopfield Neural Networks", CAR-TR-462, CS-TR...Second. the hypercube connections support logarithmic implementations of fundamental parallel algorithms. such as grid permutations and scan...the pose space. It also uses a set of virtual processors to represent an orthogonal projection grid , and projections of the six dimensional pose space

  13. Operation of Grid-tied 5 kWDC solar array to develop Laboratory Experiments for Solar PV Energy System courses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramos, Jaime

    2012-12-14

    To unlock the potential of micro grids we plan to build, commission and operate a 5 kWDC PV array and integrate it to the UTPA Engineering building low voltage network, as a micro grid; and promote community awareness. Assisted by a solar radiation tracker providing on-line information of its measurements and performing analysis for the use by the scientific and engineering community, we will write, perform and operate a set of Laboratory experiments and computer simulations supporting Electrical Engineering (graduate and undergraduate) courses on Renewable Energy, as well as Senior Design projects.

  14. Design of a nonlinear backstepping control strategy of grid interconnected wind power system based PMSG

    NASA Astrophysics Data System (ADS)

    Errami, Y.; Obbadi, A.; Sahnoun, S.; Benhmida, M.; Ouassaid, M.; Maaroufi, M.

    2016-07-01

    This paper presents nonlinear backstepping control for Wind Power Generation System (WPGS) based Permanent Magnet Synchronous Generator (PMSG) and connected to utility grid. The block diagram of the WPGS with PMSG and the grid side back-to-back converter is established with the dq frame of axes. This control scheme emphasises the regulation of the dc-link voltage and the control of the power factor at changing wind speed. Besides, in the proposed control strategy of WPGS, Maximum Power Point Tracking (MPPT) technique and pitch control are provided. The stability of the regulators is assured by employing Lyapunov analysis. The proposed control strategy for the system has been validated by MATLAB simulations under varying wind velocity and the grid fault condition. In addition, a comparison of simulation results based on the proposed Backstepping strategy and conventional Vector Control is provided.

  15. Contribution of concentrator photovoltaic installations to grid stability and power quality

    NASA Astrophysics Data System (ADS)

    del Toro García, Xavier; Roncero-Sánchez, Pedro; Torres, Alfonso Parreño; Vázquez, Javier

    2012-10-01

    Large-scale integration of Photovoltaic (PV) generation systems, including Concentrator Photovoltaic (CPV) technologies, will require the contribution and support of these technologies to the management and stability of the grid. New regulations and grid codes for PV installations in countries such as Spain have recently included dynamic voltage control support during faults. The PV installation must stay connected to the grid during voltage dips and inject reactive power in order to enhance the stability of the system. The existing PV inverter technologies based on the Voltage-Source Converter (VSC) are in general well suited to provide advanced grid-support characteristics. Nevertheless, new advanced control schemes and monitoring techniques will be necessary to meet the most demanding requirements.

  16. Experimental grid connected PV system power analysis

    NASA Astrophysics Data System (ADS)

    Semaoui, Smail; Abdeladim, Kamel; Arab, Amar Hadj; Boulahchich, Saliha; Amrouche, Said Ould; Yassaa, Noureddine

    2018-05-01

    Almost 80 % of Algerian territory is appropriate for the exploitation of solar energy. The Algerian energetic strategy provides a substantial injection of PV electricity to the national grid. Currently, about 344 MWp of PV arrays which corresponds approximately to 2,34 km2 of module surfaces, are connected on electricity grid over the national territory. The Algerian Northern regions are characterized by strong pollution and high humidity. These phenomena affect the energetic productivity of PV generator. The objective of our study is to analyze experimental grid connected PV system power in coastal locations. Hence, experiments have been conducted on three identical PV systems to determine the electrical performances. Transformer-less inverters are the most attractive for the ground-based photovoltaic (PV) system due to their efficiencies, reduced cost and weight. Besides, the absence of the galvanic isolation generates problems of capacitive leakage current on the AC side and the degradation of the insulation resistance on the DC side of the inverter. In this work, experimental study of the behavior of single-phase inverters without transformers is presented. The main objective of this work is to study the degradation of the insulation resistance at the input of the inverter, and the capacitive leakage current at the output of the inverter. This study was achieved at the CDER on a rainy day of 15/03/2017, on the first PV plant connected to the low voltage network in Algeria. This investigation can help forecasting the PV array energetic production by taking into account natural conditions.

  17. Method and apparatus for detecting cyber attacks on an alternating current power grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McEachern, Alexander; Hofmann, Ronald

    A method and apparatus for detecting cyber attacks on remotely-operable elements of an alternating current distribution grid. Two state estimates of the distribution grid are prepared, one of which uses micro-synchrophasors. A difference between the two state estimates indicates a possible cyber attack.

  18. Correlations and Functional Connections in a Population of Grid Cells

    PubMed Central

    Roudi, Yasser

    2015-01-01

    We study the statistics of spike trains of simultaneously recorded grid cells in freely behaving rats. We evaluate pairwise correlations between these cells and, using a maximum entropy kinetic pairwise model (kinetic Ising model), study their functional connectivity. Even when we account for the covariations in firing rates due to overlapping fields, both the pairwise correlations and functional connections decay as a function of the shortest distance between the vertices of the spatial firing pattern of pairs of grid cells, i.e. their phase difference. They take positive values between cells with nearby phases and approach zero or negative values for larger phase differences. We find similar results also when, in addition to correlations due to overlapping fields, we account for correlations due to theta oscillations and head directional inputs. The inferred connections between neurons in the same module and those from different modules can be both negative and positive, with a mean close to zero, but with the strongest inferred connections found between cells of the same module. Taken together, our results suggest that grid cells in the same module do indeed form a local network of interconnected neurons with a functional connectivity that supports a role for attractor dynamics in the generation of grid pattern. PMID:25714908

  19. Modeling and Simulation for an 8 kW Three-Phase Grid-Connected Photo-Voltaic Power System

    NASA Astrophysics Data System (ADS)

    Cen, Zhaohui

    2017-09-01

    Gird-connected Photo-Voltaic (PV) systems rated as 5-10 kW level have advantages of scalability and energy-saving, so they are very typical for small-scale household solar applications. In this paper, an 8 kW three-phase grid-connected PV system model is proposed and studied. In this high-fidelity model, some basic PV system components such as solar panels, DC-DC converters, DC-AC inverters and three-phase utility grids are mathematically modelled and organized as a complete simulation model. Also, an overall power controller with Maximum Power Point Control (MPPT) is proposed to achieve both high-efficiency for solar energy harvesting and grid-connection stability. Finally, simulation results demonstrate the effectiveness of the PV system model and the proposed controller, and power quality issues are discussed.

  20. Adaptive fuzzy sliding control of single-phase PV grid-connected inverter.

    PubMed

    Fei, Juntao; Zhu, Yunkai

    2017-01-01

    In this paper, an adaptive fuzzy sliding mode controller is proposed to control a two-stage single-phase photovoltaic (PV) grid-connected inverter. Two key technologies are discussed in the presented PV system. An incremental conductance method with adaptive step is adopted to track the maximum power point (MPP) by controlling the duty cycle of the controllable power switch of the boost DC-DC converter. An adaptive fuzzy sliding mode controller with an integral sliding surface is developed for the grid-connected inverter where a fuzzy system is used to approach the upper bound of the system nonlinearities. The proposed strategy has strong robustness for the sliding mode control can be designed independently and disturbances can be adaptively compensated. Simulation results of a PV grid-connected system verify the effectiveness of the proposed method, demonstrating the satisfactory robustness and performance.

  1. Simulation for Grid Connected Wind Turbines with Fluctuating

    NASA Astrophysics Data System (ADS)

    Ye, Ying; Fu, Yang; Wei, Shurong

    This paper establishes the whole dynamic model of wind turbine generator system which contains the wind speed model and DFIG wind turbines model .A simulation sample based on the mathematical models is built by using MATLAB in this paper. Research are did on the performance characteristics of doubly-fed wind generators (DFIG) which connected to power grid with three-phase ground fault and the disturbance by gust and mixed wind. The capacity of the wind farm is 9MW which consists of doubly-fed wind generators (DFIG). Simulation results demonstrate that the three-phase ground fault occurs on grid side runs less affected on the stability of doubly-fed wind generators. However, as a power source, fluctuations of the wind speed will run a large impact on stability of double-fed wind generators. The results also show that if the two disturbances occur in the meantime, the situation will be very serious.

  2. Downscaling modelling system for multi-scale air quality forecasting

    NASA Astrophysics Data System (ADS)

    Nuterman, R.; Baklanov, A.; Mahura, A.; Amstrup, B.; Weismann, J.

    2010-09-01

    Urban modelling for real meteorological situations, in general, considers only a small part of the urban area in a micro-meteorological model, and urban heterogeneities outside a modelling domain affect micro-scale processes. Therefore, it is important to build a chain of models of different scales with nesting of higher resolution models into larger scale lower resolution models. Usually, the up-scaled city- or meso-scale models consider parameterisations of urban effects or statistical descriptions of the urban morphology, whereas the micro-scale (street canyon) models are obstacle-resolved and they consider a detailed geometry of the buildings and the urban canopy. The developed system consists of the meso-, urban- and street-scale models. First, it is the Numerical Weather Prediction (HIgh Resolution Limited Area Model) model combined with Atmospheric Chemistry Transport (the Comprehensive Air quality Model with extensions) model. Several levels of urban parameterisation are considered. They are chosen depending on selected scales and resolutions. For regional scale, the urban parameterisation is based on the roughness and flux corrections approach; for urban scale - building effects parameterisation. Modern methods of computational fluid dynamics allow solving environmental problems connected with atmospheric transport of pollutants within urban canopy in a presence of penetrable (vegetation) and impenetrable (buildings) obstacles. For local- and micro-scales nesting the Micro-scale Model for Urban Environment is applied. This is a comprehensive obstacle-resolved urban wind-flow and dispersion model based on the Reynolds averaged Navier-Stokes approach and several turbulent closures, i.e. k -ɛ linear eddy-viscosity model, k - ɛ non-linear eddy-viscosity model and Reynolds stress model. Boundary and initial conditions for the micro-scale model are used from the up-scaled models with corresponding interpolation conserving the mass. For the boundaries a kind of Dirichlet condition is chosen to provide the values based on interpolation from the coarse to the fine grid. When the roughness approach is changed to the obstacle-resolved one in the nested model, the interpolation procedure will increase the computational time (due to additional iterations) for meteorological/ chemical fields inside the urban sub-layer. In such situations, as a possible alternative, the perturbation approach can be applied. Here, the effects of main meteorological variables and chemical species are considered as a sum of two components: background (large-scale) values, described by the coarse-resolution model, and perturbations (micro-scale) features, obtained from the nested fine resolution model.

  3. Inverter Anti-Islanding with Advanced Grid Support in Single- and Multi-Inverter Islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoke, Andy

    As PV and other DER systems are connected to the grid at increased penetration levels, island detection may become more challenging for two reasons: 1. In islands containing many DERs, active inverter-based anti-islanding methods may have more difficulty detecting islands because each individual inverter's efforts to detect the island may be interfered with by the other inverters in the island. 2. The increasing numbers of DERs are leading to new requirements that DERs ride through grid disturbances and even actively try to regulate grid voltage and frequency back towards nominal operating conditions. These new grid support requirements may directly ormore » indirectly interfere with anti-islanding controls. This report describes a series of tests designed to examine the impacts of both grid support functions and multi-inverter islands on anti-islanding effectiveness.« less

  4. Modularized multilevel and z-source power converter as renewable energy interface for vehicle and grid-connected applications

    NASA Astrophysics Data System (ADS)

    Cao, Dong

    Due the energy crisis and increased oil price, renewable energy sources such as photovoltaic panel, wind turbine, or thermoelectric generation module, are used more and more widely for vehicle and grid-connected applications. However, the output of these renewable energy sources varies according to different solar radiation, wind speed, or temperature difference, a power converter interface is required for the vehicle or grid-connected applications. Thermoelectric generation (TEG) module as a renewable energy source for automotive industry is becoming very popular recently. Because of the inherent characteristics of TEG modules, a low input voltage, high input current and high voltage gain dc-dc converters are needed for the automotive load. Traditional high voltage gain dc-dc converters are not suitable for automotive application in terms of size and high temperature operation. Switched-capacitor dc-dc converters have to be used for this application. However, high voltage spike and EMI problems exist in traditional switched-capacitor dc-dc converters. Huge capacitor banks have to be utilized to reduce the voltage ripple and achieve high efficiency. A series of zero current switching (ZCS) or zero voltage switching switched-capacitor dc-dc converters have been proposed to overcome the aforementioned problems of the traditional switched-capacitor dc-dc converters. By using the proposed soft-switching strategy, high voltage spike is reduced, high EMI noise is restricted, and the huge capacitor bank is eliminated. High efficiency, high power density and high temperature switched-capacitor dc-dc converters could be made for the TEG interface in vehicle applications. Several prototypes have been made to validate the proposed circuit and confirm the circuit operation. In order to apply PV panel for grid-connected application, a low cost dc-ac inverter interface is required. From the use of transformer and safety concern, two different solutions can be implemented, non-isolated or isolated PV inverter. For the non-isolated transformer-less solution, a semi-Z-source inverter for single phase photovoltaic systems has been proposed. The proposed semi-Z-source inverter utilizes only two switching devices with doubly grounded feature. The total cost have been reduced, the safety and EMI issues caused by the high frequency ground current are solved. For the transformer isolated solution, a boost half-bridge dc-ac micro-inverter has been proposed. The proposed boost half-bridge dc-dc converter utilizes only two switching devices with zero voltage switching features which is able to reduce the total system cost and power loss.

  5. Time-domain analysis of planar microstrip devices using a generalized Yee-algorithm based on unstructured grids

    NASA Technical Reports Server (NTRS)

    Gedney, Stephen D.; Lansing, Faiza

    1993-01-01

    The generalized Yee-algorithm is presented for the temporal full-wave analysis of planar microstrip devices. This algorithm has the significant advantage over the traditional Yee-algorithm in that it is based on unstructured and irregular grids. The robustness of the generalized Yee-algorithm is that structures that contain curved conductors or complex three-dimensional geometries can be more accurately, and much more conveniently modeled using standard automatic grid generation techniques. This generalized Yee-algorithm is based on the the time-marching solution of the discrete form of Maxwell's equations in their integral form. To this end, the electric and magnetic fields are discretized over a dual, irregular, and unstructured grid. The primary grid is assumed to be composed of general fitted polyhedra distributed throughout the volume. The secondary grid (or dual grid) is built up of the closed polyhedra whose edges connect the centroid's of adjacent primary cells, penetrating shared faces. Faraday's law and Ampere's law are used to update the fields normal to the primary and secondary grid faces, respectively. Subsequently, a correction scheme is introduced to project the normal fields onto the grid edges. It is shown that this scheme is stable, maintains second-order accuracy, and preserves the divergenceless nature of the flux densities. Finally, for computational efficiency the algorithm is structured as a series of sparse matrix-vector multiplications. Based on this scheme, the generalized Yee-algorithm has been implemented on vector and parallel high performance computers in a highly efficient manner.

  6. High-Throughput Mechanobiology Screening Platform Using Micro- and Nanotopography.

    PubMed

    Hu, Junqiang; Gondarenko, Alexander A; Dang, Alex P; Bashour, Keenan T; O'Connor, Roddy S; Lee, Sunwoo; Liapis, Anastasia; Ghassemi, Saba; Milone, Michael C; Sheetz, Michael P; Dustin, Michael L; Kam, Lance C; Hone, James C

    2016-04-13

    We herein demonstrate the first 96-well plate platform to screen effects of micro- and nanotopographies on cell growth and proliferation. Existing high-throughput platforms test a limited number of factors and are not fully compatible with multiple types of testing and assays. This platform is compatible with high-throughput liquid handling, high-resolution imaging, and all multiwell plate-based instrumentation. We use the platform to screen for topographies and drug-topography combinations that have short- and long-term effects on T cell activation and proliferation. We coated nanofabricated "trench-grid" surfaces with anti-CD3 and anti-CD28 antibodies to activate T cells and assayed for interleukin 2 (IL-2) cytokine production. IL-2 secretion was enhanced at 200 nm trench width and >2.3 μm grating pitch; however, the secretion was suppressed at 100 nm width and <0.5 μm pitch. The enhancement on 200 nm grid trench was further amplified with the addition of blebbistatin to reduce contractility. The 200 nm grid pattern was found to triple the number of T cells in long-term expansion, a result with direct clinical applicability in adoptive immunotherapy.

  7. Accessing Wind Tunnels From NASA's Information Power Grid

    NASA Technical Reports Server (NTRS)

    Becker, Jeff; Biegel, Bryan (Technical Monitor)

    2002-01-01

    The NASA Ames wind tunnel customers are one of the first users of the Information Power Grid (IPG) storage system at the NASA Advanced Supercomputing Division. We wanted to be able to store their data on the IPG so that it could be accessed remotely in a secure but timely fashion. In addition, incorporation into the IPG allows future use of grid computational resources, e.g., for post-processing of data, or to do side-by-side CFD validation. In this paper, we describe the integration of grid data access mechanisms with the existing DARWIN web-based system that is used to access wind tunnel test data. We also show that the combined system has reasonable performance: wind tunnel data may be retrieved at 50Mbits/s over a 100 base T network connected to the IPG storage server.

  8. Retinal instrument

    DOEpatents

    Britton, Charles L; D& #x27; Urso, Brian R; Chaum, Edward; Simpson, John T; Baba, Justin S; Ericson, M. Nance; Warmack, Robert J

    2013-04-23

    In one embodiment, the present invention provides a method of removing scar tissue from an eye that includes inserting a device including an array of micro-rods into an eye, wherein at least one glass micro-rod of the array of glass micro-rods includes a sharp feature; contacting a scar tissue with the array of micro-rods; and removing the array of micro-rods and the scar tissue from the eye. In another embodiment, the present invention provides a medical device for engaging a tissue including and an array of glass micro-rods, wherein at least one glass micro-rod of the array of glass micro-rods includes a sharp feature opposite a base of the array of glass micro-rods that is connected to the cannula, wherein the sharp feature of the at least one micro-rod is angled from a plane that is normal to a face of the base of the array of glass micro-rods.

  9. Simulation of a Lunar Surface Base Power Distribution Network for the Constellation Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Mintz, Toby; Maslowski, Edward A.; Colozza, Anthony; McFarland, Willard; Prokopius, Kevin P.; George, Patrick J.; Hussey, Sam W.

    2010-01-01

    The Lunar Surface Power Distribution Network Study team worked to define, breadboard, build and test an electrical power distribution system consistent with NASA's goal of providing electrical power to sustain life and power equipment used to explore the lunar surface. A testbed was set up to simulate the connection of different power sources and loads together to form a mini-grid and gain an understanding of how the power systems would interact. Within the power distribution scheme, each power source contributes to the grid in an independent manner without communication among the power sources and without a master-slave scenario. The grid consisted of four separate power sources and the accompanying power conditioning equipment. Overall system design and testing was performed. The tests were performed to observe the output and interaction of the different power sources as some sources are added and others are removed from the grid connection. The loads on the system were also varied from no load to maximum load to observe the power source interactions.

  10. Power Hardware-in-the-Loop Evaluation of PV Inverter Grid Support on Hawaiian Electric Feeders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Austin A; Prabakar, Kumaraguru; Nagarajan, Adarsh

    As more grid-connected photovoltaic (PV) inverters become compliant with evolving interconnections requirements, there is increased interest from utilities in understanding how to best deploy advanced grid-support functions (GSF) in the field. One efficient and cost-effective method to examine such deployment options is to leverage power hardware-in-the-loop (PHIL) testing methods, which combine the fidelity of hardware tests with the flexibility of computer simulation. This paper summarizes a study wherein two Hawaiian Electric feeder models were converted to real-time models using an OPAL-RT real-time digital testing platform, and integrated with models of GSF capable PV inverters based on characterization test data. Themore » integrated model was subsequently used in PHIL testing to evaluate the effects of different fixed power factor and volt-watt control settings on voltage regulation of the selected feeders using physical inverters. Selected results are presented in this paper, and complete results of this study were provided as inputs for field deployment and technical interconnection requirements for grid-connected PV inverters on the Hawaiian Islands.« less

  11. Smart Grid Development Issues for Terrestrial and Space Applications

    NASA Technical Reports Server (NTRS)

    Soeder, James F.

    2011-01-01

    The development of the so called Smart Grid has as many definitions as individuals working in the area. Based on the technology or technologies that are of interest, be it high speed communication, renewable generation, smart meters, energy storage, advanced sensors, etc. they can become the individual defining characteristic of the Smart Grid. In reality the smart grid encompasses all of these items and quite at bit more. This discussion attempts to look at what the needs are for the grid of the future, such as the issues of increased power flow capability, use of renewable energy, increased security and efficiency and common power and data standards. It also shows how many of these issues are common with the needs of NASA for future exploration programs. A common theme to address both terrestrial and space exploration issues is to develop micro-grids that advertise the ability to enable the load leveling of large power generation facilities. However, for microgrids to realize their promise there needs to a holistic systems approach to their development and integration. The overall system integration issues are presented along with potential solution methodologies.

  12. Smart Grid Development Issues for Terrestrial and Space Applications

    NASA Technical Reports Server (NTRS)

    Soeder, James F.

    2014-01-01

    The development of the so called Smart Grid has as many definitions as individuals working in the area. Based on the technology or technologies that are of interest, be it high speed communication, renewable generation, smart meters, energy storage, advanced sensors, etc. they can become the individual defining characteristic of the Smart Grid. In reality the smart grid encompasses all of these items and quite at bit more. This discussion attempts to look at what the needs are for the grid of the future, such as the issues of increased power flow capability, use of renewable energy, increased security and efficiency and common power and data standards. It also shows how many of these issues are common with the needs of NASA for future exploration programs. A common theme to address both terrestrial and space exploration issues is to develop micro-grids that advertise the ability to enable the load leveling of large power generation facilities. However, for microgrids to realize their promise there needs to a holistic systems approach to their development and integration. The overall system integration issues are presented along with potential solution methodologies.

  13. Experimental Evaluation of PV Inverter Anti-Islanding with Grid Support Functions in Multi-Inverter Island Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoke, Anderson; Nelson, Austin; Miller, Brian

    As PV and other DER systems are connected to the grid at increased penetration levels, island detection may become more challenging for two reasons: 1.) In islands containing many DERs, active inverter-based anti-islanding methods may have more difficulty detecting islands because each individual inverter's efforts to detect the island may be interfered with by the other inverters in the island. 2.) The increasing numbers of DERs are leading to new requirements that DERs ride through grid disturbances and even actively try to regulate grid voltage and frequency back towards nominal operating conditions. These new grid support requirements may directly ormore » indirectly interfere with anti-islanding controls. This report describes a series of tests designed to examine the impacts of both grid support functions and multi-inverter islands on anti-islanding effectiveness. Crucially, the multi-inverter anti-islanding tests described in this report examine scenarios with multiple inverters connected to multiple different points on the grid. While this so-called 'solar subdivision' scenario has been examined to some extent through simulation, this is the first known work to test it using hardware inverters. This was accomplished through the use of power hardware-in-the-loop (PHIL) simulation, which allows the hardware inverters to be connected to a real-time transient simulation of an electric power system that can be easily reconfigured to test various distribution circuit scenarios. The anti-islanding test design was a modified version of the unintentional islanding test in IEEE Standard 1547.1, which creates a balanced, resonant island with the intent of creating a highly challenging condition for island detection. Three common, commercially available single-phase PV inverters from three different manufacturers were tested. The first part of this work examined each inverter individually using a series of pure hardware resistive-inductive-capacitive (RLC) resonant load based anti-islanding tests to determine the worst-case configuration of grid support functions for each inverter. A grid support function is a function an inverter performs to help stabilize the grid or drive the grid back towards its nominal operating point. The four grid support functions examined here were voltage ride-through, frequency ride-through, Volt-VAr control, and frequency-Watt control. The worst-case grid support configuration was defined as the configuration that led to the maximum island duration (or run-on time, ROT) out of 50 tests of each inverter. For each of the three inverters, it was observed that maximum ROT increased when voltage and frequency ride-through were activated. No conclusive evidence was found that Volt-VAr control or frequency-Watt control increased maximum ROT. Over all single-inverter test cases, the maximum ROT was 711 ms, well below the two-second limit currently imposed by IEEE Standard 1547-2003. A subsequent series of 244 experiments tested all three inverters simultaneously in the same island. These tests again used a procedure based on the IEEE 1547.1 unintentional islanding test to create a difficult-to-detect island condition. For these tests, which used the two worst-case grid support function configurations from the single-inverter tests, the inverters were connected to a variety of island circuit topologies designed to represent the variety of multiple-inverter islands that may occur on real distribution circuits. The interconnecting circuits and the resonant island load itself were represented in the real-time PHIL model. PHIL techniques similar to those employed here have been previously used and validated for anti-islanding tests, and the PHIL resonant load model used in this test was successfully validated by comparing single-inverter PHIL tests to conventional tests using an RLC load bank.« less

  14. Autonomous Hybrid Priority Queueing for Scheduling Residential Energy Demands

    NASA Astrophysics Data System (ADS)

    Kalimullah, I. Q.; Shamroukh, M.; Sahar, N.; Shetty, S.

    2017-05-01

    The advent of smart grid technologies has opened up opportunities to manage the energy consumption of the users within a residential smart grid system. Demand response management is particularly being employed to reduce the overall load on an electricity network which could in turn reduce outages and electricity costs. The objective of this paper is to develop an intelligible scheduler to optimize the energy available to a micro grid through hybrid queueing algorithm centered around the consumers’ energy demands. This is achieved by shifting certain schedulable load appliances to light load hours. Various factors such as the type of demand, grid load, consumers’ energy usage patterns and preferences are considered while formulating the logical constraints required for the algorithm. The algorithm thus obtained is then implemented in MATLAB workspace to simulate its execution by an Energy Consumption Scheduler (ECS) found within smart meters, which automatically finds the optimal energy consumption schedule tailor made to fit each consumer within the micro grid network.

  15. Enhancing the LVRT Capability of PMSG-Based Wind Turbines Based on R-SFCL

    NASA Astrophysics Data System (ADS)

    Xu, Lin; Lin, Ruixing; Ding, Lijie; Huang, Chunjun

    2018-03-01

    A novel low voltage ride-through (LVRT) scheme for PMSG-based wind turbines based on the Resistor Superconducting Fault Current Limiter (R-SFCL) is proposed in this paper. The LVRT scheme is mainly formed by R-SFCL in series between the transformer and the Grid Side Converter (GSC), and basic modelling has been discussed in detail. The proposed LVRT scheme is implemented to interact with PMSG model in PSCAD/EMTDC under three phase short circuit fault condition, which proves that the proposed scheme based on R-SFCL can improve the transient performance and LVRT capability to consolidate grid connection with wind turbines.

  16. Adaptive fuzzy sliding control of single-phase PV grid-connected inverter

    PubMed Central

    Zhu, Yunkai

    2017-01-01

    In this paper, an adaptive fuzzy sliding mode controller is proposed to control a two-stage single-phase photovoltaic (PV) grid-connected inverter. Two key technologies are discussed in the presented PV system. An incremental conductance method with adaptive step is adopted to track the maximum power point (MPP) by controlling the duty cycle of the controllable power switch of the boost DC-DC converter. An adaptive fuzzy sliding mode controller with an integral sliding surface is developed for the grid-connected inverter where a fuzzy system is used to approach the upper bound of the system nonlinearities. The proposed strategy has strong robustness for the sliding mode control can be designed independently and disturbances can be adaptively compensated. Simulation results of a PV grid-connected system verify the effectiveness of the proposed method, demonstrating the satisfactory robustness and performance. PMID:28797060

  17. GRIDGEN Version 1.0: a computer program for generating unstructured finite-volume grids

    USGS Publications Warehouse

    Lien, Jyh-Ming; Liu, Gaisheng; Langevin, Christian D.

    2015-01-01

    GRIDGEN is a computer program for creating layered quadtree grids for use with numerical models, such as the MODFLOW–USG program for simulation of groundwater flow. The program begins by reading a three-dimensional base grid, which can have variable row and column widths and spatially variable cell top and bottom elevations. From this base grid, GRIDGEN will continuously divide into four any cell intersecting user-provided refinement features (points, lines, and polygons) until the desired level of refinement is reached. GRIDGEN will then smooth, or balance, the grid so that no two adjacent cells, including overlying and underlying cells, differ by more than a user-specified level tolerance. Once these gridding processes are completed, GRIDGEN saves a tree structure file so that the layered quadtree grid can be quickly reconstructed as needed. Once a tree structure file has been created, GRIDGEN can then be used to (1) export the layered quadtree grid as a shapefile, (2) export grid connectivity and cell information as ASCII text files for use with MODFLOW–USG or other numerical models, and (3) intersect the grid with shapefiles of points, lines, or polygons, and save intersection output as ASCII text files and shapefiles. The GRIDGEN program is demonstrated by creating a layered quadtree grid for the Biscayne aquifer in Miami-Dade County, Florida, using hydrologic features to control where refinement is added.

  18. Utility photovoltaic group: Status report

    NASA Astrophysics Data System (ADS)

    Serfass, Jeffrey A.; Hester, Stephen L.; Wills, Bethany N.

    1996-01-01

    The Utility PhotoVoltaic Group (UPVG) was formed in October of 1992 with a mission to accelerate the use of cost-effective small-scale and emerging grid-connected applications of photovoltaics for the benefit of electric utilities and their customers. The UPVG is now implementing a program to install up to 50 megawatts of photovoltaics in small-scale and grid-connected applications. This program, called TEAM-UP, is a partnership of the U.S. electric utility industry and the U.S. Department of Energy to help develop utility PV markets. TEAM-UP is a utility-directed program to significantly increase utility PV experience by promoting installations of utility PV systems. Two primary program areas are proposed for TEAM-UP: (1) Small-Scale Applications (SSA)—an initiative to aggregate utility purchases of small-scale, grid-independent applications; and (2) Grid-Connected Applications (GCA)—an initiative to identify and competitively award cost-sharing contracts for grid-connected PV systems with high market growth potential, or collective purchase programs involving multiple buyers. This paper describes these programs and outlines the schedule, the procurement status, and the results of the TEAM-UP process.

  19. A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaouachi, Aymen; Kamel, Rashad M.; Nagasaka, Ken

    This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three multi-layered feed forwarded Artificial Neural Networks (ANN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated ANN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology,more » comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and nonlinear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network and the Perturb and Observe (P and O) algorithm dispositive. (author)« less

  20. Energy Power Research Institute Shows Benefits of Grid-Connected Devices at

    Science.gov Websites

    product availability. With real-time status monitoring of the connected devices, a utility system could be devices, this approach can provide grid operators or other load management systems with real-time measure

  1. Histological findings of failed gold micro shunts in primary open-angle glaucoma.

    PubMed

    Agnifili, Luca; Costagliola, Ciro; Figus, Michele; Iezzi, Giovanna; Piattelli, Adriano; Carpineto, Paolo; Mastropasqua, Rodolfo; Nardi, Marco; Mastropasqua, Leonardo

    2012-01-01

    To describe the histological features of failed gold micro shunts (GMS) in unsuccessful implantations for refractory primary open-angle glaucoma (POAG). This was an interventional case series study. Five eyes of five glaucomatous patients with unsuccessful GMS implantation underwent shunt removal. Each device was sectioned into three portions: proximal or anterior chamber (AC) portion, middle or scleral portion and distal or suprachoroidal (SC) portion. The histological analysis was performed throughout the whole extent of the shunt, describing both the inner spaces and the outer surface. At the moment of removal all devices were correctly located into the SC space and in AC, with the exception of a case presenting corneal endothelial contact. The mean intra-ocular pressure before GMS removal was 30.4 ± 5.3 mmHg, and the mean time of GMS removal after implantation was 6.8 ± 2.5 months. No significant histological differences were documented among the five analyzed devices. The main feature was the presence of a thick connective capsule-like reaction surrounding both the proximal and distal ends and invading the posterior and anterior grid holes, whereas a more loosely arranged connective tissue was observed within the inner channels. Signs of surface fibrosis of the middle-scleral portion and inflammatory cell infiltration of the device were not documented in any of the cases. Failed GMS implantations presented connective tissue filling all the inner spaces and creating a thick fibrotic capsule surrounding the ends of the device. This modification isolated the GMS from the AC and SC space, impeding aqueous flows throughout the shunt.

  2. Using Micro-Synchrophasor Data for Advanced Distribution Grid Planning and Operations Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Emma; Kiliccote, Sila; McParland, Charles

    2014-07-01

    This report reviews the potential for distribution-grid phase-angle data that will be available from new micro-synchrophasors (µPMUs) to be utilized in existing distribution-grid planning and operations analysis. This data could augment the current diagnostic capabilities of grid analysis software, used in both planning and operations for applications such as fault location, and provide data for more accurate modeling of the distribution system. µPMUs are new distribution-grid sensors that will advance measurement and diagnostic capabilities and provide improved visibility of the distribution grid, enabling analysis of the grid’s increasingly complex loads that include features such as large volumes of distributed generation.more » Large volumes of DG leads to concerns on continued reliable operation of the grid, due to changing power flow characteristics and active generation, with its own protection and control capabilities. Using µPMU data on change in voltage phase angle between two points in conjunction with new and existing distribution-grid planning and operational tools is expected to enable model validation, state estimation, fault location, and renewable resource/load characterization. Our findings include: data measurement is outstripping the processing capabilities of planning and operational tools; not every tool can visualize a voltage phase-angle measurement to the degree of accuracy measured by advanced sensors, and the degree of accuracy in measurement required for the distribution grid is not defined; solving methods cannot handle the high volumes of data generated by modern sensors, so new models and solving methods (such as graph trace analysis) are needed; standardization of sensor-data communications platforms in planning and applications tools would allow integration of different vendors’ sensors and advanced measurement devices. In addition, data from advanced sources such as µPMUs could be used to validate models to improve/ensure accuracy, providing information on normally estimated values such as underground conductor impedance, and characterization of complex loads. Although the input of high-fidelity data to existing tools will be challenging, µPMU data on phase angle (as well as other data from advanced sensors) will be useful for basic operational decisions that are based on a trend of changing data.« less

  3. Coherent Synchrotron-Based Micro-Imaging Employed for Studies of Micro-Gap Formation in Dental Implants

    NASA Astrophysics Data System (ADS)

    Rack, T.; Zabler, S.; Rack, A.; Stiller, M.; Riesemeier, H.; Cecilia, A.; Nelson, K.

    2011-09-01

    Biocompatible materials such as titanium are regularly applied in oral surgery. Titanium-based implants for the replacement of missing teeth demand a high mechanical precision in order to minimize micro-bacterial leakage, especially when two-piece concepts are used. Synchrotron-based hard x-ray radiography, unlike conventional laboratory radiography, allows high spatial resolution in combination with high contrast even when micro-sized features in such highly attenuating objects are visualized. Therefore, micro-gap formation at interfaces in two-piece dental implants with the sample under different mechanical loads can be studied. We show the existence of micro-gaps in implants with conical connections and study the mechanical behavior of the mating zone of conical implants during loading. The micro-gap is a potential source of implant failure, i.e., bacterial leakage, which can be a stimulus for an inflammatory process.

  4. Coherent Synchrotron-Based Micro-Imaging Employed for Studies of Micro-Gap Formation in Dental Implants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rack, T.; Stiller, M.; Nelson, K.

    Biocompatible materials such as titanium are regularly applied in oral surgery. Titanium-based implants for the replacement of missing teeth demand a high mechanical precision in order to minimize micro-bacterial leakage, especially when two-piece concepts are used. Synchrotron-based hard x-ray radiography, unlike conventional laboratory radiography, allows high spatial resolution in combination with high contrast even when micro-sized features in such highly attenuating objects are visualized. Therefore, micro-gap formation at interfaces in two-piece dental implants with the sample under different mechanical loads can be studied. We show the existence of micro-gaps in implants with conical connections and study the mechanical behavior ofmore » the mating zone of conical implants during loading. The micro-gap is a potential source of implant failure, i.e., bacterial leakage, which can be a stimulus for an inflammatory process.« less

  5. In vitro synchrotron-based radiography of micro-gap formation at the implant-abutment interface of two-piece dental implants.

    PubMed

    Rack, A; Rack, T; Stiller, M; Riesemeier, H; Zabler, S; Nelson, K

    2010-03-01

    Micro-gap formation at the implant-abutment interface of two-piece dental implants was investigated in vitro using high-resolution radiography in combination with hard X-ray synchrotron radiation. Images were taken with the specimen under different mechanical loads of up to 100 N. The aim of this investigation was to prove the existence of micro-gaps for implants with conical connections as well as to study the mechanical behavior of the mating zone of conical implants during loading. Synchrotron-based radiography in comparison with classical laboratory radiography yields high spatial resolution in combination with high contrast even when exploiting micro-sized features in highly attenuating objects. The first illustration of a micro-gap which was previously indistinguishable by laboratory methods underlines that the complex micro-mechanical behavior of implants requires further in vitro investigations where synchrotron-based micro-imaging is one of the prerequisites.

  6. Criticality of forcing directions on the fragmentation and resilience of grid networks.

    PubMed

    Abundo, Cheryl; Monterola, Christopher; Legara, Erika Fille

    2014-08-27

    A general framework for probing the dynamic evolution of spatial networks comprised of nodes applying force amongst each other is presented. Aside from the already reported magnitude of forces and elongation thresholds, we show that preservation of links in a network is also crucially dependent on how nodes are connected and how edges are directed. We demonstrate that the time it takes for the networks to reach its equilibrium network structure follows a robust power law relationship consistent with Basquin's law with an exponent that can be tuned by changing only the force directions. Further, we illustrate that networks with different connection structures, node positions and edge directions have different Basquin's exponent which can be used to distinguish spatial directed networks from each other. Using an extensive waiting time simulation that spans up to over 16 orders of magnitude, we establish that the presence of memory combined with the scale-free bursty dynamics of edge breaking at the micro level leads to the evident macroscopic power law distribution of network lifetime.

  7. Isolated Operation at Hachinohe Micro-Grid Project

    NASA Astrophysics Data System (ADS)

    Takano, Tomihiro; Kojima, Yasuhiro; Temma, Koji; Simomura, Masaru

    To meet the global warming, renewable energy sources like wind, solar and biomass generations are dramatically increasing. Cogeneration systems are also ever-growing to save consumers' energy costs among factories, buildings and homes where lots of thermal loads are expected. According to these dispersed generators growth, their negative impacts to commercial power systems quality become non-negligible, because their unstable output causes network voltage and frequency fluctuation. Micro-grid technology comes to the front to solve the problem and many demonstrative field tests are now going all over the world. This paper presents the control paradigm and its application to Hachinohe micro-gird project, especially focusing on the power quality at isolated operation on which strict condition is imposed.

  8. The judgement of simultaneous commutation failure in HVDC about hierarchical connection to AC grid

    NASA Astrophysics Data System (ADS)

    Li, Ming; Song, Xinli; Huang, Daoshan; Liu, Wenzhuo; Zhao, Shutao; Ye, Xiaohui; Meng, Hang

    2017-09-01

    The hierarchical connection to AC grid at inverter sides in UHVDC has been take in several projects. This paper introduced the frame of the connection mode in hierarchical access system and compared it with the traditional one at the case of HVDC-Cigre. Then the criterion of commutation failure according to the same valves current was deduced. In order to verify the accuracy of the criterion, this paper used PSD-BPA (Bonneville Power Administration) to simulate the setting voltage drop in the East China power grid and certified the correctness of the formula.

  9. The Overgrid Interface for Computational Simulations on Overset Grids

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Computational simulations using overset grids typically involve multiple steps and a variety of software modules. A graphical interface called OVERGRID has been specially designed for such purposes. Data required and created by the different steps include geometry, grids, domain connectivity information and flow solver input parameters. The interface provides a unified environment for the visualization, processing, generation and diagnosis of such data. General modules are available for the manipulation of structured grids and unstructured surface triangulations. Modules more specific for the overset approach include surface curve generators, hyperbolic and algebraic surface grid generators, a hyperbolic volume grid generator, Cartesian box grid generators, and domain connectivity: pre-processing tools. An interface provides automatic selection and viewing of flow solver boundary conditions, and various other flow solver inputs. For problems involving multiple components in relative motion, a module is available to build the component/grid relationships and to prescribe and animate the dynamics of the different components.

  10. Improved galvanic replacement growth of Ag microstructures on Cu micro-grid for enhanced SERS detection of organic molecules.

    PubMed

    Guo, Tian-Long; Li, Ji-Guang; Sun, Xudong; Sakka, Yoshio

    2016-04-01

    Galvanic growth of Ag nano/micro-structures on Cu micro-grid was systematically studied for surface-enhanced Raman scattering (SERS) applications. Detailed characterizations via FE-SEM and HR-TEM showed that processing parameters, (reaction time, Ag(+) concentration, and PVP addition) all substantially affect thermodynamics/kinetics of the replacement reaction to yield substrates of significantly different microstructures/homogeneities and thus varied SERS performances (sensitivity, enhancement factor, and reproducibility) of the Ag substrates in the detection of R6G analyte. PVP as an additive was shown to notably alter nucleation/growth behaviors of the Ag crystals and promote the deposition of dense and uniform Ag films of nearly monodisperse polyhedrons/nanoplates through suppressing dendrites crystallization. Under optimized synthesis (50mM of Ag(+), 30s of reaction, and 700 wt.% of PVP), Ag substrates exhibiting a high Raman signal enhancement factor of ~1.1 × 10(6) and a low relative standard deviation of ~0.13 in the repeated detection of 10 μM R6G were obtained. The facile deposition and excellent performance reported in this work may allow the Ag microstructures to find wider SERS applications. Moreover, growth mechanisms of the different Ag nano/micro-structures were discussed based on extensive FE-SEM and HR-TEM analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Nitride micro-LEDs and beyond--a decade progress review.

    PubMed

    Jiang, H X; Lin, J Y

    2013-05-06

    Since their inception, micro-size light emitting diode (µLED) arrays based on III-nitride semiconductors have emerged as a promising technology for a range of applications. This paper provides an overview on a decade progresses on realizing III-nitride µLED based high voltage single-chip AC/DC-LEDs without power converters to address the key compatibility issue between LEDs and AC power grid infrastructure; and high-resolution solid-state self-emissive microdisplays operating in an active driving scheme to address the need of high brightness, efficiency and robustness of microdisplays. These devices utilize the photonic integration approach by integrating µLED arrays on-chip. Other applications of nitride µLED arrays are also discussed.

  12. Power Quality Improvement Utilizing Photovoltaic Generation Connected to a Weak Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, Eduard; Tumbelaka, Hanny H.; Gao, Wenzhong

    Microgrid research and development in the past decades have been one of the most popular topics. Similarly, the photovoltaic generation has been surging among renewable generation in the past few years, thanks to the availability, affordability, technology maturity of the PV panels and the PV inverter in the general market. Unfortunately, quite often, the PV installations are connected to weak grids and may have been considered as the culprit of poor power quality affecting other loads in particular sensitive loads connected to the same point of common coupling (PCC). This paper is intended to demystify the renewable generation, and turnsmore » the negative perception into positive revelation of the superiority of PV generation to the power quality improvement in a microgrid system. The main objective of this work is to develop a control method for the PV inverter so that the power quality at the PCC will be improved under various disturbances. The method is to control the reactive current based on utilizing the grid current to counteract the negative impact of the disturbances. The proposed control method is verified in PSIM platform. Promising results have been obtained.« less

  13. Analysis the Transient Process of Wind Power Resources when there are Voltage Sags in Distribution Grid

    NASA Astrophysics Data System (ADS)

    Nhu Y, Do

    2018-03-01

    Vietnam has many advantages of wind power resources. Time by time there are more and more capacity as well as number of wind power project in Vietnam. Corresponding to the increase of wind power emitted into national grid, It is necessary to research and analyze in order to ensure the safety and reliability of win power connection. In national distribution grid, voltage sag occurs regularly, it can strongly influence on the operation of wind power. The most serious consequence is the disconnection. The paper presents the analysis of distribution grid's transient process when voltage is sagged. Base on the analysis, the solutions will be recommended to improve the reliability and effective operation of wind power resources.

  14. Thundercloud: Domain specific information security training for the smart grid

    NASA Astrophysics Data System (ADS)

    Stites, Joseph

    In this paper, we describe a cloud-based virtual smart grid test bed: ThunderCloud, which is intended to be used for domain-specific security training applicable to the smart grid environment. The test bed consists of virtual machines connected using a virtual internal network. ThunderCloud is remotely accessible, allowing students to undergo educational exercises online. We also describe a series of practical exercises that we have developed for providing the domain-specific training using ThunderCloud. The training exercises and attacks are designed to be realistic and to reflect known vulnerabilities and attacks reported in the smart grid environment. We were able to use ThunderCloud to offer practical domain-specific security training for smart grid environment to computer science students at little or no cost to the department and no risk to any real networks or systems.

  15. mantisGRID: a grid platform for DICOM medical images management in Colombia and Latin America.

    PubMed

    Garcia Ruiz, Manuel; Garcia Chaves, Alvin; Ruiz Ibañez, Carlos; Gutierrez Mazo, Jorge Mario; Ramirez Giraldo, Juan Carlos; Pelaez Echavarria, Alejandro; Valencia Diaz, Edison; Pelaez Restrepo, Gustavo; Montoya Munera, Edwin Nelson; Garcia Loaiza, Bernardo; Gomez Gonzalez, Sebastian

    2011-04-01

    This paper presents the mantisGRID project, an interinstitutional initiative from Colombian medical and academic centers aiming to provide medical grid services for Colombia and Latin America. The mantisGRID is a GRID platform, based on open source grid infrastructure that provides the necessary services to access and exchange medical images and associated information following digital imaging and communications in medicine (DICOM) and health level 7 standards. The paper focuses first on the data abstraction architecture, which is achieved via Open Grid Services Architecture Data Access and Integration (OGSA-DAI) services and supported by the Globus Toolkit. The grid currently uses a 30-Mb bandwidth of the Colombian High Technology Academic Network, RENATA, connected to Internet 2. It also includes a discussion on the relational database created to handle the DICOM objects that were represented using Extensible Markup Language Schema documents, as well as other features implemented such as data security, user authentication, and patient confidentiality. Grid performance was tested using the three current operative nodes and the results demonstrated comparable query times between the mantisGRID (OGSA-DAI) and Distributed mySQL databases, especially for a large number of records.

  16. Resilient Core Networks for Energy Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuntze, Nicolai; Rudolph, Carsten; Leivesley, Sally

    2014-07-28

    Abstract—Substations and their control are crucial for the availability of electricity in today’s energy distribution. Ad- vanced energy grids with Distributed Energy Resources require higher complexity in substations, distributed functionality and communication between devices inside substations and between substations. Also, substations include more and more intelligent devices and ICT based systems. All these devices are connected to other systems by different types of communication links or are situated in uncontrolled environments. Therefore, the risk of ICT based attacks on energy grids is growing. Consequently, security measures to counter these risks need to be an intrinsic part of energy grids. Thismore » paper introduces the concept of a Resilient Core Network to interconnected substations. This core network provides essen- tial security features, enables fast detection of attacks and allows for a distributed and autonomous mitigation of ICT based risks.« less

  17. Adaptive reconnection-based arbitrary Lagrangian Eulerian method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bo, Wurigen; Shashkov, Mikhail

    We present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35], [34] and [6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. Furthermore, in the standard ReALEmore » method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way.« less

  18. Adaptive reconnection-based arbitrary Lagrangian Eulerian method

    DOE PAGES

    Bo, Wurigen; Shashkov, Mikhail

    2015-07-21

    We present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35], [34] and [6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. Furthermore, in the standard ReALEmore » method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way.« less

  19. Modeling and measurement of a micro-optic beam deflector

    NASA Technical Reports Server (NTRS)

    Milster, Tom D.; Wong, J. Nan

    1992-01-01

    The use is studied of a unity-magnification micro-optic beam deflector. The defelector consists of two arrays of positively powered lenslets. The lenslets on each array are arranged in a square grid. Design criteria are based on usefulness in optical data storage devices. The deflector is designed to operate over a + or - 1.6 range of deflection angles. Modeling results are compared with interferometric analysis of the wavefront from a single lenslet pair. The results indicate that the device is nearly diffraction limited, but there are substantial wavefront errors at the edges and corners of the lenslets.

  20. Impact of Converter Interfaced Generation and Load on Grid Performance

    NASA Astrophysics Data System (ADS)

    Ramasubramanian, Deepak

    Alternate sources of energy such as wind, solar photovoltaic and fuel cells are coupled to the power grid with the help of solid state converters. Continued deregulation of the power sector coupled with favorable government incentives has resulted in the rapid growth of renewable energy sources connected to the distribution system at a voltage level of 34.5kV or below. Of late, many utilities are also investing in these alternate sources of energy with the point of interconnection with the power grid being at the transmission level. These converter interfaced generation along with their associated control have the ability to provide the advantage of fast control of frequency, voltage, active, and reactive power. However, their ability to provide stability in a large system is yet to be investigated in detail. This is the primary objective of this research. In the future, along with an increase in the percentage of converter interfaced renewable energy sources connected to the transmission network, there exists a possibility of even connecting synchronous machines to the grid through converters. Thus, all sources of energy can be expected to be coupled to the grid through converters. The control and operation of such a grid will be unlike anything that has been encountered till now. In this dissertation, the operation and behavior of such a grid will be investigated. The first step in such an analysis will be to build an accurate and simple mathematical model to represent the corresponding components in commercial software. Once this bridge has been crossed, conventional machines will be replaced with their solid state interfaced counterparts in a phased manner. At each stage, attention will be devoted to the control of these sources and also on the stability performance of the large power system. This dissertation addresses various concerns regarding the control and operation of a futuristic power grid. In addition, this dissertation also aims to address the issue of whether a requirement may arise to redefine operational reliability criteria based on the results obtained.

  1. Modular Cascaded H-Bridge Multilevel PV Inverter with Distributed MPPT for Grid-Connected Applications

    DOE PAGES

    Xiao, Bailu; Hang, Lijun; Mei, Jun; ...

    2014-09-04

    This paper presents a modular cascaded H-bridge multilevel photovoltaic (PV) inverter for single- or three-phase grid-connected applications. The modular cascaded multilevel topology helps to improve the efficiency and flexibility of PV systems. To realize better utilization of PV modules and maximize the solar energy extraction, a distributed maximum power point tracking (MPPT) control scheme is applied to both single-phase and three-phase multilevel inverters, which allows the independent control of each dc-link voltage. For three-phase grid-connected applications, PV mismatches may introduce unbalanced supplied power, leading to unbalanced grid current. To solve this issue, a control scheme with modulation compensation is alsomore » proposed. An experimental three-phase 7-level cascaded H-bridge inverter has been built utilizing 9 H-bridge modules (3 modules per phase). Each H-bridge module is connected to a 185 W solar panel. Simulation and experimental results are presented to verify the feasibility of the proposed approach.« less

  2. Artificial neural networks for control of a grid-connected rectifier/inverter under disturbance, dynamic and power converter switching conditions.

    PubMed

    Li, Shuhui; Fairbank, Michael; Johnson, Cameron; Wunsch, Donald C; Alonso, Eduardo; Proaño, Julio L

    2014-04-01

    Three-phase grid-connected converters are widely used in renewable and electric power system applications. Traditionally, grid-connected converters are controlled with standard decoupled d-q vector control mechanisms. However, recent studies indicate that such mechanisms show limitations in their applicability to dynamic systems. This paper investigates how to mitigate such restrictions using a neural network to control a grid-connected rectifier/inverter. The neural network implements a dynamic programming algorithm and is trained by using back-propagation through time. To enhance performance and stability under disturbance, additional strategies are adopted, including the use of integrals of error signals to the network inputs and the introduction of grid disturbance voltage to the outputs of a well-trained network. The performance of the neural-network controller is studied under typical vector control conditions and compared against conventional vector control methods, which demonstrates that the neural vector control strategy proposed in this paper is effective. Even in dynamic and power converter switching environments, the neural vector controller shows strong ability to trace rapidly changing reference commands, tolerate system disturbances, and satisfy control requirements for a faulted power system.

  3. Modeling and Implementing a Digitally Embedded Maximum Power Point Tracking Algorithm and a Series-Loaded Resonant DC-DC Converter to Integrate a Photovoltaic Array with a Micro-Grid

    DTIC Science & Technology

    2014-09-01

    These renewable energy sources can include solar, wind, geothermal , biomass, hydroelectric, and nuclear. Of these sources, photovoltaic (PV) arrays...renewable energy source [1]. These renewable energy sources can include solar, wind, geothermal , biomass, hydroelectric, and nuclear. Of these sources...26, May 2011. [6] H. G. Xu, J. P. He, Y. Qin, and Y. H. Li, “Energy management and control strategy for DC micro-grid in data center,” China

  4. Grid Connected Functionality

    DOE Data Explorer

    Baker, Kyri; Jin, Xin; Vaidynathan, Deepthi; Jones, Wesley; Christensen, Dane; Sparn, Bethany; Woods, Jason; Sorensen, Harry; Lunacek, Monte

    2016-08-04

    Dataset demonstrating the potential benefits that residential buildings can provide for frequency regulation services in the electric power grid. In a hardware-in-the-loop (HIL) implementation, simulated homes along with a physical laboratory home are coordinated via a grid aggregator, and it is shown that their aggregate response has the potential to follow the regulation signal on a timescale of seconds. Connected (communication-enabled), devices in the National Renewable Energy Laboratory's (NREL's) Energy Systems Integration Facility (ESIF) received demand response (DR) requests from a grid aggregator, and the devices responded accordingly to meet the signal while satisfying user comfort bounds and physical hardware limitations.

  5. Test of a 250 kVA Battery-Inverter System Micro-Grid: Cooperative Research and Development Final Report, CRADA Number CRD-11-460

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, William; Martin, Greg; Lundstrom, Blake

    Portland General Electric (PGE) is installing a 5-megawatt (MW) lithium-ion-based battery-inverter system (BIS) in Salem, Oregon, as part of the Pacific Northwest Smart Grid Demonstration Project. NREL will assist PGE in testing a 250-kilovolt-ampere (kVA) portion of the BIS in order to verify correct operation and minimize risk to subsequent demonstrations. In this project NREL will providetechnical support for the 250-kVA test and will work with PGE to write a test plan and evaluate the system in the lab before deployment in the field.

  6. Research on the comparison of extension mechanism of cellular automaton based on hexagon grid and rectangular grid

    NASA Astrophysics Data System (ADS)

    Zhai, Xiaofang; Zhu, Xinyan; Xiao, Zhifeng; Weng, Jie

    2009-10-01

    Historically, cellular automata (CA) is a discrete dynamical mathematical structure defined on spatial grid. Research on cellular automata system (CAS) has focused on rule sets and initial condition and has not discussed its adjacency. Thus, the main focus of our study is the effect of adjacency on CA behavior. This paper is to compare rectangular grids with hexagonal grids on their characteristics, strengths and weaknesses. They have great influence on modeling effects and other applications including the role of nearest neighborhood in experimental design. Our researches present that rectangular and hexagonal grids have different characteristics. They are adapted to distinct aspects, and the regular rectangular or square grid is used more often than the hexagonal grid. But their relative merits have not been widely discussed. The rectangular grid is generally preferred because of its symmetry, especially in orthogonal co-ordinate system and the frequent use of raster from Geographic Information System (GIS). However, in terms of complex terrain, uncertain and multidirectional region, we have preferred hexagonal grids and methods to facilitate and simplify the problem. Hexagonal grids can overcome directional warp and have some unique characteristics. For example, hexagonal grids have a simpler and more symmetric nearest neighborhood, which avoids the ambiguities of the rectangular grids. Movement paths or connectivity, the most compact arrangement of pixels, make hexagonal appear great dominance in the process of modeling and analysis. The selection of an appropriate grid should be based on the requirements and objectives of the application. We use rectangular and hexagonal grids respectively for developing city model. At the same time we make use of remote sensing images and acquire 2002 and 2005 land state of Wuhan. On the base of city land state in 2002, we make use of CA to simulate reasonable form of city in 2005. Hereby, these results provide a proof of concept for hexagonal which has great dominance.

  7. The Benefits of Grid Networks

    ERIC Educational Resources Information Center

    Tennant, Roy

    2005-01-01

    In the article, the author talks about the benefits of grid networks. In speaking of grid networks the author is referring to both networks of computers and networks of humans connected together in a grid topology. Examples are provided of how grid networks are beneficial today and the ways in which they have been used.

  8. An overlapped grid method for multigrid, finite volume/difference flow solvers: MaGGiE

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Lessard, Victor R.

    1990-01-01

    The objective is to develop a domain decomposition method via overlapping/embedding the component grids, which is to be used by upwind, multi-grid, finite volume solution algorithms. A computer code, given the name MaGGiE (Multi-Geometry Grid Embedder) is developed to meet this objective. MaGGiE takes independently generated component grids as input, and automatically constructs the composite mesh and interpolation data, which can be used by the finite volume solution methods with or without multigrid convergence acceleration. Six demonstrative examples showing various aspects of the overlap technique are presented and discussed. These cases are used for developing the procedure for overlapping grids of different topologies, and to evaluate the grid connection and interpolation data for finite volume calculations on a composite mesh. Time fluxes are transferred between mesh interfaces using a trilinear interpolation procedure. Conservation losses are minimal at the interfaces using this method. The multi-grid solution algorithm, using the coaser grid connections, improves the convergence time history as compared to the solution on composite mesh without multi-gridding.

  9. A MPPT Algorithm Based PV System Connected to Single Phase Voltage Controlled Grid

    NASA Astrophysics Data System (ADS)

    Sreekanth, G.; Narender Reddy, N.; Durga Prasad, A.; Nagendrababu, V.

    2012-10-01

    Future ancillary services provided by photovoltaic (PV) systems could facilitate their penetration in power systems. In addition, low-power PV systems can be designed to improve the power quality. This paper presents a single-phase PV systemthat provides grid voltage support and compensation of harmonic distortion at the point of common coupling thanks to a repetitive controller. The power provided by the PV panels is controlled by a Maximum Power Point Tracking algorithm based on the incremental conductance method specifically modified to control the phase of the PV inverter voltage. Simulation and experimental results validate the presented solution.

  10. Thin metal electrode for AMTEC

    NASA Technical Reports Server (NTRS)

    Williams, Roger M. (Inventor); Wheeler, Bob L. (Inventor); Jefferies-Nakamura, Barbara (Inventor); Lamb, James L. (Inventor); Bankston, C. Perry (Inventor); Cole, Terry (Inventor)

    1989-01-01

    An electrode having higher power output is formed of a thin, porous film (less than 1 micrometer) applied to a beta-alumina solid electrolyte (BASE). The electrode includes an open grid, current collector such as a series of thin, parallel, grid lines applied to the thin film and a plurality of cross-members such as loop of metal wire surrounding the BASE tube. The loops are electrically connected by a bus wire. The overall impedance of the electrode considering both the contributions from the bulk BASE and the porous electrode BASE interface is low, about 0.5 OHM/cm.sup.2 and power densities of over 0.3 watt/cm.sup.2 for extended periods.

  11. Quantum connectivity optimization algorithms for entanglement source deployment in a quantum multi-hop network

    NASA Astrophysics Data System (ADS)

    Zou, Zhen-Zhen; Yu, Xu-Tao; Zhang, Zai-Chen

    2018-04-01

    At first, the entanglement source deployment problem is studied in a quantum multi-hop network, which has a significant influence on quantum connectivity. Two optimization algorithms are introduced with limited entanglement sources in this paper. A deployment algorithm based on node position (DNP) improves connectivity by guaranteeing that all overlapping areas of the distribution ranges of the entanglement sources contain nodes. In addition, a deployment algorithm based on an improved genetic algorithm (DIGA) is implemented by dividing the region into grids. From the simulation results, DNP and DIGA improve quantum connectivity by 213.73% and 248.83% compared to random deployment, respectively, and the latter performs better in terms of connectivity. However, DNP is more flexible and adaptive to change, as it stops running when all nodes are covered.

  12. Air-core grid for scattered x-ray rejection

    DOEpatents

    Logan, C.M.; Lane, S.M.

    1995-10-03

    The invention is directed to a grid used in x-ray imaging applications to block scattered radiation while allowing the desired imaging radiation to pass through, and to process for making the grid. The grid is composed of glass containing lead oxide, and eliminates the spacer material used in prior known grids, and is therefore, an air-core grid. The glass is arranged in a pattern so that a large fraction of the area is open allowing the imaging radiation to pass through. A small pore size is used and the grid has a thickness chosen to provide high scatter rejection. For example, the grid may be produced with a 200 {micro}m pore size, 80% open area, and 4 mm thickness. 2 figs.

  13. Grid regulation services for energy storage devices based on grid frequency

    DOEpatents

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2013-07-02

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  14. Grid regulation services for energy storage devices based on grid frequency

    DOEpatents

    Pratt, Richard M.; Hammerstrom, Donald J.; Kintner-Meyer, Michael C. W.; Tuffner, Francis K.

    2017-09-05

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  15. Grid regulation services for energy storage devices based on grid frequency

    DOEpatents

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2014-04-15

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  16. Robust optimization based energy dispatch in smart grids considering demand uncertainty

    NASA Astrophysics Data System (ADS)

    Nassourou, M.; Puig, V.; Blesa, J.

    2017-01-01

    In this study we discuss the application of robust optimization to the problem of economic energy dispatch in smart grids. Robust optimization based MPC strategies for tackling uncertain load demands are developed. Unexpected additive disturbances are modelled by defining an affine dependence between the control inputs and the uncertain load demands. The developed strategies were applied to a hybrid power system connected to an electrical power grid. Furthermore, to demonstrate the superiority of the standard Economic MPC over the MPC tracking, a comparison (e.g average daily cost) between the standard MPC tracking, the standard Economic MPC, and the integration of both in one-layer and two-layer approaches was carried out. The goal of this research is to design a controller based on Economic MPC strategies, that tackles uncertainties, in order to minimise economic costs and guarantee service reliability of the system.

  17. A comparative analysis of dynamic grids vs. virtual grids using the A3pviGrid framework.

    PubMed

    Shankaranarayanan, Avinas; Amaldas, Christine

    2010-11-01

    With the proliferation of Quad/Multi-core micro-processors in mainstream platforms such as desktops and workstations; a large number of unused CPU cycles can be utilized for running virtual machines (VMs) as dynamic nodes in distributed environments. Grid services and its service oriented business broker now termed cloud computing could deploy image based virtualization platforms enabling agent based resource management and dynamic fault management. In this paper we present an efficient way of utilizing heterogeneous virtual machines on idle desktops as an environment for consumption of high performance grid services. Spurious and exponential increases in the size of the datasets are constant concerns in medical and pharmaceutical industries due to the constant discovery and publication of large sequence databases. Traditional algorithms are not modeled at handing large data sizes under sudden and dynamic changes in the execution environment as previously discussed. This research was undertaken to compare our previous results with running the same test dataset with that of a virtual Grid platform using virtual machines (Virtualization). The implemented architecture, A3pviGrid utilizes game theoretic optimization and agent based team formation (Coalition) algorithms to improve upon scalability with respect to team formation. Due to the dynamic nature of distributed systems (as discussed in our previous work) all interactions were made local within a team transparently. This paper is a proof of concept of an experimental mini-Grid test-bed compared to running the platform on local virtual machines on a local test cluster. This was done to give every agent its own execution platform enabling anonymity and better control of the dynamic environmental parameters. We also analyze performance and scalability of Blast in a multiple virtual node setup and present our findings. This paper is an extension of our previous research on improving the BLAST application framework using dynamic Grids on virtualization platforms such as the virtual box.

  18. Single-Phase Single-Stage Grid Tied Solar PV System with Active Power Filtering Using Power Balance Theory

    NASA Astrophysics Data System (ADS)

    Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar

    2018-06-01

    In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.

  19. Single-Phase Single-Stage Grid Tied Solar PV System with Active Power Filtering Using Power Balance Theory

    NASA Astrophysics Data System (ADS)

    Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar

    2018-03-01

    In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.

  20. Design and optimization of smart grid system based on renewable energy in Nyamuk Island, Karimunjawa district, Central Java

    NASA Astrophysics Data System (ADS)

    Novitasari, D.; Indartono, Y. S.; Rachmidha, T. D.; Reksowardojo, I. K.; Irsyad, M.

    2017-03-01

    Nyamuk Island in Karimunjawa District is one of the regions in Java that has no access to electricity grid. The electricity in Nyamuk Island relies on diesel engine which is managed by local government and only operated for 6 hours per day. It occurs as a consequence of high fuel cost. A study on smart micro grid system based on renewable energy was conducted in Combustion Engine and Propulsion System Laboratory of Institut Teknologi Bandung by using 1 kWp solar panels and a 3 kW bio based diesel engine. The fuels used to run the bio based diesel engine were diesel, virgin coconut oil and pure palm oil. The results show that the smart grid system run well at varying load and also with different fuel. Based on the experiments, average inverter efficiency was about 87%. This experiments proved that the use of biofuels had no effects to the overall system performance. Based on the results of prototype experiments, this paper will focus on design and optimization of smart micro grid system using HOMER software for Nyamuk Island. The design consists of (1) a diesel engine existing in Nyamuk Island whose fuel was diesel, (2) a lister engine whose fuel was from vegetable oil from Callophyllum inophyllum, (3) solar panels, (4) batteries and (5) converter. In this simulation, the existing diesel engine was set to operate 2 hours per day, while operating time of the lister engine has been varied with several scenarios. In scenario I, the lister engine was operated 5 hours per day, in scenario II the lister engine was operated 24 hours per day and in scenario III the lister engine was operated 8 hours per week in the weekend. In addition, a design using a modified diesel engine was conducted as well with an assumption that the modified cost was about 10% of new diesel engine cost. By modifying the diesel engine, the system will not need a lister engine. Assessments has been done to evaluate the designs, and the result shows that the optimal value obtains by the lister engine being operated for 24 hours a day in which the capacity of each component was 27 kWp PV, 7 kW lister engine, 26 kVA existing diesel engine, 40 kW converter and 128 batteries. The result is based on the lowest value of Net Present Cost (NPC) of 542.682 and Cost Of Electricity (COE) of 0.49.

  1. An Ag-grid/graphene hybrid structure for large-scale, transparent, flexible heaters.

    PubMed

    Kang, Junmo; Jang, Yonghee; Kim, Youngsoo; Cho, Seung-Hyun; Suhr, Jonghwan; Hong, Byung Hee; Choi, Jae-Boong; Byun, Doyoung

    2015-04-21

    Recently, carbon materials such as carbon nanotubes and graphene have been proposed as alternatives to indium tin oxide (ITO) for fabricating transparent conducting materials. However, obtaining low sheet resistance and high transmittance of these carbon materials has been challenging due to the intrinsic properties of the materials. In this paper, we introduce highly transparent and flexible conductive films based on a hybrid structure of graphene and an Ag-grid. Electrohydrodynamic (EHD) jet printing was used to produce a micro-scale grid consisting of Ag lines less than 10 μm wide. We were able to directly write the Ag-grid on a large-area graphene/flexible substrate due to the high conductivity of graphene. The hybrid electrode could be fabricated using hot pressing transfer and EHD jet printing in a non-vacuum, maskless, and low-temperature environment. The hybrid electrode offers an effective and simple route for achieving a sheet resistance as low as ∼4 Ω per square with ∼78% optical transmittance. Finally, we demonstrate that transparent flexible heaters based on the hybrid conductive films could be used in a vehicle or a smart window system.

  2. Improved control strategy for PI-R current of DFIG considering voltage and current harmonics compensation

    NASA Astrophysics Data System (ADS)

    Song, S. Y.; Liu, Q. H.; Zhao, Y. N.; Liu, S. Y.

    2016-08-01

    With the rapid development of wind power generation, the related research of wind power control and integration issues has attracted much attention, and the focus of the research are shifting away from the ideal power grid environment to the actual power grid environment. As the main stream wind turbine generator, a doubly-fed induction generator (DFIG) is connected to the power grid directly by its stator, so it is particularly sensitive to the power grid. This paper studies the improvement of DFIG control technology in the power grid harmonic environment. Based on the DFIG dynamic model considering the power grid harmonic environment, this paper introduces the shortcomings of the common control strategy of DFIG, and puts forward the enhanced method. The decoupling control of the system is realized by compensating the coupling between the rotor harmonic voltage and harmonic current, improving the control performance. In addition, the simulation experiments on PSCAD/EMTDC are carried out to verify the correctness and effectiveness of the improved scheme.

  3. Implant-abutment connections on single crowns: a systematic review.

    PubMed

    Ceruso, F M; Barnaba, P; Mazzoleni, S; Ottria, L; Gargari, M; Zuccon, A; Bruno, G; DI Fiore, A

    2017-01-01

    Different implant-abutment connections have been developed in the effort of reducing mechanical and biological failure. The most frequent complications are screw loosening, abutment or implant fracture and marginal bone loss due to overload and bacterial micro-leakage. Ideal connection should work as a one-piece implant avoiding the formation of a micro-gap at the implant-abutment interface. Different in vitro and in vivo researches have been published to compare the implant-abutment connections actually available: external hexagon, internal hexagon and conical finding different amount of micro-gap, micro-leakage and marginal bone loss. The aim of this article is to describe, according to the most recent literature, different kind of fixture-abutment connections and their clinical and mechanical advantages or disadvantages.

  4. Dynamically reconfigurable photovoltaic system

    DOEpatents

    Okandan, Murat; Nielson, Gregory N.

    2016-05-31

    A PV system composed of sub-arrays, each having a group of PV cells that are electrically connected to each other. A power management circuit for each sub-array has a communications interface and serves to connect or disconnect the sub-array to a programmable power grid. The power grid has bus rows and bus columns. A bus management circuit is positioned at a respective junction of a bus column and a bus row and is programmable through its communication interface to connect or disconnect a power path in the grid. As a result, selected sub-arrays are connected by selected power paths to be in parallel so as to produce a low system voltage, and, alternately in series so as to produce a high system voltage that is greater than the low voltage by at least a factor of ten.

  5. Dynamically reconfigurable photovoltaic system

    DOEpatents

    Okandan, Murat; Nielson, Gregory N.

    2016-12-27

    A PV system composed of sub-arrays, each having a group of PV cells that are electrically connected to each other. A power management circuit for each sub-array has a communications interface and serves to connect or disconnect the sub-array to a programmable power grid. The power grid has bus rows and bus columns. A bus management circuit is positioned at a respective junction of a bus column and a bus row and is programmable through its communication interface to connect or disconnect a power path in the grid. As a result, selected sub-arrays are connected by selected power paths to be in parallel so as to produce a low system voltage, and, alternately in series so as to produce a high system voltage that is greater than the low voltage by at least a factor of ten.

  6. DEMONSTRATION OF THE ENVIRONMENTAL AND DEMAND-SIDE MANAGEMENT BENEFITS OF GRID-CONNECTED PHOTOVOLTAIC POWER SYSTEMS SITED ON MILITARY BASES

    EPA Science Inventory

    The report gives results of an investigation into the pollutant emission reduction and demand-side management potential of three photovoltaic (PV) systems installed at Ft. Huachuca, AZ, Ft. Dix, NJ, and Hickam Air Force Base, HI, which began operation between January and July 199...

  7. Influence of grid resolution, parcel size and drag models on bubbling fluidized bed simulation

    DOE PAGES

    Lu, Liqiang; Konan, Arthur; Benyahia, Sofiane

    2017-06-02

    Here in this paper, a bubbling fluidized bed is simulated with different numerical parameters, such as grid resolution and parcel size. We examined also the effect of using two homogeneous drag correlations and a heterogeneous drag based on the energy minimization method. A fast and reliable bubble detection algorithm was developed based on the connected component labeling. The radial and axial solids volume fraction profiles are compared with experiment data and previous simulation results. These results show a significant influence of drag models on bubble size and voidage distributions and a much less dependence on numerical parameters. With a heterogeneousmore » drag model that accounts for sub-scale structures, the void fraction in the bubbling fluidized bed can be well captured with coarse grid and large computation parcels. Refining the CFD grid and reducing the parcel size can improve the simulation results but with a large increase in computation cost.« less

  8. A bilateral integrative health-care knowledge service mechanism based on 'MedGrid'.

    PubMed

    Liu, Chao; Jiang, Zuhua; Zhen, Lu; Su, Hai

    2008-04-01

    Current health-care organizations are encountering impression of paucity of medical knowledge. This paper classifies medical knowledge with new scopes. The discovery of health-care 'knowledge flow' initiates a bilateral integrative health-care knowledge service, and we make medical knowledge 'flow' around and gain comprehensive effectiveness through six operations (such as knowledge refreshing...). Seizing the active demand of Chinese health-care revolution, this paper presents 'MedGrid', which is a platform with medical ontology and knowledge contents service. Each level and detailed contents are described on MedGrid info-structure. Moreover, a new diagnosis and treatment mechanism are formed by technically connecting with electronic health-care records (EHRs).

  9. 3D Voronoi grid dedicated software for modeling gas migration in deep layered sedimentary formations with TOUGH2-TMGAS

    NASA Astrophysics Data System (ADS)

    Bonduà, Stefano; Battistelli, Alfredo; Berry, Paolo; Bortolotti, Villiam; Consonni, Alberto; Cormio, Carlo; Geloni, Claudio; Vasini, Ester Maria

    2017-11-01

    As is known, a full three-dimensional (3D) unstructured grid permits a great degree of flexibility when performing accurate numerical reservoir simulations. However, when the Integral Finite Difference Method (IFDM) is used for spatial discretization, constraints (arising from the required orthogonality between the segment connecting the blocks nodes and the interface area between blocks) pose difficulties in the creation of grids with irregular shaped blocks. The full 3D Voronoi approach guarantees the respect of IFDM constraints and allows generation of grids conforming to geological formations and structural objects and at the same time higher grid resolution in volumes of interest. In this work, we present dedicated pre- and post-processing gridding software tools for the TOUGH family of numerical reservoir simulators, developed by the Geothermal Research Group of the DICAM Department, University of Bologna. VORO2MESH is a new software coded in C++, based on the voro++ library, allowing computation of the 3D Voronoi tessellation for a given domain and the creation of a ready to use TOUGH2 MESH file. If a set of geological surfaces is available, the software can directly generate the set of Voronoi seed points used for tessellation. In order to reduce the number of connections and so to decrease computation time, VORO2MESH can produce a mixed grid with regular blocks (orthogonal prisms) and irregular blocks (polyhedron Voronoi blocks) at the point of contact between different geological formations. In order to visualize 3D Voronoi grids together with the results of numerical simulations, the functionality of the TOUGH2Viewer post-processor has been extended. We describe an application of VORO2MESH and TOUGH2Viewer to validate the two tools. The case study deals with the simulation of the migration of gases in deep layered sedimentary formations at basin scale using TOUGH2-TMGAS. A comparison between the simulation performances of unstructured and structured grids is presented.

  10. Hybrid AC-High Voltage DC Grid Stability and Controls

    NASA Astrophysics Data System (ADS)

    Yu, Jicheng

    The growth of energy demands in recent years has been increasing faster than the expansion of transmission facility construction. This tendency cooperating with the continuous investing on the renewable energy resources drives the research, development, and construction of HVDC projects to create a more reliable, affordable, and environmentally friendly power grid. Constructing the hybrid AC-HVDC grid is a significant move in the development of the HVDC techniques; the form of dc system is evolving from the point-to-point stand-alone dc links to the embedded HVDC system and the multi-terminal HVDC (MTDC) system. The MTDC is a solution for the renewable energy interconnections, and the MTDC grids can improve the power system reliability, flexibility in economic dispatches, and converter/cable utilizing efficiencies. The dissertation reviews the HVDC technologies, discusses the stability issues regarding the ac and HVDC connections, proposes a novel power oscillation control strategy to improve system stability, and develops a nonlinear voltage droop control strategy for the MTDC grid. To verify the effectiveness the proposed power oscillation control strategy, a long distance paralleled AC-HVDC transmission test system is employed. Based on the PSCAD/EMTDC platform simulation results, the proposed power oscillation control strategy can improve the system dynamic performance and attenuate the power oscillations effectively. To validate the nonlinear voltage droop control strategy, three droop controls schemes are designed according to the proposed nonlinear voltage droop control design procedures. These control schemes are tested in a hybrid AC-MTDC system. The hybrid AC-MTDC system, which is first proposed in this dissertation, consists of two ac grids, two wind farms and a five-terminal HVDC grid connecting them. Simulation studies are performed in the PSCAD/EMTDC platform. According to the simulation results, all the three design schemes have their unique salient features.

  11. Wave Energy Research, Testing and Demonstration Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batten, Belinda

    2014-09-30

    The purpose of this project was to build upon the research, development and testing experience of the Northwest National Marine Renewable Energy Center (NNMREC) to establish a non-grid connected open-ocean testing facility for wave energy converters (WECs) off the coast of Newport, Oregon. The test facility would serve as the first facility of its kind in the continental US with a fully energetic wave resource where WEC technologies could be proven for west coast US markets. The test facility would provide the opportunity for self-contained WEC testing or WEC testing connected via an umbilical cable to a mobile ocean testmore » berth (MOTB). The MOTB would act as a “grid surrogate” measuring energy produced by the WEC and the environmental conditions under which the energy was produced. In order to realize this vision, the ocean site would need to be identified through outreach to community stakeholders, and then regulatory and permitting processes would be undertaken. Part of those processes would require environmental baseline studies and site analysis, including benthic, acoustic and wave resource characterization. The MOTB and its myriad systems would need to be designed and constructed.The first WEC test at the facility with the MOTB was completed within this project with the WET-NZ device in summer 2012. In summer 2013, the MOTB was deployed with load cells on its mooring lines to characterize forces on mooring systems in a variety of sea states. Throughout both testing seasons, studies were done to analyze environmental effects during testing operations. Test protocols and best management practices for open ocean operations were developed. As a result of this project, the non-grid connected fully energetic WEC test facility is operational, and the MOTB system developed provides a portable concept for WEC testing. The permitting process used provides a model for other wave energy projects, especially those in the Pacific Northwest that have similar environmental considerations. While the non-grid connected testing facility provides an option for WEC developers to prove their technology in a fully-energetic wave environment, the absence of grid connection is somewhat of a limitation. To prove that their technology is commercially viable, developers seek a multi-year grid connected testing option. To address this need, NNMREC is developing a companion grid connected test facility in Newport, Oregon, where small arrays of WECs can be tested as well.« less

  12. ELECTRON DISCHARGE DEVICE

    DOEpatents

    Graham, M.H.

    1962-09-18

    A barrier-grid storage tube and an improved means for writing and reading of information in such a tube are described. A triax cable is provided in the reading and writing circuit and includes a coiled portion. The inner conductor of the cable is connected to the back plate of the barrier grid target assembly of the storage tube, the middle conductor of the cable is connected to a shielding member encompassing the target assembly and this member supports the barrier grid of the assembly, and the outer conductor of the cable is connected to an external shreld surrounding the target assembly. A source of writing sr- gnals is connected between the rnner conductor and middle conductor of said cable. Both the middle and outer conductors are connected to ground at the source end, and a small trimmer condenser is connected between the external shield and the source end of the inner conductor of the cable to compensate for the direct back plate-to-ground capacity due to the imperfect shielding of the barrier grid. The coiled portion of the cable provides for an output signal to a secondary corl coupled thereto. The grounded outer conductor serves as a means for preventing an output signal being applied to the coiled portion of the cable on application of writing signals to the inner and middle conductors of the cable. (AEC)

  13. Documentation for the MODFLOW 6 Groundwater Flow Model

    USGS Publications Warehouse

    Langevin, Christian D.; Hughes, Joseph D.; Banta, Edward R.; Niswonger, Richard G.; Panday, Sorab; Provost, Alden M.

    2017-08-10

    This report documents the Groundwater Flow (GWF) Model for a new version of MODFLOW called MODFLOW 6. The GWF Model for MODFLOW 6 is based on a generalized control-volume finite-difference approach in which a cell can be hydraulically connected to any number of surrounding cells. Users can define the model grid using one of three discretization packages, including (1) a structured discretization package for defining regular MODFLOW grids consisting of layers, rows, and columns, (2) a discretization by ver­tices package for defining layered unstructured grids consisting of layers and cells, and (3) a general unstruc­tured discretization package for defining flexible grids comprised of cells and their connection properties. For layered grids, a new capability is available for removing thin cells and vertically connecting cells overlying and underlying the thin cells. For complex problems involving water-table conditions, an optional Newton-Raphson formulation, based on the formulations in MODFLOW-NWT and MODFLOW-USG, can be acti­vated. Use of the Newton-Raphson formulation will often improve model convergence and allow solutions to be obtained for difficult problems that cannot be solved using the traditional wetting and drying approach. The GWF Model is divided into “packages,” as was done in previous MODFLOW versions. A package is the part of the model that deals with a single aspect of simulation. Packages included with the GWF Model include those related to internal calculations of groundwater flow (discretization, initial conditions, hydraulic conduc­tance, and storage), stress packages (constant heads, wells, recharge, rivers, general head boundaries, drains, and evapotranspiration), and advanced stress packages (streamflow routing, lakes, multi-aquifer wells, and unsaturated zone flow). An additional package is also available for moving water available in one package into the individual features of the advanced stress packages. The GWF Model also has packages for obtaining and controlling output from the model. This report includes detailed explanations of physical and mathematical concepts on which the GWF Model and its packages are based.Like its predecessors, MODFLOW 6 is based on a highly modular structure; however, this structure has been extended into an object-oriented framework. The framework includes a robust and generalized numeri­cal solution object, which can be used to solve many different types of models. The numerical solution object has several different matrix preconditioning options as well as several methods for solving the linear system of equations. In this new framework, the GWF Model itself is an object as are each of the GWF Model packages. A benefit of the object-oriented structure is that multiple objects of the same type can be used in a single sim­ulation. Thus, a single forward run with MODFLOW 6 may contain multiple GWF Models. GWF Models can be hydraulically connected using GWF-GWF Exchange objects. Connecting GWF models in different ways permits the user to utilize a local grid refinement strategy consisting of parent and child models or to couple adjacent GWF Models. An advantage of the approach implemented in MODFLOW 6 is that multiple models and their exchanges can be incorporated into a single numerical solution object. With this design, models can be tightly coupled at the matrix level.

  14. Sub-Grid Modeling of Electrokinetic Effects in Micro Flows

    NASA Technical Reports Server (NTRS)

    Chen, C. P.

    2005-01-01

    Advances in micro-fabrication processes have generated tremendous interests in miniaturizing chemical and biomedical analyses into integrated microsystems (Lab-on-Chip devices). To successfully design and operate the micro fluidics system, it is essential to understand the fundamental fluid flow phenomena when channel sizes are shrink to micron or even nano dimensions. One important phenomenon is the electro kinetic effect in micro/nano channels due to the existence of the electrical double layer (EDL) near a solid-liquid interface. Not only EDL is responsible for electro-osmosis pumping when an electric field parallel to the surface is imposed, EDL also causes extra flow resistance (the electro-viscous effect) and flow anomaly (such as early transition from laminar to turbulent flow) observed in pressure-driven microchannel flows. Modeling and simulation of electro-kinetic effects on micro flows poses significant numerical challenge due to the fact that the sizes of the double layer (10 nm up to microns) are very thin compared to channel width (can be up to 100 s of m). Since the typical thickness of the double layer is extremely small compared to the channel width, it would be computationally very costly to capture the velocity profile inside the double layer by placing sufficient number of grid cells in the layer to resolve the velocity changes, especially in complex, 3-d geometries. Existing approaches using "slip" wall velocity and augmented double layer are difficult to use when the flow geometry is complicated, e.g. flow in a T-junction, X-junction, etc. In order to overcome the difficulties arising from those two approaches, we have developed a sub-grid integration method to properly account for the physics of the double layer. The integration approach can be used on simple or complicated flow geometries. Resolution of the double layer is not needed in this approach, and the effects of the double layer can be accounted for at the same time. With this approach, the numeric grid size can be much larger than the thickness of double layer. Presented in this report are a description of the approach, methodology for implementation and several validation simulations for micro flows.

  15. Design of power cable grounding wire anti-theft monitoring system

    NASA Astrophysics Data System (ADS)

    An, Xisheng; Lu, Peng; Wei, Niansheng; Hong, Gang

    2018-01-01

    In order to prevent the serious consequences of the power grid failure caused by the power cable grounding wire theft, this paper presents a GPRS based power cable grounding wire anti-theft monitoring device system, which includes a camera module, a sensor module, a micro processing system module, and a data monitoring center module, a mobile terminal module. Our design utilize two kinds of methods for detecting and reporting comprehensive image, it can effectively solve the problem of power and cable grounding wire box theft problem, timely follow-up grounded cable theft events, prevent the occurrence of electric field of high voltage transmission line fault, improve the reliability of the safe operation of power grid.

  16. The capacity credit of grid-connected photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Alsema, E. A.; van Wijk, A. J. M.; Turkenburg, W. C.

    The capacity credit due photovoltaic (PV) power plants if integrated into the Netherlands grid was investigated, together with an estimate of the total allowable penetration. An hourly simulation was performed based on meteorological data from five stations and considering tilted surfaces, the current grid load pattern, and the load pattern after PV-power augmentation. The reliability of the grid was assessed in terms of a loss of load probability analysis, assuming power drops were limited to 1 GW. A projected tolerance for 2.5 GW of PV power was calculated. Peak demands were determined to be highest in winter, contrary to highest insolation levels; however, daily insolation levels coincided with daily peak demands. Combining the PV input with an equal amount of wind turbine power production was found to augment the capacity credit for both at aggregate outputs of 2-4 GW.

  17. Creating a Network Model for the Integration of a Dynamic and Static Supervisory Control and Data Acquisition (SCADA) Test Environment

    DTIC Science & Technology

    2011-03-01

    they can continue to leverage these capabilities (building Smart Grid infrastructure and providing Internet connectivity to every home ) while ensuring...21  Figure 9. Smart Grid Interoperability .............................................................................. 22  Figure 10. Smart ...Grid Integration .................................................................................... 24  Figure 11. National Smart Grid Initiatives

  18. NREL Partners With General Electric, Duke Energy on Grid Voltage Regulation

    Science.gov Websites

    Study | Energy Systems Integration Facility | NREL NREL Partners With General Electric, Duke Energy on Grid Voltage Regulation Study NREL Partners With General Electric, Duke Energy on Grid Voltage Regulation Study When a large solar photovoltaic (PV) system is connected to the electric grid, a utility's

  19. The development of a control system for a small high speed steam microturbine generator system

    NASA Astrophysics Data System (ADS)

    Alford, A.; Nichol, P.; Saunders, M.; Frisby, B.

    2015-08-01

    Steam is a widely used energy source. In many situations steam is generated at high pressures and then reduced in pressure through control valves before reaching point of use. An opportunity was identified to convert some of the energy at the point of pressure reduction into electricity. To take advantage of a market identified for small scale systems, a microturbine generator was designed based on a small high speed turbo machine. This machine was packaged with the necessary control valves and systems to allow connection of the machine to the grid. Traditional machines vary the speed of the generator to match the grid frequency. This was not possible due to the high speed of this machine. The characteristics of the rotating unit had to be understood to allow a control that allowed export of energy at the right frequency to the grid under the widest possible range of steam conditions. A further goal of the control system was to maximise the efficiency of generation under all conditions. A further complication was to provide adequate protection for the rotating unit in the event of the loss of connection to the grid. The system to meet these challenges is outlined with the solutions employed and tested for this application.

  20. Grid-Enabled Measures

    PubMed Central

    Moser, Richard P.; Hesse, Bradford W.; Shaikh, Abdul R.; Courtney, Paul; Morgan, Glen; Augustson, Erik; Kobrin, Sarah; Levin, Kerry; Helba, Cynthia; Garner, David; Dunn, Marsha; Coa, Kisha

    2011-01-01

    Scientists are taking advantage of the Internet and collaborative web technology to accelerate discovery in a massively connected, participative environment —a phenomenon referred to by some as Science 2.0. As a new way of doing science, this phenomenon has the potential to push science forward in a more efficient manner than was previously possible. The Grid-Enabled Measures (GEM) database has been conceptualized as an instantiation of Science 2.0 principles by the National Cancer Institute with two overarching goals: (1) Promote the use of standardized measures, which are tied to theoretically based constructs; and (2) Facilitate the ability to share harmonized data resulting from the use of standardized measures. This is done by creating an online venue connected to the Cancer Biomedical Informatics Grid (caBIG®) where a virtual community of researchers can collaborate together and come to consensus on measures by rating, commenting and viewing meta-data about the measures and associated constructs. This paper will describe the web 2.0 principles on which the GEM database is based, describe its functionality, and discuss some of the important issues involved with creating the GEM database, such as the role of mutually agreed-on ontologies (i.e., knowledge categories and the relationships among these categories— for data sharing). PMID:21521586

  1. System efficiency of a tap transformer based grid connection topology applied on a direct driven generator for wind power.

    PubMed

    Apelfröjd, Senad; Eriksson, Sandra

    2014-01-01

    Results from experiments on a tap transformer based grid connection system for a variable speed vertical axis wind turbine are presented. The tap transformer based system topology consists of a passive diode rectifier, DC-link, IGBT inverter, LCL-filter, and tap transformer. Full range variable speed operation is enabled by using the different step-up ratios of a tap transformer. Simulations using MATLAB/Simulink have been performed in order to study the behavior of the system. A full experimental set up of the system has been used in the laboratory study, where a clone of the on-site generator was driven by an induction motor and the system was connected to a resistive load to better evaluate the performance. Furthermore, the system is run and evaluated for realistic wind speeds and variable speed operation. For a more complete picture of the system performance, a case study using real site Weibull parameters is done, comparing different tap selection options. The results show high system efficiency at nominal power and an increase in overall power output for full tap operation in comparison with the base case, a standard transformer. In addition, the loss distribution at different wind speeds is shown, which highlights the dominant losses at low and high wind speeds. Finally, means for further increasing the overall system efficiency are proposed.

  2. System Efficiency of a Tap Transformer Based Grid Connection Topology Applied on a Direct Driven Generator for Wind Power

    PubMed Central

    2014-01-01

    Results from experiments on a tap transformer based grid connection system for a variable speed vertical axis wind turbine are presented. The tap transformer based system topology consists of a passive diode rectifier, DC-link, IGBT inverter, LCL-filter, and tap transformer. Full range variable speed operation is enabled by using the different step-up ratios of a tap transformer. Simulations using MATLAB/Simulink have been performed in order to study the behavior of the system. A full experimental set up of the system has been used in the laboratory study, where a clone of the on-site generator was driven by an induction motor and the system was connected to a resistive load to better evaluate the performance. Furthermore, the system is run and evaluated for realistic wind speeds and variable speed operation. For a more complete picture of the system performance, a case study using real site Weibull parameters is done, comparing different tap selection options. The results show high system efficiency at nominal power and an increase in overall power output for full tap operation in comparison with the base case, a standard transformer. In addition, the loss distribution at different wind speeds is shown, which highlights the dominant losses at low and high wind speeds. Finally, means for further increasing the overall system efficiency are proposed. PMID:25258733

  3. Connecting Restricted, High-Availability, or Low-Latency Resources to a Seamless Global Pool for CMS

    NASA Astrophysics Data System (ADS)

    Balcas, J.; Bockelman, B.; Hufnagel, D.; Hurtado Anampa, K.; Jayatilaka, B.; Khan, F.; Larson, K.; Letts, J.; Mascheroni, M.; Mohapatra, A.; Marra Da Silva, J.; Mason, D.; Perez-Calero Yzquierdo, A.; Piperov, S.; Tiradani, A.; Verguilov, V.; CMS Collaboration

    2017-10-01

    The connection of diverse and sometimes non-Grid enabled resource types to the CMS Global Pool, which is based on HTCondor and glideinWMS, has been a major goal of CMS. These resources range in type from a high-availability, low latency facility at CERN for urgent calibration studies, called the CAF, to a local user facility at the Fermilab LPC, allocation-based computing resources at NERSC and SDSC, opportunistic resources provided through the Open Science Grid, commercial clouds, and others, as well as access to opportunistic cycles on the CMS High Level Trigger farm. In addition, we have provided the capability to give priority to local users of beyond WLCG pledged resources at CMS sites. Many of the solutions employed to bring these diverse resource types into the Global Pool have common elements, while some are very specific to a particular project. This paper details some of the strategies and solutions used to access these resources through the Global Pool in a seamless manner.

  4. Hybrid Energy System Design of Micro Hydro-PV-biogas Based Micro-grid

    NASA Astrophysics Data System (ADS)

    Nishrina; Abdullah, A. G.; Risdiyanto, A.; Nandiyanto, ABD

    2017-03-01

    Hybrid renewable energy system is an arrangement of one or more sources of renewable energy and also conventional energy. This paper describes a simulation results of hybrid renewable power system based on the available potential in an educational institution in Indonesia. HOMER software was used to simulate and analyse both in terms of optimization and economic terms. This software was developed through 3 main principles; simulation, optimization, and sensitivity analysis. Generally, the presented results show that the software can demonstrate a feasible hybrid power system as well to be realized. The entire demand in case study area can be supplied by the system configuration and can be met by ¾ of electricity production. So, there are ¼ of generated energy became an excess electricity.

  5. Game-Based Learning Theory

    NASA Technical Reports Server (NTRS)

    Laughlin, Daniel

    2008-01-01

    Persistent Immersive Synthetic Environments (PISE) are not just connection points, they are meeting places. They are the new public squares, village centers, malt shops, malls and pubs all rolled into one. They come with a sense of 'thereness" that engages the mind like a real place does. Learning starts as a real code. The code defines "objects." The objects exist in computer space, known as the "grid." The objects and space combine to create a "place." A "world" is created, Before long, the grid and code becomes obscure, and the "world maintains focus.

  6. Techno-economical Analysis of Rooftop Grid-connected PV Dairy Farms; Case Study of Urmia University Dairy Farm

    NASA Astrophysics Data System (ADS)

    Nikbakht, A. M.; Aste, N.; Sarnavi, H. J.; Leonforte, F.

    2017-08-01

    The global trends indicate a growing commitment to renewable energy development because of declining fossil fuels and environmental threats. Moreover, the global demographic growth coupled with rising demands for food has escalated the rate of energy consumption in food section. This study aims to investigate the techno-economic impacts of a grid-connected rooftop PV plan applied for a educational dairy farm in Urmia university, with total estimated annual electrical energy consumption of 18,283 kWh, located at the north west part of Iran. Based on the current feed-in tariff and tremendously low electricity price in agriculture section in Iran, the plants with size ranged from 14.4 to 19.7 kWp (initial investment ranged from 26,000 to 36,000 USD) would be satisfied economically.

  7. The data storage grid: the next generation of fault-tolerant storage for backup and disaster recovery of clinical images

    NASA Astrophysics Data System (ADS)

    King, Nelson E.; Liu, Brent; Zhou, Zheng; Documet, Jorge; Huang, H. K.

    2005-04-01

    Grid Computing represents the latest and most exciting technology to evolve from the familiar realm of parallel, peer-to-peer and client-server models that can address the problem of fault-tolerant storage for backup and recovery of clinical images. We have researched and developed a novel Data Grid testbed involving several federated PAC systems based on grid architecture. By integrating a grid computing architecture to the DICOM environment, a failed PACS archive can recover its image data from others in the federation in a timely and seamless fashion. The design reflects the five-layer architecture of grid computing: Fabric, Resource, Connectivity, Collective, and Application Layers. The testbed Data Grid architecture representing three federated PAC systems, the Fault-Tolerant PACS archive server at the Image Processing and Informatics Laboratory, Marina del Rey, the clinical PACS at Saint John's Health Center, Santa Monica, and the clinical PACS at the Healthcare Consultation Center II, USC Health Science Campus, will be presented. The successful demonstration of the Data Grid in the testbed will provide an understanding of the Data Grid concept in clinical image data backup as well as establishment of benchmarks for performance from future grid technology improvements and serve as a road map for expanded research into large enterprise and federation level data grids to guarantee 99.999 % up time.

  8. Hybrid Grid Techniques for Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Koomullil, Roy P.; Soni, Bharat K.; Thornburg, Hugh J.

    1996-01-01

    During the past decade, computational simulation of fluid flow for propulsion activities has progressed significantly, and many notable successes have been reported in the literature. However, the generation of a high quality mesh for such problems has often been reported as a pacing item. Hence, much effort has been expended to speed this portion of the simulation process. Several approaches have evolved for grid generation. Two of the most common are structured multi-block, and unstructured based procedures. Structured grids tend to be computationally efficient, and have high aspect ratio cells necessary for efficently resolving viscous layers. Structured multi-block grids may or may not exhibit grid line continuity across the block interface. This relaxation of the continuity constraint at the interface is intended to ease the grid generation process, which is still time consuming. Flow solvers supporting non-contiguous interfaces require specialized interpolation procedures which may not ensure conservation at the interface. Unstructured or generalized indexing data structures offer greater flexibility, but require explicit connectivity information and are not easy to generate for three dimensional configurations. In addition, unstructured mesh based schemes tend to be less efficient and it is difficult to resolve viscous layers. Recently hybrid or generalized element solution and grid generation techniques have been developed with the objective of combining the attractive features of both structured and unstructured techniques. In the present work, recently developed procedures for hybrid grid generation and flow simulation are critically evaluated, and compared to existing structured and unstructured procedures in terms of accuracy and computational requirements.

  9. Concept of intellectual charging system for electrical and plug-in hybrid vehicles in Russian Federation

    NASA Astrophysics Data System (ADS)

    Kolbasov, A.; Karpukhin, K.; Terenchenko, A.; Kavalchuk, I.

    2018-02-01

    Electric vehicles have become the most common solution to improve sustainability of the transportation systems all around the world. Despite all benefits, wide adaptation of electric vehicles requires major changes in the infrastructure, including grid adaptation to the rapidly increased power demand and development of the Connected Car concept. This paper discusses the approaches to improve usability of electric vehicles, by creating suitable web-services, with possible connections vehicle-to-vehicle, vehicle-to-infrastructure, and vehicle-to-grid. Developed concept combines information about electrical loads on the grid in specific direction, navigation information from the on-board system, existing and empty charging slots and power availability. In addition, this paper presents the universal concept of the photovoltaic integrated charging stations, which are connected to the developed information systems. It helps to achieve rapid adaptation of the overall infrastructure to the needs of the electric vehicles users with minor changes in the existing grid and loads.

  10. Grid connected integrated community energy system. Phase II: final state 2 report. Cost benefit analysis, operating costs and computer simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-03-22

    A grid-connected Integrated Community Energy System (ICES) with a coal-burning power plant located on the University of Minnesota campus is planned. The cost benefit analysis performed for this ICES, the cost accounting methods used, and a computer simulation of the operation of the power plant are described. (LCL)

  11. Grid-connected PV systems - How and where they fit

    NASA Astrophysics Data System (ADS)

    Thomas, M. G.; Jones, G. J.

    The use of grid-connected photovoltaic systems requires substantial improvements in system economics. By integrating anticipated improvements in economics with consumer needs and perceptions, the various potential applications have been order-ranked. Third-party ownership of large systems appears to have the largest potential, residential has a modest potential, and the intermediate dedicated-load application potential appears to be small.

  12. Cyber-Physical System Security of a Power Grid: State-of-the-Art

    DOE PAGES

    Sun, Chih -Che; Liu, Chen -Ching; Xie, Jing

    2016-07-14

    Here, as part of the smart grid development, more and more technologies are developed and deployed on the power grid to enhance the system reliability. A primary purpose of the smart grid is to significantly increase the capability of computer-based remote control and automation. As a result, the level of connectivity has become much higher, and cyber security also becomes a potential threat to the cyber-physical systems (CPSs). In this paper, a survey of the state-of-the-art is conducted on the cyber security of the power grid concerning issues of: the structure of CPSs in a smart grid; cyber vulnerability assessment;more » cyber protection systems; and testbeds of a CPS. At Washington State University (WSU), the Smart City Testbed (SCT) has been developed to provide a platform to test, analyze and validate defense mechanisms against potential cyber intrusions. A test case is provided in this paper to demonstrate how a testbed helps the study of cyber security and the anomaly detection system (ADS) for substations.« less

  13. Cyber-Physical System Security of a Power Grid: State-of-the-Art

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Chih -Che; Liu, Chen -Ching; Xie, Jing

    Here, as part of the smart grid development, more and more technologies are developed and deployed on the power grid to enhance the system reliability. A primary purpose of the smart grid is to significantly increase the capability of computer-based remote control and automation. As a result, the level of connectivity has become much higher, and cyber security also becomes a potential threat to the cyber-physical systems (CPSs). In this paper, a survey of the state-of-the-art is conducted on the cyber security of the power grid concerning issues of: the structure of CPSs in a smart grid; cyber vulnerability assessment;more » cyber protection systems; and testbeds of a CPS. At Washington State University (WSU), the Smart City Testbed (SCT) has been developed to provide a platform to test, analyze and validate defense mechanisms against potential cyber intrusions. A test case is provided in this paper to demonstrate how a testbed helps the study of cyber security and the anomaly detection system (ADS) for substations.« less

  14. Modelling and Simulation of Grid Connected SPV System with Active Power Filtering Features

    NASA Astrophysics Data System (ADS)

    Saroha, Jaipal; Pandove, Gitanjali; Singh, Mukhtiar

    2017-09-01

    In this paper, the detailed simulation studies for a grid connected solar photovoltaic system (SPV) have been presented. The power electronics devices like DC-DC boost converter and grid interfacing inverter are most important components of proposed system. Here, the DC-DC boost converter is controlled to extract maximum power out of SPV under different irradiation levels, while the grid interfacing inverter is utilized to evacuate the active power and feed it into grid at synchronized voltage and frequency. Moreover, the grid interfacing inverter is also controlled to sort out the issues related to power quality by compensating the reactive power and harmonics current component of nearby load at point of common coupling. Besides, detailed modeling of various component utilized in proposed system is also presented. Finally, extensive simulations have been performed under different irradiation levels with various kinds of load to validate the aforementioned claims. The overall system design and simulation have been performed by using Sim Power System toolbox available in the library of MATLAB.

  15. MAGNETIC GRID

    DOEpatents

    Post, R.F.

    1960-08-01

    An electronic grid is designed employing magnetic forces for controlling the passage of charged particles. The grid is particularly applicable to use in gas-filled tubes such as ignitrons. thyratrons, etc., since the magnetic grid action is impartial to the polarity of the charged particles and, accordingly. the sheath effects encountered with electrostatic grids are not present. The grid comprises a conductor having sections spaced apart and extending in substantially opposite directions in the same plane, the ends of the conductor being adapted for connection to a current source.

  16. Grid-Free 2D Plasma Simulations of the Complex Interaction Between the Solar Wind and Small, Near-Earth Asteroids

    NASA Technical Reports Server (NTRS)

    Zimmerman, M. I.; Farrell, W. M.; Poppe, A. R.

    2014-01-01

    We present results from a new grid-free 2D plasma simulation code applied to a small, unmagnetized body immersed in the streaming solar wind plasma. The body was purposely modeled as an irregular shape in order to examine photoemission and solar wind plasma flow in high detail on the dayside, night-side, terminator and surface-depressed 'pocket' regions. Our objective is to examine the overall morphology of the various plasma interaction regions that form around a small body like a small near-Earth asteroid (NEA). We find that the object obstructs the solar wind flow and creates a trailing wake region downstream, which involves the interplay between surface charging and ambipolar plasma expansion. Photoemission is modeled as a steady outflow of electrons from illuminated portions of the surface, and under direct illumination the surface forms a non-monotonic or ''double-sheath'' electric potential upstream of the body, which is important for understanding trajectories and equilibria of lofted dust grains in the presence of a complex asteroid geometry. The largest electric fields are found at the terminators, where ambipolar plasma expansion in the body-sized night-side wake merges seamlessly with the thin photoelectric sheath on the dayside. The pocket regions are found to be especially complex, with nearby sunlit regions of positive potential electrically connected to unlit negative potentials and forming adjacent natural electric dipoles. For objects near the surface, we find electrical dissipation times (through collection of local environmental solar wind currents) that vary over at least 5 orders of magnitude: from 39 Micro(s) inside the near-surface photoelectron cloud under direct sunlight to less than 1 s inside the particle-depleted night-side wake and shadowed pocket regions

  17. Design and Characterization of a Sensorized Microfluidic Cell-Culture System with Electro-Thermal Micro-Pumps and Sensors for Cell Adhesion, Oxygen, and pH on a Glass Chip.

    PubMed

    Bonk, Sebastian M; Stubbe, Marco; Buehler, Sebastian M; Tautorat, Carsten; Baumann, Werner; Klinkenberg, Ernst-Dieter; Gimsa, Jan

    2015-07-30

    We combined a multi-sensor glass-chip with a microfluidic channel grid for the characterization of cellular behavior. The grid was imprinted in poly-dimethyl-siloxane. Mouse-embryonal/fetal calvaria fibroblasts (MC3T3-E1) were used as a model system. Thin-film platinum (Pt) sensors for respiration (amperometric oxygen electrode), acidification (potentiometric pH electrodes) and cell adhesion (interdigitated-electrodes structures, IDES) allowed us to monitor cell-physiological parameters as well as the cell-spreading behavior. Two on-chip electro-thermal micro-pumps (ETμPs) permitted the induction of medium flow in the system, e.g., for medium mixing and drug delivery. The glass-wafer technology ensured the microscopic observability of the on-chip cell culture. Connecting Pt structures were passivated by a 1.2 μm layer of silicon nitride (Si3N4). Thin Si3N4 layers (20 nm or 60 nm) were used as the sensitive material of the pH electrodes. These electrodes showed a linear behavior in the pH range from 4 to 9, with a sensitivity of up to 39 mV per pH step. The oxygen sensors were circular Pt electrodes with a sensor area of 78.5 μm(2). Their sensitivity was 100 pA per 1% oxygen increase in the range from 0% to 21% oxygen (air saturated). Two different IDES geometries with 30- and 50-μm finger spacings showed comparable sensitivities in detecting the proliferation rate of MC3T3 cells. These cells were cultured for 11 days in vitro to test the biocompatibility, microfluidics and electric sensors of our system under standard laboratory conditions.

  18. Power Hardware-in-the-Loop Testing of Multiple Photovoltaic Inverters' Volt-Var Control with Real-Time Grid Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Sudipta; Nelson, Austin; Hoke, Anderson

    2016-12-12

    Traditional testing methods fall short in evaluating interactions between multiple smart inverters providing advanced grid support functions due to the fact that such interactions largely depend on their placements on the electric distribution systems with impedances between them. Even though significant concerns have been raised by the utilities on the effects of such interactions, little effort has been made to evaluate them. In this paper, power hardware-in-the-loop (PHIL) based testing was utilized to evaluate autonomous volt-var operations of multiple smart photovoltaic (PV) inverters connected to a simple distribution feeder model. The results provided in this paper show that depending onmore » volt-var control (VVC) parameters and grid parameters, interaction between inverters and between the inverter and the grid is possible in some extreme cases with very high VVC slopes, fast response times and large VVC response delays.« less

  19. Co-Simulation Platform For Characterizing Cyber Attacks in Cyber Physical Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadi, Mohammad A. H.; Ali, Mohammad Hassan; Dasgupta, Dipankar

    Smart grid is a complex cyber physical system containing a numerous and variety of sources, devices, controllers and loads. Communication/Information infrastructure is the backbone of the smart grid system where different grid components are connected with each other through this structure. Therefore, the drawbacks of the information technology related issues are also becoming a part of the smart grid. Further, smart grid is also vulnerable to the grid related disturbances. For such a dynamic system, disturbance and intrusion detection is a paramount issue. This paper presents a Simulink and OPNET based co-simulated test bed to carry out a cyber-intrusion inmore » a cyber-network for modern power systems and smart grid. The effect of the cyber intrusion on the physical power system is also presented. The IEEE 30 bus power system model is used to demonstrate the effectiveness of the simulated testbed. The experiments were performed by disturbing the circuit breakers reclosing time through a cyber-attack in the cyber network. Different disturbance situations in the proposed test system are considered and the results indicate the effectiveness of the proposed co-simulated scheme.« less

  20. School Finance and Technology: A Case Study Using Grid and Group Theory to Explore the Connections

    ERIC Educational Resources Information Center

    Case, Stephoni; Harris, Edward L.

    2014-01-01

    Using grid and group theory (Douglas 1982, 2011), the study described in this article examined the intersections of technology and school finance in four schools located in districts differing in size, wealth, and commitment to technology integration. In grid and group theory, grid refers to the degree to which policies and role prescriptions…

  1. Grid Computing in K-12 Schools. Soapbox Digest. Volume 3, Number 2, Fall 2004

    ERIC Educational Resources Information Center

    AEL, 2004

    2004-01-01

    Grid computing allows large groups of computers (either in a lab, or remote and connected only by the Internet) to extend extra processing power to each individual computer to work on components of a complex request. Grid middleware, recognizing priorities set by systems administrators, allows the grid to identify and use this power without…

  2. AC HTS Transmission Cable for Integration into the Future EHV Grid of the Netherlands

    NASA Astrophysics Data System (ADS)

    Zuijderduin, R.; Chevtchenko, O.; Smit, J. J.; Aanhaanen, G.; Melnik, I.; Geschiere, A.

    Due to increasing power demand, the electricity grid of the Netherlands is changing. The future grid must be capable to transmit all the connected power. Power generation will be more decentralized like for instance wind parks connected to the grid. Furthermore, future large scale production units are expected to be installed near coastal regions. This creates some potential grid issues, such as: large power amounts to be transmitted to consumers from west to east and grid stability. High temperature superconductors (HTS) can help solving these grid problems. Advantages to integrate HTS components at Extra High Voltage (EHV) and High Voltage (HV) levels are numerous: more power with less losses and less emissions, intrinsic fault current limiting capability, better control of power flow, reduced footprint, etc. Today's main obstacle is the relatively high price of HTS. Nevertheless, as the price goes down, initial market penetration for several HTS components is expected by year 2015 (e.g.: cables, fault current limiters). In this paper we present a design of intrinsically compensated EHV HTS cable for future grid integration. Discussed are the parameters of such cable providing an optimal power transmission in the future network.

  3. 2D Unstructured Grid Based Constrained Inversion of Magnetic Data Using Fuzzy C Means Clustering and Lithology Classification

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Singh, A.; Sharma, S. P.

    2016-12-01

    Regular grid discretization is often utilized to define complex geological models. However, this subdivision strategy performs at lower precision to represent the topographical observation surface. We have developed a new 2D unstructured grid based inversion for magnetic data for models including topography. It will consolidate prior parametric information into a deterministic inversion system to enhance the boundary between the different lithology based on recovered magnetic susceptibility distribution from the inversion. The presented susceptibility model will satisfy both the observed magnetic data and parametric information and therefore can represent the earth better than geophysical inversion models that only honor the observed magnetic data. Geophysical inversion and lithology classification are generally treated as two autonomous methodologies and connected in a serial way. The presented inversion strategy integrates these two parts into a unified scheme. To reduce the storage space and computation time, the conjugate gradient method is used. It results in feasible and practical imaging inversion of magnetic data to deal with large number of triangular grids. The efficacy of the presented inversion is demonstrated using two synthetic examples and one field data example.

  4. Smart Grid Risk Management

    NASA Astrophysics Data System (ADS)

    Abad Lopez, Carlos Adrian

    Current electricity infrastructure is being stressed from several directions -- high demand, unreliable supply, extreme weather conditions, accidents, among others. Infrastructure planners have, traditionally, focused on only the cost of the system; today, resilience and sustainability are increasingly becoming more important. In this dissertation, we develop computational tools for efficiently managing electricity resources to help create a more reliable and sustainable electrical grid. The tools we present in this work will help electric utilities coordinate demand to allow the smooth and large scale integration of renewable sources of energy into traditional grids, as well as provide infrastructure planners and operators in developing countries a framework for making informed planning and control decisions in the presence of uncertainty. Demand-side management is considered as the most viable solution for maintaining grid stability as generation from intermittent renewable sources increases. Demand-side management, particularly demand response (DR) programs that attempt to alter the energy consumption of customers either by using price-based incentives or up-front power interruption contracts, is more cost-effective and sustainable in addressing short-term supply-demand imbalances when compared with the alternative that involves increasing fossil fuel-based fast spinning reserves. An essential step in compensating participating customers and benchmarking the effectiveness of DR programs is to be able to independently detect the load reduction from observed meter data. Electric utilities implementing automated DR programs through direct load control switches are also interested in detecting the reduction in demand to efficiently pinpoint non-functioning devices to reduce maintenance costs. We develop sparse optimization methods for detecting a small change in the demand for electricity of a customer in response to a price change or signal from the utility, dynamic learning methods for scheduling the maintenance of direct load control switches whose operating state is not directly observable and can only be inferred from the metered electricity consumption, and machine learning methods for accurately forecasting the load of hundreds of thousands of residential, commercial and industrial customers. These algorithms have been implemented in the software system provided by AutoGrid, Inc., and this system has helped several utilities in the Pacific Northwest, Oklahoma, California and Texas, provide more reliable power to their customers at significantly reduced prices. Providing power to widely spread out communities in developing countries using the conventional power grid is not economically feasible. The most attractive alternative source of affordable energy for these communities is solar micro-grids. We discuss risk-aware robust methods to optimally size and operate solar micro-grids in the presence of uncertain demand and uncertain renewable generation. These algorithms help system operators to increase their revenue while making their systems more resilient to inclement weather conditions.

  5. Dynamic analysis of combined photovoltaic source and synchronous generator connected to power grid

    NASA Astrophysics Data System (ADS)

    Mahabal, Divya

    In the world of expanding economy and technology, the energy demand is likely to increase even with the global efforts of saving and increasing energy efficiency. Higher oil prices, effects of greenhouse gases, and concerns over other environmental impacts gave way to Distributed Generation (DG). With adequate awareness and support, DG's can meet these rising energy demands at lower prices compared to conventional methods. Extensive research is taking place in different areas like fuel cells, photovoltaic cells, wind turbines, and gas turbines. DG's when connected to a grid increase the overall efficiency of the power grid. It is believed that three-fifth of the world's electricity would account for renewable energy by middle of 21st century. This thesis presents the dynamic analysis of a grid connected photovoltaic (PV) system and synchronous generator. A grid is considered as an infinite bus. The photovol-taic system and synchronous generator act as small scale distributed energy resources. The output of the photovoltaic system depends on the light intensity, temperature, and irradiance levels of sun. The maximum power point tracking and DC/AC converter are also modeled for the photovoltaic system. The PV system is connected to the grid through DC/AC system. Different combinations of PV and synchronous generator are modeled with the grid to study the dynamics of the proposed system. The dynamics of the test system is analyzed by subjecting the system to several disturbances under various conditions. All modules are individually modeled and con-nected using MATLAB/Simulink software package. Results from the study show that, as the penetration of renewable energy sources like PV increases into the power system, the dynamics of the system becomes faster. When considering cases such as load switching, PV cannot deliver more power as the performance of PV depends on environmental conditions. Synchronous generator in power system can produce the required amount of power. As the main aim of this research is to use renewable sources like PV in the system, it is advantageous to use a combination of both PV and synchronous generator in the system.

  6. Micro And Nanostructured Materials For Fluid And Ion Transport For Miniaturized Applications

    DTIC Science & Technology

    2016-06-08

    micromachined tip. The setup is shown in Figure 7(a). The RPA instrument consists of a Faraday cup collector and a set of grids placed in between the...collector. Therefore, by varying the retarding potential and measuring the current arriving to the Faraday cup, it is possible to obtain the beam energy...distribution. The instrument consists of seven grids followed by a Faraday cup. The first grid is a 90% transparent tungsten mesh, which is grounded

  7. Models for the transient stability of conventional power generating stations connected to low inertia systems

    NASA Astrophysics Data System (ADS)

    Zarifakis, Marios; Coffey, William T.; Kalmykov, Yuri P.; Titov, Sergei V.

    2017-06-01

    An ever-increasing requirement to integrate greater amounts of electrical energy from renewable sources especially from wind turbines and solar photo-voltaic installations exists and recent experience in the island of Ireland demonstrates that this requirement influences the behaviour of conventional generating stations. One observation is the change in the electrical power output of synchronous generators following a transient disturbance especially their oscillatory behaviour accompanied by similar oscillatory behaviour of the grid frequency, both becoming more pronounced with reducing grid inertia. This behaviour cannot be reproduced with existing mathematical models indicating that an understanding of the behaviour of synchronous generators, subjected to various disturbances especially in a system with low inertia requires a new modelling technique. Thus two models of a generating station based on a double pendulum described by a system of coupled nonlinear differential equations and suitable for analysis of its stability corresponding to infinite or finite grid inertia are presented. Formal analytic solutions of the equations of motion are given and compared with numerical solutions. In particular the new finite grid model will allow one to identify limitations to the operational range of the synchronous generators used in conventional power generation and also to identify limits, such as the allowable Rate of Change of Frequency which is currently set to ± 0.5 Hz/s and is a major factor in describing the volatility of a grid as well as identifying requirements to the total inertia necessary, which is currently provided by conventional power generators only, thus allowing one to maximise the usage of grid connected non-synchronous generators, e.g., wind turbines and solar photo-voltaic installations.

  8. Two methods for damping torsional vibrations in DFIG-based wind generators using power converters

    NASA Astrophysics Data System (ADS)

    Zhao, Zuyi; Lu, Yupu; Xie, Da; Yu, Songtao; Wu, Wangping

    2017-01-01

    This paper proposes novel damping control algorithms by using static synchronous compensator (STATCOM) and energy storage system (ESS) to damp torsional vibrations in doubly fed induction generator (DFIG) based wind turbine systems. It first analyses the operating characteristics of STATCOM and ESS for regulating power variations to increase grid voltage stability. Then, new control strategies for STATCOM and ESS are introduced to damp the vibrations. It is followed by illustration of their effectiveness to damp the drive train torsional vibrations of wind turbines, which can be caused by grid disturbances, such as voltage sags and frequency fluctuations. Results suggest that STATCOM is a promising technology to mitigate the torsional vibrations caused by grid voltage sags. By contrast, the ESS connected to the point of common coupling (PCC) of wind turbine systems shows even obvious advantages because of its capability of absorbing/releasing both active and reactive power. It can thus be concluded that STATCOM is useful for stabilizing power system voltage fluctuations, and ESS is more effective both in regulating PCC voltage fluctuations and damping torsional vibrations caused by grid voltage frequency fluctuations.

  9. Micro-cone targets for producing high energy and low divergence particle beams

    DOEpatents

    Le Galloudec, Nathalie

    2013-09-10

    The present invention relates to micro-cone targets for producing high energy and low divergence particle beams. In one embodiment, the micro-cone target includes a substantially cone-shaped body including an outer surface, an inner surface, a generally flat and round, open-ended base, and a tip defining an apex. The cone-shaped body tapers along its length from the generally flat and round, open-ended base to the tip defining the apex. In addition, the outer surface and the inner surface connect the base to the tip, and the tip curves inwardly to define an outer surface that is concave, which is bounded by a rim formed at a juncture where the outer surface meets the tip.

  10. Grid cells form a global representation of connected environments.

    PubMed

    Carpenter, Francis; Manson, Daniel; Jeffery, Kate; Burgess, Neil; Barry, Caswell

    2015-05-04

    The firing patterns of grid cells in medial entorhinal cortex (mEC) and associated brain areas form triangular arrays that tessellate the environment [1, 2] and maintain constant spatial offsets to each other between environments [3, 4]. These cells are thought to provide an efficient metric for navigation in large-scale space [5-8]. However, an accurate and universal metric requires grid cell firing patterns to uniformly cover the space to be navigated, in contrast to recent demonstrations that environmental features such as boundaries can distort [9-11] and fragment [12] grid patterns. To establish whether grid firing is determined by local environmental cues, or provides a coherent global representation, we recorded mEC grid cells in rats foraging in an environment containing two perceptually identical compartments connected via a corridor. During initial exposures to the multicompartment environment, grid firing patterns were dominated by local environmental cues, replicating between the two compartments. However, with prolonged experience, grid cell firing patterns formed a single, continuous representation that spanned both compartments. Thus, we provide the first evidence that in a complex environment, grid cell firing can form the coherent global pattern necessary for them to act as a metric capable of supporting large-scale spatial navigation. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Grid Cells Form a Global Representation of Connected Environments

    PubMed Central

    Carpenter, Francis; Manson, Daniel; Jeffery, Kate; Burgess, Neil; Barry, Caswell

    2015-01-01

    Summary The firing patterns of grid cells in medial entorhinal cortex (mEC) and associated brain areas form triangular arrays that tessellate the environment [1, 2] and maintain constant spatial offsets to each other between environments [3, 4]. These cells are thought to provide an efficient metric for navigation in large-scale space [5–8]. However, an accurate and universal metric requires grid cell firing patterns to uniformly cover the space to be navigated, in contrast to recent demonstrations that environmental features such as boundaries can distort [9–11] and fragment [12] grid patterns. To establish whether grid firing is determined by local environmental cues, or provides a coherent global representation, we recorded mEC grid cells in rats foraging in an environment containing two perceptually identical compartments connected via a corridor. During initial exposures to the multicompartment environment, grid firing patterns were dominated by local environmental cues, replicating between the two compartments. However, with prolonged experience, grid cell firing patterns formed a single, continuous representation that spanned both compartments. Thus, we provide the first evidence that in a complex environment, grid cell firing can form the coherent global pattern necessary for them to act as a metric capable of supporting large-scale spatial navigation. PMID:25913404

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Youngho; Hur, Kyeon; Kang, Yong

    This study investigates the emerging harmonic stability concerns to be addressed by grid planners in generation interconnection studies, owing to the increased adoption of renewable energy resources connected to the grid via power electronic converters. The wideband and high-frequency electromagnetic transient (EMT) characteristics of these converter-interfaced generators (CIGs) and their interaction with the grid impedance are not accurately captured in the typical dynamic studies conducted by grid planners. This paper thus identifies the desired components to be studied and subsequently develops a practical process for integrating a new CIG into a grid with the existing CIGs. The steps of thismore » process are as follows: the impedance equation of a CIG using its control dynamics and an interface filter to the grid, for example, an LCL filter (inductor-capacitor-inductor type), is developed; an equivalent impedance model including the existing CIGs nearby and the grid observed from the point of common coupling are derived; the system stability for credible operating scenarios is assessed. Detailed EMT simulations validate the accuracy of the impedance models and stability assessment for various connection scenarios. Here, by complementing the conventional EMT simulation studies, the proposed analytical approach enables grid planners to identify critical design parameters for seamlessly integrating a new CIG and ensuring the reliability of the grid.« less

  13. An Analysis for an Internet Grid to Support Space Based Operations

    NASA Technical Reports Server (NTRS)

    Bradford, Robert; McNair, Ann R. (Technical Monitor)

    2002-01-01

    Currently, and in the past, dedicated communication circuits and "network services" with very stringent performance requirements have been used to support manned and unmanned mission critical ground operations at GSFC, JSC, MSFC, KSC and other NASA facilities. Because of the evolution of network technology, it is time to investigate other approaches to providing mission services for space ground and flight operations. In various scientific disciplines, effort is under way to develop network/komputing grids. These grids consisting of networks and computing equipment are enabling lower cost science. Specifically, earthquake research is headed in this direction. With a standard for network and computing interfaces using a grid, a researcher would not be required to develop and engineer NASA/DoD specific interfaces with the attendant increased cost. Use of the Internet Protocol (IP), CCSDS packet spec, and reed-solomon for satellite error correction etc. can be adopted/standardized to provide these interfaces. Generally most interfaces are developed at least to some degree end to end. This study would investigate the feasibility of using existing standards and protocols necessary to implement a SpaceOps Grid. New interface definitions or adoption/modification of existing ones for the various space operational services is required for voice both space based and ground, video, telemetry, commanding and planning may play a role to some undefined level. Security will be a separate focus in the study since security is such a large issue in using public networks. This SpaceOps Grid would be transparent to users. It would be anagulous to the Ethernet protocol's ease of use in that a researcher would plug in their experiment or instrument at one end and would be connected to the appropriate host or server without further intervention. Free flyers would be in this category as well. They would be launched and would transmit without any further intervention with the researcher or ground ops personnel. The payback in developing these new approaches in support of manned and unmanned operations is lower cost and will enable direct participation by more people in organizations and educational institutions in space based science. By lowering the high cost of space based operations and networking, more resource will be available to the science community for science. With a specific grid in place, experiment development and operations would be much less costly by using standardized network interfaces. Because of the extensive connectivity on a global basis, significant numbers of people would participate in science who otherwise would not be able to participate.

  14. Stability of micro-Cassie states on rough substrates

    NASA Astrophysics Data System (ADS)

    Guo, Zhenjiang; Liu, Yawei; Lohse, Detlef; Zhang, Xuehua; Zhang, Xianren

    2015-06-01

    We numerically study different forms of nanoscale gaseous domains on a model for rough surfaces. Our calculations based on the constrained lattice density functional theory show that the inter-connectivity of pores surrounded by neighboring nanoposts, which model the surface roughness, leads to the formation of stable microscopic Cassie states. We investigate the dependence of the stability of the micro-Cassie states on substrate roughness, fluid-solid interaction, and chemical potential and then address the differences between the origin of the micro-Cassie states and that of surface nanobubbles within similar models. Finally, we show that the micro-Cassie states share some features with experimentally observed micropancakes at solid-water interfaces.

  15. Neuro-Epigenetic Indications of Acute Stress Response in Humans: The Case of MicroRNA-29c

    PubMed Central

    Farberov, Luba; Lin, Tamar; Sharon, Haggai; Gilam, Avital; Volk, Naama; Admon, Roee; Edry, Liat; Fruchter, Eyal; Wald, Ilan; Bar-Haim, Yair; Tarrasch, Ricardo; Chen, Alon; Shomron, Noam; Hendler, Talma

    2016-01-01

    Stress research has progressively become more integrative in nature, seeking to unfold crucial relations between the different phenotypic levels of stress manifestations. This study sought to unravel stress-induced variations in expression of human microRNAs sampled in peripheral blood mononuclear cells and further assess their relationship with neuronal and psychological indices. We obtained blood samples from 49 healthy male participants before and three hours after performing a social stress task, while undergoing functional magnetic resonance imaging (fMRI). A seed-based functional connectivity (FC) analysis was conducted for the ventro-medial prefrontal cortex (vmPFC), a key area of stress regulation. Out of hundreds of microRNAs, a specific increase was identified in microRNA-29c (miR-29c) expression, corresponding with both the experience of sustained stress via self-reports, and alterations in vmPFC functional connectivity. Explicitly, miR-29c expression levels corresponded with both increased connectivity of the vmPFC with the anterior insula (aIns), and decreased connectivity of the vmPFC with the left dorso-lateral prefrontal cortex (dlPFC). Our findings further revealed that miR-29c mediates an indirect path linking enhanced vmPFC-aIns connectivity during stress with subsequent experiences of sustained stress. The correlative patterns of miR-29c expression and vmPFC FC, along with the mediating effects on subjective stress sustainment and the presumed localization of miR-29c in astrocytes, together point to an intriguing assumption; miR-29c may serve as a biomarker in the blood for stress-induced functional neural alterations reflecting regulatory processes. Such a multi-level model may hold the key for future personalized intervention in stress psychopathology. PMID:26730965

  16. Study on model current predictive control method of PV grid- connected inverters systems with voltage sag

    NASA Astrophysics Data System (ADS)

    Jin, N.; Yang, F.; Shang, S. Y.; Tao, T.; Liu, J. S.

    2016-08-01

    According to the limitations of the LVRT technology of traditional photovoltaic inverter existed, this paper proposes a low voltage ride through (LVRT) control method based on model current predictive control (MCPC). This method can effectively improve the photovoltaic inverter output characteristics and response speed. The MCPC method of photovoltaic grid-connected inverter designed, the sum of the absolute value of the predictive current and the given current error is adopted as the cost function with the model predictive control method. According to the MCPC, the optimal space voltage vector is selected. Photovoltaic inverter has achieved automatically switches of priority active or reactive power control of two control modes according to the different operating states, which effectively improve the inverter capability of LVRT. The simulation and experimental results proves that the proposed method is correct and effective.

  17. Energy Systems Integration: Demonstrating the Grid Benefits of Connected Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overview fact sheet about the Electric Power Research Institute (EPRI) and the University of Delaware Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) project at the Energy Systems Integration Facility. INTEGRATE is part of the U.S. Department of Energy's Grid Modernization Initiative.

  18. Best Practices In Overset Grid Generation

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Gomez, Reynaldo J., III; Rogers, Stuart E.; Buning, Pieter G.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Grid generation for overset grids on complex geometry can be divided into four main steps: geometry processing, surface grid generation, volume grid generation and domain connectivity. For each of these steps, the procedures currently practiced by experienced users are described. Typical problems encountered are also highlighted and discussed. Most of the guidelines are derived from experience on a variety of problems including space launch and return vehicles, subsonic transports with propulsion and high lift devices, supersonic vehicles, rotorcraft vehicles, and turbomachinery.

  19. Frequency Regulation Services from Connected Residential Devices: Short Paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Kyri; Jin, Xin; Vaidhynathan, Deepthi

    In this paper, we demonstrate the potential benefits that residential buildings can provide for frequency regulation services in the electric power grid. In a hardware-in-the- loop (HIL) implementation, simulated homes along with a physical laboratory home are coordinated via a grid aggregator, and it is shown that their aggregate response has the potential to follow the regulation signal on a timescale of seconds. Connected (communication-enabled), devices in the National Renewable Energy Laboratory's (NREL's) Energy Systems Integration Facility (ESIF) received demand response (DR) requests from a grid aggregator, and the devices responded accordingly to meet the signal while satisfying user comfortmore » bounds and physical hardware limitations. Future research will address the issues of cybersecurity threats, participation rates, and reducing equipment wear-and-tear while providing grid services.« less

  20. Maximum capacity model of grid-connected multi-wind farms considering static security constraints in electrical grids

    NASA Astrophysics Data System (ADS)

    Zhou, W.; Qiu, G. Y.; Oodo, S. O.; He, H.

    2013-03-01

    An increasing interest in wind energy and the advance of related technologies have increased the connection of wind power generation into electrical grids. This paper proposes an optimization model for determining the maximum capacity of wind farms in a power system. In this model, generator power output limits, voltage limits and thermal limits of branches in the grid system were considered in order to limit the steady-state security influence of wind generators on the power system. The optimization model was solved by a nonlinear primal-dual interior-point method. An IEEE-30 bus system with two wind farms was tested through simulation studies, plus an analysis conducted to verify the effectiveness of the proposed model. The results indicated that the model is efficient and reasonable.

  1. Two-stage single-phase grid-connected photovoltaic system with reduced complexity

    NASA Astrophysics Data System (ADS)

    da Silva, Cintia S.; Motta, Filipe R.; Tofoli, Fernando L.

    2011-06-01

    This article presents a grid-connected photovoltaic (PV) system using the classical DC-DC buck converter, which is responsible for stepping down the resulting voltage from several series-connected panels. Besides, the structure provides high power factor operation by injecting a quasi-sinusoidal current into the grid, with near no displacement in relation to the line voltage at the point of common coupling among the PV system and the loads. A CSI employing thyristors is cascaded with the DC-DC stage so that AC voltage results. The inverter output voltage level is adjusted by using a low-frequency transformer, which also provides galvanic isolation. The proposed system is described as mathematical approach and design guidelines are presented, providing an overview of the topology. An experimental prototype is also implemented, and relevant results to validate the proposal are discussed.

  2. A micro-CL system and its applications

    NASA Astrophysics Data System (ADS)

    Wei, Zenghui; Yuan, Lulu; Liu, Baodong; Wei, Cunfeng; Sun, Cuili; Yin, Pengfei; Wei, Long

    2017-11-01

    The computed laminography (CL) method is preferable to computed tomography for the non-destructive testing of plate-like objects. A micro-CL system is developed for three-dimensional imaging of plate-like objects. The details of the micro-CL system are described, including the system architecture, scanning modes, and reconstruction algorithm. The experiment results of plate-like fossils, insulated gate bipolar translator module, ball grid array packaging, and printed circuit board are also presented to demonstrate micro-CL's ability for 3D imaging of flat specimens and universal applicability in various fields.

  3. A micro-CL system and its applications.

    PubMed

    Wei, Zenghui; Yuan, Lulu; Liu, Baodong; Wei, Cunfeng; Sun, Cuili; Yin, Pengfei; Wei, Long

    2017-11-01

    The computed laminography (CL) method is preferable to computed tomography for the non-destructive testing of plate-like objects. A micro-CL system is developed for three-dimensional imaging of plate-like objects. The details of the micro-CL system are described, including the system architecture, scanning modes, and reconstruction algorithm. The experiment results of plate-like fossils, insulated gate bipolar translator module, ball grid array packaging, and printed circuit board are also presented to demonstrate micro-CL's ability for 3D imaging of flat specimens and universal applicability in various fields.

  4. Business Case for a Micro-Combined Heat and Power Fuel Cell System in Commercial Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Kriston P.; Makhmalbaf, Atefe; Anderson, David M.

    2013-10-30

    Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a business case for CHP-FCSs in the range of 5 to 50 kWe. Systems in this power range are considered micro-CHP-FCS. For this particular business case, commercial applications rather than residential or industrial are targeted. To understand the benefits of implementing a micro-CHP-FCS, the characteristics that determine their competitive advantage must first be identified. Locations with high electricity pricesmore » and low natural gas prices are ideal locations for micro-CHP-FCSs. Fortunately, these high spark spread locations are generally in the northeastern area of the United States and California where government incentives are already in place to offset the current high cost of the micro-CHP-FCSs. As a result of the inherently high efficiency of a fuel cell and their ability to use the waste heat that is generated as a CHP, they have higher efficiency. This results in lower fuel costs than comparable alternative small-scale power systems (e.g., microturbines and reciprocating engines). A variety of markets should consider micro-CHP-FCSs including those that require both heat and baseload electricity throughout the year. In addition, the reliable power of micro-CHP-FCSs could be beneficial to markets where electrical outages are especially frequent or costly. Greenhouse gas emission levels from micro-CHP-FCSs are 69 percent lower, and the human health costs are 99.9 percent lower, than those attributed to conventional coal-fired power plants. As a result, FCSs can allow a company to advertise as environmentally conscious and provide a bottom-line sales advantage. As a new technology in the early stages of adoption, micro-CHP-FCSs are currently more expensive than alternative technologies. As the technology gains a foothold in its target markets and demand increases, the costs will decline in response to improved manufacturing efficiencies, similar to trends seen with other technologies. Transparency Market Research forecasts suggest that the CHP-FCS market will grow at a compound annual growth rate of greater than 27 percent over the next 5 years. These production level increases, coupled with the expected low price of natural gas, indicate the economic payback period will move to less than 5 years over the course of the next 5 years. To better understand the benefits of micro-CHP-FCSs, The U.S. Department of Energy worked with ClearEdge Power to install fifteen 5-kWe fuel cells in the commercial markets of California and Oregon. Pacific Northwest National Laboratory is evaluating these systems in terms of economics, operations, and their environmental impact in real-world applications. As expected, the economic analysis has indicated that the high capital cost of the micro-CHP-FCSs results in a longer payback period than typically is acceptable for all but early-adopter market segments. However, a payback period of less than 3 years may be expected as increased production brings system cost down, and CHP incentives are maintained or improved.« less

  5. Fuel Cell Backup Power System for Grid Service and Micro-Grid in Telecommunication Applications: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Zhiwen; Eichman, Joshua D; Kurtz, Jennifer M

    This paper presents the feasibility and economics of using fuel cell backup power systems in telecommunication cell towers to provide grid services (e.g., ancillary services, demand response). The fuel cells are able to provide power for the cell tower during emergency conditions. This study evaluates the strategic integration of clean, efficient, and reliable fuel cell systems with the grid for improved economic benefits. The backup systems have potential as enhanced capability through information exchanges with the power grid to add value as grid services that depend on location and time. The economic analysis has been focused on the potential revenuemore » for distributed telecommunications fuel cell backup units to provide value-added power supply. This paper shows case studies on current fuel cell backup power locations and regional grid service programs. The grid service benefits and system configurations for different operation modes provide opportunities for expanding backup fuel cell applications responsive to grid needs.« less

  6. Improving optimal control of grid-connected lithium-ion batteries through more accurate battery and degradation modelling

    NASA Astrophysics Data System (ADS)

    Reniers, Jorn M.; Mulder, Grietus; Ober-Blöbaum, Sina; Howey, David A.

    2018-03-01

    The increased deployment of intermittent renewable energy generators opens up opportunities for grid-connected energy storage. Batteries offer significant flexibility but are relatively expensive at present. Battery lifetime is a key factor in the business case, and it depends on usage, but most techno-economic analyses do not account for this. For the first time, this paper quantifies the annual benefits of grid-connected batteries including realistic physical dynamics and nonlinear electrochemical degradation. Three lithium-ion battery models of increasing realism are formulated, and the predicted degradation of each is compared with a large-scale experimental degradation data set (Mat4Bat). A respective improvement in RMS capacity prediction error from 11% to 5% is found by increasing the model accuracy. The three models are then used within an optimal control algorithm to perform price arbitrage over one year, including degradation. Results show that the revenue can be increased substantially while degradation can be reduced by using more realistic models. The estimated best case profit using a sophisticated model is a 175% improvement compared with the simplest model. This illustrates that using a simplistic battery model in a techno-economic assessment of grid-connected batteries might substantially underestimate the business case and lead to erroneous conclusions.

  7. Islanding detection technique using wavelet energy in grid-connected PV system

    NASA Astrophysics Data System (ADS)

    Kim, Il Song

    2016-08-01

    This paper proposes a new islanding detection method using wavelet energy in a grid-connected photovoltaic system. The method detects spectral changes in the higher-frequency components of the point of common coupling voltage and obtains wavelet coefficients by multilevel wavelet analysis. The autocorrelation of the wavelet coefficients can clearly identify islanding detection, even in the variations of the grid voltage harmonics during normal operating conditions. The advantage of the proposed method is that it can detect islanding condition the conventional under voltage/over voltage/under frequency/over frequency methods fail to detect. The theoretical method to obtain wavelet energies is evolved and verified by the experimental result.

  8. Using a composite grid approach in a complex coastal domain to estimate estuarine residence time

    USGS Publications Warehouse

    Warner, John C.; Geyer, W. Rockwell; Arango, Herman G.

    2010-01-01

    We investigate the processes that influence residence time in a partially mixed estuary using a three-dimensional circulation model. The complex geometry of the study region is not optimal for a structured grid model and so we developed a new method of grid connectivity. This involves a novel approach that allows an unlimited number of individual grids to be combined in an efficient manner to produce a composite grid. We then implemented this new method into the numerical Regional Ocean Modeling System (ROMS) and developed a composite grid of the Hudson River estuary region to investigate the residence time of a passive tracer. Results show that the residence time is a strong function of the time of release (spring vs. neap tide), the along-channel location, and the initial vertical placement. During neap tides there is a maximum in residence time near the bottom of the estuary at the mid-salt intrusion length. During spring tides the residence time is primarily a function of along-channel location and does not exhibit a strong vertical variability. This model study of residence time illustrates the utility of the grid connectivity method for circulation and dispersion studies in regions of complex geometry.

  9. An improved synchronous reference frame current control strategy for a photovoltaic grid-connected inverter under unbalanced and nonlinear load conditions.

    PubMed

    Naderipour, Amirreza; Asuhaimi Mohd Zin, Abdullah; Bin Habibuddin, Mohd Hafiz; Miveh, Mohammad Reza; Guerrero, Josep M

    2017-01-01

    In recent years, renewable energy sources have been considered the most encouraging resources for grid and off-grid power generation. This paper presents an improved current control strategy for a three-phase photovoltaic grid-connected inverter (GCI) under unbalanced and nonlinear load conditions. It is challenging to suppress the harmonic content in the output current below a pre-set value in the GCI. It is also difficult to compensate for unbalanced loads even when the grid is under disruption due to total harmonic distortion (THD) and unbalanced loads. The primary advantage and objective of this method is to effectively compensate for the harmonic current content of the grid current and microgrid without the use of any compensation devices, such as active and passive filters. This method leads to a very low THD in both the GCI currents and the current exchanged with the grid. The control approach is designed to control the active and reactive power and harmonic current compensation, and it also corrects the system unbalance. The proposed control method features the synchronous reference frame (SRF) method. Simulation results are presented to demonstrate the effective performance of the proposed method.

  10. An improved synchronous reference frame current control strategy for a photovoltaic grid-connected inverter under unbalanced and nonlinear load conditions

    PubMed Central

    Naderipour, Amirreza; Asuhaimi Mohd Zin, Abdullah; Bin Habibuddin, Mohd Hafiz; Miveh, Mohammad Reza; Guerrero, Josep M.

    2017-01-01

    In recent years, renewable energy sources have been considered the most encouraging resources for grid and off-grid power generation. This paper presents an improved current control strategy for a three-phase photovoltaic grid-connected inverter (GCI) under unbalanced and nonlinear load conditions. It is challenging to suppress the harmonic content in the output current below a pre-set value in the GCI. It is also difficult to compensate for unbalanced loads even when the grid is under disruption due to total harmonic distortion (THD) and unbalanced loads. The primary advantage and objective of this method is to effectively compensate for the harmonic current content of the grid current and microgrid without the use of any compensation devices, such as active and passive filters. This method leads to a very low THD in both the GCI currents and the current exchanged with the grid. The control approach is designed to control the active and reactive power and harmonic current compensation, and it also corrects the system unbalance. The proposed control method features the synchronous reference frame (SRF) method. Simulation results are presented to demonstrate the effective performance of the proposed method. PMID:28192436

  11. Mechanically modulated dewetting by atomic force microscope for micro- and nano- droplet array fabrication.

    PubMed

    Wang, Feifei; Li, Pan; Wang, Dong; Li, Longhai; Xie, Shuangxi; Liu, Lianqing; Wang, Yuechao; Li, Wen Jung

    2014-10-06

    Organizing a material into well-defined patterns during the dewetting process provides an attractive micro-/nano-fabrication method without using a conventional lithographic process, and hence, offers potential applications in organic electronics, optics systems, and memory devices. We report here how the mechanical modification of polymer surface by an Atomic Force Microscope (AFM) can be used to guide thin film dewetting evolution and break the intrinsic spatial correlation of spontaneous instability. An AFM is used to implement the mechanical modification of progressively narrow grids to investigate the influence of pattern size on the modulation of ultrathin polystyrene films dewetting evolution. For films with different initial thicknesses, when grid size is close to or below the characteristic wavelength of instability, the spinodal dewetting is suppressed, and film rupture is restricted to the cutting trench. We will show in this paper it is possible to generate only one droplet per gridded area on a thin film subsequent to nucleation dominated dewetting on a non-patterned substrate. Furthermore, when the grid periodicity exceeds the spinodal length, the number of droplets in predefined areas gradually approaches that associated with unconfined dewetting.

  12. Mechanically Modulated Dewetting by Atomic Force Microscope for Micro- and Nano- Droplet Array Fabrication

    PubMed Central

    Wang, Feifei; Li, Pan; Wang, Dong; Li, Longhai; Xie, Shuangxi; Liu, Lianqing; Wang, Yuechao; Li, Wen Jung

    2014-01-01

    Organizing a material into well-defined patterns during the dewetting process provides an attractive micro-/nano-fabrication method without using a conventional lithographic process, and hence, offers potential applications in organic electronics, optics systems, and memory devices. We report here how the mechanical modification of polymer surface by an Atomic Force Microscope (AFM) can be used to guide thin film dewetting evolution and break the intrinsic spatial correlation of spontaneous instability. An AFM is used to implement the mechanical modification of progressively narrow grids to investigate the influence of pattern size on the modulation of ultrathin polystyrene films dewetting evolution. For films with different initial thicknesses, when grid size is close to or below the characteristic wavelength of instability, the spinodal dewetting is suppressed, and film rupture is restricted to the cutting trench. We will show in this paper it is possible to generate only one droplet per gridded area on a thin film subsequent to nucleation dominated dewetting on a non-patterned substrate. Furthermore, when the grid periodicity exceeds the spinodal length, the number of droplets in predefined areas gradually approaches that associated with unconfined dewetting. PMID:25283744

  13. CMS Connect

    NASA Astrophysics Data System (ADS)

    Balcas, J.; Bockelman, B.; Gardner, R., Jr.; Hurtado Anampa, K.; Jayatilaka, B.; Aftab Khan, F.; Lannon, K.; Larson, K.; Letts, J.; Marra Da Silva, J.; Mascheroni, M.; Mason, D.; Perez-Calero Yzquierdo, A.; Tiradani, A.

    2017-10-01

    The CMS experiment collects and analyzes large amounts of data coming from high energy particle collisions produced by the Large Hadron Collider (LHC) at CERN. This involves a huge amount of real and simulated data processing that needs to be handled in batch-oriented platforms. The CMS Global Pool of computing resources provide +100K dedicated CPU cores and another 50K to 100K CPU cores from opportunistic resources for these kind of tasks and even though production and event processing analysis workflows are already managed by existing tools, there is still a lack of support to submit final stage condor-like analysis jobs familiar to Tier-3 or local Computing Facilities users into these distributed resources in an integrated (with other CMS services) and friendly way. CMS Connect is a set of computing tools and services designed to augment existing services in the CMS Physics community focusing on these kind of condor analysis jobs. It is based on the CI-Connect platform developed by the Open Science Grid and uses the CMS GlideInWMS infrastructure to transparently plug CMS global grid resources into a virtual pool accessed via a single submission machine. This paper describes the specific developments and deployment of CMS Connect beyond the CI-Connect platform in order to integrate the service with CMS specific needs, including specific Site submission, accounting of jobs and automated reporting to standard CMS monitoring resources in an effortless way to their users.

  14. Grid generation on surfaces in 3 dimensions

    NASA Technical Reports Server (NTRS)

    Eiseman, Peter R.

    1986-01-01

    The development of a surface grid generation algorithm was initiated. The basic adaptive movement technique of mean-value-relaxation was extended from the viewpoint of a single coordinate grid over a surface described by a single scalar function to that of a surface more generally defined by vector functions and covered by a collection of smoothly connected grids. Within the multiconnected assemblage, the application of control was examined in several instances.

  15. Dynamic Appliances Scheduling in Collaborative MicroGrids System

    PubMed Central

    Bilil, Hasnae; Aniba, Ghassane; Gharavi, Hamid

    2017-01-01

    In this paper a new approach which is based on a collaborative system of MicroGrids (MG’s), is proposed to enable household appliance scheduling. To achieve this, appliances are categorized into flexible and non-flexible Deferrable Loads (DL’s), according to their electrical components. We propose a dynamic scheduling algorithm where users can systematically manage the operation of their electric appliances. The main challenge is to develop a flattening function calculus (reshaping) for both flexible and non-flexible DL’s. In addition, implementation of the proposed algorithm would require dynamically analyzing two successive multi-objective optimization (MOO) problems. The first targets the activation schedule of non-flexible DL’s and the second deals with the power profiles of flexible DL’s. The MOO problems are resolved by using a fast and elitist multi-objective genetic algorithm (NSGA-II). Finally, in order to show the efficiency of the proposed approach, a case study of a collaborative system that consists of 40 MG’s registered in the load curve for the flattening program has been developed. The results verify that the load curve can indeed become very flat by applying the proposed scheduling approach. PMID:28824226

  16. Identification of linearised RMS-voltage dip patterns based on clustering in renewable plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García-Sánchez, Tania; Gómez-Lázaro, Emilio; Muljadi, Edward

    Generation units connected to the grid are currently required to meet low-voltage ride-through (LVRT) requirements. In most developed countries, these requirements also apply to renewable sources, mainly wind power plants and photovoltaic installations connected to the grid. This study proposes an alternative characterisation solution to classify and visualise a large number of collected events in light of current limits and requirements. The authors' approach is based on linearised root-mean-square-(RMS)-voltage trajectories, taking into account LRVT requirements, and a clustering process to identify the most likely pattern trajectories. The proposed solution gives extensive information on an event's severity by providing a simplemore » but complete visualisation of the linearised RMS-voltage patterns. In addition, these patterns are compared to current LVRT requirements to determine similarities or discrepancies. A large number of collected events can then be automatically classified and visualised for comparative purposes. Real disturbances collected from renewable sources in Spain are used to assess the proposed solution. Extensive results and discussions are also included in this study.« less

  17. From a meso- to micro-scale connectome: array tomography and mGRASP

    PubMed Central

    Rah, Jong-Cheol; Feng, Linqing; Druckmann, Shaul; Lee, Hojin; Kim, Jinhyun

    2015-01-01

    Mapping mammalian synaptic connectivity has long been an important goal of neuroscience because knowing how neurons and brain areas are connected underpins an understanding of brain function. Meeting this goal requires advanced techniques with single synapse resolution and large-scale capacity, especially at multiple scales tethering the meso- and micro-scale connectome. Among several advanced LM-based connectome technologies, Array Tomography (AT) and mammalian GFP-Reconstitution Across Synaptic Partners (mGRASP) can provide relatively high-throughput mapping synaptic connectivity at multiple scales. AT- and mGRASP-assisted circuit mapping (ATing and mGRASPing), combined with techniques such as retrograde virus, brain clearing techniques, and activity indicators will help unlock the secrets of complex neural circuits. Here, we discuss these useful new tools to enable mapping of brain circuits at multiple scales, some functional implications of spatial synaptic distribution, and future challenges and directions of these endeavors. PMID:26089781

  18. Integrated Electrode Arrays for Neuro-Prosthetic Implants

    NASA Technical Reports Server (NTRS)

    Brandon, Erik; Mojarradi, Mohammede

    2003-01-01

    Arrays of electrodes integrated with chip-scale packages and silicon-based integrated circuits have been proposed for use as medical electronic implants, including neuro-prosthetic devices that might be implanted in brains of patients who suffer from strokes, spinal-cord injuries, or amyotrophic lateral sclerosis. The electrodes of such a device would pick up signals from neurons in the cerebral cortex, and the integrated circuit would perform acquisition and preprocessing of signal data. The output of the integrated circuit could be used to generate, for example, commands for a robotic arm. Electrode arrays capable of acquiring electrical signals from neurons already exist, but heretofore, there has been no convenient means to integrate these arrays with integrated-circuit chips. Such integration is needed in order to eliminate the need for the extensive cabling now used to pass neural signals to data-acquisition and -processing equipment outside the body. The proposed integration would enable progress toward neuro-prostheses that would be less restrictive of patients mobility. An array of electrodes would comprise a set of thin wires of suitable length and composition protruding from and supported by a fine-pitch micro-ball grid array or chip-scale package (see figure). The associated integrated circuit would be mounted on the package face opposite the probe face, using the solder bumps (the balls of the ball grid array) to make the electrical connections between the probes and the input terminals of the integrated circuit. The key innovation is the insertion of probe wires of the appropriate length and material into the solder bumps through a reflow process, thereby fixing the probes in place and electrically connecting them with the integrated circuit. The probes could be tailored to any distribution of lengths and made of any suitable metal that could be drawn into fine wires. Furthermore, the wires could be coated with an insulating layer using anodization or other processes, to achieve the correct electrical impedance. The probe wires and the packaging materials must be biocompatible using such materials as lead-free solders. For protection, the chip and package can be coated with parylene.

  19. HappyFace as a generic monitoring tool for HEP experiments

    NASA Astrophysics Data System (ADS)

    Kawamura, Gen; Magradze, Erekle; Musheghyan, Haykuhi; Quadt, Arnulf; Rzehorz, Gerhard

    2015-12-01

    The importance of monitoring on HEP grid computing systems is growing due to a significant increase in their complexity. Computer scientists and administrators have been studying and building effective ways to gather information on and clarify a status of each local grid infrastructure. The HappyFace project aims at making the above-mentioned workflow possible. It aggregates, processes and stores the information and the status of different HEP monitoring resources into the common database of HappyFace. The system displays the information and the status through a single interface. However, this model of HappyFace relied on the monitoring resources which are always under development in the HEP experiments. Consequently, HappyFace needed to have direct access methods to the grid application and grid service layers in the different HEP grid systems. To cope with this issue, we use a reliable HEP software repository, the CernVM File System. We propose a new implementation and an architecture of HappyFace, the so-called grid-enabled HappyFace. It allows its basic framework to connect directly to the grid user applications and the grid collective services, without involving the monitoring resources in the HEP grid systems. This approach gives HappyFace several advantages: Portability, to provide an independent and generic monitoring system among the HEP grid systems. Eunctionality, to allow users to perform various diagnostic tools in the individual HEP grid systems and grid sites. Elexibility, to make HappyFace beneficial and open for the various distributed grid computing environments. Different grid-enabled modules, to connect to the Ganga job monitoring system and to check the performance of grid transfers among the grid sites, have been implemented. The new HappyFace system has been successfully integrated and now it displays the information and the status of both the monitoring resources and the direct access to the grid user applications and the grid collective services.

  20. Grid-Connected Distributed Generation: Compensation Mechanism Basics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aznar, Alexandra Y; Zinaman, Owen R

    2017-10-02

    This short report defines compensation mechanisms for grid-connected, behind-the-meter distributed generation (DG) systems as instruments that comprise three core elements: (1) metering and billing arrangements, (2) sell rate design, and (3) retail rate design. This report describes metering and billing arrangements, with some limited discussion of sell rate design. We detail the three possible arrangements for metering and billing of DG: net energy metering (NEM); buy all, sell all; and net billing.

  1. Short Paper: Frequency Regulation Services from Connected Residential Devices: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Kyri; Jin, Xin; Vaidhynathan, Deepthi

    In this paper, we demonstrate the potential benefits that residential buildings can provide for frequency regulation services in the electric power grid. In a hardware-in-the- loop (HIL) implementation, simulated homes along with a physical laboratory home are coordinated via a grid aggregator, and it is shown that their aggregate response has the potential to follow the regulation signal on a timescale of seconds. Connected (communication-enabled), devices in the National Renewable Energy Laboratory's (NREL's) Energy Systems Integration Facility (ESIF) received demand response (DR) requests from a grid aggregator, and the devices responded accordingly to meet the signal while satisfying user comfortmore » bounds and physical hardware limitations. Future research will address the issues of cybersecurity threats, participation rates, and reducing equipment wear-and-tear while providing grid services.« less

  2. High-resolution computer-aided moire

    NASA Astrophysics Data System (ADS)

    Sciammarella, Cesar A.; Bhat, Gopalakrishna K.

    1991-12-01

    This paper presents a high resolution computer assisted moire technique for the measurement of displacements and strains at the microscopic level. The detection of micro-displacements using a moire grid and the problem associated with the recovery of displacement field from the sampled values of the grid intensity are discussed. A two dimensional Fourier transform method for the extraction of displacements from the image of the moire grid is outlined. An example of application of the technique to the measurement of strains and stresses in the vicinity of the crack tip in a compact tension specimen is given.

  3. A high-order staggered meshless method for elliptic problems

    DOE PAGES

    Trask, Nathaniel; Perego, Mauro; Bochev, Pavel Blagoveston

    2017-03-21

    Here, we present a new meshless method for scalar diffusion equations, which is motivated by their compatible discretizations on primal-dual grids. Unlike the latter though, our approach is truly meshless because it only requires the graph of nearby neighbor connectivity of the discretization points. This graph defines a local primal-dual grid complex with a virtual dual grid, in the sense that specification of the dual metric attributes is implicit in the method's construction. Our method combines a topological gradient operator on the local primal grid with a generalized moving least squares approximation of the divergence on the local dual grid. We show that the resulting approximation of the div-grad operator maintains polynomial reproduction to arbitrary orders and yields a meshless method, which attainsmore » $$O(h^{m})$$ convergence in both $L^2$- and $H^1$-norms, similar to mixed finite element methods. We demonstrate this convergence on curvilinear domains using manufactured solutions in two and three dimensions. Application of the new method to problems with discontinuous coefficients reveals solutions that are qualitatively similar to those of compatible mesh-based discretizations.« less

  4. Energy management and multi-layer control of networked microgrids

    NASA Astrophysics Data System (ADS)

    Zamora, Ramon

    Networked microgrids is a group of neighboring microgrids that has ability to interchange power when required in order to increase reliability and resiliency. Networked microgrid can operate in different possible configurations including: islanded microgrid, a grid-connected microgrid without a tie-line converter, a grid-connected microgrid with a tie-line converter, and networked microgrids. These possible configurations and specific characteristics of renewable energy offer challenges in designing control and management algorithms for voltage, frequency and power in all possible operating scenarios. In this work, control algorithm is designed based on large-signal model that enables microgrid to operate in wide range of operating points. A combination between PI controller and feed-forward measured system responses will compensate for the changes in operating points. The control architecture developed in this work has multi-layers and the outer layer is slower than the inner layer in time response. The main responsibility of the designed controls are to regulate voltage magnitude and frequency, as well as output power of the DG(s). These local controls also integrate with a microgrid level energy management system or microgrid central controller (MGCC) for power and energy balance for. the entire microgrid in islanded, grid-connected, or networked microgid mode. The MGCC is responsible to coordinate the lower level controls to have reliable and resilient operation. In case of communication network failure, the decentralized energy management will operate locally and will activate droop control. Simulation results indicate the superiority of designed control algorithms compared to existing ones.

  5. Tablet based distributed intelligent load management

    DOEpatents

    Lu, Yan; Zhou, Siyuan

    2018-01-09

    A facility is connected to an electricity utility and is responsive to Demand Response Events. A plurality of devices is each individually connected to the electricity grid via an addressable switch connected to a secure network that is enabled to be individually switched off by a server. An occupant of a room in control of the plurality of devices provides via a Human Machine Interface on a tablet a preferred order of switching off the plurality of devices in case of a Demand Response Event. A configuration file based at least partially on the preferred order and on a severity of the Demand Response Events determines which devices which of the plurality devices will be switched off. The server accesses the configuration file and switches off the devices included in the configuration file.

  6. Using Micro-Molding and Stamping to Fabricate Conductive Polydimethylsiloxane-Based Flexible High-Sensitivity Strain Gauges.

    PubMed

    Han, Chi-Jui; Chiang, Hsuan-Ping; Cheng, Yun-Chien

    2018-02-18

    In this study, polydimethylsiloxane (PDMS) and conductive carbon nanoparticles were combined to fabricate a conductive elastomer PDMS (CPDMS). A high sensitive and flexible CPDMS strain sensor is fabricated by using stamping-process based micro patterning. Compared with conventional sensors, flexible strain sensors are more suitable for medical applications but are usually fabricated by photolithography, which suffers from a large number of steps and difficult mass production. Hence, we fabricated flexible strain sensors using a stamping-process with fewer processes than photolithography. The piezoresistive coefficient and sensitivity of the flexible strain sensor were improved by sensor pattern design and thickness change. Micro-patterning is used to fabricate various CPDMS microstructure patterns. The effect of gauge pattern was evaluated with ANSYS simulations. The piezoresistance of the strain gauges was measured and the gauge factor determined. Experimental results show that the piezoresistive coefficient of CPDMS is approximately linear. Gauge factor measurement results show that the gauge factor of a 140.0 μm thick strain gauge with five grids is the highest.

  7. Improving sub-grid scale accuracy of boundary features in regional finite-difference models

    USGS Publications Warehouse

    Panday, Sorab; Langevin, Christian D.

    2012-01-01

    As an alternative to grid refinement, the concept of a ghost node, which was developed for nested grid applications, has been extended towards improving sub-grid scale accuracy of flow to conduits, wells, rivers or other boundary features that interact with a finite-difference groundwater flow model. The formulation is presented for correcting the regular finite-difference groundwater flow equations for confined and unconfined cases, with or without Newton Raphson linearization of the nonlinearities, to include the Ghost Node Correction (GNC) for location displacement. The correction may be applied on the right-hand side vector for a symmetric finite-difference Picard implementation, or on the left-hand side matrix for an implicit but asymmetric implementation. The finite-difference matrix connectivity structure may be maintained for an implicit implementation by only selecting contributing nodes that are a part of the finite-difference connectivity. Proof of concept example problems are provided to demonstrate the improved accuracy that may be achieved through sub-grid scale corrections using the GNC schemes.

  8. Light propagation in the micro-size capillary injected by high temperature liquid

    NASA Astrophysics Data System (ADS)

    Li, Yan-jun; Li, Edward; Xiao, Hai

    2016-11-01

    The high temperature liquid is injected into the micro-size capillary and its light propagation behavior is investigated. We focus on two different liquid pumping methods. The first method can pump the high temperature liquid tin into the micro-size capillary by using a high pressure difference system. After pumping, a single mode fiber (SMF) connected with the optical carrier based microwave interferometry (OCMI) system is used to measure different liquid tin levels in the micro-size capillary. The second method can pump the room temperature engine oil into the capillary by using a syringe pump. This method can avoid the air bubbles when the liquids are pumped into the capillary.

  9. Optimal Dispatch of Unreliable Electric Grid-Connected Diesel Generator-Battery Power Systems

    NASA Astrophysics Data System (ADS)

    Xu, D.; Kang, L.

    2015-06-01

    Diesel generator (DG)-battery power systems are often adopted by telecom operators, especially in semi-urban and rural areas of developing countries. Unreliable electric grids (UEG), which have frequent and lengthy outages, are peculiar to these regions. DG-UEG-battery power system is an important kind of hybrid power system. System dispatch is one of the key factors to hybrid power system integration. In this paper, the system dispatch of a DG-UEG-lead acid battery power system is studied with the UEG of relatively ample electricity in Central African Republic (CAR) and UEG of poor electricity in Congo Republic (CR). The mathematical models of the power system and the UEG are studied for completing the system operation simulation program. The net present cost (NPC) of the power system is the main evaluation index. The state of charge (SOC) set points and battery bank charging current are the optimization variables. For the UEG in CAR, the optimal dispatch solution is SOC start and stop points 0.4 and 0.5 that belong to the Micro-Cycling strategy and charging current 0.1 C. For the UEG in CR, the optimal dispatch solution is of 0.1 and 0.8 that belongs to the Cycle-Charging strategy and 0.1 C. Charging current 0.1 C is suitable for both grid scenarios compared to 0.2 C. It makes the dispatch strategy design easier in commercial practices that there are a few very good candidate dispatch solutions with system NPC values close to that of the optimal solution for both UEG scenarios in CAR and CR.

  10. Shallow cumuli ensemble statistics for development of a stochastic parameterization

    NASA Astrophysics Data System (ADS)

    Sakradzija, Mirjana; Seifert, Axel; Heus, Thijs

    2014-05-01

    According to a conventional deterministic approach to the parameterization of moist convection in numerical atmospheric models, a given large scale forcing produces an unique response from the unresolved convective processes. This representation leaves out the small-scale variability of convection, as it is known from the empirical studies of deep and shallow convective cloud ensembles, there is a whole distribution of sub-grid states corresponding to the given large scale forcing. Moreover, this distribution gets broader with the increasing model resolution. This behavior is also consistent with our theoretical understanding of a coarse-grained nonlinear system. We propose an approach to represent the variability of the unresolved shallow-convective states, including the dependence of the sub-grid states distribution spread and shape on the model horizontal resolution. Starting from the Gibbs canonical ensemble theory, Craig and Cohen (2006) developed a theory for the fluctuations in a deep convective ensemble. The micro-states of a deep convective cloud ensemble are characterized by the cloud-base mass flux, which, according to the theory, is exponentially distributed (Boltzmann distribution). Following their work, we study the shallow cumulus ensemble statistics and the distribution of the cloud-base mass flux. We employ a Large-Eddy Simulation model (LES) and a cloud tracking algorithm, followed by a conditional sampling of clouds at the cloud base level, to retrieve the information about the individual cloud life cycles and the cloud ensemble as a whole. In the case of shallow cumulus cloud ensemble, the distribution of micro-states is a generalized exponential distribution. Based on the empirical and theoretical findings, a stochastic model has been developed to simulate the shallow convective cloud ensemble and to test the convective ensemble theory. Stochastic model simulates a compound random process, with the number of convective elements drawn from a Poisson distribution, and cloud properties sub-sampled from a generalized ensemble distribution. We study the role of the different cloud subtypes in a shallow convective ensemble and how the diverse cloud properties and cloud lifetimes affect the system macro-state. To what extent does the cloud-base mass flux distribution deviate from the simple Boltzmann distribution and how does it affect the results from the stochastic model? Is the memory, provided by the finite lifetime of individual clouds, of importance for the ensemble statistics? We also test for the minimal information given as an input to the stochastic model, able to reproduce the ensemble mean statistics and the variability in a convective ensemble. An important property of the resulting distribution of the sub-grid convective states is its scale-adaptivity - the smaller the grid-size, the broader the compound distribution of the sub-grid states.

  11. The LHCb Grid Simulation: Proof of Concept

    NASA Astrophysics Data System (ADS)

    Hushchyn, M.; Ustyuzhanin, A.; Arzymatov, K.; Roiser, S.; Baranov, A.

    2017-10-01

    The Worldwide LHC Computing Grid provides access to data and computational resources to analyze it for researchers with different geographical locations. The grid has a hierarchical topology with multiple sites distributed over the world with varying number of CPUs, amount of disk storage and connection bandwidth. Job scheduling and data distribution strategy are key elements of grid performance. Optimization of algorithms for those tasks requires their testing on real grid which is hard to achieve. Having a grid simulator might simplify this task and therefore lead to more optimal scheduling and data placement algorithms. In this paper we demonstrate a grid simulator for the LHCb distributed computing software.

  12. A chimera grid scheme. [multiple overset body-conforming mesh system for finite difference adaptation to complex aircraft configurations

    NASA Technical Reports Server (NTRS)

    Steger, J. L.; Dougherty, F. C.; Benek, J. A.

    1983-01-01

    A mesh system composed of multiple overset body-conforming grids is described for adapting finite-difference procedures to complex aircraft configurations. In this so-called 'chimera mesh,' a major grid is generated about a main component of the configuration and overset minor grids are used to resolve all other features. Methods for connecting overset multiple grids and modifications of flow-simulation algorithms are discussed. Computational tests in two dimensions indicate that the use of multiple overset grids can simplify the task of grid generation without an adverse effect on flow-field algorithms and computer code complexity.

  13. Planar-constructed spatial micro-stage

    DOEpatents

    Jokiel, Jr., Bernhard; Benavides, Gilbert L.; Bieg, Lothar F.; Allen, James J.

    2004-01-13

    A multiple degree of freedom platform assembly formed from a plurality of thin films on a substrate can, when activated, move out of the plane of the substrate without additional manufacturing steps. The platform is connected to the substrate by at least three linkages, each linkage being pivotally connected to the platform and the base. At least two of the base connections are to powered traveling devices that are manufactured at one end of a path and which may be moved to locations along the path to cause the platform to move to predetermined positions. The entire assembly, including hinges, is manufactured as planar structures; preferably by a thin film technology such as MEMS.

  14. IGMS: An Integrated ISO-to-Appliance Scale Grid Modeling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmintier, Bryan; Hale, Elaine; Hansen, Timothy M.

    This paper describes the Integrated Grid Modeling System (IGMS), a novel electric power system modeling platform for integrated transmission-distribution analysis that co-simulates off-the-shelf tools on high performance computing (HPC) platforms to offer unprecedented resolution from ISO markets down to appliances and other end uses. Specifically, the system simultaneously models hundreds or thousands of distribution systems in co-simulation with detailed Independent System Operator (ISO) markets and AGC-level reserve deployment. IGMS uses a new MPI-based hierarchical co-simulation framework to connect existing sub-domain models. Our initial efforts integrate opensource tools for wholesale markets (FESTIV), bulk AC power flow (MATPOWER), and full-featured distribution systemsmore » including physics-based end-use and distributed generation models (many instances of GridLAB-D[TM]). The modular IGMS framework enables tool substitution and additions for multi-domain analyses. This paper describes the IGMS tool, characterizes its performance, and demonstrates the impacts of the coupled simulations for analyzing high-penetration solar PV and price responsive load scenarios.« less

  15. Design and simulation of front end power converter for a microgrid with fuel cells and solar power sources

    NASA Astrophysics Data System (ADS)

    Jeevargi, Chetankumar; Lodhi, Anuj; Sateeshkumar, Allu; Elangovan, D.; Arunkumar, G.

    2017-11-01

    The need for Renewable Energy Sources (RES) is increasing due to increased demand for the supply of power and it is also environment friendly.In the recent few years, the cost of generation of the power from the RES has been decreased. This paper aims to design the front end power converter which is required for integrating the fuel cells and solar power sources to the micro grid. The simulation of the designed front end converter is carried out in the PSIM 9.1.1 software. The results show that the designed front end power converter is sufficient for integrating the micro grid with fuel cells and solar power sources.

  16. Connecting Electric Vehicles to the Grid for Greater Infrastructure

    Science.gov Websites

    with the grid at the Energy Systems Integration Facility. Photo by Dennis Schroeder, NREL As the market serves as a test bed for assessing various EV charging scenarios. Photo by Dennis Schroeder, NREL back to the grid and essentially serve as a mobile power generator. Photo by Dennis Schroeder, NREL

  17. Connecting micro dynamics and population distributions in system dynamics models

    PubMed Central

    Rahmandad, Hazhir; Chen, Hsin-Jen; Xue, Hong; Wang, Youfa

    2014-01-01

    Researchers use system dynamics models to capture the mean behavior of groups of indistinguishable population elements (e.g., people) aggregated in stock variables. Yet, many modeling problems require capturing the heterogeneity across elements with respect to some attribute(s) (e.g., body weight). This paper presents a new method to connect the micro-level dynamics associated with elements in a population with the macro-level population distribution along an attribute of interest without the need to explicitly model every element. We apply the proposed method to model the distribution of Body Mass Index and its changes over time in a sample population of American women obtained from the U.S. National Health and Nutrition Examination Survey. Comparing the results with those obtained from an individual-based model that captures the same phenomena shows that our proposed method delivers accurate results with less computation than the individual-based model. PMID:25620842

  18. Pressure activated interconnection of micro transfer printed components

    NASA Astrophysics Data System (ADS)

    Prevatte, Carl; Guven, Ibrahim; Ghosal, Kanchan; Gomez, David; Moore, Tanya; Bonafede, Salvatore; Raymond, Brook; Trindade, António Jose; Fecioru, Alin; Kneeburg, David; Meitl, Matthew A.; Bower, Christopher A.

    2016-05-01

    Micro transfer printing and other forms of micro assembly deterministically produce heterogeneously integrated systems of miniaturized components on non-native substrates. Most micro assembled systems include electrical interconnections to the miniaturized components, typically accomplished by metal wires formed on the non-native substrate after the assembly operation. An alternative scheme establishing interconnections during the assembly operation is a cost-effective manufacturing method for producing heterogeneous microsystems, and facilitates the repair of integrated microsystems, such as displays, by ex post facto addition of components to correct defects after system-level tests. This letter describes pressure-concentrating conductor structures formed on silicon (1 0 0) wafers to establish connections to preexisting conductive traces on glass and plastic substrates during micro transfer printing with an elastomer stamp. The pressure concentrators penetrate a polymer layer to form the connection, and reflow of the polymer layer bonds the components securely to the target substrate. The experimental yield of series-connected test systems with >1000 electrical connections demonstrates the suitability of the process for manufacturing, and robustness of the test systems against exposure to thermal shock, damp heat, and mechanical flexure shows reliability of the resulting bonds.

  19. Noise promotes independent control of gamma oscillations and grid firing within recurrent attractor networks

    PubMed Central

    Solanka, Lukas; van Rossum, Mark CW; Nolan, Matthew F

    2015-01-01

    Neural computations underlying cognitive functions require calibration of the strength of excitatory and inhibitory synaptic connections and are associated with modulation of gamma frequency oscillations in network activity. However, principles relating gamma oscillations, synaptic strength and circuit computations are unclear. We address this in attractor network models that account for grid firing and theta-nested gamma oscillations in the medial entorhinal cortex. We show that moderate intrinsic noise massively increases the range of synaptic strengths supporting gamma oscillations and grid computation. With moderate noise, variation in excitatory or inhibitory synaptic strength tunes the amplitude and frequency of gamma activity without disrupting grid firing. This beneficial role for noise results from disruption of epileptic-like network states. Thus, moderate noise promotes independent control of multiplexed firing rate- and gamma-based computational mechanisms. Our results have implications for tuning of normal circuit function and for disorders associated with changes in gamma oscillations and synaptic strength. DOI: http://dx.doi.org/10.7554/eLife.06444.001 PMID:26146940

  20. Warps, grids and curvature in triple vector bundles

    NASA Astrophysics Data System (ADS)

    Flari, Magdalini K.; Mackenzie, Kirill

    2018-06-01

    A triple vector bundle is a cube of vector bundle structures which commute in the (strict) categorical sense. A grid in a triple vector bundle is a collection of sections of each bundle structure with certain linearity properties. A grid provides two routes around each face of the triple vector bundle, and six routes from the base manifold to the total manifold; the warps measure the lack of commutativity of these routes. In this paper we first prove that the sum of the warps in a triple vector bundle is zero. The proof we give is intrinsic and, we believe, clearer than the proof using decompositions given earlier by one of us. We apply this result to the triple tangent bundle T^3M of a manifold and deduce (as earlier) the Jacobi identity. We further apply the result to the triple vector bundle T^2A for a vector bundle A using a connection in A to define a grid in T^2A . In this case the curvature emerges from the warp theorem.

  1. Adaptive OFDM Radar Waveform Design for Improved Micro-Doppler Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Satyabrata

    Here we analyze the performance of a wideband orthogonal frequency division multiplexing (OFDM) signal in estimating the micro-Doppler frequency of a rotating target having multiple scattering centers. The use of a frequency-diverse OFDM signal enables us to independently analyze the micro-Doppler characteristics with respect to a set of orthogonal subcarrier frequencies. We characterize the accuracy of micro-Doppler frequency estimation by computing the Cramer-Rao bound (CRB) on the angular-velocity estimate of the target. Additionally, to improve the accuracy of the estimation procedure, we formulate and solve an optimization problem by minimizing the CRB on the angular-velocity estimate with respect to themore » OFDM spectral coefficients. We present several numerical examples to demonstrate the CRB variations with respect to the signal-to-noise ratios, number of temporal samples, and number of OFDM subcarriers. We also analysed numerically the improvement in estimation accuracy due to the adaptive waveform design. A grid-based maximum likelihood estimation technique is applied to evaluate the corresponding mean-squared error performance.« less

  2. Scanning transmission ion micro-tomography (STIM-T) of biological specimens.

    PubMed

    Schwertner, Micheal; Sakellariou, Arthur; Reinert, Tilo; Butz, Tilman

    2006-05-01

    Computed tomography (CT) was applied to sets of Scanning Transmission Ion Microscopy (STIM) projections recorded at the LIPSION ion beam laboratory (Leipzig) in order to visualize the 3D-mass distribution in several specimens. Examples for a test structure (copper grid) and for biological specimens (cartilage cells, cygospore) are shown. Scanning Transmission Micro-Tomography (STIM-T) at a resolution of 260 nm was demonstrated for the first time. Sub-micron features of the Cu-grid specimen were verified by scanning electron microscopy. The ion energy loss measured during a STIM-T experiment is related to the mass density of the specimen. Typically, biological specimens can be analysed without staining. Only shock freezing and freeze-drying is required to preserve the ultra-structure of the specimen. The radiation damage to the specimen during the experiment can be neglected. This is an advantage compared to other techniques like X-ray micro-tomography. At present, the spatial resolution is limited by beam position fluctuations and specimen vibrations.

  3. Non-linear 3D evaluation of different oral implant-abutment connections.

    PubMed

    Streckbein, P; Streckbein, R G; Wilbrand, J F; Malik, C Y; Schaaf, H; Howaldt, H P; Flach, M

    2012-12-01

    Micro-gaps and osseous overload in the implant-abutment connection are the most common causes of peri-implant bone resorption and implant failure. These undesirable events can be visualized on standardized three-dimensional finite element models and by radiographic methods. The present study investigated the influence of 7 available implant systems (Ankylos, Astra, Bego, Brånemark, Camlog, Straumann, and Xive) with different implant-abutment connections on bone overload and the appearance of micro-gaps in vitro. The individual geometries of the implants were transferred to three-dimensional finite element models. In a non-linear analysis considering the pre-loading of the occlusion screw, friction between the implant and abutment, the influence of the cone angle on bone strain, and the appearance of micro-gaps were determined. Increased bone strains were correlated with small (< 15°) cone angles. Conical implant-abutment connections efficiently avoided micro-gaps but had a negative effect on peri-implant bone strain. Bone strain was reduced in implants with greater wall thickness (Ankylos) or a smaller cone angle (Bego). The results of our in silico study provide a solid basis for the reduction of peri-implant bone strain and micro-gaps in the implant-abutment connection to improve long-term stability.

  4. Diagnostic system for profiling micro-beams

    DOEpatents

    Elmer, John W.; Palmer, Todd A.; Teruya, Alan T.; Walton, Chris C.

    2007-10-30

    An apparatus for characterization of a micro beam comprising a micro modified Faraday cup assembly including a first layer of material, a second layer of material operatively connected to the first layer of material, a third layer of material operatively connected to the second layer of material, and a fourth layer of material operatively connected to the third layer of material. The first layer of material comprises an electrical conducting material and has at least one first layer radial slit extending through the first layer. An electrical ground is connected to the first layer. The second layer of material comprises an insulating material and has at least one second layer radial slit corresponding to the first layer radial slit in the first layer of material. The second layer radial slit extends through the second layer. The third layer of material comprises a conducting material and has at least one third layer radial slit corresponding to the second layer radial slit in the second layer of material. The third layer radial slit extends through the third layer. The fourth layer of material comprises an electrical conducting material but does not have slits. An electrical measuring device is connected to the fourth layer. The micro modified Faraday cup assembly is positioned to be swept by the micro beam.

  5. School Disruption on the Small Scale: Can Micro-Schools Break Out of an Elite Niche?

    ERIC Educational Resources Information Center

    Cohen, Justin C.

    2017-01-01

    NuVu is an off-the-grid, independent "micro-school" in Massachusetts, whose 60 students are stretching the boundaries of what constitutes education in America. Instead of switching between subject-driven classes that teach a common curriculum, they follow a fluid schedule in two-week blocks, and apply math, reading, problem-solving, and…

  6. PEAK LIMITING AMPLIFIER

    DOEpatents

    Goldsworthy, W.W.; Robinson, J.B.

    1959-03-31

    A peak voltage amplitude limiting system adapted for use with a cascade type amplifier is described. In its detailed aspects, the invention includes an amplifier having at least a first triode tube and a second triode tube, the cathode of the second tube being connected to the anode of the first tube. A peak limiter triode tube has its control grid coupled to thc anode of the second tube and its anode connected to the cathode of the second tube. The operation of the limiter is controlled by a bias voltage source connected to the control grid of the limiter tube and the output of the system is taken from the anode of the second tube.

  7. PROGRESSIVE COLLAPSE TESTING OF RELOCATABLE TROOP BARRACKS

    DTIC Science & Technology

    2017-06-02

    sight at many U.S. and coalition bases worldwide. Cost effective, readily available , and robust, CONEX containers can be stacked and connected together...three stories high constructed with CONEX containers in a 3 × 3 × 2 grid as shown in Figure 3. The column loss locations investigated are shown in...Lackland Air Force Base, Texas available to the general public, including foreign AFCEC Public Affairs Office at Joint Base San AFCEC-CX-TY-TR-2017-0018

  8. NWEI Azura September 2016 Data

    DOE Data Explorer

    Terry Lettenmaier

    2016-10-15

    Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.

  9. NWEI Azura May 2016 Data

    DOE Data Explorer

    Terry Lettenmaier

    2016-06-07

    Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.

  10. NWEI Azura October 2016 Data

    DOE Data Explorer

    Terry Lettenmaier

    2016-11-11

    Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.

  11. NWEI Azura July 2016 Data

    DOE Data Explorer

    Terry Lettenmaier

    2016-08-31

    Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.

  12. NWEI Azura August 2016 Data

    DOE Data Explorer

    Terry Lettenmaier

    2016-10-14

    Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.

  13. NWEI Azura February 2016 Data

    DOE Data Explorer

    Terry Lettenmaier

    2016-03-07

    Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawai'i (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.

  14. NWEI Azura March 2016 Data

    DOE Data Explorer

    Terry Lettenmaier

    2016-03-31

    Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.

  15. NWEI Azura June 2016 Data

    DOE Data Explorer

    Terry Lettenmaier

    2016-08-31

    Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.

  16. NWEI Azura April 2016 Data

    DOE Data Explorer

    Terry Lettenmaier

    2016-06-08

    Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.

  17. NWEI Azura November 2016 Data

    DOE Data Explorer

    Terry Lettenmaier

    2016-12-07

    Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.

  18. NWEI Azura June 2015 data

    DOE Data Explorer

    Terry Lettenmaier

    2015-12-14

    Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawai'i (MCBH) on the windward (northeast) coast of the island of O'ahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.

  19. NWEI Azura January 2016 data

    DOE Data Explorer

    Terry Lettenmaier

    2016-01-01

    Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawai'i (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.

  20. NWEI Azura July 2015 data

    DOE Data Explorer

    Terry Lettenmaier

    2015-12-14

    Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.

  1. NWEI Azura December 2015 data

    DOE Data Explorer

    Terry Lettenmaier

    2016-02-21

    Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawai'i (MCBH) on the windward (northeast) coast of the island of O'ahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.

  2. NWEI Azura Aug 2015 data

    DOE Data Explorer

    Terry Lettenmaier

    2015-12-14

    Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawai'i (MCBH) on the windward (northeast) coast of the island of O'ahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.

  3. NWEI Azura November 2015 data

    DOE Data Explorer

    Terry Lettenmaier

    2015-12-15

    Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.

  4. NWEI Azura Sept 2015 data

    DOE Data Explorer

    Terry Lettenmaier

    2015-12-14

    Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.

  5. NWEI Azura Oct 2015 data

    DOE Data Explorer

    Terry Lettenmaier

    2015-12-14

    Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.

  6. PVWatts ® Calculator: India (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The PVWatts ® Calculator for India was released by the National Renewable Energy Laboratory in 2013. The online tool estimates electricity production and the monetary value of that production of grid-connected roof- or ground-mounted crystalline silicon photovoltaics systems based on a few simple inputs. This factsheet provides a broad overview of the PVWatts ® Calculator for India.

  7. NWEI Azura February 2018 data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lettenmaier, Terry

    Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.

  8. NWEI Azura April 2018 data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lettenmaier, Terry

    Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.

  9. NWEI Azura March 2018 data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lettenmaier, Terry

    Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.

  10. Power Hardware-in-the-Loop Evaluation of PV Inverter Grid Support on Hawaiian Electric Feeders: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Austin; Prabakar, Kumaraguru; Nagarajan, Adarsh

    As more grid-connected photovoltaic (PV) inverters become compliant with evolving interconnections requirements, there is increased interest from utilities in understanding how to best deploy advanced grid-support functions (GSF) in the field. One efficient and cost-effective method to examine such deployment options is to leverage power hardware-in-the-loop (PHIL) testing methods. Two Hawaiian Electric feeder models were converted to real-time models in the OPAL-RT real-time digital testing platform, and integrated with models of GSF capable PV inverters that were modeled from characterization test data. The integrated model was subsequently used in PHIL testing to evaluate the effects of different fixed power factormore » and volt-watt control settings on voltage regulation of the selected feeders. The results of this study were provided as inputs for field deployment and technical interconnection requirements for grid-connected PV inverters on the Hawaiian Islands.« less

  11. Harmonic analysis and suppression in hybrid wind & PV solar system

    NASA Astrophysics Data System (ADS)

    Gupta, Tripti; Namekar, Swapnil

    2018-04-01

    The growing demand of electricity has led to produce power through non-conventional source of energy such as solar energy, wind energy, hydro power, energy through biogas and biomass etc. Hybrid system is taken to complement the shortcoming of either sources of energy. The proposed system is grid connected hybrid wind and solar system. A 2.1 MW Doubly fed Induction Generator (DFIG) has been taken for analysis of wind farm whose rotor part is connected to two back-to-back converters. A 250 KW Photovoltaic (PV) array taken to analyze solar farm where inverter is required to convert power from DC to AC since electricity generated through solar PV is in the form of DC. Stability and reliability of the system is very important when the system is grid connected. Harmonics is the major Power quality issue which degrades the quality of power at load side. Harmonics in hybrid system arise through the use of power conversion unit. The other causes of harmonics are fluctuation in wind speed and solar irradiance. The power delivered to grid must be free from harmonics and within the limits specified by Indian grid codes. In proposed work, harmonic analysis of the hybrid system is performed in Electrical Transient Analysis program (ETAP) and single tuned harmonic filter is designed to maintain the utility grid harmonics within limits.

  12. Bridging the Information Gap: Remote Sensing and Micro Hydropower Feasibility in Data-Scarce Regions

    NASA Astrophysics Data System (ADS)

    Muller, Marc Francois

    Access to electricity remains an impediment to development in many parts of the world, particularly in rural areas with low population densities and prohibitive grid extension costs. In that context, community-scale run-of-river hydropower---micro-hydropower---is an attractive local power generation option, particularly in mountainous regions, where appropriate slope and runoff conditions occur. Despite their promise, micro hydropower programs have generally failed to have a significant impact on rural electrification in developing nations. In Nepal, despite very favorable conditions and approximately 50 years of experience, the technology supplies only 4% of the 10 million households that do not have access to the central electricity grid. These poor results point towards a major information gap between technical experts, who may lack the incentives or local knowledge needed to design appropriate systems for rural villages, and local users, who have excellent knowledge of the community but lack technical expertise to design and manage infrastructure. Both groups suffer from a limited basis for evidence-based decision making due to sparse environmental data available to support the technical components of infrastructure design. This dissertation draws on recent advances in remote sensing data, stochastic modeling techniques and open source platforms to bridge that information gap. Streamflow is a key environmental driver of hydropower production that is particularly challenging to model due to its stochastic nature and the complexity of the underlying natural processes. The first part of the dissertation addresses the general challenge of Predicting streamflow in Ungauged Basins (PUB). It first develops an algorithm to optimize the use of rain gauge observations to improve the accuracy of remote sensing precipitation measures. It then derives and validates a process-based model to estimate streamflow distribution in seasonally dry climates using the stochastic nature of rainfall, and proposes a novel geostatistical method to regionalize its parameters across the stream network. Although motivated by the needs of micro hydropower design in Nepal, these techniques represent contributions to the broader international challenge of PUB and can be applied worldwide. The economic drivers of rural electrification are then considered by presenting an econometric technique to estimate the cost function and demand curve of micro hydropower in Nepal. The empirical strategy uses topography-based instrumental variables to identify price elasticities. All developed methods are assembled in a computer tool, along with a search algorithm that uses a digital elevation model to optimize the placement of micro hydropower infrastructure. The tool---Micro Hydro [em]Power---is an open source application that can be accessed and operated on a web-browser (http://mfmul.shinyapps.io/mhpower). Its purpose is to assist local communities in the design and evaluation of micro hydropower alternatives in their locality, while using cost and demand information provided by local users to generate accurate feasibility maps at the national level, thus bridging the information gap.

  13. Using fleets of electric-drive vehicles for grid support

    NASA Astrophysics Data System (ADS)

    Tomić, Jasna; Kempton, Willett

    Electric-drive vehicles can provide power to the electric grid when they are parked (vehicle-to-grid power). We evaluated the economic potential of two utility-owned fleets of battery-electric vehicles to provide power for a specific electricity market, regulation, in four US regional regulation services markets. The two battery-electric fleet cases are: (a) 100 Th!nk City vehicle and (b) 252 Toyota RAV4. Important variables are: (a) the market value of regulation services, (b) the power capacity (kW) of the electrical connections and wiring, and (c) the energy capacity (kWh) of the vehicle's battery. With a few exceptions when the annual market value of regulation was low, we find that vehicle-to-grid power for regulation services is profitable across all four markets analyzed. Assuming now more than current Level 2 charging infrastructure (6.6 kW) the annual net profit for the Th!nk City fleet is from US 7000 to 70,000 providing regulation down only. For the RAV4 fleet the annual net profit ranges from US 24,000 to 260,000 providing regulation down and up. Vehicle-to-grid power could provide a significant revenue stream that would improve the economics of grid-connected electric-drive vehicles and further encourage their adoption. It would also improve the stability of the electrical grid.

  14. Precise positioning method for multi-process connecting based on binocular vision

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Ding, Lichao; Zhao, Kai; Li, Xiao; Wang, Ling; Jia, Zhenyuan

    2016-01-01

    With the rapid development of aviation and aerospace, the demand for metal coating parts such as antenna reflector, eddy-current sensor and signal transmitter, etc. is more and more urgent. Such parts with varied feature dimensions, complex three-dimensional structures, and high geometric accuracy are generally fabricated by the combination of different manufacturing technology. However, it is difficult to ensure the machining precision because of the connection error between different processing methods. Therefore, a precise positioning method is proposed based on binocular micro stereo vision in this paper. Firstly, a novel and efficient camera calibration method for stereoscopic microscope is presented to solve the problems of narrow view field, small depth of focus and too many nonlinear distortions. Secondly, the extraction algorithms for law curve and free curve are given, and the spatial position relationship between the micro vision system and the machining system is determined accurately. Thirdly, a precise positioning system based on micro stereovision is set up and then embedded in a CNC machining experiment platform. Finally, the verification experiment of the positioning accuracy is conducted and the experimental results indicated that the average errors of the proposed method in the X and Y directions are 2.250 μm and 1.777 μm, respectively.

  15. NREL Topic 1 Final Report: Cohesive Application of Standards-Based Connected Devices to Enable Clean Energy Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudgins, Andrew P.; Sparn, Bethany F.; Jin, Xin

    This document is the final report of a two-year development, test, and demonstration project entitled 'Cohesive Application of Standards-Based Connected Devices to Enable Clean Energy Technologies.' The project was part of the National Renewable Energy Laboratory's (NREL) Integrated Network Test-bed for Energy Grid Research and Technology (INTEGRATE) initiative. The Electric Power Research Institute (EPRI) and a team of partners were selected by NREL to carry out a project to develop and test how smart, connected consumer devices can act to enable the use of more clean energy technologies on the electric power grid. The project team includes a set ofmore » leading companies that produce key products in relation to achieving this vision: thermostats, water heaters, pool pumps, solar inverters, electric vehicle supply equipment, and battery storage systems. A key requirement of the project was open access at the device level - a feature seen as foundational to achieving a future of widespread distributed generation and storage. The internal intelligence, standard functionality and communication interfaces utilized in this project result in the ability to integrate devices at any level, to work collectively at the level of the home/business, microgrid, community, distribution circuit or other. Collectively, the set of products serve as a platform on which a wide range of control strategies may be developed and deployed.« less

  16. Modeling, analysis, control and design application guidelines of Doubly Fed Induction Generator (DFIG) for wind power applications

    NASA Astrophysics Data System (ADS)

    Masaud, Tarek

    Double Fed Induction Generators (DFIG) has been widely used for the past two decades in large wind farms. However, there are many open-ended problems yet to be solved before they can be implemented in some specific applications. This dissertation deals with the general analysis, modeling, control and applications of the DFIG for large wind farm applications. A detailed "d-q" model of DFIG along with other applications is simulated using the MATLAB/Simulink platform. The simulation results have been discussed in detail in both sub-synchronous and super-synchronous mode of operation. An improved vector control strategy based on the rotor flux oriented vector control has been proposed to control the active power output of the DFIG. The new vector control strategy is compared with the stator flux oriented vector control which is commonly used. It is observed that the new improved vector control method provides a better active power tracking accuracy compare with the stator flux oriented vector control. The behavior of the DFIG -based wind farm under the various grid disturbances is also studied in this dissertation. The implementation of the Flexible AC Transmission System devices (FACTS) to overcome the voltage stability issue for such applications is investigated. The study includes the implementation of both a static synchronous compensator (STATCOM), and the static VAR compensator (SVC) as dynamic reactive power compensators at the point of common coupling to support DFIG-based wind farm during disturbances. Integrating FACTS protect the grid connected DFIG-based wind farm from going offline during and after the disturbances. It is found that the both devices improve the transient performance and therefore helps the wind turbine generator system to remain in service during grid faults. A comparison between the performance of the two devices in terms of the amount of reactive power injected, time response and the application cost has been discussed in this dissertation. Finally, the integration of the battery energy storage system (BESS) into a grid connected DFIG- based wind turbine as a proposed solution to smooth out the output power during wind speed variations is also addressed.

  17. Modelling and control synthesis of a micro-combined heat and power interface for a concentrating solar power system in off-grid rural power applications

    NASA Astrophysics Data System (ADS)

    Prinsloo, Gerro; Dobson, Robert; Brent, Alan; Mammoli, Andrea

    2016-05-01

    Concentrating solar power co-generation systems have been identified as potential stand-alone solar energy supply solutions in remote rural energy applications. This study describes the modelling and synthesis of a combined heat and power Stirling CSP system in order to evaluate its potential performance in small off-grid rural village applications in Africa. This Stirling micro-Combined Heat and Power (micro-CHP) system has a 1 kW electric capacity, with 3 kW of thermal generation capacity which is produced as waste heat recovered from the solar power generation process. As part of the development of an intelligent microgrid control and distribution solution, the Trinum micro-CHP system and other co-generation systems are systematically being modelled on the TRNSYS simulation platform. This paper describes the modelling and simulation of the Trinum micro-CHP configuration on TRNSYS as part of the process to develop the control automation solution for the smart rural microgrid in which the Trinum will serve as a solar powerpack. The results present simulated performance outputs for the Trinum micro-CHP system for a number of remote rural locations in Africa computed from real-time TRNSYS solar irradiation and weather data (yearly, monthly, daily) for the relevant locations. The focus of this paper is on the parametric modelling of the Trinum Stirling micro-CHP system, with specific reference to this system as a TRNSYS functional block in the microgrid simulation. The model is used to forecast the solar energy harvesting potential of the Trinum micro-CHP unit at a number of remote rural sites in Africa.

  18. Grid Application Meta-Repository System: Repository Interconnectivity and Cross-domain Application Usage in Distributed Computing Environments

    NASA Astrophysics Data System (ADS)

    Tudose, Alexandru; Terstyansky, Gabor; Kacsuk, Peter; Winter, Stephen

    Grid Application Repositories vary greatly in terms of access interface, security system, implementation technology, communication protocols and repository model. This diversity has become a significant limitation in terms of interoperability and inter-repository access. This paper presents the Grid Application Meta-Repository System (GAMRS) as a solution that offers better options for the management of Grid applications. GAMRS proposes a generic repository architecture, which allows any Grid Application Repository (GAR) to be connected to the system independent of their underlying technology. It also presents applications in a uniform manner and makes applications from all connected repositories visible to web search engines, OGSI/WSRF Grid Services and other OAI (Open Archive Initiative)-compliant repositories. GAMRS can also function as a repository in its own right and can store applications under a new repository model. With the help of this model, applications can be presented as embedded in virtual machines (VM) and therefore they can be run in their native environments and can easily be deployed on virtualized infrastructures allowing interoperability with new generation technologies such as cloud computing, application-on-demand, automatic service/application deployments and automatic VM generation.

  19. Final Report Feasibility Study for the California Wave Energy Test Center (CalWavesm)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blakeslee, Samuel Norman; Toman, William I.; Williams, Richard B.

    The California Wave Energy Test Center (CalWave) Feasibility Study project was funded over multiple phases by the Department of Energy to perform an interdisciplinary feasibility assessment to analyze the engineering, permitting, and stakeholder requirements to establish an open water, fully energetic, grid connected, wave energy test center off the coast of California for the purposes of advancing U.S. wave energy research, development, and testing capabilities. Work under this grant included wave energy resource characterization, grid impact and interconnection requirements, port infrastructure and maritime industry capability/suitability to accommodate the industry at research, demonstration and commercial scale, and macro and micro sitingmore » considerations. CalWave Phase I performed a macro-siting and down-selection process focusing on two potential test sites in California: Humboldt Bay and Vandenberg Air Force Base. This work resulted in the Vandenberg Air Force Base site being chosen as the most favorable site based on a peer reviewed criteria matrix. CalWave Phase II focused on four siting location alternatives along the Vandenberg Air Force Base coastline and culminated with a final siting down-selection. Key outcomes from this work include completion of preliminary engineering and systems integration work, a robust turnkey cost estimate, shoreside and subsea hazards assessment, storm wave analysis, lessons learned reports from several maritime disciplines, test center benchmarking as compared to existing international test sites, analysis of existing applicable environmental literature, the completion of a preliminary regulatory, permitting and licensing roadmap, robust interaction and engagement with state and federal regulatory agency personnel and local stakeholders, and the population of a Draft Federal Energy Regulatory Commission (FERC) Preliminary Application Document (PAD). Analysis of existing offshore oil and gas infrastructure was also performed to assess the potential value and re-use scenarios of offshore platform infrastructure and associated subsea power cables and shoreside substations. The CalWave project team was well balanced and was comprised of experts from industry, academia, state and federal regulatory agencies. The result of the CalWave feasibility study finds that the CalWave Test Center has the potential to provide the most viable path to commercialization for wave energy in the United States.« less

  20. Sustainability Challenge of Micro Hydro Power Development in Indonesia

    NASA Astrophysics Data System (ADS)

    Didik, H.; Bambang, P. N.; Asep, S.; Purwanto, Y. A.

    2018-05-01

    Rural electrification using renewable energy is the best choice for many locations that far away from national grid. Many renewable energy project have been built for rural electrification such as micro hydro power plant (MHPP) and solar photovoltaic (SPV). Sustainability still the main challenge of off-grid renewable energy development for off-grid rural electrification in Indonesia. The objective of this paper is to review sustainability of micro hydro power development in Indonesia. The research method was done by field observation, interview with MHPP management, and reviewing some research about MHPP in Indonesia. Sustainability issues include various aspects that can be classified into 5 dimensions: technical, economic, socio-cultural, institutional, and environmental. In technical factors that lead to sustainability problem are: improper MHPP design and construction, improper operation and maintenance, availability of spare parts and expertise. In the economic dimension are generally related to: low electricity tariff and utilization of MHPP for productive use. In the social dimension are: the growth of consumer’s load exceeding the capacity, reduced number of consumers, lack of external institutional support. In the institutional side, it is generally related to the ability of human resources in managing, operating and maintaining of MHPP. Environmental factors that lead the sustainability problems of MHPP are: scarcity of water discharge, conflict of water resources, land conversion over the watershed, and natural disasters.

  1. The multiscale classification system and grid encoding mode of ecological land in China

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Liu, Aixia; Lin, Yifan

    2017-10-01

    Ecological land provides goods and services that have direct or indirect benefic to eco-environment and human welfare. In recent years, researches on ecological land have become important in the field of land changes and ecosystem management. In the study, a multi-scale classification scheme of ecological land was developed for land management based on combination of the land-use classification and the ecological function zoning in China, including eco-zone, eco-region, eco-district, land ecosystem, and ecological land-use type. The geographical spatial unit leads toward greater homogeneity from macro to micro scale. The term "ecological land-use type" is the smallest one, being important to maintain the key ecological processes in land ecosystem. Ecological land-use type was categorized into main-functional and multi-functional ecological land-use type according to its ecological function attributes and production function attributes. Main-functional type was defined as one kind of land-use type mainly providing ecological goods and function attributes, such as river, lake, swampland, shoaly land, glacier and snow, while multi-functional type not only providing ecological goods and function attributes but also productive goods and function attributes, such as arable land, forestry land, and grassland. Furthermore, a six-level grid encoding mode was proposed for modern management of ecological land and data update under cadastral encoding. The six-level irregular grid encoding from macro to micro scale included eco-zone, eco-region, eco-district, cadastral area, land ecosystem, land ownership type, ecological land-use type, and parcel. Besides, the methodologies on ecosystem management were discussed for integrated management of natural resources in China.

  2. A robust adaptive load frequency control for micro-grids.

    PubMed

    Khooban, Mohammad-Hassan; Niknam, Taher; Blaabjerg, Frede; Davari, Pooya; Dragicevic, Tomislav

    2016-11-01

    The goal of this study is to introduce a novel robust load frequency control (LFC) strategy for micro-grid(s) (MG(s)) in islanded mode operation. Admittedly, power generators in MG(s) cannot supply steady electric power output and sometimes cause unbalance between supply and demand. Battery energy storage system (BESS) is one of the effective solutions to these problems. Due to the high cost of the BESS, a new idea of Vehicle-to-Grid (V2G) is that a battery of Electric-Vehicle (EV) can be applied as a tantamount large-scale BESS in MG(s). As a result, a new robust control strategy for an islanded micro-grid (MG) is introduced that can consider electric vehicles׳ (EV(s)) effect. Moreover, in this paper, a new combination of the General Type II Fuzzy Logic Sets (GT2FLS) and the Modified Harmony Search Algorithm (MHSA) technique is applied for adaptive tuning of proportional-integral (PI) controller. Implementing General Type II Fuzzy Systems is computationally expensive. However, using a recently introduced α-plane representation, GT2FLS can be seen as a composition of several Interval Type II Fuzzy Logic Systems (IT2FLS) with a corresponding level of α for each. Real-data from an offshore wind farm in Sweden and solar radiation data in Aberdeen (United Kingdom) was used in order to examine the performance of the proposed novel controller. A comparison is made between the achieved results of Optimal Fuzzy-PI (OFPI) controller and those of Optimal Interval Type II Fuzzy-PI (IT2FPI) controller, which are of most recent advances in the area at hand. The Simulation results prove the successfulness and effectiveness of the proposed controller. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Residential photovoltaic power conditioning technology for grid connected applications

    NASA Technical Reports Server (NTRS)

    Key, T. S.; Klein, J. W.

    1982-01-01

    Major advances in photovoltaic (PV) Power Conditioning (PC) with respect to performance and low-cost potential have been made. Solutions have been obtained to interface and control problems related to adapting available inverter designs to the grid-connected, residential photovoltaic experiments. A description is presented to contributing research and development activities. Attention is given to aspects of residential systems experience, conceptual design studies, questions of optimum topology development, and promising advanced designs for residential PV provided by development efforts of the private sector.

  4. Thin Film Electrodes with an Integral Current Collection Grid for Use with Solid Electrolytes

    NASA Technical Reports Server (NTRS)

    Ryan, M. A.; Kisor, A.; Williams, R. M.; Jeffries-Nakamura, B.; O'Connor, D.

    1994-01-01

    Thin film, high performance electrodes which can operate in high temperature environments are necessary for many devices which use a solid electrolyte. Electrodes of rhodium-tungsten alloy have been deposited on solid electrolyte using photolytic chemical vapor deposition (PCVD). A technique for depositing electrodes and current collection grids simultaneously has been developed using the prenucleation characteristics of PCVD. This technique makes it possible to fabricate electrodes which allow vapor transport through the thin (<1 (micro)m) portions of the electrode while integral thick grid lines improve the electronic conductivity of the electrode, thus improving overall performance.

  5. Fabrication and characterization of a deep ultraviolet wire grid polarizer with a chromium-oxide subwavelength grating.

    PubMed

    Asano, Kosuke; Yokoyama, Satoshi; Kemmochi, Atsushi; Yatagai, Toyohiko

    2014-05-01

    A wire grid polarizer comprised of chromium oxide is designed for a micro-lithography system using an ArF excimer laser. Optical properties for some material candidates are calculated using a rigorous coupled-wave analysis. The chromium oxide wire grid polarizer with a 90 nm period is fabricated by a double-patterning technique using KrF lithography and dry etching. The extinction ratio of the grating is greater than 20 dB (100:1) at a wavelength of 193 nm. Differences between the calculated and experimental results are discussed.

  6. Cu2+-imprinted cross-linked chitosan resin as micro-column packing materials for online chemiluminescence determination of trace copper.

    PubMed

    Nie, Feng; Hao, Liang; Gao, Mei; Wu, Yingchun; Li, Xinsheng; Yu, Sha

    2011-01-01

    The Cu(2+)-imprinted cross-linked chitosan resin was synthesized and the binding characteristic of the resin to Cu(2+) was evaluated. The prepared resin was packed into a micro-glass column and used as micro-separating column. The micro-separating column was connected into the chemiluminescence flow system and placed in front of the window of the photomultiplier tube. Based on the luminol-hydrogen peroxide chemiluminescence system, a flow injection online chemiluminescence method for determination of trace copper was developed and trace Cu(2+) in complex samples was successfully determined. The proposed method improved the shortcomings of chemiluminescence method's poor selectivity. Copyright © 2010 John Wiley & Sons, Ltd.

  7. Fabrication method to create high-aspect ratio pillars for photonic coupling of board level interconnects

    NASA Astrophysics Data System (ADS)

    Debaes, C.; Van Erps, J.; Karppinen, M.; Hiltunen, J.; Suyal, H.; Last, A.; Lee, M. G.; Karioja, P.; Taghizadeh, M.; Mohr, J.; Thienpont, H.; Glebov, A. L.

    2008-04-01

    An important challenge that remains to date in board level optical interconnects is the coupling between the optical waveguides on printed wiring boards and the packaged optoelectronics chips, which are preferably surface mountable on the boards. One possible solution is the use of Ball Grid Array (BGA) packages. This approach offers a reliable attachment despite the large CTE mismatch between the organic FR4 board and the semiconductor materials. Collimation via micro-lenses is here typically deployed to couple the light vertically from the waveguide substrate to the optoelectronics while allowing for a small misalignment between board and package. In this work, we explore the fabrication issues of an alternative approach in which the vertical photonic connection between board and package is governed by a micro-optical pillar which is attached both to the board substrate and to the optoelectronic chips. Such an approach allows for high density connections and small, high-speed detector footprints while maintaining an acceptable tolerance between board and package. The pillar should exhibit some flexibility and thus a high-aspect ratio is preferred. This work presents and compares different fabrication methods and applies different materials for such high-aspect ratio pillars. The different fabrication methods are: photolithography, direct laser writing and deep proton writing. The selection of optical materials that was investigated is: SU8, Ormocers, PU and a multifunctional acrylate polymer. The resulting optical pillars have diameters ranging from 20um up to 80um, with total heights ranging between 30um and 100um (symbol for micron). The aspect-ratio of the fabricated structures ranges from 1.5 to 5.

  8. Front tracking based modeling of the solid grain growth on the adaptive control volume grid

    NASA Astrophysics Data System (ADS)

    Seredyński, Mirosław; Łapka, Piotr

    2017-07-01

    The paper presents the micro-scale model of unconstrained solidification of the grain immersed in under-cooled liquid, based on the front tracking approach. For this length scale, the interface tracked through the domain is meant as the solid-liquid boundary. To prevent generation of huge meshes the energy transport equation is discretized on the adaptive control volume (c.v.) mesh. The coupling of dynamically changing mesh and moving front position is addressed. Preliminary results of simulation of a test case, the growth of single grain, are presented and discussed.

  9. iRODS: A Distributed Data Management Cyberinfrastructure for Observatories

    NASA Astrophysics Data System (ADS)

    Rajasekar, A.; Moore, R.; Vernon, F.

    2007-12-01

    Large-scale and long-term preservation of both observational and synthesized data requires a system that virtualizes data management concepts. A methodology is needed that can work across long distances in space (distribution) and long-periods in time (preservation). The system needs to manage data stored on multiple types of storage systems including new systems that become available in the future. This concept is called infrastructure independence, and is typically implemented through virtualization mechanisms. Data grids are built upon concepts of data and trust virtualization. These concepts enable the management of collections of data that are distributed across multiple institutions, stored on multiple types of storage systems, and accessed by multiple types of clients. Data virtualization ensures that the name spaces used to identify files, users, and storage systems are persistent, even when files are migrated onto future technology. This is required to preserve authenticity, the link between the record and descriptive and provenance metadata. Trust virtualization ensures that access controls remain invariant as files are moved within the data grid. This is required to track the chain of custody of records over time. The Storage Resource Broker (http://www.sdsc.edu/srb) is one such data grid used in a wide variety of applications in earth and space sciences such as ROADNet (roadnet.ucsd.edu), SEEK (seek.ecoinformatics.org), GEON (www.geongrid.org) and NOAO (www.noao.edu). Recent extensions to data grids provide one more level of virtualization - policy or management virtualization. Management virtualization ensures that execution of management policies can be automated, and that rules can be created that verify assertions about the shared collections of data. When dealing with distributed large-scale data over long periods of time, the policies used to manage the data and provide assurances about the authenticity of the data become paramount. The integrated Rule-Oriented Data System (iRODS) (http://irods.sdsc.edu) provides the mechanisms needed to describe not only management policies, but also to track how the policies are applied and their execution results. The iRODS data grid maps management policies to rules that control the execution of the remote micro-services. As an example, a rule can be created that automatically creates a replica whenever a file is added to a specific collection, or extracts its metadata automatically and registers it in a searchable catalog. For the replication operation, the persistent state information consists of the replica location, the creation date, the owner, the replica size, etc. The mechanism used by iRODS for providing policy virtualization is based on well-defined functions, called micro-services, which are chained into alternative workflows using rules. A rule engine, based on the event-condition-action paradigm executes the rule-based workflows after an event. Rules can be deferred to a pre-determined time or executed on a periodic basis. As the data management policies evolve, the iRODS system can implement new rules, new micro-services, and new state information (metadata content) needed to manage the new policies. Each sub- collection can be managed using a different set of policies. The discussion of the concepts in rule-based policy virtualization and its application to long-term and large-scale data management for observatories such as ORION and NEON will be the basis of the paper.

  10. A Data Parallel Multizone Navier-Stokes Code

    NASA Technical Reports Server (NTRS)

    Jespersen, Dennis C.; Levit, Creon; Kwak, Dochan (Technical Monitor)

    1995-01-01

    We have developed a data parallel multizone compressible Navier-Stokes code on the Connection Machine CM-5. The code is set up for implicit time-stepping on single or multiple structured grids. For multiple grids and geometrically complex problems, we follow the "chimera" approach, where flow data on one zone is interpolated onto another in the region of overlap. We will describe our design philosophy and give some timing results for the current code. The design choices can be summarized as: 1. finite differences on structured grids; 2. implicit time-stepping with either distributed solves or data motion and local solves; 3. sequential stepping through multiple zones with interzone data transfer via a distributed data structure. We have implemented these ideas on the CM-5 using CMF (Connection Machine Fortran), a data parallel language which combines elements of Fortran 90 and certain extensions, and which bears a strong similarity to High Performance Fortran (HPF). One interesting feature is the issue of turbulence modeling, where the architecture of a parallel machine makes the use of an algebraic turbulence model awkward, whereas models based on transport equations are more natural. We will present some performance figures for the code on the CM-5, and consider the issues involved in transitioning the code to HPF for portability to other parallel platforms.

  11. Super short term forecasting of photovoltaic power generation output in micro grid

    NASA Astrophysics Data System (ADS)

    Gong, Cheng; Ma, Longfei; Chi, Zhongjun; Zhang, Baoqun; Jiao, Ran; Yang, Bing; Chen, Jianshu; Zeng, Shuang

    2017-01-01

    The prediction model combining data mining and support vector machine (SVM) was built. Which provide information of photovoltaic (PV) power generation output for economic operation and optimal control of micro gird, and which reduce influence of power system from PV fluctuation. Because of the characteristic which output of PV rely on radiation intensity, ambient temperature, cloudiness, etc., so data mining was brought in. This technology can deal with large amounts of historical data and eliminate superfluous data, by using fuzzy classifier of daily type and grey related degree. The model of SVM was built, which can dock with information from data mining. Based on measured data from a small PV station, the prediction model was tested. The numerical example shows that the prediction model is fast and accurate.

  12. Safe Grid

    NASA Technical Reports Server (NTRS)

    Chow, Edward T.; Stewart, Helen; Korsmeyer, David (Technical Monitor)

    2003-01-01

    The biggest users of GRID technologies came from the science and technology communities. These consist of government, industry and academia (national and international). The NASA GRID is moving into a higher technology readiness level (TRL) today; and as a joint effort among these leaders within government, academia, and industry, the NASA GRID plans to extend availability to enable scientists and engineers across these geographical boundaries collaborate to solve important problems facing the world in the 21 st century. In order to enable NASA programs and missions to use IPG resources for program and mission design, the IPG capabilities needs to be accessible from inside the NASA center networks. However, because different NASA centers maintain different security domains, the GRID penetration across different firewalls is a concern for center security people. This is the reason why some IPG resources are been separated from the NASA center network. Also, because of the center network security and ITAR concerns, the NASA IPG resource owner may not have full control over who can access remotely from outside the NASA center. In order to obtain organizational approval for secured remote access, the IPG infrastructure needs to be adapted to work with the NASA business process. Improvements need to be made before the IPG can be used for NASA program and mission development. The Secured Advanced Federated Environment (SAFE) technology is designed to provide federated security across NASA center and NASA partner's security domains. Instead of one giant center firewall which can be difficult to modify for different GRID applications, the SAFE "micro security domain" provide large number of professionally managed "micro firewalls" that can allow NASA centers to accept remote IPG access without the worry of damaging other center resources. The SAFE policy-driven capability-based federated security mechanism can enable joint organizational and resource owner approved remote access from outside of NASA centers. A SAFE enabled IPG can enable IPG capabilities to be available to NASA mission design teams across different NASA center and partner company firewalls. This paper will first discuss some of the potential security issues for IPG to work across NASA center firewalls. We will then present the SAFE federated security model. Finally we will present the concept of the architecture of a SAFE enabled IPG and how it can benefit NASA mission development.

  13. Evaluating Connectivity between Marine Protected Areas Using CODAR High-Frequency Radar

    DTIC Science & Technology

    2010-06-01

    SMCA/SMR, (6) Big Creek SMCA/SMR, (7) Piedras Blancas SMCA/SMR, (8) Cambria SMCA/White Rock SMCA, (9) Pt. Buchon SMCA/SMR, and (10) Vandenberg SMR...52 grid- points, (7) Piedras Blancas 47 grid-points, (8) Cambria 20 grid-points, (9) Pt. Buchon 45 grid- points, and (10) the Vandenberg MPA had 62...COLUMN HEADERS. Back-projected from: (Sorted north- to-south) Año Nuevo Soquel Canyon Portuguese Ledge Point Lobos Point Sur Big Creek Piedras

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radecsky, Kristen; Johnstone, Peter; Jacobson, Arne

    superior lighting services to low income people in off-grid areas of developing countries, many of whom currently rely on fuel based lighting sources such as kerosene. If this potential is to be achieved in the near term, however, manufacturers must produce off-grid lighting products that are inexpensive, perform well, and meet the needs of potential end users. At present, relatively few products meet all three of these goals. In this article, we report results from a detailed study of lighting use by micro-enterprises in two small towns in Kenya's Rift Valley Province. The work included a survey about lighting usemore » by 50 small businesses, careful measurements of kerosene lighting use patterns and associated costs for 23 of these businesses, and a subsequent field trial in which 14 of the 23 businesses purchased and used low cost LED lamps over a number of months.« less

  15. Islanding the power grid on the transmission level: less connections for more security

    PubMed Central

    Mureddu, Mario; Caldarelli, Guido; Damiano, Alfonso; Scala, Antonio; Meyer-Ortmanns, Hildegard

    2016-01-01

    Islanding is known as a management procedure of the power system that is implemented at the distribution level to preserve sensible loads from outages and to guarantee the continuity in electricity supply, when a high amount of distributed generation occurs. In this paper we study islanding on the level of the transmission grid and shall show that it is a suitable measure to enhance energy security and grid resilience. We consider the German and Italian transmission grids. We remove links either randomly to mimic random failure events, or according to a topological characteristic, their so-called betweenness centrality, to mimic an intentional attack and test whether the resulting fragments are self-sustainable. We test this option via the tool of optimized DC power flow equations. When transmission lines are removed according to their betweenness centrality, the resulting islands have a higher chance of being dynamically self-sustainable than for a random removal. Less connections may even increase the grid’s stability. These facts should be taken into account in the design of future power grids. PMID:27713509

  16. Islanding the power grid on the transmission level: less connections for more security

    NASA Astrophysics Data System (ADS)

    Mureddu, Mario; Caldarelli, Guido; Damiano, Alfonso; Scala, Antonio; Meyer-Ortmanns, Hildegard

    2016-10-01

    Islanding is known as a management procedure of the power system that is implemented at the distribution level to preserve sensible loads from outages and to guarantee the continuity in electricity supply, when a high amount of distributed generation occurs. In this paper we study islanding on the level of the transmission grid and shall show that it is a suitable measure to enhance energy security and grid resilience. We consider the German and Italian transmission grids. We remove links either randomly to mimic random failure events, or according to a topological characteristic, their so-called betweenness centrality, to mimic an intentional attack and test whether the resulting fragments are self-sustainable. We test this option via the tool of optimized DC power flow equations. When transmission lines are removed according to their betweenness centrality, the resulting islands have a higher chance of being dynamically self-sustainable than for a random removal. Less connections may even increase the grid’s stability. These facts should be taken into account in the design of future power grids.

  17. Micro-dose hCG as luteal phase support without exogenous progesterone administration: mathematical modelling of the hCG concentration in circulation and initial clinical experience.

    PubMed

    Andersen, C Yding; Fischer, R; Giorgione, V; Kelsey, Thomas W

    2016-10-01

    For the last two decades, exogenous progesterone administration has been used as luteal phase support (LPS) in connection with controlled ovarian stimulation combined with use of the human chorionic gonadotropin (hCG) trigger for the final maturation of follicles. The introduction of the GnRHa trigger to induce ovulation showed that exogenous progesterone administration without hCG supplementation was insufficient to obtain satisfactory pregnancy rates. This has prompted development of alternative strategies for LPS. Augmenting the local endogenous production of progesterone by the multiple corpora lutea has been one focus with emphasis on one hand to avoid development of ovarian hyper-stimulation syndrome and, on the other hand, to provide adequate levels of progesterone to sustain implantation. The present study evaluates the use of micro-dose hCG for LPS support and examines the potential advances and disadvantages. Based on the pharmacokinetic characteristics of hCG, the mathematical modelling of the concentration profiles of hCG during the luteal phase has been evaluated in connection with several different approaches for hCG administration as LPS. It is suggested that the currently employed LPS provided in connection with the GnRHa trigger (i.e. 1.500 IU) is too strong, and that daily micro-dose hCG administration is likely to provide an optimised LPS with the current available drugs. Initial clinical results with the micro-dose hCG approach are presented.

  18. Infrastructure for Integration of Legacy Electrical Equipment into a Smart-Grid Using Wireless Sensor Networks.

    PubMed

    de Araújo, Paulo Régis C; Filho, Raimir Holanda; Rodrigues, Joel J P C; Oliveira, João P C M; Braga, Stephanie A

    2018-04-24

    At present, the standardisation of electrical equipment communications is on the rise. In particular, manufacturers are releasing equipment for the smart grid endowed with communication protocols such as DNP3, IEC 61850, and MODBUS. However, there are legacy equipment operating in the electricity distribution network that cannot communicate using any of these protocols. Thus, we propose an infrastructure to allow the integration of legacy electrical equipment to smart grids by using wireless sensor networks (WSNs). In this infrastructure, each legacy electrical device is connected to a sensor node, and the sink node runs a middleware that enables the integration of this device into a smart grid based on suitable communication protocols. This middleware performs tasks such as the translation of messages between the power substation control centre (PSCC) and electrical equipment in the smart grid. Moreover, the infrastructure satisfies certain requirements for communication between the electrical equipment and the PSCC, such as enhanced security, short response time, and automatic configuration. The paper’s contributions include a solution that enables electrical companies to integrate their legacy equipment into smart-grid networks relying on any of the above mentioned communication protocols. This integration will reduce the costs related to the modernisation of power substations.

  19. Infrastructure for Integration of Legacy Electrical Equipment into a Smart-Grid Using Wireless Sensor Networks

    PubMed Central

    de Araújo, Paulo Régis C.; Filho, Raimir Holanda; Oliveira, João P. C. M.; Braga, Stephanie A.

    2018-01-01

    At present, the standardisation of electrical equipment communications is on the rise. In particular, manufacturers are releasing equipment for the smart grid endowed with communication protocols such as DNP3, IEC 61850, and MODBUS. However, there are legacy equipment operating in the electricity distribution network that cannot communicate using any of these protocols. Thus, we propose an infrastructure to allow the integration of legacy electrical equipment to smart grids by using wireless sensor networks (WSNs). In this infrastructure, each legacy electrical device is connected to a sensor node, and the sink node runs a middleware that enables the integration of this device into a smart grid based on suitable communication protocols. This middleware performs tasks such as the translation of messages between the power substation control centre (PSCC) and electrical equipment in the smart grid. Moreover, the infrastructure satisfies certain requirements for communication between the electrical equipment and the PSCC, such as enhanced security, short response time, and automatic configuration. The paper’s contributions include a solution that enables electrical companies to integrate their legacy equipment into smart-grid networks relying on any of the above mentioned communication protocols. This integration will reduce the costs related to the modernisation of power substations. PMID:29695099

  20. Research on Resilience of Power Systems Under Natural Disasters—A Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yezhou; Chen, Chen; Wang, Jianhui

    2016-03-01

    Natural disasters can cause large blackouts. Research into natural disaster impacts on electric power systems is emerging to understand the causes of the blackouts, explore ways to prepare and harden the grid, and increase the resilience of the power grid under such events. At the same time, new technologies such as smart grid, micro grid, and wide area monitoring applications could increase situational awareness as well as enable faster restoration of the system. This paper aims to consolidate and review the progress of the research field towards methods and tools of forecasting natural disaster related power system disturbances, hardening andmore » pre-storm operations, and restoration models. Challenges and future research opportunities are also presented in the paper.« less

  1. Message passing for integrating and assessing renewable generation in a redundant power grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zdeborova, Lenka; Backhaus, Scott; Chertkov, Michael

    2009-01-01

    A simplified model of a redundant power grid is used to study integration of fluctuating renewable generation. The grid consists of large number of generator and consumer nodes. The net power consumption is determined by the difference between the gross consumption and the level of renewable generation. The gross consumption is drawn from a narrow distribution representing the predictability of aggregated loads, and we consider two different distributions representing wind and solar resources. Each generator is connected to D consumers, and redundancy is built in by connecting R {le} D of these consumers to other generators. The lines are switchablemore » so that at any instance each consumer is connected to a single generator. We explore the capacity of the renewable generation by determining the level of 'firm' generation capacity that can be displaced for different levels of redundancy R. We also develop message-passing control algorithm for finding switch sellings where no generator is overloaded.« less

  2. Using the HOMER Model in Air Quality Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2004-08-01

    HOMER, the micropower optimization model created by the National Renewable Energy Laboratory (NREL), helps design and analyze off-grid and grid-connected power systems. One of HOMER's newest features is its enhanced ability to estimate air emissions for different micropower systems.

  3. An Adaptively-Refined, Cartesian, Cell-Based Scheme for the Euler and Navier-Stokes Equations. Ph.D. Thesis - Michigan Univ.

    NASA Technical Reports Server (NTRS)

    Coirier, William John

    1994-01-01

    A Cartesian, cell-based scheme for solving the Euler and Navier-Stokes equations in two dimensions is developed and tested. Grids about geometrically complicated bodies are generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, polygonal 'cut' cells are created. The geometry of the cut cells is computed using polygon-clipping algorithms. The grid is stored in a binary-tree data structure which provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite-volume formulation. The convective terms are upwinded, with a limited linear reconstruction of the primitive variables used to provide input states to an approximate Riemann solver for computing the fluxes between neighboring cells. A multi-stage time-stepping scheme is used to reach a steady-state solution. Validation of the Euler solver with benchmark numerical and exact solutions is presented. An assessment of the accuracy of the approach is made by uniform and adaptive grid refinements for a steady, transonic, exact solution to the Euler equations. The error of the approach is directly compared to a structured solver formulation. A non smooth flow is also assessed for grid convergence, comparing uniform and adaptively refined results. Several formulations of the viscous terms are assessed analytically, both for accuracy and positivity. The two best formulations are used to compute adaptively refined solutions of the Navier-Stokes equations. These solutions are compared to each other, to experimental results and/or theory for a series of low and moderate Reynolds numbers flow fields. The most suitable viscous discretization is demonstrated for geometrically-complicated internal flows. For flows at high Reynolds numbers, both an altered grid-generation procedure and a different formulation of the viscous terms are shown to be necessary. A hybrid Cartesian/body-fitted grid generation approach is demonstrated. In addition, a grid-generation procedure based on body-aligned cell cutting coupled with a viscous stensil-construction procedure based on quadratic programming is presented.

  4. Using circuit theory to model connectivity in ecology, evolution, and conservation.

    PubMed

    McRae, Brad H; Dickson, Brett G; Keitt, Timothy H; Shah, Viral B

    2008-10-01

    Connectivity among populations and habitats is important for a wide range of ecological processes. Understanding, preserving, and restoring connectivity in complex landscapes requires connectivity models and metrics that are reliable, efficient, and process based. We introduce a new class of ecological connectivity models based in electrical circuit theory. Although they have been applied in other disciplines, circuit-theoretic connectivity models are new to ecology. They offer distinct advantages over common analytic connectivity models, including a theoretical basis in random walk theory and an ability to evaluate contributions of multiple dispersal pathways. Resistance, current, and voltage calculated across graphs or raster grids can be related to ecological processes (such as individual movement and gene flow) that occur across large population networks or landscapes. Efficient algorithms can quickly solve networks with millions of nodes, or landscapes with millions of raster cells. Here we review basic circuit theory, discuss relationships between circuit and random walk theories, and describe applications in ecology, evolution, and conservation. We provide examples of how circuit models can be used to predict movement patterns and fates of random walkers in complex landscapes and to identify important habitat patches and movement corridors for conservation planning.

  5. Three-dimensional micro-scale strain mapping in living biological soft tissues.

    PubMed

    Moo, Eng Kuan; Sibole, Scott C; Han, Sang Kuy; Herzog, Walter

    2018-04-01

    Non-invasive characterization of the mechanical micro-environment surrounding cells in biological tissues at multiple length scales is important for the understanding of the role of mechanics in regulating the biosynthesis and phenotype of cells. However, there is a lack of imaging methods that allow for characterization of the cell micro-environment in three-dimensional (3D) space. The aims of this study were (i) to develop a multi-photon laser microscopy protocol capable of imprinting 3D grid lines onto living tissue at a high spatial resolution, and (ii) to develop image processing software capable of analyzing the resulting microscopic images and performing high resolution 3D strain analyses. Using articular cartilage as the biological tissue of interest, we present a novel two-photon excitation imaging technique for measuring the internal 3D kinematics in intact cartilage at sub-micrometer resolution, spanning length scales from the tissue to the cell level. Using custom image processing software, we provide accurate and robust 3D micro-strain analysis that allows for detailed qualitative and quantitative assessment of the 3D tissue kinematics. This novel technique preserves tissue structural integrity post-scanning, therefore allowing for multiple strain measurements at different time points in the same specimen. The proposed technique is versatile and opens doors for experimental and theoretical investigations on the relationship between tissue deformation and cell biosynthesis. Studies of this nature may enhance our understanding of the mechanisms underlying cell mechano-transduction, and thus, adaptation and degeneration of soft connective tissues. We presented a novel two-photon excitation imaging technique for measuring the internal 3D kinematics in intact cartilage at sub-micrometer resolution, spanning from tissue length scale to cellular length scale. Using a custom image processing software (lsmgridtrack), we provide accurate and robust micro-strain analysis that allowed for detailed qualitative and quantitative assessment of the 3D tissue kinematics. The approach presented here can also be applied to other biological tissues such as meniscus and annulus fibrosus, as well as tissue-engineered tissues for the characterization of their mechanical properties. This imaging technique opens doors for experimental and theoretical investigation on the relationship between tissue deformation and cell biosynthesis. Studies of this nature may enhance our understanding of the mechanisms underlying cell mechano-transduction, and thus, adaptation and degeneration of soft connective tissues. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Continuous attractor network models of grid cell firing based on excitatory–inhibitory interactions

    PubMed Central

    Shipston‐Sharman, Oliver; Solanka, Lukas

    2016-01-01

    Abstract Neurons in the medial entorhinal cortex encode location through spatial firing fields that have a grid‐like organisation. The challenge of identifying mechanisms for grid firing has been addressed through experimental and theoretical investigations of medial entorhinal circuits. Here, we discuss evidence for continuous attractor network models that account for grid firing by synaptic interactions between excitatory and inhibitory cells. These models assume that grid‐like firing patterns are the result of computation of location from velocity inputs, with additional spatial input required to oppose drift in the attractor state. We focus on properties of continuous attractor networks that are revealed by explicitly considering excitatory and inhibitory neurons, their connectivity and their membrane potential dynamics. Models at this level of detail can account for theta‐nested gamma oscillations as well as grid firing, predict spatial firing of interneurons as well as excitatory cells, show how gamma oscillations can be modulated independently from spatial computations, reveal critical roles for neuronal noise, and demonstrate that only a subset of excitatory cells in a network need have grid‐like firing fields. Evaluating experimental data against predictions from detailed network models will be important for establishing the mechanisms mediating grid firing. PMID:27870120

  7. Additive Manufacturing/Diagnostics via the High Frequency Induction Heating of Metal Powders: The Determination of the Power Transfer Factor for Fine Metallic Spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rios, Orlando; Radhakrishnan, Balasubramaniam; Caravias, George

    2015-03-11

    Grid Logic Inc. is developing a method for sintering and melting fine metallic powders for additive manufacturing using spatially-compact, high-frequency magnetic fields called Micro-Induction Sintering (MIS). One of the challenges in advancing MIS technology for additive manufacturing is in understanding the power transfer to the particles in a powder bed. This knowledge is important to achieving efficient power transfer, control, and selective particle heating during the MIS process needed for commercialization of the technology. The project s work provided a rigorous physics-based model for induction heating of fine spherical particles as a function of frequency and particle size. This simulationmore » improved upon Grid Logic s earlier models and provides guidance that will make the MIS technology more effective. The project model will be incorporated into Grid Logic s power control circuit of the MIS 3D printer product and its diagnostics technology to optimize the sintering process for part quality and energy efficiency.« less

  8. Three-dimensional reconstruction of Haversian systems in human cortical bone using synchrotron radiation-based micro-CT: morphology and quantification of branching and transverse connections across age.

    PubMed

    Maggiano, Isabel S; Maggiano, Corey M; Clement, John G; Thomas, C David L; Carter, Yasmin; Cooper, David M L

    2016-05-01

    This study uses synchrotron radiation-based micro-computed tomography (CT) scans to reconstruct three-dimensional networks of Haversian systems in human cortical bone in order to observe and analyse interconnectivity of Haversian systems and the development of total Haversian networks across different ages. A better knowledge of how Haversian systems interact with each other is essential to improve understanding of remodeling mechanisms and bone maintenance; however, previous methodological approaches (e.g. serial sections) did not reveal enough detail to follow the specific morphology of Haversian branching, for example. Accordingly, the aim of the present study was to identify the morphological diversity of branching patterns and transverse connections, and to understand how they change with age. Two types of branching morphologies were identified: lateral branching, resulting in small osteon branches bifurcating off of larger Haversian canals; and dichotomous branching, the formation of two new osteonal branches from one. The reconstructions in this study also suggest that Haversian systems frequently target previously existing systems as a path for their course, resulting in a cross-sectional morphology frequently referred to as 'type II osteons'. Transverse connections were diverse in their course from linear to oblique to curvy. Quantitative assessment of age-related trends indicates that while in younger human individuals transverse connections were most common, in older individuals more evidence of connections resulting from Haversian systems growing inside previously existing systems was found. Despite these changes in morphological characteristics, a relatively constant degree of overall interconnectivity is maintained throughout life. Altogether, the present study reveals important details about Haversian systems and their relation to each other that can be used towards a better understanding of cortical bone remodeling as well as a more accurate interpretation of morphological variants of osteons in cross-sectional microscopy. Permitting visibility of reversal lines, synchrotron radiation-based micro-CT is a valuable tool for the reconstruction of Haversian systems, and future analyses have the potential to further improve understanding of various important aspects of bone growth, maintenance and health. © 2016 Anatomical Society.

  9. Models of Innate Neural Attractors and Their Applications for Neural Information Processing

    PubMed Central

    Solovyeva, Ksenia P.; Karandashev, Iakov M.; Zhavoronkov, Alex; Dunin-Barkowski, Witali L.

    2016-01-01

    In this work we reveal and explore a new class of attractor neural networks, based on inborn connections provided by model molecular markers, the molecular marker based attractor neural networks (MMBANN). Each set of markers has a metric, which is used to make connections between neurons containing the markers. We have explored conditions for the existence of attractor states, critical relations between their parameters and the spectrum of single neuron models, which can implement the MMBANN. Besides, we describe functional models (perceptron and SOM), which obtain significant advantages over the traditional implementation of these models, while using MMBANN. In particular, a perceptron, based on MMBANN, gets specificity gain in orders of error probabilities values, MMBANN SOM obtains real neurophysiological meaning, the number of possible grandma cells increases 1000-fold with MMBANN. MMBANN have sets of attractor states, which can serve as finite grids for representation of variables in computations. These grids may show dimensions of d = 0, 1, 2,…. We work with static and dynamic attractor neural networks of the dimensions d = 0 and 1. We also argue that the number of dimensions which can be represented by attractors of activities of neural networks with the number of elements N = 104 does not exceed 8. PMID:26778977

  10. Increase in fault ride through capability of direct drive permanent magnet based wind farm using VSC-HVDC

    NASA Astrophysics Data System (ADS)

    Maleki, Hesamaldin; Ramachandaramurthy, V. K.; Lak, Moein

    2013-06-01

    Burning of fossil fuels and green house gasses causes global warming. This has led to governments to explore the use of green energies instead of fossil fuels. The availability of wind has made wind technology a viable alternative for generating electrical power. Hence, many parts of the world, especially Europe are experiencing a growth in wind farms. However, by increasing the number of wind farms connected to the grid, power quality and voltage stability of grid becomes a matter of concern. In this paper, VSC-HVDC control strategy which enables the wind farm to ride-through faults and regulate voltage for fault types is proposed. The results show that the wind turbine output voltage fulfills the E.ON grid code requirements, when subjected to three phase to ground fault. Hence, continues operation of the wind farm is achieved.

  11. Modular inverter system

    DOEpatents

    Ma, Mingyao; Hu, Haibing; Kutkut, Nasser; Batarseh, Issa; Shen, John; , Bkayrat, Raed

    2017-08-01

    A system connected to an AC power grid having an AC phase signal includes an inverter module including a first inverter coupled to a DC voltage, actuated based on the AC phase signal. The first inverter provides a first voltage signal having predetermined harmonic components. A second inverter includes second switch elements coupled to the DC voltage and actuated by a second set of control signals phase delayed with respect to the first control signals. A transformer module has first and second primary windings coupled to the first and second inverters. The transformer module further includes a secondary winding coupled to first primary winding, the second primary winding, and the AC power grid. The secondary winding is configured to provide a secondary output voltage to the AC power grid by combining the first voltage signal and the second voltage signal such that the predetermined harmonic components are substantially cancelled.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    STADLER, MICHAEL; MASHAYEKH, SALMAN; DEFOREST, NICHOLAS

    The ODC Microgrid Controller is an optimization-based model predicative microgrid controller (MPMC) to minimize operation cost (and/or CO2 emissions) in a microgrid in the grid-connected mode. It is composed of several modules, including a) forecasting, b) optimization, c) data exchange and d) power balancing modules. In the presence of a multi-layered control system architecture, these modules will reside in the supervisory control layer.

  13. An Optimal Control Strategy for DC Bus Voltage Regulation in Photovoltaic System with Battery Energy Storage

    PubMed Central

    Daud, Muhamad Zalani; Mohamed, Azah; Hannan, M. A.

    2014-01-01

    This paper presents an evaluation of an optimal DC bus voltage regulation strategy for grid-connected photovoltaic (PV) system with battery energy storage (BES). The BES is connected to the PV system DC bus using a DC/DC buck-boost converter. The converter facilitates the BES power charge/discharge to compensate for the DC bus voltage deviation during severe disturbance conditions. In this way, the regulation of DC bus voltage of the PV/BES system can be enhanced as compared to the conventional regulation that is solely based on the voltage-sourced converter (VSC). For the grid side VSC (G-VSC), two control methods, namely, the voltage-mode and current-mode controls, are applied. For control parameter optimization, the simplex optimization technique is applied for the G-VSC voltage- and current-mode controls, including the BES DC/DC buck-boost converter controllers. A new set of optimized parameters are obtained for each of the power converters for comparison purposes. The PSCAD/EMTDC-based simulation case studies are presented to evaluate the performance of the proposed optimized control scheme in comparison to the conventional methods. PMID:24883374

  14. An optimal control strategy for DC bus voltage regulation in photovoltaic system with battery energy storage.

    PubMed

    Daud, Muhamad Zalani; Mohamed, Azah; Hannan, M A

    2014-01-01

    This paper presents an evaluation of an optimal DC bus voltage regulation strategy for grid-connected photovoltaic (PV) system with battery energy storage (BES). The BES is connected to the PV system DC bus using a DC/DC buck-boost converter. The converter facilitates the BES power charge/discharge to compensate for the DC bus voltage deviation during severe disturbance conditions. In this way, the regulation of DC bus voltage of the PV/BES system can be enhanced as compared to the conventional regulation that is solely based on the voltage-sourced converter (VSC). For the grid side VSC (G-VSC), two control methods, namely, the voltage-mode and current-mode controls, are applied. For control parameter optimization, the simplex optimization technique is applied for the G-VSC voltage- and current-mode controls, including the BES DC/DC buck-boost converter controllers. A new set of optimized parameters are obtained for each of the power converters for comparison purposes. The PSCAD/EMTDC-based simulation case studies are presented to evaluate the performance of the proposed optimized control scheme in comparison to the conventional methods.

  15. GridMan: A grid manipulation system

    NASA Technical Reports Server (NTRS)

    Eiseman, Peter R.; Wang, Zhu

    1992-01-01

    GridMan is an interactive grid manipulation system. It operates on grids to produce new grids which conform to user demands. The input grids are not constrained to come from any particular source. They may be generated by algebraic methods, elliptic methods, hyperbolic methods, parabolic methods, or some combination of methods. The methods are included in the various available structured grid generation codes. These codes perform the basic assembly function for the various elements of the initial grid. For block structured grids, the assembly can be quite complex due to a large number of clock corners, edges, and faces for which various connections and orientations must be properly identified. The grid generation codes are distinguished among themselves by their balance between interactive and automatic actions and by their modest variations in control. The basic form of GridMan provides a much more substantial level of grid control and will take its input from any of the structured grid generation codes. The communication link to the outside codes is a data file which contains the grid or section of grid.

  16. A facile and cost-effective TEM grid approach to design gold nano-structured substrates for high throughput plasmonic sensitive detection of biomolecules.

    PubMed

    Jia, Kun; Bijeon, Jean Louis; Adam, Pierre Michel; Ionescu, Rodica Elena

    2013-02-21

    A commercial TEM grid was used as a mask for the creation of extremely well-organized gold micro-/nano-structures on a glass substrate via a high temperature annealing process at 500 °C. The structured substrate was (bio)functionalized and used for the high throughput LSPR immunosensing of different concentrations of a model protein named bovine serum albumin.

  17. A new algorithm for grid-based hydrologic analysis by incorporating stormwater infrastructure

    NASA Astrophysics Data System (ADS)

    Choi, Yosoon; Yi, Huiuk; Park, Hyeong-Dong

    2011-08-01

    We developed a new algorithm, the Adaptive Stormwater Infrastructure (ASI) algorithm, to incorporate ancillary data sets related to stormwater infrastructure into the grid-based hydrologic analysis. The algorithm simultaneously considers the effects of the surface stormwater collector network (e.g., diversions, roadside ditches, and canals) and underground stormwater conveyance systems (e.g., waterway tunnels, collector pipes, and culverts). The surface drainage flows controlled by the surface runoff collector network are superimposed onto the flow directions derived from a DEM. After examining the connections between inlets and outfalls in the underground stormwater conveyance system, the flow accumulation and delineation of watersheds are calculated based on recursive computations. Application of the algorithm to the Sangdong tailings dam in Korea revealed superior performance to that of a conventional D8 single-flow algorithm in terms of providing reasonable hydrologic information on watersheds with stormwater infrastructure.

  18. The Semantic Retrieval of Spatial Data Service Based on Ontology in SIG

    NASA Astrophysics Data System (ADS)

    Sun, S.; Liu, D.; Li, G.; Yu, W.

    2011-08-01

    The research of SIG (Spatial Information Grid) mainly solves the problem of how to connect different computing resources, so that users can use all the resources in the Grid transparently and seamlessly. In SIG, spatial data service is described in some kinds of specifications, which use different meta-information of each kind of services. This kind of standardization cannot resolve the problem of semantic heterogeneity, which may limit user to obtain the required resources. This paper tries to solve two kinds of semantic heterogeneities (name heterogeneity and structure heterogeneity) in spatial data service retrieval based on ontology, and also, based on the hierarchical subsumption relationship among concept in ontology, the query words can be extended and more resource can be matched and found for user. These applications of ontology in spatial data resource retrieval can help to improve the capability of keyword matching, and find more related resources.

  19. Development of a digital solar simulator based on full-bridge converter

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Feng, Jian; Liu, Zhilong; Tong, Weichao; Ji, Yibo

    2014-02-01

    With the development of solar photovoltaic, distribution schemes utilized in power grid had been commonly application, and photovoltaic (PV) inverter is an essential equipment in grid. In this paper, a digital solar simulator based on full-bridge structure is presented. The output characteristic curve of system is electrically similar to silicon solar cells, which can greatly simplify research methods of PV inverter, improve the efficiency of research and development. The proposed simulator consists on a main control board based on TM320F28335, phase-shifted zero-voltage-switching (ZVS) DC-DC full-bridge converter and voltage and current sampling circuit, that allows emulating the voltage-current curve with the open-circuit voltage (Voc) of 900V and the short-circuit current (Isc) of 18A .When the system connected to a PV inverter, the inverter can quickly track from the open-circuit to the maximum power point and keep stability.

  20. AstroGrid-D: Grid technology for astronomical science

    NASA Astrophysics Data System (ADS)

    Enke, Harry; Steinmetz, Matthias; Adorf, Hans-Martin; Beck-Ratzka, Alexander; Breitling, Frank; Brüsemeister, Thomas; Carlson, Arthur; Ensslin, Torsten; Högqvist, Mikael; Nickelt, Iliya; Radke, Thomas; Reinefeld, Alexander; Reiser, Angelika; Scholl, Tobias; Spurzem, Rainer; Steinacker, Jürgen; Voges, Wolfgang; Wambsganß, Joachim; White, Steve

    2011-02-01

    We present status and results of AstroGrid-D, a joint effort of astrophysicists and computer scientists to employ grid technology for scientific applications. AstroGrid-D provides access to a network of distributed machines with a set of commands as well as software interfaces. It allows simple use of computer and storage facilities and to schedule or monitor compute tasks and data management. It is based on the Globus Toolkit middleware (GT4). Chapter 1 describes the context which led to the demand for advanced software solutions in Astrophysics, and we state the goals of the project. We then present characteristic astrophysical applications that have been implemented on AstroGrid-D in chapter 2. We describe simulations of different complexity, compute-intensive calculations running on multiple sites (Section 2.1), and advanced applications for specific scientific purposes (Section 2.2), such as a connection to robotic telescopes (Section 2.2.3). We can show from these examples how grid execution improves e.g. the scientific workflow. Chapter 3 explains the software tools and services that we adapted or newly developed. Section 3.1 is focused on the administrative aspects of the infrastructure, to manage users and monitor activity. Section 3.2 characterises the central components of our architecture: The AstroGrid-D information service to collect and store metadata, a file management system, the data management system, and a job manager for automatic submission of compute tasks. We summarise the successfully established infrastructure in chapter 4, concluding with our future plans to establish AstroGrid-D as a platform of modern e-Astronomy.

  1. Simulation of Hawaiian Electric Companies Feeder Operations with Advanced Inverters and Analysis of Annual Photovoltaic Energy Curtailment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giraldez Miner, Julieta I.; Nagarajan, Adarsh; Gotseff, Peter

    The Hawaiian Electric Companies achieved a consolidated Renewable Portfolio Standard (RPS) of approximately 26% at the end of 2016. This significant RPS performance was achieved using various renewable energy sources - biomass, geothermal, solar photovoltaic (PV) systems, hydro, wind, and biofuels - and customer-sited, grid-connected technologies (primarily private rooftop solar PV systems). The Hawaiian Electric Companies are preparing grid-modernization plans for the island grids. The plans outline specific near-term actions to accelerate the achievement of Hawai'i's 100% RPS by 2045. A key element of the Companies' grid-modernization strategy is to utilize new technologies - including storage and PV systems withmore » grid-supportive inverters - that will help to more than triple the amount of private rooftop solar PV systems. The Hawaiian Electric Companies collaborated with the Smart Inverter Technical Working Group Hawai'i (SITWG) to partner with the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to research the implementation of advanced inverter grid support functions (GSF). Together with the technical guidance from the Companies's planning engineers and stakeholder input from the SITWG members, NREL proposed a scope of work that explored different modes of voltage-regulation GSF to better understand the trade-offs of the grid benefits and curtailment impacts from the activation of selected advanced inverter grid support functions. The simulation results presented in this report examine the effectiveness in regulating voltage as well as the impact to the utility and the customers of various inverter-based grid support functions on two Hawaiian Electric distribution substations.« less

  2. An Efficient Means of Adaptive Refinement Within Systems of Overset Grids

    NASA Technical Reports Server (NTRS)

    Meakin, Robert L.

    1996-01-01

    An efficient means of adaptive refinement within systems of overset grids is presented. Problem domains are segregated into near-body and off-body fields. Near-body fields are discretized via overlapping body-fitted grids that extend only a short distance from body surfaces. Off-body fields are discretized via systems of overlapping uniform Cartesian grids of varying levels of refinement. a novel off-body grid generation and management scheme provides the mechanism for carrying out adaptive refinement of off-body flow dynamics and solid body motion. The scheme allows for very efficient use of memory resources, and flow solvers and domain connectivity routines that can exploit the structure inherent to uniform Cartesian grids.

  3. Impact of Considering 110 kV Grid Structures on the Congestion Management in the German Transmission Grid

    NASA Astrophysics Data System (ADS)

    Hoffrichter, André; Barrios, Hans; Massmann, Janek; Venkataramanachar, Bhavasagar; Schnettler, Armin

    2018-02-01

    The structural changes in the European energy system lead to an increase of renewable energy sources that are primarily connected to the distribution grid. Hence the stationary analysis of the transmission grid and the regionalization of generation capacities are strongly influenced by subordinate grid structures. To quantify the impact on the congestion management in the German transmission grid, a 110 kV grid model is derived using publicly available data delivered by Open Street Map and integrated into an existing model of the European transmission grid. Power flow and redispatch simulations are performed for three different regionalization methods and grid configurations. The results show a significant impact of the 110 kV system and prove an overestimation of power flows in the transmission grid when neglecting subordinate grids. Thus, the redispatch volume in Germany to dissolve bottlenecks in case of N-1 contingencies decreases by 38 % when considering the 110 kV grid.

  4. Reducing Stator Current Harmonics for a Doubly-Fed Induction Generator Connected to a Distorted Grid

    DTIC Science & Technology

    2013-09-01

    electric grid voltage harmonics, which is a potential obstacle for implementing stable wind -energy systems. Two existing rotor voltage controllers...electric grid voltage harmonics, which is a potential obstacle for implementing stable wind -energy systems. Two existing rotor voltage controllers...speed of the DFIG can be adjusted to optimize turbine efficiency for given wind conditions. A common method for controlling the operating speed is

  5. Study on transfer optimization of urban rail transit and conventional public transport

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Sun, Quan Xin; Mao, Bao Hua

    2018-04-01

    This paper mainly studies the time optimization of feeder connection between rail transit and conventional bus in a shopping center. In order to achieve the goal of connecting rail transportation effectively and optimizing the convergence between the two transportations, the things had to be done are optimizing the departure intervals, shorting the passenger transfer time and improving the service level of public transit. Based on the goal that has the minimum of total waiting time of passengers and the number of start of classes, establish the optimizing model of bus connecting of departure time. This model has some constrains such as transfer time, load factor, and the convergence of public transportation grid spacing. It solves the problems by using genetic algorithms.

  6. Sterilization of Escherichia coli O157:H7 using micro corona ionizer.

    PubMed

    Chua, Beelee; Son, Ahjeong

    2014-06-01

    We demonstrated in vitro sterilization of Escherichia coli O157:H7 bacteria on agar by a pin-between-planes micro corona ionizer. The gap between the pin and the grid was ~1.1 mm, the length of the grid was ~2.1 mm and the height was ~1.0 mm. The effective pin radius and discharge length were both approximated to be 200 μm. Ozone generation rates of ~2.3 × 10(-3) mg/s, ~2.7 × 10(-3) mg/s and ~3.5 × 10(-3) mg/s at 1,500 V were calculated for relative humidity (RH) of 35 %, 25 % and 10 % respectively. Analytical ozone generation rate increases as RH decreases and it is consistent with experimental observations. Using target and control petri dishes with E. coli plated agar, the sterilization capability of the micro corona ionizer at 37 °C for 24 h was evaluated. A ~60 % reduction in bacterial colony was shown with plate counting and its kill radius could be tuned from ~ 20 mm to ~5 mm by reducing the duty cycle from 100 % to 50 % with 30 min pulse width. The results suggested that the micro corona ionizer might be suitable as a tunable ozone source in wound dressing for chronic wound management.

  7. Nanoscale content-addressable memory

    NASA Technical Reports Server (NTRS)

    Davis, Bryan (Inventor); Principe, Jose C. (Inventor); Fortes, Jose (Inventor)

    2009-01-01

    A combined content addressable memory device and memory interface is provided. The combined device and interface includes one or more one molecular wire crossbar memories having spaced-apart key nanowires, spaced-apart value nanowires adjacent to the key nanowires, and configurable switches between the key nanowires and the value nanowires. The combination further includes a key microwire-nanowire grid (key MNG) electrically connected to the spaced-apart key nanowires, and a value microwire-nanowire grid (value MNG) electrically connected to the spaced-apart value nanowires. A key or value MNGs selects multiple nanowires for a given key or value.

  8. Guidelines for Implementing Advanced Distribution Management Systems-Requirements for DMS Integration with DERMS and Microgrids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jianhui; Chen, Chen; Lu, Xiaonan

    2015-08-01

    This guideline focuses on the integration of DMS with DERMS and microgrids connected to the distribution grid by defining generic and fundamental design and implementation principles and strategies. It starts by addressing the current status, objectives, and core functionalities of each system, and then discusses the new challenges and the common principles of DMS design and implementation for integration with DERMS and microgrids to realize enhanced grid operation reliability and quality power delivery to consumers while also achieving the maximum energy economics from the DER and microgrid connections.

  9. Communication Security for Control Systems in Smart Grid

    NASA Astrophysics Data System (ADS)

    Robles, Rosslin John; Kim, Tai-Hoon

    As an example of Control System, Supervisory Control and Data Acquisition systems can be relatively simple, such as one that monitors environmental conditions of a small office building, or incredibly complex, such as a system that monitors all the activity in a nuclear power plant or the activity of a municipal water system. SCADA systems are basically Process Control Systems, designed to automate systems such as traffic control, power grid management, waste processing etc. Connecting SCADA to the Internet can provide a lot of advantages in terms of control, data viewing and generation. SCADA infrastructures like electricity can also be a part of a Smart Grid. Connecting SCADA to a public network can bring a lot of security issues. To answer the security issues, a SCADA communication security solution is proposed.

  10. A Cartesian, cell-based approach for adaptively-refined solutions of the Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Coirier, William J.; Powell, Kenneth G.

    1994-01-01

    A Cartesian, cell-based approach for adaptively-refined solutions of the Euler and Navier-Stokes equations in two dimensions is developed and tested. Grids about geometrically complicated bodies are generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, N-sided 'cut' cells are created using polygon-clipping algorithms. The grid is stored in a binary-tree structure which provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite-volume formulation. The convective terms are upwinded: a gradient-limited, linear reconstruction of the primitive variables is performed, providing input states to an approximate Riemann solver for computing the fluxes between neighboring cells. The more robust of a series of viscous flux functions is used to provide the viscous fluxes at the cell interfaces. Adaptively-refined solutions of the Navier-Stokes equations using the Cartesian, cell-based approach are obtained and compared to theory, experiment, and other accepted computational results for a series of low and moderate Reynolds number flows.

  11. A Cartesian, cell-based approach for adaptively-refined solutions of the Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Coirier, William J.; Powell, Kenneth G.

    1995-01-01

    A Cartesian, cell-based approach for adaptively-refined solutions of the Euler and Navier-Stokes equations in two dimensions is developed and tested. Grids about geometrically complicated bodies are generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, N-sided 'cut' cells are created using polygon-clipping algorithms. The grid is stored in a binary-tree data structure which provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite-volume formulation. The convective terms are upwinded: A gradient-limited, linear reconstruction of the primitive variables is performed, providing input states to an approximate Riemann solver for computing the fluxes between neighboring cells. The more robust of a series of viscous flux functions is used to provide the viscous fluxes at the cell interfaces. Adaptively-refined solutions of the Navier-Stokes equations using the Cartesian, cell-based approach are obtained and compared to theory, experiment and other accepted computational results for a series of low and moderate Reynolds number flows.

  12. Control of Grid Connected Photovoltaic System Using Three-Level T-Type Inverter

    NASA Astrophysics Data System (ADS)

    Zorig, Abdelmalik; Belkeiri, Mohammed; Barkat, Said; Rabhi, Abdelhamid

    2016-08-01

    Three-level T-Type inverter (3LT2I) topology has numerous advantageous compared to three-level neutral-point-clamped (NPC) inverter. The main benefits of 3LT2I inverter are the efficiency, inverter cost, switching losses, and the quality of output voltage waveforms. In this paper, a photovoltaic distributed generation system based on dual-stage topology of DC-DC boost converter and 3LT2I is introduced. To that end, a decoupling control strategy of 3LT2I is proposed to control the current injected into the grid, reactive power compensation, and DC-link voltage. The resulting system is able to extract the maximum power from photovoltaic generator, to achieve sinusoidal grid currents, and to ensure reactive power compensation. The voltage-balancing control of two split DC capacitors of the 3LT2I is achieved using three-level space vector modulation with balancing strategy based on the effective use of the redundant switching states of the inverter voltage vectors. The proposed system performance is investigated at different operating conditions.

  13. Research on large-scale wind farm modeling

    NASA Astrophysics Data System (ADS)

    Ma, Longfei; Zhang, Baoqun; Gong, Cheng; Jiao, Ran; Shi, Rui; Chi, Zhongjun; Ding, Yifeng

    2017-01-01

    Due to intermittent and adulatory properties of wind energy, when large-scale wind farm connected to the grid, it will have much impact on the power system, which is different from traditional power plants. Therefore it is necessary to establish an effective wind farm model to simulate and analyze the influence wind farms have on the grid as well as the transient characteristics of the wind turbines when the grid is at fault. However we must first establish an effective WTGs model. As the doubly-fed VSCF wind turbine has become the mainstream wind turbine model currently, this article first investigates the research progress of doubly-fed VSCF wind turbine, and then describes the detailed building process of the model. After that investigating the common wind farm modeling methods and pointing out the problems encountered. As WAMS is widely used in the power system, which makes online parameter identification of the wind farm model based on off-output characteristics of wind farm be possible, with a focus on interpretation of the new idea of identification-based modeling of large wind farms, which can be realized by two concrete methods.

  14. Active power control of solar PV generation for large interconnection frequency regulation and oscillation damping

    DOE PAGES

    Liu, Yong; Zhu, Lin; Zhan, Lingwei; ...

    2015-06-23

    Because of zero greenhouse gas emission and decreased manufacture cost, solar photovoltaic (PV) generation is expected to account for a significant portion of future power grid generation portfolio. Because it is indirectly connected to the power grid via power electronic devices, solar PV generation system is fully decoupled from the power grid, which will influence the interconnected power grid dynamic characteristics as a result. In this study, the impact of solar PV penetration on large interconnected power system frequency response and inter-area oscillation is evaluated, taking the United States Eastern Interconnection (EI) as an example. Furthermore, based on the constructedmore » solar PV electrical control model with additional active power control loops, the potential contributions of solar PV generation to power system frequency regulation and oscillation damping are examined. The advantages of solar PV frequency support over that of wind generator are also discussed. Finally, simulation results demonstrate that solar PV generations can effectively work as ‘actuators’ in alleviating the negative impacts they bring about.« less

  15. Quantifying the Digital Divide: A Scientific Overview of Network Connectivity and Grid Infrastructure in South Asian Countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Shahryar Muhammad; /SLAC /NUST, Rawalpindi; Cottrell, R.Les

    2007-10-30

    The future of Computing in High Energy Physics (HEP) applications depends on both the Network and Grid infrastructure. South Asian countries such as India and Pakistan are making significant progress by building clusters as well as improving their network infrastructure However to facilitate the use of these resources, they need to manage the issues of network connectivity to be among the leading participants in Computing for HEP experiments. In this paper we classify the connectivity for academic and research institutions of South Asia. The quantitative measurements are carried out using the PingER methodology; an approach that induces minimal ICMP trafficmore » to gather active end-to-end network statistics. The PingER project has been measuring the Internet performance for the last decade. Currently the measurement infrastructure comprises of over 700 hosts in more than 130 countries which collectively represents approximately 99% of the world's Internet-connected population. Thus, we are well positioned to characterize the world's connectivity. Here we present the current state of the National Research and Educational Networks (NRENs) and Grid Infrastructure in the South Asian countries and identify the areas of concern. We also present comparisons between South Asia and other developing as well as developed regions. We show that there is a strong correlation between the Network performance and several Human Development indices.« less

  16. Early stage fatigue damage occurs in bovine tendon fascicles in the absence of changes in mechanics at either the gross or micro-structural level

    PubMed Central

    Shepherd, Jennifer H.; Riley, Graham P.; Screen, Hazel R.C.

    2014-01-01

    Many tendon injuries are believed to result from repetitive motion or overuse, leading to the accumulation of micro-damage over time. In vitro fatigue loading can be used to characterise damage during repeated use and investigate how this may relate to the aetiology of tendinopathy. This study considered the effect of fatigue loading on fascicles from two functionally distinct bovine tendons: the digital extensor and deep digital flexor. Micro-scale extension mechanisms were investigated in fascicles before or after a period of cyclic creep loading, comparing two different measurement techniques – the displacement of a photo-bleached grid and the use of nuclei as fiducial markers. Whilst visual damage was clearly identified after only 300 cycles of creep loading, these visual changes did not affect either gross fascicle mechanics or fascicle microstructural extension mechanisms over the 900 fatigue cycles investigated. However, significantly greater fibre sliding was measured when observing grid deformation rather than the analysis of nuclei movement. Measurement of microstructural extension with both techniques was localised and this may explain the absence of change in microstructural deformation in response to fatigue loading. Alternatively, the data may demonstrate that fascicles can withstand a degree of matrix disruption with no impact on mechanics. Whilst use of a photo-bleached grid to directly measure the collagen is the best indicator of matrix deformation, nuclei tracking may provide a better measure of the strain perceived directly by the cells. PMID:25001495

  17. Ion mobility spectrometer with virtual aperture grid

    DOEpatents

    Pfeifer, Kent B.; Rumpf, Arthur N.

    2010-11-23

    An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.

  18. Design and implementation of a new modified sliding mode controller for grid-connected inverter to controlling the voltage and frequency.

    PubMed

    Ghanbarian, Mohammad Mehdi; Nayeripour, Majid; Rajaei, Amirhossein; Mansouri, Mohammad Mahdi

    2016-03-01

    As the output power of a microgrid with renewable energy sources should be regulated based on the grid conditions, using robust controllers to share and balance the power in order to regulate the voltage and frequency of microgrid is critical. Therefore a proper control system is necessary for updating the reference signals and determining the proportion of each inverter in the microgrid control. This paper proposes a new adaptive method which is robust while the conditions are changing. This controller is based on a modified sliding mode controller which provides adapting conditions in linear and nonlinear loads. The performance of the proposed method is validated by representing the simulation results and experimental lab results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Micro-Slit Collimators for X-Ray/Gamma-Ray Imaging

    NASA Technical Reports Server (NTRS)

    Appleby, Michael; Fraser, Iain; Klinger, Jill

    2011-01-01

    A hybrid photochemical-machining process is coupled with precision stack lamination to allow for the fabrication of multiple ultra-high-resolution grids on a single array substrate. In addition, special fixturing and etching techniques have been developed that allow higher-resolution multi-grid collimators to be fabricated. Building on past work of developing a manufacturing technique for fabricating multi-grid, high-resolution coating modulation collimators for arcsecond and subarcsecond x-ray and gamma-ray imaging, the current work reduces the grid pitch by almost a factor of two, down to 22 microns. Additionally, a process was developed for reducing thin, high-Z (tungsten or molybdenum) from the thinnest commercially available foil (25 microns thick) down to approximately equal to 10 microns thick using precisely controlled chemical etching

  20. De-identification of clinical notes via recurrent neural network and conditional random field.

    PubMed

    Liu, Zengjian; Tang, Buzhou; Wang, Xiaolong; Chen, Qingcai

    2017-11-01

    De-identification, identifying information from data, such as protected health information (PHI) present in clinical data, is a critical step to enable data to be shared or published. The 2016 Centers of Excellence in Genomic Science (CEGS) Neuropsychiatric Genome-scale and RDOC Individualized Domains (N-GRID) clinical natural language processing (NLP) challenge contains a de-identification track in de-identifying electronic medical records (EMRs) (i.e., track 1). The challenge organizers provide 1000 annotated mental health records for this track, 600 out of which are used as a training set and 400 as a test set. We develop a hybrid system for the de-identification task on the training set. Firstly, four individual subsystems, that is, a subsystem based on bidirectional LSTM (long-short term memory, a variant of recurrent neural network), a subsystem-based on bidirectional LSTM with features, a subsystem based on conditional random field (CRF) and a rule-based subsystem, are used to identify PHI instances. Then, an ensemble learning-based classifiers is deployed to combine all PHI instances predicted by above three machine learning-based subsystems. Finally, the results of the ensemble learning-based classifier and the rule-based subsystem are merged together. Experiments conducted on the official test set show that our system achieves the highest micro F1-scores of 93.07%, 91.43% and 95.23% under the "token", "strict" and "binary token" criteria respectively, ranking first in the 2016 CEGS N-GRID NLP challenge. In addition, on the dataset of 2014 i2b2 NLP challenge, our system achieves the highest micro F1-scores of 96.98%, 95.11% and 98.28% under the "token", "strict" and "binary token" criteria respectively, outperforming other state-of-the-art systems. All these experiments prove the effectiveness of our proposed method. Copyright © 2017. Published by Elsevier Inc.

  1. In-vivo imaging of the palisades of Vogt and the limbal crypts with sub-micrometer axial resolution optical coherence tomography

    PubMed Central

    Bizheva, Kostadinka; Tan, Bingyao; MacLellan, Benjamin; Hosseinaee, Zohreh; Mason, Erik; Hileeto, Denise; Sorbara, Luigina

    2017-01-01

    A research-grade OCT system was used to image in-vivo and without contact with the tissue, the cellular structure and microvasculature of the healthy human corneo-scleral limbus. The OCT system provided 0.95 µm axial and 4 µm (2 µm) lateral resolution in biological tissue depending on the magnification of the imaging objective. Cross-sectional OCT images acquired tangentially from the inferior limbus showed reflective, loop-like features that correspond to the fibrous folds of the palisades of Vogt (POV). The high OCT resolution allowed for visualization of individual cells inside the limbal crypts, capillaries extending from the inside of the POV’s fibrous folds and connecting to a lateral grid of micro-vessels located in the connective tissue directly below the POV, as well as reflections from individual red blood cells inside the capillaries. Difference in the reflective properties of the POV was observed among subjects of various pigmentation levels of the POV. Morphological features observed in the high resolution OCT images correlated well with histology. The ability to visualize the limbal morphology and microvasculature in-vivo at cellular level can aid the diagnostics and treatment of limbal stem cell dysfunction and dystrophies. PMID:28966853

  2. Design of an Input-Parallel Output-Parallel LLC Resonant DC-DC Converter System for DC Microgrids

    NASA Astrophysics Data System (ADS)

    Juan, Y. L.; Chen, T. R.; Chang, H. M.; Wei, S. E.

    2017-11-01

    Compared with the centralized power system, the distributed modularized power system is composed of several power modules with lower power capacity to provide a totally enough power capacity for the load demand. Therefore, the current stress of the power components in each module can then be reduced, and the flexibility of system setup is also enhanced. However, the parallel-connected power modules in the conventional system are usually controlled to equally share the power flow which would result in lower efficiency in low loading condition. In this study, a modular power conversion system for DC micro grid is developed with 48 V dc low voltage input and 380 V dc high voltage output. However, in the developed system control strategy, the numbers of power modules enabled to share the power flow is decided according to the output power at lower load demand. Finally, three 350 W power modules are constructed and parallel-connected to setup a modular power conversion system. From the experimental results, compared with the conventional system, the efficiency of the developed power system in the light loading condition is greatly improved. The modularized design of the power system can also decrease the power loss ratio to the system capacity.

  3. A price mechanism for supply demand matching in local grid of households with micro-CHP

    NASA Astrophysics Data System (ADS)

    Larsen, G. K. H.; van Foreest, N. D.; Scherpen, J. M. A.

    2012-10-01

    This paper describes a dynamic price mechanism to coordinate eletric power generation from micro Combined Heat and Power (micro-CHP) systems in a network of households. It is assumed that the households are prosumers, i.e. both producers and consumers of electricity. The control is done on household level in a completely distributed manner. Avoiding a centralized controller both eases computation complexity and preserves communication structure in the network. Local information is used to decide to turn on or off the micro-CHP, but through price signals between the prosumers the network as a whole operates in a cooperative way.

  4. KCd2[N(CN)2]5(H2O)4: an enmeshed honeycomb grid.

    PubMed

    Schlueter, John A; Geiser, Urs; Funk, Kylee A

    2008-02-01

    The title compound, poly[potassium [diaquapenta-micro(2)-dicyanamido-dicadmium(II)] dihydrate], {K[Cd(2)(C(2)N(3))(5)(H(2)O)(2)].2H(2)O}(n), contains two-dimensional anionic sheets of {[Cd(2){N(CN)(2)}(H(2)O)(2)](-)}(n) with a modified (6,3)-net (layer group cm2m, No. 35). Two sets of equivalent sheets interpenetrate orthogonally to form a tetragonal enmeshed grid.

  5. Time-marching multi-grid seismic tomography

    NASA Astrophysics Data System (ADS)

    Tong, P.; Yang, D.; Liu, Q.

    2016-12-01

    From the classic ray-based traveltime tomography to the state-of-the-art full waveform inversion, because of the nonlinearity of seismic inverse problems, a good starting model is essential for preventing the convergence of the objective function toward local minima. With a focus on building high-accuracy starting models, we propose the so-called time-marching multi-grid seismic tomography method in this study. The new seismic tomography scheme consists of a temporal time-marching approach and a spatial multi-grid strategy. We first divide the recording period of seismic data into a series of time windows. Sequentially, the subsurface properties in each time window are iteratively updated starting from the final model of the previous time window. There are at least two advantages of the time-marching approach: (1) the information included in the seismic data of previous time windows has been explored to build the starting models of later time windows; (2) seismic data of later time windows could provide extra information to refine the subsurface images. Within each time window, we use a multi-grid method to decompose the scale of the inverse problem. Specifically, the unknowns of the inverse problem are sampled on a coarse mesh to capture the macro-scale structure of the subsurface at the beginning. Because of the low dimensionality, it is much easier to reach the global minimum on a coarse mesh. After that, finer meshes are introduced to recover the micro-scale properties. That is to say, the subsurface model is iteratively updated on multi-grid in every time window. We expect that high-accuracy starting models should be generated for the second and later time windows. We will test this time-marching multi-grid method by using our newly developed eikonal-based traveltime tomography software package tomoQuake. Real application results in the 2016 Kumamoto earthquake (Mw 7.0) region in Japan will be demonstrated.

  6. Characteristic Analysis of DC Electric Railway Systems with Superconducting Power Cables Connecting Power Substations

    NASA Astrophysics Data System (ADS)

    Ohsaki, H.; Matsushita, N.; Koseki, T.; Tomita, M.

    2014-05-01

    The application of superconducting power cables to DC electric railway systems has been studied. It could leads to an effective use of regenerative brake, improved energy efficiency, effective load sharing among the substations, etc. In this study, an electric circuit model of a DC feeding system is built and numerical simulation is carried out using MATLAB-Simulink software. A modified electric circuit model with an AC power grid connection taken into account is also created to simulate the influence of the grid connection. The analyses have proved that a certain amount of energy can be conserved by introducing superconducting cables, and that electric load distribution and concentration among the substations depend on the substation output voltage distribution.

  7. Synthesis of major economic studies of residential photovoltaics

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Six studies that analyze the cost effectiveness of grid connected residential photovoltaic systems are reviewed. These six studies were selected based on two criteria. First, the reports share common emphases on developing photovoltaic systems with certain engineering design goals in mind, and on performing economic analyses to assess the long term economic potential of the system design. The economic analyses presented are performed from the consumer's perspective.

  8. NREL MOIS Data for NWEI Azura September 2016

    DOE Data Explorer

    Eric Nelson

    2016-10-07

    NREL MOIS data files for the Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).

  9. NREL MOIS Data for NWEI Azura June 2016

    DOE Data Explorer

    Eric Nelson

    2016-06-30

    NREL MOIS data files for the Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).

  10. NREL MOIS Data for NWEI Azura July 2016

    DOE Data Explorer

    Eric Nelson

    2016-09-25

    NREL MOIS data files for the Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).

  11. NREL MOIS Data for NWEI Azura August 2016

    DOE Data Explorer

    Eric Nelson

    2016-10-03

    NREL MOIS data files for the Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).

  12. There Once Was a 9-Block ...--A Middle-School Design for Probability and Statistics

    ERIC Educational Resources Information Center

    Abrahamson, Dor; Janusz, Ruth M.; Wilensky, Uri

    2006-01-01

    ProbLab is a probability-and-statistics unit developed at the Center for Connected Learning and Computer-Based Modeling, Northwestern University. Students analyze the combinatorial space of the 9-block, a 3-by-3 grid of squares, in which each square can be either green or blue. All 512 possible 9-blocks are constructed and assembled in a "bar…

  13. NREL MOIS Data for NWEI Azura November 2015

    DOE Data Explorer

    Eric Nelson

    2016-05-25

    NREL MOIS data files for the Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).

  14. NREL MOIS Data for NWEI Azura August 2015

    DOE Data Explorer

    Eric Nelson

    2016-05-23

    NREL MOIS data files for the Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).

  15. NREL MOIS Data for NWEI Azura July 2015

    DOE Data Explorer

    Eric Nelson

    2016-05-23

    NREL MOIS data files for the Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).

  16. NREL MOIS Data for NWEI Azura April 2016

    DOE Data Explorer

    Eric Nelson

    2016-05-31

    NREL MOIS data files for the Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).

  17. NREL MOIS Data for NWEI Azura June 2015

    DOE Data Explorer

    Eric Nelson

    2016-05-18

    NREL MOIS data files for the Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).

  18. NREL MOIS Data for NWEI Azura March 2016

    DOE Data Explorer

    Eric Nelson

    2016-05-31

    NREL MOIS data files for the Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).

  19. NREL MOIS Data for NWEI Azura December 2015

    DOE Data Explorer

    Eric Nelson

    2016-05-27

    NREL MOIS data files for the Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).

  20. NREL MOIS Data for NWEI Azura January 2016

    DOE Data Explorer

    Eric Nelson

    2016-05-27

    NREL MOIS data files for the Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).

  1. NREL MOIS Data for NWEI Azura February 2016

    DOE Data Explorer

    Eric Nelson

    2016-05-31

    NREL MOIS data files for the Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).

  2. NREL MOIS Data for NWEI Azura September 2015

    DOE Data Explorer

    Eric Nelson

    2016-05-24

    NREL MOIS data files for the Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).

  3. NREL MOIS Data for NWEI Azura October 2015

    DOE Data Explorer

    Eric Nelson

    2016-05-24

    NREL MOIS data files for the Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jialin Frank; Martínez, Maria Gabriela; Anderson, C Lindsay

    This work presents a preliminary analysis considering impact of a grid-connected microgrid on network transmission of the power system. The locational marginal prices of the power system are used to strategically place the microgrid to avoid congestion problems. In addition, a Monte Carlo simulation approach is implemented to confirm that network congestion can be attenuated if appropriate price-based signals are set to define the import and export dynamic between the two systems.

  5. Pervasive access to MRI bias artifact suppression service on a grid.

    PubMed

    Ardizzone, Edoardo; Gambino, Orazio; Genco, Alessandro; Pirrone, Roberto; Sorce, Salvatore

    2009-01-01

    Bias artifact corrupts MRIs in such a way that the image is afflicted by illumination variations. Some of the authors proposed the exponential entropy-driven homomorphic unsharp masking ( E(2)D-HUM) algorithm that corrects this artifact without any a priori hypothesis about the tissues or the MRI modality. Moreover, E(2)D-HUM does not care about the body part under examination and does not require any particular training task. People who want to use this algorithm, which is Matlab-based, have to set their own computers in order to execute it. Furthermore, they have to be Matlab-skilled to exploit all the features of the algorithm. In this paper, we propose to make such algorithm available as a service on a grid infrastructure, so that people can use it almost from everywhere, in a pervasive fashion, by means of a suitable user interface running on smartphones. The proposed solution allows physicians to use the E(2)D-HUM algorithm (or any other kind of algorithm, given that it is available as a service on the grid), being it remotely executed somewhere in the grid, and the results are sent back to the user's device. This way, physicians do not need to be aware of how to use Matlab to process their images. The pervasive service provision for medical image enhancement is presented, along with some experimental results obtained using smartphones connected to an existing Globus-based grid infrastructure.

  6. Magnitude and Variability of Controllable Charge Capacity Provided by Grid Connected Plug-in Electric Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scoffield, Don R; Smart, John; Salisbury, Shawn

    2015-03-01

    As market penetration of plug-in electric vehicles (PEV) increases over time, the number of PEVs charging on the electric grid will also increase. As the number of PEVs increases, their ability to collectively impact the grid increases. The idea of a large body of PEVs connected to the grid presents an intriguing possibility. If utilities can control PEV charging, it is possible that PEVs could act as a distributed resource to provide grid services. The technology required to control charging is available for modern PEVs. However, a system for wide-spread implementation of controllable charging, including robust communication between vehicles andmore » utilities, is not currently present. Therefore, the value of controllable charging must be assessed and weighed against the cost of building and operating such as system. In order to grasp the value of PEV charge control to the utility, the following must be understood: 1. The amount of controllable energy and power capacity available to the utility 2. The variability of the controllable capacity from day to day and as the number of PEVs in the market increases.« less

  7. Interfacing 3D micro/nanochannels with a branch-shaped reservoir enhances fluid and mass transport

    NASA Astrophysics Data System (ADS)

    Kumar, Prasoon; Gandhi, Prasanna S.; Majumder, Mainak

    2017-01-01

    Three-dimensional (3D) micro/nanofluidic devices can accelerate progress in numerous fields such as tissue engineering, drug delivery, self-healing and cooling devices. However, efficient connections between networks of micro/nanochannels and external fluidic ports are key to successful applications of 3D micro/nanofluidic devices. Therefore, in this work, the extent of the role of reservoir geometry in interfacing with vascular (micro/nanochannel) networks, and in the enabling of connections with external fluidic ports while maintaining the compactness of devices, has been experimentally and theoretically investigated. A statistical modelling suggested that a branch-shaped reservoir demonstrates enhanced interfacing with vascular networks when compared to other regular geometries of reservoirs. Time-lapse dye flow experiments by capillary action through fabricated 3D micro/nanofluidic devices confirmed the connectivity of branch-shaped reservoirs with micro/nanochannel networks in fluidic devices. This demonstrated a ~2.2-fold enhancement of the volumetric flow rate in micro/nanofluidic networks when interfaced to branch-shaped reservoirs over rectangular reservoirs. The enhancement is due to a ~2.8-fold increase in the perimeter of the reservoirs. In addition, the mass transfer experiments exhibited a ~1.7-fold enhancement in solute flux across 3D micro/nanofluidic devices that interfaced with branch-shaped reservoirs when compared to rectangular reservoirs. The fabrication of 3D micro/nanofluidic devices and their efficient interfacing through branch-shaped reservoirs to an external fluidic port can potentially enable their use in complex applications, in which enhanced surface-to-volume interactions are desirable.

  8. An Analysis for the Use of Research and Education Networks and Commercial Network Vendors in Support of Space Based Mission Critical and Non-Critical Networking

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.

    2002-01-01

    Currently, and in the past, dedicated communication circuits and "network services" with very stringent performance requirements are being used to support manned and unmanned mission critical ground operations at GSFC, JSC, MSFC, KSC and other NASA facilities. Because of the evolution of network technology, it is time to investigate using other approaches to providing mission services for space ground operations. The current NASA approach is not in keeping with the evolution of network technologies. In the past decade various research and education networks dedicated to scientific and educational endeavors have emerged, as well as commercial networking providers, that employ advanced networking technologies. These technologies have significantly changed networking in recent years. Significant advances in network routing techniques, various topologies and equipment have made commercial networks very stable and virtually error free. Advances in Dense Wave Division Multiplexing will provide tremendous amounts of bandwidth for the future. The question is: Do these networks, which are controlled and managed centrally, provide a level of service that equals the stringent NASA performance requirements. If they do, what are the implication(s) of using them for critical space based ground operations as they are, without adding high cost contractual performance requirements? A second question is the feasibility of applying the emerging grid technology in space operations. Is it feasible to develop a Space Operations Grid and/or a Space Science Grid? Since these network's connectivity is substantial, both nationally and internationally, development of these sorts of grids may be feasible. The concept of research and education networks has evolved to the international community as well. Currently there are international RENs connecting the US in Chicago to and from Europe, South America, Asia and the Pacific rim, Russia and Canada. And most countries in these areas have their own research and education network as do many states in the USA.

  9. Patterning nanowire and micro-nanoparticle array on micropillar-structured surface: Experiment and modeling.

    PubMed

    Lin, Chung Hsun; Guan, Jingjiao; Chau, Shiu Wu; Chen, Shia Chung; Lee, L James

    2010-08-04

    DNA molecules in a solution can be immobilized and stretched into a highly ordered array on a solid surface containing micropillars by molecular combing technique. However, the mechanism of this process is not well understood. In this study, we demonstrated the generation of DNA nanostrand array with linear, zigzag, and fork-zigzag patterns and the microfluidic processes are modeled based on a deforming body-fitted grid approach. The simulation results provide insights for explaining the stretching, immobilizing, and patterning of DNA molecules observed in the experiments.

  10. University of Maryland Energy Research Center |

    Science.gov Websites

    ENERGY MICRO POWER SYSTEMS ENERGY EFFICIENCY SMART GRID POWER ELECTRONICS RENEWABLE ENERGY NUCLEAR ENERGY most efficient use of our natural resources while minimizing environmental impacts and our dependence

  11. Trans-oceanic Remote Power Hardware-in-the-Loop: Multi-site Hardware, Integrated Controller, and Electric Network Co-simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundstrom, Blake R.; Palmintier, Bryan S.; Rowe, Daniel

    Electric system operators are increasingly concerned with the potential system-wide impacts of the large-scale integration of distributed energy resources (DERs) including voltage control, protection coordination, and equipment wear. This prompts a need for new simulation techniques that can simultaneously capture all the components of these large integrated smart grid systems. This paper describes a novel platform that combines three emerging research areas: power systems co-simulation, power hardware in the loop (PHIL) simulation, and lab-lab links. The platform is distributed, real-time capable, allows for easy internet-based connection from geographically-dispersed participants, and is software platform agnostic. We demonstrate its utility by studyingmore » real-time PHIL co-simulation of coordinated solar PV firming control of two inverters connected in multiple electric distribution network models, prototypical of U.S. and Australian systems. Here, the novel trans-pacific closed-loop system simulation was conducted in real-time using a power network simulator and physical PV/battery inverter at power at the National Renewable Energy Laboratory in Golden, CO, USA and a physical PV inverter at power at the Commonwealth Scientific and Industrial Research Organisation's Energy Centre in Newcastle, NSW, Australia. This capability enables smart grid researchers throughout the world to leverage their unique simulation capabilities for multi-site collaborations that can effectively simulate and validate emerging smart grid technology solutions.« less

  12. Trans-oceanic Remote Power Hardware-in-the-Loop: Multi-site Hardware, Integrated Controller, and Electric Network Co-simulation

    DOE PAGES

    Lundstrom, Blake R.; Palmintier, Bryan S.; Rowe, Daniel; ...

    2017-07-24

    Electric system operators are increasingly concerned with the potential system-wide impacts of the large-scale integration of distributed energy resources (DERs) including voltage control, protection coordination, and equipment wear. This prompts a need for new simulation techniques that can simultaneously capture all the components of these large integrated smart grid systems. This paper describes a novel platform that combines three emerging research areas: power systems co-simulation, power hardware in the loop (PHIL) simulation, and lab-lab links. The platform is distributed, real-time capable, allows for easy internet-based connection from geographically-dispersed participants, and is software platform agnostic. We demonstrate its utility by studyingmore » real-time PHIL co-simulation of coordinated solar PV firming control of two inverters connected in multiple electric distribution network models, prototypical of U.S. and Australian systems. Here, the novel trans-pacific closed-loop system simulation was conducted in real-time using a power network simulator and physical PV/battery inverter at power at the National Renewable Energy Laboratory in Golden, CO, USA and a physical PV inverter at power at the Commonwealth Scientific and Industrial Research Organisation's Energy Centre in Newcastle, NSW, Australia. This capability enables smart grid researchers throughout the world to leverage their unique simulation capabilities for multi-site collaborations that can effectively simulate and validate emerging smart grid technology solutions.« less

  13. Elastic all-optical multi-hop interconnection in data centers with adaptive spectrum allocation

    NASA Astrophysics Data System (ADS)

    Hong, Yuanyuan; Hong, Xuezhi; Chen, Jiajia; He, Sailing

    2017-01-01

    In this paper, a novel flex-grid all-optical interconnect scheme that supports transparent multi-hop connections in data centers is proposed. An inter-rack all-optical multi-hop connection is realized with an optical loop employed at flex-grid wavelength selective switches (WSSs) in an intermediate rack rather than by relaying through optical-electric-optical (O-E-O) conversions. Compared with the conventional O-E-O based approach, the proposed all-optical scheme is able to off-load the traffic at intermediate racks, leading to a reduction of the power consumption and cost. The transmission performance of the proposed flex-grid multi-hop all-optical interconnect scheme with various modulation formats, including both coherently detected and directly detected approaches, are investigated by Monte-Carlo simulations. To enhance the spectrum efficiency (SE), number-of-hop adaptive bandwidth allocation is introduced. Numerical results show that the SE can be improved by up to 33.3% at 40 Gbps, and by up to 25% at 100 Gbps. The impact of parameters, such as targeted bit error rate (BER) level and insertion loss of components, on the transmission performance of the proposed approach are also explored. The results show that the maximum SE improvement of the adaptive approach over the non-adaptive one is enhanced with the decrease of the targeted BER levels and the component insertion loss.

  14. Concentric micro-nebulizer for direct sample insertion

    DOEpatents

    Fassel, V.A.; Rice, G.W.; Lawrence, K.E.

    1984-03-06

    A concentric micro-nebulizer and method for introducing liquid samples into a plasma established in a plasma torch including a first tube connected to a source of plasma gas. The concentric micro-nebulizer has inner and outer concentric tubes extending upwardly within the torch for connection to a source of nebulizer gas and to a source of liquid solvent and to a source of sample liquid. The inner tube is connected to the source of liquid solvent and to the source of sample liquid and the outer tube is connected to the source of nebulizer gas. The outer tube has an orifice positioned slightly below the plasma when it is established, with the inner and outer tubes forming an annulus therebetween with the annular spacing between the tubes at said orifice being less than about 0.05mm. The dead volume of the inner tube is less than about 5 microliters.

  15. Concentric micro-nebulizer for direct sample insertion

    DOEpatents

    Fassel, Velmer A.; Rice, Gary W.; Lawrence, Kimberly E.

    1986-03-11

    A concentric micro-nebulizer and method for introducing liquid samples into a plasma established in a plasma torch including a first tube connected to a source of plasma gas. The concentric micro-nebulizer has inner and outer concentric tubes extending upwardly within the torch for connection to a source of nebulizer gas and to a source of liquid solvent and to a source of sample liquid. The inner tube is connected to the source of liquid solvent and to the source of sample liquid and the outer tube is connected to the source of nebulizer gas. The outer tube has an orifice positioned slightly below the plasma when it is established, with the inner and outer tubes forming an annulus therebetween with the annular spacing between the tubes at said orifice being less than about 0.05 mm. The dead volume of the inner tube is less than about 5 microliters.

  16. A Guidebook on Grid Interconnection and Islanded Operation of Mini-Grid Power Systems Up to 200 kW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greacen, Chris; Engel, Richard; Quetchenbach, Thomas

    A Guidebook on Grid Interconnection and Islanded Operation of Mini-Grid Power Systems Up to 200 kW is intended to help meet the widespread need for guidance, standards, and procedures for interconnecting mini-grids with the central electric grid as rural electrification advances in developing countries, bringing these once separate power systems together. The guidebook aims to help owners and operators of renewable energy mini-grids understand the technical options available, safety and reliability issues, and engineering and administrative costs of different choices for grid interconnection. The guidebook is intentionally brief but includes a number of appendices that point the reader to additionalmore » resources for indepth information. Not included in the scope of the guidebook are policy concerns about “who pays for what,” how tariffs should be set, or other financial issues that are also paramount when “the little grid connects to the big grid.”« less

  17. Torsional vibration characteristic study of the grid-connected DFIG wind turbine

    NASA Astrophysics Data System (ADS)

    Yu, Songtao; Xie, Da; Wu, Wangping; Gu, Chenghong; Li, Furong

    2017-01-01

    This paper studies the torsional vibration characteristics of the grid-connected doubly-fed induction generator (DFIG) wind turbine by small signal analysis method. Firstly a detailed small-signal stability union model of the grid-connected DFIG wind turbine is developed, including the mechanical system and electrical system. To study the dynamic characteristic of the blade, gearbox, low speed and high speed shafts, a three mass shaft model for the mechanical system is adopted. At the same time, small signal models of DFIG, the voltage source converter (VSC) and the transmission line of the electrical system are developed respectively. Then, through calculating the eigenvalues of the state matrix A and the corresponding participation factors, the modal analysis is conducted in the shaft torsional vibration issues. And the impact of the system parameters including the series compensation capacitor, the flat-wave reactor, the PI parameters, especially the speed controller of generator rotor on shaft torsional vibration are discussed. The results show that the speed controller strengthens association between the mechanical system and the electrical system, and also produces a low-frequency oscillation mode.

  18. Economic and Environmental Assessment of a 1 MW Grid Connected Rooftop Solar PV System for Energy Efficient Building in Bangladesh

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sanjib; Hosain, Rubayet; Rahman, Toufiqur; Rabbi, Ahmead Fazle

    This paper evaluates the potentiality of a 1 MW grid connected rooftop solar PV system for an Energy Efficient Building in Bangladesh, which was estimated by utilizing NASA SSE solar radiation data, PVsyst simulation software and RETScreen simulation software. Economic and environmental viability for a ten-storied building with roof area of 6,500 m2 in the Capital City of Bangladesh, Dhaka was assessed by using the RETScreen simulation software. The yearly electricity production of the proposed system was 1,581 MWh estimated by PVsyst where the technical prospective of gird-connected solar PV in Bangladesh was calculated as about 50,174 MW. The economic assessments were determined the simple payback in such a way that the generated electricity first fulfills the demand of the building, and then the rest of the energy is supplied to the grid. The result indicates that the roof top solar PV system for an Energy efficient building in Dhaka city has a favorable condition for development both in economic and environmental point of view.

  19. Performance tests of a power-electronics converter for multi-megawatt wind turbines using a grid emulator

    NASA Astrophysics Data System (ADS)

    Rizqy Averous, Nurhan; Berthold, Anica; Schneider, Alexander; Schwimmbeck, Franz; Monti, Antonello; De Doncker, Rik W.

    2016-09-01

    A vast increase of wind turbines (WT) contribution in the modern electrical grids have led to the development of grid connection requirements. In contrast to the conventional test method, testing power-electronics converters for WT using a grid emulator at Center for Wind Power Drives (CWD) RWTH Aachen University offers more flexibility for conducting test scenarios. Further analysis on the performance of the device under test (DUT) is however required when testing with grid emulator since the characteristic of the grid emulator might influence the performance of the DUT. This paper focuses on the performance analysis of the DUT when tested using grid emulator. Beside the issue regarding the current harmonics, the performance during Fault Ride-Through (FRT) is discussed in detail. A power hardware in the loop setup is an attractive solution to conduct a comprehensive study on the interaction between the power-electronics converters and the electrical grids.

  20. TopMaker: Technique Developed for Automatic Multiblock Topology Generation Using the Medial Axis

    NASA Technical Reports Server (NTRS)

    Rigby, David L.

    2004-01-01

    The TopMaker technique was developed in an effort to reduce the time required for grid generation in complex numerical studies. Topology generation accounts for much of the man-hours required for structured multiblock grids. With regard to structured multiblock grids, topology refers to how the blocks are arranged and connected. A two-dimensional multiblock topology generation technique has been developed at the NASA Glenn Research Center. Very general configurations can be addressed by the technique. A configuration is defined by a collection of non-intersecting closed curves, which will be referred to as loops. More than a single loop implies that holes exist in the domain, which poses no problem. This technique requires only the medial vertices and the touch points that define each vertex. From the information about the medial vertices, the connectivity between medial vertices is generated. The physical shape of the medial edge is not required. By applying a few simple rules to each medial edge, a multiblock topology can be generated without user intervention. The resulting topologies contain only the level of complexity dictated by the configurations. Grid lines remain attached to the boundary except at sharp concave turns, where a change in index family is introduced as would be desired. Keeping grid lines attached to the boundary is especially important in computational fluid dynamics, where highly clustered grids are used near no-slip boundaries. This technique is simple and robust and can easily be incorporated into the overall grid-generation process.

Top