Science.gov

Sample records for based microfluidic elements

  1. Discrete elements for 3D microfluidics.

    PubMed

    Bhargava, Krisna C; Thompson, Bryant; Malmstadt, Noah

    2014-10-21

    Microfluidic systems are rapidly becoming commonplace tools for high-precision materials synthesis, biochemical sample preparation, and biophysical analysis. Typically, microfluidic systems are constructed in monolithic form by means of microfabrication and, increasingly, by additive techniques. These methods restrict the design and assembly of truly complex systems by placing unnecessary emphasis on complete functional integration of operational elements in a planar environment. Here, we present a solution based on discrete elements that liberates designers to build large-scale microfluidic systems in three dimensions that are modular, diverse, and predictable by simple network analysis techniques. We develop a sample library of standardized components and connectors manufactured using stereolithography. We predict and validate the flow characteristics of these individual components to design and construct a tunable concentration gradient generator with a scalable number of parallel outputs. We show that these systems are rapidly reconfigurable by constructing three variations of a device for generating monodisperse microdroplets in two distinct size regimes and in a high-throughput mode by simple replacement of emulsifier subcircuits. Finally, we demonstrate the capability for active process monitoring by constructing an optical sensing element for detecting water droplets in a fluorocarbon stream and quantifying their size and frequency. By moving away from large-scale integration toward standardized discrete elements, we demonstrate the potential to reduce the practice of designing and assembling complex 3D microfluidic circuits to a methodology comparable to that found in the electronics industry.

  2. Flock-based microfluidics.

    PubMed

    Hitzbleck, Martina; Lovchik, Robert D; Delamarche, Emmanuel

    2013-05-21

    Flock-based microfluidics are created by depositing hydrophilic microfibers on an adhesive-coated substrate using an electric field. This enables the fabrication of self-powered microfluidics from one or more different kinds of fibers that form 2D and 3D flowpaths, which can wick 40 microliters of liquid per square centimeter. With this approach, large areas of functional wicking materials can be produced at extremely low cost.

  3. Predicting the behavior of microfluidic circuits made from discrete elements

    PubMed Central

    Bhargava, Krisna C.; Thompson, Bryant; Iqbal, Danish; Malmstadt, Noah

    2015-01-01

    Microfluidic devices can be used to execute a variety of continuous flow analytical and synthetic chemistry protocols with a great degree of precision. The growing availability of additive manufacturing has enabled the design of microfluidic devices with new functionality and complexity. However, these devices are prone to larger manufacturing variation than is typical of those made with micromachining or soft lithography. In this report, we demonstrate a design-for-manufacturing workflow that addresses performance variation at the microfluidic element and circuit level, in context of mass-manufacturing and additive manufacturing. Our approach relies on discrete microfluidic elements that are characterized by their terminal hydraulic resistance and associated tolerance. Network analysis is employed to construct simple analytical design rules for model microfluidic circuits. Monte Carlo analysis is employed at both the individual element and circuit level to establish expected performance metrics for several specific circuit configurations. A protocol based on osmometry is used to experimentally probe mixing behavior in circuits in order to validate these approaches. The overall workflow is applied to two application circuits with immediate use at on the bench-top: series and parallel mixing circuits that are modularly programmable, virtually predictable, highly precise, and operable by hand. PMID:26516059

  4. A waveguide based microfluidic application

    NASA Astrophysics Data System (ADS)

    Taheri, Nooshin S.; Chan, Peggy; Friend, James R.; Yeo, Leslie

    2013-12-01

    Microfluidics is based on the performance of fluids in a microenvironment. As the microfluidics research advances in the cellular behaviour, the need for improved micro devices grows. This work introduces the design and fabrication of a micro ridge waveguide to be employed in fluids manipulations. Then it investigates the characteristics of the device in order to control the movement of the fluids on top of the ridge of the waveguide. The elastic vibration is excited along the ridge of the guide with the use of thickness poled lead zirconate titanate (PZT) elements attached to both sides of the waveguide. To excite anti-symmetric or flexural mode in the ridge of the guide, the propagation velocity has been kept significantly below the Rayleigh wave velocity. The velocity reduction of 15% is achieved with the high aspect ratio ridge (H/W =3) design. A three dimensional model of the micro waveguide has also been developed to determine the vibration characteristics; the natural frequency and the considered mode of the micro waveguide through finite element analysis using ANSYS. The travelling wave along the ridge of the guide is able to transmit strong vibration to the fluid atop of the substrate. The results represents a promising approach, through recasting the waveguide structure to be suitable in fluids and particle in fluids manipulations in one dimensional environment with the strong confined energy, at smaller scale with higher vibration displacement.

  5. Polymer-based platform for microfluidic systems

    DOEpatents

    Benett, William; Krulevitch, Peter; Maghribi, Mariam; Hamilton, Julie; Rose, Klint; Wang, Amy W.

    2009-10-13

    A method of forming a polymer-based microfluidic system platform using network building blocks selected from a set of interconnectable network building blocks, such as wire, pins, blocks, and interconnects. The selected building blocks are interconnectably assembled and fixedly positioned in precise positions in a mold cavity of a mold frame to construct a three-dimensional model construction of a microfluidic flow path network preferably having meso-scale dimensions. A hardenable liquid, such as poly (dimethylsiloxane) is then introduced into the mold cavity and hardened to form a platform structure as well as to mold the microfluidic flow path network having channels, reservoirs and ports. Pre-fabricated elbows, T's and other joints are used to interconnect various building block elements together. After hardening the liquid the building blocks are removed from the platform structure to make available the channels, cavities and ports within the platform structure. Microdevices may be embedded within the cast polymer-based platform, or bonded to the platform structure subsequent to molding, to create an integrated microfluidic system. In this manner, the new microfluidic platform is versatile and capable of quickly generating prototype systems, and could easily be adapted to a manufacturing setting.

  6. Two dimension (2-D) graphene-based nanomaterials as signal amplification elements in electrochemical microfluidic immune-devices: Recent advances.

    PubMed

    Hasanzadeh, Mohammad; Shadjou, Nasrin; Mokhtarzadeh, Ahad; Ramezani, Mohammad

    2016-11-01

    Graphene is a 2-D carbon nanomaterial with many distinctive properties that are electrochemically beneficial, such as large surface-to-volume ratio, lowered power usage, high conductivity and electron mobility. Graphene-based electrochemical immune-devices have recently gained much importance for detecting antigens and biomarkers responsible for cancer diagnosis. This review describes fabrication and chemical modification of the surfaces of graphene for immunesensing applications. We also present a comprehensive overview of current developments and key issues in the determination of some biological molecules with particular emphasis on evaluating the models. This review focuses mostly on new developments in the last 5years in development of chip architecture and integration, different sensing modes that can be used in conjunction with microfluidics, and new applications that have emerged or have been demonstrated; it also aims to point out where future research can be directed to in these areas. PMID:27524045

  7. Mobile monolithic polymer elements for flow control in microfluidic devices

    DOEpatents

    Hasselbrink, Jr., Ernest F.; Rehm, Jason E.; Shepodd, Timothy J.

    2004-08-31

    A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by either fluid or gas pressure against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.

  8. Mobile Monolith Polymer Elements For Flow Control In Microfluidic Systems

    DOEpatents

    Hasselbrink, Jr., Ernest F.; Rehm, Jason E.; Shepodd, Timothy J.; Kirby, Brian J.

    2006-01-24

    A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.

  9. Mobile monolithic polymer elements for flow control in microfluidic devices

    DOEpatents

    Hasselbrink, Jr., Ernest F.; Rehm, Jason E.; Shepodd, Timothy J.; Kirby, Brian J.

    2005-11-11

    A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.

  10. PDMS-based turbulent microfluidic mixer.

    PubMed

    You, Jae Bem; Kang, Kyowon; Tran, Thanh Tinh; Park, Hongkeun; Hwang, Wook Ryol; Kim, Ju Min; Im, Sung Gap

    2015-04-01

    Over the past decade, homogeneous mixing in microfluidic devices has been a critical challenge, because of the inherently low flow rates in microfluidic channels. Although several mixer designs have been suggested to achieve efficient mixing, most of them involve intricate structures requiring a series of laborious fabrication processes. Operation at high flow rates can greatly enhance mixing by induction of turbulence, but devices that can resist such a high pressure drop to induce turbulence in microfluidic channels are difficult to fabricate, especially for commonly used poly(dimethylsiloxane) (PDMS)-based microfluidic devices. We have developed a Y-shaped, turbulent microfluidic mixer made of PDMS and a glass substrate by strong bonding of the substrates to a nanoadhesive layer deposited via initiated chemical vapor deposition. The high bonding strength of the nanoadhesive layer enables safe operation of the PDMS/glass turbulent microfluidic mixer at a total water flow rate of 40 mL min(-1), corresponding to a Reynolds number, Re, of ~4423, one of the highest values achieved in a microfluidic channel. The turbulence generated as a result of the high Re allows rapid mixing of the input fluids on contact. Image analysis showed that mixing started as soon as the fluids were introduced into the mixer. The experimental results matched the numerical predictions well, demonstrating that convective mixing was dominant as a result of turbulence induced in the microfluidic channel. Using the turbulent microfluidic mixer, we have demonstrated high throughput formation of emulsions with narrower size distribution. It was shown that as the flow rate increases inside the microfluidic channel, the size distribution of resulting emulsions decreases owing to the increase in the turbulent energy dissipation. The turbulent microfluidic mixer developed in this work not only enables rapid mixing of streams, but also increases throughputs of microfluidic reactors.

  11. Droplet microfluidics based microseparation systems.

    PubMed

    Xiao, Zhiliang; Niu, Menglei; Zhang, Bo

    2012-06-01

    Lab on a chip (LOC) technology is a promising miniaturization approach. The feature that it significantly reduced sample consumption makes great sense in analytical and bioanalytical chemistry. Since the start of LOC technology, much attention has been focused on continuous flow microfluidic systems. At the turn of the century, droplet microfluidics, which was also termed segmented flow microfluidics, was introduced. Droplet microfluidics employs two immiscible phases to form discrete droplets, which are ideal vessels with confined volume, restricted dispersion, limited cross-contamination, and high surface area. Due to these unique features, droplet microfluidics proves to be a versatile tool in microscale sample handling. This article reviews the utility of droplet microfluidics in microanalytical systems with an emphasize on separation science, including sample encapsulation at ultra-small volume, compartmentalization of separation bands, isolation of droplet contents, and related detection techniques.

  12. Magneto-Hydrodynamics Based Microfluidics

    PubMed Central

    Qian, Shizhi; Bau, Haim H.

    2009-01-01

    In microfluidic devices, it is necessary to propel samples and reagents from one part of the device to another, stir fluids, and detect the presence of chemical and biological targets. Given the small size of these devices, the above tasks are far from trivial. Magnetohydrodynamics (MHD) offers an elegant means to control fluid flow in microdevices without a need for mechanical components. In this paper, we review the theory of MHD for low conductivity fluids and describe various applications of MHD such as fluid pumping, flow control in fluidic networks, fluid stirring and mixing, circular liquid chromatography, thermal reactors, and microcoolers. PMID:20046890

  13. Finite element simulations of hydrodynamic trapping in microfluidic particle-trap array systems

    PubMed Central

    Xu, Xiaoxiao; Li, Zhenyu; Nehorai, Arye

    2013-01-01

    Computational fluid dynamic (CFD) simulation is a powerful tool in the design and implementation of microfluidic systems, especially for systems that involve hydrodynamic behavior of objects such as functionalized microspheres, biological cells, or biopolymers in complex structures. In this work, we investigate hydrodynamic trapping of microspheres in a novel microfluidic particle-trap array device by finite element simulations. The accuracy of the time-dependent simulation of a microsphere's motion towards the traps is validated by our experimental results. Based on the simulation, we study the fluid velocity field, pressure field, and force and stress on the microsphere in the device. We further explore the trap array's geometric parameters and critical fluid velocity, which affect the microsphere's hydrodynamic trapping. The information is valuable for designing microfluidic devices and guiding experimental operation. Besides, we provide guidelines on the simulation set-up and release an openly available implementation of our simulation in one of the popular FEM softwares, COMSOL Multiphysics. Researchers may tailor the model to simulate similar microfluidic systems that may accommodate a variety of structured particles. Therefore, the simulation will be of particular interest to biomedical research involving cell or bead transport and migration, blood flow within microvessels, and drug delivery. PMID:24404071

  14. Recent developments in microfluidics-based chemotaxis studies.

    PubMed

    Wu, Jiandong; Wu, Xun; Lin, Francis

    2013-07-01

    Microfluidic devices can better control cellular microenvironments compared to conventional cell migration assays. Over the past few years, microfluidics-based chemotaxis studies showed a rapid growth. New strategies were developed to explore cell migration in manipulated chemical gradients. In addition to expanding the use of microfluidic devices for a broader range of cell types, microfluidic devices were used to study cell migration and chemotaxis in complex environments. Furthermore, high-throughput microfluidic chemotaxis devices and integrated microfluidic chemotaxis systems were developed for medical and commercial applications. In this article, we review recent developments in microfluidics-based chemotaxis studies and discuss the new trends in this field observed over the past few years.

  15. Cell-based bioassays in microfluidic systems

    NASA Astrophysics Data System (ADS)

    Itle, Laura J.; Zguris, Jeanna C.; Pishko, Michael V.

    2004-12-01

    The development of cell-based bioassays for high throughput drug screening or the sensing of biotoxins is contingent on the development of whole cell sensors for specific changes in intracellular conditions and the integration of those systems into sample delivery devices. Here we show the feasibility of using a 5-(and-6)-carboxy SNARF-1, acetoxymethyl ester, acetate, a fluorescent dye capable of responding to changes in intracellular pH, as a detection method for the bacterial endotoxin, lipopolysaccharide. We used photolithography to entrap cells with this dye within poly(ethylene) glyocol diacrylate hydrogels in microfluidic channels. After 18 hours of exposure to lipopolysaccharide, we were able to see visible changes in the fluorescent pattern. This work shows the feasibility of using whole cell based biosensors within microfluidic networks to detect cellular changes in response to exogenous agents.

  16. Wearable tactile sensor based on flexible microfluidics.

    PubMed

    Yeo, Joo Chuan; Yu, Jiahao; Koh, Zhao Ming; Wang, Zhiping; Lim, Chwee Teck

    2016-08-16

    In this work, we develop a liquid-based thin film microfluidic tactile sensor of high flexibility, robustness and sensitivity. The microfluidic elastomeric structure comprises a pressure sensitive region and parallel arcs that interface with screen-printed electrodes. The microfluidic sensor is functionalized with a highly conductive metallic liquid, eutectic gallium indium (eGaIn). Microdeformation on the pressure sensor results in fluid displacement which corresponds to a change in electrical resistance. By emulating parallel electrical circuitry in our microchannel design, we reduced the overall electrical resistance of the sensor, therefore enhancing its device sensitivity. Correspondingly, we report a device workable within a range of 4 to 100 kPa and sensitivity of up to 0.05 kPa(-1). We further demonstrate its robustness in withstanding >2500 repeated loading and unloading cycles. Finally, as a proof of concept, we demonstrate that the sensors may be multiplexed to detect forces at multiple regions of the hand. In particular, our sensors registered unique electronic signatures in object grasping, which could provide better assessment of finger dexterity. PMID:27438370

  17. Wearable tactile sensor based on flexible microfluidics.

    PubMed

    Yeo, Joo Chuan; Yu, Jiahao; Koh, Zhao Ming; Wang, Zhiping; Lim, Chwee Teck

    2016-08-16

    In this work, we develop a liquid-based thin film microfluidic tactile sensor of high flexibility, robustness and sensitivity. The microfluidic elastomeric structure comprises a pressure sensitive region and parallel arcs that interface with screen-printed electrodes. The microfluidic sensor is functionalized with a highly conductive metallic liquid, eutectic gallium indium (eGaIn). Microdeformation on the pressure sensor results in fluid displacement which corresponds to a change in electrical resistance. By emulating parallel electrical circuitry in our microchannel design, we reduced the overall electrical resistance of the sensor, therefore enhancing its device sensitivity. Correspondingly, we report a device workable within a range of 4 to 100 kPa and sensitivity of up to 0.05 kPa(-1). We further demonstrate its robustness in withstanding >2500 repeated loading and unloading cycles. Finally, as a proof of concept, we demonstrate that the sensors may be multiplexed to detect forces at multiple regions of the hand. In particular, our sensors registered unique electronic signatures in object grasping, which could provide better assessment of finger dexterity.

  18. Microfluidic, Bead-Based Assay: Theory and Experiments

    PubMed Central

    Thompson, Jason A.; Bau, Haim H.

    2009-01-01

    Microbeads are frequently used as a solid support for biomolecules such as proteins and nucleic acids in heterogeneous microfluidic assays. However, relatively few studies investigate the binding kinetics on modified bead surfaces in a microfluidics context. In this study, a customized hot embossing technique is used to stamp microwells in a thin plastic substrate where streptavidin-coated agarose beads are selectively placed and subsequently immobilized within a conduit. Biotinylated quantum dots are used as a label to monitor target analyte binding to the bead's surface. Three-dimensional finite element simulations are carried out to model the binding kinetics on the bead's surface. The model accounts for surface exclusion effects resulting from a single quantum dot occluding multiple receptor sites. The theoretical predictions are compared and favorably agree with experimental observations. The theoretical simulations provide a useful tool to predict how varying parameters affect microbead reaction kinetics and sensor performance. This study enhances our understanding of bead-based microfluidic assays and provides a design tool for developers of point-of-care, lab-on-chip devices for medical diagnosis, food and water quality inspection, and environmental monitoring. PMID:19766545

  19. Microfluidic-Based Robotic Sampling System for Radioactive Solutions

    SciTech Connect

    Jack D. Law; Julia L. Tripp; Tara E. Smith; Veronica J. Rutledge; Troy G. Garn; John Svoboda; Larry Macaluso

    2014-02-01

    A novel microfluidic based robotic sampling system has been developed for sampling and analysis of liquid solutions in nuclear processes. This system couples the use of a microfluidic sample chip with a robotic system designed to allow remote, automated sampling of process solutions in-cell and facilitates direct coupling of the microfluidic sample chip with analytical instrumentation. This system provides the capability for near real time analysis, reduces analytical waste, and minimizes the potential for personnel exposure associated with traditional sampling methods. A prototype sampling system was designed, built and tested. System testing demonstrated operability of the microfluidic based sample system and identified system modifications to optimize performance.

  20. A microfluidic device based on an evaporation-driven micropump.

    PubMed

    Nie, Chuan; Frijns, Arjan J H; Mandamparambil, Rajesh; den Toonder, Jaap M J

    2015-04-01

    In this paper we introduce a microfluidic device ultimately to be applied as a wearable sweat sensor. We show proof-of-principle of the microfluidic functions of the device, namely fluid collection and continuous fluid flow pumping. A filter-paper based layer, that eventually will form the interface between the device and the skin, is used to collect the fluid (e.g., sweat) and enter this into the microfluidic device. A controllable evaporation driven pump is used to drive a continuous fluid flow through a microfluidic channel and over a sensing area. The key element of the pump is a micro-porous membrane mounted at the channel outlet, such that a pore array with a regular hexagonal arrangement is realized through which the fluid evaporates, which drives the flow within the channel. The system is completely fabricated on flexible polyethylene terephthalate (PET) foils, which can be the backbone material for flexible electronics applications, such that it is compatible with volume production approaches like Roll-to-Roll technology. The evaporation rate can be controlled by varying the outlet geometry and the temperature. The generated flows are analyzed experimentally using Particle Tracking Velocimetry (PTV). Typical results show that with 1 to 61 pores (diameter = 250 μm, pitch = 500 μm) flow rates of 7.3 × 10(-3) to 1.2 × 10(-1) μL/min are achieved. When the surface temperature is increased by 9.4°C, the flow rate is increased by 130 %. The results are theoretically analyzed using an evaporation model that includes an evaporation correction factor. The theoretical and experimental results are in good agreement.

  1. Microfluidic interface technology based on stereolithography for glass-based lab-on-a-chips.

    PubMed

    Han, Song-I; Han, Ki-Ho

    2013-01-01

    As lab-on-a-chips are developed for on-chip integrated microfluidic systems with multiple functions, the development of microfluidic interface (MFI) technology to enable integration of complex microfluidic systems becomes increasingly important and faces many technical difficulties. Such difficulties include the need for more complex structures, the possibility of biological or chemical cross-contamination between functional compartments, and the possible need for individual compartments fabricated from different substrate materials. This chapter introduces MFI technology, based on rapid stereolithography, for a glass-based miniaturized genetic sample preparation system, as an example of a complex lab-on-a-chip that could include functional elements such as; solid-phase DNA extraction, polymerase chain reaction, and capillary electrophoresis. To enable the integration of a complex lab-on-a-chip system in a single chip, MFI technology based on stereolithography provides a simple method for realizing complex arrangements of one-step plug-in microfluidic interconnects, integrated microvalves for microfluidic control, and optical windows for on-chip optical processes.

  2. Streamline-based microfluidic device

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Kasdan, Harvey (Inventor)

    2013-01-01

    The present invention provides a streamline-based device and a method for using the device for continuous separation of particles including cells in biological fluids. The device includes a main microchannel and an array of side microchannels disposed on a substrate. The main microchannel has a plurality of stagnation points with a predetermined geometric design, for example, each of the stagnation points has a predetermined distance from the upstream edge of each of the side microchannels. The particles are separated and collected in the side microchannels.

  3. Microeddies as microfluidic elements: Reactors and cell traps

    NASA Astrophysics Data System (ADS)

    Lutz, Barry R.

    2003-07-01

    Microfluidic applications generally seek to control fluids, reagents, and objects at the microscale, and the development of individual components to either mimic traditional processes or to realize novel processes remains important to development in the field. This work focuses on microscopic acoustic streaming eddies as hydrodynamic microreactors and traps for microscopic objects including motile cells. Four microeddies were created around a stationary cylinder (radius 406 mum) by oscillating the surrounding fluid (audible frequency). Concentration images measured using Raman spectroscopy show that eddies act as hydrodynamic "vessels" for reagents dosed from the cylinder (an electrode), and the oscillation amplitude and reagent dosing rate quantitatively controlled the eddy composition. These "vessels" were used to quantify the antioxidant properties of vitamin C against an electrogenerated oxidant. Material balances over the eddy yield a reactor model identical to a two-input CSTR (i.e., perfect backmixing model); and the mean reactor residence time, Damkohler number, and reagent feed ratio are quantitatively related to eddy properties. The CSTR model fit to data for a range of reactor conversions gives the homogeneous rate constant for vitamin C oxidation, showing that the composition of microeddy reactors can be controlled quantitatively. The cylinder and oscillating fluid were incorporated into microscale channels to provide a route to integration with more conventional microfluidic applications. Detailed flow measurements describe the three-dimensional acoustic streaming flow structure, and theory relates measured flow features to frequency and geometry through simple scaling. These channel-based microeddies show an impressive ability to trap microscopic objects at fixed positions in three-dimensions. Microeddies formed in a microchannel (425 mum depth) collect and trap motile phytoplankton (P. micans) and microspheres (˜20--0 mum diameter). The trap

  4. Droplet Microfluidics for Chip-Based Diagnostics

    PubMed Central

    Kaler, Karan V. I. S.; Prakash, Ravi

    2014-01-01

    Droplet microfluidics (DMF) is a fluidic handling technology that enables precision control over dispensing and subsequent manipulation of droplets in the volume range of microliters to picoliters, on a micro-fabricated device. There are several different droplet actuation methods, all of which can generate external stimuli, to either actively or passively control the shape and positioning of fluidic droplets over patterned substrates. In this review article, we focus on the operation and utility of electro-actuation-based DMF devices, which utilize one or more micro-/nano-patterned substrates to facilitate electric field-based handling of chemical and/or biological samples. The underlying theory of DMF actuations, device fabrication methods and integration of optical and opto-electronic detectors is discussed in this review. Example applications of such electro-actuation-based DMF devices have also been included, illustrating the various actuation methods and their utility in conducting chip-based laboratory and clinical diagnostic assays. PMID:25490590

  5. Microfluidics-Based PCR for Fusion Transcript Detection.

    PubMed

    Chen, Hui

    2016-01-01

    The microfluidic technology allows the production of network of submillimeter-size fluidic channels and reservoirs in a variety of material systems. The microfluidic-based polymerase chain reaction (PCR) allows automated multiplexing of multiple samples and multiple assays simultaneously within a network of microfluidic channels and chambers that are co-ordinated in controlled fashion by the valves. The individual PCR reaction is performed in nanoliter volume, which allows testing on samples with limited DNA and RNA. The microfluidics devices are used in various types of PCR such as digital PCR and single molecular emulsion PCR for genotyping, gene expression, and miRNA expression. In this chapter, the use of a microfluidics-based PCR for simultaneous screening of 14 known fusion transcripts in patients with leukemia is described. PMID:26843050

  6. Microfluidics-Based PCR for Fusion Transcript Detection.

    PubMed

    Chen, Hui

    2016-01-01

    The microfluidic technology allows the production of network of submillimeter-size fluidic channels and reservoirs in a variety of material systems. The microfluidic-based polymerase chain reaction (PCR) allows automated multiplexing of multiple samples and multiple assays simultaneously within a network of microfluidic channels and chambers that are co-ordinated in controlled fashion by the valves. The individual PCR reaction is performed in nanoliter volume, which allows testing on samples with limited DNA and RNA. The microfluidics devices are used in various types of PCR such as digital PCR and single molecular emulsion PCR for genotyping, gene expression, and miRNA expression. In this chapter, the use of a microfluidics-based PCR for simultaneous screening of 14 known fusion transcripts in patients with leukemia is described.

  7. Microfluidic System for Solution Array Based Bioassays

    SciTech Connect

    Dougherty, G M; Tok, J B; Pannu, S S; Rose, K A

    2006-02-10

    The objective of this project is to demonstrate new enabling technology for multiplex biodetection systems that are flexible, miniaturizable, highly automated, low cost, and high performance. It builds on prior successes at LLNL with particle-based solution arrays, such as those used in the Autonomous Pathogen Detection System (APDS) successfully field deployed to multiple locations nationwide. We report the development of a multiplex solution array immunoassay based upon engineered metallic nanorod particles. Nanobarcodes{reg_sign} particles are fabricated by sequential electrodeposition of dissimilar metals within porous alumina templates, yielding optically encoded striping patterns that can be read using standard laboratory microscope optics and PC-based image processing software. The addition of self-assembled monolayer (SAM) coatings and target-specific antibodies allows each encoded class of nanorod particles to be directed against a different antigen target. A prototype assay panel directed against bacterial, viral, and soluble protein targets demonstrates simultaneous detection at sensitivities comparable to state of the art immunoassays, with minimal cross-reactivity. Studies have been performed to characterize the colloidal properties (zeta potential) of the suspended nanorod particles as a function of pH, the ionic strength of the suspending solution, and surface functionalization state. Additional studies have produced means for the non-contact manipulation of the particles, including the insertion of magnetic nickel stripes within the encoding pattern, and control via externally applied electromagnetic fields. Using the results of these studies, the novel Nanobarcodes{reg_sign} based assay was implemented in a prototype automated system with the sample processing functions and optical readout performed on a microfluidic card. The unique physical properties of the nanorod particles enable the development of integrated microfluidic systems for

  8. Reciprocating flow-based centrifugal microfluidics mixer.

    PubMed

    Noroozi, Zahra; Kido, Horacio; Micic, Miodrag; Pan, Hansheng; Bartolome, Christian; Princevac, Marko; Zoval, Jim; Madou, Marc

    2009-07-01

    Proper mixing of reagents is of paramount importance for an efficient chemical reaction. While on a large scale there are many good solutions for quantitative mixing of reagents, as of today, efficient and inexpensive fluid mixing in the nanoliter and microliter volume range is still a challenge. Complete, i.e., quantitative mixing is of special importance in any small-scale analytical application because the scarcity of analytes and the low volume of the reagents demand efficient utilization of all available reaction components. In this paper we demonstrate the design and fabrication of a novel centrifugal force-based unit for fast mixing of fluids in the nanoliter to microliter volume range. The device consists of a number of chambers (including two loading chambers, one pressure chamber, and one mixing chamber) that are connected through a network of microchannels, and is made by bonding a slab of polydimethylsiloxane (PDMS) to a glass slide. The PDMS slab was cast using a SU-8 master mold fabricated by a two-level photolithography process. This microfluidic mixer exploits centrifugal force and pneumatic pressure to reciprocate the flow of fluid samples in order to minimize the amount of sample and the time of mixing. The process of mixing was monitored by utilizing the planar laser induced fluorescence (PLIF) technique. A time series of high resolution images of the mixing chamber were analyzed for the spatial distribution of light intensities as the two fluids (suspension of red fluorescent particles and water) mixed. Histograms of the fluorescent emissions within the mixing chamber during different stages of the mixing process were created to quantify the level of mixing of the mixing fluids. The results suggest that quantitative mixing was achieved in less than 3 min. This device can be employed as a stand alone mixing unit or may be integrated into a disk-based microfluidic system where, in addition to mixing, several other sample preparation steps may be

  9. Electrocoalescence based serial dilution of microfluidic droplets.

    PubMed

    Bhattacharjee, Biddut; Vanapalli, Siva A

    2014-07-01

    Dilution of microfluidic droplets where the concentration of a reagent is incrementally varied is a key operation in drop-based biological analysis. Here, we present an electrocoalescence based dilution scheme for droplets based on merging between moving and parked drops. We study the effects of fluidic and electrical parameters on the dilution process. Highly consistent coalescence and fine resolution in dilution factor are achieved with an AC signal as low as 10 V even though the electrodes are separated from the fluidic channel by insulator. We find that the amount of material exchange between the droplets per coalescence event is high for low capillary number. We also observe different types of coalescence depending on the flow and electrical parameters and discuss their influence on the rate of dilution. Overall, we find the key parameter governing the rate of dilution is the duration of coalescence between the moving and parked drop. The proposed design is simple incorporating the channel electrodes in the same layer as that of the fluidic channels. Our approach allows on-demand and controlled dilution of droplets and is simple enough to be useful for assays that require serial dilutions. The approach can also be useful for applications where there is a need to replace or wash fluid from stored drops.

  10. Electrocoalescence based serial dilution of microfluidic droplets

    PubMed Central

    Bhattacharjee, Biddut; Vanapalli, Siva A.

    2014-01-01

    Dilution of microfluidic droplets where the concentration of a reagent is incrementally varied is a key operation in drop-based biological analysis. Here, we present an electrocoalescence based dilution scheme for droplets based on merging between moving and parked drops. We study the effects of fluidic and electrical parameters on the dilution process. Highly consistent coalescence and fine resolution in dilution factor are achieved with an AC signal as low as 10 V even though the electrodes are separated from the fluidic channel by insulator. We find that the amount of material exchange between the droplets per coalescence event is high for low capillary number. We also observe different types of coalescence depending on the flow and electrical parameters and discuss their influence on the rate of dilution. Overall, we find the key parameter governing the rate of dilution is the duration of coalescence between the moving and parked drop. The proposed design is simple incorporating the channel electrodes in the same layer as that of the fluidic channels. Our approach allows on-demand and controlled dilution of droplets and is simple enough to be useful for assays that require serial dilutions. The approach can also be useful for applications where there is a need to replace or wash fluid from stored drops. PMID:25379096

  11. Polyurethane-based microfluidic devices for blood contacting applications.

    PubMed

    Wu, Wen-I; Sask, Kyla N; Brash, John L; Selvaganapathy, P Ravi

    2012-03-01

    Protein adsorption on PDMS surfaces poses a significant challenge in microfluidic devices that come into contact with biofluids such as blood. Polyurethane (PU) is often used for the construction of medical devices, but despite having several attractive properties for biointerfacing, it has not been widely used in microfluidic devices. In this work we developed two new fabrication processes for making thin, transparent and flexible PU-based microfluidic devices. Methods for the fabrication and bonding of microchannels, the integration of fluidic interconnections and surface modification with hydrophilic polyethylene oxide (PEO) to reduce protein adsorption are detailed. Using these processes, microchannels were produced having high transparency (96% that of glass in visible light), high bond strength (326.4 kPa) and low protein adsorption (80% reduction in fibrinogen adsorption vs. unmodified PDMS), which is critical for prevention of fouling. Our findings indicate that PEO modified PU could serve as an effective alternative to PDMS in blood contacting microfluidic applications.

  12. Thermally induced light-driven microfluidics using a MOEMS-based laser scanner for particle manipulation

    NASA Astrophysics Data System (ADS)

    Kremer, Matthias P.; Tortschanoff, Andreas

    2014-03-01

    One key challenge in the field of microfluidics and lab-on-a-chip experiments for biological or chemical applications is the remote manipulation of fluids, droplets and particles. These can be volume elements of reactants, particles coated with markers, cells or many others. Light-driven microfluidics is one way of accomplishing this challenge. In our work, we manipulated micrometre sized polystyrene beads in a microfluidic environment by inducing thermal flows. Therefore, the beads were held statically in an unstructured microfluidic chamber, containing a dyed watery solution. Inside this chamber, the beads were moved along arbitrary trajectories on a micrometre scale. The experiments were performed, using a MOEMS (micro-opto-electro-mechanical-systems)-based laser scanner with a variable focal length. This scanner system is integrated in a compact device, which is flexibly applicable to various microscope setups. The device utilizes a novel approach for varying the focal length, using an electrically tunable lens. A quasi statically driven MOEMS mirror is used for beam steering. The combination of a tunable lens and a dual axis micromirror makes the device very compact and robust and is capable of positioning the laser focus at any arbitrary location within a three dimensional working space. Hence, the developed device constitutes a valuable extension to manually executed microfluidic lab-on-chip experiments.

  13. Nanopillar based electrochemical biosensor for monitoring microfluidic based cell culture

    NASA Astrophysics Data System (ADS)

    Gangadharan, Rajan

    In-vitro assays using cultured cells have been widely performed for studying many aspects of cell biology and cell physiology. These assays also form the basis of cell based sensing. Presently, analysis procedures on cell cultures are done using techniques that are not integrated with the cell culture system. This approach makes continuous and real-time in-vitro measurements difficult. It is well known that the availability of continuous online measurements for extended periods of time will help provide a better understanding and will give better insight into cell physiological events. With this motivation we developed a highly sensitive, selective and stable microfluidic electrochemical glucose biosensor to make continuous glucose measurements in cell culture media. The performance of the microfluidic biosensor was enhanced by adding 3D nanopillars to the electrode surfaces. The microfluidic glucose biosensor consisted of three electrodes---Enzyme electrode, Working electrode, and Counter electrode. All these electrodes were enhanced with nanopillars and were optimized in their respective own ways to obtain an effective and stable biosensing device in cell culture media. For example, the 'Enzyme electrode' was optimized for enzyme immobilization via either a polypyrrole-based or a self-assembled-monolayer-based immobilization method, and the 'Working electrode' was modified with Prussian Blue or electropolymerized Neutral Red to reduce the working potential and also the interference from other interacting electro-active species. The complete microfluidic biosensor was tested for its ability to monitor glucose concentration changes in cell culture media. The significance of this work is multifold. First, the developed device may find applications in continuous and real-time measurements of glucose concentrations in in-vitro cell cultures. Second, the development of a microfluidic biosensor will bring technical know-how toward constructing continuous glucose

  14. Microfluidic systems for stem cell-based neural tissue engineering.

    PubMed

    Karimi, Mahdi; Bahrami, Sajad; Mirshekari, Hamed; Basri, Seyed Masoud Moosavi; Nik, Amirala Bakhshian; Aref, Amir R; Akbari, Mohsen; Hamblin, Michael R

    2016-07-01

    Neural tissue engineering aims at developing novel approaches for the treatment of diseases of the nervous system, by providing a permissive environment for the growth and differentiation of neural cells. Three-dimensional (3D) cell culture systems provide a closer biomimetic environment, and promote better cell differentiation and improved cell function, than could be achieved by conventional two-dimensional (2D) culture systems. With the recent advances in the discovery and introduction of different types of stem cells for tissue engineering, microfluidic platforms have provided an improved microenvironment for the 3D-culture of stem cells. Microfluidic systems can provide more precise control over the spatiotemporal distribution of chemical and physical cues at the cellular level compared to traditional systems. Various microsystems have been designed and fabricated for the purpose of neural tissue engineering. Enhanced neural migration and differentiation, and monitoring of these processes, as well as understanding the behavior of stem cells and their microenvironment have been obtained through application of different microfluidic-based stem cell culture and tissue engineering techniques. As the technology advances it may be possible to construct a "brain-on-a-chip". In this review, we describe the basics of stem cells and tissue engineering as well as microfluidics-based tissue engineering approaches. We review recent testing of various microfluidic approaches for stem cell-based neural tissue engineering.

  15. A novel microfluidic chip based on fiber sensor

    NASA Astrophysics Data System (ADS)

    Su, Bo; Duan, Guoteng; Han, Xue

    2013-08-01

    We have fabricated a novel microfluidic chip based on fiber sensor with casting PDMS method. The optical fiber is used to transmit excitation light, so the diameter of the excitation beam is decreased to 93μm. In order to improve the coupling efficiency of the excitation light in the fiber, the optical fiber collimation device is used to couple beam. The microfluidic chip consists of multimode optical fiber, PDMS cover slab and PDMS base slab. The mould of cover slab is made through twice exposal, however the base slab is achieved using once exposal only. The depths of microfluidic channel and optical fiber channel in the PDMS cover slab are 50μm and 90μm, respectively, and the optical fiber channel in the PDMS base slab is only 40μm. This design can make the centers of the microfluidic channel and the fiber channel in the same point, so the microfluidic channel and the optical fiber can be aimed at easily. In addition, the size of microfluidic channel depth is near the size of light spot of optical fiber, so the detection sensitivity is improved without using the optical focusing system. The detection system of the microfluidic chip is manufactured and it composed of high voltage modules, darkroom, LED light source, photomultiplier and data acquisition circuit, moreover, the software of the detection system is developed. The high voltage modules with four 2kV are used to control the sample amount in the separation channel, so the sensitivity is improved. The microfluidic chip is placed in the darkroom to avoid the interference of external light. The high brightness blue light emitting diode (LED) is used as excitation light sources for inducing fluorescence detection through coupling the LED light into the optical fiber. The photomultiplier is used to amplify the fluorescence signals and the function of data acquisition circuit is data collection and data processing. Under the control of software, the experiment process can be implemented easily. As an

  16. Three-Dimensional Printing Based Hybrid Manufacturing of Microfluidic Devices

    PubMed Central

    Shen, Richang; Gurkan, Umut A.

    2016-01-01

    Microfluidic platforms offer revolutionary and practical solutions to challenging problems in biology and medicine. Even though traditional micro/nanofabrication technologies expedited the emergence of the microfluidics field, recent advances in advanced additive manufacturing hold significant potential for single-step, stand-alone microfluidic device fabrication. One such technology, which holds a significant promise for next generation microsystem fabrication is three-dimensional (3D) printing. Presently, building 3D printed stand-alone microfluidic devices with fully embedded microchannels for applications in biology and medicine has the following challenges: (i) limitations in achievable design complexity, (ii) need for a wider variety of transparent materials, (iii) limited z-resolution, (iv) absence of extremely smooth surface finish, and (v) limitations in precision fabrication of hollow and void sections with extremely high surface area to volume ratio. We developed a new way to fabricate stand-alone microfluidic devices with integrated manifolds and embedded microchannels by utilizing a 3D printing and laser micromachined lamination based hybrid manufacturing approach. In this new fabrication method, we exploit the minimized fabrication steps enabled by 3D printing, and reduced assembly complexities facilitated by laser micromachined lamination method. The new hybrid fabrication method enables key features for advanced microfluidic system architecture: (i) increased design complexity in 3D, (ii) improved control over microflow behavior in all three directions and in multiple layers, (iii) transverse multilayer flow and precisely integrated flow distribution, and (iv) enhanced transparency for high resolution imaging and analysis. Hybrid manufacturing approaches hold great potential in advancing microfluidic device fabrication in terms of standardization, fast production, and user-independent manufacturing. PMID:27512530

  17. Microfluidic System for Automated Cell-based Assays.

    PubMed

    Lee, Philip J; Ghorashian, Navid; Gaige, Terry A; Hung, Paul J

    2007-12-01

    Microfluidic cell culture is a promising technology for applications in the drug screening industry. Key benefits include improved biological function, higher quality cell-based data, reduced reagent consumption, and lower cost. In this work, we demonstrate how a microfluidic cell culture design was adapted to be compatible with the standard 96-well plate format. Key design features include the elimination of tubing and connectors, the ability to maintain long term continuous perfusion cell culture using a passive gravity driven pump, and direct analysis on the outlet wells of the microfluidic plate. A single microfluidic culture plate contained 8 independent flow units, each with 10(4) cells at a flow rate of 50 μl/day (6 minute residence time). The cytotoxicity of the anti-cancer drug etoposide was measured on HeLa cells cultured in this format, using a commercial lactate dehydrogenase (LDH) plate reader assay. The integration of microfluidic cell culture methods with commercial automation capabilities offers an exciting opportunity for improved cell-based screening.

  18. Parameter screening in microfluidics based hydrodynamic single-cell trapping.

    PubMed

    Deng, B; Li, X F; Chen, D Y; You, L D; Wang, J B; Chen, J

    2014-01-01

    Microfluidic cell-based arraying technology is widely used in the field of single-cell analysis. However, among developed devices, there is a compromise between cellular loading efficiencies and trapped cell densities, which deserves further analysis and optimization. To address this issue, the cell trapping efficiency of a microfluidic device with two parallel micro channels interconnected with cellular trapping sites was studied in this paper. By regulating channel inlet and outlet status, the microfluidic trapping structure can mimic key functioning units of previously reported devices. Numerical simulations were used to model this cellular trapping structure, quantifying the effects of channel on/off status and trapping structure geometries on the cellular trapping efficiency. Furthermore, the microfluidic device was fabricated based on conventional microfabrication and the cellular trapping efficiency was quantified in experiments. Experimental results showed that, besides geometry parameters, cellular travelling velocities and sizes also affected the single-cell trapping efficiency. By fine tuning parameters, more than 95% of trapping sites were taken by individual cells. This study may lay foundation in further studies of single-cell positioning in microfluidics and push forward the study of single-cell analysis.

  19. Microfluidic chip-based technologies: emerging platforms for cancer diagnosis

    PubMed Central

    2013-01-01

    The development of early and personalized diagnostic protocols is considered the most promising avenue to decrease mortality from cancer and improve outcome. The emerging microfluidic-based analyzing platforms hold high promises to fulfill high-throughput and high-precision screening with reduced equipment cost and low analysis time, as compared to traditional bulky counterparts in bench-top laboratories. This article overviewed the potential applications of microfluidic technologies for detection and monitoring of cancer through nucleic acid and protein biomarker analysis. The implications of the technologies in cancer cytology that can provide functional personalized diagnosis were highlighted. Finally, the future niches for using microfluidic-based systems in tumor screening were briefly discussed. PMID:24070124

  20. Micro Electromechanical Systems (MEMS) Based Microfluidic Devices for Biomedical Applications

    PubMed Central

    Ashraf, Muhammad Waseem; Tayyaba, Shahzadi; Afzulpurkar, Nitin

    2011-01-01

    Micro Electromechanical Systems (MEMS) based microfluidic devices have gained popularity in biomedicine field over the last few years. In this paper, a comprehensive overview of microfluidic devices such as micropumps and microneedles has been presented for biomedical applications. The aim of this paper is to present the major features and issues related to micropumps and microneedles, e.g., working principles, actuation methods, fabrication techniques, construction, performance parameters, failure analysis, testing, safety issues, applications, commercialization issues and future prospects. Based on the actuation mechanisms, the micropumps are classified into two main types, i.e., mechanical and non-mechanical micropumps. Microneedles can be categorized according to their structure, fabrication process, material, overall shape, tip shape, size, array density and application. The presented literature review on micropumps and microneedles will provide comprehensive information for researchers working on design and development of microfluidic devices for biomedical applications. PMID:21747700

  1. Orientation-Based Control of Microfluidics

    PubMed Central

    Norouzi, Nazila; Bhakta, Heran C.; Grover, William H.

    2016-01-01

    Most microfluidic chips utilize off-chip hardware (syringe pumps, computer-controlled solenoid valves, pressure regulators, etc.) to control fluid flow on-chip. This expensive, bulky, and power-consuming hardware severely limits the utility of microfluidic instruments in resource-limited or point-of-care contexts, where the cost, size, and power consumption of the instrument must be limited. In this work, we present a technique for on-chip fluid control that requires no off-chip hardware. We accomplish this by using inert compounds to change the density of one fluid in the chip. If one fluid is made 2% more dense than a second fluid, when the fluids flow together under laminar flow the interface between the fluids quickly reorients to be orthogonal to Earth’s gravitational force. If the channel containing the fluids then splits into two channels, the amount of each fluid flowing into each channel is precisely determined by the angle of the channels relative to gravity. Thus, any fluid can be routed in any direction and mixed in any desired ratio on-chip simply by holding the chip at a certain angle. This approach allows for sophisticated control of on-chip fluids with no off-chip control hardware, significantly reducing the cost of microfluidic instruments in point-of-care or resource-limited settings. PMID:26950700

  2. Orientation-Based Control of Microfluidics.

    PubMed

    Norouzi, Nazila; Bhakta, Heran C; Grover, William H

    2016-01-01

    Most microfluidic chips utilize off-chip hardware (syringe pumps, computer-controlled solenoid valves, pressure regulators, etc.) to control fluid flow on-chip. This expensive, bulky, and power-consuming hardware severely limits the utility of microfluidic instruments in resource-limited or point-of-care contexts, where the cost, size, and power consumption of the instrument must be limited. In this work, we present a technique for on-chip fluid control that requires no off-chip hardware. We accomplish this by using inert compounds to change the density of one fluid in the chip. If one fluid is made 2% more dense than a second fluid, when the fluids flow together under laminar flow the interface between the fluids quickly reorients to be orthogonal to Earth's gravitational force. If the channel containing the fluids then splits into two channels, the amount of each fluid flowing into each channel is precisely determined by the angle of the channels relative to gravity. Thus, any fluid can be routed in any direction and mixed in any desired ratio on-chip simply by holding the chip at a certain angle. This approach allows for sophisticated control of on-chip fluids with no off-chip control hardware, significantly reducing the cost of microfluidic instruments in point-of-care or resource-limited settings. PMID:26950700

  3. Orientation-Based Control of Microfluidics.

    PubMed

    Norouzi, Nazila; Bhakta, Heran C; Grover, William H

    2016-01-01

    Most microfluidic chips utilize off-chip hardware (syringe pumps, computer-controlled solenoid valves, pressure regulators, etc.) to control fluid flow on-chip. This expensive, bulky, and power-consuming hardware severely limits the utility of microfluidic instruments in resource-limited or point-of-care contexts, where the cost, size, and power consumption of the instrument must be limited. In this work, we present a technique for on-chip fluid control that requires no off-chip hardware. We accomplish this by using inert compounds to change the density of one fluid in the chip. If one fluid is made 2% more dense than a second fluid, when the fluids flow together under laminar flow the interface between the fluids quickly reorients to be orthogonal to Earth's gravitational force. If the channel containing the fluids then splits into two channels, the amount of each fluid flowing into each channel is precisely determined by the angle of the channels relative to gravity. Thus, any fluid can be routed in any direction and mixed in any desired ratio on-chip simply by holding the chip at a certain angle. This approach allows for sophisticated control of on-chip fluids with no off-chip control hardware, significantly reducing the cost of microfluidic instruments in point-of-care or resource-limited settings.

  4. Microfluidic-based Time-kill Kinetic Assay

    PubMed Central

    Billings, Nicole; Rusconi, Roberto; Stocker, Roman; Ribbeck, Katharina

    2016-01-01

    In many environments, bacteria favor a sessile, surface-attached community lifestyle. These communities, termed biofilms, are ubiquitous among many species of bacteria. In some cases, biofilms form under flow conditions. Flow chambers, and in particular microfluidic channels, can be used to observe biofilm development and physiological effects while varying nutrient conditions, flow velocities, or introducing antimicrobials to the biofilm in real time. Here, we describe a microfluidic-based kill-kinetics assay for the observation of antimicrobial effects on biofilms under flowing conditions.

  5. Measurement of the hematocrit using paper-based microfluidic devices.

    PubMed

    Berry, Samuel B; Fernandes, Syrena C; Rajaratnam, Anjali; DeChiara, Nicholas S; Mace, Charles R

    2016-10-01

    The quantification of blood cells provides critical information about a patient's health status. Sophisticated analytical equipment, such as hematology analyzers, have been developed to perform these measurements, but limited-resource settings often lack the infrastructure required to purchase, operate, and maintain instrumentation. To address these practical challenges, paper-based microfluidic devices have emerged as a platform to develop diagnostic assays specifically for use at the point-of-care. To date, paper-based microfluidic devices have been used broadly in diagnostic assays that apply immunoassay, clinical chemistry, and electrochemistry techniques. The analysis of cells, however, has been largely overlooked. In this communication, we demonstrate a paper-based microfluidic device that enables the controlled transport of red blood cells (RBCs) and the measurement of the hematocrit-the ratio of RBC packed cell volume to total volume of whole blood. The properties of paper, device treatment, and device geometry affect the overall extent and reproducibility of transport of RBCs. Ultimately, we developed an inexpensive (US$0.03 per device) thermometer-styled device where the distance traveled by RBCs is proportional to the hematocrit. These results provide a foundation for the design of paper-based microfluidic devices that enable the separation and detection of cells in limited-resource settings. PMID:27604182

  6. Measurement of the hematocrit using paper-based microfluidic devices.

    PubMed

    Berry, Samuel B; Fernandes, Syrena C; Rajaratnam, Anjali; DeChiara, Nicholas S; Mace, Charles R

    2016-10-01

    The quantification of blood cells provides critical information about a patient's health status. Sophisticated analytical equipment, such as hematology analyzers, have been developed to perform these measurements, but limited-resource settings often lack the infrastructure required to purchase, operate, and maintain instrumentation. To address these practical challenges, paper-based microfluidic devices have emerged as a platform to develop diagnostic assays specifically for use at the point-of-care. To date, paper-based microfluidic devices have been used broadly in diagnostic assays that apply immunoassay, clinical chemistry, and electrochemistry techniques. The analysis of cells, however, has been largely overlooked. In this communication, we demonstrate a paper-based microfluidic device that enables the controlled transport of red blood cells (RBCs) and the measurement of the hematocrit-the ratio of RBC packed cell volume to total volume of whole blood. The properties of paper, device treatment, and device geometry affect the overall extent and reproducibility of transport of RBCs. Ultimately, we developed an inexpensive (US$0.03 per device) thermometer-styled device where the distance traveled by RBCs is proportional to the hematocrit. These results provide a foundation for the design of paper-based microfluidic devices that enable the separation and detection of cells in limited-resource settings.

  7. Standing surface acoustic wave (SSAW)-based microfluidic cytometer

    PubMed Central

    Chen, Yuchao; Nawaz, Ahmad Ahsan; Zhao, Yanhui; Huang, Po-Hsun; McCoy, J. Phillip; Levine, Stewart; Wang, Lin; Huang, Tony Jun

    2014-01-01

    The development of microfluidic chip-based cytometers has become an important area due to their advantages of compact size and low cost. Herein, we demonstrate a sheathless microfluidic cytometer which integrates a standing surface acoustic wave (SSAW)-based microdevice capable of 3D particle/cell focusing with a laser-induced fluorescence (LIF) detection system. Using SSAW, our microfluidic cytometer was able to continuously focus microparticles/cells at the pressure node inside a microchannel. Flow cytometry was successfully demonstrated using this system with a coefficient of variation (CV) of less than 10% at a throughput of ~1000 events/s when calibration beads were used. We also demonstrated that fluorescently labeled human promyelocytic leukemia cells (HL-60) could be effectively focused and detected with our SSAW-based system. This SSAW-based microfluidic cytometer did not require any sheath flows or complex structures, and it allowed for simple operation over a wide range of sample flow rates. Moreover, with the gentle, bio-compatible nature of low-power surface acoustic waves, this technique is expected to be able to preserve the integrity of cells and other bioparticles. PMID:24406848

  8. Characterization of light-controlled Volvox as movable microvalve element assembled in multilayer microfluidic device

    NASA Astrophysics Data System (ADS)

    Nagai, Moeto; Oguri, Michihito; Shibata, Takayuki

    2015-06-01

    We report a model of a light-controlled microvalve driven by Volvox and characterization of Volvox as a movable microvalve element in a multilayer microfluidic device for development of the valve. First, a three-layer microfluidic device having a single through-hole was fabricated by a replica molding process. The fabricated devices met the requirements for experiments using Volvox. Second, we used the phototactic behavior of V. carteri and controlled its motions in a microchannel by illuminating light. V. carteri migrated to the light source in the channel. Third, a colony of V. carteri was placed on a microhole, and the colony was found to stop the flow compared to the flow without Volvox on the hole. The integration of all of the obtained findings is expected to lead to the fabrication of the proposed microvalve.

  9. Computational Analysis of Enhanced Magnetic Bioseparation in Microfluidic Systems with Flow-Invasive Magnetic Elements

    PubMed Central

    Khashan, S. A.; Alazzam, A.; Furlani, E. P.

    2014-01-01

    A microfluidic design is proposed for realizing greatly enhanced separation of magnetically-labeled bioparticles using integrated soft-magnetic elements. The elements are fixed and intersect the carrier fluid (flow-invasive) with their length transverse to the flow. They are magnetized using a bias field to produce a particle capture force. Multiple stair-step elements are used to provide efficient capture throughout the entire flow channel. This is in contrast to conventional systems wherein the elements are integrated into the walls of the channel, which restricts efficient capture to limited regions of the channel due to the short range nature of the magnetic force. This severely limits the channel size and hence throughput. Flow-invasive elements overcome this limitation and enable microfluidic bioseparation systems with superior scalability. This enhanced functionality is quantified for the first time using a computational model that accounts for the dominant mechanisms of particle transport including fully-coupled particle-fluid momentum transfer. PMID:24931437

  10. Computational analysis of enhanced magnetic bioseparation in microfluidic systems with flow-invasive magnetic elements.

    PubMed

    Khashan, S A; Alazzam, A; Furlani, E P

    2014-01-01

    A microfluidic design is proposed for realizing greatly enhanced separation of magnetically-labeled bioparticles using integrated soft-magnetic elements. The elements are fixed and intersect the carrier fluid (flow-invasive) with their length transverse to the flow. They are magnetized using a bias field to produce a particle capture force. Multiple stair-step elements are used to provide efficient capture throughout the entire flow channel. This is in contrast to conventional systems wherein the elements are integrated into the walls of the channel, which restricts efficient capture to limited regions of the channel due to the short range nature of the magnetic force. This severely limits the channel size and hence throughput. Flow-invasive elements overcome this limitation and enable microfluidic bioseparation systems with superior scalability. This enhanced functionality is quantified for the first time using a computational model that accounts for the dominant mechanisms of particle transport including fully-coupled particle-fluid momentum transfer. PMID:24931437

  11. Assessment of mesoscopic particle-based methods in microfluidic geometries

    NASA Astrophysics Data System (ADS)

    Zhao, Tongyang; Wang, Xiaogong; Jiang, Lei; Larson, Ronald G.

    2013-08-01

    We assess the accuracy and efficiency of two particle-based mesoscopic simulation methods, namely, Dissipative Particle Dynamics (DPD) and Stochastic Rotation Dynamics (SRD) for predicting a complex flow in a microfluidic geometry. Since both DPD and SRD use soft or weakly interacting particles to carry momentum, both methods contain unavoidable inertial effects and unphysically high fluid compressibility. To assess these effects, we compare the predictions of DPD and SRD for both an exact Stokes-flow solution and nearly exact solutions at finite Reynolds numbers from the finite element method for flow in a straight channel with periodic slip boundary conditions. This flow represents a periodic electro-osmotic flow, which is a complex flow with an analytical solution for zero Reynolds number. We find that SRD is roughly ten-fold faster than DPD in predicting the flow field, with better accuracy at low Reynolds numbers. However, SRD has more severe problems with compressibility effects than does DPD, which limits the Reynolds numbers attainable in SRD to around 25-50, while DPD can achieve Re higher than this before compressibility effects become too large. However, since the SRD method runs much faster than DPD does, we can afford to enlarge the number of grid cells in SRD to reduce the fluid compressibility at high Reynolds number. Our simulations provide a method to estimate the range of conditions for which SRD or DPD is preferable for mesoscopic simulations.

  12. Bead-based microfluidic immunoassay for diagnosis of Johne's disease

    SciTech Connect

    Wadhwa, Ashutosh; Foote, Robert; Shaw, Robert W; Eda, Shigetoshi

    2012-01-01

    Microfluidics technology offers a platform for development of point-of-care diagnostic devices for various infectious diseases. In this study, we examined whether serodiagnosis of Johne s disease (JD) can be conducted in a bead-based microfluidic assay system. Magnetic micro-beads were coated with antigens of the causative agent of JD, Mycobacterium avium subsp. paratuberculosis. The antigen-coated beads were incubated with serum samples of JD-positive or negative serum samples and then with a fluorescently-labeled secondary antibody (SAB). To confirm binding of serum antibodies to the antigen, the beads were subjected to flow cytometric analysis. Different conditions (dilutions of serum and SAB, types of SAB, and types of magnetic beads) were optimized for a great degree of differentiation between the JD-negative and JD-positive samples. Using the optimized conditions, we tested a well-classified set of 155 serum samples from JD negative and JD-positive cattle by using the bead-based flow cytometric assay. Of 105 JD-positive samples, 63 samples (60%) showed higher antibody binding levels than a cut-off value determined by using antibody binding levels of JD-negative samples. In contrast, only 43-49 JD-positive samples showed higher antibody binding levels than the cut-off value when the samples were tested by commercially-available immunoassays. Microfluidic assays were performed by magnetically immobilizing a number of beads within a microchannel of a glass microchip and detecting antibody on the collected beads by laser-induced fluorescence. Antigen-coated magnetic beads treated with bovine serum sample and fluorescently-labeled SAB were loaded into a microchannel to measure the fluorescence (reflecting level of antibody binding) on the beads in the microfluidic system. When the results of five bovine serum samples obtained with the system were compared to those obtained with the flow cytometer, a high level of correlation (linear regression, r2 = 0.994) was

  13. Microfluidic bead-based diodes with targeted circular microchannels for low Reynolds number applications.

    PubMed

    Sochol, Ryan D; Lu, Albert; Lei, Jonathan; Iwai, Kosuke; Lee, Luke P; Lin, Liwei

    2014-05-01

    Self-regulating fluidic components are critical to the advancement of microfluidic processors for chemical and biological applications, such as sample preparation on chip, point-of-care molecular diagnostics, and implantable drug delivery devices. Although researchers have developed a wide range of components to enable flow rectification in fluidic systems, engineering microfluidic diodes that function at the low Reynolds number (Re) flows and smaller scales of emerging micro/nanofluidic platforms has remained a considerable challenge. Recently, researchers have demonstrated microfluidic diodes that utilize high numbers of suspended microbeads as dynamic resistive elements; however, using spherical particles to block fluid flow through rectangular microchannels is inherently limited. To overcome this issue, here we present a single-layer microfluidic bead-based diode (18 μm in height) that uses a targeted circular-shaped microchannel for the docking of a single microbead (15 μm in diameter) to rectify fluid flow under low Re conditions. Three-dimensional simulations and experimental results revealed that adjusting the docking channel geometry and size to better match the suspended microbead greatly increased the diodicity (Di) performance. Arraying multiple bead-based diodes in parallel was found to adversely affect system efficacy, while arraying multiple diodes in series was observed to enhance device performance. In particular, systems consisting of four microfluidic bead-based diodes with targeted circular-shaped docking channels in series revealed average Di's ranging from 2.72 ± 0.41 to 10.21 ± 1.53 corresponding to Re varying from 0.1 to 0.6.

  14. Towards non- and minimally instrumented, microfluidics-based diagnostic devices†

    PubMed Central

    Weigl, Bernhard; Domingo, Gonzalo; LaBarre, Paul; Gerlach, Jay

    2009-01-01

    In many health care settings, it is uneconomical, impractical, or unaffordable to maintain and access a fully equipped diagnostics laboratory. Examples include home health care, developing-country health care, and emergency situations in which first responders are dealing with pandemics or biowarfare agent release. In those settings, fully disposable diagnostic devices that require no instrument support, reagent, or significant training are well suited. Although the only such technology to have found widespread adoption so far is the immunochromatographic rapid assay strip test, microfluidics holds promise to expand the range of assay technologies that can be performed in formats similar to that of a strip test. In this paper, we review progress toward development of disposable, low-cost, easy-to-use microfluidics-based diagnostics that require no instrument at all. We also present examples of microfluidic functional elements—including mixers, separators, and detectors—as well as complete microfluidic devices that function entirely without any moving parts and external power sources. PMID:19023463

  15. Microfluidics-based laser cell-micropatterning system.

    PubMed

    Erdman, Nick; Schmidt, Lucas; Qin, Wan; Yang, Xiaoqi; Lin, Yongliang; DeSilva, Mauris N; Gao, Bruce Z

    2014-09-01

    The ability to place individual cells into an engineered microenvironment in a cell-culture model is critical for the study of in vivo relevant cell-cell and cell-extracellular matrix interactions. Microfluidics provides a high-throughput modality to inject various cell types into a microenvironment. Laser guided systems provide the high spatial and temporal resolution necessary for single-cell micropatterning. Combining these two techniques, the authors designed, constructed, tested and evaluated (1) a novel removable microfluidics-based cell-delivery biochip and (2) a combined system that uses the novel biochip coupled with a laser guided cell-micropatterning system to place individual cells into both two-dimensional (2D) and three-dimensional (3D) arrays. Cell-suspensions of chick forebrain neurons and glial cells were loaded into their respective inlet reservoirs and traversed the microfluidic channels until reaching the outlet ports. Individual cells were trapped and guided from the outlet of a microfluidic channel to a target site on the cell-culture substrate. At the target site, 2D and 3D pattern arrays were constructed with micron-level accuracy. Single-cell manipulation was accomplished at a rate of 150 μm s(-1) in the radial plane and 50 μm s(-1) in the axial direction of the laser beam. Results demonstrated that a single-cell can typically be patterned in 20-30 s, and that highly accurate and reproducible cellular arrays and systems can be achieved through coupling the microfluidics-based cell-delivery biochip with the laser guided system.

  16. [Advances on enzymes and enzyme inhibitors research based on microfluidic devices].

    PubMed

    Hou, Feng-Hua; Ye, Jian-Qing; Chen, Zuan-Guang; Cheng, Zhi-Yi

    2010-06-01

    With the continuous development in microfluidic fabrication technology, microfluidic analysis has evolved from a concept to one of research frontiers in last twenty years. The research of enzymes and enzyme inhibitors based on microfluidic devices has also made great progress. Microfluidic technology improved greatly the analytical performance of the research of enzymes and enzyme inhibitors by reducing the consumption of reagents, decreasing the analysis time, and developing automation. This review focuses on the development and classification of enzymes and enzyme inhibitors research based on microfluidic devices.

  17. Detection of heavy metal by paper-based microfluidics.

    PubMed

    Lin, Yang; Gritsenko, Dmitry; Feng, Shaolong; Teh, Yi Chen; Lu, Xiaonan; Xu, Jie

    2016-09-15

    Heavy metal pollution has shown great threat to the environment and public health worldwide. Current methods for the detection of heavy metals require expensive instrumentation and laborious operation, which can only be accomplished in centralized laboratories. Various microfluidic paper-based analytical devices have been developed recently as simple, cheap and disposable alternatives to conventional ones for on-site detection of heavy metals. In this review, we first summarize current development of paper-based analytical devices and discuss the selection of paper substrates, methods of device fabrication, and relevant theories in these devices. We then compare and categorize recent reports on detection of heavy metals using paper-based microfluidic devices on the basis of various detection mechanisms, such as colorimetric, fluorescent, and electrochemical methods. To finalize, the future development and trend in this field are discussed. PMID:27131999

  18. Detection of heavy metal by paper-based microfluidics.

    PubMed

    Lin, Yang; Gritsenko, Dmitry; Feng, Shaolong; Teh, Yi Chen; Lu, Xiaonan; Xu, Jie

    2016-09-15

    Heavy metal pollution has shown great threat to the environment and public health worldwide. Current methods for the detection of heavy metals require expensive instrumentation and laborious operation, which can only be accomplished in centralized laboratories. Various microfluidic paper-based analytical devices have been developed recently as simple, cheap and disposable alternatives to conventional ones for on-site detection of heavy metals. In this review, we first summarize current development of paper-based analytical devices and discuss the selection of paper substrates, methods of device fabrication, and relevant theories in these devices. We then compare and categorize recent reports on detection of heavy metals using paper-based microfluidic devices on the basis of various detection mechanisms, such as colorimetric, fluorescent, and electrochemical methods. To finalize, the future development and trend in this field are discussed.

  19. Isotachophoretic preconcenetration on paper-based microfluidic devices.

    PubMed

    Moghadam, Babak Y; Connelly, Kelly T; Posner, Jonathan D

    2014-06-17

    Paper substrates have been widely used to construct point-of-care lateral flow immunoassay (LFIA) diagnostic devices. Paper based microfluidic devices are robust and relatively simple to operate, compared to channel microfluidic devices, which is perhaps their greatest advantage and the reason they have reached a high level of commercial success. However, paper devices may not be well suited for integrated sample preparation, such as sample extraction and preconcentration, which is required in complex samples with low analyte concentrations. In this study, we investigate integration of isotachophoresis (ITP), an electrokinetic preconcentration and extraction technique, onto nitrocellulose-based paper microfluidic devices with the goal to improve the limit of detection of LFIA. ITP has been largely used in traditional capillary based microfluidic devices as a pretreatment method to preconcentrate and separate a variety of ionic compounds. Our findings show that ITP on nitrocellulose is capable of up to a 900 fold increase in initial sample concentration and up to 60% extraction from 100 μL samples and more than 80% extraction from smaller sample volumes. Paper based ITP is challenged by Joule heating and evaporation because it is open to the environment. We achieved high preconcentration by mitigating evaporation induced dispersion using novel cross-shaped device structures that keep the paper hydrated. We show that ITP on the nitrocellulose membrane can be powered and run several times by a small button battery suggesting that it could be integrated to a portable point-of-care diagnostic device. These results highlight the potential of ITP to increase the sensitivity of paper based LFIA under conditions where small analyte concentrations are present in complex biological samples.

  20. Microfluidics for synthesis of peptide-based PET tracers.

    PubMed

    Liu, Yang; Tian, Mei; Zhang, Hong

    2013-01-01

    Positron emission tomography (PET) is a powerful noninvasive tool for acquisition of the physiological parameters in human and animals with the help of PET tracers. Among all the PET tracers, radiolabeled peptides have been widely explored for cancer-related receptor imaging due to their high affinity and specificity to receptors. But radiochemistry procedures for production of peptide-based PET tracers are usually complex, which makes large-scale clinical studies relatively challenging. New radiolabeling technologies which could simplify synthesis and purification procedures, are extremely needed. Over the last decade, microfluidics and lab-on-a-chip (LOC) technology have boomed as powerful tools in the field of organic chemistry, which potentially provide significant help to the PET chemistry. In this minireview, microfluidic radiolabeling technology is described and its application for synthesis of peptide-based PET tracers is summarized and discussed.

  1. Fine-tuning of magnetic and microfluidic viscous forces for specific magnetic bead-based immunocomplex formation

    NASA Astrophysics Data System (ADS)

    Cornaglia, M.; Tekin, H. C.; Lehnert, T.; Gijs, M. A. M.

    2013-08-01

    We investigate the working principle of a novel type of microfluidic sandwich immunoassay, as used for the detection of biomarkers. The heterogeneous assay is based on the specific interactions between an array of functionalized superparamagnetic beads and a flow of secondary superparamagnetic beads that carry the antigens and are simultaneously used as detection labels. We identify the main forces governing the immunoassay performance and develop a combined finite element method/analytical model to predict and control these forces. The clue for the improved assay specificity is in the fine-tuning of inter-bead magnetic dipolar and microfluidic viscous forces, which allows strongly reducing non-specific interactions, while enhancing the specific formation of immunocomplexes. We exploit our theoretical model to explain the enhanced sensitivity of magnetic bead-based immunoassay experiments performed in microfluidic chips.

  2. Paper-based inkjet-printed microfluidic analytical devices.

    PubMed

    Yamada, Kentaro; Henares, Terence G; Suzuki, Koji; Citterio, Daniel

    2015-04-27

    Rapid, precise, and reproducible deposition of a broad variety of functional materials, including analytical assay reagents and biomolecules, has made inkjet printing an effective tool for the fabrication of microanalytical devices. A ubiquitous office device as simple as a standard desktop printer with its multiple ink cartridges can be used for this purpose. This Review discusses the combination of inkjet printing technology with paper as a printing substrate for the fabrication of microfluidic paper-based analytical devices (μPADs), which have developed into a fast-growing new field in analytical chemistry. After introducing the fundamentals of μPADs and inkjet printing, it touches on topics such as the microfluidic patterning of paper, tailored arrangement of materials, and functionalities achievable exclusively by the inkjet deposition of analytical assay components, before concluding with an outlook on future perspectives.

  3. Fabrication of paper-based microfluidic sensors by printing.

    PubMed

    Li, Xu; Tian, Junfei; Garnier, Gil; Shen, Wei

    2010-04-01

    A novel method for the fabrication of paper-based microfluidic diagnostic devices is reported; it consists of selectively hydrophobizing paper using cellulose reactive hydrophobization agents. The hydrophilic-hydrophobic contrast of patterns so created has excellent ability to control capillary penetration of aqueous liquids in paper channels. Incorporating this idea with digital ink jet printing techniques, a new fabrication method of paper-based microfluidic devices is established. Ink jet printing can deliver biomolecules and indicator reagents with precision into the microfluidic patterns to form bio-chemical sensing zones within the device. This method thus allows the complete sensor, i.e. channel patterns and the detecting chemistries, to be fabricated only by two printing steps. This fabrication method can be scaled up and adapted to use high speed, high volume and low cost commercial printing technology. Sensors can be fabricated for specific tests, or they can be made as general devices to perform on-demand quantitative analytical tasks by incorporating the required detection chemistries for the required tasks.

  4. Cell-based microfluidic platform for mimicking human olfactory system.

    PubMed

    Lee, Seung Hwan; Oh, Eun Hae; Park, Tai Hyun

    2015-12-15

    Various attempts have been made to mimic the human olfactory system using human olfactory receptors (hORs). In particular, OR-expressed cell-based odorant detection systems mimic the smell sensing mechanism of humans, as they exploit endogenous cellular signaling pathways. However, the majority of such cell-based studies have been performed in the liquid phase to maintain cell viability, and liquid odorants were used as detection targets. Here, we present a microfluidic device for the detection of gaseous odorants which more closely mimics the human olfactory system. Cells expressing hOR were cultured on a porous membrane. The membrane was then flipped over and placed between two compartments. The upper compartment is the gaseous part where gaseous odorants are supplied, while the lower compartment is the aqueous part where viable cells are maintained in the liquid medium. Using this simple microfluidic device, we were able to detect gaseous odorant molecules by a fluorescence signal. The fluorescence signal was generated by calcium influx resulting from the interaction between odorant molecules and the hOR. The system allowed detection of gaseous odorant molecules in real-time, and the findings showed that the fluorescence responses increased dose-dependently in the range of 0-2 ppm odorant. In addition, the system can discriminate among gaseous odorant molecules. This microfluidic system closely mimics the human olfactory system in the sense that the submerged cells detect gaseous odorants.

  5. Low-cost bioanalysis on paper-based and its hybrid microfluidic platforms.

    PubMed

    Dou, Maowei; Sanjay, Sharma Timilsina; Benhabib, Merwan; Xu, Feng; Li, XiuJun

    2015-12-01

    Low-cost assays have broad applications ranging from human health diagnostics and food safety inspection to environmental analysis. Hence, low-cost assays are especially attractive for rural areas and developing countries, where financial resources are limited. Recently, paper-based microfluidic devices have emerged as a low-cost platform which greatly accelerates the point of care (POC) analysis in low-resource settings. This paper reviews recent advances of low-cost bioanalysis on paper-based microfluidic platforms, including fully paper-based and paper hybrid microfluidic platforms. In this review paper, we first summarized the fabrication techniques of fully paper-based microfluidic platforms, followed with their applications in human health diagnostics and food safety analysis. Then we highlighted paper hybrid microfluidic platforms and their applications, because hybrid platforms could draw benefits from multiple device substrates. Finally, we discussed the current limitations and perspective trends of paper-based microfluidic platforms for low-cost assays.

  6. A Microfluidic-based Hydrodynamic Trap for Single Particles

    PubMed Central

    Johnson-Chavarria, Eric M.; Tanyeri, Melikhan; Schroeder, Charles M.

    2011-01-01

    The ability to confine and manipulate single particles in free solution is a key enabling technology for fundamental and applied science. Methods for particle trapping based on optical, magnetic, electrokinetic, and acoustic techniques have led to major advancements in physics and biology ranging from the molecular to cellular level. In this article, we introduce a new microfluidic-based technique for particle trapping and manipulation based solely on hydrodynamic fluid flow. Using this method, we demonstrate trapping of micro- and nano-scale particles in aqueous solutions for long time scales. The hydrodynamic trap consists of an integrated microfluidic device with a cross-slot channel geometry where two opposing laminar streams converge, thereby generating a planar extensional flow with a fluid stagnation point (zero-velocity point). In this device, particles are confined at the trap center by active control of the flow field to maintain particle position at the fluid stagnation point. In this manner, particles are effectively trapped in free solution using a feedback control algorithm implemented with a custom-built LabVIEW code. The control algorithm consists of image acquisition for a particle in the microfluidic device, followed by particle tracking, determination of particle centroid position, and active adjustment of fluid flow by regulating the pressure applied to an on-chip pneumatic valve using a pressure regulator. In this way, the on-chip dynamic metering valve functions to regulate the relative flow rates in the outlet channels, thereby enabling fine-scale control of stagnation point position and particle trapping. The microfluidic-based hydrodynamic trap exhibits several advantages as a method for particle trapping. Hydrodynamic trapping is possible for any arbitrary particle without specific requirements on the physical or chemical properties of the trapped object. In addition, hydrodynamic trapping enables confinement of a "single" target object in

  7. Quantum dot-based microfluidic biosensor for cancer detection

    NASA Astrophysics Data System (ADS)

    Ghrera, Aditya Sharma; Pandey, Chandra Mouli; Ali, Md. Azahar; Malhotra, Bansi Dhar

    2015-05-01

    We report results of the studies relating to fabrication of an impedimetric microfluidic-based nucleic acid sensor for quantification of DNA sequences specific to chronic myelogenous leukemia (CML). The sensor chip is prepared by patterning an indium-tin-oxide (ITO) coated glass substrate via wet chemical etching method followed by sealing with polydimethylsiloxane (PDMS) microchannel for fluid control. The fabricated microfluidic chip comprising of a patterned ITO substrate is modified by depositing cadmium selenide quantum dots (QCdSe) via Langmuir-Blodgett technique. Further, the QCdSe surface has been functionalized with specific DNA probe for CML detection. The probe DNA functionalized QCdSe integrated miniaturized system has been used to monitor target complementary DNA concentration by measuring the interfacial charge transfer resistance via hybridization. The presence of complementary DNA in buffer solution significantly results in decreased electro-conductivity of the interface due to presence of a charge barrier for transport of the redox probe ions. The microfluidic DNA biosensor exhibits improved linearity in the concentration range of 10-15 M to 10-11 M.

  8. Dissecting enzyme function with microfluidic-based deep mutational scanning

    PubMed Central

    Romero, Philip A.; Tran, Tuan M.; Abate, Adam R.

    2015-01-01

    Natural enzymes are incredibly proficient catalysts, but engineering them to have new or improved functions is challenging due to the complexity of how an enzyme’s sequence relates to its biochemical properties. Here, we present an ultrahigh-throughput method for mapping enzyme sequence–function relationships that combines droplet microfluidic screening with next-generation DNA sequencing. We apply our method to map the activity of millions of glycosidase sequence variants. Microfluidic-based deep mutational scanning provides a comprehensive and unbiased view of the enzyme function landscape. The mapping displays expected patterns of mutational tolerance and a strong correspondence to sequence variation within the enzyme family, but also reveals previously unreported sites that are crucial for glycosidase function. We modified the screening protocol to include a high-temperature incubation step, and the resulting thermotolerance landscape allowed the discovery of mutations that enhance enzyme thermostability. Droplet microfluidics provides a general platform for enzyme screening that, when combined with DNA-sequencing technologies, enables high-throughput mapping of enzyme sequence space. PMID:26040002

  9. Dissecting enzyme function with microfluidic-based deep mutational scanning.

    PubMed

    Romero, Philip A; Tran, Tuan M; Abate, Adam R

    2015-06-01

    Natural enzymes are incredibly proficient catalysts, but engineering them to have new or improved functions is challenging due to the complexity of how an enzyme's sequence relates to its biochemical properties. Here, we present an ultrahigh-throughput method for mapping enzyme sequence-function relationships that combines droplet microfluidic screening with next-generation DNA sequencing. We apply our method to map the activity of millions of glycosidase sequence variants. Microfluidic-based deep mutational scanning provides a comprehensive and unbiased view of the enzyme function landscape. The mapping displays expected patterns of mutational tolerance and a strong correspondence to sequence variation within the enzyme family, but also reveals previously unreported sites that are crucial for glycosidase function. We modified the screening protocol to include a high-temperature incubation step, and the resulting thermotolerance landscape allowed the discovery of mutations that enhance enzyme thermostability. Droplet microfluidics provides a general platform for enzyme screening that, when combined with DNA-sequencing technologies, enables high-throughput mapping of enzyme sequence space.

  10. An embedded microretroreflector-based microfluidic immunoassay platform.

    PubMed

    Raja, Balakrishnan; Pascente, Carmen; Knoop, Jennifer; Shakarisaz, David; Sherlock, Tim; Kemper, Steven; Kourentzi, Katerina; Renzi, Ronald F; Hatch, Anson V; Olano, Juan; Peng, Bi-Hung; Ruchhoeft, Paul; Willson, Richard

    2016-04-26

    We present a microfluidic immunoassay platform based on the use of linear microretroreflectors embedded in a transparent polymer layer as an optical sensing surface, and micron-sized magnetic particles as light-blocking labels. Retroreflectors return light directly to its source and are highly detectable using inexpensive optics. The analyte is immuno-magnetically pre-concentrated from a sample and then captured on an antibody-modified microfluidic substrate comprised of embedded microretroreflectors, thereby blocking reflected light. Fluidic force discrimination is used to increase specificity of the assay, following which a difference imaging algorithm that can see single 3 μm magnetic particles without optical calibration is used to detect and quantify signal intensity from each sub-array of retroreflectors. We demonstrate the utility of embedded microretroreflectors as a new sensing modality through a proof-of-concept immunoassay for a small, obligate intracellular bacterial pathogen, Rickettsia conorii, the causative agent of Mediterranean Spotted Fever. The combination of large sensing area, optimized surface chemistry and microfluidic protocols, automated image capture and analysis, and high sensitivity of the difference imaging results in a sensitive immunoassay with a limit of detection of roughly 4000 R. conorii per mL. PMID:27025227

  11. Suspended microfluidics.

    PubMed

    Casavant, Benjamin P; Berthier, Erwin; Theberge, Ashleigh B; Berthier, Jean; Montanez-Sauri, Sara I; Bischel, Lauren L; Brakke, Kenneth; Hedman, Curtis J; Bushman, Wade; Keller, Nancy P; Beebe, David J

    2013-06-18

    Although the field of microfluidics has made significant progress in bringing new tools to address biological questions, the accessibility and adoption of microfluidics within the life sciences are still limited. Open microfluidic systems have the potential to lower the barriers to adoption, but the absence of robust design rules has hindered their use. Here, we present an open microfluidic platform, suspended microfluidics, that uses surface tension to fill and maintain a fluid in microscale structures devoid of a ceiling and floor. We developed a simple and ubiquitous model predicting fluid flow in suspended microfluidic systems and show that it encompasses many known capillary phenomena. Suspended microfluidics was used to create arrays of collagen membranes, mico Dots (μDots), in a horizontal plane separating two fluidic chambers, demonstrating a transwell platform able to discern collective or individual cellular invasion. Further, we demonstrated that μDots can also be used as a simple multiplexed 3D cellular growth platform. Using the μDot array, we probed the combined effects of soluble factors and matrix components, finding that laminin mitigates the growth suppression properties of the matrix metalloproteinase inhibitor GM6001. Based on the same fluidic principles, we created a suspended microfluidic metabolite extraction platform using a multilayer biphasic system that leverages the accessibility of open microchannels to retrieve steroids and other metabolites readily from cell culture. Suspended microfluidics brings the high degree of fluidic control and unique functionality of closed microfluidics into the highly accessible and robust platform of open microfluidics.

  12. A New Microfluidics-Based Droplet Dispenser for ICPMS

    PubMed Central

    2014-01-01

    In this work, a novel droplet microfluidic sample introduction system for inductively coupled plasma mass spectrometry (ICPMS) is proposed and characterized. The cheap and disposable microfluidic chip generates droplets of an aqueous sample in a stream of perfluorohexane (PFH), which is also used to eject them as a liquid jet. The aqueous droplets remain intact during the ejection and can be transported into the ICP with >50% efficiency. The transport is realized via a custom-built system, which includes a membrane desolvator necessary for the PFH vapor removal. The introduction system presented here can generate highly monodisperse droplets in the size range of 40–60 μm at frequencies from 90 to 300 Hz. These droplets produced very stable signals with a relative standard deviation (RSD) comparable to the one achieved with a commercial droplet dispenser. Using the current system, samples with a total volume of <1 μL can be analyzed. Moreover, the capabilities of the setup for introduction and quantitative elemental analysis of single cells were described using a test system of bovine red blood cells. In the future, other modules of the modern microfludics can be integrated in the chip, such as on-chip sample pretreatment or parallel introduction of different samples. PMID:24805360

  13. Lossless droplet transfer of droplet-based microfluidic analysis

    DOEpatents

    Kelly, Ryan T; Tang, Keqi; Page, Jason S; Smith, Richard D

    2011-11-22

    A transfer structure for droplet-based microfluidic analysis is characterized by a first conduit containing a first stream having at least one immiscible droplet of aqueous material and a second conduit containing a second stream comprising an aqueous fluid. The interface between the first conduit and the second conduit can define a plurality of apertures, wherein the apertures are sized to prevent exchange of the first and second streams between conduits while allowing lossless transfer of droplets from the first conduit to the second conduit through contact between the first and second streams.

  14. Single-cell Genomics using Droplet-based Microfluidics

    NASA Astrophysics Data System (ADS)

    Basu, Anindita; Macosko, Evan; Shalek, Alex; McCarroll, Steven; Regev, Aviv; Weitz, Dave

    2014-03-01

    We develop a system to profile the transcriptome of mammalian cells in isolation using reverse emulsion droplet-based microfluidic techniques. This is accomplished by (a) encapsulating and lysing one cell per emulsion droplet, and (b) uniquely barcoding the RNA contents from each cell using unique DNA-barcoded microgel beads. This enables us to study the transcriptional behavior of a large number of cells at single-cell resolution. We then use these techniques to study transcriptional responses of isolated immune cells to precisely controlled chemical and pathological stimuli provided in the emulsion droplet.

  15. Magnetophoretic-based microfluidic device for DNA Concentration.

    PubMed

    Shim, Sangjo; Shim, Jiwook; Taylor, William R; Kosari, Farhad; Vasmatzis, George; Ahlquist, David A; Bashir, Rashid

    2016-04-01

    Nucleic acids serve as biomarkers of disease and it is highly desirable to develop approaches to extract small number of such genomic extracts from human bodily fluids. Magnetic particles-based nucleic acid extraction is widely used for concentration of small amount of samples and is followed by DNA amplification in specific assays. However, approaches to integrate such magnetic particles based capture with micro and nanofluidic based assays are still lacking. In this report, we demonstrate a magnetophoretic-based approach for target-specific DNA extraction and concentration within a microfluidic device. This device features a large chamber for reducing flow velocity and an array of μ-magnets for enhancing magnetic flux density. With this strategy, the device is able to collect up to 95 % of the magnetic particles from the fluidic flow and to concentrate these magnetic particles in a collection region. Then an enzymatic reaction is used to detach the DNA from the magnetic particles within the microfluidic device, making the DNA available for subsequent analysis. Concentrations of over 1000-fold for 90 bp dsDNA molecules is demonstrated. This strategy can bridge the gap between detection of low concentration analytes from clinical samples and a range of micro and nanofluidic sensors and devices including nanopores, nano-cantilevers, and nanowires.

  16. Nanoparticle-based signal generation and amplification in microfluidic devices for bioanalysis.

    PubMed

    Hu, Chong; Yue, Wanqing; Yang, Mengsu

    2013-11-21

    Signal generation and amplification based on nanomaterials and microfluidic techniques have both attracted considerable attention separately due to the demands for ultrasensitive and high-throughput detection of biomolecules. This article reviews the latest development of signal amplification strategies based on nanoparticles for bioanalysis and their integration and applications in microfluidic systems. The applications of nanoparticles in bioanalysis were categorized based on the different approaches of signal amplification, and the microfluidic techniques were summarized based on cell analysis and biomolecule detection with a focus on the integration of nanoparticle-based amplification in microfluidic devices for ultrasensitive bioanalysis. The advantages and limitations of the combination of nanoparticles-based amplification with microfluidic techniques were evaluated, and the possible developments for future research were discussed.

  17. Microfluidic electronics.

    PubMed

    Cheng, Shi; Wu, Zhigang

    2012-08-21

    Microfluidics, a field that has been well-established for several decades, has seen extensive applications in the areas of biology, chemistry, and medicine. However, it might be very hard to imagine how such soft microfluidic devices would be used in other areas, such as electronics, in which stiff, solid metals, insulators, and semiconductors have previously dominated. Very recently, things have radically changed. Taking advantage of native properties of microfluidics, advances in microfluidics-based electronics have shown great potential in numerous new appealing applications, e.g. bio-inspired devices, body-worn healthcare and medical sensing systems, and ergonomic units, in which conventional rigid, bulky electronics are facing insurmountable obstacles to fulfil the demand on comfortable user experience. Not only would the birth of microfluidic electronics contribute to both the microfluidics and electronics fields, but it may also shape the future of our daily life. Nevertheless, microfluidic electronics are still at a very early stage, and significant efforts in research and development are needed to advance this emerging field. The intention of this article is to review recent research outcomes in the field of microfluidic electronics, and address current technical challenges and issues. The outlook of future development in microfluidic electronic devices and systems, as well as new fabrication techniques, is also discussed. Moreover, the authors would like to inspire both the microfluidics and electronics communities to further exploit this newly-established field.

  18. Microfluidic-Based sample chips for radioactive solutions

    SciTech Connect

    Tripp, J. L.; Law, J. D.; Smith, T. E.; Rutledge, V. J.; Bauer, W. F.; Ball, R. D.; Hahn, P. A.

    2015-01-01

    Historical nuclear fuel cycle process sampling techniques required sample volumes ranging in the tens of milliliters. The radiation levels experienced by analytical personnel and equipment, in addition to the waste volumes generated from analysis of these samples, have been significant. These sample volumes also impacted accountability inventories of required analytes during process operations. To mitigate radiation dose and other issues associated with the historically larger sample volumes, a microcapillary sample chip was chosen for further investigation. The ability to obtain microliter volume samples coupled with a remote automated means of sample loading, tracking, and transporting to the analytical instrument would greatly improve analytical efficiency while reducing both personnel exposure and radioactive waste volumes. Sample chip testing was completed to determine the accuracy, repeatability, and issues associated with the use of microfluidic sample chips used to supply µL sample volumes of lanthanide analytes dissolved in nitric acid for introduction to an analytical instrument for elemental analysis.

  19. Microfluidic-Based Sample Chips for Radioactive Solutions

    SciTech Connect

    Tripp, J. L.; Law, J. D.; Smith, T. E.; Rutledge, V. J.; Bauer, W. F.; Ball, R. D.; Hahn, P. A.

    2014-02-01

    Historical nuclear fuel cycle process sampling techniques required sample volumes ranging in the tens of milliliters. The radiation levels experienced by analytical personnel and equipment, in addition to the waste volumes generated from analysis of these samples, have been significant. These sample volumes also impacted accountability inventories of required analytes during process operations. To mitigate radiation dose and other issues associated with the historically larger sample volumes, a microcapillary sample chip was chosen for further investigation. The ability to obtain microliter volume samples coupled with a remote automated means of sample loading, tracking, and transporting to the analytical instrument would greatly improve analytical efficiency while reducing both personnel exposure and radioactive waste volumes. Sample chip testing was completed to determine the accuracy, repeatability, and issues associated with the use of microfluidic sample chips used to supply µL sample volumes of lanthanide analytes dissolved in nitric acid for introduction to an analytical instrument for elemental analysis.

  20. Nanomaterial based detection and degradation of biological and chemical contaminants in a microfluidic system

    NASA Astrophysics Data System (ADS)

    Jayamohan, Harikrishnan

    fabricated using non-cleanroom-based methods, making it suitable for economical large-scale manufacture. A computational model of the microfluidic format was developed in COMSOL MultiphysicsRTM finite element software to evaluate the effect of diffusion coefficient and rate constant on the photocatalytic performance. To further enhance the photocatalytic performance of the microfluidic device, TNA synthesized on a mesh was used as the catalyst. The new system was shown to have enhanced photocatalytic performance in comparison to TNA on a foil. The device was then employed in the inactivation of E. coli O157:H7 at different flow rates and light intensities (100, 50, 20, 10 mW/cm2). In the second project, a protocol for ultra-sensitive indirect electrochemical detection of E. coli O157:H7 was reported. The protocol uses antibody functionalized primary (magnetic) beads for capture and polyguanine (polyG) oligonucleotide functionalized secondary (polystyrene) beads as an electrochemical tag. The method was able to detect concentrations of E. coli O157:H7 down to 3 CFU/100 mL (S/N=3). We also demonstrate the use of the protocol for detection of E. coli O157:H7 seeded in wastewater effluent samples.

  1. Optical detection enhancement in porous volumetric microfluidic capture elements using refractive index matching fluids

    PubMed Central

    Wiederoder, M. S.; Peterken, L.; Lu, A. X.; Rahmanian, O. D.; Raghavan, S. R.; DeVoe, D. L.

    2015-01-01

    Porous volumetric capture elements in microfluidic sensors are advantageous compared to planar capture surfaces due to higher reaction site density and decreased diffusion lengths that can reduce detection limits and total assay time. However a mismatch in refractive indices between the capture matrix and fluid within the porous interstices results in scattering of incident, reflected, or emitted light, significantly reducing the signal for optical detection. Here we demonstrate that perfusion of an index-matching fluid within a porous matrix minimizes scattering, thus enhancing optical signal by enabling the entire capture element volume to be probed. Signal enhancement is demonstrated for both fluorescence and absorbance detection, using porous polymer monoliths in a silica capillary and packed beds of glass beads within thermoplastic microchannels, respectively. Fluorescence signal was improved by a factor of 3.5× when measuring emission from a fluorescent compound attached directly to the polymer monolith, and up to 2.6× for a rapid 10 min direct immunoassay. When combining index matching with a silver enhancement step, a detection limit of 0.1 ng/mL human IgG and a 5 log dynamic range was achieved. The demonstrated technique provides a simple method for enhancing optical sensitivity for a wide range of assays, enabling the full benefits of porous detection elements in miniaturized analytical systems to be realized. PMID:26160546

  2. Optical detection enhancement in porous volumetric microfluidic capture elements using refractive index matching fluids.

    PubMed

    Wiederoder, M S; Peterken, L; Lu, A X; Rahmanian, O D; Raghavan, S R; DeVoe, D L

    2015-08-21

    Porous volumetric capture elements in microfluidic sensors are advantageous compared to planar capture surfaces due to higher reaction site density and decreased diffusion lengths that can reduce detection limits and total assay time. However a mismatch in refractive indices between the capture matrix and fluid within the porous interstices results in scattering of incident, reflected, or emitted light, significantly reducing the signal for optical detection. Here we demonstrate that perfusion of an index-matching fluid within a porous matrix minimizes scattering, thus enhancing optical signal by enabling the entire capture element volume to be probed. Signal enhancement is demonstrated for both fluorescence and absorbance detection, using porous polymer monoliths in a silica capillary and packed beds of glass beads within thermoplastic microchannels, respectively. Fluorescence signal was improved by a factor of 3.5× when measuring emission from a fluorescent compound attached directly to the polymer monolith, and up to 2.6× for a rapid 10 min direct immunoassay. When combining index matching with a silver enhancement step, a detection limit of 0.1 ng mL(-1) human IgG and a 5 log dynamic range was achieved. The demonstrated technique provides a simple method for enhancing optical sensitivity for a wide range of assays, enabling the full benefits of porous detection elements in miniaturized analytical systems to be realized. PMID:26160546

  3. Microfluidic platforms for gallium-based liquid metal alloy

    NASA Astrophysics Data System (ADS)

    Kim, Daeyoung

    As an alternative to toxic mercury, non-toxic gallium-based liquid metal alloy has been gaining popularity due to its higher thermal and electrical conductivities, and low toxicity along with liquid property. However, it is difficult to handle as the alloy becomes readily oxidized in atmospheric air environment. This instant oxidation causes the gallium-based liquid metal alloy to wet almost any solid surface. Therefore, it has been primarily limited to applications which rely only on its deformability, not on its mobility. In this research, various approaches to mobilize gallium-based liquid metal alloy were investigated. Multi-scale surface patterned with polydimethylsiloxane (PDMS) micro pillar array showed super-lyophobic property against gallium-based liquid metal alloy by minimizing the contact area between the solid surface and the liquid metal, and it was expanded to a three-dimensional tunnel shaped microfluidic channel. Vertically-aligned carbon nanotube forest leads to another promising super-lyophobic surface due to its hierarchical micro/nano scale combined structures and chemical inertness. When the carbon nanotubes were transferred onto flexible PDMS by imprinting, the super-lyophobic property was still maintained even under the mechanical deformation such as stretching and bending. Alternatively, the gallium-based liquid metal can be manipulated by modifying the surface of liquid metal itself. With chemical reaction with HCl 'vapor', the oxidized surface (mainly Ga2O3/Ga2O) of gallium-based liquid metal was converted to GaCl3/InCl 3 resulting in the recovery of non-wetting characteristics. Paper which is intrinsically porous is attractive as a super-lyophobic surface and it was found that hydrochloric acid (HCl) impregnation enhanced the anti-wetting property by the chemical reaction. As another alternative method, by coating the viscoelastic oxidized surface of liquid metal with ferromagnetic materials (CoNiMnP or Fe), it showed non

  4. Microfluidics based phantoms of superficial vascular network

    PubMed Central

    Luu, Long; Roman, Patrick A.; Mathews, Scott A.; Ramella-Roman, Jessica C.

    2012-01-01

    Several new bio-photonic techniques aim to measure flow in the human vasculature non-destructively. Some of these tools, such as laser speckle imaging or Doppler optical coherence tomography, are now reaching the clinical stage. Therefore appropriate calibration and validation techniques dedicated to these particular measurements are therefore of paramount importance. In this paper we introduce a fast prototyping technique based on laser micromachining for the fabrication of dynamic flow phantoms. Micro-channels smaller than 20 µm in width can be formed in a variety of materials such as epoxies, plastics, and household tape. Vasculature geometries can be easily and quickly modified to accommodate a particular experimental scenario. PMID:22741081

  5. Droplet-based microfluidics and the dynamics of emulsions

    NASA Astrophysics Data System (ADS)

    Baret, Jean-Christophe; Brosseau, Quentin; Semin, Benoit; Qu, Xiaopeng

    2012-02-01

    Emulsions are complex fluids already involved for a long time in a wide-range of industrial processes, such as, for example, food, cosmetics or materials synthesis [1]. More recently, applications of emulsions have been extended to new fields like biotechnology or biochemistry where the compartmentalization of compounds in emulsion droplets is used to parallelise (bio-) chemical reactions [2]. Interestingly, these applications pinpoint to fundamental questions dealing with surfactant dynamics, dynamic surface tension, hydrodynamic interactions and electrohydrodynamics. Droplet-based microfluidics is a very powerful tool to quantitatively study the dynamics of emulsions at the single droplet level or even at the single interface level: well-controlled emulsions are produced and manipulated using hydrodynamics, electrical forces, optical actuation and combination of these effects. We will describe here how droplet-based microfluidics is used to extract quantitative informations on the physical-chemistry of emulsions for a better understanding and control of the dynamics of these systems [3].[4pt] [1] J. Bibette et al. Rep. Prog. Phys., 62, 969-1033 (1999)[0pt] [2] A. Theberge et al., Angewandte Chemie Int. Ed. 49, 5846 (2010)[0pt] [3] J.-C. Baret et al., Langmuir, 25, 6088 (2009)

  6. Quantum dot-based microfluidic biosensor for cancer detection

    SciTech Connect

    Ghrera, Aditya Sharma; Pandey, Chandra Mouli; Ali, Md. Azahar; Malhotra, Bansi Dhar

    2015-05-11

    We report results of the studies relating to fabrication of an impedimetric microfluidic–based nucleic acid sensor for quantification of DNA sequences specific to chronic myelogenous leukemia (CML). The sensor chip is prepared by patterning an indium–tin–oxide (ITO) coated glass substrate via wet chemical etching method followed by sealing with polydimethylsiloxane (PDMS) microchannel for fluid control. The fabricated microfluidic chip comprising of a patterned ITO substrate is modified by depositing cadmium selenide quantum dots (QCdSe) via Langmuir–Blodgett technique. Further, the QCdSe surface has been functionalized with specific DNA probe for CML detection. The probe DNA functionalized QCdSe integrated miniaturized system has been used to monitor target complementary DNA concentration by measuring the interfacial charge transfer resistance via hybridization. The presence of complementary DNA in buffer solution significantly results in decreased electro-conductivity of the interface due to presence of a charge barrier for transport of the redox probe ions. The microfluidic DNA biosensor exhibits improved linearity in the concentration range of 10{sup −15} M to 10{sup −11} M.

  7. An investigation of paper based microfluidic devices for size based separation and extraction applications.

    PubMed

    Zhong, Z W; Wu, R G; Wang, Z P; Tan, H L

    2015-09-01

    Conventional microfluidic devices are typically complex and expensive. The devices require the use of pneumatic control systems or highly precise pumps to control the flow in the devices. This work investigates an alternative method using paper based microfluidic devices to replace conventional microfluidic devices. Size based separation and extraction experiments conducted were able to separate free dye from a mixed protein and dye solution. Experimental results showed that pure fluorescein isothiocyanate could be separated from a solution of mixed fluorescein isothiocyanate and fluorescein isothiocyanate labeled bovine serum albumin. The analysis readings obtained from a spectrophotometer clearly show that the extracted tartrazine sample did not contain any amount of Blue-BSA, because its absorbance value was 0.000 measured at a wavelength of 590nm, which correlated to Blue-BSA. These demonstrate that paper based microfluidic devices, which are inexpensive and easy to implement, can potentially replace their conventional counterparts by the use of simple geometry designs and the capillary action. These findings will potentially help in future developments of paper based microfluidic devices.

  8. Electrochemiluminescence detection in microfluidic cloth-based analytical devices.

    PubMed

    Guan, Wenrong; Liu, Min; Zhang, Chunsun

    2016-01-15

    This work describes the first approach at combining microfluidic cloth-based analytical devices (μCADs) with electrochemiluminescence (ECL) detection. Wax screen-printing is employed to make cloth-based microfluidic chambers which are patterned with carbon screen-printed electrodes (SPEs) to create truly disposable, simple, inexpensive sensors which can be read with a low-cost, portable charge coupled device (CCD) imaging sensing system. And, the two most commonly used ECL systems of tris(2,2'-bipyridyl)ruthenium(II)/tri-n-propylamine (Ru(bpy)3(2+)/TPA) and 3-aminophthalhydrazide/hydrogen peroxide (luminol/H2O2) are applied to demonstrate the quantitative ability of the ECL μCADs. In this study, the proposed devices have successfully fulfilled the determination of TPA with a linear range from 2.5 to 2500μM with a detection limit of 1.265μM. In addition, the detection of H2O2 can be performed in the linear range of 0.05-2.0mM, with a detection limit of 0.027mM. It has been shown that the ECL emission on the wax-patterned cloth device has an acceptable sensitivity, stability and reproducibility. Finally, the applicability of cloth-based ECL is demonstrated for determination of glucose in phosphate buffer solution (PBS) and artificial urine (AU) samples, with the detection limits of 0.032mM and 0.038mM, respectively. It can be foreseen, therefore, that μCADs with ECL detection could provide a new sensing platform for point-of-care testing, public health, food safety detection and environmental monitoring in remote regions, developing or developed countries. PMID:26319168

  9. Doppler-Based Flow Rate Sensing in Microfluidic Channels

    PubMed Central

    Stern, Liron; Bakal, Avraham; Tzur, Mor; Veinguer, Maya; Mazurski, Noa; Cohen, Nadav; Levy, Uriel

    2014-01-01

    We design, fabricate and experimentally demonstrate a novel generic method to detect flow rates and precise changes of flow velocity in microfluidic devices. Using our method we can measure flow rates of ∼2 mm/s with a resolution of 0.08 mm/s. The operation principle is based on the Doppler shifting of light diffracted from a self-generated periodic array of bubbles within the channel and using self-heterodyne detection to analyze the diffracted light. As such, the device is appealing for variety of “lab on chip” bio-applications where a simple and accurate speed measurement is needed, e.g., for flow-cytometry and cell sorting. PMID:25211195

  10. A self assembled monolayer based microfluidic sensor for urea detection

    NASA Astrophysics Data System (ADS)

    Srivastava, Saurabh; Solanki, Pratima R.; Kaushik, Ajeet; Ali, Md. Azahar; Srivastava, Anchal; Malhotra, B. D.

    2011-07-01

    Urease (Urs) and glutamate dehydrogenase (GLDH) have been covalently co-immobilized onto a self-assembled monolayer (SAM) comprising of 10-carboxy-1-decanthiol (CDT) via EDC-NHS chemistry deposited onto one of the two patterned gold (Au) electrodes for estimation of urea using poly(dimethylsiloxane) based microfluidic channels (2 cm × 200 μm × 200 μm). The CDT/Au and Urs-GLDH/CDT/Au electrodes have been characterized using Fourier transform infrared (FTIR) spectroscopy, contact angle (CA), atomic force microscopy (AFM) and electrochemical cyclic voltammetry (CV) techniques. The electrochemical response measurement of a Urs-GLDH/CDT/Au bioelectrode obtained as a function of urea concentration using CV yield linearity as 10 to 100 mg dl-1, detection limit as 9 mg dl-1 and high sensitivity as 7.5 μA mM-1 cm-2.

  11. Microprocessor-based integration of microfluidic control for the implementation of automated sensor monitoring and multithreaded optimization algorithms.

    PubMed

    Ezra, Elishai; Maor, Idan; Bavli, Danny; Shalom, Itai; Levy, Gahl; Prill, Sebastian; Jaeger, Magnus S; Nahmias, Yaakov

    2015-08-01

    Microfluidic applications range from combinatorial synthesis to high throughput screening, with platforms integrating analog perfusion components, digitally controlled micro-valves and a range of sensors that demand a variety of communication protocols. Currently, discrete control units are used to regulate and monitor each component, resulting in scattered control interfaces that limit data integration and synchronization. Here, we present a microprocessor-based control unit, utilizing the MS Gadgeteer open framework that integrates all aspects of microfluidics through a high-current electronic circuit that supports and synchronizes digital and analog signals for perfusion components, pressure elements, and arbitrary sensor communication protocols using a plug-and-play interface. The control unit supports an integrated touch screen and TCP/IP interface that provides local and remote control of flow and data acquisition. To establish the ability of our control unit to integrate and synchronize complex microfluidic circuits we developed an equi-pressure combinatorial mixer. We demonstrate the generation of complex perfusion sequences, allowing the automated sampling, washing, and calibrating of an electrochemical lactate sensor continuously monitoring hepatocyte viability following exposure to the pesticide rotenone. Importantly, integration of an optical sensor allowed us to implement automated optimization protocols that require different computational challenges including: prioritized data structures in a genetic algorithm, distributed computational efforts in multiple-hill climbing searches and real-time realization of probabilistic models in simulated annealing. Our system offers a comprehensive solution for establishing optimization protocols and perfusion sequences in complex microfluidic circuits. PMID:26227212

  12. Microprocessor-based integration of microfluidic control for the implementation of automated sensor monitoring and multithreaded optimization algorithms.

    PubMed

    Ezra, Elishai; Maor, Idan; Bavli, Danny; Shalom, Itai; Levy, Gahl; Prill, Sebastian; Jaeger, Magnus S; Nahmias, Yaakov

    2015-08-01

    Microfluidic applications range from combinatorial synthesis to high throughput screening, with platforms integrating analog perfusion components, digitally controlled micro-valves and a range of sensors that demand a variety of communication protocols. Currently, discrete control units are used to regulate and monitor each component, resulting in scattered control interfaces that limit data integration and synchronization. Here, we present a microprocessor-based control unit, utilizing the MS Gadgeteer open framework that integrates all aspects of microfluidics through a high-current electronic circuit that supports and synchronizes digital and analog signals for perfusion components, pressure elements, and arbitrary sensor communication protocols using a plug-and-play interface. The control unit supports an integrated touch screen and TCP/IP interface that provides local and remote control of flow and data acquisition. To establish the ability of our control unit to integrate and synchronize complex microfluidic circuits we developed an equi-pressure combinatorial mixer. We demonstrate the generation of complex perfusion sequences, allowing the automated sampling, washing, and calibrating of an electrochemical lactate sensor continuously monitoring hepatocyte viability following exposure to the pesticide rotenone. Importantly, integration of an optical sensor allowed us to implement automated optimization protocols that require different computational challenges including: prioritized data structures in a genetic algorithm, distributed computational efforts in multiple-hill climbing searches and real-time realization of probabilistic models in simulated annealing. Our system offers a comprehensive solution for establishing optimization protocols and perfusion sequences in complex microfluidic circuits.

  13. A perspective on paper-based microfluidics: Current status and future trends

    PubMed Central

    Li, Xu; Ballerini, David R.; Shen, Wei

    2012-01-01

    “Paper-based microfluidics” or “lab on paper,” as a burgeoning research field with its beginning in 2007, provides a novel system for fluid handling and fluid analysis for a variety of applications including health diagnostics, environmental monitoring as well as food quality testing. The reasons why paper becomes an attractive substrate for making microfluidic systems include: (1) it is a ubiquitous and extremely cheap cellulosic material; (2) it is compatible with many chemical/biochemical/medical applications; and (3) it transports liquids using capillary forces without the assistance of external forces. By building microfluidic channels on paper, liquid flow is confined within the channels, and therefore, liquid flow can be guided in a controlled manner. A variety of 2D and even 3D microfluidic channels have been created on paper, which are able to transport liquids in the predesigned pathways on paper. At the current stage of its development, paper-based microfluidic system is claimed to be low-cost, easy-to-use, disposable, and equipment-free, and therefore, is a rising technology particularly relevant to improving the healthcare and disease screening in the developing world, especially for those areas with no- or low-infrastructure and limited trained medical and health professionals. The research in paper-based microfluidics is experiencing a period of explosion; most published works have focused on: (1) inventing low-cost and simple fabrication techniques for paper-based microfluidic devices; and (2) exploring new applications of paper-based microfluidics by incorporating efficient detection methods. This paper aims to review both the fabrication techniques and applications of paper-based microfluidics reported to date. This paper also attempts to convey to the readers, from the authors’ point of view the current limitations of paper-based microfluidics which require further research, and a few perspective directions this new analytical system

  14. Microfluidic-Based sample chips for radioactive solutions

    DOE PAGES

    Tripp, J. L.; Law, J. D.; Smith, T. E.; Rutledge, V. J.; Bauer, W. F.; Ball, R. D.; Hahn, P. A.

    2015-01-01

    Historical nuclear fuel cycle process sampling techniques required sample volumes ranging in the tens of milliliters. The radiation levels experienced by analytical personnel and equipment, in addition to the waste volumes generated from analysis of these samples, have been significant. These sample volumes also impacted accountability inventories of required analytes during process operations. To mitigate radiation dose and other issues associated with the historically larger sample volumes, a microcapillary sample chip was chosen for further investigation. The ability to obtain microliter volume samples coupled with a remote automated means of sample loading, tracking, and transporting to the analytical instrument wouldmore » greatly improve analytical efficiency while reducing both personnel exposure and radioactive waste volumes. Sample chip testing was completed to determine the accuracy, repeatability, and issues associated with the use of microfluidic sample chips used to supply µL sample volumes of lanthanide analytes dissolved in nitric acid for introduction to an analytical instrument for elemental analysis.« less

  15. Multi-scale Properties and Processes in Hierarchically-Structured Organic-Inorganic Solids and Surface-Based Microfluidic Systems

    NASA Astrophysics Data System (ADS)

    Messinger, Robert James

    Hierarchically-structured materials and surface-based microfluidic systems exhibit diverse properties that are inherently multi-scale in origin. In particular, different molecular, mesoscopic, and micron-scale properties and processes are often correlated and collectively account for many properties of interest, such as bulk catalytic activities or electrokinetic flow rates. However, such properties and processes often exhibit complex relationships over the different length scales that are not well understood, and consequently, difficult to control. Establishing correlations between them has been challenging, in part due to the difficulty of rigorously characterizing complex, heterogeneous materials and surface-based microfluidic experiments over multiple length scales, particularly at the molecular and mesoscopic levels. Herein, new multi-scale understanding and correlations have been established for different hierarchically-structured organic-inorganic solids or surface-based microfluidic systems, enabling control of material or device properties over discrete length scales. The molecular-level compositions, structures, interactions, and dynamics have been measured in diverse hierarchically-structured materials, such as mesostructured zeolites, mesostructured organosilicas, and organosiloxane foams, and subsequently correlated with their meso- and macroscopic material structures and properties. The results reveal new insights on the molecular-level interactions that govern their syntheses, the resulting local compositions and material structures, and the relationships among material properties over multiple characteristic length scales. Multi-dimensional solid-state nuclear magnetic resonance (NMR) spectroscopy is a cornerstone of these investigations, which enables correlative measurements in multiple frequency dimensions of the through-space or through-bond interactions between the constituent nuclei within the different materials. Other multi

  16. Microfluidics for cell-based high throughput screening platforms - A review.

    PubMed

    Du, Guansheng; Fang, Qun; den Toonder, Jaap M J

    2016-01-15

    In the last decades, the basic techniques of microfluidics for the study of cells such as cell culture, cell separation, and cell lysis, have been well developed. Based on cell handling techniques, microfluidics has been widely applied in the field of PCR (Polymerase Chain Reaction), immunoassays, organ-on-chip, stem cell research, and analysis and identification of circulating tumor cells. As a major step in drug discovery, high-throughput screening allows rapid analysis of thousands of chemical, biochemical, genetic or pharmacological tests in parallel. In this review, we summarize the application of microfluidics in cell-based high throughput screening. The screening methods mentioned in this paper include approaches using the perfusion flow mode, the droplet mode, and the microarray mode. We also discuss the future development of microfluidic based high throughput screening platform for drug discovery.

  17. Microfluidic-based single cell trapping using a combination of stagnation point flow and physical barrier

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Chen, Zongzheng; Xiang, Cheng; Liu, Bo; Xie, Handi; Qin, Kairong

    2016-06-01

    Single cell trapping in vitro by microfluidic device is an emerging approach for the study of the relationship between single cells and their dynamic biochemical microenvironments. In this paper, a hydrodynamic-based microfluidic device for single cell trapping is designed using a combination of stagnation point flow and physical barrier. The microfluidic device overcomes the weakness of the traditional ones, which have been only based upon either stagnation point flows or physical barriers, and can conveniently load dynamic biochemical signals to the trapped cell. In addition, it can connect with a programmable syringe pump and a microscope to constitute an integrated experimental system. It is experimentally verified that the microfluidic system can trap single cells in vitro even under flow disturbance and conveniently load biochemical signals to the trapped cell. The designed micro-device would provide a simple yet effective experimental platform for further study of the interactions between single cells and their microenvironments.

  18. Differentiation of morphotic elements in human blood using optical coherence tomography and a microfluidic setup.

    PubMed

    Ossowski, Paweł; Raiter-Smiljanic, Anna; Szkulmowska, Anna; Bukowska, Danuta; Wiese, Małgorzata; Derzsi, Ladislav; Eljaszewicz, Andrzej; Garstecki, Piotr; Wojtkowski, Maciej

    2015-10-19

    We demonstrate a novel optical method for the detection and differentiation between erythrocytes and leukocytes that uses amplitude and phase information provided by optical coherence tomography (OCT). Biological cells can introduce significant phase modulation with substantial scattering anisotropy and dominant forward-scattered light. Such physical properties may favor the use of a trans-illumination imaging technique. However, an epi-illumination mode may be more practical and robust in many applications. This study describes a new way of measuring the phase modulation introduced by flowing microobjects. The novel part of this invention is that it uses the backscattered signal from the substrate located below the flowing/moving objects. The identification of cells is based on phase-sensitive OCT signals. To differentiate single cells, a custom-designed microfluidic device with a highly scattering substrate is introduced. The microchannels are molded in polydimethylsiloxane (PDMS) mixed with titanium dioxide (TiO2) to ensure high scattering properties. The statistical parameters of the measured signal depend on the cells' features, such as their size, shape, and internal structure. PMID:26480435

  19. Digital microfluidic magnetic separation for particle-based immunoassays.

    PubMed

    Ng, Alphonsus H C; Choi, Kihwan; Luoma, Robert P; Robinson, John M; Wheeler, Aaron R

    2012-10-16

    We introduce a new format for particle-based immunoassays relying on digital microfluidics (DMF) and magnetic forces to separate and resuspend antibody-coated paramagnetic particles. In DMF, fluids are electrostatically controlled as discrete droplets (picoliters to microliters) on an array of insulated electrodes. By applying appropriate sequences of potentials to these electrodes, multiple droplets can be manipulated simultaneously and various droplet operations can be achieved using the same device design. This flexibility makes DMF well-suited for applications that require complex, multistep protocols such as immunoassays. Here, we report the first particle-based immunoassay on DMF without the aid of oil carrier fluid to enable droplet movement (i.e., droplets are surrounded by air instead of oil). This new format allowed the realization of a novel on-chip particle separation and resuspension method capable of removing greater than 90% of unbound reagents in one step. Using this technique, we developed methods for noncompetitive and competitive immunoassays, using thyroid stimulating hormone (TSH) and 17β-estradiol (E2) as model analytes, respectively. We show that, compared to conventional methods, the new DMF approach reported here reduced reagent volumes and analysis time by 100-fold and 10-fold, respectively, while retaining a level of analytical performance required for clinical screening. Thus, we propose that the new technique has great potential for eventual use in a fast, low-waste, and inexpensive instrument for the quantitative analysis of proteins and small molecules in low sample volumes. PMID:23013543

  20. One-step two-dimensional microfluidics-based synthesis of three-dimensional particles.

    PubMed

    Hakimi, Navid; Tsai, Scott S H; Cheng, Chil-Hung; Hwang, Dae Kun

    2014-03-01

    Synthesis of three-dimensional anisotropic microparticles using a simple one-step microfluidic-based method is described. The method exploits the nonuniformity of the polymerizing UV light, UV absorption by opaque nanoparticles in the precursor solution, and discontinuous photomask patterns to make magnetic and non-magnetic microparticles in a twodimensional microchannel. Numerical simulations of monomer conversion in the microfluidic channel are performed to predict the manufactured particle shape. PMID:24327458

  1. Coalescing drops in microfluidic parking networks: A multifunctional platform for drop-based microfluidics

    PubMed Central

    Bithi, Swastika S.; Wang, William S.; Sun, Meng; Blawzdziewicz, Jerzy; Vanapalli, Siva A.

    2014-01-01

    Multiwell plate and pipette systems have revolutionized modern biological analysis; however, they have disadvantages because testing in the submicroliter range is challenging, and increasing the number of samples is expensive. We propose a new microfluidic methodology that delivers the functionality of multiwell plates and pipettes at the nanoliter scale by utilizing drop coalescence and confinement-guided breakup in microfluidic parking networks (MPNs). Highly monodisperse arrays of drops obtained using a hydrodynamic self-rectification process are parked at prescribed locations in the device, and our method allows subsequent drop manipulations such as fine-gradation dilutions, reactant addition, and fluid replacement while retaining microparticles contained in the sample. Our devices operate in a quasistatic regime where drop shapes are determined primarily by the channel geometry. Thus, the behavior of parked drops is insensitive to flow conditions. This insensitivity enables highly parallelized manipulation of drop arrays of different composition, without a need for fine-tuning the flow conditions and other system parameters. We also find that drop coalescence can be switched off above a critical capillary number, enabling individual addressability of drops in complex MPNs. The platform demonstrated here is a promising candidate for conducting multistep biological assays in a highly multiplexed manner, using thousands of submicroliter samples. PMID:25379078

  2. Photo-crosslinkable hydrogel-based 3D microfluidic culture device.

    PubMed

    Lee, Youlee; Lee, Jong Min; Bae, Pan-Kee; Chung, Il Yup; Chung, Bong Hyun; Chung, Bong Geun

    2015-04-01

    We developed the photo-crosslinkable hydrogel-based 3D microfluidic device to culture neural stem cells (NSCs) and tumors. The photo-crosslinkable gelatin methacrylate (GelMA) polymer was used as a physical barrier in the microfluidic device and collagen type I gel was employed to culture NSCs in a 3D manner. We demonstrated that the pore size was inversely proportional to concentrations of GelMA hydrogels, showing the pore sizes of 5 and 25 w/v% GelMA hydrogels were 34 and 4 μm, respectively. It also revealed that the morphology of pores in 5 w/v% GelMA hydrogels was elliptical shape, whereas we observed circular-shaped pores in 25 w/v% GelMA hydrogels. To culture NSCs and tumors in the 3D microfluidic device, we investigated the molecular diffusion properties across GelMA hydrogels, indicating that 25 w/v% GelMA hydrogels inhibited the molecular diffusion for 6 days in the 3D microfluidic device. In contrast, the chemicals were diffused in 5 w/v% GelMA hydrogels. Finally, we cultured NSCs and tumors in the hydrogel-based 3D microfluidic device, showing that 53-75% NSCs differentiated into neurons, while tumors were cultured in the collagen gels. Therefore, this photo-crosslinkable hydrogel-based 3D microfluidic culture device could be a potentially powerful tool for regenerative tissue engineering applications.

  3. Development of an evaporation-based microfluidic sample concentrator

    NASA Astrophysics Data System (ADS)

    Sharma, Nigel R.; Lukyanov, Anatoly; Bardell, Ron L.; Seifried, Lynn; Shen, Mingchao

    2008-02-01

    MicroPlumbers Microsciences LLC, has developed a relatively simple concentrator device based on isothermal evaporation. The device allows for rapid concentration of dissolved or dispersed substances or microorganisms (e.g. bacteria, viruses, proteins, toxins, enzymes, antibodies, etc.) under conditions gentle enough to preserve their specific activity or viability. It is capable of removing of 0.8 ml of water per minute at 37°C, and has dimensions compatible with typical microfluidic devices. The concentrator can be used as a stand-alone device or integrated into various processes and analytical instruments, substantially increasing their sensitivity while decreasing processing time. The evaporative concentrator can find applications in many areas such as biothreat detection, environmental monitoring, forensic medicine, pathogen analysis, and agricultural industrial monitoring. In our presentation, we describe the design, fabrication, and testing of the concentrator. We discuss multiphysics simulations of the heat and mass transport in the device that we used to select the design of the concentrator and the protocol of performance testing. We present the results of experiments evaluating water removal performance.

  4. Modification of Microfluidic Paper-Based Devices with Silica Nanoparticles

    PubMed Central

    Evans, Elizabeth; Gabriel, Ellen Flávia Moreira; Benavidez, Tomás E.; Coltro, Wendell Karlos Tomazelli; Garcia, Carlos D.

    2014-01-01

    This paper describes a silica nanoparticle-modified microfluidic paper-based analytical device (μPAD) with improved color intensity and uniformity for three different enzymatic reactions with clinical relevance (lactate, glucose, and glutamate). The μPADs were produced on Whatman grade 1 filter paper and using a CO2 laser engraver. Silica nanoparticles modified with 3-aminopropyltriethoxysilane (APTES) were then added to the paper devices to facilitate the adsorption of selected enzymes and prevent the washing away effect that creates color gradients in the colorimetric measurements. Here we show three different enzymatic assays for compounds. According to the results herein described, the addition of silica nanoparticles yielded to significant improvements in color intensity and uniformity. The resulting μPADs allowed for the detection of the three analytes in clinically-relevant concentration ranges with limits of detection (LOD) of 0.63 mM, 0.50 mM, and 0.25 mM for lactate, glucose, and glutamate, respectively. An example of an analytical application has been demonstrated for the semi-quantitative detection of all three analytes in artificial urine. The results demonstrate the potential of silica nanoparticles to avoid the washing away effect and improve the color uniformity and intensity in colorimetric bioassays performed on μPADs. PMID:25204446

  5. Structural studies of enzyme-based microfluidic biofuel cells

    NASA Astrophysics Data System (ADS)

    Togo, Makoto; Takamura, Akimasa; Asai, Tatsuya; Kaji, Hirokazu; Nishizawa, Matsuhiko

    An enzyme-based glucose/O 2 biofuel cell was constructed within a microfluidic channel to study the influence of electrode configuration and fluidic channel height on cell performance. The cell was composed of a bilirubin oxidase (BOD)-adsorbed O 2 cathode and a glucose anode prepared by co-immobilization of glucose dehydrogenase (GDH), diaphorase (Dp) and VK 3-pendant poly- L-lysine. The consumption of O 2 at the upstream cathode protected the downstream anode from interfering O 2 molecules, and consequently improved the cell performance (maximum cell current) ca. 10% for the present cell. The cell performance was also affected by the channel height. The output current and power of a 0.1 mm-height cell was significantly less than those of a 1 mm-height cell because of the depletion of O 2, as determined by the shape of the E- I curve at the cathode. On the other hand, the volume density of current and power was several times higher for the narrower cell.

  6. Bead-Based Microfluidic Sediment Analogues: Fabrication and Colloid Transport.

    PubMed

    Guo, Yang; Huang, Jingwei; Xiao, Feng; Yin, Xiaolong; Chun, Jaehun; Um, Wooyong; Neeves, Keith B; Wu, Ning

    2016-09-13

    Mobile colloids can act as carriers for low-solubility contaminants in the environment. However, the dominant mechanism for this colloid-facilitated transport of chemicals is unclear. Therefore, we developed a bead-based microfluidic platform of sediment analogues and measured both single and population transport of model colloids. The porous medium is assembled through a bead-by-bead injection method. This approach has the versatility to build both electrostatically homogeneous and heterogeneous media at the pore scale. A T-junction at the exit also allowed for encapsulation and enumeration of colloids effluent at single particle resolution to give population dynamics. Tortuosity calculated from pore-scale trajectory analysis and its comparison with lattice Boltzmann simulations revealed that transport of colloids was influenced by the size exclusion effect. The porous media packed by positively and negatively charged beads into two layers showed distinctive colloidal particle retention and significant remobilization and re-adsorption of particles during water flushing. We demonstrated the potential of our method to fabricate porous media with surface heterogeneities at the pore scale. With both single and population dynamics measurement, our platform has the potential to connect pore-scale and macroscale colloid transport on a lab scale and to quantify the impact of grain surface heterogeneities that are natural in the subsurface environment. PMID:27548505

  7. A portable, integrated analyzer for microfluidic - based molecular analysis.

    PubMed

    Qiu, Xianbo; Chen, Dafeng; Liu, Changchun; Mauk, Michael G; Kientz, Terry; Bau, Haim H

    2011-10-01

    A portable, fully automated analyzer that provides actuation and flow control to a disposable, self-contained, microfluidic cassette ("chip") for point-of-care, molecular testing is described. The analyzer provides mechanical actuation to compress pouches that pump liquids in the cassette, to open and close diaphragm valves for flow control, and to induce vibrations that enhance stirring. The analyzer also provides thermal actuation for the temperature cycling needed for polymerase chain reaction (PCR) amplification of nucleic acids and for various drying processes. To improve the temperature uniformity of the PCR chamber, the system utilizes a double-sided heating/cooling scheme with a custom feedforward, variable, structural proportional-integral-derivative (FVSPID) controller. The analyzer includes a programmable central processing unit that directs the sequence and timing of the various operations and that is interfaced with a computer. The disposable cassette receives a sample, and it carries out cell lysis, nucleic acid isolation, concentration, and purification, thermal cycling, and either real time or lateral flow (LF) based detection. The system's operation was demonstrated by processing saliva samples spiked with B. cereus cells. The amplicons were detected with a lateral flow assay using upconverting phosphor reporter particles. This system is particularly suited for use in regions lacking centralized laboratory facilities and skilled personnel.

  8. Fabrication of polyimide based microfluidic channels for biosensor devices

    NASA Astrophysics Data System (ADS)

    Zulfiqar, Azeem; Pfreundt, Andrea; Svendsen, Winnie Edith; Dimaki, Maria

    2015-03-01

    The ever-increasing complexity of the fabrication process of Point-of-care (POC) devices, due to high demand of functional versatility, compact size and ease-of-use, emphasizes the need of multifunctional materials that can be used to simplify this process. Polymers, currently in use for the fabrication of the often needed microfluidic channels, have limitations in terms of their physicochemical properties. Therefore, the use of a multipurpose biocompatible material with better resistance to the chemical, thermal and electrical environment, along with capability of forming closed channel microfluidics is inevitable. This paper demonstrates a novel technique of fabricating microfluidic devices using polyimide (PI) which fulfills the aforementioned properties criteria. A fabrication process to pattern microfluidic channels, using partially cured PI, has been developed by using a dry etching method. The etching parameters are optimized and compared to those used for fully cured PI. Moreover, the formation of closed microfluidic channel on wafer level by bonding two partially cured PI layers or a partially cured PI to glass with high bond strength has been demonstrated. The reproducibility in uniformity of PI is also compared to the most commonly used SU8 polymer, which is a near UV sensitive epoxy resin. The potential applications of PI processing are POC and biosensor devices integrated with microelectronics.

  9. An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities.

    PubMed

    Choi, Jin-Woo; Oh, Kwang W; Thomas, Jennifer H; Heineman, William R; Halsall, H Brian; Nevin, Joseph H; Helmicki, Arthur J; Henderson, H Thurman; Ahn, Chong H

    2002-02-01

    This paper presents the development and characterization of an integrated microfluidic biochemical detection system for fast and low-volume immunoassays using magnetic beads, which are used as both immobilization surfaces and bio-molecule carriers. Microfluidic components have been developed and integrated to construct a microfluidic biochemical detection system. Magnetic bead-based immunoassay, as a typical example of biochemical detection and analysis, has been successfully performed on the integrated microfluidic biochemical analysis system that includes a surface-mounted biofilter and electrochemical sensor on a glass microfluidic motherboard. Total time required for an immunoassay was less than 20 min including sample incubation time, and sample volume wasted was less than 50 microl during five repeated assays. Fast and low-volume biochemical analysis has been successfully achieved with the developed biofilter and immunosensor, which is integrated to the microfluidic system. Such a magnetic bead-based biochemical detection system, described in this paper, can be applied to protein analysis systems. PMID:15100857

  10. Droplet-based microfluidic washing module for magnetic particle-based assays

    PubMed Central

    Lee, Hun; Xu, Linfeng; Oh, Kwang W.

    2014-01-01

    In this paper, we propose a continuous flow droplet-based microfluidic platform for magnetic particle-based assays by employing in-droplet washing. The droplet-based washing was implemented by traversing functionalized magnetic particles across a laterally merged droplet from one side (containing sample and reagent) to the other (containing buffer) by an external magnetic field. Consequently, the magnetic particles were extracted to a parallel-synchronized train of washing buffer droplets, and unbound reagents were left in an original train of sample droplets. To realize the droplet-based washing function, the following four procedures were sequentially carried in a droplet-based microfluidic device: parallel synchronization of two trains of droplets by using a ladder-like channel network; lateral electrocoalescence by an electric field; magnetic particle manipulation by a magnetic field; and asymmetrical splitting of merged droplets. For the stable droplet synchronization and electrocoalescence, we optimized droplet generation conditions by varying the flow rate ratio (or droplet size). Image analysis was carried out to determine the fluorescent intensity of reagents before and after the washing step. As a result, the unbound reagents in sample droplets were significantly removed by more than a factor of 25 in the single washing step, while the magnetic particles were successfully extracted into washing buffer droplets. As a proof-of-principle, we demonstrate a magnetic particle-based immunoassay with streptavidin-coated magnetic particles and fluorescently labelled biotin in the proposed continuous flow droplet-based microfluidic platform. PMID:25379098

  11. Droplet-based microfluidics: enabling impact on drug discovery.

    PubMed

    Dressler, Oliver J; Maceiczyk, Richard M; Chang, Soo-Ik; deMello, Andrew J

    2014-04-01

    Over the past two decades, the application of microengineered systems in the chemical and biological sciences has transformed the way in which high-throughput experimentation is performed. The ability to fabricate complex microfluidic architectures has allowed scientists to create new experimental formats for processing ultra-small analytical volumes in short periods and with high efficiency. The development of such microfluidic systems has been driven by a range of fundamental features that accompany miniaturization. These include the ability to handle small sample volumes, ultra-low fabrication costs, reduced analysis times, enhanced operational flexibility, facile automation, and the ability to integrate functional components within complex analytical schemes. Herein we discuss the impact of microfluidics in the area of high-throughput screening and drug discovery and highlight some of the most pertinent studies in the recent literature.

  12. Mobile phone based electrochemiluminescence detection in paper-based microfluidic sensors.

    PubMed

    Delaney, Jacqui L; Hogan, Conor F

    2015-01-01

    The development of simple, inexpensive paper-based sensors for medical diagnostics and other applications is now an important emerging area in the field of biosensors; however, the electronic instrument or reader used to interrogate such sensors adds significantly to the cost of the analysis. In this chapter we describe the design and construction of novel, low-cost disposable electrochemiluminescent (ECL) sensors based on screen printed carbon electrodes and paper-based microfluidics. Moreover, a method to interrogate these sensors using only a mobile phone is articulated. This is realized by exploiting the audio output of the device to achieve electrochemical control, while using the camera to detect the resulting light emitted during the ECL reaction. The combination of cell phone technology with low-cost paper microfluidic sensors dramatically reduces the cost of sensing and has the potential to enhance health-care outcomes by exploiting the functionality, connectivity, and close to worldwide penetration of mobile phone technology. PMID:25626546

  13. Characterization of a microfluidic microbial fuel cell as a power generator based on a nickel electrode.

    PubMed

    Mardanpour, Mohammad Mahdi; Yaghmaei, Soheila

    2016-05-15

    This study reports the fabrication of a microfluidic microbial fuel cell (MFC) using nickel as a novel alternative for conventional electrodes and a non-phatogenic strain of Escherichia coli as the biocatalyst. The feasibility of a microfluidic MFC as an efficient power generator for production of bioelectricity from glucose and urea as organic substrates in human blood and urine for implantable medical devices (IMDs) was investigated. A maximum open circuit potential of 459 mV was achieved for the batch-fed microfluidic MFC. During continuous mode operation, a maximum power density of 104 Wm(-3) was obtained with nutrient broth. For the glucose-fed microfluidic MFC, the maximum power density of 5.2 μW cm(-2) obtained in this study is significantly greater than the power densities reported previously for microsized MFCs and glucose fuel cells. The maximum power density of 14 Wm(-3) obtained using urea indicates the successful performance of a microfluidic MFC using human excreta. It features high power density, self-regeneration, waste management and a low production cost (<$1), which suggest it as a promising alternative to conventional power supplies for IMDs. The performance of the microfluidic MFC as a power supply was characterized based on polarization behavior and cell potential in different substrates, operational modes, and concentrations.

  14. MEMS-based flow cytometry: microfluidics-based cell identification system by fluorescent imaging.

    PubMed

    Wu, W K; Liang, C K; Huang, J Z

    2004-01-01

    This study utilizes MEMS technology to realize a novel low-cost microfluidics-based biochip system for flow-type cell handling. Powered by vacuum pump, the microfluidic driving system enables cells to move in order one by one in the biochip by an effect of sheath flow prefocus. Then, cells are guided to a fluorescent inspection region where two detection tasks such as cell image identification and cell counting are conducted. Currently, the glass-based biochip has been manufactured and all the related devices have been well set up in our laboratory. With this proposed prototype system, typical results about cell separation of yeast cell and PC-3 cell are available and their separated images are also presented, respectively. PMID:17270801

  15. Adhesive-based bonding technique for PDMS microfluidic devices.

    PubMed

    Thompson, C Shea; Abate, Adam R

    2013-02-21

    We present a simple and inexpensive technique for bonding PDMS microfluidic devices. The technique uses only adhesive tape and an oven; plasma bonders and cleanroom facilities are not required. It also produces channels that are immediately hydrophobic, allowing formation of aqueous-in-oil emulsions.

  16. Fabrication of advanced particles and particle-based materials assisted by droplet-based microfluidics.

    PubMed

    Wang, Jing-Tao; Wang, Juan; Han, Jun-Jie

    2011-07-01

    Recent advances in the fabrication of complex particles and particle-based materials assisted by droplet-based microfluidics are reviewed. Monodisperse particles with expected internal structures, morphologies, and sizes in the range of nanometers to hundreds of micrometers have received a good deal of attention in recent years. Due to the capability of generating monodisperse emulsions and of executing precise control and operations on the suspended droplets inside the microchannels, droplet-based microfluidic devices have become powerful tools for fabricating complex particles with desired properties. Emulsions and multiple-emulsions generated in the microfluidic devices can be composed of a variety of materials including aqueous solutions, gels, polymers and solutions containing functional nanoparticles. They are ideal microreactors or fine templates for synthesizing advanced particles, such as polymer particles, microcapsules, nanocrystals, and photonic crystal clusters or beads by further chemical or physical operations. These particles are promising materials that may be applicable for many fields, such as photonic materials, drug delivery systems, and bio-analysis. From simple to complex, from spherical to nonspherical, from polymerization and reaction crystallization to self-assembly, this review aims to help readers be aware of the many aspects of this field.

  17. Flow Manipulation in Thread-Based Microfluidics by Tuning the Wettability of Wool.

    PubMed

    Jeon, So-Hyoun; Hwang, Ki-Hwan; Jung, Won Suk; Seo, Hyeon-Jin; Nam, Sung Woo; Boo, Jin-Hyo; Yun, Sang H

    2015-02-01

    Recent progress in thread-based microfluidic devices has provided portable and inexpensive field-based technologies enabling medical diagnostics, environmental monitoring, and food safety analysis. However, capillary-driven liquid flow in a single thread, a crucial aspect of thread-based microfluidics, is difficult to control. Among potential materials, hydrophobic wool thread is an appropriate candidate for liquid flow control in thread-based microfluidics because its wettability can be readily tuned by the introduction of a natural color pigment, thereby manipulating flow. Thus, utilizing natural wool thread as a channel, we demonstrate here that liquid flow manipulations, such as microselecting and micromixing, can be achieved by coating the complex Al(III) (Alum) brazilein onto wool thread. In addition to enabling flow control, the coated wool channels consisting entirely of naturally occurring substances will be beneficial for biological sensing devices. PMID:26349307

  18. Microfluidics-Based Lab-on-Chip Systems in DNA-Based Biosensing: An Overview

    PubMed Central

    Dutse, Sabo Wada; Yusof, Nor Azah

    2011-01-01

    Microfluidics-based lab-on-chip (LOC) systems are an active research area that is revolutionising high-throughput sequencing for the fast, sensitive and accurate detection of a variety of pathogens. LOCs also serve as portable diagnostic tools. The devices provide optimum control of nanolitre volumes of fluids and integrate various bioassay operations that allow the devices to rapidly sense pathogenic threat agents for environmental monitoring. LOC systems, such as microfluidic biochips, offer advantages compared to conventional identification procedures that are tedious, expensive and time consuming. This paper aims to provide a broad overview of the need for devices that are easy to operate, sensitive, fast, portable and sufficiently reliable to be used as complementary tools for the control of pathogenic agents that damage the environment. PMID:22163925

  19. Microfluidics-based lab-on-chip systems in DNA-based biosensing: an overview.

    PubMed

    Dutse, Sabo Wada; Yusof, Nor Azah

    2011-01-01

    Microfluidics-based lab-on-chip (LOC) systems are an active research area that is revolutionising high-throughput sequencing for the fast, sensitive and accurate detection of a variety of pathogens. LOCs also serve as portable diagnostic tools. The devices provide optimum control of nanolitre volumes of fluids and integrate various bioassay operations that allow the devices to rapidly sense pathogenic threat agents for environmental monitoring. LOC systems, such as microfluidic biochips, offer advantages compared to conventional identification procedures that are tedious, expensive and time consuming. This paper aims to provide a broad overview of the need for devices that are easy to operate, sensitive, fast, portable and sufficiently reliable to be used as complementary tools for the control of pathogenic agents that damage the environment.

  20. Rapid prototyping of arrayed microfluidic systems in polystyrene for cell-based assays

    PubMed Central

    Young, Edmond W.K.; Berthier, Erwin; Guckenberger, David J.; Sackmann, Eric; Lamers, Casey; Meyvantsson, Ivar; Huttenlocher, Anna; Beebe, David J.

    2011-01-01

    Microfluidic cell-based systems have enabled the study of cellular phenomena with improved spatiotemporal control of the microenvironment and at increased throughput. While PDMS has emerged as the most popular material in microfluidics research, it has specific limitations that prevent microfluidic platforms from achieving their full potential. We present here a complete process, ranging from mold design to embossing and bonding, that describes the fabrication of polystyrene (PS) microfluidic devices with similar cost and time expenditures as PDMS-based devices. Emphasis was placed on creating methods that can compete with PDMS fabrication methods in terms of robustness, complexity and time requirements. To achieve this goal several improvements were made to remove critical bottlenecks in existing PS embossing methods. First, traditional lithography techniques were adapted to fabricate bulk epoxy molds capable of resisting high temperatures and pressures. Second, a method was developed to emboss through-holes in a PS layer, enabling creation of large arrays of independent microfluidic systems on a single device without need to manually create access ports. Third, thermal bonding of PS layers was optimized in order to achieve quality bonding over large arrays of microsystems. The choice of materials and methods were validated for biological function using two different cell-based applications to demonstrate the versatility of our streamlined fabrication process. PMID:21261280

  1. 2-layer based microfluidic concentration generator by hybrid serial and volumetric dilutions.

    PubMed

    Lee, Kangsun; Kim, Choong; Kim, Youngeun; Jung, Keunhui; Ahn, Byungwook; Kang, Ji Yoon; Oh, Kwang W

    2010-04-01

    We present a 2-layer based microfluidic concentration generator by a hybrid of a serial and a volumetric dilution for dose-response experiments in drug screening. The hybrid dilution method using 2-layer based microfluidic network significantly reduces the total number of cascaded serial dilution stages. The proposed strategy is capable of generating a large number of universal stepwise monotonic concentrations with a wide range of logarithmic and linear scales. We have studied an equivalent electrical circuit to that of the 2-layer based microfluidic network, where the only variable parameter is channel length. We have designed a microfluidic dilution generator simultaneously covering 14 doses with a combination of 4-order logarithmic and 4-point linear concentrations. The design has been verified by a commercial circuit analysis software (e.g., P-Spice) for the electrical circuit analysis and a computational fluid dynamics software (e.g., CFD-ACE+) for the microfluidic circuit analysis. As a real-life application of the proposed dilution generator, we have successfully performed a dose-response experiment using MCF-7 human breast cancer cells. We expect that the proposed dilution method will be useful to study not only high throughput drug screening but also optimization in biology, chemistry, medicine, and material sciences.

  2. Rapid prototyping of arrayed microfluidic systems in polystyrene for cell-based assays.

    PubMed

    Young, Edmond W K; Berthier, Erwin; Guckenberger, David J; Sackmann, Eric; Lamers, Casey; Meyvantsson, Ivar; Huttenlocher, Anna; Beebe, David J

    2011-02-15

    Microfluidic cell-based systems have enabled the study of cellular phenomena with improved spatiotemporal control of the microenvironment and at increased throughput. While poly(dimethylsiloxane) (PDMS) has emerged as the most popular material in microfluidics research, it has specific limitations that prevent microfluidic platforms from achieving their full potential. We present here a complete process, ranging from mold design to embossing and bonding, that describes the fabrication of polystyrene (PS) microfluidic devices with similar cost and time expenditures as PDMS-based devices. Emphasis was placed on creating methods that can compete with PDMS fabrication methods in terms of robustness, complexity, and time requirements. To achieve this goal, several improvements were made to remove critical bottlenecks in existing PS embossing methods. First, traditional lithographic techniques were adapted to fabricate bulk epoxy molds capable of resisting high temperatures and pressures. Second, a method was developed to emboss through-holes in a PS layer, enabling creation of large arrays of independent microfluidic systems on a single device without need to manually create access ports. Third, thermal bonding of PS layers was optimized in order to achieve quality bonding over large arrays of microsystems. The choice of materials and methods was validated for biological function in two different cell-based applications to demonstrate the versatility of our streamlined fabrication process.

  3. Advances in microfluidics-based experimental methods for neuroscience research.

    PubMed

    Park, Jae Woo; Kim, Hyung Joon; Kang, Myeong Woo; Jeon, Noo Li

    2013-02-21

    The application of microfluidics to neuroscience applications has always appealed to neuroscientists because of the capability to control the cellular microenvironment in both a spatial and temporal manner. Recently, there has been rapid development of biological micro-electro-mechanical systems (BioMEMS) for both fundamental and applied neuroscience research. In this review, we will discuss the applications of BioMEMS to various topics in the field of neuroscience. The purpose of this review is to summarise recent advances in the components and design of the BioMEMS devices, in vitro disease models, electrophysiology and neural stem cell research. We envision that microfluidics will play a key role in future neuroscience research, both fundamental and applied research.

  4. A portable microfluidic-based biophotonic sensor for extracellular H2O2 measurements

    NASA Astrophysics Data System (ADS)

    Koman, V.; Suárez, G.; Santschi, Ch.; Cadarso, V. J.; Brugger, J.; von Moos, N.; Slaveykova, V. I.; Martin, O. J. F.

    2013-03-01

    In this work a portable analytical biosensor for real-time extracellular monitoring of released hydrogen peroxide (H2O2 ) is presented. The biosensor is based on the optical detection of the cytochrome c (cyt c) oxidation state. The setup consists of an integrated microscope combined with a compact spectrometer. The light being absorbed by cyt c is enhanced via multiscattering produced by random aggregates of polystyrene beads in a cross-linked cyt c matrix. Using ink-jet printing technique, the sensing elements, namely cyt c loaded polystyrene aggregates, are fabricated with high reliability in terms of repeatability of size and sensitivity. Additionally, the sensing elements are enclosed in a microfluidic channel assuring a fast and efficient analytes delivery. As an example, the effect of trace concentrations of functionalized cadmium selenide/zinc sulfide (CdSe/ZnS) core shell quantum dots on the green algae Chlamydomonas reinhardtii is investigated, showing extracellular H2O2 release with different production rates over a period of 1 hour. In conclusion, the presented portable biosensor enables the highly sensitive and non-invasive real-time monitoring of the cell metabolism of C. reinhardtii.

  5. A Streaming Potential/Current-Based Microfluidic Direct Current Generator for Self-Powered Nanosystems.

    PubMed

    Zhang, Rui; Wang, Sihong; Yeh, Min-Hsin; Pan, Caofeng; Lin, Long; Yu, Ruomeng; Zhang, Yan; Zheng, Li; Jiao, Zongxia; Wang, Zhong Lin

    2015-11-01

    A simple but practical method to convert the hydroenergy of microfluids into continuous electrical output is reported. Based on the principle of streaming potential/current, a microfluidic generator (MFG) is demonstrated using patterned micropillar arrays as a quasi-porous flow channel. The continuous electrical output makes this MFG particularly suitable as a power source in self-powered systems. Using the proposed MFG to power a single nanowire-based pH sensor, a self-powered fluid sensor system is demonstrated.

  6. A SERS-based microfluidic immunoassay using an in-situ synthesized gold substrate

    NASA Astrophysics Data System (ADS)

    Fan, Kequan; Wang, Zhuyuan; Wu, Lei; Zong, Shenfei; Cui, Yiping

    2015-05-01

    A sensitive SERS (surface-enhanced Raman scattering)-based immunoassay in microfluidic system has been developed with in-situ synthesis of gold substrate and immune reporter named as 4MBA (4-Mercaptobenzoic acid)-labeled immuno-Ag aggregates. The gold substrate was fabricated simply by introducing the hydrogen tetrachloroaurate (III) trihydrate (HAuCl4) solution to microchannels using a microfluidic pump. It was found that the obtained deposited gold nanoparticles were uniform in size and shape. Then the sandwich immunoassays were performed using the gold substrates based on SERS signals. In the immunoassay, the gold nanoparticles decorated surface was modified with certain antibodies to recognize the specific kind of antigen, which was flowed through the microfluidic channel afterwards. Then 4MBA-labeled immuno-Ag aggregates were employed as the SERS probes to quantitatively detect the antigen. The experimental results showed a good specificity and limit of detection (LOD) about 1 ng/mL.

  7. Gold nanoparticle-based optical microfluidic sensors for analysis of environmental pollutants.

    PubMed

    Lafleur, Josiane P; Senkbeil, Silja; Jensen, Thomas G; Kutter, Jörg P

    2012-11-21

    Conventional methods of environmental analysis can be significantly improved by the development of portable microscale technologies for direct in-field sensing at remote locations. This report demonstrates the vast potential of gold nanoparticle-based microfluidic sensors for the rapid, in-field, detection of two important classes of environmental contaminants - heavy metals and pesticides. Using gold nanoparticle-based microfluidic sensors linked to a simple digital camera as the detector, detection limits as low as 0.6 μg L(-1) and 16 μg L(-1) could be obtained for the heavy metal mercury and the dithiocarbamate pesticide ziram, respectively. These results demonstrate that the attractive optical properties of gold nanoparticle probes combine synergistically with the inherent qualities of microfluidic platforms to offer simple, portable and sensitive sensors for environmental contaminants.

  8. Biochemical perturbations of the mitotic spindle in Xenopus extracts using a diffusion-based microfluidic assay

    PubMed Central

    Yoo, Byung-Kuk; Buguin, Axel; Gueroui, Zoher

    2015-01-01

    A microfluidic device is a powerful tool to manipulate in a controlled manner at spatiotemporal scales for biological systems. Here, we describe a simple diffusion-based assay to generate and measure the effect of biochemical perturbations within the cytoplasm of cell-free extracts from Xenopus eggs. Our approach comprises a microliter reservoir and a model cytoplasm that are separated by a synthetic membrane containing sub-micrometric pores through which small molecules and recombinant proteins can diffuse. We have used this system to examine the perturbation of elements of the mitotic spindle, which is a microtubule-based bipolar structure involved in the segregation of the replicated genome to daughter cells during cell division. First, we used the small molecule inhibitor monastrol to target kinesin-5, a molecular motor that maintains the microtubule spindle bipolarity. Next, we explored the dynamics of the mitotic spindle by monitoring the exchange between unpolymerized and polymerized tubulin within microtubule fibers. These results show that a simple diffusion-based system can generate biochemical perturbations directly within a cell-free cytoplasm based on Xenopus egg extracts at the time scale of minutes. Our assay is therefore suitable for monitoring the dynamics of supramolecular assemblies within cell-free extracts in response to perturbations. This strategy opens up broad perspectives including phenotype screening or mechanistic studies of biological assembly processes and could be applied to other cell-free extracts such as those derived from mammalian or bacterial cells. PMID:26221196

  9. A contact line pinning based microfluidic platform for modelling physiological flows.

    PubMed

    Tung, Chih-kuan; Krupa, Oleh; Apaydin, Elif; Liou, Jr-Jiun; Diaz-Santana, Anthony; Kim, Beum Jun; Wu, Mingming

    2013-10-01

    This work introduces a contact line pinning based microfluidic platform for the generation of interstitial and intramural flows within a three dimensional (3D) microenvironment for cellular behaviour studies. A contact line pinning method was used to confine a natively derived biomatrix, collagen, in microfluidic channels without walls. By patterning collagen in designated wall-less channels, we demonstrated and validated the intramural flows through a microfluidic channel bounded by a monolayer of endothelial cells (mimic of a vascular vessel), as well as slow interstitial flows within a cell laden collagen matrix using the same microfluidic platform. The contact line pinning method ensured the generation of an engineered endothelial tube with straight walls, and spatially uniform interstitial fluid flows through the cell embedded 3D collagen matrix. Using this device, we demonstrated that the breast tumour cells' (MDA-MB-231 cell line) morphology and motility were modulated by the interstitial flows, and the motility of a sub-population of the cells was enhanced by the presence of the flow. The presented microfluidic platform provides a basic framework for studies of cellular behaviour including cell transmigration, growth, and adhesion under well controlled interstitial and intramural flows, and within a physiologically realistic 3D co-culture setting.

  10. A contact line pinning based microfluidic platform for modelling physiological flows

    PubMed Central

    Krupa, Oleh; Apyadin, Elif; Liou, Jiun; Diaz-Santana, Anthony; Kim, Beum Jun

    2015-01-01

    This work introduces a contact line pinning based microfluidic platform for the generation of interstitial and intramural flows within a three dimensional (3D) microenvironment for cellular behaviour studies. A contact line pinning method was used to confine natively derived biomatrix, collagen, in microfluidic channels without walls. By patterning collagen in designated wall-less channels, we demonstrated and validated the intramural flows through a microfluidic channel bounded by a monolayer of endothelial cells (mimic of a vascular vessel), as well as slow interstitial flows within a cell laden collagen matrix using the same microfluidic platform. The contact line pinning method ensured the generation of an engineered endothelial tube with straight walls, and spatially uniform interstitial fluid flows through the cell embedded 3D collagen matrix. Using this device, we demonstrated that the breast tumour cells’ (MDA-MB-231 cell line) morphology and motility were modulated by the interstitial flows, and the motility of a sub-population of the cells was enhanced by the presence of the flow. The presented microfluidic platform provides a basic framework for studies of cellular behaviour including cell transmigration, growth, and adhesion under well controlled interstitial and intramural flows, and within a physiologically realistic 3D co-culture setting. PMID:23917952

  11. Fabrication of multilayer-PDMS based microfluidic device for bio-particles concentration detection.

    PubMed

    Masrie, Marianah; Majlis, Burhanuddin Yeop; Yunas, Jumril

    2014-01-01

    This paper discusses the process technology to fabricate multilayer-Polydimethylsiloxane (PDMS) based microfluidic device for bio-particles concentration detection in Lab-on-chip system. The micro chamber and the fluidic channel were fabricated using standard photolithography and soft lithography process. Conventional method by pouring PDMS on a silicon wafer and peeling after curing in soft lithography produces unspecific layer thickness. In this work, a multilayer-PDMS method is proposed to produce a layer with specific and fixed thickness micron size after bonding that act as an optimum light path length for optimum light detection. This multilayer with precise thickness is required since the microfluidic is integrated with optical transducer. Another significant advantage of this method is to provide excellent bonding between multilayer-PDMS layer and biocompatible microfluidic channel. The detail fabrication process were illustrated through scanning electron microscopy (SEM) and discussed in this work. The optical signal responses obtained from the multilayer-PDMS microfluidic channel with integrated optical transducer were compared with those obtained with the microfluidic channel from a conventional method. As a result, both optical signal responses did not show significant differences in terms of dispersion of light propagation for both media.

  12. Inkjet printing of UV-curable adhesive and dielectric inks for microfluidic devices.

    PubMed

    Hamad, E M; Bilatto, S E R; Adly, N Y; Correa, D S; Wolfrum, B; Schöning, M J; Offenhäusser, A; Yakushenko, A

    2016-01-01

    Bonding of polymer-based microfluidics to polymer substrates still poses a challenge for Lab-On-a-Chip applications. Especially, when sensing elements are incorporated, patterned deposition of adhesives with curing at ambient conditions is required. Here, we demonstrate a fabrication method for fully printed microfluidic systems with sensing elements using inkjet and stereolithographic 3D-printing.

  13. Microfluidic technologies.

    PubMed

    Bhagat, Ali Asgar S; Lim, Chwee Teck

    2012-01-01

    Presence of circulating tumor cells (CTCs) in blood is an important intermediate step in cancer metastasis, a mortal consequence of cancer. However, CTCs are extremely rare in blood with highly heterogeneous morphologies and molecular signatures, thus making their isolation technically very challenging. In the past decade, a flurry of new microfluidic-based technologies has emerged to address this compelling problem. This chapter highlights the current state of the art in microfluidic systems developed for CTCs separation and isolation. The techniques presented are broadly classified as physical- or affinity-based isolation depending on the separation principle. The performance of these techniques is evaluated based on accepted separation metrics including sensitivity, purity and processing/analysis time. Finally, further insights associated with realizing an integrated microfluidic CTC lab-on-chip system as an onco-diagnostic tool will be discussed. PMID:22527494

  14. Fabrication of a Paper-Based Microfluidic Device to Readily Determine Nitrite Ion Concentration by Simple Colorimetric Assay

    ERIC Educational Resources Information Center

    Wang, Bo; Lin, Zhiqiang; Wang, Min

    2015-01-01

    Paper-based microfluidic devices (µPAD) are a burgeoning platform of microfluidic analysis technology. The method described herein is for use in undergraduate and high school chemistry laboratories. A simple and convenient µPAD was fabricated by easy patterning of filter paper using a permanent marker pen. The usefulness of the device was…

  15. Nanostructured anatase-titanium dioxide based platform for application to microfluidics cholesterol biosensor

    NASA Astrophysics Data System (ADS)

    Azahar Ali, Md.; Srivastava, Saurabh; Solanki, Pratima R.; Varun Agrawal, Ved; John, Renu; Malhotra, Bansi D.

    2012-08-01

    We report results of studies relating to the fabrication of a microfluidics cholesterol sensor based on nanocrystalline anatase-titanium dioxide (ant-TiO2) film deposited onto indium tin oxide (ITO) glass. The results of response studies (optimized under the flow rate of 30 μl/min) conducted on cholesterol oxidase (ChOx) immobilized onto crystalline ant-TiO2 nanoparticles (˜27 nm)/ITO microfluidics electrode reveal linearity as 1.3 to 10.3 mM and improved sensitivity of 94.65 μA/mM/cm2. The observed low value of Km (0.14 mM) indicates high affinity of ChOx to cholesterol. No significant changes in current response of this microfluidics sensor are measured in the presence of different interferents.

  16. Automated cell viability assessment using a microfluidics based portable imaging flow analyzer

    PubMed Central

    Jagannadh, Veerendra Kalyan; Adhikari, Jayesh Vasudeva; Gorthi, Sai Siva

    2015-01-01

    In this work, we report a system-level integration of portable microscopy and microfluidics for the realization of optofluidic imaging flow analyzer with a throughput of 450 cells/s. With the use of a cellphone augmented with off-the-shelf optical components and custom designed microfluidics, we demonstrate a portable optofluidic imaging flow analyzer. A multiple microfluidic channel geometry was employed to demonstrate the enhancement of throughput in the context of low frame-rate imaging systems. Using the cell-phone based digital imaging flow analyzer, we have imaged yeast cells present in a suspension. By digitally processing the recorded videos of the flow stream on the cellphone, we demonstrated an automated cell viability assessment of the yeast cell population. In addition, we also demonstrate the suitability of the system for blood cell counting. PMID:26015835

  17. Multilayer soft lithography of perfluoropolyether based elastomer for microfluidic device fabrication.

    PubMed

    Devaraju, Naga Sai Gopi Krishna; Unger, Marc Alexander

    2011-06-01

    The compatibility of microfluidic devices with solvents and other chemicals is extremely important for many applications such as organic synthesis in microreactors and drug screening. We report the successful fabrication of microfluidic devices from a novel perfluoropolyether based polymer utilizing the Multilayer Soft Lithography™ (MSL) technique with simple, straightforward processing. The perfluorinated polymer SIFEL X-71 8115 is a highly chemically resistant elastomeric material. We demonstrate fabrication of a microfluidic device using an off-ratio bonding technique to bond multiple SIFEL layers, each patterned lithographically. The mechanical properties of the SIFEL MSL valves (including actuation pressures) are similar to PDMS MSL valves of the same geometry. Chemical compatibility tests highlight SIFEL's remarkable resistance to organic solvents, acids and alkalis. PMID:21503367

  18. Microfluidic assembly kit based on laser-cut building blocks for education and fast prototyping.

    PubMed

    Gerber, Lukas C; Kim, Honesty; Riedel-Kruse, Ingmar H

    2015-11-01

    Here, we present an inexpensive rapid-prototyping method that allows researchers and children to quickly assemble multi-layered microfluidic devices from easily pre-fabricated building blocks. We developed low-cost (<$2) kits based on laser-cut acrylic building block pieces and double-sided tape that allow users to generate water droplets in oil, capture living cells, and conduct basic phototaxis experiments. We developed and tested a 90-min lesson plan with children aged 12-14 yr and provide here the instructions for teachers to replicate these experiments and lessons. All parts of the kit are easy to make or order. We propose to use such easy to fabricate kits in labs with no access to current microfluidic tools as well as in classroom environments to get exposure to the powerful techniques of microfluidics. PMID:26634013

  19. Automated cell viability assessment using a microfluidics based portable imaging flow analyzer.

    PubMed

    Jagannadh, Veerendra Kalyan; Adhikari, Jayesh Vasudeva; Gorthi, Sai Siva

    2015-03-01

    In this work, we report a system-level integration of portable microscopy and microfluidics for the realization of optofluidic imaging flow analyzer with a throughput of 450 cells/s. With the use of a cellphone augmented with off-the-shelf optical components and custom designed microfluidics, we demonstrate a portable optofluidic imaging flow analyzer. A multiple microfluidic channel geometry was employed to demonstrate the enhancement of throughput in the context of low frame-rate imaging systems. Using the cell-phone based digital imaging flow analyzer, we have imaged yeast cells present in a suspension. By digitally processing the recorded videos of the flow stream on the cellphone, we demonstrated an automated cell viability assessment of the yeast cell population. In addition, we also demonstrate the suitability of the system for blood cell counting. PMID:26015835

  20. Reduction in microparticle adsorption using a lateral interconnection method in a PDMS-based microfluidic device.

    PubMed

    Lee, Do-Hyun; Park, Je-Kyun

    2013-12-01

    Microparticle adsorption on microchannel walls occurs frequently due to nonspecific interactions, decreasing operational performance in pressure-driven microfluidic systems. However, it is essential for delicate manipulation of microparticles or cells to maintain smooth fluid traffic. Here, we report a novel microparticle injection technique, which prevents particle loss, assisted by sample injection along the direction of fluid flow. Sample fluids, including microparticles, mammalian (U937), and green algae (Chlorella vulgaris) cells, were injected directly via a through hole drilled in the lateral direction, resulting in a significant reduction in microparticle attachment. For digital microfluidic application, the proposed regime achieved a twofold enhancement of single-cell encapsulation compared to the conventional encapsulation rate, based on a Poisson distribution, by reducing the number of empty droplets. This novel interconnection method can be straightforwardly integrated as a microparticle or cell injection component in integrated microfluidic systems.

  1. Carbon Nanotube Based Microfluidic Elements for Filtration and Concentration

    SciTech Connect

    Bakajin, O; Ben-Barak, N; Peng, J; Noy, A

    2003-06-25

    We have developed a method for integration of patterned arrays of carbon nanotubes or the ''nanotube mesh'' into microfabricated channels. The method includes standard lithographic methods for patterning and etching the substrate, followed by catalyst patterning, CVD deposition of nanotubes, and anodic bonding of coverslip top. We will describe a carbon nanotube filtering device fabricated using this method and discuss the use of carbon nanotube arrays as molecular concentration and separation media.

  2. Note: A microfluidic freezer based on evaporative cooling of atomized aqueous microdroplets

    NASA Astrophysics Data System (ADS)

    Song, Jin; Chung, Minsub; Kim, Dohyun

    2015-01-01

    We report for the first time water-based evaporative cooling integrated into a microfluidic chip for temperature control and freezing of biological solution. We opt for water as a nontoxic, effective refrigerant. Aqueous solutions are atomized in our device and evaporation of microdroplets under vacuum removes heat effectively. We achieve rapid cooling (-5.1 °C/s) and a low freezing temperature (-14.1 °C). Using this approach, we demonstrate freezing of deionized water and protein solution. Our simple, yet effective cooling device may improve many microfluidic applications currently relying on external power-hungry instruments for cooling and freezing.

  3. Thiolene-based microfluidic flow cells for surface plasmon resonance imaging.

    PubMed

    Sheppard, Gareth; Oseki, Takao; Baba, Akira; Patton, Derek; Kaneko, Futao; Mao, Leidong; Locklin, Jason

    2011-06-01

    Thiolene-based microfluidic devices have been coupled with surface plasmon resonance imaging (SPRI) to provide an integrated platform to study interfacial interactions in both aqueous and organic solutions. In this work, we develop a photolithographic method that interfaces commercially available thiolene resin to gold and glass substrates to generate microfluidic channels with excellent adhesion that leave the underlying sensor surface free from contamination and readily available for surface modification through self-assembly. These devices can sustain high flow rates and have excellent solvent compatibility even with several organic solvents. To demonstrate the versatility of these devices, we have conducted nanomolar detection of streptavidin-biotin interactions using in situ SPRI.

  4. Continuous cell electroporation for efficient DNA and siRNA delivery based on laminar microfluidic chips.

    PubMed

    Wei, Zewen; Li, Zhihong

    2014-01-01

    Electroporation is a high-efficiency and low-toxicity physical gene transfer method. Traditional electroporation is limited to only low volume cell samples. Here we present a continuous cell electroporation method based on commonly used microfluidic chip fabrication technology. Using easily fabricated PDMS microfluidic chip, syringe pumps, and pulse generator, we show efficient delivery of both DNA and siRNA into different cell lines. We describe the protocol of chip fabrication, apparatus setup, and cell electroporation assay. Typically, the fabrication of the devices takes 1 or 2 days and the continuous electroporation assay takes 1 h.

  5. A Novel Microfluidic Flow Rate Detection Method Based on Surface Plasmon Resonance Temperature Imaging

    PubMed Central

    Deng, Shijie; Wang, Peng; Liu, Shengnan; Zhao, Tianze; Xu, Shanzhi; Guo, Mingjiang; Yu, Xinglong

    2016-01-01

    A novel microfluidic flow rate detection method based on surface plasmon resonance (SPR) temperature imaging is proposed. The measurement is performed by space-resolved SPR imaging of the flow induced temperature variations. Theoretical simulations and analysis were performed to demonstrate a proof of concept using this approach. Experiments were implemented and results showed that water flow rates within a wide range of tens to hundreds of μL/min could be detected. The flow rate sensor is resistant to disturbances and can be easily integrated into microfluidic lab-on-chip systems. PMID:27347960

  6. Note: A microfluidic freezer based on evaporative cooling of atomized aqueous microdroplets

    SciTech Connect

    Song, Jin; Kim, Dohyun; Chung, Minsub

    2015-01-15

    We report for the first time water-based evaporative cooling integrated into a microfluidic chip for temperature control and freezing of biological solution. We opt for water as a nontoxic, effective refrigerant. Aqueous solutions are atomized in our device and evaporation of microdroplets under vacuum removes heat effectively. We achieve rapid cooling (−5.1 °C/s) and a low freezing temperature (−14.1 °C). Using this approach, we demonstrate freezing of deionized water and protein solution. Our simple, yet effective cooling device may improve many microfluidic applications currently relying on external power-hungry instruments for cooling and freezing.

  7. Papers Based Electrochemical Biosensors: From Test Strips to Paper-Based Microfluidics

    SciTech Connect

    Liu, Bingwen; Du, Dan; Hua, Xin; Yu, Xiao-Ying; Lin, Yuehe

    2014-05-08

    Papers based biosensors such as lateral flow test strips and paper-based microfluidic devices (or paperfluidics) are inexpensive, rapid, flexible, and easy-to-use analytical tools. An apparent trend in their detection is to interpret sensing results from qualitative assessment to quantitative determination. Electrochemical detection plays an important role in quantification. This review focuses on electrochemical (EC) detection enabled biosensors. The first part provides detailed examples in paper test strips. The second part gives an overview of paperfluidics engaging EC detections. The outlook and recommendation of future directions of EC enabled biosensors are discussed in the end.

  8. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique.

    PubMed

    Nilghaz, Azadeh; Wicaksono, Dedy H B; Gustiono, Dwi; Abdul Majid, Fadzilah Adibah; Supriyanto, Eko; Abdul Kadir, Mohammed Rafiq

    2012-01-01

    This paper describes the fabrication of microfluidic cloth-based analytical devices (μCADs) using a simple wax patterning method on cotton cloth for performing colorimetric bioassays. Commercial cotton cloth fabric is proposed as a new inexpensive, lightweight, and flexible platform for fabricating two- (2D) and three-dimensional (3D) microfluidic systems. We demonstrated that the wicking property of the cotton microfluidic channel can be improved by scouring in soda ash (Na(2)CO(3)) solution which will remove the natural surface wax and expose the underlying texture of the cellulose fiber. After this treatment, we fabricated narrow hydrophilic channels with hydrophobic barriers made from patterned wax to define the 2D microfluidic devices. The designed pattern is carved on wax-impregnated paper, and subsequently transferred to attached cotton cloth by heat treatment. To further obtain 3D microfluidic devices having multiple layers of pattern, a single layer of wax patterned cloth can be folded along a predefined folding line and subsequently pressed using mechanical force. All the fabrication steps are simple and low cost since no special equipment is required. Diagnostic application of cloth-based devices is shown by the development of simple devices that wick and distribute microvolumes of simulated body fluids along the hydrophilic channels into reaction zones to react with analytical reagents. Colorimetric detection of bovine serum albumin (BSA) in artificial urine is carried out by direct visual observation of bromophenol blue (BPB) colour change in the reaction zones. Finally, we show the flexibility of the novel microfluidic platform by conducting a similar reaction in a bent pinned μCAD.

  9. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique.

    PubMed

    Nilghaz, Azadeh; Wicaksono, Dedy H B; Gustiono, Dwi; Abdul Majid, Fadzilah Adibah; Supriyanto, Eko; Abdul Kadir, Mohammed Rafiq

    2012-01-01

    This paper describes the fabrication of microfluidic cloth-based analytical devices (μCADs) using a simple wax patterning method on cotton cloth for performing colorimetric bioassays. Commercial cotton cloth fabric is proposed as a new inexpensive, lightweight, and flexible platform for fabricating two- (2D) and three-dimensional (3D) microfluidic systems. We demonstrated that the wicking property of the cotton microfluidic channel can be improved by scouring in soda ash (Na(2)CO(3)) solution which will remove the natural surface wax and expose the underlying texture of the cellulose fiber. After this treatment, we fabricated narrow hydrophilic channels with hydrophobic barriers made from patterned wax to define the 2D microfluidic devices. The designed pattern is carved on wax-impregnated paper, and subsequently transferred to attached cotton cloth by heat treatment. To further obtain 3D microfluidic devices having multiple layers of pattern, a single layer of wax patterned cloth can be folded along a predefined folding line and subsequently pressed using mechanical force. All the fabrication steps are simple and low cost since no special equipment is required. Diagnostic application of cloth-based devices is shown by the development of simple devices that wick and distribute microvolumes of simulated body fluids along the hydrophilic channels into reaction zones to react with analytical reagents. Colorimetric detection of bovine serum albumin (BSA) in artificial urine is carried out by direct visual observation of bromophenol blue (BPB) colour change in the reaction zones. Finally, we show the flexibility of the novel microfluidic platform by conducting a similar reaction in a bent pinned μCAD. PMID:22089026

  10. Thiolene and SIFEL-based Microfluidic Platforms for Liquid-Liquid Extraction

    PubMed Central

    Goyal, Sachit; Desai, Amit V.; Lewis, Robert W.; Ranganathan, David R.; Li, Hairong; Zeng, Dexing; Reichert, David E.; Kenis, Paul J.A.

    2014-01-01

    Microfluidic platforms provide several advantages for liquid-liquid extraction (LLE) processes over conventional methods, for example with respect to lower consumption of solvents and enhanced extraction efficiencies due to the inherent shorter diffusional distances. Here, we report the development of polymer-based parallel-flow microfluidic platforms for LLE. To date, parallel-flow microfluidic platforms have predominantly been made out of silicon or glass due to their compatibility with most organic solvents used for LLE. Fabrication of silicon and glass-based LLE platforms typically requires extensive use of photolithography, plasma or laser-based etching, high temperature (anodic) bonding, and/or wet etching with KOH or HF solutions. In contrast, polymeric microfluidic platforms can be fabricated using less involved processes, typically photolithography in combination with replica molding, hot embossing, and/or bonding at much lower temperatures. Here we report the fabrication and testing of microfluidic LLE platforms comprised of thiolene or a perfluoropolyether-based material, SIFEL, where the choice of materials was mainly guided by the need for solvent compatibility and fabrication amenability. Suitable designs for polymer-based LLE platforms that maximize extraction efficiencies within the constraints of the fabrication methods and feasible operational conditions were obtained using analytical modeling. To optimize the performance of the polymer-based LLE platforms, we systematically studied the effect of surface functionalization and of microstructures on the stability of the liquid-liquid interface and on the ability to separate the phases. As demonstrative examples, we report (i) a thiolene-based platform to determine the lipophilicity of caffeine, and (ii) a SIFEL-based platform to extract radioactive copper from an acidic aqueous solution. PMID:25246730

  11. Thiolene and SIFEL-based Microfluidic Platforms for Liquid-Liquid Extraction.

    PubMed

    Goyal, Sachit; Desai, Amit V; Lewis, Robert W; Ranganathan, David R; Li, Hairong; Zeng, Dexing; Reichert, David E; Kenis, Paul J A

    2014-01-01

    Microfluidic platforms provide several advantages for liquid-liquid extraction (LLE) processes over conventional methods, for example with respect to lower consumption of solvents and enhanced extraction efficiencies due to the inherent shorter diffusional distances. Here, we report the development of polymer-based parallel-flow microfluidic platforms for LLE. To date, parallel-flow microfluidic platforms have predominantly been made out of silicon or glass due to their compatibility with most organic solvents used for LLE. Fabrication of silicon and glass-based LLE platforms typically requires extensive use of photolithography, plasma or laser-based etching, high temperature (anodic) bonding, and/or wet etching with KOH or HF solutions. In contrast, polymeric microfluidic platforms can be fabricated using less involved processes, typically photolithography in combination with replica molding, hot embossing, and/or bonding at much lower temperatures. Here we report the fabrication and testing of microfluidic LLE platforms comprised of thiolene or a perfluoropolyether-based material, SIFEL, where the choice of materials was mainly guided by the need for solvent compatibility and fabrication amenability. Suitable designs for polymer-based LLE platforms that maximize extraction efficiencies within the constraints of the fabrication methods and feasible operational conditions were obtained using analytical modeling. To optimize the performance of the polymer-based LLE platforms, we systematically studied the effect of surface functionalization and of microstructures on the stability of the liquid-liquid interface and on the ability to separate the phases. As demonstrative examples, we report (i) a thiolene-based platform to determine the lipophilicity of caffeine, and (ii) a SIFEL-based platform to extract radioactive copper from an acidic aqueous solution. PMID:25246730

  12. Thiolene and SIFEL-based Microfluidic Platforms for Liquid-Liquid Extraction.

    PubMed

    Goyal, Sachit; Desai, Amit V; Lewis, Robert W; Ranganathan, David R; Li, Hairong; Zeng, Dexing; Reichert, David E; Kenis, Paul J A

    2014-01-01

    Microfluidic platforms provide several advantages for liquid-liquid extraction (LLE) processes over conventional methods, for example with respect to lower consumption of solvents and enhanced extraction efficiencies due to the inherent shorter diffusional distances. Here, we report the development of polymer-based parallel-flow microfluidic platforms for LLE. To date, parallel-flow microfluidic platforms have predominantly been made out of silicon or glass due to their compatibility with most organic solvents used for LLE. Fabrication of silicon and glass-based LLE platforms typically requires extensive use of photolithography, plasma or laser-based etching, high temperature (anodic) bonding, and/or wet etching with KOH or HF solutions. In contrast, polymeric microfluidic platforms can be fabricated using less involved processes, typically photolithography in combination with replica molding, hot embossing, and/or bonding at much lower temperatures. Here we report the fabrication and testing of microfluidic LLE platforms comprised of thiolene or a perfluoropolyether-based material, SIFEL, where the choice of materials was mainly guided by the need for solvent compatibility and fabrication amenability. Suitable designs for polymer-based LLE platforms that maximize extraction efficiencies within the constraints of the fabrication methods and feasible operational conditions were obtained using analytical modeling. To optimize the performance of the polymer-based LLE platforms, we systematically studied the effect of surface functionalization and of microstructures on the stability of the liquid-liquid interface and on the ability to separate the phases. As demonstrative examples, we report (i) a thiolene-based platform to determine the lipophilicity of caffeine, and (ii) a SIFEL-based platform to extract radioactive copper from an acidic aqueous solution.

  13. Microfluidic paper-based devices for bioanalytical applications.

    PubMed

    Santhiago, Murilo; Nery, Emilia W; Santos, Glauco P; Kubota, Lauro T

    2014-01-01

    Paper has become increasingly recognized as a very interesting substrate for the construction of microfluidic devices, with potential application in a variety of areas, including health diagnosis, environmental monitoring, immunoassays and food safety. The aim of this review is to present a short history of analytical systems constructed from paper, summarize the main advantages and disadvantages of fabrication techniques, exploit alternative methods of detection such as colorimetric, electrochemical, photoelectrochemical, chemiluminescence and electrochemiluminescence, as well as to take a closer look at the novel achievements in the field of bioanalysis published during the last 2 years. Finally, the future trends for production of such devices are discussed. PMID:24341497

  14. Droplet-based microfluidics for artificial cell generation: a brief review.

    PubMed

    Martino, Chiara; deMello, Andrew J

    2016-08-01

    Artificial cells are best defined as micrometre-sized structures able to mimic many of the morphological and functional characteristics of a living cell. In this mini-review, we describe progress in the application of droplet-based microfluidics for the generation of artificial cells and protocells. PMID:27499841

  15. Cost Effective Paper-Based Colorimetric Microfluidic Devices and Mobile Phone Camera Readers for the Classroom

    ERIC Educational Resources Information Center

    Koesdjojo, Myra T.; Pengpumkiat, Sumate; Wu, Yuanyuan; Boonloed, Anukul; Huynh, Daniel; Remcho, Thomas P.; Remcho, Vincent T.

    2015-01-01

    We have developed a simple and direct method to fabricate paper-based microfluidic devices that can be used for a wide range of colorimetric assay applications. With these devices, assays can be performed within minutes to allow for quantitative colorimetric analysis by use of a widely accessible iPhone camera and an RGB color reader application…

  16. Microfluidic paper-based biomolecule preconcentrator based on ion concentration polarization.

    PubMed

    Han, Sung Il; Hwang, Kyo Seon; Kwak, Rhokyun; Lee, Jeong Hoon

    2016-06-21

    Microfluidic paper-based analytical devices (μPADs) for molecular detection have great potential in the field of point-of-care diagnostics. Currently, a critical problem being faced by μPADs is improving their detection sensitivity. Various preconcentration processes have been developed, but they still have complicated structures and fabrication processes to integrate into μPADs. To address this issue, we have developed a novel paper-based preconcentrator utilizing ion concentration polarization (ICP) with minimal addition on lateral-flow paper. The cation selective membrane (i.e., Nafion) is patterned on adhesive tape, and this tape is then attached to paper-based channels. When an electric field is applied across the Nafion, ICP is initiated to preconcentrate the biomolecules in the paper channel. Departing from previous paper-based preconcentrators, we maintain steady lateral fluid flow with the separated Nafion layer; as a result, fluorescent dyes and proteins (FITC-albumin and bovine serum albumin) are continuously delivered to the preconcentration zone, achieving high preconcentration performance up to 1000-fold. In addition, we demonstrate that the Nafion-patterned tape can be integrated with various geometries (multiplexed preconcentrator) and platforms (string and polymer microfluidic channel). This work would facilitate integration of various ICP devices, including preconcentrators, pH/concentration modulators, and micro mixers, with steady lateral flows in paper-based platforms. PMID:27199301

  17. Calcium carbonate polymorph control using droplet-based microfluidics.

    PubMed

    Yashina, Alexandra; Meldrum, Fiona; Demello, Andrew

    2012-06-01

    Calcium carbonate (CaCO(3)) is one of the most abundant minerals and of high importance in many areas of science including global CO(2) exchange, industrial water treatment energy storage, and the formation of shells and skeletons. Industrially, calcium carbonate is also used in the production of cement, glasses, paints, plastics, rubbers, ceramics, and steel, as well as being a key material in oil refining and iron ore purification. CaCO(3) displays a complex polymorphic behaviour which, despite numerous experiments, remains poorly characterised. In this paper, we report the use of a segmented-flow microfluidic reactor for the controlled precipitation of calcium carbonate and compare the resulting crystal properties with those obtained using both continuous flow microfluidic reactors and conventional bulk methods. Through combination of equal volumes of equimolar aqueous solutions of calcium chloride and sodium carbonate on the picoliter scale, it was possible to achieve excellent definition of both crystal size and size distribution. Furthermore, highly reproducible control over crystal polymorph could be realised, such that pure calcite, pure vaterite, or a mixture of calcite and vaterite could be precipitated depending on the reaction conditions and droplet-volumes employed. In contrast, the crystals precipitated in the continuous flow and bulk systems comprised of a mixture of calcite and vaterite and exhibited a broad distribution of sizes for all reaction conditions investigated.

  18. Calcium carbonate polymorph control using droplet-based microfluidics.

    PubMed

    Yashina, Alexandra; Meldrum, Fiona; Demello, Andrew

    2012-06-01

    Calcium carbonate (CaCO(3)) is one of the most abundant minerals and of high importance in many areas of science including global CO(2) exchange, industrial water treatment energy storage, and the formation of shells and skeletons. Industrially, calcium carbonate is also used in the production of cement, glasses, paints, plastics, rubbers, ceramics, and steel, as well as being a key material in oil refining and iron ore purification. CaCO(3) displays a complex polymorphic behaviour which, despite numerous experiments, remains poorly characterised. In this paper, we report the use of a segmented-flow microfluidic reactor for the controlled precipitation of calcium carbonate and compare the resulting crystal properties with those obtained using both continuous flow microfluidic reactors and conventional bulk methods. Through combination of equal volumes of equimolar aqueous solutions of calcium chloride and sodium carbonate on the picoliter scale, it was possible to achieve excellent definition of both crystal size and size distribution. Furthermore, highly reproducible control over crystal polymorph could be realised, such that pure calcite, pure vaterite, or a mixture of calcite and vaterite could be precipitated depending on the reaction conditions and droplet-volumes employed. In contrast, the crystals precipitated in the continuous flow and bulk systems comprised of a mixture of calcite and vaterite and exhibited a broad distribution of sizes for all reaction conditions investigated. PMID:22655005

  19. Bead-based assays for biodetection: from flow-cytometry to microfluidics

    NASA Astrophysics Data System (ADS)

    Ozanich, Richard M., Jr.; Antolick, Kathryn; Bruckner-Lea, Cynthia J.; Bunch, Kyle J.; Dockendorff, Brian P.; Grate, Jay W.; Nash, Michael A.; Tyler, Abby; Warner, Cynthia L.; Warner, Marvin G.

    2009-05-01

    The potential for the use of biological agents by terrorists is a real threat. Two approaches for antibody-based detection of biological species are described in this paper: 1) The use of microbead arrays for multiplexed flow cytometry detection of cytokines and botulinum neurotoxin simulant, and 2) a microfluidic platform for capture and separation of different size superparamagnetic nanoparticles followed by on-chip fluorescence detection of the sandwich complex. These approaches both involve the use of automated fluidic systems for trapping antibody-functionalized microbeads, which allows sample, assay reagents, and wash solutions to be perfused over a micro-column of beads, resulting in faster and more sensitive immunoassays. The automated fluidic approach resulted in up to five-fold improvements in immunoassay sensitivity/speed as compared to identical immunoassays performed in a typical manual batch mode. A second approach for implementing multiplexed bead-based immunoassays without using flow cytometry detection is currently under development. The goal of the microfluidic-based approach is to achieve rapid (<20 minutes), multiplexed (>= 3 bioagents) detection using a simple and low-cost, integrated microfluidic/optical detection platform. Using fiber-optic guided laser-induced fluorescence, assay detection limits were shown to be in the 100's of picomolar range (10's of micrograms per liter) for botulinum neurotoxin simulant without any optimization of the microfluidic device or optical detection approach.

  20. Portable Analyzer Based on Microfluidics/Nanoengineered Electrochemical Sensors for in Situ Characterization of Mixed Wastes

    SciTech Connect

    Wang, Joseph

    2006-06-01

    Portable Analyzer Based on Microfluidic/Nanoengineered Electrochemical Sensors for in Situ Characterization of Mixed Wastes PI: Dr. Joseph Wang (In Collaboration with the PNNL PI Dr. Y. Lin). Objective of Research: This research effort aims at developing a portable analytical system for fast, sensitive, and inexpensive, on-site monitoring of toxic transition metals and radionuclides in contaminated DOE Sites. The portable devices will be based on Microscale Total Analytical systems ( -TAS) or 'Lab-on-a-chip' in combination with electrochemical (stripping-voltammetric) sensors. The resulting microfluidics/electrochemical sensor system would allow testing for toxic metals to be performed more rapidly, inexpensively, and reliably in a field setting. Progress Summary/Accomplishments: This report summarizes the ASU activity over the second year of the project. In accordance to our original objectives our studies have focused on various fundamental and practical aspects of sensing and microchip devices for monitoring metal contaminants. As described in this section, we have made a substantial progress, and introduced effective routes for improving the on-site detection of toxic metals and for interfacing microchips with the real world. This activity has already resulted in 7 research papers (published or in press in major international journals). The electrochemical sensors being developed rely on the highly sensitive adsorptive stripping voltammetry (AdSV) technique to detect metal ions of interest to the DOE, particularly uranium and chromium. Traditionally, AdSV measurements of U and Cr require the use of mercury electrodes which are not suitable attractive for field deployment. Our initial goal was thus to replace these toxic mercury electrodes with 'environmentally-friendly' sensor materials. In particular, we demonstrated recently that bismuth-film electrodes offer high-quality measurements of heavy metals that compare favorably with that of mercury electrodes

  1. Bundled carbon nanotube-based sensor on paper-based microfluidic device.

    PubMed

    Lei, Kin Fong; Yang, Shih-I

    2013-10-01

    Bundled carbon nanotube (CNT)-based sensor has been fabricated on paper substrate for chemical sensing applications. Integration of the sensor and fluidic channel was demonstrated for the potential development of a paper-based microfluidic device. In this work, electrical pH measurement of analyte solution was presented to show the functionality of the device. The device with the functions of fluidic transportation and chemical sensing was fabricated on a single paper. The bundled CNT-based sensor was first formed on a sheet of paper by vacuum filtration process. Hence, the hydrophilic channel across the sensor was defined by the application of polydimethylsiloxane (PDMS) material. Therefore, aqueous solution, e.g., sample, can be passively transported along the channels by wicking through the hydrophilic fibers of paper. The pH value of the solution can be electrically measured by the sensor. Determination of the pH value from 3 to 11 of the solutions was demonstrated by measuring the resistance change of the sensor. Because the proposed device is low cost, simple, flexible, and disposable, it is suitable for the development of the analytical device for the developing countries and harsh environments. Moreover, because CNT has excellent properties and can be functionalized by various molecules, the proposed paper-based microfluidic device has potential to realize more chemical and biological assays on paper with high sensitivity and specificity.

  2. Enzyme kinetic measurements using a droplet-based microfluidic system with a concentration gradient.

    PubMed

    Bui, Minh-Phuong Ngoc; Li, Cheng Ai; Han, Kwi Nam; Choo, Jaebum; Lee, Eun Kyu; Seong, Gi Hun

    2011-03-01

    In this paper, we propose a microfluidic device that is capable of generating a concentration gradient followed by parallel droplet formation within channels with a simple T-junction geometry. Linear concentration gradient profiles can be obtained based on fluid diffusion under laminar flow. Optimized conditions for generating a linear concentration gradient and parallel droplet formation were investigated using fluorescent dye. The concentration gradient profile under diffusive mixing was dominated by the flow rate at sample inlets, while parallel droplet formation was affected by the channel geometry at both the inlet and outlet. The microfluidic device was experimentally characterized using optimal layout and operating conditions selected through a design process. Furthermore, in situ enzyme kinetic measurements of the β-galactosidase-catalyzed hydrolysis of resorufin-β-d-galactopyranoside were performed to demonstrate the application potential of our simple, time-effective, and low sample volume microfluidic device. We expect that, in addition to enzyme kinetics, drug screening and clinical diagnostic tests can be rapidly and accurately performed using this droplet-based microfluidic system.

  3. Entropy-based separation of yeast cells using a microfluidic system of conjoined spheres

    NASA Astrophysics Data System (ADS)

    Huang, Kai-Jian; Qin, S.-J.; Bai, Zhong-Chen; Zhang, Xin; Mai, John D.

    2013-11-01

    A physical model is derived to create a biological cell separator that is based on controlling the entropy in a microfluidic system having conjoined spherical structures. A one-dimensional simplified model of this three-dimensional problem in terms of the corresponding effects of entropy on the Brownian motion of particles is presented. This dynamic mechanism is based on the Langevin equation from statistical thermodynamics and takes advantage of the characteristics of the Fokker-Planck equation. This mechanism can be applied to manipulate biological particles inside a microfluidic system with identical, conjoined, spherical compartments. This theoretical analysis is verified by performing a rapid and a simple technique for separating yeast cells in these conjoined, spherical microfluidic structures. The experimental results basically match with our theoretical model and we further analyze the parameters which can be used to control this separation mechanism. Both numerical simulations and experimental results show that the motion of the particles depends on the geometrical boundary conditions of the microfluidic system and the initial concentration of the diffusing material. This theoretical model can be implemented in future biophysics devices for the optimized design of passive cell sorters.

  4. Entropy-based separation of yeast cells using a microfluidic system of conjoined spheres

    SciTech Connect

    Huang, Kai-Jian; Qin, S.-J. Bai, Zhong-Chen; Zhang, Xin; Mai, John D.

    2013-11-21

    A physical model is derived to create a biological cell separator that is based on controlling the entropy in a microfluidic system having conjoined spherical structures. A one-dimensional simplified model of this three-dimensional problem in terms of the corresponding effects of entropy on the Brownian motion of particles is presented. This dynamic mechanism is based on the Langevin equation from statistical thermodynamics and takes advantage of the characteristics of the Fokker-Planck equation. This mechanism can be applied to manipulate biological particles inside a microfluidic system with identical, conjoined, spherical compartments. This theoretical analysis is verified by performing a rapid and a simple technique for separating yeast cells in these conjoined, spherical microfluidic structures. The experimental results basically match with our theoretical model and we further analyze the parameters which can be used to control this separation mechanism. Both numerical simulations and experimental results show that the motion of the particles depends on the geometrical boundary conditions of the microfluidic system and the initial concentration of the diffusing material. This theoretical model can be implemented in future biophysics devices for the optimized design of passive cell sorters.

  5. Highly stable liquid metal-based pressure sensor integrated with a microfluidic channel.

    PubMed

    Jung, Taekeon; Yang, Sung

    2015-05-21

    Pressure measurement is considered one of the key parameters in microfluidic systems. It has been widely used in various fields, such as in biology and biomedical fields. The electrical measurement method is the most widely investigated; however, it is unsuitable for microfluidic systems because of a complicated fabrication process and difficult integration. Moreover, it is generally damaged by large deflection. This paper proposes a thin-film-based pressure sensor that is free from these limitations, using a liquid metal called galinstan. The proposed pressure sensor is easily integrated into a microfluidic system using soft lithography because galinstan exists in a liquid phase at room temperature. We investigated the characteristics of the proposed pressure sensor by calibrating for a pressure range from 0 to 230 kPa (R2 > 0.98) using deionized water. Furthermore, the viscosity of various fluid samples was measured for a shear-rate range of 30-1000 s(-1). The results of Newtonian and non-Newtonian fluids were evaluated using a commercial viscometer and normalized difference was found to be less than 5.1% and 7.0%, respectively. The galinstan-based pressure sensor can be used in various microfluidic systems for long-term monitoring with high linearity, repeatability, and long-term stability.

  6. Bead-Based Assays for Biodetection: From Flow-Cytometry to Microfluidics

    SciTech Connect

    Ozanich, Richard M.; Antolick, Kathryn C.; Bruckner-Lea, Cindy J.; Bunch, Kyle J.; Dockendorff, Brian P.; Grate, Jay W.; Nash, Michael A.; Tyler, Abby J.

    2009-05-04

    ABSTRACT The potential for the use of biological agents by terrorists is a real threat. Two approaches for detection of biological species will be described: 1) The use of microbead arrays for multiplexed flow cytometry detection of cytokines and botulinum neurotoxin simulant, and 2) a microfluidic platform for capture and separation of different size superparamagnetic nanoparticles followed by on-chip fluorescence detection of the sandwich complex. The methods and automated fluidic systems used for trapping functionalized microbeads will be described. This approach allows sample, assay reagents, and wash solutions to be perfused over a micro-column of beads, resulting in faster and more sensitive assays. The automated fluidic approach resulted in up to five-fold improvements in assay sensitivity/speed as compared to identical assays performed in a typical manual batch mode. A second approach for implementing multiplexed bead-based assays without using flow cytometry detection is currently under development. The goal of the microfluidic-based approach is to achieve rapid (<20 minutes), multiplexed (> 3 bioagents) detection using a simple and low-cost, integrated microfluidic/optical detection platform. Using fiber-optic guided laser-induced fluorescence, assay detection limits were shown to be in the 100’s of picomolar range (10’s of micrograms per liter) for botulinum neurotoxin simulant without any optimization of the microfluidic device or optical detection approach. Video taping magnetic nanoparticle capture and release was used to improve understanding of the process and revealed interesting behavior.

  7. Highly Stable Liquid Metal-Based Pressure Sensor Integrated with a Microfluidic Channel

    PubMed Central

    Jung, Taekeon; Yang, Sung

    2015-01-01

    Pressure measurement is considered one of the key parameters in microfluidic systems. It has been widely used in various fields, such as in biology and biomedical fields. The electrical measurement method is the most widely investigated; however, it is unsuitable for microfluidic systems because of a complicated fabrication process and difficult integration. Moreover, it is generally damaged by large deflection. This paper proposes a thin-film-based pressure sensor that is free from these limitations, using a liquid metal called galinstan. The proposed pressure sensor is easily integrated into a microfluidic system using soft lithography because galinstan exists in a liquid phase at room temperature. We investigated the characteristics of the proposed pressure sensor by calibrating for a pressure range from 0 to 230 kPa (R2 > 0.98) using deionized water. Furthermore, the viscosity of various fluid samples was measured for a shear-rate range of 30–1000 s−1. The results of Newtonian and non-Newtonian fluids were evaluated using a commercial viscometer and normalized difference was found to be less than 5.1% and 7.0%, respectively. The galinstan-based pressure sensor can be used in various microfluidic systems for long-term monitoring with high linearity, repeatability, and long-term stability. PMID:26007732

  8. Characterization of electrode alignment for optimal droplet charging and actuation in droplet-based microfluidic system.

    PubMed

    Ahn, Myung Mo; Im, Do Jin; Yoo, Byeong Sun; Kang, In Seok

    2015-09-01

    The actuation method using electric force as a driving force is utilized widely in droplet-based microfluidic systems. In this work, the effects of charging electrode alignment on direct charging of a droplet on electrified electrodes and a subsequent electrophoretic control of the droplet are investigated. The charging characteristics of a droplet according to different electrode alignments are quantitatively examined through experiments and systematic numerical simulations with varying distances and angles between the two electrodes. The droplet charge acquired from the electrified electrode is directly proportional to the distance and barely affected by the angle between the two electrodes. This implies that the primary consideration of electrode alignment in microfluidic devices is the distance between electrodes and the insignificant effect of angle provides a great degree of freedom in designing such devices. Not only the droplet charge acquired from the electrode but also the force exerted on the droplet is analyzed. Finally, the implications and design guidance for microfluidic systems are discussed with an electrophoresis of a charged droplet method-based digital microfluidic device.

  9. Highly stable liquid metal-based pressure sensor integrated with a microfluidic channel.

    PubMed

    Jung, Taekeon; Yang, Sung

    2015-01-01

    Pressure measurement is considered one of the key parameters in microfluidic systems. It has been widely used in various fields, such as in biology and biomedical fields. The electrical measurement method is the most widely investigated; however, it is unsuitable for microfluidic systems because of a complicated fabrication process and difficult integration. Moreover, it is generally damaged by large deflection. This paper proposes a thin-film-based pressure sensor that is free from these limitations, using a liquid metal called galinstan. The proposed pressure sensor is easily integrated into a microfluidic system using soft lithography because galinstan exists in a liquid phase at room temperature. We investigated the characteristics of the proposed pressure sensor by calibrating for a pressure range from 0 to 230 kPa (R2 > 0.98) using deionized water. Furthermore, the viscosity of various fluid samples was measured for a shear-rate range of 30-1000 s(-1). The results of Newtonian and non-Newtonian fluids were evaluated using a commercial viscometer and normalized difference was found to be less than 5.1% and 7.0%, respectively. The galinstan-based pressure sensor can be used in various microfluidic systems for long-term monitoring with high linearity, repeatability, and long-term stability. PMID:26007732

  10. Microfluidic-based metal enhanced fluorescence for capillary electrophoresis by Ag nanorod arrays

    NASA Astrophysics Data System (ADS)

    Xiao, Chenyu; Cao, Zhen; Deng, Junhong; Huang, Zhifeng; Xu, Zheng; Fu, Junxue; Yobas, Levent

    2014-06-01

    As metal nanorods show much higher metal enhanced fluorescence (MEF) than metal nanospheres, microfluidic-based MEF is first explored with Ag nanorod (ND) arrays made by oblique angle deposition. By measuring the fluorescein isothiocyanate (FITC) solution sandwiched between the Ag NDs and a piece of cover slip, the enhancement factors (EFs) are found as 3.7 ± 0.64 and 6.74 ± 2.04, for a solution thickness at 20.8 μm and 10 μm, respectively. Because of the strong plasmonic coupling between the adjacent Ag NDs, only the emission of the fluorophores present in the three-dimensional NDs array gets enhanced. Thus, the corresponding effective enhancement factors (EEFs) are revealed to be relatively close, 259 ± 92 and 340 ± 102, respectively. To demonstrate the application of MEF in microfluidic systems, a multilayer of SiO2 NDs/Ag NDs is integrated with a capillary electrophoresis device. At a microchannel depth of 10 μm, an enhancement of 6.5 fold is obtained for amino acids separation detection. These results are very encouraging and open the possibility of MEF applications for the Ag ND arrays decorated microchannels. With the miniaturization of microfluidic devices, microfluidic-based MEF by Ag ND arrays will likely find more applications with further enhancement.

  11. Magnetic-based microfluidic platform for biomolecular separation.

    PubMed

    Ramadan, Qasem; Samper, Victor; Poenar, Daniel; Yu, Chen

    2006-06-01

    A novel microfluidic platform for manipulation of micro/nano magnetic particles was designed, fabricated and tested for applications dealing with biomolecular separation. Recently, magnetic immunomagnetic cell separation has attracted a noticeable attention due to the high selectivity of such separation methods. Strong magnetic field gradients can be developed along the entire wire, and the miniaturized size of these current-carrying conductors strongly enhances the magnetic field gradient and therefore produces large, tunable and localized magnetic forces that can be applied on magnetic particles and confine them in very small spots. Further increases in the values of the generated magnetic field gradients can be achieved by employing miniaturized ferromagnetic structures (pillars) which can be magnetized by an external magnetic field or by micro-coils on the same chip. In this study, we demonstrate magnetic beads trapping, concentration, transportation and sensing in a liquid sample under continuous flow by employing high magnetic field gradients generated by novel multi-functional magnetic micro-devices. Each individual magnetic micro-device consists of the following components: 1. Cu micro-coils array embedded in the silicon substrate with high aspect ratio conductors for efficient magnetic field generation 2. Magnetic pillar(s) made of the magnetic alloy NiCoP for magnetic field focusing and magnetic field gradient enhancement. Each pillar is magnetized by its corresponding coil 3. Integrated sensing coil for magnetic beads detection 4. Microfluidic chamber containing all the previous components. Magnetic fields of about 0.1 T and field gradients of around 300 T/cm have been achieved, which allowed to develop a magnetic force of 3 x 10(-9) N on a magnetic particle with radius of 1 mum. This force is large enough to trap/move this particle as the required force to affect such particles in a liquid sample is on the order of approximately pN. Trapping rates of up

  12. A multiplexed immunoassay system based upon reciprocating centrifugal microfluidics

    NASA Astrophysics Data System (ADS)

    Noroozi, Zahra; Kido, Horacio; Peytavi, Régis; Nakajima-Sasaki, Rie; Jasinskas, Algimantas; Micic, Miodrag; Felgner, Philip L.; Madou, Marc J.

    2011-06-01

    A novel, centrifugal disk-based micro-total analysis system (μTAS) for low cost and high throughput semi-automated immunoassay processing was developed. A key innovation in the disposable immunoassay disk design is in a fluidic structure that enables very efficient micro-mixing based on a reciprocating mechanism in which centrifugal acceleration acting upon a liquid element first generates and stores pneumatic energy that is then released by a reduction of the centrifugal acceleration, resulting in a reversal of direction of flow of the liquid. Through an alternating sequence of high and low centrifugal acceleration, the system reciprocates the flow of liquid within the disk to maximize incubation/hybridization efficiency between antibodies and antigen macromolecules during the incubation/hybridization stage of the assay. The described reciprocating mechanism results in a reduction in processing time and reagent consumption by one order of magnitude.

  13. Laser Ablation of Polymer Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Killeen, Kevin

    2004-03-01

    Microfluidic technology is ideal for processing precious samples of limited volumes. Some of the most important classes of biological samples are both high in sample complexity and low in concentration. Combining the elements of sample pre-concentration, chemical separation and high sensitivity detection with chemical identification is essential for realizing a functional microfluidic based analysis system. Direct write UV laser ablation has been used to rapidly fabricate microfluidic devices capable of high performance liquid chromatography (HPLC)-MS. These chip-LC/MS devices use bio-compatible, solvent resistant and flexible polymer materials such as polyimide. A novel microfluidic to rotary valve interface enables, leak free, high pressure fluid switching between multiple ports of the microfluidic chip-LC/MS device. Electrospray tips with outer dimension of 50 um and inner of 15 um are formed by ablating the polymer material concentrically around a multilayer laminated channel structure. Biological samples of digested proteins were used to evaluate the performance of these microfluidic devices. Liquid chromatography separation and similar sample pretreatments have been performed using polymeric microfluidic devices with on-chip separation channels. Mass spectrometry was performed using an Agilent Technologies 1100 series ion trap mass spectrometer. Low fmol amounts of protein samples were positively and routinely identified by searching the MS/MS spectral data against protein databases. The sensitivity and separation performance of the chip-LC devices has been found to be comparable to state of the art nano-electrospray systems.

  14. Novel developments in mobile sensing based on the integration of microfluidic devices and smartphones.

    PubMed

    Yang, Ke; Peretz-Soroka, Hagit; Liu, Yong; Lin, Francis

    2016-03-21

    Portable electronic devices and wireless communication systems enable a broad range of applications such as environmental and food safety monitoring, personalized medicine and healthcare management. Particularly, hybrid smartphone and microfluidic devices provide an integrated solution for the new generation of mobile sensing applications. Such mobile sensing based on microfluidic devices (broadly defined) and smartphones (MS(2)) offers a mobile laboratory for performing a wide range of bio-chemical detection and analysis functions such as water and food quality analysis, routine health tests and disease diagnosis. MS(2) offers significant advantages over traditional platforms in terms of test speed and control, low cost, mobility, ease-of-operation and data management. These improvements put MS(2) in a promising position in the fields of interdisciplinary basic and applied research. In particular, MS(2) enables applications to remote in-field testing, homecare, and healthcare in low-resource areas. The marriage of smartphones and microfluidic devices offers a powerful on-chip operating platform to enable various bio-chemical tests, remote sensing, data analysis and management in a mobile fashion. The implications of such integration are beyond telecommunication and microfluidic-related research and technology development. In this review, we will first provide the general background of microfluidic-based sensing, smartphone-based sensing, and their integration. Then, we will focus on several key application areas of MS(2) by systematically reviewing the important literature in each area. We will conclude by discussing our perspectives on the opportunities, issues and future directions of this emerging novel field. PMID:26899264

  15. Droplet-based Biosensing for Lab-on-a-Chip, Open Microfluidics Platforms

    PubMed Central

    Dak, Piyush; Ebrahimi, Aida; Swaminathan, Vikhram; Duarte-Guevara, Carlos; Bashir, Rashid; Alam, Muhammad A.

    2016-01-01

    Low cost, portable sensors can transform health care by bringing easily available diagnostic devices to low and middle income population, particularly in developing countries. Sample preparation, analyte handling and labeling are primary cost concerns for traditional lab-based diagnostic systems. Lab-on-a-chip (LoC) platforms based on droplet-based microfluidics promise to integrate and automate these complex and expensive laboratory procedures onto a single chip; the cost will be further reduced if label-free biosensors could be integrated onto the LoC platforms. Here, we review some recent developments of label-free, droplet-based biosensors, compatible with “open” digital microfluidic systems. These low-cost droplet-based biosensors overcome some of the fundamental limitations of the classical sensors, enabling timely diagnosis. We identify the key challenges that must be addressed to make these sensors commercially viable and summarize a number of promising research directions. PMID:27089377

  16. Droplet-based Biosensing for Lab-on-a-Chip, Open Microfluidics Platforms.

    PubMed

    Dak, Piyush; Ebrahimi, Aida; Swaminathan, Vikhram; Duarte-Guevara, Carlos; Bashir, Rashid; Alam, Muhammad A

    2016-01-01

    Low cost, portable sensors can transform health care by bringing easily available diagnostic devices to low and middle income population, particularly in developing countries. Sample preparation, analyte handling and labeling are primary cost concerns for traditional lab-based diagnostic systems. Lab-on-a-chip (LoC) platforms based on droplet-based microfluidics promise to integrate and automate these complex and expensive laboratory procedures onto a single chip; the cost will be further reduced if label-free biosensors could be integrated onto the LoC platforms. Here, we review some recent developments of label-free, droplet-based biosensors, compatible with "open" digital microfluidic systems. These low-cost droplet-based biosensors overcome some of the fundamental limitations of the classical sensors, enabling timely diagnosis. We identify the key challenges that must be addressed to make these sensors commercially viable and summarize a number of promising research directions.

  17. A microfluidic paper-based electrochemical biosensor array for multiplexed detection of metabolic biomarkers

    NASA Astrophysics Data System (ADS)

    Zhao, Chen; Thuo, Martin M.; Liu, Xinyu

    2013-10-01

    Paper-based microfluidic devices have emerged as simple yet powerful platforms for performing low-cost analytical tests. This paper reports a microfluidic paper-based electrochemical biosensor array for multiplexed detection of physiologically relevant metabolic biomarkers. Different from existing paper-based electrochemical devices, our device includes an array of eight electrochemical sensors and utilizes a handheld custom-made electrochemical reader (potentiostat) for signal readout. The biosensor array can detect several analytes in a sample solution and produce multiple measurements for each analyte from a single run. Using the device, we demonstrate simultaneous detection of glucose, lactate and uric acid in urine, with analytical performance comparable to that of the existing commercial and paper-based platforms. The paper-based biosensor array and its electrochemical reader will enable the acquisition of high-density, statistically meaningful diagnostic information at the point of care in a rapid and cost-efficient way.

  18. An oxidized liquid metal-based microfluidic platform for tunable electronic device applications.

    PubMed

    Li, Guangyong; Parmar, Mitesh; Lee, Dong-Weon

    2015-02-01

    Easy movement of oxidized Galinstan in microfluidic channels is a promising way for the wide application of the non-toxic liquid metal. In this paper, two different surface modification techniques (physical and chemical) are reported, which dramatically improve the non-wetting characteristics of oxidized Galinstan in the microfluidic channel. In the physical technique, normal paper textures are transferred to the inner wall of polydimethylsiloxane (PDMS) channels and four types of nanoparticles are then coated on the surface of the wall for further improvement of the non-wetting characteristics. Highest advancing angle of 167° and receding angle of 151° are achieved on the paper-textured PDMS with titanium oxide (TiO2) nanoparticles. In the chemical technique, three types of inorganic acids are employed to generate dual-scale structures on the PDMS surface. The inner wall surface treated with sulfuric acid (H2SO4) shows the highest contact angle of 167° and a low hysteresis of ~14° in the dynamic measurement. Creating, transporting, separating and merging of oxidized Galinstan droplets are successfully demonstrated in the fabricated PDMS microfluidic channels. After optimization of these modification techniques, the potential application of tunable capacitors and electronic filters is realized by using liquid metal-based microfluidic devices.

  19. Development and Fabrication of Nanoporous Silicon-based Bioreactors within a Microfluidic Chip

    SciTech Connect

    Siuti, Piro; Choi, Chang Kyoung; Doktycz, Mitchel John; Retterer, Scott T

    2010-01-01

    Multi-scale lithography and cryogenic deep reactive ion etching techniques were used to create ensembles of nanoporous, picoliter volume, reaction vessels within a microfluidic system. The fabrication of these vessels is described and how this process can be used to tailor vessel porosity by controlling the width of slits that constitute the vessel pores is demonstrated. Control of pore size allows the containment of nucleic acids and enzymes that are the foundation of biochemical reaction systems, while allowing smaller reaction constituents to traverse the container membrane and continuously supply the reaction. In this work, a 5.4kB DNA plasmid was retained within the reaction vessels and labeled under microfluidic control with ethidium bromide as an initial proof-of-principle. Subsequently, a coupled enzyme reaction, in which glucose oxidase and horseradish peroxidase were contained and fed with a substrate solution of glucose and Amplex Red to produce fluorescent Resorufin, was carried out under microfluidic control and monitored using fluorescent microscopy. The fabrication techniques presented are broadly applicable and can be adapted to produce devices in which a variety of high aspect ratio, nanoporous silicon structures can be integrated within a microfluidic network. The devices shown here are amenable to being scaled in number and organized to implement more complex reaction systems for applications in sensing and production of biologically based therapeutics as well as fundamental studies of biological reaction systems.

  20. Continuous isolation of monocytes using a magnetophoretic-based microfluidic Chip.

    PubMed

    Darabi, Jeff; Guo, Chuan

    2016-10-01

    Monocytes play an important role in the immune system and are responsible for phagocytizing and degrading foreign microorganisms in the body. The isolation of monocytes is important in various immunological applications such as in-vitro culture of dendritic cells. We present a magnetophoretic-based microfluidic chip for rapid isolation of highly purified, untouched monocytes from human blood by a negative selection method. This bioseparation platform integrates several unique features into a microfluidic device, including locally engineered magnetic field gradients and a continuous flow with a buffer switching scheme to improve the performance of the cell separation process. The results indicate high monocyte purity and recovery performances at a volumetric flow rate that is nearly an order of magnitude larger than comparable microfluidic devices reported in literature. In addition, a comprehensive 2-D computational modeling is performed to determine the cell trajectory and trapping length within the microfluidic chip. Furthermore, the effects of channel height, substrate thickness, cell size, number of beads per cell, and sample flow rate on the cell separation performance are studied. PMID:27518600

  1. A Multi-Phase Based Fluid-Structure-Microfluidic interaction sensor for Aerodynamic Shear Stress

    NASA Astrophysics Data System (ADS)

    Hughes, Christopher; Dutta, Diganta; Bashirzadeh, Yashar; Ahmed, Kareem; Qian, Shizhi

    2014-11-01

    A novel innovative microfluidic shear stress sensor is developed for measuring shear stress through multi-phase fluid-structure-microfluidic interaction. The device is composed of a microfluidic cavity filled with an electrolyte liquid. Inside the cavity, two electrodes make electrochemical velocimetry measurements of the induced convection. The cavity is sealed with a flexible superhydrophobic membrane. The membrane will dynamically stretch and flex as a result of direct shear cross-flow interaction with the seal structure, forming instability wave modes and inducing fluid motion within the microfluidic cavity. The shear stress on the membrane is measured by sensing the induced convection generated by membrane deflections. The advantages of the sensor over current MEMS based shear stress sensor technology are: a simplified design with no moving parts, optimum relationship between size and sensitivity, no gaps such as those created by micromachining sensors in MEMS processes. We present the findings of a feasibility study of the proposed sensor including wind-tunnel tests, microPIV measurements, electrochemical velocimetry, and simulation data results. The study investigates the sensor in the supersonic and subsonic flow regimes. Supported by a NASA SBIR phase 1 contract.

  2. Single-cell analysis and sorting using droplet-based microfluidics

    PubMed Central

    Mazutis, Linas; Gilbert, John; Ung, W Lloyd; Weitz, David A; Griffiths, Andrew D; Heyman, John A

    2014-01-01

    We present a droplet-based microfluidics protocol for high-throughput analysis and sorting of single cells. compartmentalization of single cells in droplets enables the analysis of proteins released from or secreted by cells, thereby overcoming one of the major limitations of traditional flow cytometry and fluorescence-activated cell sorting. as an example of this approach, we detail a binding assay for detecting antibodies secreted from single mouse hybridoma cells. secreted antibodies are detected after only 15 min by co-compartmentalizing single mouse hybridoma cells, a fluorescent probe and single beads coated with anti-mouse IgG antibodies in 50-pl droplets. the beads capture the secreted antibodies and, when the captured antibodies bind to the probe, the fluorescence becomes localized on the beads, generating a clearly distinguishable fluorescence signal that enables droplet sorting at ~200 Hz as well as cell enrichment. the microfluidic system described is easily adapted for screening other intracellular, cell-surface or secreted proteins and for quantifying catalytic or regulatory activities. In order to screen ~1 million cells, the microfluidic operations require 2–6 h; the entire process, including preparation of microfluidic devices and mammalian cells, requires 5–7 d. PMID:23558786

  3. Low cost microfluidic device based on cotton threads for electroanalytical application.

    PubMed

    Agustini, Deonir; Bergamini, Márcio F; Marcolino-Junior, Luiz Humberto

    2016-01-21

    Microfluidic devices are an interesting alternative for performing analytical assays, due to the speed of analyses, reduced sample, reagent and solvent consumption and less waste generation. However, the high manufacturing costs still prevent the massive use of these devices worldwide. Here, we present the construction of a low cost microfluidic thread-based electroanalytical device (μTED), employing extremely cheap materials and a manufacturing process free of equipment. The microfluidic channels were built with cotton threads and the estimated cost per device was only $0.39. The flow of solutions (1.12 μL s(-1)) is generated spontaneously due to the capillary forces, eliminating the use of any pumping system. To demonstrate the analytical performance of the μTED, a simultaneous determination of acetaminophen (ACT) and diclofenac (DCF) was performed by multiple pulse amperometry (MPA). A linear dynamic range (LDR) of 10 to 320 μmol L(-1) for both species, a limit of detection (LOD) and a limit of quantitation (LOQ) of 1.4 and 4.7 μmol L(-1) and 2.5 and 8.3 μmol L(-1) for ACT and DCF, respectively, as well as an analytical frequency of 45 injections per hour were reached. Thus, the proposed device has shown potential to extend the use of microfluidic analytical devices, due to its simplicity, low cost and good analytical performance. PMID:26659997

  4. Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays.

    PubMed

    Hung, Paul J; Lee, Philip J; Sabounchi, Poorya; Lin, Robert; Lee, Luke P

    2005-01-01

    We present for the first time a microfluidic cell culture array for long-term cellular monitoring. The 10 x 10 array could potentially assay 100 different cell-based experiments in parallel. The device was designed to integrate the processes used in typical cell culture experiments on a single self-contained microfluidic system. Major functions include repeated cell growth/passage cycles, reagent introduction, and real-time optical analysis. The single unit of the array consists of a circular microfluidic chamber, multiple narrow perfusion channels surrounding the main chamber, and four ports for fluidic access. Human carcinoma (HeLa) cells were cultured inside the device with continuous perfusion of medium at 37 degrees C. The observed doubling time was 1.4 +/- 0.1 days with a peak cell density of approximately 2.5*10(5) cells/cm(2). Cell assay was demonstrated by monitoring the fluorescence localization of calcein AM from 1 min to 10 days after reagent introduction. Confluent cell cultures were passaged within the microfluidic chambers using trypsin and successfully regrown, suggesting a stable culture environment suitable for continuous operation. The cell culture array could offer a platform for a wide range of assays with applications in drug screening, bioinformatics, and quantitative cell biology. PMID:15580587

  5. Single-cell analysis and sorting using droplet-based microfluidics.

    PubMed

    Mazutis, Linas; Gilbert, John; Ung, W Lloyd; Weitz, David A; Griffiths, Andrew D; Heyman, John A

    2013-05-01

    We present a droplet-based microfluidics protocol for high-throughput analysis and sorting of single cells. Compartmentalization of single cells in droplets enables the analysis of proteins released from or secreted by cells, thereby overcoming one of the major limitations of traditional flow cytometry and fluorescence-activated cell sorting. As an example of this approach, we detail a binding assay for detecting antibodies secreted from single mouse hybridoma cells. Secreted antibodies are detected after only 15 min by co-compartmentalizing single mouse hybridoma cells, a fluorescent probe and single beads coated with anti-mouse IgG antibodies in 50-pl droplets. The beads capture the secreted antibodies and, when the captured antibodies bind to the probe, the fluorescence becomes localized on the beads, generating a clearly distinguishable fluorescence signal that enables droplet sorting at ∼200 Hz as well as cell enrichment. The microfluidic system described is easily adapted for screening other intracellular, cell-surface or secreted proteins and for quantifying catalytic or regulatory activities. In order to screen ∼1 million cells, the microfluidic operations require 2-6 h; the entire process, including preparation of microfluidic devices and mammalian cells, requires 5-7 d.

  6. Microfluidic flowmeter based on micro "hot-wire" sandwiched Fabry-Perot interferometer.

    PubMed

    Li, Ying; Yan, Guofeng; Zhang, Liang; He, Sailing

    2015-04-01

    We present a compact microfluidic flowmeter based on Fabry-Perot interferometer (FPI). The FPI was composed by a pair of fiber Bragg grating reflectors and a micro Co(2+)-doped optical fiber cavity, acting as a "hot-wire" sensor. Microfluidic channels made from commercial silica capillaries were integrated with the FPIs on a chip to realize flow-rate sensing system. By utilizing a tunable pump laser with wavelength of 1480 nm, the proposed flowmeter was experimentally demonstrated. The flow rate of the liquid sample is determined by the induced resonance wavelength shift of the FPI. The effect of the pump power, microfluidic channel scale and temperature on the performance of our flowmeter was investigated. The dynamic response was also measured under different flow-rate conditions. The experimental results achieve a sensitivity of 70 pm/(μL/s), a dynamic range up to 1.1 μL/s and response time in the level of seconds, with a spatial resolution ~200 μm. Such good performance renders the sensor a promising supplementary component in microfluidic biochemical sensing system. Furthermore, simulation modal was built up to analyze the heat distribution of the "hot-wire" cavity and optimize the FPI structure as well.

  7. Low cost microfluidic device based on cotton threads for electroanalytical application.

    PubMed

    Agustini, Deonir; Bergamini, Márcio F; Marcolino-Junior, Luiz Humberto

    2016-01-21

    Microfluidic devices are an interesting alternative for performing analytical assays, due to the speed of analyses, reduced sample, reagent and solvent consumption and less waste generation. However, the high manufacturing costs still prevent the massive use of these devices worldwide. Here, we present the construction of a low cost microfluidic thread-based electroanalytical device (μTED), employing extremely cheap materials and a manufacturing process free of equipment. The microfluidic channels were built with cotton threads and the estimated cost per device was only $0.39. The flow of solutions (1.12 μL s(-1)) is generated spontaneously due to the capillary forces, eliminating the use of any pumping system. To demonstrate the analytical performance of the μTED, a simultaneous determination of acetaminophen (ACT) and diclofenac (DCF) was performed by multiple pulse amperometry (MPA). A linear dynamic range (LDR) of 10 to 320 μmol L(-1) for both species, a limit of detection (LOD) and a limit of quantitation (LOQ) of 1.4 and 4.7 μmol L(-1) and 2.5 and 8.3 μmol L(-1) for ACT and DCF, respectively, as well as an analytical frequency of 45 injections per hour were reached. Thus, the proposed device has shown potential to extend the use of microfluidic analytical devices, due to its simplicity, low cost and good analytical performance.

  8. Microfluidic flowmeter based on micro "hot-wire" sandwiched Fabry-Perot interferometer.

    PubMed

    Li, Ying; Yan, Guofeng; Zhang, Liang; He, Sailing

    2015-04-01

    We present a compact microfluidic flowmeter based on Fabry-Perot interferometer (FPI). The FPI was composed by a pair of fiber Bragg grating reflectors and a micro Co(2+)-doped optical fiber cavity, acting as a "hot-wire" sensor. Microfluidic channels made from commercial silica capillaries were integrated with the FPIs on a chip to realize flow-rate sensing system. By utilizing a tunable pump laser with wavelength of 1480 nm, the proposed flowmeter was experimentally demonstrated. The flow rate of the liquid sample is determined by the induced resonance wavelength shift of the FPI. The effect of the pump power, microfluidic channel scale and temperature on the performance of our flowmeter was investigated. The dynamic response was also measured under different flow-rate conditions. The experimental results achieve a sensitivity of 70 pm/(μL/s), a dynamic range up to 1.1 μL/s and response time in the level of seconds, with a spatial resolution ~200 μm. Such good performance renders the sensor a promising supplementary component in microfluidic biochemical sensing system. Furthermore, simulation modal was built up to analyze the heat distribution of the "hot-wire" cavity and optimize the FPI structure as well. PMID:25968776

  9. Three-dimensional, paper-based microfluidic devices containing internal timers for running time-based diagnostic assays.

    PubMed

    Phillips, Scott T; Thom, Nicole K

    2013-01-01

    This chapter describes a method for fabricating three-dimensional (3D), paper-based microfluidic devices that contain internal timers for running quantitative, time-based assays. The method involves patterning microfluidic channels into paper, and cutting double-sided adhesive tape into defined patterns. Patterned paper and tape are assembled layer by layer to create 3D microfluidic devices that are capable of distributing microliter volumes of a sample into multiple regions on a device for conducting multiple assays simultaneously. Paraffin wax is incorporated into defined regions within the device to provide control over the distribution rate of a sample, and food coloring is included in defined regions within the device to provide an unambiguous readout when the sample has reached the bottom of the device (this latter feature is the endpoint of the timer).

  10. Biocompatible fluorinated polyglycerols for droplet microfluidics as an alternative to PEG-based copolymer surfactants.

    PubMed

    Wagner, Olaf; Thiele, Julian; Weinhart, Marie; Mazutis, Linas; Weitz, David A; Huck, Wilhelm T S; Haag, Rainer

    2016-01-01

    In droplet-based microfluidics, non-ionic, high-molecular weight surfactants are required to stabilize droplet interfaces. One of the most common structures that imparts stability as well as biocompatibility to water-in-oil droplets is a triblock copolymer surfactant composed of perfluoropolyether (PFPE) and polyethylene glycol (PEG) blocks. However, the fast growing applications of microdroplets in biology would benefit from a larger choice of specialized surfactants. PEG as a hydrophilic moiety, however, is a very limited tool in surfactant modification as one can only vary the molecular weight and chain-end functionalization. In contrast, linear polyglycerol offers further side-chain functionalization to create custom-tailored, biocompatible droplet interfaces. Herein, we describe the synthesis and characterization of polyglycerol-based triblock surfactants with tailored side-chain composition, and exemplify their application in cell encapsulation and in vitro gene expression studies in droplet-based microfluidics.

  11. A laser-based technology for fabricating a soda-lime glass based microfluidic device for circulating tumour cell capture.

    PubMed

    Nieto, Daniel; Couceiro, Ramiro; Aymerich, Maria; Lopez-Lopez, Rafael; Abal, Miguel; Flores-Arias, María Teresa

    2015-10-01

    We developed a laser-based technique for fabricating microfluidic microchips on soda-lime glass substrates. The proposed methodology combines a laser direct writing, as a manufacturing tool for the fabrication of the microfluidics structures, followed by a post-thermal treatment with a CO2 laser. This treatment will allow reshaping and improving the morphological (roughness) and optical qualities (transparency) of the generated microfluidics structures. The use of lasers commonly implemented for material processing makes this technique highly competitive when compared with other glass microstructuring approaches. The manufactured chips were tested with tumour cells (Hec 1A) after being functionalized with an epithelial cell adhesion molecule (EpCAM) antibody coating. Cells were successfully arrested on the pillars after being flown through the device giving our technology a translational application in the field of cancer research.

  12. An Early-Stage Atherosclerosis Research Model Based on Microfluidics.

    PubMed

    Zheng, Wenfu; Huang, Rong; Jiang, Bo; Zhao, Yuyun; Zhang, Wei; Jiang, Xingyu

    2016-04-01

    The arterial microenvironment plays a vital role in the pathology of atherosclerosis (AS). However, the interplay between the arterial microenvironment and atherogenesis remains unclear, partially due to the gap between cell culture and animal experiments. Addressing this problem, the present study reports a microfluidic AS model reconstituting early-stage AS. Physiological or AS-prone hemodynamic conditions are recapitulated on the model. The on-chip model recaptures the atherogenic responses of endothelial cells (ECs) in ways that the Petri dish could not. Significant cytotoxicity of a clinical anti-atherosclerotic drug probucol is discovered on the model, which does not appear on Petri dish but is supported by previous clinical evidence. Moreover, the anti-AS efficiency of platinum-nanoparticles (Pt-NPs) on the model shows excellent consistency with animal experiments. The early-stage AS model shows an excellent connection between Petri dish and animal experiments and highlights its promising role in bridging fundamental AS research, drug screening, and clinical trials. PMID:26890624

  13. Paper-based microfluidic approach for surface-enhanced raman spectroscopy and highly reproducible detection of proteins beyond picomolar concentration.

    PubMed

    Saha, Arindam; Jana, Nikhil R

    2015-01-14

    Although microfluidic approach is widely used in various point of care diagnostics, its implementation in surface enhanced Raman spectroscopy (SERS)-based detection is challenging. This is because SERS signal depends on plasmonic nanoparticle aggregation induced generation of stable electromagnetic hot spots and in currently available microfluidic platform this condition is difficult to adapt. Here we show that SERS can be adapted using simple paper based microfluidic system where both the plasmonic nanomaterials and analyte are used in mobile phase. This approach allows analyte induced controlled particle aggregation and electromagnetic hot spot generation inside the microfluidic channel with the resultant SERS signal, which is highly reproducible and sensitive. This approach has been used for reproducible detection of protein in the pico to femtomolar concentration. Presented approach is simple, rapid, and cost-effective, and requires low sample volume. Method can be extended for SERS-based detection of other biomolecules.

  14. Development of a fast thermal response microfluidic system using liquid metal

    NASA Astrophysics Data System (ADS)

    Gao, Meng; Gui, Lin

    2016-07-01

    Room temperature liquid metal gallium alloy has been widely used in many micro-electromechanical systems applications, such as on-chip electrical microheaters, micro temperature sensors, micro pumps and so on. Injecting liquid metal into microchannels can provide a simple, rapid, low-cost but efficient way to integrate these elements in microfluidic chips with high accuracy. The liquid metal-filled microstructures can be designed in any shape and easily integrated into microfluidic chips. In this paper, an on-chip liquid metal-based thermal microfluidic system is proposed for quick temperature control at the microscale. The micro system utilizes just one microfluidic chip as a basic working platform, which has liquid metal-based on-chip heaters, temperature sensors and electroosmotic flow pumps. Under the comprehensive control of these elements, the micro system can quickly change the temperature of a target fluid in the microfluidic chip. These liquid metal-based on-chip elements are very helpful for the fabrication and miniaturization of the microfluidic chip. In this paper, deionized water is used to test the temperature control performance of the thermal microfluidic system. According to the experimental results, the micro system can efficiently control the temperature of water ranging from 28 °C to 90 °C. The thermal microfluidic system has great potential for use in many microfluidic applications, such as on-chip polymerase chain reaction, temperature gradient focusing, protein crystallization and chemical synthesis.

  15. The use of carrier RNA to enhance DNA extraction from microfluidic-based silica monoliths.

    PubMed

    Shaw, Kirsty J; Thain, Lauren; Docker, Peter T; Dyer, Charlotte E; Greenman, John; Greenway, Gillian M; Haswell, Stephen J

    2009-10-12

    DNA extraction was carried out on silica-based monoliths within a microfluidic device. Solid-phase DNA extraction methodology was applied in which the DNA binds to silica in the presence of a chaotropic salt, such as guanidine hydrochloride, and is eluted in a low ionic strength solution, such as water. The addition of poly-A carrier RNA to the chaotropic salt solution resulted in a marked increase in the effective amount of DNA that could be recovered (25ng) compared to the absence of RNA (5ng) using the silica-based monolith. These findings confirm that techniques utilising nucleic acid carrier molecules can enhance DNA extraction methodologies in microfluidic applications.

  16. A Laplace pressure based microfluidic trap for passive droplet trapping and controlled release.

    PubMed

    Simon, Melinda G; Lin, Robert; Fisher, Jeffrey S; Lee, Abraham P

    2012-03-01

    Here, we present a microfluidic droplet trap that takes advantage of the net Laplace pressure force generated when a droplet is differentially constricted. Mathematical simulations were first used to understand the working range of the component; followed by finite element modeling using the CFD software package to further characterize the behavior of the system. Controlled release of the trapped droplets is also demonstrated through both a mechanical method and a chemical method that manipulates the total pressure exerted on the trapped droplet. The unique design of this trapping device also provides the capability for selection of a single droplet from a train, as well as droplet fusion.

  17. Measurement and validation of cell-based assays with microfluidics at the National Institute of Standards and Technology.

    PubMed

    Cooksey, Gregory A; Atencia, Javier; Forry, Samuel P

    2012-08-01

    The National Institute of Standards and Technology (NIST) is the National Metrology Institute for the USA. Our mission is to advance measurement science, standards and technology in ways that enhance economic security and improve quality of life in the USA. Due to the increased need for technologies that advance biological research and the many new and exciting innovations in microfluidics, our projects are aimed at engineering well-controlled microenvironments for quantitative measurements of cell behavior in microfluidic systems. Cell-based microfluidics at NIST is a highly multidisciplinary activity and is greatly influenced by NIST programs in biochemical sciences, materials science, engineering and information technology. Although there are many microfluidic-related activities ongoing at NIST, we will focus on projects related to cell-based measurements in this article.

  18. PDMS as a sacrificial substrate for SU-8-based biomedical and microfluidic applications

    NASA Astrophysics Data System (ADS)

    Patel, Jasbir N.; Kaminska, Bozena; Gray, Bonnie L.; Gates, Byron D.

    2008-09-01

    We describe a new fabrication process utilizing polydimethylesiloxane (PDMS) as a sacrificial substrate layer for fabricating free-standing SU-8-based biomedical and microfluidic devices. The PDMS-on-glass substrate permits SU-8 photo patterning and layer-to-layer bonding. We have developed a novel PDMS-based process which allows the SU-8 structures to be easily peeled off from the substrate after complete fabrication. As an example, a fully enclosed microfluidic chip has been successfully fabricated utilizing the presented new process. The enclosed microfluidic chip uses adhesive bonding technology and the SU-8 layers from 10 µm to 450 µm thick for fully enclosed microchannels. SU-8 layers as large as the glass substrate are successfully fabricated and peeled off from the PDMS layer as single continuous sheets. The fabrication results are supported by optical microscopy and profilometry. The peel-off force for the 120 µm thick SU-8-based chips is measured using a voice coil actuator (VCA). As an additional benefit the release step leaves the input and the output of the microchannels accessible to the outside world facilitating interconnecting to the external devices.

  19. Fast and sensitive detection of an anthrax biomarker using SERS-based solenoid microfluidic sensor.

    PubMed

    Gao, Rongke; Ko, Juhui; Cha, Kiweon; Jeon, Jun Ho; Rhie, Gi-eun; Choi, Jonghoon; deMello, Andrew J; Choo, Jaebum

    2015-10-15

    We report the application of a fully automated surface-enhanced Raman scattering (SERS)-based solenoid-embedded microfluidic device to the quantitative and sensitive detection of anthrax biomarker poly-γ-D-glutamic acid (PGA) in solution. Analysis is based on the competitive reaction between PGA and PGA-conjugated gold nanoparticles with anti-PGA-immobilized magnetic beads within a microfluidic environment. Magnetic immunocomplexes are trapped by yoke-type solenoids embedded within the device, and their SERS signals were directly measured and analyzed. To improve the accuracy of measurement process, external standard values for PGA-free serum were also measured through use of a control channel. This additional measurement greatly improves the reliability of the assay by minimizing the influence of extraneous experimental variables. The limit of detection (LOD) of PGA in serum, determined by our SERS-based microfluidic sensor, is estimated to be 100 pg/mL. We believe that the defined method represents a valuable analytical tool for the detection of anthrax-related aqueous samples.

  20. Open-Source Wax RepRap 3-D Printer for Rapid Prototyping Paper-Based Microfluidics.

    PubMed

    Pearce, J M; Anzalone, N C; Heldt, C L

    2016-08-01

    The open-source release of self-replicating rapid prototypers (RepRaps) has created a rich opportunity for low-cost distributed digital fabrication of complex 3-D objects such as scientific equipment. For example, 3-D printable reactionware devices offer the opportunity to combine open hardware microfluidic handling with lab-on-a-chip reactionware to radically reduce costs and increase the number and complexity of microfluidic applications. To further drive down the cost while improving the performance of lab-on-a-chip paper-based microfluidic prototyping, this study reports on the development of a RepRap upgrade capable of converting a Prusa Mendel RepRap into a wax 3-D printer for paper-based microfluidic applications. An open-source hardware approach is used to demonstrate a 3-D printable upgrade for the 3-D printer, which combines a heated syringe pump with the RepRap/Arduino 3-D control. The bill of materials, designs, basic assembly, and use instructions are provided, along with a completely free and open-source software tool chain. The open-source hardware device described here accelerates the potential of the nascent field of electrochemical detection combined with paper-based microfluidics by dropping the marginal cost of prototyping to nearly zero while accelerating the turnover between paper-based microfluidic designs. PMID:26763294

  1. Open-Source Wax RepRap 3-D Printer for Rapid Prototyping Paper-Based Microfluidics.

    PubMed

    Pearce, J M; Anzalone, N C; Heldt, C L

    2016-08-01

    The open-source release of self-replicating rapid prototypers (RepRaps) has created a rich opportunity for low-cost distributed digital fabrication of complex 3-D objects such as scientific equipment. For example, 3-D printable reactionware devices offer the opportunity to combine open hardware microfluidic handling with lab-on-a-chip reactionware to radically reduce costs and increase the number and complexity of microfluidic applications. To further drive down the cost while improving the performance of lab-on-a-chip paper-based microfluidic prototyping, this study reports on the development of a RepRap upgrade capable of converting a Prusa Mendel RepRap into a wax 3-D printer for paper-based microfluidic applications. An open-source hardware approach is used to demonstrate a 3-D printable upgrade for the 3-D printer, which combines a heated syringe pump with the RepRap/Arduino 3-D control. The bill of materials, designs, basic assembly, and use instructions are provided, along with a completely free and open-source software tool chain. The open-source hardware device described here accelerates the potential of the nascent field of electrochemical detection combined with paper-based microfluidics by dropping the marginal cost of prototyping to nearly zero while accelerating the turnover between paper-based microfluidic designs.

  2. Cyclic olefin homopolymer-based microfluidics for protein crystallization and in situ X-ray diffraction

    SciTech Connect

    Emamzadah, Soheila; Petty, Tom J.; De Almeida, Victor; Nishimura, Taisuke; Joly, Jacques; Ferrer, Jean-Luc; Halazonetis, Thanos D.

    2009-09-01

    A cyclic olefin homopolymer-based microfluidics system has been established for protein crystallization and in situ X-ray diffraction. Microfluidics is a promising technology for the rapid identification of protein crystallization conditions. However, most of the existing systems utilize silicone elastomers as the chip material which, despite its many benefits, is highly permeable to water vapour. This limits the time available for protein crystallization to less than a week. Here, the use of a cyclic olefin homopolymer-based microfluidics system for protein crystallization and in situ X-ray diffraction is described. Liquid handling in this system is performed in 2 mm thin transparent cards which contain 500 chambers, each with a volume of 320 nl. Microbatch, vapour-diffusion and free-interface diffusion protocols for protein crystallization were implemented and crystals were obtained of a number of proteins, including chicken lysozyme, bovine trypsin, a human p53 protein containing both the DNA-binding and oligomerization domains bound to DNA and a functionally important domain of Arabidopsis Morpheus’ molecule 1 (MOM1). The latter two polypeptides have not been crystallized previously. For X-ray diffraction analysis, either the cards were opened to allow mounting of the crystals on loops or the crystals were exposed to X-rays in situ. For lysozyme, an entire X-ray diffraction data set at 1.5 Å resolution was collected without removing the crystal from the card. Thus, cyclic olefin homopolymer-based microfluidics systems have the potential to further automate protein crystallization and structural genomics efforts.

  3. Modeling and simulation of DNA flow in a microfluidic-based pathogen detection system

    SciTech Connect

    Trebotich, D; Miller, G H

    2005-01-31

    We present simulation results from a new computational model of DNA flow in microfluidic devices. This work is important because computational models are needed to design miniaturized biomedical devices that are becoming the state-of-the-art in many significant applications including pathogen detection as well as continuous monitoring and drug delivery. Currently advanced algorithms in design tools are non-existent but necessary to understand the complex fluid and polymer dynamics involved in biological flow at small scales. Our model is based on a fully coupled fluid-particle numerical algorithm with both stochastic and deterministic components in a bead-rod polymer representation. We have applied this work to DNA extraction configurations in a microfluidic PCR chamber used in a pathogen detection system. We demonstrate our method on the test problem of flow of a single DNA molecule in a 2D packed array microchannel. We are also investigating mechanisms for molecular ''sticking'' using short range forces.

  4. Thiolene-based microfluidic flow cells for surface plasmon resonance imaging

    PubMed Central

    Sheppard, Gareth; Oseki, Takao; Baba, Akira; Patton, Derek; Kaneko, Futao; Mao, Leidong; Locklin, Jason

    2011-01-01

    Thiolene-based microfluidic devices have been coupled with surface plasmon resonance imaging (SPRI) to provide an integrated platform to study interfacial interactions in both aqueous and organic solutions. In this work, we develop a photolithographic method that interfaces commercially available thiolene resin to gold and glass substrates to generate microfluidic channels with excellent adhesion that leave the underlying sensor surface free from contamination and readily available for surface modification through self-assembly. These devices can sustain high flow rates and have excellent solvent compatibility even with several organic solvents. To demonstrate the versatility of these devices, we have conducted nanomolar detection of streptavidin-biotin interactions using in situ SPRI. PMID:21731900

  5. Label-free electrochemical monitoring of vasopressin in aptamer-based microfluidic biosensors.

    PubMed

    He, Peng; Oncescu, Vlad; Lee, Seoho; Choi, Inhee; Erickson, David

    2013-01-01

    Vasopressin is an indicating biomarker for blood pressure in the human body and low vasopressin levels can be indicative of late-phase hemorrhagic shock or other traumatic injuries. In this paper we have developed an aptamer-based label-free microfluidic biosensor for the electrochemical detection of vasopressin. The detection area consists of aptamers immobilized on carbon nanotubes which specifically capture the vasopressin molecules in solution resulting in changes in conductivity across the sensor. We report a limit of detection of 43 pM in standard solutions and demonstrate high detection specificity toward vasopressin when different interferents are present. The miniaturized microfluidic biosensor offers continuous monitoring of different vasopressin levels with good potential for portability. Ultimately such a system could serve as a point-of-care diagnostics tool for patients with excessive bleeding when standard medical infrastructure is not available.

  6. Making a Hybrid Microfluidic Platform Compatible for In Situ Imaging by Vacuum-Based Techniques

    SciTech Connect

    Yang, Li; Yu, Xiao-Ying; Zhu, Zihua; Thevuthasan, Suntharampillai; Cowin, James P.

    2011-10-26

    A self-contained microfluidic-based device was designed and fabricated for in situ imaging of aqueous surfaces using vacuum techniques. The device is a hybrid between a microfluidic PDMS block and external accessories, all portable on a small platform (10 cm-8 cm). The key feature is that a small aperture with a diameter of 2-3 micrometers is opened to the vacuum, which serves as a detection window for in situ imaging of aqueous surfaces. Vacuum compatibility and temperature drop due to water vaporization are the two most important challenges in this invention. Theoretical calculations and fabrication strategies are presented from multiple design aspects. In addition, results from the time-of-flight secondary ion mass spectrometry (ToF-SIMS) of aqueous surfaces are presented.

  7. Volumetric measurement of human red blood cells by MOSFET-based microfluidic gate.

    PubMed

    Guo, Jinhong; Ai, Ye; Cheng, Yuanbing; Li, Chang Ming; Kang, Yuejun; Wang, Zhiming

    2015-08-01

    In this paper, we present a MOSFET-based (metal oxide semiconductor field-effect transistor) microfluidic gate to characterize the translocation of red blood cells (RBCs) through a gate. In the microfluidic system, the bias voltage modulated by the particles or biological cells is connected to the gate of MOSFET. The particles or cells can be detected by monitoring the MOSFET drain current instead of DC/AC-gating method across the electronic gate. Polystyrene particles with various standard sizes are utilized to calibrate the proposed device. Furthermore, RBCs from both adults and newborn blood sample are used to characterize the performance of the device in distinguishing the two types of RBCs. As compared to conventional DC/AC current modulation method, the proposed device demonstrates a higher sensitivity and is capable of being a promising platform for bioassay analysis. PMID:25349117

  8. 3D printed microfluidic circuitry via multijet-based additive manufacturing†

    PubMed Central

    Sochol, R. D.; Sweet, E.; Glick, C. C.; Venkatesh, S.; Avetisyan, A.; Ekman, K. F.; Raulinaitis, A.; Tsai, A.; Wienkers, A.; Korner, K.; Hanson, K.; Long, A.; Hightower, B. J.; Slatton, G.; Burnett, D. C.; Massey, T. L.; Iwai, K.; Lee, L. P.; Pister, K. S. J.; Lin, L.

    2016-01-01

    The miniaturization of integrated fluidic processors affords extensive benefits for chemical and biological fields, yet traditional, monolithic methods of microfabrication present numerous obstacles for the scaling of fluidic operators. Recently, researchers have investigated the use of additive manufacturing or “three-dimensional (3D) printing” technologies – predominantly stereolithography – as a promising alternative for the construction of submillimeter-scale fluidic components. One challenge, however, is that current stereolithography methods lack the ability to simultaneously print sacrificial support materials, which limits the geometric versatility of such approaches. In this work, we investigate the use of multijet modelling (alternatively, polyjet printing) – a layer-by-layer, multi-material inkjetting process – for 3D printing geometrically complex, yet functionally advantageous fluidic components comprised of both static and dynamic physical elements. We examine a fundamental class of 3D printed microfluidic operators, including fluidic capacitors, fluidic diodes, and fluidic transistors. In addition, we evaluate the potential to advance on-chip automation of integrated fluidic systems via geometric modification of component parameters. Theoretical and experimental results for 3D fluidic capacitors demonstrated that transitioning from planar to non-planar diaphragm architectures improved component performance. Flow rectification experiments for 3D printed fluidic diodes revealed a diodicity of 80.6 ± 1.8. Geometry-based gain enhancement for 3D printed fluidic transistors yielded pressure gain of 3.01 ± 0.78. Consistent with additional additive manufacturing methodologies, the use of digitally-transferrable 3D models of fluidic components combined with commercially-available 3D printers could extend the fluidic routing capabilities presented here to researchers in fields beyond the core engineering community. PMID:26725379

  9. 3D printed microfluidic circuitry via multijet-based additive manufacturing.

    PubMed

    Sochol, R D; Sweet, E; Glick, C C; Venkatesh, S; Avetisyan, A; Ekman, K F; Raulinaitis, A; Tsai, A; Wienkers, A; Korner, K; Hanson, K; Long, A; Hightower, B J; Slatton, G; Burnett, D C; Massey, T L; Iwai, K; Lee, L P; Pister, K S J; Lin, L

    2016-02-21

    The miniaturization of integrated fluidic processors affords extensive benefits for chemical and biological fields, yet traditional, monolithic methods of microfabrication present numerous obstacles for the scaling of fluidic operators. Recently, researchers have investigated the use of additive manufacturing or "three-dimensional (3D) printing" technologies - predominantly stereolithography - as a promising alternative for the construction of submillimeter-scale fluidic components. One challenge, however, is that current stereolithography methods lack the ability to simultaneously print sacrificial support materials, which limits the geometric versatility of such approaches. In this work, we investigate the use of multijet modelling (alternatively, polyjet printing) - a layer-by-layer, multi-material inkjetting process - for 3D printing geometrically complex, yet functionally advantageous fluidic components comprised of both static and dynamic physical elements. We examine a fundamental class of 3D printed microfluidic operators, including fluidic capacitors, fluidic diodes, and fluidic transistors. In addition, we evaluate the potential to advance on-chip automation of integrated fluidic systems via geometric modification of component parameters. Theoretical and experimental results for 3D fluidic capacitors demonstrated that transitioning from planar to non-planar diaphragm architectures improved component performance. Flow rectification experiments for 3D printed fluidic diodes revealed a diodicity of 80.6 ± 1.8. Geometry-based gain enhancement for 3D printed fluidic transistors yielded pressure gain of 3.01 ± 0.78. Consistent with additional additive manufacturing methodologies, the use of digitally-transferrable 3D models of fluidic components combined with commercially-available 3D printers could extend the fluidic routing capabilities presented here to researchers in fields beyond the core engineering community.

  10. [A novel method based on Y-shaped cotton-polyester thread microfluidic channel].

    PubMed

    Wang, Lu; Shi, Yan-ru; Yan, Hong-tao

    2014-08-01

    A novel method based on Y-shaped microfluidic channel was firstly proposed in this study. The microfluidic channel was made of two cotton-polyester threads based on the capillary effect of cotton-polyester threads for the determination solutions. A special device was developed to fix the Y-shaped microfluidic channel by ourselves, through which the length and the tilt angle of the channel can be adjusted as requested. The spectrophotometry was compared with Scan-Adobe Photoshop software processing method. The former had a lower detection limit while the latter showed advantages in both convenience and fast operations and lower amount of samples. The proposed method was applied to the determination of nitrite. The linear ranges and detection limits are 1.0-70 micromol x L(-1), 0.66 micromol x L(-1) (spectrophotometry) and 50-450 micromol x L(-1), 45.10 micromol x L(-1) (Scan-Adobe Photoshop software processing method) respectively. This method has been successfully used to the determination of nitrite in soil samples and moat water with recoveries between 96.7% and 104%. It was proved that the proposed method was a low-cost, rapid and convenient analytical method with extensive application prospect.

  11. Recombinant Protein-Stabilized Monodisperse Microbubbles with Tunable Size Using a Valve-Based Microfluidic Device

    PubMed Central

    2015-01-01

    Microbubbles are used as contrast enhancing agents in ultrasound sonography and more recently have shown great potential as theranostic agents that enable both diagnostics and therapy. Conventional production methods lead to highly polydisperse microbubbles, which compromise the effectiveness of ultrasound imaging and therapy. Stabilizing microbubbles with surfactant molecules that can impart functionality and properties that are desirable for specific applications would enhance the utility of microbubbles. Here we generate monodisperse microbubbles with a large potential for functionalization by combining a microfluidic method and recombinant protein technology. Our microfluidic device uses an air-actuated membrane valve that enables production of monodisperse microbubbles with narrow size distribution. The size of microbubbles can be precisely tuned by dynamically changing the dimension of the channel using the valve. The microbubbles are stabilized by an amphiphilic protein, oleosin, which provides versatility in controlling the functionalization of microbubbles through recombinant biotechnology. We show that it is critical to control the composition of the stabilizing agents to enable formation of highly stable and monodisperse microbubbles that are echogenic under ultrasound insonation. Our protein-shelled microbubbles based on the combination of microfluidic generation and recombinant protein technology provide a promising platform for ultrasound-related applications. PMID:25265041

  12. Microfluidics-based point-of-care test for serodiagnosis of Lyme Disease

    PubMed Central

    Nayak, Samiksha; Sridhara, Archana; Melo, Rita; Richer, Luciana; Chee, Natalie H.; Kim, Jiyoon; Linder, Vincent; Steinmiller, David; Sia, Samuel K.; Gomes-Solecki, Maria

    2016-01-01

    Currently, diagnostic testing for Lyme disease is done by determination of the serologic responses to Borrelia burgdorferi antigens, with the exception of the early localized phase of disease where diagnosis must be done clinically. Here, we describe the use of microfluidics technology to develop a multiplexed rapid lab-on-a-chip point of care (POC) assay for the serologic diagnosis of human Lyme disease. Following ELISA screening of 12 candidate antigens, we tested 8 on a microfluidic diagnostic system, called mChip-Ld, using a set of 60 serological samples. The mChip-Ld test, which can be performed in 15 minutes at the point of care, showed promising performance for detection of antibodies to B. burgdorferi using the PPO triplex test (rP100 + PepVF + rOspC-K, AUC of 0.844) compared to a gold-standard reference of culture confirmed clinical samples. The performance is comparable to the commonly used C6 peptide by lab-based ELISA. In addition, the mChip-Ld test showed promising performance for early-stage diagnosis of the disease using the antigen OspC-K (sensitivity and specificity of 84% and 92%, respectively; AUC of 0.877). Overall, this study underscores the potential of using microfluidics to aid the diagnosis of Lyme disease at the point of care. PMID:27725740

  13. [In situ photopolymerization of polyacrylamide-based preconcentrator on a microfluidic chip for capillary electrophoresis].

    PubMed

    Yamamoto, Sachio

    2012-01-01

    Microchip electrophoresis is widely used for microfluidics and has been studied extensively over the past decade. Translation of capillary electrophoresis methods from traditional capillary systems to a microchip platform provides rapid separation and easy quantitation of sample components. However, most microfluidic systems suffer from critical scaling problems. One promising solution to this problem is online sample preconcentration of all analytes in a sample reservoir before the separation channel. Herein, the following three techniques for online preconcentration during microchip electrophoresis are proposed: (1) in situ fabrication of an ionic polyacrylamide-based preconcentrator on a simple poly(methyl methacrylate) microfluidic chip for perm-selective preconcentration and capillary electrophoretic separation of anionic compounds, (2) simultaneous concentration enrichment and electrophoretic separation of weak acids on a microchip using an in situ photopolymerized carboxylate-type polyacrylamide gels as the perm-selective preconcentrator, and (3) microchip electrophoresis of oligosaccharides using lectin-immobilized preconcentrator gels fabricated by in situ photopolymerization. These techniques are expected to be powerful tools for clinical and pharmaceutical studies with on-line preconcentration during microchip electrophoresis.

  14. Purification of microalgae from bacterial contamination using a disposable inertia-based microfluidic device

    NASA Astrophysics Data System (ADS)

    Godino, Neus; Jorde, Felix; Lawlor, Daryl; Jaeger, Magnus; Duschl, Claus

    2015-08-01

    Microalgae are a promising source of bioactive ingredients for the food, pharmaceutical and cosmetic industries. Every microalgae research group or production facility is facing one major problem regarding the potential contamination of the algal cell with bacteria. Prior to the storage of the microalgae in strain collections or to cultivation in bioreactors, it is necessary to carry out laborious purification procedures to separate the microalgae from the undesired bacterial cells. In this work, we present a disposable microfluidic cartridge for the high-throughput purification of microalgae samples based on inertial microfluidics. Some of the most relevant microalgae strains have a larger size than the relatively small, few micron bacterial cells, so making them distinguishable by size. The inertial microfluidic cartridge was fabricated with inexpensive materials, like pressure sensitive adhesive (PSA) and thin plastic layers, which were patterned using a simple cutting plotter. In spite of fabrication restrictions and the intrinsic difficulties of biological samples, the separation of microalgae from bacteria reached values in excess of 99%, previously only achieved using conventional high-end and high cost lithography methods. Moreover, due to the simple and high-throughput characteristic of the separation, it is possible to concatenate serial purification to exponentially decrease the absolute amount of bacteria in the final purified sample.

  15. Highly Efficient Bienzyme Functionalized Nanocomposite-Based Microfluidics Biosensor Platform for Biomedical Application

    PubMed Central

    Ali, Md. Azahar; Srivastava, Saurabh; Solanki, Pratima R.; Reddy, Venu; Agrawal, Ved V.; Kim, CheolGi; John, Renu; Malhotra, Bansi D.

    2013-01-01

    This report describes the fabrication of a novel microfluidics nanobiochip based on a composite comprising of nickel oxide nanoparticles (nNiO) and multiwalled carbon nanotubes (MWCNTs), as well as the chip's use in a biomedical application. This nanocomposite was integrated with polydimethylsiloxane (PDMS) microchannels, which were constructed using the photolithographic technique. A structural and morphological characterization of the fabricated microfluidics chip, which was functionalized with a bienzyme containing cholesterol oxidase (ChOx) and cholesterol esterase (ChEt), was accomplished using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy. The XPS studies revealed that 9.3% of the carboxyl (COOH) groups present in the nNiO-MWCNT composite are used to form amide bonds with the NH2 groups of the bienzyme. The response studies on this nanobiochip reveal good reproducibility and selectivity, and a high sensitivity of 2.2 mA/mM/cm2. This integrated microfluidics biochip provides a promising low-cost platform for the rapid detection of biomolecules using minute samples. PMID:24071971

  16. Droplet-based microfluidic system to form and separate multicellular spheroids using magnetic nanoparticles.

    PubMed

    Yoon, Sungjun; Kim, Jeong Ah; Lee, Seung Hwan; Kim, Minsoo; Park, Tai Hyun

    2013-04-21

    The importance of creating a three-dimensional (3-D) multicellular spheroid has recently been gaining attention due to the limitations of monolayer cell culture to precisely mimic in vivo structure and cellular interactions. Due to this emerging interest, researchers have utilized new tools, such as microfluidic devices, that allow high-throughput and precise size control to produce multicellular spheroids. We have developed a droplet-based microfluidic system that can encapsulate both cells and magnetic nanoparticles within alginate beads to mimic the function of a multicellular tumor spheroid. Cells were entrapped within the alginate beads along with magnetic nanoparticles, and the beads of a relatively uniform size (diameters of 85% of the beads were 170-190 μm) were formed in the oil phase. These beads were passed through parallel streamlines of oil and culture medium, where the beads were magnetically transferred into the medium phase from the oil phase using an external magnetic force. This microfluidic chip eliminates additional steps for collecting the spheroids from the oil phase and transferring them to culture medium. Ultimately, the overall spheroid formation process can be achieved on a single microchip. PMID:23426090

  17. Highly efficient bienzyme functionalized nanocomposite-based microfluidics biosensor platform for biomedical application.

    PubMed

    Ali, Md Azahar; Srivastava, Saurabh; Solanki, Pratima R; Reddy, Venu; Agrawal, Ved V; Kim, CheolGi; John, Renu; Malhotra, Bansi D

    2013-09-27

    This report describes the fabrication of a novel microfluidics nanobiochip based on a composite comprising of nickel oxide nanoparticles (nNiO) and multiwalled carbon nanotubes (MWCNTs), as well as the chip's use in a biomedical application. This nanocomposite was integrated with polydimethylsiloxane (PDMS) microchannels, which were constructed using the photolithographic technique. A structural and morphological characterization of the fabricated microfluidics chip, which was functionalized with a bienzyme containing cholesterol oxidase (ChOx) and cholesterol esterase (ChEt), was accomplished using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy. The XPS studies revealed that 9.3% of the carboxyl (COOH) groups present in the nNiO-MWCNT composite are used to form amide bonds with the NH2 groups of the bienzyme. The response studies on this nanobiochip reveal good reproducibility and selectivity, and a high sensitivity of 2.2 mA/mM/cm2. This integrated microfluidics biochip provides a promising low-cost platform for the rapid detection of biomolecules using minute samples.

  18. Microfluidic Chips Designed for Measuring Biomolecules Through a Microbead-Based Quantum Dot Fluorescence Assay

    NASA Astrophysics Data System (ADS)

    Yun, Kwang-Seok; Lee, Dohoon; Kim, Hak-Sung; Yoon, Euisik

    This chapter introduces the demonstration of specific antibody detection by using a microbead-based assay with quantum dot (QD) fluorescence on a polydimethylsiloxane (PDMS) microfluidic chip. The microfluidic chip is designed to isolate a single microbead where the binding reaction of antibodies occurs on the surface. The microfluidic chip is fabricated on a glass substrate using a transparent silicone elastomer, PDMS, for easy access of monitoring and flexible gate operations to capture the single microbead. For antibody detection, a sequence of functionalized assays has been performed in the fabricated chip, including the capturing of microbeads, antibody injection into a microchamber, quantum dot injection, and fluorescence detection. Various concentrations of human IgG antibodies have been introduced to bind to a single microbead captured and isolated inside a designated microchamber in a small volume of 75 pL. Fluorescence detection is monitored using a CCD camera after the second binding with the QDs conjugated with anti-human IgG. In this experiment, a human IgG antibody concentration below 0.1 μg/mL has been successfully detected.

  19. Highly efficient bienzyme functionalized nanocomposite-based microfluidics biosensor platform for biomedical application.

    PubMed

    Ali, Md Azahar; Srivastava, Saurabh; Solanki, Pratima R; Reddy, Venu; Agrawal, Ved V; Kim, CheolGi; John, Renu; Malhotra, Bansi D

    2013-01-01

    This report describes the fabrication of a novel microfluidics nanobiochip based on a composite comprising of nickel oxide nanoparticles (nNiO) and multiwalled carbon nanotubes (MWCNTs), as well as the chip's use in a biomedical application. This nanocomposite was integrated with polydimethylsiloxane (PDMS) microchannels, which were constructed using the photolithographic technique. A structural and morphological characterization of the fabricated microfluidics chip, which was functionalized with a bienzyme containing cholesterol oxidase (ChOx) and cholesterol esterase (ChEt), was accomplished using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy. The XPS studies revealed that 9.3% of the carboxyl (COOH) groups present in the nNiO-MWCNT composite are used to form amide bonds with the NH2 groups of the bienzyme. The response studies on this nanobiochip reveal good reproducibility and selectivity, and a high sensitivity of 2.2 mA/mM/cm2. This integrated microfluidics biochip provides a promising low-cost platform for the rapid detection of biomolecules using minute samples. PMID:24071971

  20. Standard and high-throughput microfluidic disposables based on laminar fluid diffusion interfaces

    NASA Astrophysics Data System (ADS)

    Weigl, Bernhard H.; Morris, Chris; Kesler, Natasa; Battrell, Fred; Bardell, Ron L.

    2002-06-01

    Laminar Fluid Diffusion Interfaces are generated when tow or more streams flow in parallel in a microfluidic structure. This technology can be used for diffusion-based separation and detection applications, for example: DNA desalting, the extraction of small proteins from whole-blood samples, and the detection of various constituents in while blood. Additional applications are the establishment of stable concentration gradients, and the exposure of chemical constituents or biological particles to these concentration gradients, enabling the uniform and controlled exposure of cells to lysing agents, allowing the differentiation of cells by their sensitivity to specific agents in an on-chip cytometer coupled directly to the lysing structure. We have developed integrated systems using machine-controlled disposable cartridges and passive self-contained disposable cards including particle separators, flow cytometers, valves, detection channels, mixers, and diluters that are used in a hematology analyzer, stand-alone blood plasma separators, and a variety of chemical and biological assays. Microfluidic arrays compatible with common well-plate formats have been designed for high-throughout toxicology screening applications. All these devices were manufactured using Micronics' unique rapid-prototyping process yielding low-cost plastic disposable microfluidic chips.

  1. [In situ photopolymerization of polyacrylamide-based preconcentrator on a microfluidic chip for capillary electrophoresis].

    PubMed

    Yamamoto, Sachio

    2012-01-01

    Microchip electrophoresis is widely used for microfluidics and has been studied extensively over the past decade. Translation of capillary electrophoresis methods from traditional capillary systems to a microchip platform provides rapid separation and easy quantitation of sample components. However, most microfluidic systems suffer from critical scaling problems. One promising solution to this problem is online sample preconcentration of all analytes in a sample reservoir before the separation channel. Herein, the following three techniques for online preconcentration during microchip electrophoresis are proposed: (1) in situ fabrication of an ionic polyacrylamide-based preconcentrator on a simple poly(methyl methacrylate) microfluidic chip for perm-selective preconcentration and capillary electrophoretic separation of anionic compounds, (2) simultaneous concentration enrichment and electrophoretic separation of weak acids on a microchip using an in situ photopolymerized carboxylate-type polyacrylamide gels as the perm-selective preconcentrator, and (3) microchip electrophoresis of oligosaccharides using lectin-immobilized preconcentrator gels fabricated by in situ photopolymerization. These techniques are expected to be powerful tools for clinical and pharmaceutical studies with on-line preconcentration during microchip electrophoresis. PMID:23023420

  2. A fluorescence-based centrifugal microfluidic system for parallel detection of multiple allergens

    NASA Astrophysics Data System (ADS)

    Chen, Q. L.; Ho, H. P.; Cheung, K. L.; Kong, S. K.; Suen, Y. K.; Kwan, Y. W.; Li, W. J.; Wong, C. K.

    2010-02-01

    This paper reports a robust polymer based centrifugal microfluidic analysis system that can provide parallel detection of multiple allergens in vitro. Many commercial food products (milk, bean, pollen, etc.) may introduce allergy to people. A low-cost device for rapid detection of allergens is highly desirable. With this as the objective, we have studied the feasibility of using a rotating disk device incorporating centrifugal microfluidics for performing actuationfree and multi-analyte detection of different allergen species with minimum sample usage and fast response time. Degranulation in basophils or mast cells is an indicator to demonstrate allergic reaction. In this connection, we used acridine orange (AO) to demonstrate degranulation in KU812 human basophils. It was found that the AO was released from granules when cells were stimulated by ionomycin, thus signifying the release of histamine which accounts for allergy symptoms [1-2]. Within this rotating optical platform, major microfluidic components including sample reservoirs, reaction chambers, microchannel and flow-control compartments are integrated into a single bio-compatible polydimethylsiloxane (PDMS) substrate. The flow sequence and reaction time can be controlled precisely. Sequentially through varying the spinning speed, the disk may perform a variety of steps on sample loading, reaction and detection. Our work demonstrates the feasibility of using centrifugation as a possible immunoassay system in the future.

  3. Protein Microarrays with Novel Microfluidic Methods: Current Advances

    PubMed Central

    Dixit, Chandra K.; Aguirre, Gerson R.

    2014-01-01

    Microfluidic-based micromosaic technology has allowed the pattering of recognition elements in restricted micrometer scale areas with high precision. This controlled patterning enabled the development of highly multiplexed arrays multiple analyte detection. This arraying technology was first introduced in the beginning of 2001 and holds tremendous potential to revolutionize microarray development and analyte detection. Later, several microfluidic methods were developed for microarray application. In this review we discuss these novel methods and approaches which leverage the property of microfluidic technologies to significantly improve various physical aspects of microarray technology, such as enhanced imprinting homogeneity, stability of the immobilized biomolecules, decreasing assay times, and reduction of the costs and of the bulky instrumentation.

  4. Two-ply channels for faster wicking in paper-based microfluidic devices.

    PubMed

    Camplisson, Conor K; Schilling, Kevin M; Pedrotti, William L; Stone, Howard A; Martinez, Andres W

    2015-12-01

    This article describes the development of porous two-ply channels for paper-based microfluidic devices that wick fluids significantly faster than conventional, porous, single-ply channels. The two-ply channels were made by stacking two single-ply channels on top of each other and were fabricated entirely out of paper, wax and toner using two commercially available printers, a convection oven and a thermal laminator. The wicking in paper-based channels was studied and modeled using a modified Lucas-Washburn equation to account for the effect of evaporation, and a paper-based titration device incorporating two-ply channels was demonstrated.

  5. Nucleic Acid-based Detection of Bacterial Pathogens Using Integrated Microfluidic Platform Systems

    PubMed Central

    Lui, Clarissa; Cady, Nathaniel C.; Batt, Carl A.

    2009-01-01

    The advent of nucleic acid-based pathogen detection methods offers increased sensitivity and specificity over traditional microbiological techniques, driving the development of portable, integrated biosensors. The miniaturization and automation of integrated detection systems presents a significant advantage for rapid, portable field-based testing. In this review, we highlight current developments and directions in nucleic acid-based micro total analysis systems for the detection of bacterial pathogens. Recent progress in the miniaturization of microfluidic processing steps for cell capture, DNA extraction and purification, polymerase chain reaction, and product detection are detailed. Discussions include strategies and challenges for implementation of an integrated portable platform. PMID:22412335

  6. Paper-based microfluidics with an erodible polymeric bridge giving controlled release and timed flow shutoff.

    PubMed

    Jahanshahi-Anbuhi, Sana; Henry, Aleah; Leung, Vincent; Sicard, Clémence; Pennings, Kevin; Pelton, Robert; Brennan, John D; Filipe, Carlos D M

    2014-01-01

    Water soluble pullulan films were formatted into paper-based microfluidic devices, serving as a controlled time shutoff valve. The utility of the valve was demonstrated by a one-step, fully automatic implementation of a complex pesticide assay requiring timed, sequential exposure of an immobilized enzyme layer to separate liquid streams. Pullulan film dissolution and the capillary wicking of aqueous solutions through the device were measured and modeled providing valve design criteria. The films dissolve mainly by surface erosion, meaning the film thickness mainly controls the shutoff time. This method can also provide time-dependent sequential release of reagents without compromising the simplicity and low cost of paper-based devices.

  7. Streamline based design guideline for deterministic microfluidic hydrodynamic single cell traps

    PubMed Central

    Shenoy, Aditi; Smith, Richard

    2015-01-01

    A prerequisite for single cell study is the capture and isolation of individual cells. In microfluidic devices, cell capture is often achieved by means of trapping. While many microfluidic trapping techniques exist, hydrodynamic methods are particularly attractive due to their simplicity and scalability. However, current design guidelines for single cell hydrodynamic traps predominantly rely on flow resistance manipulation or qualitative streamline analysis without considering the target particle size. This lack of quantitative design criteria from first principles often leads to non-optimal probabilistic trapping. In this work, we describe an analytical design guideline for deterministic single cell hydrodynamic trapping through the optimization of streamline distributions under laminar flow with cell size as a key parameter. Using this guideline, we demonstrate an example design which can achieve 100% capture efficiency for a given particle size. Finite element modelling was used to determine the design parameters necessary for optimal trapping. The simulation results were subsequently confirmed with on-chip microbead and white blood cell trapping experiments. PMID:25825618

  8. Magnetic timing valves for fluid control in paper-based microfluidics.

    PubMed

    Li, Xiao; Zwanenburg, Philip; Liu, Xinyu

    2013-07-01

    Multi-step analytical tests, such as an enzyme-linked immunosorbent assay (ELISA), require delivery of multiple fluids into a reaction zone and counting the incubation time at different steps. This paper presents a new type of paper-based magnetic valves that can count the time and turn on or off a fluidic flow accordingly, enabling timed fluid control in paper-based microfluidics. The timing capability of these valves is realized using a paper timing channel with an ionic resistor, which can detect the event of a solution flowing through the resistor and trigger an electromagnet (through a simple circuit) to open or close a paper cantilever valve. Based on this principle, we developed normally-open and normally-closed valves with a timing period up to 30.3 ± 2.1 min (sufficient for an ELISA on paper-based platforms). Using the normally-open valve, we performed an enzyme-based colorimetric reaction commonly used for signal readout of ELISAs, which requires a timed delivery of an enzyme substrate to a reaction zone. This design adds a new fluid-control component to the tool set for developing paper-based microfluidic devices, and has the potential to improve the user-friendliness of these devices.

  9. Biologically Inspired Electronic, Photovoltaic and Microfluidic Devices Based on Aqueous Soft Matter

    NASA Astrophysics Data System (ADS)

    Koo, Hyung Jun

    Hydrogels are a water-based soft material where three dimensional networks of hydrophilic polymer retain large amounts of water. We developed hydrogel based devices with new functionalities inspired by materials, structures and processes in nature. The advantages, such as softness, biocompatibility and high ionic conductivity, could enable hydrogels to be novel materials for biomimetic devices operated by ionic current. Moreover, microfluidic patterns are easily embedded in moldable hydrogels and allow for unique convective/diffusive transport mechanism in porous gel to be used for uniform delivery of reagent solution. We first developed and characterized a device with unidirectional ionic current flow across a SiO2/Gel junction, which showed highly efficient rectification of the ionic current by non-linear conductivity of SiO2 films. Addition of polyelectrolytes and salt to the gel layer significantly improved the performance of the new diode device because of the enhanced gel conductance. A soft matter based diode composed of hydrogel and liquid metal (eutectic gallium indium, EGaIn) was also presented. The ability to control the thickness, and thus resistivity, of an insulating oxide skin on the metal enables the current rectification. The effect of ionic conductivity and pH on the formation of the insulating oxide was investigated in a simple model system with liquid metal/electrolyte solution or hydrogel/Pt interfaces. Finally, we present a diode composed entirely of soft materials by replacing the platinum electrode with a second liquid metal electrode. A new type of hydrogel-based photovoltaic systems (HGPVs) was constructed. Two photosensitive ionized molecules embedded in aqueous gel served as photoactive species. The HGPVs showed performance comparable with or higher than those of some other biomimetic or ionic photovoltaic systems reported recently. We suggest a provisional mechanism of the device operation, based on a synergetic effect of the two dye

  10. Biologically Inspired Electronic, Photovoltaic and Microfluidic Devices Based on Aqueous Soft Matter

    NASA Astrophysics Data System (ADS)

    Koo, Hyung Jun

    Hydrogels are a water-based soft material where three dimensional networks of hydrophilic polymer retain large amounts of water. We developed hydrogel based devices with new functionalities inspired by materials, structures and processes in nature. The advantages, such as softness, biocompatibility and high ionic conductivity, could enable hydrogels to be novel materials for biomimetic devices operated by ionic current. Moreover, microfluidic patterns are easily embedded in moldable hydrogels and allow for unique convective/diffusive transport mechanism in porous gel to be used for uniform delivery of reagent solution. We first developed and characterized a device with unidirectional ionic current flow across a SiO2/Gel junction, which showed highly efficient rectification of the ionic current by non-linear conductivity of SiO2 films. Addition of polyelectrolytes and salt to the gel layer significantly improved the performance of the new diode device because of the enhanced gel conductance. A soft matter based diode composed of hydrogel and liquid metal (eutectic gallium indium, EGaIn) was also presented. The ability to control the thickness, and thus resistivity, of an insulating oxide skin on the metal enables the current rectification. The effect of ionic conductivity and pH on the formation of the insulating oxide was investigated in a simple model system with liquid metal/electrolyte solution or hydrogel/Pt interfaces. Finally, we present a diode composed entirely of soft materials by replacing the platinum electrode with a second liquid metal electrode. A new type of hydrogel-based photovoltaic systems (HGPVs) was constructed. Two photosensitive ionized molecules embedded in aqueous gel served as photoactive species. The HGPVs showed performance comparable with or higher than those of some other biomimetic or ionic photovoltaic systems reported recently. We suggest a provisional mechanism of the device operation, based on a synergetic effect of the two dye

  11. Single- and two-phase flow in microfluidic porous media analogs based on Voronoi tessellation

    SciTech Connect

    Wu, Mengjie; Xiao, Feng; Johnson-Paben, Rebecca; Retterer, Scott T; Yin, Xiaolong; Neeves, Keith B

    2012-01-01

    The objective of this study was to create a microfluidic model of complex porous media for studying single and multiphase flows. Most experimental porous media models consist of periodic geometries that lend themselves to comparison with well-developed theoretical predictions. However, most real porous media such as geological formations and biological tissues contain a degree of randomness and complexity that is not adequately represented in periodic geometries. To design an experimental tool to study these complex geometries, we created microfluidic models of random homogeneous and heterogeneous networks based on Voronoi tessellations. These networks consisted of approximately 600 grains separated by a highly connected network of channels with an overall porosity of 0.11 0.20. We found that introducing heterogeneities in the form of large cavities within the network changed the permeability in a way that cannot be predicted by the classical porosity-permeability relationship known as the Kozeny equation. The values of permeability found in experiments were in excellent agreement with those calculated from three-dimensional lattice Boltzmann simulations. In two-phase flow experiments of oil displacement with water we found that the surface energy of channel walls determined the pattern of water invasion, while the network topology determined the residual oil saturation. These results suggest that complex network topologies lead to fluid flow behavior that is difficult to predict based solely on porosity. The microfluidic models developed in this study using a novel geometry generation algorithm based on Voronoi tessellation are a new experimental tool for studying fluid and solute transport problems within complex porous media.

  12. TECHNICAL NOTE: Portable audio electronics for impedance-based measurements in microfluidics

    NASA Astrophysics Data System (ADS)

    Wood, Paul; Sinton, David

    2010-08-01

    We demonstrate the use of audio electronics-based signals to perform on-chip electrochemical measurements. Cell phones and portable music players are examples of consumer electronics that are easily operated and are ubiquitous worldwide. Audio output (play) and input (record) signals are voltage based and contain frequency and amplitude information. A cell phone, laptop soundcard and two compact audio players are compared with respect to frequency response; the laptop soundcard provides the most uniform frequency response, while the cell phone performance is found to be insufficient. The audio signals in the common portable music players and laptop soundcard operate in the range of 20 Hz to 20 kHz and are found to be applicable, as voltage input and output signals, to impedance-based electrochemical measurements in microfluidic systems. Validated impedance-based measurements of concentration (0.1-50 mM), flow rate (2-120 µL min-1) and particle detection (32 µm diameter) are demonstrated. The prevailing, lossless, wave audio file format is found to be suitable for data transmission to and from external sources, such as a centralized lab, and the cost of all hardware (in addition to audio devices) is ~10 USD. The utility demonstrated here, in combination with the ubiquitous nature of portable audio electronics, presents new opportunities for impedance-based measurements in portable microfluidic systems.

  13. Quantitative comparison between microfluidic and microtiter plate formats for cell-based assays.

    PubMed

    Yin, Huabing; Pattrick, Nicola; Zhang, Xunli; Klauke, Norbert; Cordingley, Hayley C; Haswell, Steven J; Cooper, Jonathan M

    2008-01-01

    In this paper, we compare a quantitative cell-based assay measuring the intracellular Ca2+ response to the agonist uridine 5'-triphosphate in Chinese hamster ovary cells, in both microfluidic and microtiter formats. The study demonstrates that, under appropriate hydrodynamic conditions, there is an excellent agreement between traditional well-plate assays and those obtained on-chip for both suspended immobilized cells and cultured adherent cells. We also demonstrate that the on-chip assay, using adherent cells, provides the possibility of faster screening protocols with the potential for resolving subcellular information about local Ca2+ flux.

  14. Microfluidic geometric metering-based multi-reagent mixture generator for robust live cell screening array.

    PubMed

    Wang, Han; Kim, Jeongyun; Jayaraman, Arul; Han, Arum

    2014-12-01

    Microfluidic live cell arrays with integrated concentration gradient or mixture generators have been utilized in screening cellular responses to various biomolecular cues. Microfluidic network-based gradient generators that can create concentration gradients by repeatedly splitting and mixing different solutions using networks of serpentine channels are commonly used. However, in this method the generation of concentration gradients relies on the continuous flow of sample solutions at optimized flow rates, which poses challenges in maintaining the pressure and flow stability throughout the entire assay period. Here we present a microfluidic live cell screening array with an on-demand multi-reagent mixture generator where the mixing ratios, thus generated concentrations, are hard-wired into the chip itself through a geometric metering method. This platform showed significantly improved robustness and repeatability in generating concentration gradients of fluorescent dyes (average coefficient of variance C.V. = 9 %) compared to the conventional network-based gradient generators (average C.V. = 21 %). In studying the concentration dependent effects of the environmental toxicant 3-methylcholanthrene (3MC) on the activation of cytochrome P450 1A1 (Cyp 1A1) enzyme in H4IIE rat hepatoma cells, statistical variation of the Cyp 1A1 response was significantly lower (C.V. = 5 %) when using the developed mixture generator compared to that using the conventional gradient generator (C.V. = 12 %). Reduction in reagent consumption by 12-times was also achieved. This robust, accurate, and scalable multi-reagent mixture generator integrated with a cell culture array as a live cell assay platform can be readily implemented into various screening applications where repeatability, robustness, and low reagent consumptions over long periods of assay time are of importance.

  15. Approaching near real-time biosensing: microfluidic microsphere based biosensor for real-time analyte detection.

    PubMed

    Cohen, Noa; Sabhachandani, Pooja; Golberg, Alexander; Konry, Tania

    2015-04-15

    In this study we describe a simple lab-on-a-chip (LOC) biosensor approach utilizing well mixed microfluidic device and a microsphere-based assay capable of performing near real-time diagnostics of clinically relevant analytes such cytokines and antibodies. We were able to overcome the adsorption kinetics reaction rate-limiting mechanism, which is diffusion-controlled in standard immunoassays, by introducing the microsphere-based assay into well-mixed yet simple microfluidic device with turbulent flow profiles in the reaction regions. The integrated microsphere-based LOC device performs dynamic detection of the analyte in minimal amount of biological specimen by continuously sampling micro-liter volumes of sample per minute to detect dynamic changes in target analyte concentration. Furthermore we developed a mathematical model for the well-mixed reaction to describe the near real time detection mechanism observed in the developed LOC method. To demonstrate the specificity and sensitivity of the developed real time monitoring LOC approach, we applied the device for clinically relevant analytes: Tumor Necrosis Factor (TNF)-α cytokine and its clinically used inhibitor, anti-TNF-α antibody. Based on the reported results herein, the developed LOC device provides continuous sensitive and specific near real-time monitoring method for analytes such as cytokines and antibodies, reduces reagent volumes by nearly three orders of magnitude as well as eliminates the washing steps required by standard immunoassays.

  16. Water-oil core-shell droplets for electrowetting-based digital microfluidic devices.

    PubMed

    Brassard, Daniel; Malic, Lidija; Normandin, François; Tabrizian, Maryam; Veres, Teodor

    2008-08-01

    Digital microfluidics based on electrowetting-on-dielectric (EWOD) has recently emerged as one of the most promising technologies to realize integrated and highly flexible lab-on-a-chip systems. In such EWOD-based digital microfluidic devices, the aqueous droplets have traditionally been manipulated either directly in air or in an immiscible fluid such as silicone oil. However, both transporting mediums have important limitations and neither offers the flexibility required to fulfil the needs of several applications. In this paper, we report on an alternative mode of operation for EWOD-based devices in which droplets enclosed in a thin layer of oil are manipulated in air. We demonstrate the possibility to perform on-chip the fundamental fluidic operations by using such water-oil core-shell droplets and compare systematically the results with the traditional approach where the aqueous droplets are manipulated directly in air or oil. We show that the core-shell configuration combines several advantages of both the air and oil mediums. In particular, this configuration not only reduces the operation voltage of EWOD-based devices but also leads to higher transport velocities when compared with the manipulation of droplets directly in air or oil.

  17. High-throughput screening of filamentous fungi using nanoliter-range droplet-based microfluidics

    PubMed Central

    Beneyton, Thomas; Wijaya, I. Putu Mahendra; Postros, Prexilia; Najah, Majdi; Leblond, Pascal; Couvent, Angélique; Mayot, Estelle; Griffiths, Andrew D.; Drevelle, Antoine

    2016-01-01

    Filamentous fungi are an extremely important source of industrial enzymes because of their capacity to secrete large quantities of proteins. Currently, functional screening of fungi is associated with low throughput and high costs, which severely limits the discovery of novel enzymatic activities and better production strains. Here, we describe a nanoliter-range droplet-based microfluidic system specially adapted for the high-throughput sceening (HTS) of large filamentous fungi libraries for secreted enzyme activities. The platform allowed (i) compartmentalization of single spores in ~10 nl droplets, (ii) germination and mycelium growth and (iii) high-throughput sorting of fungi based on enzymatic activity. A 104 clone UV-mutated library of Aspergillus niger was screened based on α-amylase activity in just 90 minutes. Active clones were enriched 196-fold after a single round of microfluidic HTS. The platform is a powerful tool for the development of new production strains with low cost, space and time footprint and should bring enormous benefit for improving the viability of biotechnological processes. PMID:27270141

  18. Measurement and analysis of Vibrio fischeri cell-based microfluidic device for personal health monitoring.

    PubMed

    Zhao, Xinyan; Dong, Tao

    2013-01-01

    The cell-based microfluidic chip was designed and fabricated as a low-cost detector to continuously monitor toxicants in drinking water or human urine samples, which is expected to be an important component of a household health monitoring system in the future. The bioluminescent bacterium, Vibrio Fischeri, was selected to validate the function of device. Water samples and Vibrio fischeri cells were mixed and encapsulated into droplets in air flow, which can guarantee sufficient oxygen supply for cells in droplets. Preliminary tests were performed using copper ion (Cu(2+)) as the model toxicant. The droplet system was measured and analyzed at various flow rates in different observation chambers. Both deionized water and human urine samples were tested in the cell-based device. Interestingly, a strong relation between the R.L.U. (Relative Luminescence Units) in the observation chamber and the minute concentration of toxicant (Cu(2+)) was found using deionized water as solvent, whereas the relation was insignificant using human urine as solvent. This study showed the Vibrio fischeri cell-based device might be reliably employed as an early-warning system for the safety of drinking water. However, Vibrio fischeri is not competent to detect dangerous materials in a complex biofluid. With the replacement of cell sensors, the microfluidic device might be functional to analyze urine samples in theory. PMID:24110218

  19. High-throughput screening of filamentous fungi using nanoliter-range droplet-based microfluidics

    NASA Astrophysics Data System (ADS)

    Beneyton, Thomas; Wijaya, I. Putu Mahendra; Postros, Prexilia; Najah, Majdi; Leblond, Pascal; Couvent, Angélique; Mayot, Estelle; Griffiths, Andrew D.; Drevelle, Antoine

    2016-06-01

    Filamentous fungi are an extremely important source of industrial enzymes because of their capacity to secrete large quantities of proteins. Currently, functional screening of fungi is associated with low throughput and high costs, which severely limits the discovery of novel enzymatic activities and better production strains. Here, we describe a nanoliter-range droplet-based microfluidic system specially adapted for the high-throughput sceening (HTS) of large filamentous fungi libraries for secreted enzyme activities. The platform allowed (i) compartmentalization of single spores in ~10 nl droplets, (ii) germination and mycelium growth and (iii) high-throughput sorting of fungi based on enzymatic activity. A 104 clone UV-mutated library of Aspergillus niger was screened based on α-amylase activity in just 90 minutes. Active clones were enriched 196-fold after a single round of microfluidic HTS. The platform is a powerful tool for the development of new production strains with low cost, space and time footprint and should bring enormous benefit for improving the viability of biotechnological processes.

  20. Recent advancements in chemical luminescence-based lab-on-chip and microfluidic platforms for bioanalysis.

    PubMed

    Mirasoli, Mara; Guardigli, Massimo; Michelini, Elisa; Roda, Aldo

    2014-01-01

    Miniaturization of analytical procedures through microchips, lab-on-a-chip or micro total analysis systems is one of the most recent trends in chemical and biological analysis. These systems are designed to perform all the steps in an analytical procedure, with the advantages of low sample and reagent consumption, fast analysis, reduced costs, possibility of extra-laboratory application. A range of detection technologies have been employed in miniaturized analytical systems, but most applications relied on fluorescence and electrochemical detection. Chemical luminescence (which includes chemiluminescence, bioluminescence, and electrogenerated chemiluminescence) represents an alternative detection principle that offered comparable (or better) analytical performance and easier implementation in miniaturized analytical devices. Nevertheless, chemical luminescence-based ones represents only a small fraction of the microfluidic devices reported in the literature, and until now no review has been focused on these devices. Here we review the most relevant applications (since 2009) of miniaturized analytical devices based on chemical luminescence detection. After a brief overview of the main chemical luminescence systems and of the recent technological advancements regarding their implementation in miniaturized analytical devices, analytical applications are reviewed according to the nature of the device (microfluidic chips, microchip electrophoresis, lateral flow- and paper-based devices) and the type of application (micro-flow injection assays, enzyme assays, immunoassays, gene probe hybridization assays, cell assays, whole-cell biosensors).

  1. High-throughput screening of filamentous fungi using nanoliter-range droplet-based microfluidics.

    PubMed

    Beneyton, Thomas; Wijaya, I Putu Mahendra; Postros, Prexilia; Najah, Majdi; Leblond, Pascal; Couvent, Angélique; Mayot, Estelle; Griffiths, Andrew D; Drevelle, Antoine

    2016-01-01

    Filamentous fungi are an extremely important source of industrial enzymes because of their capacity to secrete large quantities of proteins. Currently, functional screening of fungi is associated with low throughput and high costs, which severely limits the discovery of novel enzymatic activities and better production strains. Here, we describe a nanoliter-range droplet-based microfluidic system specially adapted for the high-throughput sceening (HTS) of large filamentous fungi libraries for secreted enzyme activities. The platform allowed (i) compartmentalization of single spores in ~10 nl droplets, (ii) germination and mycelium growth and (iii) high-throughput sorting of fungi based on enzymatic activity. A 10(4) clone UV-mutated library of Aspergillus niger was screened based on α-amylase activity in just 90 minutes. Active clones were enriched 196-fold after a single round of microfluidic HTS. The platform is a powerful tool for the development of new production strains with low cost, space and time footprint and should bring enormous benefit for improving the viability of biotechnological processes. PMID:27270141

  2. Hot embossed polyethylene through-hole chips for bead-based microfluidic devices

    PubMed Central

    Chou, Jie; Du, Nan; Ou, Tina; Floriano, Pierre N.; Christodoulides, Nicolaos; McDevitt, John T.

    2013-01-01

    Over the past decade, there has been a growth of interest in the translation of microfluidic systems into real-world clinical practice, especially for use in point-of-care or near patient settings. While initial fabrication advances in microfluidics involved mainly the etching of silicon and glass, the economics of scaling of these materials is not amendable for point-of-care usage where single-test applications forces cost considerations to be kept low and throughput high. As such, a materials base more consistent with point-of-care needs is required. In this manuscript, the fabrication of a hot embossed, through-hole low-density polyethylene ensembles derived from an anisotropically etched silicon wafer is discussed. This semi-opaque polymer that can be easily sterilized and recycled provides low background noise for fluorescence measurements and yields more affordable cost than other thermoplastics commonly used for microfluidic applications such as cyclic olefin copolymer (COC). To fabrication through-hole microchips from this alternative material for microfluidics, a fabrication technique that uses a high-temperature, high-pressure resistant mold is described. This aluminum-based epoxy mold, serving as the positive master mold for embossing, is casted over etched arrays of pyramidal pits in a silicon wafer. Methods of surface treatment of the wafer prior to casting and PDMS casting of the epoxy are discussed to preserve the silicon wafer for future use. Changes in the thickness of polyethylene are observed for varying embossing temperatures. The methodology described herein can quickly fabricate 20 disposable, single use chips in less than 30 minutes with the ability to scale up 4x by using multiple molds simultaneously. When coupled as a platform supporting porous bead sensors, as in the recently developed Programmable Bio-Nano-Chip, this bead chip system can achieve limits of detection, for the cardiac biomarker C-reactive protein, of 0.3 ng/mL, thereby

  3. Microfabrication- and microfluidics-based patterning of cultured neuronal network.

    PubMed

    Takayama, Yuzo; Kotake, Naoki; Haga, Tatsuya; Suzuki, Takafumi; Mabuchi, Kunihiko

    2011-01-01

    The cultured neuronal monolayer has been a promising model system for studying the neuronal dynamics, from single cell to network-wide level. Randomness in the reconstituted network structure has, however, hindered regulated signal transmissions from one neuron to another or from one neuronal population to another. Applying microfabrication-based cell patterning techniques is a promising approach to handling these problems. In the present study, we attempt to regulate the direction of axon development and the pathway of signal transmissions in cultured neuronal networks using micro-fabrication and - fluidic techniques. We created a PDMS-based culture device, which consisted of arrays of U-shaped cell trapping microwells, and placed it onto a chemically micropatterned glass substrate. After 6 days in vitro, we confirmed that cortical neurons extended neurites along the medium flow direction and the micropatterned regions. PMID:22255121

  4. A polystyrene-based microfluidic device with three-dimensional interconnected microporous walls for perfusion cell culture

    PubMed Central

    Chan, Chung Yu; Goral, Vasiliy N.; DeRosa, Michael E.; Huang, Tony Jun

    2014-01-01

    In this article, we present a simple, rapid prototyped polystyrene-based microfluidic device with three-dimensional (3D) interconnected microporous walls for long term perfusion cell culture. Patterned 3D interconnected microporous structures were created by a chemical treatment together with a protective mask and the native hydrophobic nature of the microporous structures were selectively made hydrophilic using oxygen plasma treatment together with a protective mask. Using this polystyrene-based cell culture microfluidic device, we successfully demonstrated the support of four days perfusion cell culture of hepatocytes (C3A cells). PMID:25379110

  5. Gold nanoparticles for microfluidics-based biosensing of PCR products by hybridization-induced fluorescence quenching.

    PubMed

    Li, Yu-Ting; Liu, Hsiao-Sheng; Lin, Hong-Ping; Chen, Shu-Hui

    2005-12-01

    Colloidal gold nanoparticles were used to develop a simple microfluidics-based bioassay that is able to recognize and detect specific DNA sequences via conformational change-induced fluorescence quenching. In this method, a self-assembled monolayer of gold nanoparticles was fabricated on the channel wall of a microfluidic chip, and DNA probes were bonded to the monolayer via thiol groups at one end and a fluorophore dye was attached to the other end of the probe. The created construct is spontaneously assembled into a constrained arch-like conformation on the particle surface and, under which, the fluorescence of fluorophores is quenched by gold nanoparticles. Hybridization of target DNAs results in a conformational change of the construct and then restores the fluorescence, which serves as a sensing method for the target genes. The nanocomposite constructed on the glass surface was characterized by UV absorbance measurement and the quenching efficiency for different fluorophores was evaluated by Stern-Volmer studies. The applicability of proposed assay was first demonstrated by the use of a pair of synthesized complementary and noncomplementary DNA sequences. The method was further applied for the detection of the PCR product of dengue virus with the use of enterovirus as the negative control, and results indicate that the assay is specific for the target gene. Moreover, using this approach, dehybridization, hybridization, and detection of the target genes can be performed in situ on the same microfluidic channel. Thus, this method could be regarded as one-pot reaction and it holds great promises for clinical diagnostics.

  6. Optimization of a Microfluidic Mixing Process for Gene Expression-Based Bio-dosimetry

    PubMed Central

    Shinde, Shilpa Madhavan; Orozco, Christine; Brengues, Muriel; Lenigk, Ralf; Montgomery, Douglas C; Zenhausern, Frederic

    2011-01-01

    In recent decades advances in radiation imaging and radiation therapy have led to a dramatic increase in the number of people exposed to radiation. Consequently, there is a clear need for personalized biodosimetry diagnostics in order to monitor the dose of radiation received and adapt it to each patient depending on their sensitivity to radiation exposure (Hall E.J. and Brenner D. J., 2008). Similarly, after a large-scale radiological event such as a dirty bomb attack, there will be a major need to assess, within a few days the radiation doses received by tens of thousands of individuals. Current high throughput devices can handle only a few hundred individuals per day. Hence there is a great need for a very fast self-contained non-invasive biodosimetric device based on a rapid blood test. This paper presents a case study where regression methods and designed experiments are used to arrive at the optimal settings for various factors that impact the kinetics in a biodosimetric device. We use ridge regression to initially identify a set of potentially important variables in the mixing process which is one of the critical sub systems of the device. This was followed by a series of designed experiments to arrive at the optimal setting of the significant microfluidic cartridge and piezoelectric disk (PZT) (D. Sadler, F. Zenhausern, U.S. Patent 6,986,601; Lee, S. Y., Ko, B., Yang, W., 2005) related factors. This statistical approach has been utilized to study the microfluidic mixing to mix water and dye mixtures of 70 μl volume. The outcome of the statistical design, experimentation and analysis was then exploited for optimizing the design, fabrication and assembly of the microfluidic devices. As a result of the experiments that were performed, the system was fine tuned and the mixing time was reduced from 5.5 minutes to 2 minutes. PMID:21822355

  7. A PDMS-based cylindrical hybrid lens for enhanced fluorescence detection in microfluidic systems.

    PubMed

    Lin, Bor-Shyh; Yang, Yu-Ching; Ho, Chong-Yi; Yang, Han-Yu; Wang, Hsiang-Yu

    2014-02-13

    Microfluidic systems based on fluorescence detection have been developed and applied for many biological and chemical applications. Because of the tiny amount of sample in the system; the induced fluorescence can be weak. Therefore, most microfluidic systems deploy multiple optical components or sophisticated equipment to enhance the efficiency of fluorescence detection. However, these strategies encounter common issues of complex manufacturing processes and high costs. In this study; a miniature, cylindrical and hybrid lens made of polydimethylsiloxane (PDMS) to improve the fluorescence detection in microfluidic systems is proposed. The hybrid lens integrates a laser focusing lens and a fluorescence collecting lens to achieve dual functions and simplify optical setup. Moreover, PDMS has advantages of low-cost and straightforward fabrication compared with conventional optical components. The performance of the proposed lens is first examined with two fluorescent dyes and the results show that the lens provides satisfactory enhancement for fluorescence detection of Rhodamine 6G and Nile Red. The overall increments in collected fluorescence signal and detection sensitivity are more than 220% of those without lens, and the detection limits of Rhodamine 6G and Nile red are lowered to 0.01 μg/mL and 0.05 μg/mL, respectively. The hybrid lens is further applied to the detection of Nile red-labeled Chlorella vulgaris cells and it increases both signal intensity and detection sensitivity by more than 520%. The proposed hybrid lens also dramatically reduces the variation in detected signal caused by the deviation in incident angle of excitation light.

  8. Implementation of poly(ε-caprolactone) sheet-based shape-memory polymer microvalves into plastic-based microfluidic devices

    NASA Astrophysics Data System (ADS)

    Jiang, Chenyang; Uto, Koichiro; Ebara, Mitsuhiro; Aoyagi, Takao; Ichiki, Takanori

    2015-06-01

    Implementation of shape-memory polymer (SMP) sheet-based microvalves into plastic-based microfluidic devices has been studied toward the use in disposable and mass producible micro total analysis devices. Poly(ε-caprolactone) (PCL) and poly(methyl methacrylate-co-styrene) (MS) were used as SMP and main substrate materials, respectively. Bonding between PCL sheets and MS plates was the critical issue in the practical implementation. We found the pristine PCL sheet has relatively rough surface with Ra of 85.14 nm, which is the cause of poor bonding. Hence, by introducing the post-anneal treatment with sandwiched between two flat glass plates, the PCL surface could be smoothed to Ra of 12.50 nm, and tight bonding could be obtained. Consequently, microfluidic devices consisting of plastic/PCL/plastic layers were successfully fabricated and therein the actuation of SMP valves without any leakage was demonstrated. The present technology is expected to be applicable to disposable microfluidic devices as required for point-of-care testing.

  9. Microfluidic serpentine antennas with designed mechanical tunability.

    PubMed

    Huang, YongAn; Wang, Yezhou; Xiao, Lin; Liu, Huimin; Dong, Wentao; Yin, Zhouping

    2014-11-01

    This paper describes the design and characterization of microfluidic serpentine antennas with reversible stretchability and designed mechanical frequency modulation (FM). The microfluidic antennas are designed based on the Poisson's ratio of the elastomer in which the liquid alloy antenna is embedded, to controllably decrease, stabilize or increase its resonance frequency when being stretched. Finite element modelling was used in combination with experimental verification to investigate the effects of substrate dimensions and antenna aspect ratios on the FM sensitivity to uniaxial stretching. It could be designed within the range of -1.2 to 0.6 GHz per 100% stretch. When the aspect ratio of the serpentine antenna is between 1.0 and 1.5, the resonance frequency is stable under stretching, bending, and twisting. The presented microfluidic serpentine antenna design could be utilized in the field of wireless mobile communication for the design of wearable electronics, with a stable resonance frequency under dynamic applied strain up to 50%.

  10. MEMS and microfluidics for diagnostics devices.

    PubMed

    Rosen, Y; Gurman, P

    2010-06-01

    There are conditions in clinical medicine demanding critical therapeutic decisions. These conditions necessitate accuracy, rapidity, accessibility, cost-effectiveness and mobility. New technologies have been developed in order to address these challenges. Microfluidics and Micro Electro-Mechanical Systems are two of such technologies. Microfluidics, a discipline that involves processing fluids at the microscale in etched microchannels, is being used to build lab- on-a-chip systems to run chemical and biological assays. These systems are being transformed into handheld devices designed to be used at remote settings or at the bedside. MEMS are microscale electromechanical elements integrated in lab chip systems or used as individual components. MEMS based sensors represents a highly developed field with successful commercialized products currently being incorporated into vitro,ex vivo and in vivo devices. In the present paper several examples of microfluidic devices and MEMS sensors are introduced together with some current examples of commercialized products. Future challenges and trends will be discussed. PMID:20199381

  11. Rapid detection of tuberculosis using droplet-based microfluidics

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Liat; Cheng, Yunfeng; Rao, Jianghong; Tang, Sindy K. Y.

    2014-03-01

    Tuberculosis is one of the most deadly diseases that kills over one million people each year and infects one-third of the world's population. The disease is spread by infection with Mycobacterium tuberculosis (Mtb). Owing to its airborne transmission, early diagnosis is critical to the prevention and control of TB. Standard diagnostic methods, acid-fast smear from sputum, often do not become positive until after transmission occurs, which allows the spread of the disease. Culture-based techniques are more sensitive, but take weeks to obtain results because of the extremely slow growth rate of Mtb. In this study a new method to detect indicator enzyme based on the isolation of tubercle bacillus in a large number of picoliter droplets combined with a fluorescent probe has been developed. We use BlaC (an enzyme naturally expressed/secreted by tubercle bacilli) as a marker and a designed BlaC-specific fluorogenic substrates as probes for Mtb detection. We present here a new method to detect the indicator enzyme based on the isolation, digitization and concentration of bacteria samples in a large number of picoliter drops. We show that by controlling the size of the droplets we can control the rate of conversion. Hence rapid increase in signal has been observed as the size of the drops has been decreased. Our vision is that this tool will be able to detect tubercle bacilli in a sensitive, rapid, specific and quantitative manner in vitro at a low cost, particularly in resource limited settings where TB is the most prevalent.

  12. Acid-base titrations using microfluidic paper-based analytical devices.

    PubMed

    Karita, Shingo; Kaneta, Takashi

    2014-12-16

    Rapid and simple acid-base titration was accomplished using a novel microfluidic paper-based analytical device (μPAD). The μPAD was fabricated by wax printing and consisted of ten reservoirs for reaction and detection. The reaction reservoirs contained various amounts of a primary standard substance, potassium hydrogen phthalate (KHPth), whereas a constant amount of phenolphthalein was added to all the detection reservoirs. A sample solution containing NaOH was dropped onto the center of the μPAD and was allowed to spread to the reaction reservoirs where the KHPth neutralized it. When the amount of NaOH exceeded that of the KHPth in the reaction reservoirs, unneutralized hydroxide ion penetrated the detection reservoirs, resulting in a color reaction from the phenolphthalein. Therefore, the number of the detection reservoirs with no color change determined the concentration of the NaOH in the sample solution. The titration was completed within 1 min by visually determining the end point, which required neither instrumentation nor software. The volumes of the KHPth and phenolphthalein solutions added to the corresponding reservoirs were optimized to obtain reproducible and accurate results for the concentration of NaOH. The μPADs determined the concentration of NaOH at orders of magnitude ranging from 0.01 to 1 M. An acid sample, HCl, was also determined using Na2CO3 as a primary standard substance instead of KHPth. Furthermore, the μPAD was applicable to the titrations of nitric acid, sulfuric acid, acetic acid, and ammonia solutions. The μPADs were stable for more than 1 month when stored in darkness at room temperature, although this was reduced to only 5 days under daylight conditions. The analysis of acidic hot spring water was also demonstrated in the field using the μPAD, and the results agreed well with those obtained by classic acid-base titration.

  13. Automated microfluidic platform of bead-based electrochemical immunosensor integrated with bioreactor for continual monitoring of cell secreted biomarkers

    NASA Astrophysics Data System (ADS)

    Riahi, Reza; Shaegh, Seyed Ali Mousavi; Ghaderi, Masoumeh; Zhang, Yu Shrike; Shin, Su Ryon; Aleman, Julio; Massa, Solange; Kim, Duckjin; Dokmeci, Mehmet Remzi; Khademhosseini, Ali

    2016-04-01

    There is an increasing interest in developing microfluidic bioreactors and organs-on-a-chip platforms combined with sensing capabilities for continual monitoring of cell-secreted biomarkers. Conventional approaches such as ELISA and mass spectroscopy cannot satisfy the needs of continual monitoring as they are labor-intensive and not easily integrable with low-volume bioreactors. This paper reports on the development of an automated microfluidic bead-based electrochemical immunosensor for in-line measurement of cell-secreted biomarkers. For the operation of the multi-use immunosensor, disposable magnetic microbeads were used to immobilize biomarker-recognition molecules. Microvalves were further integrated in the microfluidic immunosensor chip to achieve programmable operations of the immunoassay including bead loading and unloading, binding, washing, and electrochemical sensing. The platform allowed convenient integration of the immunosensor with liver-on-chips to carry out continual quantification of biomarkers secreted from hepatocytes. Transferrin and albumin productions were monitored during a 5-day hepatotoxicity assessment in which human primary hepatocytes cultured in the bioreactor were treated with acetaminophen. Taken together, our unique microfluidic immunosensor provides a new platform for in-line detection of biomarkers in low volumes and long-term in vitro assessments of cellular functions in microfluidic bioreactors and organs-on-chips.

  14. Automated microfluidic platform of bead-based electrochemical immunosensor integrated with bioreactor for continual monitoring of cell secreted biomarkers

    PubMed Central

    Riahi, Reza; Shaegh, Seyed Ali Mousavi; Ghaderi, Masoumeh; Zhang, Yu Shrike; Shin, Su Ryon; Aleman, Julio; Massa, Solange; Kim, Duckjin; Dokmeci, Mehmet Remzi; Khademhosseini, Ali

    2016-01-01

    There is an increasing interest in developing microfluidic bioreactors and organs-on-a-chip platforms combined with sensing capabilities for continual monitoring of cell-secreted biomarkers. Conventional approaches such as ELISA and mass spectroscopy cannot satisfy the needs of continual monitoring as they are labor-intensive and not easily integrable with low-volume bioreactors. This paper reports on the development of an automated microfluidic bead-based electrochemical immunosensor for in-line measurement of cell-secreted biomarkers. For the operation of the multi-use immunosensor, disposable magnetic microbeads were used to immobilize biomarker-recognition molecules. Microvalves were further integrated in the microfluidic immunosensor chip to achieve programmable operations of the immunoassay including bead loading and unloading, binding, washing, and electrochemical sensing. The platform allowed convenient integration of the immunosensor with liver-on-chips to carry out continual quantification of biomarkers secreted from hepatocytes. Transferrin and albumin productions were monitored during a 5-day hepatotoxicity assessment in which human primary hepatocytes cultured in the bioreactor were treated with acetaminophen. Taken together, our unique microfluidic immunosensor provides a new platform for in-line detection of biomarkers in low volumes and long-term in vitro assessments of cellular functions in microfluidic bioreactors and organs-on-chips. PMID:27098564

  15. A Microfluidic Paper-Based Origami Nanobiosensor for Label-Free, Ultrasensitive Immunoassays.

    PubMed

    Li, Xiao; Liu, Xinyu

    2016-06-01

    Microfluidic paper-based analytical devices (μPADs) represent a promising platform technology for point-of-care diagnosis. Highly sensitive, rapid, and easy-to-perform immunoassays implemented on μPADs are desirable to fulfill the promise of the μPAD technology. This article reports the first microfluidic paper-based origami nanobiosensor (origami μPAD), which integrates zinc oxide nanowires (ZnO NWs) and electrochemical impedance spectroscopy (EIS) biosensing mechanism, for label-free, ultrasensitive immunoassays. The EIS mechanism features simple and label-free assay operations which take less than 25 min to be finished, while the ZnO NWs allow covalent bonding for immobilizing probe proteins and improve the biosensing performance with such features as high surface-area-to-volume ratios and high sensitivity to surface binding. The calibration of the device reveals an ultralow limit of detection (LOD) of 60 fg mL(-1) (>100 times lower than those of existing μPADs) for rabbit immunoglobulin G in phosphate-buffered saline. The detection of human immunodeficiency virus p24 antigen in human serum with a low LOD of 300 fg mL(-1) (>33 times lower than that of a commercial p24 antigen test kit) is also demonstrated. This novel μPAD design offers ultrahigh sensitivity, short assay time, and ease of operation, and thus possesses significant potential for low-cost, rapid molecular diagnosis of early-stage diseases. PMID:27122227

  16. Multiplexed Affinity-Based Separation of Proteins and Cells Using Inertial Microfluidics

    PubMed Central

    Sarkar, Aniruddh; Hou, Han Wei; Mahan, Alison. E.; Han, Jongyoon; Alter, Galit

    2016-01-01

    Isolation of low abundance proteins or rare cells from complex mixtures, such as blood, is required for many diagnostic, therapeutic and research applications. Current affinity-based protein or cell separation methods use binary ‘bind-elute’ separations and are inefficient when applied to the isolation of multiple low-abundance proteins or cell types. We present a method for rapid and multiplexed, yet inexpensive, affinity-based isolation of both proteins and cells, using a size-coded mixture of multiple affinity-capture microbeads and an inertial microfluidic particle sorter device. In a single binding step, different targets–cells or proteins–bind to beads of different sizes, which are then sorted by flowing them through a spiral microfluidic channel. This technique performs continuous-flow, high throughput affinity-separation of milligram-scale protein samples or millions of cells in minutes after binding. We demonstrate the simultaneous isolation of multiple antibodies from serum and multiple cell types from peripheral blood mononuclear cells or whole blood. We use the technique to isolate low abundance antibodies specific to different HIV antigens and rare HIV-specific cells from blood obtained from HIV+ patients. PMID:27026280

  17. Three-dimensional paper-based microfluidic device for assays of protein and glucose in urine.

    PubMed

    Sechi, Deidre; Greer, Brady; Johnson, Jesse; Hashemi, Nastaran

    2013-11-19

    The first step in curing a disease is being able to detect the disease effectively. Paper-based microfluidic devices are biodegradable and can make diagnosing diseases cost-effective and easy in almost all environments. We created a three-dimesnional (3D) paper device using wax printing fabrication technique and basic principles of origami. This design allows for a versatile fabrication technique over previously reported patterning of SU-8 photoresist on chromatography paper by employing a readily available wax printer. The design also utilizes multiple colorimetric assays that can accommodate one or more analytes including urine, blood, and saliva. In this case to demonstrate the functionality of the 3D paper-based microfluidic system, a urinalysis of protein and glucose assays is conducted. The amounts of glucose and protein introduced to the device are found to be proportional to the color change of each assay. This color change was quantified by use of Adobe Photoshop. Urine samples from participants with no pre-existing health conditions and one person with diabetes were collected and compared against synthetic urine samples with predetermined glucose and protein levels. Utilizing this method, we were able to confirm that both protein and glucose levels were in fact within healthy ranges for healthy participants. For the participant with diabetes, glucose was found to be above the healthy range while the protein level was in the healthy range.

  18. Synergism between particle-based multiplexing and microfluidics technologies may bring diagnostics closer to the patient

    PubMed Central

    Derveaux, S.; Stubbe, B. G.; Braeckmans, K.; Roelant, C.; Sato, K.; Demeester, J.

    2008-01-01

    In the field of medical diagnostics there is a growing need for inexpensive, accurate, and quick high-throughput assays. On the one hand, recent progress in microfluidics technologies is expected to strongly support the development of miniaturized analytical devices, which will speed up (bio)analytical assays. On the other hand, a higher throughput can be obtained by the simultaneous screening of one sample for multiple targets (multiplexing) by means of encoded particle-based assays. Multiplexing at the macro level is now common in research labs and is expected to become part of clinical diagnostics. This review aims to debate on the “added value” we can expect from (bio)analysis with particles in microfluidic devices. Technologies to (a) decode, (b) analyze, and (c) manipulate the particles are described. Special emphasis is placed on the challenges of integrating currently existing detection platforms for encoded microparticles into microdevices and on promising microtechnologies that could be used to down-scale the detection units in order to obtain compact miniaturized particle-based multiplexing platforms. PMID:18458889

  19. Droplet microfluidics.

    PubMed

    Teh, Shia-Yen; Lin, Robert; Hung, Lung-Hsin; Lee, Abraham P

    2008-02-01

    Droplet-based microfluidic systems have been shown to be compatible with many chemical and biological reagents and capable of performing a variety of "digital fluidic" operations that can be rendered programmable and reconfigurable. This platform has dimensional scaling benefits that have enabled controlled and rapid mixing of fluids in the droplet reactors, resulting in decreased reaction times. This, coupled with the precise generation and repeatability of droplet operations, has made the droplet-based microfluidic system a potent high throughput platform for biomedical research and applications. In addition to being used as microreactors ranging from the nano- to femtoliter range; droplet-based systems have also been used to directly synthesize particles and encapsulate many biological entities for biomedicine and biotechnology applications. This review will focus on the various droplet operations, as well as the numerous applications of the system. Due to advantages unique to droplet-based systems, this technology has the potential to provide novel solutions to today's biomedical engineering challenges for advanced diagnostics and therapeutics.

  20. Optimization of a permeation-based microfluidic direct formic acid fuel cell (DFAFC).

    PubMed

    Erickson, Evan M; Mitrovski, Svetlana M; Gewirth, Andrew A; Nuzzo, Ralph G

    2011-04-01

    A design for a passive, air-breathing microfluidic fuel cell utilizing formic acid (FA) as a fuel is described and its performance characterized. The fuel cell integrates high surface area platinum (cathode) and palladium-platinum (anode) alloy electrodes within a PDMS microfluidic network that keeps them fully immersed in a liquid electrolyte. The polymer network that comprises the device also serves as a self-supporting membrane through which FA and oxygen are supplied to the alloy anode and cathode, respectively, by passive permeation from external sources. The cell is based on a planar form-factor and in its operation exploits FA concentration gradients that form across the PDMS membrane. These latter gradients allow the device to operate stably, producing a nearly constant limiting power density of ~0.2 mW/cm², without driven laminar flow of fluids or the incorporation of an in-channel separator between the anodic and the cathodic compartments. The power output of this elementary device in air is subject to electrolyte mass transport impacts, which can be reduced for a given design rule by decreasing the internal ohmic resistance of the cell. The results suggest that operational stability can be improved by decreasing the kinetic losses imposed on the cathode side of the cell due to FA crossover and modalities for doing so, such as by increasing the efficiency of fuel capture at the anode.

  1. Microfluidic device based on a micro-hydrocyclone for particle-liquid separation.

    PubMed

    Bhardwaj, P; Bagdi, P; Sen, A K

    2011-12-01

    This paper presents theoretical analysis, design, simulation, fabrication and test of a microfluidic device ('Micro-hydrocyclone') for separation of micron and submicron size solid particles from liquid in a particle liquid mixture. A theoretical analysis of the micro-hydrocyclone is performed to understand the physics and develop suitable design models. The structure of the proposed device is designed based on the Bradley model, as it offers lower cut-size thus making it suitable for microfluidics applications. The operational parameters are derived from the dimensional group model. The particle separation process inside the micro-hydrocyclone is simulated by solving fluid flows using Navier-Stokes equations and particle dynamics using a Lagrangian approach in a Eulerian fluid. The influence of inlet velocity and density on separation efficiency is investigated. The device is fabricated with SU-8 photoresist on a PMMA substrate using a combination of photolithography and micro-milling. Experiments are performed to demonstrate particle-liquid separation using polystyrene microbeads suspended in PBS as the feed sample. The influence of inlet velocity and particle size on particle separation efficiency is measured and compared with that obtained from simulations and a good match was found. The proposed device can be easily integrated with micro-environments thus it is suitable for lab-on-chip and microsystems development. The device may have applications in chemical analysis, materials research, point-of-care, blood sample preparation and other biomedical applications.

  2. Generation and functional assessment of 3D multicellular spheroids in droplet based microfluidics platform.

    PubMed

    Sabhachandani, P; Motwani, V; Cohen, N; Sarkar, S; Torchilin, V; Konry, T

    2016-02-01

    Here we describe a robust, microfluidic technique to generate and analyze 3D tumor spheroids, which resembles tumor microenvironment and can be used as a more effective preclinical drug testing and screening model. Monodisperse cell-laden alginate droplets were generated in polydimethylsiloxane (PDMS) microfluidic devices that combine T-junction droplet generation and external gelation for spheroid formation. The proposed approach has the capability to incorporate multiple cell types. For the purposes of our study, we generated spheroids with breast cancer cell lines (MCF-7 drug sensitive and resistant) and co-culture spheroids of MCF-7 together with a fibroblast cell line (HS-5). The device has the capability to house 1000 spheroids on chip for drug screening and other functional analysis. Cellular viability of spheroids in the array part of the device was maintained for two weeks by continuous perfusion of complete media into the device. The functional performance of our 3D tumor models and a dose dependent response of standard chemotherapeutic drug, doxorubicin (Dox) and standard drug combination Dox and paclitaxel (PCT) was analyzed on our chip-based platform. Altogether, our work provides a simple and novel, in vitro platform to generate, image and analyze uniform, 3D monodisperse alginate hydrogel tumors for various omic studies and therapeutic efficiency screening, an important translational step before in vivo studies. PMID:26686985

  3. A Microfluidic Love-Wave Biosensing Device for PSA Detection Based on an Aptamer Beacon Probe.

    PubMed

    Zhang, Feng; Li, Shuangming; Cao, Kang; Wang, Pengjuan; Su, Yan; Zhu, Xinhua; Wan, Ying

    2015-06-11

    A label-free and selective aptamer beacon-based Love-wave biosensing device was developed for prostate specific antigen (PSA) detection. The device consists of the following parts: LiTaO3 substrate with SiO2 film as wave guide layer, two set of inter-digital transducers (IDT), gold film for immobilization of the biorecongniton layer and a polydimethylsiloxane (PDMS) microfluidic channels. DNA aptamer, or "artificial antibody", was used as the specific biorecognition probe for PSA capture. Some nucleotides were added to the 3'-end of the aptamer to form a duplex with the 3'-end, turning the aptamer into an aptamer-beacon. Taking advantage of the selective target-induced assembly changes arising from the "aptamer beacon", highly selective and specific detection of PSA was achieved. Furthermore, PDMS microfluidic channels were designed and fabricated to realize automated quantitative sample injection. After optimization of the experimental conditions, the established device showed good performance for PSA detection between 10 ng/mL to 1 μg/mL, with a detection limit of 10 ng/mL. The proposed sensor might be a promising alternative for point of care diagnostics.

  4. Parallel Affinity-Based Isolation of Leukocyte Subsets Using Microfluidics: Application for Stroke Diagnosis

    PubMed Central

    2015-01-01

    We report the design and performance of a polymer microfluidic device that can affinity select multiple types of biological cells simultaneously with sufficient recovery and purity to allow for the expression profiling of mRNA isolated from these cells. The microfluidic device consisted of four independent selection beds with curvilinear channels that were 25 μm wide and 80 μm deep and were modified with antibodies targeting antigens specifically expressed by two different cell types. Bifurcated and Z-configured device geometries were evaluated for cell selection. As an example of the performance of these devices, CD4+ T-cells and neutrophils were selected from whole blood as these cells are known to express genes found in stroke-related expression profiles that can be used for the diagnosis of this disease. CD4+ T-cells and neutrophils were simultaneously isolated with purities >90% using affinity-based capture in cyclic olefin copolymer (COC) devices with a processing time of ∼3 min. In addition, sufficient quantities of the cells could be recovered from a 50 μL whole blood input to allow for reverse transcription-polymerase chain reaction (RT-PCR) following cell lysis. The expression of genes from isolated T-cells and neutrophils, such as S100A9, TCRB, and FPR1, was evaluated using RT-PCR. The modification and isolation procedures demonstrated here can also be used to analyze other cell types as well where multiple subsets must be interrogated. PMID:24650222

  5. An integrated hybrid microfluidic device for oviposition-based chemical screening of adult Drosophila melanogaster.

    PubMed

    Leung, Jacob C K; Hilliker, Arthur J; Rezai, Pouya

    2016-02-21

    Chemical screening using Drosophila melanogaster (the fruit fly) is vital in drug discovery, agricultural, and toxicological applications. Oviposition (egg laying) on chemically-doped agar plates is an important read-out metric used to quantitatively assess the biological fitness and behavioral responses of Drosophila. Current oviposition-based chemical screening studies are inaccurate, labor-intensive, time-consuming, and inflexible due to the manual chemical doping of agar. In this paper, we have developed a novel hybrid agar-polydimethylsiloxane (PDMS) microfluidic device for single- and multi-concentration chemical dosing and on-chip oviposition screening of free-flying adult stage Drosophila. To achieve this, we have devised a novel technique to integrate agar with PDMS channels using ice as a sacrificial layer. Subsequently, we have conducted single-chemical toxicity and multiple choice chemical preference assays on adult Drosophila melanogaster using zinc and acetic acid at various concentrations. Our device has enabled us to 1) demonstrate that Drosophila is capable of sensing the concentration of different chemicals on a PDMS-agar microfluidic device, which plays significant roles in determining oviposition site selection and 2) investigate whether oviposition preference differs between single- and multi-concentration chemical environments. This device may be used to study fundamental and applied biological questions in Drosophila and other egg laying insects. It can also be extended in design to develop sophisticated and dynamic chemical dosing and high-throughput screening platforms in the future that are not easily achievable with the existing oviposition screening techniques.

  6. The Evopopbot Chip: Ultra High-throughput Evolutionary Population Bottlenecking using Drop-Based Microfluidics

    NASA Astrophysics Data System (ADS)

    Chang, Connie; Rotem, Assaf; Serohijos, Adrian; Zhang, Huidan; Tao, Ye; Fischer Hesselbrock, Audrey; Thielen, Peter; Mehoke, Thomas; Wolfe, Joshua; Wobus, Christiane; Feldman, Andrew; Shakhnovich, Eugene; Weitz, David

    2014-03-01

    The study of how viruses propagate is important for curing disease and preventing viral outbreaks. In nature, viruses can compete with one another, and the most evolutionary fit virus usually takes over a population. Yet there exist variants in the population that can escape subjected evolutionary pressures and eventually dominate the population. Successful studies of viral epidemics hinges on the ability to access these variants. Here, we present the use of droplet-based microfluidics as a simple method to segregate and propagate a viral population as individual viral lineages, simultaneously performing millions of in vitroevolutionary bottlenecking experiments. We introduce a novel microfluidic device, called the ``Evopopbot Chip'', that allows for simultaneous passaging of millions of evolutionary bottlenecking events by splitting drops containing previous generations of viruses and merging with drops containing new host cells. After several generations of viral replication in the evolution chip, we discover hundreds of new viruses that are able to escape a neutralizing antibody selection pressure compared to bulk passaging.

  7. A Microfluidic Love-Wave Biosensing Device for PSA Detection Based on an Aptamer Beacon Probe

    PubMed Central

    Zhang, Feng; Li, Shuangming; Cao, Kang; Wang, Pengjuan; Su, Yan; Zhu, Xinhua; Wan, Ying

    2015-01-01

    A label-free and selective aptamer beacon-based Love-wave biosensing device was developed for prostate specific antigen (PSA) detection. The device consists of the following parts: LiTaO3 substrate with SiO2 film as wave guide layer, two set of inter-digital transducers (IDT), gold film for immobilization of the biorecongniton layer and a polydimethylsiloxane (PDMS) microfluidic channels. DNA aptamer, or “artificial antibody”, was used as the specific biorecognition probe for PSA capture. Some nucleotides were added to the 3'-end of the aptamer to form a duplex with the 3'-end, turning the aptamer into an aptamer-beacon. Taking advantage of the selective target-induced assembly changes arising from the “aptamer beacon”, highly selective and specific detection of PSA was achieved. Furthermore, PDMS microfluidic channels were designed and fabricated to realize automated quantitative sample injection. After optimization of the experimental conditions, the established device showed good performance for PSA detection between 10 ng/mL to 1 μg/mL, with a detection limit of 10 ng/mL. The proposed sensor might be a promising alternative for point of care diagnostics. PMID:26110408

  8. Microfluidics-based single-cell functional proteomics for fundamental and applied biomedical applications.

    PubMed

    Yu, Jing; Zhou, Jing; Sutherland, Alex; Wei, Wei; Shin, Young Shik; Xue, Min; Heath, James R

    2014-01-01

    We review an emerging microfluidics-based toolkit for single-cell functional proteomics. Functional proteins include, but are not limited to, the secreted signaling proteins that can reflect the biological behaviors of immune cells or the intracellular phosphoproteins associated with growth factor-stimulated signaling networks. Advantages of the microfluidics platforms are multiple. First, 20 or more functional proteins may be assayed simultaneously from statistical numbers of single cells. Second, cell behaviors (e.g., motility) may be correlated with protein assays. Third, extensions to quantized cell populations can permit measurements of cell-cell interactions. Fourth, rare cells can be functionally identified and then separated for further analysis or culturing. Finally, certain assay types can provide a conduit between biology and the physicochemical laws. We discuss the history and challenges of the field then review design concepts and uses of the microchip platforms that have been reported, with an eye toward biomedical applications. We then look to the future of the field.

  9. Microfluidic assessment of swimming media for motility-based sperm selection

    PubMed Central

    Eamer, Lise; Nosrati, Reza; Vollmer, Marion; Zini, Armand; Sinton, David

    2015-01-01

    Selection medium is important in sperm isolation for assisted reproductive technologies. Contrary to the naturally occurring human cervical mucus which has a high viscosity, most current practices for motility based sperm selection use a low viscosity medium. In this study, we used a microfluidic device to assess the effects of high viscosity media made with hyaluronic acid (HA) and methyl cellulose (MC) on bovine and human sperm motility and viability (sperm transferred directly from cryoprotectant). The microfluidic penetration test, viability, and motility were compared for sperm swimming in both HA and MC media with about 20cp viscosity (measured at 20 °C). Our resulted indicate that MC medium resulted in a significantly higher number of viable bovine sperm penetrating the medium as compared to HA. Furthermore, MC resulted in the selection of a sperm subpopulation with a 274% increase in sperm viability in comparison to the raw semen, while HA increased viability by only 133%. In addition to viability, bovine sperm motility parameters were significantly higher in the MC medium as compared with HA. Experiments with human sperm swimming in MC indicate that sperm swim slower and straighter at higher viscosities. In conclusion, the results indicate that in a micro-confined environment representative of the in vivo environment, MC is a preferred high viscosity medium to ensure the highest concentration of motile and viable sperm. PMID:26339314

  10. Microfluidic assessment of swimming media for motility-based sperm selection.

    PubMed

    Eamer, Lise; Nosrati, Reza; Vollmer, Marion; Zini, Armand; Sinton, David

    2015-07-01

    Selection medium is important in sperm isolation for assisted reproductive technologies. Contrary to the naturally occurring human cervical mucus which has a high viscosity, most current practices for motility based sperm selection use a low viscosity medium. In this study, we used a microfluidic device to assess the effects of high viscosity media made with hyaluronic acid (HA) and methyl cellulose (MC) on bovine and human sperm motility and viability (sperm transferred directly from cryoprotectant). The microfluidic penetration test, viability, and motility were compared for sperm swimming in both HA and MC media with about 20cp viscosity (measured at 20 °C). Our resulted indicate that MC medium resulted in a significantly higher number of viable bovine sperm penetrating the medium as compared to HA. Furthermore, MC resulted in the selection of a sperm subpopulation with a 274% increase in sperm viability in comparison to the raw semen, while HA increased viability by only 133%. In addition to viability, bovine sperm motility parameters were significantly higher in the MC medium as compared with HA. Experiments with human sperm swimming in MC indicate that sperm swim slower and straighter at higher viscosities. In conclusion, the results indicate that in a micro-confined environment representative of the in vivo environment, MC is a preferred high viscosity medium to ensure the highest concentration of motile and viable sperm. PMID:26339314

  11. Compact, cost-efficient microfluidics-based stopped-flow device.

    PubMed

    Bleul, Regina; Ritzi-Lehnert, Marion; Höth, Julian; Scharpfenecker, Nico; Frese, Ines; Düchs, Dominik; Brunklaus, Sabine; Hansen-Hagge, Thomas E; Meyer-Almes, Franz-Josef; Drese, Klaus S

    2011-01-01

    Stopped-flow technology is frequently used to monitor rapid (bio)chemical reactions with high temporal resolution, e.g., in dynamic investigations of enzyme reactions, protein interactions, or molecular transport mechanisms. However, conventional stopped-flow devices are often overly complex, voluminous, or costly. Moreover, excessive amounts of sample are often wasted owing to inefficient designs. To address these shortcomings, we propose a stopped-flow system based on microfluidic design principles. Our simple and cost-efficient approach offers distinct advantages over existing technology. In particular, the use of injection-molded disposable microfluidic chips minimizes required sample volumes and associated costs, simplifies handling, and prevents adverse cross-contamination effects. The cost of the system developed is reduced by an order of magnitude compared with the cost of commercial systems. The system contains a high-precision valve system for fluid control and features automated data acquisition capability with high temporal resolution. Analyses with two well-established reaction kinetics yielded a dead time of approximately 8-9 ms.

  12. High-resolution dose–response screening using droplet-based microfluidics

    PubMed Central

    Miller, Oliver J.; Harrak, Abdeslam El; Mangeat, Thomas; Baret, Jean-Christophe; Frenz, Lucas; Debs, Bachir El; Mayot, Estelle; Samuels, Michael L.; Rooney, Eamonn K.; Dieu, Pierre; Galvan, Martin; Link, Darren R.; Griffiths, Andrew D.

    2012-01-01

    A critical early step in drug discovery is the screening of a chemical library. Typically, promising compounds are identified in a primary screen and then more fully characterized in a dose–response analysis with 7–10 data points per compound. Here, we describe a robust microfluidic approach that increases the number of data points to approximately 10,000 per compound. The system exploits Taylor–Aris dispersion to create concentration gradients, which are then segmented into picoliter microreactors by droplet-based microfluidics. The large number of data points results in IC50 values that are highly precise (± 2.40% at 95% confidence) and highly reproducible (CV = 2.45%, n = 16). In addition, the high resolution of the data reveals complex dose–response relationships unambiguously. We used this system to screen a chemical library of 704 compounds against protein tyrosine phosphatase 1B, a diabetes, obesity, and cancer target. We identified a number of novel inhibitors, the most potent being sodium cefsulodine, which has an IC50 of 27 ± 0.83 μM. PMID:22203966

  13. Growth mechanism deconvolution of self-limiting supraparticles based on microfluidic system.

    PubMed

    Fu, Qiang; Sheng, Yuping; Tang, Hongjie; Zhu, Zhening; Ruan, Mingbo; Xu, Weilin; Zhu, Yutian; Tang, Zhiyong

    2015-01-27

    The synthesis of colloidal supraparticles (SPs) based on self-assembly of nanoscopic objects has attracted much attention in recent years. Here, we demonstrate the formation of self-limiting monodisperse gold SPs with core-shell morphology based on the building blocks of flexible nanoarms in one step. A flow-based microfluidic chip is utilized to slow down the assembly process of the intermediates, which surprisingly allows for observation of ultrathin gold nanoplates as first intermediates. Notably, these intermediate cannot be observed in traditional synthesis due to their rapid rolling-up to form the second-order nanostructure of flexible hollow nanoarms. The growth mechanism of SPs can then be deconvoluted into two seed-mediated steps. Monte Carlo simulations confirm that the self-limiting growth of binary SPs is governed by a balance between electrostatic repulsion and van der Waals attraction. PMID:25518003

  14. Microfluidic Flame Barrier

    NASA Technical Reports Server (NTRS)

    Mungas, Gregory S. (Inventor); Fisher, David J. (Inventor); Mungas, Christopher (Inventor)

    2013-01-01

    Propellants flow through specialized mechanical hardware that is designed for effective and safe ignition and sustained combustion of the propellants. By integrating a micro-fluidic porous media element between a propellant feed source and the combustion chamber, an effective and reliable propellant injector head may be implemented that is capable of withstanding transient combustion and detonation waves that commonly occur during an ignition event. The micro-fluidic porous media element is of specified porosity or porosity gradient selected to be appropriate for a given propellant. Additionally the propellant injector head design integrates a spark ignition mechanism that withstands extremely hot running conditions without noticeable spark mechanism degradation.

  15. Miniaturized lead sensor based on lead-specific DNAzyme in a nanocapillary interconnected microfluidic device.

    PubMed

    Chang, In-Hyoung; Tulock, Joseph J; Liu, Juewen; Kim, Won-Suk; Cannon, Donald M; Lu, Yi; Bohn, Paul W; Sweedler, Jonathan V; Cropek, Donald M

    2005-05-15

    A miniaturized lead sensor has been developed by combining a lead-specific DNAzyme with a microfabricated device containing a network of microfluidic channels that are fluidically coupled via a nanocapillary array interconnect. A DNAzyme construct, selective for cleavage in the presence of Pb2+ and derivatized with fluorophore (quencher) at the 5' (3') end of the substrate and enzyme strands, respectively, forms a molecular beacon that is used as the recognition element. The nanocapillary array membrane interconnect is used to manipulate fluid flows and deliver the small-volume sample to the beacon in a spatially confined detection window where the DNAzyme is interrogated using laser-induced fluorescence detection. A transformed log plot of the fluorescent signal exhibits a linear response (r2 = 0.982) over a Pb2+ concentration range of 0.1 - 100 microM, and a detection limit of 11 nM. The sensor has been applied to the determination of Pb2+ in an electroplating sludge reference material, the result agreeing with the certified value within 4.9%. Quantitative measurement of Pb2+ in this complex sample demonstrates the selectivity of this sensor scheme and points favorably to the application of such technologies to analysis of environmental samples. The unique combination of a DNAzyme with a microfluidic-nanofluidic hybrid device makes it possible to change the DNAzyme to select for other compounds of interest, and to incorporate multiple sensing systems within a single device for greater flexibility. This work represents the initial steps toward creation of a robust field sensor for lead in groundwater or drinking water.

  16. Magnetic-Field-Assisted Fabrication and Manipulation of Nonspherical Polymer Particles in Ferrofluid-Based Droplet Microfluidics.

    PubMed

    Zhu, Taotao; Cheng, Rui; Sheppard, Gareth R; Locklin, Jason; Mao, Leidong

    2015-08-11

    We report a novel magnetic-field-assisted method for the fabrication and manipulation of nonspherical polymer particles within a ferrofluid-based droplet microfluidic device. Shape control and chain assembly of droplets with tunable lengths have been achieved. PMID:26212067

  17. A novel single-layered MoS2 nanosheet based microfluidic biosensor for ultrasensitive detection of DNA.

    PubMed

    Huang, Yinxi; Shi, Yumeng; Yang, Hui Ying; Ai, Ye

    2015-02-14

    Recently, MoS2 nanosheets were demonstrated to be able to spontaneously adsorb single-stranded DNA, acting as efficient dye quenchers. We herein report a novel microfluidic biosensor for fluorescent DNA detection based on single-layered MoS2 nanosheets. The proposed platform is simple, rapid and visible with high sensitivity and selectivity.

  18. A rapid, straightforward, and print house compatible mass fabrication method for integrating 3D paper-based microfluidics.

    PubMed

    Xiao, Liangpin; Liu, Xianming; Zhong, Runtao; Zhang, Kaiqing; Zhang, Xiaodi; Zhou, Xiaomian; Lin, Bingcheng; Du, Yuguang

    2013-11-01

    Three-dimensional (3D) paper-based microfluidics, which is featured with high performance and speedy determination, promise to carry out multistep sample pretreatment and orderly chemical reaction, which have been used for medical diagnosis, cell culture, environment determination, and so on with broad market prospect. However, there are some drawbacks in the existing fabrication methods for 3D paper-based microfluidics, such as, cumbersome and time-consuming device assembly; expensive and difficult process for manufacture; contamination caused by organic reagents from their fabrication process. Here, we present a simple printing-bookbinding method for mass fabricating 3D paper-based microfluidics. This approach involves two main steps: (i) wax-printing, (ii) bookbinding. We tested the delivery capability, diffusion rate, homogeneity and demonstrated the applicability of the device to chemical analysis by nitrite colorimetric assays. The described method is rapid (<30 s), cheap, easy to manipulate, and compatible with the flat stitching method that is common in a print house, making itself an ideal scheme for large-scale production of 3D paper-based microfluidics.

  19. A novel single-layered MoS2 nanosheet based microfluidic biosensor for ultrasensitive detection of DNA.

    PubMed

    Huang, Yinxi; Shi, Yumeng; Yang, Hui Ying; Ai, Ye

    2015-02-14

    Recently, MoS2 nanosheets were demonstrated to be able to spontaneously adsorb single-stranded DNA, acting as efficient dye quenchers. We herein report a novel microfluidic biosensor for fluorescent DNA detection based on single-layered MoS2 nanosheets. The proposed platform is simple, rapid and visible with high sensitivity and selectivity. PMID:25567642

  20. Optimization of a microfluidic based electromagnetic energy harvester for shoe insoles

    NASA Astrophysics Data System (ADS)

    Rahman, M. M.; Atkin, R.; Kim, H.

    2015-12-01

    This paper reports improved performance of the 4th generation microfluidic based energy harvester by finding global optimization among various geometric parameters, resulting in the increase of power density by 6.89 times. Specifically, the power output was optimized by varying diameters and spans of a coil at different frequencies. To verify the optimization, a custom testing platform was constructed, which mimicked the periodic linear movement caused by a human foot. The final device produced total power of 455.77mW from a volume of 20×3.74×0.75cm3, resulting in a power density of 8.13mW/cm3 that was identified as one of the highest power densities among human-body-induced vibration based energy harvesters.

  1. Droplet-based microfluidics platform for ultra-high-throughput bioprospecting of cellulolytic microorganisms.

    PubMed

    Najah, Majdi; Calbrix, Raphaël; Mahendra-Wijaya, I Putu; Beneyton, Thomas; Griffiths, Andrew D; Drevelle, Antoine

    2014-12-18

    Discovery of microorganisms producing enzymes that can efficiently hydrolyze cellulosic biomass is of great importance for biofuel production. To date, however, only a miniscule fraction of natural biodiversity has been tested because of the relatively low throughput of screening systems and their limitation to screening only culturable microorganisms. Here, we describe an ultra-high-throughput droplet-based microfluidic system that allowed the screening of over 100,000 cells in less than 20 min. Uncultured bacteria from a wheat stubble field were screened directly by compartmentalization of single bacteria in 20 pl droplets containing a fluorogenic cellobiohydrolase substrate. Sorting of droplets based on cellobiohydrolase activity resulted in a bacterial population with 17- and 7-fold higher cellobiohydrolase and endogluconase activity, respectively, and very different taxonomic diversity than when selected for growth on medium containing starch and carboxymethylcellulose as carbon source. PMID:25525991

  2. Droplet-based microfluidics platform for ultra-high-throughput bioprospecting of cellulolytic microorganisms.

    PubMed

    Najah, Majdi; Calbrix, Raphaël; Mahendra-Wijaya, I Putu; Beneyton, Thomas; Griffiths, Andrew D; Drevelle, Antoine

    2014-12-18

    Discovery of microorganisms producing enzymes that can efficiently hydrolyze cellulosic biomass is of great importance for biofuel production. To date, however, only a miniscule fraction of natural biodiversity has been tested because of the relatively low throughput of screening systems and their limitation to screening only culturable microorganisms. Here, we describe an ultra-high-throughput droplet-based microfluidic system that allowed the screening of over 100,000 cells in less than 20 min. Uncultured bacteria from a wheat stubble field were screened directly by compartmentalization of single bacteria in 20 pl droplets containing a fluorogenic cellobiohydrolase substrate. Sorting of droplets based on cellobiohydrolase activity resulted in a bacterial population with 17- and 7-fold higher cellobiohydrolase and endogluconase activity, respectively, and very different taxonomic diversity than when selected for growth on medium containing starch and carboxymethylcellulose as carbon source.

  3. A novel microbead-based microfluidic device for rapid bacterial identification and antibiotic susceptibility testing.

    PubMed

    He, J; Mu, X; Guo, Z; Hao, H; Zhang, C; Zhao, Z; Wang, Q

    2014-12-01

    Effective treatment of infectious diseases depends on the ability to rapidly identify the infecting bacteria and the use of sensitive antibiotics. The currently used identification assays usually take more than 72 h to perform and have a low sensitivity. Herein, we present a microbead-based microfluidic platform that is highly sensitive and rapid for bacterial detection and antibiotic sensitivity testing. The platform includes four units, one of which is used for bacterial identification and the other three are used for susceptibility testing. Our results showed that Escherichia coli O157 at a cell density range of 10(1)-10(5) CFU/μL could be detected within 30 min. Additionally, the effects of three antibiotics on E. coli O157 were evaluated within 4-8 h. Overall, this integrated microbead-based microdevice provides a sensitive, rapid, reliable, and highly effective platform for the identification of bacteria, as well as antibiotic sensitivity testing.

  4. Integrated Microfluidic System for Size-Based Selection and Trapping of Giant Vesicles.

    PubMed

    Kazayama, Yuki; Teshima, Tetsuhiko; Osaki, Toshihisa; Takeuchi, Shoji; Toyota, Taro

    2016-01-19

    Vesicles composed of phospholipids (liposomes) have attracted interest as artificial cell models and have been widely studied to explore lipid-lipid and lipid-protein interactions. However, the size dispersity of liposomes prepared by conventional methods was a major problem that inhibited their use in high-throughput analyses based on monodisperse liposomes. In this study, we developed an integrative microfluidic device that enables both the size-based selection and trapping of liposomes. This device consists of hydrodynamic selection and trapping channels in series, which made it possible to successfully produce an array of more than 60 monodisperse liposomes from a polydisperse liposome suspension with a narrow size distribution (the coefficient of variation was less than 12%). We successfully observed a size-dependent response of the liposomes to sequential osmotic stimuli, which had not clarified so far, by using this device. Our device will be a powerful tool to facilitate the statistical analysis of liposome dynamics.

  5. Facile fabrication processes for hydrogel-based microfluidic devices made of natural biopolymers

    PubMed Central

    Yajima, Yuya; Yamada, Masumi; Yamada, Emi; Iwase, Masaki; Seki, Minoru

    2014-01-01

    We present facile strategies for the fabrication of two types of microfluidic devices made of hydrogels using the natural biopolymers, alginate, and gelatin as substrates. The processes presented include the molding-based preparation of hydrogel plates and their chemical bonding. To prepare calcium-alginate hydrogel microdevices, we suppressed the volume shrinkage of the alginate solution during gelation using propylene glycol alginate in the precursor solution along with sodium alginate. In addition, a chemical bonding method was developed using a polyelectrolyte membrane of poly-L-lysine as the electrostatic glue. To prepare gelatin-based microdevices, we used microbial transglutaminase to bond hydrogel plates chemically and to cross-link and stabilize the hydrogel matrix. As an application, mammalian cells (fibroblasts and vascular endothelial cells) were cultivated on the microchannel surface to form three-dimensional capillary-embedding tissue models for biological research and tissue engineering. PMID:24803964

  6. Stem cells in microfluidics

    PubMed Central

    Wu, Huei-Wen; Lin, Chun-Che; Lee, Gwo-Bin

    2011-01-01

    Microfluidic techniques have been recently developed for cell-based assays. In microfluidic systems, the objective is for these microenvironments to mimic in vivo surroundings. With advantageous characteristics such as optical transparency and the capability for automating protocols, different types of cells can be cultured, screened, and monitored in real time to systematically investigate their morphology and functions under well-controlled microenvironments in response to various stimuli. Recently, the study of stem cells using microfluidic platforms has attracted considerable interest. Even though stem cells have been studied extensively using bench-top systems, an understanding of their behavior in in vivo-like microenvironments which stimulate cell proliferation and differentiation is still lacking. In this paper, recent cell studies using microfluidic systems are first introduced. The various miniature systems for cell culture, sorting and isolation, and stimulation are then systematically reviewed. The main focus of this review is on papers published in recent years studying stem cells by using microfluidic technology. This review aims to provide experts in microfluidics an overview of various microfluidic systems for stem cell research. PMID:21522491

  7. Integration of Multiple Components in Polystyrene-based Microfluidic Devices Part 2: Cellular Analysis

    PubMed Central

    Anderson, Kari B.; Halpin, Stephen T.; Johnson, Alicia S.; Martin, R. Scott; Spence, Dana M.

    2012-01-01

    In Part II of this series describing the use of polystyrene (PS) devices for microfluidic-based cellular assays, various cellular types and detection strategies are employed to determine three fundamental assays often associated with cells. Specifically, using either integrated electrochemical sensing or optical measurements with a standard multi-well plate reader, cellular uptake, production, or release of important cellular analytes are determined on a PS-based device. One experiment involved the fluorescence measurement of nitric oxide (NO) produced within an endothelial cell line following stimulation with ATP. The result was a four-fold increase in NO production (as compared to a control), with this receptor-based mechanism of NO production verifying the maintenance of cell receptors following immobilization onto the PS substrate. The ability to monitor cellular uptake was also demonstrated by optical determination of Ca2+ into endothelial cells following stimulation with the Ca2+ ionophore A20317. The result was a significant increase (42%) in the calcium uptake in the presence of the ionophore, as compared to a control (17%) (p < 0.05). Finally, the release of catecholamines from a dopaminergic cell line (PC 12 cells) was electrochemically monitored, with the electrodes being embedded into the PS-based device. The PC 12 cells had better adherence on the PS devices, as compared to use of PDMS. Potassium-stimulation resulted in the release of 114 ± 11 µM catecholamines, a significant increase (p < 0.05) over the release from cells that had been exposed to an inhibitor (reserpine, 20 ± 2 µM of catecholamines). The ability to successfully measure multiple analytes, generated in different means from various cells under investigation, suggests that PS may be a useful material for microfluidic device fabrication, especially considering the enhanced cell adhesion to PS, its enhanced rigidity/amenability to automation, and its ability to enable a wider range of

  8. Microfluidics-Based Selection of Red-Fluorescent Proteins with Decreased Rates of Photobleaching

    PubMed Central

    Dean, Kevin M.; Lubbeck, Jennifer L.; Davis, Lloyd M.; Regmi, Chola K.; Chapagain, Prem P.; Gerstman, Bernard S.; Jimenez, Ralph; Palmer, Amy E.

    2014-01-01

    Fluorescent proteins offer exceptional labeling specificity in living cells and organisms. Unfortunately, their photophysical properties remain far from ideal for long-term imaging of low-abundance cellular constituents, in large part because of their poor photostability. Despite widespread engineering efforts, improving the photostability of fluorescent proteins remains challenging due to lack of appropriate high-throughput selection methods. Here, we use molecular dynamics guided mutagenesis in conjunction with a recently developed microfluidic-based platform, which sorts cells based on their fluorescence photostability, to identify red fluorescent proteins with decreased photobleaching from a HeLa cell-based library. The identified mutant, named Kriek, has 2.5- and 4-fold higher photostability than its progenitor, mCherry, under widefield and confocal illumination, respectively. Furthermore, the results provide insight into mechanisms for enhancing photostability and their connections with other photophysical processes, thereby providing direction for ongoing development of fluorescent proteins with improved single-molecule and low-copy imaging capabilities. Insight, innovation, integration Fluorescent proteins enable imaging in situ, throughout the visible spectrum, with superb molecular specificity and single-molecule sensitivity. Unfortunately, when compared to leading small-molecule fluorophores (e.g., Cy3), fluorescent proteins, suffer from accelerated photobleaching and poor integrated photon output. This results from a lack of appropriate high-throughput methods for improving the photostability of fluorescent proteins, as well as a poor molecular understanding of fluorescent protein photobleaching. Here, we report the first application of a recently developed microfluidic cell-sorter to identify fluorescent proteins from a mCherry-derived library with improved photostability. The results provide insight into fluorescent protein photophysics, greatly

  9. Fabrication of an SU-8 based microfluidic reactor on a PEEK substrate sealed by a 'flexible semi-solid transfer'(FST) process

    NASA Astrophysics Data System (ADS)

    Song, Yujun; Kumar, Challa S. S. R.; Hormes, Josef

    2004-07-01

    A continuous flow polymeric microfluidic reactor utilizing SU-8 as a photoresist on a PEEK (polyetheretherketone) substrate was fabricated by standard UV lithography. Embedded multilayer structures were fabricated between the substrate and the inlets and outlet of the microfluidic reactor that facilitated fabrication of the entire microfluidics using SU-8, resulting in improved bonding between the substrate and the pattern. A 'flexible semi-solid transfer' (FST) process, based on a reduced exposure dosage, was developed to seal the microfluidic channels. Scanning electron microscopy (SEM) images and photographs revealed no trace of blockages in channels due to the sealing process. The maximum pressure drop without any leakage was found to be 2.1 MPa. The microfluidic reactor withstood temperatures as high as 150 °C and was found to be suitable for carrying out wet chemical synthesis.

  10. Novel Carbon-based Electrode Materials for Up-scaled Microfluidic Fuel Cells

    NASA Astrophysics Data System (ADS)

    Fuerth, Dillon Adam

    In this work, a MFC fabrication procedure including two non-conventional techniques (partial baking and cap-sealing) were employed for the development of an up-scaled microfluidic fuel cell (MFC). Novel carbon-based electrode materials were employed, including carbon foam, fibre, and cloth, the results from which were compared with traditionally-employed carbon paper. The utilization of carbon cloth led to 15% of the maximum power that resulted from carbon paper; however, carbon fibre led to a 24.6% higher power density than carbon paper (normalized by electrode volume). When normalized by projected electrode area, the utilization of carbon foams resulted in power densities up to 42.5% higher than that from carbon paper. The impact of catalyst loading on MFC performance was also investigated, with an increase from 10.9 to 48.3 mgPt cm-2 resulting in a 195% increase in power density.

  11. Mixed thread/paper-based microfluidic chips as a platform for glucose assays.

    PubMed

    Gonzalez, Ariana; Estala, Lissette; Gaines, Michelle; Gomez, Frank A

    2016-07-01

    A novel microfluidic thread/paper-based analytical device (μTPAD) to detect glucose through a colorimetric assay is described. The μTPAD was fabricated from nylon thread trifurcated into three channels terminating at analysis sites comprised of circular zones of chromatography paper, which have previously been spotted with glucose of different concentrations. A solution of glucose oxidase (GOx), horseradish peroxidase (HRP), and potassium iodide (KI) is transported via capillary action to the analysis sites where a yellow-brown color is observed indicating oxidation of iodide to iodine. The device was then dried, scanned, and analyzed yielding a correlation between yellow intensity and glucose concentrations. Both a flat platform constructed mainly of tape, and a cone platform constructed from tape and polyvinyl chloride, are described. Studies to quantitate glucose in artificial urine showed good correlation using the μTPAD. PMID:27060975

  12. Fast and automated DNA assays on a compact disc (CD)-based microfluidic platform

    NASA Astrophysics Data System (ADS)

    Jia, Guangyao

    Nucleic acid-based molecular diagnostics offers enormous potential for the rapid and accurate diagnosis of infectious diseases. However, most of the existing commercial tests are time-consuming and technically complicated, and are thus incompatible with the need for rapid identification of infectious agents. We have successfully developed a CD-based microfluidic platform for fast and automated DNA array hybridization and a low cost, disposable plastic microfluidic platform for polymerase chain reaction (PCR). These platforms have proved to be a promising approach to meet the requirements in terms of detection speed and operational convenience in diagnosis of infectious diseases. In the CD-based microfluidic platform for DNA hybridization, convection is introduced to the system to enhance mass transport so as to accelerate the hybridization rate since DNA hybridization is a diffusion limited reaction. Centrifugal force is utilized for sample propulsion and surface force is used for liquid gating. Standard microscope glass slides are used as the substrates for capture probes owing to their compatibility with commercially available instrumentation (e.g. laser scanners) for detection. Microfabricated polydimethylsiloxane (PDMS) structures are used to accomplish the fluidic functions required by the protocols for DNA hybridization. The assembly of the PDMS structure and the glass slide forms a flow-through hybridization unit that can be accommodated onto the CD platform for reagent manipulation. The above scheme has been validated with oligonucleotides as the targets using commercially available enzyme-labeled fluorescence (ELF 97) for detection of the hybridization events, and tested with amplicons of genomic staphylococcus DNA labeled with Cy dye. In both experiments, significantly higher fluorescence intensities were observed in the flow-through hybridization unit compared to the passive assays. The CD fluidic scheme was also adapted to the immobilization of

  13. Self-operated blood plasma separation using micropump in polymer-based microfluidic device

    NASA Astrophysics Data System (ADS)

    Jang, Won Ick; Chung, Kwang Hyo; Pyo, Hyeon Bong; Park, Seon Hee

    2006-12-01

    The blood is one of the best indicators of health because blood circulates all body tissues and collects information. The COC(Cyclo Olefin Copolymer) has better various properties than PMMA(Polymethy Mechacrylate) and PC(Polycarbonate) that are widely used in biotechnology field. This paper presents a new method of plasma separation on the COC in terms of surface modification for the development of a disposable protein chip. The blood plasma separation device was composed of a whole blood inlet, microchannel with filtration region of micropillars, micropump with microheater, and a blood cell outlet. Micropump with microheater was designed by ANSYS and flow model in the microchannel was designed by CFD-ACE + simulators. We successfully fabricated a polymer based microfluidic device for blood plasma separation by MEMS(Micro Electro Mechanical System) technology. By using this device, cell-free plasma was successfully obtained through the filtration from a drop of whole blood without external force of a syringe pump.

  14. Bio-microfluidic platform for gold nanoprobe based DNA detection--application to Mycobacterium tuberculosis.

    PubMed

    Bernacka-Wojcik, Iwona; Lopes, Paulo; Catarina Vaz, Ana; Veigas, Bruno; Jerzy Wojcik, Pawel; Simões, Pedro; Barata, David; Fortunato, Elvira; Viana Baptista, Pedro; Aguas, Hugo; Martins, Rodrigo

    2013-10-15

    We have projected and fabricated a microfluidic platform for DNA sensing that makes use of an optical colorimetric detection method based on gold nanoparticles. The platform was fabricated using replica moulding technology in PDMS patterned by high-aspect-ratio SU-8 moulds. Biochips of various geometries were tested and evaluated in order to find out the most efficient architecture, and the rational for design, microfabrication and detection performance is presented. The best biochip configuration has been successfully applied to the DNA detection of Mycobacterium tuberculosis using only 3 µl on DNA solution (i.e. 90 ng of target DNA), therefore a 20-fold reduction of reagents volume is obtained when compared with the actual state of the art.

  15. Membrane-Based Emitter for Coupling Microfluidics with Ultrasensitive Nanoelectrospray Ionization-Mass Spectrometry

    SciTech Connect

    Sun, Xuefei; Kelly, Ryan T.; Tang, Keqi; Smith, Richard D.

    2011-06-09

    An integrated poly(dimethylsiloxane) (PDMS) membrane-based microfluidic emitter for high performance nanoelectrospray ionization-mass spectrometry (nanoESI-MS) has been fabricated and evaluated. The ~100-μm-thick emitter was created by cutting a PDMS membrane that protrudes beyond the bulk substrate. The reduced surface area at the emitter enhances the electric field and reduces wetting of the surface by the electrospray solvent. As such, the emitter provides highly stable electrospray at flow rates as low as 10 nL/min, and is compatible with electrospray solvents containing a large organic component (e.g., 90% methanol). This approach enables facile emitter construction, and provides excellent stability, reproducibility and sensitivity, as well as compatibility with multilayer soft lithography.

  16. Portable Analyzer Based on Microfluidics/Nanoengineered Electrochemical Sensors for in Situ Characterization of Mixed Wastes

    SciTech Connect

    Wang, Joseph

    2006-06-01

    This research effort aims at developing a portable analytical system for fast, sensitive, and inexpensive, on-site monitoring of toxic transition metals and radionuclides in contaminated DOE Sites. The portable devices will be based on Microscale Total Analytical systems ( -TAS) or ''Lab-on-a-chip'' in combination with electrochemical (stripping-voltammetric) sensors. The resulting microfluidics/electrochemical sensor system would allow testing for toxic metals to be performed more rapidly, inexpensively, and reliably in a field setting. Progress Summary/Accomplishments: This report summarizes the ASU activity over the second year of the project. In accordance to our original objectives our studies have focused on various fundamental and practical aspects of sensing and microchip devices for monitoring metal contaminants. As described in this section, we have made a substantial progress, and introduced effective routes for improving the on-site detection of toxic metals and for interfacing microchips with the real world.

  17. Computational design of mixers and pumps for microfluidic systems, based on electrochemically-active conducting polymers.

    PubMed

    Kannappan, Karthik; Bogle, Gib; Travas-Sejdic, Jadranka; Williams, David E

    2011-03-28

    We present a theoretical description of the propagation of composition waves along a strip of electrochemically-active conducting polymer, upon electrochemical stimulation. We develop an efficient solution of the electro-neutral Nernst-Plank equations in 2-D for electromigration and diffusional transport in the solution based on an extension of the methods of Scharfetter and Gummel [D. L. Scharfetter and H. K. Gummel, IEEE Trans. Electron Devices, 1969, ED16, 64-77.] and of Cohen and Cooley [H. Cohen and J. W. Cooley, Biophys. J., 1965, 5, 145-162.], and demonstrate important effects of the geometry of the cell. Under some circumstances, waves reflecting back from the end of the strip are predicted. We then demonstrate theoretically how such waves, associated as they are with expansion of the polymer, could be employed to enhance mixing or induce pumping in microfluidic systems.

  18. A Microfluidic Device to Sort Cells Based on Dynamic Response to a Stimulus

    PubMed Central

    Mathuru, Ajay Sriram; Burkholder, William F.; Jesuthasan, Suresh J.

    2013-01-01

    Single cell techniques permit the analysis of cellular properties that are obscured by studying the average behavior of cell populations. One way to determine how gene expression contributes to phenotypic differences among cells is to combine functional analysis with transcriptional profiling of single cells. Here we describe a microfluidic device for monitoring the responses of single cells to a ligand and then collecting cells of interest for transcriptional profiling or other assays. As a test, cells from the olfactory epithelium of zebrafish were screened by calcium imaging to identify sensory neurons that were responsive to the odorant L-lysine. Single cells were subsequently recovered for transcriptional profiling by qRT-PCR. Responsive cells all expressed TRPC2 but not OMP, consistent with known properties of amino-acid sensitive olfactory neurons. The device can be adapted for other areas in biology where there is a need to sort and analyze cells based on their signaling responses. PMID:24250795

  19. From bioseparation to artificial micro-organs: microfluidic chip based particle manipulation techniques

    NASA Astrophysics Data System (ADS)

    Stelzle, Martin

    2010-02-01

    Microfluidic device technology provides unique physical phenomena which are not available in the macroscopic world. These may be exploited towards a diverse array of applications in biotechnology and biomedicine ranging from bioseparation of particulate samples to the assembly of cells into structures that resemble the smallest functional unit of an organ. In this paper a general overview of chip-based particle manipulation and separation is given. In the state of the art electric, magnetic, optical and gravitational field effects are utilized. Also, mechanical obstacles often in combination with force fields and laminar flow are employed to achieve separation of particles or molecules. In addition, three applications based on dielectrophoretic forces for particle manipulation in microfluidic systems are discussed in more detail. Firstly, a virus assay is demonstrated. There, antibody-loaded microbeads are used to bind virus particles from a sample and subsequently are accumulated to form a pico-liter sized aggregate located at a predefined position in the chip thus enabling highly sensitive fluorescence detection. Secondly, subcellular fractionation of mitochondria from cell homogenate yields pure samples as was demonstrated by Western Blot and 2D PAGE analysis. Robust long-term operation with complex cell homogenate samples while avoiding electrode fouling is achieved by a set of dedicated technical means. Finally, a chip intended for the dielectrophoretic assembly of hepatocytes and endothelial cells into a structure resembling a liver sinusoid is presented. Such "artificial micro organs" are envisioned as substance screening test systems providing significantly higher predictability with respect to the in vivo response towards a substance under test.

  20. Particle-Based Microfluidic Device for Providing High Magnetic Field Gradients

    NASA Technical Reports Server (NTRS)

    Lin, Adam Y. (Inventor); Wong, Tak S. (Inventor)

    2013-01-01

    A microfluidic device for manipulating particles in a fluid has a device body that defines a main channel therein, in which the main channel has an inlet and an outlet. The device body further defines a particulate diverting channel therein, the particulate diverting channel being in fluid connection with the main channel between the inlet and the outlet of the main channel and having a particulate outlet. The microfluidic device also has a plurality of microparticles arranged proximate or in the main channel between the inlet of the main channel and the fluid connection of the particulate diverting channel to the main channel. The plurality of microparticles each comprises a material in a composition thereof having a magnetic susceptibility suitable to cause concentration of magnetic field lines of an applied magnetic field while in operation. A microfluidic particle-manipulation system has a microfluidic particle-manipulation device and a magnet disposed proximate the microfluidic particle-manipulation device.

  1. Microfluidic fuel cells

    NASA Astrophysics Data System (ADS)

    Kjeang, Erik

    Microfluidic fuel cell architectures are presented in this thesis. This work represents the mechanical and microfluidic portion of a microfluidic biofuel cell project. While the microfluidic fuel cells developed here are targeted to eventual integration with biocatalysts, the contributions of this thesis have more general applicability. The cell architectures are developed and evaluated based on conventional non-biological electrocatalysts. The fuel cells employ co-laminar flow of fuel and oxidant streams that do not require a membrane for physical separation, and comprise carbon or gold electrodes compatible with most enzyme immobilization schemes developed to date. The demonstrated microfluidic fuel cell architectures include the following: a single cell with planar gold electrodes and a grooved channel architecture that accommodates gaseous product evolution while preventing crossover effects; a single cell with planar carbon electrodes based on graphite rods; a three-dimensional hexagonal array cell based on multiple graphite rod electrodes with unique scale-up opportunities; a single cell with porous carbon electrodes that provides enhanced power output mainly attributed to the increased active area; a single cell with flow-through porous carbon electrodes that provides improved performance and overall energy conversion efficiency; and a single cell with flow-through porous gold electrodes with similar capabilities and reduced ohmic resistance. As compared to previous results, the microfluidic fuel cells developed in this work show improved fuel cell performance (both in terms of power density and efficiency). In addition, this dissertation includes the development of an integrated electrochemical velocimetry approach for microfluidic devices, and a computational modeling study of strategic enzyme patterning for microfluidic biofuel cells with consecutive reactions.

  2. A Microfluidic-based Electrochemical Biochip for Label-free DNA Hybridization Analysis

    PubMed Central

    Ben-Yoav, Hadar; Dykstra, Peter H.; Gordonov, Tanya; Bentley, William E.; Ghodssi, Reza

    2014-01-01

    Miniaturization of analytical benchtop procedures into the micro-scale provides significant advantages in regards to reaction time, cost, and integration of pre-processing steps. Utilizing these devices towards the analysis of DNA hybridization events is important because it offers a technology for real time assessment of biomarkers at the point-of-care for various diseases. However, when the device footprint decreases the dominance of various physical phenomena increases. These phenomena influence the fabrication precision and operation reliability of the device. Therefore, there is a great need to accurately fabricate and operate these devices in a reproducible manner in order to improve the overall performance. Here, we describe the protocols and the methods used for the fabrication and the operation of a microfluidic-based electrochemical biochip for accurate analysis of DNA hybridization events. The biochip is composed of two parts: a microfluidic chip with three parallel micro-channels made of polydimethylsiloxane (PDMS), and a 3 x 3 arrayed electrochemical micro-chip. The DNA hybridization events are detected using electrochemical impedance spectroscopy (EIS) analysis. The EIS analysis enables monitoring variations of the properties of the electrochemical system that are dominant at these length scales. With the ability to monitor changes of both charge transfer and diffusional resistance with the biosensor, we demonstrate the selectivity to complementary ssDNA targets, a calculated detection limit of 3.8 nM, and a 13% cross-reactivity with other non-complementary ssDNA following 20 min of incubation. This methodology can improve the performance of miniaturized devices by elucidating on the behavior of diffusion at the micro-scale regime and by enabling the study of DNA hybridization events. PMID:25285529

  3. Towards microfluidic sperm refinement: impedance-based analysis and sorting of sperm cells.

    PubMed

    de Wagenaar, B; Dekker, S; de Boer, H L; Bomer, J G; Olthuis, W; van den Berg, A; Segerink, L I

    2016-04-21

    The use of high quality semen for artificial insemination in the livestock industry is essential for successful outcome. Insemination using semen with a high number of sperm cells containing morphological defects has a negative impact on fertilization outcome. Therefore, semen with a high number of these abnormal cells is discarded in order to maintain high fertilization potential, resulting in the loss of a large number of morphologically normal sperm cells (up to 70-80% of original sample). A commonly occurring morphological sperm anomaly is the cytoplasmic droplet on the sperm flagella. Currently, no techniques are available to extract morphologically normal sperm cells from rejected samples. Therefore, we aim to develop a microfluidic setup which is able to detect and sort morphologically normal sperm cells label-free and non-invasively. In a proof-of-concept experiment, differential impedance measurements were used to detect the presence of cytoplasmic droplets on sperm flagella, which was quantified by calculating the area under the curve (AUC) of the corresponding impedance peaks. A receiver operating characteristic curve of this electrical analysis method showed the good predictive power of this analysis method (AUC value of 0.85). Furthermore, we developed a label-free cell sorting system using LabVIEW, which is capable of sorting sperm cells based on impedance. In a proof-of-concept experiment, sperm cells and 3 μm beads were sorted label-free and non-invasively using impedance detection and dielectrophoresis sorting. These experiments present our first attempt to perform sperm refinement using microfluidic technology. PMID:27025866

  4. Modeling RedOx-based magnetohydrodynamics in three-dimensional microfluidic channels

    NASA Astrophysics Data System (ADS)

    Kabbani, Hussameddine; Wang, Aihua; Luo, Xiaobing; Qian, Shizhi

    2007-08-01

    RedOx-based magnetohydrodynamic (MHD) flows in three-dimensional microfluidic channels are investigated theoretically with a coupled mathematical model consisting of the Nernst-Planck equations for the concentrations of ionic species, the local electroneutrality condition for the electric potential, and the Navier-Stokes equations for the flow field. A potential difference is externally applied across two planar electrodes positioned along the opposing walls of a microchannel that is filled with a dilute RedOx electrolyte solution, and a Faradaic current transmitted through the solution results. The entire device is positioned under a magnetic field which can be provided by either a permanent magnet or an electromagnet. The interaction between the current density and the magnetic field induces Lorentz forces, which can be used to pump and/or stir fluids for microfluidic applications. The induced currents and flow rates in three-dimensional (3D) planar channels obtained from the full 3D model are compared with the experimental data obtained from the literature and those obtained from our previous two-dimensional mathematical model. A closed form approximation for the average velocity (flow rate) in 3D planar microchannels is derived and validated by comparing its predictions with the results obtained from the full 3D model and the experimental data obtained from the literature. The closed form approximation can be used to optimize the dimensions of the channel and to determine the magnitudes and polarities of the prescribed currents in MHD networks so as to achieve the desired flow patterns and flow rates.

  5. Microfluidic paper-based analytical devices fabricated by low-cost photolithography and embossing of Parafilm®.

    PubMed

    Yu, Ling; Shi, Zhuan Zhuan

    2015-04-01

    Microfluidic paper-based analytical devices (μPADs) attract tremendous attention as an economical tool for in-field diagnosis, food safety and environmental monitoring. We innovatively fabricated 2D and 3D μPADs by photolithography-patterning microchannels on a Parafilm® and subsequently embossing them to paper. This truly low-cost, wax printer and cutter plotter independent approach offers the opportunity for researchers from resource-limited laboratories to work on paper-based analytical devices.

  6. Mass spectrometry-based monitoring of millisecond protein-ligand binding dynamics using an automated microfluidic platform.

    PubMed

    Cong, Yongzheng; Katipamula, Shanta; Trader, Cameron D; Orton, Daniel J; Geng, Tao; Baker, Erin S; Kelly, Ryan T

    2016-04-26

    Characterizing protein-ligand binding dynamics is crucial for understanding protein function and for developing new therapeutic agents. We present a novel microfluidic platform that features rapid mixing of protein and ligand solutions, variable incubation times, and an integrated electrospray ionization source for mass spectrometry-based monitoring of protein-ligand binding dynamics. This platform offers many advantages, including solution-based binding, label-free detection, automated operation, rapid mixing, and low sample consumption. PMID:27009517

  7. Integration of Multiple Components in Polystyrene-based Microfluidic Devices Part 1: Fabrication and Characterization

    PubMed Central

    Johnson, Alicia S.; Anderson, Kari B.; Halpin, Stephen T.; Kirkpatrick, Douglas C.; Spence, Dana M.; Martin, R. Scott

    2012-01-01

    In Part I of a two-part series, we describe a simple, and inexpensive approach to fabricate polystyrene devices that is based upon melting polystyrene (from either a Petri dish or powder form) against PDMS molds or around electrode materials. The ability to incorporate microchannels in polystyrene and integrate the resulting device with standard laboratory equipment such as an optical plate reader for analyte readout and micropipettors for fluid propulsion is first described. A simple approach for sample and reagent delivery to the device channels using a standard, multi-channel micropipette and a PDMS-based injection block is detailed. Integration of the microfluidic device with these off-chip functions (sample delivery and readout) enables high throughput screens and analyses. An approach to fabricate polystyrene-based devices with embedded electrodes is also demonstrated, thereby enabling the integration of microchip electrophoresis with electrochemical detection through the use of a palladium electrode (for a decoupler) and carbon-fiber bundle (for detection). The device was sealed against a PDMS-based microchannel and used for the electrophoretic separation and amperometric detection of dopamine, epinephrine, catechol, and 3,4-dihydroxyphenylacetic acid. Finally, these devices were compared against PDMS-based microchips in terms of their optical transparency and absorption of an anti-platelet drug, clopidogrel. Part I of this series lays the foundation for Part II, where these devices were utilized for various on-chip cellular analysis. PMID:23120747

  8. MEMS in microfluidic channels.

    SciTech Connect

    Ashby, Carol Iris Hill; Okandan, Murat; Michalske, Terry A.; Sounart, Thomas L.; Matzke, Carolyn M.

    2004-03-01

    Microelectromechanical systems (MEMS) comprise a new class of devices that include various forms of sensors and actuators. Recent studies have shown that microscale cantilever structures are able to detect a wide range of chemicals, biomolecules or even single bacterial cells. In this approach, cantilever deflection replaces optical fluorescence detection thereby eliminating complex chemical tagging steps that are difficult to achieve with chip-based architectures. A key challenge to utilizing this new detection scheme is the incorporation of functionalized MEMS structures within complex microfluidic channel architectures. The ability to accomplish this integration is currently limited by the processing approaches used to seal lids on pre-etched microfluidic channels. This report describes Sandia's first construction of MEMS instrumented microfluidic chips, which were fabricated by combining our leading capabilities in MEMS processing with our low-temperature photolithographic method for fabricating microfluidic channels. We have explored in-situ cantilevers and other similar passive MEMS devices as a new approach to directly sense fluid transport, and have successfully monitored local flow rates and viscosities within microfluidic channels. Actuated MEMS structures have also been incorporated into microfluidic channels, and the electrical requirements for actuation in liquids have been quantified with an elegant theory. Electrostatic actuation in water has been accomplished, and a novel technique for monitoring local electrical conductivities has been invented.

  9. Distance-based microfluidic quantitative detection methods for point-of-care testing.

    PubMed

    Tian, Tian; Li, Jiuxing; Song, Yanling; Zhou, Leiji; Zhu, Zhi; Yang, Chaoyong James

    2016-04-01

    Equipment-free devices with quantitative readout are of great significance to point-of-care testing (POCT), which provides real-time readout to users and is especially important in low-resource settings. Among various equipment-free approaches, distance-based visual quantitative detection methods rely on reading the visual signal length for corresponding target concentrations, thus eliminating the need for sophisticated instruments. The distance-based methods are low-cost, user-friendly and can be integrated into portable analytical devices. Moreover, such methods enable quantitative detection of various targets by the naked eye. In this review, we first introduce the concept and history of distance-based visual quantitative detection methods. Then, we summarize the main methods for translation of molecular signals to distance-based readout and discuss different microfluidic platforms (glass, PDMS, paper and thread) in terms of applications in biomedical diagnostics, food safety monitoring, and environmental analysis. Finally, the potential and future perspectives are discussed. PMID:26928571

  10. Distance-based microfluidic quantitative detection methods for point-of-care testing.

    PubMed

    Tian, Tian; Li, Jiuxing; Song, Yanling; Zhou, Leiji; Zhu, Zhi; Yang, Chaoyong James

    2016-04-01

    Equipment-free devices with quantitative readout are of great significance to point-of-care testing (POCT), which provides real-time readout to users and is especially important in low-resource settings. Among various equipment-free approaches, distance-based visual quantitative detection methods rely on reading the visual signal length for corresponding target concentrations, thus eliminating the need for sophisticated instruments. The distance-based methods are low-cost, user-friendly and can be integrated into portable analytical devices. Moreover, such methods enable quantitative detection of various targets by the naked eye. In this review, we first introduce the concept and history of distance-based visual quantitative detection methods. Then, we summarize the main methods for translation of molecular signals to distance-based readout and discuss different microfluidic platforms (glass, PDMS, paper and thread) in terms of applications in biomedical diagnostics, food safety monitoring, and environmental analysis. Finally, the potential and future perspectives are discussed.

  11. A low-cost, ultraflexible cloth-based microfluidic device for wireless electrochemiluminescence application.

    PubMed

    Liu, Min; Liu, Rui; Wang, Dan; Liu, Cuiling; Zhang, Chunsun

    2016-08-01

    The rising need for low-cost diagnostic devices has led to the search for inexpensive matrices that allow performing alternative analytical assays. Cloth is a viable material for the development of analytical devices due to its low material and manufacture costs, ability to wick assay fluids by capillary forces, and potential for patterning multiplexed channel geometries. In this paper, we describe the construction of low-cost, ultraflexible microfluidic cloth-based analytical devices (μCADs) for wireless electrochemiluminescence based on closed bipolar electrodes (C-WL-ECL), employing extremely cheap materials and a manufacturing process. The C-WL-ECL μCADs are built with wax-screen-printed cloth channels and carbon ink screen-printed electrodes, and the estimated cost per device is only $0.015. To demonstrate the performance of C-WL-ECL μCADs, the two most commonly used ECL systems - tris(2,2'-bipyridyl)ruthenium(ii)/tri-n-propylamine (Ru(bpy)3(2+)/TPA) and 3-aminophthalhydrazide/hydrogen peroxide (luminol/H2O2) - are applied. Under optimized conditions, the C-WL-ECL method has successfully fulfilled the quantitative determination of TPA with a detection limit of 0.085 mM. In addition, on the bent μCADs (bending angle (θ) = 180°), the luminol/H2O2-based ECL system can detect H2O2 as low as 0.024 mM. Based on such an ECL system, the bent μCADs are further used for determination of glucose in a phosphate buffer solution (PBS), with the detection limit of 0.195 mM. Finally, the applicability and validity, anti-interference ability, and storage stability of the C-WL-ECL μCADs are investigated. The results indicate that the proposed device has shown potential to extend the use of microfluidic analytical devices, due to its simplicity, low cost, ultraflexibility, and acceptable analytical performance. PMID:27356231

  12. Optical biosensor system with integrated microfluidic sample preparation and TIRF based detection

    NASA Astrophysics Data System (ADS)

    Gilli, Eduard; Scheicher, Sylvia R.; Suppan, Michael; Pichler, Heinz; Rumpler, Markus; Satzinger, Valentin; Palfinger, Christian; Reil, Frank; Hajnsek, Martin; Köstler, Stefan

    2013-05-01

    There is a steadily growing demand for miniaturized bioanalytical devices allowing for on-site or point-of-care detection of biomolecules or pathogens in applications like diagnostics, food testing, or environmental monitoring. These, so called labs-on-a-chip or micro-total analysis systems (μ-TAS) should ideally enable convenient sample-in - result-out type operation. Therefore, the entire process from sample preparation, metering, reagent incubation, etc. to detection should be performed on a single disposable device (on-chip). In the early days such devices were mainly fabricated using glass or silicon substrates and adapting established fabrication technologies from the electronics and semiconductor industry. More recently, the development focuses on the use of thermoplastic polymers as they allow for low-cost high volume fabrication of disposables. One of the most promising materials for the development of plastic based lab-on-achip systems are cyclic olefin polymers and copolymers (COP/COC) due to their excellent optical properties (high transparency and low autofluorescence) and ease of processing. We present a bioanalytical system for whole blood samples comprising a disposable plastic chip based on TIRF (total internal reflection fluorescence) optical detection. The chips were fabricated by compression moulding of COP and microfluidic channels were structured by hot embossing. These microfluidic structures integrate several sample pretreatment steps. These are the separation of erythrocytes, metering of sample volume using passive valves, and reagent incubation for competitive bioassays. The surface of the following optical detection zone is functionalized with specific capture probes in an array format. The plastic chips comprise dedicated structures for simple and effective coupling of excitation light from low-cost laser diodes. This enables TIRF excitation of fluorescently labeled probes selectively bound to detection spots at the microchannel surface

  13. Continuous, real-time monitoring of cocaine in undiluted blood serum via a microfluidic, electrochemical aptamer-based sensor.

    PubMed

    Swensen, James S; Xiao, Yi; Ferguson, Brian S; Lubin, Arica A; Lai, Rebecca Y; Heeger, Alan J; Plaxco, Kevin W; Soh, H Tom

    2009-04-01

    The development of a biosensor system capable of continuous, real-time measurement of small-molecule analytes directly in complex, unprocessed aqueous samples has been a significant challenge, and successful implementation has been achieved for only a limited number of targets. Toward a general solution to this problem, we report here the Microfluidic Electrochemical Aptamer-based Sensor (MECAS) chip wherein we integrate target-specific DNA aptamers that fold, and thus generate an electrochemical signal, in response to the analyte with a microfluidic detection system. As a model, we demonstrate the continuous, real-time (approximately 1 min time resolution) detection of the small-molecule drug cocaine at near physiological, low micromolar concentrations directly in undiluted, otherwise unmodified blood serum. We believe our approach of integrating folding-based electrochemical sensors with miniaturized detection systems may lay the groundwork for the real-time, point-of-care detection of a wide variety of molecular targets.

  14. Recent Progress of Microfluidics in Translational Applications

    PubMed Central

    Liu, Zongbin; Han, Xin

    2016-01-01

    Microfluidics, featuring microfabricated structures, is a technology for manipulating fluids at the micrometer scale. The small dimension and flexibility of microfluidic systems are ideal for mimicking molecular and cellular microenvironment, and show great potential in translational research and development. Here, the recent progress of microfluidics in biological and biomedical applications, including molecular analysis, cellular analysis, and chip-based material delivery and biomimetic design is presented. The potential future developments in the translational microfluidics field are also discussed. PMID:27091777

  15. Rapid, targeted and culture-free viral infectivity assay in drop-based microfluidics.

    PubMed

    Tao, Ye; Rotem, Assaf; Zhang, Huidan; Chang, Connie B; Basu, Anindita; Kolawole, Abimbola O; Koehler, Stephan A; Ren, Yukun; Lin, Jeffrey S; Pipas, James M; Feldman, Andrew B; Wobus, Christiane E; Weitz, David A

    2015-10-01

    A key viral property is infectivity, and its accurate measurement is crucial for the understanding of viral evolution, disease and treatment. Currently viral infectivity is measured using plaque assays, which involve prolonged culturing of host cells, and whose measurement is unable to differentiate between specific strains and is prone to low number fluctuation. We developed a rapid, targeted and culture-free infectivity assay using high-throughput drop-based microfluidics. Single infectious viruses are incubated in a large number of picoliter drops with host cells for one viral replication cycle followed by in-drop gene-specific amplification to detect infection events. Using murine noroviruses (MNV) as a model system, we measure their infectivity and determine the efficacy of a neutralizing antibody for different variants of MNV. Our results are comparable to traditional plaque-based assays and plaque reduction neutralization tests. However, the fast, low-cost, highly accurate genomic-based assay promises to be a superior method for drug screening and isolation of resistant viral strains. Moreover our technique can be adapted to measuring the infectivity of other pathogens, such as bacteria and fungi.

  16. Continuous Flow Deformability-Based Separation of Circulating Tumor Cells Using Microfluidic Ratchets.

    PubMed

    Park, Emily S; Jin, Chao; Guo, Quan; Ang, Richard R; Duffy, Simon P; Matthews, Kerryn; Azad, Arun; Abdi, Hamidreza; Todenhöfer, Tilman; Bazov, Jenny; Chi, Kim N; Black, Peter C; Ma, Hongshen

    2016-04-13

    Circulating tumor cells (CTCs) offer tremendous potential for the detection and characterization of cancer. A key challenge for their isolation and subsequent analysis is the extreme rarity of these cells in circulation. Here, a novel label-free method is described to enrich viable CTCs directly from whole blood based on their distinct deformability relative to hematological cells. This mechanism leverages the deformation of single cells through tapered micrometer scale constrictions using oscillatory flow in order to generate a ratcheting effect that produces distinct flow paths for CTCs, leukocytes, and erythrocytes. A label-free separation of circulating tumor cells from whole blood is demonstrated, where target cells can be separated from background cells based on deformability despite their nearly identical size. In doping experiments, this microfluidic device is able to capture >90% of cancer cells from unprocessed whole blood to achieve 10(4) -fold enrichment of target cells relative to leukocytes. In patients with metastatic castration-resistant prostate cancer, where CTCs are not significantly larger than leukocytes, CTCs can be captured based on deformability at 25× greater yield than with the conventional CellSearch system. Finally, the CTCs separated using this approach are collected in suspension and are available for downstream molecular characterization. PMID:26917414

  17. Qualification of a microfluidics-based electrophoretic method for impurity testing of monoclonal antibodies.

    PubMed

    Antes, Bernhard; Oberkleiner, Philipp; Nechansky, Andreas; Szolar, Oliver H J

    2010-02-01

    In this work, we present a comprehensive evaluation of the Agilent Bioanalyzer, a microfluidics-based electrophoretic device that was used for impurity testing of a monoclonal antibody (mAb). We compared the system to SDS-PAGE, both operated under non-reducing conditions and found a significant improvement of accuracy for the Bioanalyzer. In addition, the latter exhibited a larger assay range and lower limit of quantitation (LOQ) based on a predefined total error limit of +/-30%. However, during method qualification applying a three-factor nested design with two operators performing duplicate measurements per day, each on 4 different days, we observed unpredictable recurring quantitative outliers using the chip-based system. In-depth analysis on multiple runs with various chip lots confirmed the above finding and indicated that most likely on-chip dye labeling and/or post-column background fluorescence elimination are not compatible with the large size of the intact antibody as similar findings were observed for myosin used as upper marker for time correction. Interestingly, after reducing the intact antibody into light and heavy chain, we resolved the outlier issue. Eventually, requalification of the micro-fabricated analytical device under reducing conditions revealed only 1 out of 32 quality control samples (QCs) exceeding the +/-30% total error limits.

  18. Punch card programmable microfluidics.

    PubMed

    Korir, George; Prakash, Manu

    2015-01-01

    Small volume fluid handling in single and multiphase microfluidics provides a promising strategy for efficient bio-chemical assays, low-cost point-of-care diagnostics and new approaches to scientific discoveries. However multiple barriers exist towards low-cost field deployment of programmable microfluidics. Incorporating multiple pumps, mixers and discrete valve based control of nanoliter fluids and droplets in an integrated, programmable manner without additional required external components has remained elusive. Combining the idea of punch card programming with arbitrary fluid control, here we describe a self-contained, hand-crank powered, multiplex and robust programmable microfluidic platform. A paper tape encodes information as a series of punched holes. A mechanical reader/actuator reads these paper tapes and correspondingly executes operations onto a microfluidic chip coupled to the platform in a plug-and-play fashion. Enabled by the complexity of codes that can be represented by a series of holes in punched paper tapes, we demonstrate independent control of 15 on-chip pumps with enhanced mixing, normally-closed valves and a novel on-demand impact-based droplet generator. We demonstrate robustness of operation by encoding a string of characters representing the word "PUNCHCARD MICROFLUIDICS" using the droplet generator. Multiplexing is demonstrated by implementing an example colorimetric water quality assays for pH, ammonia, nitrite and nitrate content in different water samples. With its portable and robust design, low cost and ease-of-use, we envision punch card programmable microfluidics will bring complex control of microfluidic chips into field-based applications in low-resource settings and in the hands of children around the world. PMID:25738834

  19. Punch card programmable microfluidics.

    PubMed

    Korir, George; Prakash, Manu

    2015-01-01

    Small volume fluid handling in single and multiphase microfluidics provides a promising strategy for efficient bio-chemical assays, low-cost point-of-care diagnostics and new approaches to scientific discoveries. However multiple barriers exist towards low-cost field deployment of programmable microfluidics. Incorporating multiple pumps, mixers and discrete valve based control of nanoliter fluids and droplets in an integrated, programmable manner without additional required external components has remained elusive. Combining the idea of punch card programming with arbitrary fluid control, here we describe a self-contained, hand-crank powered, multiplex and robust programmable microfluidic platform. A paper tape encodes information as a series of punched holes. A mechanical reader/actuator reads these paper tapes and correspondingly executes operations onto a microfluidic chip coupled to the platform in a plug-and-play fashion. Enabled by the complexity of codes that can be represented by a series of holes in punched paper tapes, we demonstrate independent control of 15 on-chip pumps with enhanced mixing, normally-closed valves and a novel on-demand impact-based droplet generator. We demonstrate robustness of operation by encoding a string of characters representing the word "PUNCHCARD MICROFLUIDICS" using the droplet generator. Multiplexing is demonstrated by implementing an example colorimetric water quality assays for pH, ammonia, nitrite and nitrate content in different water samples. With its portable and robust design, low cost and ease-of-use, we envision punch card programmable microfluidics will bring complex control of microfluidic chips into field-based applications in low-resource settings and in the hands of children around the world.

  20. Elements of Network-Based Assessment

    ERIC Educational Resources Information Center

    Gibson, David

    2007-01-01

    Elements of network-based assessment systems are envisioned based on recent advances in knowledge and practice in learning theory, assessment design and delivery, and semantic web interoperability. The architecture takes advantage of the meditating role of technology as well as recent models of assessment systems. This overview of the elements…

  1. Microfluidic crystallization.

    PubMed

    Leng, Jacques; Salmon, Jean-Baptiste

    2009-01-01

    Microfluidics offers a wide range of new tools that permit one to revisit the formation of crystals in solution and yield insights into crystallization processes. We review such recent microfluidic devices and particularly emphasize lab-on-chips dedicated to the high-throughput screening of crystallization conditions of proteins with nanolitre consumption. We also thoroughly discuss the possibilities offered by the microfluidic tools to acquire thermodynamic and kinetic data that may improve industrial processes and shed a new light on nucleation and growth mechanisms.

  2. Integrated microfluidic system for rapid detection of influenza H1N1 virus using a sandwich-based aptamer assay.

    PubMed

    Tseng, Yi-Ting; Wang, Chih-Hung; Chang, Chih-Peng; Lee, Gwo-Bin

    2016-08-15

    The rapid spread of influenza-associated H1N1 viruses has caused serious concern in recent years. Therefore, there is an urgent need for the development of automatic, point-of-care devices for rapid diagnosis of the influenza virus. Conventional approaches suffer from several critical issues; notably, they are time-consuming, labor-intensive, and are characterized by relatively low sensitivity. In this work, we present a new approach for fluorescence-based detection of the influenza A H1N1 virus using a sandwich-based aptamer assay that is automatically performed on an integrated microfluidic system. The entire detection process was shortened to 30min using this chip-based system which is much faster than the conventional viral culture method. The limit of detection was significantly improved to 0.032 hemagglutination unit due to the high affinity and high specificity of the H1N1-specific aptamers. The results showed that the two-aptamer microfluidic system had about 10(3) times higher sensitivity than the conventional serological diagnosis. It was demonstrated that the developed microfluidic system may play as a powerful tool in the detection of the H1N1 virus.

  3. Integrated microfluidic system for rapid detection of influenza H1N1 virus using a sandwich-based aptamer assay.

    PubMed

    Tseng, Yi-Ting; Wang, Chih-Hung; Chang, Chih-Peng; Lee, Gwo-Bin

    2016-08-15

    The rapid spread of influenza-associated H1N1 viruses has caused serious concern in recent years. Therefore, there is an urgent need for the development of automatic, point-of-care devices for rapid diagnosis of the influenza virus. Conventional approaches suffer from several critical issues; notably, they are time-consuming, labor-intensive, and are characterized by relatively low sensitivity. In this work, we present a new approach for fluorescence-based detection of the influenza A H1N1 virus using a sandwich-based aptamer assay that is automatically performed on an integrated microfluidic system. The entire detection process was shortened to 30min using this chip-based system which is much faster than the conventional viral culture method. The limit of detection was significantly improved to 0.032 hemagglutination unit due to the high affinity and high specificity of the H1N1-specific aptamers. The results showed that the two-aptamer microfluidic system had about 10(3) times higher sensitivity than the conventional serological diagnosis. It was demonstrated that the developed microfluidic system may play as a powerful tool in the detection of the H1N1 virus. PMID:27054814

  4. Low-cost, high-throughput fabrication of cloth-based microfluidic devices using a photolithographical patterning technique.

    PubMed

    Wu, Peijing; Zhang, Chunsun

    2015-03-21

    In this work, we first report a facile, low-cost and high-throughput method for photolithographical fabrication of microfluidic cloth-based analytical devices (μCADs) by simply using a cotton cloth as a substrate material and employing an inexpensive hydrophobic photoresist laboratory-formulated from commercially available reagents, which allows patterning of reproducible hydrophilic-hydrophobic features in the cloth with well-defined and uniform boundaries. Firstly, we evaluated the wicking properties of cotton cloths by testing the wicking rate in the cloth channel, in combination with scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analyses. It is demonstrated that the wicking properties of the cloth microfluidic channel can be improved by soaking the cloth substrate in 20 wt% NaOH solution and by washing the cloth-based microfluidic patterns with 3 wt% SDS solution. Next, we studied the minimum dimensions achievable for the width of the hydrophobic barriers and hydrophilic channels. The results indicate that the smallest width for a desired hydrophobic barrier is designed to be 100 μm and that for a desired hydrophilic channel is designed to be 500 μm. Finally, the high-throughput μCADs prepared using the developed fabrication technique were demonstrated for colorimetric assays of glucose and protein in artificial urine samples. It has been shown that the photolithographically patterned μCADs have potential for a simple, quantitative colorimetric urine test. The combination of cheap cloth and inexpensive high-throughput photolithography enables the development of new types of low-cost cloth-based microfluidic devices, such as "microzone plates" and "gate arrays", which provide new methods to perform biochemical assays or control fluid flow. PMID:25656508

  5. High-performance microfluidic rectifier based on sudden expansion channel with embedded block structure.

    PubMed

    Tsai, Chien-Hsiung; Lin, Che-Hsin; Fu, Lung-Ming; Chen, Hui-Chun

    2012-06-01

    A high-performance microfluidic rectifier incorporating a microchannel and a sudden expansion channel is proposed. In the proposed device, a block structure embedded within the expansion channel is used to induce two vortex structures at the end of the microchannel under reverse flow conditions. The vortices reduce the hydraulic diameter of the microchannel and, therefore, increase the flow resistance. The rectification performance of the proposed device is evaluated by both experimentally and numerically. The experimental and numerical values of the rectification performance index (i.e., the diodicity, Di) are found to be 1.54 and 1.76, respectively. Significantly, flow rectification is achieved without the need for moving parts. Thus, the proposed device is ideally suited to the high pressure environment characteristic of most micro-electro-mechanical-systems (MEMS)-based devices. Moreover, the rectification performance of the proposed device is superior to that of existing valveless rectifiers based on Tesla valves, simple nozzle/diffuser structures, or cascaded nozzle/diffuser structures.

  6. High-performance microfluidic rectifier based on sudden expansion channel with embedded block structure

    PubMed Central

    Tsai, Chien-Hsiung; Lin, Che-Hsin; Fu, Lung-Ming; Chen, Hui-Chun

    2012-01-01

    A high-performance microfluidic rectifier incorporating a microchannel and a sudden expansion channel is proposed. In the proposed device, a block structure embedded within the expansion channel is used to induce two vortex structures at the end of the microchannel under reverse flow conditions. The vortices reduce the hydraulic diameter of the microchannel and, therefore, increase the flow resistance. The rectification performance of the proposed device is evaluated by both experimentally and numerically. The experimental and numerical values of the rectification performance index (i.e., the diodicity, Di) are found to be 1.54 and 1.76, respectively. Significantly, flow rectification is achieved without the need for moving parts. Thus, the proposed device is ideally suited to the high pressure environment characteristic of most micro-electro-mechanical-systems (MEMS)-based devices. Moreover, the rectification performance of the proposed device is superior to that of existing valveless rectifiers based on Tesla valves, simple nozzle/diffuser structures, or cascaded nozzle/diffuser structures. PMID:22655019

  7. A Contact-Imaging Based Microfluidic Cytometer with Machine-Learning for Single-Frame Super-Resolution Processing

    PubMed Central

    Huang, Xiwei; Guo, Jinhong; Wang, Xiaolong; Yan, Mei; Kang, Yuejun; Yu, Hao

    2014-01-01

    Lensless microfluidic imaging with super-resolution processing has become a promising solution to miniaturize the conventional flow cytometer for point-of-care applications. The previous multi-frame super-resolution processing system can improve resolution but has limited cell flow rate and hence low throughput when capturing multiple subpixel-shifted cell images. This paper introduces a single-frame super-resolution processing with on-line machine-learning for contact images of cells. A corresponding contact-imaging based microfluidic cytometer prototype is demonstrated for cell recognition and counting. Compared with commercial flow cytometer, less than 8% error is observed for absolute number of microbeads; and 0.10 coefficient of variation is observed for cell-ratio of mixed RBC and HepG2 cells in solution. PMID:25111497

  8. A simple elastic membrane-based microfluidic chip for the proliferation and differentiation of mesenchymal stem cells under tensile stress.

    PubMed

    Gao, Xinghua; Zhang, Xu; Tong, Huiyu; Lin, Bingcheng; Qin, Jianhua

    2011-11-01

    This work presents a simple membrane-based microfluidic chip for the investigation of proliferation and differentiation of mesenchymal stem cells (MSCs) under mechanical stimuli. The cyclic tensile stress was generated by the deformation of elastic PDMS membrane sandwiched between the two layer microfluidic chip via actuated negative pressure, and the cultured MSCs on membrane were subjected to different orders of tensile stress. The results suggest that mechanical stimuli are attributed to the different phenomena of MSCs in cell proliferation and differentiation. The higher tensile stress (>3.5) promoted obvious proliferation, osteogenesis and reduced adipogenesis in MSCs, indicating the possible regulative role of tensile stress in modifying the osteogenesis/adipogenesis balance in the development of tissue organ. PMID:22072525

  9. Optofluidic encapsulation and manipulation of silicon microchips using image processing based optofluidic maskless lithography and railed microfluidics.

    PubMed

    Chung, Su Eun; Lee, Seung Ah; Kim, Jiyun; Kwon, Sunghoon

    2009-10-01

    We demonstrate optofluidic encapsulation of silicon microchips using image processing based optofluidic maskless lithography and manipulation using railed microfluidics. Optofluidic maskless lithography is a dynamic photopolymerization technique of free-floating microstructures within a fluidic channel using spatial light modulator. Using optofluidic maskless lithography via computer-vision aided image processing, polymer encapsulants are fabricated for chip protection and guiding-fins for efficient chip conveying within a fluidic channel. Encapsulated silicon chips with guiding-fins are assembled using railed microfluidics, which is an efficient guiding and heterogeneous self-assembly system of microcomponents. With our technology, externally fabricated silicon microchips are encapsulated, fluidically guided and self-assembled potentially enabling low cost fluidic manipulation and assembly of integrated circuits.

  10. Isolation and Analysis of Rare Norovirus Recombinants from Coinfected Mice Using Drop-Based Microfluidics

    PubMed Central

    Zhang, Huidan; Cockrell, Shelley K.; Kolawole, Abimbola O.; Rotem, Assaf; Serohijos, Adrian W. R.; Chang, Connie B.; Tao, Ye; Mehoke, Thomas S.; Han, Yulong; Lin, Jeffrey S.; Giacobbi, Nicholas S.; Feldman, Andrew B.; Shakhnovich, Eugene; Weitz, David A.; Wobus, Christiane E.

    2015-01-01

    switching by the virus-encoded RNA-dependent RNA polymerase (RdRP). However, factors that govern the frequency and positions of recombination in an infected organism remain largely unknown. This work leverages advances in the applied physics of drop-based microfluidics to isolate and sequence rare recombinants arising from the coinfection of mice with two distinct strains of murine norovirus. This study is the first to detect and analyze norovirus recombination in an animal model. PMID:25972549

  11. Rapid and amplification-free detection of fish pathogens by utilizing a molecular beacon-based microfluidic system.

    PubMed

    Su, Yi-Chih; Wang, Chih-Hung; Chang, Wen-Hsin; Chen, Tzong-Yueh; Lee, Gwo-Bin

    2015-01-15

    Nervous necrosis virus (NNV) and iridovirus are highly infectious pathogens that can cause lethal diseases in various species of fish. These infectious diseases have no effective treatments and the mortality rate is over 80%, which could cause dramatic economic losses in the aquaculture industry. Conventional diagnostic methods of NNV or iridovirus infected fishes, such as virus culture, enzyme-linked immunosorbent assays and nucleic acid assays usually require time-consuming and complex procedures performed by specialized technicians with delicate laboratory facilities. Rapid, simple, accurate and on-site detection of NNV and iridovirus infections would enable timely preventive measures such as immediate sacrifice of infected fishes, and is therefore critically needed for the aquaculture industry. In this study, a microfluidic-based assay that employ magnetic beads conjugated with viral deoxyribonucleic acid (DNA) capturing probes and fluorescent DNA molecular beacons were developed to rapidly detect NNV and iridovirus. Importantly, this new assay was realized in an integrated microfluidic system with a custom-made control system. With this approach, direct and automated NNV and iridovirus detection from infected fishes can be achieved in less than 30 min. Therefore, this molecular-beacon based microfluidic system presents a potentially promising tool for rapid diagnosis of fish pathogens in the field in the future.

  12. Microspot-based ELISA in microfluidics: chemiluminescence and colorimetry detection using integrated thin-film hydrogenated amorphous silicon photodiodes.

    PubMed

    Novo, Pedro; Prazeres, Duarte Miguel França; Chu, Virginia; Conde, João Pedro

    2011-12-01

    Microfluidic technology has the potential to decrease the time of analysis and the quantity of sample and reactants required in immunoassays, together with the potential of achieving high sensitivity, multiplexing, and portability. A lab-on-a-chip system was developed and optimized using optical and fluorescence microscopy. Primary antibodies are adsorbed onto the walls of a PDMS-based microchannel via microspotting. This probe antibody is then recognised using secondary FITC or HRP labelled antibodies responsible for providing fluorescence or chemiluminescent and colorimetric signals, respectively. The system incorporated a micron-sized thin-film hydrogenated amorphous silicon photodiode microfabricated on a glass substrate. The primary antibody spots in the PDMS-based microfluidic were precisely aligned with the photodiodes for the direct detection of the antibody-antigen molecular recognition reactions using chemiluminescence and colorimetry. The immunoassay takes ~30 min from assay to the integrated detection. The conditions for probe antibody microspotting and for the flow-through ELISA analysis in the microfluidic format with integrated detection were defined using antibody solutions with concentrations in the nM-μM range. Sequential colorimetric or chemiluminescence detection of specific antibody-antigen molecular recognition was quantitatively detected using the photodiode. Primary antibody surface densities down to 0.182 pmol cm(-2) were detected. Multiplex detection using different microspotted primary antibodies was demonstrated. PMID:22012414

  13. Microfluidic refractive index sensor based on an all-silica in-line Fabry-Perot interferometer fabricated with microstructured fibers.

    PubMed

    Tian, Jiajun; Lu, Yujie; Zhang, Qi; Han, Ming

    2013-03-11

    We report a microfluidic fiber-optic refractive index (RI) sensor based on an in-line Fabry-Perot (FP) interferometer, which is formed by a silica tube sandwiched by two microstructured fibers (MFs). The sensor reported here can be fabricated at low cost, possess a robust structure, and has microfluidic capability. The micro-sized holes in the MFs naturally function as microfluidic channels through which liquid samples can be efficiently and conveniently delivered into and out of the FP cavity by a pressure/vacuum pump system for high-performance RI measurement. Due to the microfluidic capability enabled by the MFs, only sub microliter sample is required. We also experimentally study and demonstrate the superior performances of the sensor in terms of high RI sensitivity, good measurement repeatability, and low temperature cross-sensitivity. PMID:23482235

  14. Paper-based microfluidics: fabrication technique and dynamics of capillary-driven surface flow.

    PubMed

    Songok, Joel; Tuominen, Mikko; Teisala, Hannu; Haapanen, Janne; Mäkelä, Jyrki; Kuusipalo, Jurkka; Toivakka, Martti

    2014-11-26

    Paper-based devices provide an alternative technology for simple, low-cost, portable, and disposable diagnostic tools for many applications, including clinical diagnosis, food quality control, and environmental monitoring. In this study we report a two-step fabrication process for creating two-dimensional microfluidic channels to move liquids on a hydrophobized paper surface. A highly hydrophobic surface was created on paper by TiO2 nanoparticle coating using a high-speed, roll-to-roll liquid flame spray technique. The hydrophilic pattern was then generated by UV irradiation through a photomask utilizing the photocatalytic property of TiO2. The flow dynamics of five model liquids with differing surface tensions 48-72 mN·m(-1) and viscosities 1-15 mN·m(-2) was studied. The results show that the liquid front (l) in a channel advances in time (t) according to the power law l=Zt0.5 (Z is an empirical constant which depend on the liquid properties and channel dimensions). The flow dynamics of the liquids with low viscosity show a dependence on the channel width and the droplet volume, while the flow of liquids with high viscosity is mainly controlled by the viscous forces. PMID:25336235

  15. A microfluidic-based genetic screen to identify microbial virulence factors that inhibit dendritic cell migration.

    PubMed

    McLaughlin, Laura M; Xu, Hui; Carden, Sarah E; Fisher, Samantha; Reyes, Monique; Heilshorn, Sarah C; Monack, Denise M

    2014-04-01

    Microbial pathogens are able to modulate host cells and evade the immune system by multiple mechanisms. For example, Salmonella injects effector proteins into host cells and evades the host immune system in part by inhibiting dendritic cell (DC) migration. The identification of microbial factors that modulate normal host functions should lead to the development of new classes of therapeutics that target these pathways. Current screening methods to identify either host or pathogen genes involved in modulating migration towards a chemical signal are limited because they do not employ stable, precisely controlled chemical gradients. Here, we develop a positive selection microfluidic-based genetic screen that allows us to identify Salmonella virulence factors that manipulate DC migration within stable, linear chemokine gradients. Our screen identified 7 Salmonella effectors (SseF, SifA, SspH2, SlrP, PipB2, SpiC and SseI) that inhibit DC chemotaxis toward CCL19. This method is widely applicable for identifying novel microbial factors that influence normal host cell chemotaxis as well as revealing new mammalian genes involved in directed cell migration.

  16. A microfluidics-based in vitro model of the gastrointestinal human-microbe interface.

    PubMed

    Shah, Pranjul; Fritz, Joëlle V; Glaab, Enrico; Desai, Mahesh S; Greenhalgh, Kacy; Frachet, Audrey; Niegowska, Magdalena; Estes, Matthew; Jäger, Christian; Seguin-Devaux, Carole; Zenhausern, Frederic; Wilmes, Paul

    2016-01-01

    Changes in the human gastrointestinal microbiome are associated with several diseases. To infer causality, experiments in representative models are essential, but widely used animal models exhibit limitations. Here we present a modular, microfluidics-based model (HuMiX, human-microbial crosstalk), which allows co-culture of human and microbial cells under conditions representative of the gastrointestinal human-microbe interface. We demonstrate the ability of HuMiX to recapitulate in vivo transcriptional, metabolic and immunological responses in human intestinal epithelial cells following their co-culture with the commensal Lactobacillus rhamnosus GG (LGG) grown under anaerobic conditions. In addition, we show that the co-culture of human epithelial cells with the obligate anaerobe Bacteroides caccae and LGG results in a transcriptional response, which is distinct from that of a co-culture solely comprising LGG. HuMiX facilitates investigations of host-microbe molecular interactions and provides insights into a range of fundamental research questions linking the gastrointestinal microbiome to human health and disease.

  17. Chelate titrations of Ca(2+) and Mg(2+) using microfluidic paper-based analytical devices.

    PubMed

    Karita, Shingo; Kaneta, Takashi

    2016-06-14

    We developed microfluidic paper-based analytical devices (μPADs) for the chelate titrations of Ca(2+) and Mg(2+) in natural water. The μPAD consisted of ten reaction zones and ten detection zones connected through narrow channels to a sample zone located at the center. Buffer solutions with a pH of 10 or 13 were applied to all surfaces of the channels and zones. Different amounts of ethylenediaminetetraacetic acid (EDTA) were added to the reaction zones and a consistent amount of a metal indicator (Eriochrome Black T or Calcon) was added to the detection zones. The total concentrations of Ca(2+) and Mg(2+) (total hardness) in the water were measured using a μPAD containing a buffer solution with a pH of 10, whereas only Ca(2+) was titrated using a μPAD prepared with a potassium hydroxide solution with a pH of 13. The μPADs permitted the determination of Ca(2+) and Mg(2+) in mineral water, river water, and seawater samples within only a few minutes using only the naked eye-no need of instruments. PMID:27181645

  18. Chelate titrations of Ca(2+) and Mg(2+) using microfluidic paper-based analytical devices.

    PubMed

    Karita, Shingo; Kaneta, Takashi

    2016-06-14

    We developed microfluidic paper-based analytical devices (μPADs) for the chelate titrations of Ca(2+) and Mg(2+) in natural water. The μPAD consisted of ten reaction zones and ten detection zones connected through narrow channels to a sample zone located at the center. Buffer solutions with a pH of 10 or 13 were applied to all surfaces of the channels and zones. Different amounts of ethylenediaminetetraacetic acid (EDTA) were added to the reaction zones and a consistent amount of a metal indicator (Eriochrome Black T or Calcon) was added to the detection zones. The total concentrations of Ca(2+) and Mg(2+) (total hardness) in the water were measured using a μPAD containing a buffer solution with a pH of 10, whereas only Ca(2+) was titrated using a μPAD prepared with a potassium hydroxide solution with a pH of 13. The μPADs permitted the determination of Ca(2+) and Mg(2+) in mineral water, river water, and seawater samples within only a few minutes using only the naked eye-no need of instruments.

  19. Tetrazine-based chemistry for nitrite determination in a paper microfluidic device.

    PubMed

    Ortiz-Gomez, Inmaculada; Ortega-Muñoz, Mariano; Salinas-Castillo, Alfonso; Álvarez-Bermejo, José Antonio; Ariza-Avidad, Maria; de Orbe-Payá, Ignacio; Santoyo-Gonzalez, Francisco; Capitan-Vallvey, Luis Fermin

    2016-11-01

    We present a new chemistry to determine nitrites implemented in a microfluidic paper-based analytical device (µPAD). The device is fabricated in cellulose paper with a sample reception area and three replicate detection areas with recognition chemistry immobilized by adsorption. The method involves the use of nitrite in an acid medium reaction to generate nitrous acid, which produces the oxidation of s-dihydrotetrazine: 1,2-dihydro-3,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-1,2,4,5-tetrazine (DHBPTz), which change the detection zone from colorless to pink. We used a digital camera and smartphone for the quantitative analysis of nitrite with the color coordinate S of the HSV color space as the analytical parameter. Parameters such as concentration and volume of s-dihydrotetrazine, pH, sample volume and reaction time were studied. The detection limit for this method is 1.30µM nitrite. To estimate the selectivity of the method an interference study of common ions in water samples was performed. The procedure was applied to natural water and compared with reference procedures.

  20. Microfluidics-based optimization of neuroleukin-mediated regulation of articular chondrocyte proliferation

    PubMed Central

    TIAN, KANG; ZHONG, WEILIANG; ZHANG, YINGQIU; YIN, BAOSHENG; ZHANG, WEIGUO; LIU, HAN

    2016-01-01

    Due to the low proliferative and migratory capacities of chondrocytes, cartilage repair remains a challenging clinical problem. Current therapeutic strategies for cartilage repair result in unsatisfactory outcomes. Autologous chondrocyte implantation (ACI) is a cell based therapy that relies on the in vitro expansion of healthy chondrocytes from the patient, during which proliferation-promoting factors are frequently used. Neuroleukin (NLK) is a multifunctional protein that possesses growth factor functions, and its expression has been associated with cartilage development and bone regeneration, however its direct role in chondrocyte proliferation remains to be fully elucidated. In the current study, the role of NLK in chondrocyte proliferation in vitro in addition to its potential to act as an exogenous factor during ACI was investigated. Furthermore, the concentration of NLK for in vitro chondrocyte culture was optimized using a microfluidic device. An NLK concentration of 12.85 ng/ml was observed to provide optimal conditions for the promotion of chondrocyte proliferation. Additionally, NLK stimulation resulted in an increase in type II collagen synthesis by chondrocytes, which is a cartilaginous secretion marker and associated with the phenotype of chondrocytes. Together these data suggest that NLK is able to promote cell proliferation and type II collagen synthesis during in vitro chondrocyte propagation, and thus may serve as an exogenous factor for ACI. PMID:26573126

  1. Patterned electrode-based amperometric gas sensor for direct nitric oxide detection within microfluidic devices.

    PubMed

    Cha, Wansik; Tung, Yi-Chung; Meyerhoff, Mark E; Takayama, Shuichi

    2010-04-15

    This article describes a thin amperometric nitric oxide (NO) sensor that can be microchannel embedded to enable direct real-time detection of NO produced by cells cultured within the microdevice. A key for achieving the thin ( approximately 1 mm) planar sensor configuration required for sensor-channel integration is the use of gold/indium-tin oxide patterned electrode directly on a porous polymer membrane (pAu/ITO) as the base working electrode. The electrochemically deposited Au-hexacyanoferrate layer on pAu/ITO is used to catalyze NO oxidation to nitrite at lower applied potentials (0.65-0.75 V vs Ag/AgCl) and stabilize current output. Furthermore, use of a gas-permeable membrane to separate internal sensor compartments from the sample phase imparts excellent NO selectivity over common interfering agents (e.g., nitrite, ascorbate, ammonia, etc.) present in culture media and biological fluids. The optimized sensor design reversibly detects NO down to the approximately 1 nM level in stirred buffer and <10 nM in flowing buffer when integrated within a polymeric microfluidic device. We demonstrate utility of the channel-embedded sensor by monitoring NO generation from macrophages cultured within non-gas-permeable microchannels, as they are stimulated with endotoxin. PMID:20329749

  2. Tetrazine-based chemistry for nitrite determination in a paper microfluidic device.

    PubMed

    Ortiz-Gomez, Inmaculada; Ortega-Muñoz, Mariano; Salinas-Castillo, Alfonso; Álvarez-Bermejo, José Antonio; Ariza-Avidad, Maria; de Orbe-Payá, Ignacio; Santoyo-Gonzalez, Francisco; Capitan-Vallvey, Luis Fermin

    2016-11-01

    We present a new chemistry to determine nitrites implemented in a microfluidic paper-based analytical device (µPAD). The device is fabricated in cellulose paper with a sample reception area and three replicate detection areas with recognition chemistry immobilized by adsorption. The method involves the use of nitrite in an acid medium reaction to generate nitrous acid, which produces the oxidation of s-dihydrotetrazine: 1,2-dihydro-3,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-1,2,4,5-tetrazine (DHBPTz), which change the detection zone from colorless to pink. We used a digital camera and smartphone for the quantitative analysis of nitrite with the color coordinate S of the HSV color space as the analytical parameter. Parameters such as concentration and volume of s-dihydrotetrazine, pH, sample volume and reaction time were studied. The detection limit for this method is 1.30µM nitrite. To estimate the selectivity of the method an interference study of common ions in water samples was performed. The procedure was applied to natural water and compared with reference procedures. PMID:27591668

  3. Biocompatible benzocyclobutene (BCB)-based neural implants with micro-fluidic channel.

    PubMed

    Lee, Keekeun; He, Jiping; Clement, Ryan; Massia, Stephen; Kim, Bruce

    2004-09-15

    Poly-benzocyclobutene (BCB)-based intracortical neural implant was fabricated, in which micro-fluidic channel was embedded to deliver drug solutions. BCB presents several attractive features for chronic applications: flexibility, biocompatibility, desirable chemical and electrical properties, and can be easily manufactured using existing batch micro-fabrication technology. The fabricated implants have single shank with three recording sites (20 microm x 20 microm) and two reserviors (inlet and outlet). The channel had large volume (40 microm width and 10 microm height), and hydrophobic surface to provide a high degree of chemical inertness. All the recording sites were positioned near the end of the shank in order to increase the probability of recording neural signals from a target volume of tissue. In vitro cytotoxicity tests of prototype implants revealed no adverse toxic effects on cultured cells. The implant with a silicon backbone layer of 5-10 microm was robust enough to penetrate rat's pia without buckling, a major drawback of polymer alone. The averaged impedance value at 1 KHz was approximately 1.2 MOmega. Simultaneous recordings of neural signals from barrel cortex of a rat were successfully demonstrated.

  4. Model-based analysis of a dielectrophoretic microfluidic device for field-flow fractionation.

    PubMed

    Mathew, Bobby; Alazzam, Anas; Abutayeh, Mohammad; Stiharu, Ion

    2016-08-01

    We present the development of a dynamic model for predicting the trajectory of microparticles in microfluidic devices, employing dielectrophoresis, for Hyperlayer field-flow fractionation. The electrode configuration is such that multiple finite-sized electrodes are located on the top and bottom walls of the microchannel; the electrodes on the walls are aligned with each other. The electric potential inside the microchannel is described using the Laplace equation while the microparticles' trajectory is described using equations based on Newton's second law. All equations are solved using finite difference method. The equations of motion account for forces including inertia, buoyancy, drag, gravity, virtual mass, and dielectrophoresis. The model is used for parametric study; the geometric parameters analyzed include microparticle radius, microchannel depth, and electrode/spacing lengths while volumetric flow rate and actuation voltage are the two operating parameters considered in the study. The trajectory of microparticles is composed of transient and steady state phases; the trajectory is influenced by all parameters. Microparticle radius and volumetric flow rate, above the threshold, do not influence the steady state levitation height; microparticle levitation is not possible below the threshold of the volumetric flow rate. Microchannel depth, electrode/spacing lengths, and actuation voltage influence the steady-state levitation height.

  5. A microfluidics-based in vitro model of the gastrointestinal human–microbe interface

    PubMed Central

    Shah, Pranjul; Fritz, Joëlle V.; Glaab, Enrico; Desai, Mahesh S.; Greenhalgh, Kacy; Frachet, Audrey; Niegowska, Magdalena; Estes, Matthew; Jäger, Christian; Seguin-Devaux, Carole; Zenhausern, Frederic; Wilmes, Paul

    2016-01-01

    Changes in the human gastrointestinal microbiome are associated with several diseases. To infer causality, experiments in representative models are essential, but widely used animal models exhibit limitations. Here we present a modular, microfluidics-based model (HuMiX, human–microbial crosstalk), which allows co-culture of human and microbial cells under conditions representative of the gastrointestinal human–microbe interface. We demonstrate the ability of HuMiX to recapitulate in vivo transcriptional, metabolic and immunological responses in human intestinal epithelial cells following their co-culture with the commensal Lactobacillus rhamnosus GG (LGG) grown under anaerobic conditions. In addition, we show that the co-culture of human epithelial cells with the obligate anaerobe Bacteroides caccae and LGG results in a transcriptional response, which is distinct from that of a co-culture solely comprising LGG. HuMiX facilitates investigations of host–microbe molecular interactions and provides insights into a range of fundamental research questions linking the gastrointestinal microbiome to human health and disease. PMID:27168102

  6. Formic acid microfluidic fuel cell based on well-defined Pd nanocubes

    NASA Astrophysics Data System (ADS)

    Moreno-Zuria, A.; Dector, A.; Arjona, N.; Guerra-Balcázar, M.; Ledesma-García, J.; Esquivel, J. P.; Sabaté, N.; Arrriaga, L. G.; Chávez-Ramírez, A. U.

    2013-12-01

    Microfluidic fuel cells (μFFC) are emerging as a promising solution for small-scale power demands. The T-shaped architecture of the μFFC promotes a laminar flow regimen between the catholyte and anolyte streams excluding the use of a membrane, this property allows a simplest design and the use of several micromachining techniques based on a lab-on-chip technologies. This work presents a combination of new materials and low cost fabrication processes to develop a light, small, flexible and environmental friendly device able to supply the energy demand of some portable devices. Well-defined and homogeneous Pd nanocubes which exhibited the (100) preferential crystallographic plane were supported on Vulcan carbon and used as anodic electrocatalyst in a novel and compact design of a SU-8 μFFC feeded with formic acid as fuel. The SU-8 photoresist properties and the organic microelectronic technology were important factors to reduce the dimensions of the μFFC structure. The results obtained from polarization and power density curves exhibited the highest power density (8.3 mW cm-2) reported in literature for direct formic acid μFFCs.

  7. Droplet based microfluidics: spectroscopic characterization of levofloxacin and its SERS detection.

    PubMed

    Hidi, I J; Jahn, M; Weber, K; Cialla-May, D; Popp, J

    2015-09-01

    Levofloxacin (Levo), a second generation fluoroquinolone, has both clinical and environmental relevance. Therefore, the implementation of fast, robust and cost effective techniques for its monitoring is required. Here, its spectroscopic characterization and its detection in aqueous environment were carried out using surface enhanced Raman spectroscopy combined with droplet based microfluidics. The Levo molecule interacts with the silver nanoparticles via the carboxylate group and it adopts an upright or slightly tilted orientation. Furthermore, it is shown that the presence of Cl(-) ions has a strong influence on the enhancement efficiency of the Raman signal of the target molecule. Thus, for the determination of the limit of detection (LOD) the measurements were carried out in the absence of any electrolytes. The estimated LOD is ∼0.8 μM and the linear dynamic window ranges between 1-15 μM. These results were achieved after the normalization of the SERS signal to the Raman mode at 230 cm(-1). This band was attributed to the ν(Ag-O) stretching and it accounts for the Levo molecules in the first layer on the Ag nanoparticles.

  8. Robust Extraction Interface for Coupling Droplet-Based and Continuous Flow Microfluidics

    SciTech Connect

    Sun, Xuefei; Tang, Keqi; Smith, Richard D.; Kelly, Ryan T.

    2012-03-07

    Reliable and highly efficient extraction of droplets from oil to aqueous phase is key for downstream coupling with chemical separations and nonoptical detection methods such as amperometry and mass spectrometry. This paper presents an improved interface providing robust extraction for droplet-based poly(dimethylsiloxane) (PDMS) microfluidic devices. The extraction interface consists of an array of cylindrical posts with narrow apertures in between. The aqueous flow channel into which droplets coalesced was simply and selectively modified to be hydrophilic, while the continuous oil phase flow channel that contained encapsulated aqueous droplets retained a hydrophobic surface. The different surfaces on both sides of the extraction region form a highly stable liquid interface between the two immiscible phases, allowing rapid droplet transfer to the aqueous stream. Entire droplets could be completely extracted within broad ranges of aqueous and oil flow rates (0 - 1 and 0.1 - 1 uL/min, respectively). After extraction, the droplet contents could be transported electrophoretically or by pressure-driven flow to a monolithically integrated emitter for nano-electrospray ionization mass spectrometry (nanoESI-MS) analysis. This interface should be amenable to the separation and identification of droplet contents and on-line monitoring of in-droplet reactions.

  9. Paper-based microfluidics: fabrication technique and dynamics of capillary-driven surface flow.

    PubMed

    Songok, Joel; Tuominen, Mikko; Teisala, Hannu; Haapanen, Janne; Mäkelä, Jyrki; Kuusipalo, Jurkka; Toivakka, Martti

    2014-11-26

    Paper-based devices provide an alternative technology for simple, low-cost, portable, and disposable diagnostic tools for many applications, including clinical diagnosis, food quality control, and environmental monitoring. In this study we report a two-step fabrication process for creating two-dimensional microfluidic channels to move liquids on a hydrophobized paper surface. A highly hydrophobic surface was created on paper by TiO2 nanoparticle coating using a high-speed, roll-to-roll liquid flame spray technique. The hydrophilic pattern was then generated by UV irradiation through a photomask utilizing the photocatalytic property of TiO2. The flow dynamics of five model liquids with differing surface tensions 48-72 mN·m(-1) and viscosities 1-15 mN·m(-2) was studied. The results show that the liquid front (l) in a channel advances in time (t) according to the power law l=Zt0.5 (Z is an empirical constant which depend on the liquid properties and channel dimensions). The flow dynamics of the liquids with low viscosity show a dependence on the channel width and the droplet volume, while the flow of liquids with high viscosity is mainly controlled by the viscous forces.

  10. A Microfluidic Paper-Based Analytical Device for Rapid Quantification of Particulate Chromium

    PubMed Central

    Rattanarat, Poomrat; Dungchai, Wijitar; Cate, David M.; Siangproh, Weena; Volckens, John; Chailapakul, Orawon; Henry, Charles S.

    2013-01-01

    Occupational exposure to Cr is concerning because of its myriad of health effects. Assessing chromium exposure is also cost and resource intensive because the analysis typically uses sophisticated instrumental techniques like Inductively-Coupled Plasma-Mass Spectrometry (ICP-MS). Here, we report a novel, simple, inexpensive microfluidic paper-based analytical device (µPAD) for measuring total Cr in airborne particulate matter. In the µPAD, tetravalent cerium (Ce(IV)) was used in a pretreatment zone to oxidize all soluble Cr to Cr(VI). After elution to the detection zone, Cr(VI) reacts with 1,5-diphenylcarbazide (1,5- DPC) forming 1,5-diphenylcarbazone (DPCO) and Cr(III). The resulting Cr(III) forms a distinct purple colored complex with the DPCO. As proof-of-principle, particulate matter (PM) collected on a sample filter was analyzed with the µPAD to quantify the mass of total Cr. A log-linear working range (0.23–3.75 µg; r2=0.998) between Cr and color intensity was obtained with a detection limit of 0.12 µg. For validation, a certified reference containing multiple competing metals was analyzed. Quantitative agreement was obtained between known Cr levels in the sample and the Cr measured using the µPAD. PMID:24120167

  11. Model-based analysis of a dielectrophoretic microfluidic device for field-flow fractionation.

    PubMed

    Mathew, Bobby; Alazzam, Anas; Abutayeh, Mohammad; Stiharu, Ion

    2016-08-01

    We present the development of a dynamic model for predicting the trajectory of microparticles in microfluidic devices, employing dielectrophoresis, for Hyperlayer field-flow fractionation. The electrode configuration is such that multiple finite-sized electrodes are located on the top and bottom walls of the microchannel; the electrodes on the walls are aligned with each other. The electric potential inside the microchannel is described using the Laplace equation while the microparticles' trajectory is described using equations based on Newton's second law. All equations are solved using finite difference method. The equations of motion account for forces including inertia, buoyancy, drag, gravity, virtual mass, and dielectrophoresis. The model is used for parametric study; the geometric parameters analyzed include microparticle radius, microchannel depth, and electrode/spacing lengths while volumetric flow rate and actuation voltage are the two operating parameters considered in the study. The trajectory of microparticles is composed of transient and steady state phases; the trajectory is influenced by all parameters. Microparticle radius and volumetric flow rate, above the threshold, do not influence the steady state levitation height; microparticle levitation is not possible below the threshold of the volumetric flow rate. Microchannel depth, electrode/spacing lengths, and actuation voltage influence the steady-state levitation height. PMID:27322871

  12. PDMS-based microfluidic lasers using whispering gallery modes for lab-on-a-chip applications

    NASA Astrophysics Data System (ADS)

    Suter, Jonathan D.; Howard, Daniel J.; Hoppmann, Eric; White, Ian M.; Fan, Xudong

    2010-02-01

    Microfluidic lasers, which utilize liquid as a gain medium, are of great interest for lab-on-a-chip devices due to their small size, tunability, and cost-effectiveness. We demonstrate a soft-lithography-based opto-fluidic ring resonator (OFRR) laser which can be produced in arrays of identical rings in polydimethyl siloxane (PDMS). The PDMS structures are produced from a silicon mold fabricated using reactive ion etching (RIE) and are both robust and reusable. Using rhodamine 6G in a tetraethylene glycol (TEG) dye solvent provides enough refractive index contrast with PDMS to generate a multimode lasing signal from rings 200 to 400 microns in diameter and lasing thresholds of 2.7 μJ/mm2 centered around 580 nm. These rings are coupled to liquid waveguides which conveniently direct the lasing emission to other on-chip devices. Since the rings and waveguides are not in fluidic contact, many rings may potentially be coupled into a single waveguide for multi-color emission. Separating the ring and waveguide fluidics also prevents unwanted absorption of the lasing signal by extra dye molecules.

  13. A simple separation method with a microfluidic channel based on alternating current potential modulation.

    PubMed

    Noh, Hui-Bog; Chandra, Pranjal; Kim, You-Jeong; Shim, Yoon-Bo

    2012-11-20

    A simple separation and detection system based on an electrochemical potential modulated microchannel (EPMM) device was developed for the first time. The application of alternating current (AC) potential to the microfluidic separation channel walls, which were composed of screen printed carbon electrodes, resulted in the oscillation and fluctuation of analytes and in the formation of a perfect flat flow front. These events resulted in an increase in the effective concentration and in the fine separation of samples. The performance of the EPMM device was examined through the analysis of endocrine disruptors (EDs) and heavy metal ions (HMIs) as model compounds. The analytical parameters that affected the separation and detection of EDs and HMIs were studied in terms of AC amplitude, AC frequency, flow rate, buffer concentration, pH, detection potential, and temperature. The separation efficiency was evaluated through measurements of the theoretical plate number (N), the retention time, and the half-peak width. Linear calibration plots for the detection of EDs and HMIs were obtained between 0.15 and 250.0 nM (detection limit 86.4 ± 2.9 pM) and between 0.01 and 10.0 nM (detection limit 9.5 ± 0.3 pM), respectively. The new device was successfully demonstrated with authentic and real samples. PMID:23075295

  14. A contact line pinning based microfluidic device for modeling intramural and interstitial flows

    NASA Astrophysics Data System (ADS)

    Tung, Chih-Kuan; Krupa, Oleh; Apaydin, Elif; Liou-Jiun, J. R.; Diaz-Santana, Anthony; Stroock, Abraham; Wu, Mingming

    2013-03-01

    Fluid flows critically regulate a number of important physiological processes in living systems such as vascular tissue development, immune cell and tumor cell trafficking. However, tools for creating well defined intramural (flow within a vascular tube) and interstitial (flow within a tissue) flows in a physiologically realistic, 3D setting are limited. We will present a contact line pinning based microfluidic platform that is able to create a spatially uniform interstitial flow within a cell embedded biomatrix (type I collagen); and an intramural flow within an engineered vascular tube lined with HUVECs. The created interstitial flow were characterized using a Fluorescence Recovery after Photobleaching (FRAP), to be in the range of 1.2 - 16 μm/s. The intramural flow was measured using a particle tracking method, to be in the range of 6 - 30 μm/s. We further demonstrate that interstitial fluid flows modulate breast tumor cell (MDA-MD-231) morphology heterogeneity and plasticity. We will also discuss the influence of fluid flow on cancer cell migration. Support for this work is provided by National Health Institute R21CA138366. This work was performed in part at the Cornell NanoScale Facility and Nanobiotechnology Center.

  15. Microfluidic-based fabrication, characterization and magnetic functionalization of microparticles with novel internal anisotropic structure

    PubMed Central

    Qiu, Yang; Wang, Fei; Liu, Ying-Mei; Wang, Wei; Chu, Liang-Yin; Wang, Hua-Lin

    2015-01-01

    Easy fabrication and independent control of the internal and external morphologies of core-shell microparticles still remain challenging. Core-shell microparticle comprised of a previously unknown internal anisotropic structure and a spherical shell was fabricated by microfluidic-based emulsificaiton and photopolymerization. The interfacial and spatial 3D morphology of the anisotropic structure were observed by SEM and micro-CT respectively. Meanwhile, a series of layer-by-layer scans of the anisotropic structure were obtained via the micro-CT, which enhanced the detail characterization and analysis of micro materials. The formation mechanism of the internal anisotropic structure may be attributed to solution-directed diffusion caused by the semipermeable membrane structure and chemical potential difference between inside and outside of the semipermeable membrane-like polymerized shell. The morphology evolution of the anisotropic structure was influenced and controlled by adjusting reaction parameters including polymerization degree, polymerization speed, and solute concentration difference. The potential applications of these microparticles in microrheological characterization and image enhancement were also proposed by embedding magnetic nanoparticles in the inner core. PMID:26268148

  16. Determination of Apparent Amylose Content in Rice by Using Paper-Based Microfluidic Chips.

    PubMed

    Hu, Xianqiao; Lu, Lin; Fang, Changyun; Duan, Binwu; Zhu, Zhiwei

    2015-11-11

    Determination of apparent amylose content in rice is a key function for rice research and the rice industry. In this paper, a novel approach with paper-based microfluidic chip is reported to determine apparent amylose content in rice. The conventional color reaction between amylose and iodine was employed. Blue color of amylose-iodine complex generated on-chip was converted to gray and measured with Photoshop after the colored chip was scanned. The method for preparation of the paper chip is described. In situ generation of iodine for on-chip color reaction was designed, and factors influencing color reaction were investigated in detail. Elimination of yellow color interference of excess iodine by exploiting color removal function of Photoshop was presented. Under the optimized conditions, apparent amylose content in rice ranging from 1.5 to 26.4% can be determined, and precision was 6.3%. The analytical results obtained with the developed approach were in good agreement with those with the continuous flow analyzer method.

  17. Microfluidic immunomagnetic cell separation from whole blood.

    PubMed

    Bhuvanendran Nair Gourikutty, Sajay; Chang, Chia-Pin; Puiu, Poenar Daniel

    2016-02-01

    Immunomagnetic-based separation has become a viable technique for the separation of cells and biomolecules. Here we report on the design and analysis of a simple and efficient microfluidic device for high throughput and high efficiency capture of cells tagged with magnetic particles. This is made possible by using a microfluidic chip integrated with customized arrays of permanent magnets capable of creating large magnetic field gradients, which determine the effective capturing of the tagged cells. This method is based on manipulating the cells which are under the influence of a combination of magnetic and fluid dynamic forces in a fluid under laminar flow through a microfluidic chip. A finite element analysis (FEA) model is developed to analyze the cell separation process and predict its behavior, which is validated subsequently by the experimental results. The magnetic field gradients created by various arrangements of magnetic arrays have been simulated using FEA and the influence of these field gradients on cell separation has been studied with the design of our microfluidic chip. The proof-of-concept for the proposed technique is demonstrated by capturing white blood cells (WBCs) from whole human blood. CD45-conjugated magnetic particles were added into whole blood samples to label WBCs and the mixture was flown through our microfluidic device to separate the labeled cells. After the separation process, the remaining WBCs in the elute were counted to determine the capture efficiency, and it was found that more than 99.9% WBCs have been successfully separated from whole blood. The proposed design can be used for positive selection as well as for negative enrichment of rare cells. PMID:26773879

  18. Microfluidics-based devices: New tools for studying cancer and cancer stem cell migration

    PubMed Central

    Huang, Yu; Agrawal, Basheal; Sun, Dandan; Kuo, John S.; Williams, Justin C.

    2011-01-01

    Cell movement is highly sensitive to stimuli from the extracellular matrix and media. Receptors on the plasma membrane in cells can activate signal transduction pathways that change the mechanical behavior of a cell by reorganizing motion-related organelles. Cancer cells change their migration mechanisms in response to different environments more robustly than noncancer cells. Therefore, therapeutic approaches to immobilize cancer cells via inhibition of the related signal transduction pathways rely on a better understanding of cell migration mechanisms. In recent years, engineers have been working with biologists to apply microfluidics technology to study cell migration. As opposed to conventional cultures on dishes, microfluidics deals with the manipulation of fluids that are geometrically constrained to a submillimeter scale. Such small scales offer a number of advantages including cost effectiveness, low consumption of reagents, high sensitivity, high spatiotemporal resolution, and laminar flow. Therefore, microfluidics has a potential as a new platform to study cell migration. In this review, we summarized recent progress on the application of microfluidics in cancer and other cell migration researches. These studies have enhanced our understanding of cell migration and cancer invasion as well as their responses to subtle variations in their microenvironment. We hope that this review will serve as an interdisciplinary guidance for both biologists and engineers as they further develop the microfluidic toolbox toward applications in cancer research. PMID:21522502

  19. Understanding wax screen-printing: a novel patterning process for microfluidic cloth-based analytical devices.

    PubMed

    Liu, Min; Zhang, Chunsun; Liu, Feifei

    2015-09-01

    In this work, we first introduce the fabrication of microfluidic cloth-based analytical devices (μCADs) using a wax screen-printing approach that is suitable for simple, inexpensive, rapid, low-energy-consumption and high-throughput preparation of cloth-based analytical devices. We have carried out a detailed study on the wax screen-printing of μCADs and have obtained some interesting results. Firstly, an analytical model is established for the spreading of molten wax in cloth. Secondly, a new wax screen-printing process has been proposed for fabricating μCADs, where the melting of wax into the cloth is much faster (∼5 s) and the heating temperature is much lower (75 °C). Thirdly, the experimental results show that the patterning effects of the proposed wax screen-printing method depend to a certain extent on types of screens, wax melting temperatures and melting time. Under optimized conditions, the minimum printing width of hydrophobic wax barrier and hydrophilic channel is 100 μm and 1.9 mm, respectively. Importantly, the developed analytical model is also well validated by these experiments. Fourthly, the μCADs fabricated by the presented wax screen-printing method are used to perform a proof-of-concept assay of glucose or protein in artificial urine with rapid high-throughput detection taking place on a 48-chamber cloth-based device and being performed by a visual readout. Overall, the developed cloth-based wax screen-printing and arrayed μCADs should provide a new research direction in the development of advanced sensor arrays for detection of a series of analytes relevant to many diverse applications. PMID:26388382

  20. Understanding wax screen-printing: a novel patterning process for microfluidic cloth-based analytical devices.

    PubMed

    Liu, Min; Zhang, Chunsun; Liu, Feifei

    2015-09-01

    In this work, we first introduce the fabrication of microfluidic cloth-based analytical devices (μCADs) using a wax screen-printing approach that is suitable for simple, inexpensive, rapid, low-energy-consumption and high-throughput preparation of cloth-based analytical devices. We have carried out a detailed study on the wax screen-printing of μCADs and have obtained some interesting results. Firstly, an analytical model is established for the spreading of molten wax in cloth. Secondly, a new wax screen-printing process has been proposed for fabricating μCADs, where the melting of wax into the cloth is much faster (∼5 s) and the heating temperature is much lower (75 °C). Thirdly, the experimental results show that the patterning effects of the proposed wax screen-printing method depend to a certain extent on types of screens, wax melting temperatures and melting time. Under optimized conditions, the minimum printing width of hydrophobic wax barrier and hydrophilic channel is 100 μm and 1.9 mm, respectively. Importantly, the developed analytical model is also well validated by these experiments. Fourthly, the μCADs fabricated by the presented wax screen-printing method are used to perform a proof-of-concept assay of glucose or protein in artificial urine with rapid high-throughput detection taking place on a 48-chamber cloth-based device and being performed by a visual readout. Overall, the developed cloth-based wax screen-printing and arrayed μCADs should provide a new research direction in the development of advanced sensor arrays for detection of a series of analytes relevant to many diverse applications.

  1. Parallel-plate lab-on-a-chip based on digital microfluidics for on-chip electrochemical analysis

    NASA Astrophysics Data System (ADS)

    Yu, Yuhua; Chen, Jianfeng; Zhou, Jia

    2014-01-01

    This paper describes an electrowetting on dielectric (EWOD) digital microfluidic-based lab-on-a-chip (LOC) integrated with on-chip electrochemical microsensor by IC compatible fabrication process, and its application for the entire online biosensing process capable of fully automatic analysis for ferrocenemethanol (FcM) and dopamine (DA). In this work, we made full use of the parallel-plate structure of the EWOD digital microfluidic device to fabricate the microfluidic module on the bottom plate and the three-microelectrode-system-integrated electrochemical cell together with patterned ground electrode on the top plate. The proposed LOC possesses the multifunction of: (1) creating, merging and transporting of microliter-level sample droplets, (2) online biosensing, and (3) droplets recycling. The three-electrode-integrated microsensor not only reveals a sensitive electrochemical detection for FcM in a wide concentration range (10 µM-1.0 mM), but also shows good stability, selectivity and reproducibility for surface-controlled detection of DA. The calibration of DA was linear for concentration from 1.0 to 50.0 µM with a high sensitivity of 2145 nA µM-1 cm-2 (R2 = 0.9933) and estimated detection limit of 0.42 µM (signal/noise ratio of 3). This work shows the promise of state-of-the-art digital microfluidic biosensors for fully automatic online bioanalysis in a future LOC to perform on-chip biomedical protocols in vitro diagnostic assays.

  2. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review.

    PubMed

    Xia, Yanyan; Si, Jin; Li, Zhiyang

    2016-03-15

    Paper is increasingly recognized as a user-friendly and ubiquitous substrate for construction of microfluidic devices. Microfluidic paper-based analytical devices (μPADs) provide an alternative technology for development of affordable, portable, disposable and low-cost diagnostic tools for improving point of care testing (POCT) and disease screening in the developing world, especially in those countries with no- or low-infrastructure and limited trained medical and health professionals. We in this review present fabrication techniques for microfluidic devices and their respective applications for biological detection as reported to date. These include: (i) fabrication techniques: examples of devices fabricated by using two-dimensional (2D) and three-dimensional (3D) methods; (ii) detection application: biochemical, immunological and molecular detection by incorporating efficient detection methods such as, colorimetric detection, electrochemical detection, fluorescence detection, chemiluminescence (CL) detection, electrochemiluninescence (ECL) detection, photoelectrochemi (PEC) detection and so on. In addition, main advantages, disadvantages and future trends for the devices are also discussed in this review.

  3. A label-free microfluidic biosensor for activity detection of single microalgae cells based on chlorophyll fluorescence.

    PubMed

    Wang, Junsheng; Sun, Jinyang; Song, Yongxin; Xu, Yongyi; Pan, Xinxiang; Sun, Yeqing; Li, Dongqing

    2013-11-26

    Detection of living microalgae cells is very important for ballast water treatment and analysis. Chlorophyll fluorescence is an indicator of photosynthetic activity and hence the living status of plant cells. In this paper, we developed a novel microfluidic biosensor system that can quickly and accurately detect the viability of single microalgae cells based on chlorophyll fluorescence. The system is composed of a laser diode as an excitation light source, a photodiode detector, a signal analysis circuit, and a microfluidic chip as a microalgae cell transportation platform. To demonstrate the utility of this system, six different living and dead algae samples (Karenia mikimotoi Hansen, Chlorella vulgaris, Nitzschia closterium, Platymonas subcordiformis, Pyramidomonas delicatula and Dunaliella salina) were tested. The developed biosensor can distinguish clearly between the living microalgae cells and the dead microalgae cells. The smallest microalgae cells that can be detected by using this biosensor are 3 μm ones. Even smaller microalgae cells could be detected by increasing the excitation light power. The developed microfluidic biosensor has great potential for in situ ballast water analysis.

  4. Continuous-flow microfluidic printing of proteins for array-based applications including surface plasmon resonance imaging.

    PubMed

    Natarajan, Sriram; Katsamba, Phini S; Miles, Adam; Eckman, Josh; Papalia, Giuseppe A; Rich, Rebecca L; Gale, Bruce K; Myszka, David G

    2008-02-01

    Arraying proteins is often more challenging than creating oligonucleotide arrays. Protein concentration and purity can severely limit the capacity of spots created by traditional pin and ink jet printing techniques. To improve protein printing methods, we have developed a three-dimensional microfluidic system to deposit protein samples within discrete spots (250-microm squares) on a target surface. Our current technology produces a 48-spot array within a 0.5 x 1 cm target area. A chief advantage of this method is that samples may be introduced in continuous flow, which makes it possible to expose each spot to a larger volume of sample than would be possible with standard printing methods. Using Biacore Flexchip (Biacore AB) surface plasmon resonance array-based biosensor as a chip reader, we demonstrate that the microfluidic printer is capable of spotting proteins that are dilute (<0.1 microg/ml) and contain high concentrations of contaminating protein (>10,000-fold molar excess). We also show that the spots created by the microfluidic printer are more uniform and have better-defined borders than what can be achieved with pin printing. The ability to readily print proteins using continuous flow will help expand the application of protein arrays.

  5. A microfluidic platform using molecular beacon-based temperature calibration for thermal dehybridization of surface-bound DNA.

    PubMed

    Dodge, Arash; Turcatti, Gerardo; Lawrence, Isabelle; de Rooij, Nico F; Verpoorte, Elisabeth

    2004-03-15

    This work presents a simple microfluidic device with an integrated thin-film heater for studies of DNA hybridization kinetics and double-stranded DNA melting temperature measurements. The heating characteristics of the device were evaluated with a novel, noninvasive indirect technique using molecular beacons as temperature probes inside reaction chambers. This is the first microfluidic device in which thermal dehybridization of surface-bound oligonucleotides was performed for measurement of double-stranded DNA melting temperatures with +/- 1 degrees C precision. Surface modification and oligonucleotide immobilization were performed by continuously flowing reagents through the microchannels. The resulting reproducibility of oligonucleotide surface densities, at 9% RSD, was better than for the same modification chemistries on glass slides in unstirred reagent solutions (RSD=20%). Moreover, the surface density of immobilized DNA probe molecules could be varied controllably by changing the concentration of the reagent solution used for immobilization. Thus, excellent control of surface characteristics was made possible, something which is often difficult to achieve with larger devices. Solid-phase hybridization reactions, a fundamental aspect of microarray technologies often taking several hours in conventional systems, were reduced to minutes in this device. It was also possible to determine forward rate constants for hybridization, k. These varied from 820,000 to 72,000 M(-1) s(-1), decreasing as surface densities increased. Surface densities could therefore be optimized to obtain rapid hybridization using such an approach. Taken together, this combined microfluidic/small-volume heating approach represents a powerful tool for surface-based DNA analysis.

  6. Development of an aptamer-based impedimetric bioassay using microfluidic system and magnetic separation for protein detection.

    PubMed

    Wang, Yixian; Ye, Zunzhong; Ping, Jianfeng; Jing, Shunru; Ying, Yibin

    2014-09-15

    An aptamer-based impedimetric bioassay using the microfluidic system and magnetic separation was developed for the sensitive and rapid detection of protein. The microfluidic impedance device was fabricated through integrating the gold interdigitated array microelectrode into a flow cell made of polydimethylsiloxane (PDMS). Aptamer modified magnetic beads were used to capture and separate the target protein, and concentrated into a suitable volume. Then the complexes were injected into the microfluidic flow cell for impedance measurement. To demonstrate the high performance of this novel detection system, thrombin was employed as the target protein. The results showed that the impedance signals at the frequency of 90 kHz have a good linearity with the concentrations of thrombin in a range from 0.1 nM to 10nM and the detection limit is 0.01 nM. Compared with the reported impedimetric aptasensors for thrombin detection, this method possesses several advantages, such as the increasing sensitivity, improving reproducibility, reducing sample volume and assay time. All these demonstrate the proposed detection system is an alternative way to enable sensitive, rapid and specific detection of protein. PMID:24709326

  7. Interfacial tension based on-chip extraction of microparticles confined in microfluidic Stokes flows

    NASA Astrophysics Data System (ADS)

    Huang, Haishui; He, Xiaoming

    2014-10-01

    Microfluidics involving two immiscible fluids (oil and water) has been increasingly used to produce hydrogel microparticles with wide applications. However, it is difficult to extract the microparticles out of the microfluidic Stokes flows of oil that have a Reynolds number (the ratio of inertia to viscous force) much less than one, where the dominant viscous force tends to drive the microparticles to move together with the surrounding oil. Here, we present a passive method for extracting hydrogel microparticles in microfluidic Stokes flow from oil into aqueous extracting solution on-chip by utilizing the intrinsic interfacial tension between oil and the microparticles. We further reveal that the thickness of an "extended confining layer" of oil next to the interface between oil and aqueous extracting solution must be smaller than the radius of microparticles for effective extraction. This method uses a simple planar merging microchannel design that can be readily fabricated and further integrated into a fluidic system to extract microparticles for wide applications.

  8. Centrifugal microfluidics for biomedical applications.

    PubMed

    Gorkin, Robert; Park, Jiwoon; Siegrist, Jonathan; Amasia, Mary; Lee, Beom Seok; Park, Jong-Myeon; Kim, Jintae; Kim, Hanshin; Madou, Marc; Cho, Yoon-Kyoung

    2010-07-21

    The centrifugal microfluidic platform has been a focus of academic and industrial research efforts for almost 40 years. Primarily targeting biomedical applications, a range of assays have been adapted on the system; however, the platform has found limited commercial success as a research or clinical tool. Nonetheless, new developments in centrifugal microfluidic technologies have the potential to establish wide-spread utilization of the platform. This paper presents an in-depth review of the centrifugal microfluidic platform, while highlighting recent progress in the field and outlining the potential for future applications. An overview of centrifugal microfluidic technologies is presented, including descriptions of advantages of the platform as a microfluidic handling system and the principles behind centrifugal fluidic manipulation. The paper also discusses a history of significant centrifugal microfluidic platform developments with an explanation of the evolution of the platform as it pertains to academia and industry. Lastly, we review the few centrifugal microfluidic-based sample-to-answer analysis systems shown to date and examine the challenges to be tackled before the centrifugal platform can be more broadly accepted as a new diagnostic platform. In particular, fully integrated, easy to operate, inexpensive and accurate microfluidic tools in the area of in vitro nucleic acid diagnostics are discussed.

  9. 96-well format-based microfluidic platform for parallel interconnection of multiple multicellular spheroids.

    PubMed

    Kim, Jin-Young; Fluri, David A; Kelm, Jens M; Hierlemann, Andreas; Frey, Olivier

    2015-06-01

    In this article, we present a microfluidic platform, compatible with conventional 96-well formats, that enables facile and parallelized culturing and testing of spherical microtissues in a standard incubator. The platform can accommodate multiple microtissues (up to 66) of different cell types, formed externally by using the hanging-drop method, and enables microtissue interconnection through microfluidic channels for continuous media perfusion or dosage of substances. The platform contains 11 separate channels, and each channel has six tissue compartments. Primary rat liver tissues were cultured over 8 days, and multiple tumor tissues (HCT116) were exposed to various concentrations of 5-fluorouracil for platform characterization.

  10. Punch Card Programmable Microfluidics

    PubMed Central

    Korir, George; Prakash, Manu

    2015-01-01

    Small volume fluid handling in single and multiphase microfluidics provides a promising strategy for efficient bio-chemical assays, low-cost point-of-care diagnostics and new approaches to scientific discoveries. However multiple barriers exist towards low-cost field deployment of programmable microfluidics. Incorporating multiple pumps, mixers and discrete valve based control of nanoliter fluids and droplets in an integrated, programmable manner without additional required external components has remained elusive. Combining the idea of punch card programming with arbitrary fluid control, here we describe a self-contained, hand-crank powered, multiplex and robust programmable microfluidic platform. A paper tape encodes information as a series of punched holes. A mechanical reader/actuator reads these paper tapes and correspondingly executes operations onto a microfluidic chip coupled to the platform in a plug-and-play fashion. Enabled by the complexity of codes that can be represented by a series of holes in punched paper tapes, we demonstrate independent control of 15 on-chip pumps with enhanced mixing, normally-closed valves and a novel on-demand impact-based droplet generator. We demonstrate robustness of operation by encoding a string of characters representing the word “PUNCHCARD MICROFLUIDICS” using the droplet generator. Multiplexing is demonstrated by implementing an example colorimetric water quality assays for pH, ammonia, nitrite and nitrate content in different water samples. With its portable and robust design, low cost and ease-of-use, we envision punch card programmable microfluidics will bring complex control of microfluidic chips into field-based applications in low-resource settings and in the hands of children around the world. PMID:25738834

  11. Blood coagulation screening using a paper-based microfluidic lateral flow device.

    PubMed

    Li, H; Han, D; Pauletti, G M; Steckl, A J

    2014-10-21

    A simple approach to the evaluation of blood coagulation using a microfluidic paper-based lateral flow assay (LFA) device for point-of-care (POC) and self-monitoring screening is reported. The device utilizes whole blood, without the need for prior separation of plasma from red blood cells (RBC). Experiments were performed using animal (rabbit) blood treated with trisodium citrate to prevent coagulation. CaCl2 solutions of varying concentrations are added to citrated blood, producing Ca(2+) ions to re-establish the coagulation cascade and mimic different blood coagulation abilities in vitro. Blood samples are dispensed into a paper-based LFA device consisting of sample pad, analytical membrane and wicking pad. The porous nature of the cellulose membrane separates the aqueous plasma component from the large blood cells. Since the viscosity of blood changes with its coagulation ability, the distance RBCs travel in the membrane in a given time can be related to the blood clotting time. The distance of the RBC front is found to decrease linearly with increasing CaCl2 concentration, with a travel rate decreasing from 3.25 mm min(-1) for no added CaCl2 to 2.2 mm min(-1) for 500 mM solution. Compared to conventional plasma clotting analyzers, the LFA device is much simpler and it provides a significantly larger linear range of measurement. Using the red colour of RBCs as a visible marker, this approach can be utilized to produce a simple and clear indicator of whether the blood condition is within the appropriate range for the patient's condition.

  12. A Microfluidic Paper-Based Analytical Device (μPAD) for Aerosol Oxidative Activity

    PubMed Central

    Sameenoi, Yupaporn; Panymeesamer, Pantila; Supalakorn, Natcha; Koehler, Kirsten; Chailapakul, Orawon; Henry, Charles S.; Volckens, John

    2013-01-01

    Human exposure to particulate matter (PM) air pollution has been linked with respiratory, cardiovascular, and neurodegenerative diseases, in addition to various cancers. Consistent among all of these associations is the hypothesis that PM induces inflammation and oxidative stress in the affected tissue. Consequently, a variety of assays have been developed to quantify the oxidative activity of PM as a means to characterize its ability to induced oxidative stress. The vast majority of these assays rely on high-volume, fixed-location sampling methods due to limitations in assay sensitivity and detection limit. As a result, our understanding of how personal exposure contributes to the intake of oxidative air pollution is limited. To further this understanding, we present a microfluidic paper-based analytical device (μPAD) for measuring PM oxidative activity on filters collected by personal sampling. The μPAD is inexpensive to fabricate and provides fast and sensitive analysis of aerosol oxidative activity. The oxidative activity measurement is based on the dithiothreitol assay (DTT assay), uses colorimetric detection, and can be completed in the field within 30 min following sample collection. The μPAD assay was validated against the traditional DTT assay using 13 extracted aerosol samples including urban aerosols, biomass burning PM, cigarette smoke and incense smoke. The results showed no significant differences in DTT consumption rate measured by the two methods. To demonstrate the utility of the approach, personal samples were collected to estimate human exposures to PM from indoor air, outdoor air on a clean day, and outdoor air on a wildfire-impacted day in Fort Collins, CO. Filter samples collected on the wildfire day gave the highest oxidative activity on a mass normalized basis, whereas typical ambient background air showed the lowest oxidative activity. PMID:23227907

  13. Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices.

    PubMed

    Yang, Xiaoxi; Forouzan, Omid; Brown, Theodore P; Shevkoplyas, Sergey S

    2012-01-21

    Many diagnostic tests in a conventional clinical laboratory are performed on blood plasma because changes in its composition often reflect the current status of pathological processes throughout the body. Recently, a significant research effort has been invested into the development of microfluidic paper-based analytical devices (μPADs) implementing these conventional laboratory tests for point-of-care diagnostics in resource-limited settings. This paper describes the use of red blood cell (RBC) agglutination for separating plasma from finger-prick volumes of whole blood directly in paper, and demonstrates the utility of this approach by integrating plasma separation and a colorimetric assay in a single μPAD. The μPAD was fabricated by printing its pattern onto chromatography paper with a solid ink (wax) printer and melting the ink to create hydrophobic barriers spanning through the entire thickness of the paper substrate. The μPAD was functionalized by spotting agglutinating antibodies onto the plasma separation zone in the center and the reagents of the colorimetric assay onto the test readout zones on the periphery of the device. To operate the μPAD, a drop of whole blood was placed directly onto the plasma separation zone of the device. RBCs in the whole blood sample agglutinated and remained in the central zone, while separated plasma wicked through the paper substrate into the test readout zones where analyte in plasma reacted with the reagents of the colorimetric assay to produce a visible color change. The color change was digitized with a portable scanner and converted to concentration values using a calibration curve. The purity and yield of separated plasma was sufficient for successful operation of the μPAD. This approach to plasma separation based on RBC agglutination will be particularly useful for designing fully integrated μPADs operating directly on small samples of whole blood.

  14. Microfluidic platforms for mechanobiology

    PubMed Central

    Polacheck, William J.; Li, Ran; Uzel, Sebastien G. M.

    2013-01-01

    Mechanotransduction has been a topic of considerable interest since early studies demonstrated a link between mechanical force and biological response. Until recently, studies of fundamental phenomena were based either on in vivo experiments with limited control or direct access, or on large-scale in vitro studies lacking many of the potentially important physiological factors. With the advent of microfluidics, many of the previous limitations of in vitro testing were eliminated or reduced through greater control or combined functionalities. At the same time, imaging capabilities were tremendously enhanced. In this review, we discuss how microfluidics has transformed the study of mechanotransduction. This is done in the context of the various cell types that exhibit force-induced responses and the new biological insights that have been elucidated. We also discuss new microfluidic studies that could produce even more realistic models of in vivo conditions by combining multiple stimuli or creating a more realistic microenvironment. PMID:23649165

  15. Protein Microarrays with Novel Microfluidic Methods: Current Advances

    PubMed Central

    Dixit, Chandra K.; Aguirre, Gerson R.

    2014-01-01

    Microfluidic-based micromosaic technology has allowed the pattering of recognition elements in restricted micrometer scale areas with high precision. This controlled patterning enabled the development of highly multiplexed arrays multiple analyte detection. This arraying technology was first introduced in the beginning of 2001 and holds tremendous potential to revolutionize microarray development and analyte detection. Later, several microfluidic methods were developed for microarray application. In this review we discuss these novel methods and approaches which leverage the property of microfluidic technologies to significantly improve various physical aspects of microarray technology, such as enhanced imprinting homogeneity, stability of the immobilized biomolecules, decreasing assay times, and reduction of the costs and of the bulky instrumentation. PMID:27600343

  16. Microfluidic paper-based analytical devices fabricated by low-cost photolithography and embossing of Parafilm®.

    PubMed

    Yu, Ling; Shi, Zhuan Zhuan

    2015-04-01

    Microfluidic paper-based analytical devices (μPADs) attract tremendous attention as an economical tool for in-field diagnosis, food safety and environmental monitoring. We innovatively fabricated 2D and 3D μPADs by photolithography-patterning microchannels on a Parafilm® and subsequently embossing them to paper. This truly low-cost, wax printer and cutter plotter independent approach offers the opportunity for researchers from resource-limited laboratories to work on paper-based analytical devices. PMID:25710591

  17. Fabry-Perot interferometer based on etched side-hole fiber for microfluidic refractive index sensing

    NASA Astrophysics Data System (ADS)

    Wu, Shengnan; Yan, Guofeng; Zhou, Bin; He, Sailing

    2015-08-01

    In this paper, we present a novel fiber-optic open-cavity Fabry-Perot interferometer (FPI), which is specially designed for microfluidic refractive index (RI) sensing. An etching Side-hole fiber (SHF) was sandwiched between in two single-mode-fibers (SMF) and then a cavity was opened up by chemical etching method in the SHF. The minute order of the etching process endow such FPIs with low cost and ease of fabrication. For further microfluidic sensing test, the FPI was integrated with a cross microfluidic slit that was fabricated through photolithography. The refractive index response of the FPI was characterized using sodium hydroxide solution with RI range from 1.3400 to 1.3470. Experimental results show that FPIs with different length of open-cavity have the similar liner RI response with different RI sensitivities. The optimal RI sensitivity of more than 1138 nm/RI can be achieved with open-cavity length of 56 μm. The temperature response was also investigated, which shows that FPIs exhibit a very low temperature cross-sensitivities of 4.00 pm/ °C and 1.95 pm/ °C corresponding FPIs with cavity length of 123 μm and 56 μm, respectively. Such good performance renders the FPI a promising in-line microfluidic sensor for temperature-insensitive RI sensing.

  18. Microfluidic rectifier based on poly(dimethylsiloxane) membrane and its application to a micropump

    PubMed Central

    Wang, Yao-Nan; Tsai, Chien-Hsiung; Fu, Lung-Ming; Lin Liou, Lung-Kai

    2013-01-01

    A microfluidic rectifier incorporating an obstructed microchannel and a PDMS membrane is proposed. During forward flow, the membrane deflects in the upward direction; thereby allowing the fluid to pass over the obstacle. Conversely, during reverse flow, the membrane seals against the obstacle, thereby closing the channel and preventing flow. It is shown that the proposed device can operate over a wide pressure range by increasing or decreasing the membrane thickness as required. A microfluidic pump is realized by integrating the rectifier with a simple stepper motor mechanism. The experimental results show that the pump can achieve a vertical left height of more than 2 m. Moreover, it is shown that a maximum flow rate of 6.3 ml/min can be obtained given a membrane thickness of 200 μm and a motor velocity of 80 rpm. In other words, the proposed microfluidic rectifier not only provides an effective means of preventing reverse flow but also permits the realization of a highly efficient microfluidic pump. PMID:24404051

  19. Ciliated micropillars for the microfluidic-based isolation of nanoscale lipid vesicles

    PubMed Central

    Wang, Zongxing; Wu, Hung-jen; Fine, Daniel; Schmulen, Jeffrey; Hu, Ye; Godin, Biana; Zhang, John X. J.; Liu, Xuewu

    2013-01-01

    We fabricate a microfluidic device consisting of ciliated micropillars, the porous silicon nanowires-on-micropillar structure. We demonstrate that the prototype device can preferentially trap exosome-like lipid vesicles, while simultaneously filtering out proteins, and cell debris. Trapped lipid vesicles can be recovered intactly by dissolving the porous nanowires in PBS buffer. PMID:23743667

  20. Microfluidic droplet-based PCR instrumentation for high-throughput gene expression profiling and biomarker discovery.

    PubMed

    Hayes, Christopher J; Dalton, Tara M

    2015-06-01

    PCR is a common and often indispensable technique used in medical and biological research labs for a variety of applications. Real-time quantitative PCR (RT-qPCR) has become a definitive technique for quantitating differences in gene expression levels between samples. Yet, in spite of this importance, reliable methods to quantitate nucleic acid amounts in a higher throughput remain elusive. In the following paper, a unique design to quantify gene expression levels at the nanoscale in a continuous flow system is presented. Fully automated, high-throughput, low volume amplification of deoxynucleotides (DNA) in a droplet based microfluidic system is described. Unlike some conventional qPCR instrumentation that use integrated fluidic circuits or plate arrays, the instrument performs qPCR in a continuous, micro-droplet flowing process with droplet generation, distinctive reagent mixing, thermal cycling and optical detection platforms all combined on one complete instrument. Detailed experimental profiling of reactions of less than 300 nl total volume is achieved using the platform demonstrating the dynamic range to be 4 order logs and consistent instrument sensitivity. Furthermore, reduced pipetting steps by as much as 90% and a unique degree of hands-free automation makes the analytical possibilities for this instrumentation far reaching. In conclusion, a discussion of the first demonstrations of this approach to perform novel, continuous high-throughput biological screens is presented. The results generated from the instrument, when compared with commercial instrumentation, demonstrate the instrument reliability and robustness to carry out further studies of clinical significance with added throughput and economic benefits. PMID:27077035

  1. Microfluidic chamber arrays for whole-organism behavior-based chemical screening†

    PubMed Central

    Srinivasan, Jagan; Sternberg, Paul W.; Gong, Emily; Schroeder, Frank C.; Lu, Hang

    2014-01-01

    The nematode Caenorhabditis elegans is an important model organism in genetic research and drug screening because of its relative simplicity, ease of maintenance, amenability to simple genetic manipulation, and relevance to human biology. However, their small size and mobility make nematodes difficult to physically manipulate, particularly with spatial and temporal precision. We have developed a microfluidic device to overcome these challenges and enable fast behavior-based chemical screening in C. elegans. The key components of this easy-to-use device allow rapid loading and housing of C. elegans in a chamber array for chemical screening. A simple two-step loading process enables simultaneous loading of a large number of animals within a few minutes without using any expensive/active off-chip components. In addition, chemicals can be precisely delivered to the worms and exchanged with high temporal precision. To demonstrate this feature and the ability to measure time dependent responses to chemicals, we characterize the transient response of worms exposed to different concentrations of anesthetics. We then use the device to study the effect of chemical signals from hermaphrodite worms on male behavior. The ability of the device to maintain a large number of free moving animals in one field of view over a long period of time permits us to demonstrate an increase in the incidence of a specific behavior in males subjected to worm-conditioned medium. Because our device allows monitoring of a large number of worms with single-animal resolution, we envision that this platform will greatly expedite chemical screening in C. elegans. PMID:21935539

  2. On the Application of Inertial Microfluidics for the Size-Based Separation of Polydisperse Cementitious Particulates

    NASA Astrophysics Data System (ADS)

    Kumar, Aditya; Lewis, Peter; Balonis, Magdalena; Di Carlo, Dino; Sant, Gaurav

    2015-06-01

    The early-age performance of concrete is determined by the properties of the cementitious binder and the evolution of its chemical reactions. The chemical reactivity, and to some extent, the composition of cementitious particles can depend on particle size. Therefore, it is valuable to physically separate cementing minerals into well-defined size classes so that the influences of both particle size and composition on reaction progress can be studied without the confounding effects of a broad particle size distribution. However, conventional particle separation methods (e.g., density fractionation, wet sieving, field-flow extraction, ultrasonification-sedimentation) are time-consuming and cumbersome and result in poor particle yields and size-selectivity, thus, making them unsuitable for processing larger volumes of cementitious powders (on the order of grams). This study applies a novel inertial microfluidics (IMF) based procedure to separate cementitious powders on the basis of their size. Special attention is paid to optimizing operating variables to ensure that particles in a fluid streamline achieve unique equilibrium positions within the device. From such positions, particles can be retrieved as per their size using symmetrical outlet configurations with tuned fluidic resistances. The approach is critically assessed in terms of: (1) its ability to separate cementitious powders into narrow size bins, and therefore its feasibility as a fractionation procedure, and (2) quantitatively relating the operating parameters to the particle yield and size selectivity. The study establishes metrics for assessing the ability of IMF methods to classify minerals and other polydisperse particles on the basis of their size.

  3. Microfluidic droplet-based PCR instrumentation for high-throughput gene expression profiling and biomarker discovery

    PubMed Central

    Hayes, Christopher J.; Dalton, Tara M.

    2015-01-01

    PCR is a common and often indispensable technique used in medical and biological research labs for a variety of applications. Real-time quantitative PCR (RT-qPCR) has become a definitive technique for quantitating differences in gene expression levels between samples. Yet, in spite of this importance, reliable methods to quantitate nucleic acid amounts in a higher throughput remain elusive. In the following paper, a unique design to quantify gene expression levels at the nanoscale in a continuous flow system is presented. Fully automated, high-throughput, low volume amplification of deoxynucleotides (DNA) in a droplet based microfluidic system is described. Unlike some conventional qPCR instrumentation that use integrated fluidic circuits or plate arrays, the instrument performs qPCR in a continuous, micro-droplet flowing process with droplet generation, distinctive reagent mixing, thermal cycling and optical detection platforms all combined on one complete instrument. Detailed experimental profiling of reactions of less than 300 nl total volume is achieved using the platform demonstrating the dynamic range to be 4 order logs and consistent instrument sensitivity. Furthermore, reduced pipetting steps by as much as 90% and a unique degree of hands-free automation makes the analytical possibilities for this instrumentation far reaching. In conclusion, a discussion of the first demonstrations of this approach to perform novel, continuous high-throughput biological screens is presented. The results generated from the instrument, when compared with commercial instrumentation, demonstrate the instrument reliability and robustness to carry out further studies of clinical significance with added throughput and economic benefits. PMID:27077035

  4. Chemistry in Microfluidic Channels

    ERIC Educational Resources Information Center

    Chia, Matthew C.; Sweeney, Christina M.; Odom, Teri W.

    2011-01-01

    General chemistry introduces principles such as acid-base chemistry, mixing, and precipitation that are usually demonstrated in bulk solutions. In this laboratory experiment, we describe how chemical reactions can be performed in a microfluidic channel to show advanced concepts such as laminar fluid flow and controlled precipitation. Three sets of…

  5. Hydrodynamic and direct-current insulator-based dielectrophoresis (H-DC-iDEP) microfluidic blood plasma separation.

    PubMed

    Mohammadi, Mahdi; Madadi, Hojjat; Casals-Terré, Jasmina; Sellarès, Jordi

    2015-06-01

    Evaluation and diagnosis of blood alterations is a common request for clinical laboratories, requiring a complex technological approach and dedication of health resources. In this paper, we present a microfluidic device that owing to a novel combination of hydrodynamic and dielectrophoretic techniques can separate plasma from fresh blood in a microfluidic channel and for the first time allows optical real-time monitoring of the components of plasma without pre- or post-processing. The microchannel is based on a set of dead-end branches at each side and is initially filled using capillary forces with a 2-μL droplet of fresh blood. During this process, stagnation zones are generated at the dead-end branches and some red blood cells (RBCs) are trapped there. An electric field is then applied and dielectrophoretic trapping of RBCs is used to prevent more RBCs entering into the channel, which works like a sieve. Besides, an electroosmotic flow is generated to sweep the rest of the RBCs from the central part of the channel. Consequently, an RBC-free zone of plasma is formed in the middle of the channel, allowing real-time monitoring of the platelet behavior. To study the generation of stagnation zones and to ensure RBC trapping in the initial constrictions, two numerical models were solved. The proposed experimental design separates up to 0.1 μL blood plasma from a 2-μL fresh human blood droplet. In this study, a plasma purity of 99 % was achieved after 7 min, according to the measurements taken by image analysis. Graphical Abstract Schematics of a real-time plasma monitoring system based on a Hydrodynamic and direct-current insulator-based dielectrophoresis microfluidic channel.

  6. Multiple enzyme-doped thread-based microfluidic system for blood urea nitrogen and glucose detection in human whole blood

    PubMed Central

    Yang, Yu-An

    2015-01-01

    This research presents a multiple enzyme-doped thread-based microfluidic system for blood urea nitrogen (BUN) and glucose detection in human whole blood. A novel enzyme-doped thread coated with a thin polyvinylchloride (PVC) membrane is produced for on-site electrochemical detection of urea and glucose in whole blood. Multiple enzymes can be directly applied to the thread without delicate pretreatment or a surface modification process prior to sealing the thread with PVC membrane. Results indicate that the developed device exhibits a good linear dynamic range for detecting urea and glucose in concentrations from 0.1 mM–10.0 mM (R2 = 0.9850) and 0.1 mM–13.0 mM (R2 = 0.9668), which is suitable for adoption in detecting the concentrations of blood urea nitrogen (BUN, 1.78–7.12 mM) and glucose (3.89–6.11 mM) in serum. The detection result also shows that the developed thread-based microfluidic system can successfully separate and detect the ions, BUN, and glucose in blood. The calculated concentrations of BUN and glucose ante cibum (glucose before meal) in the whole blood sample are 3.98 mM and 4.94 mM, respectively. The developed thread-based microfluidic system provides a simple yet high performance for clinical diagnostics. PMID:25825613

  7. Spiral-based microfluidic device for long-term time course imaging of Neurospora crassa with single nucleus resolution.

    PubMed

    Lee, Kang Kug; Labiscsak, Laszlo; Ahn, Chong H; Hong, Christian I

    2016-09-01

    Real-time imaging of fluorescent reporters plays a critical role in elucidating fundamental molecular mechanisms including circadian rhythms in the model filamentous fungus, Neurospora crassa. However, monitoring N. crassa for an extended period of time with single nucleus resolution is a technically challenging task due to hyphal growth that rapidly moves beyond a region of interest during microscopy experiments. In this report, we have proposed a two-dimensional spiral-based microfluidic platform and applied for monitoring the single-nucleus dynamics in N. crassa for long-term time course experiments. PMID:27345439

  8. Multiplexed detection of DNA sequences using a competitive displacement assay in a microfluidic SERRS-based device.

    PubMed

    Yazdi, Soroush H; Giles, Kristen L; White, Ian M

    2013-11-01

    We demonstrate sensitive and multiplexed detection of DNA sequences through a surface enhanced resonance Raman spectroscopy (SERRS)-based competitive displacement assay in an integrated microsystem. The use of the competitive displacement scheme, in which the target DNA sequence displaces a Raman-labeled reporter sequence that has lower affinity for the immobilized probe, enables detection of unlabeled target DNA sequences with a simple single-step procedure. In our implementation, the displacement reaction occurs in a microporous packed column of silica beads prefunctionalized with probe-reporter pairs. The use of a functionalized packed-bead column in a microfluidic channel provides two major advantages: (i) immobilization surface chemistry can be performed as a batch process instead of on a chip-by-chip basis, and (ii) the microporous network eliminates the diffusion limitations of a typical biological assay, which increases the sensitivity. Packed silica beads are also leveraged to improve the SERRS detection of the Raman-labeled reporter. Following displacement, the reporter adsorbs onto aggregated silver nanoparticles in a microfluidic mixer; the nanoparticle-reporter conjugates are then trapped and concentrated in the silica bead matrix, which leads to a significant increase in plasmonic nanoparticles and adsorbed Raman reporters within the detection volume as compared to an open microfluidic channel. The experimental results reported here demonstrate detection down to 100 pM of the target DNA sequence, and the experiments are shown to be specific, repeatable, and quantitative. Furthermore, we illustrate the advantage of using SERRS by demonstrating multiplexed detection. The sensitivity of the assay, combined with the advantages of multiplexed detection and single-step operation with unlabeled target sequences makes this method attractive for practical applications. Importantly, while we illustrate DNA sequence detection, the SERRS-based competitive

  9. Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA).

    PubMed

    Lutz, Sascha; Weber, Patrick; Focke, Max; Faltin, Bernd; Hoffmann, Jochen; Müller, Claas; Mark, Daniel; Roth, Günter; Munday, Peter; Armes, Niall; Piepenburg, Olaf; Zengerle, Roland; von Stetten, Felix

    2010-04-01

    For the first time we demonstrate a self-sufficient lab-on-a-foil system for the fully automated analysis of nucleic acids which is based on the recently available isothermal recombinase polymerase amplification (RPA). The system consists of a novel, foil-based centrifugal microfluidic cartridge including prestored liquid and dry reagents, and a commercially available centrifugal analyzer for incubation at 37 degrees C and real-time fluorescence detection. The system was characterized with an assay for the detection of the antibiotic resistance gene mecA of Staphylococcus aureus. The limit of detection was <10 copies and time-to-result was <20 min. Microfluidic unit operations comprise storage and release of liquid reagents, reconstitution of lyophilized reagents, aliquoting the sample into < or = 30 independent reaction cavities, and mixing of reagents with the DNA samples. The foil-based cartridge was produced by blow-molding and sealed with a self-adhesive tape. The demonstrated system excels existing PCR based lab-on-a-chip platforms in terms of energy efficiency and time-to-result. Applications are suggested in the field of mobile point-of-care analysis, B-detection, or in combination with continuous monitoring systems. PMID:20300675

  10. Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA).

    PubMed

    Lutz, Sascha; Weber, Patrick; Focke, Max; Faltin, Bernd; Hoffmann, Jochen; Müller, Claas; Mark, Daniel; Roth, Günter; Munday, Peter; Armes, Niall; Piepenburg, Olaf; Zengerle, Roland; von Stetten, Felix

    2010-04-01

    For the first time we demonstrate a self-sufficient lab-on-a-foil system for the fully automated analysis of nucleic acids which is based on the recently available isothermal recombinase polymerase amplification (RPA). The system consists of a novel, foil-based centrifugal microfluidic cartridge including prestored liquid and dry reagents, and a commercially available centrifugal analyzer for incubation at 37 degrees C and real-time fluorescence detection. The system was characterized with an assay for the detection of the antibiotic resistance gene mecA of Staphylococcus aureus. The limit of detection was <10 copies and time-to-result was <20 min. Microfluidic unit operations comprise storage and release of liquid reagents, reconstitution of lyophilized reagents, aliquoting the sample into < or = 30 independent reaction cavities, and mixing of reagents with the DNA samples. The foil-based cartridge was produced by blow-molding and sealed with a self-adhesive tape. The demonstrated system excels existing PCR based lab-on-a-chip platforms in terms of energy efficiency and time-to-result. Applications are suggested in the field of mobile point-of-care analysis, B-detection, or in combination with continuous monitoring systems.

  11. Microfluidic toner-based analytical devices: disposable, lightweight, and portable platforms for point-of-care diagnostics with colorimetric detection.

    PubMed

    Oliveira, Karoliny Almeida; de Souza, Fabrício Ribeiro; de Oliveira, Cristina Rodrigues; da Silveira, Lucimeire Antonelli; Coltro, Wendell Karlos Tomazelli

    2015-01-01

    This chapter describes the development of microfluidic toner-based analytical devices (μTADs) to perform clinical diagnostics using a scanner or cell-phone camera. μTADs have been produced in a platform composed of polyester and toner by the direct-printing technology (DPT) in a matter of minutes. This technology offers simplicity and versatility, and it does not require any sophisticated instrumentation. Toner-based devices integrate the current generation of disposable analytical devices along paper-based chips. The cost of one μTAD has been estimated to be lower than $0.10. In addition, these platforms are lightweight and portable thus enabling their use for point-of-care applications. In the last 5 years, great efforts have been dedicated to spread out the use of μTADs in bioassays. The current chapter reports the fabrication of printed microplates and integrated microfluidic toner-based devices for dengue diagnostics and rapid colorimetric assays with clinically relevant analytes including cholesterol, triglycerides, total proteins, and glucose. The use of μTADs associated with cell-phone camera may contribute to the health care, in special, to people housed in developing regions or with limited access to clinics and hospitals.

  12. Microfluidic toner-based analytical devices: disposable, lightweight, and portable platforms for point-of-care diagnostics with colorimetric detection.

    PubMed

    Oliveira, Karoliny Almeida; de Souza, Fabrício Ribeiro; de Oliveira, Cristina Rodrigues; da Silveira, Lucimeire Antonelli; Coltro, Wendell Karlos Tomazelli

    2015-01-01

    This chapter describes the development of microfluidic toner-based analytical devices (μTADs) to perform clinical diagnostics using a scanner or cell-phone camera. μTADs have been produced in a platform composed of polyester and toner by the direct-printing technology (DPT) in a matter of minutes. This technology offers simplicity and versatility, and it does not require any sophisticated instrumentation. Toner-based devices integrate the current generation of disposable analytical devices along paper-based chips. The cost of one μTAD has been estimated to be lower than $0.10. In addition, these platforms are lightweight and portable thus enabling their use for point-of-care applications. In the last 5 years, great efforts have been dedicated to spread out the use of μTADs in bioassays. The current chapter reports the fabrication of printed microplates and integrated microfluidic toner-based devices for dengue diagnostics and rapid colorimetric assays with clinically relevant analytes including cholesterol, triglycerides, total proteins, and glucose. The use of μTADs associated with cell-phone camera may contribute to the health care, in special, to people housed in developing regions or with limited access to clinics and hospitals. PMID:25626533

  13. Microfluidic beads-based immunosensor for sensitive detection of cancer biomarker proteins using multienzyme-nanoparticle amplification and quantum dots labels.

    PubMed

    Zhang, He; Liu, Lian; Fu, Xin; Zhu, Zhenjun

    2013-04-15

    This study reports the development of a microfluidic beads-based immunosensor for sensitive detection of cancer biomarker α-fetoprotein (AFP) that uses multienzyme-nanoparticle amplification and quantum dots labels. This method utilizes microbeads functionalized with the capture antibodies (Ab₁) and modified electron rich proteins as sensing platform that was fabricated within a microfluidic channel, and uses gold nanoparticles (AuNPs) functionalized with the horseradish peroxidase (HRP) and the detection antibodies (Ab₂) as label. Greatly enhanced sensitivity for the cancer biomarker is based on a dual signal amplification strategy: first, the large surface area of Au nanoparticle carrier allows several binding events of HRP on each nanosphere. Enhanced sensitivity was achieved by introducing the multi-HRP-antibody functionalized AuNPs onto the surface of microbeads through "sandwich" immunoreactions and subsequently multiple biotin moieties could be deposited onto the surface of beads resulted from the oxidation of biotin-tyramine by hydrogen peroxide. Streptavidin-labeled quantum dots were then allowed to bind to the deposited biotin moieties and displayed the signal. Secondly, enhanced mass transport capability inherent from microfluidics leads to higher capture efficiency of targets because continuous flow within micro-channel delivers fresh analyte solution to the reaction site which maintains a high concentration gradient differential to enhance mass transport. Based on the dual signal amplification strategy, the developed microfluidic bead-based immunosensor could discriminate as low as 0.2 pg mL⁻¹ AFP in 10 μL of undiluted calf serum (0.2 fg/chip), and showed a 500-fold increase in detection limit compared to the off-chip test and 50-fold increase in detection limit compared to microfluidic beads-based immunoassay using single label HRP-Ab₂. The immunosensor showed acceptable repeatability and reproducibility. This microfluidic beads-based

  14. Development of a microfluidic paper-based analytical device for the determination of salivary aldehydes.

    PubMed

    Ramdzan, Adlin N; Almeida, M Inês G S; McCullough, Michael J; Kolev, Spas D

    2016-05-01

    A low cost, disposable and easy to use microfluidic paper-based analytical device (μPAD) was developed for simple and non-invasive determination of total aldehydes in saliva with a potential to be used in epidemiological studies to assess oral cancer risk. The μPAD is based on the colour reaction between aldehydes (e.g. acetaldehyde, formaldehyde), 3-methyl-2-benzothiazolinone hydrazone (MBTH) and iron(III) to form an intense blue coloured formazan dye. The newly developed μPAD has a 3D design with two overlapping paper layers. The first layer comprises 15 circular detection zones (8 mm in diameter), each impregnated with 8 μL of MBTH, while the second layer contains 15 reagent zones (4 mm in diameter). Two μL of iron(III) chloride are added to each one of the second layer zones after the addition of sample to the detection zones in the first layer. All hydrophilic zones of the μPAD are defined by wax printing using a commercial wax printer. Due to the 2-step nature of the analytical reaction, the two paper layers are separated by a cellulose acetate interleaving sheet to allow for the reaction between the aldehydes in the saliva sample with MBTH to proceed first with the formation of an azine, followed by a blue coloured reaction between the azine and the oxidized by iron(III) form of MBTH, produced after the removal of the interleaving sheet. After obtaining a high resolution image of the detection side zone of the device using a flatbed scanner, the intensity of the blue colour within each detection zone is measured with Image J software. Under optimal conditions, the μPAD is characterised by a working range of 20.4-114.0 μM, limit of detection of 6.1 μM, and repeatability, expressed as RSD, of less than 12.7% (n = 5). There is no statistically significant difference at the 95% confidence level between the results obtained by the μPAD and the reference method (Student's t-test: 0.090 < 0.38). The optimized μPAD is stable for more than 41 days

  15. Modular microfluidic cartridge-based universal diagnostic system for global health applications

    NASA Astrophysics Data System (ADS)

    Becker, Holger; Klemm, Richard; Dietze, William; White, Wallace; Hlawatsch, Nadine; Freyberg, Susanne; Moche, Christian; Dailey, Peter; Gärtner, Claudia

    2016-03-01

    Current microfluidics-enabled point-of-care diagnostic systems are typically designed specifically for one assay type, e.g. a molecular diagnostic assay for a single disease of a class of diseases. This approach often leads to high development cost and a significant training requirement for users of different instruments. We have developed an open platform diagnostic system which allows to run molecular, immunological and clinical assays on a single instrument platform with a standardized microfluidic cartridge architecture in an automated sample-in answer-out fashion. As examples, a molecular diagnostic assay for tuberculosis, an immunoassay for HIV p24 and a clinical chemistry assay for ALT liver function have been developed and results of their pre-clinical validation are presented.

  16. Microfluidics-Based in Vivo Mimetic Systems for the Study of Cellular Biology

    PubMed Central

    2015-01-01

    Conspectus The human body is a complex network of molecules, organelles, cells, tissues, and organs: an uncountable number of interactions and transformations interconnect all the system’s components. In addition to these biochemical components, biophysical components, such as pressure, flow, and morphology, and the location of all of these interactions play an important role in the human body. Technical difficulties have frequently limited researchers from observing cellular biology as it occurs within the human body, but some state-of-the-art analytical techniques have revealed distinct cellular behaviors that occur only in the context of the interactions. These types of findings have inspired bioanalytical chemists to provide new tools to better understand these cellular behaviors and interactions. What blocks us from understanding critical biological interactions in the human body? Conventional approaches are often too naïve to provide realistic data and in vivo whole animal studies give complex results that may or may not be relevant for humans. Microfluidics offers an opportunity to bridge these two extremes: while these studies will not model the complexity of the in vivo human system, they can control the complexity so researchers can examine critical factors of interest carefully and quantitatively. In addition, the use of human cells, such as cells isolated from donated blood, captures human-relevant data and limits the use of animals in research. In addition, researchers can adapt these systems easily and cost-effectively to a variety of high-end signal transduction mechanisms, facilitating high-throughput studies that are also spatially, temporally, or chemically resolved. These strengths should allow microfluidic platforms to reveal critical parameters in the human body and provide insights that will help with the translation of pharmacological advances to clinical trials. In this Account, we describe selected microfluidic innovations within the

  17. Fabrication of PDMS-Based Microfluidic Devices: Application for Synthesis of Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Thu, Vu Thi; Mai, An Ngoc; Le The Tam; Van Trung, Hoang; Thu, Phung Thi; Tien, Bui Quang; Thuat, Nguyen Tran; Lam, Tran Dai

    2016-05-01

    In this work, we have developed a convenient approach to synthesize magnetic nanoparticles with relatively high magnetization and controllable sizes. This was realized by combining the traditional co-precipitation method and microfluidic techniques inside microfluidic devices. The device was first designed, and then fabricated using simplified soft-lithography techniques. The device was utilized to synthesize magnetite nanoparticles. The synthesized nanomaterials were thoroughly characterized using field emission scanning electron microscopy and a vibrating sample magnetometer. The results demonstrated that the as-prepared device can be utilized as a simple and effective tool to synthesize magnetic nanoparticles with the sizes less than 10 nm and magnetization more than 50 emu/g. The development of these devices opens new strategies to synthesize nanomaterials with more precise dimensions at narrow size-distribution and with controllable behaviors.

  18. Axon Guidance Studies Using a Microfluidics-Based Chemotropic Gradient Generator.

    PubMed

    Pujic, Zac; Nguyen, Huyen; Glass, Nick; Cooper-White, Justin; Goodhill, Geoffrey J

    2016-01-01

    Microfluidics can be used to generate flow-driven gradients of chemotropic guidance cues with precisely controlled steepnesses for indefinite lengths of time. Neuronal cells grown in the presence of these gradients can be studied for their response to the effects exerted by the cues. Here we describe a polydimethylsiloxane (PDMS) microfluidics chamber capable of producing linear gradients of soluble factors, stable for at least 18 h, suitable for axon guidance studies. Using this device we demonstrate turning of superior cervical ganglion axons by gradients of nerve growth factor (NGF). The chamber produces robust gradients, is inexpensive to mass produce, can be mounted on a tissue culture dish or glass coverslip for long term time-lapse microscopy imaging, and is suitable for immunostaining. PMID:27271909

  19. Microfluidics-based in vivo mimetic systems for the study of cellular biology.

    PubMed

    Kim, Donghyuk; Wu, Xiaojie; Young, Ashlyn T; Haynes, Christy L

    2014-04-15

    The human body is a complex network of molecules, organelles, cells, tissues, and organs: an uncountable number of interactions and transformations interconnect all the system's components. In addition to these biochemical components, biophysical components, such as pressure, flow, and morphology, and the location of all of these interactions play an important role in the human body. Technical difficulties have frequently limited researchers from observing cellular biology as it occurs within the human body, but some state-of-the-art analytical techniques have revealed distinct cellular behaviors that occur only in the context of the interactions. These types of findings have inspired bioanalytical chemists to provide new tools to better understand these cellular behaviors and interactions. What blocks us from understanding critical biological interactions in the human body? Conventional approaches are often too naïve to provide realistic data and in vivo whole animal studies give complex results that may or may not be relevant for humans. Microfluidics offers an opportunity to bridge these two extremes: while these studies will not model the complexity of the in vivo human system, they can control the complexity so researchers can examine critical factors of interest carefully and quantitatively. In addition, the use of human cells, such as cells isolated from donated blood, captures human-relevant data and limits the use of animals in research. In addition, researchers can adapt these systems easily and cost-effectively to a variety of high-end signal transduction mechanisms, facilitating high-throughput studies that are also spatially, temporally, or chemically resolved. These strengths should allow microfluidic platforms to reveal critical parameters in the human body and provide insights that will help with the translation of pharmacological advances to clinical trials. In this Account, we describe selected microfluidic innovations within the last 5 years

  20. Detection of distributed static and dynamic loads with electrolyte-enabled distributed transducers in a polymer-based microfluidic device

    NASA Astrophysics Data System (ADS)

    Gu, Wenting; Cheng, Peng; Ghosh, Arindam; Liao, Yuxi; Liao, Boxiong; Beskok, Ali; Hao, Zhili

    2013-03-01

    This paper reports on the use of electrolyte-enabled distributed transducers in a polymer-based microfluidic device for the detection of distributed static and dynamic loads. The core of the device is a polymer rectangular microstructure integrated with electrolyte-enabled distributed transducers. Distributed loads acting on the polymer microstructure are converted to different deflections along the microstructure length, which are further translated to electrical resistance changes by electrolyte-enabled distributed transducers. Owing to the great simplicity of the device configuration, a standard polymer-based fabrication process is employed to fabricate this device. With custom-built electronic circuits and custom LabVIEW programs, fabricated devices filled with two different electrolytes, 0.1 M NaCl electrolyte and 1-ethyl-3-methylimidazolium dicyanamide electrolyte, are characterized, demonstrating the capability of detecting distributed static and dynamic loads with a single device. As a result, the polymer-based microfluidic device presented in this paper is promising for offering the capability of detecting distributed static and dynamic loads in biomedical/surgical, manufacturing and robotics applications.

  1. Droplet-based microfluidic platforms for single T cell secretion analysis of IL-10 cytokine.

    PubMed

    Konry, Tania; Dominguez-Villar, Margarita; Baecher-Allan, Clare; Hafler, David A; Yarmush, Martin L

    2011-01-15

    Here we present a microfluidic method for the analysis of single cell secretions. The method co-encapsulates cells with microspheres conjugated with capture antibodies and detection fluorescence-labeled antibodies. The secreted substance captured on the microsphere surface and detected via detection antibodies generating a localized fluorescent signal on a microsphere surface. Using this method, CD4+CD25+ regulatory T cells were encapsulated and assayed to detect IL-10 secreting cell in population.

  2. A microfluidics-based technique for automated and rapid labeling of cells for flow cytometry

    NASA Astrophysics Data System (ADS)

    Patibandla, Phani K.; Estrada, Rosendo; Kannan, Manasaa; Sethu, Palaniappan

    2014-03-01

    Flow cytometry is a powerful technique capable of simultaneous multi-parametric analysis of heterogeneous cell populations for research and clinical applications. In recent years, the flow cytometer has been miniaturized and made portable for application in clinical- and resource-limited settings. The sample preparation procedure, i.e. labeling of cells with antibodies conjugated to fluorescent labels, is a time consuming (˜45 min) and labor-intensive procedure. Microfluidics provides enabling technologies to accomplish rapid and automated sample preparation. Using an integrated microfluidic device consisting of a labeling and washing module, we demonstrate a new protocol that can eliminate sample handling and accomplish sample and reagent metering, high-efficiency mixing, labeling and washing in rapid automated fashion. The labeling module consists of a long microfluidic channel with an integrated chaotic mixer. Samples and reagents are precisely metered into this device to accomplish rapid and high-efficiency mixing. The mixed sample and reagents are collected in a holding syringe and held for up to 8 min following which the mixture is introduced into an inertial washing module to obtain ‘analysis-ready’ samples. The washing module consists of a high aspect ratio channel capable of focusing cells to equilibrium positions close to the channel walls. By introducing the cells and labeling reagents in a narrow stream at the center of the channel flanked on both sides by a wash buffer, the elution of cells into the wash buffer away from the free unbound antibodies is accomplished. After initial calibration experiments to determine appropriate ‘holding time’ to allow antibody binding, both modules were used in conjunction to label MOLT-3 cells (T lymphoblast cell line) with three different antibodies simultaneously. Results confirm no significant difference in mean fluorescence intensity values for all three antibodies labels (p < 0.01) between the

  3. Electrowetting on dielectric-based microfluidics for integrated lipid bilayer formation and measurement

    NASA Astrophysics Data System (ADS)

    Poulos, Jason L.; Nelson, Wyatt C.; Jeon, Tae-Joon; Kim, Chang-Jin ``Cj''; Schmidt, Jacob J.

    2009-07-01

    We present a microfluidic platform for the formation and electrical measurement of lipid bilayer membranes. Using electrowetting on dielectric (EWOD), two or more aqueous droplets surrounded by a lipid-containing organic phase were manipulated into contact to form a lipid bilayer at their interface. Thin-film Ag/AgCl electrodes integrated into the device enabled electrical measurement of membrane formation and the incorporation of gramicidin channels of two bilayers in parallel.

  4. Detecting bacteria and Determining Their Susceptibility to Antibiotics by Stochastic Confinement in Nanoliter Droplets using Plug-Based Microfluidics

    SciTech Connect

    Boedicker, J.; Li, L; Kline, T; Ismagilov, R

    2008-01-01

    This article describes plug-based microfluidic technology that enables rapid detection and drug susceptibility screening of bacteria in samples, including complex biological matrices, without pre-incubation. Unlike conventional bacterial culture and detection methods, which rely on incubation of a sample to increase the concentration of bacteria to detectable levels, this method confines individual bacteria into droplets nanoliters in volume. When single cells are confined into plugs of small volume such that the loading is less than one bacterium per plug, the detection time is proportional to plug volume. Confinement increases cell density and allows released molecules to accumulate around the cell, eliminating the pre-incubation step and reducing the time required to detect the bacteria. We refer to this approach as stochastic confinement. Using the microfluidic hybrid method, this technology was used to determine the antibiogram - or chart of antibiotic sensitivity - of methicillin-resistant Staphylococcus aureus (MRSA) to many antibiotics in a single experiment and to measure the minimal inhibitory concentration (MIC) of the drug cefoxitin (CFX) against this strain. In addition, this technology was used to distinguish between sensitive and resistant strains of S. aureus in samples of human blood plasma. High-throughput microfluidic techniques combined with single-cell measurements also enable multiple tests to be performed simultaneously on a single sample containing bacteria. This technology may provide a method of rapid and effective patient-specific treatment of bacterial infections and could be extended to a variety of applications that require multiple functional tests of bacterial samples on reduced timescales.

  5. Graphene-polyaniline modified electrochemical droplet-based microfluidic sensor for high-throughput determination of 4-aminophenol.

    PubMed

    Rattanarat, Poomrat; Suea-Ngam, Akkapol; Ruecha, Nipapan; Siangproh, Weena; Henry, Charles S; Srisa-Art, Monpichar; Chailapakul, Orawon

    2016-06-21

    We report herein the first development of graphene-polyaniline modified carbon paste electrode (G-PANI/CPE) coupled with droplet-based microfluidic sensor for high-throughput detection of 4-aminophenol (4-AP) in pharmaceutical paracetamol (PA) formulations. A simple T-junction microfluidic platform using an oil flow rate of 1.8 μL/min and an aqueous flow rate of 0.8 μL/min was used to produce aqueous testing microdroplets continuously. The microchannel was designed to extend the aqueous droplet to cover all 3 electrodes, allowing for electrochemical measurements in a single droplet. Parameters including flow rate, water fraction, and applied detection potential (Edet) were investigated to obtain optimal conditions. Using G-PANI/CPE significantly increased the current response for both cyclic voltammetric detections of ferri/ferrocyanide [Fe(CN)6](3-/4-) (10 times) and 4-AP (2 times), compared to an unmodified electrode. Using the optimized conditions in the droplet system, 4-AP in the presence of PA was selectively determined. The linear range of 4-AP was 50-500 μM (R(2) = 0.99), limit of detection (LOD, S/N = 3) was 15.68 μM, and limit of quantification (LOQ, S/N = 10) was 52.28 μM. Finally, the system was used to determine 4-AP spiked in commercial PA liquid samples and the amounts of 4-AP were found in good agreement with those obtained from the conventional capillary zone electrophoresis/UV-Visible spectrophotometry (CZE/UV-Vis). The proposed microfluidic device could be employed for a high-throughput screening (at least 60 samples h(-1)) of pharmaceutical purity requiring low sample and reagent consumption. PMID:27188317

  6. Rapid Detection of Food Allergens by Microfluidics ELISA-Based Optical Sensor.

    PubMed

    Weng, Xuan; Gaur, Gautam; Neethirajan, Suresh

    2016-01-01

    The risks associated with the presence of hidden allergens in food have increased the need for rapid, sensitive, and reliable methods for tracing food allergens in commodities. Conventional enzyme immunosorbent assay (ELISA) has usually been performed in a centralized lab, requiring considerable time and sample/reagent consumption and expensive detection instruments. In this study, a microfluidic ELISA platform combined with a custom-designed optical sensor was developed for the quantitative analysis of the proteins wheat gluten and Ara h 1. The developed microfluidic ELISA biosensor reduced the total assay time from hours (up to 3.5 h) to 15-20 min and decreased sample/reagent consumption to 5-10 μL, compared to a few hundred microliters in commercial ELISA kits, with superior sensitivity. The quantitative capability of the presented biosensor is a distinctive advantage over the commercially available rapid methods such as lateral flow devices (LFD) and dipstick tests. The developed microfluidic biosensor demonstrates the potential for sensitive and less-expensive on-site determination for rapidly detecting food allergens in a complex sample system. PMID:27338488

  7. Detection of E. coli using a microfluidics-based antibody biochip detection system.

    PubMed

    Stokes, D L; Griffin, G D; Vo-Dinh, T

    2001-02-01

    This work demonstrates the detection of E. coli using a 2-dimensional photosensor array biochip which is efficiently equipped with a microfluidics sample/reagent delivery system for on-chip monitoring of bioassays. The biochip features a 4 x 4 array of independently operating photodiodes that are integrated along with amplifiers, discriminators and logic circuitry on a single platform. The microfluidics system includes a single 0.4 mL reaction chamber which houses a sampling platform that selectively captures detection probes from a sample through the use of immobilized bioreceptors. The independently operating photodiodes allow simultaneous monitoring of multiple samples. In this study the sampling platform is a cellulosic membrane that is exposed to E. coli organisms and subsequently analyzed using a sandwich immunoassay involving a Cy5-labeled antibody probe. The combined effectiveness of the integrated circuit (IC) biochip and the immunoassay is evaluated for assays performed both by conventional laboratory means followed by detection with the IC biochip, and through the use of the microfluidics system for on-chip detection. Highlights of the studies show that the biochip has a linear dynamic range of three orders of magnitude observed for conventional assays, and can detect 20 E. coli organisms. Selective detection of E. coli in a complex medium, milk diluent, is also reported for both off-chip and on-chip assays.

  8. Rapid Detection of Food Allergens by Microfluidics ELISA-Based Optical Sensor.

    PubMed

    Weng, Xuan; Gaur, Gautam; Neethirajan, Suresh

    2016-06-07

    The risks associated with the presence of hidden allergens in food have increased the need for rapid, sensitive, and reliable methods for tracing food allergens in commodities. Conventional enzyme immunosorbent assay (ELISA) has usually been performed in a centralized lab, requiring considerable time and sample/reagent consumption and expensive detection instruments. In this study, a microfluidic ELISA platform combined with a custom-designed optical sensor was developed for the quantitative analysis of the proteins wheat gluten and Ara h 1. The developed microfluidic ELISA biosensor reduced the total assay time from hours (up to 3.5 h) to 15-20 min and decreased sample/reagent consumption to 5-10 μL, compared to a few hundred microliters in commercial ELISA kits, with superior sensitivity. The quantitative capability of the presented biosensor is a distinctive advantage over the commercially available rapid methods such as lateral flow devices (LFD) and dipstick tests. The developed microfluidic biosensor demonstrates the potential for sensitive and less-expensive on-site determination for rapidly detecting food allergens in a complex sample system.

  9. Rapid Detection of Food Allergens by Microfluidics ELISA-Based Optical Sensor

    PubMed Central

    Weng, Xuan; Gaur, Gautam; Neethirajan, Suresh

    2016-01-01

    The risks associated with the presence of hidden allergens in food have increased the need for rapid, sensitive, and reliable methods for tracing food allergens in commodities. Conventional enzyme immunosorbent assay (ELISA) has usually been performed in a centralized lab, requiring considerable time and sample/reagent consumption and expensive detection instruments. In this study, a microfluidic ELISA platform combined with a custom-designed optical sensor was developed for the quantitative analysis of the proteins wheat gluten and Ara h 1. The developed microfluidic ELISA biosensor reduced the total assay time from hours (up to 3.5 h) to 15–20 min and decreased sample/reagent consumption to 5–10 μL, compared to a few hundred microliters in commercial ELISA kits, with superior sensitivity. The quantitative capability of the presented biosensor is a distinctive advantage over the commercially available rapid methods such as lateral flow devices (LFD) and dipstick tests. The developed microfluidic biosensor demonstrates the potential for sensitive and less-expensive on-site determination for rapidly detecting food allergens in a complex sample system. PMID:27338488

  10. Time-resolved NMR metabolomics of plant cells based on a microfluidic chip.

    PubMed

    Maisch, Jan; Kreppenhofer, Kristina; Büchler, Silke; Merle, Christian; Sobich, Shukhrat; Görling, Benjamin; Luy, Burkhard; Ahrens, Ralf; Guber, Andreas E; Nick, Peter

    2016-08-01

    The plant secondary metabolism generates numerous compounds harbouring pharmaceutical activity. In plants, these compounds are typically formed by different and specialised cell types that have to interact constituting a metabolic process chain. This interactivity impedes biotechnological production of secondary compounds, because cell differentiation is suppressed under the conditions of a batch bio-fermenter. We present a novel strategy to address this limitation using a biomimetic approach, where we simulate the situation in a real tissue by a microfluidic chamber system, where plant cells can be integrated into a process flow. We show that walled cells of the plant model tobacco BY-2 can be successfully cultivated in this system and that physiological parameters (such as cell viability, mitotic index and division synchrony) can be preserved over several days. The microfluidic design allows to resolve dynamic changes of specific metabolites over different stages of culture development. These results serve as proof-of-principle that a microfluidic organisation of cultivated plant cells can mimic the metabolic flows in a real plant tissue.

  11. Hybrid microfluidic fuel cell based on Laccase/C and AuAg/C electrodes.

    PubMed

    López-González, B; Dector, A; Cuevas-Muñiz, F M; Arjona, N; Cruz-Madrid, C; Arana-Cuenca, A; Guerra-Balcázar, M; Arriaga, L G; Ledesma-García, J

    2014-12-15

    A hybrid glucose microfluidic fuel cell composed of an enzymatic cathode (Laccase/ABTS/C) and an inorganic anode (AuAg/C) was developed and tested. The enzymatic cathode was prepared by adsorption of 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and Laccase on Vulcan XC-72, which act as a redox mediator, enzymatic catalyst and support, respectively. The Laccase/ABTS/C composite was characterised by Fourier Transform Infrared (FTIR) Spectroscopy, streaming current measurements (Zeta potential) and cyclic voltammetry. The AuAg/C anode catalyst was characterised by Transmission electron microscopy (TEM) and cyclic voltammetry. The hybrid microfluidic fuel cell exhibited excellent performance with a maximum power density value (i.e., 0.45 mW cm(-2)) that is the highest reported to date. The cell also exhibited acceptable stability over the course of several days. In addition, a Mexican endemic Laccase was used as the biocathode electrode and evaluated in the hybrid microfluidic fuel cell generating 0.5 mW cm(-2) of maximum power density. PMID:25016252

  12. Perfused drop microfluidic device for brain slice culture-based drug discovery.

    PubMed

    Liu, Jing; Pan, Liping; Cheng, Xuanhong; Berdichevsky, Yevgeny

    2016-06-01

    Living slices of brain tissue are widely used to model brain processes in vitro. In addition to basic neurophysiology studies, brain slices are also extensively used for pharmacology, toxicology, and drug discovery research. In these experiments, high parallelism and throughput are critical. Capability to conduct long-term electrical recording experiments may also be necessary to address disease processes that require protein synthesis and neural circuit rewiring. We developed a novel perfused drop microfluidic device for use with long term cultures of brain slices (organotypic cultures). Slices of hippocampus were placed into wells cut in polydimethylsiloxane (PDMS) film. Fluid level in the wells was hydrostatically controlled such that a drop was formed around each slice. The drops were continuously perfused with culture medium through microchannels. We found that viable organotypic hippocampal slice cultures could be maintained for at least 9 days in vitro. PDMS microfluidic network could be readily integrated with substrate-printed microelectrodes for parallel electrical recordings of multiple perfused organotypic cultures on a single MEA chip. We expect that this highly scalable perfused drop microfluidic device will facilitate high-throughput drug discovery and toxicology. PMID:27194028

  13. Cytotoxicity of cadmium-containing quantum dots based on a study using a microfluidic chip

    NASA Astrophysics Data System (ADS)

    Zheng, Xiannuo; Tian, Jing; Weng, Lixing; Wu, Lei; Jin, Qinghui; Zhao, Jianlong; Wang, Lianhui

    2012-02-01

    There is a lack of reliable nanotoxicity assays available for monitoring and quantifying multiple cellular events in cultured cells. In this study, we used a microfluidic chip to systematically investigate the cytotoxicity of three kinds of well-characterized cadmium-containing quantum dots (QDs) with the same core but different shell structures, including CdTe core QDs, CdTe/CdS core-shell QDs, and CdTe/CdS/ZnS core-shell-shell QDs, in HEK293 cells. Using the microfluidic chip combined with fluorescence microscopy, multiple QD-induced cellular events including cell morphology, viability, proliferation, and QD uptake were simultaneously analysed. The three kinds of QDs showed significantly different cytotoxicities. The CdTe QDs, which are highly toxic to HEK293 cells, resulted in remarkable cellular and nuclear morphological changes, a dose-dependent decrease in cell viability, and strong inhibition of cell proliferation; the CdTe/CdS QDs were moderately toxic but did not significantly affect the proliferation of HEK293 cells; while the CdTe/CdS/ZnS QDs had no detectable influence on cytotoxicity with respect to cell morphology, viability, and proliferation. Our data indicated that QD cytotoxicity was closely related to their surface structures and specific physicochemical properties. This study also demonstrated that the microfluidic chip could serve as a powerful tool to systematically evaluate the cytotoxicity of nanoparticles in multiple cellular events.

  14. Time-resolved NMR metabolomics of plant cells based on a microfluidic chip.

    PubMed

    Maisch, Jan; Kreppenhofer, Kristina; Büchler, Silke; Merle, Christian; Sobich, Shukhrat; Görling, Benjamin; Luy, Burkhard; Ahrens, Ralf; Guber, Andreas E; Nick, Peter

    2016-08-01

    The plant secondary metabolism generates numerous compounds harbouring pharmaceutical activity. In plants, these compounds are typically formed by different and specialised cell types that have to interact constituting a metabolic process chain. This interactivity impedes biotechnological production of secondary compounds, because cell differentiation is suppressed under the conditions of a batch bio-fermenter. We present a novel strategy to address this limitation using a biomimetic approach, where we simulate the situation in a real tissue by a microfluidic chamber system, where plant cells can be integrated into a process flow. We show that walled cells of the plant model tobacco BY-2 can be successfully cultivated in this system and that physiological parameters (such as cell viability, mitotic index and division synchrony) can be preserved over several days. The microfluidic design allows to resolve dynamic changes of specific metabolites over different stages of culture development. These results serve as proof-of-principle that a microfluidic organisation of cultivated plant cells can mimic the metabolic flows in a real plant tissue. PMID:27318870

  15. Self-Powered Wireless Affinity-Based Biosensor Based on Integration of Paper-Based Microfluidics and Self-Assembled RFID Antennas.

    PubMed

    Yuan, Mingquan; Alocilja, Evangelyn C; Chakrabartty, Shantanu

    2016-08-01

    This paper presents a wireless, self-powered, affinity-based biosensor based on the integration of paper-based microfluidics with our previously reported method for self-assembling radio-frequency (RF) antennas. At the core of the proposed approach is a silver-enhancement technique that grows portions of a RF antenna in regions where target antigens hybridize with target specific affinity probes. The hybridization regions are defined by a network of nitrocellulose based microfluidic channels which implement a self-powered approach to sample the reagent and control its flow and mixing. The integration substrate for the biosensor has been constructed using polyethylene and the patterning of the antenna on the substrate has been achieved using a low-cost ink-jet printing technique. The substrate has been integrated with passive radio-frequency identification (RFID) tags to demonstrate that the resulting sensor-tag can be used for continuous monitoring in a food supply-chain where direct measurement of analytes is typically considered to be impractical. We validate the proof-of-concept operation of the proposed sensor-tag using IgG as a model analyte and using a 915 MHz Ultra-high-frequency (UHF) RFID tagging technology.

  16. Self-Powered Wireless Affinity-Based Biosensor Based on Integration of Paper-Based Microfluidics and Self-Assembled RFID Antennas.

    PubMed

    Yuan, Mingquan; Alocilja, Evangelyn C; Chakrabartty, Shantanu

    2016-08-01

    This paper presents a wireless, self-powered, affinity-based biosensor based on the integration of paper-based microfluidics with our previously reported method for self-assembling radio-frequency (RF) antennas. At the core of the proposed approach is a silver-enhancement technique that grows portions of a RF antenna in regions where target antigens hybridize with target specific affinity probes. The hybridization regions are defined by a network of nitrocellulose based microfluidic channels which implement a self-powered approach to sample the reagent and control its flow and mixing. The integration substrate for the biosensor has been constructed using polyethylene and the patterning of the antenna on the substrate has been achieved using a low-cost ink-jet printing technique. The substrate has been integrated with passive radio-frequency identification (RFID) tags to demonstrate that the resulting sensor-tag can be used for continuous monitoring in a food supply-chain where direct measurement of analytes is typically considered to be impractical. We validate the proof-of-concept operation of the proposed sensor-tag using IgG as a model analyte and using a 915 MHz Ultra-high-frequency (UHF) RFID tagging technology. PMID:27214914

  17. Rapid and alternative fabrication method for microfluidic paper based analytical devices.

    PubMed

    Malekghasemi, Soheil; Kahveci, Enver; Duman, Memed

    2016-10-01

    A major application of microfluidic paper-based analytical devices (µPADs) includes the field of point-of-care (POC) diagnostics. It is important for POC diagnostics to possess properties such as ease-of-use and low cost. However, µPADs need multiple instruments and fabrication steps. In this study, two different chemicals (Hexamethyldisilazane and Tetra-ethylorthosilicate) were used, and three different methods (heating, plasma treatment, and microwave irradiation) were compared to develop µPADs. Additionally, an inkjet-printing technique was used for generating a hydrophilic channel and printing certain chemical agents on different regions of a modified filter paper. A rapid and effective fabrication method to develop µPADs within 10min was introduced using an inkjet-printing technique in conjunction with a microwave irradiation method. Environmental scanning electron microscope (ESEM) and x-ray photoelectron spectroscopy (XPS) were used for morphology characterization and determining the surface chemical compositions of the modified filter paper, respectively. Contact angle measurements were used to fulfill the hydrophobicity of the treated filter paper. The highest contact angle value (141°±1) was obtained using the microwave irradiation method over a period of 7min, when the filter paper was modified by TEOS. Furthermore, by using this method, the XPS results of TEOS-modified filter paper revealed Si2p (23%) and Si-O bounds (81.55%) indicating the presence of Si-O-Si bridges and Si(OEt) groups, respectively. The ESEM results revealed changes in the porous structures of the papers and decreases in the pore sizes. Washburn assay measurements tested the efficiency of the generated hydrophilic channels in which similar water penetration rates were observed in the TEOS-modified filter paper and unmodified (plain) filter paper. The validation of the developed µPADs was performed by utilizing the rapid urease test as a model test system. The detection limit of

  18. Rapid and alternative fabrication method for microfluidic paper based analytical devices.

    PubMed

    Malekghasemi, Soheil; Kahveci, Enver; Duman, Memed

    2016-10-01

    A major application of microfluidic paper-based analytical devices (µPADs) includes the field of point-of-care (POC) diagnostics. It is important for POC diagnostics to possess properties such as ease-of-use and low cost. However, µPADs need multiple instruments and fabrication steps. In this study, two different chemicals (Hexamethyldisilazane and Tetra-ethylorthosilicate) were used, and three different methods (heating, plasma treatment, and microwave irradiation) were compared to develop µPADs. Additionally, an inkjet-printing technique was used for generating a hydrophilic channel and printing certain chemical agents on different regions of a modified filter paper. A rapid and effective fabrication method to develop µPADs within 10min was introduced using an inkjet-printing technique in conjunction with a microwave irradiation method. Environmental scanning electron microscope (ESEM) and x-ray photoelectron spectroscopy (XPS) were used for morphology characterization and determining the surface chemical compositions of the modified filter paper, respectively. Contact angle measurements were used to fulfill the hydrophobicity of the treated filter paper. The highest contact angle value (141°±1) was obtained using the microwave irradiation method over a period of 7min, when the filter paper was modified by TEOS. Furthermore, by using this method, the XPS results of TEOS-modified filter paper revealed Si2p (23%) and Si-O bounds (81.55%) indicating the presence of Si-O-Si bridges and Si(OEt) groups, respectively. The ESEM results revealed changes in the porous structures of the papers and decreases in the pore sizes. Washburn assay measurements tested the efficiency of the generated hydrophilic channels in which similar water penetration rates were observed in the TEOS-modified filter paper and unmodified (plain) filter paper. The validation of the developed µPADs was performed by utilizing the rapid urease test as a model test system. The detection limit of

  19. Fabrication of an Amperometric Flow-Injection Microfluidic Biosensor Based on Laccase for In Situ Determination of Phenolic Compounds.

    PubMed

    Gonzalez-Rivera, Juan C; Osma, Johann F

    2015-01-01

    We aim to develop an in situ microfluidic biosensor based on laccase from Trametes pubescens with flow-injection and amperometry as the transducer method. The enzyme was directly immobilized by potential step chronoamperometry, and the immobilization was studied using cyclic voltammetry and electrochemical impedance spectroscopy. The electrode response by amperometry was probed using ABTS and syringaldazine. A shift of interfacial electron transfer resistance and the electron transfer rate constant from 18.1 kΩ to 3.9 MΩ and 4.6 × 10(-2) cm s(-1) to 2.1 × 10(-4) cm s(-1), respectively, evidenced that laccase was immobilized on the electrode by the proposed method. We established the optimum operating conditions of temperature (55°C), pH (4.5), injection flow rate (200 µL min(-1)), and applied potential (0.4 V). Finally, the microfluidic biosensor showed better lower limit of detection (0.149 µM) and sensitivity (0.2341 nA µM(-1)) for ABTS than previous laccase-based biosensors and the in situ operation capacity. PMID:26509166

  20. Fabrication and testing of a CoNiCu/Cu CPP-GMR nanowire-based microfluidic biosensor

    NASA Astrophysics Data System (ADS)

    Bellamkonda, Ramya; John, Tom; Mathew, Bobby; DeCoster, Mark; Hegab, Hisham; Davis, Despina

    2010-02-01

    Giant magneto resistance (GMR)-based microfluidic biosensors are used in applications involving the detection, analysis, enumeration and characterization of magnetic nano-particles attached to biological mediums such as antibodies and DNA. Here we introduce a novel multilayered CoNiCu/Cu nanowire GMR-based microfluidic biosensor. The current perpendicular to the plane of multilayers (CPP)-nanowires GMR was used as the core sensing material in the biosensor which responds to magnetic fields depending on the concentration and the flow velocity of bio-nano-magnetic fluids. The device was tested with different control solutions such as DI-water, mineral oil, phosphate buffered saline (PBS), ferrofluid, polystyrene superparamagnetic beads (PSB) and Dynabeads sheep anti-rabbit IgG. The nanowire array resistance decreased with an increase in the ferrofluid concentration, and a maximum 15.8% relative GMR was observed for the undiluted ferrofluid. The sensor was also responding differently to various ferrofluid flow rates. The GMR device showed variation in the output signal when the PSB and Dynabeads of different dilutions were pumped through it. When the tests were performed with pulsing potentials (150 mV and 200 mV), an increased GMR response was identified at higher voltages for PSB and Dynabeads sheep anti-rabbit IgG.

  1. Beyond PDMS: off-stoichiometry thiol-ene (OSTE) based soft lithography for rapid prototyping of microfluidic devices.

    PubMed

    Carlborg, Carl Fredrik; Haraldsson, Tommy; Öberg, Kim; Malkoch, Michael; van der Wijngaart, Wouter

    2011-09-21

    In this article we introduce a novel polymer platform based on off-stoichiometry thiol-enes (OSTEs), aiming to bridge the gap between research prototyping and commercial production of microfluidic devices. The polymers are based on the versatile UV-curable thiol-ene chemistry but takes advantage of off-stoichiometry ratios to enable important features for a prototyping system, such as one-step surface modifications, tuneable mechanical properties and leakage free sealing through direct UV-bonding. The platform exhibits many similarities with PDMS, such as rapid prototyping and uncomplicated processing but can at the same time mirror the mechanical and chemical properties of both PDMS as well as commercial grade thermoplastics. The OSTE-prepolymer can be cast using standard SU-8 on silicon masters and a table-top UV-lamp, the surface modifications are precisely grafted using a stencil mask and the bonding requires only a single UV-exposure. To illustrate the potential of the material we demonstrate key concepts important in microfluidic chip fabrication such as patterned surface modifications for hydrophobic stops, pneumatic valves using UV-lamination of stiff and rubbery materials as well as micromachining of chip-to-world connectors in the OSTE-materials. PMID:21804987

  2. Microfluidics-based single-step preparation of injection-ready polymeric nanosystems for medical imaging and drug delivery

    NASA Astrophysics Data System (ADS)

    Liu, Kegang; Zhu, Zhen; Wang, Xueya; Gonçalves, Daniel; Zhang, Bei; Hierlemann, Andreas; Hunziker, Patrick

    2015-10-01

    Translation of therapeutic polymeric nanosystems to patients and industry requires simplified, reproducible and scalable methods for assembly and loading. A single-step in-line process based on nanocoprecipitation of oxazoline-siloxane block copolymers in flow-focusing poly(dimethylsiloxane) microfluidics was designed to manufacture injection-ready nanosystems. Nanosystem characteristics could be controlled by copolymer concentration, block length and chemistry, microchannel geometry, flow rate, aqueous/organic flow rate ratio and payload concentration. The well-tolerated nanosystems exhibited differential cell binding and payload delivery and could confer sensitivity to photodynamic therapy to HeLa cancer cells. Such injection-ready nanosystems carrying drugs, diagnostic or functional materials may facilitate translation to clinical application.Translation of therapeutic polymeric nanosystems to patients and industry requires simplified, reproducible and scalable methods for assembly and loading. A single-step in-line process based on nanocoprecipitation of oxazoline-siloxane block copolymers in flow-focusing poly(dimethylsiloxane) microfluidics was designed to manufacture injection-ready nanosystems. Nanosystem characteristics could be controlled by copolymer concentration, block length and chemistry, microchannel geometry, flow rate, aqueous/organic flow rate ratio and payload concentration. The well-tolerated nanosystems exhibited differential cell binding and payload delivery and could confer sensitivity to photodynamic therapy to HeLa cancer cells. Such injection-ready nanosystems carrying drugs, diagnostic or functional materials may facilitate translation to clinical application. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03543k

  3. Beyond PDMS: off-stoichiometry thiol-ene (OSTE) based soft lithography for rapid prototyping of microfluidic devices.

    PubMed

    Carlborg, Carl Fredrik; Haraldsson, Tommy; Öberg, Kim; Malkoch, Michael; van der Wijngaart, Wouter

    2011-09-21

    In this article we introduce a novel polymer platform based on off-stoichiometry thiol-enes (OSTEs), aiming to bridge the gap between research prototyping and commercial production of microfluidic devices. The polymers are based on the versatile UV-curable thiol-ene chemistry but takes advantage of off-stoichiometry ratios to enable important features for a prototyping system, such as one-step surface modifications, tuneable mechanical properties and leakage free sealing through direct UV-bonding. The platform exhibits many similarities with PDMS, such as rapid prototyping and uncomplicated processing but can at the same time mirror the mechanical and chemical properties of both PDMS as well as commercial grade thermoplastics. The OSTE-prepolymer can be cast using standard SU-8 on silicon masters and a table-top UV-lamp, the surface modifications are precisely grafted using a stencil mask and the bonding requires only a single UV-exposure. To illustrate the potential of the material we demonstrate key concepts important in microfluidic chip fabrication such as patterned surface modifications for hydrophobic stops, pneumatic valves using UV-lamination of stiff and rubbery materials as well as micromachining of chip-to-world connectors in the OSTE-materials.

  4. High-Throughput Single-Cell Labeling (Hi-SCL) for RNA-Seq Using Drop-Based Microfluidics.

    PubMed

    Rotem, Assaf; Ram, Oren; Shoresh, Noam; Sperling, Ralph A; Schnall-Levin, Michael; Zhang, Huidan; Basu, Anindita; Bernstein, Bradley E; Weitz, David A

    2015-01-01

    The importance of single-cell level data is increasingly appreciated, and significant advances in this direction have been made in recent years. Common to these technologies is the need to physically segregate individual cells into containers, such as wells or chambers of a micro-fluidics chip. High-throughput Single-Cell Labeling (Hi-SCL) in drops is a novel method that uses drop-based libraries of oligonucleotide barcodes to index individual cells in a population. The use of drops as containers, and a microfluidics platform to manipulate them en-masse, yields a highly scalable methodological framework. Once tagged, labeled molecules from different cells may be mixed without losing the cell-of-origin information. Here we demonstrate an application of the method for generating RNA-sequencing data for multiple individual cells within a population. Barcoded oligonucleotides are used to prime cDNA synthesis within drops. Barcoded cDNAs are then combined and subjected to second generation sequencing. The data are deconvoluted based on the barcodes, yielding single-cell mRNA expression data. In a proof-of-concept set of experiments we show that this method yields data comparable to other existing methods, but with unique potential for assaying very large numbers of cells.

  5. Droplet-based microfluidics for high-throughput screening of a metagenomic library for isolation of microbial enzymes.

    PubMed

    Hosokawa, Masahito; Hoshino, Yuri; Nishikawa, Yohei; Hirose, Tomotada; Yoon, Dong Hyun; Mori, Tetsushi; Sekiguchi, Tetsushi; Shoji, Shuichi; Takeyama, Haruko

    2015-05-15

    This paper proposes a high-throughput, function-based screening approach of a metagenomic library for isolating novel microbial enzymes by droplet-based microfluidics. We used gel microdroplets (GMDs) dispersed in oil as picoliter-volume reaction vessels for lipolytic enzyme by encapsulating cells in individual GMDs. Using this approach, we monitored the growth of individual cells encapsulated in GMDs and assessed the enzyme reaction activities at the level of an individual GMD. We then applied this method to screen lipolytic enzyme genes from the metagenomic library constructed from soil collected from a quercus serrate forest of Mount Tsukuba, Ibaraki, Japan. In the workflow presented in this study, metagenomic library clones were encapsulated in 100-pL GMDs with a fluorogenic reporter substrate. A total of 67,000 metagenomic library clones can be screened in only 24 h with reduced consumption of reagents (i.e., <10 μL). As a result, we identified a novel lipolytic enzyme, EstT1, belonging to the EstD2 family of esterases and containing a putative signal peptide, which facilitates enzyme export and catalyzation of substrates in the periplasm. Our study demonstrates the potential of microfluidic GMDs as an efficient tool for metagenomic library screening of industrially relevant enzymes with the potential of significantly reducing the cost and time factors involved in successful practical application of microbial enzymes.

  6. Paper-based three-dimensional microfluidic device for monitoring of heavy metals with a camera cell phone.

    PubMed

    Wang, Hu; Li, Ya-jie; Wei, Jun-feng; Xu, Ji-run; Wang, Yun-hua; Zheng, Guo-xia

    2014-05-01

    A 3D paper-based microfluidic device has been developed for colorimetric determination of selected heavy metals in water samples by stacking layers of wax patterned paper and double-sided adhesive tape. It has the capability of wicking fluids and distributing microliter volumes of samples from single inlet into affrays of detection zones without external pumps, thus a range of metal assays can be simply and inexpensively performed. We demonstrate a prototype of four sample inlets for up to four heavy metal assays each, with detection limits as follows: Cu (II) = 0.29 ppm, Ni(II) = 0.33 ppm, Cd (II) = 0.19 ppm, and Cr (VI) = 0.35 ppm, which provided quantitative data that were in agreement with values gained from atomic absorption. It has the ability to identify these four metals in mixtures and is immune to interferences from either nontoxic metal ions such as Na(I) and K(I) or components found in reservoir or beach water. With the incorporation of a portable detector, a camera mobile phone, this 3D paper-based microfluidic device should be useful as a simple, rapid, and on-site screening approach of heavy metals in aquatic environments. PMID:24618990

  7. High-Throughput Single-Cell Labeling (Hi-SCL) for RNA-Seq Using Drop-Based Microfluidics

    PubMed Central

    Sperling, Ralph A.; Schnall-Levin, Michael; Zhang, Huidan; Basu, Anindita; Bernstein, Bradley E.; Weitz, David A.

    2015-01-01

    The importance of single-cell level data is increasingly appreciated, and significant advances in this direction have been made in recent years. Common to these technologies is the need to physically segregate individual cells into containers, such as wells or chambers of a micro-fluidics chip. High-throughput Single-Cell Labeling (Hi-SCL) in drops is a novel method that uses drop-based libraries of oligonucleotide barcodes to index individual cells in a population. The use of drops as containers, and a microfluidics platform to manipulate them en-masse, yields a highly scalable methodological framework. Once tagged, labeled molecules from different cells may be mixed without losing the cell-of-origin information. Here we demonstrate an application of the method for generating RNA-sequencing data for multiple individual cells within a population. Barcoded oligonucleotides are used to prime cDNA synthesis within drops. Barcoded cDNAs are then combined and subjected to second generation sequencing. The data are deconvoluted based on the barcodes, yielding single-cell mRNA expression data. In a proof-of-concept set of experiments we show that this method yields data comparable to other existing methods, but with unique potential for assaying very large numbers of cells. PMID:26000628

  8. Fabrication of an Amperometric Flow-Injection Microfluidic Biosensor Based on Laccase for In Situ Determination of Phenolic Compounds

    PubMed Central

    Gonzalez-Rivera, Juan C.; Osma, Johann F.

    2015-01-01

    We aim to develop an in situ microfluidic biosensor based on laccase from Trametes pubescens with flow-injection and amperometry as the transducer method. The enzyme was directly immobilized by potential step chronoamperometry, and the immobilization was studied using cyclic voltammetry and electrochemical impedance spectroscopy. The electrode response by amperometry was probed using ABTS and syringaldazine. A shift of interfacial electron transfer resistance and the electron transfer rate constant from 18.1 kΩ to 3.9 MΩ and 4.6 × 10−2 cm s−1 to 2.1 × 10−4 cm s−1, respectively, evidenced that laccase was immobilized on the electrode by the proposed method. We established the optimum operating conditions of temperature (55°C), pH (4.5), injection flow rate (200 µL min−1), and applied potential (0.4 V). Finally, the microfluidic biosensor showed better lower limit of detection (0.149 µM) and sensitivity (0.2341 nA µM−1) for ABTS than previous laccase-based biosensors and the in situ operation capacity. PMID:26509166

  9. Quantitative Fluorescence Assays Using a Self-Powered Paper-Based Microfluidic Device and a Camera-Equipped Cellular Phone

    PubMed Central

    Thom, Nicole K.; Lewis, Gregory G.; Yeung, Kimy

    2014-01-01

    Fluorescence assays often require specialized equipment and, therefore, are not easily implemented in resource-limited environments. Herein we describe a point-of-care assay strategy in which fluorescence in the visible region is used as a readout, while a camera-equipped cellular phone is used to capture the fluorescent response and quantify the assay. The fluorescence assay is made possible using a paper-based microfluidic device that contains an internal fluidic battery, a surface-mount LED, a 2-mm section of a clear straw as a cuvette, and an appropriately-designed small molecule reagent that transforms from weakly fluorescent to highly fluorescent when exposed to a specific enzyme biomarker. The resulting visible fluorescence is digitized by photographing the assay region using a camera-equipped cellular phone. The digital images are then quantified using image processing software to provide sensitive as well as quantitative results. In a model 30 min assay, the enzyme β-D-galactosidase was measured quantitatively down to 700 pM levels. This Communication describes the design of these types of assays in paper-based microfluidic devices and characterizes the key parameters that affect the sensitivity and reproducibility of the technique. PMID:24490035

  10. Microfluidic Approaches to Synchrotron Radiation-Based Fourier Transform Infrared (SR-FTIR) Spectral Microscopy of Living Biosystems

    PubMed Central

    Loutherback, Kevin; Birarda, Giovanni; Chen, Liang; Holman, Hoi-Ying N.

    2016-01-01

    A long-standing desire in biological and biomedical sciences is to be able to probe cellular chemistry as biological processes are happening inside living cells. Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy is a label-free and nondestructive analytical technique that can provide spatiotemporal distributions and relative abundances of biomolecules of a specimen by their characteristic vibrational modes. Despite great progress in recent years, SR-FTIR imaging of living biological systems remains challenging because of the demanding requirements on environmental control and strong infrared absorption of water. To meet this challenge, microfluidic devices have emerged as a method to control the water thickness while providing a hospitable environment to measure cellular processes and responses over many hours or days. This paper will provide an overview of microfluidic device development for SR-FTIR imaging of living biological systems, provide contrast between the various techniques including closed and open-channel designs, and discuss future directions of development within this area. Even as the fundamental science and technological demonstrations develop, other ongoing issues must be addressed; for example, choosing applications whose experimental requirements closely match device capabilities, and developing strategies to efficiently complete the cycle of development. These will require imagination, ingenuity and collaboration. PMID:26732243

  11. Fast response Fabry-Perot interferometer microfluidic refractive index fiber sensor based on concave-core photonic crystal fiber.

    PubMed

    Tian, Jiajun; Lu, Zejin; Quan, Mingran; Jiao, Yuzhu; Yao, Yong

    2016-09-01

    We report a fast response microfluidic Fabry-Perot (FP) interferometer refractive index (RI) fiber sensor based on a concave-core photonic crystal fiber (CPCF), which is formed by directly splicing a section CPCF with a section of single mode fiber. The CPCF is made by cleaving a section of multimode photonic crystal fiber with an axial tension. The shallow concave-core of CPCF naturally forms the FP cavity with a very short cavity length. The inherent large air holes in the cladding of CPCF are used as the open channels to let liquid sample come in and out of FP cavity. In order to shorten the liquid channel length and eliminate the harmful reflection from the outside end face of the CPCF, the CPCF is cleaved with a tilted tensile force. Due to the very small cavity capacity, the short length and the large sectional area of the microfluidic channels, the proposed sensor provides an easy-in and easy-out structure for liquids, leading to great decrement of the measuring time. The proposed sensor exhibits fast measuring speed, the measuring time is less than 359 and 23 ms for distilled water and pure ethanol, respectively. We also experimentally study and demonstrate the superior performances of the sensor in terms of high RI sensitivity, good linear response, low temperature cross-sensitivity and easy fabrication.

  12. Using droplet-based microfluidics to improve the catalytic properties of RNA under multiple-turnover conditions.

    PubMed

    Ryckelynck, Michael; Baudrey, Stéphanie; Rick, Christian; Marin, Annick; Coldren, Faith; Westhof, Eric; Griffiths, Andrew D

    2015-03-01

    In vitro evolution methodologies are powerful approaches to identify RNA with new functionalities. While Systematic Evolution of Ligands by Exponential enrichment (SELEX) is an efficient approach to generate new RNA aptamers, it is less suited for the isolation of efficient ribozymes as it does not select directly for the catalysis. In vitro compartmentalization (IVC) in aqueous droplets in emulsions allows catalytic RNAs to be selected under multiple-turnover conditions but suffers severe limitations that can be overcome using the droplet-based microfluidics workflow described in this paper. Using microfluidics, millions of genes in a library can be individually compartmentalized in highly monodisperse aqueous droplets and serial operations performed on them. This allows the different steps of the evolution process (gene amplification, transcription, and phenotypic assay) to be uncoupled, making the method highly flexible, applicable to the selection and evolution of a variety of RNAs, and easily adaptable for evolution of DNA or proteins. To demonstrate the method, we performed cycles of random mutagenesis and selection to evolve the X-motif, a ribozyme which, like many ribozymes selected using SELEX, has limited multiple-turnover activity. This led to the selection of variants, likely to be the optimal ribozymes that can be generated using point mutagenesis alone, with a turnover number under multiple-turnover conditions, k(ss) cat, ∼ 28-fold higher than the original X-motif, primarily due to an increase in the rate of product release, the rate-limiting step in the multiple-turnover reaction.

  13. Using droplet-based microfluidics to improve the catalytic properties of RNA under multiple-turnover conditions

    PubMed Central

    Baudrey, Stéphanie; Rick, Christian; Marin, Annick; Coldren, Faith; Westhof, Eric

    2015-01-01

    In vitro evolution methodologies are powerful approaches to identify RNA with new functionalities. While Systematic Evolution of Ligands by Exponential enrichment (SELEX) is an efficient approach to generate new RNA aptamers, it is less suited for the isolation of efficient ribozymes as it does not select directly for the catalysis. In vitro compartmentalization (IVC) in aqueous droplets in emulsions allows catalytic RNAs to be selected under multiple-turnover conditions but suffers severe limitations that can be overcome using the droplet-based microfluidics workflow described in this paper. Using microfluidics, millions of genes in a library can be individually compartmentalized in highly monodisperse aqueous droplets and serial operations performed on them. This allows the different steps of the evolution process (gene amplification, transcription, and phenotypic assay) to be uncoupled, making the method highly flexible, applicable to the selection and evolution of a variety of RNAs, and easily adaptable for evolution of DNA or proteins. To demonstrate the method, we performed cycles of random mutagenesis and selection to evolve the X-motif, a ribozyme which, like many ribozymes selected using SELEX, has limited multiple-turnover activity. This led to the selection of variants, likely to be the optimal ribozymes that can be generated using point mutagenesis alone, with a turnover number under multiple-turnover conditions, ksscat, ∼28-fold higher than the original X-motif, primarily due to an increase in the rate of product release, the rate-limiting step in the multiple-turnover reaction. PMID:25605963

  14. Entropy-based measures of in vivo cilia-driven microfluidic mixing derived from quantitative optical imaging

    NASA Astrophysics Data System (ADS)

    Chandrasekera, Kenny; Jonas, Stephan; Bhattacharya, Dipankan; Khokha, Mustafa; Choma, Michael A.

    2012-02-01

    Motile cilia are cellular organelles that project from different epithelial surfaces including respiratory epithelium. They generate directional fluid flow that removes harmful pathogens and particulate matter from the respiratory system. While it has been known that primary ciliary dyskinesia increases the risk of recurrent pulmonary infections, there is now heightened interest in understanding the role that cilia play in a wide-variety of respiratory diseases. Different optical imaging technologies are being investigated to visualize cilia-driven fluid flow, and quantitative image analysis is used to generate measures of ciliary performance. Here, we demonstrate the quantification of in vivo cilia-driven microfluidic mixing using spatial and temporal measures of Shannon information entropy. Using videomicroscopy, we imaged in vivo cilia-driven fluid flow generated by the epidermis of the Xenopus tropicalis embryo. Flow was seeded with either dyes or microparticles. Both spatial and temporal measures of entropy show significant levels of mixing, with maximum entropy measures of ~6.5 (out of a possible range of 0 to 8). Spatial entropy measures showed localization of mixing "hot-spots" and "cold-spots" and temporal measures showed mixing throughout.In sum, entropy-based measures of microfluidic mixing can characterize in vivo cilia-driven fluid flow and hold the potential for better characterization of ciliary dysfunction.

  15. Fast response Fabry-Perot interferometer microfluidic refractive index fiber sensor based on concave-core photonic crystal fiber.

    PubMed

    Tian, Jiajun; Lu, Zejin; Quan, Mingran; Jiao, Yuzhu; Yao, Yong

    2016-09-01

    We report a fast response microfluidic Fabry-Perot (FP) interferometer refractive index (RI) fiber sensor based on a concave-core photonic crystal fiber (CPCF), which is formed by directly splicing a section CPCF with a section of single mode fiber. The CPCF is made by cleaving a section of multimode photonic crystal fiber with an axial tension. The shallow concave-core of CPCF naturally forms the FP cavity with a very short cavity length. The inherent large air holes in the cladding of CPCF are used as the open channels to let liquid sample come in and out of FP cavity. In order to shorten the liquid channel length and eliminate the harmful reflection from the outside end face of the CPCF, the CPCF is cleaved with a tilted tensile force. Due to the very small cavity capacity, the short length and the large sectional area of the microfluidic channels, the proposed sensor provides an easy-in and easy-out structure for liquids, leading to great decrement of the measuring time. The proposed sensor exhibits fast measuring speed, the measuring time is less than 359 and 23 ms for distilled water and pure ethanol, respectively. We also experimentally study and demonstrate the superior performances of the sensor in terms of high RI sensitivity, good linear response, low temperature cross-sensitivity and easy fabrication. PMID:27607621

  16. Microfluidic Device

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey (Inventor)

    2015-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  17. Microfluidic Device

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey L. (Inventor)

    2016-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  18. SPH Based Optimization of Electrowetting-Driven Digital Microfluidics with Advanced Actuation Patterns

    NASA Astrophysics Data System (ADS)

    Weiß, Dennis; Greiner, Andreas; Lienemann, Jan; Korvink, Jan G.

    2013-12-01

    Fast and thorough mixing is a crucial operation of digital microfluidic devices, where discrete and small fluid portions are moved and processed. In this paper, we want to analyze and to optimize the mixing process by substituting conventional motion and superposing oscillatory and translational modes. An accurate multiphase smoothed particle hydrodynamics (SPH) discretization for incompressible flow is instantiated. Different harmonic excitation patterns for the solid-liquid surface energy are applied and their influence on droplet mode shapes, formation of eddies and the Shannon entropy of droplet fluid components are measured. We tailor enhanced actuation patterns which improve mixing grade and reduce mixing time.

  19. A microfluidic device based on droplet storage for screening solubility diagrams.

    PubMed

    Laval, Philippe; Lisai, Nicolas; Salmon, Jean-Baptiste; Joanicot, Mathieu

    2007-07-01

    This work describes a new microfluidic device developed for the rapid screening of solubility diagrams. In several parallel channels, hundreds of nanolitre volume droplets of a given solution are first stored with a gradual variation in the solute concentration. Then, the application of a temperature gradient along these channels enables us to read directly and quantitatively phase diagrams, concentration vs. temperature. We show, using a solution of adipic acid, that we can measure ten points of the solubility curve in less than 1 hr and with only 250 microL of solution. PMID:17594000

  20. A microfluidic device based on droplet storage for screening solubility diagrams.

    PubMed

    Laval, Philippe; Lisai, Nicolas; Salmon, Jean-Baptiste; Joanicot, Mathieu

    2007-07-01

    This work describes a new microfluidic device developed for the rapid screening of solubility diagrams. In several parallel channels, hundreds of nanolitre volume droplets of a given solution are first stored with a gradual variation in the solute concentration. Then, the application of a temperature gradient along these channels enables us to read directly and quantitatively phase diagrams, concentration vs. temperature. We show, using a solution of adipic acid, that we can measure ten points of the solubility curve in less than 1 hr and with only 250 microL of solution.

  1. Get to Understand More from Single-Cells: Current Studies of Microfluidic-Based Techniques for Single-Cell Analysis

    PubMed Central

    Lo, Shih-Jie; Yao, Da-Jeng

    2015-01-01

    This review describes the microfluidic techniques developed for the analysis of a single cell. The characteristics of microfluidic (e.g., little sample amount required, high-throughput performance) make this tool suitable to answer and to solve biological questions of interest about a single cell. This review aims to introduce microfluidic related techniques for the isolation, trapping and manipulation of a single cell. The major approaches for detection in single-cell analysis are introduced; the applications of single-cell analysis are then summarized. The review concludes with discussions of the future directions and opportunities of microfluidic systems applied in analysis of a single cell. PMID:26213918

  2. Development of a fully integrated analysis system for ions based on ion-selective optodes and centrifugal microfluidics

    NASA Technical Reports Server (NTRS)

    Johnson, R. D.; Badr, I. H.; Barrett, G.; Lai, S.; Lu, Y.; Madou, M. J.; Bachas, L. G.; Daunert, S. (Principal Investigator)

    2001-01-01

    A fully integrated, miniaturized analysis system for ions based on a centrifugal microfluidics platform and ion-selective optode membranes is described. The microfluidic architecture is composed of channels, five solution reservoirs, a measuring chamber, and a waste reservoir manufactured onto a disk-shaped substrate of poly(methyl methacrylate). Ion-selective optode membranes, composed of plasticized poly(vinyl chloride) impregnated with an ionophore, a proton chromoionophore, and a lipophilic anionic additive, were cast, with a spin-on device, onto a support layer and then immobilized on the disk. Fluid propulsion is achieved by the centrifugal force that results from spinning the disk, while a system of valves is built onto the disk to control flow. These valves operate based on fluid properties and fluid/substrate interactions and are controlled by the angular frequency of rotation. With this system, we have been able to deliver calibrant solutions, washing buffers, or "test" solutions to the measuring chamber where the optode membrane is located. An analysis system based on a potassium-selective optode has been characterized. Results indicate that optodes immobilized on the platform demonstrate theoretical responses in an absorbance mode of measurement. Samples of unknown concentration can be quantified to within 3% error by fitting the response function for a given optode membrane using an acid (for measuring the signal for a fully protonated chromoionophore), a base (for fully deprotonated chromoionophore), and two standard solutions. Further, the ability to measure ion concentrations by employing one standard solution in conjunction with acid and base and with two standards alone were studied to delineate whether the current architecture could be simplified. Finally, the efficacy of incorporating washing steps into the calibration protocol was investigated.

  3. Fluorescence-Based Assessment of Plasma-Induced Hydrophilicity in Microfluidic Devices via Nile Red Adsorption and Depletion

    PubMed Central

    2015-01-01

    We present a simple method, called fluorescence-based assessment of plasma-induced hydrophilicity (FAPH), that enables spatial mapping of the local hydrophilicity of surfaces normally inaccessible by traditional contact angle measurement techniques. The method leverages the change in fluorescence of a dye, Nile Red, which is adsorbed on an oxygen plasma-treated surface, and its correlation with the contact angle of water. Using FAPH, we explored the effect of microchannel geometries on the penetration distance of oxygen plasma into a microchannel and found that entrance effects prevent uniform treatment. We showed that these variations have a significant impact on cell culture, and thus the design of cell-based microfluidic assays must consider this phenomenon to obtain repeatable and homogeneous results. PMID:25032783

  4. LabCD: a centrifuge-based microfluidic platform for diagnostics

    NASA Astrophysics Data System (ADS)

    Madou, Marc J.; Kellogg, Gregory J.

    1998-04-01

    Diagnostics for point-of-care (POC) and field use requires the integration of fluid processes with means of detection in a user-friendly, portable package. A drawback to the use of many current analyzers for POC and field applications is their reliance on expensive and fragile robotic technology for automation, lack of portability, and incomplete integration of sample processing into the device. As a result, a number of microfluidic technologies are being developed for diagnostics applications outside of central laboratories. We compare several of these technologies with our own preferred centrifugal flow system, the LabCDTM, with an emphasis on fluid propulsion. LabCDTM has been developed to perform a variety of fluidic processes necessary in diagnostics while dispensing with traditional pumps and valves. The use of the CD-ROM model provides a natural division of the system into an instrument and a disposable component, each with well-defined functions. The CD format also allows for the use of encoded information to integrate process control, data acquisition, and analysis. Finally, the `solid state' nature of the microfluidics and use of standard manufacturing techniques should yield a low- cost platform.

  5. Multi-channeled single chain variable fragment (scFv) based microfluidic device for explosives detection.

    PubMed

    Charles, Paul T; Davis, Jasmine; Adams, André A; Anderson, George P; Liu, Jinny L; Deschamps, Jeffrey R; Kusterbeck, Anne W

    2015-11-01

    The development of explosives detection technologies has increased significantly over the years as environmental and national security agencies implement tighter pollution control measures and methods for improving homeland security. 2, 4, 6-Trinitrotoluene (TNT), known primarily as a component in munitions, has been targeted for both its toxicity and carcinogenic properties that if present at high concentrations can be a detriment to both humans, marine and plant ecosystems. Enabling end users with environmental detection and monitoring systems capable of providing real-time, qualitative and quantitative chemical analysis of these toxic compounds would be extremely beneficial. Reported herein is the development of a multi-channeled microfluidic device immobilized with single chain fragment variable (scFv) recombinant proteins specific for the explosive, TNT. Fluorescence displacement immunoassays performed under constant flow demonstrated trace level sensitivity and specificity for TNT. The utility of three multi-channeled devices immobilized with either (1) scFv recombinant protein, (2) biotinylated-scFv (bt-scFv) and (3) monoclonal anti-TNT (whole IgG molecule) were investigated and compared. Fluorescence dose response curves, crossreactivity measurements and limits of detection (LOD) for TNT were determined. Fluorescence displacement immunoassays for TNT in natural seawater demonstrated detection limits at sub-parts-per-billion levels (0.5 ppb) utilizing the microfluidic device with immobilized bt-scFv. PMID:26452845

  6. A model microfluidics-based system for the human and mouse retina.

    PubMed

    Mishra, Shawn; Thakur, Ankush; Redenti, Stephen; Vazquez, Maribel

    2015-12-01

    The application of microfluidics technologies to the study of retinal function and response holds great promise for development of new and improved treatments for patients with degenerative retinal diseases. Restoration of vision via retinal transplantation therapy has been severely limited by the low numbers of motile cells observed post transplantation. Using modern soft lithographic techniques, we have developed the μRetina, a novel and convenient biomimetic microfluidics device capable of examing the migratory behavior of retinal lineage cells within biomimetic geometries of the human and mouse retina. Coupled computer simulations and experimental validations were used to characterize and confirm the formation of chemical concentration gradients within the μRetina, while real-time images within the device captured radial and theta cell migration in response to concentration gradients of stromal derived factor (SDF-1), a known chemoattractant. Our data underscore how the μRetina can be used to examine the concentration-dependent migration of retinal progenitors in order to enhance current therapies, as well as develop novel migration-targeted treatments.

  7. Multi-channeled single chain variable fragment (scFv) based microfluidic device for explosives detection.

    PubMed

    Charles, Paul T; Davis, Jasmine; Adams, André A; Anderson, George P; Liu, Jinny L; Deschamps, Jeffrey R; Kusterbeck, Anne W

    2015-11-01

    The development of explosives detection technologies has increased significantly over the years as environmental and national security agencies implement tighter pollution control measures and methods for improving homeland security. 2, 4, 6-Trinitrotoluene (TNT), known primarily as a component in munitions, has been targeted for both its toxicity and carcinogenic properties that if present at high concentrations can be a detriment to both humans, marine and plant ecosystems. Enabling end users with environmental detection and monitoring systems capable of providing real-time, qualitative and quantitative chemical analysis of these toxic compounds would be extremely beneficial. Reported herein is the development of a multi-channeled microfluidic device immobilized with single chain fragment variable (scFv) recombinant proteins specific for the explosive, TNT. Fluorescence displacement immunoassays performed under constant flow demonstrated trace level sensitivity and specificity for TNT. The utility of three multi-channeled devices immobilized with either (1) scFv recombinant protein, (2) biotinylated-scFv (bt-scFv) and (3) monoclonal anti-TNT (whole IgG molecule) were investigated and compared. Fluorescence dose response curves, crossreactivity measurements and limits of detection (LOD) for TNT were determined. Fluorescence displacement immunoassays for TNT in natural seawater demonstrated detection limits at sub-parts-per-billion levels (0.5 ppb) utilizing the microfluidic device with immobilized bt-scFv.

  8. Microfluidic-based patterning of embryonic stem cells for in vitro development studies.

    PubMed

    Suri, Shalu; Singh, Ankur; Nguyen, Anh H; Bratt-Leal, Andres M; McDevitt, Todd C; Lu, Hang

    2013-12-01

    In vitro recapitulation of mammalian embryogenesis and examination of the emerging behaviours of embryonic structures require both the means to engineer complexity and accurately assess phenotypes of multicellular aggregates. Current approaches to study multicellular populations in 3D configurations are limited by the inability to create complex (i.e. spatially heterogeneous) environments in a reproducible manner with high fidelity thus impeding the ability to engineer microenvironments and combinations of cells with similar complexity to that found during morphogenic processes such as development, remodelling and wound healing. Here, we develop a multicellular embryoid body (EB) fusion technique as a higher-throughput in vitro tool, compared to a manual assembly, to generate developmentally relevant embryonic patterns. We describe the physical principles of the EB fusion microfluidic device design; we demonstrate that >60 conjoined EBs can be generated overnight and emulate a development process analogous to mouse gastrulation during early embryogenesis. Using temporal delivery of bone morphogenic protein 4 (BMP4) to embryoid bodies, we recapitulate embryonic day 6.5 (E6.5) during mouse embryo development with induced mesoderm differentiation in murine embryonic stem cells leading to expression of Brachyury-T-green fluorescent protein (T-GFP), an indicator of primitive streak development and mesoderm differentiation during gastrulation. The proposed microfluidic approach could be used to manipulate hundreds or more of individual embryonic cell aggregates in a rapid fashion, thereby allowing controlled differentiation patterns in fused multicellular assemblies to generate complex yet spatially controlled microenvironments.

  9. 3D-Printed Microfluidics.

    PubMed

    Au, Anthony K; Huynh, Wilson; Horowitz, Lisa F; Folch, Albert

    2016-03-14

    The advent of soft lithography allowed for an unprecedented expansion in the field of microfluidics. However, the vast majority of PDMS microfluidic devices are still made with extensive manual labor, are tethered to bulky control systems, and have cumbersome user interfaces, which all render commercialization difficult. On the other hand, 3D printing has begun to embrace the range of sizes and materials that appeal to the developers of microfluidic devices. Prior to fabrication, a design is digitally built as a detailed 3D CAD file. The design can be assembled in modules by remotely collaborating teams, and its mechanical and fluidic behavior can be simulated using finite-element modeling. As structures are created by adding materials without the need for etching or dissolution, processing is environmentally friendly and economically efficient. We predict that in the next few years, 3D printing will replace most PDMS and plastic molding techniques in academia.

  10. Thermally conductive porous element-based recuperators

    NASA Technical Reports Server (NTRS)

    Du, Jian Hua (Inventor); Chow, Louis C (Inventor); Lin, Yeong-Ren (Inventor); Wu, Wei (Inventor); Kapat, Jayanta (Inventor); Notardonato, William U. (Inventor)

    2012-01-01

    A heat exchanger includes at least one hot fluid flow channel comprising a first plurality of open cell porous elements having first gaps there between for flowing a hot fluid in a flow direction and at least one cold fluid flow channel comprising a second plurality of open cell porous elements having second gaps therebetween for flowing a cold fluid in a countercurrent flow direction relative to the flow direction. The thermal conductivity of the porous elements is at least 10 W/mK. A separation member is interposed between the hot and cold flow channels for isolating flow paths associated these flow channels. The first and second plurality of porous elements at least partially overlap one another to form a plurality of heat transfer pairs which transfer heat from respective ones of the first porous elements to respective ones of the second porous elements through the separation member.

  11. Development of online, continuous heavy metals detection and monitoring sensors based on microfluidic plasma reactors

    NASA Astrophysics Data System (ADS)

    Abdul-Majeed, Wameath Sh

    This research is dedicated to develop a fully integrated system for heavy metals determination in water samples based on micro fluidic plasma atomizers. Several configurations of dielectric barrier discharge (DBD) atomizer are designed, fabricated and tested toward this target. Finally, a combination of annular and rectangular DBD atomizers has been utilized to develop a scheme for heavy metals determination. The present thesis has combined both theoretical and experimental investigations to fulfil the requirements. Several mathematical studies are implemented to explore the optimal design parameters for best system performance. On the other hand, expanded experimental explorations are conducted to assess the proposed operational approaches. The experiments were designed according to a central composite rotatable design; hence, an empirical model has been produced for each studied case. Moreover, several statistical approaches are adopted to analyse the system performance and to deduce the optimal operational parameters.. The introduction of the examined analyte to the plasma atomizer has been achieved by applying chemical schemes, where the element in the sample has been derivitized by using different kinds of reducing agents to produce vapour species (e.g. hydrides) for a group of nine elements examined in this research individually and simultaneously. Moreover, other derivatization schemes based on photochemical vapour generation assisted by ultrasound irradiation are also investigated. Generally speaking, the detection limits achieved in this research for the examined set of elements (by applying hydroborate scheme) are found to be acceptable in accordance with the standard limits in drinking water. The results of copper compared with the data from other technologies in the literature, showed a competitive detection limit obtained from applying the developed scheme, with an advantage of conducting simultaneous, fully automated, insitu, online- real time

  12. Microfluidic interconnects

    DOEpatents

    Benett, William J.; Krulevitch, Peter A.

    2001-01-01

    A miniature connector for introducing microliter quantities of solutions into microfabricated fluidic devices. The fluidic connector, for example, joins standard high pressure liquid chromatography (HPLC) tubing to 1 mm diameter holes in silicon or glass, enabling ml-sized volumes of sample solutions to be merged with .mu.l-sized devices. The connector has many features, including ease of connect and disconnect; a small footprint which enables numerous connectors to be located in a small area; low dead volume; helium leak-tight; and tubing does not twist during connection. Thus the connector enables easy and effective change of microfluidic devices and introduction of different solutions in the devices.

  13. Capillary-driven microfluidic paper-based analytical devices for lab on a chip screening of explosive residues in soil.

    PubMed

    Ueland, Maiken; Blanes, Lucas; Taudte, Regina V; Stuart, Barbara H; Cole, Nerida; Willis, Peter; Roux, Claude; Doble, Philip

    2016-03-01

    A novel microfluidic paper-based analytical device (μPAD) was designed to filter, extract, and pre-concentrate explosives from soil for direct analysis by a lab on a chip (LOC) device. The explosives were extracted via immersion of wax-printed μPADs directly into methanol soil suspensions for 10min, whereby dissolved explosives travelled upwards into the μPAD circular sampling reservoir. A chad was punched from the sampling reservoir and inserted into a LOC well containing the separation buffer for direct analysis, avoiding any further extraction step. Eight target explosives were separated and identified by fluorescence quenching. The minimum detectable amounts for all eight explosives were between 1.4 and 5.6ng with recoveries ranging from 53-82% from the paper chad, and 12-40% from soil. This method provides a robust and simple extraction method for rapid identification of explosives in complex soil samples.

  14. Microfluidics-based single-step preparation of injection-ready polymeric nanosystems for medical imaging and drug delivery.

    PubMed

    Liu, Kegang; Zhu, Zhen; Wang, Xueya; Gonçalves, Daniel; Zhang, Bei; Hierlemann, Andreas; Hunziker, Patrick

    2015-10-28

    Translation of therapeutic polymeric nanosystems to patients and industry requires simplified, reproducible and scalable methods for assembly and loading. A single-step in-line process based on nanocoprecipitation of oxazoline-siloxane block copolymers in flow-focusing poly(dimethylsiloxane) microfluidics was designed to manufacture injection-ready nanosystems. Nanosystem characteristics could be controlled by copolymer concentration, block length and chemistry, microchannel geometry, flow rate, aqueous/organic flow rate ratio and payload concentration. The well-tolerated nanosystems exhibited differential cell binding and payload delivery and could confer sensitivity to photodynamic therapy to HeLa cancer cells. Such injection-ready nanosystems carrying drugs, diagnostic or functional materials may facilitate translation to clinical application.

  15. Rational Selection of Substrates to Improve Color Intensity and Uniformity on Microfluidic Paper-Based Analytical Devices

    PubMed Central

    Evans, Elizabeth; Gabriel, Ellen Flávia Moreira; Coltro, Wendell Karlos Tomazelli; Garcia, Carlos D.

    2014-01-01

    A systematic investigation was conducted to study the effect of paper type on the analytical performance of a series of microfluidic paper-based analytical devices (μPADs) fabricated using a CO2 laser engraver. Samples included three different grades of Whatman chromatography paper, and three grades of Whatman filter paper. According to the data collected and the characterization performed, different papers offer a wide range of flow rate, thickness, and pore size. After optimizing the channel widths on the μPAD, the focus of this study was directed towards the color intensity and color uniformity formed during a colorimetric enzymatic reaction. According to the results herein described, the type of paper and the volume of reagents dispensed in each detection zone can determine the color intensity and uniformity. Therefore, the objective of this communication is to provide rational guidelines for the selection of paper substrates for the fabrication of μPADs. PMID:24618915

  16. Rational selection of substrates to improve color intensity and uniformity on microfluidic paper-based analytical devices.

    PubMed

    Evans, Elizabeth; Gabriel, Ellen Flávia Moreira; Coltro, Wendell Karlos Tomazelli; Garcia, Carlos D

    2014-05-01

    A systematic investigation was conducted to study the effect of paper type on the analytical performance of a series of microfluidic paper-based analytical devices (μPADs) fabricated using a CO2 laser engraver. Samples included three different grades of Whatman chromatography paper, and three grades of Whatman filter paper. According to the data collected and the characterization performed, different papers offer a wide range of flow rate, thickness, and pore size. After optimizing the channel widths on the μPAD, the focus of this study was directed towards the color intensity and color uniformity formed during a colorimetric enzymatic reaction. According to the results herein described, the type of paper and the volume of reagents dispensed in each detection zone can determine the color intensity and uniformity. Therefore, the objective of this communication is to provide rational guidelines for the selection of paper substrates for the fabrication of μPADs.

  17. A High-Voltage Integrated Circuit Engine for a Dielectrophoresis-based Programmable Micro-Fluidic Processor.

    PubMed

    Current, K Wayne; Yuk, Kelvin; McConaghy, Charles; Gascoyne, Peter R C; Schwartz, Jon A; Vykoukal, Jody V; Andrews, Craig

    2005-07-24

    A high-voltage (HV) integrated circuit has been demonstrated to transport droplets on programmable paths across its coated surface. This chip is the engine for a dielectrophoresis (DEP)-based micro-fluidic lab-on-a-chip system. This chip creates DEP forces that move and help inject droplets. Electrode excitation voltage and frequency are variable. With the electrodes driven with a 100V peak-to-peak periodic waveform, the maximum high-voltage electrode waveform frequency is about 200Hz. Data communication rate is variable up to 250kHz. This demonstration chip has a 32×32 array of nominally 100V electrode drivers. It is fabricated in a 130V SOI CMOS fabrication technology, dissipates a maximum of 1.87W, and is about 10.4 mm × 8.2 mm.

  18. A High-Voltage Integrated Circuit Engine for a Dielectrophoresis-based Programmable Micro-Fluidic Processor

    PubMed Central

    Current, K. Wayne; Yuk, Kelvin; McConaghy, Charles; Gascoyne, Peter R. C.; Schwartz, Jon A.; Vykoukal, Jody V.; Andrews, Craig

    2010-01-01

    A high-voltage (HV) integrated circuit has been demonstrated to transport droplets on programmable paths across its coated surface. This chip is the engine for a dielectrophoresis (DEP)-based micro-fluidic lab-on-a-chip system. This chip creates DEP forces that move and help inject droplets. Electrode excitation voltage and frequency are variable. With the electrodes driven with a 100V peak-to-peak periodic waveform, the maximum high-voltage electrode waveform frequency is about 200Hz. Data communication rate is variable up to 250kHz. This demonstration chip has a 32×32 array of nominally 100V electrode drivers. It is fabricated in a 130V SOI CMOS fabrication technology, dissipates a maximum of 1.87W, and is about 10.4 mm × 8.2 mm. PMID:23989241

  19. Capillary-driven microfluidic paper-based analytical devices for lab on a chip screening of explosive residues in soil.

    PubMed

    Ueland, Maiken; Blanes, Lucas; Taudte, Regina V; Stuart, Barbara H; Cole, Nerida; Willis, Peter; Roux, Claude; Doble, Philip

    2016-03-01

    A novel microfluidic paper-based analytical device (μPAD) was designed to filter, extract, and pre-concentrate explosives from soil for direct analysis by a lab on a chip (LOC) device. The explosives were extracted via immersion of wax-printed μPADs directly into methanol soil suspensions for 10min, whereby dissolved explosives travelled upwards into the μPAD circular sampling reservoir. A chad was punched from the sampling reservoir and inserted into a LOC well containing the separation buffer for direct analysis, avoiding any further extraction step. Eight target explosives were separated and identified by fluorescence quenching. The minimum detectable amounts for all eight explosives were between 1.4 and 5.6ng with recoveries ranging from 53-82% from the paper chad, and 12-40% from soil. This method provides a robust and simple extraction method for rapid identification of explosives in complex soil samples. PMID:26850317

  20. Microfluidic-based electrotaxis for on-demand quantitative analysis of Caenorhabditis elegans' locomotion.

    PubMed

    Tong, Justin; Rezai, Pouya; Salam, Sangeena; Selvaganapathy, P Ravi; Gupta, Bhagwati P

    2013-01-01

    The nematode Caenorhabditis elegans is a versatile model organism for biomedical research because of its conservation of disease-related genes and pathways as well as its ease of cultivation. Several C. elegans disease models have been reported, including neurodegenerative disorders such as Parkinson's disease (PD), which involves the degeneration of dopaminergic (DA) neurons (1). Both transgenes and neurotoxic chemicals have been used to induce DA neurodegeneration and consequent movement defects in worms, allowing for investigations into the basis of neurodegeneration and screens for neuroprotective genes and compounds (2,3). Screens in lower eukaryotes like C. elegans provide an efficient and economical means to identify compounds and genes affecting neuronal signaling. Conventional screens are typically performed manually and scored by visual inspection; consequently, they are time-consuming and prone to human errors. Additionally, most focus on cellular level analysis while ignoring locomotion, which is an especially important parameter for movement disorders. We have developed a novel microfluidic screening system (Figure 1) that controls and quantifies C. elegans' locomotion using electric field stimuli inside microchannels. We have shown that a Direct Current (DC) field can robustly induce on-demand locomotion towards the cathode ("electrotaxis") (4). Reversing the field's polarity causes the worm to quickly reverse its direction as well. We have also shown that defects in dopaminergic and other sensory neurons alter the swimming response (5). Therefore, abnormalities in neuronal signaling can be determined using locomotion as a read-out. The movement response can be accurately quantified using a range of parameters such as swimming speed, body bending frequency and reversal time. Our work has revealed that the electrotactic response varies with age. Specifically, young adults respond to a lower range of electric fields and move faster compared to larvae (4

  1. Rapid fabrication of a four-layer PMMA-based microfluidic chip using CO2-laser micromachining and thermal bonding

    NASA Astrophysics Data System (ADS)

    Chen, Xueye; Shen, Jienan; Zhou, Mengde

    2016-10-01

    A smart design method to transform the original two-layer microfluidic chip into a four-layer 3D microfluidic chip is proposed. A novel fabrication method is established to rapidly and effectively produce a four-layer microfluidic chip device made entirely from polymethylmethacrylate (PMMA). Firstly, the CO2-laser cuts the PMMA sheets by melting and blowing away vaporized material from the parent material to obtain high-quality channels of the microfluidic chip. An orthogonal experimental method is used to study its processing stability. In addition, a simple, rapid thermal bonding technique is successfully applied in fabricating the four-layer microfluidic chip, which has a bond strength of 1.3 MPa. A wooden pole is used to improve the accuracy of the alignment. Finally, a mixing experiment with blue ink and water is carried out, which proves that this smart design method and rapid manufacturing technology are successful.

  2. The Microfluidic Jukebox

    PubMed Central

    Tan, Say Hwa; Maes, Florine; Semin, Benoît; Vrignon, Jérémy; Baret, Jean-Christophe

    2014-01-01

    Music is a form of art interweaving people of all walks of life. Through subtle changes in frequencies, a succession of musical notes forms a melody which is capable of mesmerizing the minds of people. With the advances in technology, we are now able to generate music electronically without relying solely on physical instruments. Here, we demonstrate a musical interpretation of droplet-based microfluidics as a form of novel electronic musical instruments. Using the interplay of electric field and hydrodynamics in microfluidic devices, well controlled frequency patterns corresponding to musical tracks are generated in real time. This high-speed modulation of droplet frequency (and therefore of droplet sizes) may also provide solutions that reconciles high-throughput droplet production and the control of individual droplet at production which is needed for many biochemical or material synthesis applications. PMID:24781785

  3. The Microfluidic Jukebox

    NASA Astrophysics Data System (ADS)

    Tan, Say Hwa; Maes, Florine; Semin, Benoît; Vrignon, Jérémy; Baret, Jean-Christophe

    2014-04-01

    Music is a form of art interweaving people of all walks of life. Through subtle changes in frequencies, a succession of musical notes forms a melody which is capable of mesmerizing the minds of people. With the advances in technology, we are now able to generate music electronically without relying solely on physical instruments. Here, we demonstrate a musical interpretation of droplet-based microfluidics as a form of novel electronic musical instruments. Using the interplay of electric field and hydrodynamics in microfluidic devices, well controlled frequency patterns corresponding to musical tracks are generated in real time. This high-speed modulation of droplet frequency (and therefore of droplet sizes) may also provide solutions that reconciles high-throughput droplet production and the control of individual droplet at production which is needed for many biochemical or material synthesis applications.

  4. Microfluidic colloid filtration

    PubMed Central

    Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J. C.; Wessling, Matthias

    2016-01-01

    Filtration of natural and colloidal matter is an essential process in today’s water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a “cake layer” – often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level. PMID:26927706

  5. Microfluidic colloid filtration

    NASA Astrophysics Data System (ADS)

    Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J. C.; Wessling, Matthias

    2016-03-01

    Filtration of natural and colloidal matter is an essential process in today’s water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a “cake layer” – often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level.

  6. Microfluidic colloid filtration.

    PubMed

    Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J C; Wessling, Matthias

    2016-01-01

    Filtration of natural and colloidal matter is an essential process in today's water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a "cake layer"--often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level. PMID:26927706

  7. Memristor based-elements for chaotic circuits

    NASA Astrophysics Data System (ADS)

    Corinto, Fernando; Ascoli, Alon

    The peculiar features of the memristor, a fundamental passive two-terminal element characterized by nonlinear relationship between charge and flux, promise to revolutionize integrated circuit design in the next few decades. Besides its most popular potential applications, ultra-dense non-volatile memories and brain-simulating systems, much research has been lately devoted to their use in chaotic circuits. Although the physical memristor is inherently-asymmetric, complementary behaviors arise in devices with opposite polarity. In this work we demonstrate that this makes it feasible to devise a number of practical realizations of a monotone-increasing odd-symmetric charge-flux nonlinearity suitable for chaos-based applications through the sole use of physical memristors of the kind recently fabricated at Hewlett-Packard Labs. Confirmation for such claim is obtained through comparison of chaotic behavior of two modified Chua's oscillators, in which the nonlinear diode is replaced in one case with an artificial memristor with symmetric nonlinearity and in the other case with one of the proposed symmetric memristor combinations.

  8. Protable Analyzer Based on Microfluidic/Nanoengineered electrochemical Sensors for in Situ Characterization of Mixed Wastes

    SciTech Connect

    Joseph Wang, PhD

    2007-11-30

    This project aimed on the development of compact microchip sensing devices for on-site monitoring of pollutants in contaminated DOE sites. As described in this report, we have made a substantial progress, and introduced effective routes for improving the on-site detection of toxic metals and for interfacing microfluidic (Lab-on-Chip) sensing devices with the real world. This activity has been very productive and has already been described in 12 research papers (published in major international journals). The resulting microchip sensor technology should allow testing for toxic metals and other major pollutants to be performed more rapidly, inexpensively, and reliably in a field setting. These new analytical capabilities resulted from the generous DOE support will facilitate the characterization and remediation of mixed waste contaminated sites.

  9. Microfluidics based on ZnO/nanocrystalline diamond surface acoustic wave devices

    PubMed Central

    Fu, Y. Q.; Garcia-Gancedo, L.; Pang, H. F.; Porro, S.; Gu, Y. W.; Luo, J. K.; Zu, X. T.; Placido, F.; Wilson, J. I. B.; Flewitt, A. J.; Milne, W. I.

    2012-01-01

    Surface acoustic wave (SAW) devices with 64 μm wavelength were fabricated on a zinc oxide (ZnO) film deposited on top of an ultra-smooth nanocrystalline diamond (UNCD) layer. The smooth surface of the UNCD film allowed the growth of the ZnO film with excellent c-axis orientation and low surface roughness, suitable for SAW fabrication, and could restrain the wave from significantly dissipating into the substrate. The frequency response of the fabricated devices was characterized and a Rayleigh mode was observed at ∼65.4 MHz. This mode was utilised to demonstrate that the ZnO/UNCD SAW device can be successfully used for microfluidic applications. Streaming, pumping, and jetting using microdroplets of 0.5 and 20 μl were achieved and characterized under different powers applied to the SAW device, focusing more on the jetting behaviors induced by the ZnO SAW. PMID:22655016

  10. Artifact-Free Quantification and Sequencing of Rare Recombinant Viruses by Using Drop-Based Microfluidics.

    PubMed

    Tao, Ye; Rotem, Assaf; Zhang, Huidan; Cockrell, Shelley K; Koehler, Stephan A; Chang, Connie B; Ung, Lloyd W; Cantalupo, Paul G; Ren, Yukun; Lin, Jeffrey S; Feldman, Andrew B; Wobus, Christiane E; Pipas, James M; Weitz, David A

    2015-10-12

    Recombination is an important driver in the evolution of viruses and thus is key to understanding viral epidemics and improving strategies to prevent future outbreaks. Characterization of rare recombinant subpopulations remains technically challenging because of artifacts such as artificial recombinants, known as chimeras, and amplification bias. To overcome this, we have developed a high-throughput microfluidic technique with a second verification step in order to amplify and sequence single recombinant viruses with high fidelity in picoliter drops. We obtained the first artifact-free estimate of in vitro recombination rate between murine norovirus strains MNV-1 and WU20 co-infecting a cell (P(rec) = 3.3 × 10(-4) ± 2 × 10(-5) ) for a 1205 nt region. Our approach represents a time- and cost-effective improvement over current methods, and can be adapted for genomic studies requiring artifact- and bias-free selective amplification, such as microbial pathogens, or rare cancer cells.

  11. An electrode design for droplet dispensing with accurate volume in electro-wetting-based microfluidics

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Chen, Jianfeng; Zhou, Jia

    2016-06-01

    Electro-wetting-on-dielectric actuation enables droplets, the basic units of digital microfluidics, to be manipulated on a two-dimensional surface, providing a versatile platform for chemical assays or multi-step operations at micro- or nano-scale. In this paper, we carry out characterization experiments to demonstrate an electrode design to improve the reproducibility of on-chip droplet generation with no extra external apparatus. The overall reproducibility for a sequence of droplets dispensed consecutively from a non-refilling reservoir can be limited within ±0.5%. Results from the repetition of 1000 iterations offer the long-term reproducibility in the range of ±1%, indicating its validity in practical applications.

  12. Development of microfluidic-based cell collection devices for in vitro and in vivo use

    NASA Astrophysics Data System (ADS)

    Butt, Logan; Entenberg, Dave; Hemachandra, L. P. Madhubhani; Strohmayer, Matthew; Keely, Patricia; Aguirre-Ghiso, Julio; Condeelis, John S.; Castracane, James

    2016-03-01

    The NANIVID - or Nano Intravital Device - is an implantable delivery tool designed to locally affect the tumor microenvironment in vivo. This technology is being redesigned and validated as a cell collection tool for the study of metastatic cancer cells. A methodology has been developed to facilitate this transition, consisting of microfluidic analysis of the device microchannels and a series of cell-related collection experiments building up to in vivo collection. Single-chamber designs were first used to qualitatively demonstrate the feasibility of cell collection ex vivo. This was followed by the development and implementation of devices containing a second, negative-control chamber for quantitative analysis. This work sets the foundation for in vivo cancer cell migration studies utilizing the NANIVID.

  13. Microfluidic pumping, routing and metering by contactless metal-based electro-osmosis.

    PubMed

    Fu, Xiaotong; Mavrogiannis, Nicholas; Doria, Steven; Gagnon, Zachary

    2015-09-01

    Over the past decade, many microfluidic platforms for fluid processing have been developed in order to perform on-chip fluidic manipulations. Many of these methods, however, require expensive and bulky external supporting equipment, which are not typically applicable for microsystems requiring portability. We have developed a new type of portable contactless metal electro-osmotic micropump capable of on-chip fluid pumping, routing and metering. The pump operates using two pairs of gallium metal electrodes, which are activated using an external voltage source, and separated from a main flow channel by a thin micron-scale PDMS membrane. The thin contactless membrane allows for field penetration and electro-osmotic (EO) flow within the microchannel, but eliminates electrode damage and sample contamination commonly associated with traditional DC electro-osmotic pumps that utilize electrodes in direct contact with the working fluid. The maximum flow rates and pressures generated by the pump using DI water as a working buffer are 10 nL min(-1) and 30 Pa, respectively. With our current design, the maximum operational conductivity where fluid flow is observed is 0.1 mS cm(-1). Due to the small size and simple fabrication procedure, multiple micropump units can be integrated into a single microfluidic device for automated on-chip routing and sample metering applications. We experimentally demonstrated the ability to quantify micropump electro-osmotic flowrate and pressure as a function of applied voltage, and developed a mathematical model capable of predicting the performance of a contactless micropump for a given external load and internal hydrodynamic microchannel resistance. Finally, we showed that by activating specific pumps within a microchannel network, our micropumps are capable of routing microchannel fluid flow and generating plugs of solute. PMID:26053965

  14. A microfluidic platform for evaporation-based salt screening of pharmaceutical parent compounds.

    PubMed

    Goyal, Sachit; Thorson, Michael R; Schneider, Cassandra L; Zhang, Geoff G Z; Gong, Yuchuan; Kenis, Paul J A

    2013-05-01

    We describe a microfluidic platform to screen for salt forms of pharmaceutical compounds (PCs) via controlled evaporation. The platform enables on-chip combinatorial mixing of PC and salt former solutions in a 24-well array (~200 nL/well), which is a drastic reduction in the amount of PC needed per condition screened compared to traditional screening approaches that require ~100 μL/well. The reduced sample needs enable salt screening at a much earlier stage in the drug development process, when only limited quantities of PCs are available. Compatibility with (i) solvents commonly used in the pharmaceutical industry, and (ii) Raman spectroscopy for solid form identification was ensured by using a hybrid microfluidic platform. A thin layer of elastomeric PDMS was utilized to retain pneumatic valving capabilities. This layer is sandwiched between layers of cyclic-olefin copolymer, a material with low air and solvent permeability and low Raman background to yield a physically rigid and Raman compatible chip. A solvent-impermeable thiolene layer patterned with evaporation channels permits control over the rate of solvent evaporation. Control over the rate of solvent evaporation (2-15 nL h(-1)) results in consistent, known rates of increase in the supersaturation levels attained on-chip, and increases the probability for crystalline solids to form. The modular nature of the platform enables on-chip Raman and birefringence analysis of the solid forms. Model compounds, tamoxifen and ephedrine, were used to validate the platform's ability to screen for salts. On-chip Raman analysis helped to identify six different salts each of tamoxifen and ephedrine. PMID:23478750

  15. Modular microfluidic system for biological sample preparation

    DOEpatents

    Rose, Klint A.; Mariella, Jr., Raymond P.; Bailey, Christopher G.; Ness, Kevin Dean

    2015-09-29

    A reconfigurable modular microfluidic system for preparation of a biological sample including a series of reconfigurable modules for automated sample preparation adapted to selectively include a) a microfluidic acoustic focusing filter module, b) a dielectrophoresis bacteria filter module, c) a dielectrophoresis virus filter module, d) an isotachophoresis nucleic acid filter module, e) a lyses module, and f) an isotachophoresis-based nucleic acid filter.

  16. Microfluidic Chip-Based Detection and Intraspecies Strain Discrimination of Salmonella Serovars Derived from Whole Blood of Septic Mice

    PubMed Central

    Patterson, Adriana S.; Heithoff, Douglas M.; Ferguson, Brian S.; Soh, H. Tom; Mahan, Michael J.

    2013-01-01

    Salmonella is a zoonotic pathogen that poses a considerable public health and economic burden in the United States and worldwide. Resultant human diseases range from enterocolitis to bacteremia to sepsis and are acutely dependent on the particular serovar of Salmonella enterica subsp. enterica, which comprises over 99% of human-pathogenic S. enterica isolates. Point-of-care methods for detection and strain discrimination of Salmonella serovars would thus have considerable benefit to medical, veterinary, and field applications that safeguard public health and reduce industry-associated losses. Here we describe a single, disposable microfluidic chip that supports isothermal amplification and sequence-specific detection and discrimination of Salmonella serovars derived from whole blood of septic mice. The integrated microfluidic electrochemical DNA (IMED) chip consists of an amplification chamber that supports loop-mediated isothermal amplification (LAMP), a rapid, single-temperature amplification method as an alternative to PCR that offers advantages in terms of sensitivity, reaction speed, and amplicon yield. The amplification chamber is connected via a microchannel to a detection chamber containing a reagentless, multiplexed (here biplex) sensing array for sequence-specific electrochemical DNA (E-DNA) detection of the LAMP products. Validation of the IMED device was assessed by the detection and discrimination of S. enterica subsp. enterica serovars Typhimurium and Choleraesuis, the causative agents of enterocolitis and sepsis in humans, respectively. IMED chips conferred rapid (under 2 h) detection and discrimination of these strains at clinically relevant levels (<1,000 CFU/ml) from whole, unprocessed blood collected from septic animals. The IMED-based chip assay shows considerable promise as a rapid, inexpensive, and portable point-of-care diagnostic platform for the detection and strain-specific discrimination of microbial pathogens. PMID:23354710

  17. Microfluidic solid phase suspension transport with an elastomer-based, single piezo-actuator, micro throttle pump.

    PubMed

    Johnston, I D; Tracey, M C; Davis, J B; Tan, C K L

    2005-03-01

    We report a Micro Throttle Pump (MTP) which has been shown to pump 5 microm diameter polystyrene beads at a concentration of 4.5 x 10(7) beads ml(-1). This new MTP design is constructed in a straightforward manner and actuated by a single piezoelectric (PZT) element. Maximum flow rates at 800 Hz drive frequency of 132 microl min(-1) with water and 108 microl min(-1) with a bead suspension were obtained. Maximum back-pressures of 6 kPa were observed in both cases. The reported MTP employs specific location of distinct internal microfluid structures cast in a single compliant elastomeric substrate to exploit the opposing directions of flexure of regions of a piezoelectric-glass composite bonded to the elastomer. By this novel means, distinct flexural regions, exhibiting compressive and tensile stresses respectively, allow both the pump's integrated input and output throttles and its pump chamber to be actuated concurrently by a single PZT. To support MTP design we also report the characterisation of an individual throttle's resistance as a function of actuator deflection and discuss the underlying mechanism of the throttling effect.

  18. Integrated microfluidic system with automatic sampling for permanent molecular and antigen-based detection of CBRNE-related pathogens

    NASA Astrophysics Data System (ADS)

    Becker, Holger; Schattschneider, Sebastian; Klemm, Richard; Hlawatsch, Nadine; Gärtner, Claudia

    2015-03-01

    The continuous monitoring of the environment for lethal pathogens is a central task in the field of biothreat detection. Typical scenarios involve air-sampling in locations such as public transport systems or large public events and a subsequent analysis of the samples by a portable instrument. Lab-on-a-chip technologies are one of the promising technological candidates for such a system. We have developed an integrated microfluidic system with automatic sampling for the detection of CBRNE-related pathogens. The chip contains a two-pronged analysis strategy, on the one hand an immunological track using antibodies immobilized on a frit and a subsequent photometric detection, on the other hand a molecular biology approach using continuous-flow PCR with a fluorescence end-point detection. The cartridge contains two-component molded rotary valve to allow active fluid control and switching between channels. The accompanying instrument contains all elements for fluidic and valve actuation, thermal control, as well as the two detection modalities. Reagents are stored in dedicated reagent packs which are connected directly to the cartridge. With this system, we have been able to demonstrate the detection of a variety of pathogen species.

  19. Microfluidic Biochip Design

    NASA Technical Reports Server (NTRS)

    Panzarella, Charles

    2004-01-01

    As humans prepare for the exploration of our solar system, there is a growing need for miniaturized medical and environmental diagnostic devices for use on spacecrafts, especially during long-duration space missions where size and power requirements are critical. In recent years, the biochip (or Lab-on-a- Chip) has emerged as a technology that might be able to satisfy this need. In generic terms, a biochip is a miniaturized microfluidic device analogous to the electronic microchip that ushered in the digital age. It consists of tiny microfluidic channels, pumps and valves that transport small amounts of sample fluids to biosensors that can perform a variety of tests on those fluids in near real time. It has the obvious advantages of being small, lightweight, requiring less sample fluids and reagents and being more sensitive and efficient than larger devices currently in use. Some of the desired space-based applications would be to provide smaller, more robust devices for analyzing blood, saliva and urine and for testing water and food supplies for the presence of harmful contaminants and microorganisms. Our group has undertaken the goal of adapting as well as improving upon current biochip technology for use in long-duration microgravity environments. In addition to developing computational models of the microfluidic channels, valves and pumps that form the basis of every biochip, we are also trying to identify potential problems that could arise in reduced gravity and develop solutions to these problems. One such problem is due to the prevalence of bubbly sample fluids in microgravity. A bubble trapped in a microfluidic channel could be detrimental to the operation of a biochip. Therefore, the process of bubble formation in microgravity needs to be studied, and a model of this process has been developed and used to understand how bubbles develop and move through biochip components. It is clear that some type of bubble filter would be necessary in Space, and

  20. Machine vision for digital microfluidics.

    PubMed

    Shin, Yong-Jun; Lee, Jeong-Bong

    2010-01-01

    Machine vision is widely used in an industrial environment today. It can perform various tasks, such as inspecting and controlling production processes, that may require humanlike intelligence. The importance of imaging technology for biological research or medical diagnosis is greater than ever. For example, fluorescent reporter imaging enables scientists to study the dynamics of gene networks with high spatial and temporal resolution. Such high-throughput imaging is increasingly demanding the use of machine vision for real-time analysis and control. Digital microfluidics is a relatively new technology with expectations of becoming a true lab-on-a-chip platform. Utilizing digital microfluidics, only small amounts of biological samples are required and the experimental procedures can be automatically controlled. There is a strong need for the development of a digital microfluidics system integrated with machine vision for innovative biological research today. In this paper, we show how machine vision can be applied to digital microfluidics by demonstrating two applications: machine vision-based measurement of the kinetics of biomolecular interactions and machine vision-based droplet motion control. It is expected that digital microfluidics-based machine vision system will add intelligence and automation to high-throughput biological imaging in the future.

  1. Machine vision for digital microfluidics

    NASA Astrophysics Data System (ADS)

    Shin, Yong-Jun; Lee, Jeong-Bong

    2010-01-01

    Machine vision is widely used in an industrial environment today. It can perform various tasks, such as inspecting and controlling production processes, that may require humanlike intelligence. The importance of imaging technology for biological research or medical diagnosis is greater than ever. For example, fluorescent reporter imaging enables scientists to study the dynamics of gene networks with high spatial and temporal resolution. Such high-throughput imaging is increasingly demanding the use of machine vision for real-time analysis and control. Digital microfluidics is a relatively new technology with expectations of becoming a true lab-on-a-chip platform. Utilizing digital microfluidics, only small amounts of biological samples are required and the experimental procedures can be automatically controlled. There is a strong need for the development of a digital microfluidics system integrated with machine vision for innovative biological research today. In this paper, we show how machine vision can be applied to digital microfluidics by demonstrating two applications: machine vision-based measurement of the kinetics of biomolecular interactions and machine vision-based droplet motion control. It is expected that digital microfluidics-based machine vision system will add intelligence and automation to high-throughput biological imaging in the future.

  2. Multilayer microfluidic PEGDA hydrogels.

    PubMed

    Cuchiara, Michael P; Allen, Alicia C B; Chen, Theodore M; Miller, Jordan S; West, Jennifer L

    2010-07-01

    Development of robust 3D tissue analogs in vitro is limited by passive, diffusional mass transport. Perfused microfluidic tissue engineering scaffolds hold the promise to improve mass transport limitations and promote the development of complex, metabolically dense, and clinically relevant tissues. We report a simple and robust multilayer replica molding technique in which poly(dimethylsiloxane) (PDMS) and poly(ethylene glycol) diacrylate (PEGDA) are serially replica molded to develop microfluidic PEGDA hydrogel networks embedded within independently fabricated PDMS housings. We demonstrate the ability to control solute-scaffold effective diffusivity as a function of solute molecular weight and hydrogel concentration. Within cell laden microfluidic hydrogels, we demonstrate increased cellular viability in perfused hydrogel systems compared to static controls. We observed a significant increase in cell viability at all time points greater than zero at distances up to 1 mm from the perfused channel. Knowledge of spatiotemporal mass transport and cell viability gradients provides useful engineering design parameters necessary to maximize overall scaffold viability and metabolic density. This work has applications in the development of hydrogels as in vitro diagnostics and ultimately as regenerative medicine based therapeutics.

  3. Microfluidic electrochemical reactors

    DOEpatents

    Nuzzo, Ralph G.; Mitrovski, Svetlana M.

    2011-03-22

    A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

  4. Microfluidic interconnects

    DOEpatents

    Benett, William J.; Krulevitch, Peter A.

    2001-01-01

    A miniature connector for introducing microliter quantities of solutions into microfabricated fluidic devices, and which incorporates a molded ring or seal set into a ferrule cartridge, with or without a compression screw. The fluidic connector, for example, joins standard high pressure liquid chromatography (HPLC) tubing to 1 mm diameter holes in silicon or glass, enabling ml-sized volumes of sample solutions to be merged with .mu.l-sized devices. The connector has many features, including ease of connect and disconnect; a small footprint which enables numerous connectors to be located in a small area; low dead volume; helium leak-tight; and tubing does not twist during connection. Thus the connector enables easy and effective change of microfluidic devices and introduction of different solutions in the devices.

  5. An integrated optics microfluidic device for detecting single DNA molecules.

    PubMed

    Krogmeier, Jeffrey R; Schaefer, Ian; Seward, George; Yantz, Gregory R; Larson, Jonathan W

    2007-12-01

    A fluorescence-based integrated optics microfluidic device is presented, capable of detecting single DNA molecules in a high throughput and reproducible manner. The device integrates microfluidics for DNA stretching with two optical elements for single molecule detection (SMD): a plano-aspheric refractive lens for fluorescence excitation (illuminator) and a solid parabolic reflective mirror for fluorescence collection (collector). Although miniaturized in size, both optical components were produced and assembled onto the microfluidic device by readily manufacturable fabrication techniques. The optical resolution of the device is determined by the small and relatively low numerical aperture (NA) illuminator lens (0.10 effective NA, 4.0 mm diameter) that delivers excitation light to a diffraction limited 2.0 microm diameter spot at full width half maximum within the microfluidic channel. The collector (0.82 annular NA, 15 mm diameter) reflects the fluorescence over a large collection angle, representing 71% of a hemisphere, toward a single photon counting module in an infinity-corrected scheme. As a proof-of-principle experiment for this simple integrated device, individual intercalated lambda-phage DNA molecules (48.5 kb) were stretched in a mixed elongational-shear microflow, detected, and sized with a fluorescence signal to noise ratio of 9.9 +/-1.0. We have demonstrated that SMD does not require traditional high numerical aperture objective lenses and sub-micron positioning systems conventionally used in many applications. Rather, standard manufacturing processes can be combined in a novel way that promises greater accessibility and affordability for microfluidic-based single molecule applications.

  6. Imaging Liquids Using Microfluidic Cells

    SciTech Connect

    Yu, Xiao-Ying; Liu, Bingwen; Yang, Li

    2013-05-10

    Chemistry occurring in the liquid and liquid surface is important in many applications. Chemical imaging of liquids using vacuum based analytical techniques is challenging due to the difficulty in working with liquids with high volatility. Recent development in microfluidics enabled and increased our capabilities to study liquid in situ using surface sensitive techniques such as electron microscopy and spectroscopy. Due to its small size, low cost, and flexibility in design, liquid cells based on microfluidics have been increasingly used in studying and imaging complex phenomena involving liquids. This paper presents a review of microfluidic cells that were developed to adapt to electron microscopes and various spectrometers for in situ chemical analysis and imaging of liquids. The following topics will be covered including cell designs, fabrication techniques, unique technical features for vacuum compatible cells, and imaging with electron microscopy and spectroscopy. Challenges are summarized and recommendations for future development priority are proposed.

  7. Flow injection based microfluidic device with carbon nanotube electrode for rapid salbutamol detection.

    PubMed

    Karuwan, Chanpen; Wisitsoraat, Anurat; Maturos, Thitima; Phokharatkul, Disayut; Sappat, Assawapong; Jaruwongrungsee, Kata; Lomas, Tanom; Tuantranont, Adisorn

    2009-09-15

    A microfabicated flow injection device has been developed for in-channel electrochemical detection (ECD) of a beta-agonist, namely salbutamol. The microfluidic system consists of PDMS (polydimethylsiloxane) microchannel and electrochemical electrodes formed on glass substrate. The carbon nanotube (CNT) on gold layer as working electrode, silver as reference electrode and platinum as auxiliary electrode were deposited on a glass substrate. Silver, platinum, gold and stainless steel catalyst layers were coated by DC-sputtering. CNTs were then grown on the glass substance by thermal chemical vapor deposition (CVD) with gravity effect and water-assisted etching. 100-microm-deep and 500-microm-wide PDMS microchannels fabricated by SU-8 molding and casting were then bonded on glass substrate by oxygen plasma treatment. Flow injection and ECD of salbutamol was performed with the amperometric detection mode for in-channel detection of salbutamol. The influences of flow rate, injection volume, and detection potential on the response of current signal were optimized. Analytical characteristics, such as sensitivity, repeatability and dynamic range have been evaluated. Fast and highly sensitive detection of salbutamol have been achieved. Thus, the proposed combination of the efficient CNT electrode and miniaturized lab-on-a-chip is a powerful platform for beta-agonists detection.

  8. Biomechanical analysis of cancerous and normal cells based on bulge generation in a microfluidic device.

    PubMed

    Kim, Yu Chang; Park, Sang-Jin; Park, Je-Kyun

    2008-10-01

    This paper presents a new biomechanical analysis method for discrimination between cancerous and normal cells through compression by poly(dimethylsiloxane) (PDMS) membrane deflection in a microfluidic device. When a cell is compressed, cellular membrane will expand and then small bulges will appear on the peripheral cell membrane beyond the allowable strain. It is well known that the amount of F-actin in cancer cells is less than that of normal cells and bulges occur at the sites where cytoskeleton becomes detached from the membrane bilayer. Accordingly, we have demonstrated the difference of the bulge generation between breast cancer cells (MCF7) and normal cells (MCF10A). After excessive deformation, the bulges generated in MCF7 cells were not evenly distributed on the cell periphery. Contrary to this, the bulges of MCF10A cells showed an even distribution. In addition, the morphologies of bulges of MCF7 and MCF10A cells looked swollen protrusion and tubular protrusion, respectively. Peripheral strains at the moment of the bulge generation were also 72% in MCF7 and 46% in MCF10A. The results show that the bulge generation can be correlated with the cytoskeleton quantity inside the cell, providing the first step of a new biomechanical approach. PMID:18810292

  9. Benchtop fabrication of microfluidic systems based on curable polymers with improved solvent compatibility.

    PubMed

    Hashimoto, Michinao; Langer, Robert; Kohane, Daniel S

    2013-01-21

    This paper describes a general scheme to fabricate microchannels from curable polymers on a laboratory benchtop. Using the scheme described here, benchtop fabrication of SU-8 microfluidic systems was demonstrated for the first time, and their compatibility with organic solvents was demonstrated. The fabrication process has three major stages: 1) transferring patterns of microchannels to polymer films by molding, 2) releasing the patterned film and creating inlets and outlets for fluids, and 3) sealing two films together to create a closed channel system. Addition of a PDMS slab supporting the polymer film provided structural integrity during and after fabrication, allowing manipulation of the polymer films without fracturing or deformation. SU-8 channels fabricated according to this scheme exhibited solvent compatibility against continuous exposure to acetone and ethylacetate, which are incompatible with native PDMS. Using the SU-8 channels, continuous generation of droplets of ethylacetate, and templated synthesis of poly (lactic-co-glycolic acid) (PLGA) microparticles, both with stable size, were demonstrated continuously over 24 h, and at intervals over 75 days. PMID:23192674

  10. Fast and sensitive detection of mycotoxins in wheat using microfluidics based Real-time Electrochemical Profiling.

    PubMed

    Olcer, Zehra; Esen, Elif; Muhammad, Turghun; Ersoy, Aylin; Budak, Sinan; Uludag, Yıldız

    2014-12-15

    The objective of the study has been the development of a new sensing platform, called Real-time Electrochemical Profiling (REP) that relies on real-time electrochemical immunoassay detection. The proposed REP platform consists of new electrode arrays that are easy to fabricate, has a small imprint allowing microfluidic system integration, enables multiplexed amperometric measurements and performs well in terms of electrochemical immunoassay detection as shown through the deoxynivalenol detection assays. The deoxynivalenol detection has been conducted according to an optimised REP assay protocol using deoxynivalenol standards at varying concentrations and a standard curve was obtained (y=-20.33ln(x)+124.06; R(2)=0.97) with a limit of detection of 6.25 ng/ml. As both ELISA and REP detection methods use horse radish peroxidase as the label and 3.3',5.5'-Tetramethylbenzidine as the substrate, the performance of the REP platform as an ELISA reader has also been investigated and a perfect correlation between the deoxynivalenol concentration and the current response was obtained (y=-14.56ln(x)+101.02; R(2)=0.99). The calibration curves of both assays have been compared to conventional ELISA tests for confirmation. After assay optimisation using toxin spiked buffer, the deoxynivalenol detection assay has also been performed to detect toxins in wheat grain.

  11. Characterization of a ferrofluid-based thermomagnetic pump for microfluidic applications

    NASA Astrophysics Data System (ADS)

    Pal, Souvik; Datta, Amitava; Sen, Swarnendu; Mukhopdhyay, Achintya; Bandopadhyay, Kallol; Ganguly, Ranjan

    2011-11-01

    We experimentally characterize the performance of a miniature thermomagnetic pump, where suitably imposed temperature and magnetic field gradients are used to drive ferrofluid in a 2 mm diameter glass capillary tube, without application of any external pressure gradient. Such a pump can operate in a hermetically sealed micro electromechanical system configuration without any moving part, and is thus capable of handling microfluidic samples with little risk of contamination. In the experiment, the ferrofluid in the capillary is exposed to a magnetic field using a solenoid; a small resistive heater wrapped on the tube wall is used to create temperature gradient in such a way that the Kelvin body force in the medium produces a net unbalanced axial component. This causes a thermomagnetic pumping action, transporting the ferrofluid in the capillary tube from the colder end to the warmer end. Performance of the thermomagnetic pump is investigated experimentally to characterize the pump pressure head and discharge under different working conditions, namely, the magnetic field strength, heating power, and ferrofluid properties. A comparison with two other field actuation pumps at comparable length scales is also presented. The pump produces higher output at lower power supplies and magnetic field compared to the other two pumps.

  12. Influence of clay particles on microfluidic-based preparation of hydrogel composite microsphere

    NASA Astrophysics Data System (ADS)

    Hong, Joung Sook

    2016-05-01

    For the successful fabrication of a hydrogel composite microsphere, this study aimed to investigate the influence of clay particles on microsphere formation in a microfluidic device which has flow focusing and a 4.5:1 contraction channel. A poly alginic acid solution (2.0 wt.%) with clay particles was used as the dispersed phase to generate drops in an oil medium, which then merged with drops of a CaCl2 solution for gelation. Drop generations were observed with different flow rates and particles types. When the flow rate increased, drop generation was enhanced and drop size decreased by the build-up of more favorable hydrodynamic flow conditions to detach the droplets. The addition of a small amount of particles insignificantly changed the drop generation behavior even though it reduced interfacial tension and increased the viscosity of the solution. Instead, clays particles significantly affected hydro-gelation depending on the hydrophobicity of particles, which produced further heterogeneity in the shape and size of microsphere.

  13. Construction and operation of a microrobot based on magnetotactic bacteria in a microfluidic chip

    PubMed Central

    Ma, Qiufeng; Chen, Changyou; Wei, Shufeng; Chen, Chuanfang; Wu, Long-Fei; Song, Tao

    2012-01-01

    Magnetotactic bacteria (MTB) are capable of swimming along magnetic field lines. This unique feature renders them suitable in the development of magnetic-guided, auto-propelled microrobots to serve in target molecule separation and detection, drug delivery, or target cell screening in a microfluidic chip. The biotechnology to couple these bacteria with functional loads to form microrobots is the critical point in its application. Although an immunoreaction approach to attach functional loads to intact MTB was suggested, details on its realization were hardly mentioned. In the current paper, MTB-microrobots were constructed by attaching 2 μm diameter microbeads to marine magnetotactic ovoid MO-1 cells through immunoreactions. These microrobots were controlled using a special control and tracking system. Experimental results prove that the attachment efficiency can be improved to ∼30% via an immunoreaction. The motility of the bacteria attached with different number of loads was also assessed. The results show that MTB can transport one load at a velocity of ∼21 μm/s and still move and survive for over 30 min. The control and tracking system is fully capable of directing and monitoring the movement of the MTB-microrobots. The rotating magnetic fields can stop the microrobots by trapping them as they swim within a circular field with a controllable size. The system has potential use in chemical analyses and medical diagnoses using biochips as well as in nano/microscale transport. PMID:22655018

  14. Fast and sensitive detection of mycotoxins in wheat using microfluidics based Real-time Electrochemical Profiling.

    PubMed

    Olcer, Zehra; Esen, Elif; Muhammad, Turghun; Ersoy, Aylin; Budak, Sinan; Uludag, Yıldız

    2014-12-15

    The objective of the study has been the development of a new sensing platform, called Real-time Electrochemical Profiling (REP) that relies on real-time electrochemical immunoassay detection. The proposed REP platform consists of new electrode arrays that are easy to fabricate, has a small imprint allowing microfluidic system integration, enables multiplexed amperometric measurements and performs well in terms of electrochemical immunoassay detection as shown through the deoxynivalenol detection assays. The deoxynivalenol detection has been conducted according to an optimised REP assay protocol using deoxynivalenol standards at varying concentrations and a standard curve was obtained (y=-20.33ln(x)+124.06; R(2)=0.97) with a limit of detection of 6.25 ng/ml. As both ELISA and REP detection methods use horse radish peroxidase as the label and 3.3',5.5'-Tetramethylbenzidine as the substrate, the performance of the REP platform as an ELISA reader has also been investigated and a perfect correlation between the deoxynivalenol concentration and the current response was obtained (y=-14.56ln(x)+101.02; R(2)=0.99). The calibration curves of both assays have been compared to conventional ELISA tests for confirmation. After assay optimisation using toxin spiked buffer, the deoxynivalenol detection assay has also been performed to detect toxins in wheat grain. PMID:24998314

  15. Metabolite profiling of microfluidic cell culture conditions for droplet based screening

    PubMed Central

    Bjork, Sara M.; Sjostrom, Staffan L.; Andersson-Svahn, Helene; Joensson, Haakan N.

    2015-01-01

    We investigate the impact of droplet culture conditions on cell metabolic state by determining key metabolite concentrations in S. cerevisiae cultures in different microfluidic droplet culture formats. Control of culture conditions is critical for single cell/clone screening in droplets, such as directed evolution of yeast, as cell metabolic state directly affects production yields from cell factories. Here, we analyze glucose, pyruvate, ethanol, and glycerol, central metabolites in yeast glucose dissimilation to establish culture formats for screening of respiring as well as fermenting yeast. Metabolite profiling provides a more nuanced estimate of cell state compared to proliferation studies alone. We show that the choice of droplet incubation format impacts cell proliferation and metabolite production. The standard syringe incubation of droplets exhibited metabolite profiles similar to oxygen limited cultures, whereas the metabolite profiles of cells cultured in the alternative wide tube droplet incubation format resemble those from aerobic culture. Furthermore, we demonstrate retained droplet stability and size in the new better oxygenated droplet incubation format. PMID:26392830

  16. Integrated cantilever-based flow sensors with tunable sensitivity for in-line monitoring of flow fluctuations in microfluidic systems.

    PubMed

    Noeth, Nadine; Keller, Stephan Sylvest; Boisen, Anja

    2013-12-23

    For devices such as bio-/chemical sensors in microfluidic systems, flow fluctuations result in noise in the sensor output. Here, we demonstrate in-line monitoring of flow fluctuations with a cantilever-like sensor integrated in a microfluidic channel. The cantilevers are fabricated in different materials (SU-8 and SiN) and with different thicknesses. The integration of arrays of holes with different hole size and number of holes allows the modification of device sensitivity, theoretical detection limit and measurement range. For an average flow in the microliter range, the cantilever deflection is directly proportional to the flow rate fluctuations in the microfluidic channel. The SiN cantilevers show a detection limit below 1 nL/min and the thinnest SU-8 cantilevers a detection limit below 5 nL/min. Finally, the sensor is applied for in-line monitoring of flow fluctuations generated by external pumps connected to the microfluidic system.

  17. Recent Results of the Investigation of a Microfluidic Sampling Chip and Sampling System for Hot Cell Aqueous Processing Streams

    SciTech Connect

    Julia Tripp; Jack Law; Tara Smith

    2013-10-01

    A Fuel Cycle Research and Development project has investigated an innovative sampling method that could evolve into the next generation sampling and analysis system for metallic elements present in aqueous processing streams. Initially sampling technologies were evaluated and microfluidics sampling chip technology was selected and tested. A conceptual design for a fully automated microcapillary-based system was completed and a robotic automated sampling system was fabricated. The mechanical and sampling operation of the completed sampling system was investigated. In addition, the production of a less expensive, mass produced sampling chip was investigated to avoid chip reuse thus increasing sampling reproducibility/accuracy. The microfluidic-based robotic sampling system’s mechanical elements were tested to ensure analytical reproducibility and the optimum robotic handling of microfluidic sampling chips.

  18. Microfluidic opportunities in the field of nutrition

    PubMed Central

    Li, Sixing; Kiehne, Justin; Sinoway, Lawrence I.; Cameron, Craig E.

    2013-01-01

    Nutrition has always been closely related to human health, which is a constant motivational force driving research in a variety of disciplines. Over the years, the rapidly emerging field of microfluidics has been pushing forward the healthcare industry with the development of microfluidic-based, point-of-care (POC) diagnostic devices. Though a great deal of work has been done in developing microfluidic platforms for disease diagnoses, potential microfluidic applications in the field of nutrition remain largely unexplored. In this Focus article, we would like to investigate the potential chances for microfluidics in the field of nutrition. We will first highlight some of the recent advances in microfluidic blood analysis systems that have the capacity to detect biomarkers of nutrition. Then we will examine existing examples of microfluidic devices for the detection of specific biomarkers of nutrition or nutrient content in food. Finally, we will discuss the challenges in this field and provide some insight into the future of applied microfluidics in nutrition. PMID:24056522

  19. Microfluidic desalination techniques and their potential applications.

    PubMed

    Roelofs, S H; van den Berg, A; Odijk, M

    2015-09-01

    In this review we discuss recent developments in the emerging research field of miniaturized desalination. Traditionally desalination is performed to convert salt water into potable water and research is focused on improving performance of large-scale desalination plants. Microfluidic desalination offers several new opportunities in comparison to macro-scale desalination, such as providing a platform to increase fundamental knowledge of ion transport on the nano- and microfluidic scale and new microfluidic sample preparation methods. This approach has also lead to the development of new desalination techniques, based on micro/nanofluidic ion-transport phenomena, which are potential candidates for up-scaling to (portable) drinking water devices. This review assesses microfluidic desalination techniques on their applications and is meant to contribute to further implementation of microfluidic desalination techniques in the lab-on-chip community.

  20. A bladder cancer microenvironment simulation system based on a microfluidic co-culture model

    PubMed Central

    Zhao, Yang; Liu, Xiao-guang; Shi, Hao-qing; Hu, Ke-yao; Zhu, Guan-qun; Ma, Bo; Niu, Hai-tao

    2015-01-01

    A tumor microenvironment may promote tumor metastasis and progression through the dynamic interplay between neoplastic cells and stromal cells. In this work, the most representative and significant stromal cells, fibroblasts, endothelial cells, and macrophages were used as vital component elements and combined with bladder cancer cells to construct a bladder cancer microenvironment simulation system. This is the first report to explore bladder cancer microenvironments based on 4 types of cells co-cultured simultaneously. This simulation system comprises perfusion equipment, matrigel channel units, a medium channel and four indirect contact culture chambers, allowing four types of cells to simultaneously interact through soluble biological factors and metabolites. With this system, bladder cancer cells (T24) with a tendency to form a ‘reticular’ structure under 3 dimensional culture conditions were observed in real time. The microenvironment characteristics of paracrine interactions and cell motility were successfully simulated in this system. The phenotype change process in stromal cells was successfully reproduced in this system by testing the macrophage effector molecule Arg-1. Arg-1 was highly expressed in the simulated tumor microenvironment group. To develop “precision medicine” in bladder cancer therapy, bladder cancer cells were treated with different clinical ‘neo-adjuvant’ chemotherapy schemes in this system, and their sensitivity differences were fully reflected. This work provides a preliminary foundation for neo-adjuvant chemotherapy in bladder cancer, a theoretical foundation for tumor microenvironment simulation and promotes individual therapy in bladder cancer patients. PMID:26462177